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Abstract

Horsetail (Equisetum arvense) plants grew healthily for 10 weeks under both Si-deficient and 

Si-replete conditions. After 10 weeks, plants grown under Si-deficient conditions succumbed 

to fungal infection. We have used NanoSIMS and fluorescence microscopy to investigate 

silica deposition in the tissues of these plants. Horsetail grown under Si-deficient conditions 

did not deposit identifiable amounts of silica in their tissues. Plants grown under Si-replete 

conditions accumulated silica throughout their tissues and especially in the epidermis of the 

outer side of the leaf and the furrow region of the stem where it was continuous and often, as 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

mailto:c.exley@keele.ac.uk


2

a double layer suggestive of a barrier function. We have previously shown, both in vivo (in 

horsetail and thale cress) and in vitro (using an undersaturated solution of Si(OH)4), that 

callose is a “catalyst” of plant silica deposition. Here we support this finding by comparing 

the deposition of silica to that of callose and by showing that they are co-localized. We 

propose the existence of a synergistic mechanical protection by callose and silica against 

pathogens in horsetail, whereby the induction of callose synthesis and deposition is the first, 

biochemical line of defence and callose-induced precipitation of silica is the second, 

adventitious mechanical barrier. 

1. Introduction

Silicon is a non-essential element for plants, as its presence is not required for the completion 

of their life cycle. Nevertheless, silicon improves plant vigour and resistance to biotic and 

abiotic stressors [1]. Plants take up silicon in the form of silicic acid, Si(OH)4, deposit it as 

biogenic silica and are classified according to their propensities to accumulate it in their 

tissues. Horsetail and the commelinoid monocot rice are emblematic examples of highly 

silicifying plants (accumulating up to 10% silica by dry weight), while tomato is an excluder 

[2]. The association of biogenic silica with plant cell walls provides mechanical defence 

against pathogens [3] and is a deterrent against phytophagous insects [4]. 

A role for cell wall mixed-linkage glucans in biosilicification was shown in both horsetail [5] 

and rice [6]. In rice, the overexpression of a (1;3,1;4)-β-D-glucanase impacted the mechanical 

properties of the leaf blade and altered the distribution profile of silica [6]. In horsetail, it was 

demonstrated in vivo that silica accumulation mirrored callose deposition [7]. Importantly, 

this result was validated in vitro, where callose catalysed the precipitation of amorphous silica 

from an undersaturated solution of silicic acid [7]. Further support for a role of callose in 

templating silica deposition came in the non-Si accumulator thale cress, where mutants 
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lacking the callose synthase gene PMR4 showed significantly less silica deposition than either 

wild type or plants over-expressing this gene [8].

Using mild extraction procedures where silica was released from cell walls, silica was 

proposed to be involved in enhanced mechanical rigidity/stability against (a)biotic stresses in 

Equisetum arvense [9]. 

In this study, we provide evidence for the existence of a continuous silica layer in E. arvense 

tissues (double in specific regions), using for the first time NanoSIMS and propose a 

synergistic role with callose protecting against biotic stress.

2. Materials and Methods

2.1 Hydroponic culture

Horsetail plants were collected, locally, from the wild in the early spring. Each plant had ca 

3cm of intact basal stem associated with the roots. The roots of washed plants were 

submerged in 20mL of 1/6 Murashige Skoog (MS) basal salt growth solution (Sigma Aldrich 

M5524) at pH 5.8. The growth solutions were controlled to contain either 2mM silicic acid 

(Alfa Aesar, Na4SiO4, Mw184), referred to as Si-replete, or 8mM sodium (AnalaR BDH 

Labs, NaOH, Mw 40) referred to as Si-deficient. The growth environment consisted of ca 14h 

light/10h dark, at 25°C. The growth solutions were replenished every other day. Plants were 

grown under these conditions for 12 weeks. The total Si content of the Si-deficient treatment 

was 12M as measured by TH GFAAS [7].

2.2 Preparation of plant tissues for PDMPO fluorescence

Horsetail samples were separated according to their anatomical region of basal stem, distal 

stem, leaves, nodes and root. Samples were cut with small scissors to a length of 1cm. The 

samples (<0.5g) were digested in PFA Teflon© vessels with venting plugs and screw caps 

(CEM Microwave Technology Ltd, UK) using a 1:1 mixture of 15.8M HNO3 and 18.4M 
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H2SO4. Vessels were placed in insulating sleeves on a turntable, capable of holding up to 40 

vessels. The microwave digestion programme was set up with Mars Xpress Microwave (CEM 

Microwave Technology Ltd, UK) using a CEM-provided Tissue Express organics method. 

Digested samples were diluted with ultrapure water (cond. <0.067S/cm) and silica was 

collected by filtration (Whatman 0.45µm filter paper) using several volumes of ultrapure 

water to rinse and clean the silica samples. Filter papers were placed in petri-dishes in an 

incubator to dry. Collected silica was then weighed. 

2.3 PDMPO fluorescence microscopy

Silica was immersed in 20mM PIPES buffer at pH7 adjusted with dilute NaOH (Acros 

Organics, Mw 302.35) with 0.125µM PDMPO (LysoSensor Yellow/blue DND-160 1mM in 

DMSO). After 24h incubation 50µL of the silica/PDMPO preparation was added to a cavity 

slide, covered with a cover slip and viewed using an Olympus BX50 fitted with a BXFLA 

fluorescent attachment using a U-MWU filter cube (Ex: 333-385nm; Em: 400-700 nm). A 

ColourView III digital camera (OSIS FireWire Camera 3.0 digitizer) was used to capture

images in conjunction with CELL* Imaging software (Olympus Cell* family, Olympus Soft 

Imaging solutions GmbH 3.0).

2.4 Preparation of plant tissues for NanoSIMS

Small sections of horsetail (<1mm thickness) were cut by hand with a scalpel and fixed in 

0.1M Na-cacodylate buffer (pH 7.4) with 3% glutaraldehyde. After fixation, samples were 

dehydrated in a graded ethanol series and infiltrated with increasing concentrations of LR 

White resin in ethanol. After polymerization, thin sections (1μm) were cut on a microtome 

with a diamond knife, placed onto a droplet of water on platinum-coated Thermanox 
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coverslips and stretched flat on a hotplate. Sections were coated with 10nm of platinum to 

avoid charging in the NanoSIMS.

2.5 NanoSIMS

High resolution SIMS analysis was carried out on a Cameca NanoSIMS 50 using a 16keV Cs+ 

ion beam focused to approximately 100nm with a beam current of 1.2-1.4 pA. Negative 

secondary ions generated during this process were analyzed according to their mass to charge 

ratio using a double focusing mass spectrometer. The five detectors were precisely tuned 

using standards of Si and GaP to detect 12C-, 12C14N-, 28Si-, 31P12C- and 32S- taking care to 

avoid mass interferences. The ion-induced secondary electron signal was also detected. For 

each area a dose of 1 x 1017 Cs+ ions cm2 was implanted by continuously scanning a large 

defocused beam to remove the platinum coating and maximize signal intensity. Dwell times 

were 10ms per pixel and for each region of interest.

2.6 Callose immunofluorescence

Identification of callose by immunofluorescence and fluorescence microscopy was carried out 

according to Pendle and Benitez-Alfonso (2015) [10] and briefly described herein. Small 

sections of horsetail tissues (<1mm thickness) were cut by hand with a scalpel, fixed and the 

cellulose in cell walls digested using 1% cellulase (Onozuka R-10, Yakult Pharm. Japan). 

Callose detection was performed on the extracted digested tissue using a (1-3)-β-glucan 

antibody (1:40; Biosupplies) and a secondary anti-mouse IgG-FITC antibody (1:40). Finally 

we used a Hoechst 33258 DNA counterstain and samples were mounted on glass slides and 

cover slipped. Tissue sections were viewed with a Zeiss Axioplan microscope (Blue Filter 
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Cube #487910; Ex: 450-490nm; Em: 515-565 nm) and images were captured using a Zeiss 

Axiocam MRc5 digital camera.

3. Results and Discussion

3.1. Si-deficient horsetail succumbed to biotic stressors after 10 weeks of healthy growth

Horsetail (Equisetum sp.) is known to accumulate silica in its tissues [11]. However we have 

shown that it is not required for the growth of healthy plants [7]. 

While growing horsetail (E. arvense) for an investigation into the reversibility of biological 

silicification, we made a novel observation in relation to the resistance of horsetail to biotic 

stressors. Hydroponic culture in 1/6th MS under Si-replete (2mM) or Si-deficient (12M) 

conditions (see Section 2) resulted in healthy looking horsetail plants, with the only difference 

being that plants grown in the presence of added silicon (4 plants) were rough to the touch, 

which we assumed reflected the deposition of silica in their tissues. After 10 weeks of 

apparently healthy growth, a change was observed in the turgor, which was reduced, and the 

colour, which became paler, of horsetail plants growing under Si-deficient conditions (4 

plants) and these changes were coincident with visible signs of fungal infection in all 4 plants 

(Figure 1). These observations are in agreement with what was previously shown in the 

literature, i.e. that Si-deficient horsetail had fragile, weak stems which subsequently withered, 

while Si-supplemented Equisetum did not [12]. Within 2 weeks, the infected areas were 

completely necrotic. Notably, this infection did not spread to horsetail plants grown in Si-

replete conditions, despite the plants from different treatments being immediately adjacent to 

each other. Herein was evidence of the apparent benefit of silicon in protecting against fungal 

infection in horsetail. We endeavoured thereafter to establish how this apparently complete 
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protection against the development of fungal infection was afforded by investigating silica 

deposition in tissues of resistant plants using complementary imaging techniques.

3.2. NanoSIMS analysis of silica in horsetail tissues 

The use of high-resolution secondary ion mass spectrometry (NanoSIMS) in plant biology 

couples high spatial resolution with sensitivity. Despite the complicated sample preparation 

protocol, this technique has been used to understand the distribution of several elements, 

including Si, in plant tissues [13,14].We used NanoSIMS (which identifies silica as 28Si- and 

hereafter will be referred to as silica) and fluorescence microscopy to map the exact location 

of silica in horsetail tissues. In particular we wanted to check for the presence of a silica-layer 

in horsetail tissue, since it is reported that one of the protective effects of silicon against 

pathogens is the formation of an “armour” providing mechanical shielding of cells [4]. This 

barrier is formed by the association of silica with cell wall components [15–17]. A previous 

study in the literature investigated the distribution of silica in horsetail using Raman imaging 

and highlighted its occurrence in the knobs and in a thin layer below the cuticle [18]. Our 

NanoSIMS analysis confirms these results and provides new, important data on the 

distribution of silica in horsetail tissues.

NanoSIMS was effective in identifying silica in leaves (highly reduced in size and connate 

laterally, thereby forming a protective sheath around stem nodes with the intercalary meristem 

[19]), branches and stems of Si-replete plants. Towards the edges of the leaf cross-sections 

(Figure 2A), silica was observed as a single layer on the epidermis of the inner leaf side 

facing the stem node (hereby referred to as inner epidermis for simplicity) and as a double 

layer on the epidermis of the outer leaf side facing the exterior (outer epidermis; Figure 2B 

and 2C). Both deposits appeared as continuous layers of silica, with the outermost silica layer 

being associated with the cuticle (as previously reported [18]) and the inner one appearing to 
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be associated with the cell wall. Away from the leaf edges and towards the broader central 

region of the cross-section (Figure 2D), the layer of silica  associated with the outer epidermis 

was significantly thicker and appeared as a single diffuse layer incorporating, it would appear, 

the cell wall and cuticle (Figures 2E and 2F). It is noteworthy that NanoSIMS only identified 

silica in the cuticle/cell wall of leaf epidermal cells; silica was not observed associated with 

cell layers below the leaf epidermis (e.g. plasma membrane).

NanoSIMS was also performed on the stem, which is characterized by alternating furrows and 

ridges (with the ridges corresponding to the “knobs” described in [18]) (Figures 3A and 3D). 

A double layer of silica, sandwiching a distinct organic matrix (as identified by the clear C/N 

map), was observed in the furrow region of the stem (Figure 3A). Epidermal cells 

immediately adjacent to the furrow region also showed this distinctive double-layer of silica 

(Figure 4), similar, if not identical in appearance, to that of the edges of the outer leaf 

epidermis (Figures 2B and 2C). Numerous silica structures, either singular or in clusters 

(papilla-like), were observed projecting from the silica-cuticle layer (Figures 3B and 3C). A 

thick and apparently single layer of silica was observed in the sclerenchyma tissue (mainly 

composed of mixed-linkage glucans; [20]) which constitutes the stem ridge (Figures 3E and 

3F). This heavily silicified region resembled in some ways the diffuse deposition of silica that 

was also seen in the central region of the leaf outer epidermis (Figures 2E and 2F). As with 

the leaf, silica deposition was not identified in the underlying non-epidermal tissues of the 

stem and it is also worth noting that silica was not associated with cell nuclei. 

There was a single layer of silica associated with the cuticle of the branch epidermis (Figure 

5A) and this single layer included regular papilla-like projections (Figures 5B and 5C). 

Intriguingly, a single silica layer was also observed associated with what appeared as an 

internal cell layer (Figure 5D) and, if confirmed, this is the first such observation by 
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NanoSIMS of a silicified non-epidermal cell layer in horsetail. This could be a silicified inner 

cell layer, or it may be an epidermis that has yet to unfurl. 

3.3 Extraction of silica from horsetail tissues and imaging of their fine cellular details with 

PDMPO

Further evidence of silicification of horsetail grown under Si-replete conditions (note there 

was no silica to image in plants grown under Si-deficient conditions) was obtained from silica 

extracted by microwave-assisted acid digestion of stem and leaf and viewed using the fluor 

PDMPO [7] and fluorescence microscopy (Figure 6). These spectacular images confirmed 

that which was suggested by NanoSIMS (Figures 2-5), i.e. that the silicification of the silica-

cuticle of the upper epidermis was continuous; a layer of silica, approximately 1m thick that 

was continuous from the basal stem all the way to the leaf edge. Here we are describing a 

silica barrier associated with the cuticle, extending to the cell wall of the outer epidermis, and 

not silica ‘phytoliths’. Numerous heavily silicified structures, from single silica projections to 

papilla-like structures, pores and stomata (Figure 6A and B), were observed within the silica 

barrier. The silicified stomata showed levels of silicification that appeared to mirror their 

developmental stage and included such fine details as their radial fibres (the “radiating ridges” 

described in 1973 [21]) and the stomatal pore (Figure 6B and inset). The silica extracts also 

showed cells whose cell walls appeared to be fully silicified (Figure 6C), cells which were in 

the process of division, plasmodesmata between adjacent cells [7] and, significantly, 

intracellular, usually spherical deposits, which resembled vesicles (Figure 6D). We know 

from NanoSIMS that the latter were not silicified nuclei (Figure 3A). 

Imaging of extracted silica using PDMPO and fluorescence microscopy revealed the extent of 

biological silicification in a silica accumulator such as horsetail. It has also shown the intricate 

details of biogenic silica deposition including spectacularly the undulating structures of plant 
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cell walls, the different stages of cell cytokinesis and the individual steps in the differentiation 

and maturation of stomata. All of these structures and commensurate cellular processes exist 

and function in the absence of silicification and therefore, natural selection informs us, that all 

of them are equally effective as silicified isoforms.

3.4 Immunodetection of callose and its co-localization with silica

The ‘Holy Grail’ of biological silicification research is to identify the link between the 

organic biochemistry of silicified structures and the inorganic chemistry of biogenic silica 

precipitation and deposition. We have proposed that the -1,3 glucan, callose, and its 

biochemical machinery is intimately involved in biological silicification in horsetail and other 

biota [7,8,22]. In in vitro experiments, callose was shown to trigger the precipitation of 

amorphous silica from an undersaturated silicic acid solution [7]. Further support for callose 

in templating silica deposition was demonstrated in the non-Si accumulator Arabidopsis 

thaliana (see Section 1) [8]. Herein we have used callose immunofluorescence [7] to further 

support this contention (Figure 7). We observed positive callose fluorescence which could be 

attributed to, (i) silicified projections, possibly papilla-like structures at the epidermis (Figures 

7A-7B), (ii) the cuticle of the epidermis, (iii) punctate possibly intracellular deposits (Figures 

7C-D), and (iv) especially associated with stomata (Figure 7E-7F). Particularly well defined 

was the callose-positive signal observed at the level of guard cells in stomata (Figure 7F and 

inset). The association of callose with guard cells was proven in both Beta vulgaris (in both 

young and mature guard cells) [23] and in the fern Asplenium nidus [24]. The association of 

callose with stomata in horsetail may be related to newly formed guard cells, but also to 

specific mechanical functions in the cell walls of more mature guard cells. Guard cells are 

specialized cell types whose walls need to withstand continuous cycles of closure and 

opening. Interestingly stronger enzyme solutions are needed to make protoplasts from guard 
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cells [23] (and references therein). This finding suggests that the composition of the guard cell 

wall and the structural arrangement of polysaccharides therein must enable plasticity and 

mechanical resistance to expansion/contraction. Callose is in this respect an ideal component 

in reinforcing the cell wall of guard cells. Silica may contribute to this cell wall strengthening 

effect, but it must do so while ensuring a certain degree of flexibility to the walls. 

Alternatively (or additionally), silica and callose may play a synergistic role in restricting the 

symplastic connectivity (to avoid leaking of molecular determinants, e.g. for stomatal 

patterning, to neighbouring cells) during the differentiation of cells. Callose was already 

shown to be important to restrict the symplastic movement of stomatal patterning regulators 

[25].  The role of callose in such processes, combined with its biochemistry and physico-

chemical features [22], are inevitably triggering biosilicification in horsetail (provided the 

critical Si(OH)4 concentration is available, see below).  

3.5 Biogenic silica and callose: a mechanical and biochemical defence system in horsetail

We have shown that the epidermal surface of horsetail cultured in a Si-replete medium is 

heavily silicified and this silica barrier is continuous from the stem to the leaf and branches. It 

is probable that such a complete barrier of amorphous biogenic silica is impenetrable by 

fungal haustoria. In this respect it is worth mentioning that the application of silica gel to rice 

reduced the frequency of leaf appressorial penetration of Magnaporthe oryzae [26], a finding 

pointing to a silica physical barrier. Silica has been shown to form a cuticle-embedded layer 

in epidermal cells which makes them less susceptible to pathogen penetration (recently 

reviewed by [3]). Even potentially weaker points of entry through the epidermis such as 

pores, stomata and paracellular routes are shown herein to be protected by extensive 

silicification (Figure 6A and B). In the example herein, the high concentration of Si(OH)4 

present in culture media (2mM) resulted in the formation of a complete silica barrier at the 
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epidermis. The presence of this barrier was an apparent deterrent against fungal attack. 

Conversely, a Si-deficient culture medium (12M) was not sufficient to result in the 

deposition of silica in horsetail tissues and this may explain the higher susceptibility of these 

plants to fungal infection. This last point is critical in that it demonstrates that even an infinite 

supply of Si(OH)4 at a concentration of 12M was not sufficient, at any point over a 12 week 

culture period, to support a super-saturated (>2mM) concentration of Si(OH)4 in horsetail 

xylem. In other words, horsetail showed insufficient capacity to take up Si(OH)4 from the 

culture medium and concentrate it in its tissues to a degree which could support subsequent 

silica deposition. This strongly suggests that there will be an as yet unknown critical 

concentration of medium (soil water) Si(OH)4 below which horsetail will not deposit silica in 

its tissues. We might call this critical concentration, [Si(OH)4]Crit, and recognise that this 

value will be plant or species-specific and that it is most probably related to plant physiology. 

Above this critical concentration, while silica will be deposited, the extent and degree of silica 

deposition will vary according to the availability of Si(OH)4 and horsetail may still be prone 

to fungal infection. For example, an incomplete barrier of silica at the epidermis might allow 

limited penetration by e.g. fungal haustoria (Figure 8). The latter might be damaged by silica 

present in the epidermis and the pathogen-mediated hyper-sensitive reaction (HR) initiated 

[27]. One aspect of HR is the induction of callose synthesis and its transport to sites of 

damage-recognition such as the halo surrounding the invading haustorium and papillae at the 

surface of the epidermis. The deposition of callose at such sites will be coincident with 

enhanced silica deposition and thus providing a second and important line of defence against 

further fungal infection (Figure 8). The synergy between callose and silica in horsetail is 

therefore even more striking under conditions of biotic stress. Our model of the presence of a 

first, biochemical callose-mediated line of defence and a second, adventitious callose-

catalysed silica barrier is reminiscent of what was observed in French bean in 1985 [28]: in 
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that study the deposition of phenolics was proposed to be the first response, which then 

triggered the deposition of silica in Si-supplemented plants. It should be noted, with respect to 

our model, that phenolics are often found associated with papillae, where callose is a 

ubiquitous component [29].

4. Conclusions

Using NanoSIMS, we have provided evidence for the existence of a continuous silica layer in 

horsetail grown under Si-replete conditions. Interestingly, the silica layer is double in specific 

regions, for example, in the epidermis of the outer leaf side facing the exterior and in the stem 

furrows. We have shown that silica and callose co-localize in horsetail tissues and we 

postulate the existence of a unique relationship between Si(OH)4 and callose in providing 

protection against fungal infection in horsetail. This relationship is unlikely to be unique to 

horsetail or even known silica accumulators, as something similar has already been suggested 

for thale cress [8,30,31] which is not known as a silica accumulator. It is clear that a 

[Si(OH)4]Crit in culture media or soil water is required for any plant to deposit silica in its 

tissues and future research should look to identify such plant-specific [Si(OH)4]Crit and the 

detailed mechanisms of subsequent deposition of biogenic silica. The observations herein 

highlight the potential for biogenic silica to protect against fungal infection and perhaps 

especially in important crop plants which have been genetically modified to be silica 

accumulators.  
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Figure 1: Susceptibility to fungal infection of horsetail grown under Si-deficient 

conditions. A) Horsetail grown under Si-replete condition. B) Horsetail grown under Si-

deficient condition showing signs of fungal infection though only after 10 weeks of healthy 

growth. Arrows in the inset indicate fungal mycelia.

Figure 2: NanoSIMS image of horsetail leaves. A) The upper panel shows the optical image 

of the leaf section analysed by NanoSIMS with the red square indicating the location of the 

NanoSIMS analysis at the edge of the leaf, Scale bar = 100μm. B) The lower left panel shows 

the NanoSIMS ion signals from this region as a colour merge image with 28Si- in red, 12C14N- 

in green and 31P12C- in blue, scale bar = 15μm. C) The lower right panel shows 28Si- in red 

(the arrow indicates the Si double layer) and in grey the secondary electron (SE) image. D) 

The upper panel shows the optical image of the central portion of the leaf outer epidermis 

analysed by NanoSIMS with the red square indicating the location of the NanoSIMS analysis 

at the edge of the leaf, scale bar = 15μm. E) The lower left panel shows the NanoSIMS ion 

signals from this region as a colour merge image with 28Si- in red, 12C14N- in green and 31P12C- 

in blue, scale bar = 15μm. F) The lower right panel shows 28Si- in red (the arrow indicates the 

thick Si associated with the cuticle and cell wall) and in grey the secondary electron (SE) 

image. 

Figure 3: NanoSIMS image of horsetail stem. A) The upper panel shows the optical image 

of the portion of the stem furrow analysed by NanoSIMS with the red square indicating the 

location of the NanoSIMS analysis, scale bar = 100μm. B) The lower left panel shows the 

NanoSIMS ion signals from this region as a colour merge image with 28Si- in red, 12C14N- in 

green and 31P12C- in blue (the arrow indicates a cell nucleus), scale bar = 15μm. C) The lower 

right panel shows 28Si- in red (the arrows indicate the Si double layer and the papilla-like 

projections) and in grey the secondary electron (SE) image. D) The upper panel shows the 

optical image of the portion of the stem ridge analysed by NanoSIMS with the red square 
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indicating the location of the NanoSIMS analysis, scale bar = 100μm. E) The lower left panel 

shows the NanoSIMS ion signals from this region as a colour merge image with 28Si- in red, 

12C14N- in green and 31P12C- in blue, scale bar = 15μm. F) The lower right panel shows 28Si- in 

red (the arrow indicates the thick Si layer associated with the sclerenchyma) and in grey the 

secondary electron (SE) image. 

Figure 4: NanoSIMS image of the stem region adjacent to a stem furrow. A very clear Si 

double layer (red) with an ‘organic filling’ identified by the 12C14N- map (green) is associated 

with the epidermis. Scale bar = 15μm.

Figure 5: NanoSIMS image of horsetail branch. A) Optical image of the stem branch with 

red squares indicating the positions of NanoSIMS analysis. In all images on the left, 28Si- is 

shown in red, 12C14N- in green and 31P12C- in blue, scale bar = 15μm. On the right, 28Si- is 

shown in red and in grey the secondary electron (SE) image. B) Outer branch portion with 

arrows indicating the Si layer and the papilla-like projections. C) Inner branch portion with 

the arrow indicating the thick Si layer associated with a silicified papilla-like projection. D) 

Inner cell layer of the stem branch with the arrow indicating the inner Si layer.

Figure 6: Biogenic silica deposition in horsetail stem and leaves following acid extraction 

and fluorescence imaging with PDMPO. A) Stomata and papillae-like projections on the 

stem epidermis (arrows). B) Clusters of silicified papillae-like projections on the leaf (arrows) 

and fine detail of a stoma showing the thickened ventral cell walls of guard cells (inset). C) 

Jigsaw puzzle-like silicified cell walls of the stem epidermal cells. D) Silicified vesicles/inner 

deposits in leaf epidermal cells (arrows).  

Figure 7: Callose immunodetection in horsetail stem epidermis. Panels A and B indicate 

clusters of papillae-like projections. C and D indicate epidermal cells with vesicles reacting 

against the antibody (arrow). E and F show epidermal jigsaw puzzle-like cells and stomata. 
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The inset in F shows a detail of a stoma with fluorescence of the guard cells’ ventral cell 

walls.

Figure 8: Schematic model representing the double defence system against biotic stress 

in horsetail. The three scenarios, i.e. Si-deficient (<[Si(OH)4]Crit), Si-sufficient 

([Si(OH)4]Crit) and Si-replete (>>[Si(OH)4]Crit), are depicted.
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