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Abstract

Thermoacoustic instabilities pose a great threat to combustion systems, as they could

cause severe structural damage, if they are unchecked and uncontrolled. These insta-

bilities are caused due to the existence of a positive feedback loop between the pressure

oscillations and heat release rate oscillations. To prevent these instabilities, one can

adopt active or passive control strategies.

The aim of the present work is to passively control thermoacoustic instabilities in

a domestic boiler system. To this end, the boiler is modelled as a 1D quarter-wave

resonator (open at one end and closed at the other) containing a heat source and a

heat exchanger (hex). The heat source follows a simple time-lag law for its heat release

rate. The hex is modelled as an array of circular tubes in cross flow, and it is placed

near the closed end of the resonator, causing it to behave like a cavity-backed tube

row. The hex acts as both heat sink and acoustic scatterer. The heat transfer response

is obtained from numerical simulations (transfer function approach) and the acoustic

scattering or the aeroacoustic response is modelled through a quasi-steady approach.

The combination of these two responses at the hex along with the cavity backing gives

the effective reflection coefficient of the downstream end of the combustor.

Stability maps are constructed for various system parameters. A classical eigenvalue

method is used to obtain the complex eigenfrequencies of the first mode of the com-

bustor. From the growth rate (imaginary part of the eigenfrequencies) obtained for

different parameter combinations, it is observed that for the eigenfrequency range of

interest, an increase in the mean cross flow velocity, in cavity length, or in hex tube

diameter, and a decrease in the gap between the hex tubes, all favoured stability.
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of (a) ū = 0.5m/s, (b) ū = 1.0m/s and (c) ū = 1.5m/s. Dashed lines

indicate the boundary between the stable and unstable regions shown

in Fig. 6.4(a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

xii



List of Figures

6.8. Variation of ∆L with open area ratio (η) and impedance ratio (ζ32) for

d = 3mm, lc = 0.25m, f = 100Hz and mean velocities ū = 0.5, 1.0 and
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Chapter 1

Introduction

In this chapter, we provide a background on combustion instabilities along

with a literature review on some of the passive control strategies utilised.

This is followed by the research motivation and the scope of the work un-

dertaken in this thesis. The chapter is concluded with an overview and

outline of the thesis.

1.1. Combustion systems and instabilities

The period post Industrial Revolution saw and still continues to witness tremendous

advancements in all aspects of our lives, be it the standard of living, rapid economic

growth or the unprecedented technological and scientific progress. A major contrib-

utor to these advancements is the energy production and management sector. Gas

turbine engines, steam engines and other power generation units including industrial

burners and furnaces, are the backbone of several industries like metalllurgy, chemi-

cal, manufacturing, transportation etc. Hence, there is an ever increasing demand for

energy.

Unfortunately, this rapid progress came with a downside: the depletion of environ-

ment through pollution from these power generation units. Traditionally, in industrial

power generators, diffusion-flame type combustors were used. In these combustors,
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there is no premixing of the fuel and air before combustion, and such a combustion

will lead to high levels of pollutants like NOx and other green house gases.

To combat pollution and to reduce the NOx production in gas turbine engines and

other power generation units like industrial burners, furnaces, boilers etc., stringent

emission laws were passed. One of the many ways to reduce NOx emissions is by having

a lean premixed combustion, where the fuel and air are mixed prior to combustion.

Since the fuel and air are premixed, any small variation in the equivalence ratio or any

other perturbation in the incoming premixture, will drastically effect the heat released

in the combustor, leading to combustion instability or thermoacoustic instability.

Combustion instability is a consequence of the interactions between flame/heat

source, flow and acoustics, of which thermoacoustic instabilities occur due to the pres-

ence of positive feedback between the unsteady heat release rates and the acoustic

oscillations. The latter is characterised by large amplitude, low frequency self-excited

oscillations that can be detrimental. If unchecked, these instabilities can cause vibra-

tions of mechanical parts, unsteady and enhanced heat fluxes to walls, concentrated

thermal and pressure loads leading to fatigue and in extreme cases severe structural

damage. Typical combustion instability mechanism can be summarised as shown in

Fig. 1.1. The figure shows the key elements participating in the feedback mechanism:

flow, acoustics and heat release rate. The black arrows indicate the feedback loop.

The earliest observation of thermoacoustic instability was made by Higgins (Raun

et al., 1993, Richardson, 1922) as early as 1777, when he reported the emittance of

musical note while placing a hydrogen diffusion flame inside a closed/open ended tube.

For the early part of the last century, combustion instability research was mostly within

the academic community. But these instabilities became very important research topics

when the instabilities hindered the operations of industrial power generation units like

gas turbine engines, rocket motors, industrial furnaces, boilers etc. Notable cases for the

detrimental side of combustion instabilities include the failure of the F1 engine during

the Apollo program in the 1960s. A detailed historical background of combustion

2
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Figure 1.1: Schematic for combustion instability
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instability research up until the 2000s can be found in the books by Culick (2006) and

Lieuwen and Yang (2005).

Over the last few decades there has been a lot of advancements in the field of com-

bustion instability modelling and instability predictions. A major contributor is the

ability of simulation techniques like DNS and LES to produce high fidelity numerical

computations of combustors, gas turbine engine, rocket motors etc., having complex

geometries and operating under various conditions that cannot be imitated in labora-

tory conditions. The techniques used for instability predictions fall under two classes,

as shown in Fig. 1.2 (Poinsot, 2013, 2017).

– DNS and LES simulations: The full Navier-Stokes equation is solved numerically
to get stability predictions (Laera et al., 2016, Polifke et al., 2001). Here, the flow
dynamics and the flame dynamics are coupled, and we get accurate predictions
for the stability behaviour of real combustion units. Even though the brute force
LES is a straightforward tool to analyse stability behaviour, the implementation
of this method is computationally very expensive and time consuming. Moreover,
to fully understand the combustion phenomenon and behaviour of combustion
units, we have to conduct parametric studies by varying different parameters in
the system. This will lead to a high number of DNS or LES simulations, and in
turn to a very cumbersome analysis.
To overcome this difficulty in analysis, some researchers use the LES method to
simulate flame dynamics and obtain the flame response to acoustic perturbations.
The flame response is modelled in the form of a transfer function (FTF or FDF)
and then used in low order acoustic models and thermoacoustic codes (refer to
the red arrow in Fig. 1.2) (Flohr et al., 2003, Han et al., 2015, Jaensch et al.,
2017).

– Themoacoustic codes: Thermoacoustic (TA) codes do not solve the full Navier-
Stokes equation. In this modelling approach, the mean flow is assumed to be
frozen and only the wave equation is solved throughout the computational do-
main. The flame is modelled as an active acoustic element that act is an input to
the wave equation through transfer functions (FTFs and FDFs) (Tay-Wo Chong
and Polifke, 2012). Since only the wave equation is solved, TA codes can accom-
modate complex geometries in the computational domain.

– Low order network models: The combustion system is simplified through various
assumptions to form a network of acoustic elements. Each of the components

4
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in the combustion system such as duct, orifice, burner, duct termination etc.
are treated as acoustic elements that are related to each other through transfer
matrices or scattering matrices. These transfer matrices are combined to form
the system matrix of the complete system and the matrix is then algebraically
solved to predict the stability behaviour (Polifke, 2010, Stow and Dowling, 2009).

Full Navier-Stokes Equation

Large Eddy Simulation Equations

(small turbulence scale is

filtered, all the rest is re-

solved: flow, acoustics, species)

Linearised Navier-
Stokes Equations

(mean flow is frozen,

only acoustics is solved)

Brute force LES
of Self-Excited
Combustion
Instabilities

LES of Flame
Transfer
Function

3D Thermoa-
coustic Codes

1D Network
Models

Full Analytical Solutions

Figure 1.2: Methods used to model and predict combustion instabilities. Reproduced from
Poinsot (2017)

Computational methods can predict instability. However, to understand the un-

derlying physics and to find the means to control instabilities, one need to resort to

theory and simplified models. To control or eliminate thermoacoustic instabilities,

the feedback loop existing between the unsteady heat release rates and the acoustic

fluctuations must be broken. This can be done in two ways: by use of active or pas-

sive control strategies. In active control, the operating conditions of the systems are

modified through external means. These involve continuous monitoring of the system

with time and modifying the system parameters dynamically, to prevent the setting

in of instabilities. A review on active control of combustion instabilities can be found

in Candel (1992) and McManus et al. (1993), where they provide broad overview of

the underlying mechanisms of combustion instabilities coupled with pressure oscilla-
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tions, active control principles, role of hydrodynamic instabilities like vortex shedding

and vortex roll-up in exacerbating the existing instability, and also the usefulness of

pressure oscillations in pulsed combustion engines.

In contrast to active control, the passive control strategies do not have dynamic

component. Their behaviour is fixed in time. They include changes to hardware and

other design modifications like changes to combustion chamber geometry or the injector

geometry, inclusion of acoustic dampers or even changes in the reactant composition

etc. In the present work we aim to passively control thermoacoustic instabilities and

hence the literature covered will be based on these considerations.

1.2. Passive control strategies

Some of the most commonly used passive control components are Helmholtz resonators,

quarter-wave and half-wave tubes, baffles etc. The Helmholtz resonator consists of a

large cavity with a short neck. A schematic of a combustion chamber equipped with a

Helmholtz resonator and a quarter-wave tube is shown in Fig. 1.3 . The fluid within

the resonator interacts with the fluid in the combustion chamber through this neck.

When the pressure oscillates in the combustion chamber, the fluid enters and exits the

resonator, causing the fluid within the resonator to compress and expand. This results

in an oscillatory motion of the mass of fluid in the resonator neck, and consequently

some acoustic energy may dissipate at the neck entrance. The resulting damping is

effective for frequencies close to the natural frequency (resonance) of the Helmholtz

resonator. The natural frequency is given by

ωHR = c0

√
S

V lHR
, (1.1)

where c0 is the speed of sound, S is the cross-sectional area of the neck, lHR is the

length of the neck and V is the volume of the cavity (Dowling and Ffowcs Williams,

1983).

6
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In quarter-wave and half-wave tubes (Fig. 1.3), the damping mechanism is mainly

the viscous damping at the resonator walls and the vortex shedding and turbulence

dissipation at the resonator inlet. The resonant frequencies are given by

ωR = 2πc0

N (lR + Θ) , (1.2)

where Θ denotes the open end correction factor, lR is the length of the resonator and

N is a constant. N = 2 for a half-wave tube and N = 4 for a quarter-wave tube. These

resonating tubes effectively dampen those combustion instability frequencies that are

close to the resonant frequencies given by Eq. (1.2). A more detailed comparison

between the damping efficiencies of Helmholtz resonators, quarter-wave and half-wave

tubes can be found in Sohn and Park (2011).

Air
Fuel

Air

Helmholtz resonator

Quarter-wave tube

Flame Combustion
products

V
lHR

lR

Figure 1.3: Schematic of combustor with acoustic dampers. Reproduced from Lieuwen and
Yang (2005)

Baffles are structures placed within the combustion chambers, especially in rocket

motors, to mitigate thermoacoustic instabilities. Some of the commonly used baffle

configurations in rocket motors are shown in Fig. 1.4. The baffle configuration is

chosen based on the resonant mode shapes within the rocket motor, so as to interrupt

the pressure oscillations by modifying the acoustic mode shapes within the motor. In

addition to altering the mode shapes, baffles also induce vortex shedding, leading to

enhanced acoustic absorption (Zhao and Li, 2015). Culick (2006) provides a concise

7
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yet rich overview of the various passive control strategies used in rocket engines for

eliminating combustion instabilities.

Figure 1.4: Schematic of baffles used in rocket motors. Reproduced from Culick (2006)

Eventhough the aforementioned passive control components are effective in damp-

ing thermoacoustic instabilities, there are some disadvantages associated with them.

Firstly, most of these dampers are effective in a very limited frequency range that is

close to their respective resonant frequencies. To have broadband mitigation, we may

have to use more than one damper. Secondly, thermoacoustic instabilities are typically

low frequency excitations and hence larger dampers are needed to eliminate instabili-

ties. Since the dampers become bulky and heavy, they increase the overall weight of

the damping component, and are usually avoided. Moreover accommodating them into

an engine is very difficult.

1.2.1. Cavity-backed acoustic liners with bias flow

An alternative passive control strategy is the use of acoustic liners with bias flow.

These liners are metallic sheets with perforations. In the case of liners with bias flow,

the acoustic damping is caused by the vortices shed from the edges of the perforations.

A schematic showing the typical perforations used and the vortex shedding process

from the perforation edge is provided in Fig. 1.5. The acoustic energy is converted into

vortex energy, which is then dissipated. Bechert (1980) experimentally showed this

8
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mechanism of sound absorption in a jet flow from a nozzle.

(a) (b)

Figure 1.5: Schematic of (a) acoustic liners with perforations and (b) vortex shedding at
the perforation edges

There is a vast amount of literature available on sound absorption by vortices induced

by bias flow through orifices, slit-plates and nozzle exits. Leppington and Levine (1973)

developed mathematical expressions for the reflection and transmission at a plane per-

forated screen with circular or elliptical apertures. However, they did not consider the

effect of bias flow through the perforations. The influence of bias flow and the sound

absorption mechanism by vortex shedding was mathematically described in the work

by Howe (1979). He derived expressions for the absorptive properties of circular perfo-

rated plates in unsteady high Reynolds number flows, where the main contributor to

the acoustic dissipation is the shed vortices from the edges of the perforations.

Hughes and Dowling (1990) extended the modelling of the absorption properties of

perforated plates to include the effect of a cavity. These models were later verified

experimentally by Jing and Sun (1999). The latter also investigated the effect of plate

thickness and the influence of the bias flow direction, on the absorptive properties of

the perforated plate.

Instead of circular or elliptical perforations, one can also use slit-plates with bias

flow (Dowling and Hughes, 1992, Howe, 1980). In both these liner configurations,

it was observed that the absorption capability can be enhanced greatly by including

a cavity backing (Dowling and Hughes, 1992, Monkewitz, 1985, Smits and Kosten,

1951). The acoustic response of acoustic liners i.e., the transmission, reflection and

absorption properties, largely depend on their geometries and also on the bias flow

velocities. A detailed discussion on the influence of different liner parameters on the

9
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acoustic behaviour of bias flow liners can be found in Lahiri (2014), Lahiri and Bake

(2017).

There is also an extensive literature on high fidelity numerical simulations of the

acoustics of perforated liners and slit-resonators (Eldredge et al., 2007, Mendez and

Eldredge, 2009). Hofmans et al. (2001a), Hofmans (1998), Hofmans et al. (2001b,

2003) utilised a vortex-blob method to simulate the flow through an in-duct orifice as

well as the flow through in vitro models of vocal folds. The numerical results obtained

for the scattering matrix of the orifice and the numerical results obtained for the

pressure variations within the vocal folds were then compared to their respective models

(quasi-steady model and boundary layer model, respectively) as well as experiments.

Tam et al. (2005, 2010) conducted extensive DNS studies and subsequent experimental

validation to explore the flow-acoustic interactions in slit-resonators. The simulations

were conducted to compute the impedances of slits with different geometries, slit widths

and different incident frequencies, and also to obtain detailed visualisation of the flow

dynamics and dissipation mechanism in slit-resonators. Zhang and Bodony (2012)

conducted LES simulations for orifices backed by hexagonal cavities. These acoustic

liners are used for aeroengine noise reduction. The high fidelity results were then used

to construct a time-domain model to describe the flow dynamics through the orifice.

In order to have less expensive and less computationally demanding numerical method-

ology (compared to DNS or LES), Na (2015), Na et al. (2016) proposed a ‘unified LNSE

approach’ to predict the acoustic properties of a hybrid liner consisting of a perforated

plate, a back cavity and a metallic foam. In the unified LNSE approach, they have

combined the LNSE with a fluid equivalent model, a commonly used method to model

sound propagation in porous materials. Their proposed method gave good agreement

with experimental results for the hybrid liner.

Researchers have also examined the acoustic behaviour of perforated plates under the

influence of high amplitude fluctuations, both in the absence and presence of bias flow.

Cummings and Eversman (1983), Salikuddin and Ahuja (1983) conducted theoreti-

cal investigations on the effect of high amplitude acoustic fluctuations on the acoustic

10
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behaviour of duct terminations (in the absence of bias flow), whereas the experimen-

tal investigations on the influence of medium and high amplitude fluctuations on the

acoustic behaviour of orifices in the absence and presence of bias flow was carried out

by Zhou and Bodén (2014). Tam et al. (2001) investigated the dissipation mechanisms

in resonant acoustic liners through DNS. In all these studies, they found that when high

intensity acoustic waves are incident on perforated liners, they induce vortex shedding,

and vortex dissipation is the dominant damping mechanism in such liners.

1.2.2. Acoustic liners in combustors

In conventional diffusion flame type combustors, like the one shown in Fig. 1.6, there

are dilution holes on the combustor casing to provide secondary cooling of the com-

bustion liner. These dilution jets enhance the effective acoustic attenuation inside the

combustion chamber. Unfortunately, such a control strategy is not acceptable in lean

premixed combustion systems. The lean premixed combustors already operate near the

lean blowout limit and any further dilution of the fuel-air mixture will lead to blowout.

Figure 1.6: Typical conventional type combustion chamber. (Rolls-Royce, 1996)

However, in recent years, researchers have developed methods to use acoustic liners

as dampers in lean premixed combustors. One such example is the work by Scarcini

(Huang and Yang, 2009, Lieuwen and Yang, 2005), where a modified premixer con-

11
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figuration was included in the Rolls Royce Trent 60 Aeroderivative gas turbine engine

to effectively mitigate combustion instabilities. Instead of using a premixed mixture,

the fuel was injected at the head of the premixer. The premixer walls had perforations

through which air entered the premixer in the form of numerous jets, and facilitated for

thorough mixing prior to combustion. Such a liner configuration was found to be effec-

tive in damping thermoacoustic instabilitites. However, the employability of acoustic

liners as passive control elements in lean premixed combustion systems is still in the

developmental phase, and presently a rapidly evolving field of research.

There are several theoretical, numerical and experimental works that have imple-

mented cavity-backed perforations to control thermoacoustic instability in laboratory

based test combustors. Tran et al. (2009a,b) successfully incorporated a cavity-backed

perforated plate to annul the thermoacoustic instability in a swirl combustor. The

cavity-backed perforated plate was placed at the upstream end of the swirl burner,

and the control was achieved by varying the cavity length. Tran’s work was continued

by Scarpato et al. (2013, 2012) with the aim of investigating the influence of Strouhal

number on the absorption mechanism of the cavity-backed perforate. Stability pre-

dictions of Tran’s combustor were carried out by Heckl and Kosztin (2013), using a

Green’s function approach and a generic time-lag law for the heat source. They pre-

dicted that control can be achieved for a wide range of cavity lengths and also examined

the effectiveness of the control for different time-lags.

Zhao et al. (2011) utilized the aforementioned method to study the damping proper-

ties of perforated liners fitted along the bounding walls of a combustion chamber. They

observed that the combustion chamber length and the bias flow through the perfora-

tions are important parameters for passive control. They also developed a real-time

tuning scheme for the perforated liners, which was implemented to obtain optimum

damping for a broad frequency range.

Rehman and Eldredge (2007) investigated the influence of perforated liners on the

stability of a simplified combustion system by modelling the scattering properties of the

acoustic liners in terms of transfer matrices (using the model proposed by Eldredge and

12
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Dowling (2003)) and then by using this model in a heuristic gain-delay flame model.

They found that stability could be achieved by varying the porosity of the orifices as

well as the bias flow velocity.

1.3. Research Motivation

Passive control strategies like cavity-backed acoustic liners with bias flow and bulky

acoustic dampers like Helmholtz resonator or half-wave and quarter-wave tubes, are

all viable control options in large power generation units, especially stationary ones

(Lieuwen and Yang, 2005). Unfortunately, these passive control strategies are unde-

sirable in small and compact power generation units like domestic boilers. Due to the

strict emission laws, the latter systems also operate in the lean premixed regime and

are therefore susceptible to thermoacoustic instabilities.

The amount of literature concerning the combustion instability control in small com-

bustion systems like domestic burners is very limited, and this motivated us to look

for alternative control strategies to suppress thermoacoustic instabilities in domestic

boilers. One of the main differences between the gas turbine engines or other large

power generators and small power generation units like domestic boilers, is the pres-

ence of heat exchangers in the latter. In a domestic boiler, the heat exchanger is

housed within the combustion chamber along with the flame, and so requires no ad-

ditional space. With this as the basis, we propose to use heat exchangers as a viable

alternative to control thermoacoustic instabilities in combustion systems like domestic

boilers.

1.3.1. Sound dissipation in tube banks

Heat exchangers are periodic structures that consist of arrays of tubes in a cross flow.

It is evident from literature survey that tube rows or tube banks in cross flow can

effectively damp acoustic oscillations. Some of the relevant works are mentioned below.

If sound passes through an array of tubes, it is attenuated due to viscous, thermal and
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turbulent losses. We aim to utilise this attenuation property of tube arrays to control

thermoacoustic instabilities.

Kristiansen and Fahy (1972, 1974) have developed a simple theory for the prediction

of sound dissipation in tube banks subjected to steady cross flow. They treated the tube

bank as a special homogeneous medium whose characteristic properties or parameters

were determined from the mean flow data. They observed that the attenuation within

the tube bank increased with increasing mean flow velocity.

Quinn and Howe (1984) derived the dispersion relation for sound propagation through

a bank of rigid circular tubes in cross flow. They observed that the attenuation of sound

increases with decreasing Strouhal number. In other words, for a given incident acous-

tic frequency and tube diameter, the sound attenuation increases with increasing mean

cross flow velocity. However, the approach by Quinn and Howe utilises a highly ide-

alised flow modelling and hence provides only a qualitative description of the acoustic

behaviour of the tube bank.

1.4. Scope of Research

The scope of the present work is to investigate the passive control capability of heat

exchangers and to effectively use them to suppress the thermoacoustic instability in an

idealised domestic boiler system.

In order to achieve this goal, the complex boiler system is simplified as shown in

Fig. 1.7(a). The boiler is assumed to consist of its very basic components : (1) burner,

(2) heat exchanger or hex and (3) outer casing with provisions for the flow of fuel-air

mixture, exhaust and coolant.

A section of the boiler (Fig. 1.7(b)) taken from axis of symmetry and along the

radial direction will resemble the combustion system that consists of a 1-D duct with

a compact heat source. The upstream end is open and the downstream end is fitted

with a cavity-backed heat exchanger tube row. In our study, we use the 1-D acoustic

assumption because we focus on the instability in the radial direction and also assume
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Coolant in

Coolant out

Hot exhaust

Fuel - Air
mixture

(a) Full view (b) Sectional view

Figure 1.7: A simplified domestic boiler with heat exchanger

that the system properties are uniform along the axis of the burner (z direction in

cylindrical coordinates). The heat source is modelled using a time-lag law. The heat

exchanger is modelled by taking into account both the heat transfer and the acoustic

scattering aspects. We also take into account the jumps in mean temperature across

both the heat source and the heat exchanger. In order to examine the instability control

potential of the cavity-backed heat exchanger, we undertake a stability analysis by

constructing stability maps for a wide range of downstream end boundary conditions.

1.5. Structure of thesis

The work presented in this thesis can be broadly divided into the following chapters

– Chapter 2 describes the thermoacoustic system being investigated. The practical
combustion system like the domestic boiler is simplified to its most essential
components and the overall acoustic field within such a combustion system is
provided

– In Chapter 3, the different modelling approaches for the heat source or sink are
presented. This chapter mainly focuses on the assumptions involved and the
modelling of the heat sources using time-lag laws. A discussion on the acoustic
jump or acoustic matching conditions across a compact heat source/sink is also
provided in the chapter
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– The modelling of the heat exchanger tube row is given in Chapter 4. The heat
transfer response of the heat exchanger is obtained through numerical simula-
tions, and formulated as a transfer function in the frequency domain (Surendran
et al., 2016b). This is followed by the quasi-steady modelling of the aeroacoustic
response of the heat exchanger tube row (Surendran et al., 2016a). In the last
part of the chapter, the total acoustic response of the heat exchanger is derived
and a parametric study is conducted to examine the influence of different system
parameters on this response

– The influence of cavity backing on the acoustic response of the heat exchanger
tube row is provided in Chapter 5. Again, a parametric analysis is done to
investigate the additional influence of the cavity backing, along with other system
parameters

– In Chapter 6, stability analysis of the complete combustion system is undertaken.
Stability maps are constructed for various system parameters and the influence
of these parameters on the instability control are discussed

– In the final chapter, Chapter 7, a brief summary of the work is presented. The
key findings are highlighted along with the scope for future work

A concise representation of the thesis structure is shown in Fig. 1.8. Another relevant

and complementary work related to this thesis (but not included in the thesis) is the

representation of heat exchanger tube row by a row of narrow sharp-edged rods with

rectangular cross-section, treating the hex effectively as a slit-plate. Details on this

work can be found in Surendran and Heckl (2015, 2016, 2017).
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Chapter 2

• Simplifications to geometry
• Assumptions and acoustic field

involved

Chapter 3

• Heat source modelling

• Time-lag laws
• Acoustic jump conditions

Chapter 4

• Heat exchanger modelling - heat sink
and acoustic scatterer

• Numerical simulation of heat sink and
transfer functions

• Analytical modelling and experimental
verification of acoustic scattering

• Total scattering matrix at heat
exchanger

• Parametric study - influence of system
parameters

Chapter 5

• Influence of cavity backing
• Parametric study - influence of cavity

and system parameters

Chapter 6

• Stability maps

• Influence of system parameters on
passive instability control

Chapter 7

• Conclusions

• Key findings and scope for future work

Figure 1.8: Outline of thesis (image source: www.wolf-heiztechnik.de)
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Chapter 2

The modelled configuration

The objective of this chapter is to introduce the thermoacoustic system being

investigated. The main focus is to analytically model an idealised combus-

tion system with heat exchanger and examine the influence of heat exchang-

ers on the stability of such combustion systems. In this chapter, a practical

combustion system like a domestic boiler is first reduced to a simple geome-

try. The assumptions involved and the form of the acoustic field within the

combustor is given in this chapter.

2.1. Introduction

Due to strict emission laws to reduce NOx production, power generation and com-

bustion systems are required to operate in lean premixed combustion regime, often

leading to thermoacoustic instabilities in these systems. The need to produce compact

and clean combustion systems that are less prone to thermoacoustic instabilities have

presented researchers and engineers with many design challenges. One such challenge is

the inclusion of passive control components and dampers like quarter-wave resonators

and Helmholtz resonators into the system configuration. These dampers are usually

bulky and cannot be easily accommodated into the already intricate geometry of power
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generation systems. In this work, we focus on passive instability control in domestic

boilers.
Exhaust

Burner
Heat exchanger

Premixer

Control unit

Fuel Inlet

Figure 2.1: Sectional view of
a domestic boiler (image source:
www.wolf-heiztechnik.de)

A typical domestic boiler is as shown in Fig. 2.1. The main components are burner,

heat exchanger, premixer, inlets for fuel, air and water, exhaust for flue gases and

its associated control unit. Prior to combustion, the fuel enters the premixer where it

mixes with air. The premixture then goes to the combustion chamber. The combustion

chamber houses the burner and the heat exchanger. The fuel-air mixture burns at the

burner surface and the hot combustion products or flue gases then exit the combustion

chamber and subsequently the boiler through the exhaust. As the flue gases escape

from the combustion chamber, they transfer their heat to the water present within the

heat exchanger. This hot water is circulated around to radiators and hot water storage

units.

Incomplete combustion of the fuel within the combustion chamber leads to the pro-

duction of oxides of carbon and nitrogen that are deadly pollutants. To reduce this

pollution, the fuel is premixed with excess air to form a lean mixture and is then burnt

in the combustion chamber. Lean mixtures have low adiabatic flame temperatures and

this affects flame stabilization on the burner (Glassman and Yetter, 2008). In addi-

tion to these, when the heat source (flame in the case of boiler) is placed in a closed

environment, there will be close interaction between the heat release from the source
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and the local acoustics. When this interaction transforms into a feedback mechanism,

thermoacoustic instability ensues.

It is this instability and its suppression using passive components that is of interest in

our present study. This doctoral work, which is part of the Marie Curie ITN TANGO,

explores the usability of heat exchangers as passive control elements in domestic boilers.

Heat exchanger being an integral component in any heat or power generation system,

it is advantageous to modify or redesign the heat exchangers to mitigate thermoa-

coustic instabilities, rather than having additional damping components in the system.

Our aim is to study, analytically, the mitigation potential of heat exchangers in the

low frequency regimes, where quarter-wave resonators and Helmholtz resonators are

practically not viable.

2.2. Description of the model

As mentioned in Chapter 1, the domestic boiler configuration is simplified to its basic

components. However, for the analytical modelling purposes, we discard the fuel-air

mixture and exhaust gas compositions, the chemical kinetics associated with combus-

tion as well as the flux of coolant through the hex. Instead, we assume a homogeneous

medium encompassing the burner and the hex, having different mean temperature val-

ues at different regions within the boiler. The hex is assumed to be maintained at

constant temperature. After all these simplifying assumptions, the modelled combus-

tion system reduces to that shown in Fig. 2.2. It consists of a long duct, open at

one end and closed at the other, forming a quarter-wave resonator. Even though the

geometrical complexities in a real boiler calls for modelling a duct with varying area

of cross section, in our simplified case, we assume a duct with constant area of cross

section. The open end at x = 0 denotes the line of symmetry and acts as an inlet

for the unburnt fuel-air mixture1 and the closed end denotes the outer casing of the
1In domestic boilers, the burner is mounted over a base of significant volume, which can act as a

buffer region to dissipate any pressure build up within the burner. In such situations, the volume
within the base leading up to the symmetry line of the burner can be treated as a pressure release
boundary, where p′ = 0. Hence, we are justified in assuming an open end at x = 0.
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boiler. The open end is characterised by its reflection coefficient R0 = −1 and the

closed end by the corresponding reflection coefficient of Rp = 1. We are treating the

downstream end of the combustor as a movable rigid backing (or a piston) in order

to vary the distance between the hex and the backing wall. This distance is referred

to as the cavity length (lc) and is one of the key parameters in our study. The heat

source, which denotes the flame front at the burner, is located at a distance lf from

the upstream end, dividing the resonator into a cold upstream region (Region 1 ) and a

hot downstream region (Region 2 ). The speeds of sound (c1,2) and mean temperatures

(T̄1,2) are uniform in both regions, where T̄1 < T̄2 and subsequently c1 < c2. The hex

is located at a distance x = L from the open end.

p+
1 p+

2

p−1 p−2

x = 0 x = lf x = L

Heat Source
1 2

Heat Exchanger

lc

Movable rigid
backing

R0 3

RL

Rp

Figure 2.2: The modelled combustion system

2.2.1. Acoustic field

The acoustic field within the combustor is modelled as one-dimensional acoustic waves

propagating perpendicular to the hex (normal incidence), as shown in Fig. 2.2. It

consists of forward (p+) and backward (p−) travelling waves, with amplitudes A1 and

B1 respectively in Region 1 and amplitudes A2 and B2 respectively in Region 2. The

acoustic pressure and velocity fields inside the combustor may be written as (Rienstra

and Hirschberg, 2014)

Region r :

p̂r(x) = p+
r + p−r = Are

ikr(x−lf) +Bre
−ikr(x−lf) (2.1)

ûr(x) = u+
r + u−r = 1

ρrcr

{
Are

ikr(x−lf) −Bre
−ikr(x−lf)

}
(2.2)
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where p̂ and û are the acoustic pressure and acoustic velocity respectively, A and B

are the pressure amplitudes to be determined and u+ and u− are the acoustic velocity

components corresponding to p+ and p− respectively. The subscript ‘r’ denotes the

region within the combustor, ω is the frequency of the incoming acoustic wave, ρ is the

density of the fluid and kr = ω/cr is the wave number in the region ‘r’. In our analysis,

the mean flow velocity is very small (∼ O(1 m/s)) compared to the speed of sound and

hence can be neglected in the mathematical formulation. The factor of e−iωt is omitted

throughout the analysis. Formulation of boundary conditions and the complete system

is taken up in Chapter 6.

2.2.2. Heat Source

In typical burners, the heat source is the surface stabilised flame front composed of

multiple flames as shown in Fig. 2.3. However, the lengths of individual flames are

much smaller than the acoustic wavelengths encountered within the combustion sys-

tem. Therefore, we can assume the heat source to be compact and confined to an

infinitesimally thin region at the location x = lf . We also assume that the heat release

rate fluctuations
(
Q̂
)

at the heat source location is influenced by the acoustic velocity

perturbation (û) at that location. The relation between û and Q̂ is given by heat

release rate models and flame transfer functions. Chapter 3 addresses the modelling of

heat sources and sinks in detail.

2.2.3. Heat Exchanger or Hex

The hex consists of an array of tubes with bias flow through the gaps, denoted by

its Mach number, M . The Mach numbers considered in our analysis are very small

(i.e. M � 1) and hence we could neglect them while describing the acoustic field within

the combustor. The mean flow Mach number becomes relevant only in those regions

close to the hex where hydrodynamic effects outweigh the acoustic effects. The influence

of the hex and the backing wall, on the acoustic field within the combustor is given by
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(a) Surface stabilised flames (image source:
http://www.scm.keele.ac.uk/Tango/)

Natural Gas
Air

Air
Mixer

Surface
Stabilised
Flame front

Burner
Head

(b) Schematic of burner (Reproduced
from www.alzeta.com)

Figure 2.3: Burner head

the reflection coefficient RL at x = L. The details pertaining to the modelling of hex

and derivation of RL are given in Chapters 4 and 5 respectively.

2.3. Conclusions

Passive instability control using heat exchangers is a viable alternative for domestic

boilers and other power generation systems, susceptible to thermoacoustic instabilities.

To this end, the effect of heat exchangers on combustion systems need to be studied.

In this chapter, we have introduced a practical boiler and its simplification to an

idealised combustion system. The idealised system consists of a quarter-wave resonator

(a constant area duct with open-closed ends) with a heat source and a heat exchanger.

The acoustic field within the resonator is modelled as 1-D waves and the heat source is

assumed to be compact. Even though there is a mean flow in the system, it is neglected

due to its magnitude being much smaller than the speed of sound.
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Chapter 3

Heat Source or Sink

This chapter gives an overview of the modelling of the response of heat

sources and sinks to incoming perturbations. The derivation of Rayleigh

criterion for heat sources/sinks, shows that a system undergoes instability

if there is net acoustic energy growth in the system, and is greatly influenced

by the phase difference between the acoustic perturbations and heat release

rate perturbations. Since thermoacoustic instability is a manifestation of

the feedback loop between acoustic perturbations and heat release rate per-

turbations, it is important to understand and model the responses of heat

sources and sinks. Time-lag laws and Flame Transfer Functions are the

most commonly used models. In the present study, we use a simple time-

lag law to model the response of a compact heat source. Lastly, the acoustic

pressure continuity and acoustic velocity jump conditions across the heat

source/sink is formulated.

3.1. Introduction

Thermoacoustic instabilities in combustion systems manifest as a result of positive

feedback mechanism existing between acoustic perturbations and heat release rate

fluctuations. It is, therefore, appropriate to have a chapter dedicated solely to the
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understanding of the physics and the subsequent modelling of the responses of heat

sources and sinks to oncoming acoustic perturbations. In this chapter, we first derive

the Rayleigh criterion to facilitate the prediction of thermoacoustic instabilities, fol-

lowed by the discussions on heat release rate models and eventually their influence on

the acoustic field within the combustion system.

The phenomenon of thermoacoustic instability was observed centuries ago by glass

blowers while blowing hot bulbs at the end of narrow tubes (Lord Rayleigh, 1896). This

behaviour was later experimentally studied by Sondhauss (1850). He observed that the

frequency of the sound produced depend on the dimensions of the tube, especially the

length and the volume of the bulb at the end of the tube. Another example of a simple

combustion system to exhibit thermoacoustic instability is the Rijke tube. This system

was extensively studied by Rijke (1859). He had a vertical glass tube with a wire gauze

positioned at one-quarter length from the bottom end. The wire gauze was heated

to red hot using hydrogen flame. The glass tube was open at both ends and the hot

wire gauze induced an upward convective flow through the tube. He observed that a

clear tone was produced seconds after the hydrogen flame was removed. As soon as

the top end of the tube was covered, the sound stopped. Thermoacoustic instability

can also be triggered when there is hot flow over a heat sink, as observed by Bosscha

(Lord Rayleigh, 1896) and Riess (1859), and can be viewed as a ‘reverse’ Rijke effect.

They observed amplified pressure oscillations when a cold wire gauze or a heat sink

was placed at the upper extremity of a Rijke tube. Even though there were similar

observations made by various other researchers, it was Lord Rayleigh (1896) who gave

well-founded explanations for these thermoacoustic behaviours. As will be explained

in Section 3.2, Rayleigh attributed the sound production to the coupling of unsteady

heat release fluctuations and pressure fluctuations.
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3.2. Rayleigh Criterion

Lord Rayleigh, in his book The Theory of Sound (Lord Rayleigh, 1896), gave the reason

for thermoacoustic instability as:

“If heat be periodically communicated to, and abstracted from, a mass of

air vibrating (for example) in a cylinder bounded by a piston, the effect

produced will depend upon the phase of the vibration at which the transfer

of heat takes place. If heat be given to the air at the moment of greatest

condensation, or be taken from it at the moment of greatest rarefaction,

the vibration is encouraged. On the other hand, if heat be given at the

moment of greatest rarefaction, or abstracted at the moment of greatest

condensation, the vibration is discouraged.”

This essentially means that for an instability to occur, the unsteady heat release fluc-

tuations and the acoustic pressure fluctuations must be in phase. To draw an analogy

to the Rayleigh criterion, consider the forced oscillations of a pendulum. Assume that

the pendulum is analogous to the acoustic pressure fluctuations and the forcing to the

heat release rate fluctuations. Let us first consider the case when heat is added at the

pressure maxima. This corresponds to the forcing situation shown in Fig. 3.1(a), where

the pendulum is forced from point A to B and the forcing is said to be in phase with

the displacement. Such a forcing will increase the amplitude of oscillation. Repeated

forcing at the maximum results in the amplification shown in Fig. 3.1(b). On the other

hand, consider the case of heat addition to pressure minima. This corresponds to the

forcing situation shown in Fig. 3.1(c). Here, the pendulum is displaced from point C

to D i.e., the forcing is out of phase with the displacement of the pendulum, leading

to damping (Fig. 3.1(d)). Similar analogies can be drawn for the cases with heat re-

moval from a pressure maximum or minimum leading to damping or amplification of

the oscillations.

As for the frequency of oscillation, Rayleigh noted that the frequency remained

unaffected for the situations where the heat addition/removal occurred at the pressure
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Figure 3.1: Rayleigh criterion and analogy to forced oscillation

maximum/minimum. The frequency was affected when heat addition/removal occurred

at the mid-point of the oscillation. The frequency of pressure oscillation increased when

heat was added quarter period before pressure maxima; and the frequency decreased

when heat was added quarter period after pressure maxima. But, in such a situation

the amplitude of oscillation was unchanged.

The mathematical formulation for the Rayleigh criterion can be derived using a

control volume approach. Consider a control volume (c.v.) of length ∆l and cross-

sectional area S, enclosing the heat source, as shown in Fig. 3.2. Assuming an inviscid

flow with no mass sources within the c.v., no body forces and viscous forces acting

on the c.v. and negligible heat transfer across the c.v., we can write the mass and

momentum equations as

Dρ

Dt
+ ρ∇ · u = 0, (3.1)

ρ
Du
Dt

= −∇ p, (3.2)
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Figure 3.2: Control volume for Rayleigh criterion

where ρ is the density, u is the velocity vector and p is the pressure. In order to obtain

the acoustic perturbation equations, we linearise Eqs. (3.1) and (3.2) using the mean

and perturbed quantities of p, ρ and u: p = p̄ + p′, ρ = ρ̄ + ρ′ and u = ū + u′. With

the assumption of quiescent medium (ū does not change with time or space), we can

neglect the effect of the mean flow velocity: ū = 0, and also the assumption that

the perturbation quantities� mean quantities, the 1-D conservation equations for the

perturbed quantities are obtained as

∂ρ′

∂t
+ ρ̄

∂u′

∂x
= 0, (3.3)

ρ̄
∂u′

∂t
= −∂p

′

∂x
. (3.4)

Multiplying Eq. (3.4) with u′ and substituting Eq. (3.3) in it, we obtain

ρ̄

[
∂

∂t

(1
2u
′ 2
)]

+ ∂

∂x
(p′u′) = p′

(
−1
ρ̄

∂ρ′

∂t

)
(3.5)

When heat is added to the fluid inside the c.v., we can assume that the density

variations are influenced by the variations in pressure and enthalpy (denoted by h) i.e.,

ρ = ρ (p, h)1. Hence, using chain rule of differentiation, we can write

∂ρ

∂t
=
(
∂ρ

∂p

)∣∣∣∣∣
h

∂p

∂t
+
(
∂ρ

∂h

)∣∣∣∣∣
p

∂h

∂t
. (3.6)

The isenthalpic relation gives (∂ρ/∂p)|h = 1/c2 and thermodynamic property rela-

tion (∂h/∂T )p = Cp = γR/(γ−1) (Moran and Shapiro, 2004) combined with the ideal

1We could also use variations in entropy instead of enthalpy i.e., ρ = ρ (p, s).
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gas law p = ρRT , gives (∂ρ/∂h)p = (∂ρ/∂T )× (∂T/∂h)p = −ρ̄ (γ− 1)/c2, where Cp is

the specific heat at constant pressure, R is the specific gas constant and γ is the ratio

of specific heats. Hence, substituting these relations in Eq. (3.6), we get 2

∂ρ′

∂t
= 1
c2
∂p′

∂t
+ −ρ̄ (γ − 1)

c2
∂h

∂t
. (3.7)

In the control volume, where heat is added, the only contribution to the rate of

change of enthalpy i.e., ∂h/∂t, is the heat release rate fluctuation (per unit mass) q′.

Therefore, by substituting Eq. (3.7) in Eq. (3.5) and using ∂h/∂t = q′, we obtain

∂

∂t

[
p′ 2

2ρ̄c2 + ρ̄u′ 2

2

]
+ ∂

∂x
(p′u′) = (γ − 1)

c2 p′ q′. (3.8)

Equation (3.8) is the local form of the acoustic energy balance in the control volume.

The first term in Eq. (3.8) is the rate of change of potential and kinetic energies across

the control volume, the second term is the rate of net outflux of energy from the control

volume, or in other words, the rate of energy loss and the right hand side denotes the

acoustic energy gained from the heat release. When integrated over the total volume,

we obtain the global form of the acoustic energy balance.

∂

∂t

*
∆V

[
p′ 2

2ρ̄c2 + ρ̄u′ 2

2

]
dV +

*
∆V

∂

∂x
(p′u′) dV = (γ − 1)

c2

*
∆V

p′ q′ dV . (3.9)

Time averaging of Eq. (3.9) gives an indication of the stability of the combustion

system under consideration. There will be net growth in the acoustic energy stored in

the system, leading to instability, if the energy gained through heat addition is larger

than the energy lost within the system. Many researchers (McManus et al., 1993)

denote the time average of the integral term in the r.h.s of Eq. (3.9) as the Rayleigh

index (G), with

G = 1
T
∫ T

0
Q′(t) p′(t) dt, (3.10)

2If we assume ρ = ρ (p, s), ∂ρ/∂t = (∂ρ/∂p)s ∂p/∂t+ (∂ρ/∂s)p ∂s/∂t. Here, (∂ρ/∂p)s = 1/c2, from
isentropic relation and ∂s/∂t = q′/T , from 2nd Law of Thermodynamics, where q′ is the rate of
heat added or removed. (∂ρ/∂s)p can be evaluated from the ideal gas law as −ρ̄ (γ − 1)T/c2
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where T is the time period of oscillation and Q′ =
)
∆V

ρ̄ q′ dV is the global un-

steady heat release fluctuation. For systems with negligible acoustic losses, G > 0

indicates amplification of the thermoacoustic instability and G < 0 indicates damp-

ing. For situations with non-negligible acoustic losses, the condition for instability will

be G >
)
∆V

∂
∂x

(p′u′) dV . Applying Eq. (3.10) to a harmonic pressure perturbation of

the form p′(t) = p̂ cos(ωt) and a heat release perturbation with a phase shift φ i.e.,

Q′ = Q̂ cos(ωt + φ), predicts the phase difference to be −π/2 < φ < π/2 for G to be

positive. Hence, it is important to know the phase difference between p′ and Q′ to

predict thermoacoustic instabilities.

3.3. Some factors affecting the heat release rate

fluctuations

The prediction of thermoacoustic instabilities in real systems is not always straight

forward. Even though the primary mechanism for the instability is the feedback loop

between Q′ and p′, there are other secondary mechanisms that could affect Q′ and trig-

ger instability (McManus et al., 1993). Some of these factors are shown as a schematic

in Fig. 3.3(a). Firstly, we consider the effect of equivalence ratio fluctuations in the

incoming fuel-air mixture (Lieuwen and Zinn, 1998). Although we assume the incom-

ing mixture to be fully premixed, it is not perfectly homogeneous in composition. This

causes variations in the equivalence ratio, both temporally and spatially, leading to un-

steady and non-uniform heat release rates and consequently a phase difference between

p′ and Q′.

Secondly, the heat released is proportional to the amount of fuel-air mixture being

burnt at the flame surface. Therefore, Q′ is influenced by the fluctuations in the mass

flux at the combustor inlet. The fluctuations in the inlet mass flux is proportional to

u′ and hence we can deduce that Q′ is proportional to u′.

30



Chapter 3. Heat Source or Sink

Flame area
fluctuations

Velocity
fluctuations

Vortex
shedding

Equiv. ratio
fluctuations

Fuel + Air

Heat release rate
fluctuations

(a) Causes for fluctuations in the heat
release rate

Unburnt mixture
of reactants

Hot combustion
products Vortex roll-up

Interface (Flame)

Rearward
facing step

(b) Vortex roll-up. Reproduced from
Schadow and Gutmark (1992)

Figure 3.3: Factors affecting the heat release rate fluctuations

Another factor that influences the heat release rate fluctuations is the presence of

hydrodynamic instabilities, like vortex shedding and shear layers, in the source region

(Schadow and Gutmark, 1992). Vortex structures and shear layers are formed when

there is interaction between high and low speed streams. Typically in combustors, this

occurs near the inlet or near flame holders where we have the high speed stream of

unburnt fuel-air mixture and the low speed stream of the burnt gases, and the flame

is formed at this interface between the two streams. The vortex development and

vortex roll-up process causes unburnt mixture to be trapped within the vortices, and

are then convected downstream along with the incoming flow (Fig. 3.3(b)). As the

vortices convect, they grow due to the entrainment from the surrounding medium or

by merging with adjacent vortices, and eventually breakdown into fine-scale turbulent

structures (Pope, 2000). At this stage, there will be enhanced mixing of the previously

trapped unburnt mixture with the surroundings, leading to sudden combustion at the

flame interface, thereby causing a sudden heat release. The mechanism of vortex roll-up

and the subsequent disintegration leading to heat release is a periodic process and when

this periodic heat release is in phase with p′, it can trigger thermoacoustic instability.

The amount of heat released is also dependent on the surface area of the heat source.

The larger the surface area, the higher the heat released. Hence for flames, wrinkled
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flame surfaces/fronts release more heat. The wrinkling of the flame front is indirectly

influenced by u′ and aforementioned hydrodynamic instabilities.

3.4. Heat release rate models

The response of a heat source to upstream acoustic perturbations is given by the heat

release rate models. The most commonly used models are Time-Lag (n−τ) models and

Transfer Functions (TF). Recalling from the Rayleigh criterion, we see that it is the

phase difference between p′ and Q′ which is crucial in triggering instability. In the time

domain, this phase difference can be interpreted as a time delay or a time-lag, and has

strong influence on the stability behaviour of the combustion system. As mentioned

in Section 3.3, there are many factors contributing to the phase difference between Q′

and p′, with each factor having its own associated time-lag.

It is usually convenient to model Q′ in terms of time-lags when the underlying physics

and the sources of time-lags in the system are known. However, when we are investigat-

ing thermoacoustic systems with complex sources and multiple time-lag contributions,

we use the concept of Transfer Functions.

An important factor that contributes to the heat release rate modelling in a system,

is the compactness of the heat source. Compactness can be based on either the acoustic

field (acoustic compactness) or the hydrodynamic flow field (convective compactness)

present in the system. For an acoustically compact heat source, the characteristic

length of the heat source is much smaller than the acoustic wavelength, and hence

we can apply the thin sheet approximation to describe the acoustic behaviour of the

heat source. For a convectively compact heat source, we assume the heat source to

be confined to a very small spatial region, with respect to the mean convected flow,

such that there is no spatial variation in the heat source properties. In the case of a

convectively non-compact heat source, there will be a spatial distribution of the heat

source properties, namely the heat released. This will create phase differences between
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the heat released and the mean flow velocity fluctuations at different spatial locations

along the heat source. These phase differences can generate additional time-lags.

In our analysis, we restrict ourselves to acoustically and convectively compact heat

sources (and sinks). Hence, the heat source is assumed to be confined to an infinitesi-

mally thin plane, across which we can derive the jump conditions for the acoustic field

(as will be shown in Section 3.5), as well as model the heat release rate laws.

3.4.1. Time-Lag (n− τ) laws

As mentioned in Section 2.2.2, in our study we model Q′ solely as a function of u′.

Q′ at the heat source location x = lf depends on the velocity perturbations from

the upstream side, but with a certain time delay τ (Fig. 3.4). This formulation is

based on the early research works conducted in rocket motors by Crocco and Cheng

(1956), where they related the Q′ to p′ through a time-lag model. The rationale behind

the time-lag concept is that in real life events, there is a small time lapse between the

injection of the propellant to the final burnt products. Following a similar justification,

we also assume a small time-lag between the acoustic velocity fluctuations at a reference

position x = xref (upstream of the heat source) and the heat released at x = lf . Using

this assumption, we can model the heat release rate for a compact and planar heat

source, confined to an infinitesimal region at x = lf as

Q′(t) = n1 u
′
ref (t− τ) , (3.11)

where n1 is the coupling coefficient or interaction index, u′ref (t) is the acoustic velocity

fluctuation at xref and τ is the time-lag associated with the convection of the acoustic

perturbations from xref to lf . In our study, we refer to Eq. (3.11) as Simple n-τ law.

In the frequency domain, this corresponds to

Q̂(ω) = n1 û(xref ) eiωτ , (3.12)

Additionally, an extended form of the simple n − τ law, referred to as Extended

n-τ law (Heckl and Kosztin, 2013), can also be employed. Here, the heat release rate
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1 2

Heat source

x = lf

Q′

u′

x = xref

Figure 3.4: Modelling of Q′

fluctuation at the location x = lf is assumed to depend on both instantaneous (u′(t))

and time-lagged acoustic velocity fluctuations (u′(t − τ)). The extended time-lag law

in the time domain is given by

Q′(t) =
{
n1 u

′
ref (t− τ) − n0 u

′
ref (t)

}
, (3.13)

where n0,1 are the coupling coefficients relating Q′(t) and u′ref (t). In the frequency

domain, this relation becomes

Q̂(ω) =
{
n1 e

iωτ − n0
}
û(xref ) . (3.14)

For heat sources like hot gauzes, in unsteady flow, the time-lag models are con-

structed empirically from experimental data and numerical simulations. These empir-

ical models are usually non-linear and are then linearised to resemble simple time-lag

laws. For example, King’s Law (King, 1914),

Q′(t) = Lw
(
T̄w − T̄

) (
κ+ 2

√
πκCvρ̄ (d/2) |u|

)
, (3.15)

relates the heat transfer from the hot wire gauze with the upstream acoustic velocity

fluctuations. Lw is the length of the wire, T̄w is the temperature of the wire, d is he

diameter of the wire. T̄ is the temperature, κ is the heat conductivity and Cv is the spe-

cific heat per unit mass at constant volume of the surrounding fluid. We can convert this

non-linear expression into its corresponding simple time-lag law by linearising it. Upon

linearisation, we get Q′(t) = βu′ref (t− τ), where β = Lw
(
T̄w − T̄

) √
(πκCvρ̄/ū) (d/2).

The time-lag between the heat transfer from the hot wire and the velocity is given by

τ = 0.2 d/ū, and is present due to thermal inertia. Lighthill (1954) found that this

time-lag is applicable for low frequencies (ω < 20 ū/d) and those flow speeds where
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boundary layer approximation is valid (Reynolds number > 10). King’s Law can be

applied to a heat sink if we assume the surrounding temperature T̄ to be greater than

the wire gauze temperature T̄w. In such a situation, the wire gauze will absorb heat

rather than release it.

3.4.2. Transfer Function (TF)

Transfer Functions (TF) portray the response of heat sources or sinks to external

perturbations, in the frequency domain. They can be obtained analytically (Schuller

et al., 2003), experimentally (Noiray, 2007) and even numerically through simulations

(Andreini et al., 2014, Selimefendigil et al., 2012). TF, denoted as F(ω) in Eq. (3.16),

is a complex quantity in the frequency domain, formed by taking the ratio of non-

dimensional heat release rate fluctuations (Q̂/Q̄) to non-dimensional acoustic velocity

fluctuations (û/ū).

Q̂(ω)
Q̄

= F(ω) û(ω)
ū

= G(ω) eiΦ(ω) û(ω)
ū

, (3.16)

where Q̂(ω) and û(ω) are heat release rate and acoustic velocity fluctuations in the

frequency domain respectively, Q̄ is the mean heat release rate and ū is the mean

velocity. The magnitude of F(ω) is called gain (G(ω)) and the argument of F(ω) is

called phase (Φ(ω)). Gain is a measure of the change in heat release rate caused by a

change in the velocity and phase gives the phase difference between Q′ and u′. F(ω)

is a linear response function and depends on the frequency. When we deal with flames

and their heat release rate fluctuations, the TF is also called Flame Transfer Function

(FTF).

TFs are very important in the modelling of thermoacoustic systems and their in-

stability predictions since the information regarding the heat source (or sink) and its

response is contained within the TF. In real life applications, it is relatively easy to ob-

tain TFs from experiments or numerical simulations, than formulating time-lag models.

The latter require apriori knowledge of the underlying physical processes that affect

Q′. However, in some situations, we could construct simple time-lag models from TFs.
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As an illustration, consider a hypothetical FTF as shown in Fig. 3.5. The intention is

to express the low frequency behaviour of the flame in terms of a simple n − τ law.

From the given FTF, it is evident that the flame behaves like a low pass filter with very

high gain in the low frequency region i.e., for those frequencies less than fb. Here fb is

the limit to which we intend to construct a time-lag model. The G(ω) appears to be

almost a constant in the frequency range of interest, and Φ(ω) appears to have a con-

stant slope in this frequency range. Comparing Eqs. (3.12) and (3.16), we can assume

n1 =
(
Q̄ G(ω)/ū

)
and τ = Φ(ω)/ω. Hence, we can argue that linear time-lag laws can

be viewed as time domain equivalents of transfer functions, under specific conditions

like the one discussed before. However, in reality, the FTFs obtained experimentally or

numerically, are not as elementary as the hypothetical one considered, and formulating

time-lag models is very cumbersome. This is a topic that is currently being pursued

by researchers.

Frequency Frequency

G
(ω

)

Φ
(ω

)

fb

n1

fb
Slop

e =
ωτ

Figure 3.5: n− τ law from Flame Transfer Function

The concept of time-lag models and transfer functions are not restricted to flames

and heat sources alone. They are applicable to heat sinks also. In the latter case, we

have heat absorption rate laws instead of heat release rate laws. In our study, we use

the transfer function approach to model the heat transfer process occurring at the heat

exchanger, which acts as a heat sink.
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3.5. Acoustic field across the heat source/sink

Once the heat release/absorption law is formulated, we can now relate the acoustic fields

upstream and downstream of the heat source/sink by deriving matching conditions

across an infinitesimally thin control volume (Culick, 2006). Consider a control volume

of length 2∆x and cross-sectional area S as shown in Fig. 3.6, with the heat source/sink

located at x = lf . The matching conditions for the acoustic pressure and velocity fields

across the heat source/sink are derived by integrating the conservation equations over

this control volume, in the limit ∆ x→ 0.
∆x

x = lf

p′(lf −∆x) p′(lf + ∆x)

u′(lf −∆x) u′(lf + ∆x)

Figure 3.6: Control volume for matching conditions

Integrating the conservation of momentum (Eq. (3.4)) for small ∆ x gives

lim
∆ x→0

lf+∆ x∫
lf−∆ x

(
ρ̄
∂u′

∂t
+ ∂p′

∂x

)
dx = 0, (3.17)

p′|lf+∆ x = p′|lf−∆ x , (3.18)

showing the continuity of the acoustic pressure fluctuations across the control volume.

The first term in Eq.(3.17) is a finite quantity whose volume integral in the limit of

∆x → 0, is zero. In order to integrate the acoustic energy equation, we simplify

Eq. (3.7) to

∂p′

∂t
+ p̄ γ

∂u′

∂x
= (γ − 1) ρ̄ q′, (3.19)

and then apply the procedure aforementioned. This will provide us with the matching

condition for the acoustic velocity field across the control volume.
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lim
∆ x→0

lf+∆ x∫
lf−∆ x

(
∂p′

∂t
+ p̄ γ

∂u′

∂x

)
dx = lim

∆ x→0

lf+∆ x∫
lf−∆ x

((γ − 1) ρ̄ q′) dx, (3.20)

u′|lf+∆ x − u′|lf−∆ x = (γ − 1)Q′
ρ̄c2S

. (3.21)

In Eq.(3.20), the integral of the first term tends to zero, it being a finite quantity. From

Eq. (3.21), we can conclude that there is a jump in the acoustic velocity fluctuation

across the heat source/sink.

3.6. Conclusions

Thermoacoustic instabilities are caused due to the feedback loop between heat release

rate fluctuations Q′ and acoustic pressure fluctuations p′. Therefore, it is important to

identify and properly model the interaction between Q′ and p′. According to Rayleigh

criterion, an instability is triggered when the phase difference between p′ and Q′ favours

a net acoustic energy growth in the system, and apart from the direct interaction

between p′ and Q′, there are other secondary mechanisms within the system that can

bring about this phase difference. The collective influence of all these factors on the

heat source is referred to as its response, and is usually manifested in the form of

fluctuations in the heat release rate. These responses are modelled using time-lag

laws (in time or frequency domains) or transfer functions (in frequency domain). In

our work, we model the response of a compact heat source as a time-lag law and the

response of a hex as a transfer function, both modelled in the frequency domain.
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Modelling of Heat Exchanger

In this chapter, the thermoacoustic response of the hex is modelled in terms

of the two physical processes occuring at hex: (1) the heat transfer across

the hex (heat sink), and (2) the acoustic scattering due to the hex tube row.

The heat transfer response of the hex, in the form of a transfer function, is

evaluated through unsteady numerical simulations, and subsequently mod-

elled as approximate functions in frequency, with the help of curve-fitting

techniques. The transfer function is used to obtain the acoustic matching

conditions across the hex. The acoustic scattering at the hex is modelled

through a quasi-steady approach. The combination of these two physical

phenomena at hex gives the total scattering response of the hex. Paramet-

ric study conducted on the total scattering response indicates the dependency

on incoming mean flow velocity, incident wave frequency, geometry of the

tube row and ratio of impedances across the heat sink.

4.1. Introduction

Heat exchangers are widely used in heat generation systems, refrigeration and air con-

ditioning units etc., for effectively transporting the heat generated which in turn helps

in cooling these systems. In domestic heating systems like boilers, the hex transfers the
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heat produced within the combustion chamber to the coolant being circulated around,

and then to radiators. As the hex is placed in a closed setting containing a heat source

as mentioned in Chapter 2, there is thermoacoustic interaction occurring at the hex

location. This thermoacoustic interaction can be regarded as an overall effect of two

physical processes happening at the hex. The first process is the aeroacoustic response

of the hex to incoming velocity perturbations, which is modelled as the acoustic scat-

tering by the hex. The second process is the heat transfer response of the hex. In the

latter case, we treat the hex as a heat sink and then model the heat transfer response

as the interaction between the heat absorption rate fluctuations and incoming velocity

fluctuations.

For simplicity and ease of analysis, we treat these two physical processes at the hex

as two individual and independent processes, separated by an infinitesimal distance

∆x as shown in Fig. 4.1. We also assume that the heat transfer phenomenon pre-

cedes the acoustic scattering, and is presumed to occur at x = ls, while the acoustic

scattering occurs at x = L. Such an assumption is based on the comparison between

the thermal and momentum diffusivities of air. For air, the Prandtl number or the

ratio of momentum diffusivity to thermal diffusivity is less than 1. This means that

heat diffuses quicker than momentum (or velocity) and hence the thermal boundary

layer will be larger than the velocity boundary layer. Once the individual processes

are modelled independent of each other, we can derive the effective or net response of

the hex by combining the heat transfer and aeroacoustic responses, similar to network

modelling approach, and letting the infinitesimal distance to tend to zero i.e., in the

limit ∆x→ 0.

We obtain the heat transfer response of the hex through numerical simulations, and

the procedure is detailed in Section 4.2. In Section 4.3, we develop a quasi-steady

model to characterise the aeroacoustic response of the hex tube row. This model is

then validated with measurements. The mathematical formulation for the net response

of the hex is provided in Section 4.4, followed by a parametric analysis in Section 4.5,
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p+
2

p−2

x = L

2

p+
3

p−3

p+
4

p−4

x = ls

3 4
Heat Sink

∆x

Acoustic transmission
and reflection

Figure 4.1: Schematic of the heat exchanger acting as both heat sink and acoustic scatterer.

to study the variation of the net acoustic response of the hex to different system

parameters.

4.2. Numerical modelling of heat transfer at hex

The heat absorption rate fluctuation at the hex, due to the incoming velocity fluctu-

ation, is obtained using the transfer function approach mentioned in Hosseini et al.

(2015). Numerical simulations for the heat absorption or heat transfer response of the

hex were conducted using the transient CFD solver ANSYS Fluent® 15.0. on the

geometry shown in Fig. 4.2. Rather than modelling an array of circular tubes, we have

limited the computational domain to that of a semi-circular tube and half the gap

height, with symmetry boundary conditions on either sides. At the inlet and outlet,

‘velocity inlet’ and ‘pressure outlet’ boundary conditions were imposed, respectively

and on the hex surface, constant temperature with no-slip boundary conditions were

imposed. Using the velocity inlet boundary condition, the magnitude, direction and

temperature of the incoming flow are prescribed. This boundary condition enables

us to impose fluctuations in the magnitude of the incoming velocity. Through the

pressure outlet boundary condition, the pressure at the outlet is equated to the atmo-

spheric pressure, indicating that there is no pressure build-up beyond the hex. A 2-D,

laminar and incompressible flow was assumed in the computational domain. The hex

was maintained at a constant temperature of 340K whereas the incoming flow was at

1500K. Simulations were conducted for diameters 3mm and 5mm, open area ratios (η)
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0.1 and 0.2, and inlet velocities 0.5, 1.0 and 1.5m/s. Open area ratio (η) is the ratio of

the gap height hg to the diameter d.

velocity
inlet

pressure
outlet

wall at constant
temperature symmetry

d

hg/2

Figure 4.2: Meshed geometry with boundary conditions.

Fluent® (ANSYS Inc., 2013) solves the mass conservation and momentum con-

servation equations for all flow problems. When there is heat transfer, an additional

conservation equation for energy is also solved. The continuity equation or the mass

conservation equation is given by

∂ρ

∂t
+∇ · (ρu) = Sm. (4.1)

This form of the mass conservation equation is valid for both incompressible and

compressible flows. Here, Sm is the mass source term and it denotes the mass added to

the continuous phase flow, from any other user-defined sources or from the dispersed

second phase like mass added due to vapourisation etc. In our study, Sm = 0 as we do

not have any mass sources in our domain.

The momentum conservation equation in an inertial reference frame is given by

∂

∂t
(ρu) +∇ · (ρuu) = −∇p +∇ ·

(
¯̄τ
)

+ ρg + F (4.2)

where, p is the static pressure, ¯̄τ is the stress tensor and ρg and F are the gravitational

body force and external body force terms.

The generalised energy conservation equation used in Fluent® is given by

∂

∂t
(ρe) +∇ · (u(ρe + p)) = ∇ ·

 keff∇T︸      ︷︷      ︸
Conduction

−
∑
j

hjJj︸      ︷︷      ︸
Species Diffusion

+
(

¯̄τeff · u
)

︸        ︷︷        ︸
Viscous Dissipation

+ Sh (4.3)
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where e = h − (p/ρ) + (u2/2) is the total energy per unit mass, h = ∑
j
Yj hj − (p/ρ)

is the total enthalpy per unit mass (for incompressible flows), Yj is the mass fraction

of species j, hj is the enthalpy of the species j, Jj is the diffusion flux of species j and

keff is the effective thermal conductivity.

In our analysis, we use the pressure-based solver along with a laminar viscous model

with no viscous heating. Hence the viscous dissipation term in Eq. (4.3) can be dis-

carded. Moreover, we assume no diffusion of species and therefore the species diffusion

term is also absent in the conservation equation. The source term Sh = 0 as we do not

have any volumetric heat source in our computational domain. Overall, the Fluent

solver computes for the variables ρ, u, p and T in the computational domain, using the

conservation equations for mass, momentum and energy.

4.2.1. Transfer Function approach

For applying the transfer function approach, a step perturbation in the inlet velocity

was chosen. The total velocity in the domain after the introduction of the step per-

turbation will be u(t) = ū + u′(t), where ū is the mean velocity at the inlet and u′(t)

is the step perturbation. The magnitude of the perturbation was chosen to be very

small, as small as |u′| = 5% of ū. This is to avoid any nonlinearities in the system.

The heat transfer occuring at the hex is recorded, and is given by Qh(t) = Q̄h +Q′h(t).

Here, Q̄h is the mean heat absorption rate at the hex and Q′h is the change in the heat

absorption rate due to the velocity perturbation u′(t).

When we apply a constant temperature condition at the hex surface, the heat flux

to the wall from the fluid cell is computed as

q′h = hf (Tw − Tf ) , (4.4)

where q′h is the local heat flux, hf is the fluid-side local heat transfer coefficient, Tw is

the wall temperature, Tf is the local fluid temperature. Q′h is evaluated by integrating

q′h over the hex surface. The transient simulations give the time response of the hex
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in terms of the heat absorbed at the hex. Figure 4.3 shows a sample time response

(nondimensionalised) of the hex and the corresponding inlet velocity input (nondimen-

sionalised). To relate the response of the hex to the velocity input, we convert the time

data to their corresponding frequency responses through Fourier transformation i.e.,

u′(t) FT−−→ û(ω) and Q′h(t)
FT−−→ Q̂h(ω). The heat exchanger transfer function (HTF) is

then calculated using the equation given below.

HTF = Q̂h/Q̄h

û/ū
. (4.5)

0 0.05 0.1 0.15 0.2

−0.02

0

0.02

Time [s]

u′/ū
Q′

h/Q̄h

Figure 4.3: Profiles of input velocity perturbation and the resulting heat absorption rate
fluctuation.

HTF is a complex quantity with both magnitude |HTF|, and phase Φ(HTF), and

it depends on the flow field, geometry and frequency of the incoming perturbation.

|HTF| is also referred to as the gain of HTF. Typical gain-phase plots of HTF of a

hex are shown in Fig. 4.4 (a) and (b). The hex has diameter d = 3mm and open

area ratio η = 0.1. The incoming velocities are ū = 0.5, 1.0 and 1.5 m/s. The gain-

phase plots suggest that the hex acts like a low-pass filter i.e., the gain decreases with

increasing frequency. The low-pass filter behaviour for a hex was also observed by

Strobio Chen et al. (2015). They characterised the thermoacoustic behaviour of hex

using fully compressible and weakly compressible numerical schemes in OpenFOAM®.

For all values of the ū considered in this study, it can be observed that the starting

values of |HTF| is less than 1, and it decreases with increasing ū. This may be due to

the thermal inertia present in the system.
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Given the HTF, we can now construct a Q̂− û relationship, similar to that of a heat

source, from Eq. (4.5) as

Q̂h =
{
|HTF| eiΦ(HTF)

} û
ū
Q̄h . (4.6)

Therefore, it is necessary to obtain mathematical expressions for HTF.
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Figure 4.4: (a) |HTF| and (b) Φ(HTF) obtained from numerical simulations, for d = 3mm,
hg = 0.3mm and different mean velocities, ū.

4.2.2. Approximations to Transfer Functions

The mathematical expressions for the gain and phase of the HTF were obtained by

assuming trial functions in the form of polynomials, and determining the coefficients of

these trial functions using a constrained least squares approach (Lawson and Hanson,

1995). For the HTF shown in Fig. 4.5, we have assumed the following trial functions.

log (|HTF|) =
{
a0 + a1f + a2f

2 + a3f
3 f ≤ fp

b0 + b1
√
f f ≥ fp

(4.7)

Φ (HTF) =
 e0 + e1f + e2f

2 + e3f
3 + e4f

4 f ≤ fp

g0 + g1
√
f + g2f + g3

(√
f
)3

+ g4f
2 f ≥ fp

, (4.8)

where am, bm, em and gm are the coefficients to be determined. Constraints are imposed

at the first frequency (f0) and an intermediate frequency (fp) values. Figures 4.5 (b)

and (d) show the approximated |HTF| and Φ(HTF) for the simulated data shown

alongside. Here, fp is 500Hz for the approximation of |HTF| and 200Hz for the ap-

proximation of Φ(HTF). The form of the polynomials in Eqs.(4.7) and (4.8) and the
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values for fp were chosen through trial and error. Nevertheless, we can observe that

except for a slight deviation in the initial slope of |HTF|, the approximated functions

along with the fp values accurately predict the simulated data. The full set of data for

the simulations and their approximations are provided in Appendix B.
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Figure 4.5: Comparison of |HTF| and Φ(HTF) obtained from numerical simulations ((a)
and (c)) with their approximations ((b) and (d)), for d = 3mm, hg = 0.3mm and different
mean velocities, ū.

Substituting Eqs. (4.7) and (4.8) into Eq. (4.6) and taking û to be the acoustic

velocity fluctuation upstream of x = ls, we obtain,

Q̂h =
(
u+

2 + u−2
) (
Q̄h/ū2

) {
|HTF| eiΦ(HTF)

}
(4.9)

4.3. Theoretical and experimental modelling of

acoustic scattering at hex

The acoustic scattering at the hex is modelled using a quasi-steady approach. In

a steady flow, there are no temporal variations in the flow properties i.e., there are
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no fluctuations about the mean values. In quasi-steady flow, the flow properties vary

temporally. However, these variations occur over a large time scale (very low frequency

variations) causing the flow to behave like an “almost steady” flow. Therefore, at any

time instant, we can solve the for the scattering response as if the flow were steady,

neglecting the influence of the fluctuations. Quasi-steady modelling was previously

utilised by Ronneberger (1967) in studying the effect of subsonic mean flow on the

aeroacoustic response of a stepwise expansion in a pipe or a sudden area expansion,

and then by Hofmans et al. (2001b, 2003) and Durrieu et al. (2001) in studying the

response of a diaphragm or a slit-plate in a pipe. Our geometry is similar to that

studied by Hofmans (1998), except that we have an array of tubes.

To proceed with the modelling, we first simplify the geometry of the tube row by ap-

proximating it to two half cylinders placed within a duct (Fig. 4.6). The half cylinders

are separated by a gap (hg) and have a bias flow through the gap (ug). This approx-

imated geometry is widely used in the modelling of sound production and phonation

(Vilain et al., 2004). The duct, then represents the wind pipe and the two half cylinders

act as vocal chords. A bias flow through the gap between the half cylinders simulate

voice production.

p3

u3

ρ3

p4

u4

ρ4

hp hg

d

ug

Figure 4.6: Tube row and its approximation

4.3.1. Theoretical modelling

We define the following non-dimensional quantities in order to conduct an order of

magnitude analysis and to make some assumptions regarding the applicability of the

quasi-steady model.
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Strouhal number : St = f

(ug/r)
= flow time scale

acoustic time scale (4.10)

Helmholtz number : He = hp
(c3/f) = duct height

wavelength (4.11)

Mach number : M3 = u3

c3
= flow speed

speed of sound (4.12)

where f is frequency of the acoustic wave, ug is the flow velocity through the gap or

the bias flow velocity, r is the radius of the cylinder, hp is the duct height, c3 is the

speed of sound in region 3, and u3 is the incoming flow velocity. The assumptions used

in the model are

– there is no temperature change across the tube row (T̄3 = T̄4), and the speed of
sound is uniform across the regions 3 and 4 (c3 = c4),

– Strouhal number is a measure of the relevance of the unsteady effects in the flow.
We assume St � 1 (low frequency), making the quasi-steady modelling a valid
approach,

– Helmholtz number, which is a measure of the compactness of the source/sink
region, is assumed to be very small i.e., He � 1. This means that the tube
row is very compact compared to the acoustic wavelength, and that there are no
phase changes to the acoustic quantities across the source/sink region,

– Mach number is a measure of the importance of the convection effects in the flow
domain. In order to maintain a subsonic flow through the gap (Mg < 1), we have
to restrict our analysis to very low incoming Mach numbers i.e., M3 � 1,

– the flow within the duct (Fig. 4.7) is assumed to be inviscid and compressible
(unless stated otherwise).

– the amplitude of the fluctuations in the bias flow is very small compared to the
mean value. Hence there is no reverse flow through the gaps at any point. The
bias flow is always from region 3 to region 4.

Using these assumptions, we can now derive the expressions for the aeroacoustic re-

sponse of the geometry with two half cylinders. Throughout this chapter, we refer to

the tube row or its approximated geometry as ‘sample’.
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Conservation Equations

The flow within the duct (Fig. 4.7) is divided into three regions: (a) Region 3 – uniform

flow upstream of the sample, (b) Region j – a compact source/sink region around the

sample, where acoustic energy could be produced or dissipated due to vortex shedding,

and (c) Region 4 – uniform flow downstream of the sample. The flow, after passing

through the gap (hg) between the half cylinders, separates from the cylinder surfaces

forming a jet. The cross sectional area of this jet is denoted by Sj. The duct cross

sectional area is given by Sp.

The flow from upstream region into the jet is assumed to be isentropic and irrota-

tional. Therefore, we can apply the continuity equation, the isentropic gas relation and

the energy equation across regions 3 and j.

pj

uj

ρj

Sp hg Sj

d

(T+
t , R

+
t ) (T−t , R−t )

3 j 4

M3

p+
3

p−3

M4

p+
4

p−4

Figure 4.7: Schematic of the flow within the domain.

Spρ3u3 = Sjρjuj , (4.13)

p3

pj
=
(
ρ3

ρj

)γ
, (4.14)

1
2u

2
3 +

(
γ

γ − 1

)
p3

ρ3
= 1

2u
2
j +

(
γ

γ − 1

)
pj
ρj
, (4.15)

where S is the cross sectional area, ρ is the density, u is the velocity, p is the pressure,

γ is the ratio of specific heats and the subscripts ‘3’ and ‘j’ denote the upstream region

and jet respectively.

Downstream of the jet, there is a turbulent mixing zone, where the jet kinetic energy

is dissipated while some pressure recovery occurs. We have assumed the jet mixing zone

to be very small and that all the relevant acoustical processes take place within this

mixing zone. However, in reality, this may not always be true. After the mixing zone,

49



Chapter 4. Modelling of Heat Exchanger

the flow becomes uniform again (region 4 ) and the flow is assumed to be adiabatic (no

longer isentropic). We use the continuity and momentum equations to describe this

region.

Sjρjuj = Spρ4u4 , (4.16)

Sppj + Sjρju
2
j = Spp4 + Spρ4u

2
4 , (4.17)

In our analysis, we have neglected the heat transfer, viscous and frictional losses at

the walls. So, the conservation of energy in the flow gives

1
2u

2
3 +

(
γ

γ − 1

)
p3

ρ3
= 1

2u
2
4 +

(
γ

γ − 1

)
p4

ρ4
. (4.18)

However, we do take into account one important viscous flow effect: the flow separa-

tion on the cylinder surface. We focus on high Reynolds number flows (Re > 8000) and

the viscous effects are confined to the thin boundary layers and shear layers. Therefore,

the inviscid flow assumption holds throughout the flow. The flow separation location,

which is required to evaluate the jet cross sectional area Sj, is found by solving the von

Kármán equations using the Thwaites’ method. The procedure for finding the separa-

tion location is given in Appendix C. This boundary layer method is valid when the

boundary layer thickness, δbl � hg i.e., (ughg/ν) (hg/r)� 1, where ν is the kinematic

viscosity. For u3 = 5m/s, (ughg/ν) (hg/r) ≈ 4000. This confirms the validity of the

boundary layer model.

Scattering Matrix

In order to account for the wave convection effects, we use total enthalpy as the acoustic

variable (Hofmans et al., 2001b, 2003, Motheau et al., 2014), and it is defined as H±i =

p±i (1±Mi) /ρi. The scattering matrix relates the enthalpy perturbations upstream

of the sample to the enthalpy perturbations downstream. The procedure followed

in obtaining the scattering matrix is similar to that given in Hofmans (1998). As

mentioned previously, the quasi-steady model described here is based on the model by

Ronneberger (1967), who also took into account the entropy fluctuations convected by
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the mean flow. But, we restrict ourselves to the case with no incoming entropy waves,

and hence the entropy effects are not included in the scattering matrix.

To evaluate the scattering matrix, we split Eqs. (4.13) - (4.18) into two sets of

equations: a non-linear set for the steady flow and a linearised set for the acoustic

perturbations, containing both forward and backward travelling components of the

wave. The steady flow equations are solved first and subsequently used in the equations

for the acoustic perturbations. The full derivation of the scattering matrix is given in

Appendix D. Once we obtain the scattering matrix, we can relate the incoming and

outgoing acoustic perturbations, for a case with no incoming entropy as (Hofmans,

1998) [
(1 +M4) p+

4
(1−M3) p−3

]
=
[
T+
t R−t
R+
t T−t

] [
(1 +M3) p+

3
(1−M4) p−4

]
, (4.19)

where M is the Mach number. p+ and p− denote the forward and backward travelling

pressure waves, R and T denote the reflection and transmission coefficients of the sam-

ple and the superscripts ‘+’ and ‘–’ for R and T denote the upstream and downstream

properties respectively. The subscript ‘t’ stands for tube row. The ‘±’ notation for

the coefficients should not be mistaken with those used for the forward and backward

travelling waves. The scattering matrix, in this case, is the matrix whose elements are

T±t and R±t .

To validate the quasi-steady theory against experimental results, we have chosen

two samples: (1) Sample 1 consisting of two half cylinders of diameter d = 20mm and

separated by a gap height hg = 5mm, and (2) Sample 2 consisting of an array of tubes

of diameter d = 16mm and hg = 4mm. The theoretical results for these two samples

are shown in Fig. 4.8 (a) and (b) respectively. We observe that the two plots are the

same irrespective of the samples chosen. The significance of this result is that a scaling

of the geometry is possible in terms of the open area ratio η. Both the samples have

equal open area ratios of η1 = η2 = 0.25.
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Figure 4.8: Quasi-steady model results for (a) d = 20mm, hg = 5mm (Sample 1 ) and (b)
d = 16mm, hg = 4mm (Sample 2 )

4.3.2. Experimental validation

The experiments were performed at the Marcus Wallenberg Laboratory for Sound and

Vibration Research, KTH Royal Institute of Technology, Stockholm and the experi-

mental setup is shown schematically in Fig. 4.9. It consisted of a long aluminium duct

of rectangular cross-section (120mm × 25mm) and thickness 15mm. The samples were

placed within the duct, one at a time. Acoustic excitation was provided by two pairs

of loudspeakers placed near the upstream and downstream ends of the duct, far from

the sample. In order to reduce the acoustic reflections, the duct was connected to

an anechoic chamber at the upstream end and to a muffler in the downstream end.

The pressure fluctuations were recorded using eight flush mounted microphones (1/4”

pre-polarised condenser microphones by G.R.A.S. Type 40BD), four on either side of

the sample. The microphones were all calibrated in gain and phase, relative to each

other. This was done using a calibrator, where all the microphones were subjected to

the same sound field. The flow velocity in the upstream end was measured using a

static-pitot tube and a SWEMA3000 pressure transducer. Detailed explanation of the

setup and measurement procedure can be found in Zhou (2015) and Peerlings (2015,

2017).
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A two-port multi-microphone measurement technique (Jang and Ih, 1998, Peerlings,

2015) was used to obtain the pressure data. The acoustic pressure field within the duct

can be written as a superposition of forward and backward travelling waves

p(x) = p+ exp(ik+x) + p− exp(−ik−x) (4.20)

where p(x) is the measured complex pressure value at x and p± are the unknown pres-

sure amplitudes. These unknown quantities are evaluated by measuring the pressure

data at at least two positions. In our experiments, the measured data is obtained from

four microphones, placed on either side of the sample. Using Eq. (4.20), the upstream

and downstream pressure amplitudes can be evaluated as


exp(ik+x1
1,2) exp(−ik−x1

1,2)
exp(ik+x2

1,2) exp(−ik−x2
1,2)

exp(ik+x3
1,2) exp(−ik−x3

1,2)
exp(ik+x4

1,2) exp(−ik−x4
1,2)


[
p+

1,2
p−1,2

]
=


p(x1

1,2)
p(x2

1,2)
p(x3

1,2)
p(x4

1,2)

 , (4.21)

where the superscript of x denote the microphone position and the subscripts denote

the port i.e., subscript 1 denotes port 1 or the upstream region and subscript 2 denotes

port 2 or the downstream region. The overdetermined system in Eq. (4.21) is solved

using pseudo-matrix inversion to obtain the unknown pressure amplitudes p+
1,2 and p−1,2.

The scattering matrix, given by[
p+

2
p−1

]
=
[
T+
t R−t
R+
t T−t

] [
p+

1
p−2

]
, (4.22)

is determined from the measurements of two independent pressure fields. The inde-

pendent tests are created by applying an upstream excitation (denoted by A) and a

downstream excitation (denoted by B) resulting in the system of equations given in

Eq. (4.23), which can be solved to extract the transmission and reflection coefficients.[
p+A

2 p+B
2

p−A1 p−B1

]
=
[
T+
t R−t
R+
t T−t

] [
p+A

1 p+B
1

p−A2 p−B2

]
(4.23)

Stepped sine excitations in the range 100 –1000 Hz were used in the measurements.

We conducted experiments for both the samples and also for the conditions of with

and without flow. The without flow experiments were conducted to validate the mea-
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surements (and measurement procedure) with the theory devised by Huang and Heckl

(1993). These results are provided in Appendix E. The results prove that the Huang

and Heckl model, which is developed for an array of tubes, is also applicable to the

approximated geometry of two half cylinders.

Next, we conducted experiments for the cases with flow. The aeroacoustic responses

or the elements of the scattering matrix were measured for seven incoming velocities

(u3) around 5, 7.5, 9.5, 11.5, 13.5, 14.5 and 15.5m/s. Figures 4.10 and 4.11 show the

measured |T±t | and |R±t | versus Strouhal number (St) for three velocities, for Sample

1 and Sample 2 respectively.
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Figure 4.10: Measured and theoretical values for |T±t | and |R±t | vs. Strouhal number for
Sample 1, and three velocities. The vertical broken line shows the Strouhal number limit till
which the quasi-steady model is assumed to be valid.

We observe that the values for |T±t | and |R±t | are close to the theoretical values for low

Strouhal numbers. Since neither the St limit to which the validity of the quasi-steady

model holds nor the criterion for choosing such a limit are available, we assume (by

visual inspection) Str = 0.11 as the limit for Sample 1 (Fig. 4.10). The Strouhal number

used in the plots are based on the radius r of the cylinder i.e., Str = f/ (ug/r). The Str

limit for Sample 2 can be obtained either through visual inspection or by scaling the Str
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Figure 4.11: Measured and theoretical values for |T±t | and |R±t | vs. Strouhal number for
Sample 2, and three velocities. The vertical broken line shows the Strouhal number limit till
which the quasi-steady model is assumed to be valid.

limit of Sample 1. Assuming that for a particular incoming velocity, the frequency range

where the quasi-steady model holds is the same for the two samples, we can write the

ratio of Strouhal numbers as St8mm/St10mm = 8/10. This gives a value of Str = 0.088

for Sample 2, as is also confirmed from visual inspection (Fig. 4.11). In order to have

a better comparison with the theoretical results, we take Str = 0.11 for Sample 1 and

Str = 0.088 for Sample 2, and average the measurements over the frequency range

[100 flim]Hz, where flim = (Str ug)/r and ug = (Sp u3) /Sg , for the different values of

u3. The results are shown in Fig. 4.12. The lines –– , · · · · , – – and –·– represent the

theory and the markers (◦ and �) represent the averaged values from measurements.

The measurements show good agreement with theory, and we can conclude that the

quasi-steady approach is adequate to describe the low-frequency and low-Mach number

aeroacoustic response of an array of tubes as well as the approximated geometry.1

1The Huang and Heckl model is for M3 = 0, whereas the quasi-steady model is valid for low Mach
numbers and low frequencies. When comparing the two models, it can be noted that they are
consistent i.e., for the case when f = 0 and M3 = 0, |T±t | → 1 and |R±t | → 0, for both the models.
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Figure 4.12: Measurements for (a) d = 20mm, hg = 5mm (Sample 1) and (b) d = 16mm,
hg = 4mm (Sample 2)

4.3.3. Reasons for discrepancy between theoretical and

measured results

The measured data deviates slightly from the theoretical values for those low Strouhal

numbers that are less than the limit mentioned in the previous section. Some of the

factors that can cause these deviations are as follows

(1) We observed that the incoming velocity was not constant throughout the exper-
iments. This can alter the measured results and cause it to deviate from the
theoretical values.

(2) The aeroacoustic response of the geometry considered is very sensitive to the
changes in the gap height hg. This is because the changes in the gap height
indirectly affects the jet cross sectional area and the flow through the gaps. If
the gap height is uneven in the transverse direction (perpendicular to the flow),
we get data that are significantly different from the theoretical values.

(3) In the theoretical computations, we have assumed the flow to separate from a
fixed location on the cylinder surface. In reality, due to the unsteady incoming
velocity, this is not always true in the case of measured data. The variations
in the flow separation location can cause the measured values to deviate from
theoretical predictions.

(4) The large deviations in the measured data for |R−t | (when compared to theory),
may be due to the highly unsteady turbulent flow downstream of the sample.

(5) We have not accounted for the wall effects in our quasi-steady model.
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For Strouhal numbers greater than the limit, the measurements deviate significantly

from the theoretical predictions i.e., the measurements are much higher than the the-

oretical values. This can be because of the possibility that at high frequencies, our

assumption of the mixing zone being shorter than the acoustic wavelength, may not be

valid. However, when we look at measured data with respect to the frequency, rather

than the Str, we can observe that by increasing the incoming velocities from 5.1m/s to

15.5m/s, we can actually extend the limit of validity of the quasi-steady model from

close to 300Hz to around 1000Hz (Fig. 4.13 and 4.14). These frequency limit values

can be calculated from the Strouhal number limits aforementioned.
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Figure 4.13: Measured and theoretical values for |T±t | and |R±t | vs. frequency for Sample
1, and three velocities

4.4. Total scattering matrix of hex

The total scattering matrix, [SM]hex, of the heat exchanger is obtained by using a net-

work modelling approach. In this approach, the physical processes of heat transfer and

acoustic scattering, occurring at the hex are treated as independent phenomena, sepa-
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Figure 4.14: Measured and theoretical values for |T±t | and |R±t | vs. frequency for Sample
2, and three velocities

rated by an infinitesimally small distance ∆x, as shown in Fig. 4.15. Each phenomenon

is modelled as a frequency response, in the form of a two-input-two-output system that

maps the outgoing acoustic pressure waves to the incoming acoustic pressure waves.

This mapping is represented by the corresponding scattering matrix [SM]. Therefore,

the total scattering matrix of the hex can be written as[
p+

4
p−2

]
=
[
Tu→d Rd

Ru Td→u

]
︸               ︷︷               ︸

[SM]hex

[
p+

2
p−4

]
, (4.24)

and the scattering matrices of the individual processes as[
f2d
p−2

]
=
[
T+
h R−h
R+
h T−h

]
︸          ︷︷          ︸

[SM]hs

[
p+

2
g2d

]
(4.25)

for the heat sink, and [
p+

4
g4u

]
=
[
T+
t R−t
R+
t T−t

]
︸          ︷︷          ︸

[SM]tr

[
f4u
p−4

]
(4.26)
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for the tube row. Here f2d and f4u are the forward travelling waves downstream of heat

sink and upstream of tube row respectively. Similarly, g2d and g4u are the backward

travelling waves downstream of heat sink and upstream of tube row respectively.

Heat Sink Duct (∆x) Tube row

[SM]hs [SM]tr
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Figure 4.15: Schematic of the network modelling approach used on hex

The scattering matrix of the heat sink, [SM]hs, is obtained by matching the acoustic

fields across the heat sink (Eqs. (3.18) and (3.21)) i.e.,

p+
2 + p−2 = f2d + g2d (pressure continuity) (4.27)

1
ρ3c3

[f2d − g2d]−
1
ρ2c2

[
p+

2 − p−2
]

= (γ − 1)
ρ2c2

2S
Q̂h (velocity jump). (4.28)

Substituting Eq. (4.9) in Eq. (4.28), we obtain the velocity jump condition in terms of

the approximated HTF as

f2d − g2d = ζ32 (1 + α)
[
p+

2 − p−2
]

(4.29)
where

ζ32 = ρ3c3

ρ2c2
and α =

(γ − 1) Q̄h

{
|HTF| eiΦ(HTF)

}
(ρ2c2

2S) ū2
. (4.30, 4.31)

In our work, we name α as the heat sink coefficient. ζ32 is the ratio of impedances

across the heat sink. ζ32 = 1 for T̄2 = T̄3 and ζ32 > 1 for T̄2 > T̄3. After some algebraic
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manipulations involving Eqs. (4.27) - (4.31), we can derive the elements of [SM]hs as

T+
h = 2 ζ32(1 + α)

1 + ζ32(1 + α) ; R+
h = ζ32(1 + α)− 1

1 + ζ32(1 + α) ; (4.32a, 4.32b)

T−h = 2
1 + ζ32(1 + α) ; R−h = 1− ζ32(1 + α)

1 + ζ32(1 + α) ; (4.32c, 4.32d)

The scattering matrix of the tube row, [SM]tr, is found from the quasi-steady model

(Eq. (4.19) and Appendix D) discussed in Section 4.3. The pressure field within the

duct of length ∆x is given by

f4u = f2de
(ik3∆x) (4.33a)

g4u = g2de
(−ik3∆x) (4.33b)

From Eqs. (4.25), (4.26) and (4.33), we can evaluate the elements of the total scat-

tering matrix of the hex as (Strobio Chen et al., 2016)

Tu→d = T+
h T+

t e(ik3∆x)

1−R−h R+
t e(2ik3∆x) ; Ru = R+

h + T+
h T−h R+

t e
(2ik3∆x)

1−R−h R+
t e(2ik3∆x) ; (4.34a, 4.34b)

Td→u = T−h T−t e
(ik3∆x)

1−R−h R+
t e(2ik3∆x) ; Rd = R−t + T+

t T−t e(2ik3∆x)

1−R−h R+
t e(2ik3∆x) . (4.34c, 4.34d)

In the limit ∆x→ 0, the elements of the scattering matrix reduce to

Tu→d = T+
h T+

t

1−R−h R+
t

= 2 ζ32(1 + α) T+
t(

1−R+
t

)
+ ζ32(1 + α)

(
1 +R+

t

) (4.35a)

Ru = R+
h + T+

h T−h R+
t

1−R−h R+
t

=

(
R+
t − 1

)
+ ζ32(1 + α)

(
1 +R+

t

)
(
1−R+

t

)
+ ζ32(1 + α)

(
1 +R+

t

) (4.35b)

Td→u = T−h T−t
1−R−h R+

t

= 2 T−t(
1−R+

t

)
+ ζ32(1 + α)

(
1 +R+

t

) (4.35c)

Rd = R−t + T+
t T−t

1−R−h R+
t

= R−t + T+
t T−t [1− ζ32(1 + α)](

1−R+
t

)
+ ζ32(1 + α)

(
1 +R+

t

) (4.35d)

61



Chapter 4. Modelling of Heat Exchanger

4.5. Acoustic properties of hex

From Eq. (4.35), we can infer that the total scattering property of the hex depends on

– α, which is influenced by the frequency of the incoming wave (f), the incoming
velocity (ū2) and the temperature jump across the hex (T̄2 − T̄3);

– [SM]tr, which is influenced by the hex tube diameter (d), open area ratio (η), the
velocity in Region 3 (ū3); and

– ζ32, which is a measure of the temperature jump across the hex.

Unfortunately, due to the limited data available for α, ζ32 and HTF from numer-

ical simulations, it is not a straightforward task to study the influence of the above

mentioned parameters on [SM]hex. So we study the effect of each of these parameters

separately and attempt to draw simplifying assumptions about their influences.

4.5.1. Influence of heat sink coefficient (α)

To study the influence of α on [SM]hex, we plot the elements of the scattering matrix

for the three velocities, by first assuming α = 0 and then comparing it with the results

obtained from numerical simulations, after considering non-zero α. These results are

plotted in the Fig. 4.16. The solid markers are obtained from numerical simulations

with α , 0 and the curves are evaluated for α = 0.

The results plotted show that the influence of α on the scattering elements is neg-

ligible. Therefore, for the purpose of parametric analysis, α can be neglected, leading

to the simplification of Eq. (4.35) to

Tu→d = 2 ζ32 T
+
t(

1−R+
t

)
+ ζ32

(
1 +R+

t

) , (4.36a)

Ru =

(
R+
t − 1

)
+ ζ32

(
1 +R+

t

)
(
1−R+

t

)
+ ζ32

(
1 +R+

t

) , (4.36b)

Td→u = 2 T−t(
1−R+

t

)
+ ζ32

(
1 +R+

t

) , (4.36c)

Rd = R−t + T+
t T−t (1− ζ32)(

1−R+
t

)
+ ζ32

(
1 +R+

t

) . (4.36d)
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Figure 4.16: Variation of the elements of [SM]hex as a function of frequency (f), for fixed
velocities ū (or ū2), d = 3mm and η = 0.1. Solid markers indicate the results obtained by
including α and curves indicate the results obtained by using α = 0.

4.5.2. Influence of impedance ratio (ζ32)

The influence of ζ32 on the scattering properties of the hex is as shown in Fig. 4.17.

The curves and markers are calculated for hex of d = 3mm, η = 0.1, f = 100Hz and ū

= 0.5, 1.0 and 1.5m/s. The solid markers indicate results from numerical simulations

and the curves indicate those results when α = 0 (Eq. (4.36)). As mentioned in the

previous section, the value of the scattering matrix do not vary drastically due to the

omission of α.

In the limit of α → 0, the acoustic matching conditions across the heat sink reduce

to that of pressure continuity. Hence, the heat sink can be treated as an interface

between the hot medium in Region 2 and the cold medium in Region 3. There is a

sudden change in the impedance across the heat sink which causes increasing values

(> 1) for |Tu→d| as ζ32 is increased. Also, Rd becomes increasingly negative as ζ32 is

increased, and this causes the trend reversal in |Rd| compared to |Ru|. When T̄2 = T̄3 =
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1500K, ζ32 = 1 and the results for the scattering matrix coincide with the quasi-steady

results obtained for this configuration.
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ū = 1.5m/s

1 1.5 20.4

0.6

0.8

1

Impedance ratio (ζ32)

|T
d

→
u
|

1 1.5 20

0.2

0.4

0.6

Impedance ratio (ζ32)

|R
d
|

Figure 4.17: Variation of the elements of [SM]hex as a function of ζ32, for fixed velocities ū
(or ū2), f = 100Hz, d = 3mm and η = 0.1. Solid markers indicate the results obtained by
including α and curves indicate the results obtained by using α = 0.

From numerical simulations, it is evident that T̄3, and subsequently ζ32, vary with

the incoming velocity ū2 (or ū), for a given geometry of tube row (d and η) (Fig. 4.17).

The T̄3 and the corresponding ζ32 values obtained from the numerical simulations, for

d = 3mm, η = 0.1 and T̄2 = 1500K are shown in Table 4.1.

Table 4.1: T̄3 and ζ32 for d = 3mm and η = 0.1, evaluated from numerical simulations

ū2 [m/s] T̄3 [K] ζ32

0.5 415 1.899
1.0 610 1.567
1.5 750 1.412

However, due to insufficient data from the numerical simulations to correlate the

variation of ζ32 with the variation in ū2, we do not delve into the coupling between ū2

and ζ32. Instead, for the purpose of parametric analysis, we assume a constant tem-
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perature of T̄3 = 400K (ζ32 = 1.936) across the hex. Therefore, the set of assumptions

used in the parametric analysis are

– The influence of α is ignored i.e., α = 0

– The variation of ζ32 with respect to ū2 is ignored for the purpose of parametric
analysis

– The values of T̄3 and ζ32 used in the parametric analysis are 400K and 1.936,
respectively

4.5.3. Influence of frequency (f)

Since α is neglected, it is expected that [SM]hex will not exhibit an explicit dependence

on frequency, at least in the frequency range where quasi-steady model holds. This is

observed in Fig. 4.18, where the curves denote the results obtained using Eq. (4.36).

The curves are calculated for hex of d = 3mm, η = 0.1, T̄2 = 1500K, T̄3 = 400K,

ζ32 = 1.936 and ū2 = 0.5, 1.0, 1.5 and 2.0m/s. The magnitudes of the continuous

curves remain as constants for the frequency range considered, indicating a quasi-

steady response. |Tu→d| and |Td→u| decrease with increasing ū, while |Ru| increases

with increasing ū. Again, these observations are in accordance with the quasi-steady

results (Fig. 4.8). However, |Rd| behaves in a manner contrary to the quasi-steady

results. It shows a decreasing trend with increasing ū. Also, |Tu→d| > 1. The latter

observations are caused by the temperature jump across the heat sink as discussed in

Section 4.5.2.

Similar results were obtained by Strobio Chen et al. (2016), where the scattering

matrix of the hex was evaluated numerically using OpenFOAM®. The transmission

and reflection coefficients were evaluated for the acoustic velocity, and this resulted in

|Tu→d| being less than 1 and |Td→u| being greater than 1.

4.5.4. Influence of mean flow velocity (ū2)

The influence of the mean flow velocity on [SM]hex is plotted in Fig. 4.19. The curves

are calculated for hex of d = 3mm, η = 0.1, T̄2 = 1500K, T̄3 = 400K, ζ32 = 1.936 and
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ū = 1.0m/s
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Figure 4.18: Variation of the elements of [SM]hex as a function of frequency (f), for fixed
velocities ū (or ū2), d = 3mm, η = 0.1 and ζ32 = 1.936 when T̄3 = 400K. The curves are
obtained using Eq. (4.36).

f = 100, 200, 300 and 400Hz. The quasi-steady nature of the scattering behaviour is

very much evident in the plots, as the results for the different frequencies considered,

all collapse onto one another. The observations are the same as those mentioned in

the previous sections. |Tu→d|, |Td→u| and |Ru| all behave in accordance to the trends

shown in the quasi-steady results, whereas |Rd| exhibits an opposite trend which can

be attributed to the temperature jump due to the heat sink.

4.5.5. Influence of open area ratio (η)

The open area ratio η = hg/d is a measure for the transparency of the hex. For a fixed

hex diameter and for small values of η, there is less transmission and more reflection

across the hex. For large values of η, again for a fixed hex diameter, the hex tube

row becomes increasingly acoustically transparent (|T±t | → 1 and |R±t | → 0) and the

behaviour of the scattering matrix tends to that of a case where there is only a heat

sink i.e., |Tu→d| → 1.32, |Td→u| → 0.68, |Ru| → 0.32 and |Rd| → 0.32. This behaviour
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Figure 4.19: Variation of the elements of [SM]hex as a function of the incoming velocity
(ū2), for fixed frequencies, d = 3mm, η = 0.1 and ζ32 = 1.936 when T̄3 = 400K. The curves
are obtained using Eq. (4.36).

is shown in Fig. 4.20. The curves are calculated for hex of d = 3mm, f = 100Hz,

T̄2 = 1500K, T̄3 = 400K, ζ32 = 1.936 and ū2 = 0.5, 1.0, 1.5 and 2.0m/s.

4.5.6. Influence of hex tube diameter (d)

It can be observed from Fig. 4.21 that the acoustic response of the hex do not vary

beyond a certain (hex) diameter value. This behaviour can be attributed to the quasi-

steady nature of the response as well as the hydrodynamic flow field present. Since

the mean flow velocity and the open area ratio are maintained as constants for the

different diameters considered, one can easily deduce the dynamic similarity in the

hydrodynamics involving the different diameters. This is particularly true for the

larger diameters. For small diameters, the influence of the boundary layer on the

hydrodynamic flow field around the hex tube is non-negligible. Hence the acoustic

response is slightly varied. In addition to this, due to the quasi-steady nature of

the influence of frequency on the scattering properties, there exists a sort of scaling
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Figure 4.20: Variation of the elements of [SM]hex as a function of open area ratio (η), for
fixed velocities ū (or ū2), f = 100Hz, d = 3mm and ζ32 = 1.936 when T̄3 = 400K. The curves
are obtained using Eq. (4.36).

between the hex tube geometry and the acoustic wavelength. This may also give rise

to the pseudo-steady behaviour of the scattering matrix as d is varied. The curves are

calculated for hex of η = 0.1, f = 100Hz, T̄2 = 1500K, T̄3 = 400K, ζ32 = 1.936 and ū2

= 0.5, 1.0, 1.5 and 2.0m/s.

4.6. Conclusions

Heat exchangers are integral to heat generation systems like domestic boilers. The hex

is housed within the combustion chamber, along with the heat source, leading to ther-

moacoustic interaction between the two components. Therefore, there arises the need

to model the thermoacoustic response of the hex, to external velocity fluctuations. In

the case of the heat source, the thermoacoustic response was modelled as the interac-

tion between the heat release rate fluctuations and the upstream velocity fluctuations.

However, in the case of hex, there are two physical processes occurring at the hex that

needs to be modelled. The first process is the heat absorption at the hex (heat sink),
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ū = 1.0m/s
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Figure 4.21: Variation of the elements of [SM]hex as a function of hex diameter (d), for fixed
velocities ū (or ū2), f = 100Hz, η = 0.1 and ζ32 = 1.936 when T̄3 = 400K. The curves are
obtained using Eq. (4.36).

and the second process is the acoustic scattering at the hex due to the tube row. For

ease of analysis, we treat these two processes as independent processes, separated by

an infinitesimal distance ∆x. The heat transfer response (HTF) or the heat absorption

rate law at the heat sink is evaluated through numerical simulations and subsequent

curve fitting methods, and the acoustic response of the tube row is modelled through

a quasi-steady approach.

Once the heat transfer response and the quasi-steady response of the heat sink and

tube row respectively, are modelled, the total scattering response of the hex is cal-

culated by letting ∆x → 0. Conducting a parametric study on the thermoacoustic

response of hex to changes in the system parameters showed that the response of hex

depended greatly on the mean flow velocity (ū2), the frequency of the incident acoustic

wave (f), the impedance ratio (ζ32) across the heat sink and the geometry of the tube

row (d and η).
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Chapter 5

Cavity-backed Heat Exchanger

This chapter deals with the acoustic response of a cavity-backed hex, rep-

resented by the effective reflection coefficient. Studies conducted on cavity-

backed slit-plates with bias flow have shown that such a configuration can

act as a good sound absorber due to the vortex dissipation present within the

cavity. Since the underlying hydrodynamics and loss mechanisms are the

same for a cavity-backed slit-plate with bias flow and a cavity-backed hex in

cross-flow, it is plausible that the latter can also act as a sound absorber. In

order to quantify the absorbing efficiency of the cavity-backed hex, a variable

called absorption coefficient is introduced. The aim is to maximise this ab-

sorption coefficient by varying the system parameters. This is accomplished

by conducting a parametric analysis and by deducing the possible solutions

for better absorption.

5.1. Introduction

In the modelled configuration of the combustion system, the hex and the heat source

are placed within the outer casing of the combustor. Owing to the axisymmetric nature

of the system, the outer casing can be simulated as a rigid backing plate, downstream

of the hex, as shown in Fig. 5.1. The distance between the hex and the backing plate is
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called the cavity length, lc, and this new element in the system i.e., the cavity backing,

acts as an added acoustic resonator. In the previous chapter, we modelled the hex as

a combination of a heat sink and an acoustic scatterer, taking into account the vortex

dissipation, viscous, thermal, and turbulent losses. These loss mechanisms, along with

the resonating effect of the cavity, can be utilised to attenuate sound passing through

the hex tube row.

There is a vast amount of literature available on the mechanism of sound absorp-

tion by vortex shedding induced by orifices, slit-plates and nozzle exits. In one such

work, Surendran and Heckl (2016, 2017) have treated the hex tube row as an array

of thin sharp-edged rods with rectangular cross sections, which can be treated as a

slit-plate. The presence of a steady flow through the gaps between the rods induces

vortex shedding and consequently sound absorption, which they have utilised to sup-

press thermoacoustic instability.

The effective reflection coefficient, RL, of a cavity-backed hex is derived in Section 5.2,

followed by the introduction of a quantity known as the absorption coefficient ∆L, which

indicates the absorbing efficiency of the cavity-backed hex. In Section 5.3, the influence

of cavity backing on RL and ∆L is discussed. A parametric analysis on the influence

of the various system parameters like mean flow velocity, incident frequency of the

acoustic wave, impedance ratio across the hex and hex tube row geometry, on RL and

∆L is undertaken in Section 5.4. The aim of this analysis is to identify those system

parameters that will maximise the sound absorbing capability of the cavity-backed hex.

5.2. Cavity-backed hex

The reflection coefficient RL at x = L is the effective reflection coefficient of the hex

and the cavity backing. It is the ratio of the reflected pressure wave p−2 to the incident

wave p+
2 . Using Eq. (4.24) and the reflection coefficient of Rp at x = L + lc i.e.,
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Figure 5.1: Schematic of cavity-backed hex. Here, RL is the effective reflection coefficient
at x = L.

p−4 = Rp e
(2ik4lc) p+

4 , we can derive the effective reflection coefficient as (Surendran and

Heckl, 2014)

RL = Ru + Td→u Tu→d Rp e
2ik4lc

1−Rd Rp e2ik4lc
, (5.1)

Special cases are Rp = 1 (piston) and Rp = −1 (open end).

To quantify the damping property of the cavity-backed hex configuration, we in-

troduce a quantity known as the absorption coefficient (∆L), which is the ratio of

the acoustic energy absorbed or dissipated by the cavity-backed hex to the incident

acoustic energy. It is defined as

∆L = 1− |RL|2. (5.2)

∆L can take two extreme values, 1 or 0, depending on the reflection behaviour of the

cavity-backed hex. In one case, |RL| = 1 indicates that the cavity-backed hex may

behave as a closed end (RL = 1) or as an open end (RL = -1), leading to no absorption

i.e., ∆L = 0 of the incident sound. In the other case, |RL| = 0 indicates an anechoic

condition and there will be maximum absorption of the incident sound i.e., ∆L = 1. So,

for the cavity-backed hex to be an efficient acoustic damper, ∆L must be maximised.

To this end, a parametric analysis is conducted to evaluate the influence of different

system parameters on |RL| and ∆L. This will shed more light on the usability of

some of these parameters to maximise ∆L, which is a measure of the acoustic damping

associated with the cavity-backed hex. The influence of the cavity backing is discussed
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in Section 5.3 and results for the parametric study are provided in Section 5.4. The

parametric study is carried out using the assumptions listed in Section 4.5.2.

5.3. Cavity backing and resonance

It can be confirmed from Eq. (5.1) that in addition to the acoustic scattering properties

of the hex, the cavity length (lc) also influences the effective reflection and absorption

properties of the cavity-backed hex. Here, the cavity backing can act as an additional

resonator, causing resonance or anti-resonance, depending on the downstream reflection

coefficient Rp.

Studies conducted on slit-plates backed by a rigid plate (Rp = 1) have shown that

for an incident acoustic wave of frequency f , there will be maximum absorption if

the cavity length lc = c4/(4f) (Dowling and Hughes, 1992), where c4 is the speed of

sound inside the cavity. Similarly, for the cavity-backed hex, it can be observed from

Fig. 5.2(b) that for a particular frequency, the maximum absorption is experienced for

that lc value which is equal to the quarter wavelength of the incident frequency. The

absorption can be enhanced if ū2 is increased, as mentioned in Section 5.4.2. |RL|,

on the other hand, exhibits a trend opposite to that of ∆L. It decreases while ∆L

increases and vice versa. A maximum for |RL| indicates resonance behaviour, and a

minimum for |RL| indicates an anti-resonance behaviour. In the latter situation, the

cavity-backed hex acts as a near-anechoic end and is favoured for acoustic damping.

The plots given in Fig. 5.2 are for Rp = 1, with frequencies f = 100, 200, 300 and

400Hz, d = 3mm, η = 0.1, ū2 = 2.0m/s and ζ32 = 1.936.

The behaviour of the hex with an open ended backing (Rp = -1) is shown in Fig. 5.3.

Here, |RL| has minimum or ∆L has maximum when lc = c4/(2f). Again, resonance

behaviour of cavity-backed hex is exhibited when |RL| is maximum and anti-resonance

behaviour is exhibited when |RL| is minimum. The results are plotted for f = 100,

200, 300 and 400Hz, d = 3mm, η = 0.1, ū2 = 2.0m/s and ζ32 = 1.936.
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Figure 5.2: Variation of |RL| and ∆L as functions of the cavity length (lc), for fixed fre-
quencies, d = 3mm, η = 0.1, ζ32 = 1.936, Rp = 1 and ū2 = 2.0m/s.
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Figure 5.3: Variation of |RL| and ∆L as functions of the cavity length (lc), for fixed fre-
quencies, d = 3mm, η = 0.1, ζ32 = 1.936, Rp = -1 and ū2 = 2.0m/s.

5.4. Acoustic properties of cavity-backed hex

To study the influence of various system parameters on the acoustic properties or the

acoustic response of a cavity-backed hex with rigid backing (Rp = 1), we have substi-

tuted the modified expressions for Tu→d, Td→u, Ru and Rd (Eq. (4.36)) in Eqs. (5.1)

and (5.2). Similar to the analysis done in the previous chapter, we conduct a paramet-

ric study to understand the influence of the system parameters like the frequency of

the incident wave, the incoming velocity and the geometry of the hex tube row, which

includes the tube diameter and the open area ratio.
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5.4.1. Influence of frequency (f)

The influence of frequency on the reflection and absorption coefficients of a cavity-

backed hex are shown in Fig. 5.4. Unlike the quasi-steady behaviour of the hex on its

own (Fig. 4.18), the inclusion of a cavity has drastically changed the acoustic response.

It can be observed that |RL| decreases with increasing f , reaches a minimum and

then increases, whereas ∆L increases with increasing f , reaches a maximum and then

decreases. The depth of the minimum in |RL| and the height of the maximum in ∆L are

both increased as the flow velocity is increased. Also, these minimal and maximal values

in |RL| and ∆L respectively, fall in the same frequency range for the various velocities

considered. This shows that for a given lc, d, η and ζ32, the damping associated with

the frequencies in a particular range can be enhanced by increasing ū. For the plots in

Fig. 5.4, lc = 0.25m, d = 3mm, η = 0.1 and ζ32 = 1.936.
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Figure 5.4: Variation of |RL| and ∆L as functions of frequency (f), for fixed velocities ū (or
ū2), d = 3mm, η = 0.1, ζ32 = 1.936 and lc = 0.25m.

5.4.2. Influence of mean flow velocity (ū2)

Figure 5.5 shows the variation of |RL|, ∆L and the real part of RL denoted by <(RL),

as functions of the mean flow velocity, for four fixed frequencies: f = 100, 200, 300 and

400Hz, d = 3mm, η = 0.1, lc = 0.25m and ζ32 = 1.936. From Fig. 5.5(a), we can observe

that for increasing values of ū, |RL| decreases, except for the frequency of 400Hz. For

f = 400Hz, it can be observed that for increasing values of ū, |RL| decreases, reaches

a minimum and then increases. Such a trend will be exhibited by other frequencies
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(f = 100, 200 and 300Hz) if ū2 is increased further (not shown in the plot). On the

other hand, in Fig. 5.5(b), ∆L increases with increasing ū2, attains a maximum and

then decreases, for f = 400Hz. This trend will be exhibited by other frequencies, if ū2

is increased further.

One may, by intuition, expect that an increase in ū2 indicates an increase in the

perceived blockage experienced by the flow (due to compressibility and boundary layer

effects), leading to an increase in the effective reflection i.e., increasing ū2 should lead

to increasing reflection for all ū2. However, this trend is not shown in Fig. 5.5(a), but

the real part of RL depicts this trend (Fig. 5.5(c)). The presence of cavity causes RL

to have values between -1 (open end) and +1 (closed end). For some frequencies like

100Hz, the cavity-backed hex behaves like a rigid or an almost rigid end with RL > 0

and close to +1. For other frequencies like 400Hz, whose peaks in ∆L are close to

1, the increase in ū2 causes RL to start out as an open termination (RL close to -1),

and then gradually proceeds to an almost closed termination (RL tending to 1). At

a critical velocity, for a given frequency, RL becomes 0 causing the cavity-backed hex

to behave as an anechoic end. This condition favours the maximum absorption of the

incident sound.

5.4.3. Influence of open area ratio (η)

As mentioned in Section 4.5.5, increasing η causes the hex tube row to be acoustically

transparent, and the only other components then to influence the acoustic response

would be the heat sink and the backing plate. This effect is shown in Fig. 5.6, where

the influence of η on |RL| and ∆L are shown for ū2 = 0.5, 1.0, 1.5 and 2.0m/s, d =

3mm, f = 100Hz, lc = 0.25m and ζ32 = 1.936. As η increases, |RL| increases and

tends to +1, due to the influence of the backing cavity, and ∆L decreases due to the

decreased interaction between the acoustics and the shear layers downstream of the

hex. Again, as ū increases, |RL| decreases and ∆L increases, for a given η.
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∆
L

f = 100Hz
f = 200Hz
f = 300Hz
f = 400Hz

Figure 5.5: Variation of |RL|, ∆L and <(RL) as functions of the mean flow velocity (ū2),
for fixed frequencies, d = 3mm, η = 0.1, ζ32 = 1.936 and lc = 0.25m.
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Figure 5.7: Variation of |RL| and ∆L as functions of open area ratio (η), for fixed frequencies,
ū2 = 2.0m/s, d = 3mm, ζ32 = 1.936 and lc = 0.25m.
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There is also a significant influence of frequency (Fig. 5.7). For certain frequencies the

absorption is large. ∆L increases with increasing f , reaches a maximum and decreases

(as observed in Fig. 5.4). Therefore, from Figs. 5.6 and 5.7, it can be deduced that

small values of η and large values of ū2 enhances the absorption at the cavity-backed

hex, for certain frequency ranges. However, small η values are not always recommended

due to the boundary layer and flow compressibility effects. For large velocities through

the gaps between the hex tubes, there may be triggering of hydrodynamic instabilities

that are not favourable. Hence η must be chosen carefully to avoid undesired effects.

5.4.4. Influence of hex tube diameter (d)

Similar to the acoustic response of a hex tube in isolation (Section 4.5.6), the acoustic

response of a cavity-backed hex also exhibits an almost steady response with respect to

the increasing hex tube diameter. In Fig. 5.8, the variations of |RL| and ∆L for fixed

velocities: ū2 = 0.5, 1.0, 1.5 and 2.0m/s and f = 100Hz are shown, whereas in Fig. 5.9,

the variations of |RL| and ∆L for fixed frequencies: f = 100, 200, 300 and 400Hz and

ū2 = 2.0m/s are shown. In both the figures, η = 0.1, lc = 0.25m and ζ32 = 1.936. As

discussed previously, ū and f also affect the influence of the hex tube diameter on |RL|

and ∆L. As ū2 increases, |RL| decreases and ∆L increases (Fig. 5.8). In the case of

frequency, ∆L is larger for frequencies like 300 and 400Hz, whereas it is very small for

100Hz. The opposite behaviour is exhibited by |RL| (Fig. 5.9).
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Figure 5.8: Variation of |RL| and ∆L as functions of hex diameter (d), for fixed velocities ū
(or ū2), f = 100Hz, η = 0.1, ζ32 = 1.936 and lc = 0.25m.
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Figure 5.9: Variation of |RL| and ∆L as functions of hex diameter (d), for fixed frequencies,
ū2 = 2.0m/s, η = 0.1, ζ32 = 1.936 and lc = 0.25m.

5.5. Conclusions

For a given combustor configuration, with fixed hex geometry (d and η) and tempera-

ture jumps across the heat source and the hex (ζ32), that is undergoing a thermoacoustic

instability, the frequency (f) of the acoustic waves propagating within the combustor

will be the eigenfrequencies of the system. These eigenfrequencies are dependent on

the system boundary conditions, namely the inlet and outlet reflection coefficients, R0

and RL. Hence, to stabilise an already unstable eigenmode of the combustor, we can

vary RL in such a way that there is maximum absorption of the sound waves propagat-

ing within the combustor. From the parametric analysis conducted, we can conclude

that for a given hex geometry (d and η) and operating conditions like ζ32 and the

probable eigenfrequency range, ∆L can be maximised by varying the cavity length lc

and the mean flow velocity ū2. For sufficiently large values of ū2 and lc = c4/(4f) or

lc = c4/(2f) depending on Rp, we can even achieve complete absorption of the incident

sound. This attenuation property of the cavity-backed hex is utilised for suppression

of thermoacoustic instability, as will be discussed in Chapter 6.
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Chapter 6

Stability Analysis

In this chapter, we conduct the stability analysis on the idealised combustion

system having a hex near the closed downstream end. Stability analysis is

conducted for the first mode of the combustor, using the classical eigenvalue

method. The combustor, in the absence of hex, is a quarter-wave resonator

with a heat source, whose first mode is always unstable. We observe that

the introduction of the hex with varying mean flow velocity, ū, and varying

cavity length, lc, modifies the stability behaviour of the combustion system.

The stability maps are constructed in the lc − lf plane. It is observed that

increasing ū and increasing lc tends to stabilise the combustor. Influence of

additional system parameters like hex tube diameter, d, open area ratio, η,

and frequency, f , are also included in the stability analysis.

6.1. Introduction

Stability analysis of the combustor configuration (Fig. 2.2) considered in this thesis

is carried out through the use of stability maps that depict the stable and unstable

regimes of the combustor for different parameters or operating conditions. These maps

can be obtained analytically (Heckl and Kosztin, 2013, Surendran et al., 2016b), nu-
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merically (Wieczorek, 2010) or even experimentally (Rigas et al., 2016).

In stability analysis, we look at the response of the combustion system to pertur-

bations in system parameters or system variables. For a combustion system, these

perturbations could be in pressure, velocity, equivalence ratio etc. If the combustion

system returns to its original state, after being perturbed, then it is termed a stable

system, and if it does not return to its initial state, then it is termed an unstable system.

The stability behaviour may also be classified as linear or non-linear depending on

the influence of the perturbation amplitudes. A linear stability analysis is undertaken

if the perturbation amplitudes are very small and the system responds to only the first

order term in the perturbation amplitude. If the perturbation amplitudes are high

such that the higher order (non-linear) terms are non-negligible, a non-linear stability

analysis has to be undertaken. A stable system (linear or non-linear) is characterised by

decaying amplitudes as shown in Fig. 6.1(a). Here, the blue curve denotes the response

(y(t)) of a non-linearly stable system and the red curve denotes the envelope of the

response for a linearly stable system (exponential decay). An unstable system (linear)

is characterised by the exponentially growing amplitudes as shown by the red curve in

Fig. 6.1(b). In practical systems, the exponential growth is followed by a saturation

in the amplitude, leading to a limit cycle 1 (blue curve in Fig. 6.1(b)). A limit cycle is

characterised by high amplitude oscillations of specific frequencies.

In this thesis, we provide linear descriptions for the responses of the heat source

and hex, and therefore we perform a linear stability analysis of the combustion system

considered. This means that the solution we obtain will give either an exponential decay

or an exponential growth in the amplitude of the response variable, but not limit cycle

amplitudes. In the context of thermoacoustic instabilities, there is a coupling between

Q′ and p′, where Q′ is modelled as a function of the acoustic velocity fluctuation u′,

1Inclusion of non-linear terms in the description of the heat source or hex can lead to the prediction
of limit cycle behaviour. However, such an analysis is beyond the scope of this work, detailed
discussions on non-linear behaviour of combustion systems is not included in the thesis.
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Figure 6.1: Schematic of typical time response of a system undergoing (a) stable oscillations,
and (b) unstable oscillations, in the variable y(t).

as discussed in Section 3.4. Here, u′ is the perturbed variable and p′ is the response

variable.

6.2. Eigenvalue Method

There are several methods adopted by researchers to determine analytically, the stabil-

ity behaviour of a system. Some methods like the Green’s function approach (Bigongiari

and Heckl, 2016, Heckl, 2015) or the system identification approach are used for analy-

sis in time-domain, whereas methods like the classical eigenvalue method (Heckl, 1988,

2013) or Galerkin methods are used in frequency-domain analysis. In our analysis, we

have described the combustion system in the frequency domain, and hence we use the

classical eigenvalue method to predict the eigenfrequencies of the combustion system,

and to construct the stability maps.

The prefix eigen- (German) means self, own or characteristic, and the eigenfrequency

of a system is the frequency that belongs to the system i.e., the frequency at which the

system oscillates when perturbed. We can evaluate the eigenfrequencies of a system

by formulating the characteristic equation (from a system of homogeneous equations),

and subsequently solving it to get its roots. This approach is applied to our combustor

to determine the complex eigenfrequencies and the corresponding growth rates of the

different eigenmodes present in the combustor. It is the growth rate that indicates the

stability of the combustor considered.
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6.2.1. Boundary and jump conditions

The combustion system shown in Fig. 2.2 can now be reduced to a configuration con-

sisting of a duct which is open at one end (R0 = −1 at x = 0) and having a reflection

coefficient of RL at the other end (x = L). RL is the effective or combined reflection

coefficient of the cavity-backed hex. The heat source is located at a distance of x = lf

from the open end.

When formulating the characteristic equation for our combustor configuration, we

make use of the acoustic matching or jump conditions (Eqs. (3.18) and (3.21)) given

in Chapter 3, along with the following boundary conditions.

At x = 0,

p+
1 = R0 p

−
1 , (6.1)

At x = L,

p−2 = RL p
+
2 , (6.2)

6.2.2. Methodology

Equations (3.18), (3.21), (6.1) and (6.2) can now be written in the form of a matrix

equation as

[Y (Ω)]


p+

1
p−1
p+

2
p−2

 =


0
0
0
0

 , (6.3)

with matrix

[Y (Ω)] =


e
−i Ω

c1
lf −R0 e

i Ω
c1
lf 0 0

0 0 RL e
i Ω
c2 (L−lf) e

−i Ω
c2 (L−lf)

1 1 −1 −1
−
(
1 + β eiΩτ

) (
1 + β eiΩτ

)
ζ12 −ζ12

 , (6.4)

where β = (n1(γ − 1)) / (Sρ̄1c
2
1) and ζ12 = (ρ̄1c1) / (ρ̄2c2). Here we have assumed a

simple time-lag model (Eq. (3.12)) for the heat source.
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6.2.3. Growth rate determination

The characteristic equation, det Y (Ω) = 0 i.e.,

(
1 + βeiΩτ

) [
−RL e

(−i Ω
c1
lf )
e

(i Ω
c2

(L−lf )) − e(−i Ω
c1
lf )
e

(−i Ω
c2

(L−lf ))+

R0 RL e
(i Ω
c1
lf )
e

(i Ω
c2

(L−lf )) +R0 e
(i Ω
c1
lf )
e

(−i Ω
c2

(L−lf ))
]

+ ζ12

[
RL e

(−i Ω
c1
lf )
e

(i Ω
c2

(L−lf )) −R0 e
(i Ω
c1
lf )
e

(−i Ω
c2

(L−lf ))
]

− ζ12

[
e

(−i Ω
c1
lf )
e

(−i Ω
c2

(L−lf )) −R0 RL e
(i Ω
c1
lf )
e

(i Ω
c2

(L−lf ))
]

= 0, (6.5)

is solved numerically by Newton-Raphson method or bisection method. The solution,

Ω, is a complex quantity of the form Ωm = ωm + iδm, whose real part, ωm, gives the

natural frequency of the mode m, and the imaginary part, δm, gives the growth rate.

The stability of the mode is determined from the sign of δm. Positive δm indicates

instability and negative δm indicates stability.

6.3. Stability maps for various combustor

properties

From Eq. (6.5), we can deduce that the parameters which influence the stability of

the combustor are: the properties of the medium inside the duct (ρ̄1,2, c1,2, T̄1,2), the

duct length (L), the location of the heat source (lf ), the reflection coefficients at the

boundaries (R0 and RL), the time-lag (τ), and the heat source coupling coefficient (n1).

In addition to these parameters, cavity length (lc), hex dimensions (d and η) and mean

flow velocity (ū) in Region 2 have indirect influence through RL (Eq. (5.1)). The RL

also takes into account the influence of the heat sink coefficient (α) and the impedance

ratio (ζ32) (using Eq. (4.35) in Eq. (5.1)). In this section, we examine the influence of

some of these parameters on the stability of the combustion system.

The stability maps are constructed in the cavity length (lc) - heat source location

(lf ) plane, where the grey regions indicate instability and the white regions indicate
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stability. Stability of any mode is determined from the sign of its growth rate, as

mentioned in the previous section. In our study, we look at the stability of the first

mode of the combustion system whose properties are listed in Table 6.1. The cold

region is assumed to be at T̄1 = 340K with a speed of sound of c1 = 370.7m/s, and the

hot region is assumed to be at T̄2 = 1500K with a speed of sound of c2 = 778.63m/s.

The duct length L is assumed to be 1m and the heat source coupling coefficient n1 =

187kg m/s2. The time-lag, τ = 0.15×10−3s, is chosen such that it is much smaller than

the fundamental time periods encountered in the stability analysis. A conservative

estimate of the time period range calculated from the stability map is [ 5.12 11.95 ]×

10−3s.

Table 6.1: Properties of the combustion system.

Property Value

T̄1 [K] 340

c1 [m/s] 370.7

ρ̄1 [kg/m3] 1.2

T̄2 [K] 1500

c2 [m/s] 778.63

ρ̄2 [kg/m3] 0.27

L [m] 1

S [m2] 0.0025

n1 [kg m/s2] 187

τ [s] 0.15×10−3

lf [m] [ 0 · · · L ]

lc [m] [ 0 · · · L/2 ]

Firstly, we construct the stability map for mode 1 of the combustor containing only

the heat source and no hex, as shown in Fig. 6.2(a). We can observe that the system is

unstable for the range of values of lc and lf considered. This behaviour can be explained

in terms of the mode shape of the wave within the resonator. In the absence of the

heat exchanger, the combustor configuration is essentially a quarter-wave resonator

with a heat source at x = lf . An increase in cavity length (lc) effectively adds to the
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resonator length, L. The total length of the resonator will now be (L + lc). The first

mode shape of the quarter-wave resonator will be, as the name suggests, a quarter wave

with a node at x = 0 and a maximum at x = (L + lc). From the Rayleigh criterion,

we can conclude this unstable behaviour of the first mode of the resonator, regardless

of the cavity length and heat source location considered. Figure 6.2(b) depicts the

eigenfrequency range of the combustion system for the range of values of lc and lf

considered.
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Figure 6.2: (a) Stability maps obtained for the case without hex and bias flow, and (b)
contour map for the eigenfrequencies, ω1 (in Hz) encountered. The properties of the system
are given in Table 6.1.

Next, we introduce the heat exchanger with bias flow into the system. The influence

of the hex on the stability behaviour of the combustion system can be explained in

terms of the parametric analysis given in Chapter 5. An increase in the absorption

coefficient, ∆L is favoured for thermoacoustic instability control because this helps

in breaking the feedback loop existing between the acoustic pressure fluctuations and

the heat release rate fluctuations. The stability maps are constructed for ū = 0.5,

1.0 and 1.5m/s, since the numerical simulations for HTF are evaluated only for these

velocities. The various T̄3 and ζ32 values used for constructing the stability maps are

given in Table 6.2.
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Table 6.2: T̄3 and ζ32 evaluated from numerical simulations.

d [mm] η ū [m/s] T̄3 [K] ζ32

3

0.1
0.5 415 1.901

1.0 610 1.568

1.5 750 1.414

0.2
0.5 556 1.642

1.0 798 1.371

1.5 925 1.273

5

0.1
0.5 550 1.651

1.0 790 1.378

1.5 917 1.279

0.2
0.5 735 1.429

1.0 958 1.251

1.5 1060 1.190

6.3.1. Influence of frequency (f)

Since we calculate the eigenfrequency of the combustion system, frequency cannot be

considered as one of the system parameters. However, from Fig. 6.2, we can infer

that the increasing lf values corresponds to the decreasing values of f . Recalling from

Section 5.4.1 that for a given ū, d, η, lc and ζ32, an increase in f favours the increase

in ∆L, for the frequency range [70 200]Hz. This observation translates to the increase

of stability as lf is decreased.

6.3.2. Influence of cavity length (lc)

In terms of the influence of the cavity length, from the results given in Section 5.3,

we can conclude that for the given eigenfrequency range and for a given lc value,

higher frequencies will have relatively higher ∆L compared to the lower frequencies.

This augments the effect of lf on the stability. Also, for the range of eigenfrequencies

considered, ∆L increases as lc increases. Combining the effects of lf (or f) and lc,

we expect the stable regions to start appearing from the right bottom corner of the
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stability map. The expected trend for increasing stable regions is shown in Fig. 6.3.

This map also includes the effect of the mean flow velocity, as will be discussed in the

next section.

6.3.3. Influence of mean flow velocity (ū)

In Section 5.4.2, we have concluded that an increase in ū increases the ∆L and in turn

the damping of the unstable mode. Therefore, the stable regions in the stability map

increases with increasing ū. This trend is indicated by the arrow along the diagonal in

Fig. 6.3. Therefore, from the parametric analysis, we can expect the overall stability

of the combustion system in the lf − lc plane, to increase as ū increases, starting at the

right bottom corner. The stability maps constructed for the base case with d = 3mm,

η = 0.1 and ū = 0.5, 1.0 and 1.5m/s, shown in Fig. 6.4, confirms our expected trend

for stability growth. Also, there is a range of cavity lengths for a given ū value where

the system is stable irrespective of lf . This stability and the range of lc values can be

improved further, by increasing ū.
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Figure 6.3: Expected trend for increase in stability, as lc, lf and ū vary.

6.3.4. Influence of impedance ratios (ζ)

The jump in temperature (T̄ ) or the jump in impedance ratio (ζ) occurs at two locations

within the combustion system: (1) ζ32 at the hex location x = L, and (2) ζ12 at the

heat source location x = lf .
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Figure 6.4: Stability maps obtained for d = 3mm, η = 0.1 and incoming velocity of (a) ū
= 0.5m/s, (b) ū = 1.0m/s and (c) ū = 1.5m/s.

89



Chapter 6. Stability Analysis

ζ32 at the hex location x = L

The influence of ζ32 on ∆L is shown in Fig. 6.5, for d = 3mm, η = 0.1 and for different

mean velocities and frequencies considered in the stability maps. The increase in ∆L

for increasing ū and f (for a given ζ32) can be confirmed from the curves plotted. In

terms of the effect of ζ32 on ∆L, given a ū and a f , it can be observed that there is

very small variation in ∆L, as ζ32 varies. This effectively means that for a given f , a

comparison of ∆L values across different ū values is possible, regardless of the influence

of ζ32. This also translates to the fact that though ζ32 is different in each of the stability

maps plotted in Fig. 6.4(a)-(c), a comparison of the stability behaviour is still possible,

excluding the influence of ζ32.
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Figure 6.5: Variation of ∆L with impedance ratio (ζ32) and mean velocity (ū) for d = 3mm,
η = 0.1, lc = 0.25m and frequencies f = 60, 100, 140 and 180Hz.

ζ12 at the heat source location x = lf

The parametric analysis conducted in Chapters 4 and 5 are associated with the influence

of system parameters on the behaviour of hex without and with backing, respectively.

Such an analysis excludes the influence of the temperature jump across the heat source

(ζ12). Temperature jump introduces jump in the speed of sound and consequently the

wavelength and the phase difference between Q′ and p′. The mode shape and the phase
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difference is also modified by the variation in RL at the downstream end. Such a phase

shift can stabilise or destabilise the combustion system, depending on RL as well as

the position of the heat source within the system (Bigongiari and Heckl, 2016). The

stable region marked with ‘�’ in Fig. 6.4(b) is believed to be caused by this influence

of the temperature jump, in addition to the stabilising effect of increasing ū.

6.3.5. Influence of hex tube diameter (d)

The influence of the hex tube diameter on the stability of the combustion system is

studied by increasing d from 3mm to 5mm. The stability maps, thus obtained are

shown in Fig. 6.6. It can be observed that the stable regions in the stability maps are

significantly larger than those shown in Fig. 6.4. This behaviour is in accordance with

the parametric analysis in Section 5.4.4, where ∆L is slightly larger for d = 5mm when

compared to that for d = 3mm. Again, the influence of ū, lc and f are as expected.
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Figure 6.6: Stability maps obtained for d = 5mm, η = 0.1 and mean velocity of (a) ū =
0.5m/s, (b) ū = 1.0m/s and (c) ū = 1.5m/s.
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6.3.6. Influence of open area ratio (η)

Now, the stability maps are constructed for hex geometry with a larger open area

ratio, and are shown in Fig. 6.7 where d = 3mm and η = 0.2. From the discussion in

Section 5.4.3, we expect less absorption for higher η values. This will manifest as a

reduction in the stable regions compared to Fig. 6.4. The dashed line in the stability

map in Fig. 6.7(a) indicates the boundary between the stable and unstable regions

given in Fig. 6.4(a).
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Figure 6.7: Stability maps obtained for d = 3mm, η = 0.2 and incoming velocity of (a) ū
= 0.5m/s, (b) ū = 1.0m/s and (c) ū = 1.5m/s. Dashed lines indicate the boundary between
the stable and unstable regions shown in Fig. 6.4(a).

Again, the influence of ū and lc remain the same. Increase in both ū and lc tend to

stabilise the system, even though the increase in stability due to the increase in ū is

insubstantial compared to that shown in Fig. 6.4. This slight increase in stability can
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be explained through the plots given in Fig. 6.8, where the variation of ∆L is plotted

for f = 100Hz, ū = 0.5, 1.0 and 1.5m/s, against the variation in η and ζ32. As discussed

previously, the influence of ζ32 can be neglected in this analysis. We can observe that

at η = 0.2, the increase in ū corresponds to a very small increase in ∆L, compared to

the increase at η = 0.1. This causes the similarity in the stability maps obtained for η

= 0.2, even after increasing ū.
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Figure 6.8: Variation of ∆L with open area ratio (η) and impedance ratio (ζ32) for d =
3mm, lc = 0.25m, f = 100Hz and mean velocities ū = 0.5, 1.0 and 1.5m/s.

But the stability of the combustion system can be improved by increasing d. Such a

situation is portrayed in Fig. 6.9, where the stability maps are given for d = 5mm, η

= 0.2 and ū = 0.5, 1.0 and 1.5m/s. The stable regions are found to be larger for ū =

1.5m/s when compared to that for ū = 0.5m/s. The stability maps for d = 5mm and

η = 0.2 also confirms all the expected trends discussed so far. The stabilising effect of

increasing hex tube diameter is evident from Figs. 6.7 and 6.9. Also, the destabilising

effect of open area ratio can be observed from comparing Figs. 6.6 and 6.9.
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Figure 6.9: Stability maps obtained for d = 5mm, η = 0.2 and incoming velocity of (a) ū
= 0.5m/s, (b) ū = 1.0m/s and (c) ū = 1.5m/s.

6.4. Conclusions

The linear stability analysis of an idealised combustion system with hex is carried out

by taking into account the heat absorption and the acoustic scattering at the hex. Using

the classical eigenvalue method, the complex eigenfrequencies (Ωm) of the system are

evaluated, by finding the complex roots of the characteristic equation. The real part

of Ωm (ωm) denotes the natural frequency of the concerned mode, and the imaginary

part (δm) denotes the growth rate. The sign of the growth rate is an indicator of the

stability of the concerned mode, which in our study is the first mode.

The stability maps are constructed in the lc− lf plane, and the analysis begins with

an already unstable first mode of the combustor (without hex). The combustor, in the

absence of the hex, is essentially a quarter-wave resonator with a heat source, whose

first mode is always unstable. When hex is introduced near the rigid downstream end,
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it acts an acoustic absorber whose reflective (RL) and absorptive (∆L) properties can

be varied. These properties depend on the different system parameters like ū, lc, f ,

d and η. The aim is to stabilise the system by independently varying one of these

parameters, while maintaining the other parameters as constants. From the stability

maps generated, it can be concluded that increasing ū, lc, d or f (in terms of lf ) tend

to stabilise the system, whereas increasing η tends to destabilise it.

Nevertheless, for an unstable mode (first mode) of the combustion system with fixed

geometry (d and η) for the hex, it has been observed that varying ū and lc can bring

about stability.
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Conclusions

7.1. Summary and Conclusions

The need for clean and efficient power generation units have increased the demand for

lean premixed combustion. Consequently, these combustions units become susceptible

to combustion instabilities or thermoacoustic instabilities. These instabilities are char-

acterised by high amplitude self-excited and low frequency pressure oscillations that

can cause structural vibrations, unsteady thermal loading and in extreme cases, severe

structural damage to the system.

Combustion instability is a consequence of the existence of a positive feedback loop

between the heat release rate fluctuations Q′ and the pressure fluctuations p′. In order

to suppress and control the instability, the feedback loop between Q′ and p′ needs to be

broken, by means of active or passive control strategies. We focus on passive methods

to control instability. Typically in passive control, additional damping devices like

acoustic resonators or acoustic liners with bias flow are included in the combustion

unit to control instabilities.

Unfortunately, these passive devices are generally bulky and difficult to accommo-

date into small power generation units like domestic boilers, that are compact in size.

However, domestic boilers have heat exchangers housed within the combustion cham-

ber, along with the flame. Heat exchangers are periodic structures that consist of arrays
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of tubes in cross flow. Studies conducted previously by researchers on tube arrays have

shown that these structures can effectively dampen acoustic oscillations.

With this insight, the aim of the present work is to investigate the viability of using

heat exchangers as passive control components. One of the main advantages of using

heat exchanger to passively control instability is that they are an integral part of the

combustion system and therefore is already present within the system. In other words,

no extra provision is needed for accommodating them in the combustion system.

To this end, we simplify the complex boiler system to its basic components: the

burner, the heat exchanger (hex) and the outer casing. These components can be

modelled as a compact heat source within a quarter-wave resonator, with an array of

tubes representing the hex placed near the closed end of the resonator. There is jump in

the temperature (T̄ ) and the speed of sound (c), across both heat source and hex. The

heat source is modelled using a time-lag law, where the heat release rate fluctuations at

the heat source location is dependent on the time-lagged acoustic velocity fluctuations.

The main focus of the present work is in modelling the hex and subsequently utilising

this model in the stability predictions of the complete combustion system.

Heat exchangers serve two purposes in our study: (1) they absorb the heat from the

flame, and (2) they also dissipate the acoustic fluctuations incident on them. As there

is limited literature available on the analytical modelling aspects of heat exchangers, we

model the total acoustic scattering behaviour of hex by splitting the above mentioned

physical processes into two individual processes that are separated by an infinitesimally

small distance ∆x. The heat transfer at the hex is computed numerically in Fluent®

to obtain a Heat exchanger Transfer Function (HTF), that relates the nondimension-

alised heat absorption rate fluctuations to the nondimensionlised velocity fluctuations.

Next, the acoustic scattering at the hex is evaluated analytically by employing a quasi-

steady approach. The quasi-steady model was also verified experimentally, where two

samples of different dimensions were tested. The quasi-steady model approximates the
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tube row to a simplified geometry of two half cylinders separated by a gap. Experi-

mental verification of an approximated geometry (d = 20mm) and a tube row (d =

16mm) proved the applicability of quasi-steady model to describe the acoustic scatter-

ing properties of tube rows.

From the HTF and the quasi-steady model, an expression for the total scattering

matrix, in the limit ∆x→ 0, of the hex was derived. This matrix depended on the heat

sink coefficient (α), the impedance ratio across the hex (ζ32), the geometry of hex tube

row (d and η), the mean flow velocity (ū) and the frequency of the incident acoustic

wave (f). α and ζ32 were calculated from Fluent® results. Upon inspection, it was

observed that α had very little influence on the scattering behaviour of hex, at least

in the f and ū ranges considered. In the combustion system configuration studied,

the hex is placed near the closed end of the resonator. The influence of cavity length

(lc) is therefore an important aspect of the model description. A parametric analysis

was conducted to determine the influence of each of the aforementioned parameters,

namely ū, lc, f , d and η, on the scattering properties of the hex.

The information thus obtained was then utilised in the linear stability predictions of

the combustor. The stability maps were obtained through classical eigenvalue method,

where the complex eigenfrequencies (Ω) of the first eigenmode of the system were

evaluated for different system parameters. The stability behaviour is characterised

by the growth rate of the eigenmode (δ1 = =(Ω1)). To understand the influence of

hex on the stability, we began the analysis by constructing the stability map for the

combustor sans hex. This essentially makes the combustor a quarter-wave resonator

with a heat source, and its first mode is always unstable irrespective of the values for

lc and lf . Next, a hex with cross flow was introduced into the system. By varying

different parameters, especially ū and lc, we were able to obtain stable regions for the

full range of lf values considered. The salient results from our stability analysis are:

(1) We observed that the unstable mode of the combustor can be passively controlled
to a large extent by varying the mean flow velocity ū and the cavity length lc.
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(2) For an already unstable mode, an increase in velocity tends to stabilise it.

(3) Similarly, for the rigid downstream end condition (Rp = 1), an increase in the
cavity length favoured stability.

(4) Eventhough, frequency cannot be treated as a parameter, the variation in the
heat source location lf manifested as a variation in the eigenfrequencies in the
stability maps i.e., as lf decreased, the ω1 = <(Ω1) increased, and this favours
stability.

(5) There was also an increase in the stability behaviour as the hex diameter (d) was
increased.

(6) However, the increase in the open area ratio (η) had a destabilising effect. This
is plausible due to the reduced interaction between the acoustic fluctuations and
the shed vortices, downstream of the hex.

(7) Nevertheless, we were able to stabilise an unstable mode of the combustion system
by varying system parameters like ū, lc, d, η and f (through lf ).

(8) It should, however, be noted that the stabilising/destabilising trends provided in
the thesis are valid only for the prescribed range of parameters. This range and
the expected influence of the system parameters on the stability behaviour can
be determined by conducting a parametric analysis.

The practical implications of our findings are promising. It improves the design

flexibility of domestic boilers and opens the door to new designs for efficient, clean and

reliable boilers and other compact power generation units. To summarise the work

presesnted in this thesis, a schematic of the same is provided in Fig. 7.1.

7.2. Scope for future work

Our study is a first step in understanding the complex stability behaviour of domestic

boilers. Several modifications and improvements to our analysis are possible, in order

to have better instability predictions. Some of them are listed below.

(1) We have assumed an idealised combustion system with no losses and the heat
source was modelled as a simple n− τ law. These assumptions can be relaxed to
include losses at the duct walls (viscous and thermal). The time-lag law can be
replaced with an experimentally measured FTF.
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Figure 7.1: Thesis in a nutshell
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(2) We could improve the heat exchanger modelling by verifying the total scattering
matrix with numerical simulations or experiments.

(3) The quasi-steady model that we currently employ to obtain the acoustic scatter-
ing at the hex lacks phase information. It is worthy to look into the effects of
phase differences at boundaries like the cavity-backed hex, as they could influence
the stability behaviour.

(4) Currently, the information regarding the heat transfer at the hex and the flow
properties after the hex is obtained from numerical simulations. This restricts
our analysis as we could not look into the influence of the heat sink and the tube
row, as independent entities. It would be an interesting study to decouple these
processes and look at the stability behaviour of the combustion system. This
could open up new possibilities in designing better and efficient passive control
strategies.

(5) One of the shortcomings in our analysis is the relying on numerical simulations
to obtain the HTF. It would be beneficial to either derive HTFs from analytical
modelling of heat transfer process at the hex (similar to King’s law for flow over
hot wire) or obtain empirical relations from existing datasets in literature.

(6) In our analysis, we have only looked at the influence of a handful of parameters.
There are other parameters that significantly affect the stability behaviour. One
such parameter is the impedance ratio (ζ). The impedance ratio across the heat
source can be viewed as the heating power of the burner and the impedance ratio
across the hex is a measure of the absorption capacity of the hex. Hence, these
parameters and their influences are also important aspects that needs attention
in future analysis.

(7) We have undertaken a linear stability analysis. However, most practical systems
perform in the non-linear regime. Therefore, it will be more practical to undertake
a non-linear stability analysis by including FDFs (amplitude dependent FTFs).

(8) Finally, our analytical model is based on a highly idealised combustion system.
Our findings act as guidelines for possible design modifications. In order to vali-
date our model, the results obtained need to be compared with either experimen-
tal data or with high fidelity simulation data subject to fewer assumptions and
from more realistic boiler configurations. At present, we lack such a database.
Hence, through the present work, we lay the groundwork for future PhD topics
like the high fidelity simulations of domestic boiler systems or the experimental
validation of our findings in realistic boilers.
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List of Publications

Conference Proceedings

Surendran, A. and Heckl, M. A. (2017), “Linear and nonlinear stability predictions
for a domestic boiler with a heat exchanger for passive instability control”, submit-
ted to The 24th International Congress on Sound and Vibration, July, London,
United Kingdom.

Surendran, A., Heckl, M. A., Hosseini, N. and Teerling, O. J. (2016b), “Use
of heat exchanger for passive control of combustion instabilities”, in The 23rd In-
ternational Congress on Sound and Vibration, July, Athens, Greece.

Abstract: One of the major concerns in the operability of power genera-
tion systems is their susceptibility to combustion instabilities. In this work,
we aim to examine the effective use of heat exchangers, an integral com-
ponent in any power generation system, to passively control combustion
instability. The combustor is modelled as a quarter-wave resonator (1-D,
open at one end, closed at the other) with a compact heat source within,
which follows time lag law for heat release. The heat exchanger (hex) is
modelled as an array of tubes with bias flow and is placed near the closed
end of the resonator, causing it to behave like a cavity-backed slit plate: an
effective acoustic absorber. For simplicity and ease of analysis, we treat the
physical processes of heat transfer and acoustic scattering occurring at the
hex as two individual processes separated by an infinitesimal distance. The
aeroacoustic response of the tube array is modelled using a quasi-steady
approach and the heat transfer across the hex is modelled by assuming it
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to be a heat sink. Unsteady numerical simulations were carried out to ob-
tain the heat exchanger transfer function (HTF), which is the response of
the heat transfer at hex to upstream velocity perturbations. Combining
the aeroacoustic response and the HTF, in the limit of the infinitesimal
distance between these processes tending to zero, gives the net influence
of the hex. Other parameters of interest are the heat source location and
the cavity length (the distance between the tube array and the closed end).
We then construct stability maps for the first resonant mode of the afore-
mentioned combustor configuration, for various parameter combinations.
Preliminary observations show that stability can be achieved for a wide
range of parameters.

Contributions from co-authors: This conference paper is an outcome of
my secondment at Bekaert Combustion Technology BV, Assen, The Nether-
lands. The aim of the secondment was to obtain the heat exchanger transfer
functions (HTF) from numerical computations, using Fluent®. My sec-
ondment at Bekaert was supervised by Dr. O. J. Teerling. Mr. Naseh
Hosseini, TANGO ESR based at Bekaert, helped me with the setting up
and performing of the numerical simulations. The paper was written by me
under the supervision of Prof. Maria Heckl and the co-authors contributed
in the revisions of the paper.

Surendran, A., Heckl, M. A., Boij, S., Bodén, H. and Hirschberg, A. (2016a),
“Aeroacoustic response of an array of tubes with bias-flow”, in The 23rd Interna-
tional Congress on Sound and Vibration, July, Athens, Greece.

Abstract: Heat exchanger tube bundles, consisting of tube arrays in cross
flows, are vital in the efficient working of power generation systems. If
sound propagates through these bundles, it can lead to resonance or acous-
tic attenuation, and thereby affecting the working of the power generation
unit. Therefore, it is important to study the aeroacoustics of tube rows.
The aim of the present work is to experimentally validate the quasi-steady
compressible model developed to study the aeroacoustic response of an ar-
ray of tubes with bias flow. In order to accomplish this, the array of tubes is
approximated by a geometry consisting of two half cylinders separated by a
gap and having a bias flow through the gap. Firstly, the case with no flow is
considered and the experimental results for the reflection and transmission
coefficients are compared against the analytical expressions developed by
Huang and Heckl (Huang and Heckl, 1993, Acustica 78, 191-200). Then
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the cases with flow are considered. A quasi-steady subsonic compressible
model is developed to predict the reflection and transmission coefficients,
valid for low Strouhal numbers, with the additional assumption of small
Helmholtz number and low Mach numbers. This model is validated against
the experimental results for the transmission and reflection coefficients. A
two-port multi-microphone measurement technique is used to obtain the
pressure data and a subsequent wave decomposition is utilised to extract
the transmission and reflection coefficients. The results show good agree-
ment with theory for various Mach numbers, in the low Strouhal number
regime.

Contributions from co-authors: This conference paper is an outcome of
my secondment at KTH, Stockholm, Sweden. The aim of the secondment
was to experimentally validate the quasi-steady model developed at Keele.
The quasi-steady was developed with helpful inputs from Prof. Avraham
Hirschberg of TU Eindhoven, The Netherlands. My secondment at KTH
was jointly supervised by Prof. Maria Heckl, and Prof. Hans Bodén and Dr.
Susann Boij from KTH. The paper was written by me under the supervision
of Prof. Maria Heckl and the co-authors contributed in the revisions of the
paper.

Surendran, A. and Heckl, M. A. (2016), “Passive instability control by a heat ex-
changer in a combustor with non-uniform temperature”, in Thermoacoustic Insta-
bilities in Gas Turbines and Rocket Engines: Industry meets Academia, GTRE-022,
Munich, Germany.

Abstract: Thermoacoustic instabilities, caused by the feedback between
unsteady heat release and pressure perturbations, are characterised by large
amplitude pressure oscillations. These oscillations, if unchecked and uncon-
trolled, pose a great threat to combustion systems. One strategy to mitigate
them is by the use of cavity backed acoustic liners (perforated plates). In
this study, we consider a generic combustor configuration: a quarter-wave
resonator (1-D, one end open and the other end closed) containing a com-
pact heat source and heat exchanger tube row. The aim is to use the heat
exchanger tube row as the acoustic damper. The heat exchanger tubes
are simulated using an array of thin rods with rectangular cross-section
and having a bias flow through the gaps between the rods. When placed
near the closed end of the resonator, these rods behave like a cavity-backed
slit-plate/an acoustic liner. We derive the characteristic equation for the
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complex eigenfrequencies of this set-up. From the growth rates (imaginary
parts of the eigenfrequencies), we construct stability maps for various sys-
tem parameter combinations. Preliminary results show that increasing the
bias flow through the slits tends to stabilise the system.

Surendran, A. and Heckl, M. A. (2015), “Passive instability control by using a
heat exchanger as acoustic sink”, in The 22nd International Congress on Sound and
Vibration, July, Florence, Italy.

Abstract: The aim of the present work is to investigate whether a com-
bustion instability can be controlled by a passive method utilising a heat
exchanger, which is an integral part of many combustion systems. We con-
sider a generic configuration: a quarter-wave resonator (1-D, one end open
and the other end closed) containing a compact heat source whose heat re-
lease follows a time-lag law. An array of rods inside the resonator simulates
the heat exchanger tubes; a mean flow is also present. If the array of rods is
placed near the closed end of the resonator, it behaves much like a cavity-
backed orifice plate - a setup, which is commonly used as sound absorber
in room acoustics. The temperature and the speed of sound are assumed
to be uniform throughout the resonator. The array of rods is modelled
as a slit-plate with known acoustic reflection and transmission coefficients;
these coefficients depend on the frequency, Mach number, slit spacing and
open-area ratio. Additional parameters of interest are the cavity length
(distance of the slit-plate from the closed end) and the heat source loca-
tion. Heat transfer between the rods and the surrounding fluid is ignored.
The resonant frequencies and their growth rates are evaluated from the
characteristic equation, derived for this configuration. Stability maps are
constructed for various parameter combinations. It turns out that stability
can be achieved for a wide range of parameters.

Surendran, A. and Heckl, M. A. (2014), “Analytical study of a Rijke tube with heat
exchanger”, in The 21st International Congress on Sound and Vibration, Beijing,
China.

Abstract: Combustion systems are often integrated with heat exchangers
to increase their efficiency and prolonged use. The thermo-acoustic insta-
bilities in combustion systems had been the subject of research for over two
decades. These instabilities occur due to the existence of feedback between
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the unsteady heat release rate and acoustic oscillations. The aim of this
paper is to study how a tube row simulating a heat exchanger affects the
stability behaviour. The setup is modelled as a Rijke tube. The upstream
end is open and the downstream end is a row of tubes backed by a cavity.
The speed of sound is assumed to be constant throughout the duct. The
reflection coefficient of the downstream end of the duct depends on the cav-
ity length, tube row properties and the resonant frequency of the system.
The resonant frequency of the system is evaluated from the characteristic
equation, developed from the boundary conditions at the tube ends and
the heat source. The acoustic waves are assumed to be one-dimensional,
with the heat source obeying the n − τ model for heat release rate. The
parameters of interest in this study are: cavity length (lc) and the radius of
the heat exchanger tubes (a). Stability maps involving the growth rate of
the acoustic oscillations in the system show the unstable/stable behaviour
of the combustion system.
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Abstract: Thermoacoustic instabilities, caused by the feedback between
unsteady heat release and acoustic pressure perturbations, are characterised
by large-amplitude pressure oscillations. These oscillations, if uncontrolled,
pose a threat to the integrity of combustion systems. One strategy to mit-
igate them is by installing cavity-backed perforated plates with bias flow
into the combustion chamber. In this study, we consider a generic combus-
tor configuration: a 1-D tube (with open and/or closed ends) containing a
compact heat source and a heat exchanger tube row. The idea is to use
the heat exchanger tube row as a device (analogously to a cavity-backed
perforated plate) to manipulate the downstream end condition. We sim-
ulate the row of heat exchanger tubes by a slit plate with bias flow. We
derive the characteristic equation for the complex eigenfrequencies of this
set-up. From the growth rates (imaginary parts of the eigenfrequencies), we
construct stability maps for various system parameter combinations. The
results, obtained for the first two modes of the system, show that by varying
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the cavity length or the bias flow velocity through the slits, we can stabilise
a previously unstable combustion system.
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of instabilities in combustion systems with heat exchanger”, submitted to Interna-
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Abstract

Thermoacoustic instabilities, caused by the feedback between unsteady heat release and acoustic pressure perturbations,

are characterised by large-amplitude pressure oscillations. These oscillations, if uncontrolled, pose a threat to the

integrity of combustion systems. One strategy to mitigate them is by installing cavity-backed perforated plates with

bias flow into the combustion chamber. In this study, we consider a generic combustor configuration: a one-dimentional

tube (with open and/or closed ends) containing a compact heat source and a heat exchanger tube row. The idea is to use

the heat exchanger tube row as a device (analogously to a cavity-backed perforated plate) to manipulate the downstream

end condition. We simulate the row of heat exchanger tubes by a slit-plate with bias flow. We derive the characteristic

equation for the complex eigenfrequencies of this set-up. From the growth rates (imaginary parts of the eigenfrequen-

cies), we construct stability maps for various system parameter combinations. The results, obtained for the first two

modes of the system, show that by varying the cavity length or the bias flow velocity through the slits, we can stabilise a
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1 Introduction

When a heat source like a flame or a heated gauze is
placed within an acoustic resonator, there may be an
interaction between the heat release fluctuations and
the acoustic pressure fluctuations, which forms a posi-
tive feedback loop leading to high-amplitude oscilla-
tions. This effect has been observed in combustion
systems and is known as thermoacoustic instability. If
uncontrolled, high-pressure loads occur, leading to
excessive vibrations of mechanical parts, and in extreme
cases, to catastrophic hardware damage.1 It is therefore
important to develop mitigation strategies to prevent
these instabilities.

Combustion systems that are prone to thermoacous-
tic instabilities are gas turbine engines, rocket motors,
afterburners, furnaces and domestic heaters. There is a
large variety of designs. Some of them include heat
exchangers, and such combustion systems are the
topic of this paper. Heat exchangers are periodic struc-
tures that consist of arrays of tubes in a cross flow.

If sound passes through an array of tubes, it is attenu-
ated due to viscous, thermal and turbulent losses. We
aim to utilise this attenuation property of tube arrays to
control thermoacoustic instabilities. To this end, we
consider an idealised combustion system: the combus-
tion chamber is one-dimensional, the flame is compact
and the heat exchanger is a row of narrow sharp-edged
rods with rectangular cross-section. Effectively, we treat
the heat exchanger as a slit-plate with bias flow.

Slit-plates and, more commonly, orifice plates with a
mean flow through the holes (bias flow) are widely used
as sound absorbers. A summary of the key contribu-
tions to this research topic can be found in the study by
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Munjal.2 Generic applications are presented by
Davies.3 The sound absorption of a perforated plate
with bias flow can be enhanced greatly by a cavity
backing.4–6

The idea that a cavity-backed perforated plate can be
used in a combustion system to control thermocoustic
instabilities was first realised experimentally by Tran
et al.7,8 They implemented a cavity-backed perforated
plate at the upstream end of a swirl burner and achieved
control by suitable choice of cavity length. Tran’s work
was continued by Scarpato et al.9,10 who investigated
the role of the Strouhal number on the absorption
mechanism of the cavity-backed perforated plate.

A model corresponding to Tran’s setup was devel-
oped by Heckl and Kosztin,11 who predicted that con-
trol can be achieved for a wide range of cavity lengths.
They modelled the flame dynamics by a generic time-lag
law and also examined the effectiveness of the control
for different time-lags.

Much is known about the damping mechanism of
perforated plates with bias flow. When a sound wave
hits such a plate, hydrodynamic effects come into play
which affect the reflection, transmission and damping
of the sound wave. A physically intuitive and experi-
mentally validated model has been developed by
Hofmans et al.12 and Durrieu et al.13 for a single orifice
(both circular and slit-shaped). Their work provides
physical insight, which will be valuable for understand-
ing the results in our paper. Below is a summary of their
relevant findings.

At the orifice, a free jet is formed by flow separation.
The cross-sectional area of the jet is smaller than that of
the orifice (vena contracta). One can imagine the orifice
as partially blocked by this hydrodynamic effect.
Downstream of the orifice, the jet becomes unstable;
vortices form and are swept downstream.

The blockage has a strong effect on the acoustic
reflection and transmission. The magnitude of the
reflection coefficient increases with Mach number,
while its phase remains zero. Thus, the orifice behaves
like a partially reflective rigid wall. The vortex gener-
ation is responsible for the sound absorption, as ini-
tially proposed theoretically by Howe.14 The
absorption first increases with Mach number, then
reaches a maximum and decreases for higher Mach
numbers.

The acoustic behaviour of a perforated plate can be
manipulated in a big way by backing it with a cavity.
The cavity acts like an acoustic resonator, and as such,
it can amplify or damp acoustic waves that enter it. The
combination of a perforated plate with bias flow and a
backing cavity has been found to become anechoic for
certain frequencies and flow Mach numbers.4,5,6

For our purpose of describing a heat exchanger as a
perforated plate, we are particularly interested in plates

with slit-shaped perforations. A comprehensive analyt-
ical model for such plates (with and without cavity
backing) was produced by Dowling and Hughes.15

They used the Kutta condition to derive expressions
for the reflection and transmission coefficient of the
slit-plate. The key parameters in their model are
Strouhal number, bias flow Mach number, open area
ratio and cavity length.

In this paper, we present amodel for an idealised com-
bustion system,which consists of a one-dimensional tube
with a compact flame and a jump in mean temperature
across the flame or heat source. The upstream end of the
tube is open, and the downstream end is formed by a slit-
plate, a certain distance upstream of the tube end, which
may be open or closed. Surendran and Heckl16 have
already developed a theoretical model for such a com-
bustion system and have shown that the slit-plate with
bias flow is an effective method to passively control ther-
moacoustic instabilities. The present study extends this
work in the following ways:

. Instead of the basic n� � law, we use an extended
(and more versatile) time-lag law to describe the heat
source.

. We included a temperature jump at the heat source,
rather than assuming a uniform temperature
throughout the tube. This assumption of a tempera-
ture jump makes the combustor more realistic and
close to real situations.

. We examined a wider range of boundary conditions
at the downstream tube end.

We begin our analysis with the description of the com-
bustion system and its associated modelling aspects in
Section 2. In Section 3, we look at the influence of
system parameters on the acoustic properties of the
slit-plate and then proceed to the stability predictions
(Section 4) for various system parameters, using an
eigenvalue method.

2 Description of model

The combustion system studied is as shown in Figure 1.
It consists of a quarter-wave resonator, open at the

Figure 1. Schematic of the combustion system.
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upstream end (x ¼ 0) and having a reflection coefficient
R0 ¼ �1. The heat source is located at a distance lf
from the upstream end, dividing the resonator into
two regions: a cold upstream region (Region 1) and a
hot downstream region (Region 2). The speeds of
sound (c1,2) and mean temperatures (T1,2) are uniform
in both regions. The slit-plate simulating the heat
exchanger is located at x ¼ L. The slit-plate has a
bias flow through the gaps, denoted by its Mach
number, M. The downstream end of the resonator
may be open or closed. In the case of closed end, the
downstream extremity is equipped with a rigid piston,
enabling us to vary the distance between the slit-plate
and the piston. In any case, the distance between the
slit-plate and the downstream end is referred to as the
cavity length (lc).

2.1 Acoustic field

The acoustic field within the combustor is modelled as
one-dimensional acoustic waves propagating perpen-
dicular to the rods (normal incidence), as shown in
Figure 1. For the present study, we ignore the heat
transfer between the rods and the surrounding fluid,
i.e., air. The acoustic pressure and velocity fields
inside the resonator are,

Region 1 (cold):

p̂1ðxÞ ¼ Aeik1 x�lfð Þ þ Be�ik1 x�lfð Þ 05 x5 lf ð1Þ

û1ðxÞ ¼
1

�1c1
Aeik1 x�lfð Þ � Be�ik1 x�lfð Þ
n o

05 x5 lf

ð2Þ

Region 2 (hot):

p̂2ðxÞ ¼ Ceik2 x�lfð Þ þDe�ik2 x�lfð Þ lf 5 x5L ð3Þ

û2ðxÞ ¼
1

�2c2
Ceik2 x�lfð Þ �De�ik2 x�lfð Þ
n o

lf 5 x5L

ð4Þ

where p̂ and û are the acoustic pressure and acoustic
velocity, respectively (the ^ indicates that they are fre-
quency-domain quantities), and A,B,C and D are the
pressure amplitudes to be determined. The subscripts 1
and 2 indicate the cold and hot regions respectively
within the resonator, and k1,2 ¼ !=c1,2 is the wave
number. The factor of e�i!t is omitted throughout the
analysis.

2.2 Generic heat release law

The heat source is assumed to be compact, planar and
confined to an infinitesimally thin region at x ¼ lf.

For the heat release rate (Q̂), we have adopted the gen-
eric heat release law by Heckl and Kosztin,11 where the
heat release rate depends on both the instantaneous
velocity fluctuations uðtÞ as well as the time-lagged vel-
ocity fluctuations uðt� �Þ at the location lf. It is
given by

Q̂ð!Þ ¼ � n1û lf
� �

ei!� � n0û lf
� �� �

ð5Þ

or using Equation (2), by

Q̂ð!Þ ¼
�ðA� BÞ

�1c1
n1e

i!� � n0
� �

ð6Þ

where � is a factor relating the local and global heat
release rates, and n1 and n0 are non-dimensional coef-
ficients called coupling coefficients.

2.3 Cavity backed slit-plate

The heat exchanger is modelled as an array of thin rods,
spaced a distance d apart and having rectangular cross-
sections (Figure 2). Therefore, we can treat this array as
a plate with slits of width 2s. A pressure difference
across the slit-plate creates a bias flow of Mach
number M through the slits, causing vortex shedding.
In the model by Dowling and Hughes,15 the transmis-
sion and reflection coefficients of a slit-plate with bias
flow were derived as

Tsp ¼ �! _V= kdð Þ ð7Þ

Rsp ¼ 1� �! _V= kdð Þ ð8Þ

with

�! _V

kd
¼

i��= 2�sMð Þ

i��= 2�sMð Þ � lnð��Þ þ ln2=�
ð9Þ

Figure 2. Geometry of the slit-plate.
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and

�¼ 1�
1

�sln2

�
�I0ð�sÞe

��sþ2isinhð�sÞK0ð�sÞ

�e��s I1ð�sÞþ
I0ð�sÞ
�sln2

h i
þ2isinhð�sÞ K0ð�sÞ

�sln2 �K1ð�sÞ
h i

8<
:

9=
;

ð10Þ

The subscript sp refers to slit-plate and _V is the per-
turbation volume flux through the slit. � ¼ 2s=d is the
open area ratio, �s ¼ !s=U is the Strouhal number, U is
the bias flow velocity and Im and Km are the modified
Bessel functions of order m. Equations (7)–(10) are
valid for s=d� 1 and d� �, where � is the wavelength
of the incident wave. Further details can be found in the
study by Dowling and Hughes.15 The tube end backing
the plate is at a distance lc from the slit-plate. The
effective reflection coefficient, RL, of the cavity-backed
slit-plate is given by Surendran and Heckl16

RL ¼ Rsp þ
RpT

2
spe

2ik2lc

1� RpRspe2ik2lc
ð11Þ

where Rp is the reflection coefficient at the downstream
end of the tube. Rp ¼ 1, if the end is closed and
Rp ¼ �1, if it is open.

3 Acoustic properties of the cavity-backed
slit-plate

We describe the acoustic energy loss at the slit-plate by
the absorption coefficient �sp, given by

�sp ¼ 1� jTspj
2 � jRspj

2 ð12Þ

In analogy with this, we write the absorption coeffi-
cient of the slit-plate with cavity backing as

�L ¼ 1� jRLj
2 ð13Þ

�sp and �L are a measure of the acoustic energy (rela-
tive to the incident energy) that is dissipated.

From equations (7)–(13), we can observe that these
coefficients depend on the following parameters: bias
flow Mach number (M), frequency of the wave (!),
cavity length (lc) and open area ratio (�). We investigate
the influence of these parameters in the following four
sections, both for the slit-plate in isolation and for the
cavity-backed slit-plate.

3.1 Influence of Mach number

Figure 3 shows the reflection coefficient (magnitude and
phase) and absorption coefficient for a slit-plate in iso-
lation (Figure 3(a), (b), (c)) and for a cavity-backed slit-
plate (Figure 3(d), (e), (f)), as function of Mach number
for three fixed frequency values: f¼ 60, 120 and 170Hz.
The open area ratio in these figures is 0.1 and the cavity
length is 0.5m.

We observe from Figure 3(a) and (b) that the slit-
plate behaves like a partially reflective solid wall
Rsp

�� ��5 1, SRsp ¼ 0
� �

. As the Mach number increases,
the reflectivity increases, while the phase remains zero.
This effect has been observed before.12,13 It is a conse-
quence of the vena contracta effect and boundary layer
associated with the bias flow, which increasingly blocks
the slits as M increases. Figure 3(c) shows the absorp-
tion coefficient �sp: it increases initially with M and
reaches a maximum of 0.5. The absorption is due to

Figure 3. Reflection coefficient and absorption coefficient of slit-plate ((a)–(c)) and cavity-backed slit-plate ((d)–(f)) as a function of

Mach number, for fixed frequency values and �¼ 0.1. For (d)–(f), lc¼ 0.5 m.

4 International Journal of Spray and Combustion Dynamics 0(0)

Appendix A. List of Publications

111



vortices being generated at the downstream slit edges
and swept away by the mean flow.12,13 The reflection
and absorption coefficients are weakly dependent on
frequency. The zoomed-in plots show this weak
dependence on frequency.

The results for the cavity-backed slit-plate are quite
different. There is now a pronounced dependence on
frequency (see Figure 3(d), (e), (f)). The cavity is an
acoustic resonator, which acts like a tube with two
closed ends (one of them partially reflective). For the
case shown here (lc¼ 0.5m), it has an anti-resonance
(i.e. a quarter wavelength in the cavity) at the frequency
170Hz. At this frequency, the reflection coefficient RL

varies widely. It reaches values close to zero for Mach
numbers around 0.05, and its phase jumps from ��
to 0. At this point, the absorption coefficient becomes
1, and the cavity-backed slit-plate behaves like an anec-
hoic end.15

3.2 Influence of frequency

The influence of frequency on the reflection and
absorption coefficients of both slit-plate and cavity-
backed slit-plate is shown in Figure 4. The open area
ratio is 0.1 and the cavity length is 0.5m. The slit-plate
on its own behaves largely independently of frequency,
while the cavity-backed slit-plate shows a strong
dependence. As in the previous section, we observe
anechoic behaviour for frequencies near 170Hz at
M¼ 0.05. The behaviour is near-anechoic for a sub-
stantial range around this frequency: jRLj5 0:2 in the
range between 130Hz and 200Hz.

3.3 Influence of cavity length

Since the anechoic behaviour of the cavity-backed slit-
plate is associated with the anti-resonance in the cavity,
it is expected that the cavity length has a strong influ-
ence. This is indeed the case as can be seen from
Figure 5(a), (b) and (c). The frequency values shown
are f¼ 60, 120 and 170Hz, the Mach number is 0.05
and the open area ratio is 0.1. At lc ¼ 0, the slit-plate
and the backing wall coincide, effectively forming a rigid
wall with complete reflection (jRLj ¼ 1) and no absorp-
tion (�L ¼ 0). As lc increases, jRLj decreases from 1,
attains a minimum and then increases to 1 (Figure
5(a)). At this second maximum, lc is equal to half the
wavelength, and the cavity is at resonance. This alter-
nating behaviour of decreasing and increasing jRLj con-
tinues with increasing lc. At the same time, �L also
alternates, reachingmaxima of 1 where jRLj hasminima.

Again, the range where near-anechoic behaviour
prevails is quite large: for example, for f¼ 120Hz,
jRLj5 0:2 in the lc range between 0.6m and 0.9m.

3.4 Influence of open area ratio

The open area ratio � ¼ 2s=d is a measure for the trans-
parency of the slit-plate. Hence, as � increases, we
expect the slit-plate on its own to become acoustically
less reflective and less absorbing. Figure 6(a) and (c)
confirms this (for the frequency 170Hz). The Mach
number dependence is also shown in Figure 6. We
observe that the phase of Rsp is strongly affected by it
(see Figure 6(b)): for low M (M¼ 0.001), SRsp ¼ ��,
while for higher M (M¼ 0.005, 0.1), SRsp ¼ 0. This

Figure 4. Reflection coefficient and absorption coefficient of slit-plate ((a)–(c)) and cavity-backed slit-plate ((d)–(f)) as a function of

frequency, for fixed Mach numbers and �¼ 0.1. For (d)–(f), lc¼ 0.5 m.
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can again be explained by the hydrodynamic blockage
effects (vena contracta and boundary layer) mentioned
in Section 3.1. As a result, the slit-plate in isolation
behaves like an increasingly reflective rigid wall as the
Mach number increases; also its ability to absorb weak-
ens as � increases because less vortex shedding occurs.

The consequences for the cavity-backed slit-plate are
shown in Figure 6(d), (e), (f), again for the case
f¼ 170Hz and lc¼ 0.5m. Except for the lowest Mach
number (M¼ 0.001), jRLj decreases for small � values,
reaches a minimum and then steadily increases. At the
minimum, SRL jumps from 0 to ��, and �L reaches
the optimal value of 1. The width of the minimum of
jRLj and maximum of �L is again conveniently wide, as
is the case for the parameters examined in the previous
three sections.

3.5 Influence of open-end cavity

We also considered the case of a cavity bounded by an
open end (rather than a closed end) at x ¼ Lþ lc and

investigated the dependence on the parameters M, f, lc
and �. The results (not shown) are very similar: jRLj

has a minimum when the cavity is at anti-resonance;
this now happens when the cavity length is equal to
half a wavelength. The optimal values for M, f, lc and
� change, but jRLj is still close to 0 and �L is still close
to 1 in a large parameter range.

In summary, for a given f, the absorption coefficient
of a cavity-backed slit-plate can be maximised if we
choose the appropriate lc, � and M. In the case of a
combustor with an unstable mode, the frequency of the
unstable mode is known. Therefore, given a fixed slit-
plate dimension, we aim to stabilise the combustor by
choosing the appropriate bias flow Mach number, M,
and cavity length, lc.

4 Stability predictions

For stability predictions, we make use of the eigenvalue
method,17 which is instrumental in obtaining the
growth rates of different modes in the system. In the

Figure 6. Reflection coefficient and absorption coefficient of slit-plate ((a)–(c)) and cavity-backed slit-plate ((d)–(f)) as a function of

open area ratio, for fixed Mach numbers and f ¼ 170 Hz. For (d)–(f), lc¼ 0.5 m.

Figure 5. Reflection coefficient ((a)–(b)) and absorption coefficient ((c)) of cavity-backed slit-plate, as a function of cavity length, for

fixed frequencies, M¼ 0.05 and �¼ 0.1.
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present work, we restrict ourselves to the first and
second modes of the combustor.

4.1 Boundary and jump conditions

The unknowns in our system are the four pressure amp-
litudes A, B, C and D. Therefore, we need four homo-
geneous equations, obtained from the following
boundary and jump conditions.

At x ¼ 0 :

Ae�ik1lf ¼ R0Be
ik1lf ð14Þ

At x ¼ L :

De�ik2 L�lfð Þ ¼ RLCe
ik2 L�lfð Þ ð15Þ

R0 and RL are the reflection coefficients at x ¼ 0 and
x ¼ L, respectively.

Across the heat source (x ¼ lf), we assume continuity
of pressure,

Aþ B ¼ CþD ð16Þ

and a velocity jump generated by the heat source18

�
A� Bð Þ

�1c1
þ

C�Dð Þ

�2c2
¼
	 � 1ð Þ

�1c21S
Q̂ lf
� �

ð17Þ

where S is the cross-sectional area of the duct and 	 is
the ratio of the specific heat capacities.

4.2 Eigenfrequencies and growth rates

Equations (14)–(17) can be rearranged in matrix form
to yield:

Y �ð Þ½ �

A

B

C

D

2
6664

3
7775 ¼

0

0

0

0

2
6664

3
7775 ð18Þ

with

where 
0,1 ¼ �n0,1 	 � 1ð Þ
� �

= S�1c
2
1

� �
is a quantity pro-

portional to the coupling coefficients and � ¼
�1c1ð Þ= �2c2ð Þ is the ratio of the specific impedances.
Solution of the characteristic equation, detY �ð Þ ¼ 0,

using the Newton Raphson or bisection method, gives
us the eigenfrequencies of the system. The solution
�m ¼ !m þ i�m is a complex quantity where !m denotes
the natural frequency of the mode m and �m its growth
rate. Positive �m indicates instability and negative �m
indicates stability.

4.3 Stability maps – closed end

From equation (19), one can infer that the parameters
which affect the stability of the combustor are: the
properties of the medium inside the duct (�1,2, c1,2,
T1,2), the duct length (L), the location of the heat
source (lf), the reflection coefficients at the boundaries
(R0 and RL), the time-lag (�) and the heat release rate
law properties (� and n0,1). In addition to these param-
eters, cavity length (lc), slit-plate dimensions (d and �)
and bias flow Mach number (M) have an indirect influ-
ence through RL. Here, we consider the influence of the
following three parameters: cavity length, heat source
location and bias flow Mach number.

The stability maps are constructed in the cavity
length (lc) – heat source location (lf) plane, where the
grey regions indicate instability and the white regions
indicate stability. Stability of any mode is determined
from the sign of its growth rate, as mentioned in the
previous section. In our study, we look at the stability
of the first two modes of the system. The cold region is
assumed to be at room temperature (T1¼ 288K) and
the hot region is assumed to be at T2¼ 1288K. The
duct length L is assumed to be 1m, duct cross-section
S is assumed to be 0:05� 0:05 m2 and the heat release
rate law properties are taken as constants: � ¼ 120 kg
m/s2, n1 ¼ 1:2, n0 ¼ 0:2 and � ¼ 0:15� 10�3 s. Table 1
shows the range of the conservative estimates of the
time periods for the first and second eigenmodes. We
can observe that the time-lag chosen in our analysis is
much smaller than the fundamental periods encoun-
tered in the stability analysis. The complete list of
system parameters used in the forthcoming analysis is
given in Table 2.

Y �ð Þ ¼

e
�i�c1

lf �R0e
i�c1

lf 0 0

0 0 RLe
i�c2

L�lfð Þ
�e
�i�c2

L�lfð Þ

1 1 �1 �1

�1� 
1e
i�� þ 
0

� �
1þ 
1e

i�� � 
0
� �

� ��

2
66664

3
77775

ð19Þ

Surendran and Heckl 7

Appendix A. List of Publications

114



Firstly, we construct the stability map for mode 1 of
a quarter-wave resonator containing only a heat source
and no slit-plate, for two temperature distributions:
T1 ¼ T2¼ 288K (Figure 7 (a)) and T1¼ 288K,
T2¼ 1288K (Figure 7(b)). We observe from the plots
that the system is unstable for the range of values of lc
and lf considered. This behaviour can be explained in

terms of the mode shape of the wave within the reson-
ator. In the absence of the slit-plate, an increase in
cavity length (lc) effectively adds to the duct length,
L. The total length of the resonator will now be
(Lþ lc). The first mode shape of the quarter-wave res-
onator will be, as the name suggests, a quarter wave
with a node at x ¼ 0 and a maximum at x ¼ ðLþ lcÞ.
From the Rayleigh criterion, we can conclude this
instability behaviour of the first mode of the resonator,
regardless of the cavity length and heat source location
considered.

Next, we introduce a slit-plate with bias flow into the
system. The slit dimensions are d ¼ 0:02m and � ¼ 0:1.
The present study is an extension to the work by
Surendran and Heckl,19 where they investigated the
effect of the bias flow Mach number M and cavity
length on the stability of a quarter-wave resonator
with a heat source obeying the simple n� � law. They
observed that the stability of the first mode increased
with increasing M. Figure 8 shows the stability maps
obtained for the current resonator configuration with
uniform temperature distribution and generic heat
release law. In this study also, the stability maps exhibit
trends similar to those reported by Surendran and
Heckl.19 At very low M, the unstable region is larger
compared to the stable region (Figure 8(a)). As we
increase M, the stable region increases (Figure 8(b)
and (c)). We also get a range of lc values where the
resonator is stable, irrespective of the location of the
heat source.

The influence of lc and M on the stability of the
combustor can be explained through the contour plot
of x1, the real part of the complex eigenfrequency �1,
as shown in Figure 9. The contours vary in the range
�55–85Hz, and correspond to mode 1 of the combus-
tor with T1 ¼ T2¼ 288K. The eigenfrequencies
decrease with increasing lc and from Figure 5(c), we
can conclude that for a given bias flow M, an acoustic
wave of 55Hz with lc¼ 0.5m has higher absorption

Figure 7. Stability map for mode 1 without slit-plate and bias flow with (a) T1 ¼ T2¼ 288 K and (b) T1¼ 288 K and T2¼ 1288 K.

Table 2. List of system parameters used.

Parameter Notation Value

Temperature [K] T1 288

T2 1288

Density [kg/m3] �1 1.2

�2 0.268

Speed of sound [m/s] c1 341

c2 721.5

Duct length [m] L 1

Cross-sectional area [m2] S 0.0025

Cavity length [m] lc ½0 � � � L=2�

Heat source location [m] lf ½0 � � � L�

Time-lag law parameters � [kg m/s2] 120

n1 1.2

n0 0.2

s [s] 0:15� 10�3

Slit-plate d [m] 0.02

� 0.1

Table 1. Range of time periods of the eigenfrequencies in the

stability maps.

Mode Temperature distribution Time period range

1 T1 ¼ 288 K, T2 ¼ 1288 K ½5:6 : : : 16:6� � 10�3 s

2 T1 ¼ 288 K, T2 ¼ 1288 K ½1:4 : : : 5:2� � 10�3 s

8 International Journal of Spray and Combustion Dynamics 0(0)

Appendix A. List of Publications

115



than a wave of 80Hz with lc¼ 0.1m. The influence of
bias flow M is shown in Figure 3(f). For a given fre-
quency and lc, the absorption increases with increasing
M. Combining these effects, we can explain the stability
maps shown in Figure 8. The combustor starts to sta-
bilise for higher lc, and the stable regions grow as we
increase the bias flow M.

As a step further to our study, we also incorporated
a temperature jump across the heat source (T1¼ 288K
and T2¼ 1288K). The stability maps, again con-
structed in the lf –lc plane for three Mach numbers:
M¼ 0.001, 0.005 and 0.01, are given in Figure 10.
Comparison of Figure 10 and Figure 8 shows that
having a hot region or temperature nonuniformity
within the combustor tends to de-stabilise it, i.e., the
unstable regions are larger. But in this case also, we can
extend the stable regions of the system by increasing M.
Hence, it is still possible to find a cavity length and
Mach number that stabilises the combustion system.

Similar stability maps can also be constructed for the
second mode of the resonator. Here also, we start with

the no slit-plate case. Figure 11(a) and (b) shows the
stability maps for the second mode when we have uni-
form and nonuniform temperature distribution,
respectively. The stability maps are as expected. In
the second mode, we have three-quarters of a wave
within the combustor and as the heat source changes
its position from the inlet towards the slit-plate, we get
constructive and destructive interaction between the
heat release rate fluctuations and the acoustic pressure
fluctuations leading to alternating stable and unstable
regions. In Figure 11(a), the small unstable region near
lc¼ 0.5m for lf ¼ ½0:5 � � � 1� m is caused by non-conver-
gence of the numerical method used. Ideally, this region
should also be stable.

Now, we introduce the slit-plate with the bias flow.
Figure 12 shows the stability maps for mode 2 of the
combustor with uniform temperature distribution and
Figure 13 shows the stability maps when there is non-
uniform temperature distribution. We observe that the
unstable regions get fragmented and slowly turn into
stable regions as we increase M. The effect of Mach
number is similar for both the temperature distribu-
tions. Again, we are able to find ranges for the Mach
number and cavity length that could stabilise the
already unstable modes of the combustor. In
Figure 12(a) also, the small region near lc¼ 0.5m for
lf ¼ ½0 � � � 1� m should have been stable. But this
unstable region is caused by non-convergence of the
numerical method used.

4.4 Stability maps – open end

In this section, we look at the stability maps for the
resonator with open ends. The stability maps are
again constructed in the cavity length (lc) – heat
source location (lf) plane. The properties of the
system are the same as those given in the previous sec-
tion. The cold region is assumed to be at room

Figure 8. Stability maps for mode 1 and different Mach numbers (a) M ¼ 0:001, (b) M ¼ 0:005 and (c) M ¼ 0:01, for a combustor

with T1 ¼ T2¼ 288K.

Figure 9. Eigenfrequency (!1=2�) (Hz) contour for mode 1 of

the combustor with T1 ¼ T2¼ 288 K.
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temperature (T1¼ 288K) and the hot region is assumed
to be at T2¼ 1288K. The duct length L is assumed to
be 1m, the duct cross-section S is assumed to be
0:05� 0:05 m2 and the heat release rate law properties

are taken as constants: � ¼ 120 kg m/s2, n1 ¼ 1:2,
n0 ¼ 0:2 and � ¼ 0:15� 10�3 s. Table 3 shows the
range of the conservative estimates of the time periods
for the first and second eigenmodes. The time-lag

Figure 10. Stability maps for mode 1 and different Mach numbers (a) M ¼ 0:001, (b) M ¼ 0:005 and (c) M ¼ 0:01, for a combustor

with T1¼ 288 K and T2¼ 1288 K.

Figure 12. Stability maps for mode 2 and different Mach numbers (a) M ¼ 0:001, (b) M ¼ 0:005 and (c) M ¼ 0:01, for a combustor

with T1 ¼ T2¼ 288 K.

Figure 11. Stability map for mode 2, without slit-plate and bias flow with (a) T1 ¼ T2¼ 288 K and (b) T1¼ 288 K and T2¼ 1288 K.
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chosen is much smaller than the fundamental periods
encountered in the stability analysis.

Like in the previous section, we start with the stabil-
ity maps for the no slit-plate case. Figure 14 shows the
stability maps for mode 1 of the resonator with no slit-
plate, for uniform (Figure 14 (a)) and nonuniform
(Figure 14 (b)) temperature distributions. The results
obtained for the uniform temperature distribution
(Figure 14 (a)) show that the resonator is stable when
the heat source is placed in the lower half (downstream
section) of the resonator. This is because the first mode
shape within the resonator is half a wave with nodes at
x ¼ 0 and x ¼ ðLþ lcÞ, and using the Rayleigh criter-
ion, we can deduce that the system will have a stable
mode when the heat source is placed in the lower half of
the resonator. When there is a temperature jump, we
observe that the stable region is larger (Figure 14(b)),
and this can be attributed to the frequency shift due to
the temperature jump and the changes in the speed of
sound. In other words, the presence of the heat source
and the consequent temperature jump modifies the
mode shape such that we get a constructive interference
between acoustic pressure fluctuations and heat release
rate fluctuations leading to stable behaviour.

The introduction of slit-plate with bias flow changes
the stability behaviour significantly. Figures 15 and 16
show the stability maps for the resonator with uniform
and nonuniform temperature distribution, respectively,
after the inclusion of the slit-plate with bias flow.

The Mach number M increases from plots (a) to (c),
and we observe the increased stability of the resonator.
Unlike the closed end case, in the open end situation,
we get complete stability for higher M values
(Figures 15 and 16(b) and (c)).

Finally, stability maps are also constructed for the
second mode of the open end resonator. The no slit-
plate cases for the two temperature distributions are
shown in Figure 17(a) and (b). The alternating unstable
and stable bands are due to the mode shape of the
pressure wave and its interaction with the heat release
rate fluctuations. In the second mode, we have a full
wave within the combustor leading to alternating stable
and unstable regions.

Figure 18 shows the stability maps for mode 2 of the
combustor with uniform temperature distribution and
Figure 19 shows the stability maps for the nonuniform
temperature distribution. We observe that the unstable
regions decrease as we increase M. The effect of Mach
number is similar for both the temperature distribu-
tions. There is a wide range of cavity lengths that
could stabilise the unstable mode of the resonator.

5 Summary and outlook

We presented a model for an idealised combustor with
heat exchanger to predict its stability behaviour. The
combustion system consisted of a one-dimensional tube
with a compact flame and a mean temperature jump
across the heat source. The heat exchanger is modelled
as an array of thin sharp-edged rods with rectangular
cross-sections. Hence, the heat exchanger was treated as
a slit-plate. We also included a bias flow through the
slits to enhance the sound absorption characteristic of
the slit-plate. Instead of a simple n� � law, we have
used an extended version of the time-lag law to describe
the heat source.

Figure 13. Stability maps for mode 2 and different Mach numbers (a) M ¼ 0:001, (b) M ¼ 0:005 and (c) M ¼ 0:01, for a combustor

with T1¼ 288 K and T2¼ 1288 K.

Table 3. Range of time periods of the eigenfrequencies in the

stability maps.

Mode Temperature distribution Time period range

1 T1 ¼ 288 K, T2 ¼ 1288 K ½2:7 � � � 6:7� � 10�3 s

2 T1 ¼ 288 K, T2 ¼ 1288 K ½1:3 � � � 3:5� � 10�3 s
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Our model is applied to the idealised combustion
system with tuneable downstream end condition, that
is, by varying the aeroacoustic properties of the slit-
plate backed by an open end or a rigid end, we can
tune the downstream reflection coefficient. Stability

maps constructed in the cavity length (lc) – location
of heat source (lf) plane yield the following results:

. The unstable mode of a combustor can be controlled
passively by a bias-flow slit-plate provided that the

Figure 16. Stability maps for mode 1 and different Mach numbers (a) M ¼ 0:001, (b) M ¼ 0:005 and (c) M ¼ 0:01, for a combustor

with T1¼ 288 K and T2¼ 1288 K.

Figure 15. Stability maps for mode 1 and different Mach numbers (a) M ¼ 0:001, (b) M ¼ 0:005 and (c) M ¼ 0:01, for a combustor

with T1 ¼ T2¼ 288 K.

Figure 14. Stability map for mode 1 without slit-plate and bias flow with (a) T1 ¼ T2¼ 288 K and (b) T1¼ 288 K and T2¼ 1288 K.
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bias flow Mach number and the cavity length are
chosen appropriately.

. For a particular unstable mode, an increase of the
bias flow Mach number tends to enhance the stabil-
ity of that mode.

. There is a wide range of cavity lengths, for fixed
Mach number, that can be utilised to enhance the
stability of the combustor,

. The temperature jump at the flame has a significant
effect on the combustor’s stability behaviour: it can

Figure 18. Stability maps for mode 2 and different Mach numbers (a) M ¼ 0:001, (b) M ¼ 0:005 and (c) M ¼ 0:01, for a combustor

with T1 ¼ T2¼ 288 K.

Figure 19. Stability maps for mode 2 and different Mach numbers (a) M ¼ 0:001, (b) M ¼ 0:005 and (c) M ¼ 0:01, for a combustor

with T1¼ 288 K and T2¼ 1288 K.

Figure 17. Stability map for mode 2 without slit-plate and bias flow with (a) T1 ¼ T2¼ 288 K and (b) T1¼ 288 K and T2¼ 1288 K.
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be stabilising or destabilising, and it is therefore
important to include it in the model.

With our model, we are able to find a broad range of
values for the bias flow Mach number and the cavity
length that can be used to stabilise the already unstable
modes of the combustion system considered. These find-
ings have practical implications for combustion systems
like domestic boilers. The need for clean and compact
boilers makes it difficult for the inclusion of passive con-
trol components like quarter-wave resonators and
Helmholtz resonators, that are generally bulky. In
such situations, it is a viable alternative to use heat
exchangers to control thermoacoustic instabilities.

In a domestic boiler, the heat exchanger is housed
within the combustion chamber, along with the flame,
and therefore there is no requirement for additional
space. Our study shows that there is a wide range of
values for lc (distance between heat exchanger and com-
bustion chamber end) and for M (Mach number of the
flow through the gaps between the heat exchanger
tubes) that stabilise a previously unstable combustion
system. This form of passive instability control
improves the design flexibility of domestic boilers, as
no additional components are required. It opens the
door for new designs of efficient and reliable boilers
with reduced pollution of the environment.
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Appendix B

Transfer Function Approximations

The mathematical approximations for HTF were obtained by assuming

log (|HTF|) =
{
a0 + a1f + a2f

2 + a3f
3 f ≤ fp

b0 + b1
√
f f ≥ fp

(B.1)

Φ (HTF) =
 e0 + e1f + e2f

2 + e3f
3 + e4f

4 f ≤ fp

g0 + g1
√
f + g2f + g3

(√
f
)3

+ g4f
2 f ≥ fp

, (B.2)

where fp = 500Hz for |HTF | and fp = 200Hz for Φ(HTF ). Simulations were conducted

for diameters 3mm and 5mm, open area ratios 0.1 and 0.2, and inlet velocities 0.5, 1.0

and 1.5m/s. Open area ratio is the ratio between the gap height hg and the tube

diameter d. The complete set of data for the simulations and their approximations are

included in this appendix.
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Figure B.1: Comparison of |HTF| and Φ(HTF) obtained from numerical simulations ((a)
and (c)) with their approximations ((b) and (d)), for d = 3mm, hg = 0.3mm and different
mean velocities, ū.
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Figure B.2: Comparison of |HTF| and Φ(HTF) obtained from numerical simulations ((a)
and (c)) with their approximations ((b) and (d)), for d = 3mm, hg = 0.6mm and different
mean velocities, ū.
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Figure B.3: Comparison of |HTF| and Φ(HTF) obtained from numerical simulations ((a)
and (c)) with their approximations ((b) and (d)), for d = 5mm, hg = 0.5mm and different
mean velocities, ū.
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Figure B.4: Comparison of |HTF| and Φ(HTF) obtained from numerical simulations ((a)
and (c)) with their approximations ((b) and (d)), for d = 5mm, hg = 1mm and different
mean velocities, ū.
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Appendix C

Flow separation point calculation

In order to find the flow separation point on the cylinder, we start with the boundary

layer equations (Schlichting, 1979). Consider a solid surface in a high Reynolds number

flow as shown in the schematic in Fig. C.1. Very close to the solid surface we have the

boundary layer where all the viscous effects are confined. The flow around the body

can be divided into two : (1) the 1-D inviscid bulk or mean flow denoted by U(x), and

(2) the 2-D flow within the boundary layer, denoted by ũ(x, y) and ṽ(x, y). Applying

the conservation of mass and momentum to the bulk flow, we obtain

x

y δ∗

Ue(x)
Boundary

layer

U0

Figure C.1: Schematic of the boundary layer formed on a solid surface

∂U

∂y
= 0, (C.1)

∂U

∂t
+ U

∂U

∂x
= −1

ρ

∂P

∂x
, (C.2)

0 = −1
ρ

∂P

∂y
(C.3)



Appendix C. Flow separation point calculation

where P denotes the pressure field in the bulk flow. Similarly for the boundary layer

flow, we get

∂ũ

∂x
+ ∂ṽ

∂y
= 0, (C.4)

∂ũ

∂t
+ ũ

∂ũ

∂x
+ ṽ

∂ũ

∂y
= −1

ρ

∂p̃

∂x
+ ν

∂2ũ

∂y2 , (C.5)

0 = −1
ρ

∂p̃

∂y
(C.6)

where p̃ is the pressure field within the boundary layer, and ν is the kinematic viscosity

of the fluid. Equations (C.4) - (C.6) form the so-called Prandtl equations. From

Eqs. (C.3) and (C.6), we can infer that the pressure across the boundary layer, in the y

direction is uniform. In other words, we can assume the pressure on the surface of the

solid body to be equal to the pressure at the edge of the boundary layer. Therefore,

from Eq. (C.2), we can calculate the pressure gradient at the edge of the boundary

layer as
∂P

∂x
= −ρ∂Ue(x)

∂t
− ρUe(x)∂Ue(x)

∂x
. (C.7)

where Ue(x) denotes the bulk flow velocity at the edge of the boundary layer. Equa-

tion (C.7) matches the outer bulk flow solution to the inner boundary layer solution.

C.1. von Kármán equation

Before deriving the von Kármán equation, we define two quantities to describe the

boundary layer thickness.

1. Displacement thickness (δ∗) - This quantity can be interpreted as the distance
by which the streamlines are displaced inward due to the presence of a boundary
layer. It is defined as

δ∗(x) =
∫ ∞

0

(
1− ũ

Ue

)
dy (C.8)
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2. Momentum thickness (Θ) - This is a measure of the momentum loss, due to the
presence of the boundary layer. This quantity is defined as

Θ(x) =
∫ ∞

0

ũ

Ue

(
1− ũ

Ue

)
dy (C.9)

The von Kármán equation is derived by combining Eqs. (C.5) and (C.7) along with

the following boundary conditions

ũ(x, 0) = 0 (no slip at wall), (C.10)
ṽ(x, 0) = 0 (no flow through the wall), (C.11)
ũ(x,∞) = Ue(x) (velocity matching at the edge), (C.12)

and integrating along y. This will give us

∂

∂t

∫ ∞
0

Ue

(
1− ũ

Ue

)
dy︸                          ︷︷                          ︸

= ∂
∂t

(Ueδ∗)

+
∫ ∞

0
ũ
∂

∂x
(Ue − ũ) dy +

∫ ∞
0

ṽ
∂

∂y
(Ue − ũ) dy︸                                                      ︷︷                                                      ︸

= ∂
∂x

(U2
eΘ)

+

dUe
dx

∫ ∞
0

Ue

(
1− ũ

Ue

)
dy︸                             ︷︷                             ︸

= dUe
dx Ueδ

∗

= −ν
∫ ∞

0

∂2ũ

∂y2 dy︸               ︷︷               ︸
= τ0
ρ

, (C.13)

∂

∂t
(Ueδ∗) + Ueδ

∗ dUe
dx + ∂

∂x

(
U2
eΘ
)

= τ0

ρ
, (C.14)

where τ0 is the wall shear stress. Equation (C.14) is called the unsteady von Kármán

equation.

C.2. Thwaites’ Method

Thwaites (1949) (Kundu et al., 2012) developed an approximate solution to the von

Kármán equation by using shape parameters that depend only on the shape of the

velocity profile. These shape parameters are defined as,

H = δ∗

Θ and T = Θ
νUe

= τ0

ρ
. (C.15, C.16)
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Appendix C. Flow separation point calculation

The von Kármán equation (Eq. (C.14)) can now be written in terms of the only

unknown variable Θ as,

d
dx

(
Θ2

ν

)
+ 2
Ue

[
(H + 2) dUe

dx

(
Θ2

ν

)
− T

]
= 0. (C.17)

Thwaites gave the following approximation to the shape parameters

2 (H + 2)λ− 2T = 6λ− 0.45, (C.18)

where λ = dUe
dx

Θ2

ν
. Substituting Eq.(C.18) in Eq. (C.17) and integrating it along the

axial direction (x) gives us

Θ2 = 0.45ν
U6
e (x)

∫ x

0
U5
e (x̃)dx̃+ Θ2

0 U
6
0

U6
e (x) . (C.19)

Here, x̃ is the integration variable and Θ0 and U0 are the values of Θ and Ue at x = 0,

respectively. If x = 0 is a stagnation point, then Ue = U0 = 0 and Θ = Θ0 = 0. Once

Θ is known, we can calculate λ and the shape parameters H and T , from the table

provided in Kundu et al. (2012). We can now use these parameters to find the flow

separation location on the cylinder surface.

C.3. Flow separation location

Flow separation is the onset of flow reversal on the solid surface and the flow will no

longer be attached to the surface. The schematic for a separated flow is shown in

Fig. C.2. At the separation point S on the wall, the surface shear stress will go to zero.

This implies that (∂u/∂y)wall = 0, or in terms of the shape parameter, T = 0. This

will give the criterion for flow separation as λS = −0.0992.

S

Figure C.2: Schematic of streamlines and velocity profiles near the flow separation point S
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Appendix C. Flow separation point calculation

In order to find the separation location on the hex cylinder surface, we discretize the

flow domain (Fig. C.3) into N divisions of interval ∆x. The grid points are numbered

sequentially and denoted by the subscript i. The algorithm for finding the grid point

is as follows (Vilain et al., 2004):

1. Initialise Ue,1 = U0, Θ1 = 0, H1 = 0 and λ1 = 0.

2. Evaluate

Ue,i = Ue,1 h1

hi − 2Hi−1 Θi−1
, (C.20)

Θi =

√√√√√√√0.45 ν ∆x
i∑

j=1
U5
e,j

U6
e,i

, (C.21)

λi = Θ2
i

ν

Ue,i − Ue,i−1

∆x , (C.22)

where hi is the height of the duct at any location xi along the flow direction.

3. Once λi is known, evaluate H(λi) from the table

4. Using a relaxation scheme, iterate for Ue,i, Θi, λ1 and Hi, till they converge.

5. Check for flow separation by comparing the value of λi with λS.

– If λi , λS, move to the next grid point and repeat steps 2 to 5.

– If λi = λS, compute the location of separation for the corresponding xi.

U0
h0

y

x

xi

Ue,i

yS

hi

Figure C.3: Schematic of the discretised flow domain
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Appendix C. Flow separation point calculation

C.3.1. Comparison with simulations

Steady simulations were conducted in Fluent®, in order to evaluate the location of

flow separation on the hex cylinder. The wall shear stress on the hex was recorded and

the flow separation point was calculated by finding those points on the hex where wall

shear stress was zero. The results obtained from simulations and their comparison with

the results using Thwaites’ method is shown in Table C.1. yS is the ordinate of the

separation location, measured from the centreline of the hex cylinder. The analytical

approximations show good agreement with the simulated results.

Table C.1: Flow separation locations obtained from both Fluent® simulations and
Thwaites’ method. yS is calculated from the centreline of hex.

η d [mm] U0 [m/s] yS [mm]
Fluent® Thwaites’

0.1

3

0.1 1.21 1.32
0.2 1.349 1.366
0.5 1.414 1.414
1.0 1.436 1.437
1.5 1.447 1.451

5

0.1 2.213 2.264
0.2 2.326 2.332
0.5 2.384 2.391
1.0 2.396 2.424
1.5 2.397 2.437

0.2

3

0.1 1.161 1.221
0.2 1.297 1.299
0.5 1.374 1.366
1.0 1.411 1.403
1.5 1.424 1.421

5

0.1 2.119 2.129
0.2 2.241 2.235
0.5 2.34 2.33
1.0 2.373 2.378
1.5 2.396 2.397
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Appendix D

Derivation of Scattering Matrix

Following the procedure given in Hofmans (1998), we can linearise Eqs. (4.13) - (4.18)

to get

Sp [ρ̄3u
′
3 + ρ′3ū3] = Sj

[
ρ̄ju

′
j + ρ′jūj

]
, (D.1)(

p̄3

p̄j

)[
p′3
p̄3
− p′j
p̄j

]
=
(
ρ̄3

ρ̄j

)γ [
γρ′3
ρ̄3
− γρ′j

ρ̄j

]
, (D.2)

ū3u
′
3 +

(
γ

γ − 1

)[
p̄3

ρ̄3

] [
p′3
p̄3
− ρ′3
ρ̄3

]
= ūju

′
j +

(
γ

γ − 1

)[
p̄j
ρ̄j

] [
p′j
p̄j
− ρ′j
ρ̄j

]
, (D.3)

Sj
[
ρ̄ju

′
j + ρ′jūj

]
= Sp [ρ̄4u

′
4 + ρ′4ū4] , (D.4)

Spp
′
j + Sj

[
ρ′jūj + ρ̄ju

′
j

]
= Sp [ρ′4ū4 + ρ̄4u

′
4] , (D.5)

and ū3u
′
3 +

(
γ

γ − 1

)[
p̄3

ρ̄3

] [
p′3
p̄3
− ρ′3
ρ̄3

]
= ū4u

′
4 +

(
γ

γ − 1

)[
p̄4

ρ̄4

] [
p′4
p̄4
− ρ′4
ρ̄4

]
. (D.6)

Applying continuity equation across Regions 3 and j, we can evaluate

ūj = Sp ρ̄3 ū3

Sj ρ̄j
, (D.7)

and using Eq. (D.1),we can get

u′j =
Sp [ρ̄3u

′
3 + ρ′3ū3]− Sjρ′jūj

Sj ρ̄j
. (D.8)

Eliminating ūj and u′j from the above equations, and combining Eqs. (D.1) and

(D.4), we can reduce the equations to

ρ̄3u
′
3 + ρ′3ū3 = ρ̄4u

′
4 + ρ′4ū4, (D.9)
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(
p̄3

p̄j

)[
p′3
p̄3
− p′j
p̄j

]
=
(
ρ̄3

ρ̄j

)γ [
γρ′3
ρ̄3
− γρ′j

ρ̄j

]
, (D.10)

ū3u
′
3 +

(
γ

γ − 1

)[
p̄3

ρ̄3

] [
p′3
p̄3
− ρ′3
ρ̄3

]
=
(
Sρ̄3ū3

ρ̄j

)2 [
u′3
ū3

+ ρ′3
ρ̄3
− ρ′j
ρ̄j

]
+ (D.11)(

γ

γ − 1

)[
p̄j
ρ̄j

] [
p′j
p̄j
− ρ′j
ρ̄j

]
, (D.12)

p′j + ρ′j

(
Sρ̄2

3ū
2
3

ρ̄2
j

)
+ 2ρ̄j

(
Sρ̄2

3ū
2
3

ρ̄2
j

)[
u′3
ū3

+ ρ′3
ρ̄3
− ρ′j
ρ̄j

]
= p′4 + ρ′4ū

2
4 + 2ρ̄4ū4u

′
4, (D.13)

and

ū3u
′
3 +

(
γ

γ − 1

)[
p̄3

ρ̄3

] [
p′3
p̄3
− ρ′3
ρ̄3

]
= ū4u

′
4 +

(
γ

γ − 1

)[
p̄4

ρ̄4

] [
p′4
p̄4
− ρ′4
ρ̄4

]
, (D.14)

where S = Sp/Sj.

We now substitute the acoustic quantities with their forward and backward travelling

wave components as

p′3 = p+
3 + p−3 u′3 = p+

3 − p−3
ρ3c3

ρ′3 = p+
3 + p−3 + σ3

c2
3

p′4 = p+
4 + p−4 u′4 = p+

4 − p−4
ρ4c4

ρ′4 = p+
4 + p−4 + σ4

c2
4

ρ′j =
p′j + σj

c2
j

,

where σ denotes the entropy wave that is convected by the mean flow velocity. The

scattering matrix derived here can relate the upstream and downstream entropy waves.

The Eqs. (D.9) - (D.14) can be written in a matrix form, in terms of the total enthalpies

and entropy waves as℘
(γ−1)/2
34 1 ℘(γ−1)/2

34 M4
℘34 −1 −℘34/(γ − 1)

(1 +M4) −C2 M2
4


(1 +M4)p+

4
(1−M3)p−3

σ4

 =

 1 ℘(γ−1)/2
34 M3

1 −℘34 −1/(γ − 1)
C1 −1 +M4 C3



×

(1 +M3)p+
3

(1−M4)p−4
σ3

 , (D.15)
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where

C1 = B1 − (1− A1)B3/A3

C2 = −B1 − (1 + A1)B3/A3

C3 = B2 − A2B3/A3

B1 = 2 S ℘3jM3

B2 = 2 S ℘3jM
2
3 −℘

−γ
3j

B3 = 1− S ℘1+γ
3j M2

3

A1 = S ℘2
3jM3

A2 = −1
γ − 1 − S

2℘2
3jM

2
3 + γ

γ − 1
℘1−γ

3j

A3 = −℘3j + S2℘γ+2
3j M2

3

℘34 = ℘3j/℘4j

℘3j = ρ̄3/ρ̄j

℘4j = ρ̄4/ρ̄j

Here ℘3j, ℘4j and M4 are unknown quantities that need to be evaluated. For a

given M3, ℘3j can be evaluated from Eqs. (4.13) and (4.15), by solving

M3 =
√

2
γ − 1

√√√√√ 1−℘1−γ
3j

S2℘2
3j − 1

. (D.16)

The quantities ℘4j and M4 are evaluated as follows

– The jet Mach number (Mj) is evaluated first, using Eq. (4.13) as

Mj = M3 S ℘(γ+1)/2
3j (D.17)

– Next ℘4j is evaluated from Eq. (4.16) as

℘4j = Mj/M4

Sc4/cj
(D.18)

– From Eqs. (4.16) and (4.17), we obtain

c4

cj
= SM4

Mj

[
1 + γS−1M2

j

1 + γM2
4

]
(D.19)

– We can relate M4 and Mj using Eqs. (4.15) and (4.18) as

(γ − 1)
2 M2

j + 1 =
(
c4

cj

)2 [
γ − 1

2 M2
4 + 1

]
(D.20)
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Appendix D. Derivation of Scattering Matrix

Equation (D.20) is a quadratic function in M2
4 which can be solved to obtain M4,

and consequently ℘4j and ℘34. Once these quantities are evaluated, we can find the

Scattering Matrix [SM ] as(1 +M4)p+
4

(1−M3)p−3
σ4

 = [SM ]

(1 +M3)p+
3

(1−M4)p−4
σ3

 , (D.21)

where

[SM ] =

℘
(γ−1)/2
34 1 ℘(γ−1)/2

34 M4
℘34 −1 −℘34/(γ − 1)

(1 +M4) −C2 M2
4


−1  1 ℘(γ−1)/2

34 M3
1 −℘34 −1/(γ − 1)
C1 −1 +M4 C3



=

SM11 SM12 SM13
SM21 SM22 SM23
SM31 SM32 SM33

 .
When there is no incoming entropy (σ3 = 0), Eq. (D.21) reduces to[

(1 +M4) p+
4

(1−M3) p−3

]
=
[
SM11 SM12
SM21 SM22

] [
(1 +M3) p+

3
(1−M4) p−4

]
. (D.22)
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Appendix E

Huang and Heckl model

Huang and Heckl (1993) used the grating theory, initially proposed by Twersky (1956,

1962), to obtain the expressions for the reflection and transmission coefficients of an

array of circular tubes without bias flow (Fig. E.1).

The expressions for the transmitted and reflected pressure fields are found to be

pt(r, ϕ) = Ψoe
ikor cos(ϕ−ϕo) + 2Ψo

kohp

∞∑
ν=−∞

1
cosϕν

∞∑
n=−∞

Ane
inϕν+ikor cos(ϕ−ϕo), (E.1)

and
pr(r, ϕ) = 2Ψo

kohp

∞∑
ν=−∞

1
cosϕν

∞∑
n=−∞

Ane
in(π−ϕν)−ikor cos(ϕ+ϕo). (E.2)

ν is an integer which denotes the number of the scattered wave angle ϕν and An is the

multiple scattering coefficient of the tube row.

hp

d

(T+, R+) (T−, R−)

ϕ0

Ψ0

Figure E.1: Geometry of a tube row
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The coefficient An is evaluated from (Twersky, 1962):

An = an

(
e−inϕo +

∞∑
m=−∞

Am Fn−m

)
, (E.3)

where an is the scattering coefficient of a single tube and Fn−m is the Schlömilch series.

Fn−m is a function of the incident angle ϕo and the ratio of the spacing to the wavelength

(hp/λo).The complete expression for the Schlömilch series is provided in the Appendix

F.

For normal incidence of the pressure wave (ϕo = 0), the transmission and reflection

coefficients, T± and R± are written as the ratio of the transmitted and reflected waves

to the incident wave, respectively. Hence,

T± = 1 + 2
kohp

∞∑
n=−∞

An (E.4)

R± = 2
kohp

∞∑
n=−∞

An e
inπ (E.5)

where the superscripts ‘+’ and ‘–’ denote the upstream and downstream properties,

respectively.

E.1. Experimental results

We conducted experiments without mean flow in order to validate the experimental

data with the theory. Figures E.2 - E.5 show the results obtained from experiments

and theory, for the two samples considered: Sample 1 - d = 20mm and hg = 5mm,

and Sample 2 - d = 16mm and hg = 4mm. There is very good agreement between the

theory and measurements.
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Figure E.2: Magnitude of transmission and reflection coefficients for Sample 1 with no bias
flow.
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Figure E.3: Phase of transmission and reflection coefficients for Sample 1 with no bias flow.
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Figure E.4: Magnitude of transmission and reflection coefficients for Sample 2 with no bias
flow.
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Figure E.5: Phase of transmission and reflection coefficients for Sample 2 with no bias flow.
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Appendix F

Schlömilch Series

The expressions for Schlömilch series are taken from Twersky (1961, 1962).

Fn−m = Rn−m + iIn−m, (F.1)

where the subscript denotes the order of the series.

For Zero-order :

R0 = 1
π∆

ν+∑
ν=−ν−

1
cosϕν

− 1,

I0 = − 2
π

log
(
γ∆
2

)
+ 1
π

[ ν+∑
ν=1

1
ν

+
ν−∑
ν=1

1
ν

]
− 1
π

 ∞∑
ν=ν++1

1
∆ sinh θν+

− 1
ν


− 1
π

 ∞∑
ν=ν−+1

1
∆ sinh θν−

− 1
ν

 (F.2)

Even-order :

R2N = 1
π∆

ν+∑
ν=−ν−

cos(2Nϕν)
cosϕν

(F.3)

I2N = 1
Nπ

+ 1
π

N∑
s=1

(−1)s 22s (N + s− 1)!B2s(∆ sinϕ0)
(2s)! (N − s)! ∆2s − 1

π∆

[ ν+∑
ν=0

sin(2Nϕν)
cosϕν

−
−ν−∑
ν=−1

sin(2Nϕν)
cosϕν

− (−1)N
π∆

 ∞∑
ν=ν++1

e−2Nθν+

sinh θν+

+
∞∑

ν=ν−+1

e−2Nθν−

sinh θν−

 (F.4)
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Odd-order :

R2N+1 = − i

π∆

ν+∑
ν=ν−

sin (2N + 1)ϕν
cosϕν

(F.5)

I2N+1 = −2i
π

N∑
s=0

(−1)s 22s (N + s)!B2s+1 (∆ sinϕ0)
(2s+ 1)! (N − s)! ∆2s+ 1 − i

π∆

[ ν+∑
ν=0

cos(2N + 1)ϕν
cosϕν

−
−ν−∑
ν=−1

cos(2N + 1)ϕν
cosϕν

+ i(−1)N
π∆

 ∞∑
ν=ν++1

e−(2N+1)θν+

sinh θν+

−
∞∑

ν=ν−+1

e−(2N+1)θν−

sinh θν−

 (F.6)

Here, ∆ is the ratio between the tube spacing hp and the wavelength λ0, γ is a

numerical constant, equal to γ = 1.781... and Bn(x) is the Bernoulli number of order n

and argument x. The expressions for Bn(x) were taken from Abramowitz and Stegun

(1972)

Bn(x) = −2 n!
(2π)n

∞∑
k=1

cos (2πkx− nπ/2)
kn

(n > 1, 0 ≤ x ≤ 1
n = 1, 0 < x < 1) (F.7)

(−1)n Bn(−x) = Bn(x) + nxn−1 (n > 0, x < 0) (F.8)

Bn(x+ 1)−Bn(x) = nxn−1 (n > 0, x > 1) (F.9)

ϕν , ν± and θν± are defined as:

sinϕν = sinϕ0 + 2πν
k0hp

cosϕν =

√

1− sin2 ϕν for |sinϕν | ≤ 1
i
√

1− sin2 ϕν for |sinϕν | > 1
, (F.10)

ν± = INT
(
hp
λ0

(1± sinϕ0)
)
, (F.11)

and

cosh θν± = ν

∆ ± sin θ0, (F.12)

where INT indicates the conversion of a real number to an integer.
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