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Abstract

Thin liquid films are found everywhere in nature. Their flows play a fundamental

role in a wide range of applications and processes. They are central to a number

of biological, industrial, chemical, geophysical and environmental applications. Thin

films driven by external forces are susceptible to instabilities leading to the break-

up of the film into fingering-type patterns. These fingering-type patterns are usually

undesirable as they lead to imperfections and dry spots. This behaviour has motivated

theoreticians to try to understand the behaviour of the flow and the mechanisms by

which these instabilities occur. In the physically relevant case when surface tension is

large, the film’s free surface exhibits internal layers where there is rapid spatial variation

in the film’s curvature over very short lengthscales and away from these internal layers

the film’s curvature is almost negligible. This provides the main motivation for this

thesis which is to develop adaptive numerical solution techniques for thin film flow

equations that fully resolve such internal layers in order to obtain accurate numerical

solutions. We consider two thin film flow problems in one and two-dimensions to test

the adaptive numerical solution techniques developed in this thesis. The first problem
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we consider is related to a liquid sheet or drop spreading down an inclined pre-wetted

plane due to influence of gravity. The second problem we consider is also related to

the spreading of a liquid sheet or drop down an inclined pre-wetted plane including

surfactant-related effects in addition to gravity. We follow the r-adaptive moving mesh

technique which uses moving mesh partial differential equations (MMPDEs) to adapt

and move the mesh coupled to the underlying PDE(s). We show how this technique can

accurately resolve the various one and two-dimensional structures observed in the above

test problems as well as reduce the computational effort in comparison to numerical

solutions using a uniform mesh.
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Mongè-Ampere (PMA) equation . . . . . . . . . . . . . . . . . . 152

5.2 PDE with constant volume boundary conditions . . . . . . . . . . . . . 170

5.2.1 Numerical solution of Eqs. (5.1, 5.110, 5.3) on a uniform mesh . 171

5.2.2 Numerical solution of Eqs. (5.1, 5.110, 5.3 ) on an adaptive mesh 173

5.2.3 Numerical solution of Eqs. (5.1,5.2,5.3) using the Parabolic-
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Chapter 1

Introduction

1.1 Motivation

Thin liquid films are found everywhere in nature. Thin liquid film-flows play a fun-

damental role in a wide range of applications and processes. They are present in

industrial, biological, chemical, geophysical and environmental applications. Some ex-

amples are, for instance, in industrial applications such as, coating flows (e.g. drying of

paint) [68, 69] and computer microchip production [75], in biological applications such

as, the mucus layer lining the airway walls of the lung which assists in conditioning

and sensing of air before it accesses the lung [46, 45] and is essential for the stability

the lung, in geophysical and environmental applications such as, mudslides and lava

flow [2, 44]. It is important to understand the mechanisms controlling the fluid flow

within these liquid films through the study of such applications.
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When the films are subjected to the action of various mechanical, thermal, chemical or

structural forces, they display interesting dynamics such as, wave propagation, wave

steepening and, spatial and temporal instabilities. The interested reader is referred to

the review articles by Oron et al. [71] and Craster & Matar [26] for a review on these.

A particular class of thin film flow problems that has a wide range of applications

and is of particular interest both in the physical and mathematical context are those

that include surface tension effects [69]. In the physically relevant case when surface

tension is large, the film’s free surface exhibits internal layers where there is rapid

spatial variation in the film’s curvature over very short lengthscales and away from

these internal layers the film’s curvature is almost negligible. This provides the main

motivation for this thesis which is to develop adaptive numerical solution techniques

for thin film flow equations that fully resolve such internal layers in order to obtain

accurate numerical solutions. We consider the following two thin film flow problems

to test the adaptive numerical solution techniques developed in this thesis. The first

problem we consider is related to a liquid sheet or drop spreading down an inclined

pre-wetted plane due to influence of gravity. For example, rain drops or sheet of rain

running down the windscreen of cars. The interesting phenomenon in the case, is the

breaking up of the sheet of liquid into fingers (see figure 1.1). The important physics

related to the spreading fluid drop or sheet down an inclined plane are gravity and

surface tension. Figure 1.2(a, b) illustrate the evolution of the cross-section of a sample

finger shown in figure 1.1. We observe that the shape of the bulk drop is influenced

by gravity with surface tension effects important near the drop’s leading and trailing

3



CHAPTER 1. INTRODUCTION

edges. Near the leading edge the effect of surface tension results in a hump which is

referred to as a capillary ridge. There are capillary wave near the leading and trailing

edges also due to surface tension (of a very short lengthscale so cannot be seen on the

scale shown).

Figure 1.1: A viscous liquid sheet spreading down an inclined pre-wetted plane due to
gravity. Notice that the liquid sheet breaks up into fingers. This figure is reproduced
with permission from L. Kondic [57].

The second problem we consider is also related to the spreading of a liquid sheet or

drop down an inclined pre-wetted plane including surfactant-related effects in addition

to gravity. A more dramatic fingering instability now arises when a drop laden with

surfactant spreads on a horizontal pre-wetted plane (see figure 1.3 of an experiment

by Afsar-Siddiqui et al.[1]). Surfactants are chemicals that adsorb into free surfaces

and reduce the surface tension there. Gradients in surfactant concentration result

in gradients in surface tension which can also drive flow (referred to as Marangoni
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CHAPTER 1. INTRODUCTION

Figure 1.2: This figure illustrates a schematic of the fingers shown in figure 1.1 showing
(a) side view and (b) single finger.
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flow). This lead to the fingering patterns observed in figure 1.3. Figure 1.4 shows a

cross-section of a single finger shown in figure 1.3. The dynamics in this case is much

different from that shown in figure 1.2(b). We observe an advancing fluid front ahead

of the bulk drop mainly due to surface tension gradient-driven flow. Surface tension

effects are only important near the bulk drop’s leading edge resulting in a capillary

wave there. An ultra thin film develops between the bulk drop and fluid front which

undergoes severe thinning. At the trailing edge of the fluid front a rarefaction wave

develops.

Figure 1.3: This figure illustrates the development of fingering-type patterns in a
surfactant-laden drop spreading on horizontal pre-wetted plane. This figure is repro-
duced with permission from Afsar-Siddiqui et al. [1].
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Figure 1.4: This figure illustrates a schematic of the cross-section of one finger shown
in figure 1.3.

1.2 Thin film equations for gravity and surfactant-

related spreading

The key aspect in thin liquid films is that the characteristic film thickness H (say) is

much smaller than the length of film L (say); i.e., the small aspect ratio, ǫ = H/L≪ 1,

which is typically much less than one. This is important for using lubrication theory (or

long-wavelength analysis) to reduce the Navier-Stokes equations of fluid flow and free

surface boundary conditions to an evolution equation for the free surface represented

by h(x, t). Here x = (x, y) and t is time. For a liquid sheet or drop spreading down

an inclined pre-wetted plane due to gravity, the dimensionless evolution equation can

be written to leading order in ǫ as

ht +∇ ·

[

1

3
Ca h3

∇∇2h−
1

3
D(θ)h3

∇h

]

+

[

1

3
h3

]

x

= 0. (1.1)
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For a derivation of this from the Navier-Stokes equation, one can refer to Kondic [57].

We note that Eq. (1.1) is derived using a scaling based on balancing the horizontal

component of gravity with viscous forces. This is a fourth order nonlinear degenerate

parabolic PDE for the evolution of the film thickness h(x, y, t). It is degenerate since the

coefficient of the highest derivative tends to zero as h approaches zero. This equation is

driven by the horizontal component of gravity (fourth term in Eq. (1.1)), the vertical

component of gravity (third term in Eq. (1.1); represents second order diffusion) and

surface tension (second term in Eq. (1.1), represents fourth-order diffusion). Here,

the dimensionless parameters D(θ) = ǫ cot(θ), is the ratio of the size of the vertical

and the horizontal components of gravity, Ca = (ǫ3γ)/(µU), is an inverse capillary

number (compares surface tension to viscous forces) and θ is the inclination angle.

Here, U = (ρg sin(θ)H2)/µ is a characteristic velocity based on balancing viscous forces

with the horizontal component of gravity. These parameters depend on viscosity µ,

the surface tension at the air liquid interface γ, acceleration due to gravity g and the

fluid density ρ, all taken to be constant.

We first seek y-independent numerical solution of Eq. (1.1) for constant flux and

constant volume boundary conditions (described later on) satisfying

ht +Qx = 0, Q =
1

3
Cah3hxxx −

1

3
D(θ)h3hx +

1

3
h3, (1.2)

where Q is the liquid flux. Analytical solutions to Eq. (1.2) are difficult to obtain for

general boundary and initial conditions. One then needs to resort to numerical solution.
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Numerical solutions of Eq. (1.2) have been done using finite difference schemes on a

fixed uniform mesh (see Kondic [57], for example). The solution successfully capture

the main characteristics of the evolution of h(x, t), namely, the capillary ridge near the

leading edge of the drop and capillary waves at both the leading and trailing edges of

the drop (see illustration in figure 1.2). However, for Capillary number Ca ≪ 1 (which

corresponds to large surface tension) the width of the capillary ridge is much smaller

(hence, the slope and curvature there becomes much larger). Hence, a uniform mesh

finite difference scheme would require a large number of mesh points to accurately

resolve the capillary ridge region resulting in a large overall number of mesh points and

increased computational effort. We show in chapter 3 how this can be resolved using

an adaptive moving mesh scheme.

For the two-dimensional problem in Eq. (1.1), we are interested in numerically simu-

lating the fingering instability observed in figure 1.1. Linear stability analysis of this

problem using the y-independent solution obtained from Eq. (1.2) as the base state

have shown this solution to be linearly unstable to small-amplitude sinusoidal per-

turbations in the transverse y-direction above a critical angle θ from the horizontal

(see Bertozzi & Brenner [7] and Kondic & Diez [58]). This critical angle has an im-

plicit dependence on the parameters Ca and D(θ) but in generally around 3 − 5o for

physically realistic values of Ca and D(θ). Numerical solutions for the nonlinear fin-

gering behaviour have been obtained using finite differences both on a uniform mesh

and non-uniform (but fixed) mesh (Kondic & Diez [58, 57, 59]), using an alternate
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-direction-implicit (ADI) time-stepping technique [40] and using both an adaptive fi-

nite element [77] and finite difference method [62] based on a multigrid method. One

would require a large number of uniform mesh points in the y-direction to accurately

resolve a finger. We show in chapter 5 how this can be effectively resolved using a

two-dimensional adaptive moving mesh scheme.

We now consider the above problem with the inclusion of surfactant and surfactant-

related effects. The bulk flow in the drop or sheet is governed by the Navier-Stokes

equations. The surfactant is considered insoluble (i.e., it is present only on the free

surface) and its transport on the free surface is modelled using an advection-diffusion

equation. Lubrication theory can be applied to reduce the governing equations to give

the evolution equations for the film thickness h(x, y, t) and the surfactant concentration

Γ(x, y, t). The interested reader can refer to Edmonstone et al. [32, 36, 34, 38] for their

derivation. These can be written as

ht +∇ ·

[

1

3
Cah3

∇∇2h−
1

3
G cos θh3

∇h−
1

2
h2
∇Γ

]

+

[

G sin θ
1

3
h3

]

x

= 0, (1.3)

Γt +∇ ·

[

1

2
Cah2Γ∇∇2h−

1

2
G cos θh2Γ∇h− hΓ∇Γ

]

+

[

G sin θ
1

2
h2Γ

]

x

=
1

Pe
∇2Γ.

(1.4)

The scalings used to derive Eq. (1.3) are different those used to derive Eq. (1.1). Here,

the balance is between viscous forces and surface tension gradients (due to surfactant

concentration gradients). The spreading of the drop and transport of surfactant are
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driven by the horizontal component of gravity (fifth terms on left-hand side of Eqs.

(1.3, 1.4)), the vertical component of gravity (third terms on left-hand side of Eqs.

(1.3, 1.4)), surface tension (second terms on left-hand side of Eqs. (1.3, 1.4) and

surface tension gradients related to surfactant concentration gradients (fourth terms

on left-hand side of Eqs. (1.3, 1.4). The surface diffusion of surfactant also con-

tributes to its transport (the right-hand side of Eq. (1.4)). Here, the dimensionless

parameters Ca = ǫ2σm/Π, is an inverse capillary number (compares surface tension

to viscous forces), G = (ρgHL)/Π is the Bond number (relating gravity and viscous

forces), Pe = (ΠH)/(µDs) is a Péclet number (compares the magnitude of changes

to surfactant concentration due to diffusion and advection by surface flow) and θ is

the inclination angle. U = (ΠH)/(µL) is the characteristic Marangoni velocity in this

problem. These parameters depend on surface diffusivity Ds of the surfactant , viscos-

ity µ, the spreading pressure Π (is used to scale the surface tension), acceleration due

to gravity g the fluid density ρ and the maximal value of the surface tension σm, all

taken to be constant.

We seek one-dimensional (y-independent) solutions of Eqs. (1.3, 1.4) for constant flux

and constant volume boundary conditions (described later on) satisfying

ht +Qf = 0, Qf = ∇ ·

[

1

3
Cah3

∇∇2h−
1

3
G cos θh3

∇h−
1

2
h2
∇Γ

]

(1.5)

+

[

G sin θ
1

3
h3

]

x

,
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Γt +QΓ = 0, QΓ = ∇ ·

[

1

2
Cah2Γ∇∇2h−

1

2
G cos θh2Γ∇h− hΓ∇Γ

]

(1.6)

+

[

G sin θ
1

2
h2Γ

]

x

−
1

Pe
∇2Γ,

where Qf and QΓ are fluid and surfactant fluxes, respectively. Numerical solution of

Eqs. (1.5,1.6) have been done using finite difference schemes on a fixed uniform mesh,

collocation methods (using PDECOL and EPDCOL [56, 64]) and finite element meth-

ods [32, 36, 34, 38, 60]. The solution behaviour shows multiple wave-like structures in

addition to the capillary ridge and capillary waves mentioned in the previous problem.

These include a step-like structure ahead of the leading edge of the drop and a fluid

front upstream of its trailing edge. The slope and curvature of these structures become

much steeper for Ca ≪ 1 and hence a scheme incorporating a uniform mesh would

require a large number of mesh points to accurately resolve all these structures. We

show in chapter 4 how by carefully selecting a monitor function representing region

where the solution changes rapidly and incorporating it into an adaptive moving mesh

scheme can accurately resolve these structures. In this thesis we only consider the

1D problem, Eqs. (1.5,1.6). Edmonstone et al. [32, 36, 34, 38] have also considered

fully nonlinear simulations of Eqs. (1.3, 1.4)) to explore the stability of their spatially

one-dimensional solutions of Eqs. (1.5,1.6) to transverse perturbations in the flow and

surfactant concentrations. Their numerical simulations using a finite difference scheme

on a uniform mesh and an ADI time-stepping scheme captures the fingering instability

similar to the gravity-driven spreading problem.
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Boundary conditions

We now prescribe boundary conditions for the gravity-driven spreading problem Eq.

(1.1) and the gravity and surfactant-driven spreading problem Eqs. (1.3,1.4). Two

sets of boundary conditions (BCs) are considered in this thesis, namely constant flux

and constant volume. Constant flux BCs correspond to constant supply of fluid and

surfactant concentration at one end of the domain while constant volume prescribes no

flux BCs at both ends of the domain. We also assume that the plane is pre-wetted with

a precursor film of thickness b = b∗/H∗ ≪ 1, which relieves the contact line singularity,

and it is surfactant free. Here, b∗ is the dimensional precursor film thickness and H∗

is a characteristic film thickness. These boundary conditions are prescribed as follows:

The constant flux boundary conditions are given by

hxxx = 0, h = 1, at x = 0, hxxx = 0, h = b, at x = Lx, (1.7)

Γ = 1, at x = 0, Γ = 0, at x = Lx, (1.8)

where the computational domain in this case is given by x ∈ [0, Lx]. These correspond

to constant supply of fluid (or constant flux of fluid) and surfactant concentration the

end at x = 0. A schematic of this BC is shown in figure 1.5(a).

The constant volume boundary conditions are given by

hxxx = 0, h = b, at x = ±Lx, Γ = 0, at x = ±Lx. (1.9)
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Figure 1.5: These figures illustrate a schematic of a surfactant-laden drop or sheet
spreading on an inclined plane with (a) constant flux boundary conditions and (b)
constant volume boundary conditions.
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A schematic of this BC is shown in figure 1.5(b). The computational domain in this

case is given by x ∈ [−Lx, Lx].

For the two-dimensional gravity-driven spreading problem in Eq. (1.1) we apply sym-

metry boundary conditions in the y direction which are given by hy = hyyy = 0.
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1.3 Adaptive mesh techniques

Numerical solution of partial differential equations are obtained by approximating the

PDEs on a mesh by basically discretising the physical domain into a finite set of points.

A uniform mesh is commonly used to discretise the physical domain (see figure 1.6(a)

for an illustration of a solution on a uniform and fixed mesh). More mesh points are

required to resolve the steep front, resulting in solving a large system of equations.

This is computationally intensive and expensive. So, an alternative approach is to

have an adaptive mesh which redistributes or puts more points in regions where the

solution changes rapidly and less points elsewhere (see figure 1.6(b) for an illustration

of this). Although discretisation schemes on a uniform mesh are routinely used for

the numerical solution of thin film problems, over the past two decades or so adaptive

moving mesh techniques have also been utilised in problems with rapid spatial variation

such as, steep fronts, shock-like structures and moving contact lines [47]. The aim of

an adaptive mesh is to obtain an acceptable degree of accuracy and efficiency without

having an excessive number of mesh points, as compared to a uniform mesh. As pointed

out by Brackbill [10],

”the marginal utility of using an adaptive grid over using a uniform grid is much greater

than the marginal utility of using one method for adaptive gridding over another. It is

almost always better to use an adaptive grid of any kind than to use none.”

Moreover, as illustrated in figures 1.2,1.4, the front is moving in time. So, not only

is an adaptive mesh needed to accurately resolve the front, but it is also necessary to

16



CHAPTER 1. INTRODUCTION

Figure 1.6: These figures illustrate the differences between (a) a uniform mesh and (b)
an adaptive mesh. A large number of mesh points are needed to resolve the steep front
using a uniform mesh. The adaptive mesh redistributes the mesh points so that more
points are in regions where the solution has rapid variation and fewer points in regions
where the solution varies slowly.
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move the mesh points in time in order to conform with the moving front.

Many adaptive mesh strategies have been utilized for investigating the numerical so-

lution of partial differential equations. We categorise these methods into three groups

[78]:

h-refinement methods (or h-adaptive mesh methods): h-refinement methods

are the most widely applied and developed of these methods and generally use the

finite element method to discretise the underlying PDE. They form the basis of several

commercial codes which usually start with a uniform mesh and then automatically

coarsen or refine the mesh by the inclusion or deletion of mesh points. The strategy

for applying this is usually based on some a posteriori indicator of the solution error.

Barrett et al [4], Sun et al [77] and Li et al [62] have applied h-refinement techniques

using the finite element method for fourth order degenerate parabolic PDEs in one

and two dimensions. These h-refinement techniques form the basis of general purpose

software packages for one-dimensional parabolic PDE systems, for example, BACOL

(B-spline Adaptive COLlocation) [82] and D03PPF [70].

p-refinement (or p-adaptive mesh methods): In p-refinement methods a finite

element discretisation of the PDEs is utilized with basis functions involving polynomials

of a particular order. Then, based on some error estimate, this order is increased

or decreased. p-refinement is usually never applied alone and is combined with h-

refinement to generate more sophisticated techniques such as, hp-refinement. HPNEW

[66] and HPDASSL [65] are general purpose software packages which use hp-refinement
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for the solution of one-dimensional parabolic PDE systems.

r-refinement (or r-adaptive methods): These are also referred to as moving mesh

methods. A moving mesh method has a fixed number of mesh points that are re-

distributed based on a monitor function (could be based on variation in the solution

gradient or curvature) and then the mesh is moved by solving the so-called moving

mesh PDEs (MMPDEs) [41]. The MMPDEs are derived based on, for example, the

equidistribution principle [18, 73] and variational methods [53, 13]. Both finite element

and finite difference methods have been used to discretise the underlying PDE and

MMPDEs. Although r-adaptive methods are a recent development and have not been

used as frequently as h- or p-refinements, they have been successfully applied in various

applications such as, computational fluid mechanics [78], convective heat transfer [24]

and meterological [17, 81] problems. The r-refinement techniques also form the basis

of general purpose software packages for one-dimensional parabolic PDE systems, for

example, MOVCOL [50] and TOMS731 [9]. The interested reader can refer to the

book, Adaptive Moving Mesh Methods, by Huang & Russell [54] and the review paper

by Budd et al. [13], who have made substantial contributions to r-adaptive methods

over the last twenty years.

The main aim of the thesis is to investigate existing r-adaptive or moving mesh strate-

gies for the numerical solution of fourth order nonlinear degenerate parabolic PDEs in

one and two dimensions. The goal is to determine the efficiency and accuracy of these

techniques in comparison to uniform mesh schemes. We will use as test problems: a
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single one-dimensional fourth order nonlinear parabolic PDE given by Eq. (1.2), a

system of two coupled fourth order and second order parabolic one-dimensional PDEs

given by Eqs. (1.5,1.6) and a single fourth order nonlinear parabolic PDE in two dimen-

sions given by Eq. (1.1). While r-adaptive methods have been applied with success to

second order nonlinear parabolic PDEs, to the best of our knowledge, they have never

been investigated for fourth order parabolic PDEs. We emphasise that our goal is not

to claim superiority of r-adaptive methods over hp-adaptive methods for this class of

PDEs but rather an exploration of their potential usefulness.

1.4 Thesis outline

The outline of this thesis is organised as follows. In Chapter 2, we provide an overview

of the main ingredients of r-adaptive or moving mesh methods based on the book,

Adaptive Moving Mesh Methods, by Huang & Russell [54] and the review paper by

Budd et al. [13]. We can ordinarily classify r-adaptive methods as either velocity-

based methods [63, 22] or location-based methods [14, 48]. We focus on location-based

methods. We define the 1D and 2D equidistribution principles, first used by de Boor

[29] and Burchard [18]. The equidistribution principle is then used to derive one-

dimensional MMPDEs. The variational method is also used to derive MMPDEs in

both one and two dimensions. A good choice of the monitor function is an essential

basis for the success of r-adaptive methods. We consider several monitor functions

which can be obtained either by an error estimate or based on solution characteristics.
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We also provide the general numerical framework followed in this thesis.

In Chapter 3, we investigate the numerical solution of a one-dimensional fourth order

nonlinear parabolic PDE given by Eq. (1.2) using a uniform mesh and adaptive mov-

ing mesh scheme with a variety of MMPDEs and monitor functions. The numerical

solutions are compared with a travelling wave solution that exists for constant flux BCs

using which we determine an optimal MMPDE and monitor function for this problem.

We also show for the constant volume case that the weights associated with the moni-

tor function need to be adapted so as to redistribute the mesh points to several regions

which require accurate resolution.

In Chapter 4, we investigate the numerical solution of a system of two one-dimensional

fourth and second order parabolic PDEs using the uniform and the adaptive mov-

ing mesh scheme with a strategy informed by results from Chapter 3. We will see

how to modify the monitor function so as to include solution characteristics of both

components required for their overall accuracy.

In Chapter 5, we investigate the two-dimensional evolution of Eq. (1.1) using an

adaptive moving mesh scheme with two-dimensional MMPDEs including the Parabolic-

Mongé -Ampere (PMA) equation. We investigate the fingering instability that develops

during the evolution and compare the numerical solutions to determine the efficiency

and accuracy of the adaptive moving mesh schemes.

In Chapter 6 we discuss some future work that includes some thin film flow problems

that pose challenges to the successful implementation of r-adaptive methods.
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Adaptive moving mesh methods:

An Overview

In this chapter, we present an overview of the theoretical and practical aspects of adap-

tive mesh methods, with emphasis on its application for solving time-dependent PDEs

discussed in Chapter 1. We focus on the theory of r-adaptive moving mesh meth-

ods which are a more recent development than hp-adaptive methods. The r-adaptive

methods can be classified into two groups [23]. These are: location-based methods

(control directly the redistribution of mesh point locations) [14, 48] and velocity-based

methods [63, 22] (control the mesh velocity which on integration gives location of the

mesh points). We only consider location-based methods in this thesis which are more

widely used than velocity-based methods. In section §2.1 we consider the equidistri-

bution principle, which is the underlying framework for the so-called moving mesh
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Partial Differential Equation (MMPDE) methods considered in section §2.2. This sec-

tion also considers MMPDEs based on variational methods. Section §2.3 considers the

so-called optimal-transport-based methods, most notably the Monge-Ampère and the

Parabolic Monge-Ampère (PMA) equation. We include discussion in both one and two

dimensions of the above methods. In location-based methods, the local density of the

mesh points is controlled by a so-called mesh-density function, often referred to as a

monitor function. These are discussed in section §2.4. We then discuss in section §2.5

regularisation of MMPDEs and smoothing of monitor function required in their prac-

tical implementation. We emphasise here that the material presented in this chapter is

adapted following the book, Adaptive Moving Mesh Methods, by Huang & Russell [54]

and the review paper by Budd et al. [13], who have made substantial contributions to

r-adaptive methods over the last twenty years.

2.1 The Equidistribution Principle

The concept of equidistribution plays an important role in formulating most of the

adaptive moving mesh methods we discuss in this chapter. We first consider the idea

behind equidistribution in one dimension.

Consider a given positive integer N > 1 and a positive continuous function ρ = ρ(x)

defined on an interval [a, b]. This continuous function ρ(x) will subsequently be referred

to as a monitor function. The equidistribution principle requires determining a mesh,
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Jh : a = x1 < x2 < . . . < xN+1 = b, such that ρ(x) is evenly distributed between the

subintervals determined by these mesh points [3]. Hence,

∫ x2

x1

ρ(x)dx =

∫ x3

x2

ρ(x)dx = · · · =

∫ xN+1

xN

ρ(x)dx. (2.1)

This means that the area under ρ(x) is the same for each subinterval. Hence, the mesh

points near the region(s) where ρ(x) is large will be close together and will move further

apart, where ρ(x) is small. If Jh satisfies the relation Eq. (2.1) then it is called an

x
1

x
2 x

3
x

4 ...a=x
0

x
N

=bx
N−1

x
N−2x

N−3
x

N−4

Figure 2.1: This figure shows an illustration of the equidistributing mesh that satisfies
the relation Eq. (2.1).

equidistributing mesh for the monitor function ρ(x) [53]. The objective of designing the

monitor function is to control the concentration of the mesh points. Figure 2.1 shows

an illustration of the equidistributing mesh that satisfies the relation Eq. (2.1). To

practically implement Eq. (2.1) for the equidistributing mesh Jh, it is more instructive
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to consider this as a coordinate transformation:

x = x(ξ) : Ωc ≡ [0, 1]→ Ωp ≡ [a, b],

where Ωc and Ωp are referred to as the computational and physical domains, respec-

tively. Then,

xj = x(ξj), j = 1, . . . , N + 1,

where

ξj =
j − 1

N
, j = 1, . . . , N + 1,

is a uniform mesh on [0, 1].

The Eq. (2.1) can be written as

∫ xj

a

ρ(x)dx = ξjθ, j = 1, · · · , N + 1, (2.2)

θ =

∫ b

a

ρ(x)dx. (2.3)

In general, a continuous mapping x = x(ξ) is called an equidistributing coordinate

transformation for ρ(x) if it satisfies:

∫ x(ξ)

a

ρ(x)dx = ξ θ, ∀ξ ∈ [0, 1], (2.4)
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where θ is defined as above. Differentiating Eq. (2.4) once with respect to ξ, we obtain

ρ(x)
dx

dξ
= θ, (2.5)

subject to the boundary conditions

x(0) = a, x(1) = b. (2.6)

We see later that it is more useful in the practical sence to formulate the equidistributing

coordinate transformation as an ODE in Eqs. (2.5,2.6) rather than solving the integral

equation in Eq. (2.4). It can be shown that, for any strictly positive monitor function

there exists a unique equidistributing coordinate transformation x = x(ξ) for that ρ(x).

Although the existence and the uniqueness of the equidistributing mesh is guaranteed

theoretically, it can rarely be determined analytically and in most cases needs to be

approximated. A simple approximation for determining an equidistributing mesh is

based on de Boor’s algorithm [27, 28].

de Boor’s algorithm Suppose that there is a known mesh density function on an

arbitrary background mesh Jb such that

Jb : a = z0 < z1 < z2 < . . . < zM = b,

which can be thought of as a prescribed mesh in an iterative process. Here, M is used
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to specify the number of points in the background mesh. Then, de Boor’s algorithm

approximates p(x) on this background mesh by a piecewise constant function as follows

p(x) =















































1
2
(ρ(z0) + ρ(z1)) for x ∈ [z0, z1]

1
2
(ρ(z1) + ρ(z2)) for x ∈ [z1, z2]

. . .

1
2
(ρ(zM−1) + ρ(zM )) for x ∈ [zM−1, zM ]

(2.7)

and to then obtain the equidistributing mesh of N points (can be different from M)

for this piecewise constant function. Denoting

P (x) =

∫ x

a

p(x)dx, (2.8)

then, it can be obtained by

P (zi) =

i
∑

j=0

(zj+1 − zj)
ρ(zj+1) + ρ(zj)

2
, i = 0, . . . ,M. (2.9)

Hence, the equidistribution relation Eq. (2.2) can be written as

P (xi) = ξiθ, i = 0, . . . , N (2.10)

where θ is defined as θ = P (b). To obtain xi, i = 0, . . . , N , one first determines the
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index k such that

P (zk−1) ≤ ξiθ ≤ P (zk).

Since ξi ≤ 1 and P (x) should be piecewise linear, xi is computed by

xi = zk−1 +
2(ξiP (zk)− P (zk−1))

ρ(zk) + ρ(zk−1)
.

Unfortunately, de Boor’s algorithm requires to calculate Eq. (2.3) for every monitor

function and does not extend easily to higher dimensions. A widely used method

which can be generalised to higher dimensions is based on the ODE form given in Eqs.

(2.5,2.6). Differentiating Eq. (2.5) again with respect to ξ, we have

(ρ(x)xξ)ξ = 0, ξ ∈ [0, 1], (2.11)

subject to the boundary conditions

x(0) = a, x(1) = b. (2.12)

We not that, the above equidistribution-related concepts are for time-independent prob-

lems. For the numerical solution of time-dependent problems, the monitor function

depends on the solution and hence on time. So, the coordinate transformation will

also depend on time, i.e., x = x(ξ, t). One can still use the BVP in Eqs. (2.11,2.12) to

determine x = x(ξ, t) as follows:
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(ρ(x, t)xξ)ξ = 0, ξ ∈ [0, 1], (2.13)

subject to the boundary conditions

x(0) = a, x(1) = b. (2.14)

It is considered advantageous to employ a PDE that involves a mesh speed rather

than the ODE in Eq. (2.13). A mesh equation that involves a mesh speed is referred

to as a moving mesh PDE (MMPDE) and discussed in section §2.2. Consider given

positive integers Ny > 1 and Mx > 1 and a positive continuous function ρ = ρ(x, t)

(where x = (x, y)) on a rectangular domain [a, b]× [c, d]. The equidistribution principle

requires determining a mesh, Jh : a = x1 < x2 < · · · < xMx+1 = b, c = y1 < y2 <

· · · < yNy+1 = d, such that

∫

A
j+1

2
,k+1

2

ρ(x, t)dx =

∫

A
j+3

2
,k+1

2

ρ(x, t)dx, for j = 2, . . . ,Mx − 1, k = 2, . . . , Ny,

(2.15)

where Aj+ 1

2
,k+ 1

2

denotes the mesh cell [xj , xj+1]× [yk, yk+1].

Consider this as a coordinate transformation:

x = x(ξ, t) : Ωc ≡ [0, 1]× [0, 1]→ Ωp ≡ [a, b]× [c, d],
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where x = (x, y)T and ξ = (ξ, η)T . Then,

(ξj, ηk) =

(

j − 1

Mx

,
k − 1

Ny

)

, for j = 1, . . . ,Mx + 1, k = 1, . . . , Ny + 1, (2.16)

is a uniform mesh in [0, 1]× [0, 1]. The relation Eq. (2.15) can written as

∫ xj

a

∫ yk

c

ρ(x, t)dx =
j − 1

Mx

k − 1

Ny

θ, for j = 1, . . . ,Mx + 1, k = 1, · · · , Ny + 1, (2.17)

where

θ =

∫ b

a

∫ d

c

ρ(x, t). (2.18)

In general, a continuous mapping x = x(ξ, t) is called an equidistribution coordinate

transformation for ρ(x, t) if it satisfies:

∫ x(ξ)

a

∫ y(ξ)

c

ρ(x, t)dx = ξηθ, ∀(ξ, η) ∈ [0, 1]× [0, 1], (2.19)

where θ is determined in Eq. (2.18). Since the above relationship is true for all (ξ, η),

the coordinate transformation mesh must satisfy the identity

ρ(x, t)

∣

∣

∣

∣

dx

dξ

∣

∣

∣

∣

= θ, (2.20)
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where
dx

dξ
is the Jacobian matrix of the transformation x = x(ξ, t), which is given by

J =









xξ yξ

xη yη









, (2.21)

and

∣

∣

∣

∣

dx

dξ

∣

∣

∣

∣

is the determinant of the Jacobian, J = |J | = xξ yη − xη yξ. Hence, Eq.

(2.20), becomes

ρ(x, t)J = θ, (2.22)

where θ is determined in Eq. (2.18). This problem does not have a unique solution

and additional conditions are required to ensure existence and uniqueness of a mesh.

This will be considered in §2.2.

2.2 Location-based adaptive moving mesh methods

for time dependent problems

2.2.1 Moving mesh partial differential equations (MMPDEs)

In this section, we describe moving mesh methods based on MMPDEs, derived using

the equidistribution principle. We first consider them in one dimension. We suppose

the monitor function ρ(x, t) is a given continuous function in x and t. Discretising the

boundary value problem in Eq. (2.13) in the computational domain yields a system of
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nonlinear equations which is difficult to solve directly. Alternatively, Huang, Ren and

Russell [73] present a time evolution by taking the total time derivative of Eq. (2.13):

D (ρxξ)ξ
Dt

= 0 ⇒ (ρxξ)ξt +
xt

xξ

(ρxξ)ξξ = 0. (2.23)

where (xξ, xt) =

(

∂x

∂ξ
,
∂x

∂t

)

and
Df

Dt
=

∂f

∂t
+ xt

∂f

∂x
is the total derivative of f with

respect to t. Eq. (2.23) is referred to as MMPDE0. We obtain the equidistributing

mesh by solving MMPDE0 starting with any initial mesh, e.g. uniform mesh. However,

there is no guarantee that the initial mesh satisfies the equidistribution relation. This

could lead to mesh tangling which can occur if xξ < 0, i.e., xj > xj+1. We can alleviate

this problem by introducing a relaxation time into the solution of Eq. (2.23). One

possible form is given by

τxt = (ρxξ)ξ , (2.24)

where τ > 0 is a relaxation time. The equation Eq. (2.24) is referred to as MMPDE5

[73]. If τ is small, then the mesh will adapt quickly to changes in ρ, hence equidis-

tributing quickly. For τ large then the mesh will adapt slowly to changes in ρ, hence

equidistributing slowly. Once equidistributed, the mesh speed is zero. An alternative

MMPDE equation can be determined from Eq. (2.5) by integrating both sides with

respect to ξ and taking the residual:

R = ξθ(t)−

∫ ξ

0

ρ(x, t)xξdξ. (2.25)
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Setting R = τ1xt and differentiating twice with respect to ξ on both sides, leads to

τ1(xt)ξξ = − (ρxξ)ξ . (2.26)

This equation is referred to as MMPDE6 [25, 51]. If we combine MMPDE5 in Eq.

(2.24) and MMPDE6 in Eq. (2.26) with τ1 = −γ1τ , we obtain

τ (1− γ1∂ξξ) xt = (ρxξ)ξ , (2.27)

where γ1 is a smoothing parameter. It is chosen to control the smoothness of the mesh.

We refer to Eq. (2.27) as regularised MMPDE5.

2.2.2 Variational methods

The variational method is an alternative approach for deriving MMPDEs. The advan-

tage of this approach is that it can be extended relatively easily to higher dimensions.

For time-dependent problems, the differential form of the one-dimensional equidistri-

bution Eq. (2.13) can be written as

ρ(x)x (xξ)
2 + ρ(x)xξξ = 0, x(0, t) = a, x(1, t) = b, ∀t > 0. (2.28)
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We define a functional corresponding to Eq.(2.28) as

I[x] =
1

2

∫ 1

0

(ρ(x)xξ)
2 dξ. (2.29)

Using calculus of variations, a minimiser x = x(ξ) of this functional will satisfy the

Euler-Lagrange equation given by

Fx −
(

Fxξ

)

ξ
= 0, where F (ξ, x, xξ) =

1

2
(ρxξ)

2 . (2.30)

Therefore, we can determine the equidistributing coordinate transformation x = x(ξ)

by minimising the functional I[x] in Eq. (2.29). For the time-dependent transformation

x = x(ξ, t), we can consider t to be a parameter such that x(ξ, t) → x(ξ) as t →

∞. Then a minimiser of I[x] in Eq. (2.29) can be obtained by solving the following

equation, referred to as the gradient flow equation,

xt = −
P

τ

δI

δx
, (2.31)

where
δI

δx
is the functional derivative of I[x]. τ > 0 is a parameter for adjusting the

mesh response time to changes in the monitor function ρ(x, t) and P could be chosen

as a function of ρ or as a differential operator (as shown below), which can take various

forms as we shall see later. It can be shown that

δI

δx
= Fx −

(

Fxξ

)

ξ
, where F (ξ, x, xξ) =

1

2
(ρ(x, t)xξ)

2 . (2.32)
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Hence, the variational method determines a coordinate transformation x = x(ξ, t)

which satisfies the equidistribution condition Eqs. (2.13, 2.14) by minimising the func-

tional I[x] in Eq. (2.29).

By using Eq. (2.30), with F (ξ, x, xξ) =
1
2
(ρxξ)

2, we can prove that the Euler-Lagrange

equation of Eq. (2.29) is given by Eq. (2.13) as follows

Fx −
(

Fxξ

)

ξ
= 0 ⇒ ρxξρxxξ − ((ρxξ)ξρ+ ρxξρxxξ) = 0. (2.33)

Fx −
(

Fxξ

)

ξ
= −ρ(ρxξ)ξ = 0. (2.34)

Since, the monitor function ρ > 0, then

(ρxξ)ξ = 0.

Hence, we obtain the Euler-Lagrange equation Eq. (2.13) for I[x]. From Eq. (2.32)

and Eq. (2.34), the gradient flow equation Eq. (2.31) (which is similar to the heat or

differential equation) becomes

xt =
P

τ
ρ(ρxξ)ξ. (2.35)

By choosing P = 1
ρ
in Eq.(2.35), gives MMPDE5:

τxt = (ρxξ)ξ . (2.36)
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Other choices are:

• Modified MMPDE5: P = 1
ρ2
, leads to

xt =
1

τρ
(ρxξ)ξ . (2.37)

• MMPDE4: P = −
(

∂
∂ξ
ρ ∂
∂ξ

)−1
1
ρ
, leads to

(ρ xtξ)ξ = −
1

τ
(ρ xξ)ξ . (2.38)

• MMPDE6: P = −
(

∂2

∂ξ2

)−1
1
ρ
, leads to

xtξξ = −
1

τ
(ρ xtξ)ξ . (2.39)

Alternatively, it is convenient to consider ξ = ξ(x) instead of x = x(ξ, t) which satisfies

(

1

ρ
ξx

)

x

= 0. (2.40)

In one dimension, equidistributing the monitor function is precisely equivalent to the

Euler-Lagrange equation for the functional

I[ξ] =
1

2

∫ b

a

1

ρ

(

∂ξ

∂x

)2

dx. (2.41)
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The gradient flow equation is given by

ξt =
P

τ

(

1

ρ
ξx

)

x

. (2.42)

Differentiating both sides of the relation ξ = ξ(x(ξ, t), t) once with respect to t (keeping

ξ fixed) and with respect ξ (keeping t fixed), we obtain

ξx = x−1
ξ , ξt = −ξxxt.

Substituting into Eq. (2.42), we obtain the mesh equation for x = x(ξ, t) as

xt =
1

τ
xξP (ρxξ)

−2 (xξ)
−1 (ρxξ)ξ . (2.43)

Choosing P = (ρxξ)
2 in Eq.(2.43), gives MMPDE5:

τxt = (ρ xξ)ξ . (2.44)

Other choices are:

• Modified MMPDE5: P = (ρxξ)
2 ρ−1, leads to

xt =
1

τρ
(ρ xξ)ξ . (2.45)

37



CHAPTER 2. ADAPTIVE MOVING MESH METHODS: AN OVERVIEW

• MMPDE4: P = −x−1
ξ

(

∂
∂ξ
ρ ∂
∂ξ

)−1

(ρxξ)
2 xξ, leads to

(ρ xtξ)ξ = −
1

τ
(ρ xξ)ξ . (2.46)

• MMPDE6: P = −x−1
ξ

(

∂2

∂ξ2

)−1

(ρxξ)
2 xξ, leads to

xtξξ = −
1

τ
(ρ xξ)ξ . (2.47)

MMPDE5 and modified MMPDE5 given in Eqs. (2.44,2.45), respectively, are gener-

ally quite stiff and in practice it is proposed to regularise this and we refer to it as

Regularised MMPDE5:

τ (1− γ1∂ξξ) xt = (ρ xξ)ξ . (2.48)

Regularised modified MMPDE5:

τ (1− γ1∂ξξ)xt =
1

ρ
(ρ xξ)ξ . (2.49)

A smoothing parameter γ1 is related to the monitor function ρ (see Budd et al. [13] and

references therein). An important advantage over Regularised MMPDE5 Eq. (2.48) is

that Eq. (2.49) is more robust usually leading to stable meshes which extends easily

to higher dimensions. It is essentially related to the PMA moving mesh method based

on optimal transport which we discuss later on in this chapter.
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The one dimensional functional Eq. (2.41) can be generalised to two dimensions as

I[ξ] =
1

2

∫

Ωp

(

∇ξTρ−1∇ξ +∇ηTρ−1∇η
)

dx, (2.50)

where ∇ =

(

∂

∂x
,
∂

∂y

)

, and the monitor function ρ(x, t) is a 2× 2 symmetric positive

definite matrix [52, 21, 20]. The gradient flow equations are given by

ξt =
1

τ
√

det(ρ (x, t))

(

∇.ρ−1∇ξ
)

, ηt =
1

τ
√

det(ρ (x, t))

(

∇.ρ−1∇η
)

, (2.51)

Using some transformation relations in Eq. (2.51), the following equations for the mesh

can be written

xt =
xξ

τJ
√

det(ρ)

[

(

1

Jdet(ρ)

(

xT
ξ ρxη

)

)

η

−

(

1

Jdet(ρ)

(

xT
η ρxη

)

)

ξ

]

+
xη

τJ
√

det(ρ)

[

(

1

Jdet(ρ)

(

xT
η ρxξ

)

)

ξ

−

(

1

Jdet(ρ)

(

xT
ξ ρxξ

)

)

η

]

, (2.52)

yt =
yξ

τJ
√

det(ρ)

[

(

1

Jdet(ρ)

(

yTξ ρyη
)

)

η

−

(

1

Jdet(ρ)

(

yTη ρyη
)

)

ξ

]

+
yη

τJ
√

det(ρ)

[

(

1

Jdet(ρ)

(

yTη ρyξ
)

)

ξ

−

(

1

Jdet(ρ)

(

yTξ ρyξ
)

)

η

]

. (2.53)

Here, det(ρ) is the determinant of the monitor function. These mesh equations can

be easily discretised to move the mesh. The interested reader can refer to [13, 48].

The main disadvantage of solving the discretisations of Eqs. (2.52, 2.53) are that the

resulting system is a highly nonlinear which is difficult to solve. Another disadvantage

is that the resulting system requires the solution of a lower dimensional mesh equation
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on the boundaries to obtain Dirichlet conditions for solving Eqs. (2.52, 2.53). The

main advantage is that, under certain conditions on the monitor function, uniqueness

and existence of the solution are ensured in two dimensions [81]. Alternatively, there is

a method which derives mesh equations by solving a gradient flow problem related to

a variational principle. This method is so-called Winslow method [25, 85]. The mesh

equations can be written in the computational domain as

τxt = ∇ξ · (ρ(x, t)∇ξx) , τyt = ∇ξ · (ρ(x, t)∇ξy) . (2.54)

Here, ∇ξ = (∂ξ, ∂η)T and ρ(x, t) is a scalar function. This is the two-dimensional

version of MMPDE5. Eq. (2.54) is significantly easier to solve than Eqs. (2.52, 2.53)

and can also be easily discretised. However, discretisation of Eqs. (2.54) results in a

very stiff system. Ceniceros and Hou [25] apply a low-pass filter smoothing to ρ(ξ, t) .

The low-pass filter can be explicitly applied to the mesh equation which is given by

τ(1− γ1∇
2
ξ)xt = ∇ξ · (ρ(x, t)∇ξx) , τ(1− γ1∇

2
ξ)yt = ∇ξ · (ρ(x, t)∇ξy) , (2.55)

where τ is the relaxation time parameter and γ1 is a positive real number related to

ρ(x, t). It is usually given by γ1 =
√

∆t max(ρ) if a time step ∆t is used or γ1 =

√

max(ρ) if not. Eq. (2.55) is the two-dimensional version of regularised MMPDE5.

We can extend the one-dimensional MMPDE4 and MMPDE6 described previously to

also obtain their two-dimensional versions:
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2D MMPDE4:

τ∇ξ · (ρ∇ξxt) = −∇ξ · (ρ∇ξx). (2.56)

2D MMPDE6:

τ∇2
ξxt = −∇ξ · (ρ∇ξx). (2.57)

The disadvantages in using the above MMPDEs are that we need to solve two PDEs

coupled to the underlying PDE(s) to obtain the adaptive moving mesh and, more

importantly, these MMPDEs cannot ensure no mesh tangling and acceptable mesh

regularity. These disadvantages can be overcome by the optimal transport equations

discussed next.

2.3 Optimal transport equations

Consider the computation domain Ωc ≡ [0, 1]× [0, 1], with the computational coordi-

nates ξ = (ξ, η) continuously mapped to the physical domain Ωp ≡ [0, Lx] × [0, Ly],

with the physical coordinates x = (x, y) such that

x = x(ξ, t), x ∈ Ωp, and ξ ∈ Ωc, (2.58)

where Lx and Ly are the length of the domain in x and y directions, respectively. In

two dimensions, this mapping does not ensure existence and uniqueness of the solution

only based on the equidistribution principle. This results in mesh tangling and loss of
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mesh regularity as was discussed in §2.2. Alternatively, we consider a mesh generation

method based on optimal transportation. Optimal transport methods are a generali-

sation of one-dimensional mesh equations discussed in §2.2. To avoid the possibility of

mesh tangling, Budd and Williams [15] propose that a good equidistributed mesh is

near a uniform mesh. Recall from §2.2 the two-dimensional equidistribution principle

Eq. (2.22) given by

ρ(x, t)|J | = θ(t), where θ =

∫

Ωp

ρ(x, t)dx, (2.59)

and J is the Jacobian matrix is defined in Eq. (2.21). Brenier [11], Caffarelli [19] and

Finn [42] prove that there is a unique optimal mapping x satisfying Eq. (2.59). This

map x is determined by the gradient of a convex mesh potential Q(ξ, t), such that

x(ξ, t) = ∇ξQ(ξ, t), (2.60)

where ∇ξ = (
∂

∂ξ
,
∂

∂η
)T .

Substituting into the definition of the Jacobian matrix Eq. (2.21), leads to

J =









xξ yξ

xη yη









=









Qξξ Qηξ

Qξη Qηη









= H , H = |H| = Qξξ Qηη − Q2
ξη, (2.61)
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where H is referred to as the Hessian matrix of Q(ξ, t) and H is its determinant.

Hence, the two dimensional equidistribution principle Eq. (2.59) can be generalised to

ρ(x, t)|H| = θ(t), where, θ =

∫

Ωp

ρ(∇ξQ, t)dx, (2.62)

Eq. (2.62) is referred to as the Monge-Ampère equation. The interested reader can

refer to Budd et al. [16, 17].

A temporal relaxation method of Eq. (2.62) is proposed by Budd and Williams [16] to

solve Eq. (2.62), which is given in the computational domain by

τ
(

1− γ1∇
2
ξ

)

Q = (ρ(x, t)|H|)1/2 , (2.63)

This equation is referred to as the Parabolic Monge-Ampère (PMA) equation. The

smoothing operator (1− γ1∇
2
ξ) is similar to that used in §2.2, which is used to reduce

the stiffness of the PDEs. The power 1/2 in the above equation is called the scaling

power which is important for global existence of the solution and guarantees that the

right hand side of eq. (2.63) scales linearly with Q(ξ, t) [17]. Again, τ is the relaxation

time parameter and γ1 is a positive real number related to ρ(x, t). It is usually given

by γ1 =
√

∆tmax(ρ) if a time step ∆t is used or γ1 =
√

max(ρ) if not. The PMA

equation Eq. (2.63) is subject to the Neumann boundary conditions:

Qξ = 0, Lx, at ξ = 0, 1, Qη = 0, Ly, at η = 0, 1. (2.64)
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The initial condition for Eq. (2.63) is generally based on a uniform mesh chosen as

Q(ξ, t = 0) =
1

2

(

Lxξ
2 + Lyη

2
)

, ξ ∈ Ωc. (2.65)

The advantage of the PMA equation over the MMPDEs is that there is one equation

less to solve in two dimensions to obtain the mesh and the meshes are generally regular

and there is no mesh tangling.

2.4 Monitor function

The choice of the monitor function ρ is essential for the success of adaptive moving mesh

methods. The monitor function can be chosen based on error estimates (e.g., based

on polynomial interpolation or truncation error of a finite difference discretisation of a

differential equation) or based on the solution characteristics of the underlying PDE. In

the latter case, the monitor function can be defined by the solution u of the underlying

PDE and possibly its derivatives so that

ρ(x, t) = ρ(x, u(x, t),∇u(x, t),∇2u(x, t), · · · , t). (2.66)

We just mention here several choices of the monitor function ρ that are commonly

used, (see Appendix A for a selection of the monitor functions and Huang & Russell

[54] for details of their derivation based on interpolation error estimates).
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• In one-dimension, the arc-length monitor function is given by

ρ(x, t) =

√

1 + |ux|
2. (2.67)

In two dimensions, a scalar version of the one-dimensional arc-length monitor

function generalised to two dimensions is given by

ρ(x, t) =
√

1 + |∇u(x, t)|2. (2.68)

This monitor function is used by Ceniceros and Hou [24], and Tang et al. [86]

for several applications in fluid mechanics.

• In one-dimension, the curvature-based monitor function is given by

ρ(x, t) =

√

1 + α |uxx|
2. (2.69)

In two dimensions, a scalar version of the one-dimensional curvature monitor

function generalised to two dimensions is given by

ρ(x, t) =
√

1 + α|∇2u(x, t)|2. (2.70)

Here, α is a non-negative adaptivity parameter (or weight parameter) of the

monitor function [5, 51] which controls the distribution of mesh points between

regions where curvature changes rapidly and where curvature is almost negligible.
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If α = 0, then the monitor function ρ = 1 which represents a uniform mesh. For

α > 0, the monitor function ρ responds to changes in curvature and adapts the

mesh points accordingly. Generally α is chosen to be a constant (equal to one,

say). However, if there are regions of varying degrees of curvature, one would need

to vary α with respect to x for the monitor function to capture these accurately.

• In one-dimension, the curvature-based monitor function is also given by

ρ(x, t) =
(

1 + α |uxx|
2)1/4 , (2.71)

And its generalisation to two-dimensions is given by

ρ(x, t) =
(

1 + α|∇2u(x, t)|2
)1/4

. (2.72)

This monitor function is provided by Huang & Russell [54].

• An optimal monitor function [54] is also used in one-dimensional problems and

is given by

ρ(x, t) =

(

1 +
1

α
|uxx|

2

)1/3

, α =

[

1

a− b

∫ b

a

|uxx|
2dx

]

. (2.73)
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2.5 Monitor function smoothing and regularisation

If the solution of the underlying PDE is not smooth, the discretised monitor function

can change abruptly and slow down the computation. To obtain a smoother mesh

and also make the MMPDEs easier to integrate, it is common practice in the context

of moving mesh methods to smooth the monitor function [31, 43]. Dorfi and Drury

[31] propose a technique to smooth a one-dimensional mesh concentration. in this

technique, if ni = (xi+1 − xi)
−1, then a smoother mesh is obtained by n̂i = ni −

γ (ni+1 − 2ni + ni−1). This technique is often called the Dorfi and Drury method.

Another method to obtain a smoother mesh can be generated by averaging the monitor

function ρ over all mesh points prior to the mesh adaptation [80]. In one-dimension,

assume that the monitor function ρ(x, t) is given, then the values of the smoothed ρ at

the mesh points are given by

ρ̂i =

√

√

√

√

∑i+p
k=i−p ρ

2
k (γ/(1− γ))|k−i|

∑i+p
k=i−p (γ/(1− γ))|k−i|

, (2.74)

where γ ∈ (0, 1) is called the smoothing parameter and p ≥ 0 is referred to as the

smoothing index. In two-dimensions, this can be written as

ρ̂i,j =

∑+1
k=−1

∑+1
l=−1 ρk+i,j+lγ

|k|+|i|

∑+1
k=−1

∑+1
l=−1 γ

|k|+|i|
. (2.75)
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For example, if γ = 1
2
then Eq. (2.75) is given by

ρ̂i,j ←
1
4
ρi,j +

1
8
(ρi+1,j + ρi−1,j + ρi,j+1 + ρi,j−1)

+ 1
16
(ρi+1,j+1 + ρi+1,j−1 + ρi−1,j−1 + ρi−1,j+1) .

(2.76)

This is widely applied in the adaptive moving mesh literature [13].

2.6 Computation using adaptive moving mesh meth-

ods

Computing numerical solutions of the underlying PDE using an adaptive moving mesh

method has three related problems:

1. The strategy used to adapt and move the mesh.

As described in this chapter the mesh is moved by solving the moving mesh

equations either MMPDEs or the PMA equation. We need to choose a suitable

relaxation parameter τ and smoothing parameter γ1 to maintain mesh regularity

and avoid mesh tangling. The adaptivity of the mesh is controlled by a suitable

choice of a monitor function. In this thesis we use the curvature monitor function

Eqs. (2.69,2.70) and the arc length monitor function Eqs. (2.67,2.68). Smoothing

of the monitor function may be required to obtain a smoother mesh and also make

the MMPDEs easier to integrate
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2. The method used to discretise the underlying PDE(s) and the mesh equation(s).

The finite difference method is used to discretise the equations. We semi-discretise

the spatial derivatives using second-order accurate finite differences and we keep

the time derivative continuous. The resulting system of ODEs are then solved

using the method of lines (see Morton & Mayers [67] or Smith [76] for finite

difference techniques to solve PDEs).

3. The method used to solve the discretised system of equations.

We solve the resulting ODEs for the semi-discretised PDE(s) and mesh equa-

tion(s) simultaneously using the stiff ODE solver DASSL [72] or DASPK [12].

These solvers use either a direct (DASSL) or iterative (DASPK - based on pre-

conditioned Krylov subspace method) method to solve the linearised system of

equations. They also allow approximating the Jacobian using an Incomplete LU

factorisation which, if carefully done, can enhance the performance of the solver

in comparison to the direct method.
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Chapter 3

Numerical Solution of a 1D Fourth

Order Parabolic PDE on an

Adaptive Mesh

3.1 PDE with constant flux boundary conditions

Consider the one-dimensional fourth order degenerate nonlinear paraboic PDE de-

scribed in Chapter 1,

ht +

[

Ca
h3

3
hxxx −D(θ)

h3

3
hx +

h3

3

]

x

= 0, (x, t) ∈ [0, L]× [0, Tf ]. (3.1)
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Here, h = h(x, t) is the film thickness, x is the spatial variable and t is time. The

dimensionless parameters are Ca ≪ 1, the Capillary number, D(θ) is related to the

vertical component of gravity, θ is the inclination angle, L is a domain length and Tf

is a specific time.

Equation (3.1) is supplemented by four boundary conditions (BCs) in x. These are:

h(0, t) = 1, hxxx(0, t) = 0, h(L, t) = b, and hxxx(L, t) = 0. (3.2)

Here, b ≪ 1, is the precursor film thickness. This represents a constant flux of fluid

introduced at the upstream end x = 0 and the substrate is pre-wetted with a thin

precursor film of thickness b. The initial condition is chosen as

h(x, 0) = (1− x2) H(1− x) + b H(x− 1), x ∈ [0, L], (3.3)

where H(x) is the Heaviside function. This represents a 1D drop connecting onto a

precursor film of thickness b. Figure 3.1 shows this initial condition with b = 10−2.

We seek the numerical solution of Eqs. (3.1-3.3) to determine the evolution of the

film thickness h(x, t) using the Finite Difference technique and the Method of Lines.

A travelling wave solution exists for this problem [8, 57]. This is then used as an

exact solution to compare the convergence and accuracy of the numerical solution on

a uniform and adaptive moving mesh.
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Figure 3.1: The initial condition for the film thickness h using Eq. (3.3). The precursor
thickness b = 10−2.

3.1.1 Travelling wave solution

We seek a travelling wave solution of Eqs. (3.1,3.2). We write,

ξ =
(x− ct)

Ca
1

3

, h(x, t) = ĥ(ξ), (3.4)

where c is the wave speed. Substituting these scalings into Eq. (3.1), leads to

−c ĥξ +

[

ĥ3

3
ĥξξξ − D̂(θ)

ĥ3

3
ĥξ +

ĥ3

3

]

ξ

= 0, (3.5)

where D̂(θ) = D(θ)

Ca
1
3

. Eq. (3.5) is subject to the boundary conditions,

ĥ→ 1, ĥξξξ → 0 as ξ → −∞, and ĥ→ b, ĥξξξ → 0 as ξ →∞. (3.6)
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Integrating Eq. (3.5) and using downstream boundary condition, we obtain

−cĥ+
ĥ3

3
ĥξξξ −D(θ)

ĥ3

3
ĥξ +

ĥ3

3
= −

1

3

(

b+ b2
)

. (3.7)

Applying the upstream boundary conditions, we obtain the wave speed c = 1
3
(1+b+b2).

Hence, the travelling wave solution satisfies the following third order ODE,

ĥξξξ =
1 + b+ b2

ĥ2
−

b+ b2

ĥ3
+ D̂(θ) ĥξ − 1, (3.8)

subject to the following boundary conditions,

ĥ→ 1 as ξ → −∞, and ĥ→ b as ξ →∞. (3.9)

Eqs. (3.8,3.9) can be solved numerically either as an Initial-Value-Problem (IVP) using

the shooting method or as Boundary-Value-Problem (BVP) using finite differences to

discretise the spatial variables and solving the resulting system of nonlinear equations.

The shooting method

Here, we present a brief outline of the shooting method that is used to solve Eq.

(3.8,3.9). Eq. (3.8) is linearised about the upstream boundary condition, i.e., ĥ→ 1 as

ξ → −∞. This generates three initial conditions along with a shooting parameter that

is utilized to integrate Eq. (3.8). This shooting parameter is varied so as to satisfy the
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downstream boundary condition, i.e., ĥ → b as ξ → +∞. For a detailed description,

the reader can refer to [79]. We define, ĥ(ξ) = 1 + δ Ĥ(ξ), where δ ≪ 1. Substituting

in Eq. (3.8) gives at O(δ),

Ĥξξξ = (b+ b2 − 2)Ĥ + D̂(θ)Ĥξ. (3.10)

The above ODE has characteristic equation with three roots, one of which is negative

and the remaining two roots are positive. Here, the negative root is neglected to prevent

the solution increasing exponentially as ξ →∞. We have three cases for the remaining

two positive roots depending on inclination angle θ. If the roots are,

• Real and equal (= α, say), then the solution is written as,

Ĥ(ξ) = 1 + eαξ (A+Bξ) , as ξ → −∞.

• Real and distinct (= α, β, say), then the solution is,

Ĥ(ξ) = 1 + A eαξ +B eβξ, as ξ → −∞.

• Complex conjugate roots (= α± iβ, say, with α > 0), the solution takes the form,

Ĥ(ξ) = 1 + A eαξ cos (β (ξ − ξ0)) , as ξ → −∞.

We only consider the case where the roots are complex conjugate. This is the case for

large inclination angle θ. Using the translational invariance of Eq. (3.10), we choose ξ0

to be large and negative such that cos (β (ξ − ξ0)) = 1. We write Eq. (3.10) as a system

of three first order ODEs with initial conditions provided by the above linearisation

about h = 1. We solve the resulting IVP using the MATLAB routine ODE15s [74] and
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modify the shooting parameter A until the downstream boundary condition is satisfied.

Solving the BVP

We rewrite Eq. (3.8) as,

F (ĥ) = 0, where F (ĥ) = ĥξξξ −

[

1 + b+ b2

ĥ2
−

b+ b2

ĥ3
+D(θ) ĥξ − 1

]

. (3.11)

We discretise the above equation using centred finite differences on either a uniform or

non-uniform mesh resulting in a system of nonlinear algebraic equations. We use the

MATLAB routine FSOLVE to solve this system which uses a quasi-Newton method

[74]. It is crucial to have a good starting guess for the solution to converge; we use the

corresponding solution obtained by the shooting method as a starting guess.

Figure 3.2 shows the numerical solution of Eq. (3.10) obtained using the shooting

method (dashed blue line) with stepsize ∆ξ = 10−5 and the BVP method (solid red

line) with mesh size ∆ξ = 5 × 10−5. The parameter values are Ca = 1, θ = 90o

(so, D = 0) and b = 10−2. The solution is translated so that the origin ξ = 0 is at

the minimum value of h attained just before connecting onto the precursor film, the

so-called effective contact line. The solution is characterised by a shock-like structure

which develops just upstream of the contact line, the so-called capillary ridge, and a

capillary wave that forms both upstream and downstream of the capillary ridge (the

downstream capillary wave has a much smaller lengthscale and is not seen on the scale

shown in Figure 3.2). The width of the capillary ridge region scales like Ca1/3 (see Eq.
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Figure 3.2: Numerical solution of Eq. (3.10) obtained using the shooting method
(with stepsize ∆ξ = 10−5) and the BVP method (with mesh size ∆ξ = 5× 10−5). The
parameter values are Ca = 1, θ = 90o (so, D = 0) and b = 10−2.

(3.4)) and hence becomes much steeper as Ca → 0. This would require a large number

of mesh points in any numerical discretisation to fully resolve this region making the

use of an adaptive moving mesh even more important.

Figure 3.3(a) presents convergence histories (measured in the L2 norm) for the shooting

and the BVP methods. Both methods converge as the stepsize ∆ξ decreases. Figure

3.3(b) presents the error measured in the L2 norm for both schemes. We assume the

solution with ∆ξ = 10−5 obtained using shooting method as the exact solution when

computing the error. We observe that the error in both methods tends to zero as ∆ξ

goes to zero. Moreover, shooting method is more accurate than the BVP method.

However, in the shooting method, the shooting parameter is dependent on the mesh

size ∆ξ. We can conclude that the shooting method is more accurate and convergent
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Figure 3.3: (a) convergence histories (measured using the L2 norm) and (b) L2 norm
error for numerical solutions is obtained using the shooting and BVP methods for
varying ∆ξ. We assume that the travelling wave solution obtained using the shooting
method for ∆ξ = 10−5 as the exact solution when comparing the error. The parameters
values are θ = 90o (so, D = 0) and b = 10−2.
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than the BVP method. We will assume that the numerical solution using the shooting

method for ∆ξ = 10−5 as the exact solution when making comparisons between the

numerical solution of the full time-dependent problem using a uniform and adaptive

moving mesh scheme described in the following sections.

3.1.2 Numerical solution of Eqs. (3.1, 3.2) on a uniform mesh

The domain [0, L] is uniformly divided into N + 1 discrete points as follows:

xj = (j − 1) ∆x, ∀ xj ∈ [0, L], j = 1, 2, ..., N + 1, where ∆x = L
N

is the width

of each sub-interval. We discretise the spatial derivatives appearing in Eq. (3.1) using

finite differences; the time derivative is kept continuous.

The spatial discretisation is done as follows. We define a forward and a backward

difference as:

hx,j+ 1

2

=
hj+1 − hj

∆x
+ O(∆x), hx̄,j+ 1

2

=
hj − hj−1

∆x
+ O(∆x), respectively. Thus, a

semi-discretisation of Eq. (3.1), keeping the time derivative continuous, is

ht,j +
Ca

3

[

(h3)j+ 1

2

(hxx̄x)j+ 1

2

− (h3)j− 1

2

(hxx̄x)j− 1

2

∆x

]

−
D(θ)

3

[

(h3)j+ 1

2

(hx)j+ 1

2

− (h3)j− 1

2

(hx)j− 1

2

∆x

]

+
1

3

[

(h3)j − (h3)j−1

∆x

]

= 0, (3.12)

where j = 2, ..., N and (h3)j+ 1

2

can be approximated by

(h3)j+ 1

2

=
h3
j+1 + h3

j

2
or (h3)j+ 1

2

=

(

hj+1 + hj

2

)3

.
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It has been shown that there are particular choices for the approximation of (h3)j+ 1

2

that have special properties, for example, the so-called positivity-preserving scheme,

meaning that if one starts from strictly positive data for h, the scheme will help pre-

serving this property. The interested reader is referred to the works by Bertozzi [6]

and Zhornitskaya & Bertozzi [87] for details. Evaluating Eq. (3.12) at j = 2, N require

fictitious points which are obtained by discretising the boundary conditions hxxx = 0

at x = 0, L using centred finite differences. The boundary conditions h(0, t) = 1 and

h(L, t) = b are replaced by their ODE form:

ht,1 = 0, ht,N+1 = 0. (3.13)

This semi-discretisation scheme is second order accurate and uses a 5-point stencil. It

requires a smaller bandwidth in comparison with a 7-point stencil if using a centred

finite difference scheme. This discretisation is frequently used in thin film problems,

particularly, for discretising the fourth order derivative (for example, see Kondic [57]).

Equations (3.12,3.13) form a system of N + 1 ordinary differential equations for the

solution h1, . . . , hN+1 with initial condition given by Eq. (3.3). These are solved using

the stiff ODE solver DASSL [72] which uses backward differentiation formulae (BDFs)

to approximate the time derivative and the resulting nonlinear system of equations are

solved using Newton’s method. The banded structure of the Jacobian matrix (with

bandwitdh=5 based on the above semi-discretisation) corresponding to the linearised

system is utilised to improve the performance of the ODE solver.
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Figure 3.4: Time evolution of h(x, t) to the travelling wave solution with parameter
values Ca = 10−3, θ = 90o, b = 10−2, L = 6 and ∆x = 10−3 (so, N = 6000). Time t is
increasing between t = 0 and t = 10.

Figure 3.4 illustrates the time evolution of h to a travelling wave solution with param-

eter values Ca = 10−3, θ = 90o, b = 10−2, L = 6 and ∆x = 10−3 (so, N = 6000). The

results are shown for time t ranging between 0 to 10. Note that, after t ≈ 4, the solu-

tion appears to have converged to a travelling wave solution. Figure 3.5(a) illustrates

the numerical solution of Eq. (3.12) at t = 10 for varying ∆x. The dashed line shows

the assumed exact solution obtained using the shooting method with ∆x = 10−5. We

note that the solution converges to the exact solution as ∆x decreases. Therefore, we

can conclude that the uniform scheme converges to the exact solution as ∆x → 0.

This convergence is verified in figure 3.5(b) which shows the L2 norm error between

the numerical (at t = 10) and exact solution for decreasing ∆x. Observe that L2 norm

error decreases as ∆x decreases.
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Figure 3.5: (a) shows the numerical solution of Eq. (3.12) at t = 10 for decreasing ∆x.
The dashed line shows the exact solution obtained using the shooting method with
∆x = 10−5, and (b) shows the L2 norm error between the numerical (at t = 10) and
exact solution for decreasing ∆x.
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3.1.3 Numerical solution of Eqs. (3.1, 3.2) on an adaptive

moving mesh

We now seek the numerical solution of Eqs. (3.1, 3.2) using an adaptive moving mesh

method. We first transform from the physical domain Ωp ≡ [0, L] to the computational

domain Ωc ≡ [0, 1] using the transformation

x = x(ξ, t), ξ ∈ [0, 1], x ∈ [0, L].

Then the solution can be written as

ĥ(x, t) = h(x(ξ, t), t).

A moving mesh associated with the solution ĥ is described as

Jĥ(t) : xj(ξ) = x(ξj, t), j = 1, . . . , N + 1, (3.14)

and a fixed uniform mesh on the computational domain is described as

J c
h (t) : ξj =

j − 1

N
, j = 1, . . . , N + 1. (3.15)
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Using the chain rule, we have

hx =
ĥξ

xξ
, ht = ĥt −

ĥξ

xξ
xt. (3.16)

Using the above, Eq. (3.1) can then be written as

ĥt −
ĥξ

xξ
xt = −

Q̂ξ

xξ
+

Ĝξ

xξ
, where (3.17)

Q̂ = Ca

(

ĥ3

3

)

1

xξ







(

ĥξ

xξ

)

ξ

xξ







ξ

, Ĝ = D(θ)

(

ĥ3

3

)(

ĥξ

xξ

)

−

(

ĥ3

3

)

. (3.18)

A conservative semi-discretisation scheme for the spatial derivatives in Eq. (3.17) on

the uniform mesh J c
h(t) using finite differences can be written as, keeping the time

derivative continuous,

ĥt,j −
ĥj+1 − ĥj−1

xj+1 − xj−1
xt,j = −4

Q̂j − Q̂j−1

xj+2 − xj−2
+ 2

Ĝj − Ĝj−1

xj+1 − xj−1
, where (3.19)

Q̂j = Ca

(

ĥ3

3

)

j+1/2

1

xξ,j







(

ĥξ

xξ

)

ξ

xξ







ξ,j

, Gj = D(θ)

(

ĥ3

3

)

j+1/2

(

ĥξ

xξ

)

,j

−

(

ĥ3

3

)

j+1/2

,

j = 2, . . . , N.
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The spatial derivatives appearing in Qj are discretised as follows:

1

xξ,j







(

ĥξ

xξ

)

ξ

xξ







ξ,j

=
3

xj+2 − xj−1





1

xξ,j+1

(

ĥξ

xξ

)

ξ,j+1

−
1

xξ,j

(

ĥξ

xξ

)

ξ,j



 , where

1

xξ,j

(

ĥξ

xξ

)

ξ,j

=
2

xj+1 − xj−1

(

ĥj+1 − ĥj

xj+1 − xj
−

ĥj − ĥj−1

xj − xj−1

)

, j = 1, . . . , N. (3.20)

The spatial derivatives appearing in Gj are discretised as:

(

ĥξ

xξ

)

,j

=
ĥj+1 − ĥj

xj+1 − xj
. (3.21)

In the above discretisations, (ĥ3)j+1/2 is approximated by (ĥ3)j+1/2 =
ĥ3
j+1 + ĥ3

j

2
or

(ĥ3)j+1/2 =

(

ĥj+1 + ĥj

2

)3

. A similar approximation is used for evaluating (ĥ3)j−1/2.

Evaluating Eq. (3.19) at j = 2, N require fictitious points ĥ0 and ĥN+2, which are

obtained by discretising the boundary conditions hxxx = 0 at x = 0, L using centred

finite differences.

The boundary conditions h(0, t) = 1 and h(L, t) = b are replaced by their ODE form:

ht,1 = 0, ht,N+1 = 0. (3.22)

We can also write a non-conservative semi-discretisation scheme for the spatial deriva-
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tives in Eq. (3.1). To do this, we write Eq. (3.1) in the following form:

ht + Ca

[

h3

3
px

]

x

−D(θ)

[

h3

3
hx

]

x

+

[

h3

3

]

x

= 0, where p = hxx. (3.23)

A non-conservative semi-discretisation scheme for a function of the form [aux]x on the

uniform mesh J c
h(t) using finite differences can be written as:

[aux]x,j =
1

xξ,j

[

auξ

xξ

]

ξ,j

=
1

xξ,j

[

[auξ]ξ,j
xξ,j

−
1

x2
ξ,j

ajuξ,jxξξ,j

]

=

(

2

xj+1 − xj−1

)2
[

aj+ 1

2

(uj+1 − uj)− aj− 1

2

(uj − uj−1)
]

− aj

(

uj+1 − uj−1

xj+1 − xj−1

)(

xj+1 − 2xj + xj−1

(xj+1 − xj)(xj − xj−1)

)

. (3.24)

Using the above, a non-conservative semi-discretisation scheme for the spatial deriva-

tives in Eq. (3.23) on the uniform mesh J c
h (t) using finite differences can be written

as, keeping the time derivative continuous,

ĥt,j + Ca

[

ĥ3

3
px

]

x,j

− D(θ)

[

ĥ3

3
ĥx

]

x,j

+

[

ĥ3

3

]

x,j

= 0, pj = ĥxx,j, (3.25)
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where

[apx]x,j =

(

2

xj+1 − xj−1

)2
[

aj+ 1

2

(pj+1 − pj)− aj− 1

2

(pj − pj−1)
]

− aj

(

pj+1 − pj−1

xj+1 − xj−1

)(

xj+1 − 2xj + xj−1

(xj+1 − xj)(xj − xj−1)

)

, (3.26)

[aĥx]x,j =

(

2

xj+1 − xj−1

)2
[

aj+ 1

2

(ĥj+1 − ĥj)− aj− 1

2

(ĥj − ĥj−1)
]

− aj

(

ĥj+1 − ĥj−1

xj+1 − xj−1

)

(

xj+1 − 2xj + xj−1

(xj+1 − xj)(xj − xj−1)

)

, (3.27)

pj = ĥxx,j =

(

2

xj+1 − xj−1

)2
[

ĥj+1 − 2ĥj + ĥj−1)
]

−

(

ĥj+1 − ĥj−1

xj+1 − xj−1

)

(

xj+1 − 2xj + xj−1

(xj+1 − xj)(xj − xj−1)

)

, (3.28)

[ĥ3]x = 2

(

ĥ3
j+1/2 − ĥ3

j−1/2

xj+1 − xj−1

)

. (3.29)

Here, a = 1
3
ĥ3 and approximations to aj+1/2 and aj−1/2 are the same as defined previ-

ously.

The equidistributing coordinate transformation x = x(ξ, t) is obtained by solving the

moving mesh PDEs (MMPDEs). We use four different MMPDEs, the so-called MM-

PDE 4, 5 and 6 and modified MMPDE 5, described previously in Chapter 2. A semi-

discretisation scheme using centred finite differences to discretise the spatial derivatives
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is employed. The semi-discretisation of the above MMPDEs is as follows:

MMPDE 4 : (ρ̂xtξ)ξ = −
1

τ
(ρ̂xξ)ξ,

semi-discretisation : τ [(ρ̂j+1 + ρ̂j)(xt,j+1 − xt,j)− (ρ̂j−1 + ρ̂j)(xt,j − xt,j−1)] =

− [(ρ̂j+1 + ρ̂j)(xj+1 − xj)− (ρ̂j−1 + ρ̂j)(xj − xj−1)],

j = 2, . . . , N. (3.30)

MMPDE5 : xt =
1

τ
(ρ̂xξ)ξ,

semi-discretisation : τxt,j =
1

2∆ξ2
[(ρ̂j+1 + ρ̂j)(xj+1 − xj)− (ρ̂j−1 + ρ̂j)(xj − xj−1)],

j = 2, . . . , N. (3.31)

MMPDE6 : xt,ξξ = −
1

τ
(ρ̂xξ)ξ,

semi-discretisation : τ(xt,j+1 − 2xt,j + xt,j−1) = −
1

2
[(ρ̂j+1 + ρ̂j)(xj+1 − xj)−

(ρ̂j−1 + ρ̂j)(xj − xj−1)], j = 2, . . . , N. (3.32)

Modified MMPDE5 : xt =
1

ρ̂τ
(ρ̂xξ)ξ,

semi-discretisation : τxt,j =
1

2ρ̂j∆ξ2
[(ρ̂j+1 + ρ̂j)(xj+1 − xj)−

(ρ̂j−1 + ρ̂j)(xj − xj−1)], j = 2, . . . , N. (3.33)
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Here, ρ̂(x, t) is a monitor function (defined below), ∆ξ = 1
N

is the mesh size in the

computational domain and τ > 0 is a user-specified relaxation parameter. τ is the

timescale over which the mesh responds to changes in the monitor function ρ̂(x, t).

The smaller τ , the more quickly the mesh responds to changes in ρ̂(x, t). Likewise, the

mesh moves slowly when a large value of τ is used. MMPDE 5 and modified MMPDE 5

and their discretisation given in Eqs. (3.31,3.33) are generally quite stiff and in practice

it is proposed to use a more regular system,

Regularised MMPDE5 : xt − γ1xt,ξξ =
1

τ
(ρ̂xξ)ξ,

semi-discretisation : τ [xt,j −
γ1

2∆ξ2
(xt,j+1 − 2xt,j + xt,j−1)] =

1

2∆ξ2
[(ρ̂j+1 + ρ̂j)(xj+1 − xj)− (ρ̂j−1 + ρ̂j)(xj − xj−1)],

j = 2, . . . , N. (3.34)

Regularised modified MMPDE5 : xt − γ1xt,ξξ =
1

ρ̂τ
(ρ̂xξ)ξ,

semi-discretisation : τ [xt,j −
γ1

2∆ξ2
(xt,j+1 − 2xt,j + xt,j−1)] =

1

2ρ̂j∆ξ2
[(ρ̂j+1 + ρ̂j)(xj+1 − xj)− (ρ̂j−1 + ρ̂j)(xj − xj−1)],

j = 2, . . . , N. (3.35)

Here, the parameter γ1 > 0 is related to the monitor function ρ̂ (see Budd et al. [13]

and references therein).
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The boundary conditions x(0, t) = 0 and x(1, t) = L are replaced by their ODE form:

xt,1 = 0, xt,N+1 = 0. (3.36)

The initial condition

x(ξ, 0) = Lξ, (3.37)

which represents a uniform initial mesh on the physical domain Ωp ≡ [0, L]. We note

here that a non-uniform initial mesh was also used which was obtained by solving in

pseudo-time the chosen MMPDE (with the uniform mesh as the initial condition) with

ĥ fixed (hence, ρ̂ is also fixed) at its initial condition given by Eq. (3.3). This did

not have any significant influence on the solution or the performance of the solver in

comparison to the uniform initial mesh.

Finally, the monitor function ρ̂(x, t) is chosen and discretised using finite differences

as:

Arc-length monitor function : ρ̂(x, t) =

√

1 + |ĥx|2,

semi-discretisation : ρ̂(xj , t) =

√

1 + |ĥx,j|2,

ĥx,j :=































ĥj+1−ĥj−1

xj+1−xj−1
, j = 2, . . . , N

ĥ2−ĥ1

x2−x1
, j = 1

ĥN+1−ĥN

xN+1−xN
, j = N + 1.

(3.38)
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Curvature-based monitor function : ρ̂(x, t) = (1 + α|ĥxx|
2)

1

4 ,

semi-discretisation : ρ̂(xj , t) = (1 + α|ĥxx,j|
2)

1

4 ,

ĥxx,j :=































2
(xj+1−xj−1)

[

(ĥj+1−ĥj)

(xj+1−xj)
−

(ĥj−ĥj−1)

(xj−xj−1)

]

, j = 2, ..., N,

2[(x2−x1)(ĥ3−ĥ1)−(x3−x1)(ĥ2−ĥ1)]
(x3−x1)(x3−x2)(x2−x1)

, j = 1,

2[(xN−xN+1)(ĥN−1−ĥN+1)−(xN−1−xN+1)(ĥN−ĥN+1)]
(xN−1−xN+1)(xN−xN+1)(xN−1−xN )

, j = N + 1.

(3.39)

Here, α is user-defined parameters.

If ĥ is not smooth, the discretised monitor function computed as above can change

abruptly and slow down the computation. To obtain a smoother mesh and also make

the MMPDEs easier to integrate, it is common practice in the context of moving mesh

methods to smooth the monitor function. A simple but effective smoothing scheme

suggested by Huang [53, 49] is based on weighted averaging,

ρ̂j :=

√

√

√

√

√

√

∑j+p
k=j−p ρ̂

2
k

(

γ
1+γ

)|k−j|

∑j+p
k=j−p

(

γ
1+γ

)|k−j|
, j = 1, . . . , N + 1 (3.40)

where p is a non-negative integer called the smoothing index and γ is a positive smooth-

ing parameter. Several sweeps of the scheme may be applied each integration step (only

one sweep is used for the numerical results presented in this chapter).

The above semi-discretisations for ĥ and x form a coupled system of 2(N + 1) or-

dinary differential equations for the solution ĥ1, . . . , ĥN+1 and the mesh x1, . . . , xN+1

with initial condition given by Eqs. (3.3,3.37). These are solved using the stiff ODE
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solver DASSL [72]. We use a staggered system for numbering the unknowns, i.e.,

ĥ1, x1, ĥ2, x2, . . . , ĥN+1, xN+1 which provides a smaller bandwidth for the Jacobian ma-

trix (note: the bandwidth=10 for the semi-discretisation in Eq. (3.19); it could be

larger if smoothing of monitor function is used. This is in comparison to, for example,

the numbering ĥ1, ĥ2, . . . , ĥN+1, x1, x2, . . . , xN+1, which although sparse has a much

bigger bandwidth. This significantly improves the performance of the solver. We note

here that the stiff solver DASPK [12] was also used which utilises an iterative scheme

based on Krylov subspace methods for the solution of the linearised system (DASSL

uses a direct solver) including preconditioning using Incomplete LU decomposition of

the Jacobian matrix. This had no significant influence on the performance in compari-

son to DASSL, at least for the 1D problem considered in this chapter. We do not show

here but the numerical results show that

• If the value of the capillary number Ca decreases, the width of the capillary ridge

decreases.

• If the inclination angle θ increases, the height of the capillary ridge increases.

• If the value of the precursor film thickness b decreases, the height of the capillary

ridge increases.

In all the results presented below, the parameter values are: Ca = 10−3, θ = 90o

(so, D = 0), b = 10−2 and L = 6; the monitor function smoothing parameters are

p = 2, γ = 2. The choice of these parameters particularly Ca, b ≪ 1, other than

being realistic is that it makes the problem stiff and challenging to resolve numerically
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the internal layers associated with the capillary ridge region. We only show results

based on the conservative semi-discretisation scheme Eq. (3.20). Our results using the

non-conservative scheme Eq. (3.25) was not as accurate compared to the conservative

scheme so we do not show these results here. The first set of results show the evolution

of h(x, t) and x(ξ, t) with MMPDE and monitor function chosen to be MMPDE 2 (with

relaxation parameter τ = 10−2) and curvature-based monitor function (with α = 1),

respectively. We then consider the error and convergence of the moving adaptive mesh

scheme for varying MMPDEs (and their parameters) and monitor function.

Figure 3.6(a, b) illustrate the time evolution of h(x, t) to the travelling wave solution and

the corresponding trajectories x(ξ, t), respectively, obtained using the adaptive moving

mesh scheme with N = 800 (so, initial ∆x = 0.0075). In this simulation, MMPDE 2

(using τ = 10−2) with the curvature-based monitor function (using α = 1) are used.

The results are shown for t ranging between 0 to 10. Figure 3.6(a) shows that the

adaptive moving mesh scheme captures the essential features of the solution, including

the capillary ridge and capillary wave ahead and behind it, with less number of points

(N = 800 here compared to N = 6000 for the uniform mesh computation shown in

figure 3.4). Figure 3.6(b) shows that the mesh points are redistributed with more

points in the region near the capillary ridge and fewer points elsewhere (∆x ≈ 10−4 in

the capillary ridge region and ∆x ≈ 10−2 elsewhere; the initial ∆x = 0.0075 uniform

everywhere).

Figure 3.7(a) presents the solution h(x, t) at time t = 10. The insets show the in-
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Figure 3.6: (a) time evolution of h(x, t) to the travelling wave solution and (b) the
corresponding mesh trajectories x(ξ, t) obtained using the moving adaptive scheme
with N = 800 (initial ∆x = 0.0075), MMPDE2 and curvature monitor function. The
time t ranges between 0 to 10. The parameter values are: Ca = 10−3, θ = 90o (so,
D = 0), b = 10−2, L = 6, p = 2, γ = 2, α = 1 and τ = 10−2.
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Figure 3.7: (a) h(x, t = 10), (b) curvature-based monitor function at t = 10 and
(c) x(ξ, t = 10 obtained using the moving adaptive scheme with N = 800 (initial
∆x = 0.0075) and MMPDE2. The parameter values are: Ca = 10−3, θ = 90o (so,
D = 0), b = 10−2, L = 6, p = 2, γ = 2, α = 1 and τ = 10−2. Insets in (a) show the
zoomed-in capillary ridge and capillary wave ahead and behind the ridge. The solid
blue line in (c) represents a uniform mesh.
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creased number of points that are redistributed to the capillary ridge and the capillary

wave ahead and behind it. Figure 3.7(b) shows the curvature-based monitor function

associated with this solution. The large values of the curvature in the capillary ridge

region results in the increased number of points redistributed in this region (see insets

in figure 3.7(a)). Figure 3.7(c) shows the equidistributing coordinate transformation

x = x(ξ, t = 10). We observe the large number of points in the capillary ridge region

(around x = 4) compared to elsewhere (compare also to a uniform mesh represented by

the solid blue line). Hence, the adaptive moving mesh scheme allocates large number of

points where there is a rapid variation in the solution characterized by large variations

in its curvature.
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Figure 3.8: This figure presents the travelling wave solution (solid black line) and
corresponding numerical results for both uniform (solid red line) and adaptive moving
mesh (solid blue line)schemes. Insets show the zoomed-in solution near the capillary
ridge and capillary wave ahead and behind the ridge. The adaptive moving mesh
solution is obtained using MMPDE 2 and the curvature-based monitor function. The
parameter values are: N = 600 (initial ∆x = 10−2), Ca = 10−3, θ = 90o (so, D = 0),
b = 10−2, L = 6, p = 2, γ = 2, α = 1, and τ = 10−2.
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Figure 3.8 compares the assumed exact travelling wave solution (solid black line) with

that computed on a uniform mesh (solid red line) and adaptive moving mesh (solid

blue line). To make a direct comparison between the uniform and adaptive moving

mesh schemes, we fix N = 600 points for both schemes (initial ∆x = 10−2). We

illustrate the accuracy of the numerical solution by focussing on the capillary ridge

and the capillary wave ahead and behind it (see insets in figure 3.8). We observe that

the solution obtained using the moving adaptive mesh scheme is almost identical to the

assumed exact solution (see solid blue line in the insets in figure 3.8). The numerical

solution using the uniform mesh scheme has not converged to the exact solution for the

value of ∆x = 10−2 used (see solid red line in the insets in figure 3.8). The adaptive

moving mesh scheme takes an average value of ∆x = 2 × 10−5 in the capillary ridge

and capillary wave regions, hence the almost identical match to the exact solution.

However, the uniform mesh scheme requires at least ∆x ≤ 10−3 (N = 6000 points for

this case) for this region to be well-resolved (not shown here). The adaptive moving

mesh scheme requires much fewer points (N = 600 or initial ∆x = 10−2) to give much

higher resolution and accuracy of the numerical solution.

Error analysis and convergence

We now consider the error and convergence of the moving adaptive mesh scheme for

varying MMPDEs (and their parameters) and monitor function. Table 3.1 summarises

the error and CPU time taken to reach t = 10 using MMPDEs 4, 5, 6 and modified
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MMPDE N τ CPU Error

1000 1 41s 3.8× 10−3

1000 10−1 64s 1.8× 10−4

4 1000 10−2 71s 3.2× 10−9

1000 10−3 148s 1.0× 10−8

1000 1 48s 2.4× 10−3

5 1000 10−1 14650s 5.9× 10−8

1000 1 79s 1 × 10−5

6 1000 10−1 80s 2.2× 10−8

1000 10−2 130s 1.1× 10−8

1000 10−3 932s 1.1× 10−8

1000 1 116s 2.6× 10−5

modified 5 1000 10−1 2088s 1.4× 10−6

Table 3.1: Error and CPU time taken to reach t = 10 for MMPDEs 4, 5 and 6, and
modified MMPDE 5 varying the relaxation parameter τ . The numerical solution for
h used is obtained at t = 10 and the curvature-based monitor function is used. The
parameter values are: N = 1000 (initial ∆x = 6 × 10−3), Ca = 10−3, θ = 90o (so,
D = 0), b = 10−2, L = 6, p = 2, γ = 2, α = 1.

MMPDE 5 for several values of τ with N = 1000 (initial ∆x = 6×10−3). The curvature

monitior function is used. The numerical solution for h used in calculating the error

and CPU time is obtained at t = 10. We observe from Table 3.1 that MMPDE4

and MMPDE6 give more accurate solution and take less CPU time compared to the

MMPDE 5 and modified MMPDE 5. Four values of the relaxation parameter τ are

used with MMPDE4 and MMPDE 6 and we observe that the error gets smaller but the

CPU time increases as τ decreases. The equations become much stiffer as τ decreases

and we were unable to obtain a numerical solution for τ < 10−4 for MMPDE 4 and

MMPDE 6. The same trend holds for MMPDE 5 and modified MMPDE 5, however,

we were unable to obtain a numerical solution for τ < 10−2. Therefore, it can be

concluded that a value of τ = 10−3 − 10−2 is optimal with respect to accuracy and
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CPU time taken. Also, MMPDE 4 or MMPDE6 are the best in terms of accuracy and

CPU time taken (see Table 3.1).
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Figure 3.9: The L2 norm error for numerical solutions obtained using uniform mesh
(solid black line) and adaptive moving mesh using the arc-length monitor function
(solid blue line) and curvature-based monitor function (solid red line). The numerical
solution is obtained at t = 10 using MMPDE 4. The parameter values are: Ca = 10−3,
θ = 90o (so, D = 0), b = 10−2, L = 6, p = 2, γ = 2, α = 1 and τ = 10−2.

Figure 3.9 compares the error measured in the L2 norm for the numerical solutions

obtained using the adaptive moving mesh (solid blue line using the arc-length monitor

function and solid red line using the curvature-based monitor function) and uniform

mesh schemes for varying ∆x. The numerical solution for both schemes used in mea-

suring the error is obtained at t = 10 and MMPDE 4 is used to adapt and move the

mesh. We observe that the adaptive moving mesh numerical solution is more accurate

with respect to the error compared to the uniform mesh scheme, i.e., it achieves a

higher accuracy for the same number of mesh points. For example, the lowest error
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recorded is 1.6 × 10−9 for ∆x = 5 × 10−3 (corresponding to N = 1200 points) for the

adaptive moving mesh solution using the curvature-based monitor function (solid red

line). The error for the uniform mesh solution corresponding to this ∆x is 2.57×10−3.

Moreover, it is also efficient in the number of mesh points used to achieve a desired

level of accuracy, i.e., it uses less number of points to achieve the same error as the uni-

form mesh scheme. For example, the lowest value of the error recorded for the uniform

mesh solution is 4.12× 10−6 for ∆x = 5 × 10−4 (corresponding to N = 12000 points).

The adaptive moving mesh requires ∆x ≈ 0.02 (corresponding N = 300 points) to

record similar error. We also observe that the adaptive moving mesh scheme using the

curvature-based monitor function (solid red line) is more accurate and efficient in the

number of points used compared to that using the arc-length monitor function (solid

blue line). Therefore, it can be concluded that the adaptive moving mesh scheme using

the curvature-based monitor function is optimal for the problem considered here.

Error CPU time taken to t = 10
N Uniform

mesh
Adaptive
moving mesh

Uniform
mesh

Adaptive
moving mesh

200 2.08× 10−2 2.75× 10−5 2s 9s
400 1.11× 10−2 1.66× 10−6 6.5s 29s
800 4.8× 10−3 1.56× 10−8 22s 59s
1000 3.4× 10−3 3.2× 10−9 25s 71s
1200 2.57× 10−3 1.6× 10−9 43s 119s
3000 3.1× 10−4 – 233s –
6000 3.93× 10−5 – 264s –
12000 4.12× 10−6 – 819s –

Table 3.2: Comparing the error and CPU time taken to reach t = 10 for the uniform
mesh and adaptive moving mesh (using the curvature-based monitor function and
MMPDE 4) schemes. The numerical solution is obtained at t = 10. The parameter
values are: Ca = 10−3, θ = 90o (so, D = 0), b = 10−2, L = 6, p = 2, γ = 2, α = 1 and
τ = 10−2.
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Table 3.2 shows the error and CPU time for the uniform mesh and adaptive moving

mesh (using the curvature-based monitor function and MMPDE 4) schemes. The

numerical solution used in recording the error is obtained at t = 10. The error columns

summarise figure 3.9 (solid black line for uniform mesh scheme and solid red line

for adaptive moving mesh scheme using the curvature-based monitor function and

MMPDE 4). The error for the adaptive moving mesh scheme is much smaller and is

achieved using less number of points compared to the uniform mesh scheme. However,

with respect to the CPU time taken, the adaptive moving mesh takes more time to

reach t = 10 compared to the uniform mesh scheme for the same number of points.

This is due to the additional adaptive mesh equations that need to be simultaneously

solved along with the discretised PDE. Hence, one would need to balance the accuracy

desired and the CPU time taken to judge the efficacy of the moving adaptive mesh

scheme over the uniform mesh scheme. For example, at N = 800 there is a threefold

increase in time taken by the adaptive moving mesh scheme to reach t = 10 (less than a

minute, though), however, there is a reduction in the error by five orders of magnitude.

For this case, we can certainly conclude that the adaptive moving mesh scheme is more

computationally efficient than the uniform mesh scheme. Note that we were unable to

compute the solution at t = 10 for N > 1200. For these values of N the minimum ∆x

becomes very small and round-off errors dominate resulting in the numerical solution

losing stability and becoming unstable.

Informed by the results of this section, we now consider the numerical solution of the
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same PDE as in Eq. (3.1) but with constant volume boundary conditions.

3.2 PDE with constant volume boundary condi-

tions

In this section, we investigate the numerical solution of a spreading one-dimensional

drop using both a uniform mesh as well as an adaptive moving mesh. The underlying

PDE is given by Eq. (3.1). This PDE is supplemented by boundary conditions, which

are,

h = b, hx, hxxx,= 0 at x = ±L, (3.41)

where ±L are the boundaries of the physical domain and b≪ 1, is the precursor film

thickness. This represents no flux of fluid out of the domain and the drop connects

onto a flat precursor film. The initial condition is chosen as:

h(x, 0) = (1− x2) [H(x0 − x)−H(−x0 − x)] + b [H(x− x0) +H(−x0 − x)] , (3.42)

where H(x) is the Heaviside function and x0, is the initial location where the parabolic-

shaped drop connects to the precursor film both upstream and downstream. This initial

condition is shown in figure 3.10.

We seek the numerical solution of Eqs. (3.1) subject to the BCs given by Eq. (3.41)

for the time evolution of the initial drop. We first show this solution using a uniform
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Figure 3.10: The initial shape of the parabolic drop connecting onto a precursor film
of thickness b = 0.01 at the location x = ±1.

mesh followed by an adaptive moving mesh. The parameter values are: Ca = 10−3,

b = 10−2 and θ = 90o (so, D = 0). The upstream and downstream domain length is

fixed at L1 = −2 and L2 = 10, respectively.

3.2.1 Numerical solution of Eqs. (3.1, 3.41) on a uniform

mesh

We use the uniform mesh scheme Eq. (3.12) for discretising Eq. (3.1). As in the

previous section, fictitious points are used, where necessary, near the ends of the domain

and are derived from the BCs given by Eq. (3.41). The numerical solution procedure

followed is similar to the previous section and is described in detail in §3.1.2.

We make the additional check to ensure that the drop volume is always conserved.
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Figure 3.11: (a) Time evolution (time t = 30−60) of Eq (3.1) subject to the boundary
conditions Eq. (3.41) using a uniform mesh scheme, and (b) a particular numerical
solution at t = 60. The insets in (b) show zoomed-in capillary ridge and capillary waves
at the leading and trailing edges. The parameter values are: Ca = 10−3, b = 10−2,
θ = 90o (so, D = 0) and N = 12000 (so, ∆x = 10−3). The upstream and downstream
domain length is fixed at L1 = −2 and L2 = 10, respectively.
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Figure 3.11(a) shows the time evolution of Eq (3.1) subject to the boundary conditions

Eq. (3.41) and the initial condition Eq. (3.10) using the uniform mesh scheme. In

the simulation shown the number of points used is N = 12000 (corresponding to

∆x = 10−3). The time t ranges between 30 to 60. We observe the development of the

capillary ridge and capillary wave ahead and behind it near the drop’s leading edge

where it connects onto the precursor film (the wave ahead of the ridge has a much

smaller width and is not seen on the scale shown). This is similar to the previous

constant flux case but here the drop height steadily decreases in time as it spreads

down the inclined substrate. We also observe a capillary wave that develops near the

trailing edge of the drop. This is of similar width to the one near the leading edge and is

also not seen on the scale shown. Figure 3.11(b) shows a particular numerical solution

at time t = 60. The insets show the zoomed-in capillary ridge and capillary waves

at the leading and trailing edges. We clearly observe that a large number of mesh

points is required in order to fully resolve these regions which makes the numerical

solution using a uniform mesh very computationally intensive. Figure 3.12(a, b) shows

the same evolution as in figure 3.11 except that the number of mesh points N = 600

(corresponding to ∆x = 0.02). We clearly observe that the capillary ridge and waves

are under-resolved in comparison to the previous numerical solution. Next, we seek

the numerical solution on an adaptive moving mesh.

For the adaptive moving mesh scheme we use Eq. (3.19), the curvature-based monitor

function (see Eq. (3.39) with α = 100) and MMPDE4 (see Eq. (3.30) with τ = 10−3).
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Figure 3.12: (a) Time evolution (time t = 30−60) of Eq (3.1) subject to the boundary
conditions Eq. (3.41) using a uniform mesh scheme, and (b) a particular numerical
solution at t = 60. The insets in (b) show zoomed-in capillary ridge and capillary waves
at the leading and trailing edges. The parameter values are: Ca = 10−3, b = 10−2,
θ = 90o (so, D = 0) and N = 600 (so, ∆x = 0.02). The upstream and downstream
domain length is fixed at L1 = −2 and L2 = 10, respectively.
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Figure 3.13: (a) Time evolution (time t = 30−60) of Eq (3.1) subject to the boundary
conditions Eq. (3.41) using a moving adaptive mesh scheme, and (b) the equidistribut-
ing coordinate transformation x(ξ) versus ξ. The dashed line shows the initial uniform
mesh. The parameter values are: Ca = 10−3, b = 10−2, θ = 90o (so, D = 0), N = 600
(so, initial ∆x = 0.02), α = 100 and τ = 10−3. The upstream and downstream domain
length is fixed at L1 = −2 and L2 = 10, respectively.
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A uniform mesh is used as the initial condition for the MMPDE. The numerical solution

procedure followed is similar to the previous section and is described in detail in §3.1.3.

Figure 3.13(a) shows the time evolution of Eq (3.1) subject to the boundary conditions

Eq. (3.41) and the initial condition Eq. (3.10) using the adaptive moving mesh scheme.

In the simulation shown the number of points used is N = 600 (corresponding to

initial ∆x = 0.02). The time t ranges between 30 to 60. The solution structure is

similar to that described for the uniform mesh simulation. Figure 3.13(b) shows the

corresponding equidistributing coordinate transformation x(ξ). The dashed line shows

the initial uniform mesh. We observe from figure 3.13(b) that majority of mesh points

are redistributed to the capillary ridge and waves near the leading edge of the drop

where changes in curvature are very rapid. There is also redistribution of points near

the trailing edge where there are also changes in curvature, although not as rapid as near

the leading edge. The redistribution of points is observed to be more biased towards the

leading edge of the front where there are rapid changes in curvature. To better control

this redistribution so that the solution near trailing edge is also accurately resolved,

we modify the parameters in the curvature-based monitor function as follows:

ρ(x, t) =
√

1 + α(x)h2
xx, (3.43)

where

α(x) =















3, if x ≤ 1,

10−3, if x > 1,

(3.44)
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The higher value of α in the interval [L1, 1] ensures that more points are redistributed to

the trailing edge region (compared to the previous simulation) while the lower value of

α in the interval [1, L2] reduces the redistribution to the leading edge eventhough there

are large changes in curvature there. We note that the choice of x = 1 is arbitrary in

Eq. (3.44); any location at the upstream end of the trailing edge capillary wave would

suffice. The piecewise constant values for α are based on some a priori knowledge of

the values of the solution curvature at the leading and trailing edges of the drop.

Figure 3.14(a) shows the time evolution of Eq (3.1) subject to the boundary conditions

Eq. (3.41) and the initial condition Eq. (3.10) using the adaptive moving mesh scheme

using the curvature-based monitor function given by Eq. (??). In the simulation shown

the number of points used is N = 600 (corresponding to initial ∆x = 0.02). The time t

ranges between 30 to 60. The solution structure, at least visually, looks more accurate

than that in figure 3.13(a). Figure 3.14(b) shows the corresponding equidistributing

coordinate transformation x(ξ). The dashed line shows the initial uniform mesh. We

clearly observe a marked change in the redistribution of points towards the trailing

and leading edges in comparison to that shown in figure 3.13(b). The effect of this

on the accuracy of the numerical solution is shown in figure 3.15(a, b), which plots

the numerical solution at t = 60 for the adaptive moving mesh using the curvature-

based monitor function given by Eq. (3.43) and Eq. (3.39) (with α = 100), respectively.

Inspection of the figures (see zoomed-in insets at leading and trailing edge of the drop),

clearly show the well-resolved capillary wave near the trailing edge in (a) compared to
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Figure 3.14: (a) Time evolution (time t = 30−60) of Eq (3.1) subject to the boundary
conditions Eq. (3.41) using a moving adaptive mesh scheme, and (b) the equidistribut-
ing coordinate transformation x(ξ) ploted against ξ, using the curvature-based monitor
function given by Eq. (3.43). The dashed line in (b) shows the initial uniform mesh.
The parameter values are: Ca = 10−3, b = 10−2, θ = 90o (so, D = 0), N = 600
(so, initial ∆x = 0.02), τ = 10−3 and α as given in Eq. (3.44) . The upstream and
downstream domain length is fixed at L1 = −2 and L2 = 10, respectively.
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that in (b); the leading edge structures are similar in both.

3.3 Conclusions

We have successfully implemented a moving adaptive mesh scheme based on mov-

ing mesh PDEs (MMPDEs) for a fourth order degenerate parabolic PDE. The main

highlights of the results are shown in figure 3.9 and Table 3.2 which enables direct com-

parison with the uniform mesh scheme. We observe that the error for a fixed number

of mesh points is always much lower for the adaptive moving mesh schemes compared

to the corresponding uniform mesh scheme. Alternatively, for a prescribed error, the

adaptive moving mesh scheme achieves this with far less number of points compared

to the uniform mesh scheme. However, the adaptive moving mesh scheme takes much

longer CPU times than the corresponding uniform mesh scheme. This is due to the

extra mesh equation that needs to be solved along with the underlying PDE. This

difference between CPU times is not that large if the desired error is not too small.

We solve the underlying PDE and the mesh equation simultaneously which results in

a larger bandwidth for the Jacobian matrix used in solving the linearised equations

by the ODE solver. This could result in the increased CPU times observed. If this

is the case then one could solve the PDE and mesh equation alternately, i.e., update

the mesh solution at next time level based on the solution of the PDE at the current

time level and then use this mesh solution to obtain the PDE solution at the next time

level. Thus one solves a single PDE at each time step thereby reducing the bandwidth
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Figure 3.15: The numerical solution at t = 60 using the monitor function given by (a)
Eq. (3.43), and (b) Eq. (3.39) with α = 100. The parameter values are: Ca = 10−3,
b = 10−2, θ = 90o (so, D = 0), N = 600 (so, initial ∆x = 0.02), α = 1 and τ = 10−3.
The upstream and downstream domain length is fixed at L1 = −2 and L2 = 10,
respectively.
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which could reduce the CPU times. This will be explored in future.

The other significant result is related to adaptation of the monitor function to accu-

rately resolve the solution at multiple locations. In the constant flux BC case, we had

to resolve the solution only around the capillary ridge region. In contrast for the con-

stant volume BC case, we had to also resolve the capillary wave near the drop’s trailing

edge in addition to the capillary ridge region. We adapted the monitor function by

choosing a piecewise constant (simplest option) weight parameter which allowed mesh

points to be redistributed accordingly so as to resolve both regions. We note that this

was not too difficult to implement for the constant volume BC since the trailing edge

was almost stationary. However, it could be quite difficult if this was not the case. In

any case, one would need to devise a similar strategy if the mesh requires to be adapted

at multiple locations. One could also use a mixed monitor function, i.e., combination

of curvature-based and arc-length monitor functions. These would need to be explored

in future. This also highlights one of the drawbacks of r-adaptive methods which re-

distribute a fixed number of points. One would need to start with a large number of

points if there are multiple locations to resolve along with a judiciously chosen monitor

function. In this case, it might be more advantageous to consider an hp-refinement

method.

In conclusion, our results indicate great promise for MMPDEs in thin-film flow problem.

Although we have only considered a specific form of the underlying PDE, the general

framework presented in this chapter can be utilised for any thin-film equation of the
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form considered here.
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Chapter 4

Numerical Solution of 1D Coupled

PDEs on an Adaptive Moving Mesh

4.1 PDEs with constant flux boundary conditions

Consider the one-dimensional coupled system of two fourth and second order nonlinear

PDEs described in Chapter 1,

ht +

[

Ca
h3

3
hxxx −G cos(θ)

h3

3
hx −

h2

2
Γx +G sin(θ)

h3

3

]

x

= 0, (4.1)

Γt +

[

Ca
h2

2
Γ hxxx −G cos(θ)

h2

2
Γ hx − hΓΓx +G sin(θ)

h2

2
Γ

]

x

= δΓxx, (4.2)

(x, t) ∈ [0, L]× [0, Tf ].
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Here, h = h(x, t) and Γ = Γ(x, t) are the film height and surfactant concentration,

respectively, x is the spatial variable and t is time. The dimensionless parameter

Ca ≪ 1, is the Capillary number, G is a Bond number, δ, is the inverse of the Péclet

number, L is a domain length and Tf is a specific time.

Equations (4.1,4.2) are supplemented by six boundary conditions (BCs) in x. These

are:

h(0, t) = 1, hxxx(0, t) = 0, Γ(0, t) = 1, h(L, t) = b, hxxx(L, t) = 0, Γ(L, t) = 0, (4.3)

where b ≪ 1, is the precursor film thickness. These BCs represent a fixed fluid and

surfactant flux source far upstream and a flat precursor film and zero surfactant concen-

tration far downstream. We choose the following initial condition for h and Γ following

[35, 37, 39]:

h(x, 0) = (1− x2)H(1− x) + bH(x− 1), Γ(x, 0) = H(1− x)−H(−x− 1), (4.4)

where H(x) is the Heaviside function. Figure 4.1 shows the initial condition using Eq.

(4.4) for b = 10−2. The initial condition for h represents a drop connecting onto a thin

precursor film and for the surfactant concentration represents a large gradient at the

location where the drop connects onto the precursor film.

We now seek the numerical solution of Eqs. (4.1,4.2) with the boundary and the ini-

tial conditions using finite difference methods. The numerical method is performed
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Figure 4.1: The initial condition for the film thickness h using Eq. (4.4). The precursor
thickness b = 10−2.

first on a uniform mesh and then on an adaptive moving mesh. Levy and co-workers

[60, 61] have analysed the travelling wave structure of this problem and have shown

the existence of multiple waves travelling with the same speed. In principle, one can

use this multiple travelling wave structure to compare the convergence and accuracy

of the numerical solution. We do not do this here but as an alternative use the numer-

ical solution using a uniform mesh with sufficiently small ∆x as an exact solution to

compare with that using an adaptive mesh.
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4.1.1 Numerical solution of Eqs. (4.1, 4.2, 4.3) on a uniform

mesh

The domain [0, L] is uniformly divided into N + 1 discrete points as follows:

xj = (j − 1) ∆x, ∀ xj ∈ [0, L], j = 1, 2, ..., N + 1, where ∆x = L
N

is the width

of each sub-interval. We discretise the spatial derivatives appearing in Eq. (4.1,4.2)

using finite differences; the time derivative is kept continuous. For convenience, we let

α1 = G sin(θ) and β1 = G cos(θ) in what follows.

The spatial discretisation is done as follows. We define a forward and a backward

difference as:

(h,Γ)x,j+ 1

2

=
(h,Γ)j+1 − (h,Γ)j

∆x
+ O(∆x), (h,Γ)x̄,j+ 1

2

=
(h,Γ)j − (h,Γ)j−1

∆x
+ O(∆x),

respectively.

Thus, a semi-discretisation of Eq. (4.1,4.2), keeping the time derivative continuous, is

ht,j +
Ca

3

[

(h3)j+ 1

2

(hxx̄x)j+ 1

2

− (h3)j− 1

2

(hxx̄x)j− 1

2

∆x

]

−
β1

3

[

(h3)j+ 1

2

(hx)j+ 1

2

− (h3)j− 1

2

(hx)j− 1

2

∆x

]

−
1

2

[

(h2)j+ 1

2

(Γx)j+ 1

2

− (h2)j− 1

2

(Γx)j− 1

2

∆x

]

+
α1

3

[

(h3)j+ 1

2

− (h3)j− 1

2

3∆x

]

= 0, j = 2, ..., N. (4.5)
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Γt,j +
Ca

2

[

(h2Γ)j+ 1

2

(hxx̄x)j+ 1

2

− (h2Γ)j− 1

2

(hxx̄x)j− 1

2

∆x

]

−
β1

2

[

(h2Γ)j+ 1

2

(hx)j+ 1

2

− (h2Γ)j− 1

2

(hx)j− 1

2

∆x

]

−

[

(hΓ)j+ 1

2

(Γx)j+ 1

2

− (hΓ)j− 1

2

(Γx)j− 1

2

∆x

]

+
α1

2

[

(h2 Γ)j+ 1

2

− (h2 Γ)j− 1

2

3∆x

]

= δ
(Γx)j+ 1

2

− (Γx)j− 1

2

∆x
, j = 2, ..., N. (4.6)

In the above, we approximate terms denoted by (a)j+ 1

2
using spatial averages:

(a)j+ 1

2

=
aj+1 + aj

2
or (a)j+ 1

2

=

(

aj+1 + aj
2

)

. A similar approximation is used for

terms denoted by (a)j− 1

2

.

Evaluating Eq. (4.5,4.6) at j = 2, N require fictitious points which are obtained by

discretising the boundary conditions hxxx = 0 at x = 0, L using centred finite differ-

ences.

The boundary conditions h(0, t) = Γ(0, t) = 1, h(L, t) = b and Γ(L, t) = 0 are replaced

by their ODE form:

ht,1 = ht,N+1 = Γt,1 = Γt,N+1 = 0. (4.7)

This semi-discretisation scheme in Eqs. (4.5,4.6) is second order accurate in x. The

scheme for h in Eq. (4.5) uses a 5-point stencil (has a smaller bandwidth in compar-

ison with a 7-point stencil if using a centred finite difference scheme). The scheme

for Γ in Eq. (4.5) uses a standard 3-point stencil for the second derivative in Γ.

Equations (4.5,4.6,4.7) form a system of 2(N + 1) ordinary differential equations for

the solution h1, . . . , hN+1 and Γ1, . . . ,ΓN+1 with initial condition given by Eq. (4.1).

These are solved using the stiff ODE solver DASSL [72] which uses backward dif-
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ferentiation formulae (BDFs) to approximate the time derivative and the resulting

nonlinear system of equations are solved using Newton’s method. We use a staggered

system for numbering the unknowns, i.e., h1,Γ1, h2,Γ2, . . . , hN+1,ΓN+1 which provides

a smaller bandwidth for the Jacobian matrix (note: the bandwidth=9 for the semi-

discretisation in Eq. (4.5,4.6)). This is in comparison to, for example, the numbering

h1, h2, . . . , hN+1,Γ1,Γ2, . . . ,ΓN+1, which although sparse has a much bigger bandwidth.

This significantly improves the performance of the solver. We note here that the stiff

solver DASPK [12] was also used which utilises an iterative scheme based on Krylov

subspace methods for the solution of the linearised system (DASSL uses a direct solver)

including preconditioning using Incomplete LU decomposition of the Jacobian matrix.

This had no significant influence on the performance in comparison to DASSL, at least

for the 1D problem considered in this chapter.

Figures 4.2(a, b) illustrate the time evolution of h and Γ, respectively, to a travelling

wave solution using the above uniform mesh scheme. The parameter values are: Ca =

10−3, θ = 90o, G = 1, (so, α1 = 1, β1 = 0), b = 10−2, δ = 10−5, L = 40 and ∆x = 10−3

(so, N = 4 × 104). The results are shown for time t ranging between 0 to 90. The

solution for h shows a multiple travelling wave structure characterised by a capillary

ridge and capillary waves near it’s leading edge. In addition, a “step”-like structure

where h ≈ 2b develops ahead of this leading edge [35, 37, 39, 60, 61]. The solution for

Γ, although continuous, displays rapid variation in it’s gradient, particularly, near it’s

leading edge.
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Figure 4.2: Time evolution of (a) h(x, t) and (b) Γ(x, t), using the uniform mesh scheme
given in Eqs. (4.5,4.6). The parameter values are: Ca = 10−3, θ = 90o, G = 1, (so,
α1 = 1, β1 = 0), b = 10−2, δ = 10−5, L = 40 and ∆x = 10−3 (so, N = 4 × 104). The
results are shown for time t ranging between 0 to 90.
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Figure 4.3: The numerical solution for (a) h and (b) Γ at t = 90, using the uniform
mesh scheme given in Eqs. (4.5,4.6) with N = 1000 points or ∆x = 0.04 (solid red line)
and N = 4 × 104 or ∆x = 10−3 points (solid black line). The insets show zoomed-in
solution characteristics near the leading edge of h and Γ. The parameter values are:
Ca = 10−3, θ = 90o, G = 1, (so, α1 = 1, β1 = 0), b = 10−2, δ = 10−5 and L = 40.
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Figures 4.3(a, b) shows a particular numerical solution at time t = 90 for h and Γ,

repsectively. The insets show the characteristics of the wave-like structures described

above in more detail, including the step-like structure. We also compare two numerical

solutions corresponding toN = 4×104 or ∆x = 10−3 (solid black line) and N = 1000 or

∆x = 0.04 (solid red line). Inspection of these figures reveal that the numerical solution

has several regions (see insets) that are not appropriately resolved withN = 1000 points

(∆x = 0.04). These regions require a much finer mesh (as seen with N = 4×104 points

or ∆x = 10−3) to be adequately resolved using a uniform mesh. We have checked the

accuracy and convergence of the numerical solution as ∆x → 0 (not shown here) and

confirm that the solution with N = 4×104 points or ∆x = 10−3 is sufficiently accurate.

This makes the numerical solution on a uniform mesh computationally intensive and

hence the use of an adaptive moving mesh would be beneficial in this respect.

4.1.2 Numerical solution of Eqs. (4.1, 4.2, 4.3) on an adaptive

moving mesh

We now seek the numerical solution of Eqs. (4.1,4.2,4.4) using an adaptive moving

mesh method. The adaptive moving mesh method uses a coordinate transformation

from the computational domain with coordinate ξ, to the physical domain with the

coordinate x:

x = x(ξ) : Ωc ≡ [0, 1]→ Ωp ≡ [0, L].
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Ωc is called the computational domain and Ωp is the physical domain. Then the solution

can be written as

h(x, t) = h(x(ξ, t), t), Γ(x, t) = Γ(x(ξ, t), t).

A moving mesh associated with the solutions h and Γ is described as

Jh,Γ(t) : xj(ξ) = x(ξj , t), j = 1, · · · , N + 1 (4.8)

where the boundary nodes are given by

x1 = 0, xN+1 = L. (4.9)

A uniform mesh on the computational domain is described as

J c
h,Γ(t) : ξj =

(j − 1)

N
, j = 1, · · · , N + 1. (4.10)

Using the chain rule we have the following transformations

hx =
hξ

xξ

, ht = ht −
hξ

xξ

xt, Γx =
Γξ

xξ

, Γt = Γt −
Γξ

xξ

xt. (4.11)
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Using the above, Eqs. (4.1,4.2) can be written as

ht −
hξ

xξ
xt = −

Qξ

xξ
, Γt −

Γξ

xξ
xt = −

Sξ

xξ
, (4.12)

Q = Ca

(

h3

3

)

1

xξ







(

hξ

xξ

)

ξ

xξ







ξ

− β1

(

h3

3

)

hξ

xξ

−

(

h2

2

)

Γξ

xξ

+ α1
h3

3
, (4.13)

S = Ca

(

h2Γ

2

)

1

xξ







(

hξ

xξ

)

ξ

xξ







ξ

− β1

(

h2Γ

2

)

hξ

xξ
− (hΓ + δ)

Γξ

xξ
+ α1

h2Γ

2
. (4.14)

A conservative semi-discretisation scheme for the spatial derivatives in Eq. (4.12) on

the uniform mesh J c
h (t) using centred finite differences can be written as, keeping the

time derivative continuous,

ht,j −
(hj+1 − hj−1)

(xj+1 − xj−1)
xt,j = −2

Qj −Qj−1

xj+1 − xj−1

, (4.15)

Γt,j −
(Γj+1 − Γj−1)

(xj+1 − xj−1)
xt,j = −2

Sj − Sj−1

xj+1 − xj−1

, where (4.16)

Qj = Ca

(

h3

3

)

j+1/2

1

xξ,j







(

hξ

xξ

)

ξ

xξ







ξ,j

− β1

(

h3

3

)

j+1/2

(

hξ

xξ

)

,j

+

α1

(

h3

3

)

j+1/2

, (4.17)

Sj = Ca

(

h2Γ

2

)

j+1/2

1

xξ,j







(

hξ

xξ

)

ξ

xξ







ξ,j

− β1

(

h2Γ

2

)

j+1/2

(

hξ

xξ

)

,j

−

[

(hΓ)j+1/2 + δ
]

(

Γξ

xξ

)

,j

+ α1

(

h2Γ

2

)

j+1/2

, (4.18)

j = 2, . . . , N.
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The spatial derivatives appearing in Qj and Sj are discretised as follows:

1

xξ,j







(

hξ

xξ

)

ξ

xξ







ξ,j

=

(

2

xj+1 − xj−1

)

(

1

xξ,j+1

(

hξ

xξ

)

ξ,j+1

−
1

xξ,j

(

hξ

xξ

)

ξ,j

)

, where

1

xξ,j

(

hξ

xξ

)

ξ,j

=

(

2

xj+1 − xj−1

)(

hj+1 − hj

xj+1 − xj

−
hj − hj−1

xj − xj−1

)

,

(

hξ

xξ

)

,j

=
hj+1 − hj

xj+1 − xj

,

(

Γξ

xξ

)

,j

=
Γj+1 − Γj

xj+1 − xj

, j = 1, . . . , N. (4.19)

Approximations to terms of the form aj+1/2 and aj−1/2 are the same as defined previ-

ously.

We can also write a non-conservative semi-discretisation scheme for the spatial deriva-

tives in Eqs. (4.1,4.2). To do this, we write Eqs. (4.1,4.2) in the following form:

ht + Ca

[

h3

3
px

]

x

− β1

[

h3

3
hx

]

x

−

[

h2

2
Γx

]

x

+ α1

[

h3

3

]

x

= 0, (4.20)

Γt + Ca

[

h2Γ

2
px

]

x

− β1

[

h2Γ

2
hx

]

x

− [(hΓ + δ)Γx]x + α1

[

h2Γ

2

]

x

= 0, p = hxx. (4.21)

A non-conservative semi-discretisation scheme for a function of the form [aux]x on the

uniform mesh J c
h(t) using finite differences can be written as:

[aux]x,j =
1

xξ,j

[

auξ

xξ

]

ξ,j

=
1

xξ,j

[

[auξ]ξ,j
xξ,j

−
1

x2
ξ,j

ajuξ,jxξξ,j

]

=

(

2

xj+1 − xj−1

)2
[

aj+ 1

2

(uj+1 − uj)− aj− 1

2

(uj − uj−1)
]

− aj

(

uj+1 − uj−1

xj+1 − xj−1

)(

xj+1 − 2xj + xj−1

(xj+1 − xj)(xj − xj−1)

)

. (4.22)
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Using the above, a non-conservative semi-discretisation scheme for the spatial deriva-

tives in Eqs. (4.20,4.21) on the uniform mesh J c
h (t) using finite differences can be

written as, keeping the time derivative continuous,

ht,j + Ca

[

h3

3
px

]

x,j

− β1

[

h3

3
hx

]

x,j

−

[

h2

2
Γx

]

x,j

+ α1

[

ĥ3

3

]

x,j

= 0,

Γt,j + Ca

[

h2Γ

2
px

]

x,j

− β1

[

h2Γ

2
hx

]

x,j

− [(hΓ + δ)Γx]x,j + α1

[

ĥ3

3

]

x,j

= 0, (4.23)

pj = hxx,j =

(

2

xj+1 − xj−1

)2

[hj+1 − 2hj + hj−1]

−

(

hj+1 − hj−1

xj+1 − xj−1

)(

xj+1 − 2xj + xj−1

(xj+1 − xj)(xj − xj−1)

)

, (4.24)

[apx]x,j =

(

2

xj+1 − xj−1

)2
[

aj+ 1

2
(pj+1 − pj)− aj− 1

2
(pj − pj−1)

]

− aj

(

pj+1 − pj−1

xj+1 − xj−1

)(

xj+1 − 2xj + xj−1

(xj+1 − xj)(xj − xj−1)

)

, (4.25)

[ahx]x,j =

(

2

xj+1 − xj−1

)2
[

aj+ 1

2

(hj+1 − hj)− aj− 1

2

(hj − hj−1)
]

− aj

(

hj+1 − hj−1

xj+1 − xj−1

)(

xj+1 − 2xj + xj−1

(xj+1 − xj)(xj − xj−1)

)

, (4.26)

[aΓx]x,j =

(

2

xj+1 − xj−1

)2
[

aj+ 1

2

(Γj+1 − Γj)− aj− 1

2

(Γj − Γj−1)
]

− aj

(

Γj+1 − Γj−1

xj+1 − xj−1

)(

xj+1 − 2xj + xj−1

(xj+1 − xj)(xj − xj−1)

)

, (4.27)

[h3]x = 2

(

h3
j+1/2 − h3

j−1/2

xj+1 − xj−1

)

. (4.28)

Approximations to terms of the form aj+1/2 and aj−1/2 are the same as defined previ-

ously.

The boundary conditions h(0, t) = Γ(0, t) = 1, h(L, t) = b and Γ(L, t) = 0 are replaced
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by their ODE form:

ht,1 = 0, ht,N+1 = 0, Γt,1 = 0, Γt,N+1 = 0. (4.29)

The equidistributing coordinate transformation x = x(ξ, t) is obtained by solving the

moving mesh PDEs (MMPDEs). Based on the results in Chapter 3 (§3.1.3) we choose

MMPDE 4. Recall the semi-discretisation of MMPDE 4:

MMPDE 4 : (ρxtξ)ξ = −
1

τ
(ρxξ)ξ,

semi-discretisation : τ [(ρj+1 + ρj)(xt,j+1 − xt,j)− (ρj−1 + ρj)(xt,j − xt,j−1)] =

− [(ρj+1 + ρj)(xj+1 − xj)− (ρj−1 + ρj)(xj − xj−1)],

j = 2, . . . , N. (4.30)

Here, ρ(x, t) is a monitor function (described below), ∆ξ = 1
N

is the mesh size in the

computational domain and τ > 0 is a user-specified relaxation parameter.

The boundary conditions x(0, t) = 0 and x(1, t) = L are replaced by their ODE form:

xt,1 = 0, xt,N+1 = 0. (4.31)

The initial condition

x(ξ, 0) = Lξ, (4.32)
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which represents a uniform initial mesh on the physical domain Ωp ≡ [0, L]. We note

here that a non-uniform initial mesh was also used which was obtained by solving

in pseudo-time the chosen MMPDE (with the uniform mesh as the initial condition)

with h and Γ fixed (hence, the monitor function ρ is also fixed) at its initial condition

given by Eq. (4.4). This did not have any significant influence on the solution or the

performance of the solver in comparison to the uniform initial mesh.

Finally, we choose the curvature-based monitor function based on the results in Chapter

3 (§3.1.3). We note here that the monitor functions described in chapter 3 are based

on the solution having only a single component, i.e., only h. When the solution has

multi-components (as in the case here where the solution has two components h and Γ),

these monitor functions need to be adapted to account for rapid variations in the other

components (which need not necessarily be aligned to variations in one component).

Therefore, the curvature-based monitor function Eq. (3.39) is modified by the addition

of the curvature in Γ and discretised using finite differences as:

modified Curvature-based monitor function : ρ(x, t) = (1 + β|hxx|
2 + ω|Γxx|

2)
1

4 ,

semi-discretisation : ρ(xj , t) = (1 + β|hxx,j|
2 + ω|Γxx,j|

2)
1

4 ,

(h,Γ)xx,j :=































2
(xj+1−xj−1)

[

((h,Γ)j+1−(h,Γ)j)

(xj+1−xj)
−

((h,Γ)j−(h,Γ)j−1)

(xj−xj−1)

]

, j = 2, ..., N,

2[(x2−x1)((h,Γ)3−(h,Γ)1)−(x3−x1)((h,Γ)2−(h,Γ)1)]
(x3−x1)(x3−x2)(x2−x1)

, j = 1,

2[(xN−xN+1)((h,Γ)N−1−(h,Γ)N+1)−(xN−1−xN+1)((h,Γ)N−(h,Γ)N+1)]
(xN−1−xN+1)(xN−xN+1)(xN−1−xN )

, j = N + 1.

(4.33)
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Here β and ω are user-specified parameters. We also use the same smoothing process

for the discretised monitor function as described in Chapter 3 (§3.1.3) using Eq. (3.40).

Eqs. (4.15) or Eqs. (4.23) and Eq. (4.30), form a coupled system of 3(N + 1) or-

dinary differential equations for the solution h1, . . . , hN+1, Γ1, . . . ,ΓN+1 and the mesh

x1, . . . , xN+1 with initial condition given by Eqs. (4.4,4.32). We use a staggered system

for numbering the unknowns, i.e.,

h1,Γ1, x1, h2,Γ2, x2, . . . , hN+1,ΓN+1, xN+1,

which provides a smaller bandwidth for the Jacobian matrix (note: the bandwidth=13

for the semi-discretisation in Eq. (4.15); it could be larger if smoothing of monitor

function is used. This is in comparison to, for example, the numbering

h1, h2, . . . , hN+1,Γ1,Γ2, . . . ,ΓN+1, x1, x2, . . . , xN+1,

which although sparse has a much bigger bandwidth. This significantly improves the

performance of the solver. We note here that the stiff solver DASPK [12] is used which

utilises an iterative scheme based on Krylov subspace methods for the solution of the

linearised system including preconditioning using Incomplete LU decomposition of the

Jacobian matrix. This had a significant influence on the performance in comparison to

DASSL. However, we need to choose a sufficiently large fill-in for the LU factorisation

of the Jacobian, otherwise the convergence of the iterative solver is very slow.

In all the results presented below, the parameter values are: Ca = 10−3, θ = 90o,

G = 1, (so, α1 = 1, β1 = 0), b = 10−2, δ = 10−5, L = 40; the MMPDE 4 relaxation

parameter τ = 10−3; the modified curvature-based monitor function parameters are:
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β = ω = 105 and the monitor function smoothing parameters are p = 2, γ = 2. We

only show results based on the conservative semi-discretisation scheme Eq. (4.15). Our

results using the non-conservative scheme Eq. (4.23) was not as accurate compared to

the conservative scheme so we do not show these results here. Figures 4.4(a, b) show the

time evolution of h(x, t) and Γ(x, t) respectively, to a travelling wave solution using the

adaptive moving mesh scheme Eq. (4.15) with N = 1000 points corresponding to initial

mesh size ∆x = 0.04. The results are shown for t ranging between 0 to 90. We observe

that the adaptive moving mesh scheme captures the essential features of the solution

with less number of points (N = 1000 here compared to N = 4× 104 for the uniform

mesh computation shown in figures 4.2(a, b). Figure 4.5(a, b) shows the corresponding

equidistributing coordinate transformation x = x(ξ, t) and trajectories. These figures

show that the mesh points are redistributed with more points in the region near the

leading edge (∆x ≈ 10−4), where there is a rapid variation in both h and Γ, and fewer

points elsewhere (∆x ≈ 0.1); note the initial ∆x = 0.04 uniform everywhere. Figures

4.6(a, b) present the solution h(x, t) and Γ(x, t), respectively, at time t = 90. The insets

show the increased number of points that are redistributed near the capillary ridge and

capillary waves ahead and behind it, and the step-like structure (figure 4.6(a)) which

are controlled by the curvature in h component of the monitor function. In addition,

we see redistribution of points around the maximum in Γ and it’s leading edge (figure

4.6(b)) controlled by the curvature in Γ component of the monitor function. In Figures

4.7(a, b) we compare the numerical solution for h and Γ, respectively, at t = 90, using

the uniform mesh scheme Eqs.(4.5, 4.6) (N = 103 or ∆x = 0.04 - solid blue line;
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Figure 4.4: Time evolution of (a) h(x, t) and (b) Γ(x, t), using the adaptive moving
mesh scheme given in Eq. (4.15). The parameter values are: Ca = 10−3, θ = 90o,
G = 1, (so, α1 = 1, β1 = 0), b = 10−2, δ = 10−5, L = 40, ∆x = 0.04 (so, N = 103

points), τ = 10−3, α = 1, β = ω = 105, p = 2 and γ = 2. The results are shown for
time t ranging between 0 to 90.
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Figure 4.5: (a) The equidistributing coordinate transformations x = x(ξ, t) and trajec-
tories corresponding to the numerical solution shown in figure 4.4.
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Figure 4.6: (a) h(x, t = 90) and (b) Γ(x, t = 90) obtained using the moving adaptive
scheme with N = 1000 (initial ∆x = 0.04). Insets in (a, b) show the zoomed-in wave-
like structures in h and steep gradient in Γ around the location of it’s maximum and
leading edge. The parameter values are: Ca = 10−3, θ = 90o, G = 1, (so, α1 = 1,
β1 = 0), b = 10−2, δ = 10−5, L = 40, τ = 10−3, β = ω = 105, p = 2 and γ = 2.
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Figure 4.7: A comparison of the numerical solution of (a) h(x, t = 90) and (b) Γ(x, t =
90) using the uniform mesh scheme Eqs.(4.5, 4.6) (N = 103 or ∆x = 0.04 - solid blue
line; N = 4×104 or ∆x = 10−3 - solid purple line; N = 4×105 or ∆x = 10−4 - solid red
line) and the adaptive moving mesh scheme Eq. (4.15) (N = 1000 or initial ∆x = 0.04
- solid black line). The insets show the zoomed-in solution at locations where there is
rapid variation in h and Γ. The parameter values are: Ca = 10−3, θ = 90o, G = 1, (so,
α1 = 1, β1 = 0), b = 10−2, δ = 10−5, L = 40, τ = 10−3, β = ω = 105, p = 2 and γ = 2.
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N = 4 × 104 or ∆x = 10−3 - solid purple line; N = 4 × 105 or ∆x = 10−4 - solid red

line) and the adaptive moving mesh scheme Eq. (4.15) (N = 1000 or initial ∆x = 0.04

- solid black line). We observe that the adaptive moving mesh numerical solution is

almost indistinguishable from the uniform mesh numerical solution corresponding to

∆x = 10−3, 10−4. Moreover, the insets in figures 4.7(a, b) show that there is still an error

(albeit small) between the uniform mesh solution for ∆x = 10−3, 10−4, particularly at

the capillary ridge in h and the maximum in Γ. This implies that the accuracy and

convergence of the uniform mesh scheme is restricted to very small values of ∆x in

these regions. In contrast, the adaptive moving mesh scheme by redistributing more

points to these regions (starting from a modest number of points, N = 1000) can very

effectively control the accuracy and convergence of the numerical solution there.

4.2 PDEs with constant volume boundary condi-

tions

In this section we investigate the numerical solution of a spreading one-dimensional

drop laden with surfactant using both a uniform mesh as well as an adaptive moving

mesh. The underlying PDEs are given by Eqs. (4.1, 4.2). These PDEs are supple-

mented by boundary conditions, which are,

h = b, hxxx = 0,Γ = 0, at x = ±L, (4.34)
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where ±L are the boundaries of the physical domain and b≪ 1, is the precursor film

thickness. The initial conditions are taken as (following [35, 37, 39]):

h(x, 0) = (1− x2) [H(x0 − x)−H(−x0 − x)] + b [H(x− x0) +H(−x0 − x)] , (4.35)

Γ(x, 0) = H(x0 − x)−H(−x− x0), (4.36)

where H(x) is the Heaviside function and x0, is the initial location where the parabolic-

shaped drop connects to the precursor film both upstream and downstream. The initial

condition for Γ assumes a uniform surfactant concentration between ±x0 and zero

surfactant concentration ahead and behind it and is characterised by a steep gradient

at x0. The initial conditions are shown in figure 4.8 with b = 0.01, x0 = 1 and L = 2.
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x

h(
x,

0)
, Γ

(x
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)

 

 

h(x,0)
Γ(x,0)

Figure 4.8: The initial condition for h and Γ with b = 0.01, x0 = 1 and L = 2.

We seek the numerical solution of Eqs. (4.1, 4.2) subject to the BCs given by Eq.
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(4.34) for the time evolution of the initial drop and surfactant concentration. We first

show this solution using a uniform mesh followed by an adaptive moving mesh. The

parameter values are: Ca = 10−3, θ = 90o, G = 1, (so, α1 = 1, β1 = 0), b = 10−2

and δ = 10−5. The upstream and downstream domain length is fixed at L1 = −3

and L2 = 17, respectively. In all numerical simulations show we have ensured that the

initial volume of fluid and surfactant are always conserved. Figures 4.9(a, b) illustrate

the time evolution of h and Γ, respectively, using the above uniform mesh scheme with

N = 2×104 points (so, ∆x = 10−3). The results are shown for time t ranging between 0

to 400. In addition to the wave-like structures observed at the leading edge of the drop

(similar to the constant flux case), there is now also a front in h travelling upstream

of the trailing edge of the drop (see figure 4.9(a)). There is also a steep gradient in

Γ near the trailing edge of the drop (see figure 4.9(b)) in addition to the one near the

drop’s leading edge. Thus, accurate resolution of the numerical solution for both h and

Γ at multiple locations is required. This makes the numerical solution on a uniform

mesh computationally intensive and hence the use of an adaptive moving mesh would

be beneficial in this respect.

Figures 4.10(a, b, c) show the time evolution of h(x, t), Γ(x, t) and x = x(ξ, t), respec-

tively, using the adaptive moving mesh scheme Eq. (4.15) with N = 1500 points

corresponding to initial mesh size ∆ξ = 0.013. The results are shown for t ranging

between 0 to 400. We observe that the adaptive moving mesh scheme captures the

essential features of the solution with less number of points (N = 1500 here compared

117



CHAPTER 4. NUMERICAL SOLUTION OF 1D COUPLED PDES ON AN

ADAPTIVE MOVING MESH

−3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

h
(
x
,
t)

(a)

increasing time   

−3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x

Γ
(
x
,
t)

increasing time  

(b)

Figure 4.9: Time evolution of (a) h(x, t) and (b) Γ(x, t), using the uniform mesh scheme
given in Eqs. (4.5,4.6) with N = 2×104 points (so, ∆x = 10−3) and x ∈ (−3, 17). The
parameter values are: Ca = 10−3, θ = 90o, G = 1, (so, α1 = 1, β1 = 0), b = 10−2 and
δ = 10−5. The results are shown for time t ranging between 0 to 400.
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Figure 4.10: Time evolution of (a) h(x, t), (b) Γ(x, t) and (c) x = x(ξ, t), using the
adaptive moving mesh scheme given in Eq. (4.15) with N = 1500 (initial ∆x = 0.013)
and x ∈ (−3, 17). The results are shown for time t ranging between 0 to 400. The
parameter values are: Ca = 10−3, θ = 90o, G = 1, (so, α1 = 1, β1 = 0), b = 10−2,
δ = 10−5, τ = 10−3, β = ω = 105, p = 2 and γ = 2.
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to N = 2 × 104 for the uniform mesh computation shown in figures 4.9(a, b)). The

corresponding equidistributing coordinate transformation x = x(ξ, t) in figure 4.10(c)

shows that the mesh points are redistributed with more points in the region near the

leading edge and trailing edges (∆x ≈ 10−4), where there is a rapid variation in both

h and Γ, and fewer points elsewhere (∆x ≈ 0.1); note the initial ∆x = 0.013 uniform

everywhere.

Figures 4.11(a, b) present the solution h(x, t) and Γ(x, t), respectively, at time t =

400. The insets show the increased number of points that are redistributed near the

capillary ridge and capillary waves ahead and behind it, the step-like structure ahead

of the drop’s leading edge and the front upstream of the drop’s trailing edge (see figure

4.11(a)) which are controlled by the curvature in h component of the monitor function.

In addition, we see redistribution of points around the maximum in Γ and it’s leading

edge and trailing edge (see figure 4.11(b)) controlled by the curvature in Γ component

of the monitor function.

In Figures 4.12(a, b) we compare the numerical solution for h and Γ, respectively, at

t = 90, using the uniform mesh scheme Eqs.(4.5, 4.6) (N = 1500 or ∆x = 0.013 -

solid black line; N = 2× 104 or ∆x = 10−3 - solid blue line) and the adaptive moving

mesh scheme Eq. (4.15) (N = 1500 or ∆ξ = 0.013 = initial ∆x - solid red line). We

observe that the adaptive moving mesh numerical solution is almost indistinguishable

from the uniform mesh numerical solution corresponding to ∆x = 10−3. However, on

closer inspection there are discernible differences between the two solutions for both h
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Figure 4.11: (a) h(x, t = 400) and (b) Γ(x, t = 400) obtained using the moving adaptive
scheme with N = 1500 (∆ξ = 0.013 = initial ∆x). Insets in (a, b) show the zoomed-in
wave-like structures in h and steep gradient in Γ around the drop’s leading and trailing
edges. The parameter values are: Ca = 10−3, θ = 90o, G = 1, (so, α1 = 1, β1 = 0),
b = 10−2, δ = 10−5, τ = 10−3, β = ω = 105, p = 2 and γ = 2.
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Figure 4.12: A comparison of the numerical solution of (a) h(x, t = 400) and (b)
Γ(x, t = 400) using the uniform mesh scheme Eqs.(4.5, 4.6) (N = 1500 or ∆x = 0.013
- solid black line; N = 2×104 or ∆x = 10−3 - solid blue line) and the adaptive moving
mesh scheme Eq. (4.15) (N = 1500 or ∆ξ = 0.013 = initial ∆x - solid red line). The
insets show the zoomed-in solution at locations where there is rapid variation in h and
Γ. The parameter values are: Ca = 10−3, θ = 90o, G = 1, (so, α1 = 1, β1 = 0),
b = 10−2, δ = 10−5, τ = 10−3, β = ω = 105, p = 2 and γ = 2.
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and Γ, particularly, near the leading and trailing edges of the drop (see solid blue and

red lines in the insets in figures 4.12(a, b)). We believe that the uniform mesh solution

at ∆x = 10−3 has not fully converged in these regions in comparison to the adaptive

mesh solution where ∆x ≈ 10−4 in these regions. We would need to use a smaller

value of ∆x to confirm this which we have not done here. This again highlights the

usefulness of the adaptive moving mesh scheme in redistributing more points to these

regions (starting from a modest number of points, N = 1500) enabling to effectively

control the accuracy and convergence of the numerical solution there.

4.3 Conclusions

We have successfully implemented a moving adaptive mesh scheme based on moving

mesh PDEs (MMPDEs) for a coupled system of two parabolic PDEs. The main high-

light of the results is in adapting the monitor function to include multiple solution

components (based on Huang & Russell [53]). This enables us to accurately resolve

the complicated multiple wave-like structures (which need not necessarily be aligned

for both solution components)) compared to the uniform mesh scheme (see figures 4.7,

4.12).

In conclusion, our results indicate great promise for MMPDEs in thin-film flow prob-

lems which involving couple evolutionary PDEs. Although we have only considered a

specific form of the underlying PDEs, the general framework presented in this chapter
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can be utilised for a thin-film equation coupled to other PDEs such as, electric field,

temperature (in non-isothermal problems), etc., of the form considered here.
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Chapter 5

Numerical Solution of a

Two-dimensional Fourth Order

Parabolic PDE on a Moving

Adaptive Mesh

5.1 PDE with constant flux boundary conditions

Consider the two-dimensional fourth order degenerate nonlinear parabolic PDE de-

scribed in Chapter 1,

ht+∇·

[

1

3
Ca h3

∇∇2h−
1

3
D(θ)h3

∇h

]

+

[

1

3
h3

]

x

= 0, (x, y, t) ∈ R2×[0, Tf ]. (5.1)
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Here, ∇ =

(

∂

∂x
,
∂

∂y

)T

is the gradient operator and∇2 =

(

∂2

∂x2
,
∂2

∂y2

)

is the Laplacian

operator. The dimensionless parameters are the Capillary number Ca (related to the

surface tension term), D (θ) is related to the vertical component of gravity and θ is

the inclination angle. We consider a rectangular physical domain: 0 ≤ x ≤ Lx and

−Ly/2 ≤ y ≤ Ly/2, where Lx and Ly are the lengths of the domain in the x and y

directions, respectively and Tf is a specific time.

Equation (5.1) is supplemented by eight boundary conditions (BCs) in x and y. These

are given by

h(0, y, t) = 1, h(Lx, y, t) = b, hxxx(0, y, t) = hxxx(Lx, y, t) = 0, ∀y ∈ [−Ly/2, Ly/2],

(5.2)

hy(x,−Ly/2, t) = hy(x, Ly/2, t) = hyyy(x,−Ly/2, t) = hyyy(x, Ly/2, t) = 0, ∀x ∈ [0, Lx],

(5.3)

Here, b ≪ 1, is the precursor film thickness. This represents a constant flux of fluid

introduced at the upstream end x = 0 and the substrate is pre-wetted with a thin

precursor film of thickness b. We impose symmetry BCs at the y boundaries.

The main aim here is to obtain numerical solutions that demonstrate the fingering

instability similar to that observed in figure 1.1 in Chapter 1. Linear stability analysis of

this problem using the one-dimensional travelling wave solution obtained from Eq. (3.1)

as the base state have shown this solution to be linearly unstable to small-amplitude

sinusoidal perturbations in the transverse y-direction (see Bertozzi & Brenner [7] and
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Kondic & Diez [58]).

The numerical dispersion relation computed by Bertozzi and Brenner [7] showed that

the longer wavelengths are linearly unstable with a well-defined maximum wavelength

and corresponding growth rate. The shorter wavelengths are stabilised by capillary or

surface tension effects.They performed a small wavenumber analysis to obtain a stabil-

ity criterion which showed that the capillary ridge is necessary for the long wavelength

instability. They also showed that there is a critical angle above the horizontal be-

yond which the spreading flow is always linearly unstable with the maximum growth

rate and band of unstable wavenumbers increasing. This critical angle is implicitly

a function of the system parameters Ca and D . Two-dimensional numerical studies

of this problem analysing the nonlinear evolution of the transverse instability have

been done by several authors, most notably by Kondic and Diez [58]. They showed

that by varying the inclination angle the shape of the fingering instabilities and the

surface coverage varied considerably. Decreasing the angle of inclination resulted in

saw-tooth, or triangular-type patterns being observed. As the angle of inclination was

increased the fingers were more rounded with parallel sides. This gave quantitative

agreement to the corresponding experimental work. These numerical studies were per-

formed using finite differences on a uniform mesh. Our goal is to accurately capture the

fingering behaviour also including adaptation of the mesh in the transverse y-direction

along with that in the x-direction described in the earlier chapters. Based on this, we

superpose sinusoidal perturbations in the y direction locally on the one-dimensional
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travelling wave solution. Using this superposed initial condition for Eq. (5.1,5.2,5.3)

we then track the evolution of the two-dimensional solution to determine the nonlinear

fingering behaviour.

The superposed initial condition is chosen as

h(x, y, 0) = h0(x) +

m,n
∑

l=1,k=1

ak cos(kπy) e
[−Kl (x−xl)

2]. (5.4)

where, h0(x) is the travelling wave solution, k is the wavenumber of each sinusoidal

mode with period = 2/k and amplitude ak, n is the total number of modes imposed,

m is the total number of locations x = xl in the x direction across where the sinusoidal

perturbations are applied and Kl controls the width of the localised perturbations at

xl. Figure 5.1 shows the two-dimensional initial condition Eq. (5.4) with a single

transverse perturbation (k = n = 1) applied at two locations: x1, location where h0

has a maximum (i.e., at the capillary ridge) and x2, the location of the effective contact

line where the front connects onto the precursor film. The corresponding amplitude of

the perturbation at each location is a1 = 0.1 and a2 = 0.01, respectively. We choose

K1 = 20, K2 = 100, the precursor thickness b = 0.1, Lx = 20 and Ly = 2. The

travelling wave solution h0(x) is obtained from the solution of Eq. (3.1) at t = 2 (by

this time the one-dimensional solution has already developed into a travelling wave

solution). The choice of the above parameters are informed from previous studies, for

example Kondic & Diez [58].

We now seek the numerical solution of Eq. (5.1) with the above boundary and initial
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Figure 5.1: (a) Surface and (b) contour plots showing the two-dimensional initial con-
dition given by Eq. (5.4) with k = n = 1, m = 2, a1 = 0.1, a2 = 0.01, K1 = 20,
K2 = 100, b = 0.1, Lx = 20 and Ly = 2. x1 is the location where h0 has a maximum
(i.e., at the capillary ridge) and x2 is the location of the effective contact line where the
front connects onto the precursor film. The travelling wave solution h0(x) is obtained
from the solution of Eq. (3.1) at t = 2.
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condition to determine the evolution of the film thickness h(x, y, t) using finite difference

methods. The numerical method is performed first on a uniform mesh and then on an

adaptive moving mesh.

5.1.1 Numerical solution of Eqs. (5.1,5.2,5.3) on a uniform

mesh

The domain [0, Lx]×[−Ly/2, Ly/2] is uniformly divided into (Mx+1)×(Ny+1) discrete

points, respectively, as follows:

(xj , yk) = ((j − 1)∆x, (k − 1)∆y − Ly/2), j = 1, 2, . . . ,Mx + 1, k = 1, 2, . . . , Ny + 1,

where (∆x,∆y) = (
Lx

Mx
,
Ly

Ny
) is the width of each sub-interval. We discretise the spatial

derivatives appearing in Eq. (5.1) using finite differences, keeping the time derivative

continuous. The spatial discretisation is done as follows. We define a forward and

backward finite difference as

(hx)j+ 1

2
,k =

hj+1,k − hj,k

∆x
+O(∆x), (hx̄)j− 1

2
,k =

hj−1,k − hj,k

∆x
+O(∆x), (5.5)

(hy)j,k+ 1

2

=
hj,k+1 − hj,k

∆y
+O(∆y), (hȳ)j,k− 1

2

=
hj,k−1 − hj,k

∆y
+O(∆y). (5.6)

Thus, a semi-discretisation of Eq. (5.1), keeping the time derivative continuous, can

be written as

(ht)j,k +
1

3
Ca∇ ·

[

h3
∇∇2h

]

j,k
−

1

3
D(θ)∇ ·

[

h3
∇h
]

j,k
+

1

3
(h3)xj,k

= 0. (5.7)
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The surface tension term can be discretised in the following two ways:

1. Using Eqs. (5.5,5.6) we can write

∇ ·
[

h3
∇∇2h

]

,j,k
=

1

∆x2

[

(

h3 (hxx̄x + hyȳx)
)

j+ 1

2
,k
−
(

h3 (hxx̄x + hyȳx)
)

j− 1

2
,k

]

+

1

∆y2

[

(

h3 (hxx̄y + hyȳy)
)

j,k+ 1

2

−
(

h3 (hxx̄y + hyȳy)
)

j,k− 1

2

]

. (5.8)

2. Writing ∇2h(x, y, t) = G(x, y, t), we can discretise

∇ ·
[

h3
∇G

]

j,k
=

1

∆x2

[

h3
j+ 1

2
,k
(Gj+1,k −Gj,k)− h3

j− 1

2
,k
(Gj,k −Gj−1,k)

]

+

1

∆y2

[

h3
j,k+ 1

2

(Gj,k+1 −Gj,k)− h3
j,k− 1

2

(hj,k − hj,k−1)
]

, (5.9)

where

Gj,k =
1

∆x2
[hj+1,k − 2hj,k + hj−1,k] +

1

∆y2
[hj,k+1 − 2hj,k + hj,k−1)] . (5.10)

The vertical component of gravity term is discretised as

∇ ·
[

h3
∇h
]

j,k
=

1

∆x2

[

(

h3
)

j+ 1

2
,k
(hj+1,k − hj,k)−

(

h3
)

j− 1

2
,k
(hj,k − hj−1,k)

]

+

1

∆y2

[

(

h3
)

j,k+ 1

2

(hj,k+1 − hj,k)−
(

h3
)

j,k− 1

2

(hj,k − hj,k−1)
]

. (5.11)
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The horizontal component of gravity term is discretised as

(h3)xj,k
=

1

∆x

[

(h3)j+ 1

2
,k − (h3)j− 1

2
,k

]

. (5.12)

The nonlinear diffusivity h3
j+ 1

2
,k
and h3

j,k+ 1

2

can be approximated by averaging and can

be written as

(h3)j+ 1

2
,k =

h3
j+1,k + h3

j,k

2
, (h3)j,k+ 1

2

=
h3
j,k+1 + h3

j,k

2
, (5.13)

or

(h3)j+ 1

2
,k =

(

hj+1,k + hj,k

2

)3

, (h3)j,k+ 1

2

=

(

hj,k+1 + hj,k

2

)3

, (5.14)

with similar formulas for h3
j− 1

2
,k
and h3

j,k− 1

2

. It has been shown that there are particular

choices for the approximations of h3
j+ 1

2
,k

and h3
j,k+ 1

2

that have special properties, for

example, the so-called positivity-preserving scheme, meaning that if one starts from

strictly positive data for h, the scheme will help preserving this property. The interested

reader is referred to the works by Kondic & Diez [30, 58] for details.

Evaluating the above at j = 1,Mx + 1 and k = 1, Ny + 1 require fictitious points h0,k,

hMx+2,k, hj,0, hj,−1, hj,Ny+2 and hj,Ny+3 which are obtained by discretising the boundary

conditions Eqs. (5.2,5.3) using centred finite differences. Therefore, hj,0 = hj,2, hj,−1 =

hj,3, hj,Ny+2 = hj,Ny
, hj,Ny+3 = hj,Ny−1, h0,k = h2,k and hMx+2,k = hMx,k. The boundary
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conditions h(x = 0, y, t) = 1, h(x = Lx, y, t) = b are replaced by thier ODE form:

ht,1,k = 0, ht,Mx+1,k = 0, k = 1, . . . , Ny + 1. (5.15)

The semi-discetisation scheme Eq. (5.7) is second order accurate and uses a 13-point

stencil. It therefore requires a smaller bandwidth in comparison to a 25-point stencil

if using a centred finite difference scheme in each direction.

Equations (5.7,5.15) form a system of (Mx+1)×(Ny+1) ordinary differential equations

for the solution hj,k for j = 1, . . . ,Mx + 1 and k = 1, . . . , Ny + 1 with initial condition

given by Eq. (5.4). It is worth noting that although we have written the solution as

hj,k, for computational purposes it is better to write it as hk,j. This is because we

anticipate less number of mesh points in the y-direction compared to the x-direction

(since the solution develops more structure in the x-direction requiring more mesh

points for accurate resolution as seen in Chapter 3). Numbering the unknowns this

way reduces the bandwidth of the system (albeit sparse) which significantly improves

the performance of the solver. The resulting system of ODEs are solved using the stiff

ODE solver DASPK [12]. This solver utilises an iterative scheme based on Krylov sub-

space methods for the solution of the linearised system including preconditioning using

Incomplete LU decomposition of the Jacobian matrix. This had a significant influence

on the performance in comparison to DASSL. However, we need to choose a sufficiently

large fill-in for the LU factorisation of the Jacobian, otherwise the convergence of the

iterative solver is very slow.
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Figure 5.2: Surface plot ((a) side view and (b) top view) of h(x, y, t) at t = 31. We
clearly observe the formation of a fingering instability. The parameter values are:
Ca = 10−3, θ = 90o (so, D = 0), b = 10−1, Lx = 20, Ly = 2, Mx = 2000 (so,
∆x = 0.01) and Ny = 200 (so, ∆y = 0.01).
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In all the results presented below, the parameter values are: Ca = 10−3, θ = 90o (so,

D = 0), b = 10−1, Lx = 20, Ly = 2, Mx = 2000 (so, ∆x = 0.01) and Ny = 200

(so, ∆y = 0.01). We have checked (but not shown here) that the above discretisation

scheme converges for (∆x,∆y)→ 0 and the numerical solution shown below for ∆x =

∆y = 0.01 is accurate enough to be considered a converged solution. Figure 5.2(a, b)

illustrate the surface plots (side and top view, respectively) of h(x, y, t) at time t = 31.

We clearly observe the formation of a single finger which is consistent with the linear

stability analysis for the parameter values considered here. Figure 5.3(a, b, c) illustrate

the surface plots of h(x, y, t) showing its evolution in time (times shown are t = 11,

t = 20 and t = 31). At early time t = 11, a finger is observed to slowly start forming. As

time t increases, the finger appears to develop with a preferred width which is consistent

with the linear stability analysis. This is more clearly depicted in the contour plots

presented in figure 5.4(a, b, c) where the width of the finger is approximately one and

it lengthens as time t increases.

5.1.2 Numerical solution of Eqs. (5.1,5.2,5.3) on an adaptive

moving mesh

We now seek the numerical solution of Eqs. (5.1,5.2,5.3) using an adaptive moving

mesh. In this section, we present the computational domain Ωc, which is mapped to

the physical domain Ωp. We donate the computational and physical coordinates by
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Figure 5.3: Surface plots of h(x, y, t) showing its evolution in time (a) t = 11, (b) t = 20
and (c) t = 31. The parameter values are: Ca = 10−3, θ = 90o (so, D = 0), b = 10−1,
Lx = 20, Ly = 2, Mx = 2000 (so, ∆x = 0.01) and Ny = 200 (so, ∆y = 0.01).
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Figure 5.4: Contour plots of h(x, y, t) showing its evolution in time (a) t = 11, (b)
t = 20 and (c) t = 31. The parameter values are: Ca = 10−3, θ = 90o (so, D = 0),
b = 10−1, Lx = 20, Ly = 2, Mx = 2000 (so, ∆x = 0.01) and Ny = 200 (so, ∆y = 0.01).
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ξ = (ξ, η) and x = (x (ξ, η, t) , y (ξ, η, t)), respectively. This yields

x = x (ξ) : Ωc ≡ [0, 1]× [0, 1]→ Ωp ≡ [0, Lx]× [−Ly/2, Ly/2].

Then the solution can be written as h(x, t) ≈ h(x(ξ), t). A uniform mesh on the

computational domain with the computational coordinates is depicted as

J c
h(t) : ξj = (j−1)∆ξ, ηk = (k−1)∆η, for j = 1, . . . ,Mx+1, k = 1, . . . , Ny+1, (5.16)

and a moving mesh associated with the solution h(x(ξ), t) is described by

Jh(t) : xj,k(ξ) = x(ξj, ηk, t), for j = 1, . . . ,Mx + 1, k = 1, . . . , Ny + 1, (5.17)

where ∆ξ =
1

Mx

and ∆η =
1

Ny

denote the uniform grid size in the computational

domain and Mx, Ny are given positive integers denoting the number of mesh points in

the x and y direction respectively.. Eq. (5.1) is reformulated in Lagrangian form. This

is given by

ht − (hxxt + hyyt) +∇ · [Ca
h3

3
∇∇

2h− D(θ)
h3

3
∇h] +

(

h3

3

)

x

= 0, (5.18)
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The derivatives are transformed in terms of the computational coordinates by using

the chain rule, so that








hξ

hη









=









xξ yξ

xη yη

















hx

hy









.

Thus, we have








hx

hy









=
1

J









yη −yξ

−xη xξ

















hξ

hη









, (5.19)

where, the Jacobian matrix J and its determinant are given by

J =
∂(x, y)

∂(ξ, η)
=









xξ yξ

xη yη









, J = det(J) = xξyη − xηyξ.

The inverse Jacobian matrix is given by

J−1 =









ξx ηx

ξy ηy









.

Thus, we obtain the transformation relations as









ξx ηx

ξy ηy









=
1

J









yη −yξ

−xη xξ









, (5.20)
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Substituting into Eq. (5.19), leads to









hx

hy









=









ξx ηx

ξy ηy

















hξ

hη









. (5.21)

Therefore, the first order derivatives are transformed as follows

hx = [ξxhξ + ηxhη] , hy = [ξyhξ + ηyhη] ,
[

h3
]

x
=
[

ξxh
3
ξ + ηxh

3
η

]

. (5.22)

Consequently, the vertical gravity and the surface tension terms are accordingly trans-

formed using the fact that hxx = (hx)x and hyy = (hy)y as follows:

∇ ·
[

h3
∇h
]

=
1

J

[

(

h3R
)

ξ
+
(

h3S
)

η

]

,

G = ∇
2h =

1

J
[Rξ + Sη] ,

∇ ·
[

h3
∇∇

2h
]

= ∇ ·
[

h3
∇G

]

=
1

J

[

(

h3R1

)

ξ
+
(

h3S1

)

η

]

,

R = [a hξ + c hη] , S = [q hη + c hξ] , R1 = [a Gξ + c Gη] , S1 = [q Gη + c Gξ] ,

a =
1

J

(

(Jξx)
2 + (Jξy)

2
)

, q =
1

J

(

(Jηx)
2 + (Jηy)

2
)

, c =
1

J
((Jξx)(Jηx) + (Jξy)(Jηy)) .

(5.23)

2D Moving mesh PDE and monitor functions

We use the two-dimensional MMPDEs described in Chapter 2. These are
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Regularised MMPDE5:

τ
(

1− γ1∇
2
ξ

)

xt = ∇ · (ρ(x, t)∇x) . (5.24)

MMPDE4:

τ∇2
ξ (ρ(x, t)xt) = −∇ · (ρ(x, t)∇x) . (5.25)

Here, (1− γ∇2), is the smoothing operator, x = (x, y), ξ = (ξ, η) and ρ(x, t) is the

monitor function.

These equations are supplemented by boundary conditions:

x(ξ = 0, η, t) = 0, x(ξ = 1, η, t) = Lx, xη(ξ, η = 0, t) = xη(ξ, η = 1, t) = 0,

y(ξ, η = 0, t) = −Ly/2, y(ξ, η = 1, t) = Ly/2, yξ(ξ = 0, η, t) = yξ(ξ = 1, η, t) = 0.

(5.26)

The initial conditions are taken to be a uniform mesh as follows

xj,k = x (ξj, ηk, t) = Lxξj, yj,k = y (ξj, ηk, t) = Lyηk − Ly/2. (5.27)

The monitor function is chosen to be the curvature-based monitor function:

ρ(x, y, t) =
(

1 + α|∇2h|2
)

1

4 , (5.28)
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where α is a user-specified parameter.

Finite difference discretisation of Eq. (5.18), MMPDEs and

monitor function

A conservative semi-discretisation scheme for the spatial derivatives in Eq. (5.18) on

the uniform mesh J c
h (t) using centred finite differences can be written as, keeping the

time derivative continuous,

ht,j,k − (hxxt + hyyt)j,k +
1

3
∇ ·

[

Cah3
∇∇

2h− D(θ) h3
∇h
]

j,k
+

1

3
(h3)x,j,k = 0. (5.29)

We first discretise the spatial derivatives, so that

[

h3
x

]

j,k
=
1

J

[

1

∆ξ

(

(Jξx)j+ 1

2
,k

(

h3
)

j+ 1

2
,k
− (Jξx)j− 1

2
,k

(

h3
)

j− 1

2
,k

)

+

1

∆η

(

(Jηx)j,k+ 1

2

(

h3
)

j,k+ 1

2

− (Jηx)j,k− 1

2

(

h3
)

j,k− 1

2

)

]

, (5.30)

[hx]j,k =
1

J

[

1

∆ξ

(

(Jξx)j+ 1

2
,k (h)j+ 1

2
,k − (Jξx)j− 1

2
,k (h)j− 1

2
,k

)

+

1

∆η

(

(Jηx)j,k+ 1

2

(h)j,k+ 1

2

− (Jηx)j,k− 1

2

(h)j,k− 1

2

)

]

, (5.31)

[hy]j,k =
1

J

[

1

∆ξ

(

(Jξy)j+ 1

2
,k (h)j+ 1

2
,k − (Jξy)j− 1

2
,k (h)j− 1

2
,k

)

+

1

∆η

(

(Jηy)j,k+ 1

2

(h)j,k+ 1

2

− (Jηy)j,k− 1

2

(h)j,k− 1

2

)

]

, (5.32)
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The vertical component of gravity and surface tension terms are discretised as

∇ ·
[

h3
∇h
]

j,k
=

1

J

[

(h3R)j,k − (h3R)j−1,k

∆ξ
+

(h3S)j,k − (h3S)j,k−1

∆η

]

, (5.33)

∇ ·
[

h3
∇G

]

j,k
=

1

J

[

(h3R1)j,k − (h3R1)j−1,k

∆ξ
+

(h3S1)j,k − (h3S1)j,k−1

∆η

]

, (5.34)

Gj,k = (∇2h)j,k =
1

J

[

(R)j,k − (R)j−1,k

∆ξ
+

(S)j,k − (S)j,k−1

∆η

]

, (5.35)

Rj,k =

[

aj+ 1

2
,k

hj+1,k − hj,k

∆ξ
+ cj+ 1

2
,k

hj,k+1 − hj,k

∆η

]

, (5.36)

Sj,k =

[

qj,k+ 1

2

hj,k+1 − hj,k

∆η
+ cj,k+ 1

2

hj+1,k − hj,k

∆ξ

]

, (5.37)

(R1)j,k =

[

aj+ 1

2
,k

Gj+1,k −Gj,k

∆ξ
+ cj+ 1

2
,k

Gj,k+1 −Gj,k

∆η

]

, (5.38)

(S1)j,k =

[

qj,k+ 1

2

Gj,k+1 −Gj,k

∆η
+ cj,k+ 1

2

Gj+1,k −Gj,k

∆ξ

]

. (5.39)
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We evaluate a, q, c and the Jacobian J as follows

aj,k :=































1
Jj,k

(

(Jξx)
2 + (Jξy)

2)

j,k
, for j = 2, . . . ,Mx,

1
Jj,k

(Jξx)
2
j,k , for j = 1,

1
Jj,k

(Jξx)
2
j,k , for j = Mx + 1,

(5.40)

qj,k :=































1
Jj,k

(

(Jηy)
2 + (Jηx)

2)

j,k
, for k = 2, . . . , Ny,

1
Jj,k

(Jηy)
2
j,k , for k = 1,

1
Jj,k

(Jηy)
2
j,k , for k = Ny + 1,

(5.41)

cj,k =
1

Jj,k
((Jηy) (Jξy) + (Jηx) (Jξx))j,k , for j = 2, . . . ,Mx, k = 2, . . . , Ny, (5.42)

Jj,k :=































(Jξx)j,k (Jηy)j,k − (Jξy)j,k (Jηx)j,k , for j = 2, . . . ,Mx, k = 2, . . . , Ny,

(Jξx)j,k (Jηy)j,k , for j, k = 1

(Jξx)j,k (Jηy)j,k , for j = Mx + 1, k = Ny + 1.

(5.43)

We use centred finite difference approximations to approximate Jξx, Jξy, Jηx and Jηy

as follows

(Jξx)j,k = + (yη)j,k = +
1

2∆η
(yj,k+1 − yj,k−1) , (5.44)

(Jξy)j,k = − (xη)j,k = −
1

2∆η
(xj,k+1 − xj,k−1) , (5.45)

(Jηx)j,k = − (yξ)j,k = −
1

2∆ξ
(yj+1,k − yj−1,k) , (5.46)

(Jηy)j,k = + (xξ)j,k = +
1

2∆ξ
(xj+1,k − xj−1,k) , (5.47)
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where the transformation relations Eq. (5.20) have been used. The approximations

Eqs. (5.36, 5.39) to the vertical component of gravity and surface tension terms involve

evaluation of a, q, and c at half points. These evaluations have been obtained as an

average of the neighbouring mesh points.

We discretise the MMPDEs Eq. (5.24) and Eq. (5.25), respectively, for j = 2, . . . ,Mx

and k = 2, . . . , Ny, as follows

Regularised MMPDE5:

τ

[

xt − γ1

(

1

∆ξ2
(xt,j+1,k − 2xt,j,k + xt,j−1,k)

−
1

∆η2
(xt,j,k+1 − 2xt,j,k + xt,j,k−1)

)]

= Ej,k, (5.48)

MMPDE4:

τ
[

1
∆ξ2

(

ρj+ 1

2
,k (xt,j+1,k − xt,j,k)− ρj− 1

2
,k (xt,j,k − xt,j−1,k)

)

− 1
∆η2

(

ρj,k+ 1

2

(xt,j,k+1 − xt,j,k)− ρj,k− 1

2

(xt,j,k − xt,j,k−1)
)]

= −Ej,k,

(5.49)

where

Ej,k = τ
[

1
∆ξ2

(

ρj+ 1

2
,k (xj+1,k − xj,k)− ρj− 1

2
,k (xj,k − xj−1,k)

)

− 1
∆η2

(

ρj,k+ 1

2

(xj,k+1 − xj,k)− ρj,k− 1

2

(xj,k − xj,k−1)
)]

,

(5.50)

and x = (x, y).
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The curvature-based monitor function Eq. (5.28) is discretised as follows:

ρj,k = (1 + α|(∇2h)j,k|
2)

1

4 , (5.51)

where (∇2h)j,k is approximated by Eq. (5.35). Smoothing of the discretised monitor

function is done based on a two-dimensional generalisation of Eq. (3.40).

The boundary conditions h(0, y, t) = 1 and h(Lx, y, t) = b are replaced by their ODE

form:

ht,1,k = ht,Mx+1,k = 0, ∀ k = 1, . . . , Ny + 1. (5.52)

Similarly, the boundary conditions x(0, η, t) = 0, x(1, η, t) = Lx, y(ξ, 0, t) = −Ly/2

and y(ξ, 1, t) = Ly/2 are replaced by their ODE form:

xt,1,k = xt,Mx+1,k = 0, ∀ k = 1, . . . , Ny + 1; yt,j,1 = yt,j,Ny+1 = 0, ∀ j = 1, . . . ,Mx + 1

(5.53)

Evaluating the above at the boundaries require fictitious points which are obtained by

discretising the boundary conditions. In some cases, we had to use one-sided finite

differences to evaluate a particular quantity at the boundary which was obtained using

a Taylor’s series approximation there.

The above semi-discretisations for h and x = (x, y) form a coupled system of 3(Mx +

1)(Ny+1) ordinary differential equations with initial condition given by Eqs. (5.4,5.27).

These are solved using DASPK [12]. We again follow a staggered system of numbering
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the unknowns which reduces the bandwidth of the system. We note here that a non-

uniform initial mesh had to be used instead of the initial mesh in Eq. (5.27) which

had an influence on the solution and the performance of the solver in comparison to

the uniform initial mesh. This nonuniform initial mesh was obtained by solving in

pseudo-time the chosen MMPDE (with the uniform mesh as the initial condition) with

h fixed (hence, the monitor function ρ is also fixed) at its initial condition given by Eq.

(5.4). This mesh was then used to solve the MMPDEs in real time. For the Regularised

MMPDE5 equation, we had to choose the parameter values τ = 1 and γ1 =
√

max(ρ)

for the pseudo-time calculation after which τ = 10−2 was chosen for the solution in

real time.

In all the results presented below, the parameter values are: Ca = 10−3, θ = 90o (so,

D = 0), b = 10−1, Lx = 20 and Ly = 2, α = 1. We only present results using MMPDE4

with τ = 10−2; the regularised MMPDE5 gave similar results but was very stiff. Figure

5.5(a, b) show the surface and contour plots, respectively, of the initial condition given

by Eq. (5.4) with k = n = 1, m = 2, a1 = 0.1, a2 = 0.01, K1 = 20, K2 = 100,

b = 0.1, Lx = 20 and Ly = 2. Figure 5.5(c) shows the corresponding adaptive mesh

obtained by solving MMPDE4 with τ = 10−2 in pseudo-time using the curvature-based

monitor function with α = 1. We observe that the mesh adapts to the initial condition

predominantly in the x direction with more points at the leading edge, the mesh in the

y-direction is uniform.

Figure 5.6(a, b) illustrate the surface plots (side and top view, respectively) of h(x, y, t)
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Figure 5.5: (a) Surface and (b) contour plots showing the two-dimensional initial con-
dition given by Eq. (5.4) with k = n = 1, m = 2, a1 = 0.1, a2 = 0.01, K1 = 20,
K2 = 100, b = 0.1, Lx = 20 and Ly = 2. (c) shows the corresponding adaptive mesh
obtained by solving MMPDE4 with τ = 10−2 in pseudo-time (see text for details) using
the curvature-based monitor function with α = 1.
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=
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Figure 5.6: Surface plots ((a) side view and (b) top view) of h(x, y, t) at t = 31
using the adaptive moving mesh scheme with Mx = Ny = 200 (so, initial ∆x = 0.1
and ∆y = 10−2). (c) shows the corresponding adaptive moving mesh obtained using
MMPDE4 with τ = 10−2 and curvature-based monitor function with α = 1.
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at time t = 31 using the adaptive moving mesh scheme with Mx = Ny = 200 (so, initial

∆x = 0.1 and ∆y = 10−2), MMPDE4 with τ = 10−2 and curvature monitor function

with α = 1. We clearly observe the formation of a single finger and visually it appears

identical to the uniform mesh solution shown in figure 5.2(a, b) (note Mx = 2000 and

Ny = 200 for this solution). Figure 5.6(c) shows the corresponding adaptive moving

mesh and we clearly see clustering of mesh points in the y-direction along the finger.

This can also be observed from figure 5.7(a, b) which plots the adaptive mesh y(ξ, η)

and x(ξ, η), respectively at t = 31. We see that y when considered as a function of η

for fixed ξ ∈ [0.6, 0.8], deviates from a straight line (representing a uniform mesh) with

more points clustered in the interval [−0.5, 0.5] which is approximately the width of the

finger (see figure 5.6(b, c)). y appears to be uniform in the ξ direction. Similarly, x varies

nonuniformly as a function of ξ with more points clustered around ξ ∈ [0.6, 0.8] which

is is approximately the finger lengthscale. x appears to be uniform in the η direction.

Figure 5.7(c) shows the curvature-based monitor function at t = 31 which has large

variations in the curvature near the finger region. This results in the refinement of the

mesh as seen in figure 5.7(a, b).

Figure 5.8(a, b, c) illustrate the surface plots of h(x, y, t) showing its evolution in time

(times shown are t = 11, t = 20 and t = 31). At early time t = 11, a finger is observed

to slowly start forming. As time t increases, the finger appears to develop with a

preferred width. This is more clearly depicted in the contour plots presented in figure

5.9(a, b, c) where the width of the finger is approximately one and it lengthens as time
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Figure 5.7: Surface plots showing the adaptive mesh (a) y(ξ, η) and (b) x(ξ, η), and
the monitor function ρ(x, y, t) corresponding to figure 5.6 at t = 31 using the adaptive
moving mesh scheme with Mx = Ny = 200 (so, initial ∆x = 0.1 and ∆y = 10−2),
MMPDE4 with τ = 10−2 and curvature-based monitor function with α = 1.
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t increases. These results are indistinguishable from those obtained using a uniform

mesh (see figures 5.3, 5.4). Figure 5.10(a, b, c) show the adaptive moving mesh at times

t = 11, t = 20 and t = 31, respectively. We clearly see the mesh adaptation in both x

and y as the propagating finger gradually develops.

5.1.3 Numerical solution of Eqs. (5.1,5.2,5.3) using the Parabolic-

Mongè-Ampere (PMA) equation

Consider the transformed PDE Eq. (5.18) with the boundary conditions Eqs. (5.2,5.3)

and the initial condition Eq. (5.4). Expressing the mesh x and the velocity xt in Eq.

(5.18) in terms of Q, leads to

ht − (hxQt,ξ + hyQt,η) +∇ · [Ca
h3

3
∇∇

2h− D(θ)
h3

3
∇h] +

(

h3

3

)

x

= 0. (5.54)

Substituting the transformation relations Eq. (5.20) into Eq. (5.21), we have









hx

hy









=
1

J









yη −yξ

−xη xξ

















hξ

hη









. (5.55)

Thus, the transformations are obtained using the fact that x = ∇ξQ by

hx =
1

H
[Qηηhξ −Qξηhη] , (5.56)

152



CHAPTER 5. NUMERICAL SOLUTION OF A TWO-DIMENSIONAL FOURTH

ORDER PARABOLIC PDE ON A MOVING ADAPTIVE MESH

Figure 5.8: Surface plots of h(x, y, t) showing its evolution in time (a) t = 11, (b)
t = 20 and (c) t = 31 using the adaptive moving mesh scheme with Mx = Ny = 200
(so, initial ∆x = 0.1 and ∆y = 10−2), MMPDE4 with τ = 10−2 and curvature-based
monitor function with α = 1.
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Figure 5.9: Contour plots of h(x, y, t) showing its evolution in time (a) t = 11, (b)
t = 20 and (c) t = 31 using the adaptive moving mesh scheme with Mx = Ny = 200
(so, initial ∆x = 0.1 and ∆y = 10−2), MMPDE4 with τ = 10−2 and curvature-based
monitor function with α = 1.
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Figure 5.10: The adaptive moving mesh showing its evolution in time (a) t = 11, (b)
t = 20 and (c) t = 31 using the adaptive moving mesh scheme with Mx = Ny = 200
(so, initial ∆x = 0.1 and ∆y = 10−2), MMPDE4 with τ = 10−2 and curvature-based
monitor function with α = 1.
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hy =
1

H
[−Qξηhξ +Qξξhη] , (5.57)

where∇ξ =

(

∂

∂ξ
,
∂

∂η

)T

andH is the Hessian of Q, which is equivalent to the Jacobian

J . The Hessian is given by:

H(Q) =









Qξξ Qξη

Qξη Qηη









, H ≡ det(H) = QξξQηη −Q2
ξη. (5.58)

The spatial derivatives of Eq. (5.54) are transformed as follows:

h3
x =

1

H

[

Qηηh
3
ξ −Qξηh

3
η

]

. (5.59)

Since hxx = (hx)x and hyy = (hy)y, the vertical component of gravity and the surface

tension terms can be written as

∇ ·
[

h3
∇h
]

=
1

H

[

(

h3R
)

ξ
+
(

h3S
)

η

]

, (5.60)

∇ ·
[

h3
∇G

]

=
1

H

[

(

h3R1

)

ξ
+
(

h3S1

)

η

]

, (5.61)

G = ∇
2h =

1

H

[

(R)ξ + (S)η

]

, (5.62)

R = [ahξ − chη] , S = [qhη − chξ] , R1 = [aGξ − cGη] , S1 = [qGη − cGξ] , (5.63)

a =
1

H

(

Q2
ηη +Q2

ξη

)

, q =
1

H

(

Q2
ξξ +Q2

ξη

)

, c =
1

H
(QξηQηη +QξηQξξ) . (5.64)
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Parabolic-Mongè-Ampere (PMA) equation in two dimensions

We use the two-dimensional PMA equation described in Chapter 2. This is given by

τ
(

1− γ1∇
2
ξ

)

Qt = (ρ(∇ξQ, t)H(Q))
1

2 , x = ∇ξQ. (5.65)

where x = (x, y) and ξ = (ξ, η).

This equation is supplemented by Neumann boundary conditions, which are

[Qξ]j,k = 0, Lx, for j = 1,Mx +1, [Qη]j,k = −Ly/2, Ly/2, for k = 1, Ny +1. (5.66)

The initial condition is taken to be a uniform mesh as follows:

Q(ξ, η, 0) =
1

2

(

Lxξ
2 + Lyη

2
)

. (5.67)

We choose the monitor function to be the curvature-based monitor function:

ρ
(

1 + α|∇2h|2
)

1

4 , (5.68)

where α is a user-specified parameters.
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Finite difference discretisation of Eq. (5.54) and PMA equation

A conservative semi-discretisation scheme for the spatial derivatives in Eq. (5.54) on

the uniform mesh J c
h (t) using centred finite differences can be written as, keeping the

time derivative continuous,

ht,j,k − [hx]j,k
Qt,j+1,k −Qt,j−1,k

2∆ξ
− [hy]j,k

Qt,j,k+1 −Qt,j,k−1

2∆η

+
1

3
∇ ·

[

Cah3
∇∇

2h−D(θ)h3
∇h
]

j,k
+

1

3
(h3)x,j,k = 0. (5.69)

The first spatial derivatives are discretised by

[

h3
x

]

j,k
=

1

H

[

1

∆ξ

(

(Qηη)j+ 1

2
,k

(

h3
)

j+ 1

2
,k
− (Qηη)j− 1

2
,k

(

h3
)

j− 1

2
,k

)

+

1

∆η

(

− (Qηξ)j,k+ 1

2

(

h3
)

j,k+ 1

2

+ (Qηξ)j,k− 1

2

(

h3
)

j,k− 1

2

)

]

, (5.70)

[hx]j,k =
1

H

[

1

∆ξ

(

(Qηη)j+ 1

2
,k (h)j+ 1

2
,k − (Qηη)j− 1

2
,k (h)j− 1

2
,k

)

+ (5.71)

1

∆η

(

− (Qηξ)j,k+ 1

2

(h)j,k+ 1

2

+ (Qηξ)j,k− 1

2

(h)j,k− 1

2

)

]

, (5.72)

[hy]j,k =
1

H

[

1

∆ξ

(

− (Qηξ)j+ 1

2
,k (h)j+ 1

2
,k + (Qηξ)j− 1

2
,k (h)j− 1

2
,k

)

+ (5.73)

1

∆η

(

(Qξξ)j,k+ 1

2

(h)j,k+ 1

2

− (Qξξ)j,k− 1

2

(h)j,k− 1

2

)

]

, (5.74)
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The vertical component of gravity and surface tension terms are discretised by

∇ ·
[

h3
∇h
]

=
1

Hj,k

[

(h3R)j,k − (h3R)j−1,k

∆ξ
+

(h3S)j,k − (h3S)j,k−1

∆η

]

, (5.75)

∇ ·
[

h3
∇G

]

=
1

Hj,k

[

(h3R1)j,k − (h3R1)j−1,k

∆ξ
+

(h3S1)j,k − (h3S1)j,k−1

∆η

]

, (5.76)

G = ∇
2h =

1

Hj,k

[

(R)j,k − (R)j−1,k

∆ξ
+

(S)j,k − (S)j,k−1

∆η

]

, (5.77)

Rj,k =

[

aj+ 1

2
,k

hj+1,k − hj,k

∆ξ
− cj+ 1

2
,k

hj,k+1 − hj,k

∆η

]

, (5.78)

Sj,k =

[

qj,k+ 1

2

hj,k+1 − hj,k

∆η
− cj,k+ 1

2

hj+1,k − hj,k

∆ξ

]

, (5.79)

(R1)j,k =

[

aj+ 1

2
,k

Gj+1,k −Gj,k

∆ξ
− cj+ 1

2
,k

Gj,k+1 −Gj,k

∆η

]

, (5.80)

(S1)j,k =

[

qj,k+ 1

2

Gj,k+1 −Gj,k

∆η
− cj,k+ 1

2

Gj+1,k −Gj,k

∆ξ

]

. (5.81)
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We evaluate a, q, c and H as follows:

aj,k :=































1
Hj,k

(

(Qηη)
2 + (Qηξ)

2)

j,k
, for j = 2, . . . ,Mx,

1
Hj,k

(Qηη)
2
j,k , for j = 1,

1
Hj,k

(Qηη)
2
j,k , for j = Mx + 1,

(5.82)

qj,k :=































1
Hj,k

(

(Qξξ)
2 + (Qηξ)

2)

j,k
, for k = 2, . . . , Ny,

1
Hj,k

(Qξξ)
2
j,k , for k = 1,

1
Hj,k

(Qξξ)
2
j,k , for k = Ny + 1,

(5.83)

cj,k =
1

Hj,k
Qηξ (Qξξ +Qηη)j,k , for j = 2, . . . ,Mx, k = 2, . . . , Ny, (5.84)

Hj,k :=



































(Qξξ)j,k (Qηη)j,k − (Qηξ)
2
j,k , for j = 2, . . . ,Mx, k = 2, . . . , Ny,

(Qξξ)j,k (Qηη)j,k , for j, k = 1,

(Qξξ)j,k (Qηη)j,k , for j = Mx + 1, k = Ny + 1, .

(5.85)

The approximations Eqs. (5.78, 5.81) to the vertical component of gravity and surface

tension terms involve evaluations for a, q, and c at half points. These evaluations have

been obtained as an average of the neighbouring mesh point values. At the boundaries

in x direction, the vertical component of gravity and surface tension terms require

fictitious points which are obtained by discretising the boundary condtions hξ = 0 and

hξξξ = 0 at ξ = 0, 1 using centred finite differences. While in the y direction, the

boundary conditions hη = 0 and hηηη = 0 are discretised to obtain the fictitious points.
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We obtain

hj−1,k =hj+1,k, hj−2,k = hj+2,k, at ξ = 0, 1,

hj,k−1 =hj,k+1, hj,k−2 = hj,k+2, at η = 0, 1.

The second order derivatives of Q are obtained using the centred finite differences at

the interior points by

[Qξξ]j,k =
1

2∆ξ2
[Qj+2,k − 2Qj,k +Qj−2,k] , for j = 3, . . . ,Mx − 1, (5.86)

[Qηη]j,k =
1

2∆η2
[Qj,k+2 − 2Qj,k +Qj,k−2] , for k = 3, . . . , Ny − 1, (5.87)

[Qηξ]j,k =
1

4∆η∆ξ
[Qj+1,k+1 −Qj+1,k−1 −Qj−1,k+1 +Qj−1,k−1] , (5.88)

for j = 2, . . . ,Mx, k = 2, . . . , Ny.

To approximate Qξξ and Qηη at j = 2,Mx and k = 2, Ny, respectively, we use the fact

that Qξ = x and Qη = y. We obtain

[Qξξ]2,k =
1

4∆ξ2
[Q4,k −Q2,k] , (5.89)

[Qξξ]Mx,k
=

1

4∆ξ2
[2 Lx ∆ξ −QMx,k +QMx−2,k] , (5.90)

[Qηη]j,2 =
1

4∆η2
[Qj,4 −Qj,2 + Ly∆η] , (5.91)

[Qηη]j,Ny
=

1

4∆η2
[

Ly ∆η −Qj,Ny
+Qj,Ny−2

]

, (5.92)
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At the boundaries, we force Qηξ = 0. To evaluate Qξξ at ξ = 0, we utilize the Taylor

expansions so that

x2,k = x1,k +∆ξ [xξ]1,k +
1

2
∆ξ2 [xξξ]1,k + (∆ξ3), (5.93)

x3,k = x1,k + 2∆ξ [xξ]1,k +
4

2
∆ξ2 [xξξ]1,k + (∆ξ3), (5.94)

after some processing and neglecting terms of O(∆ξ3), we obtain

[xξ]1,k =
1

2∆ξ
(4x2,k − x3,k) . (5.95)

Since Qξ = x, leads to

[Qξξ]1,k =
1

4∆ξ2
[4Q3,k − 4Q1,k −Q4,k +Q2,k] , ∀ k. (5.96)

Similarly, we approximate Qξξ at ξ = 1 by

[Qξξ]Mx+1,k =
1

4∆ξ2
[QMx,k −QMx−2,k − 4QMx+1,k + 4QMx−1,k + 6 Lx ∆ξ] , ∀ k.

(5.97)

We evaluate Qηη at η = 0, 1, in a similar manner so that

[Qηη]j,1 =
1

4∆η2
[4Qj,3 − 4Qj,1 −Qj,4 +Qj,2 + 3 Ly ∆η] , ∀ j, (5.98)

[Qηη]j,Ny+1 =
1

4∆η2
[

Qj,Ny
−Qj,Ny−2 − 4Qj,Ny+1 + 4Qj,Ny−1 + 3 Ly ∆η

]

, ∀ j. (5.99)
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We discretise the PMA equation Eq. (5.65) at the interior points of the computational

domain using centred finite differences, so that

[Qξξ]j,k =
1

∆ξ2
[Qj+1,k − 2Qj,k +Qj−1,k] , for j = 2, . . . ,Mx, (5.100)

[Qηη]j,k =
1

∆η2
[Qj,k+1 − 2Qj,k +Qj,k−1] , for k = 2, . . . , Ny, (5.101)

[Qηξ]j,k =
1

4∆η∆ξ
[Qj+1,k+1 −Qj+1,k−1 −Qj−1,k+1 +Qj−1,k−1] , (5.102)

for j = 2, . . . ,Mx, k = 2, . . . , Ny.

The Hessian

H = QξξQηη −Q2
ηξ, (5.103)

is determined by using the above approximations of the second order derivatives of Q.

At the boundaries, we force Qηξ = 0. We approximate Qξξ at x = 0 using the following

Taylor expansions of Q, so that

Q2,k = Q1,k +∆ξ [Qξ]1,k +
1

2
∆ξ2 [Qξξ]1,k +

1

6
∆ξ3 [Qξξ]1,k + (∆ξ4), (5.104)

Q3,k = Q1,k + 2∆ξ [Qξ]1,k +
4

2
∆ξ2 [Qξξ]1,k +

8

6
∆ξ3 [Qξξ]1,k + (∆ξ4). (5.105)

Since [Qξ]1,k = 0 at x = 0, and after some processing with neglecting terms of O(∆ξ4),

we obtain

[Qξξ]1,k =
1

2∆ξ2
[−7Q1,k + 8Q2,k −Q3,k] , ∀ k. (5.106)
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We evaluate Qξξ at x = Lx, and Qηη at y = ±Ly/2, in similar manner, this leads to

[Qξξ]Mx+1,k =
1

2∆ξ2
[−7QMx+1,k + 8QMx,k −QMx−1,k + 6 ∆ξ Lx] , ∀ k, (5.107)

[Qηη]j,1 =
1

2∆η2
[−7Qj,1 + 8Qj,2 −Qj,3 + 3 Ly ∆η] , ∀ j, (5.108)

[Qηη]j,Ny+1 =
1

2∆η2
[

−7Qj,Ny+1 + 8Qj,Ny
−Qj,Ny−1 + 3 Ly ∆η

]

, ∀j. (5.109)

The discretised curvature-based monitor function Eq. (5.51) is used. The above semi-

discretisations for h and Q form a coupled system of 2(Mx + 1)(Ny + 1) ordinary

differential equations with initial condition given by Eqs. (5.4,5.67). These are solved

using DASPK [12]. We again follow a staggered system of numbering the unknowns

which reduces the bandwidth of the system. We note here that a non-uniform initial

mesh had to be used instead of the initial mesh in Eq. (5.67) which had an influence

on the solution and the performance of the solver in comparison to the uniform initial

mesh. This nonuniform initial mesh was obtained by solving in pseudo-time the PMA

equation (with the uniform mesh as the initial condition) with h fixed (hence, the

monitor function ρ is also fixed) at its initial condition given by Eq. (5.4). This mesh

was then used to solve the MMPDEs in real time.

Figure 5.11(a, b, c) illustrate the surface plots of h(x, y, t) showing its evolution in time

(times shown are t = 11, t = 20 and t = 31). These numerical solutions are obtained

using the adaptive moving mesh scheme with Mx = 200, Ny = 40 (so, initial ∆x = 0.1

and ∆y = 0.05), PMA equation and curvature-based monitor function with α = 1. At
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early time t = 11, a finger is observed to slowly start forming. As time t increases,

the finger appears to develop with a preferred width. This is more clearly depicted

in the contour plots presented in figure 5.12(a, b, c) where the width of the finger is

approximately one and it lengthens as time t increases. These results are similar to

those obtained using both a uniform mesh (see figures 5.3, 5.4) and adaptive moving

mesh using MMPDE4 (see figures 5.8, 5.9). Figure 5.13(a, b, c) show the adaptive

moving mesh at times t = 11, t = 20 and t = 31, respectively. We clearly see the mesh

adaptation in both x and y directions as the propagating finger gradually develops.

Figure 5.14(a, b) illustrate the surface plots (side and top view, respectively) of h(x, y, t)

at time t = 31 using the adaptive moving mesh scheme with Mx = 200, Ny = 40 (so,

initial ∆x = 0.1 and ∆y = 0.05), PMA equation and curvature-based monitor function

with α = 1. We clearly observe the formation of a single finger and visually it appears

identical to the uniform mesh solution shown in figure 5.2(a, b) (note Mx = 200 and

Ny = 200 for this solution) and 5.6(a, b)). Figure 5.14(c) shows the corresponding

adaptive moving mesh and we clearly see clustering of mesh points in the y-direction

along the finger.
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Figure 5.11: Surface plots of h(x, y, t) showing its evolution in time (a) t = 11, (b)
t = 20 and (c) t = 31 using the adaptive moving mesh scheme with Mx = 200, Ny = 40
(so, initial ∆x = 0.1 and ∆y = 0.05), PMA equation and curvature-based monitor
function with α = 1.
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Figure 5.12: Contour plots of h(x, y, t) showing its evolution in time (a) t = 11, (b)
t = 20 and (c) t = 31 using the adaptive moving mesh scheme with Mx = 200, Ny = 40
(so, initial ∆x = 0.1 and ∆y = 0.05), PMA equation and curvature-based monitor
function with α = 1.
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Figure 5.13: The adaptive moving mesh at times (a) t = 11, (b) t = 20 and (c) t = 31
using the adaptive moving mesh scheme with Mx = 200, Ny = 40 (so, initial ∆x = 0.1
and ∆y = 0.05), PMA equation and curvature-based monitor function with α = 1.
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Figure 5.14: Surface plots ((a) side view and (b) top view) of h(x, y, t) at t = 31 using
the adaptive moving mesh scheme with Mx = 200, Ny = 40 (so, initial ∆x = 0.1 and
∆y = 0.05). (c) shows the corresponding adaptive moving mesh obtained using the
PMA equation and curvature-based monitor function with α = 1.
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5.2 PDE with constant volume boundary condi-

tions

In this section, we investigate the numerical solution of the spreading of a two-dimensional

drop or sheet on both a uniform mesh as well as an adaptive moving mesh. The under-

lying PDE is given by Eq. (5.1). The physical domain is selected as a rectangle denoted

by −Lx ≤ x ≤ Lx and −Ly/2 ≤ y ≤ Ly/2 which is divided into (Mx + 1) × (Ny + 1)

mesh points (xj , yk) with j = 1, . . . ,Mx + 1 and k = 1, . . . , Ny + 1.

Equation (5.1) is supplemented by the boundary conditions in the x direction, which

are

h = b, hxxx = 0, at x = ±Lx, (5.110)

and we use symmetry boundary conditions in y direction given by Eq. (5.3). Here,

b≪ 1, denotes the precursor film thickness. This represents no flux of fluid out of the

domain and the drop connects onto a flat precursor film.

As in the previous section, we are interested in the development of the fingering in-

stability for this case starting from a y-independent initial condition with sinusoidal

perturbations imposed on it. Based on this, the initial condition is chosen as:

h(x, y, 0) = h0(x) +

m,n
∑

l=1,k=1

ak cos(kπy) e
[−Kl (x−xl)

2],

h0(x) = (x0 − x2) [H(x0 − x)−H(−x0 − x)] + b [H(x− x0)−H(−x0 − x)] , (5.111)
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where, H(x) is the Heaviside function, x0 is the initial location where the parabolic

shaped drop connects to the precursor thickness film both upstream and downstream,

k is the wavenumber of each sinusoidal mode with period = 2/k and amplitude ak, n

is the total number of modes imposed, m is the total number of locations x = xl in

the x direction across where the sinusoidal perturbations are applied and Kl controls

the width of the localised perturbations at xl. Figure 5.15 shows the two-dimensional

initial condition Eq. (5.111) with a single transverse perturbation (k = n = 1) applied

at two locations: x1 = 0 with amplitude a1 = 0.1 and x2 = 1 with amplitude a1 = 0.01.

We choose K1 = 20, K2 = 100, the precursor thickness b = 0.1, Lx1
= −2, Lx2

= 18

and Ly = 2.

We seek the 2D evolution of the Eq. (5.1) subject to the BCs given by Eqs. (5.3,

5.110) for the two-dimensional time evolution of the initial condition Eq. (5.111). We

first show the numerical solution using a uniform mesh followed by an adaptive mesh.

The parameter values used are: b = 0.1, Ca = 10−2, θ = 90o (so, D(θ) = 0), Lx1
= −2,

Lx2
= 18 and Ly = 2.

5.2.1 Numerical solution of Eqs. (5.1, 5.110, 5.3) on a uniform

mesh

We use the uniform mesh scheme Eq. (5.7) for discretising Eq. (5.1). As the previous

section, fictitious points are used, where necessary, near the ends of the 2D domain

and derived from the BCs given by Eqs. (5.110, 5.3 ).
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Figure 5.15: The initial condition showing (a) surface and (b) contour plot using Eq.
(5.111) with a single transverse perturbation (k = n = 1) applied at two locations:
x1 = 0 with amplitude a1 = 0.1 and x2 = 1 with amplitude a1 = 0.01. We choose
K1 = 20, K2 = 100, the precursor thickness b = 0.1, Lx1

= −2, Lx2
= 18 and Ly = 2.
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Figure 5.16(a, b) illustrate the surface plots (side and top view, respectively) of h(x, y, t)

at time t = 80. We clearly observe the formation of a single finger which is consistent

with the linear stability analysis for the parameter values considered here. Figure

5.17(a, b, c) illustrate the surface plots of h(x, y, t) showing its evolution in time (times

shown are t = 10, t = 40 and t = 80). At early time t = 10, a finger is observed

to slowly start forming. As time t increases, the finger appears to develop with a

preferred width which is consistent with the linear stability analysis. This is more

clearly depicted in the contour plots presented in figure 5.16(a, b, c) where the width of

the finger is approximately one and it lengthens as time t increases.

5.2.2 Numerical solution of Eqs. (5.1, 5.110, 5.3 ) on an adap-

tive mesh

We use the adaptive moving mesh scheme Eq. (5.29) for discretising Eq. (5.1) with

MMPDE4 given by the discretisation in Eq. (5.49) and the curvature-based monitor

function discretisation given by Eq. (5.51).

Figure 5.19(a, b, c) illustrate the surface plots of h(x, y, t) showing its evolution in time

(times shown are t = 20, t = 40 and t = 80) using the adaptive moving mesh scheme

with Mx = 200 and Ny = 40 (so, initial ∆x = 0.1 and ∆y = 0.05), MMPDE4 with

τ = 10−2 and curvature monitor function with α = 1. At early time t = 10, a finger is

observed to slowly start forming. As time t increases, the finger appears to develop with

a preferred width. This is more clearly depicted in the contour plots presented in figure
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Figure 5.16: Surface plot ((a) side view and (b) top view) of h(x, y, t) at t = 80.
We clearly observe the formation of a fingering instability. The parameter values are:
Ca = 10−3, θ = 90o (so, D = 0), b = 10−1, Lx1

= −2, Lx2
= 18, Ly = 2, Mx = 2000

(so, ∆x = 0.01) and Ny = 200 (so, ∆y = 0.01).
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Figure 5.17: Surface plots of h(x, y, t) showing its evolution in time (a) t = 10, (b)
t = 40 and (c) t = 80). The parameter values are: Ca = 10−3, θ = 90o (so, D = 0),
b = 10−1, Lx1

= −2, Lx2
= 18, Ly = 2, Mx = 2000 (so, ∆x = 0.01) and Ny = 200 (so,

∆y = 0.01).
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Figure 5.18: Contour plots of h(x, y, t) showing its evolution in time (a) t = 10, (b)
t = 40 and (c) t = 80). The parameter values are: Ca = 10−3, θ = 90o (so, D = 0),
b = 10−1, Lx1

= −2, Lx2
= 18, Ly = 2, Mx = 2000 (so, ∆x = 0.01) and Ny = 200 (so,

∆y = 0.01).
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5.20(a, b, c) where the width of the finger is approximately one and it lengthens as time

t increases. These results are indistinguishable from those obtained using a uniform

mesh (see figures 5.17, 5.18). Figure 5.21(a, b, c) show the adaptive moving mesh at

times t = 20, t = 40 and t = 80, respectively. We clearly see the mesh adaptation in

both x and y as the propagating finger gradually develops. Figure 5.22(a, b) illustrate

the surface plots (side and top view, respectively) of h(x, y, t) at time t = 80. We

clearly observe the formation of a single finger and visually it appears identical to the

uniform mesh solution shown in figure 5.16(a, b) (note Mx = 2000 and Ny = 200 for

this solution). Figure 5.22(c) shows the corresponding adaptive moving mesh and we

clearly see clustering of mesh points in the y-direction along the finger.
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Figure 5.19: Surface plots of h(x, y, t) showing its evolution in time (a) t = 10, (b)
t = 40 and (c) t = 80 using the adaptive moving mesh scheme with Mx = 200, Ny = 40
(so, initial ∆x = 0.1 and ∆y = 0.05), MMPDE4 with τ = 10−2 and curvature-based
monitor function with α = 1.

178



CHAPTER 5. NUMERICAL SOLUTION OF A TWO-DIMENSIONAL FOURTH

ORDER PARABOLIC PDE ON A MOVING ADAPTIVE MESH

x(ξ, η, t = 10)

y
(ξ
,η
,t

=
10

)

 

 

−2 0 2 4 6 8 10 12 14 16 18
−1

−0.5

0

0.5

1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9(a)

x(ξ, η, t = 40)

y
(ξ
,η
,t

=
40

)

 

 

−2 0 2 4 6 8 10 12 14 16 18
−1

−0.5

0

0.5

1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55(b)

x(ξ, η, t = 80)

y
(ξ
,η
,t

=
80

)

 

 

−2 0 2 4 6 8 10 12 14 16 18
−1

−0.5

0

0.5

1

0.15

0.2

0.25

0.3

0.35

0.4

0.45(c)

Figure 5.20: Contour plots of h(x, y, t) showing its evolution in time (a) t = 10, (b)
t = 40 and (c) t = 80 using the adaptive moving mesh scheme with Mx = 200, Ny = 40
(so, initial ∆x = 0.1 and ∆y = 0.05), MMPDE4 with τ = 10−2 and curvature-based
monitor function with α = 1.

179



CHAPTER 5. NUMERICAL SOLUTION OF A TWO-DIMENSIONAL FOURTH

ORDER PARABOLIC PDE ON A MOVING ADAPTIVE MESH

5.2.3 Numerical solution of Eqs. (5.1,5.2,5.3) using the Parabolic-

Mongè-Ampere (PMA) equation

We use the adaptive moving mesh scheme Eq. (5.69) for discretising Eq. (5.1) with

the PMA equation given by the discretisation in Eq. (5.100) and the curvature-based

monitor function discretisation given by Eq. (5.51).

Figure 5.23(a, b, c) illustrate the surface plots of h(x, y, t) showing its evolution in time

(times shown are t = 20, t = 40 and t = 80). These numerical solutions are obtained

using the adaptive moving mesh scheme with Mx = 200, Ny = 40 (so, initial ∆x = 0.1

and ∆y = 0.05), PMA equation and curvature-based monitor function with α = 1. At

early time t = 10, a finger is observed to slowly start forming. As time t increases,

the finger appears to develop with a preferred width. This is more clearly depicted

in the contour plots presented in figure 5.24(a, b, c) where the width of the finger is

approximately one and it lengthens as time t increases. These results are similar

to those obtained using both a uniform mesh (see figures 5.17, 5.18) and adaptive

moving mesh using MMPDE4 (see 5.19, 5.20). Figure 5.25(a, b, c) show the adaptive

moving mesh at times t = 20, t = 40 and t = 80, respectively. We clearly see the

mesh adaptation in both x and y as the propagating finger gradually develops. Figure

5.26(a, b) illustrate the surface plots (side and top view, respectively) of h(x, y, t) at

time t = 80 using the adaptive moving mesh scheme with Mx = 200, Ny = 40 (so,

initial ∆x = 0.1 and ∆y = 0.05), PMA equation and curvature-based monitor function

with α = 1. We clearly observe the formation of a single finger and visually it appears
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Figure 5.21: The adaptive moving mesh at time (a) t = 10, (b) t = 40 and (c) t = 80
using the adaptive moving mesh scheme with Mx = 200, Ny = 40 (so, initial ∆x = 0.1
and ∆y = 0.05), MMPDE4 with τ = 10−2 and curvature-based monitor function with
α = 1.
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Figure 5.22: Surface plots ((a) side view and (b) top view) of h(x, y, t) at t = 80 using
the adaptive moving mesh scheme with Mx = 200, Ny = 40 (so, initial ∆x = 0.1
and ∆y = 0.05). (c) shows the corresponding adaptive moving mesh obtained using
MMPDE4 with τ = 10−2 and curvature-based monitor function with α = 1.
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identical to the uniform mesh solution shown in figure 5.16(a, b) (note Mx = 200 and

Ny = 200 for this solution) and 5.22(a, b)). Figure 5.26(c) shows the corresponding

adaptive moving mesh and we clearly see clustering of mesh points in the y-direction

along the finger.

5.3 Conclusions

In this chapter we presented a robust and accurate finite difference method on an

adaptive moving mesh for the two-dimensional gravity-driven spreading of a liquid

sheet or drop down an inclined plane. The adaptive moving mesh strategy was based

on an MMPDE (namely, MMPDE4) and an optimal transport equation, the PMA

equation. By comparing the results using the MMPDE4 and PMA equations with those

from a uniform mesh method, it was shown that the adaptive moving mesh methods

are accurate and offer significant reductions in memory requirements (for example,

a converged uniform mesh solution required 2000 × 200 mesh points in the x and y

directions, respectively, while the adaptive moving mesh schemes required much less

mesh points 200 × 40). The CPU times, however, for the MMPDE4 adaptive moving

mesh solution corresponding to 200× 200 mesh points was comparable to the uniform

mesh solution with 2000 × 200 mesh points. This is due to the additional two mesh

evolution PDEs that are also required to be solved simultaneously with the underlying

PDE. The PMA adaptive moving mesh solution took less CPU time compared to both

MMPDE4 and the uniform mesh solution because there were only two coupled PDEs to
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Figure 5.23: Surface plots of h(x, y, t) showing its evolution in time (a) t = 10, (b)
t = 40 and (c) t = 80 using the adaptive moving mesh scheme with Mx = 200, Ny = 40
(so, initial ∆x = 0.1 and ∆y = 0.05), PMA equation and curvature-based monitor
function with α = 1.
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Figure 5.24: Contour plots of h(x, y, t) showing its evolution in time (a) t = 10, (b)
t = 40 and (c) t = 80 using the adaptive moving mesh scheme with Mx = 200, Ny = 40
(so, initial ∆x = 0.1 and ∆y = 0.05), PMA equation and curvature-based monitor
function with α = 1.
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Figure 5.25: The moving adaptive mesh at times (a) t = 10, (b) t = 40 and (c) t = 80
using the adaptive moving mesh scheme with Mx = 200, Ny = 40 (so, initial ∆x = 0.1
and ∆y = 0.05), PMA equation and curvature-based monitor function with α = 1.
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Figure 5.26: Surface plots ((a) side view and (b) top view) of h(x, y, t) at t = 80 using
the adaptive moving mesh scheme with Mx = 200, Ny = 40 (so, initial ∆x = 0.1 and
∆y = 0.05). (c) shows the corresponding adaptive moving mesh obtained using the
PMA equation and curvature-based monitor function with α = 1.
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solve. As mentioned in Chapter 1, the strategy of solving the PDE and mesh equations

alternately may reduce the CPU times further.

While the emphasis here was in simulating the fingering instability for a single finger,

we can modify the symmetry BCs on the y-boundaries (both for the underlying PDE

and mesh equations) to incorporate periodic BCs. This would make the bandwidth

of the system larger and may increase CPU times but would enable us to simulate

multiple non-symmetric fingers. This will be explored in future. We have not made

any direct comparisons on accuracy and CPU times with corresponding hp-refinement

techniques used by Sun et al. [77] and Li et al. [62]. However, if we visually compare

the adapted mesh from our solution (see figures 5.10,5.21) to figures 6, 7 in Sun et al.

[77] and figure 4 in Li et al. [62], we see a very close resemblance. This suggests that

the adaptive schemes are almost similar in their accuracy but their efficiency in their

performance needs further investigation.

In conclusion, our results indicate great promise for MMPDEs and the PMA equation

in two-dimensional thin-film flow problem. Although we have only considered a specific

form of the underlying PDE, the general framework presented in this chapter can be

utilised for any two-dimensional thin-film equation of the form considered here.
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We have successfully applied the r-adaptive moving mesh method based on moving

mesh PDEs (MMPDEs) for two prototype one and two-dimensional thin film equations

considered in this thesis. Our results indicate great promise in terms of simplicity in

its implementation and efficiency for this method to be applied on a regular basis to

thin film equations, in general. However, there are challenging problems in the thin

film literature where this method needs to be further tested before its success can be

guaranteed. We list some of these challenges which will be considered in the future.

1. Drop spreading with a dynamic (or moving) contact angle. The spreading prob-

lems considered in this thesis assume that the plane or substrate is pre-wetted

with a thin precursor film of thickness b. This is a mathematical regularisation

required to remove the so-called contact line singularity when a no-slip boundary

condition is applied at the substrate. Another regularisation is to introduce some
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amount of slip which along with a moving contact line condition allows study-

ing spreading problems with dynamic (or moving) contact lines (rather than the

effective contact line considered here). In the gravity-driven spreading problem

considered in Chapters 3 and 5 this would result in much steeper slopes around

the dynamic contact line (analogous to the case when b ≪ 1). Adapting the

mesh around the this region to accurately resolve the solution there using the

r-adaptive method will be considered in future.

[ 2 ] Spreading of a surfactant-laden liquid drop on a horizontal pre-wetted plane. As

was discussed in Chapter 1, this problem displays intricate wave-like structures

and development of ultra-thin films for the one-dimensional problem (see figure

6.1 and Jensen & Naire [55] for the one-dimensional numerical solution descrip-

tion) and a dendritic (or branching) fingering instability for the two-dimensional

case (see figure 6.2 (a, b), Warner et al. [83, 84] and Edmonstone et al. [33]). The

one-dimensional numerical solutions by Jensen & Naire [55] were obtained using

a nonuniform (but fixed) mesh manually clustering mesh points in the regions

of rapid variation in the solution. We are interested in applying the r-adaptive

method to redistribute the mesh points automatically to these regions based on a

suitable monitor function. The framework using MMPDEs of the type discussed

in this thesis will be directly applicable to this problem but the main challenge

will be in determining an appropriate monitor function. Warner et al. [83, 84]

obtained the fingering solution shown in figure 6.2 using finite differences on a
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uniform mesh using the ADI method. We plan to use the r-adaptive method to

obtain this solution in future.

Figure 6.1: This figure illustrates the one-dimensional solution for a surfactant-laden
drop spreading on horizontal pre-wetted plane.
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Figure 6.2: Numerical solution of surfactant-induced fingering instability. (a) shows
fingering-type pattern from Warner et al. [84, 83] and (b) shows tip splitting from
Edmonstone et al. [33].
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Appendix A

Selection of mesh density functions

A convenient choice of mesh density function is an essential basis for the success of

an adaptive equidistribution method. Here, a interpolation error is presented for the

adaptive equidistribution, which is dealt with in this report. The interpolation error

has been selected for several reasons.

• It is easy to use.

• It contributes to saving time and effort of the computers memory.

• An estimate of truncation error can be formulated as a form of an estimate of

interpolation error.

• It is one of the most reliable estimates

In general, we seek to understand how to choose the best mesh density function based

on the error which is associated with the numerical solution of the partial differential

equation used. For example, if approximating a function by a piecewise polynomial,

the error is associated with whether a piecewise constant interpolation or a piecewise

linear interpolation is used. Similarly, if finding the numerical solution of a partial

differential equation, the error is associated with truncation error. Therefore, the mesh

density function which will be described here is based on linear interpolation error. It
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is claimed that the truncation error has the same form of linear interpolation error. So,

the mesh density function used for interpolation error is also be valid for the truncation

error for numerical solution of PDEs. In this case, the order approximation could be

piecewise constant or piecewise linear and the error is measured in the L2 norm. The

basic idea is to choose a mesh density function based on minimising the error associated

with the truncation error when finding a numerical solution of a PDE or interpolation

error when approximating a function.

I have read and understood details and proofs given in Chapter 2 of [53]. I have

not presented the details here but just listed the mesh density functions based on

minimisation of error measure in the L2 norm. So, the summary of the mesh density

function:

Suppose that Jh is a mesh so that Jh : x0 = a < x1 < . . . < xN = b, then

1. The error associated with a piecewise constant of a function u on a uniform mesh

in L2 norm is given by

N ||u− Π0u||L2(a,b) ≤ C

[
∫ b

a

|u′|2dx

]

1

2

. (A.1)

2. Error associated with piecewise constant of u on an optimal mesh density function

in L2 norm:

M(x) =

(

1 +
1

α
|u′|2

)
1

3

, α =

[

1

b− a

∫ b

a

|u′|
2

3dx

]3

, (A.2)

lim
N→∞

N ||u− Π0u||L2(a,b) ≤ C

[
∫ b

a

|u′|
2

3dx

]

3

2

. (A.3)

3. The error associated with a piecewise constant approximation of u on an arc-
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length mesh density function in L2 norm is given by

M(x) =
(

1 + |u′|2
)

1

2 , (A.4)

lim
N→∞

N ||u−Π0u||L2(a,b)

≤ C

[
∫ b

a

|u′|2

1 + |u′|2
dx

]

1

2
[
∫ b

a

(

1 + |u′|2
) 1

2 dx

]

. (A.5)

4. The error associated with a piecewise linear interpolation of u on a uniform mesh

in L2 norm, is given by

N2||u− Π1u||L2(a,b) ≤ C

[
∫ b

a

|u′′|2dx

]

1

2

. (A.6)

5. The error associated with a piecewise linear interpolation of u on an optimal

mesh density function in L2 norm, is given by

M(x) =

(

1 +
1

α
|u′′|2

)
1

5

, α =

[

1

b− a

∫ b

a

|u′′|
2

5dx

]5

, (A.7)

lim
N→∞

N2||u− Π1u||L2(a,b) ≤ C

[
∫ b

a

|u′′|
2

5dx

]

5

2

. (A.8)

6. The error associated with a piecewise linear interpolation of u on an arc-length

mesh density function in L2 norm:

M(x) =
(

1 + |u′|2
)

1

2 , (A.9)
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lim
N→∞

N2||u− Π1u||L2(a,b)

≤ C

[∫ b

a

|u′′|2

(1 + |u′|2)2
dx

]

1

2
[∫ b

a

(

1 + |u′|2
)

1

2 dx

]2

. (A.10)

7. The error associated with a piecewise linear interpolation of u on a curvature

mesh density function in L2 norm:

M(x) =
(

1 + |u′′|2
)

1

4 , (A.11)

lim
N→∞

N2||u− Π1u||L2(a,b)

≤ C

[∫ b

a

|u′′|2

1 + |u′′|2
dx

]

1

2
[∫ b

a

(

1 + |u′′|2
) 1

4 dx

]2

. (A.12)

In the above, Πku indicates an interpolation operator of piecewise polynomials, k is a

non-negative real number, called the degree of the interpolating piecewise polynomials

on this mesh. For example, k = 0 corresponds to a piecewise constant interpolation

and k = 1 corresponds to a piecewise linear interpolation.
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