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ABSTRACT 

This thesis describes the biochemical, biophysical and structural characterisation of two 

proteins believed to play an important role in active gene silencing mechanisms present in 

the human malarial parasite, Plasmodium falciparum. These investigations were performed 

using the histone deacetylase enzyme, PfSir2a, and the DNA binding protein, PfAlba3. The 

initial goal of this PhD project was to obtain structural information on both PfSir2a and 

PfAlba3, as well as the proposed silencing complex thought to be formed by the two 

proteins. This information would then aid the development of novel pharmaceuticals with a 

perspective towards new therapeutics to combat the continued threat of malaria. 

Thorough biochemical and biophysical characterisation of both PfSir2a and PfAlba3 was 

conducted and is described in Chapter 3 of the thesis. These results could not characterise a 

strong interaction between PfSir2a and PfAlba3 and highlighted several properties 

exhibited by the proteins that, as a result, proved challenging to characterise by structural 

methods. Most notably concentration dependent oligomerisation and protein aggregation 

effects were observed for PfSir2a and PfAlba3 respectively. 

Nevertheless, structural studies were performed using SAXS and SANS techniques to 

investigate the individual proteins to obtain structural information about the solution state 

of PfSir2a and PfAlba3 and generate ab initio models for both proteins and these are 

presented in Chapter 4. The difficulties presented by the target proteins aided in the 

development of a new investigative method for bio-SANS experiments, SEC-SANS, and 

the first example of testing and validation of this technique is presented in Chapter 5. The 

findings of work conducted for this thesis are summarised in Chapter 6 with an outlook for 

future work and development.   
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Chapter 1: Introduction 

1.1 An Introduction to Malaria  

Human malaria is a disease caused by infection by parasitic protozoan organisms which 

presents an incredible burden upon global public health. It has been long since known to be 

a severe disease with accounts of malaria dating back to 2700 B.C (Cox, 2010). It is 

prevalent in the tropical and sub-tropical regions of the globe with recent figures 

estimating around 40% of the world’s population being currently at risk of contracting 

malaria (see Figure 1.1). There are an estimated 198 million cases of infection and over 

584,000 deaths per year (WHO, 2014). The majority of infections and mortality associated 

with malaria occurs in the sub-Saharan Africa region with young children and 

immunocompromised adults being most affected.   

 

Figure 1.1: Global map highlighting countries with ongoing malaria transmission (WHO, 

2014). 

The causative organisms are parasitic protozoans of the Plasmodium genus belonging to 

the apicomplexan phylum. There are five main species which are known to infect humans, 
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P. falciparum, P. malariae, P. ovale, P. vivax and P. knowelsii. P. falciparum is the 

organism which is predominantly located in sub-Saharan Africa and accounts for over 90% 

of the total deaths associated with malarial infection. This is thought to be due to a 

combination of the parasites intra-erythrocytic stage during the life cycle and the inability 

of infected individuals with young, or compromised, immune systems to cope with high 

parasite burdens (Schumacher and Spinelli, 2012). 

Infection with malaria occurs during the blood feeding behaviour by parasite-infected 

female mosquito hosts from the Anopheline genus. Sporozoite stage parasites are 

transferred from the salivary glands of the mosquito into the human host and rapidly 

migrate to the liver to invade hepatocytes and undergo asexual reproduction to develop 

into the merozoite stage (see Figure 1.2).   

The merozoites break out of the liver cells and into the blood stream of the host where they 

attach to and invade circulating red blood cells (RBCs), or erythrocytes. Here they 

continue the next stage in the parasite life cycle by undergoing asexual reproduction into 

more merozoites to begin another cycle of re-invasion, or develop into the sexual stage 

gametocytes which are transferred back to the mosquito hosts during blood feeding to 

complete the life cycle (Trampuz et al., 2003).  
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Figure 1.2: Life cycle stages and development of P. falciparum parasite in human and 

mosquito hosts (Doerig et al., 2015).  

The duration of this invasion cycle requires only 48 hours to complete and allows for 

malaria parasites to rapidly increase in number in a very short period of time. It is during 

this intra-erythrocytic stage that all the symptoms associated with severe malarial infection 

occur. The high levels of parasitaemia can cause the rapid onset of flu-like symptoms such 

as fever, nausea and headaches. Individuals who are unable to mount a sufficient immune 

response cannot control the rapid parasite development and life threatening levels of 

parasitaemia, between 2 – 5% (equivalent to 100,000 – 250,000 parasites per µl of blood) 

are reached (WHO, 2010). This results in more serious symptoms such as severe anaemia, 

clotting, metabolic acidosis and cerebral malaria which even if treated rapidly have a 

mortality rate of 15-20% (Trampuz et al., 2003; Miller et al., 2013).  
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Antimalarial drug treatments such as artemisinin combination therapies (ACTs) exist to 

treat infected individuals and remove parasites from the body. Although these treatments 

are very effective, Plasmodium is well known for rapidly developing resistance to drug 

treatments used against it. This was especially highlighted when resistance to chloroquine, 

a long-standing drug treatment for malarial infections, was detected in P. falciparum 

strains in Southeast Asia in the late 1950s. This later was detected in Africa in the 1970s 

and spread rapidly across the continent within a decade (Wellems and Plowe, 2001). 

Recent findings have indicated the emergence of resistance to artemisinin and highlight the 

need for developing additional treatment methods to combat malaria (Ariey et al., 2014). 

While drug treatments remain the cornerstone method for targeting malaria parasites in 

infected individuals, it is important to continue finding suitable candidates to combat the 

challenge of resistance development. Resistance to antimalarials is attributed to 

spontaneous and random changes to genes during replication. If a mutation which confers 

resistance to an antimalarial drug occurs then a selection pressure is created that favours 

resistance development. Most drugs developed so far against Plasmodium target the toxic 

products of the haemoglobin digestion pathway that is used by parasites to provide amino 

acids for protein synthesis and parasite development (Bozdech et al., 2003; Miller et al., 

2013). Additional avenues of research are focused on developing drugs which are able to 

interrupt another key area needed for parasite survival: immunoevasion. 

1.2 Antigenic Variation: A Complex Problem 

By invading host erythrocytes, the parasites are essentially hidden from a large portion of 

the humoral and physical components of the human defence system which other pathogens 

would be subjected to, e.g. antibody response. But RBCs are relatively short-lived cells 

inside the human body, lasting approximately 100-120 days in circulation, and senescent 
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cells are destroyed by the spleen which metabolizes the contained haemoglobin into its 

constituent amino acids to be recycled. This process also destroys any malaria parasites 

that are contained within the erythrocytes because they cannot develop outside RBCs, 

requiring the metabolism of haemoglobin to survive. 

As a result, malaria parasites have developed a unique method of evading host immune 

responses to avoid destruction and continue the life cycle. To reduce the chance of 

destruction before malaria parasites can develop inside an infected erythrocyte they 

produce a polymorphic protein, Plasmodium falciparum erythrocyte membrane protein 1 

(PfEMP1). This protein is exported to the cell surface membrane of infected RBCs where 

it serves to bind to host endothelial cell surface receptors, as well as uninfected 

erythrocytes, to prevent infected RBCs from passing through host capillaries effectively 

causing clotting. This slows progress towards the spleen and helps to ensure that parasite 

have sufficient time to go through the intra-erythrocytic development cycle.  

PfEMP1 is a relatively large protein, of approximately 200-305kDa in size, and 

cytoadherence is mediated by a diverse number of Duffy Binding Like (DBL) domains and 

Cysteine-rich InterDomain Regions (CIDRs) present in the protein sequence. These are 

able to bind several host receptors, such as CD-36, intercellular adhesion molecule 1 

(ICAM1), thrombospondin (TSP) and chondroitin sulphate A (CSA), with varying affinity 

(KD values ranging from 12nM to 344µM) (Barnwell et al., 1989; Berendt et al., 1989; 

Smith, Chitnis and Craig, 1995; Srivastava et al., 2010; Buckee and Recker, 2012; Turner 

et al., 2013). 

The variability in size of PfEMP1and its affinity for host receptors is a result of several 

different polymorphs of the protein that are encoded by a family of clonally variant var 

genes, with approximately 60 identified variants (see Figure 1.3) (Baruch et al., 1995; 
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Smith, Chitnis and Craig, 1995; Su et al., 1995; Gardner et al., 2002). PfEMP-1 variants 

which preferentially bind to ICAM1 and CSA endothelial cell surface receptors are linked 

more strongly with severe symptoms including cerebral malaria, metabolic acidosis, low 

birth weight, prematurity and high mortality (Penman and Gupta, 2008).  

 

 

 

 

 

 

 

 

 

Figure 1.3: Binding domain and architectures of PfEMP-1 polymorphs. PfEMP-1 proteins 

have multiple domains; N-terminal segments (NTS), Duffy Binding Like (DBL), Cysteine-

rich InterDomain Regions (CIDRs), C2, transmembrane (TM) and acidic terminal segment 

(ATS) (Kraemer and Smith, 2006).  

The expression of var genes in P. falciparum is tightly controlled, with only one full length 

transcript being expressed at a time, while the remaining genes are placed in a 

transcriptionally silent state (Scherf et al., 1998). The majority of var genes, approximately 

60%, are located in subtelomeric regions of chromosomes that are downstream of six 
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distinct repetitive deoxyribonucleic acid (DNA) sequences known as telomere associated 

repetitive elements (TAREs 1-6) (Freitas-Junior et al., 2005). These regions are also 

populated by other multigene families such as stevor and rifin which encode other smaller 

erythrocyte membrane proteins (Scherf, Lopez-Rubio and Riviere, 2008). Var genes are 

divided into three main groups, A, B and C, which are classified by similarities in their 

chromosomal location and upstream 5’ promoter regions, UpsA, UpsB and UpsC (S. A. 

Kyes, Kraemer and Smith, 2007). 

UpsA and UpsB var genes are located in the subtelomeric chromosome regions whereas 

UpsC var genes are located towards the centre. UpsA and UpsB var genes differ in the 

way in which they are transcribed with UpsA genes transcribed towards and UpsB 

transcribed away from the telomere respectively (Kyes et al., 2007). Studies have shown 

that severe malaria in children is associated with increased transcripts from var genes 

belonging to groups A and B (Jensen et al., 2004; Kyriacou et al., 2006; Rottmann et al., 

2006; Merrick et al., 2012). Initially, immune selection pressure and host cell 

polymorphisms can select for parasites expressing var genes that make them better able to 

survive inside the host bloodstream. But as a host begins to gain naturally acquired 

immunity, the repertoire of variant surface antigens will become reduced and result in 

lower parasite survival rates (Nielsen et al., 2002). 

Thus the benefit of mutually exclusive var gene expression is that it enables parasites to 

restrict the surface antigens that become exposed to the host immune system, which can 

develop an antibody response against the parasite-infected erythrocytes. In addition, 

malaria parasites seem to be able to switch which particular var gene is expressed via a 

process known as ‘antigenic variation’ and this allows parasites to sustain chronic infection 

with successive waves of parasitaemia (Scherf, Lopez-Rubio and Riviere, 2008). This 
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ability to cause recurring infections is indicative of a well-developed and sophisticated 

immune evasion strategy (Scherf, Lopez-Rubio and Riviere, 2008). 

The mechanism that gives rise to this antigenic variation is not yet fully understood, but is 

thought to arise through changes made to the local nuclear architecture, instead of genetic 

recombination into a conserved expression site as is seen in another protozoan parasite, 

Trypanosoma brucei, that also utilises antigenic variation (Duraisingh et al., 2005; Freitas-

Junior et al., 2005; Lopez-Rubio et al., 2007). Control of transcription of active genes in 

this manner is believed to be governed by recognition of, and changes to, posttranslational 

modifications present on parasite chromatin. This is known as ‘epigenetic regulation’ and 

has become an active area of research in the last decade to try to better understand the 

processes involved in this complex regulatory mechanism (Merrick and Duraisingh, 2006; 

Scherf, Lopez-Rubio and Riviere, 2008; Guizetti and Scherf, 2013). 

1.3 Chromatin and Epigenetic Regulation 

Organisms across all three kingdoms of life face the complication of containing their 

genomic DNA within individual cells in order to function. For bacteria and archaea this 

means accommodating their entire genome, that when laid out as single linear piece of 

DNA has an approximate end to end length of 1mm, inside a cell only 1µm in diameter. 

This requires a compaction factor of roughly 104 to fit the genome inside the cell alongside 

the rest of the cellular components (de Vries, 2010). Eukaryotes face a more daunting task 

of requiring roughly two metres of stretched out DNA to fit inside a nucleus only 10µm in 

diameter (White and Bell, 2002). Therefore a high degree of nuclear organisation is 

required to be able to physically fit all the necessary genetic information required for 

development and continued existence into the cell. This is achieved by utilising a set of 
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chromosomal proteins, called histones, whose purpose is to package DNA into compact, 

highly ordered structures. 

Euryarchaea and eukaryotes contain proteins which possess a distinctive α-helical fold, 

known as the histone fold. Approximately 140-200 base pairs (bp) of DNA becomes 

wrapped around two copies of four histone protein subunits: H2A, H2B, H3 and H4 

forming a octamer core nucleosome structure which leads to the compaction of the 

genomic DNA (Arents and Moudrianakis, 1995; Ramakrishnan, 1997). A fifth linker 

histone, H1, binds to the nucleosome and forms the first level of organisation, the 10nm 

fibre ‘beads on a string’ array (Mariño-Ramírez and Kann, 2005a). This allows for the 

compaction of meter sized lengths of genomic DNA to become compacted into a region 

only a few microns across (Ramakrishnan, 1997). Further compaction via octamer-octamer 

interactions leads to the next level of organisation, the 30nm fibre (Tremethick, 2007a). 

Core histones are globular in structure and amongst the most well conserved proteins 

across eukaryotes due to their essential role in DNA packaging and gene regulation 

(Mariño-Ramírez and Kann, 2005b). Variations between histone structures exist but all 

share the common histone fold motif (Arents and Moudrianakis, 1995). This allows for 

histone proteins to interlock together in a ‘handshake’ like fashion to form the octamer 

core of the nucleosome and bind DNA non-specifically (Arents and Moudrianakis, 1995; 

Ramakrishnan, 1997). In addition to the globular C-terminal regions, histones also possess 

N-terminal ‘tail-like’ regions which protrude from the nucleosome and may comprise up to 

25-30% of the mass of the histone (see Figure 1.4) (Wolffe and Hayes, 1999; Villar-Garea 

and Imhof, 2006). 
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Figure 1.4: Diagram depicting histone packing of chromatin DNA. The histone proteins 

comprise the central core and have protruding N-terminal tails. The DNA is labelled in 

blue and wrapped around the octamer core comprised of the four protein subunits (Wolffe 

and Hayes, 1999). 

Posttranslational modifications such as methylation, acetylation, alkylation, glycosylation 

and oxidation are a major cellular mechanism used in signalling and the control of protein 

activity within the cell. These occur largely through enzyme-catalysed covalent addition of 

an electrophilic fragment from a co-substrate to a side chain residue of the protein being 

modified (Walsh, Garneau-Tsodikova and Gatto, 2005). N-terminal tail regions are no 

exception to this and have a high capacity for posttranslational modifications. They are 

highly conserved, much like the globular C-terminal regions, and play an important role in 

nucleosome structure and function (Wolffe and Hayes, 1999; Tremethick, 2007b). The tail 

region of subunit H3 contains approximately 38 amino acids, 19 of which can be 

potentially modified (Villar-Garea and Imhof, 2006). It is also known that histone tails are 
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important for viability in yeast, as removal of both H3 and H4 subunit tail regions results 

in a lethal event (Ling et al., 1996). 

The ability of histone tails to be modified in such a wide and versatile manner has led to 

the formation of the idea that there is a histone ‘language’ which can be read by other 

proteins or protein complexes (Strahl and Allis, 2000). Commonly referred to as the 

histone code, this mechanism of signalling and control is thought to play a crucial role in 

the epigenetic regulation of gene activity. This occurs via changes to the local nuclear 

architecture instead of the encoding DNA sequence itself, leading to regions of 

transcriptionally active euchromatin, or ‘silenced’ heterochromatin (Ramakrishnan, 1997). 

One well studied example of posttranslational modification of proteins is the addition of 

acetyl groups and this has been widely implicated in regulating gene expression (Struhl, 

1998). Histones which are acetylated facilitate the transcription of active genes, while 

under-acetylated histones are correlated with repressed transcription (Braunstein et al., 

1993). Acetyl groups are typically found on lysine residues within core histone tail regions. 

Histone subunits H3 and H4 are particularly enriched in lysine residues and have been 

shown to be readily interact with and become modified by acetyltransferases and 

deacetylases (Kornberg and Lorch, 1999). 

While initial studies were conducted on yeast models, recent work has shown that parasitic 

protozoan histones, including P. falciparum histones, function in a similar manner 

(Croken, Nardelli and Kim, 2012). Despite lacking the H1 linker histone, the core histones 

are present in a homologous form to eukaryotic counterparts and interact to form a 

nucleosome core which can wrap approximately 150bp of DNA (Duffy et al., 2012). 

Subunit H3 and H4 N-terminal tail regions are also well conserved and enriched in lysine 

residues (Miao et al., 2006). 
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Originally it was shown that only two histone modifications were found to be involved 

with transcriptionally active genes in P. falciparum, methylation of histone 3 lysine 4 

(H3K4Me) and acetylation of histone 3 lysine 9 (H3K9Ac) (Salcedo-Amaya et al., 2009). 

Further studies have since shown that additional residues H4K5Ac, H4K8Ac and H4K4Ac 

are also involved in gene expression (Luah et al., 2010). Acetylation of these residues 

leads to transcriptionally active euchromatin structures, and conversely inactive 

heterochromatin when non-acetylated. Acetyl group removal is carried out by interaction 

with histone deacetylases (HDACs). 

1.4 Role of Histone Deacetylases in Epigenetics 

Since the importance of histone modifications was recognised, particularly acetylation, a 

great deal of research has been invested in understanding the regulatory mechanisms 

behind these processes. Recent focus has been trained on HDACs to gain insight into their 

functional role within the epigenetic process. HDACs are grouped into two major families, 

classical HDACs and the more recently discovered SIR2 family of nicotinamide adenine 

dinucleotide (NAD+) dependent HDACs (Ruijter et al., 2003). Previously HDACs had 

been separated into two groups (class I and class II) based on molecular mass and pairwise 

sequence similarity (Gregoretti, Lee and Goodson, 2004). NAD+ dependent HDACs form 

their own group (class III) and a further group (class IV) was implemented to 

accommodate the recently discovered human HDAC11 which is distinct from existing 

class I and class II members (Gregoretti, Lee and Goodson, 2004). 

Class III HDACs are more commonly known as ‘sirtuins’ after the discovery of their 

founding member, ScHst2, in the yeast organism Saccaromyces cerevisiae. Here ScHst2 

serves to function as a transcriptional repression element at S. cerevisiae telomeres, silent 

mating-type loci and ribosomal DNA loci (Rine and Herskowitz, 1987). Its discovery 
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highlighted an important role in the epigenetic transcriptional control of the budding yeast 

genome by acting as a HDAC (Rine and Herskowitz, 1987). This established regions of 

‘silent’ heterochromatin which were repressive for gene transcription at subtelomeres, 

mating type-loci and ribosomal DNA (Gasser and Cockell, 2001). 

Since their discovery, homologues of yeast ScHst2 have been found in a wide range of 

organisms ranging from archaea to humans, including P. falciparum (Frye, 2000). As well 

as HDAC activity and gene silencing, sirtuins participate in a wide range of cellular 

processes including cell cycle progression, chromosome segregation, microtubule 

organisation, protein aggregates transport, genome stability, DNA repair, apoptosis and 

autophagy (Wenzel, 2006; Rajendran et al., 2011). This has led to sirtuins being the focus 

of many ageing, life-span and metabolism studies linked to neurodegenerative diseases, 

cardiovascular disease and cancer (Pruitt et al., 2006; Haigis and Sinclair, 2010). 

Initial phylogenetic analysis of sirtuins classified 60 known sirtuins into four main types 

based upon similar domains to 7 human sirtuins (hSIRT1-7) (Frye, 2000). This sequence 

similarity analysis initially placed sirtuins into classes I-IV. Each of these classes include at 

least one of the originally identified 7 human sirtuins. A fifth undifferentiated class, U, was 

also identified for sirtuin genes with sequence motifs which seemed to be intermediate 

between classes II and III and the classes I and IV and includes sirtuins found in archaea 

and bacteria (Greiss and Gartner, 2009). 

Certain characteristic amino acid sequences are used to define the classes of sirtuins. In the 

central core domain of the sirtuins there exists the conserved motifs GAGISXXXGIPXXR, 

PXXXH, TQNID, HG, two sets of CXXC, FGE, GTS and (I/V)N (Frye, 2000). For class 

III sirtuins the GAGISXXXGIPXXR motif is typically found as GAGISAESGIPTFR, 

whereas in class II sirtuins it is found as GAGISTESGIPDYR (Frye, 2000). Sirtuins found 
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in class U, I and IV also have a GIPD motif within this sequence like those in class II, it is 

only class II which possesses the GIPT motif. Class IV sequences also have a GVWTL 

motif present 4 residues C-terminal to the GAGISTXXGIPDFR motif (Frye, 2000). 

Since this initial classification a larger number of genome sequences from all kingdoms of 

life has become available and this has informed more recent reviews (Greiss and Gartner, 

2009; Religa and Waters, 2012). These more extensive analyses have further differentiated 

Class III into further subdivisions (a, b and c) and split the undifferentiated class into four 

branches (U1-4) as shown in Figure 1.5 (Greiss and Gartner, 2009; Religa and Waters, 

2012).  

 

Figure 1.5: Phylogenetic tree of 778 annotated sirtuins from different organisms 

highlighting the different classifications (Religa and Waters, 2012). 
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An interesting discovery when conducting these phylogenetic searches was that a number 

of parasitic organisms were found to contain sirtuin sequences within their genome. 

Notable examples include Trypanosoma brucei, Leishmania spp. and also P. falciparum. 

Investigation of P. falciparum sirtuins has revealed their involvement with the epigenetic 

transcriptional control of a large number of subtelomeric genes which are heavily involved 

in malaria pathology and parasite survival, including the var gene family addressed 

previously in section 1.2 (Duraisingh et al., 2005; Tonkin et al., 2009). Given sirtuins’ 

involvement in gene silencing as well as the regulation of many cellular functions, their 

role in pathogenic organisms is intriguing and presents possible treatment opportunities in 

the form of sirtuin-targeting drugs (Religa and Waters, 2012). 

1.5 Structure of Sirtuins 

All known sirtuins possess several conserved sequences necessary for structure and 

function. In eukaryotic organisms these are found within a ~260 amino acid region of 

homology flanked by N- and C-Terminal extensions (Finnin, Donigian and Pavletich, 

2001). Crystallisation of a range of sirtuins has revealed this catalytic core region to 

contain two domains: a large NAD+ binding Rossmann fold domain and a small domain 

comprised of two insertions into the Rossmann fold. This small domain is comprised of a 

variable Zinc2+ binding domain and a helical module (Dutnall and Pillus, 2001; Min et al., 

2001; Greiss and Gartner, 2009). 

The helical domain connects to the N-terminal of the Rossmann fold via a long loop 

structure (L-1B) and shows structural flexibility (Min et al., 2001). The helical and Zinc 

domains become packed together to form a single domain despite arising from different 

regions of the core domain sequence (Dutnall and Pillus, 2001). The Rossmann fold 
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domain and the small domain are separated by a cleft in which both NAD+ and an 

acetylated peptide substrate bind (see Figure 1.6) (Hoff et al., 2006). 

 

 

 

 

 

 

 

 

Figure 1.6: Overall structure of human Sirt3 with bound peptide substrate and NAD+ co-

factor (Moniot, Weyand and Steegborn, 2012). 

NAD+ binding occurs within the larger domain that is a variant of the Rossmann fold, 

present in many diverse NAD(H)/NADP(H) binding enzymes (Bellamacina, 1996). This 

sequence is important for NAD phosphate binding and is typically conserved as a 

GAGISXXXGIPXXR motif. In class III sirtuins it is usually found as GAGISAESGIPTFR 

whereas in class II it is GAGISTESGIPDYR (Frye, 2000). These motifs are highly 

conserved between species, likely because of the structural requirements needed to bind 

NAD (Dutnall and Pillus, 2001). 

The crystal structure of Sir2 from Archaeoglobus fulgidus reveals that the adenine base of 

NAD+ binds in an inverted orientation compared to other NAD-linked binding enzymes 
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(Min et al., 2001). The NAD binding pocket can be divided into three regions: site A 

where the adenine ring is bound; site B where the nicotinamide ribose is bound; and site C 

which is deep within the pocket (see Figure 1.7) (Min et al., 2001). Site A is mostly 

hydrophobic and contains the glycine residues which are conserved across Sir2 family 

members (Min et al., 2001). Sites B and C contain conserved polar residues and have been 

subject to mutagenesis which have shown reduced enzymatic activity. This indicates that 

they form the active site of the enzyme (Dutnall and Pillus, 2001). 

 

Figure 1.7: NAD binding pocket of Sir2 with bound NAD+ from Archaeoglobus fulgidus 

by Min et al, 2001 (PDB code 1ICI). (A) The adenine ring binding site, (B) nicotinamide 

ribose binding site, (C) deep pocket site containing conserved polar residues. 

The smaller domain present in sirtuins contains the zinc binding module where a zinc atom 

is tetrahedrally co-ordinated by four cysteine residues. These are typically conserved in 

C 

A 

B 
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two sets of CXXC sequences in most sirtuins (Frye 1999). Sir2s with CXXC … CXC, 

CXXXXC … CXXC and CXXC … CXXXXC are also found in sequence alignments 

(Chakrabarty and Balaram, 2010). There can be large insertions of amino acids between 

these two sequences. This suggests that considerable diversity is tolerated within the zinc 

binding module outside of these residues (Finnin, Donigian and Pavletich, 2001). While 

the zinc atom is not used in the catalytic activity of sirtuins it does have a fundamental 

structural role. This has been demonstrated in the case of P. falciparum where removal of 

the metal ion results in loss of enzyme structure and function (Chakrabarty and Balaram, 

2010). 

1.6 Sirtuin Silencing Mechanism 

To inhibit transcription of a gene, a region of ‘silenced’ heterochromatin must be 

established. This is accomplished by the deacetylation of N-terminal lysine residues 

present on histone tails. Class III HDACs, which include sirtuins, differ from other 

deacetylases in classes I and II, which use a divalent Zn2+ ion for catalysis. When present 

in the active site of the class I and II deacetylases, the zinc ion increases the nucleophilicity 

of a bound H2O molecule which hydrolyses the acetyl group present on lysine residues and 

releases it as a free acetate ion (Finnin, Donigian and Pavletich, 2001). Instead sirtuins use 

a unique and relatively complex reaction, which requires the presence of the coenzyme 

NAD+ and an acetylated substrate (Tanny et al., 1999; Imai et al., 2000). 

Via this mechanism ScHst2 cleaves the high energy glycosidic bond that exists between 

the adenosine diphosphate (ADP)-ribose moiety of NAD to nicotinamide (Landry, Slama 

and Sternglanz, 2000; Tanner et al., 2000; Tanny and Moazed, 2001). Nicotinamide is then 

released from NAD+ and the acetyl group of the substrate is transferred over to the cleaved 

product of the coenzyme (Tanner et al., 2000; Tanny and Moazed, 2001). This results in 
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the generation of the metabolite O-acetyl-ADP ribose (OAADPr) (see Figure 1.8. for 

reaction mechanism) (Tanny and Moazed, 2001). 

 

 

 

 

 

 

 

 

Figure 1.8: (A) Overall reaction scheme for NAD cleavage and acetyl transfer from 

substrate to ADP-ribose by ScHst2 and ScHst2-like proteins. (B) Structures of the NAD 

and O-acetyl-ADP ribose compounds (Moazed, 2001). 

The removal of the acetyl group from the lysine residues present on histone tails by sirtuins 

via this mechanism results in an overall positive charge which increases the electrostatic 

attraction between the histones and DNA backbone of the chromatin structure due to the 

negative charge of the DNA backbone. This creates a ‘silent’ chromatin domain which is 

inaccessible by cellular recombination machinery and enzymes. 

The generation of OAADPr allows for sirtuins to also act as ADP-ribosyltransferases 

(Sauve et al., 2001). In fact, sirtuins were initially reported for their ribosylation activity 

upon both themselves and their histone substrates (Tanny et al., 1999; Frye, 2000). Both 

A 

B 
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ScHst2 and HsSirT2 were shown to possess ADP-ribosylation activity rather than 

deacetylase activity (Tanny et al., 1999). However, the observed effect was very weak and 

following studies focused on the ability of sirtuins to act as a deacetylases on histones H3 

and H4 (Imai et al., 2000). The deacetylase activity was shown to be much more active 

compared to that of the ribosylation (Imai et al., 2000). This suggested that deacetylase 

activity is in fact the sirtuins primary activity. 

Both ADP-ribosylation and deacetylation by sirtuins are biologically important processes 

involved in signalling pathways regulating gene expression (Ziegler, 2000; Belenky, 

Bogan and Brenner, 2007). It has since been determined that some sirtuins, such as ScHst2, 

are biased towards deacetylation whereas other sirtuins such as HsSIRT6 and HsSIRT4 are 

biased towards ADP-ribosylation (Liszt et al., 2005; Haigis et al., 2006). The necessity for 

both reactions to have an acetylated substrate present for activity suggests there is a link 

between the two activities (Tanny et al., 1999; Imai et al., 2000; Landry, Slama and 

Sternglanz, 2000; Tanner et al., 2000; Tanny and Moazed, 2001).  

Studies in S. cerevisiae models have shown that in order to function, different sirtuins 

interact with partner proteins to bind to the chromatin structure. ScHst2 forms a complex 

with Sir3p and Sir4p to mediate silencing at mating-type loci and telomeric DNA regions 

(Moazed et al., 1997). This does not appear to be the case in higher organisms however; 

human sirtuins are currently not known to form complexes in order to bind to chromatin. 

1.7 Sirtuins in P. falciparum 

Several histone deacetylases and histone acetylases have been found in the P. falciparum 

genome to date suggesting a functional acetylation/deacetylation mechanism as found in 

other organisms (Religa and Waters, 2012). Two Sir2-like genes have been found based on 

sirtuin domain homology, PfSir2a and PfSir2b (Duraisingh et al., 2005; Tonkin et al., 
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2009). These sirtuins have been characterised and linked with transcriptional silencing of 

the var gene family encoded in subtelomeric regions (Freitas-Junior et al., 2005; Tonkin et 

al., 2009). Activation of a var gene occurs with the establishment of a euchromatin region 

permissive to transcription. 

PfSir2a is perhaps the best characterised of the two P. falciparum sirtuins. It is also one of 

the smallest known eukaryotic sirtuins having only 273 residues and resembles the A. 

fulgidus sirtuin Af1 in size and sequence similarity (30.13%) (Merrick and Duraisingh, 

2007). The core domains of PfSir2a are poorly conserved when compared to yeast, human 

and Archaeoglobus sequences (23 -35%) but similarity between PfSir2a and S. cerevisiae 

sirtuin exists in nearly all of the residues considered to be important for catalytic activity in 

sirtuins (Merrick and Duraisingh, 2007). The four cysteine residues necessary for the zinc 

binding module are conserved in the CXXC…CXC form as previously mentioned. The 

NAD+ binding pocket is broadly conserved with that of the Af2 sirtuin where only three 

substitutions occur: GAGXS/GSGXS, GIPXFR/NIPXFR and TQNIDL/TQNVDXL (see 

Figure 1.9) (Merrick and Duraisingh, 2007). 

A crystal structure of PfSir2a in complex with histone H3 Lys9 (H3K9) peptide sequence 

has recently been achieved (Zhu et al., 2012). This work suggested that PfSir2a has weak 

deacetylase activity compared to other sirtuins and it is more effective at catalysing the 

hydrolysis of medium and long chain fatty acid groups from lysine residues (Zhu et al., 

2012). 
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Figure 1.9: Alignment of PfSir2a sequence with that of other known sirtuins (Merrick and 

Duraisingh, 2007). The predicted sequence of PfSir2a is aligned with that of A. fulgidus 

Af1, S. cerevisiae Hst2, Schizosaccharomyces pombe Sir2, Homo sapiens SirT2 and 

Trypansoma brucei SIR2RP1. Strictly conserved and conserved residues between species 

are shaded in black and grey respectively. Starred residues are those known to be essential 

for catalytic activity in ScHst2. 

PfSir2a’s role in the regulation of var genes has been shown via genetic studies in which 

PfSir2a-lacking mutants showed up-regulation of many var gene transcripts 

simultaneously (Duraisingh et al., 2005). The most predominantly affected var genes were 
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those controlled by UpsA, UpsE and to some extent, UpsC promoters (Duraisingh et al., 

2005). A number of neighbouring rifin multigene family members were also upregulated in 

the absence of PfSir2a (Duraisingh et al., 2005). It has previously been mentioned in 

section 1.2 that severe malaria correlates with the expression of particular var genes from 

upsA regions (Jensen et al., 2004; Kyriacou et al., 2006; Rottmann et al., 2006). This 

highlights the possibility of an important role for PfSir2a in disease pathology. 

1.8 Partner Proteins 

As mentioned earlier, yeast models have shown that sirtuins can form complexes with 

partner proteins in order to bind to chromatin regions and perform their function. Whilst 

homologues to these partner proteins are not seen in higher organisms, several 

DNA/ribonucleic acid (RNA) binding protein families and transcription factors can be 

found encoded in the Plasmodium genome, which are involved in regulation of gene 

expression (Cui, Fan and Li, 2002; De Silva et al., 2008; Mancio-Silva et al., 2008). One 

example which has been recently studied is the archaeal Alba (acetylation lowers binding 

affinity) DNA-binding protein (Bell et al., 2002). 

Alba, formerly known as Sso10b, was initially discovered when several small (~10kDa) 

DNA binding proteins were isolated from the extreme thermophilic archaea Sulfolobus 

solfataricus (Forterre, Confalonieri and Knapp, 1999). Since its discovery several Alba 

homologues have been found to be highly conserved in the genomes of both euryarchaea 

(which encode histone proteins) and crenarchaea (which do not) (Forterre, Confalonieri 

and Knapp, 1999). The genomes of a range of eukaryotes are found to contain homologues 

of Alba. These include many higher plants and protists, such as Leishmania and 

Trypanosome species, and P. falciparum. Weaker homologues also exist within vertebrates 

including Homo sapiens (Bell et al., 2002). 
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Several species, including S. solfataricus, S. tokodai, S. acidocaldarius and A. fulgidus 

have two copies of the Alba gene present within the genome (Wardleworth et al., 2002; 

Jelinska et al., 2005). The more highly conserved gene represents the sequence for Alba1 

which share over 90% homology with one another and ~ 60% for more distant archaeal 

species (Jelinska et al., 2005). The less conserved gene encodes Alba2 which only shares 

30 – 40% homology to Alba1 sequences but are 60 – 70% identical to one another 

(Jelinska et al., 2005). This divergence suggests that Alba2 may have a different function 

to that of Alba1 in these organisms. The P. falciparum genome also encodes multiple Alba 

homologues which may have evolved to facilitate different functions (Goyal et al., 2012). 

Alba is an abundant protein within archaea; it represents 4% of the total protein in S. 

shibatae (Xue et al., 2000). The presence of Alba of such quantities in thermophilic and 

hyperthermophilic organisms growing at high temperatures (up to 80°C) suggests a role in 

DNA protection and maintaining stability, as high temperatures lead to the denaturing of 

DNA (Jelinska et al., 2005). This is enhanced by the fact that, like eukaryotic histones, 

Alba binds DNA non-specifically and chromatin immunoprecipitation studies show that it 

appears to be equally distributed on the chromosome (Xue et al., 2000; Bell et al., 2002). 

1.9 Structure of Alba 

Structural and in vitro studies of Alba have revealed that it exists as a dimeric protein with 

10 kDa subunits (see Figure 1.10) both in crystallised structure and solution (Wardleworth 

et al., 2002; Zhao et al., 2003). Alba possesses a mixed α/β fold structure which is 

composed of two α-helices and four β-strands. This fold is similar to the N-terminal DNA 

binding domain of DNase I and the C-terminal domain of the bacterial translation initiation 

factor 3 (IF3) (Wardleworth et al., 2002; Zhao et al., 2003). This is suggestive that the 

origin of Alba stems from a group of ancient nucleic acid-binding domains. 
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Figure 1.10: Structure of Alba from A. fulgidus as (A) monomer (B) dimer (C) in crystal 

unit cell (Zhao, Chai and Marmorstein, 2003). 

Research has also been carried out by analysing known Alba homologues using 

comparative genomics and sequence profile analysis (Aravind, Iyer and Anantharaman, 

2003). Sequences of several RNA binding proteins across archaea and eukaryotes 

including YhbY, RNase P subunit and IF3 were compared to that of Alba to identify 

characteristic traits. This investigation revealed that archaeal Alba proteins appear to have 

originated as RNA-binding proteins which formed various ribonucleoprotein complexes 

(Aravind, Iyer and Anantharaman, 2003). Ssh10b, an Alba homologue in S. shibatae, has 

been shown to bind RNA and DNA with a similar affinity in vitro and may also have a 

functional role in chaperoning RNA in vivo (Guo, Xue and Huang, 2003). 

In addition to the α/β fold a long β-hairpin comprised of two interacting β-strands extends 

out from the body of the protein (Wardleworth et al., 2002). Extended β-hairpin arms are a 

known feature of existing prokaryote DNA binding proteins. Bacterial HU and Integration 

Host Factor (IHF) specifically bind to DNA and function as architectural factors using two 

flexible β-hairpin arms which interact with the minor groove of DNA (Rice et al., 1996). In 

the dimer form of Alba the β-hairpin arms extend out in opposite directions from the 

A B C 
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protein and span a distance of ~40 Å where they interact with the minor groove 

(Wardleworth et al., 2002). 

The central body of the Alba dimer consists of two highly conserved loops which are 

separated by ~20 Å (Wardleworth et al., 2002). These loops contain two consecutive lysine 

residues (Lys16 and Lys17) which are involved in binding to DNA (Bell et al., 2002). The 

two β-hairpin arms bring the central body into contact with the major groove of the DNA. 

Consecutive dimers of Alba can overlap along the DNA duplex with a virtually complete 

coating of the nucleic acids. This results in a densely coated nucleoprotein filament 

(Wardleworth et al., 2002). 

1.10 Role of Alba in Silencing 

As the name suggests, acetylation of Alba results in a lower binding affinity for DNA. This 

occurs when the lysine residues contained within the loops of the central body of the 

dimeric protein gain an overall negative charge due to the addition of an acetyl group (Bell 

et al., 2002; Zhao et al., 2003). Deacetylation releases the acetyl group from the basic 

lysine residue and results in a polar positive charge which has a higher affinity for DNA. 

Both acetylated and deacetylated forms of Alba have been shown to exist in S. solfataricus 

(Bell et al., 2002). 

It has been shown that Alba can be deacetylated at Lys16 and Lys17 by a Sir2 homologue 

of S. solfataricus, ssSir2, and thereby increase its binding affinity for DNA (Bell et al., 

2002). Later work has since shown that a Sulfolobus homologue of the bacterial protein 

acetyltransferase, Pat, from Salmonella enterica is able to acetylate Alba on Lys16 (Marsh, 

Peak-Chew and Bell, 2005). In the bacterial system a sirtuin homologue CobB deacetylates 

acetyl-CoA synthase (ACS) where Pat acetylates it forming a metabolic regulatory system 

(Starai et al., 2003). The ability of a Pat homologue to acetylate Alba in S. solfataricus 
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suggests that the metabolic regulatory pathway has been adopted to regulate chromatin 

structure (Marsh, Peak-Chew and Bell, 2005). 

1.11 Alba in P. falciparum 

As mentioned previously Alba homologues have been found and characterised within the 

genome of P. falciparum, PfAlba1-4 (Chêne et al., 2012; Goyal et al., 2012)). Of the four 

Alba homologues, PfAlba3 shares a similar number of residues and molecular weight with 

the archaeal Albas (see Figure 1.11). Several residues are highly conserved across species, 

indicating a similar function, and molecular modelling from previously defined Alba 

structures has yielded a similar overall structure with the characteristic β-hairpin loops 

required to dock with the minor groove of DNA (Goyal et al., 2012). The remaining Albas 

have significantly larger C-terminal extensions compared to PfAlba3 and contain many 

RGG box repeats. These are characteristic of many RNA binding proteins and suggestive 

that they may preferentially bind to RNA (Chêne et al., 2012). 

 

 

 

 

Figure 1.11: T-Coffee amino acid sequence alignments between Alba’s from P. 

falciparum, S. solfataricus and A. fulgidus. 

PfAlba3 possesses DNA binding properties similar to that of the archaeal Alba’s 

previously described. It is able to bind to DNA non-specifically and is localised within the 

nucleus of the parasite where it co-localised with PfSir2a (Goyal et al., 2012). Mutation of 

the lysine residues in the central domain of PfAlba3 was shown to interfere with DNA 
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binding properties, but more importantly PfAlba3 was shown to interact with PfSir2a 

(Goyal et al., 2012). Co-localisation studies suggest that both PfSir2a and PfAlba3 play a 

functional role in the epigenetic regulation of transcription within P. falciparum. 

Characterisation of PfAlba1, 2 and 4 show that they do in fact bind RNA and DNA and a 

cellular redistribution of PfAlbas occurs throughout the development of the parasite 

(Chêne et al., 2012). PfAlba4 shares some co-localisation with PfSir2a during this 

development. Given that that PfSir2a is known to interact with PfAlba3, it is possible it 

may also interact with PfAlba4 to increase its binding affinity. This hints at the possibility 

of an interesting regulatory mechanism for the transcriptional control of Plasmodium 

virulence genes. 

This thesis aims to investigate and characterise the interaction between PfSir2a and 

PfAlba3 evidenced from the literature. This will be achieved by producing recombinant 

PfSir2a and PfAlba3 proteins using bacterial expression systems. The recombinant proteins 

will then be assessed for suitability for structural characterisation using biochemical, 

biophysical methods and is described in Chapter 3. Chapters 4 and 5 relate to small angle 

X-ray (SAXS) and neutron (SANS) scattering methods used to determine the solution 

structures of these proteins and describe their behaviour and interactions. 
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Chapter 2: Experimental Methods 

2.1 Molecular Biology 

Several molecular biology techniques were employed for the initial stages of sample 

preparation and characterisation. This involves the manipulation of DNA and proteins to 

produce recombinant target proteins for further investigation.  

2.1.1 Plasmid DNA Preparation 

Plasmids are small, circular, double stranded DNA molecules which can be extracted from 

prokaryotes. These independently replicating molecules can be used in molecular biology 

to amplify a gene of interest which can then be translated into a protein or peptide for 

further study. Specifically designed plasmids (or vectors) also contain antibiotic resistance 

markers to select for a single population of bacteria in which only cells containing the 

plasmid will survive when grown in media containing an antibiotic agent (e.g. kanamycin 

sulphate, ampicillin). 

2.1.2 pET28a Plasmid Preparation 

Initial cloning work was carried out using the Novagen pET28a (Cat no. 69864-3) 

kanamycin sulphate resistant expression system. To prepare a maxiprep of this plasmid, 5 

µl of pET28a stock plasmids were mixed with 50µl of DH10b electrocompetent cells on 

ice for 15 minutes. Bacteria were pipetted into 0.1cm spaced Gene Pulser® electroporation 

cuvettes (Bio-Rad Cat no. 1652089) and electroporated at 1.6kV, 25µF, 200 ohms. 

Bacteria were recovered in 300 µl super optimal broth with catabolite repression (SOC) 

media for 45 minutes in a shaking incubator set at 37°C, 200 revolutions per minute (rpm) 

before plating onto a Luria broth (LB) agar plate containing 35 µg ml-1 kanamycin sulphate 

(Euromedex Cat no. EU0420). The plate was then placed in a 37°C incubator overnight. 
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A single colony from the overnight incubation was grown up in 5 ml of LB starter culture 

containing 35 µg ml-1 kanamycin sulphate and grown overnight at 37°C, shaking at 200 

rpm. Starter cultures were then inoculated into 500ml LB containing 35µg ml-1 kanamycin 

sulphate and placed in a shaking incubator set at 37°C, 200 rpm until a measured optical 

density 600nm (O.D600) of 0.6 (when bacteria is in exponential growth phase) was reached. 

Bacteria were pelleted by centrifugation for 15 minutes at 5000 rpm, 4˚C. Harvested 

pellets were prepared by Maxiprep (Qiagen Cat no. 12165) to recover plasmid DNA in 1ml 

distilled water. 

2.1.3 Polymerase Chain Reaction 

Target copy DNA (cDNA) sequences were produced using the polymerase chain reaction 

(PCR) method. Here, the genes of interest are replicated from template DNA using forward 

and reverse primer sequences specific to the target DNA. The template DNA is placed 

together in a buffered reaction mixture containing Taq polymerase, deoxynucleoside 

triphosphates (dNTPs) and two primer sequences which are complementary to the forward 

and reverse DNA strands. The reaction then undergoes several stages of heating inside a 

thermal cycler. 

An initial denaturation step occurs by heating the DNA to 95°C for 5 minutes to separate 

the double-stranded DNA (dsDNA) template into single-stranded DNA (ssDNA). An 

annealing step follows by lowering the temperature of the reaction to between 50°C and 

65°C for 20 to 40s to allow for the hybridisation of the primers to the template DNA 

strands. The temperature must be low enough for the hybridisation process to occur but 

high enough so that the binding is specific to the target sequences. Adjusting the 

temperature of the annealing step can be performed to optimise the efficiency of the 

reaction if required. 
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After the annealing step an extension/elongation stage is carried out, typically at 72°C 

which is the optimum temperature for the Taq polymerase enzyme used in the reaction. 

During this step the polymerase synthesises a new DNA strand by adding dNTPs 

complementary to the target DNA sequence in the 5’ to 3’ direction. The extension time 

for this step depends on the length of the product being amplified and the DNA polymerase 

being used. Typically the rate of synthesis for a DNA polymerase is 1000bp per minute, 

and under optimum conditions (no rate limiting step e.g. lack of dNTPs) the amount of 

product generated is doubled which leads to an exponential increase in amplification of the 

target DNA. 

The cycle of denaturation, annealing and extension is carried out typically between 20-40 

times depending on the desired amount of product to be obtained at the end of the reaction. 

A final elongation step at 70°C - 74°C for 5 minutes is performed to ensure that any 

remaining single stranded pieces of DNA are fully elongated before the reaction terminates 

and the product can be recovered. 

The PfSir2a sequence, codon optimised for overexpression in E. coli, was obtained from 

Zhu et al (Zhu et al., 2012) on filter paper in a pET21a vector. Intact plasmids were unable 

to be recovered by soaking the filter paper. Instead the PfSir2a sequence was recovered by 

PCR. GoTaq Green (Promega Cat no. M7121) with T7 forward and reverse primers 

(MWG) were used in reactions (see Appendix B for primer sequences). The reaction cycle 

was set up with an initial denaturation step at 95˚C for 5 minutes followed by 20s 

annealing at 50˚C, 45s extension at 72˚C, 30s at 95˚C for 35 cycles. A final extension step 

was performed at 72˚C for 5 minutes before placing on hold at 4˚C for product recovery. 
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2.1.4 Agarose Gel Electrophoresis 

Agarose gel electrophoresis is a method employed to separate mixed populations of DNA 

and also proteins of different sizes in an agarose gel matrix for analysis and/or recovery of 

samples for further downstream applications. The typical size separation range for DNA 

molecules in agarose gels is between 50 - 20,000bp; higher percentage gels provide better 

resolution of smaller DNA fragments and vice versa. 

Gels are prepared by adding agarose powder (Sigma Aldrich, Cat no. A9539) to 

tris/acetate/ethylenediaminetetraacetic acid (EDTA) (TAE) or tris/borate/EDTA (TBE) 

buffer solutions with typical concentrations between 0.7% - 2% w/v and heating to above 

95°C to allow the agarose to dissolve in the buffer and create a uniform conductive gel 

matrix as it slowly cools. Gels are created in a casting mould to allow for the addition of a 

gel comb to create the wells in which DNA samples can be placed for separation and later 

visualisation. 

Once set, agarose gels are submerged in a tank apparatus containing the same buffer 

solution as was used to make the gel. Samples mixed with a dye can be loaded into the pre-

formed wells alongside a DNA marker set for estimation of molecular weights. The system 

is sealed and a voltage is applied across the gel at a rate of between 5-8 V per cm length of 

the gel that was cast. DNA molecules have a net negative charge and so will migrate from 

the cathode end of the gel towards the anode.  

When the dye front reaches the anode end of the gel, the voltage is turned off and the gel 

stained with an appropriate agent to visualise the separated DNA. Ethidium bromide or 

SYBR safe stain (Invitrogen, Cat no. S33102) were used: these intercalate into the major 

groove of DNA and fluoresce under ultra violet (UV) light. In the case of PCR products, 

the separated DNA was recovered by extracting the band and the surrounding agarose for 
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purification via gel extraction kit (Qiagen Cat no. 28704) for use in digestion and ligation 

reactions. 

2.1.5 Plasmid Digestion And Product Ligation 

Target cDNA sequences are inserted into expression vectors by first digesting the PCR 

product and the plasmid intended to be inserted into bacteria for expression. Restriction 

endonucleases such as NcoI or BamHI are used which cut the target DNA at specific 

points along the nucleotide sequence known as restriction sites. DNA strands cut by these 

enzymes leave overhanging nucleotides which can be joined to another DNA strand with 

the complementary overhang sequence by using DNA ligases. Digestion of the expression 

vector plasmids with the same restriction enzymes creates the same overhanging sequences 

in the multiple cloning site ready for ligation. 

DNA ligase enzymes join the complementary sequences together by forming 

phosphodiester bonds between the 3’ hydroxyl group and the 5’ phosphate group of the 

adjacent DNA residues. This allows the target gene sequence to be introduced into the 

expression vector to be made ready for transformation into an expression strain of bacteria. 

In this work, the recovered pET28a plasmid concentration was quantified by Nanodrop 

A260 absorption (where at a concentration of 1 ug/ml and a 1 cm path length, dsDNA has 

A260 = 50) (Thermo scientific) and digested with restriction enzymes. Plasmids for Alba3 

sequence inserts were digested with NcoI and XhoI restriction enzymes (New England 

Biosciences Cat no. R1093S, R0146S). Plasmids for PfSir2a sequence inserts were 

digested using XhoI and BamHI (New England Biosciences Cat No. R0136S). Using the 

restriction sites listed for the respective sequence inserts yields an N-terminal cleavable 6 

His-tag on PfSir2a whereas a non-cleavable C-terminal 6 His-tag would be present on 

PfAlba3. Restriction digests were performed at 37°C for 2 hours. After 1 hour 0.5µl of calf 



34 
 

intestinal alkaline phosphatase (Fisher Cat no. BP3217-1) was added to remove terminal 

phosphates and thus prevent self-ligation of plasmid vectors. Digested plasmids were run 

on 0.8% agarose gel at 80V in 1X TAE buffer for 1 hour and products were extracted from 

the gel via gel extraction kit (Qiagen Cat no. 28704). 

Plasmids were digested a second time, as mentioned previously, with the digested product 

subjected to phenol/chloroform extraction with addition of 50 µl phenol/chloroform and 

centrifuged at 8000 rpm for 1 minute. The DNA-containing aqueous phase was mixed with 

5µl 3M sodium acetate (pH 5.5) and 110 µl 100% ethanol. Precipitations were incubated 

for 2 hours at -80°C before centrifugation at 14,000rpm, 4°C for 30 minutes. The 

supernatant was removed and DNA pellets were washed with 100µl 70% ethanol by 

centrifugation for 5 minutes at 14,000rpm, 4°C. Residual ethanol was removed and tubes 

air dried for 15 minutes before re-suspending pellets in 10µl double distilled water 

(ddH2O). 

2.1.6 Site Directed Mutagenesis 

In this method a high fidelity (HF) DNA polymerase (PfuUltra) is used for a mutagenic 

primer-directed replication of the both the original plasmid DNA strands. The supercoiled 

dsDNA vector containing the insert of interest is added to a reaction mix containing two 

synthetic primers, both containing the desired mutation, and the HF polymerase. The 

oligonucleotide primers, each complementary to opposite strands of the vector, are 

extended under thermocycling conditions. The extension of the mutated primers generates 

a mutated plasmid containing staggered nicks. After the thermocycling, the product is 

treated with Dpn I endonuclease which is specific for methylated and hemimethylated 

DNA. This digests the parental DNA template and selects for the mutation-containing 

plasmids as DNA isolated from almost all E.coli strains is dam methylated and therefore 
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susceptible to Dpn I digestion. The nicked vector DNA containing the desired mutations 

can then be transformed into competent cells (see Figure 2.1).  

 

Figure 2.1: Overall scheme of site directed mutagenesis method. DNA is first denatured to 

allow for mutagenic primers to anneal and begin extension. Parental DNA template is then 

digested using Dpn I enzyme to leave only mutated sequence. Mutated molecules are then 

transformed into competent cells for nick repair and plasmid recovery. Source: Agilent 

Technologies QuickChange Lightning Manual (Cat no. 210518). 

A 50µl reaction mix was created using 5µl of 10X reaction buffer, 1µl of 100ng µl-1 

dsDNA (pET28a plasmid with original PfAlba3 insert), 1.25µl of both the forward and 

reverse primer for the mutagenesis (at 100ng µl-1), 1µl of dNTP mix (as supplied in kit), 

1.5µl of Quicksolution reagent, 38µl of autoclaved Milli-Q H2O and 1µl of QuickChange 
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Lightning enzyme. The reaction was placed in a thermocycler and PCR was performed 

using the following protocol. Initial denaturation step at 95˚C for 2 minutes followed by 18 

cycles of denaturation at 95˚C for 20s, annealing at 60˚C for 10s and an extension step at 

68˚C for 2.5 minutes. A final extension step at 68˚C was performed for 5 minutes before 

being placed on hold at 4˚C for recovery. 

After the PCR cycle was completed, 2µl of Dpn I restriction enzyme was added directly to 

the amplification reaction to digest parental DNA. This was mixed gently by pipetting 

before being briefly spinning down the contents and incubated at 37˚C for 5 minutes. A 

45µl aliquot of XL10-Gold ultracompetent cells was thawed on ice in a 1.5ml Eppendorf 

tube per transformation reaction. 2µl of beta-mercaptoethanol (β-ME) was added to the 

cells and incubated on ice for 2 minutes. 2µl of the Dpn I treated amplification reaction 

was added to the XL10-Gold cells and mixed gently before incubating on ice for 30 

minutes. 

A heat shock transformation step was performed as described in section 2.1.7 below and 

checked for bacterial growth. Colonies were observed on the LB agar plates after overnight 

growth and three were chosen for miniprep production to confirm the newly mutated 

plasmid sequence was correct. Colonies were isolated into separate 10ml LB flask cultures 

containing 35µg ml-1 kanamycin sulphate and left to grow overnight. The bacteria were 

harvested by centrifugation at 5000rpm for 15 minutes at 4˚C, the excess media was 

removed and the bacterial pellets were frozen at -20˚C prior to recovery of the plasmids via 

miniprep. Plasmids were recovered using the Promega Wizard Plus SV miniprep DNA 

purification system (Cat no. A1460). 
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2.1.7 Bacterial Transformation 

For expression and recovery, the pET28a vector containing the PfSir2a sequence and the 

mutated pET28a vector containing the PfAlba3 sequence were transformed into an E. coli 

expression strain, BL21 (DE3) (ThermoFisher Scientific, Cat no. C600003). This was 

achieved by mixing 1µl of 10ng µl-1 plasmid stock with 50µl of thawed BL21 (DE3) cells 

and incubating on ice for 30 minutes. The transformation was initiated by heat shock 

(immersion in a water bath) at 42˚C for 30 s before being placed back on ice and incubated 

for a further 2 minutes. After incubation, 0.3 ml of pre-warmed SOC media was added to 

the transformation reaction and the cells were left to recover at 37˚C, shaking at 200 rpm 

for 1 hour. 100µl and 200µl of the recovered bacteria was plated (to ensure sufficient 

colonies without overcrowding) on LB agar plates containing 35µg ml-1 kanamycin 

sulphate. Plates were incubated overnight at 37˚C and checked after 16 hours to see if 

bacterial colonies have developed which can be used for expression tests. 

2.1.8 Sodium Dodecyl-Sulphate Polyacrylamide Gel Electrophoresis (SDS-PAGE) 

Protein expression and purity can be assessed using SDS-PAGE gels which separate 

proteins by size based on their mobility through a gel matrix. Whole bacterial lysates or 

purified protein samples are mixed in a sample loading buffer which containing Tris-HCl, 

glycerol, SDS, bromophenol blue dye and dithiothreitol (DTT). Samples were denatured 

and linearised by heating to 100°C for 10 minutes before loading onto 12% or 16.5% Tris-

Tricine (TT) gels run at a constant voltage of 100V, at a pH value of 8.45. Visualisation of 

protein migration through the gels was monitored by staining with coomassie blue water 

based stain protocol. Recipes for gels and sample loading buffer can be found in Appendix 

A. 
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2.1.9 Western Blot Protocol 

In this protocol samples were run on 16.5% TT gels and run at 100V for 90 minutes before 

transferring to a nitrocellulose membrane. The transfer was conducted using the semi-dry 

method with a Trans-Blot® Turbo™ blotting systems (Bio-Rad Cat no. 170-4155) western 

blot system and its associated Trans-Blot nitrocellulose membrane transfer packs (Bio-Rad 

Cat no. 170-4158). The SDS-PAGE gel was placed between the nitrocellulose membrane 

and transfer pads and set to transfer at 1.3A, 25V for 7 minutes. 

After the transfer was complete the membrane was removed and placed into a 5% milk 

powder 1x phosphate buffered saline solution (PBS – Euromedex Cat no. ET330-A) with 

0.05% Tween®-20 (Sigma Aldrich Cat no. P2287) (PBST) and incubated at room 

temperature (RT - 21°C) on a shaking platform set at 150 rpm for 1 hour. After 1 hour the 

membrane was washed three times by shaking with 1x PBST for 5 minutes each. The 

membrane was then placed into a 5% milk powder, 1x PBST solution containing a 1:3000 

dilution of mouse anti-His primary antibody (GE Healthcare Cat no. 27-4710-01) and left 

to incubate for 1 hour shaking at RT 

After incubation with the primary antibody the membrane was washed again three times 

with 1x PBST for 5 minutes each. The membrane was then placed in a 1xPBST solution 

containing a 1:7500 dilution of donkey anti-mouse, alkaline phosphatase conjugated 

secondary antibody (Promega Cat no. S3721) and incubated for 1 hour shaking at RT. The 

membrane was removed for a final wash step with 1x PBST, three times for 5 minutes 

each. The results of the blot were developed by adding 3ml of Western Blue® Stabilized 

Substrate for Alkaline Phosphatase solution (Promega Cat no. S3841) to the membrane and 

incubating for 10 minutes at RT. The reaction was inhibited by submersing the membrane 

in ddH2O and left to dry before imaging. 
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2.1.10 Nickel-Nitrilotriacetic acid (Ni-NTA) Affinity Purification 

Affinity chromatography is a powerful technique used to separate biomolecules using 

highly specific covalent interactions between amino acids and metal ions. Here 

immobilised metal affinity chromatography (IMAC), specifically Ni-NTA affinity 

chromatography, was used to separate proteins of interest from bacterial lysate after 

expression. Histidine tags were employed which bind strongly with nickel or cobalt ions 

covalently attached to agarose beads via a chelating ligand. 

The histidine tags present on the target, introduced to the target protein by genetic 

modification, bind tightly to the resin whilst native host proteins have little or weak 

binding. The resin is washed with increasing concentrations of imidazole (2-40mM), which 

serves as a competitor to weakly bound contaminants to improve the purity of the target 

proteins. After washing the targets are eluted using a high concentration of imidazole (300-

500mM) for final purity checks and characterisation. 

Purification of PfSir2a and PfAlba3 for biochemical and biophysical characterisation prior 

to SAXS/SANS experiments was achieved using IMAC with an ÄKTAPrime fast protein 

liquid chromatography (FPLC) system (GE Healthcare, Cat no. 18-1135-24). A 1ml and 

5ml HisTrap™ FF crude column pre-packed with Ni-NTA agarose resin (GE Healthcare, 

Cat no. 11-0004-58 and 17-5286-01) were used for the purification of the PfSir2a and 

PfAlba3 respectively. Batches of 6x 1L bacterial cultures were prepared for purification 

with the aim to provide respectable yields (greater than 1mg of target protein per L of 

culture used) of high quality protein and bacterial cell pellets were stored frozen at -80˚C 

prior to purification. 
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2.1.11 PfSir2a Ni-NTA Purification Protocol 

Soluble PfSir2a was obtained by thawing the cell pellets in a lysis buffer containing 50mM 

sodium phosphate, 500mM sodium chloride, 10mM Imidazole, 5 units (U) ml-1 Benzonase 

nuclease (Novagen® Cat no. 71205-3) 1x cOmplete EDTA-free Protease inhibitor cocktail 

(Roche Cat no. 11 873 580 11), pH 7.5. Once the cells were thoroughly defrosted and 

resuspended they were lysed by sonication using a Sonics Vibra cell VC750 sonicator (5 

seconds on, 25 seconds off, 20 cycles at 50% amplitude). The cell lysate was centrifuged at 

20,000 rpm for 30 min at 4°C and the supernatant was loaded onto a GE HisTrap Ni-NTA 

column pre-equilibrated with lysis buffer using a 1ml min-1 flow rate at 4°C. 

Once the cell lysate finished passing through the column the resin was washed with 10 

column volumes (CV) of wash buffer containing 50mM sodium phosphate, 500mM 

sodium chloride, 40mM Imidazole, pH 7.5. A step elution was performed to elute the His-

tagged protein in 1ml fractions with an elution buffer containing 50mM sodium phosphate, 

500mM sodium chloride, 500mM Imidazole, pH 7.5. 

2.1.12 PfAlba3 Ni-NTA Purification Protocol 

Soluble PfAlba3 was obtained by thawing the cell pellets in a lysis buffer containing 

50mM sodium phosphate, 500mM sodium chloride, 10mM Imidazole, 10U ml-1 

Benzonase nuclease (Novagen® Cat no. 71205-3) 1x cOmplete EDTA-free Protease 

inhibitor cocktail (Roche Cat no. 11 873 580 11), pH 7.5. Once the cells were thoroughly 

defrosted and resuspended they were lysed by sonication using a Sonics Vibra cell VC750 

sonicator (10 seconds on, 59 seconds off, 10 cycles at 50% amplitude). The cell lysate was 

centrifuged at 20,000 rpm for 30 min at 4°C and the supernatant was loaded onto a GE 

HisTrap Ni-NTA column pre-equilibrated with lysis buffer using a 5ml min-1 flow rate at 

4°C. 
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Once the cell lysate finished passing through the column the resin was washed with 100 

CV of wash buffer containing 50mM sodium phosphate, 1M sodium chloride, 40mM 

Imidazole, pH 7.5. A step elution was performed to elute the His-tagged protein in 1ml 

fractions with an elution buffer containing 50mM sodium phosphate, 500mM sodium 

chloride, 500mM Imidazole, pH 7.5. 

2.1.13 Ion Exchange Chromatography (IEX) 

Proteins can also be further purified from residual contaminants by utilising ion exchange 

chromatography (IEX). Here target proteins were separated by charge differences using a 

mobile phase and a stationary phase. The stationary phase is a resin which contains a 

functional group that can be ionised to allow the binding of target molecules via charge 

interactions. In this work, cation exchange chromatography was used to separate 

negatively charged targets from residual bacterial contaminants using a GE Mono S 5/50 

GL (GE Healthcare) cation exchange column. 

This method was used as an additional purification step for PfSir2a. Pooled concentrated 

elution fractions of PfSir2a were dialysed against IEX buffer containing 50mM sodium 

phosphate, 50mM sodium chloride, pH 7.5 overnight at 4˚C. A 1ml sample was loaded 

onto a Mono S 5/50 GL cation exchange column (GE Healthcare) pre-equilibrated in IEX 

buffer A at a flow rate of 2ml min-1. The ionic strength of the buffer was altered by 

increasing the ratio of IEX buffer B, containing 50mM sodium phosphate, 2M sodium 

chloride, pH 7.5, to IEX buffer A. The elution profile of the protein was monitored by UV 

280nm and 260nm absorbance and 1ml fractions were collected. The length of elution was 

20 CV. 
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2.1.14 Size Exclusion Chromatography (SEC) 

A final purification step undertaken for target proteins was size exclusion chromatography 

(SEC), also called gel filtration. Here molecules are separated by their size as they migrate 

through a resin matrix with different pore sizes packed into a column. Large molecules or 

protein aggregates pass through the pores in the resin more quickly and are eluted first. 

Smaller molecules spend longer in the column as they pass enter the pores of the resin, 

eluting at a later time. This allows the removal of protein aggregates and/or the separation 

of oligomeric states of the target proteins studied. In this thesis GE Superdex™ S200 

10/300 GL and Superdex™ S75 10/300 GL (GE Healthcare) analytical columns were used. 

The column is connected to a fast protein or high-performance liquid chromatography 

system (FPLC/HPLC respectively) and pre-equilibrated with a solvent before injecting a 

sample. It is connected to a fractionation device which separates the recovered sample 

based on size and can be monitored via UV absorbance (190nm-450nm). 

PfSir2a and PfAlba3 were subjected to a further purification step by SEC using a 

Superdex™ S75 10/300 GL analytical column on an ÄKTA purifier HPLC system. A 

buffer containing 50mM sodium phosphate, 500mM NaCl, pH 7.0 was used for all 

samples. 250µl samples were centrifuged using a Spin-X centrifugal filter (Corning, Cat 

no. 8161) at 10,000 rpm for 5 minutes at 4˚C prior to being injected onto the column pre-

equilibrated in SEC buffer. A 500µl sample loop was used to load the samples which were 

injected onto the column at a constant flow rate of 0.5ml min-1. The elution profile of the 

proteins was monitored by UV 280nm and 260nm absorbance and 1ml fractions were 

collected. The length of elution was 1.5 CV. 
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2.2 Biophysical Characterisation  

To confirm expression of the correct target proteins, additional methods were used to 

investigate the physical properties and study their behaviour. These are outlined in brief 

below. 

2.2.1 Time Of Flight Mass Spectrometry (TOF -MS) 

TOF-MS was used to calculate the mass of the proteins investigated in the thesis. The 

molecules present in a sample were ionised before being accelerated by an electric field of 

known strength before arriving at a detector. Ions with the same charge are accelerated at 

the same rate and the velocity of the molecule arriving at the detector depends on the mass 

to charge ratio. By observing the time of flight for particles to arrive at the detector at a 

known distance, the molecular mass of the protein can be determined. TOF-MS 

measurements were carried out at the Institut de Biologie Structurale (IBS, Grenoble) in 

collaboration with Luca Signor. 

Samples of 30µl at a concentration of 30µM for both PfSir2a and PfAlba3 were prepared 

in 50mM sodium phosphate, 500mM sodium chloride, pH 7.5 buffer. Samples were then 

sent to be analysed by the Mass Spectrometry Platform at the Institut de biologie 

structurale (IBS, Grenoble). A on-line desalting step was performed with a protein trap 

(Zorbax 300SB-C8, 5um, 5x0.3mm, Agilent Technologies) for 3 minutes at a flow rate of 

100 µl min-1 with solvent A containing 0.03% Trifluoroacetic acid (TFA), 5% acetonitrile 

(ACN). This was followed by elution at 50µl min-1 with 70% solvent B containing 95% 

CAN, 5% H2O and 0.03% TFA. The samples were then analysed on a 6210 LC-TOF mass 

spectrometer interfaced with LC pump system (Agilent Technologies). 
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2.2.2 Fluorescence Thermal Shift Assay (TSA) 

Fluorescence thermal shift assays (TSA or ThermofluorTM) were carried out to determine 

protein sample stability and optimisation. In this technique, the thermal stability of a 

protein is assessed by the addition of a fluorescent dye (SYPRO Orange®, Invitrogen). This 

dye interacts non-specifically with hydrophobic residues of proteins and is strongly 

quenched by water. 

There are two underlying principles behind TSA, the first being that the fluorescent dye 

has little or no interaction with the protein being studied. The second principle is 

dependent upon the unfolding of the sample whilst being heated which exposes the 

hydrophobic core of the protein. This allows for the fluorescent dye to bind to the inner 

hydrophobic regions and give rise to a fluorescence signal by excluding water. The 

fluorescence is proportional to the degree of the protein denaturation and optical 

measurements of protein unfolding as a function of temperature can be made. 

This fluorescence can be observed increasing with temperature before reaching a 

maximum emission and gradually fading back down due to additional quenching of the 

dye at increased temperatures. This generates a stability curve for a protein and a melting 

temperature (Tm) can be determined by calculating the midpoint between the temperatures 

at which the lowest and maximum fluorescence emission occurs.  

As the Tm of a protein is closely associated with its stability in solution, many conditions 

may be screened to find optimised buffers and/or ligands. These can include pH, buffering 

agent, salt concentration, co-factors and or metal ions. Using a quantitative PCR (qPCR) 

machine one can efficiently screen many conditions with a small amount of sample 

(~250µl at 10 - 100mM concentration). The excitation and emission wavelengths for the 



45 
 

SYPRO® dye are 470nm and 570nm respectively for which a MyIQ RT PCR instrument, 

Bio-Rad was used. 

2.2.3 Dynamic Light Scattering (DLS) 

DLS, also known as quasi-elastic light scattering (QELS) or photon correlation 

spectroscopy (PCS) is a physical technique used to estimate the size of particles contained 

within a solution, typically in the submicron range. In the case of proteins, this provides 

information about sample homogeneity (e.g. single species or monomer/dimer mixtures) 

and if aggregates remain within the solution which can hinder further experiments. 

DLS uses a coherent monochromatic laser light source to illuminate particles in a sample 

solution. If the particles are smaller than the wavelength of the incident beam (less than 

250nm) the light is scattered in all directions via Rayleigh scattering. As the particles are in 

a solution they undergo Brownian motion as they are bombarded by solvent molecules and 

so this causes the distance between scattering particles to be constantly changing with time. 

The scattered light waves from these particles will then either constructively or 

destructively interfere with each other, causing a fluctuation in intensity over time which is 

measured with a detector. 

This timescale of these fluctuations provides information about the size of the scattering 

particles, larger particles will undergo slower Brownian motion than smaller particles 

which move more rapidly through interactions with the solvent molecules. Intensity 

patterns produced by a sample over several short time periods are recorded and analysed 

using an autocorrelation function which compares the intensity at each light spot produced 

over time. This function allows for the translational diffusion coefficient (DT) of the 

particles to be calculated. 
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Equation 2.1 

Using this coefficient, the size of the particles within the solution may be calculated using 

the Stokes-Einstein equation: 

𝑅𝐻 =
𝑘𝐵T

6𝜋𝜂𝐷𝑇
 

 

Where RH is the hydrodynamic radius of the particle, DT is the translational diffusion 

constant, kB is Boltzmann’s constant (1.38 x 10-23 J K-1), T is the absolute temperature (K) 

and η is the viscosity of the solvent (Einstein, 1905). 

The size value given by the hydrodynamic radius in Equation 2.1 represents how a particle 

appears to move through a solution and it is important to accurately know the temperature 

and viscosity of the solvent to determine accurate values. 

In this thesis, DLS experiments were performed on PfSir2a and PfAlba3 after SEC to 

provide information about the  monodispersity and hydrodynamic radius of the proteins in 

solution in preparation for SAXS/SANS experiments. Typically, if a sample exhibits < 

20% polydispersity it can be considered as ‘monodisperse’ and suitable for continuation 

into solution scattering investigations. If a sample exhibits > 20% polydispersity it is an 

indicator that there may be several species present within the sample such as different 

oligmeric states, contamininats or aggregates and the sample conditions should first be 

optimised before proceeding to solution scattering experiments. DLS measurements were 

performed using 60-100µl of protein sample taken immediately after SEC. Samples were 

filtered using Spin-X centrifugation columns at 10,000rpm for 5 minutes at 4˚C. Samples 

were then loaded into three-window quartz cuvettes (Hellma, Cat no. ZEN2112) by syringe 

with a 0.22µM Millex filter (Millipore Cat no. SLGV004SL). Measurements were 
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Equation 2.2 

performed using a Zetasizer Nano S instrument (Malvern) by a series of 10-15 scans 

repeated three times for each measurement. 

2.2.4 Size Exclusion Chromatography Coupled With Multi Angle Laser Light 

Scattering And Refractive Index (SEC-MALLS-RI) 

In this method, several characteristics of a protein such as its absolute molecular mass, 

homogeneity and polydispersity can be observed at the same time using a combination of 

techniques in a multi instrument setup. A typical setup has a size exclusion column 

connected to a HPLC pump which has been pre-equilibrated in a solvent suitable for 

investigating the protein/particle of interest. A sample is injected and passes through the 

size exclusion column and is observed afterwards by a series of detectors. 

A UV absorbance detector monitors the elution of macromolecules as they pass through 

the size exclusion column and generate an elution profile. Next the sample passes through 

a flow cell surrounded by light scattering detectors which measures the scattered intensity 

of a laser light source from the particles in the solution across different angles. A refractive 

index detector (RID) is also used to measure the difference in refractive index of the 

solvent as the macromolecules pass through the flow cell. 

Using the information gathered from both these detectors, the absolute molecular mass of 

the macromolecule can be derived by using the Zimm equation described below (Zimm, 

1945):  

𝐾∗𝑐
𝑅𝜃

=  
1

[𝑀𝑤𝑃𝜃]
+ 2𝐴2𝑐 

 

Where Mw = weight averaged molar mass (g mol-1), Rθ = measured Rayleigh ratio, c = 

protein concentration (g ml-1), A2 is the second virial coefficient (a measure of solvent-
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Equation 2.3 

solute interaction) and K* = is an optical parameter for the incident vertically polarised 

light given by: 

K*=
4π2𝜂0

2 (dn
dc)

2

NA𝜆0
4  

 

Where η0
2 is the solvent refractive index and (dn/dc) is the refractive index increment, NA 

is Avogadro’s number (6.022×1023 ) and λ0 is the vacuum wavelength of the incident light 

(Wyatt, 1993). This is calculated across the elution profile and allows the determination of 

the homogeneity and polydispersity of the sample to be assessed. This can be cross 

correlated with static DLS measurements for consistency checks and sample stability 

assessment. 

SEC-MALS RI experiments were performed to obtain a estimate for the molecular mass of 

both PfSir2a and PfAlba3 as they migrated through a SEC column. This technique can also 

be used to assess the monodispersity of a sample within an elution peak. Initial samples of 

PfSir2a and PfAlba3 were prepared at a minimum concentration of 2mg ml-1 after initial 

Ni-NTA and SEC purification step. A Superdex S200 10/300 GL analytical column was 

connected to DAWN HELEOS light scattering instrument and an optilab T-rEX refractive 

index detector (Wyatt Technology Corporation). A buffer solution containing 50mM 

sodium phosphate, 500mM sodium chloride, pH 7.0 was used to equilibrate the systems for 

2 hours prior to sample injection. Sample volumes of 50µl were injected onto the column 

using a flow rate of 0.5ml min-1. 
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2.2.5 Analytical Ultracentrifugation (AUC) 

Analytical ultracentrifugation is another powerful and versatile method used to characterise 

the properties and behaviour of macromolecules in solution. AUC analysis is sensitive to 

the mass and shape of particles and is also non-destructive, enabling recovery of the 

sample for additional experiments. Two complementary methods of AUC are available, 

sedimentation velocity and sedimentation equilibrium. Sedimentation velocity experiments 

provide information about the size and shape of macromolecules based on hydrodynamic 

principles. Sedimentation equilibrium experiments reveals information on the molar 

masses of macromolecules in solution using thermodynamic principles. This can be used to 

calculate stoichiometry and association constants between protein-protein and protein-

ligand complexes (Cole et al., 2009). 

AUC experiments are performed by loading a sample into centrifuge and subjecting it to 

high acceleration spinning, typically between 40,000 to 60,000 rpm, which generates a 

centrifugal field of approximately 250,000g. This exerts a high centrifugal force upon the 

sample and macromolecules suspended in solution which, due to the mass and shape of the 

particles, will begin to sediment in layers forming boundaries. This causes a balancing of 

the gravitational potential energy of molecules with their chemical potential energy. By 

monitoring the rate at which the boundaries of these molecules move when reaching 

equilibrium, we are conducting sedimentation velocity experiments. If we determine the 

concentration gradient of macromolecules after the equilibrium point has been reached 

then we are conducting a sedimentation equilibrium experiment. 

For the purposes of this work sedimentation velocity experiments have been carried out. In 

this case the forces acting upon a particle in solution exposed to a centrifugal field can be 

considered as shown in Figure 2.2. 
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Equation 2.4 

Equation 2.5 

 

 

 

 

 

 

 

Figure 2.2: Graphical representation of the forces exerted on a particle experiencing high 

centrifugal force within a solution (Crates, 2003). 

The force acting on a particle in a gravitational field is given by: 

𝐹𝑠 = 𝑚𝜔2𝑟 =  
𝑀
𝑁𝐴

 𝜔2𝑟 

 

Where m is the mass of the particle, ω is the rotor speed in rad s-1 (ω=2π∙rpm
60

) and r is the 

distance from the centre of the rotor, M is the molecular weight of the solute in g mol-1 and 

NA is Avogadro’s number. There is also a buoyancy force, Fb, exerted by the solvent on the 

particle:  

𝐹𝑏 = −𝑚0𝜔2𝑟 

 

Where m0 is the mass of the fluid displaced by the particle given by: 
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Equation 2.6 

Equation 2.7 

Equation 2.8 

𝑚0 = 𝑚𝑣 ̅𝜌 =  
𝑀
𝑁𝐴

𝑣 ̅𝜌 

 

Here, 𝑣 ̅is the partial specific volume of the particle in cm3 g-1, this represents the volume 

in ml that each gram of solute in solution occupies, effectively the inverse density of the 

particle. For proteins, this value is between 0.70 and 0.75 but for most globular proteins it 

can be approximated to 0.73. The density of the solvent is ρ in g ml-1. 

If the particle partial specific volume exceeds that of the density of the solvent, the particle 

will sediment and begin to sediment with a velocity which increases with radial distance 

travelled. Particles moving through a viscous fluid medium will also experience a frictional 

drag that is proportional to the velocity. This frictional force, Ff, is given by:  

𝐹𝑓 = −𝑓𝑢 
 

Where f is the frictional coefficient, which depends on the size and shape of the particle, 

and u is the velocity. Large, bulky or elongated particles will experience more drag force 

compared to those which are more compact spherical ones. 

By collecting the and rearranging terms it can be shown that: 

𝑀(1 − 𝑣 ̅𝜌 )
𝑁𝐴𝑓

=  
𝑢

𝜔2𝑟
 ≡ 𝑠 

 

The term (u/ω2r) is called the sedimentation coefficient, s, and is defined as the ratio of the 

velocity per particle to the centrifugal field. 
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Equation 2.9 

As the velocity of individual particles cannot be resolved, this coefficient is calculated by 

observing the change over time in the position of the boundary region in the sample cell. 

This is performed with a quartz sample cell and measuring the UV absorbance spectra (see 

Figure 2.3). 

 

 

 

 

 

 

 

 

Figure 2.3: AUC sample and reference cell with UV output observing the boundary region 

between solvent – solute (Crates, 2003). 

UV absorbance measurements also allows for the calculation of the concentration 

distribution of the sample using the Beer-Lambert law: 

𝐴 = 𝜀𝑐𝑙 
 

Where A is the measured UV absorbance, ε is the molar absorption coefficient in L mol-1 

cm-1, c is the concentration in mol L-1 and l is the path length in cm (Beer, 1852). This 

information is particularly needed when conducting sedimentation equilibrium experiments 
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Equation 2.10 

to find association constants between self-associating systems or macromolecular 

complexes. 

By monitoring the rate of spreading of the boundary it is possible to determine the 

translational diffusion coefficient, DT. Again, using the Stokes-Einstein relationship in the 

form of DT = RT/NAf where R is the gas constant (8.314 J mol-1 K-1) we can use ratio 

between s and DT to find the molecular weight by: 

𝑀 =
𝑠0𝑅𝑇

𝐷𝑇
0(1 − 𝑣̅𝜌)

 

 

The superscript zero for s and DT indicate they have measured at different concentrations 

and extrapolated to the zero concentration value which removes the effects between 

particles and their movements. This enables the use of AUC as another characterisation 

method for the absolute molecular mass of a macromolecule in solution and determine any 

other oligomeric states or aggregation behaviour. 

AUC experiments conducted for this thesis were performed using an XLI analytical 

ultracentrifuge, with a rotor Anti-50 (Beckman Coulter, Palo Alto, USA) and double-sector 

cells of optical path length 12, 3 and 1.5mm equipped with sapphire windows (Nanolytics, 

Potsdam, DE). PfSir2a and PfAlba3 samples were prepared in a buffer solution containing 

50mm sodium phosphate, 500mM sodium chloride, pH 7.0. Acquisitions were made using 

interference optics at 278, 250 and 230nm UV absorbance at a temperature of 5˚C. The 

data were processed by Redate software v 0.2.1 and the analysis was done with the 

SEDFIT software, version 15.01b and Gussi 1.1.0. 
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This work used the platforms of the Grenoble Instruct centre (ISBG; UMS 3518 CNRS-

CEA-UJF-EMBL) with support from FRISBI (ANR-10-INSB-05-02) and GRAL (ANR-

10-LABX-49-01) within the Grenoble Partnership for Structural Biology (PSB). 

2.2.6 Isotheral Titration Calorimetry (ITC) 

Isothermal titration calorimetry is a biophysical technique aimed at investigating the 

thermodynamic parameters of interactions between molecules in a solution to determine 

the constant of dissociation (KD). Interactions which can studied include protein-ligand, 

enzyme-inhibitor, antibody-antigen, protein-protein, protein-DNA and protein-metal ions. 

This method works by detecting the changes in temperature between two identical cells 

that are made of very efficient thermally conductive, chemically inert materials such as 

gold or Hastalloy. Thermosensitive circuits detect the differences in temperature, ΔT, 

between the reference cell containing the buffer or water (ΔT1), and the sample cell which 

also contains buffer and the macromolecule of interest (ΔT2) (see Figure 2.4). Prior to 

adding any ligands into the sample cell, a small constant power is applied to the reference 

cell. This differential power (DP) forms part of a feedback circuit which is connected to 

another heater located on the sample cell used to maintain temperature equilibrium. 

Throughout the course of an experiment, ligands are titrated into the sample cell in 

precisely controlled aliquots. If there is an evolution of heat (exothermic) in the sample cell 

due to an interaction, then there will be a negative change in the DP provided to the sample 

cell as it is no longer required to maintain temperature equilibrium. In an endothermic 

reaction, the opposite is the case where the DP must be increased to maintain constant 

temperature. 
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Equation 2.11 

 

 

 

 

 

 

 

Figure 2.4: Schematic of ITC reference cell and sample cell. The sample cell typically 

holds a volume of 250µl (Dias, 2009). 

Measurements are made of the time-dependant input of power required in order to 

maintain a temperature equilibrium between the two cells upon ligand addition. This 

results in a series of peaks and troughs as the system experiences a change in energy and is 

brought back into equilibrium over time. As the experiment progresses, the macromolecule 

in the sample cell becomes saturated with the ligand the signal will diminish, as only the 

heat of the dilution of the system is observed (see Figure 2.5). 

The integral of the area under the peaks gives the change in energy ΔH in J, or enthalpy of 

the system, for each injection. The binding constant, KB, is derived from the slope of the 

curve and is equivalent to 1/KA, where KA is the binding affinity for the ligand-

macromolecule interaction. This binding affinity is directly related to the total free binding 

energy available in the system, the Gibbs free energy ΔG in J, as follows: 

∆𝐺 =  −𝑅𝑇 ln 𝐾𝐴 
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Equation 2.12 

Which can also be defined as:  

∆𝐺 = ∆𝐻 − 𝑇∆𝑆 
 

Where ΔS is the change in entropy of a system in J K-1 (Gibbs, 1873). Favoured processes 

or reactions occur when ΔG ≤ 0, with more negative ΔG indicating a higher affinity. 

 

Figure 2.5: Left: graphical illustration of the measure of change in DP over time resulting 

from ligand addition to macromolecule. Right: Interpretation of data yielding information 

about the thermodynamics of the system (Milev, 2013). 

This method helps to understand the mechanism and to determine the stoichiometry of 

interactions between macromolecules. In experiments for this thesis, PfSir2a and PfAlba3 

were prepared at a concentration of 300µM and 30µM respectively in buffer solution 

containing 50mM sodium phosphate, 500mM sodium chloride, pH 7.0. A MicroCal 

iTC200 instrument (Malvern Instruments Ltd) was used to measure the samples. PfAlba3 

was placed inside the sample cell and PfSir2a was titrated into the sample cell with 16 

injections of 2.5µl volume. A spacing of 120 seconds was used between each injection. A 

series of experiments were conducted at 4°C and 15°C. 
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2.2.7 Micro-scale Thermophoresis (MST) 

Micro-scale thermophoresis is another method aimed at quantifying biomolecular 

interactions. It functions in a different manner compared to ITC by measuring the motion 

of molecules as they move along microscopic thermal gradients induced by an infrared 

(IR) laser. Changes in the hydration shell, charge and size are observed by using a 

fluorescence marker covalently attached to a macromolecule of interest. 

The MST experimental setup consists of preparing a fluorescently labelled macromolecule 

of interest at a fixed concentration. A dilution series with the target ligand/macromolecule 

is then prepared in several glass capillaries. The capillaries are then placed inside a 

machine in the path of an IR laser. Initially the molecules are evenly distributed in the 

solution inside of the capillary. Once the IR laser is turned on a local temperature gradient 

is induced in the capillary that causes the molecules to diffuse out of the heated spot (see 

Figure 2.6) (Duhr and Braun, 2006). 

 

Figure 2.6: Diagram highlighting IR laser heating capillaries containing sample 

concentration series and components of the recorded signal as a fluorescence time trace 

(Jerabek-willemsen et al., 2011). 
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Equation 2.13 

Equation 2.14 

Local concentration changes caused by depletion of the solvated biomolecules in response 

to this heating is characterised by the following: 

𝑐ℎ𝑜𝑡

𝑐𝑐𝑜𝑙𝑑
= exp (−𝑆𝑇∆𝑇) 

 

Where ST is the Soret coefficient given by: 

𝑆𝑇 =
𝐷

𝐷𝑇
 

 

In this case DT is the thermally induced diffusion coefficient. This thermophoretic 

depletion depends on the interface between the macromolecules and the solvent. Under 

constant buffer conditions, this probes the size, charge and solvation entropy of the 

molecules. 

Fluorescence in the heated area is measured before, during and after heating through the 

same objective lens used by the IR laser. Measurements begin at the initial steady state to 

determine the starting background fluorescence. As the IR laser is turned on, the signal 

observed decreases as molecules move out of the heated area due to thermal diffusion. 

After ~30s of heating (inducing a temperature gradient of between 2 - 6°C) the area is 

depleted of molecules. The signal increases again as the molecules move back into the spot 

due to normal mass related diffusion. 

Analysis of the fluorescent signal produced during these stages across a serial dilution 

range reveals information about the bound and unbound states of the interacting 
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macromolecules-ligands. This allows for the characterisation of an equilibrium constant 

and the quantification of the binding affinity. 

Full length recombinant PfSir2a was labelled with an amine reactive dye using the 

Monolith NT™ Protein labelling Kit Red-NHS (Nanotemper Cat no. L001). A 100µl stock 

of PfSir2a at a concentration of 20µM was prepared after Ni-NTA and SEC purification in 

50mM sodium phosphate, 500mM sodium chloride, pH 7.5 buffer. The dye powder in the 

kit was suspended to make a 100µl stock volume at a concentration of 75µM in the same 

buffer as the PfSir2a protein stock. The protein and dye stocks were then mixed and 

incubated together at a 1:1 ratio for 30 minutes at 21°C, covered in aluminium foil to 

prevent any light exposure. 

The labelled protein was then recovered from the reaction mixture by removing excess 

unbound dye. This was performed using Column-B supplied in the labelling kit which was 

washed three times with 3 ml of buffer to equilibrate prior to adding the labelling mixture. 

The labelled protein and dye mixture was then added to the column and recovered after 

passing through the column by adding buffer to Column-B and collecting the flow through. 

MST experiments were performed with a 16-point serial dilution (1:2) of unlabelled 

PfAlba3 from 20µM to 0.6nM. This was incubated with a fixed concentration of labelled 

PfSir2a at 20nM for 30 minutes at 21°C, covered in aluminium foil to prevent light 

exposure. After incubation, the incubated solution was taken up by capillary action into 

Nanotemper standard MST capillaries (Nanotemper Cat no. K002) and placed inside a 

Nanotemper Monolith NT.115 MST device for analysis. A fixed LED power of 50% was 

used which excites the fluorescent dye, while the infrared laser power which heats the 

sample was performed at three different settings (MST power). 
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2.3 Structural Characterisation Methods Using X-ray And Neutron 

Scattering 

To study proteins, DNA or other macromolecules that are of the order of between 1 – 

100nm in size, it is important to use methods which are sensitive to these length scales. X-

rays and neutron scattering as tools for this purpose has been widely used and characterised 

previously (Feigin and Svergun, 1987; Jacques and Trewhella, 2010; Svergun and Koch, 

2003). They are well suited to this task as their wavelength range can provide high 

resolution data on atomic distances, in diffraction experiments, as well as lower resolution 

(in the region of 15–20 Angstroms) structural envelope and size information using small 

angle scattering experiments. Subsequently the experiments conducted for this thesis have 

made extensive use of X-ray and neutron scattering techniques and the general principles 

of the methods and their experimental parameters are outlined below. 

2.3.1 Small Angle Scattering (SAS) With X-rays And Neutrons 

X-rays and neutrons interact with matter in fundamentally different ways, but their 

behaviour can be treated in the same mathematical fashion. Both methods have associated 

advantages and disadvantages as investigative techniques for structural biology. X-ray 

photons, being electromagnetic radiation, are scattered by a sample via interactions with 

the electrons of atoms. Typical energies produced in modern synchrotron sources for 

structural experiments are around 10keV with wavelengths λ between 0.1 - 0.15nm. For 

neutrons, which are particles that have wave-like properties due to the de Broglie 

relationship (Broglie, 1924), their interaction occurs with the atomic nuclei of the sample. 

Thermal neutrons produced from fission or spallation sources for scattering experiments 

have a typical wavelength range of between 0.2 - 1nm. 
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The atoms of objects illuminated by an incident monochromatic plane wave with wave 

vector 𝑘𝑖 =  |𝒌𝒊|  =  2𝜋
𝜆

 become the source of spherical scattered waves. This is a result of 

the scattering centres appearing as ‘point-like’ due to the range of the interaction between 

the incoming X-ray or neutron radiation is much smaller than the wavelength of the 

incoming radiation. Scattering for X-rays and neutrons can occur by elastic scattering, 

where the direction of the incoming wave vector is changed but not the magnitude, or 

inelastic scattering, which causes a change in both the direction and magnitude of the 

incoming wave vector. Inelastic scattering confers information about the motion and 

dynamics of molecules but not directly their structure. As such, for the purposes of the 

experiments conducted in this thesis we will only consider elastic scattering.  

In this case the scattered wave  𝑘𝑓 is equivalent to the modulus of the incident wave 

vector 𝑘𝑓 =  |𝒌𝒇|  =  𝑘𝑖. The observed scattering is the amplitude of coherently scattered 

waves and is given by the scatter length of the atom encountered by the incident radiation. 

For X-rays the atomic scattering length, 𝑓𝑥, is given by 𝑓𝑥  =  𝑍𝑟0 where Z is the atomic 

number and 𝑟0 is the Thomson radius for an electron (2.82 x 10-13 cm). As a result X-ray 

scattering increases in sensitivity linearly with atomic number, as the number of electrons 

is proportional/directly related to the atomic number, and is more sensitive to heavy metals 

than lighter elements such as hydrogen, carbon and nitrogen. 

For neutrons the scattering length is given by 𝑓𝑛  =  𝑓𝑝  +  𝑓𝑠 . This is due to neutrons 

interacting with the nuclear potential of an atom, 𝑓𝑝, and the spin of the atom, 𝑓𝑠. Unlike X-

rays, 𝑓𝑝 does not increase linearly with atomic number does not follow any particular trend 

with respect to atomic number and lighter elements are as visible to neutrons as heavier 

elements. The spin term only reveals structural information if the spin of the incoming 

radiation and the nuclear spins in the sample are aligned, otherwise it only yields a flat 
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incoherent background. In many cases the incoherent background produced can exceed 

that of the coherent scattering signal and lead to severe experimental difficulties by 

degrading the signal to noise ratio. 

This has several significant consequences when considering scattering via X-rays or 

neutrons. Firstly is that neutrons are more sensitive to lighter elements compared to X-rays 

(see Figure 2.7). Secondly there is a difference between isotopes of the same element from 

the nuclear potential scattering term. This behaviour also enables neutron scattering to 

become sensitive to isotope substitution, the most important of which is that of hydrogen 

and deuterium which have scatter lengths of -0.374 x 10-12cm and 0.667 x 10-12cm 

respectively.  

 

Figure 2.7: Comparison between the scatter lengths of elements by X-rays and neutrons 

(10-12 cm). Source private communication from Professor V.T.Forsyth. 

In SAS experiments samples are illuminated by monochromatic X-rays or neutrons 

produced by sources such as the European Synchrotron Radiation Facility (ESRF, 

Grenoble) and Insitut Laue-Langevin (ILL, Grenoble). The distribution of scattered 

X-Rays 

Neutrons 

5 6 
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Equation 2.15 

radiation is observed by a detector after the interaction with the sample by the incident X-

rays or neutrons. A typical experimental setup can be seen in see Figure 2.8. In this thesis 

SAXS experiments were performed using the BM-29 beamline (ESRF, Grenoble) with the 

experimental setup as described in Chapter 4.2. SANS experiments were performed using 

the D22 beamline (ILL, Grenoble) with the experimental setup as described in Chapter 5.2. 

 

Figure 2.8: Experimental setup for SAS experiment. Incident monochromatic radiation 

beam incoming from the left interacts with the sample and is scattered in the 2θ direction.  

The scattering vector q (sometimes denoted as s in the case for X-rays) is given by: 

𝑞 = |𝒒| = |𝒌𝒇 − 𝒌𝒊| =
4𝜋 sin 𝜃

𝜆
  

 

Where λ is the wavelength of the incident radiation and the scattering angle is given by 2θ 

(Dmitri I. Svergun, Michel H. J. Koch, Peter A. Timmins, 2013). 

When measuring macromolecules, which contain an assembly of many scattering atoms 

and of different elemental composition, it is more convenient to calculate the average 
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Equation 2.16 

Equation 2.17 

Equation 2.18 

scatter length density distribution ρ(r). This is equal to the sum of the total scatter lengths 

of the atoms per unit volume of the macromolecule. If we take a typical sample, i.e. a 

homogenous protein suspended in a solution, we assume that the solvent will be a 

featureless matrix of a constant scatter length density, ρs. 

The difference in scattering amplitudes from a single particle from that of an equivalent 

solvent volume is given by: 

∆𝜌(𝑟) =  𝜌(𝑟) −  𝜌𝑠 
 

This is related to the scattering amplitudes of the particles in the sample by a Fourier 

transform: 

𝐴(𝑞) =  ℑ[𝜌(𝑟)] =  ∫ ∆𝜌(𝑟) exp(𝑖𝒒𝒓)
𝑉

𝑑𝒓 

 

The amplitude, A(q) cannot be measured directly. However, it is possible to measure the 

intensity of the scattered waves which is a product of the amplitude and its complex 

conjugate: 

𝐼(𝒒) = 𝐴(𝒒)𝐴∗(𝒒) 

 

If particles in a sample are randomly distributed and their positions and orientations 

uncorrelated then their scattering intensities are summed. The scattering pattern observed 

by the detector corresponds to the convolution of the particle density distribution 

describing the positions and orientations of the particles within the sample. For a 

homogeneous suspension of biological macromolecules, randomly orientated, this 
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produces an isotropic scattering pattern from the summed intensities averaged over all 

orientations of the particle(𝑞) =  〈𝐼(𝑞)〉𝛺. This represents a particles structure in reciprocal 

space and by using the Fourier transform we can convert the measured intensities to real 

space co-ordinates to find its size and low-resolution shape in real space. 

The real space structure in biological context refers to the organisation of amino acids into 

higher order secondary structures (e.g. alpha helices and beta sheets) and/or tertiary and 

quaternary shapes. This builds the overall topology of biological macromolecules and 

determines how they may perform functions such as enzymatic reactions or energy 

transfers which are uniquely interesting. Solution scattering provides the opportunity to 

observe the overall shape envelope of these molecules and can see changes in this envelope 

for single macromolecules/complexes as they perform certain functions or interact with 

binding partners. 

2.3.2 Deuteration And Contrast Variation For SANS 

As mentioned previously, the key advantage of neutrons over X-rays is that they are 

scattered more easily by light elements and can distinguish between isotopes. This is 

exceptionally valuable in the case of hydrogen and its isotope deuterium in the preparation 

of biological samples. By labelling proteins in a perdeuterated form (100% exchange of 

hydrogen atoms to deuterium atoms) significant gains can be made in the area of neutron 

crystallography to isolate and identify important water molecules in protein active sites to 

understand reaction mechanisms. However, this can be challenging as many proteins can 

change from the resulting isotope substitution and become unstable, no longer 

fold/function correctly or no longer crystallise/produce crystals of sufficient volume for 

use in neutron experiments. 
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A more useful approach can be used instead by producing partially deuterated proteins 

(75%) for use in solution contrast match-out experiments. This is particularly useful in the 

case of protein-protein and protein-DNA complexes. Here we can change the ratio of 

H2O:D2O in the solvent to alter its scatter length density. By doing so, different 

components of a protein-protein or protein-DNA complex can become ‘matched out’ as 

they possess an identical scatter length density to that of the solvent and cannot be 

distinguished (see Figure 2.9). This allows for individual components of a complex to be 

resolved to reveal information about the size and shape of the visible partner to identify 

any structural changes that can occur resulting from any interactions. 

 

 

 

 

 

 

 

Figure 2.9: Change in scatter length density of H2O solvent with increasing D2O ratio and 

respective match points for protein, DNA/RNA and lipid systems. Components of a system 

are matched out where they intersect with the increase in %D2O of the solvent (Haertlein et 

al., 2016). 

For a typical protein-protein complex experiment, one partner will be produced in a 75% 

deuterated state while the other remains the normal hydrogenated (or protonated) form. In 
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normal 100% H2O solvent conditions, both partners of the complex can be seen via 

neutron scattering providing information about the size and structural envelope of the 

overall complex. At approximately 40% D2O content of the solvent, the hydrogenated 

protein will become ‘matched out’ leaving only the deuterated partner visible (see 

Equation 2.16). At 100% D2O concentration the opposite case is true whereby the 

deuterated protein will be indistinguishable from the solvent but the hydrogenated protein 

can be resolved (see Figure 2.10). 

 

Figure 2.10: Illustration of contrast labelling and ‘matched out’ proteins (Haertlein et al., 

2016). (A) 100% D2O solvent – deuterated proteins matched out, protonated proteins 

remain visible. (B) 40% D2O solvent – protonated proteins matched out, deuterated 

proteins now become visible. 

2.3.3 Deuterated Protein Production 

To prepare deuterated proteins in preparation for contrast match out experiments, the 

bacterial expression system for both PfSir2a and PfAlba3 was adapted to growth in 

minimal media growth conditions. Firstly, this was accomplished in normal hydrogenated 

conditions. Here a glycerol stock of the bacterial expression system was inoculated into 10 

ml minimal media growth conditions, with 35 mg ml-1 kanamycin sulphate, by a series of 

three culture passages over a 72-hour period (recipe in Appendix A). Using 1 ml of the 

previous culture, the bacteria were left to grow for 16 hours overnight at 37°C. The growth 
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of the bacterial cultures was assessed by monitoring the O.D600 reading before performing 

each successive passage. 

After 72 hours, expression tests were performed to ensure recombinant protein production 

was still present. Glycerol stocks using 1 ml of the final culture after 72 hours adaptation to 

the minimal media growth conditions was prepared for storage at -80°C. This process was 

repeated for deuterated cultures by using the same minimal media recipe dissolved in an 

85% D2O solution. After the adaptation process, the expression tests were performed again 

to check for expression of the recombinant proteins and assess solubility levels. 

 

 

 

 

 

 

 

 

 

 

 

 



69 
 

Chapter 3: Biochemical And Biophysical 

Characterisation 

Abstract 

This chapter focuses on the biochemical and biophysical investigations performed on 

PfSir2a and PfAlba3 in preparation for structural characterisation by SAXS/SANS 

techniques. Expression of recombinant PfSir2a and PfAlba3 was performed using the E. 

coli bacterial expression systems and optimised for the maximum recovery of soluble 

forms of both proteins. These were subsequently purified using Ni-NTA, IEX and SEC 

method to achieve high purity samples required for further biochemical, biophysical and 

structural experiments. 

Investigations by DLS, SEC-MALS and TOF-MS indicated both PfSir2a and PfAlba3 

samples were monodisperse and of the correct molecular weight expected for the full 

length recombinant forms of each protein. PfSir2a was found to be generally stable in 

solution whereas PfAlba3 exhibited a tendency towards rapid aggregation shortly after 

purification requiring SEC steps immediately before any characterisation methods were 

attempted. Further analysis by AUC revealed that PfSir2a exhibited a concentration 

dependent oligomerisation effect whereas PfAlba3 was found to remain as a monomer in 

solution. 

Pulldown experiments using tagged and non-tagged versions of PfAlba3 and PfSir2a 

respectively indicated an extremely weak interaction between the two proteins. This was 

investigated using MST and ITC to characterise the binding affinity and stoichiometry of 

the interaction but could not be successfully performed due to the unstable nature of 

PfAlba3 and oligomerisation effect exhibited by PfSir2a. 
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3.1 Introduction 

The focus of this chapter is the production, characterisation and optimisation of 

recombinant target proteins PfSir2a (33.8 kDa) and PfAlba3 (13 kDa). This was essential 

preparation work for structural experiments carried out using SAXS and SANS. The 

background to this work and methods has been explained in Chapters 1 and 2 and work 

was carried out using the facilities at both Keele University (Staffordshire, UK) and the 

partnership for structural biology (PSB, Grenoble). 

The overall strategy for this work was to produce recombinant PfSir2a and PfAlba3 using 

the pET28a expression system and isolate the individual proteins by means of IMAC and 

IEX purification. The overview of the plasmid preparation and expression systems used is 

covered in section 3.2. Further purification was carried out using SEC to prepare samples 

for further biochemical and biophysical characterisation. This includes TOF-MS, TSA, 

DLS, SEC-MALS-RI, AUC, ITC and MST and is covered in sections 3.4 onwards. 

3.2 Production Of PfSir2a And PfAlba3 

This section details the results of the cloning work carried out to prepare PfSir2a and 

PfAlba3 for expression studies. 

3.2.1 PfSir2a Cloning 

PfSir2a PCR products were obtained as described in Chapter 2, section 2.1.3 and run on a 

0.8% agarose gel at 80V in 1x TAE buffer for 1 hour and recovered by gel extraction kit. 

Purified products were digested for 2 hours with BamHI/XhoI restriction enzymes, then 

phenol/chloroform extracted and ethanol precipitated as previously described (Chapter 2, 

section 2.1.5). Cleaned Sir2a insert was then ligated into double-digested pET28a vector 

using a 20 µl T4 DNA ligase reaction (ThermoFisher Scientific Cat no. EL0014) at a 1:4 

ratio in favour of PfSir2a insert. The ligation reaction was carried out overnight at 16˚C 
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and ethanol precipitated as previous with the addition of 1µl 10mg ml-1 Yeast tRNA 

(ThermoFisher Cat no. AM7119) to act as a carrier. 

The ligated pET28a vector was then transformed into DH10b competent cells and 

incubated overnight. Single colonies from overnight growth were isolated and subjected to 

colony PCR to check for the PfSir2a sequence. The colony PCR results of selected PfSir2a 

colonies can be seen in Figure 3.1. The expected product size for PfSir2a insert plus 

flanking regions from T7 upstream and downstream primers is 1138bp. Several bands of 

this approximate size were detected in the gel images in Figure 3.1. However, several 

reactions show amplification of additional products and are thus not clean PCR reactions. 

Six selected colony PCR reactions (highlighted in red in Figure 3.1) showed relatively 

clean products and the respective colonies were chosen for culture and plasmid recovery 

via miniprep (Qiagen Cat no. 12125). 

 

 

 

 

 

 

 

 

 



72 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Colony PCR products of PfSir2a colonies. Lane 1 positive control (PCR 

templated on ligated pET28a vector with PfSir2a insert). Lane 2 negative control 

(unligated pET28a vector). Lanes 3 – 30 individual colony PCR products. Highlighted 

boxes indicate colonies selected for sequencing. 

Plasmids recovered from the overnight cultures were digested with BamHI and XhoI 

restriction enzymes in 40μl reactions and digested products were run on a 0.8% agarose gel 

(see Figure 3.2). Digested products of the expected size for the inserted PfSir2a gene, 

822bp, were seen in lanes 1, 3, 4 and 5.  Respective colonies were then re-grown to harvest 

more pET28a vector containing PfSir2a insert and were sent off for sequencing. 

  M   16  17   18  19    20   21   22  23   24   25    26   27   28   29  

3000 bp - 
2000 bp - 
1500 bp - 

1000 bp -  

500 bp - 

3000 bp - 
2000 bp 
1500 bp 

1000 bp 

500 bp - 

 M     1    2    3    4    5     6    7    8    9    10   11  12   13  14   15 
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Figure 3.2: PfSir2a DH10b clones, digested with BamHI and XhoI restriction enzymes on 

0.8% agarose gel. Digested PfSir2a inserts can be seen in lanes 1, 3, 4 and 5 at just below 

the 700bp marker as indicated by arrow. 

3.2.2 PfAlba3 Cloning  

A codon-optimised PfAlba3 gene insert was purchased from Eurofins, MWG Operon. The 

sequence is available in the Appendix B. This was excised from pEX-A vector (Eurofins, 

MWG Operon) by restriction digest with NcoI and XhoI enzymes as described in Chapter 

2, section 2.1.5. The digested PfAlba3 product was then gel extracted (Figure 3.3 A) and 

digested a second time before ethanol precipitation and ligation into digested pET28a 

vector. Figure 3.3 B shows ethanol-precipitated digested pET28a vector in lane 1 and 

PfAlba3 in lane 2. Approximately 80ng μl-1 digested vector and 6.25ng μl-1 PfAlba3 insert 

was recovered after ethanol precipitation. Ligation reaction for pET28a and PfAlba3 was 

carried out in a 1:5 ratio in favour of PfAlba3 insert (7.8ng pET28a vector, 39ng PfAlba3). 

400 bp - 

700 bp - 

1500 bp - 
1000 bp -  

500 bp - 

           M    1     2      3      4      5      6        

300 bp - 
200 bp - 

75 bp - 
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Figure 3.3: (A) pEX-A/Alba3 digestion products on 0.8% agarose gel from 200ng of 

plasmid DNA. (B) Recovered ethanol-precipitated pET28a and Pfalba3 (lanes 1 and 2 

respectively) after digestion and before ligation. 

In Figure 3.4, the digested products of DH10b cells transformed with ligated vector 

containing PfAlba3 insert are shown. Products are seen in each of the 6 recovered plasmid 

samples digested in the expected size region for PfAlba3, 324bp. Remaining undigested 

plasmids were sent for sequencing. 
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Figure 3.4: Products of digest reaction performed on recovered pET28a plasmids after 

ligation with PfAlba3 sequence insert and transformation into E. coli DH10b cloning 

strain. Digested PfAlba3 inserts are visible as bands just above the 300 bp marker as 

indicated by the arrow. Plasmids digests were performed with NcoI and XhoI enzymes for 

1 hour at 37°C. 

3.2.3 Sequencing Of Expression Vectors 

Recovered pET28a plasmids containing sequences for PfSir2a and PfAlba3 were sent for 

sequencing analysis to confirm insertion of sequences ready to be used for expression tests. 

The results returned revealed two important features about the sequences which were 

ligated into the expression vectors. The most significant observation affected the 

expression vector for PfAlba3. It was found that an error had occurred in the initial 

sequence and restriction digest design for insertion into the native pET28a vector. The 

starting Methionine codon in the pET28a vector is included as part of the NcoI cut site 
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sequence. This was not accounted for in the design of the codon optimised PfAlba3 

sequence which, when digested and ligated into the pET28a expression vector, resulted in 

an offset of the open reading frame (ORF). This meant the PfAlba3 sequence would not be 

translated correctly (see Figure 3.5). 

CCATGGATGGCAAGCACCGAAGAAGTCTCGCAAGAACGCTCAGAAAATAG 

NcoI : C'CATGG 

 

Figure 3.5: N-terminal codon optimised sequence of PfAlba3 with the NcoI cut site 

highlighted in red and the start ATG codon of the P. falciparum sequence underlined in 

black. When digested and ligated into the pEt28a vector the NcoI site (highlighted in blue) 

forms the start codon for the sequence to be translated. With the NcoI site added to the 

beginning of the PfAlba3 sequence this becomes out of frame and cannot be translated 

correctly. 

Additionally, it was noted that the PfSir2a sequence contained a single mutation of an 

adenine residue to a guanine at nucleotide position 279 in the PfSir2a sequence, position 

433 in sequencing data (see Figure 3.6). However, this mutation is in frame with the third 

codon of the gene sequence. Both the original sequence at this point, GAA, and the 

mutated sequence, GAG, encode for the same amino acid, Glutamic acid. Further work 
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CO PfSir2a   247 ATCCGTGATATTTCTAGTGATTACGAAATCGAAATTAATAACGGCCACGT    
                 ||||||||||||||||||||||||||||||||.||||||||||||||||| 
S27 F        401 ATCCGTGATATTTCTAGTGATTACGAAATCGAGATTAATAACGGCCACGT  
 

was carried out using the mutated sequence as the amino acid composition of the translated 

sequence would not change. 

 

 

Figure 3.6: Sequence alignment of codon optimised PfSir2a sequence (CO PfSir2a) vs the 

returned sequence results for the plasmid recovered from colony 27 (S27F). The adenine in 

position 279 (highlighted in red) has been mutated to a guanine but is a silent mutation. 

However, the frame shift for the PfAlba3 sequence would need to be corrected before 

expression studies could begin. It became necessary to perform site directed mutagenesis 

on the sequences to have them in the correct reading frame and allow for the translation of 

the target protein sequences in the E. coli BL21 DE3 expression strain. This was performed 

using a QuickChange lightning site-directed mutagenesis (SDM) kit from Agilent 

Technologies (Cat no. 210518) (see Chapter 2, section 2.1.6). It was necessary to design 

primers to remove the GATG sequence from the pET28a ligated sequence, removing the 

start ATG codon of the native sequence and the G base from the end of the original NcoI 

cut site. This would allow for the ATG inside the NcoI cut site to remain as the start codon 

as intended (see Appendix B for primer sequence). 

3.2.4 Transformation And Expression Of PfSir2a And PfAlba3 

Transformation of expression plasmids for PfSir2a and PfAlba3were carried out as 

described in Chapter2, section 2.1.7. Expression tests were conducted by selecting colonies 

from the LB agar plates and placing them in 10ml flask cultures containing 35µg ml-1 

kanamycin sulphate. Cultures were grown at 37˚C shaking at 200rpm until an O.D600
 of 0.6 

was reached and a 1ml uninduced sample was taken. The bacteria in the sample were 

pelleted by centrifugation at 14000rpm for 2 minutes and the excess media removed before 
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suspension in 50µl of 1x SDS-PAGE sample buffer. Cultures were then induced by the 

addition of 1mM isopropyl β-D-1-thiogalactopyranoside (IPTG) and left to grow for 3 

hours. After this period, an induced sample was taken and normalised to an OD600 of 0.6. 

The bacterial cultures were harvested by centrifugation at 5000rpm, 4˚C for 15 minutes. 

The excess LB media was removed and the bacterial pellets were stored at -20˚C for future 

solubility and extraction studies. Samples were heated to 100˚C for 10 minutes after 

mixing with SDS-PAGE sample buffer and expression levels of the selected colonies for 

both PfSir2a and PfAlba3 were analysed via SDS-PAGE gel run at 100V for 90 minutes 

and visualised by coomassie staining (see Figure 3.7). 
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Figure 3.7: PfSir2a (A) and PfAlba3 (B) expression test results from six colonies as 

analysed by 12% and 16.5% SDS-PAGE respectively (10µl of sample per lane). M 

indicates molecular weight marker lane. Uninduced and induced lanes marked by – and + 

respectively. 

M - + - + - + - + - + - + 

A 

34 kDa  

PfSir2a  

M - + - +  - +   -  +   - +  - + 

B 

13.04 kDa 

PfAlba3 
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Expression of the tagged constructs was also confirmed via Western blot analysis as 

described in Chapter 2, section 2.1.9. Uninduced and induced samples for both PfSir2a and 

PfAlba3 were analysed and can be seen in Figure 3.8. Here we see a clear induction band 

for both the recombinant forms of PfSir2a and PfAlba3 in the induced lanes. Additional 

bands were located at approximately 10 kDa in size in both uninduced and induced lanes 

which corresponded to a native E. coli protein. 

 

 

 

 

 

 

 

Figure 3.8: Western blot results of PfAlba3 and PfSir2a expression test. M indicates 

marker lane. Uninduced and induced lanes are marked by (-) and (+) respectively. 

3.2.5 Solubility Tests And Optimisation For Large Scale Production 

For structural experiments, PfSir2a and PfAlba3 proteins must be recovered in a soluble 

form and free from contaminants (e.g. host E. coli proteins). The solubility of PfSir2a and 

PfAlba3 was assessed by lysing induced E. coli cell cultures and separating the insoluble 

and soluble fractions. Three different induction temperature conditions were used to assess 

the impact on solubility, 37˚C, 30˚C and 20˚C with an induction time of 3, 16 and 20 hours 

M - + - + 

33.88 kDa 

PfSir2a 

13.04 kDa 
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respectively. Uninduced and induced samples were taken and again normalised to an 

O.D600 of 0.6. 

For solubility tests, frozen cell pellets of induced cultures were resuspended on ice with 

1ml of lysis buffer containing 50mM sodium phosphate, 300mM sodium chloride, 10mM 

Imidazole, pH 7.5. Once fully resuspended the cells were lysed by the addition of 0.2µm 

bacterial lysis bio-beads (Scientific Industries, Inc, Cat no. SI-B601) and placed in a cell 

disruptor genie system (Scientific Industries, Inc, Model No. SI-D256) at 4˚C for 6 

minutes. After lysis, 50µl of the recovered suspension was separated into the soluble and 

insoluble fractions by centrifugation at 14,000rpm for 2 minutes. The soluble fraction 

containing supernatant was pipetted off and mixed with 3x sample loading buffer in a 3:1 

ratio respectively. The insoluble fraction was resuspended in 50µl of 1x sample buffer for 

direct comparison by SDS-PAGE analysis (see Figure 3.9). 

The solubility studies revealed that PfSir2a is generally quite insoluble despite good 

expression. The optimum condition for expression of soluble protein was determined to be 

a 3-hour induction at 37˚C. For PfAlba3 an increase in solubility was observed by 

decreasing the temperature and increasing length of induction to 20˚C and 20 hours 

respectively. Expression levels remained good and constant across the temperature range 

tested. As such, large scale production of PfSir2a and PfAlba3 was conducted with these 

conditions in 1L flask cultures containing 35µg ml-1 kanamycin sulphate for further 

purification. 
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Figure 3.9: Solubility test results for PfSir2a (A) and PfAlba3 (B). (M) Indicates molecular 

weight marker lane. Induction at each temperature is monitored via uninduced (-) and 

induced samples (+). Insoluble fraction containing pelleted remains after lysis by bio-bead 

disruption and the soluble fraction supernatant can be seen in lanes marked P and SN 

respectively. Conditions with highest levels of recoverable soluble protein for PfSir2a or 

PfAlba3 indicated by arrow. 

M - + P SN - + - + P SN P SN 

37˚C 30˚C 20˚C 
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3.3 Purification Of PfSir2a And PfAlba3 By Ni-NTA And SEC 

This section describes the work carried out to purify the recombinant forms of PfSir2a and 

PfAlba3 using the expression system a described section 3.2. 

3.3.1 Purification Of PfSir2a 

The purification of PfSir2a was performed as described in Chapter 2, section 2.1.11 and 

was monitored by UV280nm absorbance (see Figure 3.10). Throughout each step samples 

were taken from the supernatant flow through, wash and elution step for purity analysis by 

SDS-PAGE. 

 

 

 

 

 

 

 

 

Figure 3.10: UV280nm absorbance monitoring of Ni-NTA purification of PfSir2a using 

ÄKTAPrime FPLC system. 

A flow through sample (FT) was taken to check the protein was efficiently binding to the 

column and not wasted. Samples from the across the peaks of the wash and elution step 

(see Figure 3.11) show some PfSir2a being removed with contaminants in the wash step. 
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The elution samples show a large amount of PfSir2a is retained on the column after the 

wash until the elution step with some higher molecular weight contaminants. 

 

 

 

 

 

 

 

 

Figure 3.11: 12% SDS-PAGE gel analysis of purification steps. P and SN indicate the 

insoluble and soluble fractions of the induced protein from the E.coli bacterial culture. 

Flow through (FT), wash and elution step samples are labelled. 

The elution fractions were pooled and concentrated using Amicon® Ultra-15 centrifugal 

filter devices (Merck Millipore (Cat no. UFC901008) before overnight dialysis using 

10kDa cut-off dialysis cassettes (Thermo Scientific, Cat no. 66383) into a size exclusion 

buffer containing 50mM sodium phosphate, 500mM sodium chloride, pH 7.5 at 4˚C. A 

size exclusion step was performed as described in Chapter 2, section 2.1.14 and samples 

were taken over the elution volume for purity analysis by SDS-PAGE (see Figure 3.12). 
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Figure 3.12: (A) SEC migration profile of PfSir2a. (B) Samples collected over elution peak 

of PfSir2a’s migration through the Superdex™ S75 10/300 GL analytical column. 
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Initial analysis reveals PfSir2a as a non-aggregated protein by its SEC elution profile, 

proteins and aggregates larger than 75 kDa are excluded from the void volume of the 

Superdex™ S75 10/300 GL analytical column (GE Healthcare) at an approximate elution 

volume of 8.5ml. Analysis using molecular weight gel filtration standards (Bio-Rad Cat 

no. 151-190) yields an estimated molecular weight of 50-55 kDa which is higher than 

expected for a monomer of PfSir2a (33.8 kDa) and lower than a dimer (67.6 kDa) (data not 

shown). This could be suggestive of PfSir2a existing as an elongated monomer or a 

compact dimer in solution. 

Some higher molecular weight contaminants still remained in the fractions and appeared to 

be migrating with PfSir2a, despite their higher apparent molecular weight as observed by 

the SDS-PAGE. As such an additional IEX chromatography step was included in the 

purification process. This step was carried out as described in Chapter 2, section 2.1.13 and 

the resulting elution profile can be seen in Figure 3.13 A. Samples were taken over the 

elution volume for purity analysis by SDS-PAGE (see Figure 3.13 B). 
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Figure 3.13: (A) Mono S elution profile of PfSir2a. (B) PfSir2a fractions recovered after 

Mono S IEX purification step.  
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3.3.2 Purification Of PfAlba3  

The purification of PfAlba3 was carried out as described previously in Chapter 2, section 

2.1.12. The elution profile was monitored by UV280nm absorbance (see Figure 3.14). 

Throughout each step samples were taken from the supernatant flow through, wash and 

elution step for purity analysis by SDS-PAGE. 

 

 

 

 

 

 

 

 

Figure 3.14: UV280nm absorbance monitoring of Ni-NTA purification of PfAlba3 using 

ÄKTAPrime FPLC system. 

In Figure 3.15 we see that there is a signifciant amount of PfAlba3 that is recovered from 

the lysis protocol and present in the elution fractions. 
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Figure 3.15: 16.5% SDS-PAGE gel analysis of purification steps. P and SN indicate the 

insoluble and soluble fractions of the induced protein from the E.coli bacterial culture. 

Flow through (FT), Wash and elution step samples are labelled. 

Further purification of PfAlba3 was carried out by SEC as described previously in Chapter 

2, section 2.1.14. Samples were taken over the elution volume for purity analysis by SDS-

PAGE (see Figure 3.16). 
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Figure 3.16: (A) S-75 SEC migration profile of PfAlba3. (B) Samples collected over 

elution peak of PfAlba3’s migration through the Superdex™ S75 10/300 GL analytical 

column. 
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Initial analysis shows that PfAlba3 has oligomerisation/aggregation tendencies as can be 

seen from the two peaks observed in the SEC elution profile. This is confirmed by SDS-

PAGE analysis as PfAlba3 is clearly present in both elution peaks which corresponded to 

different molecular weights. An estimated molecular weight using gel filtration standards 

was calculated for PfAlba3 (13 kDa) to be 25kDa. This indicated the protein could be 

present as a dimer form in solution. 

A second SEC experiment was conducted using a Superdex™ S200 10/300 GL analytical 

column that has a void volume which excludes proteins larger than 200kDa. This was to 

identify if the protein was in an additional oligomeric state or aggregated in the first peak. 

Sample preparation and injection was carried out as described previously (Chapter 2, 

section 2.1.14) and the SEC elution profile can be seen in Figure 3.17. 

 

 

Figure 3.17: S-200 SEC migration profile of PfAlba3. Aggretated PfAlba3 elutes in peak 1 

while non aggregated protein elutes in peak 2. 
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The fractions from both peak 1 and peak 2 from the S-200 SEC profile were analysed by 

SDS-PAGE to confirm that it is high molecular weight aggregates of PfAlba3 contained 

within elution peak 1 (see Figure 3.18). 

 

 

 

 

 

 

 

 

Figure 3.18: Samples collected over elution profile of PfAlba3’s migration through the 

Superdex™ S200 10/300 GL analytical column. 
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3.4 TOF-MS Results 

PfSir2a and PfAlba3 were confirmed to have been produced in full length recombinant 

forms by TOF-MS analysis. The deconvoluted results from the analysis can be seen in 

Figure 3.19.  

 

 

 

 

 

 

 

Figure 3.19: Deconvoluted TOF-MS spectrum results for PfSir2a and PfAlba3 in panels A 

and B respectively. 

A 

 

Sample Expected Mass 

(Da) 

Observed Mass 

(Da) 

Mass Deviation 

(Da) 

Mass Accuracy 

(ppm) 

PfSir2a 33888.36 33757.30 0.15 4 

B 

Sample Expected Mass 

(Da) 

Observed Mass 

(Da) 

Mass Deviation 

(Da) 

Mass Accuracy 

(ppm) 

PfAlba3 13041.91 12911.24 0.53 41 
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Results for PfSir2a and PfAlba3 show a lower observed mass than the expected mass as 

calculated by the amino acid sequence of the recombinant proteins. In both cases this is 

attributed to the loss of the N-terminal methionine residue (MW = 141.21 Da) from both 

protein sequences, believed to be caused by the action of methionine aminopeptidase found 

in E. coli (Xiao et al., 2010). 

3.5 TSA Buffer Optimisation 

Thermal shift assay experiments were performed to evaluate buffer conditions (buffering 

agent, pH, salt concentration etc) via a screening method to optimise buffers for protein 

purification, storage and further experiments. Initial screens were performed in 96-well 

low-profile, non-skirted, optical reading compatible white plates (Stratagene, Cat no. 

410088). Wells were prepared by the additions of 4µl of 5x buffer stocks (final 

concentration 100mM), 1µl of SYPRO® Orange (Invitrogen Cat no. S6651) 100x stock 

(final concentration 5x) and 2µl of protein sample stock at 100µM (final concentration 

10µM).  

Two salt conditions were tried, 100mM and 500mM sodium chloride, by adding 2µl or 5µl 

of 2M initial stock concentration respectively. The remaining volume for each well was 

made up to a final volume of 20µl with ddH2O. Once all wells had been filled with the 

reaction mix they were sealed with an optical compatible seal (Bio-Rad Cat no. MSB-

1001) and placed in a Mx-3005P Q-PCR instrument (Stratagene) and heated from 25˚C to 

75˚C at a rate of 1˚C min-1. 
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3.5.1 Thermofluor Analysis Of PfSir2a 

Results for the thermofluor experiments performed on PfSir2a samples can be seen in 

Figure 3.20. For both salt concentrations tested the analysis is difficult to interpret due to 

the high initial fluorescence observed at low temperatures. This means that the SYPRO® 

dye is bound to hydrophobic regions present on the protein surface. Another reason for this 

could be that the protein is unfolded or aggregated but this is considered unlikely as the 

previous SEC results indicate the protein is not aggregated, due to being taken immediately 

after a SEC step was performed. Also, the thermofluor results still show a small but 

characteristic change in fluorescence due to unfolding with increase in temperature. 

PfSir2a appears to be most stable in a buffer pH range of 6.6 – 8.0. The protein was found 

to be most stable in HEPES buffer, pH 7.0, 100mM sodium chloride with a Tm of 61.5˚C. 

The protein appears to be generally stable in most buffer conditions tested (e.g sodium 

phosphate, potassium phosphate, Tris, Bicine, Tricine). There also appeared to be no 

significant effect of salt concentration on the stability of the protein (significant effect 

when ∆Tm of greater than 2˚C occurs). 
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Figure 3.20: Thermofluor results for PfSir2a. Panel A shows the experiments conducted 

with 100mM sodium chloride concentration and Panel B shows those conducted with 

500mM. 
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3.5.1 Thermofluor Analysis Of PfAlba3 

Results for the thermofluor experiments performed on PfAlba3 can be seen in Figure 3.21. 

A distinct difference is observed between the two salt concentreations tested, those 

conducted at 100mM sodium chloride concentration again show high initial fluoresence 

levels indicating that either the SYPRO® dye is binding to several exposed hydrophobic 

patches, or that the protein is unfolded or aggregated. This is not observed in the 500mM 

sodium chloride concentreation experiments which show reduced intial fluorescence levels 

compared to that of the 100mM results. This indicates that there is a salt concentration 

dependence for PfAlba3 where it is more stable in higher salt concentrations. 

PfAlba3 appears to be most stable in a buffer pH range of 5.5-7.0. The optimal condition 

for the protein was found to be in potassium phosphate, pH 6.0, 500mM sodium chloride 

with a Tm of 49.5˚C. The protein appeared to be less stable at higher pH conditions as the 

fluoresence change due to heating produced flat lines with no easily identified thermal 

shift. Significant changes in the Tm of PfAlba3 were observed between the two salt 

concentrations in each buffer tested. A dramatic decrease in Tm of 6˚C or more was noticed 

in almost all conditions tested suggesting that PfAlba3 becomes unstable and begins to 

aggregated in reduced salt environments. 
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Figure 3.21: Thermofluor results for PfAlba3. Panel A shows the experiments conducted 

with 100mM sodium chloride concentration and Panel B shows those conducted with 

500mM. 
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3.6 Light scattering results For PfSir2a And PfAlba3 

This section details the results obtained for DLS experiments performed using purified 

recombinant PfSir2a and PfAlba3 as described in Chapter 2, section 2.2.3. 

3.6.1 DLS Results Of PfSir2a 

Initial experiments to measure the hydrodynamic raidus of PfSir2a were conducted in a 

buffer containing 50mM HEPES, 100mM sodium chloride, pH 7.5 at a sample 

concentration of 2mg ml-1. A single broad peak was observed with a calculated RH of 8.74 

± 5.45nm and a polydispersity of 49.9% (see Figure 3.22). This high polydispersity 

indicates multiple species are present within the sample and may be a monomer/dimer 

mixture; other oligomeric states may also exist. This indicates the sample would not be 

suitable for SAXS/SANS experiments in the current buffer choice. 

 

Figure 3.22: DLS results for PfSir2a in 50mM HEPES buffer with 100mM or 500mM 

NaCl. 
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The salt concentration was then increased to 500mM sodium chloride with the sample 

concentration kept at 2 mg ml-1 and repeated (Figure 3.22). These results yielded a RH of 

8.72 ± 2.67nm and a polydispersity of 31.1%. This indicates that the higher salt 

concentration appears to have an effect on the overall polydispersity of the species within 

the sample but it still remains above the 20% threshold for a monodisperse solution. 

Additional buffer conditions were screened to try to improve the overall monodispersity of 

the sample. Buffer solutions containing 50mM Tris or 50mM sodium phosphate at pH 7.5 

and pH 7.0 were tested with 100mM or 500mM sodium chloride concentration (see Figure 

3.23). For samples measured in Tris buffer the observed RH was calculated to be 8.5± 

2.72nm and 8.9 ±2.02nm in at a salt concentration of 100mM and 500mM sodium chloride 

respectively. The polydispersity value for each were determined to be 28.2% for 100mM 

and 21.2% for 500mM again indicating there is a salt effect causing a reduction in 

polydispersity. 

 

Figure 3.23: DLS results for PfSir2a in 50mM Tris buffer with 100mM or 500mM NaCl. 
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Samples measured in sodium phosphate buffer (see Figure 3.24) were found to have a RH 

of 8.12 ±2.2nm and 9.33 ± 1.36nm in 100mM and 500mM sodium chloride. The 

polydispersity was found to be 26%  for 100mM and 14.5% for 500mM which is 

acceptable for SAXS/SANS experimentation. 

 

Figure 3.24: DLS results for PfSir2a in 50mM sodium phosphate buffer with 100mM or 

500mM NaCl. 

3.6.2 DLS Results Of PfAlba3 

DLS experiments for PfAlba3 were conducted in buffers containing 500mM sodium 

chloride as the TSA results indicated it would be prone to aggregation, or become unstable 

if placed in a low salt buffer environment. Initial measurements were made in buffers 

containing either 50mM sodium phosphate or 50mM potassium phosphate at pH 7.0 at a 

protein concentration of 1 mg ml-1 (see Figure 3.25). For the sample prepared in potassium 

phosphate buffer a very large RH was observed, 58.77 ± 71.22nm with 79.5% 

polydispersity. This indicated the sample had begun to aggregate after the SEC step (within 

1 hour) and visible white precipitate was observed after retrieving the samples confirming 
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protein aggregation/precipitation. A relatively lower RH of 7.53 ± 4.31 nm was observed in 

the sample prepared in sodium phosphate buffer with a polydispersity of 45.4%. This result 

indicated that PfAlba3 was potentially more stable in sodium phosphate buffer condtions 

but existed as a mixture of oligomeric species, or was beginning to aggregate at a slower 

rate compared to that of the sample prepared in phosphate buffer. 

 

Figure 3.25: DLS results for PfAlba3 in 50mM potassium phosphate or 50mM sodium at 

21°C, each containing 500mM NaCl. 

Based on the TSA results the samples were remeasured again at 4˚C due to the generally 

low Tm of PfAlba3. In these experiments a RH of 6.72 ± 1.87nm was observed for samples 

in potssium phosphate buffer with a polydispersity of 22.5%. For samples in sodium 

phosphate buffer a RH of 7.07 ± 1.15nm with a polydispersity of 15.9% (see Figure 3.26). 

This represents a marked improvement in the quality of both samples compared to 

measurements made at 21˚C. The results for the samples in potassium phosphate show a 

slight tailing of the peak towards particles of larger RH along with a slightly high 

polydispersity percentage. This may be still be indicative of aggregates forming or a 

oligomeric mixture being present. 

• Potassium 
phosphate 

• Sodium 
phosphate 



103 
 

 

 

 

 

 

 

Figure 3.26: DLS results for PfAlba3 in 50mM potassium phosphate or 50mM sodium at 

4°C, each containing 500mM NaCl. 

Despite this increase in overall sample quality, further measurements revealed that PfAlba3 

is still aggregation prone even when purified and stored at 4˚C prior to experiments. This 

was also observed as a visible precipitate forming in PfAlba3 samples a few hours after 

purification. The quality of PfAlba3 over time was assessed by making repeated DLS 

measurements on a sample at set time points after purification, the results of which can be 

seen in Figure 3.27. 

As Figure 3.27 shows, PfAlba3 shifts into a fully aggregated state within the space of a 

only a few hours. This occurs initially as soluble aggregates of PfAlba3 formed in solution 

which eventually form into larger aggregates and precipitates. This is observed as a white 

precipitate within the sample solution. This has several consequences for further 

biochemical and biophysical characterisation methods which may be affected by the 

presence of aggregate molecules. It is also a major issue for SAXS/SANS solution 

experiments which rely on samples being a monodisperse solution of particles, free from 

aggregates for accurate interpretation and modeling. 
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Figure 3.27: DLS monitoring of Alba3 aggregation over 120minute time course. After 15 

minutes (red) PfAlba3 single peak becomes more polydisperse. At 30 minutes (green) and 

60 minutes (bue) two separate peaks can be observed as the shift towards aggregation 

occurs. At 120 minutes (yellow) PfAlba3 becomes fully aggregated. 

3.7 SEC-MALS RI Analysis Of PfSir2a And PfAlba3 

This section details the results obtained during SEC-MALS RI investigations of PfSir2a 

and PfAlba3 as described in Chapter 2, section 2.2.4. 

3.7.1 SEC-MALS RI Results For PfSir2a 

Normalised SEC-MALS RI resuslt for PfSir2a can be seen in Figure 3.28. The results 

show a single large peak in UV 280nm absorbance, Rayleigh ratio and change in the 

refractive index of the sample (dRI) at an elution volume of 16.7ml. A small shoulder to 

this can be observed preceding the main peak at an elution volume of 14.6ml. This is more 

distinguished in a plot containing the UV and Rayleigh ratio curves (see Figure 3.28 B). A 

large change in the dRI is always observed at the end of the column due to effects of buffer 

exchange. 

• 15 min 
• 30 min 
• 60 min 
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Figure 3.28: (A) Elution profile of PfSir2a SEC-MALS RI experiment showing observed 

UV280nm absorbance, Rayleigh ratio and dRI. The large change in the dRI at the end of the 

column is due to buffer exchange at the end of the column. (B) Plot of UV280nm absorbance 

(for protein elution reference) and Rayleigh ratio highlighting the single major peak at 

16.6ml with a small preceding peak at a elution volume of 14.6ml. 
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The average molar mass of the particles contained within the main peak was found to 

correspond to a molecular weight (MW) of 34.6 kDa (± 1.937%) with a polydispersity 

index of 1.000 (± 2.740%) (see Figure 3.29). This indicates a monodisperse sample with a 

MW close to the expected value of 33.88 kDa for a PfSir2a monomer. The average molar 

mass of the particles within the shoulder peak was found to correspond to a MW of 49.66 

kDa (±2.341%) with a polydispersity index of 1.000 (± 3.539%). This MW does not 

exactly correspond to a dimer sized particles of PfSir2a which we would expect to be 67.76 

kDa and so could be a potential contaminant. The mass fractions for the main and shoulder 

peak were found to be 97.4% and 2.6% respectively. 

 

Figure 3.29: Plot of UV280nm absorbance, dRI and molar mass over main peak observed in 

PfSir2a SEC-MALS RI experiment. 

 

 

 

30000

31000

32000

33000

34000

35000

36000

37000

38000

39000

40000

0

0.05

0.1

0.15

0.2

0.25

15 16 17 18 19

M
ol

ar
 M

as
s 

(D
a)

N
or

m
al

is
ed

 U
V

 a
nd

 d
RI

Elution volume (ml)

SEC-MALS RI PfSir2a UV, dRI and Molar Mass Plot

dRI

UV

Molar Mass



107 
 

An interesting feature observed is that the plot of molar mass observed over the elution 

peak shows a curved nature. This results in an increase in observed molar mass as the 

sample reaches maximum concentration at its peak elution volume, followed by a decrease 

as the sample passes out of the detector. This plot of molar mass should normally be a 

straight line with some small variation across the sample elution peak. This observed result 

indicates that there could be a co-migrating contaminant with a higher molecular weight. 

Alternatively a concentration depenent dynamic equilibrium could be occuring between 

aggregated and non aggregated species or between oligomeric states (e.g. monomer – 

dimer). As previous results have shown PfSir2a to be >95% pure as judged via SDS-PAGE 

and aggregates have not been observed via SEC or by DLS, this suggests that the more 

likely explanation is a dynamic equilibrium between oligomeric species. 

A repeat experiment was performed using a Superdex S7510/300 GL analytical column at 

a sample concentration of 23.44 mg ml-1 which is more representative of sample 

concentrations required for SAXS/SANS experiments. The SEC-MALS RI results can be 

seen in Figure 3.30 and the elution profile closely resembles that observed in the previous 

experiment. The main elution peak (A) is observed at an elution volume of 11.2ml and the 

shoulder peak (B) at 9.7ml due to the change from the S200 to the S75 column. 
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Figure 3.30: Elution profile of PfSir2a SEC-MALS RI experiment showing observed 

UV280nm absorbance, Rayleigh ratio and dRI. The main elution peak and shoulder peak are 

indicated (A) and (B) respectively. The large change in the dRI at the end of the column is 

due to buffer exchange at the end of the column. A third small peak (C) at 17ml is due to 

small molecular weight contaminant protein. 

Here, the average molar mass of the particles contained within the main peak in this 

experiment was calculated to at 40.29 kDa (± 0.935%) with a polydispersity index of 1.001 

(±1.321%) (see Figure 3.31). This is ~6 kDa larger than the expected MW for a PfSir2a 

monomer and shows a slight increase in polydispersity (a polydispersity index of 1.000 

indicates a monodisperse population). The average molar mass of the particles contained in 

the shoulder peak was found to correspond to a MW of 83.17 kDa (± 4.572%) with a 

polydispersity index of 1.002 (± 6.491%). The mass fractions for the main and shoulder 

peak were found to be 98.1% and 1.9% respectively. 
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Figure 3.31: Plot of UV280nm absorbance, dRI and molar mass over main peak observed in 

PfSir2a SEC-MALS RI experiment. 

The curved plot of the calculated molar mass of PfSir2a as over the main elution peak is 

more pronounced with the increase in sample concentration. Initially a a lower 

concentration the calculated molar mass is found to be 37.56 kDa which corresponds to a 

similar value for the PfSir2a monomer. The MW increases to a value of 41.34 kDa at the 

peak elution volume before falling slightly to 40.32 kDa. This is similar to the results 

obtained for the shoulder peak at 16.6 ml in the initial experiment seen in Figure 3.25. The 

average MW of 83.17 kDa observed in the shoulder peak in this experiment is larger than 

an expected MW of 67.76 kDa for a PfSir2a dimer, but smaller than the expected MW of a 

PfSir2a trimer at 101.64 kDa. 

The overall indication is that there is a concentration-dependent dynamic equilibrium 

between different oligomeric states of PfSir2a. At the low concentrations observed in the 

intial SEC-MALS RI experiment this appears to be a monomer-dimer equilibrium. For the 

higher concntration experiment an additional oligomeric state could potentially exist with a 
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monomer-dimer-trimer equilibrium. Further characterisation is therefore necessary to 

understand the nature of the species present in PfSir2a samples. 

3.7.2 SEC-MALS RI Results For PfAlba3 

Normalised SEC-MALS RI results for PfAlba3 can be seen in Figure 3.32. The results 

show two peaks that are present in the UV 280nm absorbance, Rayleigh ratio and dRI at 

elution volumes of 7.4ml and 17.02ml. This corresponds to the aggregated and non 

aggregated PfAlba3 respectively. An important observation is that despite the relatively 

low UV absorbance observed for the aggregated PfAlba3 peak, compared to the non 

aggregated peak, the Rayleigh ratio is observed to be far greater (see Figure 3.32 panel B). 

This indicates that very large aggregates particles are forming in the protein sample as it 

aggregates over time. 

The average molar mass across the main peak was found to correspond to a MW of 13.44 

kDa (±1.737%) with a polydispersity index of 1.001 (± 2.463%). This is in agreement with 

the expected molecular weight of 13.04 kDa for a PfAlba3 monomer (see Figure 3.33). 

The molar mass calculated for PfAlba3 over the main protein peak also changes across the 

elution volume where a steady increase is observed. This could be caused by small 

populations of aggregating proteins as they pass through the column and cause a slight 

increase in the polydispersity of the sample. 
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Figure 3.32: (A) Elution profile of PfAlba3 SEC-MALS RI experiment showing observed 

UV280nm absorbance, Rayleigh ratio and dRI. (B) Plot of UV280nm absorbance and Rayleigh 

ratio highlihting the aggregate peak at 7.4ml and the main protein peak at 17.02ml. The 

change in the dRI at the end of the column is due to buffer exchange at the end of the 

column. 
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Figure 3.33: Plot of UV280nm absorbance, dRI and molar mass over main peak observed in 

PfAlba3SEC-MALS RI experiment. An increase in molar mass across the elution peak 

may indicate the prescence of aggregates or populations of different oligormeric states of 

PfAlba3.  

A repeat experiment was also performed using a Superdex S7510/300 GL analytical 

column at a sample concentration of 9.4 mg ml-1. The SEC-MALS RI results can be seen 

in Figure 3.34 and the elution profile again closely resembles that observed in the previous 

experiment. The aggregate peak is observed at 7.8ml and the main protein peak at 12.3ml 

due to the change from the S200 to the S75 column. 
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Figure 3.34: Elution profile of PfSir2a SEC-MALS RI experiment showing observed 

UV280nm absorbance, Rayleigh ratio and dRI. 

Here, the average molar mass of the particles contained within the main peak in this 

experiment was calculated to represent a MW 16.78 kDa (± 1.430%) with a polydispersity 

indexof 1.000 (±2.023%) (see Figure 3.35).  This also shows an upward trend in the 

observed molar mass upon using a much higher sample concentration. The molar mass 

continues to change across the peak but begins at the higher value of 17.8 kDa before 

quickly dropping to 16.5 kDa. A steady increase is then observed again across the elution 

peak as the sample passes through the column. The mass fractions for the aggregate and 

protein peak was found to be 16.1% and 83.9% respectively. 
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Figure 3.35: Plot of UV280nm absorbance, dRI and molar mass over main peak observed in 

PfAlba3 SEC-MALS RI experiment. 

These results also indicate there may be a concentration dependent effect on PfAlba3 

causing a shift towards the formation of oligomeric states (e.g. monomer-dimer) or protein 

aggregates, whilst being few in number, are forming as the sample migrates through the 

column. Additional characterisation is again needed to understand the composition and 

behaviour of the sample before SAXS and SANS experimentation. 
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3.8 AUC Analysis Of PfSir2a And PfAlba3 

This section details the results observed for PfSir2a and PfAlba3 using AUC as described 

in Chapter 2, section 2.2.5. 

3.8.1 AUC Results For PfSir2a 

A concentration series of 0.2, 4 and 8mg ml-1 was prepared for PfSir2a as described in 

Chapter 2. 2.5. Results of the analysis can be seen in Figure 3.36. 

 

Figure 3.36: (A) AUC results of PfSir2a plotted as normalised concentration vs 

sedimentation coefficient. (B) Total UV280nm absorbance of each sample vs sedimentation 

coefficient. (C) Table indicating observed sedimentation coefficients and aggregate 

populations. 

For the AUC results for PfSir2a samples, at the three concentrations 0.2, 4 and 8 mg ml-1, 

we observe three species at 278nm. Firstly, a contribution at 1.9 +/- 0.1S (s20w = 3.2 +/- 

0.1S) is observed which may correspond to a globular compact monomer or an elongated 

PfSir2aHis Aggregates
280 nm s s20w signal, 1cm % s s20w signal, 1cm % s s20w s s20w signal, 1cm % %

8 mg/ml 1.93 3.25 2.23 26 2.44 4.12 6.41 74 2.31 3.89 4.29 7.25 0.06 1 0
4 mg/ml 1.84 3.10 1.44 32 2.38 4.02 2.98 67 2.20 3.72 3.97 6.71 0.07 2 0

0.2 mg/ml 1.82 3.07 0.11 52 2.56 4.32 0.06 29 2.09 3.52 4.49 7.57 0.04 18 1

1.87 +/- 0.05 S 2.47 +/- 0.09 S mean 1.87-2.47S 4.28 +/- 0.21 S

A B 

C 
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dimer. The second contribution is observed at 2.5 +/- 0.1S (s20w = 4.2 +/- 0.2S). This s-

value may correspond to a globular dimer or an elongated trimer. The third contribution is 

observed at 4.3 +/- 0.2S (s20w = 7.1 +/- 0.4S) which may correspond to a globular compact 

tetramer or a more elongated multimer. A clear concentration effect can be observed for 

the two-main species (1.9S and 2.48S) indicating an equilibrium of association-

dissociation. The proportion of the smaller species (1.9S) decreases when the concentration 

increases (52% at 0.2 mg ml-1, 32% at 4 mg ml-1 and 26% at 8mg ml-1) and the proportion 

of the larger species (2.48S) increases when the concentration increases (30% at 0.2 mg ml-

1, 68% at 4 mg ml-1 and 74% at 8m ml -1). 

The calculated MW for the species at 1.9 S is found to be 34.72 kDa (±2.96 kDa) 

indicating that this is a PfSir2a monomer. The calculated MW for the species at 2.5S is 

found to be 92.18 kDa (±18.73 kDa). There is a large uncertainty in the MW for this 

species and, of the expected MW which correspond to either a dimer (67.76 kDa) or a 

trimer (101.64 kDa) species, the trimer MW falls within the error range. The MW of the 

species at 4.3S was found to be 174.57 kDa (±129.72 kDa) and is suggested to be the result 

of reversible aggregation favoured at low concentrations. 
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3.8.2 AUC Results For PfAlba3 

A concentration series of 0.2, 0.5 and 2mg ml-1 was prepared for PfAlba3. Results of the 

analysis can be seen in Figure 3.37. 

 

Figure 3.37: (A) AUC results of PfAlba3plotted as normalised concentration vs 

sedimentation coefficient measured using UV230nm absorbance. (B) Table indicating 

observed sedimentation coefficients and aggregate populations. 

For the AUC results for PfAlba3 samples, at the three concentrations 0.2, 0.5 and 2 mg ml-

1, we observe a single species at 230nm. This contribution is observed at 1.1 +/- 0.1 S 

which may correspond to a globular compact monomer or an elongated dimer. Aggregates 

are also present in different proportions (< 4% above 0.5 mg ml-1 and 10% at 0.2 mg ml-1, 

with aggregate species up to 50S). The fit for the 0.2 mg ml -1 data is not very good 

probably because of the increased ratio between protein-protein aggregates in the sample. 

The calculated MW for the species observed at 1.1S was found to be 12.7 kDa (± 1.8 kDa). 

This is consistent with the interpretation of a globular compact monomer of PfAlba3 (MW 

= 13.04 kDa). 

Aggregates
s s20w signal, 1cm % %

2 J 1.10 1.79 4.34 100 0
mg/ml 280nm 1.13 1.85 0.35 90 10

230nm 1.07 1.75 8.93 95 5

0.5 J 1.03 1.67 0.53 100 0
mg/ml 280nm 1.21 1.97 0.06 81 19

230nm 1.04 1.69 1.96 97 3

0.2 J 1.15 1.88 0.09 48 52
mg/ml 280nm 1.09 1.78 0.02 85 15

230nm 1.09 1.78 0.39 90 10

PfAlba3His 1.12 +/- 0.09 S

A B 
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3.9 Interaction Studies Between PfSir2a And PfAlba3 

The work presented here was aimed at investigating and characterising the previously 

described interaction between PfSir2a and PfAlba3 (Goyal et al., 2012). Molecular biology 

methods such as pull-down experiments were conducted with His-tagged and non-tagged 

proteins to try to confirm an interaction. This was supported by biophysical investigation 

methods such as ITC and MST to try to determine the strength and nature of the 

interaction. 

3.9.1 Preparation Of Non-Tagged PfSir2a 

The recombinant PfSir2a protein construct expressed by the pET28a vector was designed 

to have an N-terminal 6xHis tag which can be cleaved by Thrombin protease. This 

protease has a recognition site of Leu-Val-Pro-Arg-Gly-Ser (LVPRGS) and cleaves the 

peptide bond between arginine and glycine. The N-terminal sequence for the first 40 

residues of the pET28a PfSir2a construct can be seen in Figure 3.38. By this design a 17 

AA sequence (MW = 1900 Da) containing the 6 His tag is removed by the action of 

thrombin protease. This produces a non-tagged version of PfSir2a with a MW of 32.0 kDa 

from the original 33.88 kDa full length construct. 

 

 

Figure 3.38: First 50 residues of the N-terminal sequence of recombinant PfSir2a in 

pET28a construct. The thrombin protease recognition site is highlighted in blue and the 

cleavage location is marked by the arrow. The starting methionine of the native PfSir2a 

sequence is highlighted in green.  

MGSSHHHHHHSSGLVPRGSHMASMTGGQQMGRGSMGNLMISFLKKDTQSI 



119 
 

Initial small-scale thrombin cleavage trials were conducted on PfSir2a using a biotinylated-

thrombin cleavage kit (Novagen Cat no 69022-3). Incubation reactions were set up 

containing 5µl of 10x Thrombin Cleavage/Capture buffer (containing 200mM Tris-HCl, 

1.5M sodium chloride, 25mM calcium chloride, pH 8.4), 10µg of the target protein, 1µl of 

diluted biotinylated thrombin solution (1 U µl-1 in 50mM sodium citrate, 200mM sodium 

chloride, 0.1% PEG-8000, 50% glycerol, pH 6.5) and made to a final volume of 50µl with 

ddH2O. The reactions were then left to incubate for 24 hours at 21˚C or 4˚C. At separate 

time intervals, the biotinylated thrombin was removed by adding 25µl of streptavidin 

agarose bead 50% slurry. This was incubated for 30 minutes prior to centrifugation at 500g 

for 5 minutes. The supernatant was removed and prepared for analysis by SDS-PAGE (see 

Figure 3.39). 

 

Figure 3.39: Small scale thrombin cleavage of PfSir2a at 21˚C and 4˚C results. Negative 

control indicated by –ve, MW marker by M and hours of incubation from 2 to 24. 

24 18 8 6 4 -VE 2 M 4 6 8 18 24 2 

21˚C 4˚C 
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An interesting observation can be made from the SDS-PAGE results seen in Figure 3.36. 

Three bands are observed in both the 2-hour incubation lanes at 21˚C and 4˚C. This 

reduces to two bands with increasing incubation time, occurring more rapidly at 21˚C than 

at 4˚C. An additional faint band can be observed in the 21˚C incubation samples at 18 and 

24 hours incubation at an approximate MW of 25 kDa. By using the MW standards as a 

reference, analysis of the 2-hour incubation samples for both 21˚C and 4˚C reveals the 

estimated MW of each band present (see Figure 3.40). 

The MW for each of the three bands are found to be approximately 34 kDa, 31.3 kDa and 

29.1 kDa. The band at 34 kDa represents non-cleaved full length recombinant protein, as 

compared with the negative control. The expected MW for the thrombin cleaved product is 

32 kDa which is most similar to the band observed at 31.1 kDa. To explain the end result 

species observed at 29.1 kDa after 24 hours of incubation, samples were sent for analysis 

by TOF-MS. The results returned can be seen in Figure 3.41. 
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Figure 3.40: Molecular weight estimation of multiple species observed in small scale 

thrombin cleavage tests as a function of intensity vs relative migration (Rf). (A) Analysis 

for 2-hour incubation lane at 21˚C. (B) Analysis for 2-hour incubation lane at 4˚C. 

 

 

B 

 

Band No. Mol. Wt. (KDa) Relative Front Volume (Int) Band % Lane % 
1 33.57 0.407042 8797519 34.82 20.05 
2 31.39 0.435211 4903846 19.41 11.18 
3 29.26 0.464789 11557463 45.75 26.34 

A 

 

Band No. Mol. Wt. (KDa) Relative Front Volume (Int) Band % Lane % 
1 34.02 0.401408 6884692 10.56 5.91 

2 31.29 0.43662 18742197 28.75 16.09 

3 28.97 0.469014 39542344 60.67 33.95 
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Figure 3.41: TOF-MS analysis of thrombin cleaved PfSir2a sample after 24 hours cleavage 

reaction. (A) Whole TOF-MS spectra for PfSir2a sample. (B) Zoom in region of 

predominant peak corresponding to majority of cleaved sample. (C) Zoom in region of 

secondary peak also present in sample corresponding to product from additional cleavage 

by Thrombin protease. 
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The majority of the sample is a species with a MW of 30488.56 Da. This is 1517.54 Da 

smaller than the expected MW of the thrombin cleaved PfSir2a sequence. It has been 

observed that whilst Thrombin has a specific recognition site as mentioned previously, 

additional cleavage may occur at a Gly-Arg-Gly site where the peptide bond is cleaved 

again after the residue (Gallwitz et al., 2012). A search for this sequence in the full-length 

recombinant PfSir2a revealed this site to be present (see Figure 3.42). 

 

 

Figure 3.42: Primary and secondary (1˚ and 2˚ respectively) cut sites for Thrombin in 

PfSir2a AA sequence identified. 

Cleavage at this secondary site results in the removal of a 32 amino acid (MW 3417.7 Da) 

peptide from the N-terminus of the recombinant PfSir2a. This results in an additional 15 

amino acid removal from the intended cleaved PfSir2a form and yields a final cleaved 

product of 275 amino acids (MW = 30488.4 Da). This species matches exactly the MW of 

the main species observed in the TOF-MS results and differs by only two AA from the 

native P. falciparum sequence (273 amino acids, MW = 30344.4 Da). 

Additional cleavage by Thrombin can also sometimes occur at a site with a X-Arg-Gly 

sequence where X is an aromatic amino acid and cleavage of the peptide bond occurs after 

the arginine (Gallwitz et al., 2012). A search of the recombinant sequence also reveals a 

Phe-Arg-Gly site (FRG) starting at position 82. Cleavage at this site would result in a 

sequence 224 amino acids in length with a calculated MW of 25025.0 Da. This again 

matches the MW of the species observed in the TOF-MS results, although it is present in a 

negligible amount. 

MGSSHHHHHHSSGLVPRGSHMASMTGGQQMGRGSMGNLMISFLKKDTQSI 

1˚ 2˚ 
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Therefore, thrombin appears to cleave the recombinant full length PfSir2a in stages, 

initially removing the first 17 amino acids as intended by the cut-site designed in the 

pET28a vector, then removing an additional 15 amino acids due to the secondary cleavage 

site, which produces a smaller product which more closely resembles that of the native P. 

falciparum amino acid sequence. This would be more ideal for interaction studies and 

crystallisation trials. 

Efforts were then made to scale up the thrombin cleavage reaction using several mg of 

target protein and leaving the cleavage reactions to proceed over 24 hours at 21˚C and 4˚C. 

The cleavage buffer was kept as used previously in the Novagen Thrombin capture kit and 

Thrombin from bovine plasma (Sigma-Aldrich Cat no. T4648) was added at a ratio of 1 

Unit per 1mg of target protein. 

It was discovered when scaling the reactions to more useful quantities of material, a white 

precipitate was observed forming rapidly (< 1 hour at 21˚C, < 4 hours at 4˚C) in the 

reactions. This was found to be a precipitated mixture of the two cleaved forms of PfSir2a 

which could not be recovered. The cleavage buffer was changed to the SEC buffer used for 

previous experiments (50mM sodium phosphate, 500mM sodium chloride, pH 7.0). Some 

precipitate was still observed at 21˚C over the course of the reaction incubation but cleaved 

product could be recovered. 

Cleaved PfSir2a was recovered by injecting the reaction onto a 1ml His-Trap™ FF crude 

column (GE healthcare, Cat no. 11-0004-58) connected in series to a 1ml Benzamidine Hi-

Trap™ FF column (GE healthcare, Cat no. 17-5144-01) which was used to remove the 

Thrombin from the reaction mixture. An ÄKTA Prime FPLC system was used at a flow 

rate of 0.5 ml min-1with a loading and equilibration buffer used for the columns that 

contained 50mM sodium phosphate, 500mM sodium chloride, 10mM Imidazole, pH 7.0. 
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Cleaved protein was monitored as it passed through the columns by UV280nm
 absorbance 

and recovered in 1ml fractions. Any remaining tagged protein which was not cleaved but 

attached to the Ni-NTA column was removed using the elution buffer described previously 

for PfSir2a Ni-NTA purification. The fractions were analysed by SDS-PAGE (see Figure 

3.43). 

 

 

 

 

 

 

 

 

Figure 3.43: SDS-PAGE analysis of PfSir2a cleavage reaction recovery on 12% gel. MW 

marker is indicated by M, flow through and elution species are labelled respectively. 

The SDS-PAGE results indicate that there is still a mixture of species being produced after 

scaling up the reaction volumes. There also appears to be an interaction effect occurring 

between the different species: trace amounts of a band corresponding to tagged PfSir2a 

appear to be washed off the column with cleaved species, as observed in the flow through 

lanes. Similarly, cleaved PfSir2a can be observed remaining on the column despite no 

longer possessing its 6 His-tag and this elutes with tagged species. This is probably due to 

M 
Flow Through Elution 
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the interacting nature observed previously in the SEC-MALS RI and AUC results in 

sections 3.7.1 and 3.8.1 respectively. 

The flow through fractions were cleaned up by IEX chromatography as described 

previously in Chapter 2, section 2.1.13 and an additional SEC step was performed to check 

for the presence of aggregates (see Figure 3.44). One main peak was present as before and 

fractions were recovered and again analysed by SDS-PAGE. 

 

 

 

 

 

 

 

 

Figure 3.44: Fractions taken across elution peak analysed by 12 % SDS-PAGE. 

The results seen in Figure 3.44 indicate that there is still a small presence of the primary 

cleaved species of PfSir2a which has co-migrated through the additional purification steps 

but appears to be eluting at a later elution volume than the secondary cleaved species. 

Fractions appearing to contain only the secondary cleaved PfSir2a were kept for use in 

pull-down experiments with PfAlba3. 

M 
Elution 



127 
 

3.9.2 PfSir2a And PfAlba3 Ni-NTA Pulldown Experiments 

Pull down experiments to investigate the interaction between PfSir2a and PfAlba3 were 

performed using 200µl of Protino® Ni-NTA 50% agarose resin slurry (Macherey-Nagel, 

Cat no. 745400.25). The resin was centrifuged at 700g for 2 minutes, leaving a resin 

volume of approximately 100µl, before washing twice with 1ml of ddH2O. The resin was 

centrifuged again at 700g for 2 minutes before washing with 1ml of binding buffer 

containing 50mM sodium phosphate, 500mM sodium chloride, 10mM imidazole, pH 7.5. 

A 200 µl mixture of cleaved PfSir2a and His-tagged PfAlba3 were incubated together in 

the binding buffer for 1 hour at room temperature at a concentration of 0.25 mg ml-1 each. 

The protein mixture was then incubated on the equilibrated resin for 30 minutes shaking at 

100 rpm at 21˚C. After this incubation period the supernatant was removed and a sample 

was taken for SDS-PAGE analysis. The resin was then washed with 200µl of wash buffer 

containing 50mM sodium phosphate, 500mM sodium chloride, 40mM imidazole, pH 7.5. 

The resin was centrifuged for 700g for 2 minutes and the supernatant removed and a wash 

sample taken. This wash step was repeated a further two times with an additional wash 

sample taken from the supernatant of the third wash. 

Bound proteins were eluted from the resin with two resin bed volumes of elution buffer 

containing 50mM sodium phosphate, 500mM sodium chloride, 500mM imidazole, pH 7.5. 

The resin was centrifuged at 700g for 2 minutes and the supernatant removed and a sample 

taken. Control reactions were set-up using only cleaved PfSir2a or tagged PfAlba3 as 

negative controls. All samples were loaded on a 16.5% Tris-Tricine gels for SDS-PAGE 

analysis (see Figure 3.45). 
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Figure 3.45: 16.5% SDS-PAGE results of Ni-NTA resin pulldown experiment with 

cleaved PfSir2a and tagged PfAlba3. C and NC indicated cleaved and non-cleaved PfSir2a 

respectively. Supernatant (SN), 1st and 3rd wash (W1 and W3) and elution (E) fractions 

indicated for reactions containing cleaved PfSir2a and tagged PfAlba3, cleaved Pfsir2a 

alone and tagged PfAlba3 alone. 

The initial SDS-PAGE results reveal several features about the samples which have been 

tested via this pull-down technique. Firstly, the cleaved and non-cleaved PfSir2a are 

clearly distinguished and it is cleaved PfSir2a which has been used for the pull-down with 

no tagged protein remaining in the samples. Secondly, despite the tag no-longer being 

present on PfSir2a a significant fraction of the protein remains throughout the wash and 

elution steps in the cleaved PfSir2a only reactions. A reason for its continued presence 

could be due to insufficient washing to remove the protein after the initial resin incubation 

step. Additionally, not all of the PfAlba3 protein has successfully bound to the resin, 

despite being loaded a concentration well below the total binding capacity. 

E W1 SN NC M C W3 SN W1 W3 E SN W1 W3 E 

PfSir2a + PfAlba3 PfSir2a  PfAlba3 
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As a result of the negative controls providing false positives the lanes for the incubation 

reaction between cleaved PfSir2a and PfAlba3 cannot be interpreted as an indication of a 

interaction. Improvements to the pull-down protocol were made by increasing the volume 

of the wash steps to 1ml to fully make sure any free protein was no longer bound or weakly 

bound to the resin. The results from the modified pull-down protocol can be seen in Figure 

3.46. 

 

Figure 3.46: 16.5% SDS-PAGE results of repeat Ni-NTA resin pulldown experiment with 

cleaved PfSir2a and tagged PfAlba3. C and NC indicated cleaved and non-cleaved PfSir2a 

respectively. Supernatant (SN), 1st and 3rd wash (W1 and W3) and elution (E) fractions are 

indicated for reactions containing cleaved PfSir2a and tagged PfAlba3, cleaved PfSir2a 

alone and tagged PfAlba3 alone. 

After the increase in washing performed during the protocol there is no longer a band 

present in the elution lane in the cleaved PfSir2a negative control samples. Tagged 

PfAlba3 is not completely binding to the resin but is still present in detectable quantity in 

PfSir2a + PfAlba3 PfSir2a  PfAlba3 

E W1 SN NC M C W3 SN W1 W3 E SN W1 W3 E 
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the elution lane. For the co-incubated lanes, a large proportion of cleaved PfSir2a is 

removed in the supernatant, indicating it is not bound to the resin or PfAlba3. A smaller 

quantity is removed in both wash lanes and is hardly visible in lane W3. In the elution lane 

we see a similar quantity of PfAlba3 as compared to that eluted in the PfAlba3 only 

incubation. 

An extremely faint band at the MW migration of cleaved PfSir2a is also detected in this 

elution lane. The intensity for each protein can be observed by lane analysis (see Figure 

3.47). This band is not observed in the elution sample lane for the cleaved PfSir2a only. 

The amount of cleaved PfSir2a is found to be < 2% of the total lane indicating that if there 

is an interaction between PfSir2a and PfAlba3 it appears to be extremely weak. 

 

Figure 3.47: Lane analysis of cleaved PfSir2a and PfAlba3 incubation elution sample with 

MW of observed species and relative intensities. 

Band No. Mol. Wt. (KDa) Relative Front Volume (Int) Band % Lane % 
1 250 0.007764 3090648 18.73656 8.411959 

2 30.27548 0.321429 590364 3.578988 1.606821 

3 14.37031 0.571429 12814266 77.68445 34.87718 
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3.9.3 Binding Interaction Characterisation By MST 

To determine the strength and nature of the interaction between PfSir2a and PfAlba3 

samples were prepared for analysis by MST as described previously in Chapter 2, section 

2.2.7. The recovered labelled protein was then measured via Nanodrop (see Figure 3.48). 

The recovered labelled protein concentration was determined to be 0.094mg ml-1 or 

2.78µM. 

 

Figure 3.48: Nanodrop spectrum of recovered MST dye-labelled PfSir2a 

A 16-point serial dilution (1:2) of unlabelled PfAlba3 from, 20µM to 0.6nM, was prepared 

with a fixed concentration of labelled PfSir2a at 20µM. The results of the MST experiment 

can be seen in Figure 3.49. 

 

 

 



132 
 

 

Figure 3.49: MST results for PfSir2a and PfAlba3 interaction studies using standard 

capillaries at 50% LED power and varied MST power. (A) Raw fluorescence time trace. 

(B) Thermophoresis and T-Jump results using 20%, 40% and 80% MST power. 

 

 

A 

B 
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The results in Figure 3.49 show a very noisy and bumpy fluorescence time trace 

throughout the duration of the experiment. This is attributed to the presence of aggregates 

within the sample capillaries. A fluorescence scan of the capillaries also revealed a ‘twin 

peak’ effect from capillary 6 onwards (data not shown). This is indicative of the protein 

sample sticking to the capillary and is not suitable for MST analysis. As a result the KD of 

the interaction could not be calculated. By adjusting the LED power and changing the 

capillaries to a type with a hydrophobic coating, improvements in the results was observed 

(see Figure 3.50). 

Here we can see an improvement in the fluorescence time trace for the duration of the 

experiment although it still appears quite bumpy. This indicates that there are still protein 

aggregates in the sample, likely because of PfAlba3 beginning to aggregate during the 

experiment based on its known propensity to aggregate rapidly after purification (see 

section 3.6.2). The capillary scan now reveals there are no longer any ‘twin peaks’ which 

occur because of sample sticking (data not shown). The optimal results were found to be in 

the samples tested at 100% LED power and 20% MST power. 
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Figure 3.50: MST results for PfSir2a and PfAlba3 interaction studies using standard 

capillaries at 50% LED power and varied MST power. (A) Raw fluorescence time trace. 

(B) Thermophoresis and T-Jump results using 20%, 40% and 80% MST power. 

 

A 

B 
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A KD of 29.9 ± 2.44 nM was calculated from these results (see Figure 3.51). This would 

seem to indicate a tight binding between the two proteins, but the result seems unlikely due 

to the extremely weak binding observed in the Ni-NTA pulldown experiment. To confirm 

this result, additional characterisation was needed. 

 

Figure 3.51: KD fit for PfSir2a and PfAlba3 interaction calculated from MST results. 

3.9.4 Binding Interaction Characterisation By ITC 

ITC was used as an additional biophysical technique to characterise the interaction 

between PfSir2a and PfAlba3. Here purified PfSir2a and PfAlba3 samples were prepared 

as described in Chapter 2, section 2.2.6. The results of the ITC interaction experiments can 

be seen in Figure 3.52. 
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Figure 3.52: ITC results for PfSir2a (300µM) and PfAlba3 (30µM) at 4°C (A) and 15°C 

(B). 

Figure 3.52 shows the results obtained for the ITC experiment performed at 4°C. The 

change in latent heat of the reaction over time (µcal s-1) is extremely low and does not 

change with increasing amount of PfSir2a injected into the sample cell. This was repeated 

with the temperature increased to 15°C (see Figure 3.52 B). A small increase in the latent 

heat signal was observed at this temperature but a fit of the data could not determine a KD. 

3.10 Summary 

In this chapter we have shown the ability to produce recombinant PfSir2a and PfAlba3 

using the BL21 DE3 bacterial expression system. These recombinant proteins have been 

successfully purified by Ni-NTA, IEX and SEC methods. The purified proteins have 

undergone extensive optimisation and investigation via several biochemical and 

biophysical techniques in preparation for structural studies. 

A B 
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In these investigations, we find that PfSir2a is generally a stable protein that exhibits some 

concentration dependent oligomerisation effects. This is evidenced predominantly by the 

results for the AUC analysis seen in section 3.8.1. For PfAlba3 we find that it is a generally 

unstable protein with a tendency towards aggregation after purification, as evidenced by 

the results of the SEC purification and DLS experiments in sections 3.3.2 and 3.6.2 

respectively. Despite an interaction between PfSir2a and PfAlba3 reported in the literature 

(Goyal et al., 2012), attempts to replicate using ITC and MST methods have proved 

challenging. An interaction was observed using MST that could indicate a tight binding 

between PfSir2a and PfAlba3 but was not observed using ITC. This might be due to a 

combination of the nature of the interaction, the limitations on the buffer conditions to 

keep the proteins stable and the differences between the two methods used. 

In MST a local heating effect is created in a very small spot within the sample capillary 

causing molecules to diffuse out of the heated region before switching off the laser and 

allowing them to diffuse back. If the interaction between the proteins is ionic in nature, the 

high salt environment of the buffer used (500mM) will greatly interfere with the proteins 

ability to bind to one another. During this localised heating, the salt molecules will also 

diffuse out of the heated spot, creating a salt gradient. In this case, the salt concentration 

will be much lower than the overall buffer composition and will allow for the proteins to 

interact with less interference from the high salt content of the buffer. In ITC, the whole 

solution is heated which would result in the same concentration of proteins and salt within 

the sample cell, with no local gradients being created. 

If an interaction between PfSir2a and PfAlba3 is indeed present, it is not currently possible 

to investigate by structural methods given the conditions that must be met for keeping the 

proteins stable and those required for performing solution scattering experiments. Whilst 

different behaviours are observed for both PfSir2a and PfAlba3 which present challenges 
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to performing structural investigations, the following chapter demonstrates several 

methods in which these problems can be tackled to obtain some information about the 

individual proteins. 
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Chapter 4: SAXS Characterisation Of PfSir2a And 

PfAlba3 

Abstract 

The aim of this chapter was to investigate the structural properties of PfSir2a and PfAlba3 

using solution scattering based methods. This was achieved using samples that were 

produced and characterised as described in Chapter 3. Solution scattering experiments 

using X-rays were performed using the beamline BM-29 at the ESRF, Grenoble. The end 

results of the optimisation steps and techniques employed are described here. 

From these experiments, we find that PfSir2a and PfAlba3 are challenging targets to 

characterise by solution based scattering methods. This is due to the different behaviours 

exhibited by the target proteins such as concentration dependent oligomerisation and rapid 

tendency towards aggregation for PfSir2a and PfAlba3 respectively. This was further 

complicated by PfSir2a and PfAlba3 being highly susceptible to radiation damage induced 

from exposure to X-rays. 

Via the use of the on-line SEC system available at BM-29 and modified buffer conditions, 

we find an Rg of 2.9 ± 0.2 nm and 2.3 ± 0.3 nm for PfSir2a and PfAlba3 respectively. Ab 

initio modelling for PfSir2a and PfAlba3 was carried out using the data collected and 

indicates both proteins are elongated globular proteins with a Dmax of 8.1 nm and 7.8 nm 

for PfSir2a and PfAlba3 respectively. 

4.1 Introduction 

This chapter focuses on the work and experiments carried out aimed at the characterisation 

of PfSir2a and PfAlba3 using small angle X-ray scattering. The initial focus was to 
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investigate the PfSir2a-PfAlba3 complex thought to exist via previous work (Goyal et al., 

2012). The results obtained in chapter 3 have outlined the difficulties in the preparation of 

the samples for structural investigation. PfSir2a was observed to exhibit a concentration 

dependent oligomeric equilibrium and PfAlba3 and was found to aggregate rapidly 

following purification. These properties make the formation of a strong, stable complex 

difficult and affect the feasibility of structural studies on both the individual proteins and 

the complex. In particular they compromise the possibility of obtaining high resolution 

data using crystallographic methods. 

In parallel to protein crystallisation attempts, which unfortunately did not yield any viable 

crystals, solution scattering using small-angle X-ray scattering (SAXS) was employed as a 

strategy for structural work. This approach can provide low-resolution structural 

information on the shape of the protein in solution. Protein samples are prepared as a 

monodisperse distribution in a suitable buffer environment for the stability of the protein 

sample. The sample is then exposed to X-ray radiation to record the total scattering pattern 

of protein and solvent. Post-data-processing is performed by subtraction of the solvent 

scattering from that of the sample scattering, yielding the scattering information relating to 

the protein alone. 

4.2 Experimental Setup 

Small angle X-ray experiments were conducted at the BioSAXS beamline BM-29 at the 

ESRF, Grenoble (Pernot et al., 2013). The beamline is situated such that the incoming X-

rays from the synchrotron ring are directed to the instrument from a bending magnet (see 

Figure 4.1). The X-rays are conditioned by a double multilayer monochromator to select 

desired energy for the incoming beam within the 7-15keV operation range of the beamline. 

The incoming beam then enters a pair of monochromatic slits and then a 4 mrad toroidal 
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mirror (1.1m length) for focusing. Exposure to the incoming beam is regulated via control 

of a fast shutter and passes through an additional set of beam cleaning slits before arriving 

to the sample. The samples flow through a quartz glass capillary (1.8 mm diameter) to 

spread the dose of the incoming X-rays and reduce the visible effects of radiation damage. 

The incident flux of the X-ray beam at the sample is in the region of 1012 photons s-1 with a 

beam size of approximately 700µm x 700µm. The scattering pattern produced by the 

sample is recorded on a Pilatus 1M detector with a sample to detector distance of 2.867m. 

The wavelength of the incident X-ray beam was 0.99 Å, this allows for the measurement of 

the sample over a q-range of 0.025 – 5 nm-1. The total distance from the bending magnet 

source to the detector is 45m. 

This instrument features a robotic sample changer that allows samples to be automatically 

introduced into the data collection system without any need for direct user intervention in 

the hutch (Round et al., 2015). For the automated sample changer, samples were prepared 

by Ni-NTA and SEC purification as mentioned previously (see Chapter 2, sections 2.1.10 – 

2.1.14), concentrated with Amicon concentrators and then filtered by centrifugation with 

Spin-X filters to remove large particles and aggregates. A concentration series of both 

PfSir2a and PfAlba3 was prepared to rule out or evaluate the effects of concentration 

dependent inter-particle interaction within the samples which can affect the processed data. 

Sample volumes of between 20 -100µl were placed in 250µl Eppendorf tubes and 

maintained at a temperature of 4°C throughout the experiment. A flow rate of between 0.12 

and 0.6 ml min-1 was used depending on the total volume of the sample being measured. 10 

or 20 measurement frames were recorded for each sample with an exposure time of 1s or 

0.5s respectively. 
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The buffer used for initial sample preparation contained 50mM sodium phosphate, 500mM 

NaCl, pH 7.0, and was filtered using a 0.22µm filter (Corning filter brand) and de-gassed 

for 30 minutes. Measurements of the buffer alone were collected before and after each 

sample data collection to verify the cleanliness of the cell and ensure the most reliable 

measure of the background scattering is measured that must be subtracted from the sample 

measurements. 

For the on-line SEC HPLC system a sample volume of 50µl was prepared for injection 

onto a pre-equilibrated Superdex™ S200 10/300 GL column set at a flow rate of 0.5 ml 

min-1 (Round et al., 2013). The measurements were recorded every 1s over the entire 

duration of the column elution volume (24ml) - producing ~2400 frames of data. 

 

Figure 4.1: Schematic diagram for the layout of BM29 BioSAXS beamline at the ESRF, 

Grenoble (Pernot et al., 2013). 
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After the sample has been measured, the raw data is then processed through a data pipeline 

for reduction. This includes the azimuthal averaging of each individual frame, the creation 

of a background subtracted scattering curve (i.e. subtraction and normalisation against 

sample concentrations, basic analysis of the scattering curve to provide standard plots and 

invariants as well as ab initio modelling based on basic analysis (Brennich et al., 2016). 

4.3 Data Processing 

Data processing was carried out using the ATSAS program package for small angle 

scattering data analysis (Petoukhov et al., 2012). Buffer and sample frames were manually 

inspected for radiation damage before averaging the data to provide the best signal-to-noise 

ratio using PRIMUS (Konarev et al., 2003). The buffer scattering frames were then 

subtracted from the sample frames to yield only the excess scattering relating to the 

proteins present in the solution. The sample scattering curves were then corrected for 

concentration and subjected to post-processing analysis. This enables the calculation of 

some basic structural properties of the particles being studied. This includes the radius of 

gyration (Rg) refers to distribution of the components of an object around an axis. This is 

determined by subjecting the data to Guinier analysis at low q (where the Guinier region is 

q < 1.3/Rg). The maximum dimension (Dmax) and molecular mass (MM) of a particle can 

also be determined. 

The program GNOM (Svergun, 1992) was used to define to Dmax of the particles from 

which the P(r) function was calculated. Modelling of treated sample curves was performed 

using the DAMMIF (Franke and Svergun, 2009) software for ensemble model generation. 

The various models produced were compared against each other in pairs (for all possible 

combinations) and the most probable selected using DAMSEL (Volkov and Svergun, 

2003). This is calculated by minimising a normalised special discrepancy (NSD) value for 

https://en.wikipedia.org/wiki/Axis_of_rotation
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distances between points in each set of pairs and discarding models whose NSD is outside 

of 2 standard deviations from the mean. Selected models were then aligned and 

superimposed on one another using DAMSUP before averaging with DAMAVER to 

calculate a probability map across all the generated models (Volkov and Svergun, 2003). 

This creates an averaged model from all of the generated structures and a probability map 

is then used by DAMFILT to create a filtered model with the most likely shape. This is 

typically the model with the lowest NSD value. 

4.3 I-TASSER In silicio Modelling And Existing Information 

Before proceeding with small angle scattering experiments, some a priori information can 

be deduced about the structural characteristics of PfSir2a and PfAlba3. This is achieved by 

in silico modelling either based on existing crystal structures, or determined by primary 

sequence information and structural identity against characterised protein structures and 

folds deposited in the Protein Data Bank (PDB). By using this information, the theoretical 

small-angle scattering curves for PfSir2a and PfAlba3 can be calculated and compared 

with real experimental data. The modelling contained within this section was performed 

using the I-TASSER server (Roy et al., 2010; Yang et al., 2015; Zhang, 2008). 

4.3.1 Preliminary Structural Characterisation Of PfSir2a 

For a first look at the structural information that can be derived theoretically for PfSir2a, an 

approximate Rg can be calculated using the following approximation for globular proteins 

(Hong and Lei, 2007): 

Rg (Å) ~ 6.25 x M1/3 

 Equation 4.1 
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where M is the molecular mass in kDa. As Rg is highly dependent on shape, values for an 

elongated/unfolded proteins or tightly compacted globular protein will have be higher or 

lower respectively and so this provides an estimation of the expected Rg only. Using the 

native molecular mass for PfSir2a (30.43 kDa) this gives an approximate Rg of 20 Å (2 

nm). We can also use existing structural information for PfSir2a to evaluate an expected Rg 

value. Two existing crystal structures are already present in the PDB (entries 3U31 and 

3JWP). These structures related to a monomeric and trimeric form of PfSir2a as seen in the 

unit cell of the crystal lattice (see Figure 4.2). 

 

 

Figure 4.2: Pre-existing crystal structures of PfSir2a (not to scale). (A) Monomeric PfSir2a 

(PDB ID 3U31). (B) Trimeric PfSir2a (PDB ID 3JWP). 

 

 

A B 
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By using the program, CRYSOL we are able to calculate theoretical scattering profiles for 

both of these entries (Svergun et al., 1995). This program uses the known atomic structure 

of a protein from crystallography experiments to evaluate its solution scattering curve. This 

is performed using multipole expansion of the scattering amplitudes to calculate the 

spherically averaged scattering pattern which also takes into account the hydration shell 

surrounding the protein in solution (Svergun et al., 1995). 

This yields a Rg of 20 Å (2 nm) and 28 Å (2.8 nm) for the monomer and trimer 

respectively. The estimated Rg of 2nm for the monomeric PfSir2a calculated previously 

using Equation 4.1 matches that of the theoretical calculation as determined by CRYSOL. 

By using the same approximation, we can calculate a Rg of 28 Å for the trimeric form of 

PfSir2a which is also similar to that of the calculated Rg from CRYSOL. These 

calculations compare to that of the native form of PfSir2a. 

For the SAXS experiments carried out in this thesis the full length recombinant form of 

PfSir2a was used with a mass of 33.88 kDa. This has a higher MM than the native PfSir2a 

due to the presence of the His-tag and linker amino acids in the construct design. Using 

this mass value, the estimated Rg for the monomer and trimer form can be calculated at 20 

Å and 29 Å respectively. As we have seen from previous chapters, a dimeric state of 

PfSir2a is believed to exist in a concentration dependent manner in solution. As there is no 

crystal structure information for a PfSir2a dimer an estimation of the Rg using the mass of 

the full length recombinant form was calculated as 25 Å (2.5 nm). 

Additionally, in silico modelling using the I-TASSER server generated several 

approximations/anticipated structures of the full-length recombinant PfSir2a which can 

also be used by CRYSOL to calculate a theoretical Rg. This was performed using the PDB 

result files generated by inputting the amino acid sequence into the I-TASSER server. The 
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top 5 most probable models are selected based on a scoring system and supplied to 

CRYSOL. The results returned for the Rg of these models are given in Table 4.1. 

PfSir2a Model Or 
Crystal Structure 

CRYSOL Rg (Å) 

3U31 20 
3JWP 28 

Model 1 24 
Model 2 24 
Model 3 24 
Model 4 23 
Model 5 22 

 

Table 4.1: Table of theoretically calculated Rg values by CRYSOL for the existing crystal 

structures of PfSir2a and the I-TASSER generated models. 

The results of these theoretically calculated values were used to provide useful starting 

information relevant to the overall size and oligomeric state of PfSir2a prior to the SAXS 

solution measurements. From these values, we expect a monomer of the recombinant 

PfSir2a with to have an Rg in the region of 22 – 24 Å. The dimer is estimated to have an Rg 

of approximately 25 Å and that for a trimer to be 29 Å. 

Figure 4.3 shows an alignment of a single molecule of PfSir2a as seen in the PDB entries 

3U3I and 3JWP with I-TASSER generated Model 1 and Model 5. These I-TASSER 

models represent the overall structure of PfSir2a construct used in this thesis with the 

largest and smallest calculated Rg using CRYSOL. In general, the structures appear to align 

to one another with a good agreement. An interesting feature is the positioning of the 

additional N-terminal sequence of 17 amino acids in the recombinant construct. This 

position of this with respect to the core PfSir2a features changes dramatically between the 

I-TASSER generated models and indicates that there may be a high degree of flexibility of 

this additional linker region which could result in larger Rg values observed in small angle 
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scattering experiments. This high degree of flexibility may also have interfered with 

crystallisation attempts by being too flexible and an inability to form crystal contacts. 

 

 

 

 

 

 

 

Figure 4.3: Alignment of individual molecules of PfSir2a from existing structures 3U3I 

(Red), 3JWP (Green), I-TASSER Model 1 (Cyan) and I-TASSER Model 5 (Magenta). The 

core domain positions appear to be well conserved but the additional N-terminal region 

used in the PfSir2a recombinant construct appears to be disordered as observed in the 

positions highlighted for Model 1 and Model 5 respectively. 

4.3.2 Preliminary Structural Characterisation Of PfAlba3 

As with PfSir2a, we can calculate theoretical structural information for PfAlba3 which can 

help to interpret the experimental data obtained from solution SAXS. The full length 

recombinant form of PfAlba3 has a mass of 13.04 kDa which gives an estimated Rg of 15 

Å. There is currently no pre-existing crystal structure information for PfAlba3 from which 

a theoretically calculated Rg can be generated by CRYSOL. As such, only I-TASSER 

models for the full length recombinant form of PfAlba3 could be used. The results of the 

CRYSOL runs gave Rg values for these models that are summarised in Table 4.2. 

Model 1 
Model 5 
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Table 4.2: Table of theoretically calculated Rg values by CRYSOL for the I-TASSER 

generated models of PfAlba3 

4.4 PfSir2a SAXS Experimental Results 

This section outlines the main results observed from SAXS experiments using purified 

PfSir2a samples. 

4.4.1 Radiation Damage Characterisation 

SAXS measurements of PfSir2a were carried out using the automated sample changer 

system available at BM-29 (see section 4.2). An initial concentration series was carried out 

over a sample concentration range of 0.5 mg ml-1 to 8mg ml -1. Initial analysis of the data 

indicates that PfSir2a was strongly affected by radiation damage. Figure 4.4 shows the 

individual frames collected for a PfSir2a sample at a concentration of 8 mg ml-1. At low q 

(q < 0.2 nm-1) we see a shift in the measured intensity with each successive recorded 

frame, this is a characteristic feature of radiation damage and an ideal sample with no 

radiation damage would have frames which lie almost directly on top of one another which 

can be averaged together. 

PfAlba3 Model CRYSOL Rg (Å) 
Model 1 16 
Model 2 16 
Model 3 17 
Model 4 16 
Model 5 16 
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Figure 4.4: Plot of Intensity (I) versus q (nm-1) of ten PfSir2a 8 mg ml-1 sample frames 

with a 1s exposure time on a log scale. A shift in intensity at low q with successive 

recorded frames is indicative of radiation damage occurring in the sample due to continued 

exposure to X-rays. Sample frames are coloured from green to red to highlight the 

progression from non-damaged to radiation damaged respectively. 

Radiation damage is a well-known problem encountered during SAXS experiments, 

particularly when biological samples are studied using high brilliance synchrotron 

radiation sources such as the ESRF. It is a result of the absorption of high energy X-rays by 

water molecules present in the sample solution. These water molecules absorb the 

incoming energy of the X-ray photons and generate hydroxyl or hydroperoxyl radicals that 

interact with the protein molecules present in the solution to form charge centres which 

lead to electrostatic attraction and thus aggregation. The aggregated molecules which form 
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have a significantly increased molecular mass compared to that of the original protein 

molecules (Dmitri I. Svergun, Michel H. J. Koch, Peter A. Timmins, 2013). 

The distribution of the aggregated particles also covers a large range and the sample can no 

longer be considered a homogenous solution. This has a severe effect on further data 

analysis, causing inaccurate values to be derived for model-independent features of the 

target protein, such as the average molecular mass and size. This effect typically occurs in 

the last 2-3 recorded exposures of the sample which can be omitted during the analysis. In 

the case for PfSir2a it is clear that radiation damage occurs after the first exposure and 

continues during subsequent sample measurements. The effects of this can be observed in 

the measurements performed over the concentration series for PfSir2a in Figure 4.5. 

 

 

 

 

 

 

 

 

Figure 4.5: Individual processed scattering curves for PfSir2a concentration series 

measurements of Intensity versus q on a relative log scale (without errors) for better 

visualisation. A sharp increase in the measured intensity is observed at low q as the 

concentration of PfSir2a increases. 

PfSir2a Concentration Series 
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In this figure, the average scattering curves of PfSir2a over a sample concentration range 

of 0.5 - 8 mg ml-1 are shown. It can be seen in the concentrations of 1 mg ml-1 upwards, 

there is a distinct, sharp increase in the observed intensity at low q (q < 0.2 nm-1). This is 

highly indicative of large protein aggregates being present in the sample. The effect is 

especially highlighted when normalising for concentration by dividing the buffer-

subtracted scattering curves by the sample concentration in mg ml-1 (see Figure 4.6). 

 

 

 

 

 

 

 

 

 

 

Figure 4.6: Concentration normalised scattering curves for PfSir2a concentration series 

from 0 to 1 q. A sharp increase in intensity in the low q region is observed across the 

concentration series. The total scattering curves can be seen inserted on the right for 

reference. 

Concentration Normalised PfSir2a Concentration 
Series 
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We can further investigate these results to confirm the effects of radiation damage by using 

the data to calculate some basic particle properties; the apparent MM and Rg. The initial 

slope of a scattering curve can be approximated by Guinier’s law: 

𝐼(𝑞) ≈ 𝐼(0)𝑒
−𝑞2𝑅𝑔

2

3  
 

where Rg is the radius of gyration and I(0) is the zero angle intensity or forward scattering 

of a particle. These properties can be determined by a plot of ln I(q) versus q2 (Guinier 

plot) and holds valid for a range of 0 < q < 1/Rg, known as the Guinier range. For analysis 

of globular proteins, the limits are usually slightly adjusted to be qmin ≤ 0.5/Rg and qmax ≤ 

1.3/Rg. This plot should be linear at low q and aggregation or intermolecular repulsion are 

characterised by sharp upswings or downswings in the data respectively (Dmitri I. 

Svergun, Michel H. J. Koch, Peter A. Timmins, 2013). 

For MM determination (in kDa), the I(0) of each scattering curved is placed on an absolute 

scale by calibrating to water scattering, measured before each data set collection, using the 

following equation: 

𝑀𝑀 =  
𝑁𝐴𝐼0

∆𝜌𝑀
2 

Where, NA is Avogadro’s constant, I(0) is the experimentally determined forward scattering 

intensity (divided by the concentration), ∆ρM  = [ρM,prot – (ρsolv 𝑣 ̅)]ro is the scattering 

contrast per mass, ρM,prot =  3.22 x 1023 e g-1 is the number of electrons per mass of dry 

protein, ρsolv = 3.34 x 1023 e cm-1 is the electron density of the aqueous solvent (water), 𝑣 ̅= 

0.7425 cm3 g-1 is the partial specific volume of the protein and ro = 2.8179 x 10-13 cm is the 

scattering length of an electron. The values determined for the Rg and MM of PfSir2a were 

determined using a q range of between 0.02 and 0.06 based on the CRYSOL calculated Rg 

Equation 4.2 

Equation 4.3 
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values and are listed in Table 4.3. As the sample buffer contains a high concentration of 

NaCl (0.5M) the electron density of the solvent was recalculated to 3.39 x 1023 e cm-1. 

Sample – 
Concentration 

(mg ml-1) 

Rg (nm) Error Rg 
± (nm) 

I(0) Error I(0) 
± 

Absolute 
I(0) 

Apparent 
Molecular 

Mass 
(kDa) 

Water – N/A - - 2.1E+01 4.0E-03 - - 
PfSir2a - 0.5 5.52 0.089 6.67E+01 8.83E-01 5.18E-02 76.51 
PfSir2a - 1 7.11 0.076 1.01E+02 1.08E+00 7.84E-02 115.85 
PfSir2a - 2 7.39 0.057 1.05E+02 8.18E-01 8.15E-02 120.44 
PfSir2a - 4 7.67 0.03 1.15E+02 4.89E-01 8.93E-02 131.91 
PfSir2a - 8 8.25 0.016 1.43E+02 3.52E-01 1.11E-01 164.02 

 

Table 4.3: Experimentally determined value for Rg and MM of PfSir2a from processed 

concentration series data. Values highlighted in red could not be automatically determined 

using PRIMUS software and were determined manually. 

The results in Table 4.3 confirm that the PfSir2a samples experienced heavy radiation 

damage due to exposure to X-rays. This is seen as an increase in the Rg and molecular mass 

of the proteins with increasing sample concentration. Higher sample concentrations 

increase the likelihood of free-radical-induced aggregation and the formation of larger 

proteins aggregates. 

When attempting to fit the data, the only results found to satisfy the Guinier approximation 

between qmin ≤ 0.5/Rg and qmax ≤ 1.3/Rg. during analysis was the 0.5 mg ml-1 sample. The 

remaining samples highlighted in red could not be automatically determined using the 

PRIMUS software and were interpreted manually. The Guinier plot and resulting fit of the 

0.5 mg ml-1 sample can be seen in Figure 4.7. Despite satisfying these conditions we can 

see that the Guinier plot is not a linear trend as it tends to low q and we see an upswing in 

observed intensity. Given the information provided from this analysis, it is not possible to 
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provide an accurate ab initio model for PfSir2a from this data set as the results would be 

skewed by the effects of radiation-damage-induced protein aggregation. 

Figure 4.7: Guinier plot of Log(I) versus q2 for PfSir2a sample at 0.5 mg ml-1. The data 

points satisfying the Guinier approximation were plotted with a line of best fit. This plot 

illustrates the non-linearity of the PfSir2a sample in the low q Guinier region and the sharp 

upwards increase in intensity at low q (q < 0.2) that is indicative of radiation damage or 

aggregation. 

To obtain accurate ab inito shape information about PfSir2a in solution, it is necessary to 

counter the effects of the radiation damage. This may be mitigated in several ways. The 

first is to reduce the salt content of the buffer in which the sample is measured. High salt 

concentrations of salt increase the absorbance of the incoming X-ray energy and increase 

the number of free radicals generated (Dmitri I. Svergun, Michel H. J. Koch, Peter A. 

Timmins, 2013). The addition of free-radical-scavenging reducing agents, such as DTT or 

PfSir2a 0.5 mg ml-1 Data Guinier Plot 

 0.62 < qRg < 1.0 
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ß-mercaptoethanol to the sample buffer can also be employed and acts as a barrier by 

soaking up generated free radicals before they can cause damage to the protein molecules. 

Initially, the reduction of the salt concentration in the sample buffer in which PfSir2a is 

prepared was investigated. The NaCl concentration of the buffer was reduced from 0.5M to 

0.1M, and the concentration series was prepared again for a repeated SAXS experiment. 

The results from this experiment can be seen in Figure 4.8 and indicate that there may still 

be radiation damage occurring from sample exposure to X-rays, signified again by the 

sharp upturn in I at low q.  

 

 

 

 

 

 

 

 

Figure 4.8: Concentration normalised scattering curves for PfSir2a concentration series in 

buffer containing 100mM NaCl from 0 to 1 q. A sharp increase in intensity in the low q (q 

< 0.2 nm-1) region is observed across the concentration series. The total scattering curves 

can be seen inserted on the right for reference. 

 

Concentration Normalised PfSir2a Concentration 
Series In Buffer Containing 100mM NaCl 
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The shifting of intensity across the individual sample frames was also observed during 

manual analysis. This is highlighted even in the lowest concentration of PfSir2a measured, 

0.5 mg ml-1 as can be seen in Figure 4.9. 

 

Figure 4.9: Plot of Intensity (I) versus q (nm-1) of ten PfSir2a 0.5 mg ml-1 sample frames 

with a 1s exposure time on a log scale. A shift in intensity at low q (q < 0.3 nm-1) with 

successive recorded frames is indicative of radiation damage occurring in the sample due 

to continued exposure to X-rays. Sample frames are coloured from green to red to 

highlight the progression from non-damaged to radiation damaged respectively. 

The experimentally determined values for the Rg and MM of PfSir2a in this lower salt 

concentration buffer can be seen in Table 4.4. A modified solvent electron density value of 

0.335 was used to calculate these results to account for the electron density of water plus 

that of 100mM NaCl. The flow rate of the sample through the capillary was also increased 

to 0.6 ml min-1. The results show that there is still evidence of radiation damaged induced 

PfSir2a 0.5 mg ml-1 100mM NaCl Radiation Damage 
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aggregation from the increasing Rg and MM values. Unlike the previous data set, the 

Guinier approximation held valid for the Guinier range determined by the estimated Rg for 

each of the scattering curves analysed by the PRIMUS software. 

Sample – 
Concentration 
(mg ml-1) 

Rg (nm) Error Rg 
± 

I(0) Error I(0) 
± 

Absolute 
I(0) 

Molecular 
Mass 
(kDa) 

Water – N/A - - 2.1E+01 4.0E-03 - - 
PfSir2a - 0.5 4.42 1.14E-01 6.61E+01 9.32E-01 5.13E-02 68.40 

 

Table 4.4: Experimentally determined value for Rg and MM of PfSir2a in 100mM NaCl 

containing buffer at 0.5 mg ml-1. 

The value for the Rg and MM is lower than that determined from the previous dataset in 

Table 4.3. This indicates that although there is some radiation damage still present, it is 

occurring to a lesser extent than was observed in the initial measurements. This can be seen 

in the Guinier plot of the 0.5 mg ml-1
 sample seen in Figure 4.10. Here the Guinier plot is 

much more linear than that for the 0.5 mg ml-1 sample from the previous dataset. However, 

despite a slight reduction in radiation damage, the Guinier plots for the higher 

concentration samples were less linear. The previously calculated values for the Rg and 

MM of PfSir2a also do not correlate with the expected value for a PfSir2a monomer in 

solution. 
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Figure 4.10: Guinier plot of Log(I) versus q2 for PfSir2a sample at 0.5 mg ml-1 in 100mM 

NaCl buffer. The data points satisfying the Guinier approximation were plotted with a line 

of best fit. This plot illustrates an improvement to the Guinier plot and data fitting 

compared to that seen in Figure 4.5 but still shows some non-linearity at low q (q < 0.2 

nm-1).  

Additional steps to further minimise radiation damage effects were attempted by the 

addition of 1mM DTT to the sample buffer containing 100mM NaCl to act as a free radical 

scavenger during the course of the experimental measurements for the PfSir2a 

concentration series. The results for this data set can be seen in Figure 4.11. A reduction is 

seen in observed I at low q. Additionally, there is little variation between individual 

measurements frames compared to that seen previously in Figure 4.9 

 

 

PfSir2a 0.5 mg ml-1 Data Guinier Plot In Buffer 
Containing 100mM NaCl 

 0.62 < qRg < 1.1 
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Figure 4.11: Processed scattering curves for PfSir2a concentration series measurements in 

buffer containing 100mM NaCl and 1mM DTT. Intensity versus q is plotted on a relative 

log scale (without errors) for better visualisation. A reduced upswing in intensity is 

observed at low q due to addition of 1mM DTT to the sample buffer. 

The difference in scattering for several concentrations of PfSir2a in buffers containing 

100mM NaCl with and without 1mM DTT is especially apparent when comparing the data 

sets. This is shown in Figure 4.12. 

 

 

 

 

PfSir2a 0.5 mg ml-1 100mM NaCl + 1mM DTT 
Sample Frames 
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Figure 4.12: Processed scattering curves for PfSir2a concentration series measurements in 

buffer containing 100mM NaCl ± 1mM DTT. Intensity versus q is plotted on a relative log. 

This plot illustrates the reduction in observed low q intensity in the processed sample 

scattering curves due to addition of 1mM DTT to the sample buffer. 

The results shown in Figure 4.12 indicate a significant reduction in radiation damage to the 

sample concentration range tested from the addition of 1mM DTT to the sample buffer. An 

improvement is also noticed when normalising each scattering curve against concentration 

as seen in Figure 4.13. Here there is a much less pronounced increase in intensity in the 

low q region although there is still some discrepancy between the different sample 

concentration curves. 

 

Comparison Of PfSir2a Concentration Series In 
Buffer Containing 100mM NaCl ± 1mM DTT 
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Figure 4.13: Concentration normalised scattering curves for PfSir2a concentration series in 

buffer containing 100mM NaCl and 1mM DTT from 0 to 1 q. The total scattering curves 

can be seen inserted on the right for reference. 

The experimentally determined values for the Rg and MM of PfSir2a in 100mM NaCl 

buffer with 1mM DTT were calculated and can be seen in Table 4.5. A significant 

reduction in the overall Rg calculated for the entire concentration series can be seen. An 

improvement in the fit of the Guinier plot for the 0.5 mg ml-1 sample is also found and is 

now almost completely linear at low q (see Figure 4.14). 

 

 

 

Concentration Normalised PfSir2a Concentration 
Series In Buffer Containing 100mM NaCl And 1mM 

DTT 
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Sample – 
Concentration 

(mg ml-1) 

Rg (nm) Error Rg 
± (nm) 

I(0) Error I(0) 
± 

Absolute 
I(0) 

Molecular 
Mass 
(kDa) 

Water – N/A - - 2.1E+01 4.0E-03 - - 
PfSir2a - 0.5 3.27 1.30E-01 4.88E+01 5.95E-01 3.79E-02 50.50 
PfSir2a - 1 3.62 6.50E-02 5.62E+01 8.87E-01 4.36E-02 58.16 
PfSir2a - 2 3.7 3.30E-02 6.24E+01 9.06E-01 4.84E-02 64.57 
PfSir2a - 4 3.97 2.00E-02 7.01E+01 9.54E-01 5.44E-02 72.54 
PfSir2a - 8 4.33 9.00E-03 8.57E+01 9.10E-02 6.65E-02 88.68 

 

Table 4.5: Experimentally determined value for Rg and MM from processed concentration 

series data of PfSir2a in 100mM NaCl and 1mM DTT containing buffer. 

 

Figure 4.14 Guinier plot of Log(I) versus q2 for PfSir2a sample at 0.5 mg ml-1 in 100mM 

NaCl, 1mM DTT buffer. The data points satisfying the Guinier approximation were plotted 

with a line of best fit. A significant improvement in the linearity of the Guinier plot is 

observed at low q (q < 0.2 nm-1). 

 

PfSir2a 0.5 mg ml-1 Data Guinier Plot In Buffer 
Containing 100mM NaCl And 1mM DTT 

 0.53 < qRg < 1.05 
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However, the molecular mass calculation for this concentration yields a value of 50.50 kDa 

which is still too large for a monomer of PfSir2a and too small for a dimer. A steady 

increase in Rg and MM is again observed as the concentration of the sample increases. The 

reason for this continued increase can be attributed to several factors; some small presence 

of radiation-damage-induced aggregation, sample polydispersity in the adjusted buffer 

conditions, or a sample concentration effect. 

The continued presence of radiation damage was investigated first. As previously shown in 

Figure 4.4 for the 8 mg ml-1 sample from the initial experiment dataset, a plot of the 

individual sample frames can be seen in Figure 4.15. Here we see there is much less 

divergence between the individual frames as compared to the previous 8 mg ml-1 sample 

before buffer optimisation. This suggests the effect from radiation damage is minimal and 

can be mitigated when processing the sample frames. This is reflected in the Guinier plot 

of the 0.5 mg ml-1 concentration sample seen in Figure 4.14. 
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Figure 4.15: Plot of Intensity (I) versus q (nm-1) of 10 PfSir2a 8 mg ml-1 sample frames 

with a 1s exposure time on a log scale. A vast improvement is observed in the scattering 

data with a minimal increase in observed intensity at low q observed with successive 

measurements. 

Secondly, the effect of polydispersity was investigated by DLS measurements on samples 

prepared in the optimised buffer conditions. Previous DLS results seen in Chapter 3, 

section 3.6.1 indicates that lower salt concentration in the sample buffer increases the 

polydispersity of PfSir2a in solution. DLS measurements were therefore made with the 

addition of 1mM DTT to the sample buffer and a PfSir2a sample concentration of 1 mg  

ml-1; the results of this can be seen in Figure 4.16. 

Panel A shows the previous measurements made in sodium phosphate buffers containing 

100 or 500mM NaCl without DTT as a comparison with RH values of 8.1 ±2.2 nm (26% 

Plot Of Individual PfSir2a 8 mg ml-1 Sample Frames 

In Buffer Containing 100mM NaCl And 1mM DTT 
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poldispersity) and 9.3 ± 1.4 nm (15% polydispersity) in 100mM and 500mM NaCl 

respectively Panel B shows the repeated measurement with the addition of 1 mM DTT to 

the sample buffer. Values of 8.9 ± 2.5 nm (26% polydispersity) and 10.7 ± 1.6 nm (15% 

polydispersity) were found for the 100mM and 500mM NaCl-containing buffers 

respectively. This is in agreement with previous results that reducing the salt content of the 

buffer increases the overall polydispersity of PfSir2a in solution. The addition of 1mM 

DTT appears to have had very little effect on the polydispersity of the sample. 
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Figure 4.16: DLS results for PfSir2a in sodium phosphate buffer without 1mM DTT (A) 

and with 1mM DTT (B).with 100mM or 500mM NaCl. 

We can see that in this buffer condition, the samples show a polydispersity of greater than 

20% and can no longer be considered a monodisperse solution, which is a pre-requisite 

condition for SAXS experimental analysis. 

 

 

A 

100mM 500mM 

100mM 500mM 

B 
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4.4.2 Concentration Effect Characterisation 

With regard to concentration effects in the samples as analysed by SAXS, we know from 

previous AUC data on PfSir2a that there is a concentration dependent oligomeric state. 

However, this can only be properly assessed when the effects of radiation damage and 

polydispersity have been mitigated By modifying the buffer conditions to 50mM sodium 

phosphate, 500mM NaCl, 1mM DTT a repeat set of measurements was made on the 

PfSir2a concentration series. The results of this dataset can be seen in Figure 4.17. 

 

 

Figure 4.17: Processed scattering curves for PfSir2a concentration series measurements in 

buffer containing 500mM NaCl and 1mM DTT. Intensity versus q is plotted on a relative 

log scale. A reduced upswing in intensity is observed at low q due to the addition of 1mM 

DTT to the sample buffer. 

PfSir2a Concentration Series In Buffer Containing 
500mM NaCl And 1mM DTT 
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From this repeated data set we can see a marked decrease in intensity in the low q region. 

The addition of 1mM DTT to the sample buffer has significantly reduced the effect of 

radiation-damage-induced aggregation as also seen in the 100mM NaCl containing buffer. 

This is again highlighted when comparing the data sets with and without the addition of 

1mM DTT to the sample buffer with a salt concentration of 500mM NaCl (see Figure 

4.18). An increase in low q scattering was still observed for the 4mg ml-1 PfSir2a sample.  

 

 

Figure 4.18: Processed scattering curves for PfSir2a concentration series measurements in 

buffer containing 500mM NaCl ± 1mM DTT. Intensity versus q is plotted on a relative log 

scale. The plot shows a clear improvement in the processed scattering curves for the 

PfSir2a concentration series from the addition of 1mM DTT to the sample buffer. 

 

Comparison Of PfSir2a Concentration Series In 
Buffer Containing 500mM NaCl ± 1mM DTT 
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By normalising the data against sample concentration, we can see that there is still a 

divergence at low q between the samples in the concentration range tested (see Figure 

4.19). The experimentally determined values for the Rg and MM of PfSir2a in the 500mM 

NaCl buffer with 1mM DTT were calculated and can be seen in Table 4.6. 

 

 

Figure 4.19: Concentration normalised scattering curves for PfSir2a concentration series in 

buffer containing 500mM NaCl and 1mM DTT from 0 to 1 q. The total scattering curves 

can be seen inserted on the right for reference. A reduction in low q intensity is observed in 

the processed concentration series results after the addition of 1mM DTT to the sample 

buffer. Despite improvements to the sample preparation, a difference is still observed 

between the scattering curves for the different concentrations of PfSir2a at low q after 

normalisation. 

 

Concentration Normalised PfSir2a Concentration 
Series In Buffer Containing 500mM NaCl And 1mM 

DTT 
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Sample – 
Concentration 

(mg ml-1) 

Rg (nm) Error Rg 
± (nm) 

I(0) Error I(0) 
± 

Absolute 
I(0) 

Molecular 
Mass 
(kDa) 

Water – N/A - - 2.1E+01 4.0E-03 - - 
PfSir2a - 0.5 2.94 0.217 3.42E+01 6.28E-01 2.65E-02 39.23 
PfSir2a - 1 3.43 0.094 4.03E+01 3.60E-01 3.13E-02 46.22 
PfSir2a - 2 3.76 0.04 4.56E+01 1.92E-01 3.54E-02 52.30 
PfSir2a - 4 4.12 0.029 5.30E+01 1.83E-01 4.11E-02 60.79 
PfSir2a - 8 3.73 0.012 5.36E+01 6.90E-02 4.16E-02 61.48 

 

Table 4.6: Experimentally determined values for Rg and MM of PfSir2a in 500mM NaCl 

and 1mM DTT containing buffer. 

From the results seen in Table 4.6 we can identify several features in the data. Firstly, the 

calculated values for the Rg and MM of PfSir2a are lower than that which has been 

determined from the previous datasets. This indicates that the problems of radiation 

damage and polydispersity from sub-optimal buffer composition have been significantly 

reduced. However, intrinsic or concentration based issues can still be present. A general 

increase in the calculated Rg from 2.9 nm to 3.7 nm is found. Additionally, the calculated 

MM increases from 39.2 kDa to 61.5 kDa. 

Further improvements can be seen in the Guinier plot now following a straight line at low 

q (q < 0.2 nm-1) indicating that the Guinier approximation holds valid (see Figure 4.20). 

However, even at the lowest concentration of recombinant PfSir2a, 0.5 mg ml-1, we see a 

higher than expected value for both the MM (+5.4 kDa) and the Rg (+0.5 – 0.76 nm). 
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Figure 4.20: Guinier plot of Log(I) versus q2 for PfSir2a sample at 0.5 mg ml-1 in 500mM 

NaCl, 1mM DTT buffer. The data points satisfying the Guinier approximation were plotted 

with a line of best fit. A significant improvement in the linearity of the Guinier plot is 

observed at low q (q < 0.2 nm-1).  

Next, the experimental data for the 0.5 mg ml-1 sample were fitted against the theoretical 

scattering curves for the I-TASSER modelled recombinant PfSir2a as well as the two pre-

existing crystal structures, 3JWP and 3U31, for data validation and comparison. The data 

fitting using CRYSOL can be seen in Figure 4.21. The chi-square values determined for all 

models are artificially low due to the large error range when fitting to the scattering data. 

However, Of the five I-TASSER models produced, model 2 was found to have the best fit 

to the experimental scattering data with chi-square fit values of 0.9. The fits for the pre-

existing PfSir2a crystal structures for the monomer and trimer form, 3U31 and 3JWP, were 

found to fit poorly with the experimental scattering data with chi-square fit values of 3.354 

and 5.197 respectively.  

PfSir2a 0.5 mg ml-1 Data Guinier Plot In Buffer 
Containing 500mM NaCl And 1mM DTT 

 0.73< qRg < 1.24 
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Figure 4.21: CRYSOL output of 0.5 mg ml-1 experimental scattering data in 500mM NaCl, 

1mM DTT (blue) fit with theoretical scattering curves for I-TASSER model 2, PfSir2a 

crystal structure 3U31 and 3JWP (red) in panels A, B and C respectively. 

A 

B 

C 



174 
 

Equation 4.4 

Taking the scattering data for the 0.5 mg ml-1 sample we can calculate the pair-distance 

distribution function p(r) for the PfSir2a molecule in solution. This is a description of the 

paired set of all distance between points, r, within an object. It is described by the 

following equation (Dmitri I. Svergun, Michel H. J. Koch, Peter A. Timmins, 2013): 

𝐼(𝑞) = 4𝜋 ∫ 𝑝(𝑟)
sin (𝑞𝑟)

𝑞𝑟 𝑑𝑟
𝐷𝑚𝑎𝑥

0
 

 

This provides information about the overall size of the molecule, Dmax, and gives an 

indication of the molecules shape and/or presence of aggregation. The p(r) distribution for 

PfSir2a can be seen in Figure 4.22.  

 

Figure 4.22: Plot of p(r) function for PfSir2a 0.5 mg ml-1 sample scattering data. The bell-

shaped nature of the plot indicates that PfSir2a is a globular protein in solution. 

Pair Distribution Plot of PfSir2a 0.5 mg ml-1 Data 



175 
 

The profile of the p(r) plot for PfSir2a shows the expected bell-shape for a globular 

protein. There is a slight tail to the p(r) distribution at larger distances of r which can be an 

indication of aggregation. The Dmax for PfSir2a at 0.5 mg ml-1 was found to be 8.1 nm ± 

0.5nm. Further confirmation of whether PfSir2a exists as a globular protein in solution was 

determined by a Kratky plot of I(q) x q2 versus q. This can be seen in Figure 4.23. The plot 

shows a bell-shaped curved with a well-defined maximum which is characteristic for a 

folded, globular protein. Unfolded and disordered proteins show much slower intensity 

decay as q increases yielding a plateau instead of a peak.  

 

Figure 4.23: Kratky plot of PfSir2a 0.5 mg ml-1 sample scattering data. The bell-shaped 

nature of the plot at low q indicates that PfSir2a is globular in solution. Unfolded proteins 

typically show a plateau region at higher q. 

 

Kratky Plot of PfSir2a 0.5 mg ml-1 Data 
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4.4.3 Ab initio Modelling Of SAXS Data For PfSir2a 

Ab initio modelling for PfSir2a was performed using the 0.5 mg ml-1 scattering data using 

the DAMMIF program. 40 models were produced from fits to the scattering data which 

were averaged together after removing least likely models by DAMAVER. The results of 

the ab initio model generation can be seen in Figure 4.24. 

 

Figure 4.24: Results of Ab initio modelling for PfSir2a showing (A) Side view, (B) 

Alternate side view, (C) Top View and (D) end view. DAMAVER averaged envelope of 

all models is shown in grey. DAMMIF filtered model is shown in cyan. The most 

representative model (MRM) is shown in red.  

 

A B 

C D 
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In Figure 4.24 we can see that the SAXS envelope calculated by DAMMIF using the 

experimental scattering data is significantly larger than the I-TASSER generated model 

and highlights the variation in the model reconstructions. The filtered model which has low 

space occupancy areas removed from the averaged model shows the most likely SAXS 

envelope structure for PfSir2a in solution. However, this does not accurately reflect the 

experimental scattering data, instead the model with the lowest reported NSD value (i.e the 

most representative model (MRM) of the protein in solution) is used. This model was 

compared the I-TASSER model2 in Figure 4.25 which was found to have the best fit to the 

data in Figure 4.21.  

 

 

 

 

 

 

 

 

 

Figure 4.25: Results of Ab initio modelling for PfSir2a showing (A) Side view, (B) 

Alternate side view, (C) Top View and (D) end view. MRM envelope model is shown in 

red, I-TASSER model2 is shown in cartoon.  

A B 

C D 
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The fit of the scattering data for PfSir2a to the MRM as determined by CRYSOL is shown 

in Figure 4.26.  

 

 

 

 

 

 

 

 

Figure 4.26: CRYSOL output of 0.5 mg ml-1 PfSir2a experimental scattering data in 

500mM NaCl, 1mM DTT (blue) fit with theoretical scattering curves for MRM (red).  

Initially radiation damage had a dramatic impact on the quality of the data obtained from 

scattering experiments. After reducing the effect of radiation damage, it also became very 

apparent that concentration effects were also affecting the data for PfSir2a, even at low 

concentrations (0.5 mg ml-1).  

While AUC data supports the idea that there is a monomer-trimer mixture based on the 

estimated MM (see Chapter 3, section 3.8.1), the Rg of the 0.5 mg ml-1 PfSir2a sample 

exceeds that of the theoretically calculated value for a recombinant PfSir2a trimer, while 

the molecular mass estimate suggests a predominant monomer population. This Rg further 

increases in size with the concentration of PfSir2a in solution.  
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Given the known concentration effects for PfSir2a even at low concentrations, this has 

presented a significant challenge when attempting to interpret structural information about 

PfSir2a at higher concentration levels. Without crystal structure information for the 

recombinant PfSir2a in either monomer or trimer forms it becomes speculation as to the 

exact nature of the populations and their scattering profiles in solution. 

4.5 PfAlba3 SAXS Experimental Results 

This section outlines the main results observed from SAXS experiments using purified 

PfAlba3 samples. 

4.5.1 Characterising And Addressing The Rapid Aggregation Of PfAlba3 

SAXS measurements of PfAlba3 were also carried out using both the automated sample 

changer and online SEC system available at BM-29. An initial concentration series was 

carried out at a sample concentration range of 0.5 mg ml-1 to 5 mg ml -1. Initial analysis of 

the data revealed that PfAlba3 is heavily aggregated by the time the sample could be 

purified, concentrated and prepared for the measurements using the sample changer. This 

is again indicated by the sharp rise in intensity at low q (see Figure 4.27). 
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Figure 4.27: Processed scattering curves for PfAlba3 concentration series measurements of 

Intensity versus q on a relative log scale. A sharp upswing in intensity is observed at low q 

that is indicative of sample aggregation. 

4.5.2 The Use Of Online SEC-SAXS At BM29 To Address Aggregation 

Given the propensity for PfAlba3 to aggregate so rapidly in solution after purification and 

its low tolerance for concentration before precipitation (< 5 mg ml-1), further sample 

changer measurements would unlikely give accurate results. To try and overcome this 

problem of sample stability, the online SEC system present at BM-29 was used (Round et 

al., 2013). Here a size exclusion column is connected to a HPLC pump system which 

allows for the injection of a protein sample onto a size exclusion column (varied depending 

on size of protein). As the protein passes out of the column it passes through the sample 

capillary where it can be exposed to X-rays for measurements to take place and scattering 

data be obtained. This offers several advantages such as being able to separate aggregates 

PfAlba3 Concentration Series 
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from sample proteins, oligomeric species, protein complexes and unbound components as 

well as UV trace information for accurate protein concentration measurements and peak 

profile tracking (Round et al., 2013). 

PfAlba3 samples at a concentration of 2.5 mg ml-1 were injected onto a Superdex™ S75 

10/300 GL column pre-equilibrated in a size exclusion sample buffer containing 50mM 

sodium phosphate, 500mM NaCl, 1mM DTT, pH 7.0. A sample volume of 100µl and a 

flow rate of 0.5 ml min-1 were used. During the experiment, the measured I(0) of 1 second 

exposure frames was monitored and plotted against the automatically determined Rg of the 

protein from the BM-29 data pipeline for 1 column volume. The results can be seen in 

Figure 4.28.  

 

Figure 4.28: Plot of recorded I(0)of 1s frames and Rg for every recorded frame during On-

line SEC run. 

Here we see the expected size exclusion profile for PfAlba3 as it migrates through the 

column and the observed scattering across the elution volume. A distinct peak can be 
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observed in the measured I(0) of the recorded frames which correlates with the elution 

profile of PfAlba3. Frames between 1000 and 1100 were taken and processed to provide an 

average scattering pattern from which an average buffer scattering pattern recorded at the 

beginning of the experiment (frames 200 – 400) could be subtracted. The processed data 

for PfAlba3 can be seen in Figure 4.29. 

 

Figure 4.29: Plot of PfAlba3 processed experimental scattering curve. Merged PfAlba3 

frames (Orange), merged buffer frames (Green) and subtracted data (Blue).  

The results from the processed scattering data seen in Figure 4.29 show several features 

and improvements. Firstly, there is no sharp increase in intensity at low q (q < 0.3 nm-1) as 

seen previously as a result of large proteins aggregates forming in the sample or as a result 

of radiation damage from X-ray exposure. The Guinier plot is linear at low q (see Figure 

4.30) and values for the Rg and MM were calculated (Table 4.7). 

PfAlba3 SEC-SAXS Data Plot 
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Figure 4.30: Guinier plot of Log(I) versus q2 for PfAlba3 SEC sample injected at 2.5 mg 

ml-1 in 500mM NaCl, 1mM DTT buffer. The data points satisfying the Guinier 

approximation were plotted with a line of best fit.  

Sample – 
Concentration 

(mg ml-1) 

Rg (nm) Error Rg 
± (nm) 

I(0) Error I(0) 
± 

Absolute 
I(0) 

Molecular 
Mass 
(kDa) 

Water – N/A - - 2.07E+01 1.20E-02 - - 
PfAlba3 – 2.5 2.35 0.325 2.98E+00 8.80E-02 2.35E-03 3.47 

 

Table 4.7: Experimentally determined value for Rg and MM of PfAlba3 in 500mM NaCl 

and 1mM DTT containing buffer. 

Here we find an experimentally determined Rg for PfAlba3 of 2.35nm, that is larger than 

the theoretically predicted 1.6 – 1.7 nm determined by CRYSOL. A very low I(0) is 

observed and is reflected in the calculated MM of 3.5 kDa. This could perhaps be 

attributed in part to some sample loss on the column filter due to large precipitates. Also, 

PfAlba3 SEC-SAXS Guinier Plot 

 0.54< qRg < 1.08 
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as a low molecular weight protein (13.04 kDa), PfAlba3 has a low overall scattering 

density which can make it difficult to distinguish above that of the solvent scattering at low 

protein concentrations. This is more difficult in the case of high salt buffers which have an 

increased scattering density due to higher electron density compared to that of water or low 

salt buffers. 

4.5.3 Ab initio Modelling Of SAXS Data For PfAlba3 

Next, the experimental data for the sample were fitted against the theoretical scattering 

curves for the I-TASSER modelled recombinant PfAlba3. The best fit to the data was 

found to be model 3 with a chi-square fit value of 1.811 (see Figure 4.31). This appears to 

fit the experimental scattering curve fairly well. 

 

 

 

 

 

 

 

Figure 4.31: CRYSOL output of on-line SEC PfAlba3 sample scattering data in 500mM 

NaCl, 1mM DTT (blue) fit with theoretical scattering curves for I-TASSER model3 (red). 
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The p(r) function for PfAlba3 was calculated next to obtain the Dmax of the molecule and 

can be seen in Figure 4.32. Again, the profile of the p(r) plot for PfAlba3 shows the 

expected bell-shape for a globular protein. The Dmax for PfAlba3 at 2.5 mg ml-1 was found 

to be 7.8 nm ± 0.2nm.  

 

Figure 4.32: Plot of p(r) function for PfAlba3 2.5 mg ml-1 sample scattering data.  

The Kratky plot seen in Figure 4.33 also indicates that the protein is folded and not 

disordered. Ab initio modelling for PfAlba3 was performed using the 2.5 mg ml-1 (injected 

sample concentration) scattering data using the DAMMIF program. 40 models were 

produced from fits to the scattering data which were averaged together after removing least 

likely models by DAMAVER.  

 

Pair Distribution Plot of PfAlba3 SEC Data 
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Figure 4.33: Kratky plot of PfAlba3 2.5 mg ml-1 scattering data.  

The results for the ab initio modelling are shown in Figure 4.34 for PfAlba3 and indicate a 

much more oblate shape compared to that of PfSir2a, despite similar calculated values for 

the Dmax of each particle (7.8 and 8.1 nm respectively). The averaged SAXS envelope 

model seen in Figure 4.34 also indicates a much larger size than the I-TASSER generated 

model and highlights the variation in the model reconstructions. By removing the areas of 

low space occupancy we see a likely estimate of the solution based structure of PfAlba3 

although, again, it does not fully represent the experimentally obtained scattering data. 

 

 

 

Kratky Plot of PfAlba3 SEC Data 
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Figure 4.34: Results of Ab initio modelling for PfAlba3 showing (A) Side view, (B) 

Alternate side view, (C) Top View and (D) end view. DAMAVER averaged envelope of 

all models is shown in grey. DAMMIF filtered model is shown in cyan. The most 

representative model (MRM) is shown in pink. 
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As this does not accurately reflect the experimental scattering data, instead the model with 

the lowest reported NSD value (i.e the most representative model (MRM) of the protein in 

solution) is used. This model was compared the I-TASSER model3 in Figure 4.35 which 

was found to have the best fit to the data in Figure 4.31.  

 

 

 

 

 

 

 

 

 

Figure 4.35: Results of Ab initio modelling for PfAlba3 showing (A) Side view, (B) 

Alternate side view, (C) Top View and (D) end view. MRM envelope model is shown in 

red, I-TASSER model3 is shown in cartoon.  

The fit of the scattering data for PfAlba3 to the MRM as determined by CRYSOL is shown 

in Figure 4.36 
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Figure 4.36: CRYSOL output of 2.5 mg ml-1 PfAlba3 experimental scattering data in 

500mM NaCl, 1mM DTT (blue) fit with theoretical scattering curves for MRM (red).  

4.6 Summary 

In summary this chapter provides an in-depth analysis of SAXS data gathered on the 

recombinant PfSir2a and PfAlba3 protein samples that have been produced and 

characterised extensively by the biochemical and biophysical methods outlined in Chapter 

3. We find during the analysis that there are several challenges with each protein which 

were investigated and optimised to provide the most accurate solution structure analysis for 

each protein. 

For PfSir2a we find that the protein samples do not well-tolerate exposure to X-rays and 

radiation-damage-induced protein aggregation was contaminating the scattering patterns. 

Once the problem of radiation damage was mitigated, the analysis of PfSir2a was further 
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complicated by concentration dependent inter-particle effects between oligomeric species. 

Given the unknown nature of how strong the interaction between the molecules is at 

different concentrations and the limited pre-existing crystal structure data available, a low-

resolution solution model of PfSir2a was produced by ab initio modelling via DAMMIF. 

Improvements to the quality of the data and analysis could be made by measuring samples 

at a lower concentration (i.e. < 0.5 mg ml-1) which could help to reduce the aforementioned 

problems with radiation damage and concentration effects.  

Similarly, for PfAlba3 protein aggregation was a major contributing factor to problems 

with sample preparation and contamination of scattering data. The delicate nature of the 

sample prompted the use of the on-line SEC experimental set-up available at the ESRF 

beamline BM-29 for the collection of the sample scattering data. This resulted in 

successful data collection allowing the use of the ab initio modelling software to produce a 

solution based structure for PfAlba3. 
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Chapter 5: SEC-SANS Development 

Abstract 

This chapter focuses on the work carried out for the development of a technique for use in 

Bio-SANS measurements at the D22 beamline, ILL Grenoble. Here the first use of in situ 

SEC at a SANS beamline is presented for continuous flow measurements. This serves to 

improve the collection of data on interesting biological samples which often can be unstable 

or polydisperse in nature over traditional static SANS measurements. 

A modified quartz cuvette was placed in a continuous flow cell device directly in the path of 

a neutron beam. This was connected to an ÄKTAPrime FPLC system for sample injection 

and flow control. Data was collected on SEC standard samples in both hydrogenated and 

deuterated buffer conditions for Guinier analysis and ab initio modelling. This system was 

also adapted to explore the solution structure properties of PfSir2a and PfAlba3. 

5.1 Introduction 

As seen in previous chapters, radiation damage can be a serious issue for biological samples 

when attempting to analyse SAXS data. This well-known damaging effect can cause 

significant increases in the Rg of the macromolecules being studied due to radiation damage-

induced aggregation. This has severe effects which result in un-interpretable data or a false 

representation of the sample (Fischetti et al., 2003; Jeffries et al., 2015; Kuwamoto et al., 

2004). 

SANS can provide information that strongly complements that gained from SAXS, and also 

offers an alternative approach to analyse samples that can easily suffer from the effects of 

radiation damage (Dmitri I. Svergun, Michel H. J. Koch, Peter A. Timmins, 2013). This is 

due to the scattering of neutrons by nuclei rather than electrons which is the case for X-rays. 



192 
 

As a result, radiation damage does not occur in the same way for samples analysed by SANS 

(Dmitri I. Svergun, Michel H. J. Koch, Peter A. Timmins, 2013). This offers a unique 

opportunity to investigate sensitive samples which are of significant biological importance. 

Traditionally SANS experiments are carried out with a sample protein solution held in a 

quartz cuvette having a 1mm path length. For experiments involving deuterium labelled 

protein-protein, protein-DNA, or protein-RNA samples, the measurements are conducted in 

a series of different H2O:D2O buffer compositions to match out one or several components 

in the complexes to identify the structural changes that occur upon binding in the unmatched 

partner. This is compared to the individual proteins to look for changes in the Rg and/or 

changes in the ab initio models which are produced from the processed, buffer subtracted, 

scattering curves. 

It is often the case that many of the samples of interest do not tolerate the high sample 

concentrations required for SANS experiments (typically 5 mg ml-1 or greater is preferred). 

These high sample concentrations are required to distinguish the excess scattering caused by 

sample from the high background scattering caused by the incoherent scattering of neutrons 

by hydrogen atoms contained within normal hydrogenated buffer solutions (see Chapter 2, 

section 2.3.1). Additionally, even if high concentrations can be reached, samples may not 

tolerate exposure to D2O containing buffers which can cause the sample to aggregate or 

precipitate from solution (Berns et al., 1968; Lee and Berns, 1968). As mentioned 

previously, the issue of aggregation is a major limitation to the SAS field and methods to 

improve sample data collection are in demand (Dmitri I. Svergun, Michel H. J. Koch, Peter 

A. Timmins, 2013; Round et al., 2015). 

This chapter describes a novel system that has been devised and built to allow SEC to be 

combined with SANS measurements. In the SEC-SANS setup presented here, several 
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developments have been made to facilitate in situ SEC on the ILL SANS instrument D22. 

This approach has been applied previously on SAXS instruments – notably at SWING 

(SOLEIL, L'Orme des Merisiers Saint-Aubin) and BM-29 (ESRF, Grenoble) and (David and 

Pérez, 2009; Round et al., 2013). This chapter is focused on the experimental system 

developed on D22 and on the results obtained from SEC-SANS experiments conducted 

using gel filtration standards of model proteins for validation of the technique. It was also 

applied to the PfSir2a and PfAlba3 proteins for comparison to the SAXS data and overall 

model validation. 

5.2 Experimental Set-up 

The instrument used for the SANS experiments relevant to this chapter was D22 at ILL, 

Grenoble. This is a SANS instrument with the highest flux at the sample in a wavelength 

range of 0.4 to more than 4 nm by using the ILL horizontal cold source. It possesses the 

largest area detector of all SANS instruments (active area 96 x96 cm) which can be moved 

laterally by 50 cm at a sample to detector distance of 2.4 – 20 meters. This enables D22 to 

cover a large q range (4 x 10-4 to 0.44 Å-1). 

Firstly a modified cuvette for measuring the samples in continuous flow cell was designed 

(see Figure 5.1). Here a Suprasil quartz cell of 1 mm sample thickness was placed in the 

“stopped-flow head” (Grillo, 2009). This was placed directly after a Superdex 75 column 

10/300 GL to separate the proteins by molecular weight. The samples were manually 

injected and then sequentially passed through the size exclusion column using an 

ÄKTAPrime FPLC system (GE Healthcare, Cat no. 18-1135-24) (see Figure 5.1). 
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Figure 5.1: Schematic diagram for SEC-SANS experimental setup. Sample injection and 

constant buffer flow is provided by an ÄKTAPrime FPLC system. This is connected in series 

to a SEC column which separates proteins contained in the sample based on size. The 

separated sample enters the quartz flow cell which is placed in the path of the incoming 

neutron beam to record small angle scattering data on the sample as it passes through the 

cell. After measurement, the sample is eluted in the fraction collection tray for recovery. 

This served to provide a constant flow rate of 0.3 ml min-1 throughout each experiment as 

this was determined to be optimal for appropriate separation of the proteins used and ensured 

that the samples passed through the flow cell for a sufficient period of time (30 seconds per 

frame) for each scattering measurement. The UV280nm detector on the ÄKTAPrime system 

was used to monitor the SEC profile of the proteins after they had passed through the SEC 

column and the flow cell. The system setup was mounted directly on the experiment platform 

available at the D22 beamline (see Figure 5.2). 

ÄKTA 

Prime 
Sample Injection 
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SEC-SANS measurements were carried out using a neutron wavelength of 6 Å ± 10%, and 

detector distances of 8 m, 4 m or 2 m, a rectangular collimation system of 55 mm x 40 mm 

having the same length as the sample-detector distance and a rectangular sample aperture of 

7 mm x 10 mm. The data recorded were reduced using GRASP software (Dewhurst, 2008) 

and analysed with Igor software (Kline, 2006). Several corrections were required to correctly 

process the data including measurements made of the blocked beam, for background 

subtraction, empty cell scattering, transmission and thickness scaling, absolute intensity 

calibration using the direct beam intensity and buffer subtraction. 

For SEC-SANS the transmission of the buffer, recorded during the elution of the column 

dead volume, was used for scaling the protein signal. Short 30s exposures were averaged, 

after normalisation for sample concentration, to increase the signal to noise ratio as 

necessary. Measurements were performed in SEC buffer described previously (see Chapter 

2, section 2.1.14) using100% H2O or 100% D2O solvent. 
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Figure 5.2: (A) Stopped-flow head containing 1mm Suprasil quartz cuvette modified for 

continuous flow. A window to allow the neutron beam to pass through the quartz flow cell 

only is present on each side of the flow cell (B) Experimental set-up of ÄKTAPrime and 

SEC column directly adjacent to the D22 beamline. The neutron beam from the ILL reactor 

source enters from the right, interacts with the sample contained in the flow cell and enters 

the detector chamber on the left for recording of the scattering pattern. (C) SEC-SANS 

system centered in D22 beamline. The detector chamber is located on the right in red. 

A 

B C 
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5.3 Testing And Validation Of The SEC-SANS System Using A Mixture 

Of Model Proteins 

The testing and validation of the SEC-SANS system was carried out using model SEC 

standard proteins (BioRad, Cat no. 151-190). This sample contains a mixture of bovine 

Thyroglobulin (670 kDa), bovine γ-globulin (158 kDa), chicken Ovalbumin (44 kDa), horse 

Myoglobin (17 kDa) and Vitamin B12 (1.35 kDa). One 18 mg vial of protein, resuspended 

in 0.5 ml of buffer, was used per SEC experiment, leading to a total concentration of 36 mg 

ml-1. 

Figure 5.3 shows the initial test results of the SEC-SANS system for SEC standard proteins 

measured in 100%-H2O-containing solvent. The average I(0) for each frame recorded during 

the experiment was overlaid against the calculated Rg of the proteins as they passed through 

the SEC column. It can be seen that there is a clear change in Rg between protein peaks 

although the data is very noisy and does not appear well separated. Additionally a change in 

the observed average I(0) can be seen as the sample migrates though the column and the 

flow cell, which is distinguished from the high background scattering of the 100% H2O 

containing buffer. 
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Figure 5.3: Plot of average I(0) and determined Rg during SEC-SANS run in 100% H2O 

buffer solution (Jordan et al., 2016). Elution Peaks (1) 670 kDa Thyroglobulin and 158 kDa 

γ-globulin, (2) 44 kDa chicken ovalbumin, (3) 17 kDa horse Myoglobin and (4) 1.35 kDa 

vitamin B12. 

The UV280nm profile for the SEC standards yields four distinct peaks (data not shown). The 

first peak is the void volume peak containing the 670 kDa Thyroglobulin and 158 kDa γ-

globulin proteins. The second peak contains the 44 kDa chicken ovalbumin and the third 

peak contains the 17 kDa horse Myoglobin. The final fourth peak is that of vitamin B12 1.35 

kDa.  

While an increase in I(0) is observed due to the protein passing through the  column and 

cuvette during the measurements, the peaks are not as well defined as the UV280nm profile. 

One large peak is observed as the higher MM components of the SEC standard sample elutes, 

which begins a gradual decline in intensity as the proteins exit the measuring cuvette. We 

expect this decline in I(0) as the scattering power of the smaller protein molecules is not as 

1 

2 

3 

4 
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strong as that of the larger ones due to the reduction in atomic mass and therefore scattering 

centres contained in each molecule. 

The reason for the poorly defined peaks in the observed scattering from the sample is likely 

to relate to overlapping contributions from different elution peaks and the limited column 

resolution. As a result, the scattering contributions of the larger proteins (670 kDa 

Thyroglobulin and 158 kDa γ-globulin has a significant impact on the observed I(0) for the 

smaller protein molecules due to the slight overlap in the way that the proteins elute through 

the column. This can lead to increased observed I(0) for the proteins, which affects the 

calculations for molecular mass and Rg. 

Additionally, in 100% hydrogenated buffer, the observed increase in scattering is relatively 

low due to the large incoherent background signal arising from hydrogen atoms in the buffer 

solution. This results in weak signal visibility and small protein molecules, which do not 

scatter strongly at relatively high concentrations, can become indistinguishable from the 

background scattering. 

In this case it was not possible to determine accurately the MM or Rg for the samples 

contained within the first peak of this experiment due to the mixture of the Thyroglobulin 

and γ-globulin species present in the void volume of the column. The resolution of the 

column used also meant that the MM and Rg values for the Ovalbumin protein eluting in 

peak 2 were found to be larger than expected because of the scattering by larger MM proteins 

in the tail of elution peak 1. 

A repeat experiment was performed using 100%-D2O-containing buffer as a comparison for 

the technique. The results of this experiment can be seen in Figure 5.4. The average I(0) for 

each frame recorded during the experiment was overlaid against the calculated Rg for each 

frame of the experiment. Figure 5.4 shows again that there is a clear separation between the 
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protein peaks which is expected for SEC standards. Additionally a change in the observed 

average I(0) can be seen as the sample migrates though the column and the flow cell, which 

is very distinguished from the lower background scattering of the 100% D2O containing 

buffer.  

 

Figure 5.4: Plot of average I(0) and determined Rg during SEC-SANS run in 100% D2O 

buffer solution (Jordan et al., 2016). Elution Peaks (1) 670 kDa Thyroglobulin and 158 kDa 

γ-globulin, (2) 44 kDa chicken ovalbumin, (3) 17 kDa horse Myoglobin and (4) 1.35 kDa 

vitamin B12. 

Several improvements are seen as a result of changing the buffer composition from 100% 

H2O to 100% D2O content. Firstly, the overall background scattering level from the buffer 

is lower due to the lower incoherent scattering of deuterium (essentially negligible by 

comparison with that of hydrogen). Secondly, the observed peaks of scattering intensity as 

the proteins pass through the column and into the sample cell are much more clearly defined. 

This scattering profile more closely resembles the protein elution profile as observed by the 

1 

2 

3 
4 
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UV 280nm readings. Improvements in the calculated Rg for each protein peak can also be 

seen due to the improved separation of the intensity peaks for the proteins as they pass 

through the column.  

When analysing the data it was found that the polydispersity problem, associated with the 

first elution peak, remained due to both the 670 kDa Thyroglobulin and 158 kDa γ-globulin 

protein molecules both eluting in the void volume of the column. Values for the protein 

molecules eluting in the second and third peak can be seen in Table 5.1.  

Table 5.1: Theoretical (calculated using BSLDC calculator (Myatt) in green) and 

experimental (fitted using GRASP (Dewhurst) software, in red) structural parameters 

derived from the results of in situ SEC-SANS analysis of the BioRAD SEC calibration 

standards  in 100% D2O buffer (Jordan et al., 2016). MW: molecular weight; Extinction 

coef.: extinction coefficient; Abs: absorbance; Conc: concentration; Spe density: specific 

density; SLD: scattering length density; I(Q=0): scattering intensity extrapolated at Q = 0; 

Rg: radius of gyration. 
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Here five exposures of 30s each, taken symmetrically from the top of the peak, were 

averaged to build the ovalbumin and Myoglobin SANS curve. The absorbance at UV280nm 

measured on the same time scale was averaged for the estimation of concentration. The 

merged data for the buffer and Myoglobin frames, as well as the subtracted data, are shown 

in Figure 5.5.  

 

Figure 5.5: Plot of Myoglobin processed experimental scattering curve. Merged Myoglobin 

frames (Purple), merged buffer frames (Blue) and subtracted data (Green). 

These results show that the experimentally determined values of I(Q=0) and Rg for Myoglobin 

are consistent with those in the literature (Goldenberg and Argyle, 2014). However, the 

values calculated for Ovalbumin are too high. A contribution from another of the proteins is 

unlikely since UV absorbance profiles show the correct separation. The effect may arise 

from the presence of dimers or aggregates formed at the exit of the column – such behavior 

has been noticed previously for this protein (Ianeselli et al., 2010). 
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By taking the processed data for the Myoglobin from the SEC-SANS curve, basic structural 

information about the Rg and the p(r) can be determined. Using these parameters, an ab inito 

model was generated for the protein in solution. This can be viewed in Figure 5.6. Here we 

show the SANS envelope determined by DAMMIF for horse Myoglobin.  

 

Figure 5.6: Results of Ab initio modelling for horse Myoglobin showing (A) Side view, (B) 

Alternate side view, (C) Top View and (D) end view. DAMAVER averaged envelope of all 

models is shown in grey. DAMMIF filtered model is shown in cyan. The most representative 

model (MRM) is shown in pink. 

The model with the lowest reported NSD value was then compared to the crystal structure 

of horse Myoglobin (PDB ID 1WLA) and aligned in Figure 5.7. 

 

A B

C D
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Figure 5.7: Results of Ab initio modelling for horse Myoglobin showing (A) Side view, (B) 

Alternate side view, (C) Top View and (D) end view. MRM envelope model is shown in 

red, horse Myoglobin crystal structure (PDB 1WLA) is shown in cartoon. 

The fit of the scattering data for horse Myoglobin to the MRM as determined by CRYSOL 

is shown in Figure 5.8. Whilst we have demonstrated that it is possible to determine the Rg 

of proteins using the SEC-SANS method, the fit of the ab inito model to the pre-existing 

crystal structure data is not good, with a chi-square value of 12.21 reported. In this case, the 

combination of weak scattering of the small horse Myoglobin molecule above that of the 

background (see Figure 5.5) in addition to the very short measurements for each separate 

SEC-SANS frame leaves some uncertainty in the measurements reported. This could be 

improved with higher sample concentrations and slower flow-rates of the SEC system to 

improve data quality.  

A B 

C D 
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Figure 5.8: CRYSOL output of horse Myoglobin experimental scattering data in 100% D2O 

buffer (blue) fit with theoretical scattering curves for MRM (red). 
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5.4 Deuteration Of PfSir2a And PfAlba3 Systems For SEC-SANS 

After demonstrating the feasibility of the SEC-SANS system for determination of solution-

based protein structural information, a series of experiments were conducted using 

recombinant PfSir2a and PfAlba3. This was aimed at investigating whether an interaction 

could be observed between the recombinant proteins, which were produced in a deuterated 

environment to enable SANS contrast match-out experiments to take place. This would be 

used to investigate any changes in structural characteristics of the proteins of interest. 

To facilitate these experiments, the production of 75% deuterated PfSir2a and PfAlba3 was 

performed as described in Chapter 2, section 2.3.3. The results of the adaptation to deuterated 

minimal media for PfSir2a and PfAlba3 can be seen in Figure 5.9. The optimal growth 

temperature for expression and solubility of the deuterated forms of PfSir2a and PfAlba3 

was found to be 25˚C and 20˚C respectively. Figure 5.9 shows that while expression was 

achieved for PfSir2a in the minimal media (M.M) and the deuterated minimal media (D 

M.M) samples, the level of expression was greatly reduced and there is little to no PfSir2a 

in the soluble fraction. For PfAlba3, we see a similar case where the expression is reduced 

because of adaptation and growth in both the minimal media environments. However, a 

relatively strong level of expression is maintained which is also fairly soluble. 
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Figure 5.9: (A) PfSir2a expression and solubility tests after adaptation to minimal growth 

media (M.M) and deuterated minimal growth media (D M.M) at 25˚C with LB expression 

for comparison. (B) PfAlba3 expression and solubility tests after adaptation to minimal 

growth media (M.M) and deuterated minimal growth media with L.B expression for 

comparison. Arrows indicated PfSir2a and PfAlba3 in respective gels. 

M - + P SN - + P SN - + P SN 

D M.M H M.M L.B 

A 

- + P SN - + P SN - + P SN M 
L.B H M.M D M.M 

B 
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Large scale production of deuterated biomass for the expression and purification of both 

PfSir2a and PfAlba3 was performed using the growth conditions determined from the 

expression and adaptation tests using fermenter cultures as described in Chapter 2, section 

2.3.3. The deuterated proteins were purified and recovered by the same method as used for 

the hydrogenated proteins (see Chapter 2, sections 2.1.11 and 2.1.12). The purification 

results for deuterated PfSir2a can be seen in Figure 5.10. A decrease in the amount of soluble 

PfSir2a is observed in the elution fractions and the yield is greatly reduced from that of the 

hydrogenated recombinant PfSir2a (see Chapter 3, section 3.3.1). While this small amount 

of PfSir2a could be recovered from the purification process, further purification, IEX and 

SEC resulted in precipitation of aggregated protein which could not be recovered.  

 

 

 

 

 

 

 

Figure 5.10: 12% SDS-PAGE gel analysis of deuterated PfSir2a Ni-NTA purification steps. 

M indicates molecular weight marker, P & SN indicate the insoluble and soluble fractions 

of the induced protein from the E.coli bacterial culture. Wash and elution steps labelled 

respectively. 

M P SN 
Wash Elution 
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The purification results for deuterated PfAlba3 can be seen in Figure 5.11. A large amount 

of soluble deuterated PfAlba3 is recovered from the deuterated fermentation culture cell 

pellet after lysis. This is comparable to the yield which was observed for the hydrogenated 

recombinant form seen in Chapter 3, section 3.3.2. It can be seen that the elution fraction 

bears significantly more contaminants after the purification process, due to increased overall 

protein synthesis in high cell density culture conditions, which must be removed by further 

purification. 

 

 

 

 

 

 

 

 

Figure 5.11: 16.5% SDS-PAGE gel analysis of deuterated PfAlba3 Ni-NTA purification 

steps. M indicates molecular weight marker, P & SN indicate the insoluble and soluble 

fractions of the induced protein from the E.coli bacterial culture. The column flow through 

(FT) and recovered elution fractions are labelled respectively. 
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Further purification of deuterated PfAlba3 was performed by SEC using a Superdex 75 

16/600 PG column using the same buffer conditions as described previously and the results 

of the SEC profile can be seen in Figure 5.12. Here we see three peaks in the SEC profile 

instead of the previously observed two. The first peak represents aggregated PfAlba3 and 

larger MW contaminants left over from the purification process. The second peak is non-

aggregated PfAlba3 which possesses a small shoulder at the beginning of the peak which 

contains PfAlba3 and a second contaminant at approximately 25 kDa. The remainder of the 

second peak shows PfAlba3 only. The third peak appears to show a very faint band of protein 

at the same MW as PfAlba3 but eluting much later from the column. 
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Figure 5.12: (A) SEC profile of deuterated PfAlba3 showing three distinct elution peaks. (B) 

The first peak (1) represents aggregated protein and high MW contaminants. The second 

peak (2) contains non-aggregated PfAlba3. The third peak (3) shows a trace amount of 

PfAlba3 or similarly sized contaminant eluting at a delayed volume – the exact nature of this 

is not understood. 
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The purified deuterated PfAlba3 fractions from the second peak of the SEC profile were 

concentrated to 1 mg ml-1 and prepared for analysis by DLS. The results of this can be seen 

in Figure 5.13. Here a single monodisperse peak for deuterated PfAlba3 with an observed 

RH of 7.07 ± 1.33 nm with a polydispersity index of 18.5%. This agrees with the previously 

observed value of hydrogenated PfAlba3 (see Chapter 3, section 3.6.2). A similar tendency 

towards aggregation and precipitation of the deuterated PfAlba3 was also observed despite 

purification and storage of the protein at 4˚C. 

 

 

 

 

 

 

 

Figure 5.13: DLS results for PfAlba3 in sodium phosphate buffers with 500mM sodium 

chloride at 4˚C. 

Deuterated PfAlba3 was also analysed by TOF-MS for molecular weight and percentage 

deuteration determination. The results from the TOF-MS experiment can be seen in Figure 

5.14. Here we see two observed masses of 13469.71 Da and 13597.91 Da for the deuterated 

PfAlba3. Using values calculated for the molecular weight of the hydrogenated protein, 

13040.97 Da, and the fully deuterated, 13745.97 Da, we find that the final percentage of 

deuteration is 60.81% and 78.9% respectively. The difference in mass between the two 
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values, 129.2 Da, suggests that the lower mass of the 13469.71 represents the loss of the N-

terminal methionine residue (see Chapter 3, section 3.4). 

 

Sample Expected Mass 
(Da) 

Observed Mass 
(Da) 

D-PfAlba3 13040.97 
13745.97 

13469.71 
13597.91 

 

Figure 5.14: Deconvoluted TOF-MS spectrum results for deuterated PfAlba3. 

A repeat pulldown experiment was performed as described previously (see Chapter 3, 

section 3.9.2) using hydrogenated PfSir2a after His-tag cleavage and deuterated PfAlba3. 

The results of this experiment can be seen in Figure 5.15. Here we again see that tagged 

deuterated PfAlba3 is not completely binding to the resin but is still present in detectable 

quantity in the elution lane. For the co-incubated lanes a large proportion of cleaved PfSir2a 

is removed in the supernatant, indicating it is not bound to the resin or PfAlba3. A smaller 

quantity is removed in both wash lanes and is hardly visible in lane W3. In the elution lane 

we see a similar quantity of PfAlba3 as compared to that eluted in the PfAlba3-only 

incubation. 
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Figure 5.15: 16.5% SDS-PAGE showing the results of a repeat Ni-NTA resin pulldown 

experiment with cleaved PfSir2a & tagged D-PfAlba3. M indicates molecular weight 

marker, C & NC indicated cleaved and non-cleaved PfSir2a respectively. Supernatant (SN), 

1st & 3rd wash (W1 & W3) & elution (E) fractions are indicated for reactions containing 

cleaved PfSir2a & tagged D-PfAlba3, cleaved PfSir2a alone & tagged D-PfAlba3 alone. 

An extremely faint band at the MW migration of cleaved PfSir2a is also detected in this 

elution lane. The intensity for each protein can be observed by lane analysis (see Figure 

5.16). This band is not observed in the elution sample lane for the cleaved PfSir2a only. The 

amount of cleaved PfSir2a is found to be < 2% of the total lane indicating that if there is an 

interaction between PfSir2a & D-PfAlba3 it appears to be extremely weak. 

 

 

E SN NC M C W3 W1 E SN W3 W1 E SN W3 W1 

PfSir2a + D-PfAlba3 PfSir2a  PfAlba3 
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Figure 5.16: Lane profile analysis of cleaved PfSir2a & D-PfAlba3 incubation elution 

sample with MW of observed species and relative intensities. 

5.5 Application Of SEC-SANS To PfSir2a And PfAlba3 

Due to the weakly interacting nature of PfSir2a and PfAlba3, contrast matchout 

measurements aimed at investigating the proposed complex as a whole and the two 

components individually were not viable. Given their sensitivity to radiation damage by X-

rays and their aggregation or self-interacting nature, several experiments were conducted to 

investigate their solution structure properties utilising the SEC-SANS system. For PfSir2a, 

an investigation into how the Rg of the protein changes as it migrates through the SEC 

column was performed. 

Figure 5.17 shows the results of this experiment using the hydrogenated PfSir2a and a 100% 

D2O buffer of the same buffer, salt, and pH conditions as described previously in the related 

SAXS experiment (see Chapter 4, section 4.4.2). In panel A we see the overlay of the SEC 

UV280nm trace with that of the azimuthally averaged I(0)of the recorded scattering pattern 

Band No. Mol. Wt. (KDa) Relative Front Volume (Int) Band % Lane % 
1 206.4176 0.023876 3752920 8.449277 4.742611 
2 29.24454 0.300562 766836 1.726445 0.96906 
3 14.13174 0.52809 39897300 89.82428 50.41871 
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from the sample as it passes through the SEC column. An interesting feature is a large 

increase in intensity observed after approximately 70 minutes, due to the buffer exchange of  

the sample prepared in 100% H2O with the column buffer containing 100% D2O. 

  

Figure 5.17: A: Results of the SEC-SANS measurement of protonated Sir2a (4 mg ml-1) in 

100% D2O buffer, showing the absorbance of the sample at 280 nm (in blue), and the 

averaged SANS intensity between Q = 0.012 and 0.041 Å-1, (in red). B: magnified plot of 

SANS intensity of PfSir2A elution peak with symbol for individual curves position. C: 

Guinier plot of individual SANS curves (30 sec exposure) selected at the beginning (open 

circles, Rg = 20.2 +/- 0.5 Å), the top (black circles, Rg = 21.3 +/- 0.4 Å) and the end (grey 

circles, Rg = 18.9 +/- 0.5 Å) of the elution peak (Jordan et al., 2016).  

B 

A 
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Panel B shows the magnified plot of the SANS intensity curves, of which three were 

subjected to Guinier analysis which can be seen in panel C. This was performed by 

subtracting the average buffer scattering taken from the beginning of the SEC run and 

subtracting it from the peak intensity curves. Here we find that there is a change in the 

observed Rg for PfSir2a as it migrates through the SEC column starting at Rg = 20.2 +/- 0.5 

Å (open circles) before increasing to Rg = 21.3 +/- 0.4 Å (black circles) and later falling to 

Rg = 18.9 +/- 0.5 Å (grey circles). 

These values are lower than those calculated for PfSir2a by SAXS due to the scattering of 

neutrons by the internal atomic structure rather than the surrounding electron cloud. This 

marks a significant improvement over the results obtained via SEC-SAXS as there is no 

radiation damage causing protein aggregates to persist in the sample cell and requiring 

significant optimization steps and influencing the experimentally derived results (see 

Chapter 4, section 4.4.1). 

SEC-SANS results for PfAlba3 can be seen in Figure 5.18. Here we see the SEC 280nm 

elution profiles of deuterated PfAlba3 measured in 100% H2O buffer conditions (panel A) 

and hydrogenated PfAlba3 measured in 100% D2O buffer conditions (panel B). The 

corresponding measured I(0) for each 30s time point over the course of the experiment is 

also plotted for each panel. The subtracted data for the PfAlba3 aggregates (grey open 

circles) and the non-aggregated PfAlba3 (black circles) can be seen inserted above the 

UV/Intensity profiles. Here we can clearly see the difference in scattering curves for PfAlba3 

by removing the large protein aggregates which show a sharp upswing in intensity at low Q. 

Using the data from the separated non-aggregated protein peak we find a Rg of 19.06 ± 0.5 

Å and 20.03 ± 0.4 Å for the deuterated and hydrogenated PfAlba3 respectively. 
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Figure 5.18: (A) Results of the SEC-SANS measurement of deuterated PfAlba3 at 5 mg ml-

1 in 100% H2O buffer, showing the absorbance of the sample at 280nm (grey), and the 

averaged SANS intensity (black). (B) Results of the SEC-SANS measurement of 

hydrogenated PfAlba3 at 5 mg ml-1 in 100% D2O buffer, showing the absorbance of the 

sample at 280nm (grey), and the averaged SANS intensity (black) (Jordan et al., 2016).  

5.6 Summary  

This chapter describes a new method for bio-SANS measurements, which has significant 

practical application for many areas of biology. This technique enables the separation of 

samples in situ at a SANS beamline, facilitating measurements on mixtures of proteins. The 

observed scattering data can be correlated with the UV280 nm absorption profile to determine 

individual components and concentration correction in post data processing. Importantly, 

this methodology also allows the persistent problem of protein aggregation to be tackled 

which can often occur in fragile systems. By performing SEC directly at the beamline many 

A B 
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systems, which are prone to aggregation, can be separated in situ to allow for data collection 

on the macromolecules of interest as neutron collection rates are much slower compared to 

that of synchrotron sources. This is especially useful when macromolecules or 

macromolecular complexes introduced into a non-native D2O environment that is necessary 

for contrast matchout experiments for studying protein complexes which can often have a 

destabilising effect. It also allows for comparative measurements to be made using the same 

experimental conditions on SEC-SAXS beamlines. 

This method also offers an advantage over that used in bio-SAXS studies by avoiding 

radiation-damage-induced protein aggregation. This problem can have a significant impact 

on the results obtained for samples and can hamper data processing. There are still some 

limitations with this system in that relatively high sample concentrations are still required 

for optimal results. This is due to the high incoherent background scattering of 100% H2O 

buffers and the limited window in which samples pass through the SEC column and 

measuring cell due to the column flow rate. 
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Chapter 6: Discussion, Conclusions And Future 

Work 

This thesis was intended to investigate the nature of the interaction between the chromatin 

proteins PfSir2a and PfAlba3 from P. falciparum and determine their structural 

characteristics. A connection established between these proteins indicated possibility of 

playing a significant role in the antigenic variation immunoevasion strategy employed by 

malaria parasites to avoid destruction by host immune responses.(Chêne et al., 2012; Goyal 

et al., 2012; Merrick and Duraisingh, 2007, 2006; Merrick et al., 2012). 

This evidence demonstrated that PfSir2a possess several of the important residues 

necessary for catalytic activity as that of the yeast sirtuin, ScHst2, and was able to 

deacetylate Plasmodium histone substrates in an NAD+ manner (Merrick and Duraisingh, 

2007). Like ScHst2, it was thought that PfSir2a did not directly bind to DNA to perform its 

silencing role and interacted with other partner proteins to achieve this (Merrick and 

Duraisingh, 2007). Goyal et al demonstrated the interaction of PfSir2a with PfAlba3, 

which has established DNA and transcriptional repression capabilities (Chêne et al., 2012), 

using protein pulldown approaches (Goyal et al., 2012). This combined evidence indicated 

a potential silencing complex between PfSir2a and PfAlba3 is formed to inhibit the 

transcription of currently active var genes, an integral part of the antigenic variation 

strategy. 

While biochemical evidence for the PfSir2a-PfAlba3 interaction was established, structural 

evidence of the interaction was lacking. This was to be investigated in the project using 

structural techniques (SAXS/SANS/protein crystallography), supported by data from 

further biophysical characterisation. It was thought that information obtained from these 
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techniques would help to understand the nature of the interaction between PfSir2a and 

PfAlba3, and could yield significant insight into the mechanisms behind the transcriptional 

silencing activity that takes place in P. falciparum to regulate its immune-evasion strategy.  

In this thesis, these goals were designed to be achieved in several steps beginning with the 

production of recombinant forms of both proteins using the pET28a expression system.  

The proteins were purified and characterised by various methods that are outlined in 

Chapter 3. The successful production and purification of both PfSir2a and PfAlba3 using 

the pET28a expression system in E. coli BL21 (DE3) strain is demonstrated. Protein 

expression was optimised using modified bacterial growth conditions to achieve maximum 

production and recovery of soluble protein via Ni-NTA, IEX and SEC methods. The 

optimal conditions for solubility and stability of both proteins were found to have a 

composition of 50mM sodium phosphate, 500mM NaCl, pH 7.0. This relatively high salt 

concentration was found to reduce the polydispersity of both PfSir2a and PfAlba3 samples 

as well as increase their stability. Purified PfSir2a and PfAlba3 were determined to be 

correctly produced in the full length recombinant forms as seen by TOF-MS 

measurements.  

PfSir2a was found to be generally stable in solution but exhibited a tendency towards 

polydispersity in lower salt conditions as characterised by DLS measurements. An effect 

on the oligomeric state of PfSir2a was observed by AUC whereby increasing protein 

concentration causes a shift towards a mixture of oligomeric species. This had a significant 

effect on downstream structural applications due to sample inhomogeneity, yielding no 

protein crystals of sufficient quality to be characterised by X-ray crystallography. The 

polydispersity of PfSir2a also further impeded the results obtained via SAXS experiments 

as discussed in Chapter 4. 
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Purified PfAlba3 was shown to be an unstable and highly aggregation-prone protein after 

purification. Initial attempts led to protein loss due to precipitation and or aggregation 

immediately after purification. After extensive buffer optimisation screens to find suitable 

conditions, PfAlba3 could be produced and recovered in a soluble format for a short time 

before aggregating. This was shown by DLS measurements and proved to be an 

exceptional challenge for further investigations.  

No stability issues appear to be reported for existing archaeal Albas isolated either directly 

from the native organism or in recombinant forms by bacterial expression(Bell et al., 2002; 

Marsh et al., 2005; Wardleworth et al., 2001) . However, it is perhaps worth noting that the 

organisms from which these proteins originate are typically thermophilic in nature which 

are known to possess generally more stable proteins than their mesophilic counterparts 

(Razvi and Scholtz, 2006). Contrary to the results obtained for PfAlba3 by AUC 

investigation by (Chêne et al., 2012), we found that recombinant PfAlba3 exists as a 

monomer in solution instead of a dimer as previously described by the authors.  

As a result of the challenges discovered for both PfSir2a and PfAlba3, significant difficulty 

was encountered attempting to replicate an interaction between the two proteins as had 

previously been observed (Goyal et al., 2012). The results obtained for the series of 

pulldown experiments described in Chapter 3 indicate that under the conditions tested, the 

interaction between PfSir2a and PfAlba3 suggested that the interaction was extremely 

weak. Attempts to characterise the strength of the interaction and stoichiometry values by 

both MST and ITC failed to yield any correlated results between the techniques.  

One possible reason for this weak interaction could be the high salt content of the buffers 

used during the binding, wash and elution steps. The exact conditions of the binding buffer 

in which the interaction between the GST-PfSir2a and PfAlba3 was reported by Goyal et al 
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using the pull down method does not appear to be listed in the materials or supplementary 

materials. As with the alternative method that established the PfSir2a-PfAlba3 interaction, 

using His-tagged PfAlba3 as a bait protein and subsequent incubation with parasite lysate, 

both techniques shows the interaction of PfSir2a with PfAlba3 via western blot detection. 

This is suggestive of a weakly bound complex due to the low levels of protein which 

remains bound to the partner in each method and sensitivity range of the western blot 

technique. The use of lower salt buffers for these investigations resulted in the near 

immediate precipitation and loss of PfAlba3.  

Additionally, given the nature of PfSir2a as a histone deactylases enzyme, it may display a 

higher affinity for a construct of PfAlba3 which possesses one or several acetylated lysine 

residues. Evidence for PfSir2a to interact with short peptide fragments of PfAlba3 with 

these acetylated residues has been shown previously (Goyal et al., 2012).  Development of 

a PfAlba3 construct with these acetylated residues would be a potential avenue of further 

research.  This could be achieved by chemical acetylation of the recombinant protein post-

purification (Fritz, 2013).  

Due to the problems posed by concentration-induced oligomerisation causing sample 

polydispersity for PfSir2a and the rapid self-aggregating nature of PfAlba3, attempts at 

producing viable protein crystals suitable for X-ray crystallography and structure 

determination were unsuccessful. The recombinant forms of both proteins used for this 

thesis may not be favourable to crystallisation: in the case of PfSir2a, multiple cleaved 

products were produced when attempting to replicate established conditions; while 

PfAlba3 had a permanent C-terminal 6 His tag on the PfAlba3 construct which may have 

interfered with the protein stability and crystal formation (Carson et al., 2007; Derewenda, 

2004; Waugh, 2005). Future work aimed at the generation of different constructs for both 

PfSir2a and PfAlba3 is suggested as an avenue for further investigation. 
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The biochemical and biophysical characterisation undertaken in Chapter 3 highlighted the 

challenges of producing target protein samples for structural characterisation, and also the 

importance of having a fully characterised sample before commencing structural studies. 

The information obtained in Chapter 3 helped to interpret the solution structure data 

obtained from SAXS experiments which are discussed in Chapter 4. 

These solution based structural experiments also encountered several common problems 

associated with SAXS experiments; radiation-damage-induced protein aggregation was 

found to be the most challenging of these factors. Both PfSir2a and PfAlba3 were found to 

be extremely sensitive to radiation damage when exposed to X-rays for structural 

characterisation. This resulted in many optimisation steps to mitigate this particular 

challenge and produce results that could be compared to pre-existing or theoretically 

calculated structural data.  

The experimental solution scattering results seen in Chapter 4 yielded an apparent Rg of 2.9 

nm and 2.4 nm for PfSir2a and PfAlba3 respectively. In the case of PfSir2a, after 

mitigating the effects of radiation damage, a major problem was taking into account the 

effect of concentration-dependent oligomerisation states which were present from sample 

concentrations as low as 0.5 mg ml-1. Given the lack of pre-existing structural information 

pertaining to the additional oligomeric states, the final result obtained represents the closest 

approximation to the structural properties of the monomeric PfSir2a in solution.  

For PfAlba3, again after mitigating the effects of radiation damage, the main problem was 

that of rapidly induced protein aggregation within samples prepared for structural studies. 

This presented a significant challenge whereby sample preparation must be conducted 

immediately prior to structural experiments. The use of the BM-29 on-line HPLC system 
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proved to be the most effective method of gathering data which could be interpreted for 

this sample. 

Unfortunately, given the inherent ambiguity of the PfSir2a results and the evidence for a 

weak interaction between PfSir2a and PfAlba3, a solution structure for the predicted 

PfSir2a-PfAlba3 complex could not be established by SAXS under the optimal buffer 

conditions. Further work on characterising the additional oligomeric forms of PfSir2a and 

deriving their theoretical structural properties will be required to fully interpret this system. 

As such, the initial aim of this thesis to characterise the interaction between PfSir2a and 

PfAlba3, with the intention of investigating the mechanism by which the proposed 

silencing complex could be disrupted, could not be achieved within the available timescale.  

As a result of the biochemical, biophysical and SAXS experiments indicating that PfSir2a 

and PfAlba3 were extremely challenging samples, the intended SANS contrast match out 

experiments using deuterated proteins and D2O also proved a difficult line of investigation. 

We observed that deuterated PfSir2a becomes extremely insoluble and could not be 

recovered in the amounts required for SANS experiments. Deuterated PfAlba3 was more 

easily prepared and extracted to be pure in solution, but suffered from the same problems 

as the hydrogenated PfAlba3 in that it was very aggregation prone. As such, traditional 

SANS contrast match out experiments could not be performed using these samples. 

The development and investigation of a new method for bio-SANS experiments using an 

in situ SEC system at the neutron beamline D22 was carried out in chapter 5. This was 

aimed to combat the challenge which is often faced in biological experiments where the 

most interesting samples are also the most challenging to work with. As mentioned 

previously, aggregation is a major hindrance to SAS experiments as it affects many of the 
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experimentally derived values from samples which are used to calculate the solution based 

structural properties. 

This work was found to successfully separate and distinguish between protein species 

separated via a SEC column immediately before sample measurement using a SANS 

beamline. It represents the first known example of an experiment to do so. This technique 

offers the advantage of being able to separate individual proteins and protein complexes in 

a sample for ab initio modelling of the separate components and the overall complex. It 

also offers the advantage of avoiding radiation damage effects as observed in samples 

measured using X-rays and hence this technique can be used for sensitive samples. 

Additionally, samples can be recovered using the fraction collection system and then 

further analysed by SAXS in joint experiments for comparison and validation of the 

solution structure of the samples of interest.  

This technique is still limited by the need for relatively high sample concentrations, as 

needed for SANS, and can be challenging when attempting to analyse small proteins in 

hydrogenated buffer conditions due to the high background scattering from the hydrogen 

atoms in the buffer and the low scatter length density of the small protein molecules. This 

results in a low signal to noise ratio which can be improved when using deuterated buffer 

conditions. The work presented in Chapter 5 represents the proof of principle for this 

technique which could be developed further using additional instrumentation, such as a 

DLS device, to provide further complementary information about the samples which are 

being investigated.   

While many challenging factors were encountered throughout the work conducted in this 

thesis on the investigation of PfSir2a and PfAlba3, the behaviour of these proteins has now 

been characterised via biophysical methods more extensively than has been reported in the 
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literature previously. Further investigations to characterise the true nature of the interaction 

between these proteins could be undertaken by generating several different constructs for 

each protein, with cleavable and non-cleavable His-tags on both N and C-terminal regions 

of both proteins for example, to establish the effects of stability and oligomerisation 

tendencies. A stable, non-aggregating, construct of PfAlba3, would allow for additional 

investigation and characterisation of its DNA binding ability by other techniques such as 

nuclear magnetic resonance imaging for example. 
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APPENDIX A: Media Recipes And Buffers 
 

A1 Bacterial Growth Medium 

Luria broth (LB) media was used for both small and large scale cultures of bacterial 

growth (Bertani, 1951) 

For a culture volume of 1 litre, 10 g of bacto-tryptone, 5 g of yeast extract and 10 g of 

NaCl are mixed together. Flasks were sterilised by autoclaving and stored at room 

temperature before use. 

LB-agar medium was used for Petri dish cultures to plate transformed bacteria. 15 g of 

agar powder was added to the previous LB medium and sterilised by autoclaving. When 

cooled to approximately 30˚C, the kanamycin sulphate antibiotic (at 35 µg ml-1) was 

added. 20 ml of LB agar was poured per petri dish and once set were stored at 4˚C prior to 

use. 

Super optimal broth with catabolite repression (SOC media) (Hanahan, 1983) was used as 

recovery media for bacterial transformations. The SOC medium contains 2% tryptone, 

0.5% yeast extract, 10 mM NaCl, 2.5 mM KCl, 10 mM MgCl2, 10 mM MgSO4, and 20 

mM glucose. 

 

Sterilisation of media by autoclaving was carried out at 121˚C for 15 minutes.  
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A2 Deuterated Media Composition 

For 1 litre of Enfors minimal media (using 100% H2O or 85% D2O solvent for 

hydrogenated and deuterated respectively) 

6.86 g (NH4)2SO4 

1.56 g KH2PO4 

6.48 g Na2HPO4.2H2O 

0.49 g (NH4)2-H-citrate 

5 g glycerol 

 

Sterilise media by autoclaving and allow to cool down. Once cool, add the following 

metals salts 

0.23 g L-1 MgSO4 

0.50 g L-1 CaCl2.2H2O 

16.7 g L-1 FeCl3.6H2O 

0.18 g L-1 ZnSO4.7H2O 

0.16 g L-1 CuSO4.5H2O 

0.15 g L-1 MnSO4.4H2O 

0.18 g L-1 CoCl2.6H2O 

20.1 g L-1 Na-EDTA 
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A3 Buffer Composition 

PfSir2a Purification buffers 

Lysis and binding - 50mM sodium phosphate, 500mM sodium chloride (NaCl), 10mM 

Imidazole, 5U ml-1 Benzonase nuclease (Novagen® Cat no. 71205-3) 1x cOmplete EDTA-

free Protease inhibitor cocktail (Roche Cat no. 11 873 580 11), pH 7.5 

Wash - 50mM sodium phosphate, 500mM NaCl, 40mM Imidazole, pH 7.5 

Elution - 50mM sodium phosphate, 500mM NaCl, 500mM Imidazole, pH 7.5 

 

PfAlba3Purification buffers 

Lysis and binding - 50mM sodium phosphate, 500mM NaCl, 10mM Imidazole, 10U ml-1 

Benzonase nuclease (Novagen® Cat no. 71205-3) 1x cOmplete EDTA-free Protease 

inhibitor cocktail (Roche Cat no. 11 873 580 11), pH 7.5 

Wash - 50mM sodium phosphate, 1M NaCl, 40mM Imidazole, pH 7.5 

Elution - 50mM sodium phosphate, 500mM NaCl, 500mM Imidazole, pH 7.5 

 

IEX Buffers 

IEX Buffer A - 50mM sodium phosphate, 50mM NaCl, pH 7.5 

IEX Buffer B - 50mM sodium phosphate, 2M NaCl, pH 7.5 

 

SEC Buffer 

50mM sodium phosphate, 500mM NaCl, pH 7.0 
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TBE Buffer for Agarose Gel Electrophoresis 

For a 1 L 5X stock solution, 54 g of Trise base, 27.5g of boric acid and 20 ml of 0.5M 

EDTA (pH 8.0) is added. A working solution of 0.5X is used by diluting the 5X stck 

tenfold. 

10X Running Buffers for Tris Tricine SDS-PAGE Gels 

10x Cathode Buffer (Load 1X on top into wells, in the middle) 

-121.1 g Tris base   

-179.2 g Tricine   

-10 g SDS   

Dilute to 1 litre with ddH2O 

Do not adjust pH 

Store at 4˚C 

Final concentrations in the 1X buffer are 0.1M Tris, 0.1M Tricine, and 0.1% SDS 

10x Anode Buffer (Load 1X at the  bottom, on the outside of the gel) 

-242.2 g Tris base 

Adjust to pH 8.9 with concentrated HCl 

Dilute to 1 litre with ddH2O 

Store at 4˚C 

Final concentration is 0.2M Tris-Cl, pH8.9 

Staining solution (1X)  

-2.5 g coomassie Blue G-250  

-500 mL of 100 % Ethanol (or 520 mL of 96% ethanol which is cheaper) 

-100 mL of 100% acetic acid  

Dilute to 1 litre with ddH2O 

Final concentrations are 10% acetic acid, 50% Ethanol and 0.25% Coomassie 
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Destain solution (1X)  

-300 mL of 100 % Ethanol (or 313 mL of 96% ethanol which is cheaper) 

-200 mL of 100% acetic acid  

Dilute to 4 litres with ddH2O 

Final concentrations are 5% acetic acid, 7.5% Ethanol  
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SDS Tricine Gel Recipes 

 

16.5 % running gel (16.5 % Acry, 1.0 M Tris) 

 

12 % running gel (12 % Acry, 1.0 M Tris) 

 

 

3X Sample Buffer for SDS-PAGE 

240mM tris HCl, pH 6.8, 6% SDS, 36% Glycerol (W/V), 0.9 mg ml-1 Bromophenol blue. 

 

 

 

 

 

 

 

                              # gels 
stock 

2 or 3 gels  (10 mL) 
8 gels (9 gels ?) 

(30 mL) 
12 gels (or 13 gels ?) 

(40 mL)  
Acryl/Bisacryl  (30/0.8%) 
ie 37.5:1 ratio 

4 mL 12 mL 16 mL 

Tris-Cl 3M pH 8.45 3.3 mL 10 mL 13.3 mL 
10% SDS 100 uL 300 uL 400 uL 
Glycerol 100% 1 mL 3 mL 4 mL 
ddH2O 1.6 mL 4.8 mL 6.3 mL 
10% APS 100 uL 300 uL 400 uL 
TEMED 10 uL 30 uL 40 uL 
 

                              # gels 
stock 

2 or 3 gels (10 mL) 8 gels (9 gels ?) 12 gels (or 13 gels ?)  

Acryl/Bisacryl  (30/0.8%) 
ie 37.5:1 ratio 

5.5 mL 16.5 mL 22 mL 

Tris-Cl 3M pH 8.45 3.3 mL 10 mL 13.3 mL 
10% SDS 100 uL 300 uL 400 uL 
Glycerol 100% 1 mL 3 mL 4 mL 
ddH2O 100 uL  200 uL  300 uL 
10% APS 100 uL 300 uL 400 uL 
TEMED 10 uL 30 uL 40 uL 
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APPENDIX B: Cloning Strategy 
 

T7 primer sequences used to obtain PfSir2a PCR product for cloning 

T7 Forward primer: TAATACGACTCACTATAGGG 

T7 Reverse primer: GCTAGTTATTGCTCAGCGG 

 

 

 

 

 

 

 

 

pET28a Map And Multiple Cloning Site Schematic 
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pEX-A PfAlba3 Codon Optimised Sequence 

 

Plasmids for PfSir2a sequence inserts were digested using XhoI and BamHI restriction 

enzymes. This produced a cloning strategy with a N-terminal cleavable His-tag present on 

PfSir2a. 

Plasmids for Alba3 sequence inserts were digested with NcoI & XhoI restriction enzymes. 

This produced a cloning strategy with a C-terminal non-cleavable His-tag present on 

PfAlba3. 

 

PfAlba3 Site Directed Mutagenesis Primers 

Forward primer : Alba3_SDM1.for 

5'-GAAGGAGATATACCATGGCAAGCACCGAAGAAGTC-3' 

Reverse primer : Alba3_SDM1.rev 

5'-GACTTCTTCGGTGCTTGCCATGGTATATCTCCTTC-3' 
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APPENDIX C: Supplemental Information 
 

Recombinant PfSir2a Sequence  

        10         20         30         40         50         60  
MGSSHHHHHH SSGLVPRGSH MASMTGGQQM GRGSMGNLMI SFLKKDTQSI TLEELAKIIK  
 
        70         80         90        100        110        120  
KCKHVVALTG SGTSAESNIP SFRGSSNSIW SKYDPRIYGT IWGFWKYPEK IWEVIRDISS  
 
       130        140        150        160        170        180  
DYEIEINNGH VALSTLESLG YLKSVVTQNV DGLHEASGNT KVISLHGNVF EAVCCTCNKI  
 
       190        200        210        220        230        240  
VKLNKIMLQK TSHFMHQLPP ECPCGGIFKP NIILFGEVVS SDLLKEAEEE IAKCDLLLVI  
 
       250        260        270        280        290        300  
GTSSTVSTAT NLCHFACKKK KKIVEINISK TYITNKMSDY HVCAKFSELT KVANILKGSS  
 
 
EKNKKIM  
 
Number of amino acids: 307 
 
Molecular weight: 33888.2 
 
Theoretical pI: 8.97 
 
Amino acid composition:  
 
Ala (A)  13   4.2% 
Arg (R)   5   1.6% 
Asn (N)  16   5.2% 
Asp (D)   8   2.6% 
Cys (C)  10   3.3% 
Gln (Q)   6   2.0% 
Glu (E)  19   6.2% 
Gly (G)  23   7.5% 
His (H)  15   4.9% 
Ile (I)  27   8.8% 
Leu (L)  24   7.8% 
Lys (K)  31  10.1% 
Met (M)  10   3.3% 
Phe (F)   9   2.9% 
Pro (P)   8   2.6% 
Ser (S)  35  11.4% 
Thr (T)  18   5.9% 
Trp (W)   4   1.3% 
Tyr (Y)   7   2.3% 
Val (V)  19   6.2% 
Pyl (O)   0   0.0% 
Sec (U)   0   0.0% 
 
 (B)   0   0.0% 
 (Z)   0   0.0% 
 (X)   0   0.0% 
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Total number of negatively charged residues (Asp + Glu): 27 
Total number of positively charged residues (Arg + Lys): 36 
 
Atomic composition: 
 
Carbon      C       1498 
Hydrogen    H       2403 
Nitrogen    N        409 
Oxygen      O        444 
Sulfur      S         20 
 
Formula: C1498H2403N409O444S20 
Total number of atoms: 4774 
 
Extinction coefficients: 
 
Extinction coefficients are in units of  M-1 cm-1, at 280 nm measured in 
water. 
 
Ext. coefficient    33055 
Abs 0.1% (=1 g/l)   0.975, assuming all pairs of Cys residues form 
cystines 
 
 
Ext. coefficient    32430 
Abs 0.1% (=1 g/l)   0.957, assuming all Cys residues are reduced 
 
Estimated half-life: 
 
The N-terminal of the sequence considered is M (Met). 
 
The estimated half-life is: 30 hours (mammalian reticulocytes, in vitro). 
                            >20 hours (yeast, in vivo). 
                            >10 hours (Escherichia coli, in vivo). 
 
 
Instability index: 
 
The instability index (II) is computed to be 38.54 
This classifies the protein as stable. 
 
 
 
Aliphatic index: 86.97 
 
Grand average of hydropathicity (GRAVY): -0.173 
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Recombinant PfAlba3 Sequence  

 
        10         20         30         40         50         60  
MASTEEVSQE RSENSIQVSM TKKPTFYARI GKRMFTGNEE KNPFDEVIIT GLGNATKIAI  
 
        70         80         90        100        110  
GAASIMEKED IGQIVKVQTA YFSSDRINRR IPKITIVLKK HPDFVANLEH HHHHH  

 
Number of amino acids: 115 
 
Molecular weight: 13041.8 
 
Theoretical pI: 8.96 
 
Amino acid composition:  
 
Ala (A)   8   7.0% 
Arg (R)   6   5.2% 
Asn (N)   6   5.2% 
Asp (D)   4   3.5% 
Cys (C)   0   0.0% 
Gln (Q)   4   3.5% 
Glu (E)  10   8.7% 
Gly (G)   6   5.2% 
His (H)   7   6.1% 
Ile (I)  13  11.3% 
Leu (L)   3   2.6% 
Lys (K)  10   8.7% 
Met (M)   4   3.5% 
Phe (F)   5   4.3% 
Pro (P)   4   3.5% 
Ser (S)   8   7.0% 
Thr (T)   8   7.0% 
Trp (W)   0   0.0% 
Tyr (Y)   2   1.7% 
Val (V)   7   6.1% 
Pyl (O)   0   0.0% 
Sec (U)   0   0.0% 
 
 (B)   0   0.0% 
 (Z)   0   0.0% 
 (X)   0   0.0% 
 
 
Total number of negatively charged residues (Asp + Glu): 14 
Total number of positively charged residues (Arg + Lys): 16 
 
Atomic composition: 
 
Carbon      C        574 
Hydrogen    H        921 
Nitrogen    N        167 
Oxygen      O        172 
Sulfur      S          4 
 
Formula: C574H921N167O172S4 
Total number of atoms: 1838 
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Extinction coefficients: 
 
This protein does not contain any Trp residues. Experience shows that 
this could result in more than 10% error in the computed extinction 
coefficient. 
 
Extinction coefficients are in units of  M-1 cm-1, at 280 nm measured in 
water. 
 
Ext. coefficient     2980 
Abs 0.1% (=1 g/l)   0.228 
 
Estimated half-life: 
 
The N-terminal of the sequence considered is M (Met). 
 
The estimated half-life is: 30 hours (mammalian reticulocytes, in vitro). 
                            >20 hours (yeast, in vivo). 
                            >10 hours (Escherichia coli, in vivo). 
 
 
Instability index: 
 
The instability index (II) is computed to be 33.01 
This classifies the protein as stable. 
 
 
 
Aliphatic index: 78.87 
 
Grand average of hydropathicity (GRAVY): -0.526 
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