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Abstract 

Iron is vital for healthy brain function. However when present in a redox-active form or in 

excess concentrations it can be toxic. Interestingly, increased levels of redox-active iron 

biominerals have been shown to exist in Alzheimer’s disease (AD) tissues, including 

lesions comprised of the AD peptide β-amyloid (Aβ). These iron phases are capable of 

producing reactive oxygen species, resulting in the generation of oxidative stress 

manifesting as neuronal injury. As oxidative stress and the accumulation of iron are 

recognised as early stage events in AD, the presence of redox-active iron may prove 

fundamental in the development of AD pathology. The origin of these redox-active iron 

biominerals is unclear but recent studies suggest their formation may involve the 

interaction of Aβ with unbound brain iron and/or the malfunction of the iron storage 

protein ferritin.  

 

Despite these observations, the relationship between Aβ and iron is poorly understood, and 

the products of Aβ/iron interaction remain unknown. In this thesis, synchrotron-based x-

ray techniques are combined with traditional biological approaches to examine the 

interactions between Aβ and various synthetic and naturally occurring iron forms. Through 

this methodology Aβ is shown to incorporate ferric iron phases into its fibrillar structure in 

vitro, with this interaction resulting in the chemical reduction of iron into a redox-active 

state. Further to this, Aβ is demonstrated to disrupt ferritin structure resulting in the 

chemical reduction of its redox-inactive iron core in vitro. Additionally the interaction of 

Aβ with crystalline iron phases is shown destroy iron crystal structure.  
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Finally, redox-active iron is shown to be associated with regions of AD pathology, 

including fibrillar Aβ-like structures, within a transgenic mouse model of AD in situ. 

These findings suggest an origin for the redox-active iron forms and oxidative stress 

previously witnessed in AD tissue, thereby shedding light on the process of AD 

pathogenesis. 
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1.1 Introduction to Alzheimer’s disease 

Alzheimer’s disease (AD) is a fatal progressive neurodegenerative disorder that is the most 

common cause of dementias amongst the elderly population (60-80% of cases)  
1
. Disease 

onset is directly correlated to age, with 45% of those over 85 years being diagnosed with 

AD compared to ca. 5% of those aged 65-74 
2
. AD incidence is approximately 95% 

sporadic (a.k.a late-onset AD) and 5% familial (inherited predisposition to the disease) 
1
. 

For those who develop familial AD (FAD), disease onset is typically under the age of 65, 

an age criteria commonly referred to as early-onset AD 
1,3

. FAD is inherited in an 

autosomal dominant manner, arising through mutations in the genes encoding the amyloid 

precursor protein (APP), Presinilin 1 (PSEN1) and PSEN2 
4,5

. However the majority of AD 

cases (sporadic AD) are attributed to genetic factors such as possession of the E4 allele of 

apolipoprotein E 
4,6,7

, single nucleotide polymorphisms (as identified through genome-wide 

association studies) 
7,8

, and also epigenetic factors (long-term DNA methylation, histone 

modification) suggesting genetic and environmental factors to influence the occurrence of 

AD 
9
. Due to an ever aging population, cases of AD are projected to significantly increase 

over the next 50 years, thereby placing an increasing burden upon world health 

organisations 
1,3

.  

AD is characterized by extensive widespread neuronal loss in the higher brain centres 

responsible for memory and learning, resulting in memory loss, cognitive decline and 

psychosis 
10-12

. This pattern of neurodegeneration is both spatially and temporally complex, 

and therefore disease pathogenesis is poorly understood and no cure currently exists 
10,12

. 

However, it is becoming accepted that the accumulation (and in FAD cases, the 

overproduction) of the peptide β-amyloid (Aβ) within brain tissues may be fundamental to 

the disease process 
13-17

.  Aβ is formed through the sequential cleavage of the 
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transmembrane amyloid precursor protein by proteolytic secretase enzymes 
14-16,18,19

. The 

peptide goes on to form dysfunctional insoluble protein aggregates with a β-pleated 

structure (a protein confirmation comprised of multiple polypeptide chains connected 

laterally by 2 or more hydrogen bonds). These aggregates are deposited extracellularly, 

manifesting as senile plaques (SPs), a hallmark lesion of AD (Figure 1.1) 
14,18,20

.  

 

Aβ has also been shown to induce the formation of intracellular neurofibrillary tangles 

(NFTs) comprised of hyperphosphorylated tau filaments 
21

, resulting in diminished energy 

production, activation of the immune system and disturbances to normal neuronal function 

that ultimately result in cell death 
22

.  Additionally Aβ has been shown to be directly 

neurotoxic through its ability to induce oxidative stress, promote excitotoxicity, disrupt 

synaptic networks, and cause significant increases in intracellular calcium(II) (Ca
2+

) 

concentrations 
16,23-25

.  

 

Figure 1.1. The amyloid cascade hypothesis. (a) Amyloid precursor protein (green/blue), a 

transmembrane protein is (b) proteolytically cleaved by secretase enzymes to form the β-

amyloid (Aβ) peptide fragment (blue). (c) Aβ fragments assemble into insoluble 

extracellular plaque structures, recognised as senile plaques, a hallmark lesion of 

Alzheimer’s disease. 
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A number of Aβ isoforms are produced varying from 39-43 amino acid residues in length, 

with the 40 and 42 base forms being the dominant species 
25-28

. The base length of Aβ 

affects the ability of the peptide to form fibrillar structures, a trait that is thought to 

influence the toxicity of Aβ 
16,25,29

. The 42 base isoform of Aβ (Aβ(1-42); Figure 1.2) is the 

most fibrillogenic, and is therefore commonly associated with AD traits, such as SPs 
29

. 

Typical Aβ fibrils are comprised of a cross-β structure, characterized by elongated 

unbranched protein chains, with a substructure composed of β-sheets and protofilament 

strands perpendicular to the long fibril axis 
30
. However, the result of Aβ conformational 

state upon its neurotoxic properties is hotly debated. Both soluble Aβ oligomers and 

insoluble Aβ fibrils have been shown to induce neuronal dysfunction, suggesting that 

multiple amyloid confirmations may act in equilibrium to induce the progressive 

neurodegeneration characteristic of AD 
15,25,31-33

. Although typically associated with 

disruptions to neuronal function, Aβ accumulation is also seen to alter the structure and 

function of astrocytes, microglia and the endothelial and muscle cells of cerebral blood 

vessels 
16
. (For a review of Aβ neurotoxicity see Mucke and Selkoe (2012) 

16
). 

 

Figure 1.2.The 42 base amino acid sequence of β-amyloid(1-42) 

 

Interestingly, evidence of iron accumulation has been observed in areas of AD pathology, 

including NFTs, and Aβ containing SPs 
12,31,34-45

. These observations have led to the theory 

that Aβ may act as a “sink” for iron accumulation within the AD brain. Although vital for 

NH2 Asp Glu Ala Glu Phe Arg His Asp Ser Gly Tyr Glu

Val His His Gln Lys Leu Val Phe Phe Ala Glu Asp Val

Gly Ser Asn Lys Gly Ala Ile Ile Gly Leu Met Val Gly

Gly Val Val Ile Ala COOH
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healthy brain function 
46,47

, when stored incorrectly or present in excessive concentrations, 

iron can be toxic 
12,43,48

. This toxicity arises through iron’s valence chemistry, enabling it to 

participate in Fenton chemistry, leading to the generation of toxic free radicals 
37,38,49-51

. 

These reactive oxygen species (ROS) go on to cause oxidative stress, a process resulting 

from the inability of a biological system to detoxify peroxides and free radicals, 

manifesting in the damage of cellular components causing neuronal injury 
37,38,42,48,49,52-55

. 

With the accumulation of iron within brain structures and the occurrence of oxidative 

stress being recognized as early stage events in Alzheimer’s disease pathogenesis, the role 

played by iron may be key in the development of AD 
40,48,56,57

. 

 

1.2 Iron accumulation and oxidative stress in AD 

1.2.1 Iron in the human brain 

Iron is distributed throughout the human body, and the brain is no exception 
43,46,58,59

.  Iron 

is fundamentally involved in multiple processes within the human brain and therefore a 

basal level of iron is required for healthy function 
47,59

. It is a key component of multiple 

biological structures involved in ATP (energy) production, such as cytochromes a, b and c, 

and cytochrome oxidase 
43,46,60

. This essential role in energy production coupled with the 

high energy demands of the brain, result in high iron concentrations within brain tissues 

relative to the other organs of the human body. In addition to the production of ATP, iron 

is fundamentally involved in neurotransmitter synthesis acting as a cofactor for the 

enzymes tyrosine hydroxylase and tryptophan hydroxylase 
43,46

.  Furthermore, iron is 

required in the formation of myelin sheaths through its ability to biosynthesise lipids and 

cholesterol, important substrates of myelin; thus becoming indirectly involved in the 

transmission of neuronal signals in the human brain 
43,46

. Finally iron is involved in 
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hippocampal long-term potentiation (LTP) through its essential role in ryanodine receptor-

mediated Ca release following N-Methyl-D-aspartic acid (NMDA) receptor stimulation. 

NMDA receptor stimulation results in extracellular signal-regulated kinase (ERK) 1/2 

phosphorylation, a key step in the signalling cascade required for sustained hippocampal 

LTP 
61,62

. In light of these roles, it is clear that disruptions to iron homeostasis will have an 

extremely deleterious effect upon healthy brain function, with both iron deficiency and 

iron excess resulting in negative consequences 
47,59

. 

The functions of iron as described above are made possible through iron’s ability to change 

oxidative state. It is also iron’s oxidative (redox) state that determines its ability to form 

ROS, and induce oxidative stress. When in a ferric (Fe
3+

) state, iron is redox-inactive and 

thus incapable of partaking in reduction-oxidation (redox) reactions 
63

. However when in a 

redox-active form (such as ferrous, Fe
2+

) iron can participate in redox reactions (see 

Section 1.2.2) that result in the generation of potentially neurotoxic free radicals
48,50,63

.  

In the human brain, iron is stored as ferrihydrite ((Fe
3+

)2O3•0.5H2O), a poorly crystalline 

redox-inactive ferric oxyhydroxide, within the storage protein ferritin 
46,58,60,64,65

. This form 

of storage prevents iron-associated ROS production, thereby protecting neurons (and 

associated microglia, astrocytes, endothelial and smooth muscle cells) from detrimental 

free radical burdens. Structurally, ferritin is comprised two subunits:  heavy (H) and light 

(L) chain ferritin, which assemble into a 24 subunit protein complex, 450 kDa in molecular 

weight (Figure 1.3a) 
46,65,66

. The protein is 12 nm in diameter, containing an 8 nm hollow 

core capable of storing approximately 4500 Fe atoms (Figure 1.3b) 
58,60,65,66

. Both H-

ferritin and L-ferritin subunits have distinct functions. H-ferritin (21 kDa) contains a di-

iron binding site, and possesses ferroxidase activity, catalyzing the conversion of redox-

active Fe
2+

 into a redox-inactive Fe
3+

 state. L-ferritin (19 kDa) does not convey any 

enzymatic activity, but does contribute to long term iron storage, by accelerating the 
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transfer of iron from the ferroxidase centre to the ferritin core, whilst also stabilizing 

ferritin complex structure 
46,64,65

. Thus ferritin provides an efficient means by which to 

store large volumes of iron safely in brain tissue.  

The transportation of iron within the brain is largely regulated by the extracellular 

transferrin protein, with multiple neuron types expressing transferrin mRNA 
46,67

. Neurons 

acquire their iron via the interaction between transferrin and transferrin receptors found on 

the neuron surface 
46,67

. Moreover transferrin is implicated with the transportation of iron 

over the blood brain barrier and is therefore required for iron’s entry into the brain 
68

. An 

additional level of control in maintaining iron homeostasis comes through the action of 

iron regulatory proteins (IRPs). These intracellular proteins, found in the cytoplasm, are 

responsible for regulating cellular iron, by binding to the iron-responsive element (IRE) in 

the 5’ untranslated region of ferritin and transferrin receptor mRNA, thereby regulating 

their expression 
46,59,69

. In turn this dictates how much iron enters a cell, and the amount of 

this iron that is free or stored within ferritin. 

 

Figure 1.3. Illustrated representation of the ferritin protein. (a) The assembly of ferritin 

subunits (yellow, orange and red) into a 24 subunit protein-complex. (b) A cross section of 

(a) displaying the 12 nm diameter ferritin cage (yellow) and the 8 nm core of ferritin (grey) 

containing ferrihydrite particles (brown; Fe
3+

) 

 

Ferritin 

Subunits

Fe3+ core

12 nm
8 nm
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1.2.2 Iron accumulation in AD 

Despite the regulatory systems described in the previous section, increased brain iron loads 

have been observed in AD tissues 
12,31,34,35,37,39,42,43,48,55,56,59,70

. The association of iron 

accumulation and the development of AD lesions were first suggested by Louis Goodman 

in 1953 following a case study of 23 AD subjects 
34

. Through histological staining 

techniques, localized iron foci were observed in glial cells, NFTs and SPs, the pathological 

hallmarks of AD 
34

.  From these initial observations, a variety of approaches have been 

utilized to probe the relationship between iron and AD, and it is now widely accepted that 

iron homeostasis is disrupted in diseased individuals.  

Iron accumulation has been observed in brain structures known to be vulnerable to AD 

including the hippocampus and cerebral cortex 
55

. Through the use of micro particle-

induced x-ray emission analysis, iron levels have been shown to be locally increased 

within SP material compared to surrounding AD brain tissue 
35

, whilst MRI of APP/PS1 

transgenic mice displaying AD pathology have demonstrated iron accumulation within SPs 

in mouse models of the disease 
71

. Increased concentrations of iron have been shown to 

accumulate to areas of AD pathology in mice overexpressing Aβ, suggesting an affiliation 

of Aβ for iron 
31

; and in C.elegans models of AD, increased Aβ production is associated 

with an increase in cellular iron content and oxidative stress 
72

. Further to this, chemical 

and laser microprobe studies of AD tissues have demonstrated the occurrence of iron 

within both SP and intracellular NFT material in situ 
35,44

. Further evidence from 

transgenic PSAPP mouse models of AD indicates iron accumulation to be an early stage 

event in AD, and that iron accumulation coincides with the formation of SP material 
40

. 

Moreover, recent studies suggest that APP may be involved in iron exportation, explaining 

iron accumulation in FAD cases where APP mutations occur 
73

. Taken together this 
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evidence demonstrates increased iron levels in lesions associated with AD, coupled with 

neurons and tissues vulnerable to AD neurodegeneration, suggesting iron to play a 

significant role in the pathogenesis of the disorder.  

Surprisingly, in the brains of AD patients, increased iron levels are not correlated with 

increased ferritin expression 
74

. Moreover the expression and distribution of iron regulatory 

proteins have also been shown to be disrupted in the AD brain, resulting in an increased 

uptake of cellular iron, and also a decreased expression of ferritin mRNA
75

.  In addition, 

iron regulatory protein-iron responsive element (IRP-IRE) complexes have been shown to 

be more stable in AD patients compared to healthy controls 
69

. This increased IRP-IRE 

stability results in a decrease in ferritin synthesis coupled with a concurrent stabilization of 

transferrin receptors, again resulting in the accumulation of iron within neuronal bodies 

59,69,75,76
.  Interestingly, a link between AD and haemochromatosis (HFE; also referred to as 

congenital iron overload) has been demonstrated 
43

. The presence of HFE mutations in AD 

patients further suggests that disruptions to iron homeostasis may be influential in the 

development of AD. 

Increases in intracellular iron content without an appropriate increase in ferritin to detoxify 

said iron would leave neurons vulnerable to ROS formation and oxidative stress 
75

. ROS 

production arises through the ability of poorly liganded, labile iron to partake in Fenton 

chemistry; a set of redox reactions (chemical reactions whereby electrons are transferred 

between atoms), culminating in the generation of free radicals 
48,56,63

.  During these 

reactions, ferrous iron is oxidized by hydrogen peroxide (produced by mitochondria) to 

create ferric iron, a hydroxyl radical (OH·) and a hydroxyl anion (OH
-
) (equation 1). The 

ferric iron is then reduced back to ferrous iron by the action of hydrogen peroxide, to form 

a peroxide radical (OOH·) and a proton (H
+
) (equation 2). Thus the net products of these 

reactions are two free radical molecules, and one molecule of water. Further to this, ferric 
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iron can react with the superoxide anion (O2
•-
, also produced by the mitochondria), to re-

form ferrous iron, facilitating the redox cycling of iron (equation 3)
48

. The consequence of 

ROS production and the resulting oxidative stress are covered in more detail in Section 

1.2.3 

 

                                            Fe
2+

 + H2O2         Fe
3+

 + OH
•
 + OH

-   
                                      (1) 

                                            Fe
3+ 

+ H2O2          Fe
2+

 + OOH
•
 + H

+
                                         (2) 

        Fenton-chemistry involving iron, resulting in the production of ROS 

                                       O2
•- 

+ Fe
3+

         O2 + Fe
2+  

                                               (3) 

Superoxide reduction of iron 

 

Further to a direct toxicity caused through iron-mediated ROS production, disruptions to 

iron homeostasis may also have downstream effects, such as blockage of mitochondrial 

aconitase synthesis, resulting in pathophysiological energy metabolism in AD tissues 
75

.  

 

1.2.3 Oxidative stress and AD 

ROS are a natural by-product of healthy brain functions, and thus high levels of anti-

oxidant defences are employed within the nervous system to maintain oxidative balance. 

However oxidative imbalance is observed in multiple neurodegenerative disorders 

resulting in oxidative stress and tissue damage 
55

.   

Considerable evidence of oxidative damage in AD is provided through the observations of 

lipid peroxidation products and the presence of oxidatively modified proteins and nucleic 
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acids 
55,57,77-80

. Markers for oxidative stress are seen to rise in multiple transgenic models 

of AD (see Belkacemi (2012) for a recent review on these animal models 
77

). Examples 

include elevated levels of cholesterol oxidation products and hippocampal protein 

carbonyls, in Tg2576 transgenic AD mice compared to wild type controls 
80

. Similarly, 

multiple studies have reported increased levels of protein carbonyls in autopsy studies of 

AD patients 
80

.  

8-hydroxyguanosine (8-OHG), an oxidized nucleoside primarily formed through the 

reaction of hydroxyl radicals with RNA (thus acting as an indicator of intracellular 

oxidative damage), is known to be greatly increased in the cytoplasm of neurons 

vulnerable to AD 
38,81

.  Moreover the oxidized amino acid nitrotyrosine has also been 

located within such vulnerable neurons 
82,83

. These oxidative modifications were found to 

be greatest during the earliest stages of disease progression, suggesting oxidative damage 

to be an early event in AD pathogenesis 
57,84

. HFE mutations (associated with AD; as 

described in Section 1.2.2) are also correlated to increased oxidative stress, thus 

contributing to the severity of AD 
43

. The deposition of SP material in AD tissues has been 

shown to activate microglia/reactive astrocytes 
85

. These activated cell lines secrete 

cytokines, which when extensively produced result in the activation of macrophages that 

generate large amounts of ROS.  Furthermore, activated microglia have been demonstrated 

to induce lipid peroxidation by releasing iron from ferritin in a superoxide dependent 

fashion 
86

.   

Comparisons of AD brains to age-matched disease free controls have also revealed 

increases in the lipid peroxidation product 4-hydroxynoneal (HNE), in the ventricular fluid 

and multiple areas of the diseased brain 
12,80,87,88

. HNE conveys toxicity to neurons both in 

vitro and in vivo, by inducing free radical attack of arachionic acid, a cell membrane 

component abundant in brain tissues. HNE is further implicated in the disruption of 
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multiple biological processes vital for survival such as DNA and RNA synthesis, 

mitochondrial activity, Ca homeostasis and energy production 
12,80,87

. Moreover, HNE has 

been shown to cause excitotoxicity, the pathological process in which neurons are 

damaged by over activation of excitatory neurotransmitter receptors 
80

. 

 A number of oxidatively modified proteins can be seen in AD tissues compared to 

disease-free controls. Examples of affected proteins include:  β-actin, the glucose 

transporter Glt-1, glutamine synthase, transferrin, hemopaxin and anti-trypsin 
12,79,89

. These 

oxidative modifications of proteins in the AD brain may result in negative disturbances to 

neuronal processes such as uncoupling of the electron transport chain, loss of synaptic 

plasticity, excitotoxicity, neuronal communication and alterations in the properties of the 

blood brain barrier 
79

. 

Finally the process of protein turnover in neurons by the ubiquitin-proteasomal system may 

be disturbed by the presence of HNE-modified or oxidized proteins in the AD brain 
89

. 

This is turn may lead to protein aggregation, tau hyperphosphorylation and disrupted 

axonal transport, all manifesting in neuronal damage.  

 

1.2.4 Effects of iron interaction upon β-amyloid configuration and 

toxicity 

As mentioned in Section 1.1, Aβ appears to be both directly and indirectly toxic to neurons. 

Existing evidence shows Aβ to be capable of inducing membrane peroxidation, protein 

oxidation, and the inhibition of oxidatively sensitive enzymes, implicating Aβ in ROS 

production 
16,17,23,29,42,50,72,90

. Moreover multiple anti-oxidants have been shown to reduce 

β-amyloid associated neurotoxicity, protecting neurons from damage
12
. Further indirect Aβ 

toxicity arises through its ability to induce the formation of NFTs 
21

, detrimentally 
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effecting cellular transport and energy production, and through the activation of the 

immune response 
12

 and ROS producing macrophages. Thus the accumulation of Aβ in the 

AD brain appears to contribute to the catastrophic levels of ROS production and oxidative 

stress observed in AD tissues, as described in the previous section.  

Despite this established toxicity, studies examining free radicals produced directly by Aβ 

have provided inconsistent results. Initial findings indicated towards Aβ being capable of 

spontaneously generating free radicals 
50,51

, whereas other lines of evidence show β-

amyloid to be incapable of forming peptide-derived free radicals 
91
. The effect of Aβ 

conformational state upon its ability to form ROS is also disputed. Evidence suggests both 

soluble (small oligomers) and insoluble (mature fibril and plaque structures) Aβ forms 

contribute to neuronal dysfunction in AD tissues (Figure 1.4) 
15,16

. However for the 

purpose of this thesis, emphasis will be placed upon the effect of Aβ aggregation 

(formation of insoluble fibrils) upon amyloid toxicity.  

 

Figure 1.4. Implication of Aβ production upon neuronal health in AD (modified from 

Karran et al. 2011 
15

).  
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Investigations conducted by Monji et al. provided in vitro evidence directly correlating the 

formation of Aβ fibril structures to the generation of free radicals using electron spin 

resonance spectroscopy 
32
. Indeed, freshly solubilized synthetic Aβ monomers have been 

demonstrated as non-toxic to cultured neurons, whereas high molecular mass aggregates of 

Aβ were found to induce neurotoxic effects 
25,92,93

. These findings support investigations 

by Hensley et al. who demonstrated areas of Aβ deposition to be hotbeds of protein 

oxidation in AD tissues using biomarkers for neuronal protein oxidation 
94

. Similar 

patterns can be seen in transgenic mice models of AD, where immunohistochemical 

studies showed anti-oxidant (superoxide dismutase and heme oxygenase) levels to be 

increased in the immediate vicinity of Aβ plaques 
80

. Furthermore, oxidative stress is seen 

to induce the production and aggregation of Aβ into insoluble forms, in a positive feedback 

mechanism resulting in perpetuated ROS production 
77,90

. 

Findings in this field led to the proposal of a mechanochemical mechanism for peptidyl 

free-radical generation, [Kay (1997) FEBS Letters 
24

] based upon the cross β-sheet 

structure of Aβ fibrils (Figure 1.5): 

(i) During the process of amyloid fibrillogenesis (Figure 1.5a), there exists a small 

probability of β-amyloid monomer mispacking leading to abnormal fibril formation 

(Figure 1.5b). 

(ii) As fibrillogenesis continues, the packing defect is trapped within the β-sheet 

conformation of the protein. The surrounding protein structure resists distortion, and the 

abnormally packed peptide is strained (Figure 1.5c). 

(iii)The strain placed upon the abnormal peptide leads to mechanically activated thermal 

decomposition, causing the production of peptidyl free radicals and homolytic bond 

scission (Figure 1.5d). 
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(iv) Further reaction with oxygen produces peroxy free radicals, promoting the production 

of ROS (Figure 1.5e). 

 

Figure 1.5. Peptidyl free radical production through the mispacking of Aβ fibrils. (a) 

Normal Aβ fibrillogenesis. (b) Addition of a polypeptide with abnormal hydrogen bond 

alignment (red). (c) Continued fibril growth around this packing abnormality resulting in 

mechanical strain on the fibril (red). (d) Mechanically activated thermal decomposition of 

the strained fibril produces peptidyl free radicals which interact with oxygen (e) to induce 

free radical production. [Interpreted from Kay et al. 1997 
24

] 

 

Intriguingly, the aggregation of Aβ into fibril structures has been shown to be greatly 

accelerated in the presence of iron (known to accumulate within Aβ structures in vivo). 

Transmission electron microscopy and ThT fluorescence studies conducted by House et al. 

and Khan et al. revealed significant aggregation of synthetic Aβ fragments following the 

addition of iron(III) in vitro 
95,96

. The effect of iron upon Aβ aggregation is suggested to be 

so dramatic that even trace metal contaminants within solution media are believed to 

induce its aggregation
97
. A potential mechanism for iron mediated Aβ aggregation involves 

(a) (b) (c)

•

Peptidyl

free radical

(d)

•

Peptidyl

free radical

+ O2  ROS

(e)



Chapter 1 

16 

 

the formation of intermolecular crosslinks in the β-pleated structure of amyloid by the 

atoms of the metal 
96

. Recent evidence suggests that this aggregation process may involve 

the binding of iron by Aβ, with amyloid potentially acting as a metalloprotein 
98-100

.  

Evidence suggests this binding domain to consist of three histidine residues at positions 6, 

13 and 14, and a further tyrosine residue at position 10 located at the N-terminus of Aβ 

55,101,102
. 

Further to inducing aggregation of amyloid into fibril structures, the interaction of Aβ with 

iron has been shown to increase ROS production and oxidative stress. In vitro examination 

of iron(II) sulphate (FeSO4) incubated with Aβ revealed ROS production to be markedly 

increased to where Aβ or FeSO4 were incubated alone
103

. In vitro studies conducted by Liu 

et al. indicate that iron specifically enhances Aβ toxicity when present throughout the 

aggregate process, by impeding its ordered aggregation into cross β-fibrils 
104

. These 

findings are consistent with models proposed by Kay, where imperfections in cross β-

structures are identified as potential sources of ROS production 
24

. Moreover, the 

integration of iron into amyloid fibril structures may act to mediate Aβ toxicity via the 

ability of amyloid to transport iron into the vicinity of cellular membranes, inducing lipid 

peroxidation and cellular death (Figure 1.6) 
54

.  
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Figure 1.6. Iron mediated Aβ toxicity as described by Rottkamp et al. 
54

. (a) In the absence 

of Aβ, iron (red) does not induce lipid peroxidation, due to its distance from the lipid 

membrane and the short lived nature of iron-associated ROS. (b) Aβ (blue) incorporates 

iron into its fibrillar structure, transporting iron into the immediate vicinity of the lipid 

membrane, resulting in iron-induced lipid peroxidation and cell death.   

 

1.3 Redox-active iron and AD 

From the literature examined in Section 1.2.4 it is apparent that Aβ-associated toxicity is 

increased in the presence of iron. As Aβ is known to act as a “sink” for iron deposition, this 

interaction process is likely to influence ROS production within AD tissues. However, 

significant evidence also suggests there to be increased levels of redox-active iron in 

regions of AD pathology including SPs 
36-38,49,52,58,60,70,105-109

. These iron phases would 

themselves be a source of free radical production and could therefore be pathologically 

relevant to AD.  

 

Cell Survival Cell Death 

Iron

(a) (b)
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1.3.1. Ferrous iron in AD tissues 

Associations between the occurrence of ferrous (redox-active) iron and AD pathology were 

initially observed using modified histochemical techniques, allowing the visualisation of 

both iron(III) and iron(II) content within AD brain tissues 
37

. Iron(II) was closely 

associated with SPs NFTs and neuropil threads in AD tissues, compared to disease free 

control tissues where no specific structures were positively stained for ferrous iron 
37

.  

This, combined with observations that iron chelators ameliorate Aβ-induced toxicity to 

neurons 
54
, suggests Aβ-associated iron rather than the peptide itself to be the predominant 

source of ROS in Aβ-induced toxicity 
49,53

. Further histochemical studies show iron(II) 

levels to be significantly increased in hippocampal AD neurons compared to disease free 

controls, resulting in increased redox activity and RNA damage 
110

. These findings also 

indicate ribosomal RNA (rRNA) to possess a binding site for redox-active iron, suggesting 

that redox-active iron specifically, is a source of oxidative stress in AD tissues 
110

.   

1.3.2. Iron(II)-bearing biominerals in AD 

Initial observations of iron(II)-bearing minerals within tissues of subjects suspected to have 

AD were made by Kirschvink et al. in 1992 
111

. In this study, superconducting 

magnetometry and high resolution electron microscopy techniques identified the mixed-

valence iron mineral magnetite (Fe3O4) within a variety of brain tissues 
111

.  These findings 

were built upon by Dobson (2002), who observed age related increases in biogenic 

magnetite levels within hippocampal tissues from male subjects, suggesting magnetite to 

play a role in the neurophysiology of aging 
112

. Preliminary superconducting magnetometry 

evaluation of magnetite levels from tissues confirmed to contain AD pathology, 

demonstrated increased biogenic magnetite levels in AD subjects compared to age and sex-

matched disease-free controls 
105

. These results suggest that increases in magnetite levels 
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contribute to the increased iron loads observed in AD patients 
105

. Evidence of increased   

< 20 nm diameter magnetite nanoparticle loads in AD tissues compared to sex-matched 

disease-free controls has also been demonstrated 
113

.  Moreover, increased levels of 

magnetite and a cubic iron phase consistent with the pure iron(II) mineral wüstite, have 

been recorded in pathological ferritin removed from AD tissues but not in physiological 

ferritin, using election nanodiffraction and high resolution electron microscopy 
108

. This 

was coupled with a decrease in ferritin ferrihydrite content, suggesting the conversion of 

ferritin’s ferrihydrite core into a redox-active state 
108,109

.  

Recently, in situ mapping and characterization of iron minerals within AD tissues has been 

achieved through the use of synchrotron-based x-ray techniques. Through x-ray 

fluorescence microanalysis, Collingwood et al. demonstrated the presence of multiple iron 

deposits within tissue sections taken from the frontal gyrus of an AD patient 
106

. X-ray 

absorption levels from these iron regions demonstrated the presence of an iron mineral 

consistent with magnetite. Again these results demonstrate a link between increased iron 

loads, and the presence of redox-active iron phases within AD tissues. Further to this the 

same group applied a multidisciplinary approach incorporating high resolution TEM, 

energy dispersive x-ray spectroscopy, electron energy-loss spectroscopy, electron 

tomography and electron diffraction, to image an AD plaque core in three-dimensions 
36

. 

This three-dimensional tomographic imaging revealed the presence of an iron deposit 

approximately 8 nm in diameter (equivalent to the core size of ferritin) with a crystalline 

structure consistent with magnetite or maghemite (Fe2O3, the oxidation production of 

magnetite), to be located within AD plaque material 
36

.  

The presence of redox-active iron minerals in AD tissues may prove to be of pathological 

significance, through the ability of these phases to partake in Fenton chemistry, resulting in 

the generation of neurotoxic ROS 
114,115

. In particular, magnetite is known to promote free 
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radical production not only through Fenton reactions 
116-118

 but also the stabilization of 

triplet states (formed during biochemical reactions). This triplet state stabilization is a 

result of magnetite’s ability to form strong local magnetic fields 
60,113

, dramatically 

increasing ROS production, thereby conveying toxic effects in vitro 
119

 
120

.  

1.3.3 Possible origins of redox-active iron phases 

1.3.3.1 Ferritin malfunction 

Despite the numerous occasions on which iron(II)-bearing phases have been recorded in 

AD tissues, the exact origins of these minerals remains unclear. The increased levels of 

iron(II)-bearing minerals located within pathological ferritin 
108,109

 suggest that the storage 

protein may act as a nucleation site for redox-active iron formation, putatively through the 

conversion of its ferric core into a ferrous phase. Indeed, the < 10 nm and < 20 nm 

magnetite nanoparticles observed in AD tissues (Collingwood et al. 
36

 and Pankhurst et al. 

113
) are in a size range consistent with the core of ferritin. Moreover, through the use of 

TEM, EELS, x-ray absorption spectroscopy, superconducting magnetometry and x-ray 

scattering, low levels of magnetite have been recorded within physiological ferritin 
121

. 

Should ferritin function become compromised in AD, this physiological magnetite may act 

as a seed for further magnetite formation, resulting in increased magnetite burdens, such as 

those observed in superconducting magnetometry measurements of AD tissues 
105,113

. A 

loss of ferritin function in this manner would be extremely detrimental to neuronal health 

due to extensive and widespread ROS production through inappropriate iron storage (and 

redox-active iron formation). Recent findings have shown ferritin function to be 

compromised when exposed to ROS 
66

. Thus the increased levels of ROS observed in AD 

tissues may act to disrupt ferritin function through oxidative modifications to the protein. It 
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should also be noted that ferritin dysfunction is observed in multiple neurodegenerative 

disorders, emphasising the importance of ferritin function to brain health 
122,123

. 

 

1.3.3.2 Iron reduction by Aβ 

The identification of redox-active iron, and iron(II)-bearing biominerals in the immediate 

vicinity of Aβ deposits is also of great intrigue 
36,42,45

. As mentioned previously, iron is 

capable of influencing Aβ fibril conformation and aggregation state. However, this 

interaction process is also seen to have an effect on iron chemistry by altering the valence 

state of iron, indicating that Aβ may contribute to the formation of redox-active iron 

species.  

 

In 1999 Huang et al. demonstrated Aβ to have a strong reductive capacity for transition 

metals including Fe
3+

. This reduction was found to be followed by the trapping of 

molecular oxygen (O2) to generate H2O2 which was then converted to a hydroxyl radical 

(OH•) as per the Fenton reaction. It was found that Aβ itself became oxidized during this 

process, therefore acting as a direct reducing equivalent 
45,50,51

. This process is outlined in 

the panel below. 

Aβ reacts with a metal ion (M) resulting in a reduced metal ion and radicalized Aβ: 

                                           (Aβ)2 + M
(n+1)+

          Aβ: Aβ
+·

 + M
n+                                                           

(4)   

The reduced metal ion reacts with molecular oxygen to generate a superoxide anion (O2
-
): 

                                                   M
n+

 + O2          M
(n+1)+

 +  O2
-                                                                  

(5)   

The superoxide anion undergoes dismutation to generate hydrogen peroxide and       

molecular oxygen: 

                                                O2
-
 + O2

-
 + 2H

+
          H2O2 + O2                                                              (6)   
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The ability of β-amyloid to reduce iron is highly dependent upon its isoform. Where the β-

amyloid peptide was shortened to 28 amino acids in length (Aβ 1-28) the ability to reduce 

iron was lost. This observation suggested that it is the hydrophobic carboxyl-terminal 

domain of β-amyloid that provides the peptide with its reductive properties, whilst N-

terminal of Aβ provides iron binding sites 
51,101,102

. Furthermore, the addition of two extra 

hydrophobic amino acid residues (Ile and Ala) to the 40 amino acid fragment of β-amyloid 

(creating Aβ 1-42), resulted in a significant rise of the reduction properties of the peptide 

compared to the 40 amino acid fragment (Aβ1-40) 
51

. These initial findings suggest that the 

42 base isoform of the peptide possesses the most reductive potential, whilst also being the 

most fibrillogenic.  

 

Further findings by Huang’s group also revealed the amount of hydrogen peroxide 

produced by the Aβ-iron complex is in great molar excess of the amount of metal ions 

present 
50

. It has been suggested that these excessive hydrogen peroxide concentrations are 

a result of iron redox cycling by β-amyloid, thus creating a mechanism by which the 

repeated transfer of electrons to multiple O2 molecules can occur. In theory, two moles of 

Fe
2+

 are required to generate one mole of O2
-
, and as two moles of Aβ are required to 

create one mole of Fe
2+
, four moles of Aβ are needed to generate one mole of H2O2. In 

reality it was found that 25μM of H2O2 could be produced by only 10μM of β-amyloid 

peptide when under high O2 tensions, providing evidence that multiple cycles of Fe
3+

 

reductions must occur 
51
. The potential of Aβ to produce extracellular H2O2 may help to 

explain the high intracellular H2O2 burdens seen in AD, due to the ability of hydrogen 

peroxide to pass over lipid boundaries 
51

.  
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Further evidence of Aβ-mediated iron reduction and redox cycling was provided by Khan 

et al. (2006)
96

. Using in vitro spectrophotometric techniques, iron(III) suspensions were 

found to become chemically reduced following incubation with Aβ. This was accompanied 

by a delayed precipitation of iron as redox-inactive iron hydroxide, enabling extended 

Fe
2+

/Fe
3+ 

redox cycling. In addition, increased Aβ β-sheet formation was correlated to 

increased Fe
2+ 
content, again suggesting Aβ aggregation to increase its reductive capacity. 

This led to the proposal of a three step mechanism (Khan et al.) suggesting a role for Aβ in 

the reduction and oxidation of iron (Figure 1.7): 

 

 

Figure 1.7. Redox cycling of iron by Aβ as described in Khan et al.
96

 (a) Fe
2+

 (red) and 

Fe
3+

 (brown) are bound by monomeric Aβ (blue), inducing the reduction of Fe
3+

. (b) 

Monomers of Aβ assemble into oligomers which may include bound iron. This 

oligomerisation process may also serve to bring iron atoms into closer proximity. Redox 

reaction rates are accelerated and the deleterious effects of Fe
2+

 are increased compared to 

where the peptide is in its monomeric form. (c) Oligomers assemble into immature and 

mature β-pleated fibrils. Iron may be retained by or released from newly formed fibrils. 

Any free iron could then be bound by newly formed fibrils 
96

. 

 

(c) 

(a) (b) 
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Similarly, β-amyloid is shown to be capable of stabilizing ferrous iron by decreasing its 

rate of oxidation. This stabilization effect extends the time with which ferrous iron can 

interact with ROS and partake in Fenton chemistry 
124

. Several β-amyloid fragments 

including Aβ 25-35, Aβ 1-40 and Aβ 1-42 were found to be capable of stabilizing ferrous 

iron, with stabilization effects appearing similar to those observed in preparations 

containing iron and ascorbic acid, a compound known to inhibit the oxidation of Fe
2+  124

.  

 

Curiously, the presence of aluminium has been shown to increase the reductive capacity of 

Aβ upon iron 
96,103

. Aluminium is known  to accumulate in AD tissues 
125

, and is 

implicated as a promoting factor in the development of the disease. It is possible that 

synergies between these metals exist, and that aluminium may influence AD pathogenesis 

through catalysing the formation of redox-active (toxic) iron biominerals within AD tissues 

103
.   

 

From the studies highlighted above, it is apparent that Aβ is capable of inducing redox-

active iron formation following interaction with ferric precursors. This interaction process 

may be involved in the increase of iron(II)-bearing biominerals observed in AD tissues 

thereby contributing to free radical burden and AD pathology. The ability of Aβ to 

chemically reduce iron also provides explanations to the histochemical observations of 

ferrous iron associated with SP material in AD tissues 
35-37,42

. In light of the ferritin core-

sized magnetite deposit found within AD plaque material (Collingwood et al. 
36

) the 

formation of redox active biominerals may involve the interaction of Aβ with the iron 

storage protein ferritin. In fact ferritin has been observed to accumulate within SP material 

in AD tissues, suggesting that Aβ and ferritin are co-localized in the diseased brain 
126

.   
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1.3.4 The amyloid paradox 

Aside from the pro-oxidative effects mentioned above, the interaction between brain iron 

and β-amyloid (in particular, fibrillar forms of Aβ) may also lead to anti-oxidative effects 

under certain conditions 
12,127,128

. In this scenario, excess iron could be sequestered 

(chelated) by Aβ, thereby preventing iron from taking part in the Fenton like reactions 

responsible for the production of ROS, and thus creating an “amyloid paradox” where Aβ 

can act to both increase and decrease iron-associated toxicity 
128
. These effects of Aβ upon 

iron chemistry may prove to be influenced by factors such as the conformational state of 

Aβ when the protein first comes into contact with the metal, or the crystal state of the iron 

phase being examined.  

 

1.4. Synchrotron techniques for the characterization of iron 

phases associated with AD pathology 

Following the discovery of increased levels of iron(II)-bearing biominerals in AD tissues, 

it is imperative to understand the nature of these phases. Iron exists in a wide variety of 

oxide states, with an array of crystal structures that ultimately govern the magnetic 

properties of the metal 
129

. Determining these properties may prove vital in understanding 

the redox-activity (toxicity) of iron(II) biominerals and consequently their potential as 

targets for iron chelation therapies 
12

, and also the use of iron biominerals as a marker for 

the detection of early stage AD 
60

. Furthermore, identifying the localization of these iron 

minerals within regions of AD pathology may prove vital in understanding their origin, and 

how they might contribute to the pattern of neurodegeneration witnessed in AD subjects. 
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Recent developments in advanced synchrotron-based x-ray absorption techniques have 

provided a powerful tool to examine these current gaps in our knowledge 
130

. Indeed x-ray 

techniques have been successfully utilized to demonstrate the presence of magnetite-like 

deposits in AD tissues (Collingwood et al. 2005 
70

) and transgenic mouse tissue (Gallagher 

et al. 
31

) as described in Section 1.3.2. However the precise nature and localization of this 

iron could not be definitively concluded from the techniques employed.  

In this section, the two principal x-ray techniques used in this thesis will be introduced. 

The advantages of each approach will be covered, and I will discuss how these techniques 

can be employed (individually or in tandem) to improve our understanding of the role 

played by iron biominerals in AD.  

 

1.4.1. X-ray absorption spectroscopy and x-ray magnetic circular 

dichroism 

X-ray absorption spectroscopy (XAS) and x-ray magnetic circular dichroism (XMCD) are 

element specific synchrotron-based x-ray absorption techniques that probe the oxidation 

state, site symmetry and magnetic moments of -3d transition metal ions, including iron 
131-

133
. Differences in the elemental composition of iron phases result in alterations to 

XAS/XMCD features, thus these techniques can be utilized to characterize the iron species 

present in a given composite material. The energy of the soft x-rays used in this thesis 

(200-1000 eV) are considerably lower than the equivalent energy imparted in electron 

microscopy, making these techniques preferable for soft matter studies. 

X-ray absorption occurs when the energy from an incident photon, generated from a 

synchrotron source, is absorbed by an inner-shell electron of an atom (1s, 2s, 2p, 3s etc.) 

which is excited to an empty higher energy orbital, leaving a core hole 
132,133

. The photon 
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energy of the x-ray beam is tuned using a monochromator, to an energy range (or “edge”) 

where core electrons of the material of interest become excited. In this thesis the 

predominant energy range examined is 700-740 eV, corresponding to the iron L-edges, in 

which 2p electrons are excited to unfilled 3d orbitals. The precise absorption energy 

spectrum is sensitive to the oxidation state of the cation that absorbs the x-ray. Thus by 

detecting and recording x-ray absorption events across the iron L-edge, x-ray absorption 

spectra characteristic of the oxidation state of a given iron material can be created 
132,133

. 

X-ray absorption events result in the emission of both photoelectrons and Auger electrons.  

Photoelectrons are core-electrons ejected following absorption of the x-ray beam, whereas 

Auger electrons are emitted where higher-orbital electrons fill the core-hole left by the 

photoelectron 
132,133

. In total electron yield (TEY) detection methods, the current from both 

photoelectrons and Auger electrons that escape the sample surface is recorded, providing a 

signal that is proportional to the x-ray absorption.  

Further, probing the magnetic properties of 3d transition elements can be achieved through 

XMCD. This method exploits differences in the x-ray absorption of a magnetically 

polarized material when illuminated with circularly polarized photons. When an atom 

absorbs a circularly polarized photon, the angular momentum of this photon will transfer to 

the excited electron spin through spin-orbit coupling. Reversing the polarization reverses 

the angular momentum of the photon, transferring the opposite momentum to the electron 

spin. Thus photoelectrons of opposing spins (i.e. spin up and spin down) will be created in 

response to illumination with left circularly polarized photons (LCP) and right circularly 

polarized photons (RCP). If an equal number of empty spin up and spin down orbitals exist 

in the valence state, then LCP and RCP will be absorbed identically, as is the case in non-

magnetic materials (Figure 1.8a). However in magnetic materials, there is an imbalance of 

spin-up and spin-down valence holes, and therefore absorption intensities in response to 
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LCP and RCP differ (Figure 1.8b). The difference (dichroism) between the two absorption 

spectra is referred to as the XMCD, and reveals the magnetic moment of the atom which 

has absorbed the x-rays 
132,133

.  

The combination of XAS and XMCD provides a probe of element-specific oxidation and 

magnetic properties. Typical x-ray probing depth for XAS/XMCD techniques operating in 

TEY mode is approximately 5 nm; meaning that information regarding oxidation and 

magnetic state is obtained from the outermost 5nm of a sample material. Thus for large 

iron deposits, say several microns in diameter, XAS/XMCD will provide information 

regarding the surface oxidation/magnetic state. Conversely for nanoscale iron structures 

(such as ferritin, 12 nm in diameter), 5nm probing depth is sufficient to gain an overall 

picture of the oxidative/magnetic properties of this nanoscale iron. 

 

Figure 1.8. The principals of XMCD. (a) In a non-magnetically polarized material, excited 

spin up and spin down electrons occupy an equal number of valence states in response to 

polarized light. (b) In a magnetically polarized material, an imbalance in the number of 

spin up and spin down valence states results in an altered absorption levels in response to 

oppositely circularly polarized light 
132,133

.  

(a) (b)
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1.4.1.1 Applications 

XAS and XMCD allow the characterization of iron oxidative and magnetic state, enabling 

us to distinguish between multiple, similar iron oxide phases 
131

. The sensitivity of these 

techniques 
132,133

, combined with traditional approaches such as electron diffraction could 

allow potentially pathological iron phases associated with AD to be separated from 

physiological iron, as explained below. 

As described in Section 1.2.1, within the human brain, iron is predominantly stored as the 

redox-inactive iron oxyhydroxide, ferrihydrite 
46,64

.  Ferrihydrite is a ferric, poorly 

crystalline material 
129,134-136

, with antiferromagnetic spin ordering at room temperature 

such that the atomic magnetic moments are anti-aligned and thus cancel each other. XAS 

spectra from  pure iron(III) minerals (Figure 1.9; blue) are characterized at the L3 

absorption edge by a dominant peak at 709.5 eV and a low energy shoulder at 708 eV, both 

arising from Fe
3+ 

cations 
131

. At the L2 edge two low intensity peaks are observed at 721 eV 

and 723 eV again arising from Fe
3+ 

cations. The low energy Fe
3+

 feature at 708 eV resides 

at the same energy as the Fe
2+ 

cation peak, thus increases in Fe
2+ 

content of an iron material 

manifest as an enhancement of this feature. Similarly at the L2 edge increases in Fe
2+ 

content result in an increase in Fe
2+ 

cation feature at 721 eV with respect to the Fe
3+ 

feature 

at 723 eV.  In pure iron(II) minerals (Figure 1.9; red) the Fe
2+

 cation peak at 708 eV 

becomes dominant, and the Fe
3+

 cation feature at 709.5 eV disappears. This effect is 

mirrored at the L2 absorption region 
131

.  

 

The mixed valence iron oxide magnetite also provides distinguishable XAS spectrum 

(Figure 1.9; green). In magnetite, the L3-edge Fe
3+ 

cation feature at 709.5 eV is shifted 

slightly down in energy to 709.2 eV, and the Fe
2+ 

cation feature at 708 eV appears as a 

shoulder on the L3 Fe
3+ 

peak. This Fe
2+

 shoulder is approximately two thirds the intensity 
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of the Fe
3+

 peak at 709.2 eV. At the L2-edge, Fe
2+ 

and Fe
3+ 

cation features appear equal in 

intensity. 

 

 

Figure 1.9. Iron L2,3 absorption-edge XAS reference spectra. From bottom to top, iron(III) 

mineral (goethite, FeO(OH)), iron(II) chloride (FeCl2), and magnetite (Fe3O4).  

 

Differences in iron L2,3-edge XAS spectra arising from an incremental increase in Fe
2+ 

content (from 0-100%) with respect to Fe
3+ 

content (100-0 %), reveal that even modest 

increases in Fe
2+ 

content can significantly alter iron XAS spectra (Figure 1.10). This allows 

the identification of pure iron(II) phases such as wüstite (potentially found in pathological 

ferritin cores 
108

), intermediate Fe
2+

/Fe
3+

  phases, and iron(III) phases alike. Further to this 

elemental iron (Fe
(0)

; Figure 1.11, grey
 
) provides L2,3-edge spectra distinct from pure 

ferrous materials as evidenced by the absence of iron oxide features (as indicated by the 

asterisks in Figure 1.11; red).  
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Figure 1.10. Iron L2,3 absorption-edge XAS spectra displaying the effect of altered 

iron(III):(II) ratios upon absorption features. Iron ratios are displayed above each spectrum. 

Absorption spectra were created by adding weighted iron(II) and iron(III) reference 

spectra. 

 

 

Figure 1.11. Iron L2,3 absorption-edge XAS reference spectra of elemental iron (Fe
0
; grey) 

compared to iron(II) (FeCl2; red). Note the absence of the iron cation features (indicated by 

the asterisks in the iron(II) spectra), in the Fe
0 

spectra.  

 

Differences in the magnetic properties of iron minerals can also aid in distinguishing 

between iron phases. Magnetite is a ferrimagnetic iron oxide with alternating lattices of 

Fe
2+

 and Fe
3+

 which are antiferromagnetically coupled in a similar arrangement to 

ferrihydrite (Figure 1.12) 
60

. However unlike ferrihydrite, magnetite has a large net 
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magnetic moment per lattice cell unit due to the atomic spin moments of the Fe
2+

 and Fe
3+

 

ions not cancelling each other 
60

. These differences in spin moments are manifested as a 

characteristic three-peak iron L3-edge XMCD profile, corresponding to Fe
2+

 and Fe
3+

 

cations occupying octahedral and tetrahedral crystal sites (Figure 1.13a) 
137

. For 

titanomagnetite (a solid solution mineral complex of Ti cations within the magnetite crystal 

structure), an additional positive peak is observed because of Fe
2+

 cations occupying 

tetrahedral sites (Figure 1.13b) 
138

. The sign of the XMCD peaks (positive or negative) 

indicates the relative alignment of the magnetic moments of the cations. Furthermore, the 

different crystal symmetry at octahedral and tetrahedral sites results in a small energy shift 

in the XMCD peak positions for Fe
3+

 cations. Thus, although the opposing Fe
3+

 magnetic 

moments cancel each other, their presence can still be detected by XMCD 
132,133

.  

Dichroism effects of 10-15% are characteristic of magnetic iron phases such as magnetite, 

making them clearly discernible from non-magnetic iron phases such as hematite and 

goethite. 

 

 

 

Figure 1.12. Antiferromagnetic ordering showing the anti-alignment of atomic spin 

moments (arrows) 
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Figure 1.13. (a) Magnetite (Fe3O4) XMCD spectrum with labeled octahedral (Oh) and 

tetrahedral (Td) Fe cation contributions. (b) Titanomagnetite (Fe3O4-Fe2TiO4) XMCD 

spectrum 
138

. 

 

Likewise, the oxidation product of magnetite, maghemite (Fe2O3) also displays large 

dichroism effects. Maghemite is a ferric mineral and provides an iron L2,3-edge XAS 

profile indistinguishable from non-magnetic iron(III) phases. However differences in the 

dichroism effects of these minerals should allow the identification of maghemite from non-

magnetic iron species. This is of particular importance due to the ease with which redox-

active minerals become oxidized. For example AD tissue containing magnetite may 

become exposed to aerobic environments post mortem. This could in turn oxidize 

magnetite into maghemite, providing XAS spectra consistent with naturally occurring 

ferric iron phases. It would only be apparent upon XMCD examination that the formation 

of a (strongly) magnetic iron phase had occurred.  An example of how XMCD can be used 

to distinguish between two iron phases with similar XAS profiles is shown in Figure 1.14. 
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Figure 1.14. Comparisons of (a) XAS and (b) XMCD iron L2,3-edge profiles from 

biogenic iron precipitates formed by incubating schwertmannite containing various levels 

of arsenic (shown as a wt% above each spectra), in the presence of the iron reducing 

bacterium Geobacter sulfurreducens. The two XAS spectra shown in (a) have similar 

features and are not easily distinguishable. However clear differences in the XMCD 

profiles are evident, with the iron phase formed under 4.2 wt% arsenic providing an 

XMCD curve  reminiscent of a non-magnetic iron material (such as goethite); whereas the 

iron formed under 2.3 wt% arsenic provides an XMCD spectra consistent with 

magnetite/maghemite. Figure modified from Cutting et al. (2012) 
139

. 

 

Thus XAS and XMCD used in tandem could allow the characterisation of iron biominerals 

within AD tissue to a greater level of detail than currently achieved. The ability of these 

techniques to determine both oxidation states and magnetic properties offers a clear 

advantage over electron based techniques such as EELS, where only oxidation state can be 

determined. However, due to a large x-ray beam size (ca. 100-200 µm diameter) these x-

ray absorbance techniques do not allow the visualisation of localized structures. One 

technique allowing both the evaluation of iron oxidation state, and the imaging of 

biological structures is x-ray microspectroscopy, which is described in the following 

section.   
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1.4.2 Scanning transmission x-ray microscopy 

Scanning transmission x-ray microscopy (STXM) is a synchrotron-based technique that 

enables the element-specific imaging of a given material to a spatial resolution of 

approximately 20 nm. It allows the imaging of structures, providing pictures reminiscent of 

those obtained via transmission electron microscopy (TEM), whilst simultaneously 

generating spectral information regarding the chemical composition of the material 

present, in a manner similar to nuclear magnetic resonance (NMR) spectroscopy. STXM 

thereby addresses limitations of both TEM (limited chemical sensitivity), and NMR 

(incapable of providing direct images of the sample material).  Moreover STXM x-ray 

beam exposure does not induce chemical changes in the composition of iron materials as is 

often seen in electron-based techniques including EELS (for electron-beam induced iron 

reduction see 
140

), and therefore is a more reliable tool to assess the chemical composition 

of structures.  

The chemical imaging of a sample material is achieved by tuning soft x-rays to a desired 

single energy (typically ranging between 100-1600 eV) via the use of a monochromator. A 

zone plate is then used to focus coherent x-rays into a single spot (pixel) on the sample of 

interest, whilst an order sorting aperture (a pinhole-sized aperture) is used to filter any 

unwanted diffraction orders 
141

. Once passed through the sample, the transmitted x-rays are 

recorded via the use of a detector (for a STXM schematic see Figure 1.15). Energy specific 

images are created by raster scanning the sample across the focus point of the x-ray beam. 

Absorbance spectra for a given x-ray focus point (pixel) are generated by recording the 

level of x-ray transmission across multiple energies through a desired energy range (e.g. 

the carbon K-edge 280-320eV) 
141

. This approach allows the imaging of a structure in 

which each pixel provides an individual x-ray absorption spectrum.  
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Figure 1.15. Schematic of a scanning transmission x-ray microscope 

 

A variety of sample types (ranging from dry powders to encapsulated solutions) can be 

suitable for STXM examination, providing sample thickness is not too large. Maximum 

sample thickness depends upon the material being examined, and is ca. 300-500 nm for 

carbon studies, and 1-2 µm for higher energy edges (such as the iron L-edge). The ability 

to operate throughout much of the soft x-ray energy range enables the imaging of multiple 

different elements, potentially found within a single structure. Importantly this allows the 

examination of both metals and elements within the “water window” (the elemental 

building blocks of biology). Thus STXM provides a powerful means with which to 

examine the interactions between metals and biological structures. One such example of 

STXM application to characterize the metal content of a biological system is provided by 

Lam et al. (2010) who utilized said technique to characterize both the oxidative and 
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magnetic state of iron-bearing magnetosomes within the magnetotactic bacterium strain 

MV-1 
142

. This group provided images of MV-1 bacterium by scanning at the carbon K-

edge, before repeating scans at the iron L-edges to reveal the iron content of the sample 

area. By overlaying these two scans, the authors created a colour composite that allowed 

the position of iron deposits (magnetosomes) within the bacterium to be identified (Figure 

1.16).  Iron L2,3-edge x-ray magnetic circular dichroism probing of the magnetosomes (30 

nm in size) showed these structures to possess oxidative and magnetic properties consistent 

with the crystalline iron-oxide magnetite (Figure 1.17) 
142

. Hence STXM was used to 

assess both the biological content of a given sample, whilst also providing detailed 

information regarding the oxidative and magnetic properties of any metals present, to a 30 

nm spatial resolution.  

In addition to iron absorption spectra, STXM can be utilized to generate carbon K-edge 

spectra from the peptides of a biological structure. Following the extensive characterisation 

of x-ray absorption features generated from amino acid bases and peptide bonds, it is also 

possible to create theoretical carbon x-ray absorption spectra for a given peptide sequence  

(an example calculated spectra for Aβ(1-42) is shown in Figure 1.18) 
143

. These theoretical 

spectra can be used as a reference to aid in the identification of protein based substances in 

a given sample (e.g. confirming the presence of Aβ in AD plaque material). Thus STXM 

provides a potential means to probe not only the oxidation state of AD-associated iron at a 

nanometer resolution, but also the localization of iron with regards to pathological AD 

structures.   
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Figure 1.16. STXM composite image showing the organic (green) and iron (blue) content 

of MV-1 magnetotactic bacterium (from Lam et al. 
142

) 

 

Figure 1.17. (Upper) Average XAS spectra from 9 magnetosomes located within MV-1 

bacterium when illuminated with right circularly polarized (RCP) and left circularly 

polarized (LCP) x-rays. (Bottom) Comparison of the resulting magnetosome XMCD (blue) 

compared to a magnetite reference (black). (Figure modified from Lam et al.
 142
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Figure 1.18. Calculated carbon K-edge absorption spectra for the amino acid sequence of 

Aβ(1-42). Absorption features labelled 1, 2 and 3 correspond to contributions from 

aromatic amino acid, the π* amide peak and arginine respectively. Calculations were 

performed following the methods described in Steward-Ornstein et al. 
143

. 

 

Utilizing this technique to investigate the role of iron in AD may act to address current 

discrepancies in knowledge including (but not limited to): Aβ/iron binding, mechanisms 

behind iron accumulation in areas of AD pathology, and the origins of redox-active 

biominerals found in AD tissue. Therefore STXM may prove to be an invaluable tool in 

the understanding of AD pathology.  
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1.5 Summary 

From the available scientific literature, it appears that the accumulation of brain iron and 

formation of redox-active iron biominerals is inherently linked to the development of AD 

pathology; including SPs comprised of Aβ. However how these redox-active minerals are 

formed, and their exact contribution to the process of AD pathogenesis remains elusive. To 

date, therapeutic measures intended to lower brain iron burdens in AD patients have 

provided encouraging results, with multiple studies showing a retardation of disease 

progression following drug administration 
12,144-150

. These studies suggest that excess brain 

levels may directly contribute to the progression of AD, and therefore represent a target for 

preventative medicine.  However due to poor drug specificity, detrimental side-effects 

following administration of these therapeutic agents have also been reported owing to 

disruptions in natural iron functions 
146

.  

It is therefore imperative to distinguish “pathological” iron phases (i.e. iron species 

associated with the development of AD), from natural iron stores. By doing so, therapeutic 

treatments can be developed that specifically target toxic iron forms, whilst maintaining 

healthy brain functions. Furthermore by understanding the origins of redox-active iron 

phases, it may be possible to prevent their formation, further decreasing iron-associated 

toxicity in AD subjects. Finally it may be possible to utilize “pathological” iron as a 

bioinorganic marker for early-stage AD, long before the development of traditional clinical 

symptoms of the disorder.  
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1.6. Thesis aims and objectives 

The overall aim of this thesis is to explore the origins and nature of redox-active iron 

biominerals associated with AD, in an attempt to further our understanding as to how iron 

contributes to the pathogenesis of AD.  Investigations focus around the ability of Aβ to 

convert naturally occurring non-toxic ferric precursors, into potentially toxic redox-active 

iron phases, akin to those observed in AD tissues. Through the use of state-of-the-art 

synchrotron-based techniques, three key objectives are achieved as follows: 

 The detailed chemical characterization of ferric iron materials following interaction 

with Aβ 

 Examination of iron and Aβ co-localization to a nanometer scale 

 The characterization of iron deposits associated with regions of AD pathology in 

transgenic AD tissues 

It is hoped that the findings from these studies will contribute to the development of 

technologies intended to detect and prevent (inhibit) the progression of AD.  
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2.1 X-ray absorption spectroscopy (XAS) and x-ray magnetic 

circular dichroism (XMCD) 

In order to determine the oxidative and magnetic state of the iron forms used in this thesis, 

x-ray absorption spectroscopy (XAS) and x-ray magnetic circular dichroism (XMCD) were 

performed at the iron L-edge. These techniques, introduced in Section 1.4.1 were employed 

to characterize the oxidation state and magnetic properties of starting iron materials, and to 

monitor any changes to these iron phases once incubated in the presence of Aβ. 

Measurements were performed on beamline I10 at Diamond Light Source (Oxfordshire, 

UK), and beamline 4.0.2 at the Advanced Light Source (Berkeley Laboratory, USA) 

2.1.1 Equipment development for XAS/XMCD examination 

XAS and XMCD are techniques that are performed under a high vacuum, and direct 

imaging of samples to identify regions of interest (ROI) once under vacuum was not 

possible. Due to the inhomogeneous distribution of Aβ/iron materials examined in this 

thesis, efficiently identifying sample position and regions of iron accumulation was of 

paramount importance. To aid in sample location, aluminium probes (70 x 12 x 2 mm) 

were produced containing 2 mm diameter holes at 14 pre-determined co-ordinates (Figure 

2.1a). The advantages of this probe were two fold. First, these holes gave a fixed position 

for sample mounting, allowing ROI to be readily located. Secondly these holes allow the 

position and dimensions of the aluminium probe to be defined (with regards to the 

computational software used to control the x-ray beam); whilst also aiding in the alignment 

of the aluminium probe which was required to be perpendicular to the incoming x-ray 

beam. For the probes to be utilized to their full advantage, additional detectors were 
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utilized to record transmitted x-rays (i.e. photons that pass through the holes in the 

aluminium probe), in addition to the sample drain current. 

To further aid in sample preparation and location, copper plates were manufactured (8 x 12 

x 2 mm), containing two, 2 mm diameter holes spaced 5mm apart, each located within a 

4mm (diameter) recessed area (Figure 2.1b). The recessed areas of these grids acted as a 

point for copper TEM grids (3 mm diameter, carbon/formvar coated; 200 mesh) to be 

attached (Figure 2.1c), onto which sample solutions were deposited. By attaching TEM 

grids to the larger copper plates, the efficiency of sample preparation was significantly 

improved. In particular, TEM grids did not need to be directly handled when depositing 

sample solutions, a great advantage when working within a glove chamber (see Section 

2.1.2; Figure 2.4), where dexterity is compromised. 

The holes of the copper plates were aligned to the holes in the aluminium probe (Figure 

2.1d), allowing transmission XAS/XMCD to be conducted (Figure 2.1e), further aiding in 

sample location. A maximum of seven copper plates (each containing two holes/ sample 

positions) could be mounted on a probe at a single time. By attaching TEM grids to copper 

plates rather than directly onto the aluminium probes, the samples mounted onto 

aluminium probes were easily interchangeable. This allowed a great level of flexibility 

with regards to sample selection, and enabled sample probes to be mounted quickly and 

efficiently. The ability to quickly mount/modify the samples on sample probes was of vital 

importance, as XAS/XMCD experiments were often time limited. The bottom two holes of 

the aluminium probe were often left free (Figure 2.1d) to aid in x-ray beam alignment.  

To allow anoxic transportation of the aluminium probes (containing oxygen sensitive 

samples) to the XAS/XMCD beamline, Perspex O-ring sealed containers were produced, 

with a 14 mm diameter opening allowing the sample probe to be inserted (Figure 2.2).  
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These containers were filled with nitrogen (N2) prior to sample probe insertion, within a N2 

filled glove chamber.  

 

Figure 2.1. Aluminium probes and copper plates used in XAS/XMCD experiments. (a) 

Aluminium probe prior to sample loading. (b) Copper plates to which TEM grids were 

attached, as shown in (c).  (d) Aluminium probe loaded with 3 copper plates. (e) The 

underside of the loaded aluminium probe shown in (d), demonstrating the alignment of the 

2 mm holes in the probe and copper grids, allowing x-ray transmission. 

 

 

Figure 2.2. (a) O-ring sealed Perspex container used for the transportation of aluminium 

sample probes under anoxic conditions. (b) Aluminium probe inserted within the container 

shown in (a). 

 

(a) (b)
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Finally, to concentrate any magnetic material that was present in sample solutions 

(therefore allowing easy location) a magnet array was created (Figure 2.3). This magnet 

was built with a recessed area matching the dimensions of the copper plates used for 

sample mounting (Figure 2.3b). Pin magnets were located under each of the two holes of 

the copper plate, creating a magnetic focal point at the centre of the each hole (Figure 

2.3a). Upon sample deposition all magnetic material is drawn to this central point (Figure 

2.3c). Thus once mounted on the aluminium probe, the exact location of any magnetic 

materials was known, prior to XAS/XMCD examination. 

 

Figure 2.3. Magnet array used during sample preparation for XAS/XMCD experiments. 

(a) Unloaded magnet array, showing the location of the two pin magnets (arrows), located 

within the central recessed area. (b) Magnet array loaded with a copper plate containing 

two TEM grids, positioned directly above the pin magnets. (c) Example of the magnetic 

iron accumulation induced by the magnet array (white arrows), following the deposition of 

magnetite nanoparticles onto the TEM grids. 
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Pin magnets
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2.1.2 XAS/XMCD sample preparation 

All sample preparation, transportation and examination was conducted under strictly 

anoxic conditions as to prevent any changes in iron oxidation state prior to XAS and 

XMCD examination. Such methodology has previously been successfully employed by 

Coker et al. (2009), where the technique was shown to prevent the surface oxidation of 

magnetite nanoparticles 
151

. 

Copper TEM girds (carbon/formvar coated; 200 mesh) were attached to copper plates with 

conductive silver paint (Figure 2.1c), and placed within the magnetic array as described 

above (Figure 2.3b). Small sample volumes (15 µL) were then deposited onto the TEM 

grids, and excess liquid removed using filter paper, to prevent any artefacts that may occur 

due to the drying of the sample solution (such as salt crystal formation). Sampling was 

performed at Keele University, within a N2 filled glove chamber as pictured in Figure 2.4. 

Once sample deposition was complete, copper plates were stored individually within 

plastic boxes, thus preventing sample cross-contamination.  Whilst still within a N2 filled 

glove chamber, plastic boxes (containing copper plates) were transferred into a N2 filled, 

O-ring sealed container, for sample transportation to the synchrotron-light source (Figure 

2.5).  

Once at the synchrotron beamline, sample-loaded copper plates were mounted onto the 

aluminium probes with conductive carbon tape, within a N2 filled glove chamber  (Figure 

2.1d). Conductive materials were used throughout, allowing an electron drain current to be 

established, enabling the detection of x-ray absorption events. Once mounted with samples, 

aluminium probes were inserted into N2 filled Perspex containers, prior to their removal 

from the glove chamber. Aluminium probes were then attached to a larger XAS/XMCD 

probe (from which a drain current could be recorded), before being transported to the 
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synchrotron beamline chamber. Beamline chambers were backfilled with N2 preventing 

iron oxidation once the probes had been inserted. Sample materials were exposed to 

oxygen for a maximum of one second whilst being lowered into the beamline chamber. An 

overview of the beamline chamber used in the XAS/XMCD experiments conducted at 

Diamond light Source is shown in Figure 2.6. 

 

Figure 2.4. Nitrogen filled glove chamber used throughout the sampling process for 

XAS/XMCD and STXM experiments. 

 

 

Figure 2.5. Methodology used for the storage and transport of XAS/XMCD samples. 

Individual copper plates containing TEM grids with deposited sample materials were 

stored within sealed plastic boxes. These plastic boxes were then transferred into an O-ring 

sealed airtight container. This process was conducted within a nitrogen filled glove 

chamber as shown in Figure 2.4.  
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Figure 2.6. Illustration of the XAS/XMCD sample probe (left), and photograph of the 

octupole electromagnetic beamline chamber (right) used in XAS/XMCD experiments.  

Incident beam direction (orange), octupole magnet position and magnetic field direction 

(red), and sample position (green) are labelled on the beamline chamber. Beamline 

chamber is located at Diamond Light Source (Oxfordshire, UK).  

 

2.1.3 Sample mapping and x-ray absorption spectra generation 

After insertion of the sample probe into the beamline chamber, the position of the 

aluminium probe was determined, and the co-ordinates of the sample grids were defined. 

To visualize the iron content of the sample area under XAS/XMCD examination, two 
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dimensional maps revealing areas of iron accumulation were created. This was achieved by 

performing sample area scans just below (706 eV) and on the iron L3 peak energies (710.5 

eV) at a spatial resolution of 100 µm. Off peak x-ray absorption values were then 

subtracted from the equivalent peak iron x-ray absorption values, resulting in the removal 

of background absorption signals and highlighting areas of iron accumulation (Figure 2.7).  

 

Figure 2.7. Typical x-ray absorption maps of sample grids containing (a-c) iron(III) and 

(d-f) magnetite. (a) And (d) off iron L3 peak images (706 eV). (b) And (e) on-peak L3 iron 

images (710.5 eV).  (c) And (f) difference maps showing distribution of iron. Note the 

central dense accumulation of iron in (f) induced by the magnetic focal point produced by 

the magnetic array shown in Figure 2.3. Iron x-ray absorbance values are shown to the 

right of the images. 

 

 The x-ray beam position was then moved to areas of iron accumulation and swift, low 

(energy) resolution x-ray absorption scans were performed across the iron L3-edge (700-

716 eV; see Figure 2.8a). These preliminary scans provided an indication as to the 

oxidation state of the iron (Fe
2+

, Fe
3+ 

etc.) along with the strength of the iron signal (false 

positive readings were often displayed when producing iron maps from highly conductive 
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areas such as silver paint) whilst minimizing exposure time of iron to the x-ray beam. More 

detailed energy scans were then performed over the entire iron L-edge (700 – 740 eV; 

Figure 2.8b) to provide detailed information regarding iron oxidation state. Maximum 

energy resolution was typically 0.1 eV. XAS spectra were recorded using the TEY method 

(see Section 1.4.1). 

 

Figure 2.8. Example iron(III)  L-edge XAS spectra at (a) low energy resolution, and (b) 

high energy resolution.  

 

2.1.4 Recording XMCD spectra 

XMCD spectra were obtained by recording two x-ray absorption spectra across the iron L-

edge (as described above) with opposed 0.6 T magnetic fields orientated along the x-ray 

beam direction, induced by the octupole electromagnet beamline chamber (see Figure 2.6). 

The magnetic field was reversed at each photon energy point in the scan, to minimize x-ray 

beam drift effects between the two spectra. Differences (dichroism) between these two 

absorption spectra create XMCD spectra (Figure 2.9) allowing the magnetic properties of 

an iron-based material to be elucidated. 
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Figure 2.9. Example iron L2,3-edge XAS spectra for maghemite, obtained in opposing 0.6 

T magnetic fields (top). The differences between these spectra result in XMCD spectra 

(bottom). 

 

2.1.5 Data reduction 

X-ray absorption levels from sample materials were normalized to the incident beam 

intensity (recorded by thin non-iron-based foils) to remove background absorbance levels 

that were not attributable to the sample itself (thereby reducing the “noise” in x-ray the 

absorption spectra). Off resonance background absorbance levels were then subtracted. For 

XMCD spectra, x-ray absorption spectra obtained in opposing magnetic fields were scaled 
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to unity at the L3 peak feature, and resonance background absorbance levels were 

subtracted. Data was averaged where applicable. Further smoothing of “noisy” x-ray 

absorption spectra was performed at the off-resonance energy regions, using a 3-5 point 

sliding window to improve spectra quality. No smoothing was performed over the peak 

iron L-edge features. 

 

2.2 Scanning transmission x-ray microscopy (STXM) 

As described in Section 1.4.2, scanning transmission x-ray microscopy (STXM) is a 

synchrotron-based microspectroscopy technique that provides element-specific images and 

x-ray absorbance information of a given sample to a spatial resolution of approximately 30 

nm. In this thesis STXM was employed to examine the interaction between Aβ and various 

forms of iron in vitro, and also to investigate iron deposits within transgenic AD mice brain 

tissue in situ. By using this technique it is possible to attain images demonstrating the 

correlation between Aβ structures and areas of iron deposition, whilst also providing x-ray 

absorption data regarding the peptide structure of Aβ and the oxidation state of iron 

deposits. STXM was performed on the PolLux beamline at the Swiss Light Source 

(Villigen, Switzerland), and the Soft X-ray Spectromicroscopy beamline at the Canadian 

Light Source (Saskatoon, Canada). 

2.2.1 Sample preparation  

Small volumes (15 µL) of sample solutions were deposited onto silicon nitride (Si3N4) 

membranes (Figure 2.10; DuneSciences, 75 nm membrane thickness) by the use of a 

micropipette. Membranes were comprised of multiple 100 µm
2
 Si3N4 windows etched from 

a silicon wafer base, with a hydrophilic coating encouraging the deposition of sample 
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material to the membrane surface. The use of Si3N4 membranes was preferential to that of 

carbon/formvar coated copper TEM grids (used elsewhere in this thesis), as their 

composition does not interfere with the generation of carbon images and carbon K-edge x-

ray absorbance spectra. As STXM is a largely non-destructive imaging technique, 

complementary electron microscopy examination of these membranes was achievable 

following STXM analysis.  

 

Figure 2.10. Silicon nitride membranes used for STXM studies. (a) Overview of the 

membrane structure, comprised of multiple 100µm
2 

windows. (b) Optical microscopy 

image showing regions of dense aggregate deposition (regions of interest), highlighted by 

red dashed circles.  
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Si3N4 membranes were mounted onto stainless steel microspectroscopy plates for STXM 

examination (Figure 2.11) Examination of the sample membranes under optical 

microscopy was conducted prior to loading in the STXM chamber to identify ROI for 

STXM investigation (Figure 2.10b). Microscopy plates were then inserted into the STXM 

beamline chamber as shown in (Figure 2.11). For the STXM experiments described in 

Chapter 5, (and also for the Aβ structure shown in Figure 3.9) attempts were made to 

perform sample preparation and examination under anoxic conditions as to prevent 

changes in iron oxidation state. Sample deposition was conducted within a nitrogen filled 

glove bag as shown in Figure 2.4. Si3N4 membranes were kept under nitrogen within an O-

ring sealed glass jar throughout transportation to the STXM beamline. Loading of the 

membranes onto spectromicroscopy plates, and preliminary optical microscopy were again 

conducted under anoxic conditions; and the STXM chamber was backfilled with nitrogen 

prior to sample transfer. However unlike the approaches outlined in Section 2.1.2 these 

techniques have not been confirmed to strictly maintain anoxic environments.  

 

Figure 2.11. Schematic showing the loading of silicon nitride membranes onto stainless 

steel microspectroscopy plates (left), and the insertion of sample plates into the STXM 

beamline chamber (right; green region). X-ray beam direction, (orange), and STXM 

focussing/ detection equipment are labelled on the STXM beamline chamber. Photograph 

is of the PolLux beamline chamber at the Swiss Light Source. See also the STXM 

schematic in Section 1.4.2 (Figure 1.15). 
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2.2.2 Carbon and iron imaging and spectroscopy 

Carbon K-edge (280-320 eV) mapping was conducted on the Si3N4 membranes to assess 

the biological content of the sample area. Coarse large scale (typically 2 mm
2
) scans were 

conducted at 380 eV to gain an overview of the sample membrane, enabling the location of 

ROI as previously identified through optical microscopy (Figure 2.12a). These preliminary 

scans were conducted at energies above the carbon K-edge to provide higher levels of 

photon transmission, therefore aiding in the imaging process where the x-ray beam is not 

fully focussed onto the sample area (x-ray intensity is lost when at carbon absorption 

energies, due to the carbon content of the beamline optics).  

More (spatially) detailed images of individual 100 µm
2
 Si3N4 windows were then obtained 

revealing ROI (Figure 2.12b). Maps displaying the carbon content of these ROI were 

created by conducting scans at the peak carbon K-edge energy  (288 eV) and off peak 

energy (286 eV), with differences between these absorbance values indicating areas of 

carbon (biological) material (Figure 2.12c). Carbon maps were conducted to a spatial 

resolution typically ranging between 30 – 60 nm and therefore enabled the location of Aβ 

aggregates whilst also providing detailed images revealing aggregate structure. By 

subtracting off resonance carbon K-edge absorption values from peak on resonance values, 

absorption artefacts (caused by, for example, salt crystal formation) are removed, 

providing artefact-free carbon images. This process is shown in Figure 2.13, where bright 

spots (formed through salt formation following the drying of KH buffer) can be seen in the 

off resonance (Figure 2.13a) and on resonance (Figure 2.13b) images taken at 286 eV and 

288.5 eV respectively. By subtracting the absorption values taken at 286 eV from those 

taken at 288.5 eV, these spotted artefacts are removed (Figure 2.13c), resulting in an 

artefact free carbon image.  
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Figure 2.12. Identifying regions of interest in STXM experiments. (a) Course scan taken at 

an intermediate energy (380 eV), providing an overview of the sample membrane, (b) Scan 

of an individual 100 µm
2 

membrane window, containing a large aggregate structure. (c) 

Carbon K-edge image (288 eV), of the dense carbon structure identified in (b).  

 

 

Figure 2.13. Example of the carbon mapping process. (a) Image taken at 286 eV showing 

absorption artefacts (bright spots). (b) Image taken at 288.5 eV showing carbon content 

and the artefacts shown in (a). (c) Carbon map created by subtracting image (a) from (b), 

providing carbon content without absorption artefacts. Scale bars = 5 µm. 
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X-ray absorption spectra for carbon regions were generated by taking images at multiple 

energies over the carbon K-edge to an energy resolution of 0.1 eV (Figure 2.14). These so 

called carbon “stacks” were typically conducted at a lower spatial resolution (around 100 

nm) than the previously described carbon maps due to time limitations. This method of 

microspectroscopy allows x-ray absorption spectra to be generated from each pixel of a 

stack image, enabling carbon spectra for a highly specific region (e.g. a carbon area with a 

high iron content) to be created. Spatially dependent x-ray absorption data is of vital 

importance whilst examining inhomogeneous sample materials comprised of localised 

structures in the nanometer-micrometer size range.   

Iron L3-edge maps revealing the iron content were created in a similar manner as described 

above, by raster scanning across the sample area at the peak iron L3 energy (709.5 eV) and 

off peak energy (705 eV) with differences in these scans displaying the location of iron 

deposits, whilst providing artefact-free iron images (Figure 2.15).  Iron x-ray absorption 

spectra were created by conducting scans over at multiple energies over the iron L-edge. 

Again, due to the high level of spatial resolution of STXM, individual sub-micron iron 

aggregates can be examined. As the absorbance energies of iron are higher than those of 

carbon, STXM carbon analysis of Aβ structures was conducted prior to analysis of the iron 

content, in order to prevent any damage to carbon structure. 
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Figure 2.14. Carbon STXM spectra, created from carbon stacks performed over the carbon 

K-edge. Each energy point in the spectra corresponds to the absorption levels recorded in 

the STXM image taken at that energy (as shown below the spectra).  

 

 

Figure 2.15. Example of the iron mapping process. (a) Image taken at 705 eV. (b) Image 

taken at 709.5 eV. (c) Artefact-free iron map created by subtracting image (a) from (b). 

Scale bar = 1 µm. 
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2.2.3 Data reduction 

STXM data was analysed using AXIS (Analysis of X-ray Images and Spectra) 2000 

imaging software, a programme specialized for the processing of STXM data (online 

resource 
152

). To obtain quantitative carbon and iron images, transmitted x-rays were 

converted to optical density (OD), thereby removing background absorption noise 

attributable to the synchrotron beamline. The conversion of a transmitted signal to optical 

density is achieved according to: 

                                                             OD = ln (I0/I)                                                (7) 

Where I0 is the incident x-ray beam flux, and I is the x-ray beam flux transmitted through 

the sample.  

OD is in turn related to the sample properties by the following: 

                                                              OD =  µ(E).ρ.t                (8) 

Where µ(E) is the mass absorption coefficient for a given energy (E), ρ is sample density 

and t is the thickness of the sample. 

To determine I0, absorption levels were recorded from regions of blank silicon nitride 

membrane, adjacent to carbon/iron regions of interest (Figure 2.16a). These absorption 

values were then used to convert those obtained from carbon/iron structures (Figure 2.16b) 

into OD (Figure 2.16c), according to equation 7.  
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Figure 2.16. Converting STXM images to optical density. (a)The incident x-ray flux (I0) is 

measured by recording transmitted x-ray levels through a blank region of silicon nitride 

membrane (highlighted by dashed region; top), providing an absorption spectrum for the 

incident x-ray beam (bottom). (b) Transmitted x-ray levels are recorded through the 

sample material (I; top) providing a spectrum for the sample (bottom). (c) The transmitted 

x-ray signal in (b) is converted to optical density according to equation 7, providing 

quantitative x-ray absorption spectra (bottom) for the sample material. This process was 

conducted for stacks taken over the carbon K-edge, and iron L-edge. 

 

Where multiple images were taken at different energies (e.g carbon/iron stacks), images 

were aligned to a common feature, thereby compensating for any x-ray beam drift that may 

have occurred during scanning  (scans can take anywhere up to 2 hours dependent upon the 

scan area). STXM-x-ray absorbance spectra were created by selecting areas (pixels) of 

interest from aligned stack images obtained over the carbon K-edge or iron L-edge.  

Calculated carbon K-edge spectra for the amino acid sequence of Aβ (see Section 1.4.2; 

Figure 1.18), were created using AXIS 2000 software, through the “calculate peptide 
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spectra” function 
143,152

 This feature utilizes a database containing the carbon K-edge x-ray 

absorbance spectra of all known amino acids, to generate calculated carbon K-edge 

absorption spectra for a desired amino acid sequence. The effect of the peptide bonds upon 

these calculated spectra is also addressed by this function. This feature was developed from 

methodology described by Stewart-Ornstein et al. 
143

.   

 

2.3 Electron microscopy 

To generate high resolution images, and to ascertain the crystal structures of the Aβ /iron 

structures examined in the thesis, transmission electron microscopy (TEM) was performed. 

TEM was conducted on a JEOL 1230 microscope system operating at 100 kV. 

Small volumes (15 µL) of sample solutions/suspensions were deposited onto 

carbon/formvar coated TEM grids (Agar Scientific; 200 mesh), and excess liquid was 

removed using filter paper. Sample preparation and TEM examination were performed in 

aerobic conditions. 

Both bright field images and electron diffraction patterns were obtained from Aβ /iron 

structures. During electron diffraction examination, a selected area aperture was utilized to 

obtain diffraction patterns from selected areas of interest. Electron diffraction images were 

created by exposing the transmitted electron beam onto photographic film. Films 

containing diffraction patterns were developed and subsequently scanned to provide 

diffraction patterns in a digital format. The d-spacing values and lattice parameters of 

diffraction patterns were compared to mineral references from the American mineralogist 

crystal structure database, and Joint Committee on Powder Diffraction Standards (JCPDS) 

files. 
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2.4 Ferrozine assay 

In order to assess the iron(II) content of sample solutions throughout this thesis, Ferrozine 

iron(II) quantification assays were performed. First described by Stookey in 1970 
153

, 

Ferrozine is a compound that selectively binds to iron(II) ions  in solution, with this 

binding resulting in the formation of a stable magenta-coloured  complex.  The intensity of 

this colouring is positively correlated to the concentration of iron(II) ions present (Figure 

2.17), thereby allowing the spectrophotometric determination of iron(II) content in 

solution. 

 

Figure 2.17. Example of the magenta coloured complexes formed following the addition 

of iron(II) to Ferrozine. Iron(II) concentration is increased from left to right (top to bottom 

0-1 mM). Each iron concentration is presented in triplicate.  

 

In addition to iron(II) content, this technique can be utilized to determine the total iron 

content of a given solution, through the addition of an iron reducing agent such as 

hydroxylamine hydrochloride. The addition of this reducing agent results in the reduction 
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of iron(III) ions to an iron(II) state, allowing Ferrozine to bind. Hence iron(II) content as a 

proportion of total iron content for a solution can be determined through Ferrozine assay. 

2.4.1 Determination of iron(II) content 

Crystalline iron-oxides such as magnetite do not bind effectively to Ferrozine, as their 

crystal structure can prevent their constituent iron atoms from forming complexes with the 

iron reagent (see Section 2.4.4). To counteract this, all sample suspensions/solutions were 

digested in hydrochloric acid prior to Ferrozine addition to destroy iron(oxide) crystal 

structure enabling Ferrozine binding. This digestion step also allowed the release of iron 

from any structure from which it is bound (e.g. Aβ), further facilitating Ferrozine binding. 

This process is described below.  

50 µL of the sample solutions were removed and digested in 75 µL of 0.5 M hydrochloric 

acid (HCl) and 25 µL of deionized water (dH2O). 50 µL of the digested iron solutions were 

then added to 785 µL of 2 mM Ferrozine™ solution (50 mM HEPES buffer)  in a 48 well 

cell culture plate, and the absorbance read at 562 nm using a BioTek plate reader. A plate 

reader was used for absorbance readings as large numbers of samples can be measured 

simultaneously using this instrument. 

2.4.2 Determination of total iron content 

50 µL of sample solutions were removed and concurrently digested and reduced in 75 µL 

of 0.5 M HCl and 25 µL of 6.25 M hydroxylamine hydrochloride (NH2OH•HCl). A 

concentrated reducing agent was employed to ensure complete iron reduction to an iron(II) 

state.  50 µL of the digested/reduced solutions were added to 785 µL of 2 mM Ferrozine 

solution. Absorbance was read at 562 nm.  
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Absorbance values were compared to those obtained from iron standards (see below), 

allowing the molarity of iron solutions to be calculated. Iron(II) concentration as a 

percentage of total iron content were determined from these resulting molarity values.  

2.4.3 Preparation of iron standards 

In order to determine the molarity of iron solutions used in this thesis, standard curves 

showing absorbance (at 562 nm) as a function of iron(II) concentration were created. Iron 

standard curves were prepared before each experiment to ensure values were correct for 

the time of examination.  Iron solutions ranging in concentration from 0-1 mM were 

prepared from iron(II) ethylenediammonium sulfate tetrahydrate and iron(III) chloride, 

representing iron(II) and iron(III) standards respectively. These iron solutions were then 

digested and reduced as described above and absorbance was read at 562 nm. Typical 

examples of iron(II) and iron(III) standard curves are shown in Figure 2.18a and 2.18b 

respectively. A small, positive absorption offset can be seen at 0 M iron content, arising 

from background absorbance of 562 nm light by the solvents used in the Ferrozine assay. 

This background absorbance was constant throughout all Ferrozine measurements and was 

subtracted from absorption values obtained from iron solutions/suspensions.  
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Figure 2.18. Example standard curves showing absorbance (562 nm) values with respect 

to iron(II) concentration for (a) reduced iron(II) ethylenediammonium sulfate tetrahydrate 

and (b) reduced iron(III) chloride standards. Gradients and R
2
 values are provided for each 

curve. Blue dashed lines show the linear trend of the curves. Error bars show standard 

deviation (n=3).  
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2.4.4 Variation in acid digestion times 

As is demonstrated in Figure 2.19a, when crystalline iron phases such as 6-line ferrihydrite 

and magnetite (and to a lesser extent 2-line ferrihydrite) are added to Ferrozine (following 

incubation with an iron reducing agent),  only a limited amount of Ferrozine binding is 

achieved, with respect to their total iron content. Therefore for the iron(II) quantification 

assays used in this thesis, a 0.5 M HCl acid treatment was employed to allow the complete 

binding of Ferrozine to the iron content of these minerals.  

Depending upon the iron phase used, and the crystallinity of said phase, varying periods of  

HCl digestion are required to enable efficient Ferrozine binding. As a general rule, the 

more crystalline an iron phase, the longer (time period) acid digestion will take. It was 

found that amorphous iron forms such as iron(III) chloride are capable of binding to 

Ferrozine without the need for acid digestion (as shown in Figure 2.19a; black). Efficient 

Ferrozine binding can be achieved with poorly crystalline iron phases such as 2-line 

ferrihydrite following 3-6 hours of acid digestion (Figure 2.19b; blue). However 6-line 

ferrihydrite requires 24 hours of HCl digestion to enable full Ferrozine binding (Figure 

2.19b; red). Finally magnetite (highly crystalline) requires a minimum of 48 hours of acid 

digestion to enable Ferrozine binding (Figure 2.19b; green). Using these values, suitable 

digestion/reduction time periods were chosen for each iron type used when performing a 

Ferrozine assay. The minimum acid digestion time required to allow efficient Ferrozine 

binding was chosen to minimize the auto oxidation of any iron(II) content in the 

suspensions/solutions being examined.  
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Figure 2.19. Ferrozine binding (as a percentage of the theoretical maximum) to 400 µM 

iron(III), 2-line ferrihydrite (Fhy), 6-line ferrihydrite, and magnetite (Fe3O4) suspensions, 

when incubated in the presence of (a) hydroxylamine hydrochloride (NH2OH•HCl), or (b) 

hydrochloric acid (HCl) and hydroxylamine hydrochloride. Error bars show standard 

deviation (n=3). 
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2.5 Superconducting quantum interference device (SQUID) 

To assess the magnetic moment of the sample solutions/suspensions when exposed to 

external magnetic field, superconducting quantum interference device (SQUID) 

magnetometry was conducted. SQUID magnetometry allows the detection of extremely 

small magnetic moments (≤10
-8

 emu), making the technique ideal for the detection of 

subtle changes in the magnetic properties of a given sample material (e.g. the formation of 

magnetic iron oxide phases from non-magnetic precursors).  

Small volumes (20 µL) of sample solution/suspension were deposited into plastic vessels 

for SQUID magnetometry examination. Plastic containers were sealed with molten wax 

before being plunged into liquid nitrogen to flash freeze solutions/suspensions, thereby 

maintaining solution/suspension chemistry to that of the time of sampling. Frozen samples 

were mounted into a Quantum Design SQUID-VSM and immediately cooled to 200K to 

prevent thawing. Hysteresis loops displaying the magnetic properties of sample material 

were created by monitoring magnetic moment (EMU) against an applied magnetic field (-

5000, 5000 Oe). The magnetic response of a given material to magnetic fields is 

temperature sensitive. In particular, small ferromagnetic/ferrimagnetic iron oxide 

nanoparticles may exhibit a superparamagnetic response at room temperature, yet display 

magnetic coercivity when cooled beneath its blocking temperature (where nanoparticle 

magnetization can no longer flip during measurement). Therefore, SQUID measurements 

were taken in a temperature range from 200K to 10K (below the blocking temperature of 

the materials used), to overcome any superparamagnetic effects. Diamagnetic background 

signals arising from the plastic transport vessel and the solvent materials used in sample 

preparation were subtracted to provide the magnetic signal arising from the 

ferromagnetic/ferrimagnetic sample material.  
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2.6 Alternating current magnetic susceptometry 

To determine the alternating current (AC) magnetic susceptibility of sample 

solutions/suspensions, measurements were performed using an AC susceptometer.  AC 

susceptometry involves monitoring a sample material’s magnetic response to the 

application of an oscillating magnetic field, allowing factors such as frequency dependent 

susceptibility to be evaluated. The principle underlying AC susceptibility measurements 

involves subjecting sample material to a small alternating magnetic field, then measuring 

the magnetic flux variation (manifesting as voltage) induced by the sample using a 

detection-coil system. This voltage is proportional to the sample magnetic susceptibility, 

providing information regarding a sample’s magnetic state. 

200 µL of sample solutions/suspensions were deposited into a glass vial which was then 

placed within an AC susceptometer. Measurements of sample susceptibility could be made 

in a frequency dependant manner over a frequency range of 10-250000 Hz, or as a function 

of time, where continual susceptibility measurements are taken at a fixed frequency. 

Background signals arising from glass vial containers and solvents (water, buffer etc.) were 

subtracted to provide true sample susceptibility values. For dilute samples (e.g < 500 µM) 

the frequency range was limited to 1-150 kHz due to instrument sensitivity limitations.  
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3.1 Introduction 

As was discussed in Chapter 1, links have been established demonstrating the occurrence 

of iron accumulation in regions of AD pathology 
34,39,48

, including extracellular senile 

plaques comprised of Aβ
35,42

, along with intracellular NFTs 
21,22,154

, both hallmark lesions 

of AD
18,155

. In particular, increased levels of potentially neurotoxic redox-active and 

potentially neurotoxic iron(II)-bearing minerals have been observed in AD tissue 

36,42,105,108,113
. Additionally iron has been shown to induce Aβ to aggregate into a form 

capable of inducing neuronal injury 
95,104

. As both oxidative stress and Aβ accumulation 

are recognised as early stage events in AD pathogenesis 
57
, the relationship between Aβ 

and iron may play a vital role in the onset of AD pathology. 

However despite this evidence, little is known about the process of Aβ/iron interaction, and 

the mineral products of such interactions have not been fully characterized. Many 

important questions regarding the role of iron in AD pathology remain unanswered: i) what 

are the origins of the iron(II)-bearing minerals observed in AD tissue? ii) How does iron 

come to be accumulated in Aβ structures?  iii) Does this co-localization of Aβ iron lead to 

the formation of redox-active iron forms?  

In this chapter a variety of methods (described in Section 3.2) were utilized to examine the 

interaction between Aβ and synthetic ferric iron when co-incubated over a 144 hour period, 

in an attempt to address the questions described above.  Scanning transmission x-ray 

microscopy (STXM) was used to visualize localized regions of iron and Aβ accumulation, 

enabling the determination of iron oxidation state when present within Aβ structures. X-ray 

absorption spectroscopy (XAS) and x-ray magnetic circular dichroism (XMCD) were 

employed to probe larger sample areas, providing information regarding the oxidation state 

and magnetic properties of iron following incubation with Aβ that were representative of 
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the sample as a whole. Additional supporting information was obtained through 

spectrophotometric iron(II) quantification and transmission electron microscopy (TEM) 

techniques. Further to this, the effect of aluminium(III) addition upon the process of 

Aβ/iron interaction was also assessed.  

Here, TEM images displaying the effect of iron addition upon Aβ fibrillar and 

aggregational state are shown (Section 3.3.1.1). Carbon/iron STXM analysis demonstrating 

the accumulation of iron within Aβ structures coupled with the oxidation sate of said iron 

is then presented (Section 3.3.1.2). Evidence of iron reduction following Aβ interaction (in 

the presence or absence of aluminium) is provided through XAS (Section 3.3.2), and the 

quantification of Aβ mediated iron reduction is demonstrated via spectrophotometric 

iron(II) quantification (Section 3.3.3). Additionally, XMCD data displaying the magnetic 

properties of iron following Aβ interaction over a 144 hour period are displayed (Section 

3.3.4).  The significance of these results in understanding the role played by Aβ/iron 

interaction in AD is then discussed (Sections 3.4 and 3.5), along with the implications of 

these findings for future investigations (Section 3.6).  

 

3.2 Materials and methods 

3.2.1 Scanning transmission x-ray microscopy and transmission electron 

microscopy 

Element specific images revealing the structure and composition of Aβ/iron(III) aggregates 

with a spatial resolution of approximately 20 nm were obtained by performing scanning 

transmission x-ray microscopy (STXM) on the PolLux beamline at the Swiss Light Source 

(Villigen, Switzerland). Transmission electron microscopy (TEM) was performed using a 
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JEOL 1230 microscope operating at 100 kV. Where both STXM and TEM were employed 

on the same sample membrane, the STXM measurements were performed first to exclude 

the effect of electron beam damage to the aggregates.  

3.2.1.1 Preparation of samples 

Frozen Aβ(1-42) (Bachem) was thawed and dissolved in 0.1 M NaOH to create a 1mg/mL 

(220 µM) stock. NaOH was used to dissolve any insoluble Aβ aggregates that may have 

formed during peptide storage, thereby reverting amyloid aggregation. The Aβ stock was 

left at room temperature for 30 minutes to ensure complete peptide dissolution before 

being immediately added to modified Krebs-Henseleit (KH) buffer (pH 7.4; 100 mM 

PIPES). Two amyloid treatments were prepared: i) To assess the co-aggregation of Aβ and 

iron, 18 mM iron(III) nitrate solution was added to KH buffer immediately after Aβ and 

resulting Aβ/iron hydroxide suspensions were left to incubate at 37°C for 96 hours before 

sampling.  ii) In order to investigate the inclusion of iron into pre-formed Aβ structures, Aβ 

solutions in KH buffer were allowed to incubate for 48 hours at 37°C before the addition 

of 18 mM iron(III) nitrate solution. Following the addition of iron(III), Aβ/iron(III) 

hydroxide suspensions were allowed to incubate for a further 30 minutes before sampling. 

For both Aβ/iron preparations, final peptide and iron concentrations were 35 µM and 370 

µM respectively. Additional Aβ solutions intended for STXM and TEM characterization of 

the peptide in the absence of metal addition were created by diluting the 220 µM Aβ stock 

with KH buffer to create a 35 µM Aβ solution.  

3.2.1.2 STXM analysis 

Small volumes (15 µL) of Aβ/iron(III) suspensions were deposited onto silicon nitride 

membranes (75nm thickness, DuneSciences), and membranes were loaded onto aluminium 

plates for STXM examination  as previously described (Section 2.2.1). Not all Aβ/iron 
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samples were kept under anoxic conditions throughout sample transportation and loading. 

From the results displayed in Section 3.3 only the aggregate shown in Figure 3.9 was kept 

under anoxic conditions prior to STXM examination (using the methodology described in 

Section 2.2).  

Carbon mapping revealing the amyloid structure of Aβ/iron aggregates, and carbon K-edge 

(280-320 eV) x-ray absorption examination providing absorption spectra characteristic of 

Aβ were performed as described in Section 2.2.2. This process was repeated at the iron L-

edge (700-740 eV) to reveal the iron content of these Aβ structures, along with the 

oxidation state of any iron present.  As absorbance energies of iron are higher than those of 

carbon, STXM carbon analysis was conducted prior to analysis of the iron content in order 

to minimise x-ray induced damage to amyloid structures. 

3.2.2 Electron microscopy examination 

Small volumes of samples (15 µL) were deposited onto carbon/formvar coated copper 

TEM grids (200 mesh; Agar Scientific), and excess liquid removed using filter paper. TEM 

and electron diffraction were performed using a JEOL 1230 microscope operating at 100 

kV. 

3.2.3 X-ray absorption spectroscopy and x-ray magnetic circular 

dichroism spectroscopy 

3.2.3.1 Preparation of iron/amyloid suspensions 

Iron(III) hydroxide suspensions were prepared by diluting 18 mM iron(III) nitrate (Sigma-

Aldrich) in deionized water and subsequently neutralizing to pH  7 with 1 M sodium 

hydroxide (NaOH), giving an iron concentration of 440 µM. Suspensions containing both 

440 µM iron(III)  and 440 µM aluminium(III) at pH  7 were created from 18 mM iron(III) 
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nitrate, and 37 mM aluminium(III) nitrate (Perkin-Elmer) in a similar manner as described 

above, with  aluminium(III) nitrate being added after the iron(III) nitrate. All suspensions 

were sonicated for five minutes prior to Aβ addition to encourage a homogenous metal 

distribution.  

A 1mg/mL (220 µM) Aβ stock was created as described previously (Section 3.2.1.1), 

before being added to the previously prepared metal suspensions. Aβ/metal suspensions 

were again neutralized to pH 7 following the addition of the Aβ stock, via the addition of 

0.5 M hydrochloric acid (HCl). Final Aβ and metal concentrations were 35 µM and 370 

µM respectively. Amyloid-free iron hydroxide suspensions were created in the same 

manner as above with the substitution of deionized water in place of Aβ. All Aβ/iron 

suspensions and amyloid-free controls were incubated at 37°C over a period of 144 hours. 

3.2.3.2 XAS/XMCD measurements 

Sample suspension deposition onto copper TEM grids, and mounting of grids onto 

aluminium probes was conducted as described in Section 2.1 (Figure 2.1). Sampling was 

performed after 30 minutes, 48 hours and 144 hours of metal incubation with Aβ. Sample 

materials were kept under anoxic conditions throughout the experimental process, as 

described in Section 2.1.2 (Figure 2.4), to prevent any changes in iron valence chemistry.  

XAS and XMCD measurements were conducted on beamline 4.0.2 at the Advanced Light 

Source (Berkeley Laboratory, USA) and beamline I10 at Diamond Light Source 

(Oxfordshire, UK). Prior to spectra acquisition, two dimensional maps at a spatial 

resolution of 100 µm revealing areas of iron accumulation were conducted at the iron L3 

edge (see Section 2.1.3). Once areas of iron accumulation were identified, scans across the 

entire iron L2,3 absorption edge (700-740 eV) were performed, providing information 

regarding both the oxidation state and the magnetic properties of the iron. However not all 
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iron deposits located in this way provided a sufficiently stable signal for full XAS/XMCD 

analysis to be performed.  

X-ray absorption (XAS) spectra, revealing the oxidation state of iron in the samples, were 

recorded using the total electron yield method, whilst the magnetic properties were probed 

by analysing XMCD spectra. The latter were obtained by measuring the difference in x-ray 

absorption using circularly polarized x-rays, with a 0.6 T magnetic field being applied in 

opposing orientations along the x-ray beam direction.  

 

3.2.4 Iron(II) quantification in suspension: Ferrozine assay 

Spectrophotometric determination of the iron(II) content of Aβ/iron suspensions was 

achieved by performing a Ferrozine iron(II) colorimetric quantification assay 
153

.  

Small volumes of Aβ/iron samples were removed and acid digested in 0.5 M HCl for three 

hours at room temperature (see Section 2.4).  Acid digested samples were then added to     

2 mM Ferrozine, and absorbance read at 562 nm. The total iron content of the Aβ/metal 

suspensions was recorded by adding small volumes of the sample suspension to 0.5 M HCl 

and 6.25 M hydroxylamine hydrochloride (an iron reducing agent), at room temperature 

for 3 hours. These reduced samples were then added to 2 mM Ferrozine and absorbance 

read at 562 nm as before. The iron(II) content of Aβ-free iron controls were assessed in the 

same way to provide iron(II) background levels for all iron suspensions used. Iron(II) 

content as a percentage of total iron content was then determined as described in      

Section 2.4. 

Spectrophotometric measurements were performed as describe above on samples taken 

after 0, 24, 48, 72, 120 and 144 hours of metal incubation with Aβ. No iron(II) 
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quantification data was collected after 96 hours of incubation due to the limited amount of 

sample volume available. 

3.2.4.1 Statistical analysis 

Statistical analysis of the data obtained from iron(II) quantification in suspension was 

performed using a one-way analysis of variance (GraphPad Prism 6). This is a method of 

comparing sample means for two or more populations. The null hypothesis of equal means 

was rejected at the 5% confidence level.  

 

3.3 Results 

3.3.1 The co-aggregation of iron and Aβ(1-42) 

3.3.1.1 Aβ/iron aggregate structure 

Photographs displaying iron(III) hydroxide suspensions in the absence and presence of Aβ 

following 24 hours of incubation at 37°C are displayed in Figure 3.1. Where iron(III) was 

allowed to incubate in the absence of Aβ, iron precipitates were seen to deposit to the 

bottom of the sample vial forming a dense orange sediment. However when incubated with 

Aβ, iron hydroxide precipitates were seen to remain suspended throughout the sample 

medium with little sedimentation occurring. Such images suggest the addition of Aβ to 

stabilize iron(III) hydroxide precipitates in solution, possibly by incorporating said iron 

into its protein aggregate structure.  
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Figure 3.1.  Photographs of iron(III) hydroxide suspensions in the presence (left) and 

absence (right) of Aβ following 24 hours of incubation at 37°C. 

 

To investigate the effect of iron(III) addition to amyloid fibrillar structure and 

aggregational state TEM was performed. TEM images displaying Aβ fibrillar structures 

formed in the absence and presence of iron(III) hydroxide are shown in Figure 3.2 and 

Figure 3.3 respectively. Where Aβ was incubated in the absence of iron, small amyloid 

aggregates can be seen, typically ranging from 1-5 µm in diameter and comprised of fine 

fibril structures (Figure 3.2). Such fibril structures are consistent with those previously 

reported in literature for Aβ 
95,156-148

.  

Examination of amyloid aggregates formed when incubated with iron(III) revealed the 

formation of structures ranging from 1-50 µm in size and containing electron dense 

regions,  examples of which are shown in Figure 3.3. No obvious correlation between 

incubation time and aggregate size could be determined in these samples with both smaller 

(<5 μm) aggregates, and thick amorphous electron opaque regions seen in many of the 

samples even after only 30 min incubation. Electron diffraction patterns obtained from 

these Aβ/iron structures provided no evidence of the presence of crystalline material. 
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Figure 3.2. TEM images of Aβ aggregates formed in the absence of iron(III). 

 

 

 

 

 

 

 

 

 

Figure 3.3. TEM images of typical Aβ structures formed following (a) 0.5 and (b) 96 

hours of Aβ incubation with iron(III). 
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3.3.1.2 Aβ/iron aggregate elemental composition 

To investigate the nature of the electron dense regions in the aggregates, scanning 

transmission x-ray microscopy was performed. Where Aβ and iron(III) were added 

simultaneously and allowed to incubate for 96 hours, carbon K-edge mapping of 

aggregates showed evidence of fine structure similar to that observed by TEM, together 

with dense carbon containing regions (Figure 3.4).  

Aggregate x-ray absorption across the carbon K-edge (280-320 eV) provided spectra 

consistent with the calculated carbon spectrum for the amino acid sequence of Aβ(1-42) 

peptide (Figure 3.4f) 
143

. These carbon spectra were also indistinguishable to carbon 

spectra collected from Aβ structures formed in the absence of iron(III) (Figure 3.4f).  

Characteristic features of the peptide spectrum are a low energy peak (labelled 1, Figure 

3.4f) which arises from the aromatic amino acids, the dominant π* amide peak (labelled 2), 

and a weaker shoulder feature (labelled 3) associated with arginine. Examination of 

aggregate x-ray absorbance at the iron L3-edge showed regions of iron accumulation within 

the amyloid structure, indicating the co-aggregation of iron with Aβ (Figure 3.4b and e). A 

comparison of aggregates measured by both STXM and TEM showed that many of the 

dense regions seen by TEM were due to accumulated iron within the aggregate (Figure 

3.4d and e). Throughout all Aβ/iron samples examined, no evidence of iron accumulation 

was observed in the absence of Aβ structures.  
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Figure 3.4. STXM and TEM images with additional carbon K-edge absorption spectra 

from a Aβ/iron aggregate formed following 96 hours of incubation. (a) Carbon map 

showing aggregate Aβ structure. (b) Iron map displaying the iron content of the same 

aggregate. (c) Carbon/iron composite image of the Aβ (cyan) and iron (red) content shown 

in (a) and (b) respectively. (d) and (e) TEM images of the Aβ aggregate as labelled in (c). 

(f) Calculated (blue) and experimental (red and green) carbon K-edge spectra for Aβ. 

Calculated spectrum was obtained using methods described in Stewart-Ornstein et al.
143

. 
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Carbon K-edge and iron L3-edge examination of Aβ samples allowed to incubate in KH 

buffer for 48 hours prior to the addition of iron(III), led to the observation of Aβ structures 

indistinguishable to those formed where Aβ and iron(III) were added simultaneously 

(Figure 3.5a). Combined STXM and TEM images of these aggregates showed them to be 

fibrillar in nature containing multiple areas of iron accumulation (Figure 3.5); suggesting 

iron had incorporated into Aβ structures that had formed prior to the addition of the metal. 

 

Figure 3.5. STXM and TEM images of a Aβ aggregate allowed to incubate for 48 hours 

prior to the addition of iron(III). (a) A composite image showing the Aβ (cyan) and iron 

(red) content of the Aβ/iron aggregate. TEM images showing the fibrillar structure of the 

Aβ/iron aggregate in areas of high (b) and low (c) iron content as displayed in (a).   

 

To assess the effect of Aβ/iron co-aggregation upon Aβ structure, carbon K-edge spectra 

obtained from Aβ aggregates containing iron were compared to the carbon spectra acquired 

from Aβ structures with no detectable iron signal. Although no dramatic differences in 
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carbon K-edge spectra were apparent, subtle changes in the width of the π* amide peak 

(288 eV) were often seen, manifesting as a widening of this peak feature when Aβ was 

incubated with iron(III) (Figure 3.6, green). However this widening effect was also seen in 

carbon dense Aβ aggregates formed in the absence of iron(III) (Figure 3.6, red). Therefore 

this broadening of the π* amide peak appears to be a result of carbon thickness, rather than 

changes to the carbon structure of Aβ when incubated with iron(III). Iron is known to 

promote the aggregation of Aβ 
95,148

, resulting in the formation of carbon dense structures, 

explaining the frequent peak widening effect observed in Aβ structures containing 

iron(III). 

 

Figure 3.6. Carbon K-edge absorption spectra from amyloid aggregates comprised of thin 

Aβ (blue; observed following 48 hours of incubation in the absence of iron), dense Aβ 

(red; 0.5 hours incubation in the absence of iron) and Aβ + iron(III) (green; 48 hours of 

incubation in the presence of iron). Asterisks (*) indicate the position of the π* amide peak 

at 288 eV.  
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3.3.1.3 Iron oxidation state following co-aggregation with Aβ 

STXM examination of iron accumulations incubated in the absence of Aβ at the iron L2,3-

edge provided iron absorption spectra characteristic of a pure iron(III) mineral (see Section 

1.4 ; Figure 1.9 for reference iron(III) spectra). No enhancements to Fe
2+ 

features at either 

the L3 edge (708eV) or L2 edge (721 eV) were apparent, indicating no reduction to have 

taken place (Figure 3.7).  

 

Figure 3.7. STXM iron L2,3-edge absorption spectra recorded from deposits of iron(III) 

recorded in the absence of Aβ.  

 

Where iron regions are too thick/dense to allow the transmission of x-rays, a saturation of 

signal at the iron L3 peak region can occur. For iron(III) minerals this results in an apparent 

increase in the low energy Fe
3+

 feature at 708 eV with respect to the dominant Fe
3+ 

feature 

at 709.5 eV, which can be mistaken as an increase in Fe
2+ 

content (as is illustrated in 

Figure 3.8; blue). To determine between occurrences of iron signal saturation and genuine 

cases of iron reduction, the iron L2 edge was examined. As the L2 region x-ray absorption 
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intensities are much lower than that of the L3 region, signal saturation is less likely to 

occur. Therefore where genuine iron(II)-bearing phases are present, increases in Fe
2+ 

cation 

features at both the iron L3 (708 eV) and L2 (721 eV) regions are apparent (see Figure 3.8 

red, for an iron(II) reference spectra). In cases of iron x-ray absorption saturation increases 

in Fe
2+ 

features may be apparent at the L3 edge but not at the L2 edge (Figure 3.8; blue). 

Further to this, where pure iron(II) phases are present, a shift in iron L3 peak energy from 

709.5 eV to 708 eV is observed, with the dominant Fe
3+ 

 feature at 709.5 eV disappearing 

(Figure 3.8; red). 

 

Figure 3.8.  Iron L2,3-edge absorption spectra recorded from a dense deposit of iron(III) 

resulting in saturation of signal (blue), compared to a spectrum obtained from a pure 

iron(II) material (red). Note the saturation induced increases in 708 eV peak intensity 

(dashed line labelled 1) compared to 709.5 eV peak intensity (dashed line labelled 2) in the 

saturated iron(III) spectra (blue). These saturation effects are not apparent across the L2 

region (dashed lines 3 and 4), with absorption features being characteristic of a pure Fe
3+ 

material. 

 

 

700 710 720 730

43

1

L
2

 

 

In
te

n
si

ty
 (

a
r
b

. 
u

n
it

s)

Energy (eV)

 Fe(II)

 Saturated Fe(III)

L
3

2

L2

L3



Chapter 3 

87 

 

Iron L-edge x-ray microspectroscopy examination of certain Aβ/iron structures (Figures 

3.9, 3.10 and 3.11) provided iron L2,3-edge x-ray absorption spectra displaying enhanced 

Fe
2+

 features compared to Aβ-free iron(III) controls.  

In an aggregate formed following 96 hours of Aβ/iron incubation (which had been 

maintained under anoxic conditions throughout the experimental procedure), subtle 

enhancements in Fe
2+

cation absorption features are apparent at the iron L3 edge (708 eV) 

and L2 edge (721 eV) compared to time-matched Aβ-free iron(III) controls (Figure 3.9d). 

These Fe
2+ 
enhancements suggest the chemical reduction of iron localized within the Aβ 

aggregate. In this instance iron was found to be extensively accumulated within the Aβ 

structure, with multiple iron deposits several microns (ca. 2-6 µm) in diameter being 

recorded (Figure 3.9b and c). Although it appears that these enhancements to Fe
2+ 

cation 

features are a result of Aβ mediated iron reduction, the subtlety of the changes to the XAS 

profile mean that enhancements due to iron saturation effects (as shown in Figure 3.8; 

blue) cannot be precluded.   
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Figure 3.9. STXM images and iron L2,3-edge spectra of an Aβ/iron aggregate formed 

following 96 hours of Aβ/iron(III) incubation. (a) Carbon map showing the Aβ structure of 

the aggregate. (b) Iron map revealing the iron content of the aggregate. (c) Carbon/iron 

composite image displaying both the Aβ (cyan) and iron (red) content shown in (a) and (b) 

respectively. (d) Iron L2,3-edge absorption spectra obtained from this Aβ/iron structure 

(red), compared to a Aβ-free iron(III) control (blue dashed). 

 

However, Aβ/iron structures (Figures 3.10 and 3.11) formed following 48 hours of iron 

incubation with Aβ, provided regions of iron with L2,3 x-ray absorption spectra 

characteristic of  chemically reduced iron phases. Surprisingly these reduction effects were 

observed despite the samples being exposed to aerobic environments.  Carbon K-edge and 

iron L3-edge x-ray microspectroscopy examination of these Aβ aggregates revealed 

multiple small concentrated areas of iron to be located within Aβ carbon structure (Figure 

3.10a-c and Figure 3.11a-c). Such distributions of iron differed dramatically to those 
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displayed in Figure 3.9, where iron was present as large precipitates, widely spread 

throughout the Aβ aggregate.  

Iron L2,3-edge absorption profiles obtained from these structures demonstrated iron to be 

present in varied oxidation states (Figure 3.10f and Figure 3.11f). Within the Aβ/iron 

aggregate displayed in Figure 3.10, iron is shown to exist as iron(III) (regions 1 and 2),  

and also as a heavily reduced iron(II)/(III) intermediate (region 3). Iron regions from the 

Aβ structure shown in Figure 3.11 were found to be in a pure iron(III) state (region 1), 

along with a reduced iron phase reminiscent of zero-valent iron (region 2). These reduction 

effects were mirrored at the iron L2-edge (720-725 eV), suggesting chemical reduction to 

have taken place rather than the enhancement of Fe
2+

 absorption features through 

saturation effects (as shown in Figure 3.8; blue). As reduced iron forms could not be 

formed in the absence of Aβ, the occurrence of these redox-active phases appears to be as a 

result of iron(III) reduction by Aβ. 
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Figure 3.10.  STXM and TEM images along with carbon K-edge and iron L-edge spectra 

of an Aβ/iron aggregate formed following 48 hours of Aβ/iron(III) incubation. (a) Carbon 

map showing the Aβ structure of the aggregate. (b) Iron map revealing the iron content of 

the aggregate. (c) Carbon/iron composite image displaying both the Aβ (cyan) and iron 

(red) content shown in (a) and (b) respectively. (d) TEM image of the Aβ aggregate shown 

in (c). (e) Carbon K-edge spectra for this Aβ aggregate. (f) Iron L2,3-edge spectra of iron 

regions labelled in (b).  
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Figure 3.11. STXM and TEM images along with carbon K-edge and iron L-edge spectra of 

an Aβ/iron aggregate formed following 48 hours of Aβ/iron(III) incubation. (a) Carbon 

map showing the Aβ structure of the aggregate. (b) Iron map revealing the iron content of 

the aggregate. (c) Carbon/iron composite image displaying both the Aβ (cyan) and iron 

(red) content shown in (a) and (b) respectively. (d) TEM image of the Aβ aggregate shown 

in (c). (e) Carbon K-edge spectra for this Aβ aggregate. (f) Iron L2,3-edge spectra of iron 

regions labelled in (b).  
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The aggregates displayed in Figures 3.10 and 3.11 both provided a strong carbon signal, 

and carbon K-edge x-ray absorbance spectra consistent with the amino acid sequence of 

the Aβ(1-42) peptide 
143
, indicating no changes to Aβ carbon structure had occurred with 

increased redox-active iron content (the decreased π* peak height shown in Figure 3.11e is 

believed to be as a result of sample thickness/density). However when these Aβ/iron 

structures were imaged under TEM, it was apparent that no fibrillar Aβ structure remained. 

Instead an amorphous structure could be seen containing several electron dense regions 

that correlated to the iron content observed via STXM, suggesting a possible association 

between the occurrence of ferrous iron phases and a disruption to Aβ fibril structure. Note 

also the x-ray beam induced damage to sample membranes (manifesting as darkened, 

striped, square regions) observed under TEM (Figures 3.10d and 3.11d). This damage 

occurs through the exposure of sample membranes to x-rays in the iron L-edge energy 

range, and demonstrates the requirement to examine sample materials at the lower-energy 

carbon K-edge, prior to iron L-edge examination.  

 

3.3.2 X-ray absorption spectroscopy examination of iron oxidation state, 

following Aβ interaction 

In the preceding section STXM was employed to ascertain the oxidation state of localized 

iron deposits. However this approach does not provide an efficient means to determine the 

prevailing oxidation state of iron across the entire sample area. Conversely, due to the large 

diameter of the x-ray beam used in XAS measurements (relative to STXM beam size), 

XAS provides an effective means to determine the overriding iron oxidation state of a 

given sample. Furthermore, associated XMCD measurements allow the magnetic state of 

iron materials to be elucidated (see Section 3.3.4). Thus when used in tandem STXM and 
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XAS allow the localized and generalized characterisation of iron oxidation state. In the 

following two sections the effect of Aβ interaction upon iron oxidation state is examined 

through XAS. The effect of aluminium addition (also known to accumulate in AD tissues) 

upon iron oxidation state following incubation with Aβ is also assessed. Aβ/iron samples 

were kept under strictly anoxic conditions and XAS was performed at Diamond Light 

Source beamline I10, and the Advanced Light Source beamline 4.0.2. 

3.3.2.1 Iron(III) series 

Generally, crystalline iron minerals (such as ferrihydrite, examined in Chapter 4, and 

magnetite, examined in Chapter 6) are not susceptible to x-ray beam induced reduction 

effects at the soft x-ray energy range used in this thesis. However as more amorphous iron 

forms were used here, the effect of the x-ray beam on these phases was explored. Repeated 

x-ray absorbance scans across the iron L2,3 edge were performed, and changes in the XAS 

profile as a function of x-ray beam exposure were monitored. An example of this process is 

shown in Figure 3.12, where four successive XAS scans were performed on a ferric iron 

aggregate that was unstable in the x-ray beam. Despite an x-ray beam mediated reduction 

effect being apparent over the first three XAS scans, this reduction effect plateaued on the 

fourth scan with iron being present as an iron(II)/(III) intermediate, displaying that x-ray 

exposure alone was not sufficient to form a pure iron(II) phase.  Further to this, it should 

be noted that due to the scanning operation mode utilized in STXM experiments, no x-ray 

induced beam reduction was seen to occur when examining iron aggregates under STXM 

(Figure 3.13). 
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Figure 3.12. Iron L2,3-edge x-ray absorption spectra of an unstable ferric iron aggregate 

following four successive XAS measurements. Fe
2+
 cation peak position is indicated by a 

grey dotted line at 708eV. 

 

. 

Figure 3.13. STXM iron L2,3-edge x-ray absorption spectra obtained from a Fe(III) 

reference materials (goethite) when resin embedded (top), and directly exposed to the x-ray 

beam (bottom). No evidence of x-ray beam induced reduction was observed following 

prolonged periods of x-ray beam exposure. 

 

Iron L2,3 x-ray absorption spectra obtained from iron(III) samples maintained under anoxic 

conditions measured using XAS/XMCD both in the absence (a) and presence (b) of Aβ are 

shown as a function of time in Figure 3.14.  
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Where iron(III) was incubated in the absence of Aβ, the XAS spectra obtained were seen to 

resemble that of iron(III) references (see Figure 1.9; blue) , but with slightly enhanced Fe
2+ 

features (Figure 3.14a). As the iron forms used for this experiment were amorphous in 

nature, this enhancement in iron(II) content is believed to be a result of x-ray beam 

exposure. No such x-ray beam reduction effects were observed where crystalline iron 

phases were examined using XAS (see Chapters 4, 5 and 6).  

Where Aβ was incubated with iron(III) for 30 minutes, it was not possible to obtain a 

sufficient signal for reliable XAS and XMCD measurements. However, following 48 hours 

of incubation with Aβ (Figure 3.14b), clear evidence of enhanced Fe
2+

 cation features were 

apparent at 708 eV, with iron appearing as an Fe
2+

/Fe
3+ 

intermediate phase (see Chapter 1; 

Figure 1.10 for a calculated Fe
2+

/ Fe
3+ 

intermediate XAS spectrum). This moderate 

reduction effect is likely to be induced x-ray beam exposure, as progressive reduction was 

seen with increasing periods of beam exposure. After 144 hours of Aβ/iron incubation, iron 

was found to be reduced to a pure iron(II) phase  (Figure 3.14b). The Fe
2+

 cation peak at 

708 eV is seen to be dominant, with the Fe
3+

 features at 709.5 eV having disappeared. This 

reduction effect was mirrored at the iron L2-edge. As pure iron(II) phases could not be 

formed in the absence of Aβ, the occurrence of this iron(II) mineral appears to be as a 

result of Aβ interaction with iron(III).  
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Figure 3.14. Iron L2,3-edge x-ray absorption spectra of iron(III) in the absence (a) and 

presence (b) of Aβ after 48 and 144 hours of incubation. Grey dashed line at 708 eV in (b) 

provides a visual guide for the position of the primary Fe
2+ 

cation
 
peak. 

 

3.3.2.2 Iron(III) and aluminium(III) series 

Iron L2,3 x-ray absorption spectra obtained from iron(III) suspensions when incubated with 

aluminium(III) in the presence and absence of Aβ are shown in Figure 3.15. In the absence 

of Aβ, no evidence of a pure iron(II) mineral was found at any of the time points examined 

(Figure 3.15a). Iron regions located after 144 hours of incubation (Figure 3.15a) show an 

iron L-edge spectra characteristic of a pure iron(III) mineral. However, reduced iron can be 

seen in the Aβ-free control sample after 30 minutes of incubation, manifesting as an 

enhancement in the shoulder at 708 eV. As for previously described results, this increase in 

Fe
2+ 

cation
 
peak intensity is thought to be due to reduction caused by exposure to the x-ray 
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beam. Despite this initial x-ray mediated reduction, extensive periods of x-ray beam 

exposure did not lead to the formation of a pure iron(II)
 
phase. 

After 48 hours of iron(III) incubation with Aβ and aluminium(III), iron L2,3 x-ray 

absorption spectra of Aβ/iron aggregates (Figure 3.15b) resembled that of a pure iron(II) 

phase. The L3 iron(II) peak at 708 eV had become dominant with the L3 iron(III) peak at 

709.5 eV having disappeared. This pure iron(II) form was very similar to that seen after 

144 hours of Aβ/iron incubation in the absence of aluminium (Fig 3.14b), indicating that a 

similar reduced iron phase had been formed but over a shorter incubation time. However, 

this pure iron(II) phase was not maintained after 144 hours incubation, with iron reverting 

back to a largely iron(III) phase with some evidence of a Fe
2+

 cation content (Figure 

3.15b). This subsequent oxidation of the pure iron(II) phase for longer incubation times 

may indicate the establishment of an iron redox cycle. 

Importantly, in all cases of amyloid induced reduction stated above, iron was found to be 

heavily reduced upon first XAS examination (i.e. reduction did not increase as a function 

of x-ray exposure time).  Therefore despite the iron forms used in this study being unstable 

in the x-ray beam, it was easily possible to separate reduction effects resulting from 

amyloid interaction, to those induced by x-ray beam exposure. 
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Figure 3.15. Iron L2,3-edge x-ray absorption spectra for iron(III) aggregates containing 

aluminium(III) in the absence (a) and presence (b) of Aβ. Incubation times are indicated 

above spectra. The grey dashed line at 708eV (b) is a guide for the position of the primary 

Fe
2+ 

cation
 
peak.  

 

3.3.3 Oxidative state of iron in suspension following Aβ interaction 

To further investigate the reduction of iron(III) by Aβ in suspension, a spectrophotometric 

iron(II) quantification assay was performed. The iron(II) content of suspensions containing 

Aβ and iron(III), Aβ iron(III) and aluminium(III),  and their Aβ-free controls is shown in 

Figure 3.16a and 3.16b , and respective control corrected iron(II) content are shown in 

Figure 3.16c and 3.16d. 

The iron(II) content of all Aβ-free suspensions was found to remain consistently low 

throughout all time points examined (Figure 3.16a and 3.16b) with no clear evidence of 
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iron(II) reduction being apparent. Where iron(III) was incubated with Aβ, no significant 

increases in control-corrected iron(II) content were seen at the 0, 24 or 48 hour time points 

(Figure 3.16c). After 72 hours, iron(II) content had risen to 4% and continued to rise to 9% 

at the 120 hour time point and 15% after 144 hours. Although iron(III) reduction by Aβ is 

evidenced, redox cycling was not apparent within this time frame, an observation 

consistent with x-ray absorption measurements (Figure 3.14b). 

In iron(III) suspensions containing Aβ and aluminium(III) an immediate conversion of 

iron(III) to iron(II) was observed, with control corrected iron(II) content accounting for 

16% of the total iron content at time zero (Figure 3.16d).  Iron(II) levels then dropped to 

12% after 24 hours, before rising to 19% after 48 hours incubation. This cycling of iron(II) 

continued, with iron(II) content disappearing entirely after 72 hours incubation, before 

increasing to 25% and 42% of total iron content after 120 and 144 hours respectively. This 

evidence of Aβ-induced iron redox cycling when in the presence of aluminium, is entirely 

consistent with the XAS measurements displayed in Figure 3.15b. 

These results show the reduction of iron(III) by Aβ in suspension, a result consistent with 

data collected via x-ray absorption spectroscopy (Figures 3.10, 3.11, 3.14 and 3.15). The 

addition of aluminium appears to have a catalytic effect on iron reduction by Aβ, whilst 

also acting to increase the reductive capacity of Aβ, enabling the redox cycling of iron.   
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Figure 3.16. Spectrophotometric iron(II) quantification of Aβ suspensions containing 

iron(III) (a and c) and iron(III) and aluminium(III) (b and d). Iron(II) values as a 

percentage of total iron are shown for both Aβ/iron series and their Aβ-free controls in (a) 

and (b). Control corrected iron(II) values of Aβ/iron suspensions as a percentage of total 

iron are shown in (c) and (d). Note that measurements were not performed at 96 hours. 

Error bars show standard deviation (n=3); statistically significant differences in mean 

values for each group comparison (by one-way ANOVA) are indicated by the following 

levels: * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. 

 

3.3.4 Magnetic state of iron following Aβ interaction 

XMCD measurements were conducted across the iron L2,3 absorption edges of the samples 

in order to examine the magnetic state of the iron material present following Aβ 

interaction.  
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As described in Section 1.4.1, magnetic iron oxides such as magnetite (Fe3O4) generate a 

strong XMCD effect of 10-15%. This XMCD profile (see Section 1.4;  Figure 1.13a) 

appears as three peaks across the iron L3 region as a result of Fe
2+ 

and Fe
3+ 

cations 

occupying tetrahedral and octahedral crystal sites 
137

. For titanomagnetite (Section 1.4; 

Figure 1.13b) an additional low energy positive peak is observed corresponding to Fe
2+ 

cations occupying tetrahedral crystal sites 
138

.   The oxidation state of the mineral 

determines the relative intensities of these peaks, with oxidation causing an increase in 

Fe
3+ 

cation intensity with respect to the Fe
2+ 

cation peaks, and reduction causing an 

increase in the Fe
2+ 

cation component with respect to the Fe
3+

. 

Iron L2,3 absorption-edge XMCD examination of iron(III) and aluminium(III) either in the 

presence or absence of Aβ, produced spectra with no evidence of strongly magnetic 

material. Instead a weak magnetic signal of 1-1.5% was observed throughout all samples 

examined (Figures 3.17 and 3.18). Aβ-free iron(III) and aluminium(III) samples produced 

spectra comprised of two positive and two negative peaks (Figure 3.17a (red); peaks A-D). 

By comparison with XMCD spectra obtained from titanomagnetite 
138

, these peaks appear 

to arise from the presence of both Fe
2+ 

cations (Figure 3.17b, peaks A and B) and Fe
3+

 

cations (peaks C and D) that occupy tetrahedral and octahedral crystal sites.  

The relative intensities of the peaks A-D shown in Figure 3.17 reflect the oxidation state of 

magnetic Fe cations. XMCD examination of the pure iron (II) phase formed after 48 hours 

of Aβ incubation with iron(III) and aluminium(III) showed dramatic enhancement of the 

Fe
2+ 

cation features, with no evidence of Fe
3+ 

cations on either the tetrahedral or octahedral 

sites being apparent (Figure 3.17b). This XMCD signal is consistent with the formation of 

a weakly magnetic pure iron(II) phase. Subsequent oxidation after 144 hours incubation 

can be seen as an increase in the Fe
3+

 cation XMCD features (Figure 3.17b), mirroring the 

behaviour seen in the XAS spectra (Figure 3.15b).  
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XMCD spectra obtained from the pure iron (II) phase formed following 144 hours of 

incubation of Aβ with iron(III) (Figure 3.18) were identical to those measured from Aβ 

incubations containing both iron(III) and aluminium(III) (Figure 3.17b), suggesting a 

similar weakly magnetic iron(II) phase to have been formed, but over a longer period of 

time. 

It should be noted that some distortions to the XMCD peak intensities are apparent due to 

background x-ray absorption drift, resulting in a negative or positive slope across the 

XMCD profile (see Figure 3.17a (blue) and Figure 3.17b (red)). However, despite these 

distortions, the overall trend of the XMCD spectra remains correct and confirms the 

oxidation state changes observed by XAS.  

 

Figure 3.17. Iron L2,3-edge XMCD spectra of iron(III) and aluminium(III) aggregates in 

the absence (a) and presence (b) of Aβ after 48 and 144 hours of incubation. 
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Figure 3.18. Iron L2,3-edge XMCD spectra of iron(III) with Aβ after 144 hours of 

incubation.  

 

3.4 Discussion 

Through the use of multiple techniques including scanning transmission x-ray microscopy, 

electron microscopy, x-ray absorption spectroscopy and spectrophotometric iron(II) 

quantification, it was found that the AD peptide Aβ(1-42) was capable of incorporating 

iron(III) minerals into fibrillar aggregate structures in vitro, with this interaction leading to 

the chemical reduction of iron(III) into a pure iron(II) phase. 

STXM and TEM images of structures formed following the incubation of Aβ with iron(III) 

revealed the presence of extensively aggregated amyloid structures containing multiple 

extensive areas of iron accumulation. As amyloid and iron morphology were often found to 

be closely correlated, and iron was only observed when co-precipitated with Aβ, these data 

suggest that Aβ acts to accumulate iron within its structure with possible binding of iron 

occurring almost immediately (after 30 mins incubation). This effect did not appear to be 

dependent upon the aggregation state of amyloid, with iron accumulation within Aβ 
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aggregates occurring where iron(III) was added to pre-formed amyloid aggregates. These 

findings are in agreement with those published by Jaing et al. who suggested Aβ to act as a 

metalloprotein capable of binding to iron 
99

.  

The iron accumulation into amyloid aggregates that has been observed here may provide 

an explanation for the increased concentrations of iron previously witnessed in AD plaque 

material 
35

. With iron levels being shown to be increased in the AD brain 
34,49,157,158

, it is 

entirely feasible that Aβ acts to draw iron into its structure, where it then binds to the 

metal. Such a process would explain observations made by Lovell et al. who used micro 

particle-induced x-ray emission analysis to show increased iron levels to exist within senile 

plaque material compared to surrounding brain tissue 
35

, and Meadowcroft et al. who 

utilized magnetic resonance imaging to show the accumulation of iron within Aβ plaques 

71
. Further to this, the ability of iron to bind to amyloid provides an explanation for the 

increased iron levels corresponding to areas of AD pathology as witnessed in mice 

overexpressing Aβ 
31

. 

Iron L2,3-edge STXM analysis of iron identified within Aβ aggregates following air 

exposure, revealed the presence of two aggregates containing small dense regions of iron 

in a reduced state.  X-ray absorption profiles from these regions were reminiscent of a 

reduced iron(II)/(III) intermediate along with zero valence iron (Fe
0
). Interestingly not all 

iron found within these aggregates was reduced in nature, with some iron appearing to be 

present in a pure iron(III) phase. These observations indicate that iron reduction by Aβ is 

not ubiquitous, and may rely on a multitude of factors such as iron deposit size/surface 

area, aggregate morphology or interaction time. Indeed, the dense nature of the reduced 

iron deposits witnessed here may have prevented their complete oxidation when exposed to 

oxygen. In this instance, surface iron content may be in an oxidized ferric state, but the 

core of the iron deposit remains reduced. Furthermore, despite the carbon K-edge spectra 
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recorded from these Aβ structures being similar to that calculated for the Aβ(1-42) amino 

acid sequence, TEM imaging revealed the fibrillar nature of Aβ to be lost. Taken together 

these findings demonstrate the ability of Aβ to chemically reduce iron(III) into redox-

active iron phases, with this process potentially altering Aβ fibril arrangement, resulting in 

the formation of an amorphous protein structure. However as only two instances of an 

amorphous Aβ structures containing redox-active iron were found, further validation of 

this hypothesis is required. 

XAS examination demonstrating the prevailing oxidation state of iron precipitates 

maintained under anoxic conditions following incubation with Aβ, revealed the formation 

of a pure iron(II) mineral after 144 hours of incubation. Such data show Aβ to be capable 

of inducing the widespread reduction of synthetic iron(III) in the absence of any other 

influencing factors. These findings also provide validity to the previously described STXM 

results. However as XAS is not an imaging technique, no solid conclusions can be drawn 

with regards to amyloid structure in the presence of ferrous iron. Additional evidence of 

iron reduction by Aβ was provided via iron(II) quantification in suspension, where 15% of 

the total iron content was found to be in an iron(II) state when incubated following 144 

hours of Aβ/iron incubation. The formation of pure iron(II) forms suggests Aβ to possess a 

strong reducing capacity upon iron, a result consistent with findings published by Khan et 

al. who showed Aβ mediated iron(III) reduction via spectrophotometric methods 
96

, and 

also Yang et al. who demonstrated Aβ to stabilize ferrous iron in vitro 
124

.  These 

observations, combined with the previously stated STXM and TEM findings, indicate that 

Aβ acts to accumulate iron within its structure with this interaction (binding) leading to Aβ 

mediated iron reduction following prolonged periods of contact.   

XAS examination of Aβ aggregates containing both iron(III) and aluminium(III) led to the 

observation of a similar pure iron(II) phase, but formed over a shorter interaction time (48 
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hours) than where aluminium was absent. This catalytic effect of aluminium upon Aβ iron 

reduction was confirmed by iron(II) quantification assay, with the addition of aluminium 

leading to higher levels of iron reduction. Both XAS and iron(II) quantification assays 

revealed evidence of iron redox cycling where aluminium(III) was added to Aβ/iron(III) 

incubations, whereas no evidence of redox cycling was seen in its absence.  These results 

show aluminium to act as an effective catalyst for the interaction of iron with Aβ, enabling 

the redox cycling of iron over the time period examined. These findings are also consistent 

with the work of Khan et al. who show Aβ to be capable of inducing the redox cycling of 

iron, with the presence of aluminium(III) appearing to potentiate the reduction of iron(III) 

to iron(II) 
96

; and also recent investigations by Ruiperez et al. who show aluminium to 

promote the Fenton reaction by aiding the reduction of iron(III) to iron(II) 
159

.  

The ability of Aβ to form iron(II) and zero-valent phases from iron precursors reminiscent 

of naturally occurring ferric iron, provides a possible origin for the redox-active iron forms 

previously seen within AD tissue, such as the increased levels of the iron(II) rich minerals 

magnetite and wüstite witnessed in pathological ferritin cores by Quintana et al. (2004) 
108

, 

along with the accumulation of magnetite-like material within AD plaque cores as 

observed by Collingwood et al. (2008) 
36

.  

XMCD analysis of the magnetic state of iron in samples prepared from both amyloid 

incubations and amyloid-free controls, revealed iron cations in different crystal symmetry 

sites reminiscent of octahedral and tetrahedral coordination. The pure iron(II) phases 

observed by XAS, formed both with and without aluminium, were found by XMCD to 

contain Fe
2+

 cations arranged with opposing magnetic orientations. This implies the 

presence of antiferromagnetic coupling between Fe
2+

 cations on different crystal symmetry 

sites. As no evidence of crystalline iron forms could be obtained via electron diffraction, 

these pure iron(II) phases could represent an amorphous precursor for an antiferromagnetic 
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iron(II) mineral such as wüstite. Despite no evidence towards the formation of magnetite 

formation following Aβ interaction with iron(III) being observed, it is possible that the 

reduced iron forms witnessed here may act as a precursor for magnetite formation, or are 

formed in addition to magnetite biominerals in the AD brain.  

3.5 Conclusions 

From this study it is apparent that Aβ is capable of interacting with iron in a manner that 

leads to the accumulation and co-aggregation of iron within Aβ structures, resulting in the 

chemical reduction of redox-inactive ferric iron to a redox-active ferrous and zero-valent 

iron forms. With iron being abundant throughout brain tissues 
46

, and iron being shown to 

be increased in areas of AD pathology (in both human post-mortem tissue and AD 

transgenic models) 
31,34,35

, the ability of Aβ to induce the formation of redox-active iron 

minerals from ferric precursors would represent a significant and sustained source of 

reactive oxygen species capable of inducing widespread neuronal damage. The interaction 

of Aβ with iron could thus be an important contributor to the oxidative stress characteristic 

of AD, thereby playing a key role in the pathogenesis of the disorder. Furthermore the 

apparent ability of Aβ to reduce iron(III) to an iron(II) phase even when iron is present in a 

10:1 excess of Aβ, strongly suggests that Aβ is an efficient biological iron-reducing agent. 

The catalytic function of aluminium(III) upon Aβ mediated iron reduction as witnessed in 

this study is also of vital importance. With aluminium being implicated as a promoting 

factor for the development of AD, including the neuropathological hallmarks of the 

disorder 
160
, any synergies existing between Aβ, iron and aluminium are likely to influence 

the nature of AD progression 
160,161

.  

As pure iron(II) and zero-valence phases do not occur naturally in vivo 
107,108

, these 

pathological iron biominerals may represent a target for future therapies. Removal of such 
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forms of iron, or disruption in the ability of Aβ to interact with iron, may result in a 

reduction of the free radical burden associated with the AD brain and consequently a 

slowing of disease progression.  The addition of aluminium appears to impact the reductive 

capacity of Aβ by increasing its ability to reduce iron(III) in suspension. Aluminium is also 

not naturally found within human tissues 
162

, and therefore its removal from brain tissue 

may act to reduce Aβ neurotoxicity, whilst not impacting healthy brain functions. In 

summary, key insights into the relationship between Aβ and iron have been made that 

provide valuable insights into the role played by iron in AD pathology. 

 

3.6 Implications for further work 

In this study the feasibility of utilizing advanced x-ray synchrotron techniques for the 

monitoring of metal oxidation/magnetic states following protein interaction, and also for 

the element specific imaging of protein aggregates containing areas of metal deposition has 

been successfully demonstrated. The results obtained here provide a platform from which 

further experiments can be devised examining the role of Aβ in the generation of 

potentially pathological redox-active iron phases. Additional development of methodology 

(such as improved anaerobic chambers for STXM sample transfer) coupled with the 

analysis of a greater number of aggregate types would act to strengthen the conclusions 

described above. 

Although the results displayed in this chapter should not be interpreted as a ‘model’ for the 

processes that occur in the AD brain, they do provide a proof of principle (the monitoring 

of iron oxidation state following Aβ interaction, using synchrotron-based techniques) from 
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which systems more indicative of those that occur naturally can be developed (see 

Chapters 4 and 5). 

Finally attention should be drawn to the batch variability witnessed in commercially 

available Aβ 
163
. Such variability may alter the processes of Aβ/iron interaction, along with 

the ability of Aβ to chemically reduce iron(III) deposits, providing a further source of 

inhomogeneity.  
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4.1 Introduction 

As described in Chapter 1, a link has been established between areas of iron accumulation 

and AD pathology 
34,39,70

, namely structures comprised of the AD peptide Aβ 
31,35-37,42,71

. 

Of particular interest is the increased levels of iron(II) bearing redox-active biominerals 

found to be present in AD tissues compared to that of age matched disease free control 

tissue, due to their ability to induce oxidative stress 
36,58,60,76,105,108,112,113

.  

In the previous chapter the ability of Aβ to accumulate (and potentially bind) amorphous 

iron(III) within its fibrillar structure was demonstrated, with this interaction resulting in the 

chemical reduction of iron(III) into pure iron(II) and zero-valent (reminiscent) iron phases. 

Such interactions offer an explanation for the association of iron within areas of Aβ 

deposition 
31,35,71

, possible origins to the wüstite-like material previously observed in AD 

tissue 
108

, and also provide potential precursors to magnetic iron biomineral formation.  

However, within the human brain, iron is not necessarily present as an amorphous iron(III) 

phase, and therefore the process of Aβ/iron interaction as described in Chapter 3, may not 

be entirely representative of that occurring in vivo. In human tissue, iron is stored as 

ferrihydrite within the storage protein ferritin 
129-64

. Ferrihydrite is a poorly crystalline 

ferric iron phase, with antiferromagnetic properties at room temperature 
17

.  As iron is seen 

to associate with regions of Aβ pathology 
31,35,37,71

, it reasons that iron in a ferrihydrite 

form, may come into contact with the amyloid peptide. With ferrihydrite being crystalline 

129
, this iron form could represent a precursor to the formation of the iron(II) bearing 

crystalline phases as seen in AD tissue 
36,60,108,113

, should Aβ be capable of inducing 

ferrihydrite reduction. Indeed, ferrihydrite has been shown to be a precursor for biogenic 

magnetite formation in iron(III)-reducing microbes, such as the bacteria Geobacter 

sulfurreducens 
137

.  
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At present, the interaction between Aβ and ferrihydrite has not been investigated, and the 

products of such processes are currently unknown. In this chapter a multidisciplinary 

approach is employed to examine the interaction between the AD peptide Aβ and synthetic 

2-line ferrihydrite, an iron form representative of those that occur in the human brain.  

 

XAS data demonstrating changes in the oxidation state of ferrihydrite when incubated with 

Aβ over a 144 hour period will be presented, along with simultaneous XMCD 

measurements probing changes in the magnetic properties and cation distributions of the 

iron mineral (Section 4.3.1). Additional magnetic characterization of ferrihydrite following 

incubation with Aβ is supplied via SQUID magnetometry (Section 4.3.2.1) and AC 

susceptometry (Section 4.3.2.2). Further to this, microstructural and phase analysis of 

Aβ/ferrihydrite structures are provided via TEM, atomic force microscopy (AFM) and 

STXM (Section 4.3.3). Iron(II) quantification assays evaluating the proportion of 

ferrihydrite reduced by Aβ are then displayed (Section 4.3.4). Additionally, electron 

diffraction patterns revealing alterations to the crystal structure of ferrihydrite following 

Aβ interaction are presented (Section 4.3.5). Through the use of these techniques, the iron 

mineral products formed through Aβ/ferrihydrite interaction are characterized.  Finally, I 

will discuss the importance of these results in determining how Aβ/iron interactions 

contribute to AD pathology (Sections 4.4 and 4.5), and how these results complement those 

presented in the previous experimental chapter (Section 4.6).  
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4.2 Material and methods 

4.2.1 Ferrihydrite synthesis 

Ferrihydrite particles were synthesized by neutralizing 100g/L iron(III) chloride solution to 

pH 7 using 10 M sodium hydroxide (NaOH). The resulting ferrihydrite suspension was 

centrifuged at 10 000 rpm for 20 minutes and all supernatant removed. This centrifugation 

process was repeated six times by repeatedly suspending the ferrihydrite particles in 

deionized water and removing the supernatant 
164
.  

 

4.2.2 Preparation of β-amyloid/ferrihydrite suspensions 

Ferrihydrite suspensions (440 µM) were prepared from the ferrihydrite stock diluted with 

deionized water. A 220 µM Aβ stock solution was created as described in Chapter 3, before 

being added to the 440 µM ferrihydrite suspension. Ferrihydrite suspensions were 

sonicated for 5 minutes prior to the addition of the Aβ stock ensuring uniform ferrihydrite 

particle distribution. Resulting Aβ/ferrihydrite suspensions were neutralized to pH 7 with 

0.5 M hydrochloric acid (HCl). Final Aβ and metal concentrations were 35 µM and 370 

µM respectively. Aβ/ferrihydrite suspensions were incubated at 37°C until time of 

sampling. Aβ-free ferrihydrite controls were created as stated above by substituting 

deionized water for Aβ. 
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4.2.3 X-ray absorption and x-ray magnetic circular dichroism 

spectroscopy 

Small sample volumes (15 µL) were deposited onto copper TEM grids, and grids were 

mounted onto copper sample holders as described in Section 2.1. Sampling was performed 

under anoxic conditions after 30 minutes, 48 hours and 144 hours of incubation at 37°C. 

XAS and XMCD measurements were performed on Aβ/ferrihydrite samples, and their Aβ-

free controls using beamline I10 at the Diamond Light Source (Oxfordshire, UK), and 

beamline 4.0.2 at the Advanced Light Source (Berkeley, USA). XAS and XMCD spectra 

were recorded as described in Sections 2.1.3 and 2.1.4. To locate ferrihydrite 

accumulations, two dimensional iron maps were obtained as defined in Section 2.1.3. 

Detailed XAS and XMCD measurements across the iron L2,3 absorption-edge region (700-

740 eV) were conducted on areas of ferrihydrite accumulation to study both the iron 

oxidation and magnetic states. Not all grids provided regions of iron with sufficiently 

strong x-ray absorption signal to allow full XAS and XMCD analysis. 

4.2.4 SQUID magnetometry  

To confirm the magnetic state of ferrihydrite following incubation with Aβ, SQUID 

magnetometry was performed. Small volumes of Aβ/ferrihydrite suspensions (and their 

Aβ-free controls) were deposited into plastic tubes and flash frozen as described in Section 

2.5. Samples were taken following 48 hours of Aβ/ferrihydrite incubation at 37°C. 

Hysteresis loops revealing the magnetic state of the Aβ/ferrihydrite materials were created 

by measuring the magnetic moment against an applied magnetic field (-5000 , 5000 Oe) at 

various temperatures ranging from 10-200 K to overcome the superparamagnetic 

properties of any nanoscale iron present. Measurements were performed using a Quantum 

Design SQUID-VSM. Hysteresis loops from a 370 µM magnetite nanoparticle suspension 
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(Sigma Aldrich <50 nm diameter) were generated as described above to provide a 

ferrimagnetic positive control. 

4.2.5 AC susceptometry 

The magnetic susceptibility of 200 µL of Aβ/ferrihydrite suspension was monitored at a 

frequency of 1 kHz over a 136 hours period using an AC susceptometer. Temperature was 

maintained at 37°C throughout data collection. Aβ-free ferrihydrite and magnetite (370 

µM, synthesized in situ as per the Massart method 
165

) suspensions were monitored at 1 

kHz over a 16 hour period to provide reference values for ferrihydrite and (ferri)magnetic 

materials respectively. The frequency of 1 kHz was chosen, as this value lies within the 

detection threshold of the AC magnetic susceptometer instrumentation, when examining 

dilute samples (< 500 µM) as used in this thesis. 

Additional susceptibility measurements were performed on 0.2 M magnetite suspensions 

created in situ by the Massart method; to demonstrate the effectiveness of this approach in 

monitoring the formation of magnetic iron phases from non-magnetic precursors.   

4.2.6 Electron microscopy 

15 µL of Aβ/ferrihydrite suspensions and their Aβ-free controls were deposited onto 

carbon/formvar coated copper TEM grids and excess liquid removed. Samples were taken 

after 30 minutes, 48 hours and 144 hours of incubation at 37°C and examined using a 

JEOL 1230 TEM operating at 100 kV.  These samples were not exposed to the x-ray beam 

used in XAS/XMCD.  
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4.2.7 Scanning transmission x-ray microscopy 

Aβ/ferrihydrite samples examined by XAS/XMCD were subsequently investigated using 

STXM on the PolLux beamline at the Swiss Light Source (Villigen, Switzerland).  

Sample TEM grids were mounted onto stainless steel plates for STXM examination, and 

exposed to air throughout sample storage and transfer. Element specific images displaying 

the carbon and iron content of amyloid aggregates were created as previously described in 

Section 2.2.2 

 

4.2.8 Time lapse imaging 

Time lapse videos displaying the precipitation of ferrihydrite by Aβ were created using 

Lapse it™ time lapse software. Images were taken once a minute for a period of 8 hours. 

Aβ/ferrihydrite solutions were kept at 37°C throughout the imaging process.  

4.2.9 Atomic force microscopy 

Three dimensional topographic images of Aβ/ferrihydrite samples previously examined by 

TEM were generated using a Bruker BioScope Catalyst™ BioAFM. Images were to a 

spatial resolution of 35 nm. Three dimensional representations of Aβ/ferrihydrite surface 

structures were created via the use of Nanoscope analysis 1.4 software. 

4.2.10 Quantification of iron(II) in suspension: Ferrozine assay 

The iron(II) content of amyloid/ferrihydrite and amyloid free ferrihydrite samples was 

quantified in solution using a Ferrozine colorimetric assay as described in Section 2.4 
153
. 

Ferrozine readings were taken after  0,  24, 48, 72, 120 and 144 hours of incubation at 

37°C. No samples were taken at 96 hours due to limited sample volumes. Different Aβ 
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batches were used to the create Aβ/ferrihydrite solutions for iron(II) quantification, and for 

XAS/XMCD measurements.  

4.2.10.1 Statistical analysis 

Statistical analysis of iron(II) quantification data was conducted using a one-way analysis 

of variance (GraphPad Prism 6). This performs a hypothesis test of the equality of two or 

more population means. The null hypothesis of equal means was rejected at the 5% 

confidence level.   

 

4.3 Results 

4.3.1 Ferrihydrite oxidation and magnetic state following incubation with 

Aβ 

Iron L2,3 x-ray absorption spectra obtained from ferrihydrite incubated in the presence and 

absence of Aβ are shown in Figure 4.1, as a function of incubation time. From Figure 4.1a 

the Aβ-free ferrihydrite samples have x-ray absorption spectra characteristic of iron(III) 

minerals for all timing points, with only Fe
3+
 cation features being observed (see Chapter 

1; Figure 1.9 for reference iron(III) mineral spectrum).  

After 30 minutes of Aβ/ferrihydrite incubation, XAS examination at the iron L2,3-edges 

(Figure 4.1b) showed the emergence of a significant Fe
2+
 cation component as evidenced 

by the enhanced 708 eV feature in comparison to Aβ-free ferrihydrite (Figure 4.1a). 

Following 48 hours of incubation with Aβ (Figure 4.1b), ferrihydrite accumulations were 

found to be strongly reduced, with spectra closely resembling a pure iron(II) mineral (see 

Chapter 1; Figure 1.9 for reference iron(II) spectra).  This reduction effect was also 

mirrored at the L2 absorption region.  
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Further incubation of Aβ with ferrihydrite to 144 hours (Figure 4.1b), led to the 

observation of a Fe
2+ 
cation rich Fe

2+
/ Fe

3+ 
intermediate spectrum (see Chapter 1; Figure 

1.10 for a calculated Fe
2+
/ Fe

3+ 
intermediate XAS spectrum) . Although oxidized in 

comparison to the pure iron(II) mineral observed after 48 hours of incubation, ferrihydrite 

remained heavily reduced compared to Aβ-free ferrihydrite controls (Figure 4.1a), with a 

large Fe
2+ 
cation

  
peak at 708 eV, followed by a smaller but distinct Fe

3+ 
cation peak at 

709.5 eV.  

 

 

Figure 4.1. X-ray absorption spectra showing the iron L2,3-edge of ferrihydrite aggregates 

incubated (a) in the absence of Aβ, and (b) in presence of Aβ.  Incubation times are shown 

above the spectra. L2 and L3 regions are labelled in (a). The dashed grey line at 708 eV (b) 

shows the approximate position of the principle Fe
2+ 
cation peak.  Iron L2,3-edge XMCD 

spectra of ferrihydrite aggregates after 144 hours of incubation in the absence of Aβ, and in 

the presence of Aβ are shown in (c) and (d) respectively.  
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To confirm that these reduction effects were induced by Aβ, the impact of repeated x-ray 

beam exposure on the samples was assessed (Figure 4.2). Only a subtle x-ray beam 

induced reduction effect in the Aβ-free control samples was observed (Figure 4.2a). This is 

likely to be a result of ferrihydrite crystalline structure, making the mineral less susceptible 

to x-ray beam reduction than the amorphous iron forms examined in Chapter 4. However 

Aβ/ferrihydrite samples taken after 30 minutes of incubation appeared more susceptible to 

x-ray beam reduction (Figure 4.2b), possibly due to destabilization of the ferrihydrite 

crystal structure by Aβ (refer to Section 3.3.2.1 for further explanation of x-ray beam 

induced iron reduction).  Despite this reduction effect, it was impossible to form pure 

iron(II) phases such as those seen following 48 hours of Aβ/ ferrihydrite incubation (Figure 

4.1b; red), even after prolonged x-ray beam exposure. 
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Figure 4.2. X-ray absorption spectra of the ferrihydrite iron L2,3-edge in the absence (a) 

and presence (b) of Aβ, for successive XAS measurement repetitions. Scan number and 

incubation times are shown above the XAS spectra. 

 

The magnetic state of the samples was probed by XMCD across the iron L2,3 absorption 

edges. As described in Chapters 1 and 3, magnetic iron oxides such as magnetite (Fe3O4) 

generate a strong XMCD effect of 10-15% (for reference XMCD spectra refer to Chapter 

1; Figure 1.13). 

The XMCD spectrum obtained from Aβ-free ferrihydrite after 144 hours incubation is 

shown in Figure 4.1c. At room temperature ferrihydrite is expected to be in an 

antiferromagnetic or weakly ferrimagnetic state, with superparamagnetic properties due to 
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the nanoscale crystal size 
166
. Here we observe a small (1-1.5%) XMCD effect and 

evidence of antiferromagnetic ordering of the cation moments, manifested as 

approximately equal intensity positive and negative peaks (labelled A,B,C and D). The 

clear energy separation of these peaks implies that the iron cations occupy two non-

equivalent crystal symmetry sites, similar to the tetrahedral and octahedral sites in 

magnetite. The relative intensities of the XMCD peaks in Figure 4.1c suggests the presence 

of predominantly Fe
3+
 cations (peaks C and D), with minor contributions from Fe

2+
 cations 

(peaks A and B). However, the XMCD spectrum obtained from the sample incubated with 

Aβ (Figure 4.1d) shows a dramatic enhancement in the Fe
2+
 cation peaks (A and B), whilst 

preserving the antiferromagnetic ordering seen in the Aβ-free ferrihydrite.  

 

Hence XMCD measurements confirm the iron reduction seen via XAS (Figure 4.1b), and 

suggest the formation of an antiferromagnetically ordered Fe(II) phase. It is possible that 

this phase represents a precursor for the mineral wüstite (Fe1-xO) 
167,168

, although the 

antiferromagnetic order seen here would not be expected, as XMCD measurements were 

performed at room temperature and were therefore above the Néel temperature (the 

temperature at which antiferromagnetic spin ordering is thermally disrupted) for wüstite 

(~200K).   

 

4.3.2 Magnetic characterization of Aβ/ferrihydrite suspensions 

Further magnetic characterization of Aβ/ferrihydrite suspensions was achieved via SQUID 

magnetometry and AC susceptometry.  
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4.3.2.1 SQUID magnetometry 

Hysteresis loops displaying the magnetic moment of Aβ/ferrihydrite suspensions following 

48 hours of incubation are shown in Figure 4.3a-d. At 200 K no changes in the magnetic 

moment of Aβ/ferrihydrite suspensions were observed in response to a varying external 

magnetic field. This suggests the presence of a paramagnetic material, demonstrating there 

to be no ferrimagnetic/ferromagnetic component to the hysteresis loop at 200 K. However 

below 100 K, hysteresis loops from Aβ/ferrihydrite suspensions show evidence of 

magnetic moment alignment, as evidenced by the appearance of magnetic coercivity in 

response to an applied field. These measurements suggest a modest, soft 

ferromagnetic/ferrimagnetic contribution from ferrihydrite particles at temperatures below 

100 K. 

Hysteresis loops obtained from Aβ/ferrihydrite suspensions at 10 K (Figure 4.3e), were 

almost indistinguishable to those obtained from ferrihydrite reference suspensions at 10 K; 

demonstrating there to be no increase in magnetic iron materials following ferrihydrite 

incubation with Aβ. The magnetic response of these ferrihydrite suspensions were 

approximately 15 times smaller than that observed in concentration-matched magnetite 

reference suspensions (Figure 4.3f). These values are consistent with the XMCD results 

shown in Figure 4.1c-d, where ferrihydrite was shown to produce a XMCD effect of 1-

1.5%, compared to the XMCD effect of 10-15% characteristic of strongly magnetic iron 

minerals, such as magnetite (Section 1; Figure 1.13). 
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Figure 4.3. Hysteresis loops displaying the magnetic moment (EMU) versus magnetic field (Oe) of Aβ/ferrihydrite suspensions following 48 hours of 

incubation, along with 370 µM concentration matched ferrihydrite (Fhy) and magnetite (Fe3O4) references. Hysteresis loops from Aβ/ferrihydrite 

suspensions were obtained at (a) 200 K, (b) 100 K, (c) 50 K, and (d) 10 K.  (e) Ferrihydrite control suspension measured at 10 K. (f) Magnetite suspension 

measured at 10K (gold), compared to Aβ/ferrihydrite (blue) and ferrihydrite (grey)  suspensions as shown in (d) and (e) respectively. Note the change in 

vertical scale for (f).  
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4.3.2.2 AC susceptometry 

To assess the suitability of the AC magnetic susceptometry instrumentation to detect the in 

situ formation of nanoscale ferrimagnetic/ferromagnetic materials, and to monitor the 

magnetic susceptibility of ferrihydrite suspensions when incubated in the presence and 

absence of Aβ, AC susceptibility measurements were performed. 

AC susceptibility values obtained at applied magnetic field frequencies of 1 kHz, from a 

0.2 M magnetite suspension created in situ as a function of time are shown in Figure 4.4. 

At the start point (time = 0), χ’ and χ” susceptibility values are zero, due to the non-

magnetic nature of the iron(II) and iron(III) precursors used in magnetite synthesis. 

However, from 2-28 minutes there is a steady increase in χ’ and χ” signals, demonstrating 

an increase in magnetic susceptibility owing to the formation of magnetite nanoparticles. 

From 30 minutes onwards these values stabilize, suggesting magnetite formation to have 

ceased. These results demonstrate the effectiveness of AC susceptibility measurements in 

the monitoring of nanoscale magnetic iron mineral formation. 

 

Figure 4.4. AC susceptibility measurements taken at 1 kHz, demonstrating the formation 

of a 0.2 M magnetite suspension over a 35 minute period, following the incubation of 

ferric chloride and ferrous chloride in the Massart reaction 
165
.  
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AC susceptibility values from magnetite, ferrihydrite and Aβ/ferrihydrite suspensions as a 

function of incubation time are displayed in Figure 4.5a, 4.5b and 4.6 respectively. 

 

Where a 370 µM magnetite suspension was created in situ, time-dependent AC 

susceptibility measurements taken at 1 kHz, revealed a steady increase in χ’ values over the 

first 3 hours of monitoring, corresponding to the formation of magnetite particles (Figure 

4.5a). This rate of magnetite synthesis was slower than that observed in Figure 4.4, a likely 

result of the much lower concentrations of iron(II) and iron(III) used. Following this initial 

period of synthesis, a stable χ’ susceptibility value was recorded until monitoring stopped 

following 16 hours of incubation. These steady positive χ’ values are representative of a 

small ferrimagnetic signal, demonstrating the detection threshold of the equipment used in 

this experiment to be sufficiently low to successfully detect small increases in magnetic 

susceptibility (i.e. small amounts of magnetite formation).   Furthermore, a small positive 

χ” value was observed throughout the period of measurement, demonstrating the presence 

of nanoscale ferrimagnetic/ferromagnetic particles.  

 

In 370 µM ferrihydrite reference suspensions (Figure 4.5b), AC susceptibility 

measurements at 1 kHz revealed negative χ’ values of approximately -1 x 10
-3 
throughout 

the examination period. Negative values are typical of a diamagnetic material. However, at 

the temperature of examination (37°C), ferrihydrite should elicit a paramagnetic response, 

resulting in a small positive χ’ signal.  This negative χ’ offset appears to be induced by the 

diamagnetic solvent (water) used to create the ferrihydrite suspensions, thus masking the 

small paramagnetic signal provided by the ferrihydrite particles. Indeed, these negative χ’ 

values are consistent with those measured from water under the same conditions (data not 

shown).  χ” values of zero were recorded from ferrihydrite suspensions over the 16 hour 
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examination period, a response typical of paramagnetic and diamagnetic materials, 

therefore indicating no ferro/ferrimagnetic nanoparticles to be present in the ferrihydrite 

suspensions.   

Where Aβ was incubated with ferrihydrite over a 136 hour period (Figure 4.6), magnetic 

susceptibility values at 1 kHz were largely similar to those obtained from ferrihydrite 

reference suspensions (Figure 4.5). Interestingly however,  χ’ values obtained from 

Aβ/ferrihydrite suspensions (Figure 4.6; red) reveal a subtle increase in diamagnetic signal 

strength over the first 48 hours of incubation (from -1 x 10
-3
 to -1.3 x 10

-3
).  Peptides are 

known to be diamagnetic, and β-pleated peptide structures have been demonstrated to 

produce substantial diamagnetic anisotropy 
169
. Therefore, this increase in diamagnetic 

signal may correspond to the aggregation of Aβ into β-pleated fibrillar structures, before a 

stable aggregate size is reached following 48 hours incubation. χ” values of zero were 

obtained from these Aβ/ferrihydrite suspensions indicating no substantial 

ferromagnetic/ferrimagnetic material to have formed over the incubation period. These 

findings are in keeping with the XMCD and SQUID results shown in Figure 4.1d and 4.3 

where no evidence of a strongly magnetic material was observed following Aβ incubation 

with ferrihydrite. 
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Figure 4.5.  AC susceptibility  values obtained from (a) 370 µM magnetite suspensions 

(Fe3O4; formed in situ) and (b) 370 µM ferrihydrite (Fhy) suspensions, incubated at 37°C 

over a 16 hour period. Measurements were taken at 1 kHz.  

 

 

Figure 4.6.  AC susceptibility values obtained from Aβ/ferrihydrite suspensions incubated 

at 37°C for 136 hours. Measurements were taken at 1 kHz. Symbols represent raw data, 

coloured lines represent smoothed data. 
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4.3.3 Structural characterization of Aβ/ferrihydrite aggregates 

TEM and STXM images of Aβ incubated with ferrihydrite are presented in Figure 4.7. 

TEM examination revealed Aβ aggregates of 1-50 µm in diameter, possessing fine fibril 

structure integrated with dense particles of approximately 50 nm, across all time points 

examined (Figure 4.7a).  

To investigate the origin of the dense material within fibrillar Aβ structures, element 

specific mapping of Aβ/ferrihydrite aggregates incubated for 30 minutes was performed 

using STXM. Carbon K-edge and iron L3-edge STXM images of an Aβ/ferrihydrite 

aggregate are presented in Figure 4.7b. Carbon K-edge examination revealed amyloid 

aggregates similar in nature to those pictured using TEM (Figure 4.7a). Corresponding iron 

L3-edge STXM images showed iron content to closely follow Aβ morphology, suggesting 

integration and possible binding of the fine ferrihydrite particles with the Aβ fibrils. In 

addition, larger, intense iron spots similar in size to the electron dense particles shown in 

Figure 4.7a can be seen scattered throughout the Aβ aggregate, suggesting that Aβ acts to 

bind and accumulate ferrihydrite within its structure. This correlation between Aβ and 

ferrihydrite content was clearly different to the Aβ/ iron(III) structures shown in Chapter 3; 

Figure 3.9, where large amorphous iron precipitates, several microns in diameter, appeared 

to be co-localized within Aβ aggregates, rather than being loaded into the Aβ  fibrils. 

This process of ferrihydrite aggregation by Aβ was further demonstrated via time lapse 

imaging of solutions containing Aβ and ferrihydrite (Figure 4.8). Where the peptide was 

incubated with ferrihydrite a clear orange precipitate can be seen to form following 

approximately 60 minutes of incubation, which remained suspended in the sample medium 

throughout the 8 hour examination period. No dense orange precipitates were observed in 

Aβ-free ferrihydrite suspensions.  
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Figure 4.7. (a) Bright field TEM images and (b) STXM images of fibrillar amyloid 

structures formed following the incubation of Aβ with ferrihydrite. TEM pictures show Aβ 

structures present after 0.5, 48 and 144 hours of incubation. STXM images show the 

carbon (C) and iron (Fe) content of an Aβ/ferrihydrite aggregate along with a carbon/iron 

(C + Fe) composite image of the same aggregate.  
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Figure 4.8. Time lapse images of ferrihydrite (Fhy) suspensions incubated in the presence 

(left) and absence (right) of Aβ over a 8hour period. Incubation times are shown to the left 

of each image. The red boxes highlight regions of ferrihydrite accumulation by Aβ.  
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Throughout TEM and STXM examination of Aβ/ferrihydrite structures, multiple 

large/dense aggregates were observed that were too thick to allow electron/x-ray 

transmission. Thus the morphology of dense aggregate structures could not be 

characterized using these approaches. As AFM is not dependent on sample thickness, this 

technique allows the imaging of dense structures, whilst also enabling the three 

dimensional morphology of Aβ/ferrihydrite aggregates to be assessed.  In Figure 4.9 a 

preliminary AFM image of an Aβ/ferrihydrite aggregate is displayed. In this region of 

peptide deposition, amyloid appears to comprise a thin layer of fibrils 50-200 nm in depth, 

spread over a large (35 µm) area of the sample substrate. These structures are believed to 

be representative of those imaged via TEM and STXM as shown in Figure 4.7. Despite the 

majority of this aggregate possessing little depth, a region of dense material over 1.5 µm in 

height was observed surrounded by fibrils. As traditional fibril structures can be seen 

adjoining this structure, it is feasible that this dense region is comprised of the amyloid 

peptide, potentially loaded with ferrihydrite particles, as observed under STXM (Figure 

4.7b). Such images suggest the addition of ferrihydrite to induce extensive Aβ aggregation 

resulting in the formation of stable three dimensional protein structures, possibly 

reminiscent of the insoluble Aβ plaques witnessed in AD tissue 
36
. 
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Figure 4.9. A three dimensional topographic image of an Aβ/ferrihydrite structure formed 

following 48 hours of incubation. Dense Aβ regions (in yellow/white) can be seen to 

possess significant three-dimensional structure with peak heights of over 1.5 µm.  

 

4.3.4 Oxidative state of ferrihydrite in suspension following Aβ 

interaction 

To further characterize the iron reduction capacity of Aβ, ferrihydrite suspensions were 

incubated with Aβ and their iron(II) content assessed by Ferrozine assay. The iron(II) 

content of Aβ/ferrihydrite and Aβ-free ferrihydrite suspensions across the 144 hour 

incubation time period are shown in Figure 4.10a. 

Baseline iron(II) levels of the Aβ-free ferrihydrite suspensions remained constant 

throughout the time series, with no significant iron reduction being apparent. By examining 

control corrected iron(II) levels of Aβ/ferrihydrite suspensions, no iron(II) signal could be 

seen over the first 48 hours of Aβ/ferrihydrite incubation (Figure 4.10b), however a sharp 

increase in iron(II) content to 31% was observed after 72 hours. Iron(II) levels then cycled, 

decreasing to 13% of total iron content at 120 hours, before rising to 37% after 144 hours 
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incubation. These results confirm that Aβ is capable of reducing ferrihydrite to an iron(II) 

form and suggest the establishment of an iron redox cycle. This redox cycling could 

explain why the pure iron(II) formed after 48 hours of Aβ/ferrihydrite incubation became 

oxidized following further incubation with Aβ for 144 hours (Figure 4.1b). The peak level 

of ferrihydrite reduction recorded here is of a similar magnitude to where Aβ was 

incubated with iron(III) in the presence of aluminium (42%), and much higher than where 

Aβ was incubated with iron(III) alone (15%; see Chapter 3, Figure 3.16).  

 

 

Figure 4.10.  Ferrozine iron(II) quantification data showing iron(II) levels of 

Aβ/ferrihydrite solutions over a 144 hour incubation period. (a) Iron(II) content as a 

percentage of total iron for ferrihydrite solutions in the absence (black), and presence 

(grey) of Aβ. (b) Control corrected iron(II) content of Aβ/ferrihydrite solutions as a 

percentage of total iron. Sampling was not performed at 96 hours of incubation. Error bars 

show standard deviation (n=3); statistically significant differences in mean values for each 

group comparison (by one-way ANOVA) are indicated by the following levels: ** p < 

0.01, *** p < 0.001, **** p < 0.0001. 
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4.3.5 Crystalline structure of ferrihydrite following Aβ interaction 

In order to determine the crystalline structure of ferrihydrite following incubation with Aβ 

electron diffraction was performed. TEM images and selected area electron diffraction 

patterns from Aβ/ferrihydrite aggregates, Aβ-free ferrihydrite controls and a magnetite 

reference are shown in Figure 4.11. Aβ-free ferrihydrite was found to be 2-line in nature 

throughout all time points examined (Figure 4.11d), with broad reflections  at 2.50 Å and 

1.51 Å corresponding to the [110] and [300] reflections of ferrihydrite 
135
. 

Aβ/ferrihydrite aggregates examined at the 30 minute and 144 hour incubation time points 

provided diffraction patterns consistent with Aβ-free ferrihydrite controls. However, 

analysis of Aβ/ferrihydrite aggregates after 48 hours of incubation revealed areas showing 

diffraction patterns with d-spacing values and reflection intensities reminiscent of a 

magnetite-like phase (JCPDS card 88-0315) (Figure 4.11b-f). In areas of modest 

ferrihydrite accumulation (Figure 4.11b+d), weak diffraction rings were observed at 2.55 

Å, 2.11 Å, 1.52 Å and 1.22 Å corresponding to the [311], [400], [440] and [642] reflections 

of magnetite/maghemite. However in areas of extensive ferrihydrite accumulation (Figure 

5.11c+e) stronger diffraction patterns were recorded with diffraction rings at 3.07 Å, 2.55 

Å, 2.14 Å, 1,8 Å, 1.52 Å and   1.25 Å, corresponding to the [220], [311], [400], [422], 

[440] and [533/642] reflections of magnetite/maghemite. By comparing the diffraction 

pattern obtained from this Aβ/ferrihydritre region to a magnetite reference (Figure 4.11f) 

170
, a clear correlation can be seen.  

Magnetite is a strongly magnetic mineral, a feature not consistent with the XAS/XMCD 

results obtained from the iron(II) phase witnessed in the Aβ/ferrihydrite series (Figure 

4.1d). However the magnetite seen in these diffraction patterns could represent the 

oxidation product of the iron(II) phase following air exposure 
171
. The broad electron 

diffraction rings seen in Figure 4.11e+f suggest the nucleation and subsequent crystal 
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growth of a nanocrystalline phase. This is consistent with the formation of a 

nanocrystalline iron(II) phase from the ferrihydrite precursor, and subsequent oxidation to 

magnetite. This process is reminiscent of the synthetic nucleation and growth of ultrafine 

magnetite nanoparticles 
172
. Complete oxidation of the iron(II) mineral shown in Figure 

4.1b following prolonged air exposure, was confirmed by repeating the XAS 

measurements several months later (Figure 4.12). 
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Figure 4.11. TEM images of ferrihydrite and Aβ/ferrihydrite aggregates together with selected area electron diffraction patterns obtained from 

these regions, following incubation for 48 hours and subsequent air exposure. (a) TEM image of ferrihydrite in the absence of Aβ. (b) TEM 

image of an Aβ/ferrihydrite aggregate in an area of modest ferrihydrite deposition. (c) TEM image of an Aβ/ferrihydrite aggregate in an area of 

extensive ferrihydrite deposition. (d) Selected area diffraction pattern from ferrihydrite accumulations shown in (a) compared to Aβ/ferrihydrite 

aggregates shown in (b). (e) Selected area diffraction patterns compared for Aβ/ferrihydrite aggregates shown in (b) and (c). (f) Selected area 

diffraction patterns compared for an Aβ/ferrihydrite aggregate shown in (c) and magnetite reference. 
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Figure 4.12. Iron L-edge x-ray absorption spectrum of ferrihydrite incubated with Aβ for 

48 hours with subsequent prolonged air exposure, compared to an oxidized magnetite 

standard.   

 

4.4 Discussion 

From the use of x-ray absorption, iron(II) assay quantification, TEM and STXM 

techniques, it is shown that the AD peptide Aβ is capable of forming redox-active iron(II) 

minerals following its aggregation with the ferric mineral ferrihydrite. XAS examination 

revealed an iron(II) phase to be formed following 48 hours of Aβ/ferrihydrite incubation.  

 

Concurrent XMCD analysis showed this phase to be weakly magnetic, with 

aniferromagnetically ordered atomic moments, suggesting the formation of an iron(II) 

oxide such as wüstite 
167,168

. Further to this SQUID magnetometry and AC susceptometry 

measurements of Aβ/ferrihydrite solutions provided no evidence of a strongly magnetic 

material, suggesting the conversion of ferrihydrite to magnetite to not have occurred.  
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These findings are in agreement with Quintana et al. (2004) where a wüstite-like iron 

phase was observed within pathological AD ferritin 
108
, along with our related works where 

a similar iron(II) phase was formed via the interaction of Aβ and iron(III) in solution 

(Chapter 3). The results presented here suggest Aβ to be involved in the formation of the 

wüstite previously observed in pathological AD ferritin via reduction of ferrihydrite 
108
. 

Iron(II) quantification assays showed evidence of ferrihydrite reduction in solution, 

supporting the data acquired via XAS, along with indications of ferrihydrite redox cycling 

by Aβ.   As 37% of total iron content was found to be in an iron(II) state and ferrihydrite 

was in a 10:1 excess to Aβ, these results indicate that Aβ possesses a strong reductive 

capacity upon ferrihydrite. Such results are consistent with studies conducted by Kahn et al 

96
, and also the results displayed in Chapter 3 where Aβ was seen to be capable of iron(III) 

reduction in solution. Interestingly it appears that the speed of Aβ-induced iron reduction 

may also be influenced by iron crystallinity, with non-crystalline iron reduction occurring 

after only 30 minutes of Aβ interaction (Chapter 3, Figure 3.15d), whereas ferrihydrite 

reduction required 48–72 hours (Figures 4.1 and 4.10). 

 

Electron diffraction of Aβ/ferrihydrite aggregates revealed the presence of an iron oxide 

consistent with magnetite. These results provide a possible origin to the  increased 

proportion of magnetite observed within pathological ferritin 
108
, along with the increased 

magnetite levels in AD tissue compared to disease-free controls 
105,113

; and suggest that 

simple laboratory-based in vitro systems may be capable of producing bioinorganic 

products that are reminiscent of those that occur within tissue-based samples. Since 

magnetite is the oxidation product of wüstite 
171
, the mineral formed via Aβ/ferrihydrite 

interaction may have oxidized to form magnetite when exposed to air during electron 
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diffraction analysis. Further, the fine nanoscale crystal size of the magnetite phase 

observed here is consistent with its formation from the ferrihydrite precursor, and could 

explain the origin of ferritin-core sized iron oxide nanoparticles with a 

magnetite/maghemite crystal structure witnessed within AD plaque cores (Collingwood et 

al. (2008) 
36
).  

 

STXM, TEM and time lapse images suggest ferrihydrite particles integrate within Aβ fibril 

structures immediately after ferrihydrite addition, indicating an instantaneous interaction. 

In particular, STXM images show that Aβ is capable of both incorporating ferrihydrite into 

its fibril structure, and concentrating ferrihydrite into larger clusters. These data strongly 

suggest that Aβ is capable of binding ferrihydrite. On the basis of previous scientific 

literature, this binding may involve the formation of ternary complexes between the N-

terminus of Aβ and ferrihydrite, thereby modulating the redox potential of the peptide 

enabling  the  redox cycling of ferrihydrite 
98,99

. It is this interaction that is thought to 

induce the reduction of ferrihydrite to an iron(II) rich phase following extended periods of 

contact with Aβ. However it is unclear whether the iron(II) phase formed via 

Aβ/ferrihydrite interaction represents precursor to the magnetite previously seen in AD 

tissue, or whether magnetite could be formed independently of this intermediate phase. 

 

AFM topographic imaging revealed the presence of a fibrillar Aβ aggregate with three-

dimensional structure, capable of maintaining its morphology even when taken out of 

liquid medium. These peptide aggregates are very similar to amyloid fibrils extracted from 

human amyloidotic spleen 
173
, and  somewhat resemble AD plaque material previously 

observed through electron tomography techniques (see Collingwood et al. 
36
); indicating 
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that Aβ/ferrihydrite interaction may induce the aggregation of the peptide in a manner that 

is similar to AD plaque formation in the AD brain. 

4.5 Conclusion 

As iron is stored as redox-inactive ferrihydrite within the protein ferritin 
64
, the ability of 

Aβ to bind and reduce ferrihydrite into iron(II) phases that are known to be redox-active 

114,116,117
  may play a key role in the pathogenesis of AD. Iron levels are high throughout 

the brain 
46
, with the stored iron form ferrihydrite being abundant. If ferritin function is 

compromised in AD tissues, exposure of ferrihydrite to Aβ is likely. The apparent 

efficiency with which Aβ can reduce ferrihydrite suggests this interaction would represent 

a significant and sustained source of ROS capable of inducing widespread neuronal 

damage.  Additionally with iron levels shown to be increased in areas of Aβ deposition in 

transgenic AD models overproducing Aβ 
31
, and in areas of AD pathology in post mortem 

human AD tissue, the ability of Aβ to reduce ferrihydrite is likely to be a fundamental 

feature of AD pathology. 

 

From this study it is apparent that Aβ is directly capable of reducing synthetic ferrihydrite 

to pure iron(II) phases in the absence of any influencing factors. As iron(II)
 
phases do not 

occur naturally 
107,108

, these iron forms associated with Aβ pathology could represent a 

target for iron chelation therapies, intended to lower the ROS burden in neuronal tissue, 

thereby inhibiting the progression of AD. The formation of iron(II) oxides in this study 

also suggests a biogenic origin for the wüstite and magnetite previously recorded in AD 

tissue providing insights into the processes of AD pathogenesis.  
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4.6 Additional comments and implications for further work 

The results presented in this chapter represent a first time characterization of the mineral 

products formed through Aβ interactions with iron phases representative of those that 

occur in the human brain 
64,129

. Importantly these findings are in agreement with, and build 

upon those described in Chapter 3, demonstrating Aβ to chemically reduce crystalline iron 

phases akin to those found within the storage protein ferritin. Such results indicate that Aβ 

may be capable of inducing redox-active iron formation in the AD brain should ferrihydrite 

become exposed to the disease protein, and provide a basis from which in vitro systems 

more representative of the AD brain can be developed.  

Additionally this study has provided first time in vitro evidence of ferrihydrite induced 

aggregation of Aβ, and also the incorporation of ferrihydrite particles into fibrillar Aβ 

structures.  Clear differences in the structure of Aβ/ferrihydrite structures (as shown above) 

can be seen when compared to aggregate structures formed through Aβ/iron(III) interaction 

(see Chapter 3). In Aβ/iron(III) structures, iron was seen to be present as amorphous dense 

regions, co-localized within amyloid morphology, whereas ferrihydrite was seen to both 

follow amyloid fibril morphology and also become aggregated into small dense clusters. 

These differences in Aβ/iron aggregates may arise through the differing crystal structures 

of the starting iron material used. Further to this, no evidence of the amorphous amyloid 

structures discussed in Chapter 3 (Figures 3.10 and 3.11) were witnessed following 

Aβ/ferrihydrite incubation, even at incubation time points where iron was shown to be in 

an Fe
2+ 

state (through XAS). Therefore it appears that the chemical reduction of ferric iron 

forms by Aβ does not automatically result in the loss of amyloid fibril structure. 
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5.1 Introduction 

In the preceding chapters Aβ has been shown to chemically reduce unbound ferric iron 

forms into potentially pathological redox-active iron phases. These findings provide 

possible origins to the iron(II)-rich biominerals previously found within AD tissues 

36,60,105,108,112,113
.  However within biological systems iron is stored within the protein 

ferritin 
64
, and would therefore not necessarily come into direct contact with Aβ structures.   

As described in Section 1.2.1, ferritin is a ferroxidase protein responsible for the 

conversion and storage of iron as redox-inactive ferrihydrite 
46,64

. Despite being 

responsible for healthy brain iron storage, ferritin dysfunctions have been reported in 

multiple neurological disorders 
109,122,174-177

. Furthermore, it has been suggested that 

disruptions to the ferroxidase function of ferritin could be responsible for the occurrence of 

redox-active iron minerals in AD tissues, thus contributing to oxidative burdens 
58,60,107-109

. 

In addition to a loss of ferroxidase function, disruptions to ferritin structure can result in 

the exposure of its ferrihydrite core. This unbound ferrihydrite would be free to come into 

contact with Aβ, potentially resulting in its chemical reduction as described in Chapter 4. 

As ferritin has been shown to be accumulated within in Aβ plaque material 
74,126,178

, 

exposure of ferrihydrite to amyloid is likely  should ferritin function be compromised. 

Moreover, as the exchange of electrons across the protein shell of ferritin (apoferritin) has 

been reported (Watt et al. 
179

), Aβ may induce the chemical reduction of ferrihydrite stored 

within the core of ferritin even if the shell is not damaged. It is therefore feasible that 

alterations to ferritin structure and function could contribute to redox-active iron formation 

and oxidative stress in the AD brain.  

How ferritin function may come to be compromised in AD tissues is unclear. Based on the 

results presented in Chapter 4 and also the observation of ferritin accumulation within Aβ 
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plaque material in AD tissues 
74,126,178

, it may be possible that Aβ is capable of disrupting 

ferritin function, resulting in the conversion of its ferrihydrite core into a redox-active 

phase. To test this hypothesis, in this chapter, the interaction between Aβ and ferritin is 

investigated.  

First, the morphology, crystal state, iron content and oxidation state of ferritin in its natural 

state is characterized, to ascertain the nature of ferritin’s iron core (Sections 5.2.1 and 

5.3.1). Time lapse imaging and TEM are then employed to examine ferritin aggregation by 

Aβ, and the effect of this interaction upon the formation of fibrillar Aβ structures (Section 

5.3.2). These techniques are also used to examine the similarities between the chemical 

aggregation of ferritin by ammonium sulphate and ferritin aggregation induced by Aβ.  

STXM is utilized to examine the localization of ferritin’s iron content within Aβ 

aggregates, and the oxidation state of this iron. In tandem with STXM, electron 

microscopy is further exploited to determine the effect of Aβ interaction upon ferritin’s 

morphology and iron-core crystal state. Additional characterization of ferritin crystal state 

following interaction with Aβ is provided indirectly through XAS. Through this 

multidisciplinary approach, the first evidence of Aβ-mediated disruptions to ferritin 

structure and function is provided. This process of interaction is shown to result in the 

formation of redox-active iron phases, with the potential to contribute to AD pathology, as 

is discussed in Sections 5.4 and 5.5.  
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5.2 Materials and methods 

5.2.1 Characterization of horse spleen ferritin 

Concentrated horse spleen ferritin (Type I; 125mg/mL; 1% saline solution) was purchased 

from Sigma Aldrich.  

5.2.1.1 Ferritin morphology and crystal structure 

To determine the morphology and crystal structure of ferritin, 15 µL of 125 mg/mL ferritin 

suspension was deposited onto carbon/formvar coated TEM grids (200 mesh; Agar 

Scientific), and examined using a JEOL 1230 electron microscope operating at 100 kV.  

5.2.1.2 Ferritin iron content 

The iron content of ferritin was assessed via Ferrozine iron quantification assay. 125 

mg/mL ferritin was diluted with dH2O to create ferritin suspensions ranging from 0.1-1 

mg/mL. Small volumes of ferritin suspensions were added to 0.5 M HCl (to release 

ferritin’s iron core) and 6.25 M hydroxylamine hydrochloride for a period of 48 hours. 

Digested/reduced ferritin solutions were added to a 2 mM Ferrozine solution, and 

absorbance read at 562 nm. Iron concentration as a function of ferritin concentration was 

determined using these values 
153

.  

5.2.1.3 Oxidation state of ferritin 

To assess the oxidation state of ferritin’s iron core, XAS was conducted. Small volumes of 

125 mg/mL ferritin were deposited onto carbon/formvar coated TEM grids as described in 

Section 2.1.2. All sample manipulation was performed under anoxic conditions to prevent 

changes in iron valence state as described in Section 2.1.2. XAS was performed at 

Diamond Light Source (Oxfordshire, UK) beamline I10. Detailed XAS spectra were 
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collected over the iron L2,3-edge as outlined in Section 2.1.3.  The x-ray absorption 

spectrum of ferritin was recorded using the total electron yield method.  

5.2.2 The interaction of Aβ and ferritin 

5.2.2.1 Preparation of Aβ/ferritin suspensions 

Concentrated 125 mg/mL ferritin was gently inverted multiple times to ensure uniform 

ferritin distribution without damaging protein structure. Ferritin was diluted in KH buffer 

(100 mM PIPES) to achieve a 0.7 mg/mL (440µM iron content; see Section 5.3.1.2) 

ferritin suspension. 

Monomeric Aβ was thawed and dissolved in 1 mM NaOH to create a 1 mg/mL (220 µM) 

stock. This Aβ stock was allowed to sit at room temperature for 30 minutes to ensure 

complete peptide dissolution before being added to 0.7 mg/mL ferritin suspensions. Final 

ferritin and Aβ concentrations were 0.6 mg/mL (370 µM iron content) and 0.16 mg/mL (35 

µM) respectively. Aβ-free ferritin controls were created as above, with the substitution of  

1 mM NaOH for Aβ.  35 µM Aβ solutions were prepared in KH buffer as an amyloid 

reference.  All suspensions/solutions were incubated at 37°C until the time of sampling. 

To simulate the aggregation of ferritin in the absence of Aβ, additional 0.6 mg/mL ferritin 

suspensions were prepared through the addition of 125 mg/mL ferritin to a saturated (4 M) 

ammonium sulphate solution 
180

.  

5.2.2.2 Time lapse imaging 

Time lapse videos demonstrating the precipitation of ferritin by Aβ were created using 

Lapse it™ time lapse software. Images were taken every 5 minutes for a period of 18 

hours. All suspensions were kept at 37°C throughout the imaging process.  
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5.2.2.3 Electron microscopy 

Small volumes of Aβ/ferritin suspensions were deposited onto carbon/formvar coated 

copper TEM grids and excess liquid removed.  Samples were taken following 0.5, 48, 96 

and 144 hours of incubation at 37°C, and examined using a JEOL 1230 microscope system 

operating at 100 kV. Where both techniques were employed, electron microscopy was 

performed following STXM examination to prevent electron beam induced changes to iron 

chemistry 
181

.  

5.2.2.4 Scanning transmission x-ray microscopy 

15 µL of Aβ/ferritin suspensions were deposited onto silicon nitride membranes 

(DuneSciences 75nm thickness) and excess liquid removed using filter paper. Sampling 

was performed following 0.5, 48 and 144 hours of incubation at 37°C. Membranes were 

mounted onto stainless steel microspectroscopy plates for STXM examination as stated in 

Section 2.2.1. Carbon and iron maps revealing the biological structure and iron content of 

Aβ/ferritin structures were created as previously described in Section 2.2.2. Detailed 

carbon and iron x-ray absorption spectra revealing Aβ absorption profiles and iron 

oxidation state were created by scanning multiple energies across the carbon K-edge and 

iron L-edge respectively (see Section 2.2.2).  Additional Aβ and ferritin control samples 

were examined to provide reference carbon K-edge and iron L-edge reference spectra. As 

STXM was the primary technique employed to assess iron oxidation state following Aβ 

interaction, conscientious effort was taken to maintain anoxic conditions throughout the 

handling and examination of Aβ/ferritin materials (as described in Section 2.2.1). Carbon 

K-edge examination was performed prior to iron L-edge examination to minimize x-ray 

beam induced damage to carbon structures. 
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5.2.2.5 X-ray absorption spectroscopy 

For XAS/XMCD experiments, different Aβ batches were used to those in STXM 

experiments. 15µL of Aβ/ferritin suspensions (and their Aβ-free controls) were deposited 

onto carbon/formvar coated copper TEM grids, and grids were mounted onto copper 

sample holders as described in Section 2.1.2. Samples were taken under anoxic conditions 

following 30 minutes, 48 hours and 144 hours of incubation at 37°C. XAS measurements 

were performed at the iron L-edge using beamline I10 at the Diamond Light Source. To 

locate regions of ferritin deposition, two dimensional iron maps were obtained as described 

in Section 2.1.3. Detailed XAS measurements across the iron L2,3 absorption-edge region 

(700-740 eV) were then conducted to assess the oxidation state of ferritin.  

 

5.3 Results 

5.3.1 Characterization of horse spleen ferritin 

5.3.1.1 Ferritin morphology and crystal structure 

TEM imaging of ferritin (125 mg/mL) revealed a uniform coating of circular electron 

dense particles approximately 12 nm in diameter spread evenly across the sample surface 

(Figure 5.1).  Electron diffraction examination of this concentrated ferritin provided diffuse 

ringed diffraction patterns (Figure 5.2) and d-spacing values consistent with nanoscale 6-

line ferrihydrite (Table 5.1)
134

.  
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Figure 5.1. TEM images of ferritin particles (125 mg/mL) 

 

 

Figure 5.2. Electron diffraction patterns and d-spacing values obtained from ferritin 

particles shown in Figure 5.1. 
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Table 5.1. d-spacing values from the ringed patterns shown in Figure 5.2 compared to a 

ferrihydrite standard (Drits et al. 
134

) 

 

5.3.1.2 Ferritin iron content 

Ferrozine iron quantification assay revealed the iron content of ferritin to be approximately 

625 µM per mg/mL of the protein (Figure 5.3). For working iron concentrations used in 

this chapter (370 µM), ferritin was diluted to 0.6 mg/mL. 

 

Figure 5.3. Iron content (µM) as a function of ferritin concentration (0-1 mg/mL). Error 

bars show standard deviation (n=3). Linear trend is indicated by the blue line. 
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5.3.1.3 Oxidation state  

Iron L2,3-edge XAS examination of ferritin provided absorption spectra characteristic of a 

pure Fe
3+ 

mineral (Figure 5.4; see Chapter 1;Figure 1.9 for reference Fe
3+ 

spectra).  No 

evidence of enhanced Fe
2+ 

features was observed over successive XAS measurements, 

demonstrating ferritin to be stable in the x-ray beam (Figure 5.4).  

 

Figure 5.4. Iron L2,3-edge x-ray absorption profiles obtained from concentrated (125 

mg/mL) ferritin over three successive XAS measurements. 

 

5.3.2 The interaction of Aβ and ferritin 

5.3.2.1 Aβ-induced aggregation and disruption of ferritin structure  

Time lapse images of ferritin suspensions incubated for 18 hours in the presence and 

absence of Aβ are shown in Figure 5.5. When incubated in the absence of Aβ, ferritin 

forms a stable and uniform orange/brown suspension (Figure 5.5; right). However when 

incubated with Aβ, dense orange precipitates are seen to form following 15-20 minutes of 

interaction (Figure 5.5 left), suggesting the aggregation of ferritin by Aβ. Once formed, 

these precipitate structures remained unchanged over the 18 hours of imaging. Precipitates 
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appeared similar to aggregate structures formed through the addition of ferritin to 

ammonium sulphate (Figure 5.6); suggesting a similar aggregation process to have 

occurred.  

   

 

Figure 5.5. Time lapse images displaying ferritin incubated in the presence (left) and 

absence (right) of Aβ over an 18 hour period. Incubation times are shown to the left of 

each image.  
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Figure 5.6. Orange precipitate structures formed through the addition of ferritin to 

saturated ammonium sulphate  

 

TEM images of amyloid structures formed following incubation with ferritin are shown in 

Figure 5.7. In comparison to ferritin-free amyloid controls (Figure 5.8), these amyloid 

aggregates appear to be composed of poorly defined fibril structures, containing a high 

concentration of electron dense particles. The size and morphology of these dense particles 

was consistent with that of ferritin, suggesting Aβ to accumulate ferritin within its fibrillar 

structure. These findings compliment time lapse imaging of Aβ/ferritin suspensions, where 

Aβ appeared to aggregate ferritin.  
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Figure 5.7. TEM images displaying typical Aβ/ferritin structures formed following 48 hours (top) and 96 hours (bottom) of Aβ incubation with 

ferritin. 
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Figure 5.8. TEM images of Aβ fibril structures formed in the absence of ferritin. 
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To confirm that the electron dense particles shown in Figure 5.7 contained iron, and to 

assess the oxidation state of ferritin following incubation with Aβ over a 144 hour period; 

STXM was performed. 

Following 0.5 hours of incubation, multiple carbon dense structures were observed 

throughout the sample area, an example of which is shown in Figure 5.9. Iron L3-edge 

examination of the same aggregate revealed iron content to closely follow carbon 

morphology, suggesting the co-aggregation of Aβ and ferritin within an interaction period 

of 30 minutes. These observations are consistent with both time lapse imaging and TEM 

examinations of Aβ structures. 

 

Figure 5.9. STXM images displaying the (a) carbon and (b) iron content of an Aβ/ferritin 

aggregate formed following 0.5 hours of incubation. (c) Carbon (cyan)/iron (red) 

composite of the images shown in (a) and (b). 

 

STXM examination of an Aβ/ferritin aggregate formed after 48 hours of incubation again 

demonstrated iron and carbon content to be closely correlated (Figure 5.10). X-ray 

absorption examination of this aggregate over the iron L2,3-edge provided spectra 

characteristic of a pure Fe
3+ 

mineral, indicating no iron reduction to have taken place. TEM 

imaging revealed circular, electron opaque particles, extensively accumulated throughout a 

poorly defined fibrillar Aβ structure, suggesting ferritin morphology to be maintained 

(Figure 5.11).  
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Figure 5.10. STXM images and x-ray absorption spectra from an Aβ/ferritin aggregate 

formed following 48 hours of incubation. (a) Carbon and (b) iron content of the aggregate. 

(c) Carbon (cyan)/ iron (red) composite of the aggregate. (d) Iron L2,3-edge XAS spectra 

from the iron content shown in (b). 

 

700 710 720 730

 

 

In
te

n
si

ty
 (

a
r
b

. 
u

n
it

s)

Energy (eV)

5 µm

(a)

5 µm

(b)

5 µm

(c) (d)



Chapter 5 

158 

 

 

Figure 5.11.  TEM images from Aβ/ferritin aggregate shown in Figure 5.10. 

Surprisingly, despite this accumulation of ferritin, electron diffraction patterns from this 

aggregate were not consistent with 6-line ferrihydrite (Figure 5.12). Instead incomplete 

ringed patterns were observed, with ring arrangements characteristic of a body centred 

cubic (BCC) material, such as elemental (Fe
0
) iron (Figure 5.13). However, despite this 

BCC arrangement, the calculated lattice constant (4.0 Å) and d-spacing values (Figure 

5.12) obtained from Aβ/ferritin patterns were not consistent with lattice constant (2.87 Å) 

and d-spacing values (Table 5.2) for Fe
0
.  

Conversely, where ammonium sulphate was employed to chemically induce ferritin 

accumulation into similar density aggregates (Figure 5.14a), electron diffraction 

examination provided ringed diffraction patterns consistent with 6-line ferrihydrite (Figure 
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5.14b). Such observations suggest incubation with Aβ to alter the crystalline structure of 

ferritin’s ferrihydrite core.  

            

Figure 5.12. Electron diffraction patterns and d-spacing values obtained from the 

Aβ/ferritin structure shown in Figure 5.11, formed following 48 hours of incubation. 

Dotted lines act as a visual guide for the diffraction ring arrangements. Patterns are taken at 

a different exposure time to bring out the ring 2.85 Å (see right). 

 

 

Figure 5.13. Electron diffraction patterns and lattice constant values from body-centred 

cubic (BCC) iron (left) 
182
, compared to diffraction patterns obtained from the Aβ/ferritin 

aggregate (right) shown in Figure 5.12. Aβ/ferritin patterns have been scaled to match that 

of BCC iron. The lattice constant for Aβ/ferritin was calculated using the hkl values for a 

BCC structure, as labelled above the innermost three rings of the BCC iron reference 

pattern (left). 

Aβ ferritin 48 hrs Aβ ferritin 48 hrs
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Table 5.2. d-spacing values for elemental iron (Fe
0
) 

 

 

Figure 5.14.  (a) Bright field and (b) electron diffraction images from ferritin aggregate 

structures formed through the addition of ferritin to saturated ammonium sulphate. 

 

Further incubation of Aβ/ferritin suspensions to 144 hours led to the observation of carbon 

dense structures similar to those recorded after 0.5 and 48 hours of incubation; an example 

of which is shown in Figure 5.15. Iron L3-edge imaging of this aggregate revealed the 

majority of iron to be accumulated into a single region approximately 200 nm in diameter, 

thus no longer following carbon morphology. XAS examination of this region over the 

entire iron L-edge provided x-ray absorption spectra corresponding to chemically reduced 

iron phase (Figure 5.15 d). Despite modest saturation effects at the iron L3-edge,  iron 

Iron

Phase (hkl) d-spacing [intensity]

110 2.03 [100] 

200 1.43 [15]

211 1.17 [25]

200 nm

(a)
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appeared heavily reduced in comparison to time matched Aβ-free ferritin controls (Figure 

5.16 and Figure 5.17), as evidenced by a downward shift in the energy of the iron L3 peak 

absorbance (from 709.5 eV to 709 eV), coupled with enhanced Fe
2+ 

features and 

diminished Fe
3+ 

features at the iron L2 edge. As no evidence of iron reduction was 

observed in ferritin controls (Figure 5.16; blue), these effects appear to be induced by the 

interaction of Aβ with ferritin.  

 

Figure 5.15. STXM images and x-ray absorption spectra from an Aβ/ferritin aggregate 

formed following 144 hours of incubation. (a) Carbon and (b) iron content of the 

aggregate. (c) Carbon (cyan)/ iron (red) composite of the aggregate. (d) Iron L2,3-edge 

XAS spectra from the iron content shown in (b). 
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Figure 5.16. Iron L2,3-edge x-ray absorbance spectra from ferritin incubated for 144 hours 

in the absence (blue) and presence (red) of Aβ. Note the downward energy shift in the 

primary iron L3 peak feature (709 eV) and enhancement of Fe
2+

 features at 721 eV in the 

red spectrum, indicating iron reduction to have taken place. 

 

Figure 5.17. Comparisons of L2,3-edge spectra from saturated iron(III) signal (blue) 

compared to the reduced iron observed following 144 hours of Aβ incubation with ferritin 

(red). Clear reduction effects are apparent at both the L2 and L3 edges of the red spectrum, 

indicating reduction effects to be genuine rather than manifestations of saturated x-ray 

absorbance signal. 
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TEM imaging of this aggregate revealed a largely amorphous structure, lacking any mature 

amyloid fibril morphology (Figure 5.18a), yet containing regions of short spiked fibrils 

(Figure 5.18b-c). No evidence of ferritin accumulation was found within the aggregate, 

suggesting ferritin structure to have been compromised, potentially resulting in the 

accumulation of iron as witnessed in Figure 5.15b. Examination of ferritin incubated in the 

absence of Aβ, demonstrated protein morphology to be maintained over the 144 incubation 

period (Figure 5.19), suggesting these disruptions to ferritin structure to be a result of Aβ 

interaction.  
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Figure 5.18 TEM images of the Aβ/ferritin aggregate shown in Figure 5.15 
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Figure 5.19. TEM images of ferritin incubated in the absence of Aβ. Incubation times in 

hours are shown to the left of each row. 

 

Further TEM examination of Aβ structures formed following 144 hours of incubation with 

ferritin revealed the presence of multiple aggregates sharing the morphology of that shown 

in Figure 5.18. Electron diffraction examination of all (largely) amorphous structures 

provided diffuse ringed patterns, with BCC ring arrangements (Figure 5.20). Calculated 

lattice parameters and d-spacing values were consistent with those obtained from the 
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Aβ/ferritin aggregate formed following 48 hours of interaction (Figure 5.12), suggesting a 

similar, but more nanocrystalline phase to have formed.  

 

Figure 5.20. Electron diffraction patterns and d-spacing values obtained from an 

Aβ/ferritin structure formed following 144 hours of incubation. Colours are inverted in the 

right image to bring out the inner two rings of the diffraction pattern. 

 

Intriguingly, similar diffraction patterns to those displayed in Figure 5.20 were obtained 

from iron precipitates formed following the acid digestion of ferritin with 5 M HCl; as 

shown in Figure 5.21. These observations suggest that Aβ-mediated disruptions to ferritin 

structure result in alterations to the crystal structure of ferrihydrite in a similar manner to 

those induced chemically.  Unfortunately, the exact nature of this resulting crystalline 

material cannot be confirmed through the data available. The crystal structure of a variety 

of minerals that could contribute to the patterns shown in Figures 5.20 and 5.12 were 

referenced, yet no positive matches were identified (as summarized in Table 5.3). 

However, the sources of these patterns may include a mixed-phase and/or disordered iron 

material, potentially comparable to the highly disordered cubic mineral observed in 

Aβ ferritin 144 hrs
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pathological ferritin cores by Quintana et al (2004) 
108

.  Alternatively, prolonged electron 

beam exposure may have resulted in the formation of a BCC material, from an amorphous 

precursor. Indeed, electron beam induced effects have previously been demonstrated by 

Suslick et al. who observed BCC iron formation following prolonged exposure of 

amorphous iron to an electron beam 
183

.  Regardless of the exact phase formed, these 

results clearly demonstrate Aβ to be capable of altering the crystal structure of ferritin’s 

ferrihydrite core.  

  

Figure 5.21. (a) TEM and (b) electron diffraction images of iron precipitates formed 

following the addition of 5 M HCl to ferritin. 
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Table 5.3. Lattice constants and cubic structures (where applicable) of various minerals 

compared to the crystalline material found in Aβ/ferrihydrite aggregates (Figures 5.12 + 

5.20) 

Cubic Minerals 

Material Lattice constant (Å) Cubic structure 

Aβ + ferrihydrite (Figs 6.12 + 6.20) 4.0 Body-centred -cubic 

Ferrite (Fe) 2.9 Body-centred-cubic 

Wüstite (Fe1-xO) 4.3 
Face-centred-cubic 

(rock-salt) 

Magnetite (Fe3O4) 8.4 
Face-centred-cubic 

(hexoctahedral) 

Maghemite (Fe2O3) 8.3 
Basic cubic 

(tetartoidal) 

Magnesioferrite (MgFe2O4)* 8.4 
Face-centred-cubic 

(hexoctahedral) 

Andradite (Ca3Fe2Si3O12)*
, 
** 12.1 

Body-centred-cubic 

(hexoctahedral) 

Greigite (Fe3S4)* 9.87 
Face-centred-cubic 

(hexoctahedral) 

Sodium (Na)*ǂ 4.2 Body-centred-cubic 

Disodium oxide (Na2O)*ǂ 5.49 
Face-centred-cubic 

(antifluorite) 

Halite (NaCl)* 5.4 
Face-centred-cubic 

(rock-salt) 

Sylvite (KCl)* 6.3 
Face-centred-cubic 

(rock-salt) 

Silicon** 6.6 
Face-centred-cubic 

(diamond) 

Other minerals 

Material Lattice constants: a,b,c (Å) 

Ferrihydrite (Fe2O3•0.5H2O) 3.0, 3.0, 9.4 

Goethite (α-FeO(OH)) 9.9, 3.0, 4.6 

Lepidocrocite (γ-FeO(OH)) 12.4, 3.9, 3.1 

Feroxyhyte (δ-FeO(OH)) 2.59, 2.59, 4.56 

Hematite (α-Fe2O3) 5.0, 5.0, 13.8 

Siderite (FeCO3)* 4.69, 4.69, 15.1 

Molysite (FeCl3)* 6.1, 6.1, 17.4 

Lawrencite (FeCl2)* 3.6, 3.6, 17.5 

Fougerite (Fe(OH)2) 3.2, 3.2, 23.9 

Butlerite (Fe(OH)SO4•2H2O)* 6.5, 7.4, 5.8 

Strengite (FePO4•2H2O)* 8,7, 9.9, 10.2 

Nierite (Si3N4)** 7.8, 7.8, 5.6 

Tridymite (SiO2)** 8.7, 5.0, 8.2 

Aragonite (CaCO3)* 5.0, 8.0, 5.7 

Vaterite (CaCl2)* 7.3, 7.3, 25.3 

 

* Elemental components are constituents of KH buffer 

** Elemental components are constituents of silicon membranes 

ǂ Would rapidly react in water to form NaOH 
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It should be noted that interaction effects observed following 144 hours of Aβ incubation 

with ferritin were heterogeneous. Aβ aggregates containing oxidized iron (Figure 5.22) and 

intact ferritin (Figure 5.23) were observed in close proximity to the aggregate structure 

displayed in Figures 5.15 and 5.18. 

 

Figure 5.22. Iron L2,3-edge STXM-XAS profile of Fe
3+ 

material found within an aggregate 

structure in close proximity to that shown in Figure 5.15. 

 

 

Figure 5.23. Example of an Aβ/ferritin aggregate formed following 144 hours of 

incubation where regular ferritin morphology is maintained 
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Taken together, these data suggest disruptions in ferritin structure to occur following 144 

hours of incubation with Aβ, resulting in the chemical reduction of the ferritin iron core 

into a redox-active iron phase; and the concentration of this iron into dense nanoscale 

aggregates.  Furthermore, this process of Aβ/ferritin interaction appears to alter the crystal 

structure of ferritin-derived ferrihydrite and inhibit the ability of Aβ to form mature fibril 

structures.   

5.3.2.2 STXM carbon K-edge examination of Aβ/ferritin structures 

Unfortunately, due to carbon contamination on the focusing apparatus (zone plate) of the 

STXM instrument during experimental time spent examining ferritin, reliable carbon K-

edge spectra could not be obtained for this set of experiments. Despite this contamination, 

attempts were made to record carbon K-edge absorption levels from the Aβ/ferritin 

structures. A typical example of a Aβ/ferritin carbon spectrum is shown in Figure 5.24, 

compared to the carbon absorption profile for Aβ(1-42) displayed in Chapter 3.  A low 

energy peak at 285 eV arising from aromatic amino acids (labelled 1) and a dominant π* 

peak at 288 eV (labelled 2) can be seen in both the Aβ/ferritin spectra and the Aβ spectra 

form Chapter 3, suggesting the presence of a peptide structure 
143

.  However a significant 

broadening of the π* peak at 288 eV is apparent in the Aβ/ferritin spectra, coupled with the 

absence of the low-intensity peak structure associated with arginine at 289.2eV (labelled 3) 

as seen in the Aβ spectrum from Chapter 3. Further to this, instrument carbon 

contamination prevented reference ferritin carbon K-edge spectra from being collected. 

This meant that distinctions in the absorption features of ferritin and Aβ could not be 

characterized. Thus despite these spectra suggesting the presence of a peptide material, this 

cannot be definitively confirmed to be Aβ.  
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Figure 5.24.  Carbon K-edge spectra from AB/ferritin structures (red) compared to the 

carbon spectra collected from Aβ(1-42) in Chapter 3 (blue). Peptide features at 285 eV, 

288 eV, and 289.2 eV are labelled 1, 2 and 3 respectively, and are highlighted by the grey 

dashed lines.  

 

5.3.2.3 XAS examination of ferritin following interaction with Aβ 

Iron L2,3-edge XAS spectra obtained from ferritin (0.6 mg/mL) incubated in the absence 

and presence of Aβ are shown in Figures 5.25, 5.26 and 5.27. When incubated in the 

absence of Aβ, ferritin provided iron L2,3-edge x-ray absorption spectra characteristic of a 

pure iron(III) mineral (Figure 5.25). Ferritin was found to be stable in the x-ray beam, with 

no enhancements to Fe
2+ 

features being apparent over successive XAS measurements. 

These findings are in agreement with those displayed in Figure 5.4, where concentrated 

(125 mg/mL) ferritin was found to be in a Fe
3+

 beam stable state, and also where 

ferrihydrite was incubated in the absence of Aβ in Chapter 4 (Figure 4.1a).  
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Figure 5.25. Iron L2,3-edge x-ray absorbance spectra from successive XAS scans of a 

ferritin aggregate incubated in the absence of Aβ 

 

When incubated in the presence of Aβ, initial iron L3-edge XAS examination (labelled scan 

1 in the Figures 5.26 and 5.27) demonstrated ferritin to remain in a Fe
3+ 

state over all time 

points examined. However following 48 and 144 hours of incubation, successive XAS 

measurements of ferritin deposits over the entire iron L-edge resulted in enhancements to 

Fe
2+ 

x-ray absorption features, as displayed in Figure 5.26 and 5.27 respectively.  
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Figure 5.26. Successive iron L-edge XAS measurements of a beam unstable ferritin 

aggregate found following 48 hours of incubation with Aβ 

 

 

Figure 5.27. Successive iron L-edge XAS measurements of a beam unstable ferritin 

aggregate found following 144 hours of incubation with Aβ. Scan number 2 is omitted due 

to poor data quality. 

 

700 710 720 730

In
te

n
si

ty
 (

a
r
b

. 
u

n
it

s)

Scan 9

 

 

Energy (eV)

AFerritin 48 hours 

Scan 1

700 710 720 730

Scan 8

Scan 1

AFerritin 144 hours 

 

 

In
te

n
si

ty
 (

a
r
b

. 
u

n
it

s)

Energy (eV)



Chapter 5 

174 

 

As ferritin has shown to be stable in the x-ray beam when incubated in the absence of Aβ 

(Figures 5.4 and 5.25), this alteration in stability following x-ray exposure appears be a 

result of Aβ interaction. With crystalline iron materials typically being stable in the soft x-

ray energy range used throughout this thesis, these results suggest Aβ to have altered the 

crystal state of ferritin’s ferrihydrite core,  resulting in the formation of a more amorphous 

iron phase susceptible to soft x-ray reduction effects. These findings support electron 

diffraction patterns obtained from Aβ/ferritin structures where alterations to 6-ferrihydrite 

crystal structure were observed (Figures 5.12 and 5.20); and also results presented in 

Chapter 4, where Aβ was seen to convert 2-line ferrihydrite into a beam unstable phase 

(Figure 4.2 b).  

 

5.4 Discussion 

Through the use of STXM, TEM, electron diffraction and XAS, ferritin structure is shown 

to be disrupted following incubation with Aβ, resulting in the conversion of ferritin’s 

ferrihydrite core into a potentially toxic redox-active phase. 

Time lapse imaging, TEM and STXM demonstrate ferritin to become accumulated within 

Aβ peptide structures following only 30 minutes of co-incubation at 37°C. This process 

resulted in a high concentration of ferritin throughout Aβ structures, with ferritin (and iron) 

distribution being widespread (rather than localized) within amyloid aggregates formed 

over the first 48 hours of co-incubation. These observations are in keeping with STXM 

results displayed in Chapter 4, where ferrihydrite was found to become accumulated and 

integrated throughout Aβ aggregate structures when incubated with the peptide          

(Figure 4.7).  Corresponding iron L2,3-edge examination of these Aβ/ferritin aggregate 

structures revealed iron to be in a pure iron(III) phase, suggesting no chemical reduction to 
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have taken place. The inclusion of ferritin within amyloid aggregates also appeared to 

disrupt typical amyloid fibril formation, with Aβ aggregates comprised poorly defined 

fibril structures typically being observed following 48-96 hours of incubation with ferritin. 

These aggregate structures were clearly different to Aβ structures formed through 

incubation with ferrihydrite, where fibrillar structure was maintained (Chapter 4; Figure 

4.7a). This lack of fibrillar structure in Aβ/ferritin aggregates may arise through 

peptide/peptide interactions between the two proteins, potentially inhibiting the formation 

of secondary and tertiary structures required for amyloid fibril creation.  

The ability of Aβ to accumulate and incorporate ferritin into its structure provide possible 

explanations to observations made by Grundkeiqbal et al. where increased levels of ferritin 

were recorded within senile plaque material in AD tissues 
126

. However the findings 

reported here also contradict early electron microscopy studies by Paul et al. who 

witnessed no interaction between ferritin and amyloid fibrils taken from amyloidosis 

patients 
184

.   

Prolonged incubation of Aβ with ferritin, led to the observation of Aβ aggregates where 

ferritin structure was absent (as shown via TEM). In these instances a complete loss of 

mature amyloid fibril morphology was also observed. Aβ appeared largely amorphous, 

albeit containing localized regions of short fibril structures. As ferritin morphology was 

found to be maintained in amyloid-free controls, these disruptions to ferritin structure 

appear to be induced through Aβ interaction. Iron L3-edge imaging of an amorphous 

amyloid structure revealed iron to be concentrated into a dense spot approximately 200 nm 

in diameter. This distribution of iron was vastly different to earlier time points, where iron 

was found to be widely spread throughout Aβ structures. STXM-XAS examination across 

the iron L2,3-edges revealed this iron to be heavily reduced, with features characteristic of 
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redox-active iron. Again, as amyloid-free ferritin controls were shown to remain in a pure 

iron(III) state this, reduction effect appears to be a result of Aβ interaction with ferritin.  

These data suggest that Aβ acts to disrupt ferritin structure after extended periods of 

interaction, resulting in the reduction of the ferritin’s ferrihydrite core into a redox-active 

phase. The capacity of Aβ to reduce 6-line ferrihydrite further demonstrates the ability of 

amyloid to reduce more crystalline iron materials, and is consistent with the findings 

presented in Chapter 4 where Aβ was seen to reduce 2-line ferrihydrite. The ability of Aβ 

to reduce the ferrihydrite core of ferritin also provides a potential in vitro explanation to 

the observation of redox-active iron material within the cores of ferritin extracted from AD 

tissues 
108

.  

The occurrence of reduced iron was associated with a loss of amyloid fibril structure and 

the accumulation of iron into a localized nanoscale deposit. Interestingly the loss of Aβ 

fibril structure was also associated with the appearance of chemically reduced, dense 

nanoscale iron deposits in Aβ aggregates formed following Aβ interaction with iron(III) 

hydroxide (Chapter 3; Figures 3.10 and 3.11). Such observations tentatively suggest that 

the reduction of iron may be associated with a loss of amyloid fibril structure and the 

formation of amorphous protein aggregates.   

Further evidence of Aβ-mediated alterations to ferritin (ferrihydrite) structure was provided 

through electron diffraction. In the absence of Aβ, ferritin provided ringed diffraction 

patterns consistent with 6-line ferrihydrite. Following incubation with amyloid no evidence 

of 6-line ferrihydrite diffraction patterns remained. Instead Aβ/ferritin structures provided 

diffraction patterns consistent with a body centred cubic (BCC) crystalline material. 

Notably, similar BCC diffraction patterns were obtained from iron precipitates formed 

following the acid digestion of ferritin in hydrochloric acid. These data suggest that similar 
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alterations to the crystal structure of ferritin’s ferrihydrite core occur where ferritin 

structure is disrupted after Aβ interaction, and where ferritin is disrupted chemically; 

highlighting the destructive nature of amyloid. The material source of these BCC patterns 

is currently unclear, as calculated lattice parameters (4Å) and d-spacing values were not 

consistent with BCC iron (2Å), or various other cubic iron minerals. However, it is 

possible that these patterns arise from a mixed-phase iron material, potentially formed 

through the exposure of amorphous iron material to high electron doses (as described by 

Suslick et al. 
183

). Alternatively a highly disordered cubic crystalline phase, akin to the 

wüstite-like material recorded in pathological ferritin cores taken from AD tissues 

(Quintana et al. 
108

) may have formed. Indeed the lattice parameter of wüstite (4.3 Å), is 

the closest of all the cubic iron minerals to the 4 Å lattice parameter recorded from 

Aβ/ferritin structures.  

Interestingly, by comparing bright field TEM images of Aβ/ferritin aggregates to their 

corresponding electron diffraction patterns, ferrihydrite crystal structure appeared to 

become altered in Aβ structures where ferritin morphology was shown to be maintained. 

This suggests that Aβ may act to alter the crystal state of ferrihydrite prior to the 

destruction of ferritin and/or the extraction of ferrihydrite from the apoferritin protein shell. 

These findings support those reported in Chapter 4, where Aβ was shown to alter the 

crystal structure of 2-line ferrihydrite; although no electron diffraction evidence of 

magnetite was observed following Aβ/ferritin interaction. The ability of Aβ to alter the 

crystal structure of the ferrihydrite  core whilst located within ferritin may also prove 

consistent with findings Watt et al. who reported iron electron transfer across the 

apoferritin protein shell 
179

. Electron transfer in such a manner could allow the chemical 

reduction of the ferritin’s iron core by Aβ (and likewise the oxidation of the peptide), 

without either iron or protein coming into physical contact with one and another. This 
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differs from natural ferritin function, where iron(II) is oxidized when it comes into contact 

with the ferroxidase centres located on the H-chain ferritin subunits 
64

. 

Further indirect evidence of Aβ disruptions to the crystal structure of ferritin’s ferrihydrite 

core were provided through XAS. Although normally stable to soft x-ray exposure, 

following incubation with Aβ, ferritin became unstable in the x-ray beam, resulting in x-

ray induced reduction effects. These reduction traits are typical of amorphous iron phases 

(as demonstrated in Chapter 3), suggesting Aβ to have converted the ferrihydrite core of 

ferritin into a more amorphous form. Again, these disruptions to ferrihydrite crystal 

structure are consistent with results displayed in Chapter 4, where Aβ was shown to 

convert 2-line ferrihydrite into a beam-unstable state.  

5.5 Conclusions 

From the data presented in this chapter it appears that Aβ is capable of disrupting the 

structure of ferritin, resulting in the chemical reduction of its ferrihydrite core into a redox-

active and potentially toxic phase. As ferritin is abundant throughout the human brain 
46,64

, 

and has been observed to accumulate in localized regions of Aβ deposition 
74,126,178

, this 

interaction process may represent a significant source of oxidative stress in AD tissues, 

thus contributing to the neurodegeneration associated with AD 
37,38,49,53,57,78

. Furthermore, 

disruptions to ferritin function may detrimentally affect healthy brain functions in which 

iron plays a key role, resulting in further neurotoxic effects. Importantly these results 

suggest Aβ to be cable of chemically converting both unbound (see Chapters 3 and 4) and 

bound iron; the form in which iron exists naturally. The ability of Aβ to access the iron 

content of ferritin would effectively provide a limitless fuel for iron reduction, potentially 

allowing a sustained production of ROS and oxidative stress in AD tissues. With oxidative 

stress being a key characteristic of AD pathology 
53,57,78

, this interaction process could 



Chapter 5 

179 

 

represent a target for therapies intended to lower oxidative burdens and delay disease 

progression. Combined with the results presented in Chapter 4, there appear to be several 

avenues with which potential treatments could act to reduce amyloid-induced iron toxicity. 

First is the targeting of the redox-active phases, such as elemental iron and pure iron(II) 

phases, which do not occur naturally in the human brain. As described in Chapters 3 and 4, 

removal of these iron forms could reduce oxidative stress without disrupting healthy brain 

functions. Secondly the interaction of Aβ with ferritin could be targeted for inhibition. By 

preventing Aβ from detrimentally interacting with ferritin, the formation of redox-iron may 

be prevented, and the valuable function of ferritin maintained. As disruptions to ferritin 

have been shown to induce neurotoxic effects 
122,175-177

 (including the formation of aberrant 

tau filament structures in AD and PSP patients 
123

) , maintaining ferritin function may 

prove of paramount importance.  In summary, the findings presented in this chapter 

provide insights into processes of Aβ interaction with naturally occurring iron forms, 

which may prove vital in understanding how iron and Aβ contribute to the pathogenesis of 

AD. 

5.6 Further comments 

This chapter significantly builds upon the results displayed Chapters 3 and 4 by 

introducing iron in a naturally occurring form; within the storage protein ferritin. These 

findings provide a basic in vitro model of how Aβ may come into contact with iron in vivo, 

whilst also further demonstrating the reductive capacity of Aβ. 

The results of this study also highlight the requirement for the localized chemical imaging 

of bioinorganic structures, owing to the heterogeneous interaction effects observed. It is 

apparent that techniques such as XAS (which allow the generalized oxidative state of a 

material to be elucidated) do not provide the sensitivity required to understand complex 



Chapter 5 

180 

 

protein/protein interactions such as those occurring between Aβ and ferritin. For example, 

the 200 nm reduced iron deposit as detected by STXM-XAS (Figure 5.15), is unlikely to 

have been detected by traditional XAS techniques; where x-ray beam resolution is 

typically in the hundred micron range. In this instance, absorbance levels from surrounding 

oxidized iron regions may overwhelm any reduced iron signal, thus preventing Aβ-induced 

reduction effects from being detected.  

The results presented here provide an intriguing insight into the process of Aβ/ferritin 

interaction, and highlight the need for this relationship to be examined in greater detail. 

Key questions remain unanswered including: how does Aβ act to disrupt ferritin structure; 

when does the reduction of ferrihydrite occur (within ferritin; or when released from 

ferritin); and why was reduced iron found to be accumulated into a small dense aggregate. 

Further to this, it is imperative to ascertain whether the accumulation of ferritin within Aβ 

structures is a result of generic protein/protein interactions, or whether this aggregation of 

ferritin is unique to Aβ. As was highlighted in previous chapters, the cytotoxic effects of 

these interaction processes are also of great interest. Of particular interest are: whether Aβ 

interaction with ferritin lead to the generation of neurotoxic compounds; and what are the 

effects of ferritin interaction upon Aβ neurotoxicity? Proposed experimental procedures 

intended to address these outstanding questions are provided in Chapter 8; Future Work. 
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6.1 Introduction 

Throughout Chapters 3, 4 and 5 there has been a focus on identifying the potential origins 

for the increased levels of iron(II)-bearing minerals (namely magnetite and wüstite) 

previously recorded in Alzheimer’s disease tissue 
36,105,108,113

. Although these 

investigations have demonstrated the ability of Aβ to form pure iron(II) minerals from 

ferric iron precursors, no evidence of magnetic iron mineral formation has been observed 

as a result of Aβ interaction with naturally occurring iron forms. On the basis of these 

findings, it appears that Aβ is not directly capable of converting non-magnetic iron 

precursors into magnetic phases in the absence of any other influencing factors (such as 

enzymes, or metal ion catalysts), over the time period examined.  

Notably, studies conducted by Galvez et al. report the presence of magnetite within non-

diseased ferritin proteins 
121

, suggesting ferritin to be an amyloid-independent source of 

magnetic iron within brain tissues. Through iron(II) quantification techniques, this 

‘natural’ magnetite was shown to not be a readily accessible source of iron(II). This 

observation led to the authors concluding that ferritin-derived magnetite is not a source of 

free toxic ferrous iron within AD tissues. As the results from Chapter 5 indicate Aβ to be 

capable of disrupting ferritin structure, it is feasible for Aβ to come into contact with 

magnetite within the AD brain. Furthermore, with Aβ possessing a remarkable ability to 

alter the crystal state and oxidative state of iron (Chapters 3,4 and 5), amyloid may be 

capable of converting afore mentioned ‘natural’ magnetite into a source of free ferrous 

iron, capable of inducing ROS production thereby contributing towards AD pathology.  

To date, only one study (Mir et al. 
185
) has investigated the interaction between Aβ and 

magnetite, suggesting the formation of amyloid-magnetite complexes in vitro. However 

these results were far from comprehensive.  Significantly, the iron mineral products and 
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peptide structures formed through Aβ/magnetite interaction are yet to be characterized. In 

this chapter, physical sciences approaches are combined with traditional microscopy 

techniques to examine the relationship between Aβ and synthetic, surface oxidized 

magnetite over a 144 hour period of interaction.  

Evidence of magnetite accumulation and sequestering by Aβ is provided through TEM and 

element-specific STXM images (Section 6.3.1). Electron diffraction patterns from 

Aβ/magnetite structures demonstrate the effect of Aβ interaction upon magnetite crystal 

phase stability (Section 6.3.2) Aβ-mediated alterations to the magnetic and oxidative states 

of magnetite are then demonstrated through XMCD and XAS respectively (Section 6.3.3).  

Further magnetic characterisation displaying Aβ-induced disruption to magnetite’s 

magnetic state is provided through SQUID magnetometry and AC susceptometry (Section 

6.3.4). Through this multidisciplinary approach the effect of Aβ interaction upon the 

mineral state of magnetite is characterized for the first time.   

6.2 Materials and methods 

6.2.1 Preparation of Aβ/magnetite suspensions 

18 mM magnetite (Fe3O4) stock suspensions were created through the addition of dH2O to 

magnetite nanopowder (Sigma Aldrich < 50 nm particle size). Magnetite nanopowders 

were surface oxidized due to their storage in aerobic environments. Stock suspensions 

were sonicated for 5 minutes to ensure uniform particle size distribution and suspension 

stability before being added to either modified KH buffer (pH 7.4; 100 mM PIPES) or 

dH2O to create a 440 µM magnetite suspension. These 440 µM suspensions were again 

sonicated for 5 minutes immediately prior to Aβ addition. Additional 440 µM maghemite 

(Fe2O3) nanoparticle suspensions were created in dH2O as described above. 
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Synthetic Aβ(1-42) was dissolved in 0.1 M NaOH to create a 1mg/mL (220 µM) Aβ stock 

as described in Chapter 3. Aβ stock was added to 440 µM magnetite/maghemite 

suspensions, and the resulting Aβ/nanoparticle suspensions were neutralized (where 

required) to pH 7 through the addition of 0.5 M HCl. Final peptide and nanoparticle 

concentrations were 35 µM and 370 µM respectively. 

Aβ-free magnetite/maghemite control suspensions were prepared in the same manner as 

described above, with the substitution dH2O for Aβ. All solutions were left to incubate at 

37°C until the time of sampling. 

6.2.2 Electron microscopy 

Electron microscopy was performed using a JEOL 1230 microscope operating at 100 kV. 

Samples examined under electron microscopy were not previously exposed to the x-ray 

beam used in XAS/XMCD or STXM. 

6.2.3 Scanning transmission x-ray microscopy 

To generate element specific images of Aβ/magnetite structures, STXM was performed on 

the Swiss Light Source PolLux beamline (Villigen, Switzerland). Aβ/magnetite 

suspensions were deposited onto silicon nitride membranes (75 nm thickness) and mounted 

onto spectromicroscopy plates as described in Section 2.2.1. Samples were taken after 48 

hours of incubation at 37°C. Sample manipulation and examination was performed in 

aerobic conditions. Element specific images displaying the carbon and iron content of 

amyloid aggregates were created as previously described in Section 2.2.2. Carbon K-edge 

examination of Aβ structures was performed prior to examination at the iron L-edge to 

prevent x-ray beam induced damage to carbon structures. Different Aβ batches were used 
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in STXM experiments to those used in electron microscopy, XAS/XMCD, SQUID 

magnetometry and AC susceptibility experiments.  

6.2.4 X-ray absorption spectroscopy and x-ray magnetic circular 

dichroism 

To determine the surface oxidation state and magnetic properties of magnetite following 

incubation with Aβ, iron L2,3-edge XAS and XMCD were performed. X-ray absorption 

events were recorded using TEY method of detection allowing a probing depth of 

approximately 5 nm (see Section 1.4.1). Small volumes of Aβ/nanoparticle suspensions 

were deposited onto TEM grids as described in Chapter 2.1.2. As described in Section 

2.1.1, a needle point focusing magnet was used during sample preparation, inducing the 

concentration of magnetic material into a single 0.5-1 mm diameter aggregate at the centre 

of the TEM grids This aggregation allowed regions of interest to be efficiently located in 

XAS/XMCD experiments.   

Samples were taken after 30 min, 48 hours and 144 hours of suspension incubation at 

37°C. All sample preparation, transport and examination was conducted under anoxic 

conditions to prevent changes to magnetite valence chemistry. XAS/XMCD examination 

was performed at Diamond Light Source beamline I10. Two dimensional iron (L3 -edge) 

maps revealing the iron content of the sample grids (see Chapter 2; Figure 2.7d-f) and 

detailed iron L2,3–edge XAS/XMCD absorption spectra from magnetite/maghemite 

deposits were obtained as described in Sections 2.1.3 and 2.1.4. XAS spectra were 

recorded via the total electron yield method. XMCD spectra were obtained by recording 

two x-ray absorption spectra with opposed magnetic fields orientated along the x-ray beam 

direction. Not all iron deposits provided sufficient signal for complete XAS/XMCD 

analysis to be performed. 
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6.2.5 SQUID magnetometry 

To confirm the magnetic state of magnetite following incubation with Aβ, SQUID 

magnetometry was performed. Small volumes (15 µL) of Aβ/magnetite suspensions (and 

their Aβ free magnetite controls) were deposited into sealed plastic vessels as described in 

Section 2.5. Sampling was performed following two months of incubation at 37°C. 

Hysteresis loops displaying the magnetic characteristics of the magnetite suspensions were 

created by measuring the magnetic moment against an applied magnetic field (-5000, 5000 

Oe) at temperatures ranging from 5-200K (nullifying blocking effects induced by 

magnetite nanoparticle size). Measurements were performed using a Quantum Design 

SQUID-VSM. 

6.2.6 AC susceptometry 

The magnetic susceptibility of magnetite following long-term incubation with Aβ was also 

assessed via AC susceptometry. Frequency scans from 100 Hz-150 kHz were performed 

on Aβ/magnetite suspensions (and their Aβ-free controls) to determine the magnetic state 

and aggregate size of the magnetite particles. Measurements were taken following 16 

months of incubation at 37°C. 

6.2.7 Iron(II) quantification in solution 

The iron(II) content of amyloid/magnetite and Aβ-free magnetite samples was determined 

in suspension using the Ferrozine colorimetric assay as described in Section 2.4 
153

. In an 

attempt to allow Ferrozine iron binding, acid digestion and iron reduction times were 

increased to 48 hours to ensure complete digestion of magnetite (please refer to Section 

2.4.4 for the effect of iron crystal state upon Ferrozine binding). Iron(II) quantification  

readings were taken after  0,  24, 48, 72, 120 and 144 hours of incubation at 37°C.  
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6.3 Results 

6.3.1 The accumulation and sequestering of magnetite nanoparticles by 

Aβ 

To visualize the structures formed through Aβ interaction with magnetite, TEM and STXM 

were performed. 

Examination of Aβ-free magnetite controls revealed the presence of electron dense 

nanoparticle aggregates typically 1-5 µM in size dispersed evenly throughout the sample 

grid for all time points examined (Figure 6.1).  

Following 0.5 hours of Aβ/magnetite co-incubation, TEM examination revealed multiple 

fibrillar structures comprised of Aβ, containing regions of aggregated electron dense 

nanoparticles believed to be magnetite, ranging from 0.5-5 µM in diameter (Figure 6.2). 

Nanoparticle size and morphology was consistent with those observed in the Aβ-free 

magnetite controls.  
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Figure 6.1. TEM images of magnetite nanoparticle aggregates in absence of Aβ. 

Incubation time in hours are shown to the left of each image.  

 

TEM imaging following 48 hours of Aβ/magnetite incubation largely revealed Aβ 

structures containing distinct electron opaque magnetite nanoparticle regions as described 

for the 0.5 hour time point. However certain aggregates contained regions of nanoparticles 

appearing to be losing their ordered structure as if being digested by Aβ (Figure 6.2; 

highlighted by dashed red outlines). Further incubation to 144 hours led to the observation 

of Aβ aggregates containing amorphous electron dense regions integrated within fibril 

amyloid structures (Figure 6.2 bottom). No evidence of regular nanoparticle structure 
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could be seen in these regions, further indicating the destruction of magnetite nanoparticle 

structure by Aβ.  

No clear correlations between Aβ aggregate size and incubation time were observed, with 

aggregate size typically ranging between 5-50 µM in diameter. Where Aβ and magnetite 

were incubated together, no accumulates of magnetite were observed free of Aβ structures. 

Following 0.5 hours of incubation, Aβ fibril structure was seen to be maintained in regions 

of magnetite deposition. However, in certain instances, evidence of amyloid fibril 

disruption was observed following 48 and 144 hours of incubation, in correlation with the 

occurrence of Aβ-mediated disturbances to magnetite nanoparticle structure (Figure 6.2; 

highlighted by solid blue outlines). These findings indicate magnetite to induce the 

aggregation of Aβ (in comparison to iron-free Aβ aggregates shown in Chapter 3 and 

Chapter 5), with Aβ being capable of integrating magnetite nanoparticles into its fibrillar 

structure. 
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Figure 6.2. TEM images of Aβ aggregate structures formed following incubation with magnetite nanoparticles. Incubation times are displayed 

to the left of each row. Red dashed outlines show regions of magnetite nanoparticle disruption, blue solid outlines show amorphous Aβ 

regions.
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To confirm that the electron dense particles found within amyloid aggregates were 

composed of magnetite, carbon K-edge and iron L2,3-edge microspectroscopy were 

performed in STXM experiments. Element specific images of an Aβ/magnetite structure 

formed following 48 hours of incubation are displayed in Figure 6.3.  

 

Figure 6.3. Element specific STXM images and XAS spectra from a Aβ/magnetite 

aggregate formed following 48 hours of incubation. (a) Carbon K-edge map revealing Aβ 

content. (b) Iron L-edge map of the same aggregate displaying magnetite content. (c) 

Composite image of (a) and (b). (d) Carbon K-edge XAS spectra from (a). (e) Iron L2,3-

edge XAS spectra from (b). The grey dotted line at 708 eV is a visual guide for the L3-edge 

Fe
2+ 

peak position. 

 

Carbon K-edge examination of Aβ/magnetite samples (Figure 6.3a) led to the observation 

of multiple carbon dense structures with carbon K-edge x-ray absorption profiles (Figure 

6.3d)  consistent with the  amyloid aggregates presented in Chapter 3, and the calculated 

XAS spectra for the amino-acid base sequence of Aβ(1-42) 
143
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Corresponding iron L3-edge examination revealed regions of iron accumulation within 

these carbon structures (Figure 6.3b), which provided iron L2,3-edge x-ray absorption 

profiles (Figure 6.3f) consistent with the iron mineral magnetite (see reference magnetite 

XAS spectra in Section 1.4, Figure 1.9; green). These results confirm the co-aggregation 

of magnetite within Aβ structures as observed via electron microscopy (Figure 6.2). No 

evidence of iron accumulation was found free of Aβ structures.  

6.3.2 Aβ induced alterations to magnetite crystal structure 

Electron diffraction imaging of magnetite incubated in the absence of Aβ provided ringed 

diffraction patterns characteristic of nanopowder magnetite for all time points examined, 

an example of which can be seen in the left hand panels of Figure 6.4. Sharp complete 

rings are present at 2.97, 2.53, 2.1, 1.61 and 1.48Å corresponding to the 5 strongest 

reflections of magnetite: [220], [311], [400], [511] and [440] respectively (JCPDS card 88-

0315). No changes to electron diffraction patterns were seen with increasing incubation 

time, demonstrating the crystal structure of magnetite to be maintained throughout the 

experimental period. 

Following 0.5 (Figure 6.4 a)  and 48 hours (Figure 6.4 b) of incubation with Aβ, magnetite 

deposits provided diffraction ring patterns indistinguishable to the Aβ-free magnetite 

controls. This characteristic magnetite diffraction pattern was maintained in regions where 

Aβ appears to be altering nanoparticle structure, such as the Aβ/magnetite aggregate shown 

in Figure 6.2 (middle row, right), although a diffuse background not present in the 

magnetite controls, can also be seen. 



Chapter 6 

193 

 

 

Figure 6.4. Electron diffraction patterns from a magnetite reference (left image in each 

panel) compared to magnetite incubated with Aβ (right image). Patters from Aβ/magnetite 

deposits following (a) 0.5 hours incubation (corresponding to Figure 6.2; top row, right), 

(b) 48 hours incubation (corresponding to Figure 6.2; middle row, central), (c) 144 hours 

(Figure 6.2; bottom, left), (d) 144 hours (Figure 6.2; bottom, central) and (e) 144 hours 

(Figure 6.2; bottom, right). 

 

However, after 144 hours of incubation with Aβ, significant alterations to electron 

diffraction patterns obtained from magnetite deposits were observed.  By comparing Figure 

6.4c and Figure 6.4d (obtained from the Aβ aggregates shown in Figure 6.2; bottom row, 

left and Figure 6.2; bottom row, middle respectively) to magnetite references, clear 

disruptions to the [220], [311], [400], [511] and [440] reflections of magnetite can be seen. 

These diffraction rings are no longer continuous, having been replaced with incomplete 

spotted ring patterns. Such findings suggest Aβ to have disrupted the crystal structure of a 

large proportion of the magnetite nanoparticles present.  

Magnetite Aβ + Magnetite (0.5) Magnetite Aβ + Magnetite (48)

Magnetite Aβ + Magnetite (144) Magnetite Aβ + Magnetite (144) Magnetite Aβ + Magnetite (144)

(a) (b)

(c) (d) (e)
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Further electron diffraction patterns shown in Figure 6.4e (corresponding to the Aβ 

structure displayed in Figure 6.2; bottom row, right) reveal the crystalline structure of 

magnetite to have been completely lost following 144 hours of incubation with Aβ. These 

patterns suggest the presence of a nearly amorphous iron material, a result in keeping with 

the bright field TEM images displayed in Figure 6.2. Taken together these results indicate 

Aβ be capable of altering the crystal structure of magnetite. It should also be noted that no 

evidence of a ferrihydrite-like material (2-line or 6-line) was observed following Aβ 

interaction with magnetite.  

6.3.3 Oxidative state and magnetic properties of magnetite following             

Aβ interaction 

Iron L2,3–edge x-ray absorption spectra showing the oxidation state of magnetite incubated 

in the presence or absence of Aβ as a function of time are displayed in Figure 6.5. 

Where magnetite was incubated in the absence of Aβ, XAS examination provided iron L2,3-

edge spectra characteristic of the pure iron(III) mineral maghemite at 0.5 and 48 hour time 

points (Figure 6.5a). The L3-edge shoulder feature (708 eV) associated with magnetite is 

absent, being replaced by a well-defined L3 pre-peak structure characteristic of iron(III) 

minerals. Further to this, the L3 peak position is seen to shift to a higher energy (709.5 eV) 

than observed in magnetite references (709.2 eV), and at the L2 edge, Fe
3+ 

cation features 

(723 eV) are enhanced in comparison to the Fe
2+ 

features (721 eV). These differences in 

XAS spectra are caused by magnetite nanoparticle oxidation, resulting in the formation of 

maghemite at the nanoparticle surface. As XAS/XMCD spectra were recorded using the 

TEY method, where only the outermost 5 nm of a material can be probed, this surface 

oxidation resulted in a Fe
3+ 

cation dominated XAS spectra. Following 144 hours of 
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incubation, no areas of magnetite accumulation were found that provided a sufficient iron 

x-ray absorption signal to allow full iron L2,3-edge XAS/XMCD analysis.  

Iron L2,3-edge XAS probing of Aβ/magnetite deposits revealed evidence of increased Fe
2+

 

content following 48 and 144 hours of incubation (Figure 6.5b). As in Chapter 3, these 

modest enhancements are believed to be a result of x-ray beam induced iron reduction. 

Consecutive XAS scans revealed magnetite to be unstable in the x-ray beam once 

incubated with Aβ, with increased periods of x-ray beam exposure resulting in 

enhancements to Fe
2+ 

cation features. Indeed, initial rapid XAS scans across the iron      

L3–edge (to confirm the presence of iron) provided spectra characteristic of a Fe
3+

 mineral. 

However, upon full L2,3-edge examination (in which iron deposits are exposed to the x-ray 

beam for prolonged periods) clear increases to Fe
2+

 content were apparent (Figure 6.6). As 

crystalline iron phases are typically stable when exposed to x-rays in the soft energy range 

(Figure 6.7), these x-ray induced reduction effects indicate Aβ to have altered the crystal 

structure of magnetite, resulting in the formation of an x-ray unstable iron precipitate, 

similar to the iron examined in Chapter 3. These results are entirely consistent with those 

obtained through electron microscopy where Aβ was shown to disrupt magnetite 

nanoparticle structure.  
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Figure 6.5. Iron L2,3-edge XAS spectra from magnetite incubated in dH2O in the absence 

(a) and presence (b) of Aβ. Incubation times are shown above each spectrum. The grey 

dotted line at 708 eV (bottom) is a visual guide for the L3-edge Fe
2+ 

peak position. 
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Figure 6.6.  Iron L2,3-edge x-ray absorption spectra of an x-ray unstable magnetite 

aggregate formed following 48 hours of incubation with Aβ.  L3 edge Fe
2+
 cation peak 

features (indicated by a grey dotted line at 708 eV) are shown to become enhanced 

following six successive XAS measurements. 

 

 

Figure 6.7. Iron L2,3-edge x-ray absorption spectra from a magnetite aggregate stable under 

x-ray beam exposure. Note there is no enhancement to Fe
2+ 

cation features with increasing 

scan number. The grey dotted line at 708 eV is a visual guide the primary Fe
2+ 

L3 peak 

position. 
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To assess the magnetic state of magnetite deposits, XMCD was performed across the iron 

L2,3 absorption edges.  Following 0.5 and 48 hours of incubation in the absence of Aβ, 

magnetite deposits provided XMCD spectra consistent with the iron(III) mineral 

maghemite, with strong dichroism effects of 10-15% being observed (Figure 6.8a). 

Increases in L3-edge Fe
3+

 cation features in relation to L3-edge Fe
2+

  features are apparent 

compared to magnetite standards (Figure 6.8c), due to the oxidized surface of the 

magnetite nanoparticles used.  Magnetite samples prepared following 144 hours of 

incubation did not provide sufficient signal strength to allow full XMCD analysis. 

Following 0.5 hours of incubation with Aβ, iron L2,3-edge XMCD examination of 

magnetite deposits provided spectra remarkably different to that of the Aβ-free control 

(Figure 6.8b). XMCD spectra revealed a dramatic decrease in dichroism effects, with 

values of approximately 2.5% being recorded. Further to this, XMCD spectra were no 

longer comprised of the characteristic three-peak structure synonymous with magnetite 

(Figure 6.8c)
137

; instead two poorly defined negative peaks were recorded at 708.5 and 710 

eV. Following 48 and 144 hours of incubation XMCD probing provided spectra with small 

dichroism effects of 1-1.5%, and evidence of antiferromagnetic ordering of Fe
 
cations 

(Figure 6.8b). These XMCD spectra were very similar to those displayed in Chapters 3 

and 4, suggesting a similar antiferromagnetic phase to have formed.  

As was observed in the iron L2,3-edge XAS spectra shown in Figure 6.5, XMCD spectra 

displayed variations in Fe
2+ 

XMCD features in response to x-ray beam induced reduction. 

Spectra collected after 0.5 hours of magnetite incubation with Aβ show little evidence of 

Fe
2+ 

cation components at either the L3 or L2 edge (Figure 6.8b; blue). However, following 

48 hours of incubation with Aβ, tetrahedral Fe
2+ 

XMCD features at both iron L-edges are 

significantly enhanced compared to those recorded following 0.5 hours, providing a Fe
2+ 

dominated spectrum (Figure 6.8b; red). Following 144 hours of incubation Fe
2+ 

cation 
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contributions decrease in intensity compared to those recorded at the 48 hour time point, 

providing an intermediate Fe
2+

/Fe
3+ 

XMCD spectra (Figure 6.8b; green). 

Aβ-induced decreases in dichroism effects were observed where magnetite (Figure 6.9a) 

and maghemite (Figure 6.9b) nanoparticles were incubated with Aβ.  

 

Figure 6.8. Iron L2,3-edge XMCD spectra obtained from magnetite incubated in the 

absence (a) and presence (b) of Aβ. Incubation times are shown above each spectrum. (c) 

An additional magnetite reference is provided in the bottom left corner. Labels in (c) 

indicate the positions of the L3-edge octahedral Fe
2+ 

and Fe
3+ 

cation contributions, whose 

ratios alter dependent upon magnetite oxidation state.  
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Figure 6.9.  Comparisons of iron L2,3-edge XMCD spectra obtained from magnetite 

(Fe3O4) and maghemite (Fe2O3) nanoparticles incubated in the absence and presence of 

Aβ. (a) Magnetite (blue; 0.5 hours incubation) and Aβ + magnetite (red; 144 hours). (b) 

Maghemite (blue; 0.5 hours) and Aβ + magnetite (red; 48 hours). 

 

Thus XMCD measurements confirm the ability of Aβ to alter magnetite structure, resulting 

in the loss of magnetite’s ferrimagnetic properties and the formation of a weakly magnetic 

antiferromagnetic material similar to those displayed in Chapters 3 and 4. 

 

6.3.4 Magnetic characterisation of magnetite following Aβ interaction 

To further assess the magnetic properties of magnetite following incubation with Aβ, 

SQUID magnetometry and AC susceptometry measurements were performed. 

 

6.3.4.1 SQUID magnetometry 

Hysteresis loops displaying the magnetic moment versus magnetic field (-5000, 5000 Oe) 

over a temperature range of 10-100 K from magnetite suspensions following two months 

of incubation in the presence or absence of Aβ are displayed in Figure 6.10.  
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Where incubated in the absence of Aβ, magnetite suspensions provided hysteresis loops 

characteristic of a ferrimagnetic material (Figure 6.10a). Magnetic moment values were 

consistent with magnetite references of equal concentrations (not shown) suggesting the 

magnetic properties of magnetite to have been maintained following the two month 

incubation period. 

However when incubated in the presence of Aβ for two months, magnetite suspensions 

provided no evidence of a strongly magnetic material at any temperature examined (Figure 

6.10b-c). Hysteresis loops were characteristic of a superparamagnetic material, with 

magnetic moment values approximately 50 times lower than Aβ-free magnetite control 

suspensions (Figure 6.10d). This dramatic decrease in magnetite magnetic moment 

following incubation with Aβ is consistent with XMCD results shown in Figure 6.8, where 

Aβ was shown to convert magnetite into a weakly magnetic antiferromagnetic phase.  
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Figure 6.10. Hysteresis loops (-5000, 5000 Oe) obtained from magnetite solutions incubated for 2 months in the absence (a) and presence (b) 

and (c) of Aβ. Measurement temperatures (K) are displayed in each panel. 
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6.3.4.2 AC susceptometry 

To confirm the magnetic properties of magnetite suspensions following 20 months of 

incubation in the presence or absence of Aβ, AC susceptibility measurements were taken. 

Results of these measurements are shown in Figure 6.11 and Figure 6.12.  

In the absence of Aβ, magnetite suspensions provided positive χ’ values of across the 

frequency range examined (Figure 6.11). These values were slightly higher to those 

obtained from concentration-matched magnetite references (see Chapter 4, Figure 4.5). 

This enhanced magnetic signal is believed to arise through the evaporation of water from 

the magnetite suspensions following extensive periods of incubation at 37°C, resulting in 

an increase in magnetite concentration (per µL of suspension). Regardless of the precise 

values, these measurements confirm magnetite suspensions to have maintained their 

magnetic properties following 20 months incubation in the absence of Aβ. No clear peaks 

in χ” values were obtained from Aβ-free magnetite suspensions, suggesting a polydisperse 

magnetite aggregate size distribution. 
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Figure 6.11. AC susceptometry measurements of magnetite suspensions incubated in the 

absence of Aβ for 20 months. 

 

Figure 6.12. AC susceptometry measurements of magnetite suspensions incubated in the 

presence of Aβ for 20 months. 
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correspond to a loss of magnetic signal and suggest no ferromagnetic/ferrimagnetic 

material to be present. As was the case in the Aβ-free magnetite suspensions, no clear peak 

in χ” values was observed. 

These results suggest Aβ to be capable of altering magnetite structure causing a loss in the 

magnetic properties of the mineral, a finding consistent with those obtained through 

XMCD and SQUID magnetometry.  

6.3.5 Iron(II) quantification in solution: Ferrozine assay 

In an attempt to quantify iron(II) levels of the Aβ/magnetite suspensions Ferrozine assays 

were conducted. The results of these assays (not shown) were inconclusive, due to 

incomplete magnetite acid digestion as indicated by erroneous total iron content values.  

6.4 Discussion 

Through a multidisciplinary approach incorporating electron microscopy, STXM, XAS, 

XMCD, magnetic susceptometry and SQUID magnetometry, Aβ is shown to be capable of 

sequestering magnetite nanoparticles within its fibrillar structure, with this interaction 

leading to the disruption of magnetite crystal structure and a loss of magnetite’s 

ferrimagnetic properties.  

Electron microscopy and STXM examination of structures formed through Aβ incubation 

with magnetite revealed the presence of large amyloid fibrillar structures containing 

regions of aggregated nanoparticles, indicating Aβ to be capable of sequestering magnetite. 

The affiliation of Aβ for magnetite appears to be very strong, with no evidence of 

magnetite being observed in the absence of the Aβ when incubated together, suggesting 

possible binding of magnetite by Aβ. These findings are in agreement with studies 

published by Mir et al. who found amyloid fibrils to complex with magnetite in vitro 
185

; 



Chapter 6 

206 

 

however the evidence presented here demonstrates this interaction process with a much 

improved level of clarity. Furthermore, the association between Aβ and magnetite provides 

another potential origin to the magnetite/maghemite material found within amyloid plaque 

material abstracted from AD tissues (Collingwood et al. (2008) 
36

). Should physiological 

ferritin contain magnetite (see Galvez et al. 
121
), Aβ could act to disrupt ferritin function 

(as suggested in Chapter 5) resulting in a release of this magnetite component, which is 

then sequestered by Aβ. The extensive aggregation of Aβ in the presence of magnetite 

indicates the iron mineral to induce amyloid aggregation in a similar manner to iron(III) as 

evidenced by House et al. 
95

 and in  Chapter 3 of this thesis. 

Through electron microscopy, Aβ/magnetite interaction is shown to result in the 

destruction of magnetite nanoparticle structure. This destructive process appears to begin at 

the nanoparticle surface, causing disruptions to nanoparticle morphology without 

significantly altering the crystal structure of magnetite’s core. Further interaction with Aβ 

sees a complete loss of magnetite core crystal structure, resulting in the formation of a 

largely amorphous iron phase. Magnetite was found to be in varied crystal states following 

the same period of incubation with Aβ, indicating nanoparticle digestion by Aβ to be non-

uniform. Such observations suggest factors such as nanoparticles aggregate size and 

surface area to potentially alter the effect of Aβ interaction upon nanoparticle structure. As 

no evidence of a ferrihydrite-like material was observed following magnetite incubation 

with Aβ, the digestion of magnetite into an amorphous phase does not appear to pass 

through a ferrihydrite intermediate. Thus the phase transitions described in this chapter 

appear to be of a different lineage to those observed in iron reducing bacterium, where 

ferrihydrite acts as a precursor for magnetite formation 
137

. 
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Surprisingly the crystal state of sequestered magnetite also appears to have an effect upon 

the morphology of Aβ fibrils. Where nanoparticle structure was maintained, traditional 

amyloid fibril morphology was also observed. However, once magnetite crystal structure 

became disrupted, fine fibril structure was often lost in amyloid regions immediately 

surrounding magnetite accumulation. Amorphous Aβ/magnetite structures appear similar 

to those observed following Aβ interaction with iron(III) as displayed in Chapter 3.  These 

observations suggest the crystal state of magnetite to be a determining factor in how Aβ 

physically interacts with the mineral. When in a nanoparticle form, large crystal size may 

prevent magnetite from becoming incorporated into amyloid structures. Conversely once 

magnetite crystal structure is disrupted this physical barrier is lifted, allowing (what was 

originally) magnetite to integrate into amyloid aggregates, forming Aβ/iron structures 

comparable to those shown in Chapter 3 (Figure 3.3). 

Iron L2,3-edge XAS examination of Aβ/magnetite deposits suggest that Aβ is not directly 

capable of chemically reducing magnetite over the time period examined. However 

incubation with Aβ did result in magnetite becoming unstable when exposed to the x-ray 

beam, resulting a x-ray beam induced enhancement of Fe
2+ 

content, a characteristic of 

amorphous iron phases (see Chapter 3; Figure 3.12).  As magnetite incubated in the 

absence of Aβ was shown to remain stable under x-ray beam exposure, these x-ray beam 

induced reduction effects appear to be a result of Aβ/magnetite interaction. These findings 

indicate Aβ to convert crystalline magnetite into a more amorphous phase, a result 

consistent with bright field TEM and electron diffraction images, and the results of 

Chapters 4 and 5, where Aβ was shown to convert 2-line ferrihydrite and ferritin into a 

state susceptible to x-ray beam induced reduction.  

Iron L2,3-edge XMCD probing of magnetite following incubation with Aβ revealed a 

dramatic decrease in magnetic dichroism compared to Aβ-free magnetite controls. After 
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only 30 minutes of incubation with Aβ, dichroism effects were seen to decrease 5-fold, 

dropping from 10-15% to 2.5%.  Following 48 and 144 hours of incubation with Aβ, 

dichroism effects continued to decrease to 1-1.5%, providing XMCD spectra reminiscent 

of a weakly antiferromagnetic material, consistent with those displayed in Chapters 3 and 

4. Moreover, similar decreases in magnetic dichroism were observed when maghemite was 

incubated with Aβ, displaying Aβ to disrupt the structure of multiple magnetic iron phases.  

Moreover, the XMCD spectra and electron diffraction patterns obtained from 

Aβ/magnetite structures formed following 48 hours of incubation, provide a possible 

explanation for the nanoparticle deposits witnessed in AD plaque cores, which despite 

showing a crystal structure consistent with magnetite/maghemite did not possess any 

detectable magnetism 
36

. 

Additional SQUID magnetometry and AC susceptometry measurements further 

demonstrated the magnetic properties of magnetite to be diminished following incubation 

with Aβ. Such a process represents a significant alteration to magnetite structure, 

highlighting the destructive nature of Aβ interaction upon nanoscale iron minerals.  

6.5 Conclusion 

Taken together these results demonstrate the remarkable ability of Aβ to both sequester 

and disrupt the crystal structure of magnetic iron nanoparticles, resulting in their 

conversion to amorphous, weakly magnetic antiferromagnetic phases. This process did not 

result in the chemical reduction of magnetite over the time period examined. However as 

Aβ is capable of chemically reducing various poorly crystalline and amorphous iron forms 

(please refer to Chapters 3,4 and 5), this “digestion” step may be a prerequisite for 

magnetite reduction. Thus further incubation (beyond the time-frame examined in this 

chapter) of digested magnetite with Aβ may result in its conversion to a pure-ferrous or 
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elemental (Fe
0
) state as seen in Chapters 3, 4 and 5.  Moreover, magnetite was shown to 

induce Aβ aggregation resulting in the formation of amyloid fibril arrangements with the 

potential to convey neurotoxicity (although the effect of Aβ aggregation state upon 

neurotoxicity is debated) 
104
. Thus the interaction of Aβ with magnetite may serve to 

increase amyloid toxicity, along with providing potential precursors for redox-active iron 

formation. The observation of magnetite within physiological 
121

 and pathological 
108

 

ferritin coupled with the ability of Aβ to disrupt ferritin function (Chapter 5), suggests that 

Aβ may come into contact with magnetite in the AD brain. I tentatively suggest that this 

relationship may prove detrimental to neuronal health through the activation of the immune 

system’s inflammatory response, in response to the creation of insoluble amyloid structures 

12
. Furthermore the ability of Aβ to destroy magnetite crystal structure, may in turn 

facilitate its conversion to  a highly redox-active phase capable of inducing oxidative 

stress
49
. Thus interactions between Aβ and magnetite could play a significant role in AD 

pathogenesis and warrant further investigation.  

 

6.6 Additional comments and implications for further work 

The preliminary results presented in this chapter provide an interesting insight into the 

destructive nature of Aβ upon crystalline iron. However further characterisation of the 

mineral products formed following extended periods of Aβ/magnetite interaction are 

required to understand the relevance of this interaction process with regards to the 

formation of redox-active iron phases. In addition, it is imperative to determine whether 

the impressive amyloid aggregate structures formed in the presence of magnetite are 

capable of inducing cytotoxic effects that could contribute to AD pathology. Unfortunately 

the effects of Aβ interaction upon magnetite crystal structure/magnetic properties as 
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presented in this chapter have proved to be difficult to reproduce, and further more 

comprehensive experimentation is required to understand this relationship in a greater level 

of detail. 

 Another noteworthy finding presented in this thesis chapter, is the inability of Ferrozine to 

bind to magnetite. It is apparent that magnetite crystal structure must be completely 

destroyed for its Fe ions to freely bind with Ferrozine. Ferrozine iron(II) quantification 

techniques were also used by Galvez et al. to determine the iron(II) content of magnetite 

found within ferritin cores; however no acid digestion step was applied. As no detectable 

iron(II) signal was observed following Ferrozine addition to ferritin-derived magnetite,  the 

authors concluded that ferritin-derived magnetite could not be a source of the toxic “free” 

(i.e. unbound/poorly liganded) ferrous iron observed in AD tissues. However these 

conclusions are extremely misleading. Although, the ferrous iron content of magnetite is 

not free to complex with Ferrozine, it is free to partake in redox chemistry. In fact 

magnetite is particularly redox-active, as demonstrated through its ability to convert 

hexavalent chromium, into a trivalent state 
116

. Further to this, the magnetic properties of 

magnetite allow localized triplet state stabilization, resulting in increased free radical 

production 
60

. If the magnetite content of ferritin was to be released in AD tissues (feasibly 

through the Aβ-mediated mechanisms described in Chapter 5), these redox-active minerals 

would be free to induce oxidative stresses resulting in neurotoxicity. Thus to infer that 

magnetite cannot be a source of ferrous iron toxicity within AD tissues, on the basis of 

negative Ferrozine iron(II) quantification results, is completely misconstrued.  
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Chapter 7 

Associated investigation: Observation of 

iron bearing fibrillar aggregates and 

redox-active biominerals in Alzheimer’s 

disease transgenic mouse cortex 

 

  



Chapter 7 

212 

 

7.1 Introduction 

Throughout the experimental chapters of this thesis, investigations have focused on 

identifying how Aβ interacts with iron in simple in vitro systems. Findings from these 

studies demonstrate Aβ to be capable of chemically reducing naturally occurring iron 

minerals into redox-active phases capable of partaking in Fenton chemistry, potentially 

resulting in ROS production. However, we must establish whether similar processes of Aβ/ 

iron interaction can occur within in vivo systems displaying AD pathology. Such studies 

will determine whether the chemical products of in vitro Aβ/iron interaction are truly 

representative of those that occur naturally.  

As described in Chapter 1, defining the oxidation state and magnetic properties of 

pathological iron deposits within AD tissues may prove vital in both the treatment and 

early detection of AD.  Understanding the composition of pathological iron phases will 

influence how therapies such as iron chelators and antioxidants function, owing to the 

differing bonding and crystal structures of iron oxides 
129

. Successfully identifying 

pathological iron forms will thus allow the targeting of detrimental iron without disrupting 

natural iron function (homeostasis). Further to this, differences in the magnetic effects of 

iron minerals may allow pathological iron phases to act as contrast agents in magnetic 

resonance imaging (MRI) of AD tissues 
60

, acting as a marker for AD, prior to the onset of 

cognitive symptoms.  

In this study x-ray microspectroscopy (STXM) and electron microscopy techniques are 

employed to investigate the morphology and oxidative state of iron deposits located in situ 

within cortical tissue taken from an APP/PS1 transgenic mouse model, reproducing the 

amyloid deposition characteristic of AD. Furthermore, the localization of iron deposits 

with regards to regions of Aβ pathology is assessed. First, STXM images displaying the 
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carbon and iron content of transgenic cortical tissue are presented. Complementary high 

resolution TEM images of structures identified through STXM are then displayed, along 

with x-ray absorption profiles demonstrating the oxidation state of iron deposits located 

within transgenic mouse tissue. Finally, how these iron forms located in situ compare to 

the iron phases recorded in the in vitro experiments of Chapters 3, 4 and 5 will be 

discussed. 

7.2 Materials and methods 

7.2.1 Preparation of transgenic APP/PS1 mouse cortex tissues 

8-9 month old APP/PS1 female transgenic mice were euthanized to obtain cortical tissues 

displaying AD pathology.  Additional 14 month old wild type mice were euthanized as a 

disease-free control. Intracardial perfusion of mouse brain tissues was performed by Joe 

Gallagher, as described in Gallagher et al. (2012) 
31

. 

7.2.2 Sectioning of mouse cortex tissue 

Sectioning and embedding of mouse brain tissues for STXM and TEM examination was 

performed by Neil Telling. Initial coarse sections (ca. 1 mm thickness) were cut from 

frozen brain tissue using a sapphire blade. These coarse sections were thawed in sodium 

cacodylate and embedded in custom made modified epoxy resin that is suitable for STXM 

measurements 
186

. Only 0.1 M sodium cacodylate and ethanol dehydration were employed 

during the embedding process to prevent any changes to iron chemistry. Semi-thin (200 nm 

– 1 µm) sections were cut using glass blades and deposited onto TEM copper grids or 

silicon nitride membranes. All STXM/TEM measurements were performed on unstained 

sections. 
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7.2.3 STXM examination of mouse cortex tissues 

Copper/silicon nitride microscopy grids were mounted onto stainless steel microscopy 

plates for STXM examination on the soft x-ray spectromicroscopy beamline at the 

Canadian Light Source. Raster scans were performed across cortical tissues at the peak 

carbon K-edge absorption energy for peptide structures (288 eV), to provide images of 

biological structures (as described in Section 2.2.2).  Further scans of the same regions 

were performed at the peak carbon K-edge absorption energy for epoxy resins (290 eV).  

These epoxy resin absorption values were subtracted from peptide values, resulting in the 

removal of carbon artefacts caused by the embedding material.  

To identify potential iron deposits within cortical tissue whilst maintaining contrast for 

protein structures, raster scans at an intermediate energy (between the carbon K-edge and 

iron L-edge ) of 350 eV were performed. Corresponding scans were then performed at the 

iron L3-edge to reveal the iron content of these regions. Further high magnification scans of 

iron deposits were conducted at the iron L3-edge to a spatial resolution of approximately 20 

nm. Multiple scans were performed across the entire iron L-edge to determine the 

oxidation state of iron deposits as described in Section 2.2.2.  

To determine the effect of prolonged x-ray beam exposure upon the oxidation state of 

embedded iron, solid suspensions of iron(III) oxyhydroxide (goethite), and nanocystalline 

maghemite were created in agar gels. Semi-thin sections of these iron minerals were 

deposited onto electron microscopy grids and examined over the iron L-edge as described 

above. To determine the effect of x-ray beam exposure on surface iron contaminants, small 

volumes of these iron suspensions were directly deposited onto microscopy grids and 

examined over the iron L-edge. 
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7.2.4 TEM imaging of cortical tissues 

Complementary TEM images of structures examined under STXM were obtained utilizing 

a JEOL 1230 microscope system operating at 100 kV. TEM examination was performed 

by Neil Telling. 

7.3 Results 

7.3.1 Co-localization of iron within fibrillar protein structures 

Examination of  wild-type (WT) cortical tissue at the carbon  K-edge provided detailed 

protein maps displaying extensive tissue morphology including cell bodies, cellular 

membranes,  intracellular organelles and the extracellular matrix (Figure 7.1).  Iron L3-

edge imaging of these tissues revealed infrequent (three) regions of particulate iron 

deposition (Figure 7.2). These iron regions were approximately 300 nm in diameter and 

displayed no evidence of intricate structure (Figure 7.2 d-f). Examination of iron deposits 

across the iron L2,3-edge provided absorption spectra consistent with iron(III) reference 

materials, suggesting iron to be present in a purely ferric form (Figure 7.2g). 

 

Figure 7.1. Carbon K-edge STXM protein maps from a WT mouse cortical tissue section. 

(a) Image taken at the π* amide protein peak (288 eV). (b) Image at a higher energy of 

288.8 eV, showing enhanced absorption effects (darkened regions) attributed to embedding 

resin material (as indicated by arrowheads in (a)). Arrows in (a) show structural artefacts. 

Subtracting (b) from (a) provides artefact free protein images of cortical tissues (c), 

revealing intricate details such as cellular organelles (dotted area).  
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Figure 7.2.  Example of iron deposits found within WT cortical tissues.  (a) STXM image 

measured at 350 eV, displaying tissue structure and small dense particles. (b) 

Corresponding STXM image at the iron L3-edge revealing the presence of multiple dense 

deposits within the tissue material. (c)  Background subtracted iron L3-edge map revealing 

one of the deposits shown in (b) to be comprised of iron (circled). (d-f) High resolution 

iron maps of the iron deposits found in (c), and  in two other WT tissue samples.  (g) Iron 

L2,3 x-ray absorption spectra from iron deposits located within WT mouse cortical tissue 

compared to a goethite reference iron(III) spectra. 

 

Carbon K-edge examination of transgenic APP/PS1 mouse cortical tissues revealed 

evidence of extensive tissue damage, although it was not clear whether this damage was 

pathological or due to poor tissue preservation during sample preparation (Figure 7.3).  

Upon Iron L3-edge mapping of these tissues, multiple areas of iron deposition were 

observed, examples of which are provided in Figure 7.3. High magnification STXM iron 

imaging of these iron regions (Figure 7.3) revealed intricate structure to be present, bearing 

resemblance to the Aβ/iron structures observed using STXM  as displayed in Chapter 3; 
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Figures 3.4, 3.5 and 3.9.  Typical deposit size ranged from several hundred nanometers, to 

microns in diameter, suggesting extensive iron accumulation to have taken place. Such 

structures are vastly different to iron deposits located within WT cortical tissues, where 

iron was present in a dense particulate form.  

Iron L2,3-edge x-ray absorbance levels from the iron deposits shown in Figure 7.3 provided 

absorption spectra demonstrating one region (A2) to be composed of almost pure ferric 

iron (Figure 7.4), whilst other areas (A1 and A2) provided evidence of significant ferrous 

iron content compared to iron(III) reference spectra. These enhancements in ferrous iron 

features were not apparent in any of the iron deposits measured in WT tissues (Figure 7.2).  

High magnification TEM imaging of the areas A2 and A3 revealed iron dense regions to 

be comprised of short, fine fibril structures, 50-150 nm in length. Such short fibril 

structures were consistent with Aβ structures observed following the incubation of Aβ with 

ferritin (Chapter 5; Figure 5.18), indicating that the fibril structures may be comprised of 

the amyloid protein.  Where TEM and STXM were performed on the same aggregates, 

areas displaying dense fibril structures were correlated to the highest iron signal, 

suggesting the fibrils themselves to be loaded with iron. This differs from the short fibril 

structures observed following Aβ incubation with ferritin, which were shown to contain no 

iron (Chapter 5; Figures 5.15 and 5.18). For the iron deposits shown in Figure 7.2, iron 

oxidation state did not vary spatially across the deposit area.  
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Figure 7.3. Carbon K-edge maps of transgenic mouse cortical tissue showing three areas 

of localized iron deposition (labelled A1, A2 and A3). Corresponding high resolution iron 

L3 STXM maps displaying iron deposit morphology are shown below the protein maps.  
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Figure 7.4. Iron L2,3-edge x-ray absorbance spectra obtained from the iron deposits 

labelled A1, A2 and A3 in Figure 7.3. Increased ferrous content can be seen in the spectra 

from iron regions A1 and A3, as evidenced by an increase in intensities of the Fe
2+ 

features 

at 708 eV  (L3 edge) and 721 eV (L2 edge), with respect to the Fe
3+ 

features at 709.5 eV and 

723 eV respectively. Also provided are reference Fe
2+ 

(FeCl2) and Fe
3+ 

(goethite; 

FeO(OH)) spectra. 
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Figure 7.5.  TEM images of the iron loaded cortical tissue as measured through STXM in 

Figure 7.2. (a) Region A2; (b) a high magnification image of the dotted area shown in (a). 

(c) Region A3. Note the similarity in fibril structure to Aβ aggregate structures formed 

following Aβ incubation with ferritin, as displayed in Chapter 5 (Figure 5.18b-c). 

 

7.3.2 Ferrous iron deposition in transgenic AD tissues 

Examination of adjacent tissue sections to that shown in Figure 7.3, provided evidence of 

an iron oxide deposit (approximately 1.5 µm diameter) located within the extracellular 

matrix in close proximity to several neurons (Figure 7.6). Iron L3-edge mapping of this iron 

deposit at the peak absorption energies for Fe
2+ 

and Fe
3+ 

indicated this region to contain 

multiple localized regions of varying oxidation states as labelled in Figure 7.6c-e. Iron L2,3-



Chapter 7 

221 

 

edge x-ray absorption spectra from these labelled regions confirm a dramatic variation in 

localized iron oxidation state as shown in Figure 7.6f. Iron ranged from pure ferric phase 

(B1), to a heavily reduced predominantly Fe
2+ 

form (B4). The reduced iron found in region 

B4, was similar to iron L-edge spectra obtained from Aβ/ferrihydrite aggregates (Chapter 

4; Figure 4.1b; red) where iron was found in a pure ferrous form reminiscent of wüstite; 

suggesting a similar phase may have formed in vivo. The multiple oxidation states of iron 

across this region hints towards a possible redox-cycling of iron; a result consistent with 

these presented in Chapters 3 and 4, where Aβ was demonstrated to induce the redox 

cycling of iron(III) and ferrihydrite in vitro. 

As STXM is a scanning technique where samples are only exposed to the x-ray beam for 

milliseconds at a time, prolonged periods of STXM examination at the iron L2,3-edge was 

not found to increase the ferrous content of iron(III) reference materials (when both 

embedded and surface exposed; Figure 7.7),  variations in iron oxidation state (as shown in 

Figure 7.6) do not appear to be an artefact of x-ray beam  reduction. It is also unlikely that 

variations in oxidation state are caused by co-incidental surface contamination by multiple 

small iron particles of differing oxidation states.  
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Figure 7.6. (a) Protein map of a cortical tissue section taken from transgenic APP/PS1 AD 

mouse tissue. (b) Higher resolution 350 eV image of the boxed area shown in (a), 

displaying protein structure and an area of iron deposition (red box).  Iron L3-edge maps 

taken at the (c) Fe
2+ 

peak energy and (d) Fe
3+ 

peak energy. (e) Difference map of (c) and 

(d), displaying localised regions of Fe
3+ 

(bright contrast) and Fe
2+ 

(dark contrast). (f) 

Corresponding iron L2,3-edge x-ray absorption spectra for the iron regions labelled in (c) 

and (d).   
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Figure 7.7. STXM iron L2,3-edge x-ray absorption spectra obtained from iron(III) 

reference materials when both resin embedded, and directly exposed to the x-ray beam. 

Spectra were obtained from (a) goethite and (b) maghemite. No evidence of x-ray induced 

reduction effects were observed following prolonged periods of STXM examination. 

 

7.4 Discussion 

This study is the first to probe the nanoscale distribution, morphology and oxidation state 

of iron deposits within transgenic AD mouse tissue in situ.  

STXM and TEM examination of transgenic AD mouse cortical tissue evidenced the 

loading of fibril structures with iron. These fibril structures strongly resemble those 

observed within Aβ aggregates formed following the incubation of amyloid with ferritin 

(Chapter 5); suggesting them to be comprised of Aβ.  Such findings indicate there to be a 

link between Aβ aggregation and iron accumulation within AD tissues in vivo; confirming 
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the in vitro observation of iron aggregation by Aβ as described in the preceding 

experimental chapters. This suggests that the co-aggregation of Aβ and iron may represent 

a key step in the process of amyloidosis in vivo, and that iron may play a fundamental role 

in development of AD pathology.  

Iron L2,3-edge STXM x-ray absorption spectra obtained from iron oxide deposits located 

within transgenic mouse cortical tissue, revealed iron to be present in multiple oxidation 

states; ranging from redox-inactive ferric iron to predominantly ferrous, redox-active 

phases. The presence of redox-active phases within AD tissues is consistent with the in 

vitro experiments presented in Chapters 3, 4 and 5, where Aβ was shown to reduce ferric 

iron phases into redox-active states.  This variation in iron oxide state also provides in vivo 

evidence of iron redox-cycling, as was observed following the interaction of Aβ with 

iron(III) hydroxide (Chapter 3) and 2-line ferrihydrite (Chapter 4) in vitro. As iron(II)-

bearing oxides are prone to oxidation 
129

 and no attempts were made to prevent iron 

oxidation post-mortem, these results suggest that other mechanisms must be in place to 

prevent iron oxidation. Possible mechanisms may include the coating of iron by amyloid 

(as suggested by TEM imaging of Aβ/iron aggregates), or that redox-active iron is located 

within the core of ferritin. The latter hypothesis is supported by the results of Chapter 5, 

where the crystal structure of ferrihydrite was found to be altered whilst located within the 

ferritin core; and findings published by Watt et al. who demonstrated electron transfer and 

iron reduction to occur across the apoferritin cage of ferritin 
179

. Indeed, as redox-active 

iron phases have been observed within ferritin cores isolated from AD tissues 
108

, ferritin 

may provide the basis for iron reduction in vivo.  
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7.5 Conclusions and implications 

The results from this study suggest that the formation of redox-active iron phases may be 

associated with hallmark features of AD pathology in vivo.  As previously described, the 

presence of redox-active iron oxides within AD tissues could provide a significant source 

of oxidative stress capable of inducing neuronal injury thereby contributing to the process 

of AD pathogenesis 
48,49,52,157

. These redox-active phases may represent a target for the 

development of therapeutics (iron chelators and antioxidants) intended to reduce oxidative 

burdens without detrimentally affecting natural iron functions 
146

. This has the potential to 

greatly improve current treatments intended to lower iron associated toxicity in AD 

patients that have provided limited success due to unforeseen long-term toxic side effects 

146,187
. Differences in iron oxidation and crystal state also dramatically influence the 

magnetic properties of iron oxide phases. Successfully identifying pathological iron phases 

in vivo may allow pathological iron to be utilized as a contrast agent in MRI of AD tissues 

60
. This in turn could allow the detection of AD onset in patients prior to the onset of 

cognitive and external physical manifestations.  Importantly, in the context of this thesis, 

these results suggest a similar process of redox-iron formation to be occurring in vivo, to 

those observed within the simple in vitro systems presented in Chapters 3, 4 and 5; further 

highlighting the importance of Aβ/iron interaction in the development of AD pathology. 
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8.1 Characterising Aβ/ferritin interaction 

From the results in Chapter 5, it appears that Aβ has the ability to disrupt ferritin structure 

in a manner that results in the conversion of its redox-inactive core into a potentially toxic 

redox active state. However several questions remain with regards to the nature of 

Aβ/ferritin interaction (as highlighted in Section 5.6). Here I propose two experiments to 

further improve our understanding of Aβ/ferritin interaction.  

8.1.1 The aggregation of ferritin by Aβ 

To understand the level of ferritin aggregation induced by Aβ, I intend to conduct magnetic 

susceptibility measurements, investigating the interaction of Aβ with magnetically doped 

ferritin (magnetoferritin) protein. 

Magnetoferritin synthesis involves the addition of iron(II) and iron(III)  to apoferritin (the 

hollow protein cage of ferritin) in a controlled manner, as to induce magnetite formation 

within the protein core 
188

. In theory, this method of magnetite synthesis provides a 

magnetically susceptible iron phase of constant diameter (8 nm), which also forms stable, 

uniform suspensions (ferritin is stable in suspension). Providing Aβ interacts with 

magnetoferritin in a similar manner to ferritin, it should be possible to monitor 

magnetoferritin aggregation by Aβ through the use of AC susceptometry. Stable, uniform 

magnetoferritin suspensions should provide a frequency-dependant χ” peak. 

Magnetoferritin aggregation by Aβ would induce a shift in this χ” peak value, which can be 

monitored by conducting multiple susceptibility measurements in a time dependant 

manner. However due to the small particle size of magnetoferritin, extremely high 

frequencies would be required to detect any shifts in χ” values. Doping magnetoferritin 
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with cobalt could provide a means to magnetically block these superparamagnetic 

particles, allowing the detection of magnetoferritin aggregation at much lower frequencies. 

If successful these experiments will provide a quantitative means to demonstrate the 

aggregation of ferritin by Aβ, providing a potential explanation to the increased ferritin 

loads observed within SP material in AD tissues 
126

.   

8.1.2 The effects of albumin/ferritin interaction 

To determine whether the effects of Aβ interaction upon ferritin are merely a result of 

generic protein-protein interactions, I intend to examine the interaction of albumin proteins 

with ferritin. This will involve a repeat of the experimental procedures outlined in Chapter 

5, with the substitution of an albumin protein for Aβ. Albumins are a family of small 

globular proteins commonly found in the blood plasma of humans which are not inherently 

toxic. By conducting these investigations it should be possible to determine whether the 

accumulation of ferritin, and the disruptions to ferritin structure described in Chapter 5 are 

specifically induced through Aβ interaction with the storage protein.  

8.2 In vitro cellular experiments 

Throughout Chapters 3, 4 and 5, Aβ was demonstrated to induce the conversion of 

naturally occurring iron phases into potentially neurotoxic redox-active forms. However, 

despite these observations, the role played by Aβ-induced iron reduction in AD 

pathogenesis remains unclear, and the chemical by-products of these interactions have not 

been characterized. It is of great importance to ascertain whether the products of Aβ/iron 

interaction convey toxic effects to cellular populations. It is also imperative to determine 

whether currently available AD treatments can act to reduce any harmful effects induced 

through Aβ/iron interactions.  
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To further investigate how the relationship between Aβ and naturally occurring iron 

(ferrihydrite and ferritin) contributes to AD pathology I intend to examine two main 

hypotheses: 

1. The interaction of Aβ with ferrihydrite/ferritin results in the formation of cytotoxic 

chemical products. 

Through the use of traditional biological approaches coupled with advanced synchrotron 

techniques I intend to characterize and quantify the chemical products formed through Aβ 

interaction with ferrihydrite and ferritin. Building upon this, the cytotoxic effects of these 

reaction products will be assessed, to determine whether the process of Aβ-mediated iron 

reduction is sufficient to induce the widespread neuronal death characteristic of AD.  

Such studies will facilitate the identification of specific Aβ-induced iron phases that are 

likely to contribute to the free radical burdens and neuronal damage witnessed in AD 

tissues. Targeting these sources of Aβ-mediated iron cytotoxicity could result in reductions 

to oxidative stresses and neuronal injury without disrupting healthy brain functions.   

2. Currently available AD treatments perturb the process of Aβ interaction with 

ferrihydrite/ferritin, and thus alter Aβ-mediated iron toxicity. 

By combining methodologies from the biological and physical sciences I propose to 

evaluate the effectiveness of current AD therapies to disrupt and prevent Aβ-induced 

ferrihydrite/ferritin ROS production and toxicity. Further to this the iron mineral products 

and amyloid structures formed through Aβ interaction with ferrihydrite and ferritin in the 

presence of these treatments will be characterized. 

If successful, this multidisciplinary approach will allow us to define the most efficient 

means to therapeutically lower Aβ-induced iron toxicity and maintain cell viability in vitro, 
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which may prove applicable to in vivo systems. Additionally, findings from these studies 

will enable further characterisation of the mechanisms underlying Aβ mediated 

ferritin/ferrihydrite reduction, which may prove vital in understanding how to 

delay/prevent AD pathogenesis.  

8.3 Investigations into age-dependant redox-active iron 

formation in transgenic AD mice: An in situ study 

As Aβ has been shown to induce redox-active iron formation (Chapters 3, 4 and 5), and 

redox active iron minerals have been observed in transgenic AD mice known to 

accumulate Aβ over time (Chapter 7), it is of great interest to establish when redox-active 

iron formation occurs with respect to disease progression.  

I intend to achieve this by examining the brain tissues of transgenic AD mice at various 

points along their lifespan, for the presence of redox active iron minerals. This time-

dependant approach will potentially allow us to correlate redox-active iron formation with 

a particular stage of AD pathology. This in turn will indicate whether redox-active iron 

formation is likely to contribute to AD pathogenesis, or whether these iron forms are 

simply a by-product of the disease process. Furthermore, this approach will enable us to 

establish whether magnetic iron formation occurs prior to the manifestation of clinical 

symptoms. This will have a significant bearing as to whether MRI techniques are a viable 

option for the screening and detection of AD prior to onset of cognitive decline.  

These proposed in situ studies will utilize x-ray microspectroscopy techniques as described 

in Chapter 7 to image both the biological and iron content of transgenic AD mice cortical 

tissues whilst characterizing iron oxidation state. Complementary electron microscopy and 

histological staining approaches will be employed to provide high resolution images of 
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tissue sections and indicators to AD pathology respectively.  The outcomes of these 

investigations may prove integral in understanding how redox-active iron contributes to 

AD. 
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In this thesis the role played by the AD peptide Aβ in the formation of redox-active iron 

phases has been investigated. Particular focus has been placed upon the effect of Aβ 

interaction on the oxidative and magnetic state of naturally occurring ferric iron phases, 

including those stored within the ferritin protein. Furthermore, first time in situ 

characterisation of iron phases within transgenic AD mouse brain tissues was presented.  

Through x-ray microspectroscopy and TEM imaging, Aβ was shown to readily incorporate 

iron(III) oxyhydroxide precipitates into its protein aggregate structure in vitro, resulting in 

the formation of iron loaded amyloid structures (Chapter 3). X-ray absorbance 

spectroscopy and spectrophotometric iron(II) quantification demonstrated this process of 

interaction to chemically reduce iron(III) oxyhydroxide into a weakly-magnetic pure 

iron(II) phase; whilst electron diffraction suggested this reduced iron to be amorphous in 

nature. Furthermore, the presence of aluminium was shown to catalyse Aβ-induced iron 

reduction, resulting in the redox cycling of iron. Interestingly, the presence of redox-active 

iron may also have an effect upon Aβ fibril structure, owing to the observation of 

amorphous Aβ aggregates, known to contain redox-active iron. Such results demonstrate 

Aβ to be directly capable of inducing iron reduction in the absence of any other influencing 

factors.  

Significantly, by utilizing x-ray microspectroscopy x-ray absorption spectroscopy, electron 

microscopy and iron(II) quantification techniques, Aβ was shown to aggregate and reduce 

the iron mineral ferrihydrite (Chapter 4). Following Aβ/ferrihydrite interaction, 

ferrihydrite and Aβ morphology were closely correlated, indicating the loading of 

ferrihydrite within Aβ fibril structures. Further to this, localized regions of ferrihydrite 

accumulation were observed, suggesting Aβ to act as a reservoir for ferrihydrite deposition. 

This aggregation process was shown to induce the reduction and redox cycling of 

ferrihydrite by Aβ, as demonstrated through x-ray absorption spectroscopy and iron(II) 
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quantification techniques. Reduced iron deposits were identified as an antiferromagnetic 

pure iron(II) phase reminiscent of the cubic iron mineral wüstite. These observations were 

supported by electron diffraction, showing the presence of the wüstite oxidation-product 

magnetite/maghemite, following the exposure of sample materials to oxygen. Such 

observations combined with those in Chapter 3 indicate that Aβ-induced crystalline 

iron(II) formation may require a crystalline precursor. These findings are the first of their 

kind, demonstrating Aβ to induce the chemical reduction of iron forms representative of 

those that occur naturally within brain tissues; along with first time evidence of crystalline 

iron reduction by Aβ.  

Further electron microscopy and x-ray spectromicroscopy-based experiments demonstrate 

Aβ/ferritin co-incubation to result in ferritin accumulation within amyloid structures, with 

this process appearing to disrupt mature Aβ fibril formation (Chapter 5). Following 

prolonged periods of interaction, ferritin structure was found to become disrupted. This 

resulted in the chemical reduction of ferritin-derived ferrihydrite, and the accumulation of 

iron into dense nanoscale deposits.  

Electron diffraction patterns from Aβ/ferritin structures showed the crystal structure of 

ferrihydrite to be altered prior to the destruction of ferritin morphology and the reduction 

of ferrihydrite. The significance of this finding is two-fold. First, the alteration of 

ferrihydrite crystal structure whilst ferritin morphology remains intact, suggests that Aβ is 

capable of inducing electron transfer across the ferritin protein shell. Secondly the 

disruption of ferrihydrite crystal state prior to its reduction indicates that crystalline iron 

reduction may involve the formation of an amorphous ferric intermediate. As was the case 

in Chapter 3, the presence of redox-active iron was accompanied with a complete loss of 

mature Aβ fibril conformation, suggesting that redox-active iron formation may alter the 

ability of Aβ to form cross-β fibril arrangements. These experiments significantly build 
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upon those presented in Chapters 3 and 4, by demonstrating Aβ to be capable of reducing 

iron in its natural stored form. Such findings indicate Aβ to chemically reduce both bound 

and unbound ferric iron phases, and that Aβ itself can act to disrupt ferritin structure.  

Incubation of Aβ with surface-oxidized magnetite was shown to result in a disruption to 

magnetite crystal structure resulting in the formation of an amorphous iron phase (Chapter 

6). This destruction of magnetite crystallinity was found to occur following the 

sequestering of magnetite nanoparticles by Aβ. TEM imaging revealed this sequestering 

process to result in the aggregation of Aβ into large structures comprised of well-defined 

fibrils. Nanoparticle structure was seen to become disrupted with increasing periods of Aβ 

incubation, as if being digested by the peptide. Electron diffraction patterns from 

Aβ/magnetite structures demonstrated magnetite crystallinity to be lost following Aβ 

interaction, confirming the formation of an amorphous iron phase. Interestingly, initial 

disruptions to magnetite morphology did not correspond to a loss in crystallinity, 

suggesting Aβ to disrupt the surface structure of magnetite before the core.  

X-ray absorption probing provided no evidence of Aβ-mediated magnetite reduction. 

However XMCD examination of magnetite deposits following Aβ interaction 

demonstrated the magnetic properties of magnetite to be significantly diminished following 

Aβ interaction, resulting in the formation of a weakly magnetic antiferromagnetic phase. 

Despite no evidence of magnetite reduction being observed in this instance, on the basis of 

the results presented in Chapter 5, the amorphous ferric species formed following 

Aβ/magnetite interaction may represent an intermediate phase required for the reduction of 

crystalline iron phases. Thus these preliminary studies show Aβ to disrupt the crystal 

structure of magnetic iron nanoparticles, in a manner that may facilitate their reduction by 

the peptide.  
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Taken together the in vitro findings of this thesis suggest that the occurrence of redox-

active iron minerals within AD tissues may be inherently linked to the interaction of Aβ 

with both poorly liganded iron and the storage protein ferritin. This reduction process was 

initiated by the accumulation of ferric iron within Aβ structures, resulting in their 

conversion into redox-active forms. These iron phases have the potential to induce 

oxidative stress, and could therefore contribute to the development of AD 

37,49,50,52,55,56,60,146
. Furthermore, as comparable redox-active iron phases were found to be 

associated with regions of AD pathology during in situ examination of transgenic AD 

mouse tissue (Chapter 7), a similar process of redox-active iron formation may occur in 

vivo.   

Although no evidence of magnetic iron formation was observed over the time frames 

examined within this thesis, these results do not preclude magnetic iron formation 

following prolonged periods of Aβ interaction with natural iron minerals. 

The identification and characterisation of redox-active iron forms associated with AD 

pathology as described here may prove influential in the development of treatments 

intended to lower iron-associated ROS burdens in AD tissues, thereby inhibiting disease 

progression. As these iron phases to not occur naturally 
108

 it may be possible to develop 

therapeutic agents that specifically target AD-associated iron phases, whilst maintaining 

iron homeostasis and neuronal health. These developments could overcome the current 

shortcomings of AD therapeutics such as iron chelators, which show long term toxicity 

through their tendency to target physiological iron stores 
144-146

. Furthermore, by disrupting 

Aβ/iron interactions within AD tissues, redox-active iron formation may be preventable. 

The manner with which Aβ appears to disrupt ferritin function may also prove to be of 

vital importance in the development of AD; and therefore maintaining ferritin function 

could be a viable target in the treatment of the disorder. In light of these findings, it is 
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imperative to determine the toxicity conveyed by Aβ interaction with naturally occurring 

iron forms, and whether this relationship is likely to contribute to the pattern of 

neurodegeneration witnessed in AD subjects.  

 In summary the results of this thesis indicate the interactions between Aβ and iron to be a 

source of redox-active iron phases, with the potential to contribute to the pathogenesis of 

AD. It is hoped that these findings will improve our understanding of iron’s contribution to 

AD, whilst providing new avenues for the development of technologies intended to combat 

this fatal neurodegenerative disorder.  
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