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Abstract 
 

A systematic series of high-silica fluoride MFI zeolites were efficiently synthesised using a variety 

of shape and size structure directing agents. The effects of these structure directing agents on 

the zeolite synthesised have been studied by the complementary use of X-ray diffraction and 

solid state NMR. These 14N, 13C and 29Si NMR experiments yield information about the 

orientation of the structure directing agent within zeolite pores. They also identify covalently 

bonded fluoride in the form of pentacoordinated silicon whereby the first case of static and 

dynamic ordering of fluoride in the same zeolite is discovered by changing the structure 

directing agent.  

A two-dimensional solid state NMR experiment has also been used to study 13C isotopically 

labelled silicalite-1 synthesised using n-methyltributylammonium iodide. The double cross 

polarisation (DCP) experiment allows the distance to be determined between the structure 

directing agent and silicon framework for the first time in a zeolite system using NMR. This 

experiment has the potential to be replicated for silicalite-1 zeolites synthesised using alternate 

structure directing agents or for other zeolites systems.  
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1.0. Introduction 

Zeolites are microporous crystalline framework structures made of inorganic materials and 

separated by distinct pores and channels. They can be synthesised in a laboratory as well as 

occurring naturally and were discovered in 1756 when Baron Axel Fredrik Cronstedt studied 

stilbite.1 The Swedish mineralogist observed the loss of absorbed water upon heating stilbite, 

thereby coining the term zeolites from ‘zeo’ and ‘lithos’, boiling a stone.2  

Almost 200 years later followed the first successful synthesis of a zeolite (despite a previous 

claim3). In 1948, Richard Barrer synthesised zeolite ZK-5 with KFI structure.4 He continued his work 

developing zeolite science5,6 whilst Robert Milton, of the Linde corporation con-currently started 

working on zeolite materials.7,8  

This pair, as well as numerous other contributors continued to develop a vast amount of new 

zeolite materials and have brought zeolite chemistry into an age whereby 231 zeolite frameworks 

types have been successfully established in the International Zeolite Association Structure 

Commission’s Database of Zeolite Structures.9 The database associates each registered zeolite 

with a 3 letter code, representative of the framework type, where typical synthesised zeolite 

parameters are contained.  

The zeolite structure consists of SiO4 and [AlO4]
- tetrahedra connected by corner sharing of 

oxygen atoms to form large 3D structures.10 These 3D structures are able to accommodate 

water11 or other ions12 including sodium, potassium, calcium and magnesium13,14 within the 

framework pores and channels. This capability of zeolites is an asset and is responsible for the use 

of synthesised zeolites in many industrial applications.15  

The nature of zeolites use in industry is predominantly twofold. The array of recurring pores and 

channels allow for their use as molecular sieves whereas acid forms of zeolites allow them to be 

used as catalysts. An example of the latter is the use of ZSM-5 zeolite as a additive in fluid 
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catalytic cracking (FCC) to make gasoline and hydro-cracking (HDC) to make middle distillates such 

as jet fuel.16  

The discovery and eventual patenting of Zeolite ZSM-5 (Zeolite Socony Mobil five) (Figure 1.1)  in 

197217 by Mobil Oil Company, provided perfect timing for the industrial requirement to eliminate 

the use of lead additives from gasoline therefore developing a method for extraction of octane 

from non-traditional sources.18 

 

 

The discovery of the ZSM-5 zeolite opened the floodgates for the growth of zeolite and high-silica 

zeolite science. The synthesis of this new material required a combination of the following 

components at 125-175 °C for 5-9 days; 

0.9 +/- 0.2 M2/nO : W2O3: 5-100 YO2: zH2O
17 

Where M= cation of n valence, W = aluminium of gallium, Y = silicon or geranium and z = 0-40 

 

ZSM-5 has since become used in a variety of industrially important applications. The separation of 

xylenes in the petrochemical industry19,20,28,29 exemplifies its use as a molecular sieve whereas the 

ZSM-5 catalyst is also able to host the isomerisation of meta-xylene and para-xylene reaction 

within its pores and possesses a higher diffusion coefficient towards para-xylene, diffusing it out 

of the catalyst at a faster rate.23  

Figure 1.1 – Schematic diagram of MFI type zeolite framework structure 
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In addition to these important applications, zeolite ZSM-5 can also be used for the purification of 

gases,24 catalysing epoxidation reactions,25 the adsorption of non-polar hydrocarbons in water,26 

as shape selective catalysts,27 in Langmuir-Blodgett films,28 facilitating dehydrogenation of 

alcohol reactions29 and in the absorption of alcohols.30 

Despite the importance and extensive research focus towards ZSM-5 chemistry, there still 

remain significant gaps within the knowledge of this particular zeolite, and zeolites in general.  

This lack of understanding occurs due to the complexity of the zeolites structural variations, as 

well as difficulties encompassed investigating the systems in situ to monitor nucleation, 

crystallisation and growth.31  

The high silica analogue of ZSM-5 is silicalite-1. It maintains the MFI framework structure of ZSM-

5 and replaces all aluminium content with silicon. Functionally, silicalite-1 preserves the 

molecular sieving properties, however replacement of +3 aluminium charge with +4 silicon, 

silicalite-1 loses the ion-exchange capabilities.32 Silicalite-1 can be synthesised efficiently,33 at low 

temperatures (below 100 ˚C) and most importantly, is a highly ordered zeolite. It therefore 

provides a simpler structure in order to identify the effects of small changes in ZSM-5 and infer 

knowledge about zeolites in general.34 For this reason it is one of the most widely hydrophobic 

zeolite materials investigated.35  

1.1. Zeolite Synthesis 

The majority of zeolite syntheses require a silicon or aluminium source, mineralising agent, 

structure directing agent (SDA) and solvent.36 These are discussed individually below, although it 

is important to note that there are many specific cases where zeolites have been successfully 

synthesised without these components. 

1.1.1. Silicon Source 

In order to form a zeolite framework structure, the appropriate silicon source is required. For 

example, silicon and aluminium sources are required for ZSM-5 synthesis but the replacement of 
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these elements by boron37,38, titanium and other elements have been used to dope the structure 

and affect the product properties39.  

Only a silicon source is required for silicalite-1, the high-silica version of ZSM-5. The nature of the 

silicon source however has been proved to have an effect on the properties of the zeolite formed. 

The use of a fumed silica source SiO2 (pyrogenic silica) can allow for the synthesis of larger crystals 

due to the slower rate of crystal growth. At this slow rate of crystal growth, larger crystals have 

time to form due to the low rate of nucleation. Comparatively, reaction mixtures using solution 

based silicon sources such as Ludox colloidal silica possess a larger number of nucleation sites and 

rapid growth leading to microcrystalline powders.40  

1.1.2. Mineralising agent 

The traditional mineralising agent used in zeolite syntheses is a hydroxide based species with 

varying cations41,42 (e.g,  sodium hydroxide). The role of the mineralising agent is multifunctional. 

The hydroxide ion is used to charge compensate the structure directing agent which leads to a 

large number of crystal defects.43 This occurs from the creation of silanol nests44,43 within the 

structure, thereby limiting the long range crystalline order obtainable. A second role of the 

structure directing agent is to catalyse both the breaking and forming of Si-O-Si bonds45,46,47 (Si-O-

Al bonds in ZSM-5), a process that the zeolite crystallisation rate is dependent upon.   

 Since 1978, the mineralising agent used in zeolite syntheses has tended towards the use of a 

fluoride based mineralising agent.48 This new method by Flanigen and Patton involves the 

replacement of the traditional hydroxide species with fluoride ions, taking up all of its roles as a 

mineralising agent.49 The use of the fluoride route reduces crystal defects50 thereby increasing 

crystallinity,43 increases crystal surface area51 therefore affecting catalytic properties of zeolites51 

and has allowed the introduction of many new large pore zeolites.52 Additionally, the fluoride 

route synthesis affects the pH of the solution of reacting materials. The fluoride route changes the 

synthetic mixture from alkaline to a neutral pH and even a slightly acidic pH of 5 which effects the 

solubility of the silica source, eventually increasing the zeolite crystallisation rate.53,54  
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A very interesting additional characteristic observed in silicalite-155,56 and other high silica 

zeolites57,58, synthesised using the fluoride route is the incorporation of the fluoride into the 

framework structure. This fluoride forms a covalent bond with a particular silicon46 creating a 

pentacoordinated silicon unit [SiO4/2]F
-.59 This is demonstrated in Figure 1.2. and study of this 

interesting fluoride bond is developed further in Chapter 5.   

 

 

 

 

 

 

 

1.1.3. Structure Directing Agent 

With the exception of SDA free syntheses,60,61,62 a structure directing agent is required for the 

synthesis of zeolite materials in order to direct the formation of the zeolite into a particular shape 

and size. Synthesis of the MFI framework typically uses an organic quaternary ammonium salt,63,64 

although diamines and other organic molecules have also been successful.47,65,66 The cation 

species attracts silicon tetrahedra towards it during reaction, directing the framework structure 

around itself. For this reason, the structure directing agent has also been referred to as a 

template, or as having a templating effect. To add to the structural complexities of SDA use in 

zeolite syntheses, a whole variety of different structure directing agents have been able to 

synthesise the same zeolite material66 whereas the same structure directing agents21,37 have also 

been able to synthesise many different zeolite materials,67 under slightly different conditions.  

 

F 

Figure 1.2 – Schematic diagram of (left) pentacoordinated silicon unit [SiO4/2F
-
] and (right) MFI 

zeolite framework with occluded n-methyltributylammonium SDA 
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In 1982, Price and co-workers68 were able to structurally determine the position of the 

tetrapropylammonium cation within the zeolite pore in silicalite-1 using X-ray diffraction. This 

determination lead to the conclusion that the tetrapropylammonium (TPA) cation sits in the 

zeolite pore with two propyl chains extended to each straight and sinusoidal channel,69 as 

demonstrated (Figure 1.3). 

 

Figure 1.3 - Schematic representation of TPA silicalite-1 within the zeolite framework and the orientation of TPA 
within straight and sinusoidal channels (not to scale) 

 

These observations led to the question of what properties are required in order to synthesise a 

particular zeolite, and at what point in-between does it become unfavourable to synthesise a 

particular zeolite, forming an alternate one instead.  

In 1998, Zones and Nakagawa conducted a comparative study into the relationship between the 

SDA used in synthesis and the zeolite formed.70 Their study focussed on four structure directing 

agents; tetralkylammonium with alkyl chains varying from methyl to butyl. They found they could 

synthesise a variety of different zeolites, where a carbon to nitrogen (C:N) ratio of 9-13 yielded 

MFI zeolite. At the time, they deduced that upon increasing the C:N ratio, fewer zeolite products 

were obtainable. However, increasing the C:N ratio of an SDA also increases the hydrophobicity of 

the molecule71,72 such that it can be difficult to obtain zeolites using large SDA’s without the 

subsequent addition of another cation.73 Therein lies the introduction of the use of diamines in 
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zeolite syntheses.74,75 Increase of the SDA size used to tetrabutylammonium synthesises silicalite-2 

zeolite which is the high silica analogue of ZSM-11 and structurally related to silicalite-1.76  

We now know that reaction temperature also plays a part in the synthesis of zeolites using large 

hydrophobic structure directing agents. Wu et al77 managed to successfully synthesise ZSM-5 

zeolites using the highly hydrophobic and sterically unfavourable CTBA (cetyltrimethylammonium 

bromide) SDA by increasing the temperature of reaction. These ZSM-5 samples were therefore 

able to be synthesised using an SDA with 19:1 C:N whereby each SDA molecule filled two pores in 

the straight channel thereby reducing the quantity of SDA required.  

It is also known that larger SDA’s require more reaction time to crystallise zeolites. This is due to 

the increase in hydrophobic character that  weakens the interactions with the silicon dioxide 

forming network,78 reducing the crystallisation rate. The use of an SDA that is too hydrophilic 

however does not lead to the essential interactions with silica during reaction,66 meaning a 

medium hydrophobic SDA is preferential79 to form the MFI framework structure.  

1.1.4. Solvent System 

In a typical hydrothermal zeolite synthesis, a large amount of water is usually required in order 

for silicon species to dissolve and form the required framework structure53. The amount of water 

present however can slightly modify the SDAs role and allow very different pore architectures to 

be created using the same SDA.43 

Other solvents can also successfully synthesise zeolites.  The solvothermal method80 uses solvents 

such as ethylene glycol, diethylene, triethylene or tetraethylene81 whereby the change in solvent 

used is capable of changing the crystal shapes formed.  The dry conversion method82,83 also allows 

for the synthesis of zeolites without using any solvent however it does involve the requirement of 

various humid environments.  
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1.2. Methods of Synthesising MFI Zeolites 

Many different methods have been developed to crystallise zeolite materials but none as popular 

a choice as hydrothermal synthesis. The hydrothermal method97,98 involves the heating of a 

reaction mixture in a stainless steel autoclave where the high mobility of supercritical water 

(>373K)86 and high pressure allow the reaction to occur. The autoclave can build up to a contained 

(autogeneous) high pressure and sustain applied high temperatures in order to allow crystal 

growth.87  

Despite the hydrothermal method enabling the possibility of high quality large crystals,88 it also 

has negative aspects. The synthesis of materials cannot be seen to be monitored without the 

subsequent removing from reaction heat, quenching the reaction by opening the autoclave, and 

subsequently returning to reaction conditions. Clearly this disturbs the synthesis of the material 

inferring it is not effective for any comparative synthetic studies. It is possible to overcome these 

issues by in-situ x-ray synchrotron studies. These studies however require building special thin-

walled autoclaves in order to be penetrated by the radiation.89 

The use of low-cost small polypropylene bottles and the dense-gel method34,103 on the other hand 

allows for the viewing of the sample in-situ without the need to open the vessel and quench the 

reaction.91 It also has the potential to allow for many samples to be placed under the same 

conditions and simply remove one at the required time which is significantly less disruptive. This 

has a huge advantage over systematic studies87,88 whereby the reaction has been quenched and 

an amount removed that is unlikely to include a uniform amount of reagents,94 thereby affecting 

the remainder of the reaction mixture.31 

This cheap and low temperature dense-gel method additionally allows observations of the 

biphasic mixture through the clear bottle. It allows identification of when sufficient solid product 

has increased in density and dropped to the bottom of the bottle. 
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The dense-gel method and hydrothermal method maintain overwhelming advantages over other 

available techniques. Sol-gel syntheses can successfully synthesise MFI zeolites95 but require 

additional time in order to do so. The microwave method is a fast method of synthesising ZSM-5 

materials47,81 but has not yet overcome the degradation of SDA’s in the process.96 The use of co-

condensation methods allow MFI materials to be synthesised,97 however are riddled with 

problems including the inability to calcine the product and excessive disorder in products 

formed.98  

1.3. MFI Framework Structure  

The framework structure of MFI was first determined in 1981 by Olsen and co-workers.99 At room 

temperature, MFI materials are orthorhombic and have a Pnma space group100 however below  

room temperature they undergo a reversible phase change from orthorhombic to monoclinic.101 

They have unit cell parameters of a= 

20.07 Å, b= 19.92 Å and c= 13.42 Å99 and a  

5-7 Å102 pore diameter making them a 

medium pore zeolite.  

The MFI structure  (Figure 1.4) consists of 

a series of pentasil units linked by mirror 

symmetry and is characterized by two 

perpendicular 10 member ring 

channels;99,103 the straight channel parallel to the [010] and the sinusoidal channel parallel to 

[100].104  

The size and shape of the commonly used tetrapropylammonium cations for MFI syntheses are 

tightly fitted to the pore and channel size and shape105 whereby the cation sits in the zeolite pore 

with the propyl chains facing the channel openings.106 The use of different structure directing 

agents however can have a different orientation within the pore, dependant on the location of 

substituent’s to facing and entering the difference size channel openings.56 The sinusoidal channel 

c 

b

n a 

Figure 1.4 – Schematic diagram of MFI zeolite structure  
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[100] has an elliptical pore opening size of 5.1 Å x 5.7 Å whereas the straight channel [010] has a 

large, circular pore opening of 5.4 Å x 5.6 Å.107 The zeolite tends to form in the most sterically 

favourable manor56 whereby more bulky substitutes tend to face the sinusoidal channel. This 

theory will be developed in Chapter 4 where the orientation of series of SDA’s are identified using 

solid state NMR characterisation techniques.  

Zeolite frameworks are made up of secondary building units (SBU’s). The silicalite-1 framework 

structure is made up of the following 23 SBU’s, established by Knight and co-workers from the use 

of 29Si NMR108 (Figure 1.5). 

 

Figure 1.5 – Schematic diagram of the 23 observed SBU’s by Knight and Kinrade
108

 in TPA silicalite-1 

1.4. MFI Structural Formation 

Determining the mechanism of zeolite formation is a complex task that has seen an 

overwhelming number of studies throughout the last 30 years, yet still remains elusive.109 

Despite extensive attempts, there is no universal agreement of the mechanism of zeolite 

formation31 due to the complicated number of contributing factors affecting the nucleation and 

growth of zeolites110. For example, the presence or absence of mineralisers, chemical 

composition, temperature, time and even the degree of autoclave filling can all have an effect on 

the growth conditions of crystalline materials such as zeolites.53  
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In addition to these factors is the ability of the zeolites to grow in different ways, depending on 

the synthetic conditions.111 With a growing number of zeolites being established every year and 

increasing use in a variety of applications, the challenge of zeolite chemists is to deduce these 

mechanisms in order to custom-fit current structures as well as develop new ones.112 Despite a 

lack of understanding of the specific mechanism and how varying factors affect it, some over-

arching features throughout the growth have been developed over the years.  

These features include the general order of zeolite formation through a nucleation period and 

rapid crystallisation of the zeolite. This occurs due to eventual dissolving of sufficient silica in the 

solvent to reach the critical silica concentration (CAC) in order for forward reactions to win over 

equilibrium and initiate crystallisation.113 This has been demonstrated in typical sigmoidal shape 

curve obtained for crystallisation studies, as shown in Figure 1.6.114  

 

 

 

 

 

 

The introduction of clear solution zeolite syntheses has brought about the ability for small zeolite 

crystals to be synthesised using more efficient, lower temperature reactions than is traditionally 

found by using the hydrothermal method. These materials have been utilised in order to study 

information about zeolite nucleation and growth however nucleation studies of zeolite syntheses 

typically face many difficulties. These include extraction of species required at the desired time 

and finding methods to study the x-ray amorphous materials. The nucleation start point in 

zeolite synthesis has been the subject of a large debate since the controversial publications of 

Kirschhock and co-workers in the 90’s,115,116,117 amongst others.112,118,119 They claimed the 
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Figure 1.6 – Sigmoidal (S) shape curve of silicalite-1 zeolite  growth 
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existence of so-called room temperature silicate structures as a part of a nanoblock/nanoslab 

theory, based on previous literature.120,121 This work however lacked sufficient proof that these 

silicate species end up in the zeolite material as opposed to being spectator species and lacked 

silicon enriched materials108 therefore was overwhelmingly disputed.122,123,124,125,126 

A general mechanism for the growth 

of ZSM-5 zeolite using TPA as an SDA 

can be found in the 1994 work by 

Burkett and Davis (Figure 1.7).127  

Burkett and Davis support previous 

work by Gies and Marler128 within 

their mechanism of formation 

suggesting the interaction of non-

covalent van der Waals or 

hydrophobic interactions occur 

between organic SDA’s and silicate 

species in a organic-mediated zeolite 

synthesis.  

 

1.5. Characterisation Techniques 

The characterisation of solid state materials such as zeolites primarily uses X-ray powder 

diffraction (PXRD). Not only can the fast, simple technique determine products, by-products and 

sample purity, it is also able to determine information such as unit cell parameters, volumes and 

framework types of crystalline materials by comparison to the International Centre for Diffraction 

Data (ICDD)129 database of known materials.  

Soluble 

silicate 

species 

Nucleation 

Crystal 

growth 

Figure 1.7 – Burkett and Davis proposed mechanism for ZSM-5 
formation using tetrapropylammonium SDA

127
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XRD is a long-range order technique and requires a sample to be crystalline for determination of 

information. As such, during a zeolite nucleation and crystallisation, it is not able to determine any 

information about the structure while the sample remains X-ray amorphous or until sufficient 

long-range order has been established.  

Due to these difficulties, zeolite scientists have sought complementary techniques to use with the 

XRD technique for a more rounded characterisation. Depending on the requirements of the 

particular sample being studied, the techniques used include, X-ray fluorescence130, Infra-red 

Spectroscopy (IR)123, Thermogravimetric Analysis (TGA)131, Single Crystal X-ray Diffraction87, Solid 

state NMR (SS-NMR) 132 and others133. 

The use of solid-state NMR as a complementary technique134 to studying zeolites allows for a 

comprehensive study of the material on both long and short range order. It is able to be used as a 

probe for the organic components that x-ray diffraction cannot detect by simple NMR 

experiments and also allows the use of complex experiments to determine further information 

about bond distances in the inorganic-organic composite species. The difficulties observed in 

using single crystal XRD and the subsequent complementary use of solid-state NMR combined 

with XRD are discussed further in Chapter 5.  

1.6. Aims of the Work 

“Developing a molecular level description of high-silica zeolite nucleation and crystallisation is 

one of the most significant unresolved problems in zeolite science.”135 In order to contribute to 

attempts of understanding more about zeolite structure and growth, the highly ordered silicalite-

1 zeolite has been synthesised using the fluoride route and a variety of systematic structure 

directing agents. The determination of variable structure directing agent’s orientation within a 

highly ordered zeolite should contribute to the knowledge base about preferential orientations 

during crystal growth.  
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The complementary use of X-ray diffraction and solid state NMR has been used to study these 

materials in order to fulfil the following aims; 

1. The successful synthesis of crystalline silicalite-1 materials using slight variants on the 

common SDA, tetrapropylammonium and confirmed by X-ray diffraction 

characterisation. 

2. After confirmation of crystalline silicalite-1 materials, the use of solid state NMR 

techniques to probe the organic structure directing agent occluded within the zeolite 

framework. 13C and 14N solid state NMR experiments provide the opportunity to study 

the local structure and orientation of these organic molecules within the zeolite 

framework.  

3. Study of the local structure of obtained inorganic framework materials to probe the 

nature of the [SiO4/2F]-  units from variable structure directing agents, by 29Si and 19F solid 

state NMR. 

4. Determination of distance between the inorganic zeolite and occluded structure 

directing agent in labelled 13C F-MTBA silicalite-1 by the use of a more complex, 2D NMR 

experiment. 
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2.0. Methodology 

2.1. Powder X-ray Diffraction (PXRD) Theory 

Powder X-ray diffraction (PXRD), more commonly referred to as XRD has become the most 

common method used to study inorganic materials due to its relatively quick1 and easy 

determination of structural information. An XRD experiment is a non-invasive technique2 that is 

conducted by creating a stream of electrons from a heated filament to bombard a metal target  

which is usually copper or molybdenum. Sufficiently high energy incident electrons are capable of 

ionising electrons in the 1s sub-shell of the metal which create short term vacancies. These are 

filled with 2s electrons dropping down a shell which in turn, emits an multiple X-rays of the metal 

energy.3 This energy can be used to calculate the X-ray wavelength as such:  

   
  

  
     Equation 2.1. 

Where, λ = X-ray wavelength (nm), h = Planck’s constant, c = the speed of light, e = electron charge and V = 

excitation potential (kV) 

X-rays are subsequently filtered so a single monochromatic X-ray beam is directed to the 

powdered sample (Figure 2.1) and interacts with electrons in the rotating sample.  

 

 

 

 

 

 

 

Figure 2.1 – Schematic diagram of Bragg reflection from crystal planes with spacing dhkl 
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This interaction of X-rays and adjacent lattice planes in a rotating sample can be destructive or 

constructive. Only constructive interference allows for a peak in intensity which is any 

interference that adheres to Braggs Law (Equation 2.2.). 

Bragg Equation                          Equation 2.2. 

Where λ = X-ray wavelength (nm), n= an integer, dhkl = distance between planes of atoms (nm) and θ = half 

the angle between X-ray source beam and detector (°) 

 

In an ideal X-ray diffraction sample, a powdered crystalline material should contain an infinite 

number of randomly ordered crystallites. These crystallites, of which some register for 

constructive interference, with their respective h, k and l indices, collectively make up a 

diffraction pattern. This diffraction pattern is called a fingerprint XRD pattern and can be 

compared to the International Centre for Diffraction Data (ICDD)4 database of reference 

diffraction patterns for the identification of known and unknown phases5 and impurities present. 

From this diffraction pattern, the lattice parameters, d-spacings, electronic properties, bond 

lengths and angles can all be determined.  

A primary disadvantage to the use of X-ray diffraction  is the long range crystal order required to 

study a sample;6 a feature that is not required when using solid-state NMR. Refinement 

techniques are additionally required in order to determine the quantity of phases present in a 

sample.7 The major disadvantage to using X-ray diffraction as a sole technique to study the 

chemical systems within this work however, centers on the inability of XRD to accurately detect 

short range order effects. Practically, this means that the local structure of [SiO4/2F]- and Si-F 

distances are unable to be accurately determined. This topic will be discussed later in this work. 

As such, full structural determination of inorganic materials requires the collaboration of XRD with 

one or multiple other techniques, frequently techniques such as single crystal XRD, neutron 

diffraction,8 different types of vibrational spectroscopy9, electron microscopy10 and more recently, 
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solid state NMR.11 The use of these techniques together allows the determination of information 

such as bond lengths within a unit cell that XRD alone is not capable of.  

Some difficulty may also arise in full characterisation of certain types of materials that use similar 

precursors such as zeolites. Other sources of information may then be sought in this situation, for 

example referencing XRD powder patterns of zeolites to ‘the collection of simulated XRD powder 

patterns for zeolites.12 

X-ray diffractometer equipment is used to take an X-ray diffraction pattern and comprises of 3 

main components: An X-ray tube, sample holder with ground packed solid sample and X-ray 

detector, as shown in Figure 2.2.   

X-ray Tube 

Sample Holder 

X-ray Detector 

Divergence 
Slit 

Soller Slit 

Anti-scatter  

slit 

Soller Slit 

Receiver Slit 

Figure 2.2 – Laboratory photo of labelled laboratory Bruker D8 ADVANCE X-ray diffractometer 
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2.1.1. Methods of Extracting X-ray Diffraction Data 

X-ray diffraction characterises crystalline materials that match one of seven different types of 

crystal systems. These crystal systems define the make-up of the crystal and are dependent on 

the symmetry properties of the unit cell (Table 2.1).  

Table 2.1 – Table displaying respective symmetry parameters for the seven crystal systems in increasing symmetry 

Crystal system Lattice parameters Bravais lattices Lattice symmetry 

Triclinic a ≠ b ≠ c α ≠ β ≠ γ P    

Monoclinic a ≠ b ≠ c α = γ = 90 °, β ≠ 90 ° P, C 2/m 

Orthorhombic a ≠ b ≠ c α ≠ β ≠ γ = 90 ° P, C, I, F mmm 

Tetragonal a = b ≠ c α ≠ β ≠ γ = 90 ° P, I 4/mmm 

Rhombohedral a = b = c α ≠ β ≠ γ ≠ 90 ° R 3m 

Hexagonal a = b ≠ c α ≠ β = 90°, γ = 120° P 6/mmm 

Cubic a = b = c α ≠ β ≠ γ = 90 ° P, I, F m3m 

Where, P= primitive cell, C= side-centred cells, I= body-centred, F= face centred cells 

These unit cells are made up of their corresponding lattice parameters which specifies the 

relationship of unit cell lengths and angles that make up the crystal.  

The different Bravais lattices that apply to the seven crystal systems in Table 2.1 are defined as 

follows:  

Primitive (P) –   Lattice points on corners of the unit cell only 

Body-centred (I) –  Lattice points on corners of the unit cell plus in the centre of the unit cell 

Face-centred (F) -  Lattice points on corners of the unit cell plus in the centre of all faces  

Side-centred (C) –  Lattice points on corners of the unit cell plus in the centre of all side-only 

vertical faces 

The distance between planes of crystals in a crystalline sample can be calculated dependant on 

crystal system.  
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Table 2.2 – Table of the seven crystal systems d-spacings equations 

Crystal system D-spacings Equation 

Triclinic  

  
  

 

  
     

       
       

                         

 Where, S11 = b
2
c

2
sin

2
α, S22 = a

2
c

2
sin

2
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2
b

2
sin

2
γ, S12 = abc

2
(cosαcosβ – cosγ), 

S23 = a
2
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2
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Rhombohedral  

  
 
                                        

                   
 

Hexagonal  

  
 
 

 
 
          

  
   

  

  
 

Cubic  

  
  

          

  
 

 

The unit cell volume of a material can also be calculated using Table 2.3, and if the crystal density 

is known, other useful information can be calculated as such as the mass per unit cell. This can be 

very useful for working out, for example the ratio of structure directing agents per unit cell of 

zeolite crystals.  

Table 2.3 – Table of seven crystal systems equations to calculate volume of unit cell 

Crystal system Volume Equation 

Triclinic                                          

Monoclinic            

Orthorhombic       

Tetragonal       

Rhombohedral                       

Hexagonal             

Cubic      

 
The data derived from an X-ray diffraction pattern can also be refined using a least squares 

method. This can help with XRD issues such as peak overlapping and non-random distributions of 

crystallites.  
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2.2. NMR Theory 

Nuclear magnetic resonance (NMR) spectroscopy is the study of the local order of nuclei in a 

magnetic field. A nucleus in a system will have an internal magnetic field called nuclear spin, and 

can also have an external magnetic field applied. The external magnetic field differs by being the 

field the nucleus is exposed to statically, such as during an NMR experiment.  

An NMR spectrometer, with an external magnetic field uses a radiofrequency (RF) pulse to 

irradiate nuclei in a sample whereby the NMR spectrometer is used to study the response.  This 

RF radiation is applied as an RF pulse, derived specifically for the study of NMR active nuclei, 

which are any nuclei with a spin of ½ or > ½.13 

2.2.1. Nuclear Spin 

Determination the net spin of a nucleus occurs via the balance of electrons and protons in the 

outer shells of a nucleus. An even amount of neutrons and protons gives a balanced nucleus 

where the spins are paired against each other and cancel out, leaving no overall nuclear spin 

observed and an NMR inactive nucleus, for example 12C. When the total neutron and proton 

count gives an odd value, the overall nuclear spin is a half-integer, as such as 1/2 (13C6), 3/2 (11B5) 

and 5/2 (27Al13). When both neutron and proton values are odd, the nuclear spin is an integer, as 

such as 1 for 14N7. Out of these nuclear spin options, only nuclei with an overall spin number ≥ ½ 

are NMR active and have angular momentum (γ). The nuclear spin number is crucial because 

different spin nuclei have different qualities in NMR. 

Spin ½ nuclei provide the simplest route of spectral determination using NMR spectroscopy. The 

number of energy levels possible can be calculated by Equation 2.3:  

                               Equation 2.3. 

(Where I = overall nuclear spin for all non-isochronous nuclei) 
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2.2.2. Zeeman Interaction  

The Zeeman interaction is the largest interaction facing spin ½ nuclei. It governs the interaction 

between the associated magnetic moment (μ) of a nucleus with spin, in the external magnetic 

field.  

The Zeeman Effect states that when nuclei are not exposed to a magnetic field, they have the 

same energy. This is demonstrated for a spin ½ nuclei below (Figure 2.3): 

 

Figure 2.3 – Schematic diagram showing Zeeman energy level splitting for spin 1/2 nucleus 

When a nucleus is exposed to an external magnetic field in an NMR experiment, the spins of the 

nuclei align either with or against the magnetic field and split into high and low energy states. 

These separated energy levels now have different magnetic quantum numbers (m), 

representative of the direction of angular momentum: +1/2 (α) for the nuclei aligned with the 

external magnetic field, and -1/2 (β) for nuclei aligned in opposition to the external magnetic field.  

 

The total Zeeman energy of all nuclear spin species in a sample of given spin can be calculated as 

follows (Equation 2.4.).  

Zeeman Energy            
  

   
            Equation 2.4. 

Where Ez = total Zeeman energy, γj = magnetogyric ratio of nucleus (rads
-1

T
-1

), h = Planck’s constant, mj = 

spin quantum number of nucleus and BO = applied magnetic field (T) 
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2.2.2.1. Boltzman Distribution and Population Density 

The populations of nuclei in separate energy states are governed by thermodynamics and the 

Boltzman distribution (Equation 2.5.);  

       

      
  

   
   

Equation 2.5. 

 

Planck’s equation       Equation 2.6. 

Where NUpper/lower = the number of nuclei in the upper and lower energy states, E = energy difference 

between spin states, k = Boltzman constant, t = temperature (K), h = Planck’s constant and v = frequency (s
-1

) 

 

Due to the lower energy of the +1/2 (α) energy level where nuclei are aligned with the external 

magnetic field (BO) at room temperature, there is a slightly higher nuclei population density 

present. It is these nuclei that can be excited into the upper –1/2 (β) energy state by a 

radiofrequency pulse. 

These energy levels (Equation 2.7.) and the frequency of the radiation (Equation 2.8.) required to 

excite lower energy state nuclei can be calculated by the following equations: 

Energy level energy     
          

   
     Equation 2.7. 

Transitional Energy        
       

   
     Equation 2.8. 

Where γ = magnetogyric ratio (rads
-1

T
-1

) I = overall nuclear spin, BO = external magnetic field (T) and h = 

Planck’s constant 
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If enough target nuclei in the lower energy state are excited, the distribution of both energy levels 

may become equal and the spin cycle will be saturated. This requires a relaxation period before 

further excitation of nuclei commences.  

2.2.2.2. Lamor Precession 

The quantization of magnetic moments as +½ and -½ means nuclei can never fully align with the z 

plane of magnetisation. This ensures that there is always a part of the magnetic moment in the xy 

plane, as demonstrated below (Figure 2.4) and is the reason for Lamor precession.14 

 

 

 

 

 

 

 

 

The spinning nucleus has intrinsic angular momentum and a magnetic moment. It generates a 

small magnetic field while precessing on its axis and as such can be said to be a vector, 

maintaining both magnitude and a direction in space. 

The rate of this magnitude is referred to as Lamor Precession (Hz) (Equation 2.9.) and is 

proportional to its spin (Equation 2.10.).  

  

Figure 2.4 –Diagram depicting the Lamor Precession of a spinning nucleus’s orbit 

S p i n n i n g 

n u c l e u s 

P r e c e s s i n g   

o r b i t 
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Lamor Precession      
    

   
     Equation 2.9. 

   
     

   
  or             Equation 2.10. 

Where µ = nuclear magnetic moment, γ = magnetogyric ratio (rad s
-1 

T
-1

), I = nuclear spin quantum number, 

h = Planck’s constant, υ = Larmor frequency (Hz) and BO = applied magnetic field (T) 

2.2.2.3. Bulk Magnetisation 

The nucleus discussed has a magnetic moment and its spin allows precession almost in line with 

the applied magnetisation.  Practically however, the overall effect of all nuclei in a sample needs 

to be considered for the purpose of applying a radiofrequency pulse. When all opposing magnetic 

moments cancel out, a residual net nuclear magnetic moment remains from the larger population 

density of nuclei in the lower energy +1/2 (α) spin energy level. This overall magnetic moment is 

known as bulk magnetisation and aligns almost along the direction of the external magnetic field, 

BO (Figure 2.5)13.    

 

Figure 2.5 - Schematic diagram of net magnetisation aligned with applied magnetic field 

 

This magnetisation vector that aligns with the magnetic field can be shifted by a radiofrequency 

pulse, for a certain amount of time (tp), in the xy plane. This pulse generates an oscillating 

Magnetisation 

Vector 
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magnetic field (B1) at right angles to the applied magnetic field (BO).15  The net magnetisation that 

is initially aligned with the applied magnetic field is tipped by the pulse to an angle (Θ) calculated 

using Equation 2.11., shown in Figure 2.6.  

              Equation 2.11. 

Where Θ = radiofrequency pulse angle, γ is the magnetogyric ratio (rads
-1

T
-1

), B1 = oscillating magnetic field 

(Hz) and tp= radiofrequency pulse time (s) 

 

 

 

 

 

 

After the radiofrequency pulse has been applied, the population densities return to their 

Boltzman distribution by a process called relaxation. Relaxation allows xy magnetisation to decay 

via free induction decay (FID) whereby all individual oscillations are detected by the NMR 

spectrometer.  

2.2.2.4. NMR Relaxation 

The relaxation of nuclear magnetisation is required to return to the z plane equilibrium state with 

the applied magnetic field before a subsequent radiofrequency pulse can be applied. This is 

essential as detection occurs in the xy plane, collecting a specified number of FID scans. The 

z 

x 

y 

   

  

B O 

Route of precession 

Figure 2.6 –Schematic diagram showing magnetisation being shifted into the xy plane after an applied pulse  

Magnetisation 

Vector 
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relaxation period and the type of relaxation required are affected by the particular interactions 

relevant to the nuclear spins, such as shielding, dipolar coupling and quadrupolar coupling.  

The following are common types of relaxation: 

T1 Spin-lattice relaxation (longitudinal relaxation): This relaxation process concerns the relaxation 

back to the z plane along with the applied magnetic field (Figure 2.5) and the re-establishment of 

initial Gaussian population distributions. This relaxation time can be calculated for a 

homogeneous solid sample as follows: 

                        
 
  

  
 
  Equation 2.12. 

Where, MZ (0) = magnetisation in the z plane, M = nuclear spin magnetisation vector, T1 is the 

decay constant for the recovery to the z plane of the nuclear spin magnetisation (s)  

 

A large spin-lattice relaxation time may increase the overall NMR data collection time drastically 

making the experiment less viable.  

T2 Spin-spin relaxation (transverse relaxation): Upon application of a 90˚ radiofrequency pulse to 

a sample, nuclear spins become temporarily aligned in the new applied direction. After a time (T2) 

the nuclear spins decay due to either inhomogeneities in the field or spin interactions that do not 

transfer energy to the lattice (T1 relaxation). The extent of this decay and T2 relaxation is referred 

to as dephasing delay and can be calculated from spectral peaks widths (Equation 2.13.):  

    
 

     
     Equation 2.13. 

Where ν1/2 = peak line width at half height 
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2.2.2.5. NMR Interactions 

In addition to the external magnetic field placed upon nuclei (ERF) and the Zeeman interaction (EZ), 

a range of internal interactions can also contribute to the field experienced by a nucleus. These 

additional contributions are shielding (ES), indirect spin couplings (EJ), dipolar couplings (ED) and 

quadrupolar couplings (EQ).  

                                Equation 2.14. 

These interactions are expressed above in the general Hamiltonian (Equation 2.14.), which 

demonstrates the total sum of terms of energy contributions on a nucleus under a magnetic field 

and will be tackled individually. 

2.2.2.5.1. Shielding (ECS) 

Shielding in NMR refers to the creation of a second magnetic field around the nucleus, induced 

when nuclei are placed under an applied magnetic field to precess in opposition to the applied 

magnetic field. It occurs in any atom possessing more than one electron shell and can be 

calculated as follows (Equation 2.15.): 

Chemical Shielding                        Equation 2.15. 

Where ECS = chemical shift interaction, γ is gyromagnetic ratio (rad s
-1

T
-1

), σ is shielding tensor (Hz) and B0 = 

applied magnetic field (T) 

 

Due to this shielding, the applied magnetic field is not exactly equal to that felt at the nucleus so 

the effective nuclear magnetic strength is used instead (Equation 2.16.): 

Effective Nucleus Strength                 )   Equation 2.16. 

Where BO = applied magnetic field (T) and σ = total shielding contributions (ppm) 
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This calculated difference between the applied field strength and experienced field strength at 

the nucleus is displayed as chemical shift, differentiating between nuclei of different magnetic 

equivalence and is the reason for the NMR spectra we can interpret.  

Shielding and chemical shift are affected by the following three components: Diamagnetic 

contributions (d), paramagnetic contributions (p) and neighbouring group anisotropy (n), 

shown in Equation 2.17. 

Chemical Shielding                   Equation 2.17. 

Diamagnetic Shielding (σd): When electrons are placed in a magnetic field, they circulate the s-

orbital creating a self-instigated induced field. This diamagnetic shielding means that in addition 

to the attractive forces between the positive nucleus and negative electrons, there is an 

additional repulsion between electrons in the induced magnetic field. Therefore, increasing 

electrons reduces the electrostatic force and increases the atomic size. This diamagnetic 

contribution to shielding is distance dependant so the core electrons have the majority effect on 

diamagnetic shielding of the nucleus, giving rise to a relatively constant diamagnetic shielding for 

all individual atoms (Equation 2.18). It also means that nuclei that are surrounded by more 

electrons are shielded from the magnet more than nuclei that are surrounded by fewer electrons.  

Diamagnetic Shielding       
 

  
     Equation 2.18. 

 Where D = Diamagnetic shielding (ppm) and rI = the distance of the i
th

 electron in the nucleus 

 

Paramagnetic Shielding (σp): A distortion of electron distribution in p-orbital energy level states 

by the external magnetic field creates paramagnetic shielding. Excited electronic states may exist 

in the ground electronic state with remnant paramagnetic properties that causes relatively large 

deshielding effects of nearby nuclei. Practically, this means that these nuclei will be more affected 
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by the external magnetic field and this will be demonstrated in the nuclei’s respective chemical 

shift.  This paramagnetic effect is the principle shielding effect of all nuclei heavier than 1H and is 

governed by TIP (Temperature Independent Paramagnetism). 

Neighbouring group anisotropy (σn): This contribution to shielding is significantly more important 

for 1H NMR experiments than any heavier element NMR experiment.  This is due to the size of the 

neighbouring group effects being no larger than a few ppm affecting only 1H NMR’s small 

chemical shift range.  

Diamagnetic movements of electrons in s-orbital (as discussed in Diamagnetic Shielding (σd)) 

creates a self-instigated magnetic field. This means that the occurrence of any double bonds, 

neighbouring electron withdrawing or donating groups or lone pairs will have an effect on 

neighbouring nuclei and subsequently affect the nuclear chemical shift observed.  

2.2.2.5.2. NMR Tensor Properties 

Solution state NMR allows molecules a random tumbling motion which reduces internal 

interactions to their isotropic averages as such (Table 2.4): 

Table 2.4 - Table of solution state NMR internal interactions isotropic averages 

Internal Interaction Tensor Isotropic 
Average 

Chemical Shielding ECS σISO 

Indirect Coupling EJ JISO 

Dipolar Coupling ED 0 

Quadrupolar Coupling EQ 0 

 

In solid state NMR, there is no anisotropic molecular tumbling and internal interactions are 

orientation dependant meaning they can be regarded as tensors. A shielding tensor can be 

thought of as being the effect that shielding electrons have on their nucleus from the external 

magnetic field (Equation 2.19.). 
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              Equation 2.19. 

Where BS = effective magnetic field at the nucleus (T), σ = shielding tensor and B0 = applied magnetic field (T) 

 

This tensor can be adapted into a matrix with a diagonal σ principal axis frame (PAF) (Equation 

2.20.): 

  

         
         
         

     Equation 2.20. 

 

Symmetrical properties can be eliminated in the full shielding tensor leaving the principal 

components only (Equation 2.21.). 

Principal Components                    Equation 2.21. 

 

The isotropic average of molecules in solution state NMR reduces the principal components to an 

isotropic shielding average as shown (Equation 2.22.): 

Isotropic shielding:          
 

 
               Equation 2.22. 

 

High resolution solid state NMR experiments also reduce orientation dependant components to 

the isotropic average by spinning at the magic angle. In solid state NMR however another two 

components are considered. These are the anisotropy (Equation 2.23.) and asymmetry (Equation 

2.24.) parameters that contribute to chemical shift anisotropy and can be calculated as follows:  

Anisotropy               
 

 
              Equation 2.23. 



References begin on page 51  37 | P a g e  

Asymmetry        
             

     
    Equation 2.24. 

2.2.2.5.3. Indirect spin couplings/ J-Couplings (EJ) 

Indirect couplings are a through-bond interaction between two nuclear spins, sometimes referred 

to as Scalar coupling. They give information about the molecular orientation and atomic 

connectivity which can be a very useful tool in solution NMR. In a solution NMR spectrum, this 

coupling can provide three important parameters, summarised in Table 2.5.  

Table 2.5 - Table describing the uses and examples of different types of Indirect Spin coupling parameters 

Useful Parameters 
from Indirect Spin-
Coupling 

Example Use 

Sign of Coupling +, - Defined on whether the energy is higher or lower 
than the other nuclei when the spins match or oppose 

Coupling Strength Weak, Strong Strength of coupling indicates the distance of coupling 
or strength of magnetic moment on attached nuclei  

Coupling Multiplicity Doublet, 
Double 
Doublet 

Identification of the amount of (non-equivalent) 
nuclei coupled to the nucleus of interest 

 

This type of coupling is less of a consideration in solid-state NMR due to it being considered the 

smallest interaction in magnitude16 for most light nuclei that are studied. Although typically 

discussed as a through-bond interaction, it can interestingly be used to prove the existence of 

bonding through-space in nuclei that are in very close proximity in zeolites.17,18 The determination 

of useful structural information from J coupling is determined in the Chapter 6.  

2.2.2.5.4. Dipolar Coupling (ED) 

Dipolar coupling is based on the through space interaction between two nuclei acting as small 

magnets. Each nucleus’s magnetic field overlaps with the other, giving rise to a shift in the energy 

of nuclear spin levels.   
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Due to the rapid tumbling motion of molecules in solution state NMR, the isotropic component 

reduces to zero meaning this interaction can play no part on resonance frequencies, but does play 

a key role in relaxation times. Correspondingly it is not a concern to remove, but also means no 

useful information can be yielded from it, such as is the case for solid-state NMR.  

 

 

 

 

 

 

 

In solid state NMR, there is no rapid tumbling of molecules or removal of dipolar coupling, leading 

to major line broadening in the NMR spectra. The strength of the dipolar interaction, similarly to 

diamagnetic shielding, is related to distance between dipoles in question (Equation 2.25.).  

Dipolar Energy               Equation 2.25. 

The energy of this dipolar coupling can be calculated based on molecular orientation if the 

distance between the two dipole moments is known, in the following first order calculation 

(Equation 2.26.).  

Dipolar Energy       
     

  
    

           

  
 
  

   
  Equation 2.26. 

Where µI/S = magnetic moments of dipoles I and S (N m T
-1

), r = distance between two dipoles (m), µ0 = 

Permeability constant and   = vector between magnetic dipoles 

Figure 2.7 – Schematic diagram showing dipolar coupling between two dipole moments, I and S 
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The dipolar coupling constant (Equation 2.27.) can also be calculated from the dipolar energy 

(Equation 2.28) as shown:  

                    
         Equation 2.27. 

Where dipolar distance can also be calculated as follows: 

    
         

        
     Equation 2.28. 

Where D= dipolar coupling constant between I and S, γI/S = magnetogyric ratios of dipoles I and S (rad s
-1

 T
-1

), 

r = distance between two dipoles (m), µ0 = Permeability constant and  = reduced Planck’s constant  

 

Dipolar coupling can be exploited for distance determination19,20 in a variety of different chemical 

multi-spin21 systems including zeolites22 in solid state NMR via experiments such as REDOR.23,24 

This theory is developed in Chapter 6.  

2.2.2.5.5. Quadrupolar Coupling (EQ) 

Quadrupolar coupling occurs as an additional internal interaction in quadrupolar nuclei only, 

which are any nuclei with a spin number over ½. The quadrupolar interaction is a coupling 

between the nuclear electric quadrupole moment (eQ) and electric field gradient (EFG) and can 

be positive or negative dependant on the charge distribution of a nucleus. This means that in 

addition to the collection of all local magnetic field interactions already experienced, quadrupolar 

nuclei also interact with electric field gradients at the nucleus.  

EFG is a tensor property making quadrupolar coupling a tensor and implying the same rules to the 

internal interaction as tensors in chemical shielding (2.2.2.5.2 NMR Tensor Properties). Therefore, 

the isotropic average reduces to zero as shown (Equation 2.29.):  

    
 

 
                   Equation 2.29. 
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In solution state NMR, resonance frequencies remain unaffected by quadrupolar nuclei due to the 

zero quadrupolar isotropic average. However, quadrupolar nuclei retain their negative effect on 

line broadening and relaxation times making some nuclei with large quadrupolar moments very 

difficult to study by solution state NMR.  

Solid state NMR however can benefit from the utilisation of quadrupolar nuclei and quadrupolar 

moments.  They can be determined and manipulated to give important information about the 

sample that would not be possible in solution state NMR. Namely these pieces of information are 

anisotropy (χ) and asymmetry ( ) and can be calculated as follows: 

Quadrupolar Coupling Constant           
      

 
  Equation 2.30. 

Quadrupolar Asymmetry Parameter     
        

   
   Equation 2.31. 

Where X = quadrupolar coupling constant, n= (0 ≤ n ≤ 1), eQ = nuclear quadrupole moment (em
2
), eqZZ = the 

largest principal component of the EFG in a qZZ ≥ qYY ≥ qXX and h = Planck’s constant 

 

The asymmetry parameter calculated above determines the amount of symmetry in the charge 

density of a nucleus. For example, a non-symmetrical charge density whereby the charge region is 

compressed or extended over the nuclei will lead to the contribution of an asymmetry parameter 

to the quadrupolar coupling constant.  

When almost spherical or spherical charge densities exist in a nucleus, the quadrupolar 

asymmetry parameter will be small and as such the total quadrupolar effects will be small. This 

may lead to a small or unidentifiable effect on the NMR spectra in terms of line broadening and 

relaxation times and therefore be of minimal inconvenience or utilisation. Larger asymmetries 

correspondingly have a much larger effect and are discussed herein.   
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Most quadrupolar nuclei have a spin number that follows the pattern of            . In these spin 

number nuclei, the central transition refers to a transition between the -½ to ½. In this transition 

only, the quadrupole effects can be equal, meaning the quadrupole transition frequency equals 

zero and is orientation independent. For this reason, the central transition peak observed on a 

solid state NMR spectrum has a significantly larger intensity than any following satellite 

transitions. These following satellite transitions are orientation based (Equation 2.32.) resulting in 

intensity being spread over a significantly wider frequency range compared to the central 

transitions.  

Energy of first order quadrupole energy: 

      
   

        

           
                            Equation 2.32. 

Where EQ = quadrupolar energy, θ = the angle between asymmetry axis and applied magnetic field, h = 

reduced Planck’s constant, I = spin number, mI = the spin component quantum number and X = asymmetry 

parameter  

 

These first order quadrupolar contributions are complicated further when quadrupolar nuclei 

asymmetry is large and second order contributions are required. These additional contributions 

that are required to be taken into account are the zero, second and fourth order contributions 

that also contribute to the broadening of the spectral peaks.  

2.2.2.6. Solid State NMR Techniques 

The use and development of solid state NMR over the last few decades has allowed the technique 

to be brought up to speed with its solution state counterpart and has additionally brought about 

the possibility of new information about materials that solution state NMR is not capable of; for 

example determination of complex protein structures.25 This has been made possible due to the 

ability of solid state NMR to selectively exploit or eliminate certain internal magnetic field 
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interactions mentioned in the previous Hamiltonian (Equation 2.14.), namely dipolar coupling (ED) 

and quadrupolar coupling (EQ).   

Unlike solution state NMR’s fast random tumbling of molecules, solid state NMR is anisotropic, 

meaning that a vast array of randomly directed molecules will exist with respect to the external 

magnetic field. As such, all molecular nuclei will be observed in the NMR spectrum leading to a 

broad peak.  The solid state NMR developments over the last few decades has allowed for the 

removal of these additional interactions in order to gain similar sharp spectral peaks to that 

observed in solution state NMR. The reintroduction of selective information is possible via the 

development of the following solid state NMR techniques that are often combined: Magic Angle 

Spinning (MAS), Cross Polarisation (CP), High Power Decoupling (HPD) and other optional 2D 

experiments. These are discussed individually as follows.  

2.2.2.6.1. Magic Angle Spinning 

The internal interactions, described in Chapter 2.2.2.5 , all have an orientation dependent 

component as shown: 

 

 
              Equation 2.33. 

Where θ= the angle between the internuclear vector and applied magnetic field BO (°) 

 

It has long been discovered however that the rotation of the sample at 54.74°, the magic angle26 

allows for the averaging of Equation 2.33. that somewhat mimics the tumbling motion of 

molecules in solution state NMR and reduces the line broadening of anisotropic dipolar 

interactions.  
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In a powdered sample, all orientations must be taken into account for θ, where the sample is 

rotated at an angle of θR (Figure 2.8) which will change with time as the sample is rotated. The 

derivations of the magic angle can be summarised as follows (Equation 2.34.): 

 
 

 
            

 

 
           

 

 
            Equation 2.34. 

Where θ = angle between the applied magnetic field and determined molecular interaction (°), β = distance 

between the axis of rotation and determined molecular interaction (°) and θR = fixed experimental angle (°)  

 

If the angle of θR is set to 54.7356 °, the value of (3cos2θR-1) becomes equal to zero. This in turn 

averages the entire orientation dependant calculation of (3cos2θ) to zero on the condition that 

the spin is sufficiently fast to average θ in comparison with interaction anisotropy. To reduce most 

broadening effects, the spin rate must be vastly greater than the interaction line widths. In 

practice, a minimal increase in spin rate can be sufficient to reduce shielding interactions however 

a drastically higher rate is required in order to attempt to reduce or entirely remove proton 

dipolar couplings but it can be impossible to average out some quadrupolar effects.16  

 

 

 

 

 

 

Figure 2.8 – Schematic diagram demonstrating the θR angle that is set to 54.74° for magic angle spinning 
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Due to these features, the selective reintroduction of chemical shift anisotropy and determination 

of respective information is possible by varying spin speeds. It is possible to select a spin speed 

that is fast enough to reduce line broadening but slow enough to include spinning sidebands at 

spin rate distances outwards from the central peak of isotropic resonance.27 These spinning 

sidebands can be used to determine key information about anisotropic interactions28 as such as 

14N quadrupolar chemical shift anisotropy and asymmetry parameters via the use of additional 

software like Bruker SOLA29 or DmFit30 (developed in Chapter 4).  

In a relatively quiet NMR spectrum, spinning sidebands may be of minimal inconvenience 

however in a more cluttered NMR spectrum, spinning sidebands may overlap spectral peaks. Due 

to the occurrence of these sidebands at a distance equal to the spin rate, they can simply be spun 

out to a convenient location on the NMR spectrum where minimal to no peak overlap occurs.  

2.2.2.6.2. Cross Polarisation 

Direct excitation for single pulse sequences can be performed in solid state NMR for highly 

abundant nuclei. For any other nuclei, the following problems occur. Significantly bad signal to 

noise ratio due to the low abundance of NMR active nuclei.  Correspondingly, longer experimental 

times in order to gain appropriate resolution spectra. Also, very long spin-lattice relaxation times 

are experienced ranging from many seconds for 13C and 15N to many minutes for 29Si.16 

The application of a cross polarisation pulse sequence reduces the above problems by 

magnetisation transfer from highly abundant NMR-active nuclei to the dilute spin. The cross 

polarisation experiment benefits from reduced recycle delays to the length of the abundant 

nuclei, increasing spectral resolution available in a given time.  

The occurrence and efficiency of cross polarisation is dependent on 3 features. These are the 

matching of Hartmann-Hahn31 conditions, the distance between the dipolar coupling nuclei that 

are experiencing the polarisation transfer and the mobility of the molecules in the solid state, 

whereby more increased molecular mobility leads to longer relaxation times. These features and 
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more are further developed in Chapter 6 whereby cross polarisation is a key feature in the 

distance determination experiments conducted.  

2.2.2.6.3. High Power Decoupling 

The process of decoupling allows removal of splitting patterns observed in an NMR spectrum. In 

solution state NMR, splitting patterns can often be very useful in helping to identify different 

peaks for molecular assignment so decoupling is typically undesired for the large majority of 

nuclei studied. In solid state NMR however, coupling significantly contributes to line-widths of 

peaks and reduces spectral resolution. NMR experiments with a large proton contribution suffer 

from considerable proton coupling and line broadening. This may be overcome by the latter of 

the two types of decoupling:  

High power homonuclear decoupling: identifying the same isotope in the NMR spectrum that is 

being excited by radiofrequency pulses.  

High power heteronuclear decoupling: identifying a different isotope in the NMR spectrum than is 

being excited by radiofrequency pulses. This type of decoupling is one of the easiest techniques 

used to remove or reduce heteronuclear couplings between nuclei at normal magnetic fields (up 

to 400 MHz)32. Examples of decoupling experiments used in this work and processes involved are 

as follows: 

Continuous wave (CW)33 decoupling can be added to an MAS NMR experiment whereby a high 

power is asserted continuously upon the 1H or 19F nuclei resonance whilst the other nuclei’s 

spectrum is collected. There are realistic dangers to damaging equipment from the application of 

high power in continuous wave, of a long amount of time. The risks of damaging amplifiers or high 

power being converted into heat that the probe cannot take will lead to arcing of the probe. In 

order to avoid these problems, a combination of limiting decoupling power and applying a 

maximum radiofrequency duty cycle are imposed.  
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The duty cycle imposed is a proportional amount of time compared to the experiment time that a 

proportional amount of power is applied to the sample. For CW decoupling a 10 – 20 % duty cycle 

limit is imposed and can be calculated:  

            
                

                     
   Equation 2.35. 

SPINAL-6434 high-power decoupling is a family of 64 small phase incremental sequences.35 It 

involves slow phase changes of 1-2 ms and phase steps of π/2 and has been proved as a very 

useful tool against the high MAS speed experiments of rigid solids.36 37 The use of SPINAL-64 high 

power decoupling over more traditional choices allows for a more efficient decoupling program 

that yields specific advantages in triple resonance experiments such as REDOR,23 developed 

further in chapter 6.  

2.2.2.6.4. 2D NMR Experiments 

Similar to solution state NMR, solid state NMR can also perform two dimensional (2D) 

spectroscopy with the same nuclei (homonuclear) or different nuclei (heteronuclear). In these 

experiments, a transfer of magnetisation is measured between either the bonds or through space 

interactions, dependant on the type of experiment, allowing the user more characterisation 

capabilities when 1D NMR is not sufficient.38 Certain 2D NMR experiments have been used in this 

thesis and the theory will be developed in chapter 6.   

2.3. Scanning Electron Microscopy Theory 

The morphology of crystals can be studied by Scanning Electron Microscopy (SEM) imaging. This 

technique allows for the study of the crystal surface, whereby crystal shapes and dimensions may 

not only be viewed and measured, but can also be photographed.  

Crystal morphologies can have a large effect on the practical applications of a compound. For 

example, MFI (ZSM-5) samples synthesised under slightly different conditions may lead to entirely 

different crystal morphology, crystal dimensions and particle sizes. These different chemical 
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properties can have a large effect on the practical applications of materials in terms of their 

reactive properties, and uses. The collaborative study of these materials by SEM can therefore be 

advantageous because SEM is able to distinguish between samples that are the same material 

however, have different crystal structure and reactive properties that other common techniques, 

such as X-ray diffraction are not capable of.  

Scanning Electron Microscopy has various advantages over simple optical light. It can provide a 

magnification power of up to 300,000 times, which is significantly more than the 1-500 times 

magnification permitted by optical light. SEM is capable of studying with very good depth of field. 

This can be very important and useful when studying crystal morphologies because it gives an 

almost 3D view useful when viewing or studying shapes. They are even capable of looking past 

the surface of the object, contributing to the 3D-like imaging; a quality that is not common to all 

spectroscopic methods.  

An SEM works by a low energy (up to 50 eV)1 electron beam projecting down a channel of lenses 

onto the surface of a sample. The scanning motion provides a signal to the secondary electron 

detector which is used to create an image.  The useful combination of SEM with Energy Dispersive 

X-rays (EDX) can allow for the identification of minor phases and elements that may be 

overwhelmed in XRD and not observed.  

2.4. Background to Instrumentation 

2.4.1. X-ray Diffraction 

Equipment and Sample Preparation:  X-ray diffraction powder patterns were collected on a Bruker 

D8 advance with Cu α radiation of 1.5406 Å at 40 kV tube voltage and 40mA tube current.  

Samples were ground into a fine powder and pressed into a Bruker PMMA sample holder.   

Technical Experimental Details: Initial X-ray diffraction experiments were run from 5 – 60 2θ ° 

range with a 0.07 ° slit size and 4 second step time.  
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Analytical Software: These powder patterns were referenced to published diffraction files 

registered in the ICCD-PDF-4 Powder Diffraction Database4. Characterisation of experimental 

powder patterns was conducted by comparison to reference files of products, starting materials 

and impurities.  

2.4.2. Solid State NMR  

2.4.2.1. NMR Experimental Details and References 

Various NMR spectrometers have been used for the solid state NMR experiments conducted here 

and are outlined below: 

Table 2.6 – Experimental details for NMR spectra collected on a Bruker Avance III HD 400 MHz Spectrometer at Keele 
University, Staffordshire 

Experiment Type Experimental Details 

1H Collected using 2.5 mm rotors at 400.13 MHz for 1H. Experiments were 
conducted using a recycle delay of 3 s and a 6 kHz spinning rate.  

 
29Si{1H} CP MAS 

Collected using 2.5 mm rotors at 79.47 MHz for 29Si and 400.13 MHz for 
1H. Experiments were conducted using a 3 ms contact time, a linear ramp 
on the 1H contact pulse (30% slope), SPINAL-6439 1H decoupling, q 3 s 
recycle delay and a 6 kHz spinning rate.  

Reference Sample 29Si chemical shifts were referenced to TMS using the cubic octamer 
Q8M8 - Si8O12[OSi(CH3)3] as an external secondary standard. 

 
13C{1H} CP MAS 

Collected using a 2.5 mm rotor at 100.59 MHz for 13C and 400.13 MHz for 
1H. Experiments were conducted using a 3 ms contact time, a linear ramp 
on the 1H contact pulse 30% slope), SPINAL-64 1H decoupling, recycle 
delay of 3 s and a 6 kHz spinning rate.  

Reference Sample 13C chemical shifts were referenced to TMS using adamantane as an 
external secondary standard. 

 

Table 2.7 - Experimental details for NMR spectra collected on a Bruker Avance III HD 400 MHz Spectrometer at 
University of St Andrews University, Fife 

Experiment Type Experimental Details 

13C{1H} CP MAS Collected using a 1.9 mm rotor at 100.60 MHz for 13C and 400.12 for 1H. 
Experiments were conducted using a 5 s recycle delay, 4 ms contact time, 
SPINAL-64 1H decoupling and 10 kHz spinning rate.  

Reference Sample 13C chemical shifts were referenced to TMS with Alanine as a secondary 
reference 

 
29Si MAS 

Collected using a 1.9 mm rotor at 79.49 MHz for 29Si. Experiments were 
conducted using a recycle delay of 120 s, a 2 ms contact time and 10 kHz 
spinning rate.  

Reference Sample 29Si chemical shifts referenced to TMS with Q8M8 - Si8O12[OSi(CH3)3] as a 
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secondary reference 

 
19F MAS 

Collected using a 1.9 mm rotor at 376.49 MHz for 19F. Experiments were 
conducted at 280 K using a spin echo, recycle delay of 20 s and a 30 kHz 
spinning rate. 

Reference Sample 19F chemical shifts were referenced to a replacement sample of C6F6 (δF=-
166.4ppm with respect to the signal for CFCl3). 

 
14N MAS 

Collected using a 1.9 mm rotor at 28.92 MHz for 14N. Experiments were 
conducted using a 1 ms contact time, recycle delay of 5 s and 10 kHz 
spinning speed.  

Reference Sample 14N chemical shifts were referenced to NH4Cl 

 

Table 2.8 - Experimental details for NMR spectra collected on a Bruker Avance III HD 850 MHz Spectrometer at the 
Solid State NMR Facility at Warwick University. 

Experiment Type Experimental Details 

 

14N MAS 

Collected using a 7 mm rotor at 61.42 MHz for 14N. Experiments were 
conducted using a 1 ms contact time, recycle delay of 0.5 s and 2 kHz 
spinning speed.  

Reference Sample 14N chemical shifts were referenced using NH4Cl 

2.4.2.1.1. NMR and Probe Specification 

Keele University 

NMR:  Bruker AVANCE III HD 400 MHz 35 kHz DVT standard-bore triple channel 1H/X/Y 

CP MAS SS-NMR 

Probe:  2.5 mm triple resonance TriGamma 1H/X/Y MAS probe 

University of St Andrews  

NMR:  Bruker AVANCE III 400 MHz 40 kHz DVT wide-bore four-channel 1H/F/X/Y CP MAS 

SS-NMR 

Probe:  4.0 mm dual channel 1H/X MAS probe 

University of Warwick Central Facility 

NMR:  Bruker AVANCE III 850 MHz kHz DVT wide-bore four-channel 7.0 mm 1H/F/X/Y CP 

MAS SS-NMR 

Probe:   7.0 mm low gamma CP MAS probe 
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2.4.2.1.2. Variable Temperature NMR Experiments 

Variable temperature 13C {1H} CP MAS experiments were conducted on a Bruker Avance III 400 

MHz spectrometer capable of a -50 to +80 °C temperature range of the air flow.  

Heating experiments were conducted by the Bruker in built direct variable temperature (DVT) 

control system which heats airflow and then regulates it in order to match the specified 

temperature for the sample.   

Low temperature experiments were conducted by adapting the air flow line to include a large 5-

loop coil followed by a desiccator (anhydrous calcium sulphate). This coil was submersed into a 25 

litre nitrogen dewar to reduce the temperature of the air flow. The temperature was then 

controlled by a combination of the Bruker DVT thermometer and airflow regulators to meet the 

specified temperature requirement. Due to ratio of the size of the nitrogen dewar and loss of 

nitrogen for a four-day experiment, the dewar was monitored and accordingly refilled roughly 

every 8 hours.   

2.4.3. Scanning Electron Microscopy 

Equipment and Sample Preparation: Scanning electron microscopy imaging was conducted on a 

Hitachi Tabletop Electron Microscope TM3000. Samples were prepared by being loaded onto 15 

mm Hitachi stubs that are screwed into the piece of equipment in a fixed location. Disposable 12 

mm carbon covered adhesive tabs were used to affix the sample to the stubs. Any sample that 

was not securely stuck to the adhesive was removed prior to being placed in the equipment for air 

evacuation.  

Technical Experimental Details: Samples were studied by SEM analysis using voltages of 5 kV or 15 

kV with microscope magnification capabilities of up to 30,000 times.  
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3.0. Synthesis and Characterisation of Organic Structure Directing 

Agents and Pure Silica Zeolites 

The successful synthesis of high silica zeolites has previously been obtained using various 

structure directing agents1 and mineralising agents at low efficient temperatures (100 °C).2 As 

discussed in Chapter 1 (Introduction), the increasing development of zeolite chemistry and the 

ZSM-5 (MFI) material since its discovery in 19723 has lain the way for a plethora of research about 

ZSM-5 allowing for successful determination of the structure and properties. Despite the wealth 

of knowledge and studies surrounding this chemical system, the nucleation and growth 

mechanisms, as well as the effects of adapting synthetic methods or reaction conditions are still 

very poorly understood.4,5 A lot can be gained from the determination of information about this 

chemical system, and the high silica analogue; silicalite-1.   

The nature of the structure directing agent required for a silicalite-1 zeolite syntheses are typically 

quaternary ammonium cations.6 Despite the relatively simple synthetic procedure, 

tetrapropylammonium iodide7 remains the dominant structure directing agent of choice for many 

studies of the silicalite-1 system, despite the existence of a more efficient structure directing 

agent, n-methyltributylammonium iodide (MTBA).8 

With the exception of tetrapropylammonium cations, the quaternary ammonium cations required 

for structure directing agents are not sufficiently common materials to be available to purchase 

and must be synthesised for use. These quaternary ammonium species must be charge balanced 

for silicalite-1 syntheses, so quaternary ammonium halides have been used in this work. These 

quaternary ammonium halides were synthesised via an amine alkylation by SN2 substitution 

reaction which involved the reaction of an alkyl halide with either a primary, secondary or tertiary 

amine, as shown in Figure 3.1:  
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Tertiary Amine 

 

Secondary Amine 

 

Primary Amine 

 

Figure 3.1 - Schematic reaction diagrams of an alkyl halide with primary, secondary and tertiary amines to give 
quaternary ammonium iodide species, required as SDA’s 

 

There have been reports of a difference in activity in zeolite synthesis from different quaternary 

ammonium halides.9 Despite this work reporting an increasing crystallisation time as you 

descend the halides, all SDA’s were synthesised in the iodide form due to the availability of alkyl 

iodides and the ease in which they synthesise the quaternary ammonium SDA’s required.  

On the occasion that there was more than one method of synthesising the required quaternary 

ammonium iodide, the simplest synthetic route was chosen for maximum yield retrieval and 

ease. This was always the substitution using the smallest alkyl iodide with the largest alkyl amine. 

The substitution reaction occurred via a reflux reaction in methanol for increasing times 

dependant on the length of the alkyl halide.  

In this work, the high-silica zeolite silicalite-1, (MFI framework) has been synthesised using a 

variety of different quaternary alkyl structure directing agents and mineralising agents for the 

purpose of identifying the characteristic differences in the zeolites formed.  

3.1. Inorganic Pure Silica MFI Zeolites 

Over recent years, a lot of focus has been given to finding new structure directing agents for 

zeolite syntheses as it has been established that altering the structure directing agent alkyl chain 
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length can affect the zeolite formed and the size of the channels and pores.10 In accordance with 

the findings of Zones and Nakagawa11 the SDA C:N of 9-13:1 is used as a basis on which to begin. 

The initial works herein therefore use tetrapropylammonium iodide, the common SDA used to 

synthesise MFI zeolite12 and n-methyltribubtylammonium iodide,8 another more efficient and 

recently discovered SDA for synthesising MFI zeolites.  

Synthetic attempts of making pure silica MFI using the hydroxide route and a variety of SDAs has 

been attempted using the following reaction methods and vessels: Hydrothermal synthesis in 23 

ml and 46 ml autoclaves and the dense-gel methods in 8 ml polypropylene bottles, 30 ml PFE 

bottles and 5.66 ml glass vials.  

3.1.1. Hydroxide Route Synthetic Methods 

Reaction methods used in this work follow synthetic methods retrieved from previously 

successful syntheses of MFI zeolites. Fyfe et al13 investigated different synthetic methods and 

reagent types for the effective and efficient synthesis of MFI zeolite. The methods used are 

summarised as in Table 3.1:  

Table 3.1 - Table of synthetic methods for hydroxide route syntheses of MFI zeolite 

 Reaction Type/Vessel Reaction Details 

1 Dense-gel synthesis in 8 
ml polypropylene bottle 

Method adapted from ‘Sample B’ in Fyfe et al13 whereby 
sodium hydroxide was added as mineralising agent to 
reduce reaction time 

2 Hydrothermal synthesis in 
23 ml autoclave 

Synthetic method adapted from ‘Sample K’ in Fyfe et al13 to 
include more water 

3 Hydrothermal synthesis in 
46 ml autoclave 

Synthetic method scaled up from ‘Sample K’ in Fyfe et al13 
and adapted from 2, to include more water 

4 Dense-gel synthesis in 30 
ml polypropylene bottle 

Synthetic method replicated 1, to investigate whether 
dehydration would occur in a different bottle type 

5 Dense-gel synthesis in 
5.66 ml glass vial 

Synthetic method scaled down from 1, to investigate 
whether dehydration would occur in a different vessel type 

 

On occasion, the reaction methods and molar compositions from Fyfe et al13 have been altered 

from the initial syntheses, dependant on the particular requirements or difficulties discovered. 

Examples of this include changing the reaction vessel type, vessel size, temperature of reaction 
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and length of oven time. This also included the addition of more distilled water to some larger 

structure directing agents such as TEHA, that crystallise MFI zeolite slower for the purpose of 

reducing the long term slow dehydration experienced.  

3.1.2. Fluoride Route Synthetic Methods 

Fluoride route syntheses used in this work also follow the comparative study of Fyfe et al13 and 

are summarised in Table 3.2. 

Table 3.2 - Table of synthetic methods for fluoride route syntheses of MFI zeolite 

 Reaction Type/Vessel Reaction Details 

1 Dense-gel synthesis in 8 
ml polypropylene bottle 

Synthetic method from Sample N in Fyfe et al13 

2 Hydrothermal synthesis in 
23 ml autoclave 

Scaled down adaptation from Sample K in Fyfe et al13 with 
increased water content 

3 Hydrothermal synthesis in 
46 ml autoclave 

Adaptation from Sample K in Fyfe et al13 with increased 
water content 

4 Dense-gel synthesis in 30 
ml polypropylene bottle 

Scaled down adaptation from Sample K in Fyfe et al13 with 
increased water content 

These reaction methods, were also taken and adapted from initial MFI zeolite syntheses published 

by Fyfe et al.13 Similarly the samples were exposed to a variety of vessel types and sizes to 

attempt to reduce dehydration experienced in polypropylene bottles.  

3.2. Successful Zeolite Structure Directing Agents 

3.2.1. Synthesis of MFI using TPA+I- - Tetrapropylammonium Iodide  

SDA Synthesis: The structure directing agent TPA+I- (Figure 

3.2) is readily available for purchasing from Sigma-Aldrich 

and as such, did not require synthesising. It was 

characterised for purity before use as follows: 1H NMR (300 

MHz, CDCl3, ppm) δ 3.42 (8H, m, N-CH2-), 1.65 (8H, m, CH2-

CH3), 1.15 (12H, s, (CH2-CH3); 
13C NMR (300MHz, CDCl3, 

Figure 3.2 - Structure of TPA 
(tetrapropylammonium) cation SDA 
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ppm) δ 61.10 (N-CH2-CH2), 16.20 (N-CH2-CH2), 11.10 (CH2-CH3). The successful characterisation of 

TPA allowed for the next stage of synthesis of the MFI type zeolite. 

Zeolite Synthesis: Zeolite MFI was synthesised using tetrapropylammonium iodide in a variety of 

different synthetic methods and reaction vessels.  

Table 3.3 and Table 3.4 contain the details of all reactions attempted using the hydroxide and 

fluoride route respectively.  

Table 3.3 - Hydroxide route table of conditions for the synthesis of MFI using TPA 

Synthetic Method Ludox 
30% 
(g) 

TP(3)A 
SDA 
(g) 

H2O 
(ml) 

NaOH 
(ml) 

Synthesis 
Time 

(days) 

MFI 
Successful 

Exp 1.a. Hydroxide route hydrothermal crystallisation curve synthesis in 8 ml polypropylene 
bottle 
100 °C oven 
Molar Composition 1.0 SiO2: 0.14 TP(3)A: 26.03 H2O: 0.13 NaOH 

Amount Used 3.0 0.66 3.0 2.0 Variable Y 
Exp 1.b. Hydroxide route hydrothermal synthesis in 8 ml polypropylene bottle 
100 °C oven 
Molar Composition 1.0 SiO2: 0.15 TP(3)A: 18.60 H2O: 0.13 NaOH 

Amount used 3.0 0.66 1.0 2.0 Variable Y 
Exp 1.c. Hydroxide route dense-gel synthesis in 30 ml PFE bottle  
100 °C oven 
Molar Composition 1.0 SiO2: 0.14 TP(3)A: 18.20 H2O: 0.13 NaOH 

Amount Used 3.0 0.65 1.0 2.0 5 Y 
Exp 1.d. Hydroxide route dense-gel synthesis in 5.66 ml screw top glass vial  
100 °C oven 
Molar Composition 1.0 SiO2: 0.17 TP(3)A: 0.16 NaOH: 29.82 H2O 

Amount Used 2.0 0.43 2.0 1.33 5 Y 
 

An example hydroxide route synthesis of MFI for crystallisation curves (Exp 1.a) using 

tetrapropylammonium iodide was prepared as follows:  0.66 g TPAI and 3.0 ml of distilled water 

were measured into an 8 ml narrow-mouth polypropylene bottle. 2.0 ml of 1M sodium hydroxide 

and 3.0 g of 30% Ludox LS were added to the bottle and the bottle mouth wrapped with PTFE 

tape before the lid was sealed. The bottle was mixed on a vortex mixer to before being placed in 

a 100 °C oven for the specified time.  
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Table 3.4 - Fluoride route table of conditions for the synthesis of MFI using TPA 

Synthetic Method Ludox 
40% 
(g) 

TP(3)A 
SDA 
(g) 

H2O 
(ml) 

NH4F 
(g) 

Synthesis 
Time 

(days) 

MFI 
Successful 

Exp.2.a. Fluoride route dense-gel crystallisation curve synthesis 8 ml polypropylene bottle 
100 °C oven  
Molar Composition  1 SiO2: 0.09 TP(3)A: 8.34 H2O: 0.68 NH4F 

Amount Used 3.0 0.58 1.2 1.5 Variable Y 
Exp.2.b. Fluoride route synthesis in 30 ml PFE bottle 
100 °C oven 
Molar Composition 1 SiO2: 0.05 TP(3)A: 11.69 H2O: 0.74 NH4F 

Amount Used 1.65 0.47 5.79 0.75 Variable Y 

Synthetic Method SiO2 

(g) 
TP(3)A 

SDA 
(g) 

H2O 
(ml) 

NH4F 
(g) 

Synthesis 
Time 

(days) 

MFI 
Successful 

Exp.2.c. Fluoride route hydrothermal synthesis in 46 ml autoclave 
180 °C oven 
Molar Composition 1.0 SiO2: 0.14 TP(3)A: 20.0 H2O:1.0 NH4F 

Amount Used 1.0 0.75 6.0 0.63 5 Y 
 

Work-up: After removing the polypropylene bottle from the oven and allowing the content to cool 

to room temperature and pressure, the product was washed (30 ml distilled water) and 

centrifuged (3500 rpm, 15 minutes) three times yielding a white solid. The sample was then dried 

(60 °C, overnight) and confirmed as zeolite MFI by comparison of the XRD diffraction pattern 

obtained (Figure 3.3), to that published by IZA.14 

 

Figure 3.3 - XRD powder pattern of TPA/MFI on a Bruker Advance diffractometer with Cu Kα source 

5 15 25 35 45 55 
2θ °  
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3.2.2. Synthesis of MFI using MTBA+I- - N-methyltributylammonium Iodide 

SDA Synthesis: N-methyltributylammonium 

Iodide (Figure 3.4) was synthesised by 

refluxing an excess of 1-iodomethane (11.4 

g, 80.32 mmol) with tributylamine (6.61 g, 

35.68 mmol) in 100 ml methanol for 24 

hours. After reflux, the methanol was 

removed under reduced pressure and the 

product was recrystallised from a mixture of ethyl acetate and a minimum amount of ethanol to 

remove any soluble impurities. White crystals were obtained (9.8853 g, 84.50 %) and 

characterised as follows: 1H NMR (300 MHz, CDCl3, ppm) δ 3.45 (6H, m, N-CH2), 3.32 (3H, s, N-

CH3), 1.40 (6H, m, CH2-CH2-CH2), 1.45 (6H, m, CH2-CH2-CH3), 1.05 (9H, s, CH2-CH3); 
13C NMR 

(300MHz, CDCl3, ppm) δ 61.77 (N-CH2-CH2), 49.27 (N-CH3), 24.45 (N-CH2-CH2), 19.67 (CH2-CH2-

CH3), 13.85 (CH2-CH2-CH3).  

Zeolite Synthesis: Zeolite MFI was synthesised using n-methyltributylammonium iodide in a 

variety of different synthetic methods and reaction vessels. Table 3.5 and Table 3.6 contain the 

details of all reaction methods attempted using the hydroxide and fluoride route respectively.  

  

Figure 3.4 - Structure of MTB (methyltributylammonium) 
cations SDA 
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Table 3.5 - Hydroxide route table of conditions for the synthesis of MFI using MTBA 

Synthetic Method Ludox 
30% 
(g) 

MTBA 
SDA 
(g) 

H2O 
(ml) 

NaOH 
(ml) 

Synthesis 
Time 

(days) 

MFI 
Successful 

Exp.3.a. Hydroxide route dense-gel crystallisation curve synthesis in 8 ml polypropylene bottles 
100 °C oven 
Molar Composition 1.0 SiO2: 0.14 MTBA: 26.50 H2O: 0.13 NaOH 

Amount Used 3 0.66 g 3 2 Variable Y 
Exp.3.b. Hydroxide route dense-gel synthesis in 8 ml polypropylene bottle 
100 °C oven 

Molar Composition 1.0 SiO2: 0.16 MTBA: 18.60 H2O: 0.13 NaOH 
Standard Synthesis 3.0 0.78 1 2 10 Y 

+ 1 ml H2O 3.0 0.78 2 2 10 Y 
+ 2 ml H2O 3.0 0.78 3 2 10 Y 
+ 3 ml H2O 3.0 0.78 4 2 10 Y 

Exp.3.c. Hydroxide route dense-gel synthesis in 5.66 ml glass vial 
100 °C oven 
Molar Composition 1.0 SiO2: 0.17 MTB: 0.16 NaOH: 29.82 H2O 

Amount Used 2.0 0.52 2.0 1.33 5 Y 

 

An example hydroxide route synthesis (Exp.3.b. ) of MFI using n-methyltributylammonium iodide 

as was prepared as follows:  0.52 g of MTBAI and 2.0 ml of distilled water were added to a an 8 

ml narrow-mouth polypropylene bottle with 1.33 ml of 1M sodium hydroxide and 2.0 g of 30% 

Ludox LS. The contents were mixed on a vortex mixer and subsequently placed in a 100 °C oven 

for 5 days.  
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Table 3.6 - Fluoride route table of conditions for the synthesis of MFI using MTBA 

Synthetic Method Ludox LS 
40 % 
(g) 

MTBA 
SDA 
(g) 

H2O 
(ml) 

NH4F 
(g) 

Synthesis 
Time 

(days) 

MFI 
Successful 

Exp.4.a. Fluoride route dense-gel crystallisation curve synthesis in 8 ml polypropylene bottles 
100 °C oven 

Molar Composition 1.0 SiO2: 0.08 MTBA: 8.34 H2O: 2.0 NH4F 

Amount Used 3.0 0.50 1.2 1.5 Variable Y 

Synthetic Method SiO2 
(g) 

MTBA 
SDA 
(g) 

H2O 
(ml) 

NH4F 
(g) 

Synthesis 
Time 

(days) 

MFI 
Successful 

Exp.4.b. Fluoride route hydrothermal synthesis in 46 ml autoclave 
180 °C oven 
Molar Composition 1.0 SiO2: 0.08 MTBA: 20.02 H2O: 1.0 NH4F 

23 ml Autoclave 1.0 0.43 6.0 0.62 6 Y 
23 ml autoclave 1.0 0.43 6.0 0.62 10 Y 
46 ml autoclave 2.0 0.83 12.0 1.23 7 Y 

Synthetic Method SiO2 
(g) 

MTBA 
SDA 
(g) 

H2O 
(ml) 

(NH4)HF2 

(g) 
Synthesis 

Time 
(days) 

MFI 
Successful 

Exp.4.c. Fluoride route hydrothermal synthesis in 46 ml autoclave  
100 °C oven 
Molar Composition 1.0 SiO2: 0.08 MTBA: 20.0 H2O: 1.00 (NH4)HF2 

Amount Used 1.0 0.43 6.0 0.95 21 N 
 2.0 0.83 12.0 1.23 7 Y 

 

Work-up: After removing the glass vial from the oven and allowing the content to cool to room 

temperature and pressure, the product was washed (30 ml distilled water) and centrifuged (3500 

rpm, 15 minutes) three times yielding a white solid. The sample was later dried (60 °C, overnight) 

and confirmed as zeolite MFI by comparison of the XRD diffraction pattern obtained (Figure 3.5), 

to that published by the International Zeolite Association.14    
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Figure 3.5 - XRD powder pattern of MTBA/MFI on a Bruker Advance diffractometer with Cu Kα source 

 

3.2.3. Synthesis of MFI using ETBA+I- - N-ethyltributylammonium Iodide 

SDA Synthesis: n-ethyl-tributylammonium 

Iodide (Figure 3.6) was synthesised by 

refluxing 1-iodoethane (3.85 g, 24.88 

mmol) and tributylamine (3.88 g, 24.88 

mmol) in 100 ml methanol for 48 hours. 

After reflux, the methanol was removed 

under reduced pressure and the product 

was recrystallised from a mixture of ethyl acetate and a minimum amount of ethanol to remove 

any soluble impurities. White crystals were obtained (6.05 g, 39.23 %) and characterised as 

follows: 1H NMR (300 MHz, CDCl3, ppm) δ 3.51 (2H, m, N-CH2-CH3), 3.32 (6H, m, N-CH2-CH2), 1.68 

(N-CH2-CH2), 1.45 (6H, m, N-CH2-CH2-CH2), 1.40 (3H, m, N-CH2-CH3), 1.10 (9H, m, CH2-CH2-CH3); 

13C NMR (300MHz, CDCl3, ppm) δ 58.46 (N-CH2-CH2), 54.85 (N-CH2-CH3), 24.16 (N-CH2-CH2), 19.72 

(CH2-CH2-CH3), 13.68 (CH2-CH2-CH3), 8.47 (N-CH2-CH3).  

Zeolite Synthesis: Zeolite MFI was synthesised using n-ethyltributylammonium iodide in a variety 

of different synthetic methods and reaction vessels. Table 3.7 contains the details of all reaction 

5 15 25 35 45 55 
2θ °  

Figure 3.6 - Structure of ETB (n-ethyl-
tripropylammonium) cation SDA 



References start on page 113  63 | P a g e  

methods attempted using the fluoride route.  

Table 3.7 - Fluoride route table of conditions for the synthesis of MFI using ETBA 

Synthetic Method SiO2 
(g) 

ETBA 
(g) 

H2O 
(ml) 

NH4F 
(g) 

Synthesis 
Time 

(days) 

MFI 
Successful 

Exp 5. a. Fluoride route hydrothermal synthesis in 46 ml autoclave  
180 °C oven 
Molar Composition 1.0 SiO2: 0.08 ETBA: 20.02 H2O: 1.0 NH4F 

Amount Used 1.0 0.45 6.0 0.62 5 Y 
 2.0 0.91 12.0 1.23 5 Y 
 2.0 0.91 12.0 1.23 7 Y 
Exp 5. b. Fluoride route dense-gel synthesis with autoclave recipe in 8 ml plastic bottle 
100 °C oven 
Molar Composition 1.0 SiO2: 0.08 ETBA: 20.0 H2O: 1.62 NH4F  

Amount Used 1.0 0.46 6.0 1.0 5 N (D) 
 1.0 0.46 6.0 1.0 25 Y 

 

An example hydrothermal fluoride route synthesis (Exp 5. a. ) of MFI using N-

ethyltributylammonium iodide as an SDA was prepared as follows:  0.46 g of ETBA and 1.0 g 

ammonium fluoride were added to a 23 ml Teflon lined stainless steel autoclave liner. 6.0 ml of 

distilled water and 2.0 g of silicon dioxide were added to the mixture and stirred thoroughly to 

form a thick gel before being the autoclave was sealed and placed in a 180 °C oven for 5 days.  

Work-up: After removing the autoclave from the oven and allowing the content to cool to room 

temperature and pressure. The product was washed (30 ml distilled water) and centrifuged 

(3500 rpm, 15 minutes) three times yielding a white solid. The sample was later dried (60 °C, 

overnight) and confirmed as zeolite MFI by comparison of the XRD diffraction pattern obtained 

(Figure 3.7), to that published by International Zeolite Association.14  
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Figure 3.7 - XRD powder pattern of ETBA/MFI on a Bruker Advance diffractometer with Cu Kα source 

 

3.2.4. Synthesis of MFI using P(5)TBA+I- - N-pentyltributylammonium Iodide 

SDA Synthesis: The SDA N-

pentyltributylammonium iodide (Figure 

3.8) was synthesised by refluxing 

tributylamine (6.22 g, 33.58 mmol) and 1-

iodopentane (6.65 g, 33.58 mmol) in 100 

ml methanol for 5 days. The methanol 

was removed under reduced pressure and 

the product was recrystallised with a 

mixture of ethyl acetate and a minimum 

amount of ethanol to remove any soluble impurities. White crystals were obtained (5.62 g, 43.66 

%) and  characterised as follows: 1H NMR (300 MHz, CDCl3, ppm) δ 3.29 (6H, m, N-CH2-CH2)3, 3.25 

(2H, m, N-CH2-CH2), 1.59 (6H, m, N-CH2-CH2)3, 1.58 (2H, w, N-CH2-CH2), 1.36 (6H, m, CH2-CH2-CH3)3, 

1.30 (2H, m, CH2-CH2-CH3), 1.27 (2H, w, CH2-CH2-CH3), 0.90 (6H, S, CH2-CH3)3, 0.81 (3H, m, CH2-

CH3); 
13C NMR (300MHz, CDCl3, ppm) δ 59.23 (N-CH2), 59.07 (N-CH2)3, 28.31 (N-CH2-CH2), 24.25 (N-

CH2-CH2)3, 22.20 (CH2-CH2-CH3), 22.05 (CH2-CH2-CH3), 19.73 (CH2-CH2-CH3)3, 13.80 (CH2-CH3), 13.71 

(CH2-CH3)3.  

5 15 25 35 45 55 
2θ ° 

Figure 3.8 - Structure of P5TBA 
(pentyltributylammonium) cation SDA 
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Zeolite Synthesis: Zeolite MFI was synthesised using N-pentyltributylammonium iodide in a 

variety of different synthetic methods and reaction vessels. Table 3.8 and Table 3.9 contain the 

details of all reaction methods attempted using the hydroxide and fluoride route respectively.  

Table 3.8 - Hydroxide route table of conditions for MFI zeolites synthesised using P(5)TBA 

Synthetic Method Ludox 
30%  
(g) 

P(5)TBA 
SDA 
(g) 

H2O 
(ml) 

NaOH 
(ml) 

Synthesis 
Time 

(days) 

MFI 
Successful 

Exp 6.a. Hydroxide route dense-gel method for crystallisation curves in 8 ml polypropylene 
bottle  
100 °C oven 
Molar Composition 1.0 SiO2: 0.14 P(5)TBA: 18.20 H2O: 0.13 NaOH 

Amount Used 3.0 0.77 1.0 2.0 7 Y 
 

An example hydroxide route dense-gel synthesis (Exp 6.a. ) of MFI using n-

pentyltributylammonium iodide as was prepared as follows: 0.77 g P(5)TBAI was added to an 8 

ml narrow-mouth polypropylene bottle with 1.0 ml of distilled water. 2.0 ml of 1M sodium 

hydroxide and 3.0 g of 30 % Ludox LS was added to the bottle of reactants and the bottle mouth 

wrapped with PTFE tape before the lid was sealed as tightly as possible. The bottle was placed on 

a vortex mixer to mix the reagents before being placed in a 100 °C oven for the specified time.  
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Table 3.9 - Fluoride route table of conditions for MFI zeolites synthesised using P(5)TBA 

 

Work-up: After removing the polypropylene bottle from the oven and allowing the content to cool 

to room temperature and pressure, the product was washed (30 ml distilled water) and 

centrifuged (3500 rpm, 15 minutes) three times yielding a white solid. The sample was later dried 

(60 °C, overnight) and confirmed as zeolite MFI by comparison of the XRD diffraction pattern 

obtained (Figure 3.9), to that published by International Zeolite Association.14  

 
Figure 3.9 - XRD powder pattern of P(5)TBA/MFI on a Bruker Advance diffractometer with Cu Kα source 

 

5 15 25 35 45 55 2θ  ° 

Synthetic Method SiO2 
(g) 

P(5)TBA 
SDA 
(g) 

H2O 
(ml) 

NH4F 
(g) 

Synthesis 
Time 

(days) 

MFI 
Successful 

Exp 7. a. Hydroxide route hydrothermal synthesis in an 46  ml autoclave  
100 °C oven 

Molar 
Composition 

1.0 SiO2: 0.08 P(5)TBA: 20.02 H2O: 1.0 NH4F 

Amount Used 1.0 0.51 6.0 0.62 7 N 
 2.0 1.02 12.0 1.23 7 Y 
Exp 7. b. Fluoride route hydrothermal synthesis in 23 ml autoclave 
 180 °C oven  

Molar 
Composition 

1.0 SiO2: 0.08 P(5)TBA: 20.0 H2O: 1.0 NH4F 

Amount Used 1.0 0.46 6.0 1.0 5 N (D) 

Synthetic Method SiO2 
(g) 

P(5)TBA 
SDA 
(g) 

H2O 
(ml) 

(NH4)HF

2 

(g) 

Synthesis 
Time 

(days) 

MFI 
Successful 

Exp 7. c. Fluoride route hydrothermal synthesis in 23 ml autoclave  
100 ° oven 

Molar 
Composition 

1.0 SiO2: 0.08 P(5)TBA: 20.0 H2O: 1.00 NH4HF 

Amount Used 1.0 0.51 6.0 0.95 21 N 
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3.2.5. Synthesis of MFI using H(6)TBAI - N-hexyltribuylammonium Iodide  

SDA Synthesis: The SDA n-

hexyltributylammonium iodide (Figure 

3.10) was synthesised by refluxing 

tributylamine (12 g, 647.4 mmol) and 

1-iodohexane (13.73 g, 647.4 mmol) 

in 100 ml methanol for 5 days.  

After reflux, the methanol was 

removed under reduced pressure 

and the product was recrystallised using a mixture of ethyl acetate and a minimum amount of 

ethanol to remove any soluble impurities. White crystals were obtained (14.34 g, 57.18 %) and 

characterised as follows: 1H NMR (300 MHz, CDCl3, ppm) δ 3.56 (6H, t, N-CH2-CH2-CH2-CH3), 3.32 

(2H, t, N-CH2-CH2-CH2-CH2), 1.72 (2H, m(5), N-CH2-CH2-CH2-CH2), 1.67 (6H, m(5), N-CH2-CH2-CH2-

CH3), 1.46 (6H, m(6), N-CH2-CH2-CH2-CH3), 1.36 (2H, m(5), N-CH2-CH2-CH2-CH2), 1.33 (2H, m(5), N-

CH2-CH2-CH2-CH2), 1.31 (2H, m(6), CH2-CH2-CH2-CH2-CH3), 1.00 (9H, t, N-CH2-CH2-CH2-CH3), 0.88 

(3H, t, CH2-CH2-CH2-CH2-CH3); 
13C NMR (300MHz, CDCl3, ppm) δ 59.35 (N-CH2-CH2-CH2-CH2), 59.20 

(N-CH2-CH2-CH2-CH3), 32.21 (CH2-CH2-CH2-CH2-CH3), 26.07 (N-CH2-CH2-CH2-CH2), 24.32 (N-CH2-

CH2-CH2-CH3), 22.44 (N-CH2-CH2-CH2-CH2), 22.37 (CH2-CH2-CH2-CH2-CH3), 19.80 (N-CH2-CH2-CH2-

CH3), 14.00 (CH2-CH2-CH2-CH2-CH3), 13.68 (N-CH2-CH2-CH2-CH3).  

Zeolite Synthesis: Zeolite MFI was synthesised using n-hexyltribuylammonium iodide in a variety 

of different synthetic methods and reaction vessels. Table 3.10 and Table 3.11 contain the details 

of all reactions attempted using the hydroxide and fluoride route respectively.  

  

Figure 3.10 - Structure of H6TBA (n-hexyltributylammonium) cation 
SDA 
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Table 3.10 - Hydroxide route table of conditions for the synthesis of MFI synthesised using H(6)TBA 

Synthetic Method Ludox 
30%  
(g) 

H(6)TBA 
SDA 
(g) 

H2O 
(ml) 

NaOH 
(ml) 

Synthesis 
Time 

(days) 

MFI 
Successful 

Exp. 8.a. Hydroxide route dense-gel crystallisation curve synthesis in 8 ml polypropylene 
bottles  
 100 °C oven 
Molar Composition 1.0 SiO2: 0.16 H(6)TBA: 0.13 NaOH: 18.60 H2O 

Amount Used 3.0 0.95 1.0 2.0 Variable Y 
 3.0 0.79 1.0 2.0 Variable N 
Exp.8.b. Hydroxide route dense-gel synthesis in 8 ml polypropylene bottle 
100 °C oven 
Molar Composition 1.0 SiO2: 0.16 H(6)TBA: 18.60 H2O: 0.13 NaOH 

Amount Used 3.0 0.95 1.0 2.0 10 N 
+2 ml 3.0 0.95 3.0 2.0 10 N 

Exp.8.c. Hydroxide route hydrothermal synthesis in 46 ml autoclave 
 100 °C oven 
Molar Composition 1.0 SiO2: 0.14 H(6)TBA: 18.60 H2O: 0.13 NaOH 

Amount Used 3.0 0.82 1.0 2.0 14 N 
Exp.8.d. Hydroxide route hydrothermal synthesis in 46 ml autoclave 
180 °C oven 
Molar Composition 1.0 SiO2: 0.14 H(6)TBA: 18.60 H2O: 0.13 NaOH 

Amount Used 3.0 0.82 1.0 2.0 7 Y 
 

An example hydroxide route synthesis for crystallisation curves (Exp.8.b. ) of MFI using n-

hexyltributylammonium iodide as was prepared as follows:  0.95 g H(6)TBAI was added to an 8 

ml narrow-mouth polypropylene bottle with 1.0 ml of distilled water. 2.0 ml of 1M sodium 

hydroxide and 3.0 g of 30 % Ludox LS were added to the bottle of reactants and the bottle mouth 

wrapped with PTFE tape before the lid was sealed as tightly as possible. The bottle was mixed on 

a vortex mixer before the bottle placed in a 100 C oven for the specified time.  
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Table 3.11 - Fluoride route table of conditions for the synthesis of MFI synthesised using H(6)TBA 

Synthetic Method Ludox 
40%  
(g) 

H(6)TBA 
SDA 
(g) 

H2O 
(ml) 

NH4F 
(ml) 

Synthesis 
Time 

(days) 

MFI 
Successful 

Exp.9.a. Fluoride route dense-gel synthesis in 8 ml polypropylene bottles 
100 °C oven 

Molar Composition 1.0 SiO2: 0.15 H(6)TBA: 8.34 H2O: 2.03 NH4F  
Amount Used 3.0 1.16 1.2 1.5 10 N 

Molar Composition 1.0 SiO2: 0.08 H(6)TBA: 8.34 H2O: 2.00 NH4F 
Amount Used 3.0 0.64 1.2 1.5 10 Peaks 

forming 

Synthetic Method SiO2 
(g) 

H(6)TBA 
SDA 
(g) 

H2O 
(ml) 

NH4F 

(g) 
Synthesis 

Time 
(days) 

MFI 
Successful 

Exp.9.b. Fluoride route dense-gel synthesis in 8 ml polypropylene bottle 
100 ° oven 
Molar Composition 1.0 SiO2: 0.08 H(6)TBA: 20.0 H2O: 1.0 NH4F 

Amount Used 1.0 0.53 6.0 0.62 15 Y 
 1.0 0.95 6.0 0.62 10 N 

Synthetic Method SiO2 
(g) 

H(6)TBA 
SDA 
(g) 

H2O 
(ml) 

(NH4)HF2 

(g) 
Synthesis 

Time 
(days) 

MFI 
Successful 

Exp.9.c. Fluoride route hydrothermal synthesis in 23 ml autoclave 
100 °C oven 
Molar Composition 1.0 SiO2: 0.08 H(6)TBA: 20.0 H2O: 1.00 (NH4)HF2 

Amount Used 1.0 0.52 6.0 0.95 21 N 
 1.0 0.80 6.0 0.95 35 N 

Exp.9.d. Fluoride route hydrothermal autoclave synthesis in 46 ml autoclave 
180 °C oven 
Molar Composition 1.0 SiO2: 0.08 H(6)TBA: 20.0 H2O: 1.0 (NH4)HF2 

Amount Used 1.0 0.53 6.0 0.62 6 N 
 

Work-up: After removing the polypropylene bottle from the oven and allowing the content to cool 

to room temperature and pressure, the product was washed (30 ml distilled water) and 

centrifuged (3500 rpm, 15 minutes) three times yielding a white solid. The sample was later dried 

(60 °C, overnight) and confirmed as zeolite MFI by comparison of the XRD diffraction pattern 

obtained (Figure 3.11), to that published by IZA International Zeolite Association.14  
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Figure 3.11 - XRD powder pattern of H(6)TBA/MFI on a Bruker Advance diffractometer with Cu Kα source 

 

3.2.6. Synthesis of MFI using MTPA+I- - N-methyltripropylammonium Iodide 

SDA Synthesis: The SDA n-methyl-tripropylammonium 

iodide (Figure 3.12) was synthesised by refluxing an excess 

of 1-iodomethane (18.24 g, 128.5 mmol) with 

tripropylamine (10.54 g, 73.58 mmol) in 100 ml methanol 

for 24 hours. After reflux, the methanol was removed under 

reduced pressure and the product was recrystallised with a 

mixture of ethyl acetate and a minimum amount of ethanol to remove any soluble impurities. 

White crystals were obtained (18.86 g, 89.86 %) and characterised as follows: 1H NMR (300 MHz, 

CDCl3, ppm) δ 3.35 (6H, t, N-CH2-CH2), 3.20 (3H, s, N-CH3), 1.72 (6H, m, CH2-CH2-CH3), 0.97 (9H, t, 

CH2-CH3); 
13C NMR (300MHz, CDCl3, ppm) δ 63.61 (N-CH2-CH2), 49.33 (N-CH3), 16.16 (CH2-CH2-

CH3), 10.80 (CH2-CH3).  

Zeolite Synthesis: Zeolite MFI was synthesised using n-methyltripropylammonium iodide in a 

variety of different synthetic methods and reaction vessels. Table 3.12 and Table 3.13 contain 

the details of all reactions attempted using the hydroxide and fluoride route respectively.  

  

5 15 25 35 45 55 
2θ  ° 

Figure 3.12 - Structure of MTP3A 
(methyltripropylammonium) cation SDA 



References start on page 113  71 | P a g e  

Table 3.12 - Hydroxide route table of conditions for the synthesis of MFI using MTP(3) 

Synthetic Method Ludox 
30%  
(g) 

MTP(3) 
SDA 
(g) 

H2O 
(ml) 

NaOH 
(ml) 

Synthesis 
Time 

(days) 

MFI 
Successful 

Exp 10. a. Hydroxide route dense-gel crystallisation curves synthesis in 8 ml polypropylene 
bottles  
100 °C oven 
Molar Composition 1.0 SiO2: 0.13 MTP(3): 18.20 H2O: 0.13 NaOH 

Amount Used 3.0 0.56 1.0 2.0 Variable Y 
Exp 10. b. Hydroxide route hydrothermal synthesis in 46 ml autoclave 
180 °C oven 
Molar Composition 1.0 SiO2: 0.13 MTP(3): 18.20 H2O: 0.13 NaOH 

Amount Used 3.0 0.56 1.0 2.0 9 Y 
 

An example fluoride route synthesis of MFI using n-methyltripropylammonium iodide as an SDA 

was prepared as follows:  0.36 g of MTP(3)A and 0.62 g ammonium fluoride were added to a 8 ml 

narrow-mouth polypropylene bottle. 6.0 ml of distilled water and 1.0 g of silicon dioxide was 

added to the mixture and stirred thoroughly to form a thick gel. The bottle was then mixed on a 

vortex mixer to ensure the reagents were homogenously mixed before being placed in a 100 °C 

oven for 15 days.  

Table 3.13 - Fluoride route table of conditions for the synthesis of MFI using MTP(3)A 

Synthetic Method Ludox 
40% 
(g) 

MTP(3)A 
SDA 
(g) 

H2O 
(ml) 

NH4F 
(g) 

Synthesis 
Time 

(days) 

MFI 
Successful 

Exp 11. a. Fluoride route dense-gel crystallisation curve synthesis in 8 ml polypropylene bottles 
100 °C oven  
Molar Composition 1.0 SiO2: 0.09 MTP(3): 8.34 H2O: 0.68 NH4F 
Amount Used 3.0 0.56 1.2 1.5 Variable Y 
 3.0 0.82  1.2 1.5 Variable Y 

Synthetic Method SiO2 
(g) 

MTP(3)A 
SDA 
(g) 

H2O 
(ml) 

NH4F 
(g) 

Synthesis 
Time 

(days) 

MFI 
Successful 

Exp 11. a. Fluoride route dense-gel standard synthesis in 8 ml polypropylene bottles 
100 °C oven  
Molar Composition 1.0 SiO2: 0.08 MTP(3)A: 20.0 H2O: 1.0 NH4F 

Amount Used 1.0 0.36 6.0 0.62 15 Y 
 

Work-up: After removing the plastic bottle from the oven and allowing the content to cool to 

room temperature, the product was washed (30 ml distilled water) and centrifuged (3500 rpm, 15 

minutes) three times yielding a white solid. The sample was later dried (60 °C, overnight) and 
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confirmed as zeolite MFI by comparison of the XRD diffraction pattern obtained (Figure 3.13) to 

that published by International Zeolite Association.14 

 
Figure 3.13 - XRD powder pattern of MTP3A/MFI on a Bruker Advance diffractometer with Cu Kα source 

 

3.2.7. Synthesis of MFI using ETPA+I- - N-ethyltripropylammonium Iodide  

SDA Synthesis:  The SDA N-ethyl-tripropylammonium 

iodide (Figure 3.14) was synthesised by refluxing 1-

iodoethane (8.20 g, 52.56 mmol) and tripropylamine (7.53 

g, 52.56 mmol) in 100 ml methanol for 48 hours. After 

reflux, the methanol was removed under reduced pressure 

and the product was recrystallised with a mixture of ethyl 

acetate and a minimum amount of ethanol to remove any 

soluble impurities. White crystals were obtained (9.29 g, 57.51 %) and characterised as follows: 

1H NMR (300 MHz, CDCl3, ppm) δ 3.42 (2H, m, N-CH2-CH3), 3.21 (6H, m, N-CH2-CH2), 1.66 (6H, m, 

CH2-CH2-CH3), 1.27 (3H, m, CH2-CH3), 0.94 (9H, S, CH2-CH3); 
13C NMR (300MHz, CDCl3, ppm) δ 

60.19 (N-CH2-CH2), 54.91 (N-CH2-CH3), 15.95 (CH2-CH2-CH3), 10.91 (CH2-CH3), 8.46 (N-CH2-CH3).  

Zeolite Synthesis; Zeolite MFI was synthesised using N-ethyltripropylammonium iodide in a 

variety of different synthetic methods and reaction vessels. Table 3.14 and Table 3.15 contain 

5 15 25 35 45 55 
2θ ° 

Figure 3.14 - Structure of ETP3A 
(ethyltripropylammonium) cation SDA 
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the details of all reactions attempted using the hydroxide and fluoride route, respectively.   

Table 3.14 - Hydroxide Route table of conditions for the synthesis of MFI using ETP(3)A 

Synthetic Method Ludox 
30%  
(g) 

ETP(3) 
SDA 
(g) 

H2O 
(ml) 

NaOH 
(ml) 

Synthesis 
Time 

(days) 

MFI 
Successful 

Exp.12.a. Hydroxide route dense-gel crystallisation curve synthesis in 8 ml polypropylene bottle 
100 °C oven 
Molar Composition 1.0 SiO2: 0.13 ETP(3): 18.20 H2O: 0.13 NaOH 
Amount Used 3.0 0.60 1.0 2.0 Variable Y 
Exp.12.b. Hydroxide route hydrothermal synthesis in 46 ml autoclave  
240 °C oven 
Molar Composition 1.0 SiO2: 0.13 ETP(3): 18.20 H2O: 0.13 NaOH 
Amount Used 3.0 0.60 1.0 2.0 8 N 
 

An example dense-gel hydroxide route synthesis (Exp.12.a.) of MFI using N-

ethyltripropylammonium iodide as an SDA was prepared as follows:  0.60 g of ETP(3)AI and 2.0 

ml (1M) sodium hydroxide were added to an 8 ml narrow-mouth polypropylene bottle. 1.0 ml of 

distilled water and 3.0 g of 30 % Ludox LS was added to the mixture and stirred thoroughly to 

form a thick homogenous gel. The bottle was sealed and placed in a 100 °C oven for the specified 

time.  

Table 3.15 - Fluoride route table of conditions for the synthesis of MFI using ETP(3)A 

Synthetic Method Ludox 
30%  
(g) 

ETP(3) 
SDA 
(g) 

H2O 
(ml) 

NH4F 
(g) 

Synthesis 
Time 

(days) 

MFI 
Successful 

Exp.13 a. Fluoride dense-gel crystallisation curves synthesis in 8ml polypropylene bottles 
100 °C oven 
Molar Composition 1.0 SiO2: 0.09 ETP(3): 8.34 H2O: 0.68 NH4F 

Amount Used 3.0 0.56 1.2 1.5 Variable Y 

Synthetic Method SiO2 

(g) 
ETP(3) 

SDA 
(g) 

H2O 
(ml) 

NH4F 
(g) 

Synthesis 
Time 

(days) 

MFI 
Successful 

Exp.13. b. Fluoride route hydrothermal synthesis in 23 ml autoclave 
100 °C oven 
Molar Composition 1.0 SiO2: 0.08 ETP(3)A: 20.0 H2O: 1.54 NH4F 

Amount Used 1.0 0.65 6.0 0.62 37 N 
 

Work-up: After removing the polypropylene bottle from the oven and allowing the content to cool 

to room temperature and pressure, the product was washed (30 ml distilled water) and 

centrifuged (3500 rpm, 15 minutes) three times yielding a white solid. The sample was later dried 
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(60 °C, overnight) and confirmed as zeolite MFI by comparison of the XRD diffraction pattern 

obtained (Figure 3.15), to that published by International Zeolite Association.14 

 
Figure 3.15 - XRD powder pattern of ETP3A/MFI on a Bruker Advance diffractometer with Cu Kα source 

 

3.2.8. Synthesis of MFI using BTP(3)A+I- – N-butyltripropylammonium Iodide 

SDA Synthesis: The SDA n-

butyltripropylammonium iodide (Figure 3.16) was 

synthesised by refluxing iodobutane (9.69 g, 52.56 

mmol) and tripropylamine (7.53 g, 52.56 mmol) in 

50 ml methanol for 4 days. After reflux, the 

methanol was removed under reduced pressure 

and the product was recrystallised using ethyl acetate and a minimum amount of ethanol to 

remove any soluble impurities. White crystals were obtained (11.59 g, 67.45 %) and 

characterised as follows: 1H NMR (300 MHz, CDCl3, ppm) δ 3.36 (2H, t, CH2-CH2-CH2), 3.31 (6H, t, 

N-CH2-CH2-CH3), 1.75 (6H, m(6), N-CH2-CH2-CH3), 1.66 (2H, m(5), N-CH2-CH2-CH2), 1.43 (2H, m(6), 

CH2-CH2-CH2-CH3), 1.07 (6H, t, N-CH2-CH2-CH3), 0.97 (2H, t, CH2-CH2-CH2-CH3). 
13C NMR (300MHz, 

CDCl3, ppm) δ 60.86 (N-CH2-CH2-CH2), 59.27 (N-CH2-CH2-CH3), 24.30 (N-CH2-CH2-CH2), 19.78 (N-

CH2-CH2-CH2), 16.13 (N-CH2-CH2-CH3), 13.77 (CH2-CH2-CH2-CH3), 10.97 (N-CH2-CH2-CH3).  

5 15 25 35 45 55 
2θ ° 

Figure 3.16 - Structure of BTP3A (N-
butyltripropylammonium) cation SDA 
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Zeolite Synthesis: Zeolite MFI was synthesised using n-butyltripropylammonium iodide in a variety 

of different synthetic methods and reaction vessels. Table 3.16 and Table 3.17 contain the details 

of all reactions attempted using the hydroxide and fluoride route respectively.  

Table 3.16 - Hydroxide route table of conditions for MFI synthesised using BTP(3)A 

Synthetic Method Ludox 
30%  
(g) 

BTP(3)A 
SDA 
(g) 

H2O 
(ml) 

NaOH 
(ml) 

Synthesis 
Time 

(days) 

MFI 
Successful 

Exp.14.a. Hydroxide route dense-gel method for crystallisation curves in 8 ml polypropylene 
bottle 
100 °C oven 
Molar Composition 1.0 SiO2: 0.06 BTP(3)A: 11.16 H2O: 0.06 NaOH 
Amount Used 3.0 0.64 1.0 2.0 Variable Y 
Molar Composition 1.0 SiO2: 0.06 BTP(3)A: 18.60 H2O: 0.06 NaOH 

Amount Used 3.0 0.64 3.0 2.0 Variable Y 

 

An example fluoride route crystallisation curve synthesis of MFI using n-butyltripropylammonium 

iodide as an SDA was prepared as follows:  0.60 g of BTP(3)AI and 1.50 g ammonium fluoride 

were added to a 8 ml narrow-mouth polypropylene bottle. 6 ml of distilled water and 3.0 g of 30 

% Ludox LS were added to the mixture and stirred thoroughly to form a thick gel. The bottle was 

mixed on the vortex mixer for 5 seconds before being placed in a 100 °C oven for the specified 

synthesis time.    
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Table 3.17 - Fluoride route table of conditions for MFI synthesised using BTP(3) 

Synthetic Method Ludox 
40%  
(g) 

BTP(3)A 
SDA 
(g) 

H2O 
(ml) 

NH4F 
(g) 

Synthesis 
Time 

(days) 

MFI 
Successful 

Exp 15.a. Fluoride route hydrothermal crystallisation curves synthesis in 8 ml polypropylene 
bottles  
100 °C oven 
Molar Composition 1.0 SiO2: 0.09 BTP(3)A: 8.34 H2O: 0.68 NH4F 

Amount Used 3.0 0.60 1.2 1.5 Variable Y 
Molar Composition 1.0 SiO2: 0.12 BTP(3)A: 17.22 H2O: 2.7 NH4F 

Amount Used 2.25 0.60 3.3 1.5 Variable Y 

Synthetic Method SiO2 
(g) 

BTP(3)A 
SDA 
(g) 

H2O 
(ml) 

NH4F 
(g) 

Synthesis 
Time 

(days) 

MFI 
Successful 

Exp.15. b. Fluoride route hydrothermal synthesis in 46 ml autoclave 
180 °C oven  
Molar Composition 1.0 SiO2: 0.08 BTP(3)A: 20.0 H2O: 1.0 NH4F 

Amount Used 2.0 0.87 12.0 1.23 6 Peaks 
forming 

 SDA dissolved first 2.0 0.87 12.0 0.68 6 Y 
Exp.15.c. Fluoride route hydrothermal synthesis in 8 ml polypropylene bottles 
100 °C oven  
Molar Composition 1.0 SiO2: 0.08 BTP(3)A: 20.0 H2O: 1.0 NH4F 

Amount Used 1.0 0.43 6.0 0.62 15 Y 

 

Work-up: After removing the plastic bottle from the oven and allowing the content to cool to 

room temperature and pressure, the product was washed (30 ml distilled water) and centrifuged 

(3500 rpm, 15 minutes) three times yielding a white solid. The sample was later dried (60 °C, 

overnight) and confirmed as zeolite MFI by comparison of the XRD diffraction pattern obtained 

(Figure 3.17) to that published by International Zeolite Association.14  

 
Figure 3.17 - XRD powder pattern of BTP(3)A/MFI on a Bruker Advance diffractometer with Cu Kα source 

5 15 25 35 45 55 
2θ ° 
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3.2.9. Synthesis of MFI using P5TP3A+I- - N-pentyltripropylammonium Iodide 

SDA Synthesis: The SDA n-pentyl-

tripropylammonium iodide (Figure 3.18) was 

synthesised by refluxing iodopentane (9.10 g, 

45.98 mmol) and tripropylamine (6.58 g, 45.98 

mmol) in 100 ml methanol for 4 days. After 

reflux, the methanol was removed under 

reduced pressure and the product was recrystallised with a mixture of ethyl acetate and a 

minimum amount of ethanol to remove any soluble impurities. White crystals (3.46 g, 21.77 %) 

were obtained and characterised as follows: 1H NMR (300 MHz, CDCl3, ppm) δ 3.28 (6H, t, N-CH2-

CH2-CH3), 3.25 (2H, t, N-CH2-CH2-CH2), 1.68 (6H, m(6), N-CH2-CH2-CH3), 1.62 (2H, m(5), N-CH2-CH2-

CH3), 1.30 (2H, m(5), N-CH2-CH2-CH2), 1.28 (2H, m(6), CH2-CH2-CH2-CH3), 0.96 (9H, t, N-CH2-CH2-

CH3), 0.81 (3H, t, CH2-CH2-CH2-CH3).  

13C NMR (300MHz, CDCl3, ppm) δ 60.08 (N-CH2-CH2-CH3), 59.46 (N-CH2-CH2-CH2), 22.29 (N-CH2-

CH2-CH2), 22.10 (N-CH2-CH2-CH2), 16.10 (CH2-CH2-CH2-CH3), 13.90 (N-CH2-CH2-CH3), 11.28 (CH2-

CH2-CH2-CH3), 10.95 (N-CH2-CH2-CH3).  

Zeolite Synthesis: Zeolite MFI was synthesised using n-pentyltripropylammonium iodide in a 

variety of different synthetic methods and reaction vessels. Table 3.18 and Table 3.19 contain 

the details of all reactions attempted using the hydroxide and fluoride route, respectively.  

Table 3.18 - Hydroxide route table of conditions for the synthesis of MFI using P(5)TP(3) 

Synthetic Method Ludox 
30%  
(g) 

P(5)TP(3)A 
SDA 
(g) 

H2O 
(ml) 

NaOH 
(ml) 

Synthesis 
Time 

(days) 

MFI 
Successful 

Exp 16. a. Hydroxide route dense-gel synthesis in 8 ml polypropylene bottle 
100 °C oven 
Molar Composition 1.0 SiO2; 0.16 P(5)P(3)A: 26.0 H2O: 0.13 NaOH 

Amount Used 3.0 0.81 3.0 2.0 12 Y 
Exp 16. b. Hydroxide route dense-gel crystallisation curves synthesis in 8 ml polypropylene bottle 
100 °C oven 
Molar Composition 1.0 SiO2: 0.11 P(5)TP(3)A: 18.60 H2O: 0.13 NaOH 

Amount Used 3.0 0.55 1.0 2.0 Variable Y 

Figure 3.18 - Structure of P5TP3A 
(Pentyltripropylammonium) cation SDA 
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An example fluoride route dense-gel synthesis (Exp.17b.) of MFI using n-

pentyltripropylammonium iodide as an SDA was prepared as follows:  0.47 g of P(5)TP(3)AI and 

0.62 g ammonium fluoride were added to a 23 ml Teflon lined stainless steel autoclave liner. 6.0 

ml of distilled water and 1.0 g of silicon dioxide were added to the mixture and stirred 

thoroughly to form a thick gel before the autoclave was sealed and placed in a 100 °C oven for 25 

days.  

Table 3.19 - Fluoride route table of conditions for the synthesis of MFI using P(5)TP(3) 

Synthetic Method Ludox 
40%  
(g) 

P(5)TP(3)A 
SDA 
(g) 

H2O 
(ml) 

NH4F 
(g) 

Synthesis 
Time 

(days) 

MFI 
Successful 

Exp.17.a. Fluoride route dense-gel synthesis in 8 ml polypropylene bottle 
100 °C oven 
Molar Composition 1.0 SiO2: 0.08 P(5)TP(3)A: 8.34 H2O: 2.0 NH4F 

Amount Used 3.0 0.55 1.2 1.5 7 Y 

Synthetic Method SiO2 
(g) 

P(5)TP(3)A 
SDA 
(g) 

H2O 
(ml) 

NH4F 
(g) 

Synthesis 
Time 

(days) 

MFI 
Successful 

Exp.17.b. Fluoride route hydrothermal synthesis in 23 ml autoclave 
100 °C oven 
Molar Composition 1.0 SiO2: 0.08 P(5)TP(3)A: 20.0 H2O: 1.0 NH4F 

Amount Used 1.0 0.47 6.0 0.62 25 Peaks 
forming 

 1.0 0.81 4.0 0.62 12 N (D) 

 

Work-up: After removing the autoclave from the oven and allowing the content to cool to room 

temperature and pressure, the product was washed (30 ml distilled water) and centrifuged (3500 

rpm, 15 minutes) three times yielding a white solid. The sample was later dried (60 °C, overnight) 

and confirmed as zeolite MFI by comparison of the XRD diffraction pattern obtained (Figure 3.19), 

to that published by International Zeolite Association.14  



References start on page 113  79 | P a g e  

 
Figure 3.19 - XRD powder pattern of P(5)TP(3)A/MFI on a Bruker Advance diffractometer with Cu Kα source 

 

3.2.10. Synthesis of MFI using H(6)TP(3)A – N-hexyltripropylammonium Iodide 

SDA Synthesis: The SDA n-hexyl-

tripropylammonium iodide (Figure 

3.20) was synthesised by refluxing 

tripropylamine (7.19 g, 33.88 mmol) 

and 1-iodohexane (4.85 g, 33.88 

mmol) in 100ml methanol for 6 days. 

The methanol was removed under 

reduced pressure and the product was recrystallised with a mixture of ethyl acetate and a 

minimum amount of ethanol to remove any soluble impurities. White crystals (1.27 g, 10.54 %) 

were obtained and characterised as follows: 1H NMR (300 MHz, CDCl3, ppm) δ 3.37 (2H, t, N-CH2-

CH2-CH2), 3.33 (6H, t, N-CH2-CH2-CH3), 1.79 (6H, m(6), N-CH2-CH2-CH3), 1.72 (2H, m(5), N-CH2-CH2-

CH2), 1.40 (2H, t, N-CH2-CH2-CH2), 1.36 (2H, t, CH2-CH2-CH2-CH2), 1.31 (2H, t, CH2-CH2-CH2-CH3), 

1.07 (9H, t, N-CH2-CH2-CH3), 0.90 (3H, t, CH2-CH2-CH2-CH3). 

13C NMR (300MHz, CDCl3, ppm) δ 60.94 (N-CH2-CH2-CH3), 59.52 (N-CH2-CH2-CH2), 31.25 (CH2-CH2-

CH2-CH3), 26.10 (N-CH2-CH2-CH2), 22.45 (N-CH2-CH2-CH2), 22.41 (CH2-CH2-CH2-CH3), 16.15 (N-CH2-

CH2-CH3), 13.92 (N-CH2-CH2-CH3), 10.97 (CH2-CH2-CH2-CH3).  

5 15 25 35 45 55 
2θ ° 

Figure 3.20 - Structure of H6TP3A (Hexyltripropylammonium) 
cation SDA 
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Zeolite Synthesis: Zeolite MFI was synthesised using n-hexyltripropylammonium iodide in a 

variety of different synthetic methods and reaction vessels. Table 3.20 and Table 3.21 contain 

the details of all reactions attempted using the hydroxide and fluoride route respectively.  

Table 3.20 - Hydroxide route table of conditions for the synthesis of MFI using H(6)TP(3)A 

Synthetic Method Ludox 
30%  
(g) 

H(6)TP(3)A 
SDA 
(g) 

H2O 
(ml) 

NaOH 
(ml) 

Synthesis 
Time 

(days) 

MFI 
Successful 

Exp.18.a. Hydroxide route dense-gel synthesis in 8 ml polypropylene bottle 
100 °C oven 
Molar Composition 1.0 SiO2: 0.13 H(6)TP(3)A: 26.0 H2O: 0.13 NaOH 

Amount Used  3.0 0.71 3.0 2.0 9 Y 
 3.0 0.71 1.0 2.0 9 Y 
 

An example hydroxide route synthesis (Exp.18.a.) of MFI using n-hexyltripropylammonium iodide 

as an SDA was prepared as follows:  0.71 g of H(6)TP(3)AI and 2.0 ml (1 M) sodium hydroxide 

were added to a 8 ml narrow-mouth polypropylene bottle. 1.0 ml of distilled water and 3.0 g of 

30 % Ludox LS were added to the mixture and stirred thoroughly to form a thick gel. The bottle 

was then mixed on the vortex mixer for 5 seconds before being placed in a 100 °C oven for the 

specified synthesis time.   

Table 3.21 - Fluoride route table of conditions for the synthesis of MFI synthesised using H(6)TP(3)A 

Synthetic Method Ludox 
40%  
(g) 

H(6)TP(3)A 
SDA 
(g) 

H2O 
(ml) 

NH4F 
(g) 

Synthesis 
Time 

(days) 

MFI 
Successful 

Exp 19. a. Fluoride route dense-gel synthesis in 8 ml polypropylene bottle 
100 °C oven 
Molar Composition 1.0 SiO2: 0.15 H(6)TP(3)A: 8.34 H2O: 0.68 NH4F  

Amount Used 2.52 0.87 1.0 1.04 9 1/2 

Synthetic Method SiO2 

(g) 
H(6)TP(3)A 

SDA 
(g) 

H2O 
(ml) 

NH4F 
(g) 

Synthesis 
Time 

(days) 

MFI 
Successful 

Exp 19. b. Fluoride route hydrothermal synthesis in 23 ml autoclave 
100 °C oven 
Molar Composition 1.0 SiO2: 0.14 H(6)TP(3)A: 20.0 H2O: 1.0 NH4F 

Amount Used 1.0 0.85 6.0 0.62 9 N 
 

Work-up: After removing the polypropylene bottle from the oven and allowing the content to cool 

to room temperature and pressure, the product was washed (30 ml distilled water) and 

centrifuged (3500 rpm, 15 minutes) three times yielding a white solid. The sample was later dried 
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(60 °C, overnight) and confirmed as zeolite MFI by comparison of the XRD diffraction pattern 

obtained (Figure 3.21) to that published by International Zeolite Association.14 

 
Figure 3.21 - XRD powder pattern of H(6)TP(3)A/MFI on a Bruker Advance diffractometer with Cu Kα source 

 

3.2.11. Synthesis of MFI using H(7)TP3A+I- - N-heptyltripropylmmonium Iodide 

SDA Synthesis: The SDA n-

heptyltripropylammonium 

iodide (Figure 3.22) was 

synthesised by refluxing 

iodoheptane (4.85 g, 33.88 

mmol) and tripropylamine 

(7.19 g, 33.88 mmol) in 50 ml methanol for 7 days. After reflux, the methanol was removed 

under reduced pressure and the product was recrystallised with a mixture of ethyl acetate and a 

minimum amount of ethanol to remove any soluble impurities.  

  

5 15 25 35 45 55 
2θ ° 

Figure 3.22 - Structure of H(7)TP3A (Heptyltripropylammonium) cation 
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White crystals were obtained (1.27 g, 10.56 %) and characterised as follows: 1H NMR (300 MHz, 

CDCl3, ppm) δ 3.34 (6H, t, N-CH2-CH2-CH3), 3.31 (2H, t, N-CH2-CH2-CH2), 1.75 (6H, m(6), N-CH2-

CH2-CH3), 1.67 (2H, m(5), N-CH2-CH2-CH2), 1.37 (2H, m(5), N-CH2-CH2-CH2), 1.35 (2H, m(5), CH2-

CH2-CH2-CH3), 1.26 (2H, m(5), CH2-CH2-CH2-CH3), 1.24 (2H, m(6), CH2-CH2-CH2-CH3), 1.05 (9H, t, N-

CH2-CH2-CH3), 0.86 (3H, t, CH2-CH2-CH2-CH3); 
13C NMR (300MHz, CDCl3, ppm) δ 60.88 (N-CH2-CH2-

CH2), 59.47 (N-CH2-CH2-CH3), 31.58 (CH2-CH2-CH2-CH3), 28.84 (CH2-CH2-CH2-CH3), 26.40 (N-CH2-

CH2-CH2), 22.47 (N-CH2-CH2-CH2), 22.43 84 (CH2-CH2-CH2-CH3), 16.15 (N-CH2-CH2-CH3), 14.04 (CH2-

CH2-CH2-CH3), 10.99 (N-CH2-CH2-CH3).  

Zeolite Synthesis: Zeolite MFI was synthesised using n-heptyltripropylammonium iodide in a 

variety of different synthetic methods and reaction vessels. Table 3.22 and Table 3.23 contain 

the details of all reactions attempted using the hydroxide and fluoride route respectively.  

Table 3.22 - Hydroxide route table of conditions for the synthesis of MFI using H(7)TPA 

Synthetic Method Ludox 
30%  
(g) 

H(7)TP(3)A 
SDA 
(g) 

H2O 
(ml) 

NaOH 
1M 
(ml) 

Synthesis 
Time 

(days) 

MFI 
Successful 

Exp.20.a. Hydroxide route dense-gel crystallisation curve synthesis in 30 ml PFE bottle 
100 °oven 
Molar Composition 1.0 SiO2: 0.15 H(7)TP(3)A: 18.60 H2O: 0.13 NaOH 

Amount Used 3.0 0.82 1.0 2.0 Variable Y 
Exp.20.b. Hydroxide route normal synthesis 8 ml polypropylene bottle 
100 °C oven 
Molar Composition 1.0 SiO2: 0.13 H(7)TP(3)A: 18.60 H2O: 0.13 NaOH 

Amount Used 3.0 0.53 1.0 2.0  17 Y 
 3.0 0.53 1.0 2.0  20 Y 

 

An example fluoride route dense-gel synthesis (Exp.21.b. ) of MFI using n-

heptyltripropylammonium iodide as an SDA was prepared as follows:  0.66 g of H(7)TP(3)AI and 

1.50 g ammonium fluoride were added to a 8 ml narrow-mouth polypropylene bottle. 1.5 ml of 

distilled water and 3.0 g of 40 % Ludox LS were added to the mixture and stirred thoroughly to 

form a thick gel. The bottle was then mixed on the vortex mixer for 5 seconds before 

subsequently being placed in a 100 °C oven for the 14 days.    
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Table 3.23 - Fluoride route table of conditions for the synthesis of MFI using H(7)TPA 

Synthetic Method SiO2 

(g) 
H(7)TP(3)A 

SDA 
(g) 

H2O 
(ml) 

NH4F 
(g) 

Synthesis 
Time 

(days) 

MFI 
Successful 

Ex. 21.a. Fluoride route hydrothermal synthesis in 23 ml autoclave 
100 °C oven 

Molar Composition 1.0 SiO2: 0.18 H(7)TP(3)A: 20.0 H2O: 1.0 NH4F 
Amount Used 1.0 1.08 6.0 0.62 14 N 

Synthetic Method Ludox  
40% 

(g) 

H(7)TP(3)A 
SDA 
(g) 

H2O 
(ml) 

NH4F 
(g) 

Synthesis 
Time 

(days) 

MFI 
Successful 

Exp.21.b. Fluoride route dense-gel synthesis 8 ml polypropylene bottle 
100 °C oven 
Molar Composition 1.0 SiO2: 0.09 H(7)TP(3)A: 8.34 H2O: 0.68 NH4F 
Amount Used 3.0 0.66 1.2 1.5 10 N 
 3.0 0.66 1.2 1.5 14 Peaks 

forming 
 

Work-up: After removing the polypropylene bottle from the oven and allowing the content to cool 

to room temperature and pressure, the product was washed (30 ml distilled water) and 

centrifuged (3500 rpm, 15 minutes) three times yielding a white solid. The sample was later dried 

(60 °C, overnight) and confirmed as zeolite MFI by comparison of the XRD diffraction pattern 

obtained (Figure 3.23) to that published by International Zeolite Association.14  

 
Figure 3.23 - XRD powder pattern of H(7)TP(3)A/MFI on a Bruker Advance diffractometer with Cu Kα source 

 

  

5 15 25 35 45 55 
2θ ° 
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3.2.12. Synthesis of MFI using TEPAI(3) – Triethyl-N-propylammonium Iodide 

SDA Synthesis: Triethyl-N-propylammonium iodide (Figure 

3.24) was synthesised by refluxing an equimolar mixture of 1-

iodopropane (8.40 g, 49.41 mmol), triethylamine HCl (5 g, 

49.41 mmol) and sodium carbonate (5.24 g, 49.44 mmol) in 

100 ml methanol for 72 hours. After reflux, the sodium 

carbonate was removed via a cold filtration before the 

solvent was removed under reduced pressure producing a crude product. The product was then 

recrystallised using a mixture of ethyl acetate and a minimum amount of ethanol to remove any 

soluble impurities. White crystals were obtained (12.44g, 92.96%) and characterised as follows: 

1H NMR (300 MHz, CDCl3, ppm) δ 3.40 (6H, s, N-CH2-CH3), 3.20 (2H, w, N-CH2-CH2), 1.72 (2H, w, 

CH2-CH3), 1.35 (9H, s, CH2-CH3), 1.00 (3H, m, CH2-CH3); 
13C NMR (300MHz, CDCl3, ppm) δ 59.3 (N-

CH2-CH3), 53.8 (N-CH2-CH2), 15.83 (CH2-CH2-CH3), 10.98 (N-CH2-CH3), 8.33 (CH2-CH3).   

Zeolite Synthesis: Zeolite MFI was synthesised using triethyl-N-propylammonium iodide in a 

variety of different synthetic methods and reaction vessels. Table 3.24 and Table 3.25 contain 

the details of all reactions attempted using the hydroxide and fluoride route respectively.  

Table 3.24 - Hydroxide route table of conditions for the synthesis of MFI using TEP(3)A 

Synthetic Method Ludox 
30% 
(g) 

TEP(3)A 
SDA 
(g) 

H2O 
(ml) 

NaOH 
(ml) 

Synthesis 
Time 

(days) 

MFI 
Successful 

Exp 22. a. Hydroxide route dense-gel crystallisation curve synthesis in 8 ml polypropylene bottle  
100 °C oven 
Molar Composition  1.0 SiO2: 0.16 TEP(3)A: 18.70 H2O: 0.13 NaOH 

Amount Used 3.0 0.65 1 2 Variable Y 
Molar Composition 1.00 SiO2 : 0.14 TEP(3)A: 26.15 H2O: 0.13 NaOH 

Amount Used 3.00 0.56 3 2 Variable N 
Exp.22.b. Fluoride route dense-gel synthesis in 5.66 ml glass vial 
100°C oven 
Molar Composition 1.0 SiO2: 0.18 TEP(3)A: 29.82 H2O: 0.16 NaOH 

Amount Used 2 0.41 2 1.33 7 Y 

 

An example hydroxide route synthesis (Exp.22.b. ) of MFI using triethyl-N-propylammonium 

iodide as was prepared as follows:  0.41 g of TEP(3)AI and 2.0 ml of distilled water were mixed and 

Figure 3.24 - Structure of TEP3A (triethyl-
n-propylammonium) cation 
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added to 1.33 ml of 1M sodium hydroxide and 2.0 g of 30 % Ludox LS.  This homogenous gel was 

transferred to a narrow 5.66 ml glass vial and subsequently placed in a 100 °C oven for 7 days. 

Table 3.25 - Fluoride route table of conditions for the synthesis of MFI using TEP(3)A 

Synthetic Method SiO2 

(g) 
TEP(3)A 

SDA 
(g) 

H2O 
(ml) 

NH4F 
(g) 

Synthesis 
Time 

(days) 

MFI 
Successful 

Exp 23.a. Fluoride route dense-gel synthesis in 8 ml polypropylene bottle 
100 °C oven 
Molar Composition 1.0 SiO2: 0.12 TEP(3)A: 6.67 H2O: 2.43 NH4F 

Amount Used 1.0 0.51 2.0 1.5 11 N 
Molar Composition 1.0 SiO2: 0.12 TEP(3)A: 11.0 H2O: 2.43 NH4F 

Amount Used 1.0 0.51 3.3 1.5 11 N 
 

Work-up: After removing the glass vial from the oven and allowing the content to cool to room 

temperature and pressure, the product was washed (30 ml distilled water) and centrifuged (3500 

rpm, 15 minutes) three times yielding a white solid. The sample was later dried (60 °C, overnight) 

and confirmed as zeolite MFI by comparison of the XRD diffraction pattern obtained (Figure 3.25) 

to that published by International Zeolite Association.14   

 
Figure 3.25 – XRD powder pattern of TEP(3)A/MFI on a Bruker Advance diffractometer with Cu Kα source 

 

An additional peak can be observed on the above XRD spectrum at ~5.4 2θ that is not a part of 

the MFI diffraction fingerprint. This peak has been observed in multiple XRD diffraction patterns 

and as such will be discussed collectively in Chapter 3.4 Additional X-ray Diffraction Peak. 

5 15 25 35 45 55 
2θ ° 
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3.2.13. Synthesis of MFI using TEIP(3)A+I- - Triethyl-N-isopropylammonium Iodide 

SDA Synthesis:  The SDA triethyl-N-isopropylammonium iodide 

(Figure 3.26) was synthesised by refluxing triethylamine (2.18 g, 

21.52 mmol) and 2-iodopropane (10.77 g, 21.52 mmol) in 100 ml 

methanol for 3 days. After reflux, the methanol was removed 

under reduced pressure and the product was recrystallised 

using a mixture of ethyl acetate and a minimum amount of 

ethanol to remove any soluble impurities. White crystals were obtained (2.93 g, 50.23 %) and 

characterised as follows: 1H NMR (300 MHz, CDCl3, ppm) δ 3.39 (1H, m(7), N-CH-(CH3)2), 3.14 (6H, 

q, N-CH2-CH3), 1.39 (9H, t, N-CH2-CH3), 1.34 (6H, t, N-CH-(CH3)2); 
13C NMR (300MHz, CDCl3, ppm): 

δ 63.67 (N-CH-(CH3)2), 46.67 (N-CH2-CH3), 17.58 (N-CH-(CH3)2), 9.95 (N-CH-(CH3)2), 8.89 (N-CH2-

CH3).  

Zeolite Synthesis: Zeolite MFI was synthesised using triethyl-N-isopropylammonium iodide in a 

variety of different synthetic methods and reaction vessels. Table 3.26 and Table 3.27 and 

contain the details of all reactions attempted using the hydroxide and fluoride route respectively.  

Table 3.26 - Hydroxide route table of conditions for the synthesis of MFI using TEIP(3)A 

Synthetic Method Ludox 
30%  
(g) 

TEIP(3)A 
SDA 
(g) 

H2O 
(ml) 

NaOH 
1M 
(ml) 

Synthesis 
Time 

(days) 

MFI 
Successful 

Exp. 24.a. Hydroxide route dense-gel synthesis in 8 ml polypropylene bottle 
100 °C oven 
Molar Composition 1.0 SiO2: 0.13 TEIP(3)A : 25.42 H2O: 0.16 NaOH 

Amount Used 3.0 0.54 3.0 2.0 12 N 
Exp.24.b. Hydroxide route dense-gel crystallisation curves synthesis in 8 ml polypropylene bottle 
100 °C oven 
Molar Composition 1.0 SiO2: 0.13 TEIP(3)A: 18.20 H2O: 0.16 NaOH 

Amount Used 3.0 0.54 1.0 2.0 Variable N 

 

An example fluoride route synthesis (Exp. 25. d. ) of MFI using triethyl-N-isopropylammonium 

iodide as an SDA was prepared as follows:  0.51 g of TEIP(3)AI and 1.50 g ammonium fluoride 

were added to a 30 ml narrow-mouth PFE bottle. 1.5 ml of distilled water and 1.0 g of silicon 

Figure 3.26 - Structure of TEIP3A 
(triethyl-n-isopropylammonium) 

cation 
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dioxide were added to the mixture and stirred thoroughly to form a thick gel. The bottle was 

then mixed on the vortex mixer for 5 seconds before subsequently being placed in a 100 °C oven 

for 11 days.  

Table 3.27 - Fluoride route table of conditions for the synthesis of MFI using TEIP(3)A 

Synthetic Method Ludox 
40%  
(g) 

TEIP(3)A 
SDA 
(g) 

H2O 
(ml) 

NH4F 
(ml) 

Synthesis 
Time 

(days) 

MFI 
Successful 

Exp. 25. a. Fluoride route dense-gel synthesis in 8 ml polypropylene bottle 
100 °C oven 
Molar Composition 1.0 SiO2: 0.15 TEIP(3)A: 8.33 H2O: 2.0 (NH4)HF2 

Amount Used 3.0 0.79 1.2 2.30 12 N (D) 

Synthetic Method SiO2 
(g) 

TEIP(3)A 
SDA 
(g) 

H2O 
(ml) 

NH4F 
(g) 

Synthesis 
Time 

(days) 

MFI 
Successful 

Exp. 25.b. Fluoride route hydrothermal synthesis in 23 ml autoclave 
100 °C oven  
Molar Composition 1.0 SiO2: 0.08 TEIP(3)A: 20.0 H2O: 1.54 H2O 

Amount Used 1.0 0.65 6.0 0.62 37 N 
Exp. 25. c. Fluoride route dense-gel synthesis in 30 ml PFE bottle 
100 °C oven 
Molar Composition 1.0 SiO2: 0.12 TEIP(3): 11.0 H2O: 2.43 NH4F 

Amount Used 1.0 0.51 2.0 1.5 11 Y 

Synthetic Method SiO2 
(g) 

TEIP(3)A 
SDA 
(g) 

H2O 
(ml) 

(NH4)HF2 

(g) 
Synthesis 

Time 
(days) 

MFI 
Successful 

Exp. 25. d. Fluoride route dense-gel synthesis in 30 ml PFE bottle 
100 °C oven 
Molar Composition 1.0 SiO2: 0.14 TEIP(3)A: 20.0 H2O: 1.12 (NH4)HF2 

Amount Used 1.0 0.65 6.0 0.95 12 N 

 

Work-up: After removing the PFE bottle from the oven and allowing the content to cool to room 

temperature and pressure, the content was washed (30 ml distilled water) and centrifuged (3500 

rpm, 15 minutes) three times yielding a white solid. The sample was later dried (60 °C, overnight) 

and confirmed as zeolite MFI by comparison of the XRD diffraction pattern obtained  (Figure 

3.27), to that published by International Zeolite Association.14  
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Figure 3.27 - XRD powder pattern of TEIP(3)A/MFI on a Bruker Advance diffractometer with Cu Kα source 

 

3.2.14. Synthesis of MFI using TEBAI – Triethyl-N-butylammonium Iodide 

SDA Synthesis: The SDA triethyl-N-butylammonium iodide 

(Figure 3.28) was successfully synthesised by refluxing 1-

iodobutane (18.18 g, 98.8 mmol) and triethylamine (5.00 

g, 49.4 mmol) in 100ml methanol for 4 days. After reflux, 

the methanol was removed under reduced pressure and 

the product was recrystallised with a mixture of hot ethyl acetate and a minimum amount of 

ethanol to remove any soluble impurities. White crystals were obtained (12.3 g, 79.50 %) and 

characterised as follows: 1H NMR (300 MHz, CDCl3, ppm) δ 3.25 (6H, s, N-CH2- CH2), 3.09 (2H, m, 

N-CH2-CH2), 1.48 (2H, m, CH2-CH2-CH2), 1.24 (2H, m, CH2-CH2-CH3), 1.17 (9H, s, CH2-CH3), 0.79 (3H, 

s, CH2-CH3); 
13C NMR (300MHz, CDCl3, ppm) δ 57.46 (N-CH2-CH3), 53.71 (N-CH2-CH2), 24.06 (CH2-

CH2-CH3), 19.77 (N-CH2-CH3), 13.80 (CH2-CH3), 8.35 (CH2-CH3).  

Zeolite Synthesis: Zeolite MFI was synthesised using triethyl-N-butylammonium iodide in a 

variety of different synthetic methods and reaction vessels. Table 3.28 and Table 3.29 contain 

the details of all reactions attempted using the hydroxide and fluoride route, respectively.  

5 15 25 35 45 55 
2θ ° 

Figure 3.28 - Structure of TEBA 
(triethylbutylammonium) cation 
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Table 3.28 - Hydroxide route table of conditions for the synthesis of MFI using TEBA 

Synthetic Method Ludox 
30% 
(g) 

TEBA SDA 
(g) 

H2O 
(ml) 

NaOH 
(ml) 

Synthesis 
Time 

(days) 

MFI 
Successful 

Exp. 26. a. Hydroxide route dense-gel synthesis in 8 ml polypropylene bottle 
100 °C oven 
Molar Composition  1.0 SiO2: 0.14 TEBA: 33.4 H2O: 0.13 NaOH 

Amount Used 3.0 0.68 2 2 17 Y 
Exp. 26.b. Hydroxide route dense-gel crystallisation curves synthesis in 8 ml polypropylene bottle 
100 °C oven 
Molar Composition 1.0 SiO2: 0.13 TEBA: 26.0 H2O: 0.13 NaOH 

Amount Used 3.0 0.59 3.0 2.0 Variable Y 
Exp. 26. c. Hydroxide route hydrothermal synthesis in 46 ml autoclave 
100 °C oven 
Molar Composition 1.0 SiO2: 0.16 TEBA: 18.60 H2O: 0.13 NaOH 

Amount Used 3.0 0.68 1.0 2.0 17 Y 
Exp 26. d. Hydroxide route dense-gel synthesis in 30 ml PFE bottle 
100° C oven 
Molar Composition  1.0 SiO2: 0.16 TEBA: 18.60 H2O: 0.13 NaOH 

Amount Used 3.0 0.68 1.0 2.0 7 N 
 

An example hydroxide hydrothermal synthesis (Exp. 26. c. ) of MFI using triethyl-N-

butylammonium iodide as an SDA was prepared as follows:  0.68 g of TEBAI and 2.0 ml (1 M) 

sodium hydroxide were added to a 46 ml Teflon lined stainless steel autoclave liner. 1.0 ml of 

distilled water and 1.0 g of silicon dioxide were added to the mixture and stirred thoroughly to 

form a thick gel before the autoclave was placed in a 100 °C oven for 17 days.  

Table 3.29 - Fluoride route table of conditions for the synthesis of MFI using TEBA 

Synthetic Method Ludox 
40% 
(g) 

TEBA SDA 
(g) 

H2O 
(ml) 

NH4F 
(g) 

Synthesis 
Time 
(days) 

MFI 
Successful 

Exp.27. a. Fluoride route dense-gel crystallisation curves synthesis in 8 ml polypropylene bottle  
100 °C oven 
Molar Composition 1.0 SiO2: 0.08 TEBA: 8.34 H2O: 0.68 NH4F 

Amount Used 3.0 0.54 1.2 1.5 Variable N 

Synthetic Method SiO2 
(g) 

TEBA 
(g) 

H2O 
(ml) 

NH4F 
(g) 

Synthesis 
Time 
(days) 

MFI 
Successful 

Exp.27.b. Fluoride route dense-gel synthesis in 30 ml PFE bottle 
100 °C oven 
Molar Composition  1.0 SiO2: 0.08 TEBA: 20.0 H2O: 1.0 NH4F 

Amount Used 1.0 0.38 6.0 0.62 15 N 

 



References start on page 113  90 | P a g e  

Work-up: After removing the autoclave from the oven and allowing the content to cool to room 

temperature and pressure, the product was washed (30 ml distilled water) and centrifuged (3500 

rpm, 15 minutes) three times yielding a white solid. The sample was later dried (60 °C, overnight) 

and confirmed as zeolite MFI by comparison of the XRD diffraction pattern obtained (Figure 3.29), 

to that published by International Zeolite Association.14  

 
Figure 3.29 - XRD powder pattern of TEBA/MFI on a Bruker Advance diffractometer with Cu Kα source 

 

3.2.15. Synthesis of MFI using TEP(5)A – Triethyl-N-pentylammonium Iodide 

SDA Synthesis: The SDA triethyl-N-pentylammonium 

iodide (Figure 3.30) was synthesised by refluxing an 

equimolar mixture of 1-iodopentane (21.31 g, 107.6 

mmol), triethylamine (10.89 g, 107.6 mmol) in 100 

ml methanol for 5 days.  

The methanol was removed under reduced pressure and the product was recrystallised using a 

mixture of ethyl acetate and a minimum amount of ethanol to remove any soluble impurities. 

White crystals were obtained (11.52 g, 77.99 %) and characterised as follows: 1H NMR (300 MHz, 

CDCl3, ppm) δ 3.48 (6H, q, N-CH2-CH3), 3.28 (2H, q, N-CH2-CH2), 1.72 (2H, m, N-CH2-CH2), 1.39 (9H, 

t, N-CH2-CH3), 1.39 (2H, m, CH2-CH2-CH3), 1.39 (9H, m, CH2-CH2-CH3), 0.92 (3H, t, CH2-CH2-CH3); 

5 15 25 35 45 55 
2θ ° 

Figure 3.30 - Structure of TEP5A (triethyl-N-
pentylammonium) cation SDA 
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13C NMR (300MHz, CDCl3, ppm) δ 57.53 (N-CH2-CH3), 53.75 (N-CH2-CH2), 28.44 (N-CH2-CH2), 22.30 

(CH2-CH2-CH3), 21.92 (CH2-CH2-CH3), 12.91 (CH2-CH2-CH3), 8.32 (N-CH2-CH3).  

Zeolite Synthesis: Zeolite MFI was synthesised using triethyl-N-penylammonium iodide in a 

variety of different synthetic methods and reaction vessels. Table 3.30 and Table 3.31 contain 

the details of all reactions attempted using the hydroxide and fluoride route, respectively.  

Table 3.30 - Hydroxide route table of conditions for the synthesis of MFI using TEP(5)A 

Synthetic Method Ludox 
30% 
(g) 

TEP(5)A 
SDA 
(g) 

H2O 
(ml) 

NaOH 
(ml) 

Synthesis 
Time 

(days) 

MFI 
Successful 

Exp.28.a. Hydroxide route dense-gel crystallisation curves synthesis in 8 ml polypropylene bottle  
100 °C oven 
Molar Composition 1.00 SiO2 : 0.16 TEP(5)A: 0.13 NaOH: 18.69 H2O 

Amount Used 3.00 0.65 1.0 2.0 Variable N 
Exp.28.b. Hydroxide route hydrothermal synthesis in 46 ml autoclave 
100 °C oven 
Molar Composition 1.0 SiO2: 0.16 TEP(5)A: 0.13 NaOH: 18.20 H2O 

Amount Used 3.0 0.72 1.0 2.0 32 Y 

Exp.28.c. Hydroxide route dense-gel synthesis in 30 ml PFE bottle 
100 °C oven 
Molar Composition  1.0 SiO2: 0.16 TEP(5)A: 0.13 NaOH: 18.20 H2O 

Amount Used 3.0 0.72 1.0 2.0 33 Y 

 

An example hydroxide route synthesis (Exp.29.a.) of MFI using triethyl-N-pentylammonium 

iodide as an SDA was prepared as follows:  0.72 g of TEP(5)AI and 2.0 ml (1 M) sodium hydroxide 

were added to a 30 ml narrow-mouth PFE bottle. 1.0 ml of distilled water and 3.0 g of 30 % 

Ludox LS were added to the mixture and stirred thoroughly to form a thick gel before the bottle 

was placed in a 100 °C oven for 33 days.  

Table 3.31 - Fluoride route table of conditions for the synthesis of MFI using TEP(5)A 

Synthetic Method SiO2 
(g) 

TEP(5)A 
SDA 
(g) 

H2O 
(ml) 

NH4F 
(ml) 

Synthesis 
Time 

(days) 

MFI 
Successful 

Exp.29.a. Fluoride route dense-gel method in 8 ml polypropylene bottle 
100 °oven 
Molar Composition  1.0 SiO2: 0.12 TEP(5)A: 6.67 H2O: 2.43 NH4F 

Amount Used 1.0 0.56 2.0 1.5 11 N 
 

Work-up: After removing the bottle from the oven and allowing the content to cool to room 

temperature and pressure, the product was washed (30 ml distilled water) and centrifuged (3500 
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rpm, 15 minutes) three times yielding a white solid. The sample was later dried (60 °C, overnight) 

and confirmed as zeolite MFI by comparison of the XRD diffraction pattern obtained (Figure 3.31), 

to that published by International Zeolite Association.14 

 
Figure 3.31 - XRD powder pattern of TEP5A/MFI on a Bruker Advance diffractometer with Cu Kα source 

 

3.2.16. Synthesis of MFI using TEH(6)A+I- - Triethyl-N-hexylammonium Iodide 

 

 

SDA Synthesis: The SDA triethyl-N-

hexylammonium iodide (Figure 3.32) was 

synthesised by refluxing 1-iodohexane 

(12.56 g, 59.25 mmol) and triethylamine 

(3.60 g, 35.56 mmol) in 100 ml methanol 

for 120 hours. 

After reflux, the methanol was removed under reduced pressure and the product was 

recrystallised using a mixture of ethyl acetate and a minimum amount of ethanol to remove any 

soluble impurities. White crystals were obtained (16.98 g, 91.73 %) and characterised as follows: 

1H NMR (300 MHz, CDCl3, ppm) δ 3.34 (2H, m, N-CH2-CH2), 3.23 (6H, m, N-CH2-CH3), 3.11 (2H, m, 

CH2-CH2-CH2), 2.50 (2H, m, CH2-CH2-CH2), 1.55 (9H, S, CH2-CH3), 1.30 (2H, m, CH2-CH2-CH2), 1.15 

5 15 25 35 45 55 
2θ ° 

Figure 3.32 - Structure of TEH6A (triethyl-N-hexylammonium) 
cation SDA 
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(2H, m, CH2-CH2-CH3), 0.86 (3H, s, CH2-CH3); 
13C NMR (300MHz, CDCl3, ppm) δ 57.64 (N-CH2-CH2), 

53.70 (N-CH2-CH3), 31.20 (N-CH2-CH2), 26.08 (N-CH2-CH2-CH2), 22.43 (CH2-CH2-CH3), 22.10 (CH2-

CH2-CH3), 13.89 (CH2-CH2-CH3), 8.30 (N-CH2-CH3).  

Zeolite Synthesis: Zeolite MFI was synthesised using triethyl-N-hexylammonium iodide in a variety 

of different synthetic methods and reaction vessels. Table 3.32 and Table 3.33 contain the details 

of all reactions attempted using the hydroxide and fluoride route, respectively.  

Table 3.32 - Hydroxide route table of conditions for the synthesis of MFI using TEH(6)A 

Synthetic Method Ludox 
30% (g) 

TEH(6)A 
SDA 
(g) 

H2O 
(ml) 

NaOH  
(1 M)  
(ml) 

Synthesis 
Time 

(days) 

MFI 
Successful 

Exp.30.a.Hydroxide route dense-gel synthesis in 8 ml polypropylene bottle  
100 °C oven 
Molar Composition 1.0 SiO2: 0.16 TEH(6)A: 26 H2O: 0.13 NaOH 

Amount Used 1.5 0.37 1.5  1  10  N 
+ 0.5 ml H2O 1.5 0.37 2  1  20  N 

+1 ml 1.5 0.37 2.5  1  21 Initial Peaks 
Forming 

+1.5 ml 1.5 0.37 3  1  22  N 
+ 2 ml 1.5 0.37 3.5  1  10  N 

+2.5 ml  1.5 0.37 4  1  23  Y 
+ 3 ml 1.5 0.37 4.5  1  7  N 

+3.5 ml 1.5 0.37 5  1  10 N 
+3.5 ml 1.5 0.37 5  1  24 N 

+ 4 ml 1.5 0.37 5.5  1  10  N 
- 2 ml 3.0 0.65 1.0 2.0 32 Y 

Exp.30.b. Hydroxide route dense-gel crystallisation curves synthesis in 8 ml polypropylene 
bottles 
100 °C oven 
Molar Composition 1.0 SiO2: 0.14 TEH(6)A: 26.03 H2O: 0.13 NaOH 

Amount Used 3.0 0.66 3.0 2.0 Variable Y 
½  1.5 0.37 1.5 1 Variable N (D) 

Exp.30.c. Hydroxide route dense-gel synthesis in 30 ml PFE  bottle 
100 °C oven 
Molar Composition 1.0 SiO2: 18.60 H2O: 0.16 TEH(6)A: 0.13 NaOH 

Amount Used 3.0 0.74 1.0 2 10  N 
 3.0 0.74 1.0 2 14 N 
 

An example hydroxide route synthesis (Exp.30.b. ) of MFI using triethyl-N-hexylammonium iodide 

as an SDA was prepared as follows:  0.66 g of TEH(6)AI and 2.0 ml 1 M sodium hydroxide were 

added to a narrow-mouth polypropylene bottle. 3.0 ml of distilled water and 3.0 g of Ludox LS 

were added to the mixture and stirred thoroughly to form a thick gel. The bottle was then placed 
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on a vortex mixer for 5 seconds before being placed in a 100 °C oven for the specified time.  

Table 3.33 - Fluoride route table of conditions for the synthesis of MFI using TEH(6)A 

Synthetic Method Ludox  
(40 %) 

(g) 

TEH(6)A 
SDA 
(g) 

H2O 
(ml) 

NH4F  
(ml) 

Synthesis 
Time 

(days) 

MFI 
Successful 

Exp.30.a. Fluoride route dense-gel method for crystallisation curves in 8 ml polypropylene 
bottles 
100 °C oven 
Molar Composition 1.0 SiO2: 0.09 TEH(6)A: 8.34 H2O: 0.68 NH4F 

Amount Used 3.0 0.58 1.2 1.5 Variable N 

Synthetic Method SiO2 

(g) 
TEH(6)A 

SDA 
(g) 

H2O 
(ml) 

NH4F  
(ml) 

Synthesis 
Time 

(days) 

MFI 
Successful 

Exp.30.b. Fluoride Route dense-gel synthesis in 8 ml polypropylene bottles 
100 °C oven 
Molar Composition 1.0 SiO2: 0.12 TEH(6)A: 6.67 H2O: 2.43 NH4F 

Amount Used 1.0 0.59 2.0 1.5 11 N 
Molar Composition 1.0 SiO2: 0.12 TEH(6)A: 11.0 H2O: 2.43 NH4F 

Increased H2O 1.0 0.59 3.3 1.5 11 N 
Exp.31.c. Fluoride route hydrothermal synthesis in 23 ml autoclave 
100 °C oven 
Molar Composition 1 SiO2: 0.06 TEH(6)A: 11.72 H2O: 0.74 NH4F 

Amount Used 1.64 0.47 5.74 0.75 22  1/2 
 

Work-up: After removing the bottle from the oven and allowing the content to cool to room 

temperature and pressure, the product was washed (30 ml distilled water) and centrifuged (3500 

rpm, 15 minutes) three times yielding a white solid. The sample was later dried (60 °C, overnight) 

and confirmed as zeolite MFI by comparison of the XRD diffraction pattern obtained (Figure 3.33), 

to that published by International Zeolite Association.14  



References start on page 113  95 | P a g e  

 
Figure 3.33 - XRD powder pattern of TEH6A/MFI on a Bruker Advance diffractometer with Cu Kα source 

 

An additional peak can be observed on the above XRD spectrum at ~5.4 2θ ° that is not a part of 

the MFI diffraction fingerprint. This peak has been observed in multiple XRD diffraction patterns 

and as such will be discussed collectively in Chapter 3.4 Additional X-ray Diffraction Peak. 

3.2.17. Synthesis of MFI using TEH(7)A+I- - Triethyl-N-heptylammonium Iodide 

SDA Synthesis: The SDA triethyl-

heptylammonium iodide (Figure 

3.34) was synthesised by refluxing an 

equimolar mixture of triethylamine 

(3.36 g, 35.87 mmol) and 1-

iodoheptane (8.11 g, 35.87 mmol) in 50 ml methanol for 7 days. After reflux, the methanol was 

removed under reduced pressure and the product was recrystallised using a mixture of ethyl 

acetate and a minimum amount of ethanol to remove any soluble impurities. White crystals 

were obtained (7.69 g, 83.08 %) and characterised as follows: 1H NMR (300 MHz, CDCl3, ppm) δ 

3.34 (6H, q, N-CH2-CH3), 3.23 (2H, q, N-CH2-CH2), 1.66 (2H, m, N-CH2-CH2),1.40 (2H, m, N-CH2-CH2-

CH2), δ 1.3 (9H, t, N-CH2-CH3), 1.32 (2H, m, CH2-CH2-CH2-CH3), 1.26 (2H, m, CH2-CH2-CH3), 1.23 

(2H, m, CH2-CH2-CH3), 0.83 (3H, t, CH2-CH2-CH3); 
13C NMR (300MHz, CDCl3, ppm) δ 57.72 (N-CH2-

5 15 25 35 45 55 2θ ° 

Figure 3.34 - Structure of TEH7A (triethyl-n-heptylammonium) 
cation SDA 
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CH2), 53.76 (N-CH2-CH3), 31.47 (N-CH2-CH2), 28.83 (N-CH2-CH2-CH2), 26.42 (CH2-CH2-CH2-CH3), 

22.47 (CH2-CH2-CH3), 22.12 (CH2-CH2-CH3), 14.04 (CH2-CH2-CH3), 8.31 (N-CH2-CH3).  

Zeolite Synthesis: Zeolite MFI was synthesised using triethyl-N-heptylammonium iodide in a 

variety of different synthetic methods and reaction vessels. Table 3.34 and Table 3.35 contains 

the details of all reactions attempted using the hydroxide and fluoride route, respectively.  

Table 3.34 - Hydroxide route table of conditions for the synthesis of MFI using TEH(7)A 

Synthetic Method Ludox 
30%  
(g) 

TEH(7)A 
SDA 
(g) 

H2O 
(ml) 

NaOH 
1M 
(ml) 

Synthesis 
Time 

(days) 

MFI 
Successful 

Exp.32.a. Hydroxide route dense-gel crystallisation curves synthesis in 8 ml polypropylene bottle 
100 °C oven 
Molar Composition 1.0 SiO2: 0.17 TEH(7)A: 18.60 H2O: 0.14 NaOH 

Amount Used 3.0 0.82 1.0 2.0 7 Y 
 

An example hydroxide route synthesis (Exp.32.a.) of MFI using triethyl-N-heptylammonium 

iodide as an SDA was prepared as follows:  0.82 g of TEH(7)AI and 2.0 ml (1 M) sodium hydroxide 

were added to a 8 ml narrow-mouth polypropylene bottle. 1.0 ml of distilled water and 3.0 g of 

30 % Ludox LS were added to the mixture and stirred thoroughly to form a thick gel. The bottle 

was then mixed on the vortex mixer for 5 seconds before being placed in a 100 °C oven for the 7 

days. 

Table 3.35 - Fluoride route table of conditions for the synthesis of MFI using TEH(7)A 

Synthetic Method Ludox LS 
40 % 

(g) 

TEH(7)A 
SDA 
(g) 

H2O 
(ml) 

NH4F  
(ml) 

Synthesis 
Time 

(days) 

MFI 
Successful 

Exp.33.a. Fluoride route dense-gel synthesis in 8 ml polypropylene bottle 
100 °C oven 
Molar Composition 1.0 SiO2: 0.08 TEH(7)A: 8.34 H2O: 2.02 NH4F 

Amount Used 3.0 0.52 1.2 1.5 7 N 

Synthetic Method SiO2 

(g) 
TEH(7)A 

SDA 
(g) 

H2O 
(ml) 

NH4F  
(ml) 

Synthesis 
Time 

(days) 

MFI 
Successful 

Exp.33.b. Fluoride Route dense-gel synthesis in 8 ml polypropylene bottle 
100 °C oven 
Molar Composition 1.0 SiO2: 0.14 TEH(7)A: 20.0 H2O: 1.00 NH4F 

Amount Used 1.0 0.78 6.0 0.62 14 N 
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Work-up: After removing the bottle from the oven and allowing the content to cool to room 

temperature and pressure, the product was washed (30 ml distilled water) and centrifuged (3500 

rpm, 15 minutes) three times yielding a white solid. The sample was later dried (60 °C, overnight) 

and confirmed as zeolite MFI by comparison of the XRD diffraction pattern obtained (Figure 3.35), 

to that published by International Zeolite Association.14  

 

Figure 3.35 - XRD powder pattern of TEH(7)A/MFI on a Bruker Advance diffractometer with Cu Kα source 

 

An additional peak can be observed on the above XRD spectrum at ~5.4 2 θ° that is not a part of 

the MFI diffraction fingerprint. This peak has been observed in multiple XRD diffraction patterns 

and as such will be discussed collectively in Chapter 3.4 Additional X-ray Diffraction Peak. 

3.2.18. Synthesis of MFI using TMH(6)A+I- - Trimethyl-N-hexylammonium Iodide 

SDA Synthesis: The SDA trimethyl-

hexylammonium iodide (Figure 3.36) was 

synthesised by refluxing hexylamine (3.83 g, 37.8 

mmol) and iodomethane (16.12 g, 113.5 mmol) in 

100 ml methanol for 48 hours. After reflux, the methanol was removed under reduced pressure 

and the product was recrystallised with a mixture of ethyl acetate and a minimum amount of 

ethanol to remove any soluble impurities. White crystals were obtained (1.00 g, 9.47 %), and 

5 15 25 35 45 55 
2θ ° 

TEH(7)A XRD Spectrum (x 20) 

Example MFI XRD Spectrum 

Figure 3.36 - Structure of TMH(6)A (trimethyl-n-
hexylammonium) cation 
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characterised as follows: 1H NMR (300 MHz, CDCl3, ppm) δ 3.62 (2H, t, N-CH2), 3.44 (9H, s, N-

CH3), 1.76 (2H, m(5), N-CH2-CH2), 1.38 (2H, m(5), N-CH2-CH2-CH2), 1.35 (2H, m(5), CH2-CH2-CH3), 

1.32 (2H, m(6), CH2-CH3), 0.88 (3H, t, CH2-CH3); 
13C NMR (300MHz, CDCl3, ppm) δ 67.18 (N-CH2), 

53.81 (N-CH3)3, 31.27 (N-CH2-CH2), 25.70 (N-CH2- CH2-CH2), 23.19 (CH2-CH2-CH3), 22.41 (CH2-CH2-

CH3), 13.95 (CH2-CH3).  

Zeolite Synthesis: Zeolite MFI was synthesised using triethyl-N-heptylammonium iodide in a 

variety of different synthetic methods and reaction vessels. Table 3.36 contains the details of all 

reactions attempted using the fluoride route. 

Table 3.36 - Fluoride route table of conditions for the synthesis of MFI from TMH(6)A 

Synthetic Method Ludox 
40 % 

(g) 

TMH(6)A 
SDA 
(g) 

H2O 
(ml) 

NH4F  
(ml) 

Synthesis 
Time 

(days) 

MFI 
Successful 

Exp. 34.a. Fluoride route dense-gel synthesis in 8 ml polypropylene bottle 
100 °C oven 
Molar Composition 1.0 SiO2: 0.08 TMHA: 8.34 H2O: 2.0 NH4F 
Amount Used 3.0 0.44 1.2 1.5 7 Y 

 

An example fluoride route synthesis (Exp. 34.a.) of MFI using trimethyl-N-hexylammonium iodide 

as an SDA was prepared as follows:  0.44 g of TMH(6)A and 1.50 g ammonium fluoride were 

added to an 8 ml narrow-mouth polypropylene bottle. 1.5 ml of distilled water and 3.0 g of 40 % 

Ludox LS was added to the mixture and stirred thoroughly to form a thick gel. The bottle was 

then mixed on the vortex mixer for 5 seconds before being placed in a 100 °C oven for the 7 

days.   

Work-up: After removing the polypropylene bottle from the oven and allowing the content to 

cool to room temperature and pressure, the product was washed (30 ml distilled water) and 

centrifuged (3500 rpm, 15 minutes) three times yielding a white solid. The sample was later dried 

(60 °C, overnight) and confirmed as zeolite MFI by comparison of the XRD diffraction pattern 

obtained (Figure 3.37) to that published by International Zeolite Association.14    
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Figure 3.37 - XRD powder pattern of TMH6A/MFI on a Bruker Advance diffractometer with Cu Kα source 

 

3.2.19. Synthesis of MFI using DMDP(5)A+I- - N,N-dimethyl-N,N-dipentylammonium 

Iodide 

SDA Synthesis: The SDA N,N-

dimethyl-N,N-dipentylammonium 

iodide (Figure 3.38) was 

synthesised by refluxing a mixture 

of dimethylamine HCl (2.91 g, 35.67 mmol), sodium carbonate (3.78 g, 35.67 mmol) and 

iodopentane (7.95 g, 40.15 mmol) in 100 ml ethanol for 7 days. After reflux, the sodium 

carbonate was removed via a cold filtration and then the methanol removed under reduced 

pressure. The crude product was recrystallised using a mixture of ethyl acetate and a minimum 

amount of ethanol to remove any soluble impurities. White crystals were obtained (3.02 g, 28.09 

%) and characterised as follows: 1H NMR (300 MHz, CDCl3, ppm) δ 3.43 (4H, t, N-CH2-CH2), 3.39 

(6H, s, N-CH3), 1.75 (4H, m, N-CH2-CH2), 1.43 (4H, m, CH2-CH2-CH2), 1.40 (4H, m, CH2-CH2-CH3), 

0.94 (6H, t, CH2-CH3); 
13C NMR (300MHz, CDCl3, ppm): δ 64.25 (N-CH2-CH2), 51.41 (N-CH3), 28.16 

(N-CH2-CH2), 22.49 (CH2-CH2-CH3), 22.27 (CH2-CH2-CH3), 13.81 (CH2-CH2-CH3).  

Zeolite Synthesis: Zeolite MFI was synthesised using N,N-dimethyl-N,N-dipentylammonium iodide 

in a variety of different synthetic methods and reaction vessels. Table 3.37 and Table 3.38 and 

5 15 25 35 45 55 
2θ ° 

Figure 3.38 - Structure of DMDP(5)A (N,N-dimethyl-N,N-
dipentylammonium) cation 
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contain the details of all reactions attempted using the hydroxide and fluoride route, 

respectively.  

Table 3.37 - Hydroxide route table of conditions for the synthesis of MFI using DMDP(5)A 

Synthetic Method Ludox 
30%  
(g) 

DMDP(5) 
SDA 
(g) 

H2O 
(ml) 

NaOH 
(ml) 

Synthesis 
Time 

(days) 

MFI 
Successful 

Exp. 35.a. Hydroxide dense-gel synthesis in 8 ml polypropylene bottle 
100 °C oven 
Molar Composition 1.0 SiO2: 0.16 DMDP(5)A: 18.60 H2O: 0.13 NaOH 

Amount Used 3.0 0.74 1.0 2.0 10 days Y 
+ 1 ml H2O 3.0 0.74 2 .0 2.0 10 days Y 
+ 2 ml H2O 3.0 0.74 3 .0 2.0 10 days Y 

 

An example fluoride route synthesis (Exp.36.a) of MFI using N,N-dimethyl-N,N-

dipentylammonium iodide as an SDA was prepared as follows:  0.97 g of DMDP(5)AI and 1.64 g 

ammonium fluoride were added to a 30 ml PFE bottle. 7.47 ml of distilled water and 3.15 g of 

silicon dioxide were added to the mixture and stirred thoroughly to form a thick gel. The bottle 

was then mixed on the vortex mixer for 5 seconds before being placed in a 100 °C oven for 16 

days.  

Table 3.38 - Fluoride route table of conditions for the synthesis of MFI using DMDP(5)A 

Synthetic Method SiO2 
(g) 

DMDP(5) 
SDA 
(g) 

H2O 
(ml) 

NH4F 
(g) 

Synthesis 
Time 

(days) 

MFI  
Successful 

Exp.36.a. Fluoride route dense-gel synthesis in 30 ml PFE bottle 
100 °C oven 
Molar Composition 1.0 SiO2: 0.06 DMDP(5)A: 7.90 H2O: 0.84 NH4F 

Amount Used 3.15 0.97 7.47 1.64 16 ½ 
 

Work-up: After removing the bottle from the oven and allowing the content to cool to room 

temperature and pressure, the product was washed (30 ml distilled water) and centrifuged (3500 

rpm, 15 minutes) three times yielding a white solid. The sample was later dried (60 °C, overnight) 

and confirmed as zeolite MFI by comparison of the XRD diffraction pattern obtained (Figure 3.39) 

to that published by International Zeolite Association.14 



References start on page 113  101 | P a g e  

 
Figure 3.39 - XRD powder pattern of DMDP5A/MFI on a Bruker Advance diffractometer with Cu Kα source 

 

3.2.20. Synthesis of MFI using DEDBA+I- - N,N-diethyl-N,N-dibutylammonium Iodide 

SDA Synthesis: The SDA N,N-diethyl-N,N-

dibutylammonium iodide (Figure 3.40) was 

synthesised by refluxing a 2:1:1 mixture of 1-

iodobutane (33.58 g, 182.48 mmol), 

diethylamine HCl (10 g, 91.24 mmol) and 

sodium carbonate (9.67 g, 91.24 mmol) in 100 ml methanol for 4 days. The methanol was 

removed under reduced pressure and the product was recrystallised from a mixture of ethyl 

acetate and a minimum amount of ethanol mixture to remove any soluble impurities. White 

crystals were obtained (18.60 g, 65.09 %) and characterised as follows; 1H NMR (300 MHz, CDCl3, 

ppm) δ 3.45 (4H, q, N-CH2-CH3), 3.30 (4H, t, N-CH2-CH2), 1.75 (4H, m(5), CH2-CH2-CH2), 1.45 (4H, 

m(6), CH2-CH2-CH3), 1.37 (6H, t, N-CH2-CH3), 0.95 (6H, t, CH2-CH2-CH3); 
13C NMR (300MHz, CDCl3, 

ppm) δ 58.06 (N-CH2-CH2), 54.20 (N-CH2-CH3), 24.10 (CH2-CH2-CH2), 19.70 (CH2-CH2-CH3), 13.80 

(CH2-CH3), 8.40 (N-CH2-CH3).  

Zeolite Synthesis: Zeolite MFI was synthesised using N,N-diethyl-N,N-dibutylammonium iodide in 

a variety of different synthetic methods and reaction vessels. Table 3.39 and Table 3.40 contain 

the details of all reactions attempted using the hydroxide and fluoride route respectively.  

5 15 25 35 45 55 
2θ ° 

Figure 3.40 - Structure of DEDBA (diethyl-
dibutylammonium) cation 
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Table 3.39 - Hydroxide route table of conditions for the synthesis of MFI using DEDBA 

Synthetic Method Ludox 30 
%  
(g) 

DEDBA 
SDA  
(g) 

H2O 
(ml) 

NaOH 
(ml) 

Synthesis 
Time 

(days) 

MFI 
Successful 

Exp. 37.a. Hydroxide route dense-gel synthesis in 8 ml polypropylene bottle 
100°C oven 
Molar Composition 1.0 SiO2: 0.16 DEDBA: 18.60 H2O: 0.13 NaOH 

Amount Used 3.0 0.74 1.0 2.0 10 Y 
+ 1 ml H2O 3.0 0.74  2.0 2.0 10  Y 
+ 2 ml H2O 3.0 0.74  3.0 2.0 10  Y 
+ 3 ml H2O 3.0 0.74  4.0 2.0 10  Y 
+ 4 ml H2O 3.0 0.74  5.0 2.0 10  Y 

Exp.37.b. Hydroxide route dense-gel crystallisation curves synthesis in 8 ml polypropylene bottle  
100 °C oven 
Molar Composition 1.0 SiO2: 0.13 DEDBA: 18.60H2O: 0.13 NaOH 

Amount Used 3.0 0.62 1.0 2.0 Variable Y 
Molar Composition 1.0 SiO2: 0.13 DEDBA: 26.50 H2O: 0.13 NaOH 

Amount Used 3.0 0.62 3.0 2.0 Variable Y 
Exp.37.c. Hydroxide route dense-gel synthesis in 5.66 ml glass vial synthesis 
100 °C oven 
Molar Composition 1.0 SiO2: 0.17 DEDBA: 0.16 NaOH: 29.82 H2O 

Amount Used 3.0 0.52 2.0 1.33 7  N 
 

An example fluoride route synthesis (Exp.37.b. ) of MFI using N,N-diethyl-N,N-dibutylammonium 

iodide as an SDA was prepared as follows:  0.59 g of DEDBAI and 1.50 g ammonium fluoride were 

added to an 8 ml narrow-mouth polypropylene bottle. 1.5 ml of distilled water and 3.0 g of 40 % 

Ludox LS were added to the mixture and stirred thoroughly to form a thick gel. The bottle was 

then mixed on the vortex mixer for 5 seconds before being placed in a 100 °C oven for the 

specified synthesis time.  
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Table 3.40 - Fluoride route table of conditions for the synthesis of MFI using DEDBA 

Synthetic Method Ludox  
30 %  
(g) 

DEDBA 
SDA  
(g) 

H2O 
(ml) 

NH4F 
(g) 

Synthesis 
Time 

(days) 

MFI 
Successful 

Exp.38.a. Fluoride route dense-gel synthesis in 8 ml polypropylene bottle 
100 °C oven 
Molar Composition 1 SiO2: 0.05 DEDB: 11.69 H2O: 0.74 NH4F 

Amount Used 1.65 0.47 5.79 0.75 Variable Y 

Synthetic Method Ludox  
40 %  
(g) 

DEDBA 
SDA  
(g) 

H2O 
(ml) 

NH4F 
(g) 

Synthesis 
Time 

(days) 

MFI 
Successful 

Exp.38.b. Fluoride Route dense-gel crystallisation curves synthesis in 8 ml polypropylene bottle 
100 °C oven 
Molar Composition 1.0 SiO2: 0.09 DEDBA: 8.34 H2O: 0.68 NH4F 

Amount Used 3.0 0.59 1.2 1.5 Variable Y 

Synthetic Method SiO2 

(g) 
DEDBA 

SDA  
(g) 

H2O 
(ml) 

NH4F 
(g) 

Synthesis 
Time 

(days) 

MFI 
Successful 

Exp.38.c. Fluoride route hydrothermal synthesis in 46 ml autoclave 
180 °C oven 
Molar Composition 1.0 SiO2: 0.08 DEDBA: 20.0 H2O: 1.0 NH4F 

Amount Used 2.0 0.84 12.0 1.23 6 N 

 

Work-up: After removing the polypropylene bottle from the oven and allowing the content to cool 

to room temperature and pressure, the product was washed (30 ml distilled water) and 

centrifuged (3500 rpm, 15 minutes) three times yielding a white solid. The sample was later dried 

(60 °C, overnight) and confirmed as zeolite MFI by comparison of the XRD diffraction pattern 

obtained (Figure 3.41) to that published by International Zeolite Association.14 

 
Figure 3.41 - XRD powder pattern of DEDBA/MFI on a Bruker Advance diffractometer with Cu Kα source 

 

5 15 25 35 45 55 
2θ ° 
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3.2.21. Synthesis of MFI using DMDIBA+I- - N,N-dimethyl-N,N-diisobutylammonium 

Chloride 

SDA Synthesis: The SDA N,N-dimethyl-N,N-

diisobutylammonium chloride (Figure 3.42) was 

synthesised by refluxing a 2:1:1 mixture of 2-

chlorobutane (6.98 g, 75.45 mmol), dimethylamine HCl 

(3.08 g, 37.72 mmol), and sodium carbonate (4.00 g, 

37.72 mmol) in 100 ml methanol for 4 days. After reflux, the sodium carbonate was removed via a 

cold filtration before the solvent was removed under reduced pressure producing a crude 

product. The product was then recrystallised using a mixture of ethyl acetate and a minimum 

amount of ethanol to remove any soluble impurities. White crystals were obtained (0.54 g, 7.45 

%) however the NMR results were not obtained. This low yield may have been due to the 

bulkiness of the 2-chlorobutance being added, or due to the difficulties in adding two of these 

substituents to the amine. Despite the failed NMR, the next stage of MFI zeolite synthesis was 

attempted and yielded successful formation of MFI zeolite.  

Zeolite Synthesis: Zeolite MFI was synthesised using N,N-dimethyl-N,N-diisobutylammonium 

iodide in a variety of different synthetic methods and reaction vessels. Table 3.41 and Table 3.42 

and contain the details of all reactions attempted using the hydroxide and fluoride route, 

respectively.  

Table 3.41 - Hydroxide route table of conditions for the synthesis of MFI using DMDIBA 

Synthetic Method Ludox 
30%  
(g) 

DMDIBA 
SDA 
(g) 

H2O 
(ml) 

NaOH 
(ml) 

Synthesis 
Time 

(days) 

MFI 
Successful 

Exp.39.a. Hydroxide route dense-gel synthesis in 30 ml PFE bottle 
100 °C oven 
Molar Composition 1.0 SiO2: 0.11 DMDIBA: 10.71 H2O: 0.13 NaOH 

Amount Used 1.00 0.16 0.33 0.66 18 Y 
Molar Composition 1.0 SiO2: 0.13 DMDIBA: 26.0 H2O: 0.13 NaOH 

Amount Used 3.0 0.57 1.0 2.0 14 Peaks 
forming 

 

Figure 3.42 - Structure of DMDIBA (N,N-
dimethyl-N,N-diisobutylammonium) cation 
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An example hydroxide route synthesis (Exp.39.a. ) of MFI using N-N-dimethyl-N-N-

diisobutylammonium iodide as an SDA was prepared as follows:  0.16 g of DMDIBA and 0.66 ml 

(1 M) sodium hydroxide were added to a 30 ml PFE bottle. 0.33 ml of distilled water and 1.0 g of 

30 % Ludox LS were added to the mixture and mixed on a vortex mixer for 5 seconds before 

being placed in a 100 °C oven for 18 days.  

Table 3.42 - Fluoride route table of conditions for the synthesis of MFI using DMDIBA 

Synthetic Method Ludox 
40%  
(g) 

DMDIBA 
SDA 
(g) 

H2O 
(ml) 

NH4F 
(g) 

Synthesis 
Time 

(days) 

MFI 
Successful 

Exp.40.a. Fluoride route dense-gel synthesis in 30 ml PFE bottle 
100 °C oven 
Molar Composition 1.0 SiO2: 0.08 DMDIBA: 8.34 H2O: 0.68 NH4F 

Amount Used 3.0 0.46 1.2 1.5 14 N 

Synthetic Method SiO2 

(g) 
DMDIBA 

SDA 
(g) 

H2O 
(ml) 

NH4F 
(g) 

Synthesis 
Time 

(days) 

MFI 
Successful 

Exp.41.a. Fluoride route dense-gel synthesis in 8 ml polypropylene bottle 
100 °C oven 
Molar Composition 1.0 SiO2: 0.08 DMDIBA: 20.0 H2O: 1.0 NH4F 

Amount Used 1.0 0.38 6.0 0.62 15 N 

 

Work-up: After removing the bottle from the oven and allowing the content to cool to room 

temperature and pressure, the product was washed (30 ml distilled water) and centrifuged (3500 

rpm, 15 minutes) three times yielding a white solid. The sample was later dried (60 °C, overnight) 

and confirmed as zeolite MFI by comparison of the XRD diffraction pattern obtained (Figure 3.43), 

to that published by International Zeolite Association.14 
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Figure 3.43 - XRD powder pattern of DMDIBA/MFI on a Bruker Advance diffractometer with Cu Kα source 

 

3.2.22. Synthesis of MFI using DEDIBA+I-- N,N-diethyl-N,N-diisobutylammonium 

Chloride) 

SDA Synthesis: The SDA N,N-diethyl-N,N-

diisobutylammonium chloride (Figure 3.44) was synthesised 

by refluxing a 2:1:1 mixture of 2-chlorobutane (6.98 g, 75.44 

mmol), diethylamine HCl (4.13 g, 37.72 mmol) and sodium 

carbonate (4.00 g, 37.72 mmol) in 100 ml methanol for 4 

days. After reflux, the sodium carbonate was removed via 

a cold filtration before the solvent was removed under reduced pressure. The product was 

recrystallised with a mixture of ethyl acetate and a minimum amount of ethanol to remove any 

soluble impurities whereby white crystals were obtained (0.34 g, 3.20 %) and characterised as 

follows: 1H NMR (300 MHz, CDCl3, ppm) δ 3.58 (2H, q, N-CH), 3.52 (4H, q, N-CH2), 2.22 (4H, m(5), 

N-CH-CH2), 1.78 (6H, d, N-CH-CH3), 1.45 (6H, t, N-CH2-CH3), 1.19 (6H, t, CH-CH2-CH3). 
13C NMR 

(300MHz, CDCl3, ppm) δ 66.11 (N-CH), 60.03 (N-CH2), 24.32 (N-CH-CH2), 23.30 (N-CH-CH3), 8.74 

(CH-CH2-CH3), 8.34 (N-CH2-CH3).  

Zeolite Synthesis: Zeolite MFI was synthesised using N,N-diethyl-N,N-diisobutylammonium iodide 

in a variety of different synthetic methods and reaction vessels. Table 3.43 contains the details of 

5 15 25 35 45 55 
2θ ° 

DMDIBA XRD Spectra 

Example MFI XRD Spectra 

Figure 3.44 - Structure of DEDIBA (N,N-
diethyl-N,N-diisobutylammonium) cation 

DMDIBA XRD Spectrum 

Example MFI XRD Spectrum 
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all reactions attempted using the hydroxide route.  

Table 3.43 - Hydroxide route table of conditions for the synthesis of MFI using DEDIBA 

Synthetic Method Ludox 
30% 
(g) 

DEDIBA 
SDA 
(g) 

H2O 
(ml) 

NaOH 
(ml) 

Synthesis 
Time 

(days) 

MFI 
Successful 

Exp.41.a. Hydroxide route dense-gel synthesis in 8 ml polypropylene bottle 
100 °C oven 
Molar Composition  1.0 SiO2: 0.22 DEDIBA: 18.60 H2O: 0.13 NaOH 

Amount Used 3  0.74  1  2  10  N 
+ 1 ml H2O 3  0.74 2  2  10  N (D) 

+ 2 ml 3  0.74  3  2  10  N (D) 
+ 4 ml 3  0.74  5  2  10  N 
+ 1 ml  3 0.74 2 2 10 N 
+ 2 ml  3 0.74 3 2 10 N 
+ 2 ml 3 0.74 3 2 13 N 

 + 2 ml 3 0.74 3 2 15 N 
+ 2 ml 3 0.74 3 2 20 N 
+ 3 ml 3 0.78 4 2 7 Y 

Exp.41.b. Hydroxide route dense-gel crystallisation curves synthesis in 8 ml polypropylene bottle  
100 °C oven 
Molar Composition 1.0 SiO2: 0.14 DEDIBA: 26.50 H2O: 0.13 NaOH 

Amount Used 3 g 0.65 g 3 ml 2 ml Variable N 
Exp.41.c. Hydroxide route dense-gel synthesis in 5.66 ml glass vial 
100 °C oven 
Molar Composition 1.0 SiO2 : 0.14 DEDIB : 26.36 H2O : 0.14 NaOH 

Amount Used 1.98 g 0.43 g 2 ml 1.33 ml 7 days N 

 

An example hydroxide route synthesis (Exp.41.a. ) of MFI using N,N-diethyl-N,N-

diisobutylammonium iodide as an SDA was prepared as follows:  0.78 g of DEDIBA and 2.0 ml (1 

M) sodium hydroxide were added to a 8 ml polypropylene bottle. 4.0 ml of distilled water and 

3.0 g of 30 % Ludox LS were added to the mixture and mixed on a vortex mixer for 5 seconds to 

form a thick gel. The plastic bottle was sealed and placed in a 100 °C oven for 7 days.  

Work-up: After removing the bottle from the oven and allowing the content to cool to room 

temperature and pressure, the product was washed (30 ml distilled water) and centrifuged (3500 

rpm, 15 minutes) three times yielding a white solid. The sample was later dried (60 °C, overnight) 

and confirmed as zeolite MFI by comparison of the XRD diffraction pattern obtained (Figure 3.45), 

to that published by International Zeolite Association14. 
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Figure 3.45 - XRD powder pattern of DEDIBA/MFI on a Bruker Advance diffractometer with Cu Kα source 

 

Silicalite-1 synthesised using N,N-diethyl-N,N-diisobutylammonium iodide can be synthesised 

under the above conditions (Exp.41.a. ) but lacks long range order. It has therefore been overlaid 

with an example X-ray diffraction pattern of another successful silicalite-1 (MFI) sample to 

demonstrate the peaks forming correctly for MFI the framework.  

3.3. Unsuccessful MFI Structure Directing Agents 

The following structure directing agents did not successfully synthesise silicalite-1 or any zeolite 

despite an excessive amount of attempts and being characteristically similar to structure directing 

agents that do successfully synthesis Silicalte-1 with MFI and MEL frameworks.    

3.3.1. Synthesis of P(3)TBAI - N-propyltributylammonium Iodide 

SDA Synthesis: The SDA n-propyl-

tributylammonium iodide (Figure 3.46) was 

synthesised by refluxing iodopropane (5.71 g, 

33.6mmol) and tributylamine (6.22 g, 

33.6mmol) in 100 ml methanol for 3 days. 

The methanol was removed under reduced pressure and the product was recrystallised with a 

mixture of ethyl acetate and a minimum amount of ethanol to remove any soluble impurities.  

5 15 25 35 45 55 
2θ ° 

DEDIBA XRD 

Example MFI XRD 

Figure 3.46 - Structure of P3TBA (N-
propyltributylammonium) cation 

DEDIBA XRD Spectrum 

Example MFI XRD Spectrum 
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White crystals were obtained (3.06 g, 25.64 %) and characterised as follows: 1H NMR (300 MHz, 

CDCl3, ppm) δ3.35 (6H, m, N-CH2-CH2)3, δ 3.30 (2H, w, N-CH2-CH2), δ 1.77 (2H, w, N-CH2-CH2), δ 

1.67 (6H, m, N-CH2-CH2)3, δ 1.44 (6H, m, CH2-CH2-CH3)3, δ 1.04 (3H, m, CH2-CH2-CH3), δ 0.98 (9H, 

s, CH2-CH3); 
13C NMR (300MHz, CDCl3, ppm) δ 60.81 (N-CH2-CH2-CH3), δ 59.20 (N-CH2-CH2-CH2), δ 

24.30 (N-CH2-CH2-CH2), δ 19.78 (N-CH2-CH2-CH2), δ 16.13, (N-CH2-CH2-CH3), δ 13.78, (N-CH2-CH2-

CH2), δ 10.96 (N-CH2-CH2-CH2-CH3).  

Zeolite Synthesis: Zeolite MFI was synthesised using N-propyltributylammonium iodide in a 

variety of different synthetic methods and reaction vessels. Figure 3.45 contains the details of all 

reactions attempted using the fluoride route.  

An example fluoride route synthesis (Exp.42.b. ) of MFI using N,N-dipropyl-N,N-

diisopropylammonium iodide as an SDA was prepared as follows:  0.46 g of P(3)TBA and 0.95 g 

ammonium hydrogen fluoride were added to a 46 ml Teflon lined stainless steel autoclave liner. 

6.0 ml of distilled water and 1.0 g of silicon dioxide were added to the mixture and stirred 

thoroughly to form a thick gel before the autoclave was placed in a 100 °C oven for 21 days.  

Table 3.44 - Fluoride route table of conditions for the synthesis of MFI using P(3)TBA 

Synthetic Method SiO2 
(g) 

P(3)TBA 
SDA 
(g) 

H2O 
(ml) 

NH4F 
(g) 

Synthesis 
Time 

(days) 

MFI 
Successful 

Exp 42.a. Fluoride route hydrothermal synthesis in 46 ml autoclave 
180 °C oven 
Molar Composition 1.0 SiO2: 0.08 P(3)TBA: 20.02 H2O: 1.0 NH4F 

Amount Used 1.0 0.47 6.0 0.62 5 N 
 1.0 0.47 6.0 0.62 25 N 
 2.0 0.95 12.0 1.23 4 N 
 2.0 0.95 12.0 1.23 7 N 

Synthetic Method SiO2 
(g) 

P(3)TBA 
SDA 
(g) 

H2O 
(ml) 

(NH4)HF2 

(g) 
Synthesis 

Time 
(days) 

MFI 
Successful 

Exp.42.b. Fluoride route hydrothermal synthesis in 46 ml autoclave 
100 °C oven 
Molar Composition 1.0 SiO2: 0.08 P(3)TBA: 20.02 H2O: 1.00 (NH4)HF2 

Amount Used 1.0 0.47 6.0 0.95 21 N 

 

Work-up: After removing the autoclave from the oven and allowing the content to cool to room 

temperature and pressure, the product was washed (30 ml distilled water) and centrifuged (3500 
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rpm, 15 minutes) three times yielding a white solid. The sample was later dried (60 °C, overnight) 

and studied by XRD crystallography however yielded XRD amorphous material. 

3.3.2. Synthesis of MFI using DP(3)DIP(3)A+I- - N,N-dipropyl-N,N-

diisopropylammonium Iodide 

SDA Synthesis: The SDA N,N-dipropyl-N,N-

diisopropylammonium iodide (Figure 3.47) was synthesised 

by refluxing dipropylamine (3.69 g, 36.47 mmol) and 2-

iodopropane (12.40 g, 72.93 mmol) in 100ml methanol for 

3 days. The methanol was removed under reduced 

pressure and the product was recrystallised using a mixture 

of ethyl acetate and a minimum amount of ethanol to 

remove any soluble impurities. White crystals were 

obtained (6.55 g, 20.79 mmol) and characterised as follows: 

1H NMR (300 MHz, CDCl3, ppm) δ 3.72 (2H, q, N-CH-(CH3)2), 2.97 (4H, t, N-CH2-CH2), 1.97 (4H, 

m(6), N-CH2-CH2), 1.45 (12H, d, N-CH-(CH3)2), 0.97 (6H, t, CH2-CH3); 
13C NMR (300MHz, CDCl3, 

ppm) δ 55.42 (N-CH-(CH3)2, 52.21 (N-CH2-CH2), 18.27 (N-CH-(CH3)2, 17.08 (CH2-CH2-CH3), 11.51 

(CH2-CH2-CH3).  

Zeolite Synthesis: Zeolite MFI was synthesised using N,N-dipropyl-N,N-diisopropylammonium 

iodide in a variety of different synthetic methods and reaction vessels. Table 3.45 and Table 3.46 

and contain the details of all unsuccessful reaction attempts using the hydroxide and fluoride 

route, respectively.   

  

Figure 3.47 - Structure of DPDIPA (N,N-
dipropyl-N,N-diisopropylammonium) 

cation 
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Table 3.45 - Hydroxide route table of conditions for the synthesis of MFI using DP(3)DIP(3)A 

Synthetic Method Ludox 
30%  
(g) 

DMDIBA 
SDA 
(g) 

H2O 
(ml) 

NaOH 
(ml) 

Synthesis 
Time 

(days) 

MFI 
Successful 

Exp.43.a. Hydroxide route dense-gel synthesis in 8 ml polypropylene bottle 
100 °C oven 
Molar Composition 1.0 SiO2: 0.13 DP(3)DIP(3)A: 0.18.60 H2O: 0.13 NaOH 

Amount Used 3.0 0.63 1.0 2.0 10 N 
 3.0 0.63 1.0 2.0 14 N 

 

Table 3.46 - Fluoride route table of conditions for the synthesis of MFI using DPDIPA 

Synthetic Method Ludox LS 
30% 

(g) 

DP(3)DIP(3) 
SDA 
(g) 

H2O 
(ml) 

NH4F 
(g) 

Synthesis 
Time 

(days) 

MFI 
Successful 

Exp.44.a. Fluoride route autoclave hydrothermal method  
100 °oven 
Molar Composition 1.0 SiO2: 0.18 DP(3)DIP(3)A: 20.0 H2O: 1.0 NH4F 

Amount Used 1.0 0.91 6.0 0.62 14 N 

3.4. Additional X-ray Diffraction Peak 

An additional peak at 5.2 2 θ° has been observed in X-ray diffraction patterns of MFI synthesised 

using the following structure directing agents: triethyl-n-propylammonium iodide, some triethyl-

N-hexylammonium iodide samples and triethyl-N-heptylammonium iodide. 

When powder patterns were researched in the ‘The Collection of Simulated XRD Powder Patterns 

for Zeolites’, two possible substances were found that may be assigned to this peak: Perlialite (LTL 

framework) and VPI-5 (VFI framework). Perlialite with LTL framework was dismissed as an option 

because it has no silicon only based related materials. Additionally, it has a peak at ~22.5 2 θ° that 

should also be observed if this species was present and is not observed in the XRD powder 

pattern.  

The VFI framework however, has a silicon based related material called MCM-9.15 The peak 

observed at ~5.4 2θ ° corresponds to the first peak on the MCM-9 spectra16 however this is the 

only strong peak and MCM-9, as a large mesoporous structure does not have good crystallinity 

and long-range order. Any other peaks in the MCM-9 spectra present are very small by 

comparison. Some can be identified and some appear to be missing. It is possible some are over 

lapped by much stronger silicalite-1 (MFI framework) peaks and it is also possible that due to the 
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lack of long-range order, some crystal faces have not fully formed and as such the peaks are 

missing.  Additionally this zeolite is synthesised with quaternary ammonium cations16,18 and can 

be synthesised using n-alkyltrimethylammonium SDA’s.17  It is thought that the zeolites 

synthesised within this chapter are high silica MFI with MCM-9 intergrowths due to the small 

nature of the triethylammonium which closely resembles the  alkyltrimethylammonium cations 

used in the literature.  
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4.0. Solid State NMR Study of MFI Zeolite Synthesised Using Varied 

Structure Directing Agents 

Carbon (13C) and nitrogen (14N) solid state NMR experiments have been used to explore the 

effects of altering structure directing agent size and shape in the synthesis of silicalite-1. Previous 

studies exist on ZSM-51  and the high-silica version, silicalite-12,3 using hydroxide route syntheses 

and more recently studying the fluoride route synthesis.4 The majority of these studies have 

focused on the use of tetrapropylammonium (TPA) as a structure directing agent (SDA)5, leaving a 

wealth of undiscovered knowledge that could contribute to the chemistry of zeolites.  

The structure of the ZSM-5 framework has been established since 19816 and in 1987 the location 

of the structure directing agent was defined within the zeolite pore, with propyl chains not fully 

extended but pointing towards the straight [010] and sinusoidal channels [100].5 This is 

demonstrated in Figure 4.1; 

 

Figure 4.1 - Schematic representation of TPA silicalite-1 within the zeolite framework and the orientation of TPA 
within straight and sinusoidal channels (not to scale) 

 

More recently, further structural information has been determined about the zeolite structure 

including the inclusion of the fluoride mineralising agent into the structure,7 differences in 

silicalite-1 channel opening sizes (straight = 5.4 Å x 5.6 Å, sinusoidal = 5.1 Å x 5.7 Å)8 and the 

effects of varying alkyl chain length of TPA SDA in silicalite-1.9  
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The use of a systematic study of SDA’s on the simple efficient zeolite silicalite-1,10 could help to 

identify why some structure directing agents produce more crystalline zeolites and what synthetic 

qualities are responsible, as well as the effects of different structure directing agents on silicalite-

1’s crystal shape and size that are key aspects to their absorption properties. 

4.1. 13C Solid State NMR 
 

Carbon solid state NMR studies 13C {1H} have been used to determine the local effects and 

orientation of the following series of structure directing agents synthesised in Chapter 3 in 

silicalite-1 zeolite; 

 

 

 

 

 

 

 

4.1.1. TPA F-Silicalite-1 

The synthesis of Silicalite-1 using tetrapropylammonium (TPA) as an organic SDA is commonly 

observed in the literature.4,11,12 Initial spectra obtained of TPA silicalite-1 using the hydroxide 

route synthesis returned a low resolution spectrum (Figure 4.2), with large peak linewidths and 

minimal peak splitting observed at the terminal (Cγ) carbon at ~10 ppm.  

N-alkyltributylammonium 
 

N-alkyltriethylammonium 
 

 

 

N-alkyltripropylammonium 
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Figure 4.2 – 

1
H {

13
C} CP MAS NMR of silicalite-1 synthesised with tetrapropylammonium using the hydroxide route 

synthesis 

 

The silicalite-1 TPA terminal Cγ peak has been observed splitting in MFI and other zeolites since 

the early 1980s in MFI2,13,14,15 and other zeolites16 where the reasons for its occurrence have been 

the subject of a literature debate. Initial works by Nagy and co-workers15 and Boxhoorn and co-

workers17 considered many options but deduced the splitting is due to TPA ion interactions with 

the straight and sinusoidal channels of different chemical environments. Nagy and co-workers18 

later deemed this splitting due to steric contact between the methyl groups of two adjacent TPA 

molecules whereas Burkett and Davis19 deemed it due to a difference in van der Waal interactions 

between the methyls and framework species of the straight and sinusoidal channels.2,16 This latter 

view would indicate that there are two individual resonances; one from the two propyl Cγ 

interactions with the straight channel, and the other from the two propyl Cγ interactions with the 

sinusoidal channel.  

In more recent years the development of synthetic procedures and solid state NMR capabilities 

have continued to provide higher resolution spectra whereby in 1998 Gougeon and co-workers4 

successfully elucidated 8 peaks in the silicalite-1 TPA system by using fluoride as a replacement 

mineralising agent. Use of the fluoride route allows for almost defect-free zeolites to be produced 

allowing very good spectral resolution to be obtained. As such, 8 carbons peaks can be 

distinguished from Figure 4.3 and characterised as follows (Table 4.1).  

5 15 25 35 45 55 65 
ppm 

Cα 

Cβ Cγ 
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Figure 4.3 - 

1
H {

13
C} CP MAS NMR of silicalite-1 synthesised with tetrapropylammonium using the fluoride route 

synthesis 

 

Table 4.1 - Table of chemical shift values for fluoride route TPA silicalite-1 sample using solid state NMR 

TPA Alkyl Assignment (δ) C1 (α) 
/ ppm 

C2(β) 
/ ppm 

C3 (γ) 
/ ppm 

1H {13C} CP MAS SS NMR 64.80 / 61.82 16.07 / 15.75  
15.33 

10.70 – straight 
9.53/ 9.36 - sinusoidal 

 

The significant chemical resolution enhancement elucidates 

8 carbon resonances for the 3 carbons (α, β, γ) in TPA 

silicalite-1 (Figure 4.4). The Cγ spilt peaks are individually 

assigned as per previous assignments by Abraham and co-

workers (ZSM-5),20 and Dib and co-workers (silicalite-1)9 to 

the straight and sinusoidal channels.  

The NMR spectrum obtained displays the same peak 

splitting as previously observed whereby a carbon peak 

area ratio of 1:1 is observed, indicating two propyl arms are extended in, or towards the straight 

channel, and two the sinusoidal channel. 

Despite being previously observed on multiple occasions9,12,13, the splitting of TPA silicalite-1 Cα is 

difficult to justify. It cannot arise due to residual dipolar coupling to the 14N as the CQ values 

(determined later in this chapter) are not of sufficient size21 and the strength of the applied 

magnetic field has no affect on them.22 They also do not arise due to the location of the fluoride 

5 15 25 35 45 55 65 
ppm 

Figure 4.4 - Structure of TPA 
(tetrapropylammonium) cation SDA 
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within the zeolite pore as the fluoride has now been determined23 to sit within the [415262] cage 

covalently bonded to silicon, therefore they are not sufficiently close. Remaining options involve 

different chemical shift peaks due to molecular motion within the SDA and therefore different 

interactions with the zeolite framework.  

The zeolite framework is sensitive to lots of contributing factors during crystallisation. These 

include the reagent composition, crystallisation time and temperature amongst others and all of 

these can have an effect on the crystal size and shape produced.24   The study of TPA silicalite-1 

zeolite synthesised using the fluoride route produces rectangular crystals of 30 x 60 µm 

dimensions by SEM Imaging (Figure 4.5). 

 
Figure 4.5 - SEM Image of TPA silicalite-1 synthesised via the fluoride route. Rectangular shaped crystals of 

dimensions ~ 30 x 60 µm at 300 x zoom 

  

4.1.2. N-alkyltripropylammonium Silicalite-1 Series 

In order to discover more about this system, the n-alkyltripropylammonium silicalite-1 series was 

studied by 13C solid state NMR altering the alkyl chain length from methyl to pentyl.  

4.1.2.1. MTPA F-Silicalite-1 

The smallest alkyl chain in the successful synthesis of n-

alkyltripropylammonium silicalite-1 series is n-

methyltripropylammonium, shown right (Figure 4.6). 

This zeolite rapidly crystallises within 2 days at 100 °C Figure 4.6 - Structure of MTP3A (n-
methyltripropylammonium) cation SDA 
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using the described dense-gel synthetic method in Chapter 3.  

The spectral resolution obtained for MTPA F silicalite-1 also displays significant enhancements 

over previous samples synthesised using the hydroxide route. The 13C {1H} CP MAS NMR spectrum 

is shown below (Figure 4.7) and assigned as follows (Table 4.2): 

 

Figure 4.7 – 
1
H {

13
C} CP MAS NMR of silicalite-1 synthesised with n-methyltripropylammonium using the fluoride 

route synthesis 
  
 

Table 4.2 - Table of chemical shift values for fluoride route MTP silicalite-1 sample using solid state NMR 

MTP(3)A 
Assignment (δ) 

N-methyl 
/ ppm 

Tripropyl / ppm 

 C1  
(α) 

C2  
(α) 

C3  
(β) 

C4  
(γ) 

1H {13C} CP MAS 
SS NMR 

47.40 
47.71 

67.22 / 65.22 
62.93 / 61.61 

15.64 10.24  
9.31 / 8.61 

 

A minimum of 10 carbon peaks can be deciphered from the 13C {1H} spectrum above (Figure 4.7) 

for the MTPA structure directing agent in silicalite-1.  

The method used to study the channel location of various alkyl chains within these series of SDA 

silicalite-1 samples is a method previously used by Dib and co-workers25. The method involved 

identification of a carbon resonance (e.g, Cβ) that is split into two chemical resonances for 

carbonds directed towards the straight and sinusoidal channels. For the tetrapropylammonium 

silicalite-1, the peak areas observed should exist in a 2:2 ratio for the two propyl chains in each 

straight and sinusoidal environment. However, when one propyl chain is replaced with another 

alkyl chain, methyl in this sample, the ratio changes to a 1:2 ratio of propyl chains in the straight 

5 15 25 35 45 55 65 
ppm 
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and sinusoidal channel indicating the methyl chain location in the straight channel, as shown in 

Figure 4.8; 

 
Figure 4.8 - Schematic representation of MTPA silicalite-1 within the zeolite framework and the orientation of MTPA 

within straight and sinusoidal channels (not to scale) 

 

Interestingly, the replacement of fluoride as a mineralising agent26 not only adds a new covalent 

bond to the system, reduces crystal defects27 and crystallisation time but it also has a dramatic 

effect on the crystal shape and size obtained.28 This is demonstrated in Figure 4.9 whereby the 

hydroxide route synthesis yields ~ 5µm diameter spherical crystals and the fluoride yields the 

classical coffin shape crystals (25 µm x 80µm) dimensions; 

 

Figure 4.9 – SEM Images of MTPA silicalite-1 synthesised using (left) hydroxide route producing spherical crystals  
~5 µm and (right) fluoride route producing coffin shape crystals of 25 x 80 µm size 
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4.1.2.2. ETPA Silicalite-1 

Upon increasing the alkyl chain length from methyl to n-

ethyltripropylammonium (Figure 4.10) silicalite-1, a 

minimum of 10 carbon peaks can be identified. The 

spectrum is shown below in Figure 4.11 and 

characterised in Table 4.3: 

 

Figure 4.11 – 
13

C {
1
H} CP MAS NMR of silicalite-1 synthesised with n-ethyltripropylammonium using the fluoride route 

synthesis 

 

 

Table 4.3 – Table of chemical shift values for fluoride route ETP silicalite-1 sample using solid state NMR 

ETPA 
Assignment (δ) 

N-ethyl / ppm 
 

Tripropyl / ppm 

 C1  
(α) 

C2  
(β) 

C3  
(α) 

C4  
(β) 

C5  
(γ) 

1H {13C} CP 
MAS SS NMR 

55.06 6.18 62.56 / 61.47 
60.62 

15.56  
15.28 

10.44 / 
8.90  8.34 

 

A splitting pattern emerges for the propyl chain that allows comparison to previously observed 

spectra of TPA and MTP silicalite-1 (Figure 4.12); 

0 10 20 30 40 50 60 
ppm 

Figure 4.10 - Structure of ETP3A 
(ethyltripropylammonium) cation SDA 
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Figure 4.12 - 
13

C {
1
H}  CP MAS NMR of silicalite-1 synthesised with the methyl to propyl series of n-

alkyltripropylammonium from 2.5 – 15 ppm (intensity not to scale) 

 

As indicated within the red region of Figure 4.12, a decrease in the straight channel carbon 

resonance for ETPA propyl Cγ is observed. This peak reduction represents the replacement of a 

straight channel propyl chain with both methyl and ethyl respectively, as has been as previously 

observed by Dib ad co-workers.9  

The increase in structure directing agent size to n-ethyltripropylammonium silicalite-1 appears to 

effect the crystals formed whereby the shape and size of the crystals more closely resemble 

crystals synthesised using TPA (Figure 4.13). 

 
Figure 4.13 - SEM Image of ETP silicalite-1 synthesised via the fluoride route. Coffin shaped crystals of dimensions  

~40 x 90 µm at 400 x zoom 

2.5 4.5 6.5 8.5 10.5 12.5 ppm 

TPA 

 

ETPA 

 

 

MTPA 

Straight 

channel Cγ 

Sinusoidal 

channel Cγ 

Et (Cβ) 
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4.1.2.3. BTPA Silicalite-1 

Upon increasing the alkyl chain length to n-

butyltripropylammonium as silicalite-1 SDA (Figure 

4.14), a minimum of 10 carbon resonances can also 

be deciphered from the NMR spectrum shown 

(Figure 4.15) and characterised (Table 4.4): 

 

Figure 4.15 - 
13

C {
1
H} CP MAS NMR of silicalite-1 synthesised with n-butyltripropylammonium using the fluoride route 

synthesis 
 

 

 
Table 4.4 - Table of chemical shift values for fluoride route BTP silicalite-1 sample using solid state NMR 

BTPA 
Assignment (δ) 

N-butyl / ppm  Tripropyl / ppm 

 C4 
(α) 

C5  
(β) 

C6  
(γ) 

C7  
(δ) 

 C1 
(α) 

C2 
(β) 

C3 
(γ) 

1H {13C} CP MAS 
SS NMR 

60.60 24.87 
24.24 

20.12 14.76  62.56 
64.76 

16.31 11.57 
10.61 

 

In BTPA silicalite-1 we observe the opposite effect to methyl and ethyl in the n-

alkyltripropylammonium species. A reduction in propyl Cγ peak area is observed in the sinusoidal 

channel, as opposed to the straight channel. This reduction of the sinusoidal channel propyl 

occurs due to the replacement of the butyl extended into the sinusoidal channel which has also 

previously been observed9 (Figure 4.16). 

5 15 25 35 45 55 65 ppm 

Figure 4.14 - Structure of BTP3A (N-
butyltripropylammonium) cation SDA 
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4.1.2.4. P5TP3A Silicalite-1 

Upon increasing the alkyl chain length in the n-

alkyltripropylammonium silicalite-1 series, the trend 

of reduced propyl Cγ peak area in the sinusoidal 

channel continues. A preference for the n-

pentyltripropylammonium cation (Figure 4.17) to sit 

in the silicalite-1 pore with the penyl chain directing 

into the sinusoidal channel is observed.  

The full spectrum (Figure 4.18) and assignment (Table 4.5) are shown below and depict many 

peaks starting to show signs of splitting. Despite this peak splitting observed, a reduction in 

resolution is observed in silicalite-1 synthesised using larger structure directing agents.  

8 10 12 
ppm 

Figure 4.17 - Structure of P5TP3A 
(pentyltripropylammonium) cation SDA 

P5TP3A 

 

BTP 

 

TPA 

 

Straight 

channel Cγ 

Sinusoidal  
channel Cγ 

Figure 4.16 - 
13

C {
1
H} CP MAS NMR of propyl to pentyl n-alkyltripropylammonium silicalite-1  

(intensity not to scale) 
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Figure 4.18 - 
13

C {
1
H}  CP MAS NMR of silicalite-1 synthesised with n-pentyltripropylammonium using the fluoride 

route synthesis 

 
 
Table 4.5 - Table of chemical shift values for fluoride route P5TP3A silicalite-1 sample using solid state NMR 

P5TP3A 
Assignment 

(δ) 

N-pentyl / ppm Tripropyl / ppm 

 C4 
(α) 

C5 
(β) 

C6 
(γ) 

C7 
(δ) 

C8 
(ε) 

C1 
(α) 

C2 
(β) 

C 
(γ) 

1H {13C} CP 
MAS SS NMR 

63.98 27.56 
26.99 

22.17  
21.73 

16.78 12.90 
12.09 

61.78 15.27 10.92 
9.85 

 

It is interesting to note that when using the hydroxide route synthesis, the increase of methyl to 

pentyl in the n-alkyltripropylammonium silicalite-1 series has no effect on the crystal shapes 

observed but leads to a progressive increase in crystal size from 5 µm using MTPA up to 10 µm 

using P5TP3A silicalite-1 (Figure 4.19).  

The fluoride route synthesis however, slowly morphs in crystal shape during the increase from 

methyl to pentyl in n-alkyltripropylammonium silicalite-1. The observed change morphs from ~25 

x 80 µm flat-faced rectangular crystals to smaller (up to 10 µm) tabular twinned crystal shapes.  

  

5 15 25 35 45 55 65 ppm 
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4.1.3. N-alkyltripropylammonium Silicalite-1 Summary 

Increasing the length of the alkyl chain in n-alkyltripropylammonium silicalite-1 has the effect of 

changing channel preference of the n-alkyl substituent from the straight to sinusoidal channel at 

propyl (Table 4.6):  

Table 4.6 – Table showing progressive channel preference change upon ascending the n-alkyltripropylammonium 
silicalite-1 series 

Silicalite-1 SDA N-alkyl channel preference 

MTPA Straight channel 

ETPA Straight channel 

TPA 50:50 

BTP Sinusoidal channel 

P5TP3 Sinusoidal channel 

 

This channel preference can be explained by the size of the channel pore openings. Replacement 

of the SDA from TPA to a smaller alkyl chain leads to a preference of the alkyl pointing towards 

the straight channel. This has a smaller pore opening allowing two of the larger propyl chains to 

point towards the larger sinusoidal channel. This is reversed by the replacement of the SDA with a 

larger alkyl substituent and therefore a preference of pointing towards the larger sinusoidal 

channel, indicating the ability of the SDA to orientate to steric preference.  

 A change in the effect of the size of the structure directing agent on crystal size has been 

observed using the hydroxide route whereas a change in crystal size and shape has been observed 

Figure 4.19 - SEM Image of P5TP3A silicalite-1 
synthesised via the hydroxide route. Spherical 

crystals of dimensions up to 10 µm 

Figure 4.20 - SEM Image of P5TP3A silicalite-1 
synthesised via the fluoride route. Twinned tabular 

crystals  
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for the fluoride route synthesis using the n-alkyltripropylammonium silicalite-1 series. Upon 

increasing structure directing agent size, the crystal size interestingly increases using the 

hydroxide route and decreases using the fluoride route, which will both affect the zeolite surface 

area and catalytic properties of the aluminosilicate form.  

4.1.4. N-alkyltributylammonium Silicalite-1 Series 

In order to determine if the previous silicalite-1 trends could be replicated for another series, or if 

the size of the SDA affects the zeolite channel preference, silicalite-1 was studied using increasing 

n-alkyltributylammonium silicalite-1 from methyl to pentyl. Despite excessive synthetic attempts, 

it was not possible to successfully synthesise P3TPA (n-propyltributylammonim) silicalite-1. 

Additionally, TBA (tetrabutylammonium) was not used to attempt to synthesise silicalite-1 due to 

it being well known for synthesising another zeolite silicalite-2 with MEL framework.29,30   

4.1.4.1. MTBA Silicalite-1 

Silicalite-1 was successfully synthesised using n-

methyltributylammonium (Figure 4.21). The 13C {1H} 

spectrum obtained of silicalite-1 synthesised yielded 13 

chemical resonances from phenomenal spectral 

resolution. This is demonstrated by the splitting of peaks around 58 - 67 ppm (butyl Cα) appearing 

as three peaks separated by 657 Hz (Figure 4.22).  

  

Figure 4.21 – Structure of MTBA (n-
methyltributylammonium cations) SDA 



References begin on page 150  128 | P a g e  

 
Figure 4.22 - 

13
C {

1
H} CP MAS NMR of silicalite-1 synthesised with n-methyltributylammonium using the fluoride 

route synthesis 

 

The exceptional spectral resolution displayed by MTBA silicalite-1 allowed for the assignment of 

these peaks in the straight and sinusoidal channels whereby downfield chemical shift peaks 

represent alkyl chains in the smaller straight channels and upfield peaks represent alkyl chains in 

the larger sinusoidal channel. This assignment confirms an orientation whereby the methyl chain 

and one butyl chain preferentially sit directed towards the smaller straight channel and two butyl 

substituent’s sit directed towards and extended into the sinusoidal channels.  

This represents the first occurrence of identifying channel assignments in silicalite-1 sample 

outside the n-alkyltripropylammonium series.  

Table 4.7 - Table of chemical shift values for fluoride route MTB silicalite-1 sample using solid state NMR 

MTBA Assignment 
(δ) 

N-methyl 
ppm 

Tributyl / ppm 

 C1  
(α) 

C2  
(α) 

C3  
(γ) 

C4  
(δ) 

C5 
(ε) 

1H {13C} CP MAS SS 
NMR 

Straight - 
48.65 

Straight-  
65.85  

Sinusoidal -  
63.26/ 59.25 

Straight-   
24.54 

Sinusoidal - 
23.52 / 23.13 

Straight - 
19.83  

Sinusoidal 
-19.36 

Straight - 
14.45 

Sinusoidal - 
13.47/ 12.60 

 

Each of the butyl chain straight and sinusoidal assignments represents a 1:2 peak area ratio, 

indicating preference of the methyl facing the straight chain, as demonstrated in Figure 4.23: 

5 15 25 35 45 55 65 
ppm 
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Figure 4.23 - Schematic representation of MTBA silicalite-1 within the zeolite framework and the orientation of MTBA 

within straight and sinusoidal channels (not to scale) 

 

4.1.4.2. ETB Silicalite-1 

Upon increasing the alkyl chain to n-

ethyltributylammonium (Figure 4.24) 

silicalite-1, a spectrum with good spectral 

resolution is also obtained, successfully 

yielding 11 carbon resonances shown (Figure 

4.25) and characterised (Table 4.8). 

 

Figure 4.25 - 
13

C {
1
H}  CP MAS NMR of silicalite-1 synthesised with n-ethyltributylammonium using the fluoride route 

synthesis 

 

5 15 25 35 45 55 65 
ppm 

Figure 4.24 - Structure of ETB (n-ethyl-
tripropylammonium) cation SDA 
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Table 4.8 - Table of chemical shift values for fluoride route ETB silicalite-1 sample using solid state NMR 

 

The 2:1 peak area ratio of the butyl substituent’s sitting in the sinusoidal and straight channels 

respectively is retained upon increasing the alkyl chain to ethyl. Again this represents the SDA 

preference of sitting within the zeolite pore with the ethyl chain pointing towards the smaller 

straight channel.  

4.4.4.3. P5TBA Silicalite-1 

 

Upon increasing the alkyl chain to pentyl in the n-

alkyltributylammonium silicalite-1 series, a decrease in 

chemical resolution is observed. The 13C {1H} CP MAS 

NMR spectrum obtained is shown below (Figure 4.27), 

and characterised as follows (Table 4.9). 

 

Figure 4.27 - 
13

C {
1
H}  CP MAS NMR of silicalite-1 synthesised with n-pentyltributylammonium using the fluoride route 

synthesis 

5 15 25 35 45 55 65 ppm 

ETBA Assignment 
(δ) 

N-ethyl / ppm Tributyl / ppm 

 C1 
(α) 

C2  
(β) 

C3  
(α) 

C4  
(β) 

C5  
(γ) 

C6 
(β) 

1H {13C} CP MAS SS 
NMR 

52.63 7.73 Straight - 
62.06  

Sinusoidal - 
59.59 

Straight – 
22.78 

Sinusoidal 
– 21.67 

Straight – 
18.24 

Sinusoidal 
– 17.66 

Straight – 
14.14 

Sinusoidal – 
12.33 / 11.40 

Figure 4.26 - Structure of P5TBA 
(pentyltributylammonium) cation SDA 
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Table 4.9 - Table of chemical shift values for fluoride route P5TBA silicalite-1 sample using solid state NMR 

 

Due to the significant number of resonances and decreased resolution observed, the only peak 

splitting observed are the butyl and pentyl terminal carbons. The peak splitting observed for the 

butyl substituent’s exhibit a reduced peak area in the sinusoidal channel indicating the pentyl 

preference in the sinusoidal channel. The pentyl peak also exhibits a 1:1 peak splitting which is 

attributed to effects either from angular distortion of the butyl locations in the straight and 

sinusoidal channels or due to the fluoride motion observed in P5TBA (discussed in chapter 5).  

The reduced chemical resolution observed in silicalite-1 when using n-pentyltributylammonium as 

an SDA is thought to be due to crystallisation of the material suffering as a consequence of the 

size and high C:N ratio of the SDA. This increased C:N consequently increases the hydrophobicity 

of the SDA and reduces the attractive forces to Si-O- species during synthesis. For these reasons 

larger SDA zeolites have been known to require a longer time to synthesise of require a higher 

heat to crystallise.  

4.1.5. N-alkyltributylammonium Silicalite-1 Summary 

In the n-alkyltributylammonium silicalite-1 series, increasing the alkyl chain length impacts the 

location of the varied alkyl chain from the straight channel to sinusoidal channel in the same trend 

that was observed for the n-alkyltripropylammonium silicalite-1 series (Table 4.10):  

  

P5TBA 
Assignment 
(δ) 

N-pentyl / ppm Tributyl / ppm 

 C1 (α) C2  
(β) 

C3 
(γ) 

C4 
(δ) 

C5 
(ε) 

C3  
(α) 

C4  
(β) 

C5  
(γ) 

C6 
(δ) 

1H {13C} CP 
MAS SS 

NMR 

64.52 27.57 21.54 16.72 13.14 
12.30 

62.10 22.38 16.0 11.71 
10.05 
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Table 4.10 - Table showing change in channel preference upon ascending the n-alkyltributylammonium silicalite-1 
series 

Silicalite-1 SDA N-alkyl channel preference 

MTBA Straight 

ETBA Straight 

P3TBA -  

TBA -  

P5TBA Sinusoidal 

 

Despite the lack of 13C spectra for P3TBA and TBA silicalite-1, it is possible to theorize exactly 

where the change in channel preference should be observed. In theory, increasing the alkyl chain 

length within the n-alkyltributylammonium silicalite-1 series to propyl, would orientate the SDA 

with the n-alkyl chain in the smaller straight channel. A butyl alkyl chain would orientate with alkyl 

chains in a 50:50 mixture of straight and sinusoidal channels, and replacing the alkyl chain with a 

larger one would lead to the a location in the sinusoidal channel, if this series follows steric 

preference like the n-alkyltripropylammonium series.  

4.1.6. N-alkyltriethylammonium Silicalite-1 Series  

The n-alkyltriethylammonium silicalite-1 series was also studied by 13C solid state NMR, ranging 

from propyl to hexyl (Figure 4.28); 

 

  

         

Figure 4.28 – Schematic Diagram of n-alkyltriethylammonium cation series where the alkyl chain ranges from 
propyl to hexyl 
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The range of solid state NMR results for the n-alkyltriethylammonium series are shown below 

(Figure 4.29) and characterised (Table 4.11) as follows: 

 

Figure 4.29 - 
13

C {
1
H} CP MAS NMR of silicalite-1 synthesised with n-alkyltriethylammonium silicalite-1 series 

Table 4.11 – Table of 
13

C chemical shift assignments for the n-alkyltriethylammonium silicalite-1 series studied 

0 10 20 30 40 50 60 
ppm 

SDA 
Silicalite-1 

Triethyl / ppm N-alkyl / ppm 

 C1 
 (α) 

C2  
(β) 

C3  
(α) 

C4  
(β) 

C5  
(γ) 

P3TEA Straight - 
54.35 

Sinusoidal 
- 48.90 

Straight - 
8.69 

Sinusoidal - 
7.55 

59.87 17.02 10.36 

BTEA C1 
 (α) 

C2  
(β) 

C3 
(α) 

C4 
 (β) 

C5  
(γ) 

C6 
(δ) 

 54.94 7.47 59.45 24.46 20.34 Straight - 14.57 
Sinusoidal - 13.39 

P5TEA C1 (α) C2  
(β) 

C3  
(α) 

C4  
(β) 

C5  
(γ) 

C6  
(δ) 

C7  
(ε) 

 54.76 22.57 59.54  
58.91 

29.56 
28.42 

21.43 14.94 
13.96 

8.56 
7.37 
6.34 

H6TEA C1  
(α) 

C2  
(β) 

C3  
(α) 

C4  
(β) 

C5  
(γ) 

 55.82 
55.03 

21.42 58.71 32.16  
 30.44 

26.85 

   C6  
(δ) 

C7  
(ε) 

C8  
(ζ) 

   15.50   
14.33 

9.46  
7.74 

6.61  
5.87 

P3TEA 

 

BTEA 

 

P5TEA 

 

H6TEA 



References begin on page 150  134 | P a g e  

Throughout the n-alkyltriethylammonium silicalite-1 series, the combination of reduced spectral 

resolution and growing number of overlapping peaks made distinguishing the orientation very 

difficult. There was not sufficient peak splitting observed in the ethyl peaks in order to determine 

the alkyl substituent orientations. It is possible this is the case for the whole n-

alkyltriethylammonium silicalite-1 series because the ends of the ethyl chains do not reach the 

openings of the pores.  

Within the n-alkyltriethylammonium silicalite-1 series, it is possible to consider another 

comparative method whereby the alkyl chain could yield orientation information. This series of 

SDA silicalite-1 species all possess a peak that does not suffer from peak overlapping, and has 

sufficient chemical resolution to observe splitting patterns (Figure 4.30). 

These peaks all represent an n-alkyl 

peak but indicate some form of 

splitting. This splitting could be due to 

a number of features. It could arise 

from the existence of this alkyl chain 

in both channels as we have 

previously observed. For example, 

the BTEA splitting occurs in a peak 

area ratio of 1:2 indicating the butyl 

could exist in the straight channel in 

1/3rd of pores and the sinusoidal in 

2/3rd of pores.  

However this peak area ratio seems to change throughout the series with no obvious trend. The 

fact that the triethyl substituent is so small and does not reach into the pores may mean that 

within this series other effects are enhanced, such as fluoride motion (discussed in chapter 5) or 

SDA motion for the particular sample leaving this series open for further investigation.  

10 12 14 16 18 
ppm 

P3TEA 

 

BTEA 

 

P5TEA 

 

H6TEA 

Figure 4.30 - Comparison of 
13

C {
1
H} NMR spectra for propyl to hexyl 

n-alkyltriethylammonium siliclaite-1 from 11-18 ppm 
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4.2. 14N Solid State NMR 

Nitrogen solid state NMR can be used to study zeolite materials as a sensitive prove into the 

occluded structure directing agent within zeolite pores.31  There are two NMR active isotopes of 

nitrogen, 14N and 15N which both present unfavourable qualities as well as possible assets.32 For 

the simpler study of chemical shift resonances, 15N would be considered the best choice. Despite 

low sensitivity from a low natural abundance (0.37 %), 15N possesses a spin ½ nuclei and isotopic 

labelling is possible, though expensive. 14N on the other hand, has an exceptionally high natural 

abundance of 99.6 % but suffers from low sensitivity due to a lower gyromagnetic ratio than 15N.33 

The crucial difference between these isotopes is the spin difference, whereby 14N has a spin 1 

nucleus, inferring it has a quadrupolar moment.  

A quadrupolar moment (eQ) is characteristic for each individual nucleus in the periodic table and 

can be positive or negative. It couples with the electric field gradient (EFG) via an electric 

interaction called quadrupolar coupling,34 discussed in Chapter 2. The EFG originates from 

surrounding electrons and is affected by two properties of the nucleus; anisotropy (CQ) and 

asymmetry (ɲQ). This means that the observation of a nucleus with cubic or almost cubic electron 

symmetry will reduce the EFG to zero, having no effects on the Zeeman Interaction. The non-

spherical asymmetry and large quadrupolar coupling constant observed for 14N means that the 

EFG tensor and therefore quadrupolar coupling tensor will perturb the energy of the Zeeman 

Interactions by observation of second order effects34 (Figure 4.31):   
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Figure 4.31 – Schematic diagraph of the first and second order quadrupolar effects on the Zeeman interaction of a 
spin= 1 nuclei

35
 

 

The spin = 1 nucleus splits into three energy levels using the 2n+1 rule, whereby the two single 

transitions are possible. These transition separations can be described by Equation 4.1; 

       
    

  
     Equation 4.1. 

Where, ω0 = NMR frequency, γN = gyromagnetic ratio of nucleus, B0 = applied magnetic field 

These single transitions are easy to detect however they are affected by the quadrupolar 

interaction in the first order.35 The use of magic angle spinning (MAS) effectively reduces θ, and 

therefore the orientation dependence (3 cos2θ – 1) to zero. The second order effects however, 

brought about by 14N’s large quadrupolar coupling constant cannot be entirely removed by MAS.36 

These quadrupolar coupling parameters can therefore be studied and extracted to identify 

differences in the local environment, which is the reason for the use of 14N experiments within 

this work.   

14N solid state NMR experiments display a central transition peak, and if spun sufficiently slowly 

(~2-5 kHz for these materials) also display spinning sidebands separated by the spinning rate. The 

spinning sideband (SSB) pattern displays numerous equidistant peaks upfield and downfield of the 

νO 

νO 

νO + νQ
1 

νO – νQ
1 

νO + νQ
1 + νQ

2 

νO - νQ
1 + νQ

2 
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central transition and are called satellite transitions. Analysis of these peaks allows us to identify 

information about the local environment of the 14N nucleus providing a platform which allows the 

simple comparison of similar and dissimilar samples.   

This work aims to study the local environment of silicalite-1 using a variety of different shape and 

size structure directing agents to identify the effect on the local order of the 14N.  

4.2.1. 14N MAS NMR Results 

Since the early 1990’s, 14N studies have slowly developed in the literature for zeolites, ZSM-5 

materials, silicalite-137 and precursors. The majority of early studies identified 14N experimental 

results for quaternary ammonium cations.31,33,38 These samples studied have successfully 

identified the 14N quadrupolar interactions under MAS38 and static conditions39,40 however they 

do not represent the structure of the organics within the zeolite framework. As such, the 

relationship between the structure directing agents, lattice symmetries and 14N quadrupolar 

coupling parameters have not been fully deduced.  

Despite prior use of 14N to study the silicalite-1 structure,41 only recently have these experiments 

been used to extract quadrupolar coupling parameters for TPA silicalite-1 using both hydroxide 

and fluoride route syntheses.22,42 14N has been used in a recent study of fluoride route silicalite-1 

samples synthesised using a short range of n-alkyltripropylammonim silicalite-1 samples whereby 

the quadrupolar coupling parameters were also determined.25 The extraction of quadrupolar 

coupling parameters can provide very useful information due to the high sensitivity of 14N to the 

geometries of structure directing agents.31,40  

Initial attempts of this work to study 14N solid state NMR were conducted at University of St 

Andrews and Keele University. Many difficulties were incurred whereby low signal:nosie and 

rolling baselines made the correct fitting of chemical shift anisotropy (CSA) parameters 

unobtainable, even after phasing and baseline correction. A grant was then obtained to run the 

samples on the 850 MHz spectrometer at Warwick University.  
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The following results investigate the effects of altering alkyl chain lengths on the n-

alkyltripropylammonium and n-alkyltributylammonium silicalite-1 series, in order to elucidate 

local effects and to contribute to the developing literature on these zeolite materials.  

4.2.1.1. TPA Silicalite-1 

The 14N spectrum obtained of TPA silicalite-1 (Figure 4.32) displays a phased and baseline spinal 

corrected spectrum overlaid with fitting spectrum Bruker Topspin 3.2 SOLA43 (Solids Lineshape 

Analysis), as shown;  

 
Figure 4.32 - 14N MAS NMR spectrum of TPA silicalite-1 and SOLA fitting profile (νMAS = 2 kHz) 

 

Unlike satellite transitions, the central transition (δISO) remains unaffected by changing the 

strength of the external magnetic field. The isotropic peak at 26.48 ppm was therefore easily 

obtained by comparison to previous 14N spectra. These isotropic chemical shifts are also in 

accordance with previously observed 14N of δISO 25.5 ppm.22 

The spectrum obtained presents a SBB pattern full of discontinuities, with clearly distinguished 

‘horns’ and ‘wings’. Extraction of the quadrupolar coupling parameters from the fitted spectrum 

using SOLA determined the following quadrupolar coupling parameters:  

δISO 26.48 ppm (CQ = 54 kHz, ɲQ = 0.315) 

-800 -600 -400 -200 0 200 400 600 800 
ppm 

SOLA Fitting 

Experimental 
Spectrum 
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These results are in very good agreement with previously observed parameters (CQ =53 kHz and ɲQ 

= 0.325) for TPA silicalite-1. Notably the 14N quadrupolar coupling parameters are very different 

from parameters obtained for TPAI (CQ = 31.7 kHz, ɲQ = 0.00),44 TPACl (CQ = 17 kHz, ɲQ = 0.0)40 and 

TPABr (CQ = 47.78 kHz, ɲQ = 0.0)39 molecules that are not incorporated into the zeolite structure. 

This observation confirms the impact of the zeolite framework structure on the local environment 

of the structure directing agent, and more specifically the effect the framework structure has on 

SDA bond angles and 14N charge distributions, previously observed by Alonso and co-workers.31  

The remainder of the n-alkyltripropylammonium silicalite-1 series was investigated to observe the 

effects the 14N environment from altering the alkyl chain from methyl to pentyl.  

4.2.1.2. MTPA Silicalite-1 

The 14N spectrum obtained for MTPA silicalite-1 is baseline spinal corrected and overlaid with a 

SOLA fitted spectrum. 

 
Figure 4.33 - 14N MAS NMR spectrum of MTPA silicalite-1 and SOLA fitting profile (νMAS = 2 kHz) 

 

The spectrum obtained was fitted and characterised as follows:  

δISO 27.6 ppm (CQ = 57 kHz, ɲQ = 0.469) 

 

-800 -600 -400 -200 0 200 400 600 800 
ppm 

SOLA Fitting 

Experimental Spectrum 
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An additional peak occurs at δISO -16.71 ppm (CQ = 1 kHz, ɲQ = 0.2) which does not occur for TPA 

silicalite-1 but does occur in varying intensity throughout some of the remainder of the NMR 

samples studied. Due to the high symmetry value,  similarity in chemical shift for all additional 

peaks observed and the proximity of the peak to NH4Cl.31 This additional peak is assigned to 

residual ammonium cations in the sample.  

4.2.1.3. ETPA Silicalite-1 

Upon increasing the alkyl chain length to n-ethyltripropylammonium in silicalite-1, a 14N spectrum 

is obtained which displays good agreement to the SOLA fitted pattern as well as an additional 

ammonium peak (Figure 4.34);  

 
Figure 4.34 - 14N MAS NMR spectrum of ETPA silicalite-1 and SOLA fitting profile (νMAS = 2 kHz) 

 

The spectrum contains slightly less discontinuities than observed in TPA silicalite-1 however was 

characterised as follows;  

δISO 27.4 ppm (CQ = 57 kHz, ɲQ = 0.427) 

δISO -16.77 ppm (CQ = 1 kHz, ɲQ = 0.2) 

 

-1000 -500 0 500 1000 
ppm 

SOLA Fitting 

Experimental Spectrum 
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Increasing the alkyl chain length in the n-alkyltripropylammonium silicalite-1 series from methyl to 

propyl has decreased the anisotropy and the asymmetry parameters observed. This trend is not 

observed by Dib and co-workers25 (CQ = 58.0 kHz, ɲQ = 0.4) for the same chemical system however 

it is a logical trend in light of these results on the whole.  

 

The reduction in asymmetry parameter observed upon increasing the alkyl chain from methyl to 

propyl is a logical observation due to the symmetry of the molecular shape increasing towards the 

more symmetrical SDA of TPA. 

 

4.2.1.4. BTPA Silicalite-1 

The 14N NMR spectrum was obtained for the further increase of the alkyl chain to BTPA silicalite-1, 

as shown in Figure 4.36; 

MTPA      ETPA     TPA  

             

Figure 4.35 – Schematic diagram of increasing alkyl chain n-alkyltripropylammonium silicalite-1 series 
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Figure 4.36 - 
14

N MAS NMR spectrum of BTPA silicalite-1 and SOLA fitting profile (νMAS = 2 kHz) 

 

The spectrum displays less discontinuities than have previously been observed from MTPA, ETPA 

and TPA and more closely resembles a TPA-OH 14N NMR spectrum.22 However, this SSB shape is 

also observed by Dib and co-workers whose quadrupolar parameters (CQ = 54.0 kHz, ɲQ = 0.6) 

resemble the results obtained confirming that the lack of shape is due to the function of structure 

directing agent;  

δISO 25.98 ppm (CQ = 56 kHz, ɲQ = 0.579) 

4.2.1.5. P5TP3A Silicalite-1 

The decreased SSB shape continues while ascending the n-alkyltripropylammonium series 

whereby a reduction in the quality of the fitted spectrum is observed; 

-1000 -500 0 500 1000 
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Figure 4.37 - 14N MAS NMR spectrum of P5TP3A silicalite-1 and SOLA fitting profile (νMAS = 2 kHz) 

 

This fitted spectrum however returns quadrupolar coupling parameters of the P5TP3A silicalite-1 

sample and ammonium fluoride as follows; 

δISO 27.0 ppm (CQ = 61 kHz, ɲQ = 0.575) 

δISO -16.3 ppm (CQ = 1 kHz, ɲQ = 0.2) 

Increasing the alkyl chain from TPA, to BTPA and P5TPA indicates the opposite effect than was 

observed from the initial alkyl chain increase of MTPA, ETPA and TPA. Instead of the continued 

decrease of anisotropy and asymmetry parameters, the values pivot at TPA and both 

subsequently increase.  

4.2.1.6. 14N NMR n-alkyltripropylammonium Silicalite-1 Conclusion 

 

The general trends of 14N quadrupolar parameters in the n-alkytripropylammonium silicalite-1 

series are graphically demonstrated in Figure 4.38 and Figure 4.39. 

As can be clearly observed from the graphs, the lowest anisotropy and asymmetry parameters in 

the n-alkyltripropylammonium series are for TPA silicalite-1.  
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This indicates that even within the 

structural confinements of the zeolite 

pore, the more symmetrical structure 

directing agent holds the most symmetry 

and anisotropy.  

Anisotropy parameters have been 

determined to depend mostly the 

following components: the spatial 

distribution of courter-ions, the distortion required on the C-N-C angles to conform to the zeolite 

size35 and the variations in nitrogen to 

anion distances.  

Upon increasing the alkyl chain length in 

the n-alkyltripropylammonium silicalite-

1 series, an increase in fluoride motion 

occurs (discussed in chapter 5) and a 

change from n-alkyl channel location 

from straight, to 50:50, to sinusoidal 

channel. These results therefore identify a simultaneous change. As the trend of decreasing 

quadrupolar coupling parameters also pivots at TPA, a change in n-alkyl channel preference from 

straight to sinusoidal channel is observed.  

The n-alkyltributylammonium silicalite-1 series was also investigated to identify the effects of 

changing the size of the structure directing agent from methyl to pentyl. Propyl and butyl were 

not used in this series due to reasons previously discussed.  

4.2.1.7. MTBA Silicalite-1 

The smallest of the tributyl series, MTBA was studied using 14N NMR and returned a 

comparatively wide chemical shift range extensive spinning sidebands (Figure 4.40); 
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Figure 4.39 – Graph representing the anisotropy (CQ) parameters 
obtained for the n-alkyltripropylammonium silicalite-1 series 

Figure 4.38 - Graph representing the asymmetry (ɲQ) parameters 
obtained for the n-alkyltripropylammonium silicalite-1 series 
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Figure 4.40 - 

14
N MAS NMR spectrum of MTBA silicalite-1 and SOLA fitting profile (νMAS = 2 kHz) 

 

The 14N NMR spectrum obtained shows a vast amount of SBB discontinuities with defined ‘horns’ 

and ‘wings’ and was fitted in very good agreement using SOLA fitting software as follows; 

δISO 23.3 ppm (CQ = 57 kHz, ɲQ = 0.490) 

δISO -16.3 ppm(CQ = 1 kHz, ɲQ = 0.2) 

This series of samples appear to have very similar quadrupolar coupling parameters, at a slightly 

different chemical shift and with an additional ammonium cation peak present as a very small 

impurity. 

Comparison of the 14N quadrupolar coupling parameters in silicalite-1 synthesised using MTPA 

and MTBA allows identification of the effects of SDA size on quadrupolar coupling parameters and 

shows very little difference in anisotropy or asymmetry parameters. This indicates that the 

exchange of tripropyl and tributylammonium cations has very little effect on the 14N quadrupolar 

coupling constants. In each case, the methyl chain has been determined to have a straight 

channel preference meaning the only other difference between these SDAs is the increase in 

fluoride motion observed in MTPA. These results would indicate that the fluoride mobility does 

not have a significant effect on the 14N quadrupolar parameters.  

-2000 -1500 -1000 -500 0 500 1000 1500 2000 
ppm 

SOLA Fitting 

Experimental Spectrum 



References begin on page 150  146 | P a g e  

4.2.1.8. ETBA Silicalite-1 

Upon increasing the alkyl chain in the n-alkyltributylammonium silicalite-1 series, the following 

spectrum and characterisations were obtained;   

 
Figure 4.41 - 

14
N MAS NMR spectrum of ETBA silicalite-1 and SOLA fitting profile (νMAS = 2 kHz) 

 

The spectrum observed displays reduced discontinuities in a shorter range and SOLA fitting 

returned the following quadrupolar coupling parameters; 

δISO 22.87 ppm (CQ = 51 kHz, ɲQ = 0.522) 

Comparison of silicalite-1 synthesised using ETPA and ETBA indicates a very different complex 

story to that observed in the MTPA/MTBA. The differences are summarised in Table 4.12. 

Table 4.12- Table of ETPA and ETBA differences in parameters and determined structural qualities 

SDA Silicalite-1 ETPA ETBA 

δISO/ ppm 22.87 27.4 

CQ/ kHz 57 51 

ɲQ 0.427 0.522 

Fluoride Motion Dynamic Static 

Alkyl Channel Preference Straight Straight 
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The MTPA and MTBA observations that a change in fluoride mobility has little or no effect on 

quadrupolar coupling parameters indicates that within the ETPA and ETBA there is only one other 

difference observed that would lead to such different chemical shift and quadrupolar coupling 

parameters. That is the preference and location of the methyl alkyl chain in the straight channel in 

ETPA and the sinusoidal channel in ETBA.  It would appear the combination of ETBA’s ethyl in the 

straight channel and 2:1 butyl arms in the sinusoidal and straight channel put sufficient angular 

distortion on the 14N in order to decrease the symmetry, reduce anisotropy parameters and 

increase the chemical shift of the isotropic peak.  

4.2.1.9. P5TBA Silicalite-1 

Overtaking the P3TBA and TBA silicalite-1 samples within the n-alkyltributylammonium silicalite-1 

series allows observation of P5TBA with a large ammonium peak in the spectrum;  

 
Figure 4.42 - 14N MAS NMR spectrum of P5TBA silicalite-1 and SOLA fitting profile (νMAS = 2 kHz) 

 

The spectrum lacked discontinuities but was fitted using SOLA to obtain the following quadrupolar 

coupling parameters; 

δISO 26.40 ppm(CQ = 61 kHz, ɲQ = 0.535) 

δISO 16.53 ppm (CQ = 1 kHz, ɲQ = 0.2) 

-1000 -500 0 500 1000 
ppm 

SOLA Fitting 

Experimental 
Spectrum 



References begin on page 150  148 | P a g e  

Comparison of the effects of SDA size in P5TP3A and P5TBA yields the same observation as the 

MTPA and MTBA comparison whereby little to no different in anisotropy or asymmetry were 

obtained. It can therefore clearly be seen that increasing the size of the tributyl substituents have 

little to no effect on the quadrupolar coupling parameters when the fluoride motion remains 

unchanged and alkyl chains maintain the same channel preference.  

4.2.2. 13C and 14N Solid State NMR Conclusions 

The complementary use of 13C and 14N solid state NMR experiments allows the study of the 

effects of SDAs within a rigid zeolite framework. The results obtained using both 13C and 14N 

experiments go hand in hand in order to structurally define the orientation of structure directing 

agents within the zeolite pores, over a large range of quaternary ammonium structure directing 

agents.  

13C solid state NMR results demonstrate a preference throughout the varying shape and size 

SDA’s studied of the larger alkyl chains preferentially orientating towards the larger sinusoidal 

channels throughout the zeolite. This leaves the remaining smaller alkyl chains to extend towards 

the smaller straight channels. In the event however that the majority of the SDA alkyl chains are 

short and sit within the zeolite pore without reaching the channels, it is found that the longer of 

the alkyl chains can be found in either straight or sinusoidal channels. This indicates the strong 

effect of the shape and size on the ordering of the SDA within zeolite frameworks which is closely 

linked to fluoride motion, discussed in Chapter 5.    

14N solid state NMR results allowed for the determination of quadrupolar coupling parameters. 

Prior to this work 14N NMR studies have only been obtained for a small handful of silicalite-1 

samples. The larger range of silicalite-1 materials studied within this work allowed determination 

of the chemical shift, asymmetry parameters and quadrupolar coupling constants. These values 

are dependent on the local order of the SDA’s and as such can be used to determine the influence 

of the framework structure. The quadrupolar coupling parameters vary dependent on the 

distortion of the SDA bond angles within the zeolite pores. The results obtained indicate the most 



References begin on page 150  149 | P a g e  

symmetrical SDA, TPA returns the lowest asymmetry and quadrupolar coupling constant inside 

the silicalite-1 framework structure. Altering any alkyl chains from this TPA SDA therefore gives a 

method of monitoring the effects of the SDA bond distortions and therefore of the quadrupolar 

coupling values obtained.  
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5.0. The Effect of Structure Directing Agent Fluoride Ordering in 

Pure Silica MFI Zeolites 

A typical zeolite synthesis traditionally includes a silicon (or aluminium source), mineralising 

agent, structure directing agent and solvent system in order to crystallise the specific multi-

dimensional pore and channel architecture of a zeolite.1 Until the 1980’s, the most common 

mineralising agent used for zeolite syntheses was a hydroxide based species of the composition 

X+OH-, whereby X is any number of cations including H+, Na+, NH3
+ , K+.2,3,4 The introduction of 

fluoride as the mineralising agent anion by Flanigan and Patton5 and Guth and co-workers6 in 

1978 however had a profound effect on zeolite science and is capable of fundamentally changing 

the zeolite properties obtained.7 The fluoride route involves the replacement of traditional anion 

species OH- with F- ions inferring considerable implications.    

The main problem encountered with the use of hydroxide ions as a mineralising agent is their use 

to charge compensate the structure directing agent (SDA), thereby incorporating the hydroxide 

ions into the framework,8 creating silanol nests and zeolite defects.9 The use of fluoride replaces 

this charge compensation role10 and removes the large majority of OH defects,11 thereby allowing 

for the synthesis of near perfect silicaite-1 crystals.8  

Other benefits of the fluoride route include the synthesis of new zeolite types (ITQ-312, ITQ-47) 

with larger pores,7,13 relative to fluoride content.14 The role of the mineralising agent is to dissolve 

the silica species4 however it is also thought to act as a catalyst to condense species into Si-O-Si 

bonds15 thereby forming the zeolite framework with a significant reduction in crystallisation time 

of a given zeolite, and with increased crystal surface size, relative to the F:Si content.16 The 

introduction of fluoride as a mineralising agent with the aforementioned desirable qualities lead 

to an influx of studies which attempted to determine the effect of fluoride on the zeolite 

crystallisation17 and properties of MFI zeolite16 and other zeolites.18,19 Throughout these studies, 

an additional role of the fluoride anion was discovered: not only does the fluoride interact 
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strongly with the zeolite framework but it covalently bonds to the zeolite framework 

structure.10,20 

Koller and co-workers21,22 studied the fluoride silicalite-1 system (and others: Zeolite Beta, SSZ-23, 

ITQ-3, ITQ-4, ZSM-12) and in 1997 proved by solid state NMR that the fluoride was covalently 

bound to framework silicon creating a pentacoordinated silicon unit (Figure 5.1).  

Prior to this work most zeolite characterisation was performed using 

X-ray diffraction, the go-to tool for materials characterisation 

however many difficulties have been experienced when studying 

zeolites and F-MFI. This includes X-ray diffraction being unable to 

structurally determine between isoelectronic fluoride in the sample 

and OH- ions in defects.23 X-ray diffraction is therefore not a reliable 

technique in which to determine the location of fluoride in MFI framework cages. Additional 

difficulties are found in finding good single crystals for single crystal diffraction, such as crystals of 

sufficient size24,25 or that are not twinned21 and crystallographic techniques also struggle to 

accurately determine bond lengths of zeolites synthesised using the fluoride route. Diffraction 

techniques also affected by fluoride motion. This phenomenon will be discussed throughout this 

chapter and is the reason for years of incorrectly reported, averaged values for pentacoordinated 

species.11,26 The complementary use of solid state NMR with X-ray crystallographic techniques27 is 

an excellent combination allowing for the study of the long range order of materials as well as 

identifying local order to  <1 nm range by solid state NMR.17 

The pentacoordinated silicon unit observed in fluoride based zeolite materials would seem an odd 

idea due to the fact that silicon is primarily a four-coordinate element. Koller and co-workers22 

were not however the first to identify a non four-coordinated silicon. Six-coordinated silica exists 

in the crystalline silicate mineral thaumasite28 and Van de Goor and co-workers29 identified a five-

coordinated silicon species in fluoride synthesized NON zeolite in 1995. This entertains the Aubert 

and co-workers suggestion that “in pure silica as-made crystalline microporous materials 

 

Figure 5.1 - Schematic diagram 
displaying pentacoordinated 

silicon species 
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synthesized in fluoride media, pentacoordinated silicon atoms seem to be a rule, as opposed to an 

exception”.20  

By identification of chemical shift resonances in CP MAS NMR, Koller and co-workers22 observed a 

pentacoordinated silicon unit in the five-coordinate silicon range. This peak was observed at -145 

ppm, far outside the normal SiO4/2 region of -106 to 120 ppm30 and proved the existence of the 

pentacoordianted silicon unit in the form of SiO4/2F
- using 19F-29Si CP MAS NMR. Later work by 

Koller and co-workers21 elucidated a distinction between these pentacoordinated silicon units 

which have since been proved to be placed in the [415262] cage,7,31 on the Si-932 mirror plane sites 

where an averaged peak at -125 ppm for F-TPA Si-MFI is observed. The broad chemical shift and a 

low chemical shift peak represent a dynamic fluoride movement between mirror plane silicon 

sites that can be frozen out at 140 K (-133 °C) (Figure 5.2):   

 

 

 

It is well known that the shape and size of the structure directing agent used in zeolite syntheses 

has an effect on the size of the zeolite pores and channels,16,33,34 a quality that subsequently has 

an effect on the zeolites important absorption capabilities.9,35 Despite being known that changing 

the size and shapes of these structure directing agents also has an effect on the ordering of the 

covalently bound fluoride, very little work has been focused on fluoride disorder effects in any 

other systems than TPA for F-silicalite-1. One such paper that does, is a 2015 paper investigating 

the fluoride disorder in a short series of n-alkyltripropylammonium silicalite-1 samples.32  

 

Figure 5.2 – Schematic diagram displaying pentacoordinated silicon species whereby the additional fluoride is 
covalently bonded to one si-9 site at any time 
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The aim of this chapter is to identify the effect on the fluoride motion that exists in silicalite-1 

synthesized using a variety of different shape and size structure directing agents in order to 

contribute to the on-going literary developments of silicalite-1 structure and crystallisation.  

5.1. 29Si Solid State NMR Results 

5.1.1. TPA F-silicalite-1 

Silicalite-1 was synthesised using tetrapropylammonium iodide, confirmed by X-ray diffraction 

and subsequently studied by a variety of solid state NMR experiments. The 29Si solid state NMR 

results shown below (Figure 5.3), display an NMR spectrum that can be decolvoluted using 

MestReNova36 into 12 peaks, representative of the 12 silicon environments. These silicon 

environments have previously been assigned and classified as orthorhombic Pmna space-group 

within the TPA silicalite-1 system.32  

 

 

 

 

 

 

 

 

 

 

 

The chemical shift of these silicon sites and FWHM (full width at half maxium) as follows.  

Figure 5.3 – Spectrum (black) and deconvolution (blue) of 
1
H {

29
Si} CP MAS NMR spectrum of [TPA]-F MFI 

(6 kHz rotation speed, 7 ms contact time and 3 s recycle delay) 
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1H-{29Si} CP MAS NMR [400 MHz, ppm, FWHM in Hz]; - 108.60 (110), - 109.19 (110), - 110.46 (60), - 

112.93 (48), - 113.22 (61), - 113.89 (40), - 115.80 (63), - 116.16 (49), - 117.68 (110), - 117.77 (110), 

- 118.50 (49), - 126.42 (882). 

Also in line with the previously observed SS-NMR results from Koller and co-workers21 and Fyfe 

and co-workers, is the appearance of a pentacoordinated silicon peak at -125 ppm.  This was 

reported as a dynamically disordered fluoride (at RT), covalently bonded to a silicon in the [415262] 

cage. The broad resonance can be more clearly viewed in the enlargement displayed below 

(Figure 5.4): 

 

 

 

 

 

 

 

 

 

 

The peak observed at -125 ppm (enlarged in red) is assigned to the silicon covalently bonded to 

the mineralising agent fluoride. This peak is observed as a broad peak due to motion of the 

fluorine between mirror plane silicon sites in the [415262] cage.22,32 The broadness of the peak 

observed, as opposed to two distinct peaks for the two silicon sites, is thought to be due to the 

fluoride motion being fast compared to the NMR timescale.  

No reason for this motion has been previously suggested, however one theory is that the fluoride 

motion is related to and dependant on the structure directing agent. More specifically, related to 

the distance to the positively charged nitrogen species within the SDA, as the major role of the 

-150 -140 -130 -120 -110 -100 
ppm 

TPA F-MFI 

SiO4/2F- Expansion 

x10 

Figure 5.4 – 
29

Si {
1
H} CP MAS SS-NMR spectra of TPA F-MFI at 6 kHz rotation speed 
with a 7 ms contact time and 3 s recycle delay 
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fluoride is to charge balance the SDA. Theoretically, the closer the fluoride to the positively 

charged nitrogen cation, the larger the coulombic interaction between them and the stronger the 

attractive force keeping the fluoride statically bound to one silicon site.  

This theory was tested by studying silicalite-1 synthesised using a variety of differently shaped and 

sized structure directing agents, in order to determine the effect on the fluoride ordering. 

5.1.2. 29Si SS-NMR N-alkyltributylammonium Silicalite-1 Series 

The first series of structure directing agents used to test the theory was an increasing fourth alkyl 

chain on quaternary tributylammonium cations as shown in Figure 5.5:  

Methyl and ethyl alkyl chains were first investigated however despite numerous attempts at 

synthesising silicalite-1 zeolite using n-propyltrbutylammonium, no crystalline samples could be 

obtained using the hydrothermal route in autoclaves or polypropylene bottles at 100 °C or 180 °C. 

          
  

MTBA    ETBA    P(3)TBA              

                          

TBA    P(5)TBA 

Figure 5.5 – Schematic diagram of structures of varied alkyl n-alkyltributylammonium cations in the  

tributylammonium silicalite-1 series 
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N-butyltributylammonium was the next logical chain in this series however it was not used to 

attempt to synthesise silicalite-1 zeolite due to it being the primary structure directing agent used 

for synthesis of a different zeolite, silicalite-237 (MEL38).  

5.1.2.1. MTBA F-silicalite-1 

Silicalite-1 was synthesised using n-methyltributylammonium and studied by X-ray diffraction and 

solid state NMR. Comparison of the XRD powder pattern with International Center for Diffraction 

Data (ICDD), a match was found to MFI with orthorhombic39 crystal symmetry and Pmna40 space 

group. This symmetry would indicate that there are 12 silicon environments present in the sample 

however solid state NMR results returned the following spectrum;  

 

 

 

 

 

 

 

Instead of the traditional 12 peaks observed for orthorhombic Pmna symmetry, deconvolution of 

the 1H-29Si CP MAS solid state NMR spectrum revealed 24 individual resonances, which represents 

monoclinic symmetry;  

1H-{29Si} CP MAS NMR [400 MHz, ppm, FWHM in Hz]; - 104.21 (48), - 104.77 (50), - 105.47 (60), - 

107.46 (43), - 107.92 (50), - 108.54 (51), - 109.06 (50), - 109.48 (54), - 110.55 (61), - 111.37 (53), - 

Figure 5.6 – Spectrum (black) and deconvolution (blue) of 
1
H {

29
Si} CP MAS NMR spectrum of [MTBA] F-MFI 

(6 kHz rotation speed with 7 ms contact time and 10 s recycle time)
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111.61 (50), - 112.40 (49), - 112.81 (51), - 113.42 (51), - 113.94 (51), - 114.31 (50), - 114.79 (46), - 

115.28 (51), - 116.14 (59), - 116.61 (53), - 117.48 (54), - 118.15 (64), - 119.02 (49), [- 144.38 (110) 

146.43 (90)].  

Monoclinic symmetry has previously been observed for aluminium containing ZSM-5 zeolite 

dependant on temperature,41 crystal size,35,42 and and if the SDA has been removed from the 

pore. It can be viewed by miniscule differences in the X-ray diffraction powder pattern, 

highlighted in Figure 5.7: 

 
Figure 5.7 – X-ray diffraction pattern of ETBA F-MFI from 5 to 50 2θ ° for identification of monoclinic peaks 

 

The X-ray diffraction pattern for a sample that contains >12 siliicon resonances has therefore 

been studied and compared to observations of Dose and co-workers35 who identify monoclinic 

behaviour outlined in the following Table 5.1: 

  

5 10 15 20 25 30 35 40 45 50 
2θ ° 
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Table 5.1 – Table to summarise the changes observed in a monoclinic morphology of silicalite-1 as opposed to 
orthorhombic 

XRD Peak 2θ ° Expected Change for 
Orthorhombic to Monoclinic 

Change observed 

 

 
 
 

7.9 Line intensity greatly increased No 

8.8 Line intensity greatly increased Yes 

11.9 Line intensity greatly reduced Yes 

12.5 Line intensity greatly reduced No 

14.7 Doublet merges to singlet Some convergence 

23.3 Doublet becomes more apparent Yes 

23.9 Doublet becomes less apparent No 

24.4 Doublet replaces singlet No 

29.2 Doublet replaces singlet No 

48.6 Doublet replaces singlet Insufficient resolution 

 

Despite using a highly crystalline sample, identification of the peaks that show monoclinic 

symmetry is not possible for all comparable peaks within the XRD pattern. As such, the results of 

this comparison are not sufficiently conclusive to discern monoclinic behaviour in the X-ray 

diffraction pattern of silicalite-1 samples.  

This long range order characterisation can however be complemented by the local order 

determined by solid state NMR. It is believed that the observation of an additional 12 peaks in the 

deconvolution can be explained by consideration of the effect of the fluoride motion on the local 

structure, as opposed to the long range order that may remain unaffected by X-ray diffraction 

study. With the fluoride bonded to only one silicon site at any one time in the [415262] cage, the 

12 sites and Pmna symmetry observed by X-ray diffraction becomes 2443 tetrahedral sites in NMR 

when mirror plane sites are observed on the local order. 

The fluoride peak observed in this silicalite-1 CP SS-NMR spectrum synthesised using n-

methyltributylammonium as a structure directing agent clearly shows a doublet at – 145.43 ppm 

(Figure 5.8): 
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This double peak is J coupled whereby JSi-F = 165 Hz demonstrating a strong incorporation of the 

fluoride to the silicon framework. This peak is representative of a statically bound 

pentatcoordinated Si-F which mimics the behaviour observed in Koller and Co-workers44 TPA 

silicalite-1 (IFR and SSZ-23) spectra whereby the fluoride motion is ‘frozen out’ at – 40 °C.  

It would appear that the short alkyl chain length of methyl in the n-methyltributylammonium 

structure directing agent is small enough to allow sufficient coulombic interaction between the 

positively charged nitrogen and fluoride ion to restrict the fluoride to 1 silicon site. Alternatively, it 

is able to affect the frequency of the motion relative to the NMR timescale. This restriction to 

statically disordered fluoride was investigated at different temperatures to determine whether 

temperature could affect the motion. 

5.1.2.2.  MTBA F-silicalite-1 at +50 °C 

Upon increasing the temperature of the MTBA F-MFI spectra collected, a very slight increase in 

the fluoride motion was observed. The chemical shift of the averaged pentatcoordinated silicon 

peaks shift slightly (0.18 ppm) downfield towards the chemical shift region that we observe for 

dynamic disorder of pentatcoordinated silicon species. This is complemented by the slight 

-150 -140 -130 -120 -110 -100 
ppm 

MTBA F-MFI (at RT) 

SiO4/2F- Expansion 

x10 

Figure 5.8 - 
1
H {

29
Si} CP MAS SS-NMR spectra of MTB F-MFI at room temperature at 

6 kHz rotation, with a 7 ms contact time and 3 s recycle delay 
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movement of the two peaks closer together from 1.95 ppm apart at room temperature to 1.48 

ppm apart at 50 °C.  

 

 

 

 

 

 

 

 

 

5.1.2.3.  MTBA F-silicalite-1 at -40 °C 

Upon decreasing the temperature of the MTBA silicalite-1 sample from room temperature the 

opposite effect is observed. The chemical shift of the pentatcoordinated silicon peaks shift slightly 

(0.87 ppm) upfield towards the region observed for static disorder giving an averaged chemical 

shift of the peaks at -146.30 ppm. This is complemented by the slight movement of the two peaks 

further apart from 1.95 ppm apart at room temperature to 2.11 ppm apart at - 40 °C. 

 

 

 

 

 

 

 

 

-150 -140 -130 -120 -110 -100 
ppm 

MTBA F-MFI (+50 deg) 

SiO4/2F- Expansion 

x10 

Figure 5.9 - 
1
H {

29
Si} CP MAS SS-NMR spectra of MTB F-MFI at 50 °C, 6 kHz rotation 
speed, a 7 ms contact time and 3 s recycle delay 

-150 -140 -130 -120 -110 -100 
ppm 

MTBA F-MFI (at -40 deg) 

SiO4/2F- Expansion 

x10 

Figure 5.10 - 
1
H {

29
Si} CP MAS SS-NMR spectra of MTB F-MFI at – 40 °C, 6 kHz 

rotation speed, a 7 ms contact time and 3 s recycle delay 

(+ 50 °C) 

(- 40 °C) 
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The peak shape of the static pentacoordinated silicon peaks shown above (Figure 5.10) shows 

that of an unequal doublet. This has been observed previously by Koller and co-workers2 4 for ITQ-

3 zeolite, Darton and co-workers11 for zeolite SSZ-42 and also Haubenrisser and co-workers 19F 

spectra of fluorophosphates.45 The inequality of this doublet is reported to be due to interactions 

being dominated by heteronuclear dipole interactions and chemical shift anisotropy’s as well as j-

couplings. They also suggest that these effects are the reason that doublets are not observed for 

all zeolites; however this theory is unlikely due to the more recent developments of the different 

types of fluoride disorder.  

5.1.2.4.  ETBA F-silicalite-1 

Upon increasing the alkyl chain from methyl to ethyl (tributylammonium) silicalite-1, a similar 24 

peak spectra is observed:  

1H-{29Si} CP MAS NMR [400 MHz, ppm, FWHM in Hz]; - 107.82 (50), - 107.24 (68), - 108.93 (46), - 

108.36 (54), - 109.52 (57), - 110.13 (47), - 110.50 (68), - 111.47 (64), - 111.92 (65), - 111.92 (47), -  

112.16 (53), - 113.80 (58), - 114.11 (50), - 114.17 (51), - 114.78 (51), - 115.38 (56), - 115.54 (49), - 

116.38 (50), - 117.00 (46), - 117.38 (53), - 118.00 (54), - 119.28 (59), - 119.28 (63), - 141.50 (110). 

 

 Figure 5.11 – MestReNova deconvolution of 
1
H {

29
Si} CP MAS NMR spectrum of ETB F-MFI 

(6 kHz rotation speed with 7 ms contact time and 10 s recycle time)
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The increase in alkyl chain length by one carbon removes the statically bound J-coupled Si-F 

doublet observed at -146 ppm for MTBA and instead displays a small averaged peak at -141.46 

ppm which resembles somewhere inbetween the static MTBA sample and dynamic TPA sample 

(Figure 5.12):   

 

 

 

 

 

 

 

Based on the theory suggested, this change in fluoride mobility detected is a direct response to 

the increase in alkyl chain length. Increasing the alkyl length would decrease the coulombic 

interaction between the structure directing agents positively charged nitrogen and the fluoride 

allowing for a change from static to dynamic disorder of the fluoride.  Though the peak observed 

is an averaged peak with no J-coupled doublet it has not shifted as much as would be expected 

towards the chemical shift region for dynamic disorder. It is most likely that this peak observes 

fluoride motion but at a considerably slower rate than that of the TPA silicalite-1 fluoride. To 

determine whether this slow motion dynamic disorder could be removed the spectrum was also 

observed at – 10 °C (Figure 5.13): 

 

 

-150 -140 -130 -120 -110 -100 
ppm 

ETBA MFI Spectrum (at RT) 

SiO4/2F- Expansion 

x10 

Figure 5.12 - 1H {29Si} CP MAS SS-NMR spectra of MTB F-MFI at room 
temperature, 6 kHz rotation speed, a 7 ms contact time and 3 s recycle delay 
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The reduction in temperature exhibits a movement towards the statically disordered region of the 

spectrum at -144.43 ppm. This movement from static to dymanic disorder leads to a change from 

a wide to narrow peak at increased chemical shift towards the Q4 range in the spectral results. 

Thus the theory would follow that continued increase in the alkyl chain on the tributylammonium 

to propyl, butyl and pentyl  would increase the disorder and chemical shift observed.  

5.1.2.5.  P5TBA F-silicalite-1 

Due to the reduced chemical resolution it was not possible to distingsh the silicon sites present in 

silicalite-1 synthesised using P5TBA. As such, this sample could not be deconvoluted and the 

number of silicon sites in the spectrum could not be determined. 

 

 

 

 

 

 

-150 -140 -130 -120 -110 -100 
ppm 

SiO4/2F- Expansion 

ETBA MFI Spectrum (at -10 deg) 

x10 

Figure 5.13 - 1H {29Si} CP MAS SS-NMR spectra of ETB F-MFI at -10 °C, 6 kHz 
rotation speed, a 7 ms contact time and 3 s recycle delay 

-150 -140 -130 -120 -110 -100 
ppm 

P5TBA F-MFI Spectrum 

SiO4/2F- Expansion 

x10 

Figure 5.14 - 
1
H {

29
Si} CP MAS SS-NMR spectra of P5TBA F-MFI at room 

temperature, 6 kHz rotation speed, a 7 ms contact time and 3 s recycle delay 

(- 10 °C) 
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The above spectrum (Figure 5.14) observed for  silicalite-1 syntheised using n-

pentyltributylammonium lacks an obvious statically disordered fluoride however upon zooming 

into the baseline within the dynamic disorder region, a very broad peak can clearly be seen. It is 

thought that in line with the trend of increasing n-alkyl chain leading to a movement from static  

to dynamic disorder, that this broad silicon peak is due to a dynamically disordered fluoride at 

around the center of the silicon intensity at – 133 ppm.  

5.1.2.6.  29Si SS-NMR N-alkyltributylammonium Silicalite-1 Summary 

Upon increasing the alkyl chain length in the n-alkyltributylammonium silicalite-1 series 

synthesised using the fluoride route, a clear movement from statically disordered to dynamically 

disordered fluoride motion is observed. This is accompanied with the corresponding downfield 

chemical shift and convergence of the double peak observed for statically bound fluoride to a 

single peak for dynamic fluoride motion: sumarised in Table 5.2. 

Table 5.2 – Table of experimental properties obtained from increasing alkyl chain length of n-alkyltributylammonium 
at varied temperatures 

SDA /Silicalite-1 Disorder Average δISO (ppm) 

-40 °C 
MTBA RT 

50 °C 

Static 
Static 
Static 

- 146.30 
-145.43 
- 145.31 

ETBA RT Dynamic -141.43 
- 10 °C Dynamic -144.43 
P5TBA Dynamic ~ -133 

 

This effect can however be influenced by temperature whereby increased temperature 

contributes to the dynamic motion of fluoride and decreased temperature contributes to 

reducing the fluoride dynamic motion.  
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5.1.3. 29 Si SS-NMR N-alkyltripropylammonium Silicalite-1 Series 

The n-alkyltripropylammonium silicalite-1 (Figure 5.15) series was investigated to determine 

whether whether changing the size of the trialkyl groups would have an effect on the fluoride 

motion observed.  

In line with the concurrent theory, we should also observe a movement from static to dynamic 

disorder when increasing this alkyl chain length.  

The only literature study in which these materials can be compared is the previously mentioned 

study by Dib and co-workers46 who determined the effects of a 3-structure directing agent range 

within this series from ethyl to to butyl tripropylammonium silicalite-1.   

  

MTPA     ETPA     TPA     

         
BTPA     P5TP3A 

             

Figure 5.15 - 2D structures of varied length n-alkyltripropylammonium cations 
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5.1.3.1.  MTPA F-silicalite-1 

 

Silicalite-1 was synthesised using n-methyltripropylammonium studied by solid state NMR to 

determine 24 silicon sites representative of monoclinic crystal symmetry (Figure 5.16); 

 

 

 

 

 

 

 

 

 

 

1H-{29Si} CP MAS NMR [400 MHz, ppm, FWHM in Hz]; - 104.10 (66), - 104.69 (58), - 105.71 (74), - 

107.88 (56), - 108.80 (51), - 108.39 (53), - 109.31 (47), - 109.70 (57), - 110.19 (60), - 111.55 (60), - 

112.11 (49), - 112.61 (49), - 113.05 (51), - 113.62 (59), - 114.35 (59), - 114.95 (52), - 115.66 (52), - 

116.06 (63), - 116.65 (62), - 117.80 (72), - 118.53 (58), - 119.09 (58), - 119.46 (65), - 145.84 (243).  

The resulting spectrum obtained shows a significant decrease in chemical shift resolution 

compared to similar silicalite-1 samples synthesised using n-methyltributylammonium and 

tetrapropylammonium, so much so that a 10 times expansion is required in order to observe any 

increase in silicon intensity: 

Figure 5.16 - MestReNova deconvolution of 
1
H {

29
Si} CP MAS NMR spectrum of MTP F-MFI 

(Room temperature, 6 kHz rotation speed with 7 ms contact time and 10 s recycle time)
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The expansion allows the identification of a broad spectral peak at roughly -135 ppm. In order to 

fully elucidate the peak, the sample was collected again at a reduced temperature of – 40 °C in 

order to freeze the peak out (Figure 5.18):  

 

 

 

 

 

 

 

Significant chemical shift resolution enhancements are possible by reducing the sample to -40 °C 

indicating that the reduced resolution at room temperature was due to the fluorides dynamic 

disorder. A J-coupled doublet can thereby be observed centred at -145.34 ppm where the 

fluorides are statically bound to silicon when the motion is ‘frozen’ out.  

-150 -140 -130 -120 -110 -100 
ppm 

MTPA F-MFI (at -40 deg) 

SiO4/2F- Expansion 

x10 

Figure 5.18 - 
1
H {

29
Si} CP MAS SS-NMR spectra of MTPA F-MFI at – 40 °C, 6 kHz 

rotation speed, a 7 ms contact time and 3 s recycle delay 

-150 -140 -130 -120 -110 -100 
ppm 

MTP F-MFI Spectrum (at RT) 

SiO4/2F- Expansion 

x10 

Figure 5.17 - 
1
H {

29
Si} CP MAS SS-NMR spectra of MTP F-MFI at room 

temperature, 6 kHz rotation speed, a 7 ms contact time and 3 s recycle delay 
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5.1.3.2.  ETPA F-silicalite-1 

Due to the diminishing resolution for all the following structure directing agents in the n-

alkyltripropylammonium MFI series no deconvolutions and direct determination of the number of 

silicon sites from the by NMR spectra could be obtained.  

 

 

 

 

 

 

 

In addition to the reduced chemical shift resolution within this series, we also observe interesting 

pentacoordinated silicon peak intensity from ~ -148 ppm to – 120 ppm in silicalite-1 synthesised 

using both ethyl (Figure 5.19) and butyl (Figure 5.20) in the n-alkyltripropylammonium series.  

 

 

 

 

 

 

  

-160 -140 -120 -100 
ppm 

ETPA F-MFI 

SiO4/2F- Expansion 

x10 

Figure 5.19 - 
1
H {

29
Si} CP MAS SS-NMR spectra of ETPA F-MFI at room temperature, 6 

kHz rotation speed, a 7 ms contact time and 3 s recycle delay 

-160 -140 -120 -100 
ppm 

BTPA F-MFI Spectrum 

SiO4/2F- Expansion 

x10 

Figure 5.20 - 
1
H {

29
Si} CP MAS SS-NMR spectra of BTPA F-MFI at room 

temperature, 6 kHz rotation speed, a 7 ms contact time and 3 s recycle delay 
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Upon studying the baseline within this range, we identify a gradual increasing silicon peak that is 

calculated to be centred at -133.03 ppm for ETP and -133.80 ppm BTP representative of dynamic 

disorder. This silicon peaks observed in these spectra are slightly dissimilar from the broad 

dynamic peak observed in Dib and co-workers spectrum of the same material46 at -127 ppm.  

5.1.3.3. P5TP3A F-silicalite-1 

 

The P5TP3A F-MFI NMR spectrum displayed above (Figure 5.21) displays the same gradual 

increase in silicon intensity observed for the previous two alkyl chain lengths in this series of n-

alkyltripropylammonium MFI species. 

 

 

 

 

 

 

 

Due to the dissimilarities in silicon peaks observed in this work compared to Dib and co-workers it 

is considered that this feature is representative of the materials made here which may have slight 

chemical differences due to small changes in the synthetic procedures to that compared to Dib 

and co-workers materials whereby their synthetic procedure uses roughly 1/3rd more structure 

directing and water, amongst other differences.  

-150 -140 -130 -120 -110 -100 
ppm 

P5TP3A F-MFI Spectrum 

SiO4/2F- Expansion 

x10 

Figure 5.21 - 
1
H {

29
Si} CP MAS SS-NMR spectra of P5TP3A F-MFI at – 40 °C, 6 kHz 

rotation speed, a 7 ms contact time and 3 s recycle delay 
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5.1.3.4.  29Si SS-NMR N-alkyltripropylammonium Silicalite-1 Summary 

Upon increasing the alkyl chain in the n-alkyltripropylammonium silicalite-1 series from methyl to 

pentyl we observe the same increase in fluoride motion as was observed in the n-

alkyltributylammonium silicalite-1 series. This is summarised in Table 5.3. 

Table 5.3 – Table of chemical shift resonances observed for silicalite-1 synthesised using varied structure directing 
agents 

SDA/Silicalite-1 Disorder Observed D ISO/ ppm 

- 40 °C MTP Frozen to static at – 40 °C -145.34 
(-144.58+ -146.09) 

MTP Dynamic -130 
ETP Dynamic -133 (broad) 
TPA Dynamic -125 (broad) 

BTP Dynamic -134 (broad) 
P5TP3A Dynamic -134 (broad) 

 

These results support the theory of increased fluoride mobility upon increasing the fourth alkyl 

chain, potentially due to the reduction in coulombic interaction between the fluoride and 

positively charged nitrogen in the SDA.  

5.2. 19F Solid State NMR of Silicalite-1 Species 

19F solid state NMR can also be used to study the pentacoordinated silicon species in question and 

has successfully done so in a variety of different zeolite systems herein. This is possible due to the 

high sensitivity of 19F, as a spin half nuclei with 100 % abundance and high resonance frequency.47 

Previous observations of fluoride chemical shift in these pentacoordinated silicon units have not 

been entirely consistent. This is likely due to the small changes in synthetic methods which lead to 

slightly different framework sizes and confirmations, which are local order traits that can be 

differentiated by solid state NMR. The pentacoordinated silicon peak can occur anywhere in the 

range of -64 ppm to -80 ppm for small cage species whereby downfield chemical shift ranges are 

observed from smaller cage species.4  

Founding work by Koller and co-workers21 report a TPA F-MFI 19F chemical shift at -64 ppm, 

compared to Dib and co-workers46 TPA F-MFI 62.8 ppm chemical shift and Fyfe and co-workers48 
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at -64.9 ppm. This chemical shift can be changed even more by Rojas and co-workers49 synthesis 

of MFI zeolite using 4-bis-imizadole to report a chemical shift of -68 ppm, allowing an apparently 

wide 19F range for the same MFI zeolite.50 It is possible that these differences in chemical shift 

reporting’s are due to differences in the NMR experiments used, such as whether proton 

decoupling was used and a high spectrum obtained. It is also possible these different chemical 

shifts are observed due a difference in the temperature in which they were collected as it has 

been previously deduced that the temperature of the sample has an effect on the fluoride 

motion. This has also been observed by Koller and co-workers21 whereby a difference of 6 ppm is 

observed in the sample TPA F-MFI at room temperature where the fluoride motion is dynamic 

and at 140 K where the fluoride motion is static.  

19F solid state NMR experiments have been investigated on two series of SDA silicalite-1 samples, 

n-alkyltributylammonium and n-alkyltripropylammonium, to determine whether the difference in 

19F chemical shift of the fluoride supports the difference in motion of the fluoride observed by 29Si 

solid state NMR. 

5.2.1. 19F Solid State NMR Results 

5.2.1.1. MTBA F-silicalite-1 

A chemical shift resonance of -67.68 ppm is observed for the statically disordered silicalite-1 

zeolite which is in line with fluorides contained in the [415262] cage (Figure 5.22). 

 

 

 

 

 

 

 
Figure 5.22 - 

19
F MAS NMR of MTBA F-MFI at 30 kHz rotation speed and 280 K 

(spinning sidebands are asterisked*) 

-175 -125 -75 -25 25 
ppm 
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An additional small peak at -79.68 ppm is also observed which has previously been observed48,49,51 

and is reportedly due to an additional fluoride resonance in low temperature synthesised NH4F 

samples only.  

5.2.1.2. ETBA F-silicalite-1 

Upon increasing the length of the alkyl chain to n-ethyltributylammonium silicalite-1, the chemical 

shift of the dynamic fluoride is reduced to -63.61 ppm, a lower value than is experienced in the 

literature for TPA silicalite-1 and slightly below the -64 to -80 ppm range discussed.  

 

  

 

 

 

 

 

This result is in line with the increased motion of the fluoride from static to dynamic observed in 

29Si SS NMR. The asterisked peaks are simply spinning sidebands of the isotropic fluoride peak and 

the addition structural defect peak at -78.91 ppm.49 

5.2.1.3. MTPA F-silicalite-1 

The 19F MTPA silicalite-1 spectrum studied displays the fluoride peak at -65.10 ppm for the 

dynamically disordered material. It very interesting to observe the lack of significant peak at -

77.96 ppm that is observed in all other zeolites studied and is reported to be a common structural 

defect in MFI zeolites.49  

-175 -125 -75 -25 25 
ppm 

Figure 5.23 - 
19

F MAS NMR of ETBA F-MFI at 30 kHz rotation speed - and 
280 K (spinning sidebands are asterisked*) 
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5.2.1.4. ETPA F-silicalite-1 

Upon increasing alkyl chain length in the n-alkyltriproprylammonium silicalite-1 series, a small 

chemical shift difference of the fluoride peak from -65.10 ppm for MTPA to -65.02 ppm in ETPA is 

observed. The latter sample has also been reported by Dib and co-workers to have a fluoride peak 

at -63.9 ppm indicating a possible difference in the local environments of the two fluorides, or 

temperature of the samples obtained. In addition to the -78.76 ppm peak, there are two extra 

peaks at ~ -127.2 ppm and a broad resonance at -106 to -110 ppm. The first of these peaks has 

been observed previously in SSZ-44 by Darton and co-workers11 and is determined to be due to 

absorbed fluoride that can be removed by washing.  The later peak is very small in intensity, is not 

apparent in the ETPA silicalite-1 spectrum by Dib and co-workers46 however would be overlapped 

by a spinning sideband and is likely due to a small % structural defect. 

  

-175 -125 -75 -25 25 
ppm 

Figure 2.24 - 
19

F MAS NMR of MTPA F-MFI at 30 kHz rotation speed and 280 K 
(spinning sidebands are asterisked*) 
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5.2.1.5.  BTPA F-silicalite-1 

Further increase of the alkyl chain reports a fluoride peak at -63.98 ppm. This is in line with the 

trend of the upfield shift previously observed for two smaller n-alkyltributylammonium silicalite-1 

samples obtained and that is also observed within the Dib and co-workers trend.  

 

 

 

 

 

 

 

 

 

This trend also conforms to the theory of reduced chemical shift of the 19F peak upon increased 

movement of the fluoride ion observed in the n-alkyltributylammonium silicalite-1 series.  

-175 -125 -75 -25 25 
ppm 

-175 -125 -75 -25 25 
ppm 

Figure 2.25 - 
19

F MAS NMR of ETPA F-MFI at 30 kHz rotation speed and 280 K 
(spinning sidebands are asterisked*) 

Figure 5.26 - 
19

F MAS NMR of BTPA F-MFI at 30 kHz rotation speed and 280 K 
(spinning sidebands are asterisked*) 
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5.2.1.6.  19F Silicalite-1 Summary 

Upon increasing the alkyl chain in both the n-alkyltripropylammonium and n-

alkyltributylammonium silicalite-1 series, we observe an increase in 19F chemical shift of structure 

directing agents have that proved to have larger fluoride motion in the 29Si results above. This is 

summarised as follows:  

Table 5.4 – Table of isotropic chemical shifts of silicalite-1 fluoride  

SDA/MFI Isotropic peak (small peak)/ δ ppm Literature / δ ppm 

MTPA - 65.10 - 
ETPA - 65.02 (- 78.76) - 63.9 (65.6) 46 

TPA -  - 62.8 (63.4) 46 
- 64 21 
- 65.9 48 

BTPA - 63.98 (-79.25) - 62.60 (63.0) 46 
MTBA - 67.68(-79.68) - 
ETBA - 63.61 (-78.91) - 

 

5.3. Conclusions 

The use of 29Si and 19F solid state NMR experiments allow for the study of silicalite-1 framework 

materials. The results obtained can be used in collaboration with the 14N and 13C NMR 

experiments in order to give an overall picture of silicalite-1 materials and how they vary upon 

the use of different size and shape structure directing agents.  

29Si SS NMR results show the existence of fluoride, covalently bonded to the framework structure 

in all silicalite-1 zeolites studied, using a wide variety of shape and size SDA’s. The fluoride 

becomes bonded to the framework creating a pentacoordinated silicon unit which exists outside 

the usual Q4 region in 29Si SS NMR. This allows it to be studied easily, without overlapping with 

other framework silicon environments. The results indicate a change in motion of the fluoride 

from static to dynamic disorder, coinciding with the SDA used in silicalite-1 whereby an increase 

in the n-alkyl chain in n-alkyltrialkylammonium leads to a change from static to dynamic disorder 

of the fluoride. This trend holds throughout the n-alkyltripropylammonium and n-

alkyltributylammonium SDA series. It is consistent with the theory that the fluoride is statically 

bound when the n-alkyl substituent is small enough to maintain a sufficiently strong coulombic 



References begin on page 179  178 | P a g e  

interaction between the fluoride and positively charged nitrogen. Upon increasing this n-alkyl 

substituent, it is thought the coulombic interaction decreases, allowing increased fluoride 

motion.  

In order to further substantiate this theory, further work would have to be done. This could 

include 13C labelling the end carbon on the n-alkyl substituent, for example within the n-

alkyltripropylammonium series and conducting triple resonance experiments to detect the 

strength of the interaction. One of the major complications that would require consideration for 

these experiments would be the change in orientation of the SDA upon increasing n-alkyl 

substituent from straight to sinusoidal channels, as described in Chapter 4.  

This is the first known occurrence of both static and dynamic disorder being observed at room 

temperature in zeolite materials by adapting the shape and size of the structure directing agent. 

Its importance lies in the well known role of the structure directing agent in the crystallisation, 

growth and properties of zeolites. Continued work in determining information about the 

orientation of structure directing agent within a zeolite framework may contribute to a more 

comprehensive understanding about the nucleation and crystallisation of zeolites and further the 

driving force towards synthesising custom made zeolites.  

19F SS NMR has also been used to study some silicalite-1 zeolite materials and contribute to 

knowledge surrounding the pentacoordinated silicon unit. The results of two series studied 

predominantly show a single 19F chemical environment. The chemical shift of the fluoride is 

observed to decrease consistently upon increased fluoride motion.  

Not only could this work be used to study other SDA’s for these pure silica zeolite materials, it 

could also be adapted to study other kinds of inorganic materials.   
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6.0. Determination of SDA to Framework Distance in Silicalite-1 by 

Solid State NMR 

2D solid state NMR, like its solution state counterpart allows further investigation into chemical 

systems that cannot be deduced by simpler 1D experiments. 2D experiments are defined by two 

frequency axes rather than the usual one in order to determine further structural information 

about a chemical species. Solid state NMR experiments used in this work include DCP (double 

cross polarisation) and REDOR (rotational echo double resonance) NMR experiments, in order to 

identify and exploit internuclear interactions in zeolites.  

Structural determination of MFI and other porous framework materials has been attempted for 

decades, primarily using x-ray diffraction methods.1,2 Many difficulties can occur in using this 

technique, such as finding any single zeolite crystal of sufficient size to study by single crystal X-

ray diffraction,1,3 or finding zeolite crystals that are not twinned.4 Additional problems incur due 

to the particular qualities of MFI synthesised via the fluoride route.4,5  As discussed in Chapter 5, 

use of the fluoride route creates an additional Si-F bond as a pentacoordianted silicon species at 

one silicon-9 site per mirror plane at any given time.4,6,7 Two different geometries are therefore 

observed for [SiO4/2] and [SiO4/2F-]8 whereby the long range structure reflects an average between 

the two species9 (Figure 6.1). 

 

 

 

 

 

Figure 6.1 – Schematic diagram displaying pentacoordinated silicon species whereby the additional fluoride is 
covalently attached to one silicon-9 site at any one time 
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As a result of this incomplete occupancy and the averaging of species, an inaccurate and enlarged 

distance has often been reported for the interesting pentacoordinated Si-F bond in ZSM-510,11 and 

other zeolites (STF9, silicalite-112, Si-FER13, Octadecasil14). 

Due to the development of these distance averaging issues, other techniques have been sought 

out to use alongside X-ray diffraction as collaborative techniques.13,15,16 The use of solid-state 

NMR alongside XRD allows characterisation of species on both long and short range order for a 

more accurate characterisation.5,17,18 

Fyfe and co-workers7 have previously successfully elucidated the Si-F bond location and distances 

in silicalite-1 by the use of DCP and REDOR experiments. The experiments are used in a different 

capacity within this work: to determine the distance between the structure directing agent (SDA) 

methyl group and the framework species in MTBA fluoride silicalite-1. Successful determination of 

the location of asymmetric MTBA within the pore of zeolite MFI will contribute to the ever 

growing attempts to solve zeolite chemist’s questions such as: How exactly are zeolites 

crystallised? How do we synthesise custom made zeolites? 

6.1. Cross Polarisation Theory 

Cross polarisation19 is a technique used to overcome difficulties experienced with single pulse 

experiments on dilute spin nuclei.20 Dilute spins can either be isotopically dilute whereby the spin 

has low abundance (e.g. 13C), or chemically dilute (e.g 31P) whereby spins can have a high 

abundance but are treated as a dilute spin due to being a single atom in a large molecule. The 

difficulty in observation is increased when both of these occasions are combined, such as 

attempting to study 15N single excitation of TPA F-MFI zeolite.  

Nuclei that have low abundance, such as 29Si tend to have particularly long inter-pulse delays and 

therefore suffer from long experimental times and low signal:noise resolution. In this situation, 

cross polarisation magic angle spinning (CP MAS), discovered in 1975 by Schaefer and co-

workers21 is used, often in combination with high power proton decoupling (HPPD) to utilise these 
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dilute spins and gain information about chemical systems that have not been able to previously 

able to obtain.22  

6.1.1. Cross Polarisation: The Experiment 

The cross polarisation experiment occurs via the transfer of magnetisation from a dipolar coupled 

1H or 19F abundant spin to a dilute nuclear spin.23 This is possible by writing the following cross 

polarisation pulse program: 

1. Application of a 90x ° pulse to 1H (B1
H) to rotate the magnetisation to y-axis 

2. Magnetisation maintained at y-axis by application of an on resonance field along y-axis to 

spin lock. 

3. The application of a pulse on the dilute spin resonance frequency (B1
X) simultaneously 

with spin-lock for a certain length contact time. 

4. Magnetisation transfer during this contact time from 1H highly abundant nuclei to low 

abundance nuclei, such as 13C. 

5. Simultaneous collection of low abundance spins during acquisition time occurs while 1H or 

another high abundance nuclei is decoupled, as necessary.  

6.  The magnetisation transfer will only occur whereby the Hartman-Hahn24 condition is 

matched, and both spins energy and nutation frequencies are equal (Equation 6.1.):  

    
       

     Equation 6.1. 

Where γ
H/X

 = the nuclei’s magnetogyric ratio (rads
-1

T
-1

) and B1
H/X 

= applied magnetisation to on resonance 

abundant (H) and dilute spins (X) 

One way of considering the Hartmann-Hahn24 condition is via the transfer of heat from abundant 

spins to dilute spins, and dilute spins to abundant spins. Due to the larger heat capacity of 

abundant spins, the overall effect of this process reduces the heat of dilute spins, and therefore 

increases magnetisation factor to γ I/γ S. This increased sensitivity25 can have a significant impact 

on the spectrum obtained, for example a 100 % magnetisation transfer of 1H to 13C gives a signal 



References begin on page 207  185 | P a g e  

enhancement of γ H/ γ C = 4, and a (γ H/ γ C)2 = a 16 fold reduction in experimental time. This 

significant enhancement is utilised even further when other nuclei systems are studied, such as 

15N.20   

The inter-pulse recycle delay is reduced from the length of the dilute spin’s recycle delay (T1
X) in a 

single excitation experiment to the time of 1H’s recovery of magnetisation (T1
H)26. This significantly 

increases the number of scans in a given time, increasing the signal:noise ratio of the spectrum 

obtained.  

6.2. Synthesis 

6.2.1. 13C labelled n-methyltriphenylsilane 

The following reagents were required for setting up for 1H-13C-29Si double CP MAS NMR: labelled 

15N,13C glycine and labelled 13C n-methyltriphenylsilane, shown below (Figure 6.2).  

 

 

 

 

The particular double labelled glycine required, (Figure 6.2), was available for purchase from 

Cambridge Isotope Laboratories Inc. as follows: 13C2 (99 %) 15N (99 %) glycine.   

Due to the specific requirements of the 13C n-methyltriphenylsilane reference sample, it was not 

readily available to purchase and as such, required synthesising. 

Figure 6.2 – Structure of reference samples used for A. 
13

C N-methyltriphenylsilane(MTPS) and B. 
13

C2 (99 
%), 

15
N (99%) Glycine 

B.  A.  

N

H

H O

OH

15

13

13
Si

CH3

13
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13C-MTPS Synthesis: Due to the high cost of labelled materials, all of this work was attempted with 

non-labelled reagents until proven successful. This took multiple reaction attempts and different 

synthetic methods but finally proved successful under the following conditions of Aberhart and 

Lin27 for the methyl lithium synthesis (step 1 below), and methylation of triphenylsilane from 

Gilman and Melvin28 (Step 2 below).  

Si H

CH3 I

13

+
CH3 LiI

CH3

13

+
Li

CH3

Hexanes / N2

Centrifuge

Si CH3

13

+ H Li

CH3 Li

1.6M

Reflux

/N2

 

Figure 6.3 - Reaction scheme for the synthesis of labelled 13C n-methyltriphenylsilane: Initial 
13

C n-methyl lithium 
synthesis at 0 °C in Hexanes/N2 and secondary step for product synthesis under reflux/N2 

 
Step 1: Methyl Lithium Synthesis 

Synthesis: A 50 ml glass centrifuge tube was set-up and sealed with a disposable crimp septum 

and placed in an ice bath. The tube was flushed with nitrogen and 8.75 ml 1.6 M butyllithium and 

1.0 g of 13C labelled iodomethane were injected into the centrifuge tube. The reagents were 

stirred and warmed to room temperature over a 30 minute time period and subsequently stirred 

for 20 minutes. The tube was centrifuged (30 minutes, 2500 rpm) and a solid precipitate was 

observed. The centrifuge tube then underwent a nitrogen-flush and the removal and replacement 

0 °C - RT 
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of 6 ml clean dry hexanes by injection. This process was repeated 3 times to ensure any soluble 

impurities were removed and lastly replaced with 6 ml ether (pre-dried over sodium wire). The 

product was titrated against 0.1 M HCl 3 times to obtain a molar concentration of 1.375 M.  

Step 2: N-methyltriphenylsilane (MTPS) Synthesis 

0.49 g triphenylsilane was added to a 50 ml N2 flushed flask and sealed. 0.75 ml 1.375 M 13C 

methyl lithium in diethyl ether was injected and stirred before 0.64 ml 12C methyl lithium in 

diethyl ether was also added and stirred for 1 day.  

Step 3: MTPS Work-up 

1.0 ml of the MTPS solution was extracted into ether, washed with distilled water and dried with 

magnesium sulphate. The drying agent was filtered and the solvent removed under reduced 

pressure leaving crystals for characterisation.  

Step 4: MTPS Characterisation 

The crystals obtained for MTPS (Figure 6.4) were characterised 

as follows: 1H NMR (300 MHz, CDCl3, ppm); δ 0.01 (3H, A), 7.38 

(3H, E), 7.52 (6H, D), 7.60 (C, 6H); 13C NMR (300MHz, CDCl3, 

ppm); δ 136.30 – 135.96 (B), 135.45 (C), 129.96 – 129.53 (D), 

128.20 – 127.99 (E), -3.23 (A). They were deemed fit for use for 

setting up as a reference sample for the following CP-REDOR 

experiment. 

6.2.2. Labelled 13C N-methyltributylammonium Iodide 

Silicalite-1 zeolite was synthesised using 13C labelled n-methyltribubtylammonium iodide as 

follows: 

SDA Synthesis: Tributylamine (2.26g, 15.45mmol), methanol (5 ml) and 13C labelled Iodomethane 

(1.0 g, 7.0 mmol) purchased from Sigma Aldrich (99.0% 13C with copper stabilizer) were refluxed 

Figure 6.4 - Labelled molecular 
structure of MTPS for NMR 

assignment 
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for 20 minutes. After this period, non-labelled 12C Iodomethane (4.0 g, 28.18 mmol) was added 

and left for another 20 minutes. Finally, additional Iodomethane (2.28 g, 16.06 mmol) was added 

in excess and left to reflux for 24 hours.  

After reflux, methanol was removed under reduced pressure and the product was recrystallised 

from a mixture of ethyl acetate and ethanol. White crystals were obtained (4.27 g, 88.78 %) and 

characterised as follows: 1H NMR (300 MHz, CDCl3, ppm); δ 3.43 (6H, m, N-CH2), 3.25 (3H, s, N-

CH3), 1.68 (6H, m, CH2-CH2-CH2), 1.42 (6H, m, CH2-CH2-CH3), 0.97 (9H, s, CH2-CH3); 
13C NMR 

(300MHz, CDCl3, ppm); δ 61.70 (N-CH2-CH2), 49.24 (N-CH3), 24.44 (N-CH2-CH2), 19.66 (CH2-CH2-

CH3), 13.79 (CH2-CH2-CH3).  

 
Figure 6.5 - Comparative spectra of 

13
C NMR spectra for A. labelled 13C MTBA and B. 

12
C MTBA 

 

The degree of labelling observed can be clearly seen (roughly 30 x the natural amount) in Figure 

6.5 above comparing a non-labelled 13C NMR of MTBA (Figure 6.5a), with the labelled sample 

(Figure 6.5b), whereby the labelled 13C peak occurs at ~49 ppm.  

Zeolite Synthesis: Silicalite-1 was synthesised using 13C MTBA as structure directing agent as 

follows: 0.39 g of 13C labelled MTBA, and 0.62 g of ammonium fluoride were added to a 46 ml 

autoclave liner. 6.0 ml of distilled water and 1.0 g of silicon dioxide were added and stirred 

10 20 30 40 50 60 
ppm 

A. Non-labelled MTBA 13 C NMR 

B. Labelled MTBA 13C NMR 
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thoroughly creating a think viscous gel. This was placed in a 180 °C oven for 6 days in a stainless 

steel autoclave.  

Work-up: After removing the autoclave from the oven and allowing the contents to cool to room 

temperature and pressure, the liner contents were emptied and rinsed into a 50 ml centrifuge 

tube. The sample was centrifuged (15 minute, 2500 rpm) three times, dried at 60 °C overnight, 

and confirmed as zeolite MFI by comparison of the XRD diffraction pattern obtained (Figure 6.6), 

to that published by the International Zeolite Association.29    

 
Figure 6.6 - XRD powder pattern of 

13
C labelled MTBA/MFI on a Bruker Advance diffractometer with Cu Kα source 

 

6.3. Double Cross Polarisation 

The use of cross polarisation CP was first used in a double cross polarisation (DCP) experiment by 

Skejskal and Schaefer in 1977.21 It involves the use of the single-step transfer cross polarisation 

experiment in a triple resonance set up as a two-step process.30 It surrounds the concept of the 

simultaneous irradiation and magnetisation transfer of three nuclei to allow determination of 

weak heteronuclear interactions through space and through bonds.  

The first step in a DCP experiment is a single CP between 1H nuclei and a X dilute spin such as 13C 

to build up magnetisation and increase sensitivity. The second step transfers the built up 

magnetisation on the X dilute nuclei to the Y dilute nuclei, such as 29Si, which is the step that 

5 15 25 35 45 55 
2θ / ° 
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allows the dipolar coupling to be studied between these nuclei under 1H decoupling conditions. 

This decoupling is essential due to the difficulty in matching the Hartmann-Hahn24 condition in 

DCP. The second step magnetisation transfer is dependent on the dipolar coupling strength 

allowing a relative identification of the closest nuclei within that transfer.  

Initial DCP experiments created a pathway for more recent work that can be utilised and catered 

towards determining information about zeolites. For example the 1H-15N-{13C} system studied by 

Schaefer and co-workers,31,32 the 1H-13C-{29Si} system studied by Wiser and co-workers and the 1H-

13C-{19F} of zeolite MFI studied by Fyfe and co-workers.7  

The latter work by Fyfe et al7 studied the TPA MFI-F system and was able to assign the 12 29Si 

peaks of zeolite MFI and conduct a successful 1H-19F-29Si DCP experiment to confirm the location 

of the Si-F bond within the [415262] cage. In addition to the cage determination, Fyfe and co-

workers were also able to use a DCP experiment to place the covalent silicon fluoride bond on 

silicon-9, and determine the bond distance using the REDOR experiment.  

Since its discovery, the use of the DCP experiment  has been used to probe a variety of different 

systems including proteins,33 zeolites,7 biomolecules.34 Despite this, the use of the DCP 

experiment in zeolite systems has been relatively sparse and information about  only a few 

different zeolite systems have been determined using the enlightening technique. These  include 

STF5 and TPA-MFI.   

The closest literature study that bears any resemblance to the experiments on zeolites conducted  

within this work are Fyfe and co-workers,7 discussed above whereby no information about the 

organic structure directing agent (SDA) was investigated. Also, Wisser and co-workers34 used DCP 

to investigate silica and organic molecule interactions but do not cover any zeolite materials.  

6.3.1. Double Cross Polarisation: Experimental Information 

 

Tetrapropylammonium iodide has been the most commonly used structure directing agent for 

ZSM-5 synthesis for decades.35 Despite this, multiple other structure directing agents have proven 
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capable of successfully synthesising silicate-1 in this work.36 N-methyltributylammonium iodide 

has been shown to be a more efficient structure directing agent for silicalite-1 synthesis and will 

be the SDA species used for the high silica MFI sample synthesised for this work. 

The synthesis of silicalite-1 (MFI) using 13C labelled n-methyltributylammonium iodide was studied 

by double cross polarisation to determine the distance of SDA within the zeolite pore to the 

zeolite framework. Double cross polarisation experiments have very sharp Hartmann-Hahn 

matching conditions and as such require sensitive set-up. Double labelled glycine (99 % 15N, and 

99 % C2 13C) was used as an initial reference sample in order to set up the DCP experiment.  

Due to the strict Hartmann Hahn matching condition, a second reference sample was also 

required for the DCP experiment set-up. The sample was required to be on the order of 

magnitude in distance and dipolar coupling between silicon and carbon and therefore hopefully 

detect dipolar couplings between labelled n-methyltributylammonium iodide and framework 

silicon. There were no known commercially available products that could satisfy this requirement 

so this product was synthesised in the laboratory. The sample chosen was n-methyltriphenylsilane 

due to it being a solid at room temperature, easily synthesised by reflux and therefore allowing 

for the labelled reagent to be as small chain as possible and most affordable: 13C labelled 

iodomethane. The n-methyltriphenylsilane was however primarily used due to the short distance 

between the framework silicon and labelled methyl SDA.  

The 1H-13C-29Si DCP experiment is not a commonly used experiment due to the low natural 

abundance of 13C and 29Si.34 This low abundance leads to a low signal:noise ratio so any 29Si 

spectrum eventually obtained would not contain sufficient resolution to distinguish silicon T sites. 

The use of isotropic labelling is used in this situation to facilitate the successful experiment.   

The aim of this work was to successfully set-up a solid state NMR experiment to determine the 

dipolar coupling constant between n-methyltributylammonium and the zeolite framework. 

Furthermore, to construct dipolar coupling curves and extract the distances determined from SDA 

to close silicon sites.   



References begin on page 207  192 | P a g e  

6.3.2. Double Cross Polarisation Experimental Set-up 

The DCP experiment was set up on glycine and the synthesised 13C n-methyltriphenylsilane before 

the 13C n-methyltributylammonium silicalite-1 sample could be investigated. 

6.3.2.1. Reference 1: Glycine Set-up 

A 13C2 (99 %), 15N (99 %) glycine sample was packed into a 2.5 mm rotor and set at 11 kHz rotation 

at the magic angle. Three routing radiofrequency channels were set up whereby: 

 Channel 1 – 15N– 500 W amplifier 

 Channel 2 – 1H 

 Channel 3 – 13C – 500 W amplifier 

The NMR was tuned and optimised on all 

channels and a standard 1H – 13C CP MAS21 NMR 

experiment was run. The CP condition and 

decoupling parameters were optimized for the 

set-up of the double CP experiment and a short 

scan single CP for glycine was run (Figure 6.7): 

 

A single CP experiment for 1H – 15N was 

subsequently set up and run to optimise the CP 

condition and decoupling parameters for the 

second step in the double CP experiment 

(Figure 6.8). 

30 40 50 
ppm 

-5 5 15 25 
ppm 

Figure 6.8 - 
1
H – 

15
N Solid state MAS CP experiment on 

reference glycine for double CP experiment set-up 

Figure 6.7 - 
1
H – 

13
C Solid state MAS CP experiment on 

reference glycine for double CP experiment set-up 
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The double CP experiment was adapted from 

the 1H – 13C CP experiment and set up based 

mostly on the parameters determined from 

single CP experiments. The experiment was 

adapted to include a ramped pulse on the 15N 

channel and calculating the attenuation at the 

new pulse length using the pulse length and 

calibrated pulse length. The DCP condition and 

decoupling parameters were optimised for both 

cross polarisation magnetisation transfers in the current experiment, yielding the successful DCP 

experiment shown in Figure 6.9.  

6.3.2.2. Reference 2: MTPS Set-up 

Successful set-up and observation of glycine 

allowed for progression to the second 

reference sample set-up: 13C – 1H – 29Si 

double CP on the synthesised 13C labelled n-

methyltriphenylsilane.  

The NMR was tuned and optimised on all 

channels and a standard 1H – 13C CP MAS21 

NMR experiment was run. The CP condition 

and decoupling parameters were optimized 

and a short scan single CP for MTPS was run 

(Figure 6.10): 

 

  

-10 -5 0 5 
ppm 

Figure 6.10 - 
1
H – 

13
C Solid state MAS CP experiment on 

MTPS for double CP experiment set-up 

30 40 50 ppm 

Figure 6.9 - 
1
H-

15
N-

13
C Solid state NMR double CP 

experiment on reference glycine 
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-30 -20 -10 0 10 

ppm 

Additionally, a single CP experiment for 1H – 29Si was set up and run to optimise the CP condition 

and decoupling parameters for the other half of the double CP experiment (Figure 6.11).  

 

 

 

 

 

The double CP experiment was adapted from the 1H – 29Si CP experiment and set up based mostly 

on the parameters determined from single CP experiments. The double CP conditions and 

decoupling parameters optimised for the both cross polarisation magnetisation transfers in the 

current experiment, yielding the following short-scan successful spectrum (Figure 6.12).  

 

 

  

Figure 6.11 – 
1
H –

29
Si Solid state MAS CP experiment on reference MTPS for double CP experiment set-up 

-20 -10 0 10 ppm 

Figure 6.12 - 
13

C – 
1
H – 

29
Si –Solid state double CP MAS NMR experiment on reference MTPS 
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6.3.2.3. Double Cross Polarisation Conclusions 

Despite the successful set-up of purchased labelled glycine and synthesised labelled n-

methyltriphenylsilane, the double cross polarisation DCP experiment conducted on labelled n-

methyltributylammonium iodide was unsuccessful. Many difficulties were encountered in 

attempting to find the CP matching conditions for the double cross polarisation experiment 

despite being set-up from parameters of two successful single CP experiments (1H-13C and 1H-29Si). 

This could be due to a combination of two issues. It is possible the SDA to framework distance is 

too far inferring the magnetisation transfer would be reduced and therefore difficult to observe. It 

may also be due to the known difficulties in finding the extremely sharp Hartmann-Hahn24 

matching conditions for DCP experiments. Instead a Rotational-Echo, Double-Resonance (REDOR) 

experiment was chosen that was thought to have a higher chance of success in the allocated NMR 

time due to not possessing the extremely sharp Hartmann Hahn condition.  

6.4. Rotational-Echo, Double Resonance (REDOR) Results 

The REDOR experiment is a ‘recoupling’ technique developed initially by Gullion37 in 1989 and 

works by perturbation of the spinning process of a sample. Rotor synchronised pulses are applied 

at a certain time which prevents dipolar coupling and forms a reduced intensity dipolar echo then 

allows dipolar induced dephasing to build.38 The ‘recoupling’ is so named for the ability to recover 

the lost dipolar couplings under MAS.39  

Most solid state NMR experiments are designed to reduce dipolar coupling to zero by observing 

at 1 full rotation under MAS. The selective re-introduction of dipolar coupling parameters is 

therefore possible by changing the observation to less than full rotations. Due to the pulses being 

applied in synchronicity with rotation however, the spinning speed must be kept very steady 

(within +-0.1% of the MAS rate) in order for the pulse application to stay in time with rotation.  
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The REDOR experiment is used to determine dipolar couplings between spins that are close in 

proximity, as they have a 1/r3 relation to distance between spins. The use of this experiment as 

compared to the failed DCP experiment is summarised below (Table 6.1): 

Table 6.1 – Table of comparison of REDOR and DCP experimental requirements 

 REDOR DCP 

Experiment Dephasing of transverse carbon 
magnetisation by Y dilute spin 
(15N, 29Si) π pulses on rotor 
schedule whilst 1H decoupling 

Double cross polarisation transfer 
whereby CP 1 occurs for sensitivity 
enhancement and CP 2 to study the 
dipolar coupling 

Can suffer signal loss due to 
recovering of lost dipolar 
information.  

 

Spin Sensitivity Yes to roughly 0.1 % of spin 
rate40 

Yes to roughly 0.1 % of spin rate40 

 Due to the dephasing and 
acquisition start point being 
rotation dependent 

Dilute spin magnetisation transfer is 
dependent on spin rate  

Analysis Difficulty Yes Complicated41 
 So long as limited to dipolar 

coupling37 
 

Due to additional couplings such as 
proton couplings being considered 
and stringent Hartmann-Hahn24 
matching conditions 

Isotope labelling 
required 

Yes  
 

Yes 
 

 Site Specific42 Essential due to lack of sensitivity 

Special 
experiment 

requirements 

 Strict Hartmann Hahn conditions to 
be met 

Data Sensitivity Significantly higher43 Significantly lower40  
  However this comparison can be 

evened out under different coupling 
interactions, e.g. labelled strong 
homonuclear interactions 

Additional 
reference sample 

required 

No Yes 

 

The REDOR experiment relies on comparisons of the difference obtained when no pulse applied 

and a pulse is applied to a sample to obtain a reference (SO) and echo signal (S’), respectively. 

These can be compared by identifying the normalised dipolar dephased signal (∆S/SO).44 A 2D 

spectrum is built up from multiple rotor cycles (NTr) of these normalised signals to create a REDOR 

curve which can be fitted to determine dipolar coupling between spins as well as determine 

internuclear distances.  
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This REDOR experiment has already been successfully conducted by Fyfe and co-workers7 in TPA 

silicalite-17 and octadecasil45 zeolites in a different capacity to identify the pentacoordinated 

fluoride location in the zeolite structure. This bond however is a silicon fluoride covalent bond, 

unlike the interaction observed within this work. Due to the low abundance of 13C (1.11 %) and 

29Si (4.69 %) in this chemical system, isotropic labelling is required. It is also essential due to the 

high resolution required in the 29Si spectrum in order to distinguish silicon T sites around -110 

ppm for Q4 Si and to determine the dipolar coupling to these silicon sites.  

6.4.1. REDOR Set-up 

The synthesised sample of silicalite-1 using labelled 13C n-methyltributylammonium iodide was 

packed into a 2.5 mm rotor and set at 10 kHz rotation at the magic angle. A second reference 

sample was not required for this set-up as with the double CP experiment due to less stringent 

match conditions so all optimisations were performed on the sample itself. Three routing 

radiofrequency channels were set up whereby: 

 Channel 1 – 13C– 500 W amplifier 

 Channel 2 – 1H 

 Channel 3 – 29Si – 500 W amplifier 

 

The NMR was tuned on all channels and a 

standard 1H – 13C CP MAS NMR experiment 

was run. The CP condition and decoupling 

parameters were optimized and a short 

scan CP was run on 13C MTBA (Figure 6.13).  

40 50 60 
ppm 

Figure 6.13 - 
1
H – 

13
C Solid state MAS CP experiment on 

13
C MTBA/MFI for REDOR experiment 
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Additionally, a single CP experiment for 1H – 29Si was set up and run to optimise the CP condition 

and decoupling parameters for the second step of the double CP experiment on 13C MTBA (Figure 

6.14):  

 

 

 

 

The 2D REDOR experiment was subsequently set up from the CP experiments with optimised 

match conditions and the successful 2D REDOR experiment was completed. 

6.4.2. REDOR Results 

The REDOR experiment was successful exhibiting a 2D NMR correlation of 256 1D NMR 

experiments. These 256 spectra are made up of 128 reference and echo NMR spectra.   

The 29Si NMR spectrum has already been resolved for silicalite-1 zeolite by Fyfe et al7 identifying 

the specific chemical shift for all 12 silicon sites in MFI-F/TPA and classifying it as orthorhombic 

with Pmna symmetry at room temperature. As previously discussed in Chapter 4, silicalite-1 has 

Pmna symmetry whereby we observe 12 silicon sites in MFI/TPA but 24 in MFI/MTBA.36 This is 

due to the presence of the additional silicon fluoride bond and pentacoordinated silicon observed 

in only 1 side of the mirror plane of silicalite-1.8 Due to the symmetry it is still however possible to 

assign the 24 NMR peaks observed in MFI/MTBA to the 12 silicon sites observed in the MFI/TPA.36 

-160 -140 -120 -100 
ppm 

Figure 6.14 -
1
H – 

29
Si Solid state MAS CP experiment on 

13
C MTBA/MFI for REDOR experiment 
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In order to analyse the 2D REDOR spectra, all observable peaks were identified and set a region 

(Figure 6.15):  

 

 

This 1D NMR row of the 2D REDOR experiment shows 9 of the 12 regions we are looking to assign. 

The 10th region (not shown) exists considerably further outside the Q4 silicon NMR range 

displayed as it is the peak that corresponds to the pentacoordinated silicon fluoride site.8 The two 

additional regions cannot be observed as they are hidden under another peak. Silicon 7 is hidden 

under region 3 and silicon 3 is hidden under region 6. It was not possible to increase the 

signal:noise sufficiently in order to distinguish these peaks. This is due to the fact that the number 

of scans would have had to quadrupled in order to observe double the signal:ratio.  

The regions analysed are summarised below in Table 6.2. 

1 2 

5 

6 

7 

8 9 

ppm 

Figure 6.15 - Regions of 1D spectrum from 2D REDOR experiment for most silicon environments with exception 
of the low intensity pentacoordinated peak 10 at -144 ppm 
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Table 6.2 – 
29

Si regions observed for known silicon peaks in 
1
H-

13
C {

29
Si} NMR spectrum 

Region/ 
Silicon Peak 

Start of Region  
(ppm) 

End of Region  
(ppm) 

Region 1 104.246 106.276 
Region 2 108.139 110.308 
Region 3 111.087 112.532 
Region 4 112.574 113.466 
Region 5 113.488 114.669 
Region 6 114.680 116.436 
Region 7 116.436 117.650 
Region 8 117.650 118.795 
Region 9 119.177 119.883 

Region 10 143.304 145.147 
 

These regions were investigated individually and compared in order to determine the amount of 

dephasing observed and therefore the proximity of the SDA’s 13C labelled methyl group to the 

silicon framework. Each 29Si region was investigated by plotting the normalised difference (S/SO) 

between the reference and echo spectra per rotor cycle to calculate the dipolar coupling 

constant. The results of this comparison are presented below (Table 6.3) in order of largest to 

smallest relative dephasing.  

Table 6.3- Table comparing peak regions to reference framework silicon’s and relative amount of dephasing observed 

Silicon 
Peak 

Dephasing Observed Reference Silicon 
Number 

Relative 
Dephasing 

4 Yes 6 100.0 % 
5 Yes 5 90.0 % 
8 Yes 8 80.0 % 

3 Yes 12 80.0 % 
Overlapped 7 - 

6 Yes 2 73.3 % 
Overlapped 3 - 

1 Yes 10 73.3 % 
7 Yes 11 73.3 % 
2 Yes 1 40.0 % 
9 No 4 26.6 % 

10 No 9 8.3 % 

 

The silicon regions observed in the 2D NMR spectra are assigned to known reference silicon 

assignments (Table 6.3) and shown below in Figure 6.16.  
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Dipolar coupling plots have been constructed from the normalised difference in dephased and 

echo spectra (S’ – S0/S0) following general REDOR studies by Gullion37,46 and Bertmer and Eckert44 

and a more applicable recent study by Wisser et al.34 These plots generated display a REDOR 

curve from which the dipolar coupling constant can be extracted.47 Solver Statistics was used in 

Microsoft Excel to fit a curve and value of the dipolar coupling constant to the experimental data 

for all silicon regions using the following equations and a least squares method:  

Dipolar Coupling Constant   
  

  
  

  

  
    

      
Equation 6.2.

 

Where, S’ = Dephased spectra, S0 = Echo spectra, N = Number of rotor cycles, Tr = rotor period and D = 

dipolar coupling constant. 

Distance Equation      
     

     
  

  
   Equation 6.3. 

Where, D = dipolar coupling constant,, γI magnetogyric ratio of I coupled nuclei (rads
-1

T
-1

), γS = magnetogyric 

ratio of S coupled nuclei (rads
-1

T
-1

), h = Plancks constant (m
2
kg s

-1
), µ0= permeability constant (Hz) 
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Figure 6.16- Schematic diagram of silicalite-1 zeolite and silicon assignments 
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6.4.2.1. 29Si Regions Exhibiting the Maximum Dephasing 

  

Figure 6.17 - REDOR curves (blue data) of dephasing observed in regions exhibiting maximum dephasing with 
Solver Statistics parabolic approximation curve (black line) fitted up to 0.025 ΔS/SO for regions 4, 5 8 and 3 

 

By limiting the REDOR curve to 0.25 ΔS’/SO, the heteronuclear dipolar moment can simply be 

calculated from Equation 6.2. Below this region, the ΔS’/SO ratio has a relation to the second 

moment of dipolar coupling constant.44  

Table 6.4 - Table of dipolar coupling constants and distances calculated for largest dephasing silicon peaks 

Silicon Region 4 5 3 8 

Silicon Site 6 5 12 + 7 8 
Dipolar Coupling 

Constant / kHz 
85.28 79.49 75.68 71.60 

Error Margin +-0.03 +-0.02 +-0.03 +-0.05 
R2 0.93 0.95 0.84 0.70 

Distance Si-13C 4.13 Å 4.23 Å 4.29 Å 4.38 Å  

 

The positive continuous dephasing observed in REDOR NMR plots are expected and directly 

representative of the distance between the labelled 13C SDA to the respective silicon framework 

peak. These dephasing curves suggest the SDA methyl arm is pointing towards the 5-membered 
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ring of silicon sites 2-6 shown in Figure 6.18, 

and is capable of moving around within the 

zeolite pore. The large dephasing observed 

for region 3 is potentially due to the 

contributions from Si-7 and Si-12, whereas 

the methyl is not likely to reach far enough 

into the 2-6 ring to cause the observed level 

of dephasing.  

 

 

 

6.4.2.2. 29Si Regions Exhibiting Medium Dephasing  

 
 

Figure 6.19 - REDOR curves (blue data) of dephasing observed in regions exhibiting medium dephasing with Solver 
Statistics parabolic approximation curve (black line) fitted up to 0.025 ΔS/SO for regions 6, 1 and 7 
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Figure 6.18 - Schematic Diagram of a MTBA SDA in zeolite 
Silicalite-1 
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The silicon’s experiencing medium levels of dephasing are 6, 1 and 7, shown above (Figure 6.19). 

The results are in accordance with the theoretical position of the MTBA SDA in the MFI pore 

schematic above (Figure 6.18). The silicon 10 (region 1) dephasing graph above has limited data 

points because the dephasing data is not as conducive to the curve as previous good dephasing 

graphs. This is corroborated by the limited low signal:noise for that peak on the REDOR NMR 

spectrum which hosts the pentatcoordinated silicon fluoride in 1 silicon per mirror plane.  

Table 6.5- Table of dipolar coupling constants and distances calculated for medium dephased silicon peaks 

Silicon Region 6 1 7 

Silicon Site 2 + 3 10 11 
Dipolar Coupling 

Constant / kHz 
70.46 69.85 67.86 

Error Margin +-0.02 0.05 +-0.03 
R2 0.95 0.63 0.84 

Distance Si-13C 4.40 Å 4.41 Å 4.45 Å 

 

6.4.2.3. 29Si Exhibiting Minimal Dephasing 
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Figure 6.20 - REDOR curves (blue data) of dephasing observed in regions exhibiting maximum 
dephasing with Solver Statistics parabolic approximation curve (black line) fitted up to 0.025 ΔS’/SO 

for regions 2, 9 and 10. 
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The three graphs displayed above for region 2 (Si-1), region 9 (Si-4) and region 10 (Si-9) show little 

to no ideal dephasing. This is displayed in their significantly reduced R2 values and also 

corroborates the above schematic (Figure 6.18) which would expect these silicon’s to be the 

furthest away from the labelled 13C methyl SDA. The silicon site fittings are not of sufficient 

accuracy in order to report the dipolar coupling constant indicating these distances are larger 

than 4.5 Å.  

6.5. Conclusions 

The use of 2D solid state NMR has been used in order to determine the orientation of the N-

methyltributylammonium SDA within a silicalite-1 framework structure. This was possible by 

utilising the cross polarisation technique and REDOR NMR experiments. The results demonstrate 

the use of solid state NMR as a complementary technique to X-ray diffraction in order to discover 

new information about chemical systems that remain previously undiscovered. It also allows bond 

distance determination of Si-F, a task that X-ray diffraction struggles to accurately accomplish.  

The REDOR NMR experiment used was able to determine the dipolar couplings between 13C 

labelled N-methyltributylammonium and surrounding framework silicon’s. From this, the 

internuclear distances were calculated which enabled the exact location and orientation of the 

SDA within the framework to be determined.  

Due to the novelty of this work no there is no literature information or single crystal structure to 

compare these distances and the location of the SDA in silicalite-1 to however the distances 

determined (4.13 Å) are certainly possible considering the known silicalite-1 pore size and SDA 

size and shape. It is possible that computer modelling could be used in order to support the 

orientation and bond distances that have been determined within this work. This may also spread 

some light on the exact location of the other trialkylammonium substituents within the SDA, 

without the need for expensive chemical labelling.  
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Successful use of the failed DCP experiment could be improved in future work by using labelled 

29Si during zeolite synthesis. Additionally, the REDOR experiment has the potential to be repeated 

for multiple other structure directing agents used both in this work to synthesise silicalite-1 and 

other zeolites systems, given enough NMR spectrometer time.  
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7.0. Conclusions 

Silicalite-1 zeolite has been synthesised using a wide variety of different shape and size structure 

directing agents. The purpose of this was to define the specific effects of the structure directing 

agent on the zeolite formed, due to its well-known role in the crystallisation and growth of the 

zeolite.  

The complementary use of solid state NMR and X-ray diffraction has allowed both the long range 

order of silicalite-1 zeolites to be studied whilst also determining local information about the 

structure directing agent occluded within the zeolite framework. Determination of Si-F bond 

distances within the framework structure of pure silica zeolites by X-ray diffraction has previously 

experienced difficulties. Solid state NMR has therefore been used in order to investigate the local 

structure of silicalite-1 and structure directing agents using 13C, 19F, 14N and 29Si CP MAS 

experiments. These experiments elucidated trends in chemical shift, fluoride motion and location 

and orientation of the structure directing agent within the zeolite pore giving information about 

the structures and orientation of species.  

The main results of these comprehensive studies indicate that upon replacing one alkyl chain in a 

quaternary ammonium structure directing agent with a smaller alkyl chain leads to a structure 

directing agent orientation with the smaller n-alkyl chain directed towards the smaller straight 

channel. Correspondingly, replacing it with a larger n-alkyl chain orientates the larger n-alkyl chain 

towards the larger sinusoidal channel.  

The use of a fluoride based mineralising agent allowed the fluoride to become covalently bonded 

to the silicon framework structure in all silicalite-1 materials studied; as has previously been 

observed in the literature for TPA-silicalite-1 and other pure silica zeolites. This created an 

additional Si-F bond and pentatcoordinated silicon unit which could be studied by solid state 

29Si{1H} CP MAS NMR.  This fluoride was found to exist with static disorder where an SDA was used 

with one small n-alkyl chain such as MTBA or MTPA. Increasing the length of the n-alkyl chain 
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however demonstrated increased mobility of the fluoride motion to dynamic disorder. This was 

thought to be due to the reduction in coulombic interaction between the fluoride and positively 

charged nitrogen however further study is required in order to support the theory.  

The synthesis of an isotopically labelled sample of MTBA silicalite-1 has allowed the use of a CP 

REDOR experiment. The dipolar coupling interaction was studied between labelled 13C N-

methyltributylammonium structure directing agent and the surrounding framework silicon 

species. These dipolar couplings were used in order to calculate the bond distances and therefore 

deduce the exact orientation of the structure directing agent within the zeolite pore.  

Additional work could be carried out by labelling and determining the distance between the 

MTBA butyl groups and zeolite silicon species. This would not only further confirm the orientation 

of the SDA, but determine the exact location of the entire SDA within the zeolite pores and 

channels. This could be also replicated for a variety of the different SDA silicalite-1 samples 

studied within this work, as well as for other zeolite systems. Not only would the cost of the 

isotropic labelling of these samples have to be considered but also there would have to be a 

sufficient dipolar coupling interaction between the desired pair, and therefore a sufficiently short 

distance between them in order for the REDOR NMR experiment to be able to detect.   

The REDOR NMR experiment could be used to follow the crystallisation of silicalite-1 and other 

zeolites in order to determine how the framework forms around the SDA, achievable via 

systematic studies as functions of crystallisation time. This could be expanded by conducting the 

study in-situ within an NMR rotor, as zeolites like silicalite-1 can be synthesised under relatively 

mild conditions, for example reaction temperatures below 100 °C where there are very low 

autogenous pressures.  

The novel work carried out within this project supplies a thorough and informative systematic 

study of zeolite materials using a wide variety of structure directing agents which is lacking in the 

zeolite community. It additionally delves deeper into studying one zeolite and SDA in particular by 

the use of a complex 2D solid state NMR experiment. This latter work is able to study zeolite 
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materials in an atypical manor, in order to gain very useful structural information and has the 

potential to be repeated for a wide variety of other zeolite and inorganic materials.  

 

 

 

 

 

 

 

 

 

 

 

“But I don’t want to go among mad people,"  
 

"Oh, you can’t help that,  
we’re all mad here.  

I’m mad.  
You’re mad." 

 
 
"How do you know I’m mad?"  

 
"You must be,"  

"or you wouldn’t have come here.” 
 

Lewis Carroll 
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