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Introduction

This thesis covers a number of related topics in the
foundations of set theory. Section 1 contains an anaiysis of
the paradoxes which suz-ests a way of looking at the axioms of
any formalised set theory as to a certain extent legislating how
'is a member of' and 'set' afé to be used.

In section 2, two other points of view are examined and
rejected. There are doubtless other views which directly
contradict the view put forward in section 1, but clearly one cannot
examine all the Qifferent solutions of the paradoxes in any one
thesis. The positions examined in section 2 seem to represent
views that are most opposed to the general tendency of this
thesis.

Section 3 congists of a critical examination of Tarski's
work on the semanfic conception of truth for a formalised calculus
of classes. This section has two aspects. The first is a
defence of Tarski against some of his critics; the second an
attack on certain of Tarski's conclusions.

Section 4 begins where section 3 leaves off. That is,
it examines Tarski's conclusions about a definition of truth for
set theory. It contains an analysis of G8del's results on the
incompleteness of formal systems and is particularly concerned with

the transference of certain inferences made from G8del's theorem



for a formalised arithmetic to a formalised set theory. The
conclusion of section 4 returns to the theme of section 1 and
utilises certain metatheorems recently proved about formalised

set theories.

Throughout the thesis no one axiom system of set theory is
presupposed though reference will be made to several. The
discussion is of a general nature and can be taken to be about

any axiom system of set theory rather than some particular one.



Section 1

In this section I shall be concerned with the set-theoretic
paradoxes. I wish to propose a way of looking at them which,
if accepted, should alleviate much of the discomforture felt
by philosophers, logicians and mathematicians when confronted
by them. I speak of 'a way of looking at the paradoxes'
rather than of 'a solution of the paradoxes' because, as will be
made clear in the sequel, the way of looking at the paradoxes
presented here allows of a multiplicity of 'solutions!.

It should bg said here that, although much of the philosophical
perplexity caused by the existence of the paradoxes may be
dispelled, there will remain several problems for the mathematician
and the philosopher, but these problems are not caused by the
existence of contradictions. They would have arisen even without
the discovery of the paradoxes. Indeed, there are two distinct
problems which will remain to be solved: one of them a purely
technical problem of direct concern to mathematicians only,
the other a general philosophical problem analogous to the
philosophical problems aroused by other mathematical and scientific
theories.

The former problem is to construct a set-theory which is

consistent and adequate for the needs of mathematicians working



in theories which employ the concept of set. The problem of
consistency has itself engendered a body of literature and it
now seems that a proof of consistency for set-theory is
unlikely to be forthcoming. But this is a technical question;
it is sufficient for my present purposes to show that the
problem of consistency would still be present even if there
were no paradoxes. Certainly, the paradoxes have made the
problem of consistency more urgent, because they have shown that
inconsistencies can occur in the least suspected places. But
the problem of consi*iency, at least for formal axiomatics,
exists not because inconsistencies have occurred but because
they might occur. The adequacy of a set-theory, referred to
at the beginning of tﬁe raragraph, is needed because the
mathematical theories which employ the concept of set, for
example, Lesbesgue measure and integration theory and the
theory of real and complex functions which depends on the
theory of sets of points, employ theorems of set theory.

The mathematician working in such fields requires the theorems
of set theory and, therefore, a set-theory which will provide
him with these theorems. The related problems of the
consistency and adequacy of set-theory are not then directly
caused by the existence of the paradoxes and they will remain
whatever philosophical solution of the paradoxes is offered

They are essentially mathematical problems and can be solved



only by mathematiciansy they are only of indirect interest to
the philosopher because they are not philosophical problems.
The general philosophical problem, mentioned on the
previous page relates to the existerce of sets. It is the
problem aroused by the question 'Do sets exist?' or 'in what sense
can sets be said to exist?' rather than the question 'What
gets exist?' This is indeed a philosophical question but not
one which a solution of the paradoxes will answer. The
paradoxes help to give a partial answer to the question of

which sets exist but not of whether sets exist,



II

In this chapter I shall state some of those paradoxds
with which I shall deal. The paradoxes are all from set-theory
and, although I shall speak of the other paradoxes, 'heterological'
for example, in section 2, I shall not deal with them directly.

The list is not intended to be exhaustive. I have picked
out those that I shall discuss in later chapters, but the
treatment I propose should be capable of extension to other
paradoxes of set-theory with which I shall not deal in detail,
the paradox of all grounded classes, for example.

There remains the difficulty of characterising the paradoxes
of set-theory. I think that Ramsey'sl division of the
paradoxes into two groups, the logical paradoxes and the
'epistemological' paradoxes (now generally referred to as
the 'semantical paradoxes') will be adequate. Perhaps a
more precise distinction may be made in the light of more
recent work on semantics and also the distinction, now
universally accepted, between object-language and meta-language.
The get-theoretic paradoxes may then be characterised as those
paradoxes which may be stated in the object-language of

set-theory. With this characterisation the Berry, Richard .

1. Ramsey, F.P. 'The Foundations of Mathematics', in The
Foundations of Mathematics and Other Egsays, London 1931




and Zermelo-KBnig paradoxes fall within the domain of the
semantical pafadoxes because they each refer to an object-
language as well as to sets. The Skolem-ILBwenheim
'paradox', although a theorem belonging to the meta-theory
of formal languages, is sometimes listed as a paradox
along with the above.l Even if this important theorem
is regarded as a paradox, it will still fall outside the
scope of this section because it also belongs to the semantic
category.2

Throughout this section and section2, then, I shall be
discussing in some detail the following four paradoxes,
bearing in mind that the procedure I shall advocate may be
extended to the other paradoxes in the same category.

1. The Russell Paradox. Consider the set R of all

those sets that are not members of themselves. If R is

a member of R then R is not a member of Ry if R is not

a member of R then R is a member of R,  Therefore, R is a
member of R if and only if R is not a member of R.
Assuming the law of excluded middle it follows that R is a

member of R and R is not a member of R,

2. The Cantor Paradox. Consider C the set of all sets,

1. See, for example: E. Beth, The Foundations of Mathematica
Amsserdam, 1959. pp.448-450

2. This will be discussed further in section 4 of this thesis.




and the set UC of all subsets of C. It follows from a
general theorem of set theory, namely, for any set the cardinal
number of Us (the set of all subsets of s) is greater than the
cardinal number of the set s, that the cardinal number of UC

is greater than the cardinal of C. Sinceé forall x if x is

a member of UC x is a member of C, UC ix a subset of C, it
follows from another theorem of set-theory that the cardinal
number of UC is less than or equal to the cardinal number of C.
Therefore C has a cardinal number greater than or equal to the
cardinal number of C and the cardinal number of C is also

less than the cardinal number of UC. This is a contra-

diction.

3. The Set of all Cardinals. Consider the set of all

cardinals. One theorem in set theory states that there

is no greatest cardinal and another theorem that for any set

of cardinals among which there is no greatest member the sum

of the cardinals of the met is greater than any cardinal in

the set. Therefore, the set of all cardinals, which has no
greatest member, gives a sum which is greater than any of

the cardinéls in the set, i.e. a cardinal greater than any cardinal.

4. The Burali-Forti Paradox. Consider the set of all

ordinal numbers arranged in order of magnitude. This set is

well~ordered. Suppose its ordinal number is &£ . Consider



the set of all ordinals up to and including N arranged in
order of magnitude. The ordinal of this set wili bed

SN + 1. Nownn is less than & + 1, Since the set of

all ordinals up to and including & is an initial segment

of the set of all ordinals, & + 1 is less than or equal to £\

This is a contradiction.
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III

To understand how the paradoxes have prevented us from
seeing their solution, it will be necessary to pay more attention
to the way they are stated in important works on logic or the
foundations of mathematics and in many of the text-books dealing
with these subjects. Yor example, to quote only a few of the
many different statements of the paradoxes to be found in such
books?

"Let w be the class of all those classes which are not
members of themselves. Then, whatever class x may be, 'x is a
w' is equivalent to 'x is not an x'. Hence, giving to x the
value w, 'w is a w' is equivalent to 'w is not a W'.l

"Consider the set of all sets; call it M."2

"Let us suppose that S is the set of all sets"3

", e.o the set of all subsets of a set M has a cardinal
number higher than that of M. This is a contradiction if M is the
set of all sets."

These four statements or partial statements of the paradoxes
as well as the statements of the paradoxes as 1 gave them in the
previous chapter have helped to concédal, behind the words "consider"
or "let us suppose" a 'hidden' existential proposition. (A notable

exception to this indirect concealment occurs in Fraenkel and

1. B, Russell and A, vWhitehead, Principia Mathematica, 2nd ed. Cambridge
1927, p.60 )
2. S. Kleene, Introduction to Metamathematics, Amsterdam, 1952, p.36

3. W & M Kneale, LYhe Development of Logic, Oxford, 1962, p.652

4. H. Curry, Foundations of lathematical Logic, New York, 1963 p.5
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Bar-Hillel's discussions of the Russell paradox.)l

A proof that there does not exist a last prime number can,
if it is formulated in an analogous way, be turned into a 'proof’
that there are inconsistencies in number theory. For example,
instead of the phrase 'suppose there exists a last prime number'’
the 'proof!' would start 'consider the last prime number, call
it P'. From 'consider the number P such that P is prime and,
for all n, if n is greater than P then there exists an x such
that x#1, x¢n and x divides n' it may be deduced that there
is and there is not a number which is prime and greater than F.
This is a contradiction.

It can be seen that such a proof would never be accepted
by mathematicians because the proof has concealed the
existential assumption that there exists a last prime number.

It is valid only if there does exist such a number. But that
there does not exist such a number only follows from the fact
that a contradiction has been derived from the supposition that
it does exist.

Now if the same reasoning is applied to the set of all
sets or the set of all cardinals, it can be seen that by rewriting
the offending phrases 'consider the set ...! or 'let the set R

be «..' in the proper existential form 'suppose there exists a

1. A. Fraenkel and Y, Barr-Hillel, Foundations of Set-Theory,
Amsterdam, 1958, p.6
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set, 8 say, such that ...' what might be said to follow from
the resulting inconsi stency is not that there is some paradox
that must be removed but that there is no such set as the set
3. In the following chapters I shall be considering the
merits of this argument and, also, what qualifications have to
be put on it, since in the fprm given above there is much

oversimplification.



-13 =

v

In this chapter I shall show that there are analogies to
the Russell paradox in established fields of mathematics.
I shall consider three examples of existence theorems.

1. There is no last prime number.

2. There exists a non-enumerable set. (To put this in a
form more analogous to the paradoxes, there does not exist a
one-to-one correspondence between the set of all sets of
natural numbers and the set of all natural numbers or a subset
of them).

3. There do not exist natural numbers p and q such that
p/q is equal to the square root of 2.

Each of these theorems bears a resemblence to the solution
put forward here to the Russell paradox. In the case of 1.
there is no difficultys it is an accepted theorem of number
theory and has been so at least from the time of Buclid. In
the case of 2. opinion is still divided. Argunments have been
proposéd, notably by the intuitionist school, for its rejection.
In the case of 3., although it is an accepted theorem of analysis
all outstanding difficulties have been cleared up only in the
last century.

All are analogous to the statement 'there does not ekist the

class of all classes which contain themselves as members.'! A1l

could be regarded as paradoxes if we refuse to accept that théj
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are results established by the use of reductio ad absurdum
proofs. There seems little more than prejudice which would
account for the attitude taken with regard to the Russell
paradox on the one hand and 1., 2. and 3. on the other.
Admittedly, that there is no such class as the Russell class
may be surprising but this should be no criterion for
rejecting that result. To some it may be just as surprising
that there does exist a class which cannot be put into one-
one corrdspondence with a subset of the natural numbers.

The discovery that there exist irrational numbers must have
surprised the Pythagoreans. In these latter cases, however, a
new fruitful mathematics has come into being. In the first,
the theory of transfinite cardinals and ordinalss in the
second the theory of irrational numbers.

In other words, the discovery of 2. and 3. have altered
fundamental aséumptions held about numbers and sets. We have
not been content to say here is a paradox but we have been
prepared to alter our concept of number.l It would seem then
that we should do the same for the set-theoretical results.

We should not say here are some paradoxes, but say tather our

concept of set must be altered according to the resulits we have.

1. The Pythagoreans held that lines were made up of an integral
number of units. This, however, was found to be incompatible

with the consequences of P thagoras's theorem.  Instead of introducing
the notion of an irrational number, Greek mathematicians were forced to
abandon the attempt to identify the realm of number with continuous
magnitudes . C. Boyer The Concepts of the Caleulus 1949 p.20
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We may view the paradoxes not as inconsistencies in set-
theory but as part of unfinished proofs that certain existential
assumptions are false. The argument which, according to this
theory, should be applied in the case where two contradictory
propositions are both derivable from some assumption, q say,
is that notfq is provable, This argument, frequently
employed in mathematics, is simply an example of reductio ad
absurdum. This view has some precursers. Solutions along
these lines have been proposed by D, Bochvarl, J.F. Thomson2
and G.H. Von Wright’,

Bochvar contends that the set-theoretic paradoxes result
from definitions which include or presuppose existential

assumptions of an extra-logical character. In particular,

the axiom schema

(4) (Exp+1)(xl)(XZ)----s--(xp){xp*l(:&.xz,.....,xp) = U(x),x,, ...xp)i

where U is any expression containing the free variables
xl,xg,......,xp is responsible for the existence of the Russell
paradox. The logical system Bochvar constructs is a version of

elementary logic with variables, not subjected to a type hierarchy

L. D, Bochvar, 'T'o the Question of Paradoxes of the liathematical

Logic and Theory of Sets', Mat.Sbornik 15, 365-3284. Known to me through

the review by Wanda Sxmielew, 1946, Journal of Symbolic Logic, 11, p.129
and E. Beth, The Foundations of Mathematics, Amseterdam 1959, p.506

2. J.F. Thomson. 'On Bome Paradoxes' pp.l104-119

3, G.H. von Wright, 'The Heterological Paradox', Societas Scientiarum

Fennica Commentationes Physico-Mathematicae XXIV 5, 1960 pp.l-28
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Xy Xppeeeey atoms xn(xnl,xn ,....,xnp) and excluding every

application of the schema (A). This system is shown by
Bochvar to be consistent. Instead of the Russell paradox
being derivable from this system, it is provable that there
does not ekist the set of all sets which do not belong to
themselves. More precisely, the sentence

~(Ex2)(xl)(x2(xl)s ~xl(xl)) is provable. The solution

that Bochvar proposes seems to depend upon the difference
between logical assumptions and extra-logical assumptions.
According to Bochvar the schema (A) is an extra-logifal
assumption which is responsible for the appearance of the
paradoxes. Clearly, if he is right in his contention that the
paradoxes do result from such extra-logical assumptions he needs
some criterion by which to determine which seniences are of
logical nature and which extra-logical. The question that
arises from this is which assumptions are of a purely logical
character. If there is to be a set-theory at all, there needs
to be certain axioms in any set-theory from which set-theoretic

theorems follow. Are these axioms of a purely logical nature?.
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It is difficult to seel the set-theory which Bochvar has

proved to be consistent and what theorems of a generally
accepted set-theory remain in such a system as Bochvar's.

What is certain, however, is that Bochvar proved, in his

system of set-theory at least, that there does kot exist

the set of all sets which are members of themselves. There

are in various standard works on logic and set-theory similar
results. For example, Quine's system, referred to as

M L. contains the theorem that there is no such set as the get

of all sets which do not contain theuselves as members,2 and also

Fraenkel in Abstract Set Theory in connection with the Burali-~forti

1. The fault is not Bochvar's but mine, because I am dependent upon
the review by Sxmielew (see note 1 p.(3 of this chapter). It is
clear from that review that Bochvar excludes all existential assumptions
since he regards them as not belonging to the province of pure logic
The calculus he constructs, K , is a form of the first-order functional
calculus with identity. Thus he proves K_ to be consistent whereas

the extended functional calculus without aotheory of types is known

to be inconsistent. K_ 4is also a form of the extended predicate
calculus without the whole of the 'extra-logical' part. It is not
clear on what grounds he rejects these existential assumptions other
than that they give rise to paradoxes, nor why he labels them extra-
logical. If, as Sxmielew implies, he believes that theorems of
existential character and the study of the relations of this character
between things is not proper to logic even when they are expressible

in logical terms, then what does he say of the existential theorems of
the first-order functional calculus, (Ex)Px.~Px? If these are theorems
of X thda it remains to show that guantifying with the existential
quantifier over individual variable is a part of 'pure' logic but
quantifying over predicates does not belong to 'pure' logic.

2. W, Qduine, Mathematical Logic, 1940, pp.128-9
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antinomy states:

'the totality of all ordinals does not constitute a
set'.l
But these latter theorems are not regarded by their authors
as offering a philosophical explanation of the pa.radox:es.2
Bochvar, on the other hand, does not limit himself to obtaining
a theorem which is a consegquence of the axioms and rules of
derivation of a formal calculus only, but contends that the paradoxes
are contradictions resulting from the intrusicn of extra-logical
existential assumptions which are instances of the schema (a)

3

J.F. Thomson® argues that the 'Barber' paradox, the
heterological paradox, the Richard paradox and the Russell paradox
have a common form. = He proves the theorem that if 5 is any set
and R any relation defined at least on S then no element of S

has R to all and only those S-elements which do not have R to
themselves. In itself this is not paradoxical but 'a plain and
simple logical truth'4 which, however, provides a foundation on
which many of the paradoxes are built.

The answer to the Barber paradox, based upon the theorem

is that no man exists who shaves all and only those men who do

1. A, Fraenkel, Abstract Set Theory, Ams’.erdam 1961, pp.201-2

2. Fraenkel does not consider that this explains the paradox but
useg the concept of classes which are not eligible for membership
rather as an expedient. See his discussion op.cit. p.202. Quine also
uses membership-eligibility, op.cit. p«131

3. J.F. Thomson, op.cit.

4., ibid. p.104
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not shave themselves. Indeed, this is the answer which is
accepted. Yet, the heterological paradox and the Russell
paradox although based upon the same theorem have not had the
same conclusion drawn from them. Thomson argues that the
heterological and Russell paradoxes should be regarded in the
same light as the Barber and thatt

'a contradiction arises on supposing that there could
be an adjective which is true of absolutely every adjective
which is false of itself. Tha%s is, this supposition is
absurd and m1 st be glven up.'l

'Formally, this the reasoning that the Russell set is
a member of itself if and only if it is not a member of ifself
is just the same argument as that of the Barbert so why should
we not deal with it in just the same way, and say it just shows
that there is no such aet as R?

The answer .... is that we should deny that there is such
a set as R the set which produces the Russell paradox '.2

Whilst I agree, with qualifications, .with Thomson on
these conslusions, the schema he gives upon which the paradoxes
can be based tends to conceal that all the set-theoretic
paradoxes have a common structure, though not that of ﬁis schema..

Certainly the great similarity between the Barber paradox and the

1. ibid. p.112
2. ibid. p.11l7
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Russell paradox is brought out very clearly, but the schema is
no help when we come to the Cantor paradox or the Burali-forti
paradox. Here it would be necessary to go even deeper to find
the common proof schema which would show that there is no such
set as the set of all sets or the set of all ordinals. The
common schema in all these cases is the theorem from the
propositional calculus: {p D (q.»q)}n ~ Do Incidentally,
it is this schema which is used in Thomson's proof of his theorem.
The main criticism that I have to make of Thomson is that he
does not go far enough.l

G.H. von VWright discusses the heterologicsl paradox2
and comes to a similar conclusion, namely, that 'heterological!
dpes not name a property which a thing has if and only if it is
not autological, or, to reformulate this proposition, heterological
is not a property. Since heterological is not a property
and because the definition of 'heterological' states that x
is heterological if and only if it is not the case that x has a
proyerty of which x is a name, it follows that 'heterological'
is heterological. It does not follow that because 'heterological’
is heterological, ‘'heterological! is not heterological, since

'heterological' is heterological because it is not a property,

1. Bagically, Thomson is showing, though he does not sav so,
that Barber, Rugsell and Grelling paradox have the schema .  :;
(ex) (y) f£(xyy)z~1f(y,y) whilst the negation of this formula is
provable in the predicate calculus.

2, G.H. von Wright, op.cit.
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not because it does not have the property which it names.
The principal conclusion which von Wright says should be drawn
is that 'heterological' is not a property.

I shall now mention two of his arguments which I shall
refer to later. Firstly, he considers that objections may be
made that 'heterological! must still be a property even though
the modo tollente proof {p p) (q5~qﬂ3 ~ p shows that it is not.
He maintains that it is necessary to clarify the concept of
property understood by the objector. For example, it might
be said that a property is anything which can function as g
predicate in a true proposition of subject-predicate form.
Since "'hexasyllabic'! is heterologicd' expresses a true
proposition of the subject-predicate form 'heterological'
must be a property. But the sense of 'property' which
von Wright understands is the sense implicitly defined by the
predicate calculus which states ~{f(x). ~f(x)§ as a
theorem. It is in this sense that 'heterological' is not
a property. If it is maintained that 'property' should be
understood in the objector's sense, then there is no
contradiction or paradox because the predications involved would
not be predications in the sense of the predicate calculus.

Secondly, he gives an analogy between the heterological
paradox and the division by O in arithmetic. If for any real

numbers m, k and 1, ml=mk implied l=k, it could be proved that =7,
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since 0.5=0.7 This contradiction could lead to the
conclusion that O is not a real number. It is more useful,
however, to admit O as a real number than fo reject it.
Instead of rejecting O from the class of real numbers, it is
preferred to say that there is an exception to the proposition
that for all real number m,k,1l, if mk=ml then k=1 and the
proposition is modified accordingly. The proposition becomes,
for all real numbers m,k,l, if m#0 and mk=ml then k=l.

An: analogy exists between the case of division by O
in arithmetic and the case of heterologicality. Von Wright
contends that if the evidence in favour of calling heterclogical
a property outweighs the evidence against it (in this case,
the derivation of a contr diction from the supposition that it
is a property), then it could be said that 'for any word x,
if x is not a name of the property of heterologicality itself,
then x is heterological if and only if it is not the case that
x has got a property, of which x is a name"l

I shall return to these two arguments later in this
section., In the next chapter I shall show how similar reasoning
may be applied to the paradoxes of set-theory, a subject only

mentioned in passing by von Wright.

1. G.H, von Wright, op.cit. p.27
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In this chapter I shall be looking at the paradoxes in
more detail and showing the implications of viewing them as
part of reductio ad absurdum proofs.

In chapter IIT of this section I maintained that the
aprarent paradoxes were only partial proofs of set-theoretic
theorems. They served the same function as a contradiction
in any reductio ad absurdum argument, namely, to negate the
premise from which the contradiction was derived. Thus,
from the agsumption that there exists a class of all classes
which are not members of themselves, the Russell paradox proves
that there does not exist such a class. In other words, the
paradoxes are the penultimate inference steps of theorems.

In such a manner the paradoxes are reméved and 'new!'

theorems také their place in set~-theory. The new theorems,
which replace the four paradoxes taken as examples of the
paradoxes iﬁ general in chapter I of the present section, aret
1) there exists no class R such that, for all x, x‘is a

member of R if and only if x is not a member oka;i?) theré

is no class C such that, for all x, x is a member of C if and
only if x is a class; 3) there is no class S such that, for
all x, x is a member of S if and only if x is a cardinal number;

4) there is no ordered class T of allyordinal numbers, ordered
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according to magnitude.

Such theorems as these represent gross simplifications of
what would happen in the case of such a 'solution' being
applied; Above, it is applied directly to the 'hidden'
premisges. In practice, however, the implications are far
more complex. In the case of the Russell paradox, I
believe a good case can be maintained that no such class
exists, reasoning on the reductio ad absurdum argument outlined.
The other paradoxes require a more subtle treatment because they
are embeddied rather deeper in set-theory. Although I have
not been concerned with any axiomatic or formal system of
set-theory in this present section and have treated the paradoxes
and purported solutions as informally as possible, it will
be necessary to give a more detailed analysis of the Cantor
paradox and to give the proof of the theorem on which it
depends. The proof is informal and is not derived from
any axiom set in particular.l The proof, and the remarks
that I shall meke on it, should help to answer the question of
why frém the contradiction involved in the Cantor paradox,
for example, it does not necessarily folldw immediately that
no such class as the class of all classes exists., This

would seem to contradict what I have said above, but it will

1. For a treatment of set-theory in an informal manner see
Sierpinski Cardinal and Ordinal Numbers, Warsaw, 1958
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be seen that there may be more than one premise involved and
that the Russell and Cantor paradoxes may not be as independent
as they seem.

Cantor's paradox follows from the theorem that for all
sets X, the cardinal number of X, denotgd by “i“, is less than
the cardinal number of UX, the set of all subsets of the set
X, I shall give one proof of this important theorem. For
the definitions of equality and order amongst the cardinals I
shall take the followingt

1) X =Y if and only if XnY €Y and Y~ X S xi-

2) X< Yif and only if X~Y €Y and for all X if XS X then Y 4 X/
Proof: Each x of X can be associated with {x] of UX (where "{x}"
denotes the set of which x is the sole mamber).

Hence X NXO < X

(Xo being the set of unit subsets of X)
==

By 1) and 2) X < UX or X = UX

Suppose X = iles TX~X; € X, for some )&
.. BY, a 1l-1 correspondence, such that to each xtixl,
Y (x) = X,, where X  is a certain subset of X,

3) Let R' be the set of all x which are members of Xl and

are not members of Y (x)

i.e. B = {x; xéﬁ-.x§w(ﬂ}

1. 1) is not the usual definition of equality between cardinals,
which is X=¥ if and only if X~Y, but due to the equivalence theorem
of set-theory, 1) is equi-pollent with it. See A. Fzmaenkel, Abstract
Set Theory Amsterdam, 1961, pp.58-78. ;
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Now R’ is a sub-class of X
J.ReTX
sEn L) =R L yex)

Now, y € P(y) if and only if y € R

" e A {x;xexr xé¢(xﬂ

" momoomowoye {x v 49 (&)

gince y € Xl’
vy €Y (y) if and only if yf P (¥)
which is a contradiction.

Hence, by reductio ad absurdum, X % 04
() XTI

This theorem provides half the basis of the Cantor
paradox where the set in question is the class of all classes,
C.
ie. (5) € ¢ 1TC

The other half is provided by the fact that, in the case
of C, UCSC. (since all members of UC are sets, all members
of UC are members of C, UCSC follows from the definition of
subset). By (1) and (2) TC ¢ T which contradicts (5).

A less precise statement of Cantor's paradox is that
obviougly the cardinal number of the set of all sets is the
highest that can exist, yet the theorem proved above shows that

the set of all subset of this set must be greater still.l

1. See, for example, E. Beth, The Foundations of Mathematics
Amsterdam, 1959, p.484.
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If, for the moment, the paradoxes and the above theorem
are forgotten and fresh attention paid to the class of all classes,
a new relationship may be found between it and the class of all
its subslasses. On an intuitive level, then, the class of all
classes does have the largest cardinal number, but, as yet, nothing
is known of the cardinal number of the class of all its subclasses.
One would expect that, as its cardinal number cannot be higher
than the cardinal number of the class of all classes, and, on
the other hand, as the number of its members cannot be less
than the number of members of the class of all classes, its
cardinal number should équal the cardinal number of the class of
all classes. Continuing to disregard the above theorem, this

can be 'proved' as follows.
Let C be the class of all classes,

Let UC be the class of all subclasses of C

(6) A 1-1 correspondence,, can be set up between C and
a subclass of C° of UC, in this way!
For each x€C let "M (x) ={x{4i.e. the unit class
consisting of x alone.

(7 Also, a 1-1 correspondnece,e s Can ﬁe set up between UC and
Cx & sub-class of C, in this way:
For each x ¢ BC associate x¢ C

iees 9 (x) = x
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(6) and (7) together imply that C «.coe UC and UC~C & C
which implies, by definition (1), that C = GC (8)

The last result (8) is not surprising. It is very much

as one would expect, if the theorem (4) was ignored. Yet,

(8) is in direct contradiction to (5). In other words,

(8) and (5) restate Cantor's paradox. To prove (8) a 1-1
correspondence was established between C, and UC, but accordihg
to the proof of (4) no such l-1 corregspondence can be established.
If, for the moment, one accepts (8) then there must be a fallacy
in the proof of (4). This proof will be more thoroughly
examined to see how it comes into conflict with (8).

That part of the proof which used reductio ad absurdum
reasoning began with the supposition that for some Xl’ UXA:Xli X.
In the proof of (8) a 1-1 correspondence, O, was established
by which UC~QEC. It i8 no longer just a supposition that
there exists such an X related to UX under a 1-1 correspondence,
for C, and UC are related by € in exactly this way. The
contradiction which followed in the proof of (4) should,
therefore, follow when C is substituted for X and @ for ¥
in that proof.

The first step (3) was to let R’ be the class of all x
which are members of Xl and not members of })(x). - In the .
case of the l-1 correspondence @ and the class C,, this becomesj

let R” be the class of all x which are members of C, and not
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ﬁembers of e{x). I.s.R = {x; xeCy. x*@(x)}.

Using the definition of © (x), this becomes: let
R’= {x; xeCy. xfﬁ} Now, this class R'is a subclass of
the class of all classes which are not members of themselves.
In other words, R” is a suspect class already since it is a certain
sub-class of‘the Rusgsell class B, The contradiction which
follows in (4) ig transférmed into an argument analogous to the
argument leading to the Russell paradox by the substitutions
of C and 63

Since R’ is a certain sub-class of C, R ¢ UC.

Hence, there exists y such that yeC, and © (y)=R".

From the definition of 6 (y), y=R/.

Therefore, y¢® (y) if and onl& if yeR , hence, if and only
if y4o(y).

i.e. R¢ R’ if and only if R‘QR' .

In the proof of (4) the contradiction led to the rejection
of the supposition that there could be an equivalence between
Xl and UX, but it was taken for granted that R’ would exist
in the formulation of (3). If, however, the existence of R
is not assumed, the contradiction could equally well prove that R’
does not exist. ~In the case of the class of all classes and the
1-1 correspondence set up between UC and C,, the supposition that
there could exist such a correspgndence between a subclass of

a class and the class of all its subclasses is no longer just a
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supposition. The supposition that there exists such an R’
must be rejected if the 1l-1 correspondence © isg accepted.

The point I have been making in the detailed analysis
of the proof of (4) is that the existence of Cantor's paradox
does not prove that there does not exist a class of all
clagses.

In the case of the Russell paradox, I have applied the
method of reductio ad absurdum directly to the Russell class.
(The reason for so doing I shall explain later). But with
Cantor's paradox, the situation is different. For the paradox
to occur, there must be two classes, the existence of which is
assuged, namely, the class of all classes (together with the
class of all its sub-classes) and the class R, the class of
all those classes which do not belong to themselves and also
belong to C4. As I have shown, the Cantor paradox occurs
because the existence of C is incompatible with the existence
of R, Therefore, the reductio method could be used to show
that &' does not exist. As R’ was a suspect class in any
case (since it was a sub-class of the Russell class) this would
not be go surprising. Two 'new' theorems would then be
established. Firstly, C=00 and, secondly, for all classes X
except the class of all classes X <E§, ana}ogous to the treatment

given to ‘division by zero in arithmetic. Again, this leads to
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complications. In the first .place, §=0C may still be
inconsistent with some other result of set-theory; secondly,
the supposition that C exists (and hence 8=0C) implies the
rejection of an infinite number of classes. This latter
implication follows from the fact that there are an infinite
number of l-1 correspondences between UC and subsets of

C. For example, © can be taken to be the 1l-1 correspondence
which associates each x belonging to UC with {x]belonging to C.
Tris correspondence Gl, say, thus establishes an equivalence
between UC and C1 a subclass of C. The class which then
corresponds to R'yill be the class of all those classes which
belong to Cl and do not belong to their only member.

i.e. R1={x; $x} e C - {x} & x]." By the same reasoning as

wasg used previously Rl does not exist if C does. Similarly,
by establishing the correspondence between each x »>f UC

and {ii& y it can be shown that R2={x;{txﬁ € 02.{£x1£ 3 xg
does not exist if C does. By the 1-1 correspondence
associating {{{Xm with x and {{{{xw& with x ete.,

the classes RB’ R4, etc. formed analogously to R’, can be shown
not to exist. If so many classes have to be rejected, it may
be felt that it is the class of all classes which is the root
of all the trouble and that it should be rejected rather than
the classes R, Ry, R,, etc. Nevertheless, the point is that R',

Rl, eess could be rejected.
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To summarise this chapter: although I said in chapter 1II
that the paradoxes could be regarded as implying the non-
existence of the sets that give rise to them, to do so would be
to oversimplify the situation. For the rejection of one set

may remove the necessity of rejecting another.
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v

It might ve said that it is a mistake to talk of
preferring to reject one set rather than another. It might
be thought that either there is such a set as the set of all
sets or there is not. We are not free to choose whether a
particular set exists. We can only discover that such a
set exists., One might say that the paradoxes show that no
such set as the Rugsell set exists, in the sense that we
discover that the set does not exist. To talk in this way
is to talk as though set-theory is a science investigating
objects open to our inspection, rather as the physical sciences
investigate the nature and behaviour of physical objects.

Now abstract set-tleory, as opposed to theories of
point sets, set of natural numbers etc., is, as its
name suggests, a theory of abstract sets. Its universe of
discourse is limited to sets. We are speaking in abstract
set-theory of 'sets' rather than of !sets of'. It is this
change from the familiar to the unfamiliar which should make
us look askance at the view that we are discovering laws of
how sets behave, |

Certainly, the familiar taik of sets of points or
natural numbers guides us in how we shall talk of abstract’

sets. For what we want from a set~theory is a ready-made
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apparatus which will be applicable when we want to discuss
sets of some particular kind.

The 'arithmetisation' of analysis is, as Wangl 52y 8,

a misnomer. For, besides the theory of natural numbers,
Cauchy convergent sequences and Dedkind cuts, in

terms of either of which the real numbers can be defined,

need infinite sets of natural numbers for the 'arithmetisation'
to be carried out completely. What is needed, then, is a
theory of sets which can be applied to natural numbers,

i.e. a theory which will give the theorems which we need for
the 'arithmetisation' of analysis when the 'sets' of the
abstract theory are identified with sets of natural numbers,
sets of sets of natural numbers, etc.

Perhaps Wang is wrong in sayihg that since real numbers
can be regarded as sets of rational numbers the 'arithmetisation'
logically calls for a general theory of sets.2 What it does
call for is only & theory of sets of rational numbers or sets
of sets of such. I can see no logical reason why a general
theory of abstract sets is needed, although we may feel more
intellectually satisfied if we have such a theory. Wang's

theory Z with a bottom 'layer' of rational numbers would provide

1. H. Wang, 'The Formalisation of Mathematics', in A Survey
of Mathemntical Logic, Peking 1963, p.560

2. ibid. p.561
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such a theory but even this theory goes beyond what is needed
for founding analysis on the theory of natural numbers and sets
of them ete.

Although we are not compelled to construct an abstract
set-theory even for a successful reduction of analysis to the
theory of natural humberé, nevertheless there is no reason
why we should not do so in order to satisfy our intellectual
curiosity. Begides, we do not want to construct a new theory
each time we want to consider sets of another sort; sets of
points, for example, in measure theory. To do so would be
wasteful if we could find a theory which would be applicable
in each case.

The abstract set-theory that we create as a result is
founded on what we know from considering such sets as sets of
natural numbers, sets of points, etc. This knowledge guides
us.in our choice of axioms. It dces not, however, force ué
to adopt any particular adiom., As long as we choose axioms
from which we can derive all the theorems that we need for the
application of set-theory to some universe of discourse, we
are free to choose what other axioms we 1like. (Consistency
of these other axioms being the only limitation, sincé,
otherwise the set-theory would have no applications.)

This will be made clear in section 4.

If we look at the paradoxes in this light we should not
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be so puzzled by them. It should be remembered that the
syntactic paradoxes have occurred only in abstract set-theory
and no paradoxes have been found when considering sets of
natural numbers, points etc. In such contexts the known
paradoxes do not threaten, as Quinel and others2 have noticed,
since problems raised by 'xex' do not come up.

What Cantor tried to take as an axiom for this new theory
of abstract sets is the axiom of comprehension in its mnaive
form:

Ex)(y) yex=F()
where 'F!' is any condition whatever. When the variable y ranges
over the members of some set, this axiom will not, taken as the
only axiom of set-theory, give rise to any contradictions;3 in
other words, as Kreise14 remarks, when we think of the axiom as
giving the existence of a set whose members are of a particular
kind.

It is when the variable is not so restricted that trouble
occurs. The Russell paradox follows immediately the moment
we put in the specific condition 'syey'. -~ The problems arise

when and only when we do not restrict the range of the variable

toaa particular kind of object.

1. W. Quine, Set-Theory and its Logic, Cambridge, lass.,, 1963 p.5

2. K, GHdel, 'What is Cantor's Continuum Problem?' American Mathematical
Vonthly, vol.54 1947

3. W. Quine, Set Theory and its logic p.37
4. G.Kreisel, 'Informal Rigour and Completeness Proofs' in Problems in the
Philosophy of Mathematics, ed. I.Lakatos, Amsterdam, 1967, p.14 3
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In abstract set-theory we are only interested in giving
axiom for sets, considered as sets and not of sets of something,
though the axioms must be interpretable for application as
sets of something. In abstract set-theory there is only one
primitive predicate, the membership relation. The axioms that
we choose will determine the properties of this relation. The
axioms determine how we are to use the phrasec 'is a member of'.
Initially we try to make these axioms tally with accepted uses
of the phrase 'is a member of' as when we say that the number
5 is a member of the set of odd numbers or Jones ia a member
of the class of unemployed.

In the field of abstract sets we first meet counter-
instances of the axiom of comprehension. It appears that not
every condition determines a set. TFor example 'x¢x' does
not determine a set. There is no set which consists of
those sets which do not bvelong to themselves. We cannot carry
over, without inconsistency, the assumption that every condition
determines a class of objects that satisfies it from, say,
the universe of natural numbers or of human beings to the universe
of abstract sets.

A1l that the paradoxes show is that the axiom of comprehension
cannot be taken as one of the axioms of abstract set-theory.

It is a sifuation which is analogous ko other situations that

have occurred in mathema tics. - The creation of imaginary numbers
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needed axioms which would be in accord with the axioms of the
real numbers and such that the existence of a root of any
integer was guaranteed by those axioms. It turns out that

we cannot keep all the axioms of the real numbers, for it
could be 'proved' that the square root of =1 is both less than
and greater than O. The axioms of the real numbers do not
carry over to the universe of complex numbers. The axioms of
order are rejected.

We are assured by the predicate calculus that there is
nothing which bears the relation f to everything which doew
not bear the-relation f to itself, whatever relation f may be.
iees »Ex)(y) | £(y,x) = ~ f(y,y)x is a valid theorenm
of the calculus. So there can be no barber who shaves all
and only those who do-not shave themselves; - there can be no
set which contains &8ll and only those sets which do not contain
themselves. We discover that we carnot use the‘phrase 'ig
a member of' in the way we would have liked., The axioms for
the universe of abstract sets camnot include the comprehension
axiom.

It could be argued that we are not forced to give up the
axiom of comprehension. Instead we could object to the phrase
'xex's We could argue that this phrase is not meaningful.
This is what Russell did. The axiom of comprehension is retained

in the fomm of the axiom of reducibility and the phrase 'member
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but we can note here that Wang, who, perhaps more than any

other logician, sympathises with some theory of types, says

that Russell went needlessly far in maintaining that such
expressions were meaningless.l Wang's system Z presents an
example of a theory where the objects are stratified in types but
where it turns out that 'xex' is false and not meaningless.

If it should be found that Russell's reasons are not
sufficient for the conclusion that certain phrases are meaningless,
there remain powerful reasons for saying that the axiom of
comprehension does not hold in the field of abstract sots.

For whatever relation f may be, we can be sure from the predicate
calculus alone that there can be nothing in the universe of
discourse which has that relation to all and only those things
that do not bear that relation to themselves, In chapter IV I
mentioned that von Wright regards the predicate calculus as
defining whax a predicate is. To go back to his discussion of
‘heterological' if we say analogously that there must be such

a predicate as 'ﬁember of! and, at the same time, maintain that
this predicate is such that there does exist an x such that yex
if and only if yfy, then we must be understanding the term
‘predicate’ in a way which is in need of explanation,

We cannot in constructing a set-theory use the axiom of

1. H. Wang, 'The Formalisation of Mathematics', p.577




-4 -

comprehension (if we regard 'xex' as meaningful). How are

we to replace this axiom? Axioms of set existence are needed

and the obvious candidate has failed. At the 5eginning of

this section I said that it would be misleading to speak of there
being just one solution of the paradoxes; it would be more

correct to say that there are a multiplicity of different solutions.

If we were to ask two (classical) mathematicians what a
real number is wemight receive different answers. One might
say that it was a set of rational numbers, theother that it
was a set of sequences of rational numbers. It would depend
on whether they accepted the Dedekind cut construction of the
real numbers or the Cauchy cmstruction. We might say that
both answered the question of what a real number is, that both
provided a solution to the problem.

Similarly, there are many axiomatic set-theories, differing
greatly in the sets that the theories are committed to. Each
can be regarded as substituting a number of existential axioms
to replace the axiom of comprehension. There is no sense in
asking which theory is the 'correct' theory, although we might
worry that some system seemed inadequate for the applications
we wish to make of ‘&t. By the adequacy of a set-theory I mean
only that it guarantees the existence of any set which we need
when we interpret the objectsof the set-theory as 'sets of'.

Thus, for example, we would want the intersection of two sets



- 42 -

to exist ahd so any set-theory which failed to provide such
a set would be inadegquate.

I shall return to the question of the choice of axioms
in section 4, where I shall discuss further the 'freedom' we

have in choosing the axioms of set-theory.
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Section 2

I

Ag mentioned in the previous section, I shall discuss
Russell's reasons for denying that the phrase ‘'xex' is meaningful.
I do not intend to discuss all of Russell's philosophy of
mathematics nor even the whole of the doctrine of ramified
type theory. I shall be concerned only with that part of
his doctrine which touches on the aboveé problem.

Rgssell's first thoughts on the discovery of his paradox
seemed to be that the axiom of comprehension had to be given up.
In his letter to Frege he writes,

',.. there is no class of those classes which, each taken
as a totality, do not belong to themselves. From this I conclude
that under certain circumstances a definable collection does not
form a totality.'l
This view is also indicated in his first paper on the subject some
four years later.2

By 1908 his view had changed. A parper published that year
outlined the theory of types in which it became nonsense to talk

of a class being a member of itself.B‘ The doctrine was embodied

1. B. Russell, 'Letter to Frege' (1902) in From Frege to Godel
ed. J. van Heijenoort, Cambridge, Mass. 1967, p.l25.
2. B. Russell, 'On some difficulties in the theory of transfinite

numbers and order types' FProceedings of the London Mathemntical Society,
1907, pp.29-53. _

%, B, BRussell, 'Mathematical Logic as based on the Theory of Types',
(1908) in Logic and Knowledge, ed. R, March, 1956, PP.59-102
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in Principia Mathematical and his reasons for adopting the theory

of types were given in greater detail.

In Principia Mathematica classes were considered to be

logical fictions. Statements about classes could be translated
into statements about propositional functions. The explanation
of what a propositional function is remains very obscure. As
d.uine2 has noticed, quantification over propositional functions
vwhich Russell allows (the axiom of reducibility asserts the
exigtence of certain propositional functions) implies that Russell
has not rid mathematics of abstract entitiew. As duine

says, Rugsell has replaced a clearer notion by one that is more
obscure. Russell himself, in his discussion of propositionasl
functions, veers from thinking of the function as what Quine
would call an open sentence tothinking that it is some kind

of entity over which we may gquantify.

He speaks of a propositional function being an ambiguity.

'A function, in fact, is not a definite object sessy it is a mere
ambiguity awaiting determination, and in order that it may occur
significantly it must receive the necessary determination'.3

But if propositional funétions are not definite objects but mere

ambiguities how can one apply existential and universal quantifiers

to them?

1. B. Russell and A. Whitehead, Principis lathematica, Cambridge, 1913
2, W, Quine, 'Whitehead and the Rise of liathematical Logic' (1941) in
Selected Logical Papers, New York, 1966, p.19-22, :

3, B. Russell, Principis Mathematica, p.48
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Russell's analysis of classes in terms of propositional
functions provides his solution of the Rusgsell paradox. Por
to ask of a class whether it belongs to itself is to ask whether a
propositional function is satisfied by the class determined by
that func‘bion.l The problem reduces to the problem of whether
a propositional function can satisfy itself.

Russell has two arguments to show that it cannot. One
rests on the simple theory of types and the other on the vicious-
circle principle. (That the simple theory of types is logically
independent of the vicious-circle principle was pointed out by
G8d91)2

The former argument relies on the essential ambiguity of
the propositional function. In his discussion Russell considers
the possibility of substitutihg a propositional function for an
individual in an elementary proposition. The argument is general
and its conclusion is that propositiocnal functions are divided
into ranges of significance or types. The reason he gives
for saying that ‘a propositional function cannot meaningfully
be an argument o an elementary propositional function is that
a function is not a definite.:thing but an ambiguity awaiting ;

determination. Consequently it is nonsense to say that

1. ibid. p.63
2. K. G8del, 'Russell's Mathematical Logic', in The Philosophy
of Bertrand Russell, ed. P. Schilpp, La Salle, 1944, p.l47.
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ﬁ X satisfies y:i where both p and ﬁ are elementary propositional
functions.

This would seem too strong an argument and establishes more
than Russell desires. If a function is 'a mere ambiguity!'
it is difficult to understand how a function can ever be an
argument., That there are functions of higher type Russell does
not doubt and does talk of functions as arguments to other
functions. It is not clear how this can come about if functions
are not 'definite things'. Nor is it clear, as I have already
indicated, how these mere ambiguities can be quantified.

Russell makes the distinction between the symbol '¢ x '
and '¢ X '. The first is what is ambiguously denoted, the
second that which denotes (ambiguously) its many values.
We may paraphrase Russell's talk of 'ambiguously denoting'
and 'ambiguously denoted' in more modern terms. It is clear,
I éhink, that Russell's use of 'd X ' corresponds closely to
the idea of an open sentence or sentence frame (Quine).
For Russell says that 'By a "propositional function™ we mean
something which contains a variable, and expresses a proposition
as soon as a value is assigned to x.'l There is difficulty,

however, in trying to make the notion expressed by K % clearer,

1. B. Russell, Principia Mathematica, p.38.
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Por, in one place Russell says that ‘'p X' is 'a single thing'l
and, further on in the text, he says that '@ %' is 'not a definite
object'.2 Any interpretation of Russell's use of '$ X' is
almost certain to contradict one of these characteristics.

duine asserts that Russell's propositional functioﬁs are
attributes, in the sense that the open sentence 'x has fins!
determines the attribute of finnedness.3 But this seems to
contradict Russell's claim that a propositional function ¢ X

4

denotes its values. For the values of a propositional function
(according to Russell) are propositions. If Quine were right
then an attribute would denote a set of propositions. In
speaking of propositional functions denoting, Russell implies
that they are linguistic entities. It is clear that attributes
in Quine's sense are not linguistic entities. But if @i is not
an attribute but a linguistic entity which is different from the
open sentence ¢§, which denotes and which is a single, though# not
definite, thing, there would Seem to be no possible interpretation
which would fit.

As a result of Russell's obscurity at this point, if is

hard to evaluate his argument for the conclusion that '4X is a man'

is nonsense. The argument he does give, that in '¢X is a man' nothing
1.  ibid. p.40 2. ibid. p.48

3, W. Quine, 'On Frege's Way Out', Mind 64, 1955 p.l46
4. B. Russell, Principia Mathematica p.40
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definite is said to be a man can be applied to another of
Russell's examples which he gives to illustrate the axiom
of reducibility. In this example Russell considers '¢\%
is a predicate required in a great general' which is a function
of a function. Since ¢!Z is nothing definite, it could
be argued that nothing definite has been said to be a predicate
required in a great general. Russell needs more argument to
show that the first case is meaningless but the second
meaningful.

Since functions are divided into different types in such
a way that function is of a higher type than its arguments it
turns out that a propositional function cannot be meaningfully
said to satisfy or not to satisfy itself, It is a special
case of the more general thesis of the simple theory of
types.l

The second argument that Russell gives for denying that

a propositional function cannot be meaningfully said to satisfy

1. Convincing arguments against the theory of types in general

have been presented by I, Black, 'Russell's Philosophy of Language'

in The Philosovhy of Bertrand Russell pp.232-240 who points out

a new contradiction and suggests ways of modifying the theory,

though he regards the modifications as unsatisfactory. That the theory
of types cannot be presented without contradiction has been argued

by P. Weiss, 'The Theory of Types', Mind 37, 1928 pp.338-348 and

F. Fitch, 'Self-Reference in Philosophy' Mind, 55, 1946 pp.64-73.
Black's problem has been examined by F. Sommers, 'Types and Ontology'
Philosophical Review 72 1963, pp.327-263.
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itself depends on the vicious-circle principle. A
propositional function Russell claims presupposes its values.
Again, neither open sentences nor attributes will fit, for
neither presuppose a totality of propositions which could
be called the totality of their values. (Expressions of the
form ¢(pa) are not excluded either by the vicious-circle
principle or the theory of types. Yet another principle has
to be invoked to ensure the meaninglessness of this
expression, namely Russell's theory of the proposition.)
Russell claims that expressions of the form p(¢£) are meaningless
since ¢x presupposes ¢a, ¢b, ¢c, etc. Consequently the vicious-
circle principle does not allow ¢(p%X) to be a value of px since p%
would then presuppose one of its values, i.e. 6(¢%). This
argument cannot be properly evaluated until an explication of
the expression '#%' is given and in what way it can be said to
presuppose its values.

The vicious-circle principle is variously phrased by
Russell. 'Given any set of objects such that, if we suppose
the set to have a total, it will contain members which presuppose
this total, then such a set cannot have a total.‘l “Whatever

involves adl of a collection must not be one of the collection.'2

1. B. Russell, Principia Mathematica, p.37
2. ibid.
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'If, provided a certain collection had a total, it would have
members only definable in terms of that total, then the said
collection has no total.‘l G8del has shown that these three

2 There is

statements are not equivalent to each other.

also a vagueness about the first two on account of the words

'involve!' and 'presuppose' which receive no elabofation.

Although GBdel considers that the first two are more plauéible

than the third - he adopts a realist attitude to classes =

it is not clear in what sense an object can be said to involve

all of a collection, (though, as G8del points out, a

description of that object can be said to involve all of a

collection). The third form of the prihciple G8del considers

to be false if classes are considered to be independent of our

description or construction of them.3
Hintikka has a proof that at least one interpretation

of the principle is insufficient to keep out the contradictions.

His interpretation is that no definition of a set y should

include a bound variable which admits y as an argument.4 Originally

Hintikka proposed an interpretation of variables occurring in

formulae &f the predicate calculus in which the variables would

1. ibid.

2. K. G83el, 'Russell's Mathematical Logic', p.133.

3,  ibid. p.136 (a further discussion of this point will be

found in Chapter IV of this section)

4. K. Hintikka, 'Identity, Variables, and Impredicative Deflnition'
Journal of Symbolic Logic, wvol. 21, 1956 p.242. Also K. Hintikka,
"Wicious Circle Principle and the Paradoxes!', Journal of Symbolic Lo rio
vol.22. 1957 p.245.
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exclude each other. An example he gives is the geometric
axiom?
a) Any two points determine a straight line.
If this is interpreted as allowiyg the points to coincide
then a) is false. If, on the other hand, the phrase 'any
two points' is interprgted as 'any two distinct points' then
a) is true. As applied to set theory distinctions are made
between the interpretations that may be given for the quantifiers
occurring in the axiom of comprehension. The quantifiers may
be interpreted with various degrees of exzclusiveness. ZThe
axiom of comprehension
1) Ey)x)(xey = F(x))
may be interpreted to mean
2) (ey) (x)[x%ys (xey = F(x))]
or
3) @Nx) [xfy 3 (xey = F'(x))
where F'(x) is the same as F(x) except that all expressions of
the form (¢ z)K and (z)K occurring in F(x) are transformed into‘
(€2)(zfy.K) and (z)(zfy > K) respectively., 2) represents
Frege's suggestion which Quine has shown to be inconsistent.l

Hintikka regards 3) as being the simplest way of carrying Russell's

1. Nbre‘strictly Frege's way out is represented by Ey)(x)[xgys(x%y.F(x
Geach has ° . found this to be inconsistent with (Ex) Ey) Ve
See W, Quine, 'On Frege's Way Out'.



- 52 -

vicious-circle principle into set theory since the variable
y cannot be included in the range of any bound variable in
F(x).l

It turned out, however, that a set-theory based upon 3)
would be inconsistent with (Ex)(Ey)x£y.2 Hintikka suggests
that the quantifiers could receive a still more exclusive
interpretation whereby the variable x in the axiom of comprehension
is prevented from coinciding with any of the free variables in
F'(x) as well as the variable y. Such a course would be
suicidal for set theory as the definition of unit sets, couples etc.
would be impossible. The vicious-circle principle in one
interpretation is insufficient to stop the derivation of the
paradoxes and, in the more exclusive interpretation, is too
restrictive to be a basis of wmet theory.

Wang has questioned Hintikka's approach to the vicious-
circle principle, claiming that it is based on 'a strenuous
misunderstanding'.3 Wang points out that although the range of
the variable x does not include y in 3) yet it may include sets

definable only in terms of y, e.g. the unit class whose only

member is y. Hintikka's inconsistency proof demonstrates this

1. K. Hintikka, 'Identity, Variables and Impredicative Definitions!
p02420

2. K. Hintikka, 'Vicious Cirecle Principle and the Paradoxes'.

3. H. Wang, 'Ordinal Numbers and Predicative Set Theory', in

A Survey of Mathematical Logic, Peking 1963, p.640
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point nicely, for the contradiction is produced by considering
a set ¢ defined in terms of two sets a and b ~ in fact ¢ is the
set consisting of a and b - as a possible member of both a and
b.l Whether or not Wang is right in saying that Hintikka's
approach is based on a misinterpretation of Russell cannot be
known because Russell's use of 'involves' and 'presupposes' is
not made clear. It is more correct to say that both Hintikka
and Wang have given possible interpretations of the vicious-circle
principle as formulated by Russell. VWang may convince us that
his constructivist interpretation is more philosophically
justifiable but this is not to say that it is what Russell
intended.

There are, then, many difficulties in Russell's thesis that
'xex' is meaningless. It depends on a chain of reasoning the
links of which are each open to dispute, even the 'safest' of
these, the vicious~-circle principle itself. Wang, himself in
sympathy with the constructivist version of the vicious~circle
principle, claims that Russell has merely stipulated that 'xex'

shall be meaningless.2

1. K. Hintikka, 'Vicious-Circle and The Paradoxes', p.245.
2. H. Wang, op.cit. p.64l
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I shall now consider a more recent solution of the
paradoxes. This solution is presented by J. Tucker in
two papersl containing major attacks on formalism and
formalists. These attacks and the solution proposed have
to be exsmined, for if Tucker is correct then the arguments
of section I of this thesis are invalid and several points
that I shall make in section 4 contradicted.

The firét of Tuciker's papers that I shall consider
attacks the formalist doctrine and holds that formalism
is untenable because formal languages cannot be entirely
separated from informal discourse and because its formal
concepts are dependent on informal concepts. By a formalist
Tucker means any logician or mathematician who sees any
special virtue in formal langu:ges. I shall deal dth
certain points raised by Tuciker in his general attack on
formalism in part IIL of this section but for the moment
I shall conceatrate on his solution of the paradoxes.

He contends that formalists have been led astray by

the paradoxes because they ignore the fact that the paradoxes

1. J. Tucker, 'The Formalisation of Set-Theory', Iind 1963,
pp. 500-518
J. Tucker, 'Constructivity, Consistency and Hatural
Languages', Proceedinrs of the Aristotelian Society

1967, pp.145-168.
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occur by the breaking of informal languaie rules. Throughout
his paper he relies on an intuitive or naive notion of set,
nowhere defining what a set is or giving any postulates or
axioms for it. Accordingly my criticisms of his arguments
will also be on the pre-formal, pre-axiomatic level.

Although L do not believe that we have a consistent intuitive
notion of set I shall pretend throughout this part of the
thesis that we do have such a notion. Tucker's solution

may be regarded as a defence of the naive concept of set.

For if the paradoxes arise solely through the breaking of
informal language rTules then the notion of a set does not

have to be revised in the light of the paradoxes (as I have
suggested in the first section of this thesis) since it is

a consistent notion ani the paradwces arise only when
extraneous languagse rules are broken. I hope to show,
however, that he has not demonstrated that each pesradox arises
from the brezking of an informal lan uage rule.

Firstly, it may be noticed that he deals not with
every paradox but with only a few of them.  Although any
rroposed solution of the paradoxes can be illustrated only
by a selection and not by all of them, there is a difference
between Tucker's solution and a solution vhich gays, for
example, that each paradox is caused by violating the

vicious-circle principle. In the latter case, there is
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sone guide enabling us to see for each pmradox as it turns
up whether it does depend upon a viclation of the wvicious-
circle principle. In the former case, however, there is
no such guide. One is told that each paradox depends
upon bregking an informal language rule, but is given no
guide to discover which informal rule is broken nor how

it is broken in those cases he does not discuss. If
Tucker contends that each paradox is caused by the neglect
of some informal rule then it is his job to show the

ruld in each particular case and not just those that he
chooses to illustrate. This does not imply that his
contention is wrong but only that he has supported it
inadequately.

I shall now consider the péradoxes he does deal with
and suov that in each case he has failed to show that
they depend upon the violation of suue rule.

The first paradox« with which he deals is the Epinenides.
although it is noﬁ set~theoretic it is appropiiate to consider
Tucker's solution here because of the counection he nakes
between this paradox and the Russell paradox. 'This is
false' Tucker says is applied only to statements which‘could
be false. This is the rule which is followed in informal
language. The paradox occurs when this requirement is

ignored and it is pretended that 'this is false' taken by
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itself could be either true or false. How it is one thing
to give a rule for informal languige and another to show

that this rule has been broken. Tucker has given a rule

but has nok shown that the paradox is obtained b, bresking
it. He says that it is pretended that 'this if false' could
be either true or false when considered by itself acd not

in conjunction with some other stebtement. But it is up

to him to show why it can only be pretended that 'this i8
false' could either be true or false. In other words he

has to show that 'this is false' cannot be either true

or false Qhen taken by itself. This he does not doj he
nerely asserts it. I do not mean to imply that it cannot

be done, but only that he has not shown it. Certainly
attempts have been made to show that 'this is false!

cannot be either true or false. For example, Kyle's
analysis of the paradox in terms of an infinite regress shows
Just this. Rylel claims that 'the statement I am now
making is falss! is analysable into 'the statement I am now
making, nawmely, the statement I am now making, namely ceessssens
is false'. (In the form Tucker chooses 'this is false!'

would become 'this, namely, this, namely, esee. i8 false's)

1. G. Ryle ‘'Heterologicality', Analysis, 1961

panesLasasadh Shateei
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This analysis, if accepted, would show that the sentence

'this is false' does not express a true or false proposition
because it does not express a proposition at all, Such

an analysis would imply that ‘'this is false' when taken

by itself could not be either true or false. It would then
be breaking an inforual language rule to pretend that it could
be either true or false. But if we accept the analysis we
are not tempted to break the rule. - Tucker's wsrgument that the
paradox arises by neglecting an informal rule is simply not
valid, for the rule is not broken if 'this is false' is
considered to be either true or false. All that has been
done is to assume a false proposition, namely, the proposition
that 'this is false' is either true or false., Once it has
been shown that 'this is false' is neither true nor false

then there is no temptation to go on and form the paradox.

It scems clear that, whereas Ryle's analysis does offer a
possible solution to the paradoxes, Tucker's proposed solution
is, at best, a hint at where a solution might be found.

The first of the set-theoretic paradoxes with which
Tucker deals is the Russell paradox. He treats it analogously
to the Epimenides; his discussion of it is even more brief.

I shall quote it in full:
'Russell's paradox is obtained by breaking the

rule that we say of a class that it is not a member of itself
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only if there is some way of establishing that it is not a
nenber of itself.'1
There are two objections to this argument. l"irstly,
that as an informal rule it is iwmprecise and, on one inter-
pretation of it, questionable. Secondly, even if it is accepted
as an informal rule Tucker has not shown that it is broken in
formilating the paradoxes.

In one interpretation of the above rule, which seems
to ue to be vague because of the imprecise word 'say', it
becomes: we assert of a class that it is not a member of
itself only if there is some way of establishing that it
is not a member of its=lf. But this interpretztion is not a rule
which is necessarily broken when the paradox is formulated.
For it ignores the fact that the paradox in question is
the outcome, not of asserting that the class of all classes which
are not meubers of themselves is not a member of itself,
but of guppesing that it is not a member of itself. , The rule
is inapplicable in this interpretation. If the rule is extended
to cover asserting and supposing then the rule is que.tionable.
The rule now reads in this new interpretation: we assert

or suppose that a class is not a member of itself only if there

1. op.cit. p.510
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is some way of establishing that it is not a nmember of itself.
But this is a rule which is not followed in mathamatics.

In some mathematical arguments, for example, a proyosition is
established by supposing that its negation holds. To establish
that there is no greatest prime number it is supposed or assuued
that there is a greatest prime number. Supposing a proposition
is one of the methods of establishing the negation of that
proposition. To bring the argument closer to the Russell
paradox I shall consider the class of all empty classes, ie.,
the class y such that

(x) xey if end only if (z) 24K
One way of proving that yéy is to show that y is not empty.

This can be shown by the fact that the null class ﬁ belongs

to y.  But there is another method of proving that yi¢y closely
analogous to the method used in the demonstration of a large
class of set-theoretic paradoxes. This method is to suppose
that yey. Hence, (E2) zey and therefore yéy. It is
concluded that yéy since if yey then yiy.

In other words, a proposition is sometimes established,
and perhaps can be established only by supposing its negation.
If a proposition of mathematics can be established then there
is no method of establishing its negation (assuming consiatency).
Its negation, however, is supposed even though there is no

method of establishing this negation. Clearly, this interpretation
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of the rule is unsatiefactory. Tet what other interpretation
is possible? Possibly an interrretation could he that
ve asczert or suppose that a class is not a wember of itself
only if there is some way of establishing whether it is a member
of itself or it is not a member of itself. This does not
rescue the rule. Tor the general rule which seens to be behind
this particular one is that we assert or suppoue a
rroposition only if there is some way of establishing thut
proposition or its negation. Again there are mathematical
rroofs that involve the supposition of a progocition p in
order to establish ~p. But if p can be supposed only if
~D can be established or p can be established, and «p cun
be established only if p is supposed then we have cone
full ecircle and cannot answer the question of whether p can
be supposed. Furthermore, it is common wathematical
practice to examine the conseguences of some supposition,
e.g2., Cantor's continuum hypothesis, when there is the logical
possibility that neither the proposition supposed nor its
negation can be established. It may be that Tucker would
disallow such suppositions but he has produced no arguments for
such a bar.

Turning now to the second objection that even if the
rule is accepted then it is not clear how a formulation of the

paradox breaks the rule, I shall argue that Tucker has not shown
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that the pzradox does breal the rule. As with the previous
paradox, the Epimedides, it is one thing to state a rule, another
to show that that rule has been broken. In the case of the
Rusgsell paradox, it is not the case that there is no way of
establishing that the class of all classes is not a member of
itself., (lere I am taking 'established' to mean the same

as 'proved'. As Tucker does not elaborate ou what he means by
this vague word I may be misinterpreting his argument, but it

is difficult to see what else could be meant by 'established'

in such a context.) It can be 'established' by a normal
nathematical procedure. The probvlem is not the lack of any
method of establishing a particular proposition but that too

much can be 'established'. Both the preposition that the class
of all classes which are not members of themselves is a member

of itself and the proposition that the class of all classes which
are not members of themselves is not a member of itself can

be 'established'. Of course, the fact that both propositions
can be proved can be used to show that there is something iogically
wrong with bo%h propositions. - For example, from the fact

that both can be proved it might be deduced that no such class

as the Russell class exists and thus that the question of whether

it belongs to itself or not does not arise. But this argument

1. See section 1 of this thesis.
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is not open to Tucker because he believes that in formulating
the paradox an informal language rule has been broken, and any
such conclusion is blocked.

Granted that the totality of all classes that are unot
members of themselves forms a class, Tucker has to show how
his rule is broken by asking if the class 1s not a member of
itself. 'his he asserts but does not show. But this is the
most important question. It is one which most proposed solutions
of the Russell paradox have attempted to answer. Russell's
ovm solution in terms of the theory of type, for example, is
designed to show that it is meaningless to assert of any class
that it is not a member of itself and a fortiori it is meaningless
to assert of the Russell class that it is not a member of itself.
Tﬁe many different solutions may be said to be just so many different
ways to answer the question of why it is meaningless to
suppose that the class of all classes that are not members
of themselves is either a member of itself or not. If any
of these solutions were to be acceptéd then there would be no
temptation to break the rule. The position is analogbus
to that created by Ryle's solution of the Epimenides. If
it is recognised tha£ 'this is false' does not express a
proposition when taken by itself, then there is‘no tenptation
to ask whether it is true or false. If it is recognized that

it is meaningless to assert that the Russell class is not g
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member of itself, then thére is no temptation to ask whether

it is a member of itself or not. The informal rule in each

case need not be invoked for it would not be broken. Tucker

seems unaware that he himself has not given a solution.
Furthermore, he has the added difficulty of explaining

why, in the case of some classes it does not break an

infoimal rule to ask whether they are members of themselves, and

in others, the Russell class for example, why it does. To

ask of the class of all classes which are not members of

themselves whether or not it is a member of itself seems to me

to ve logically similar to asking of any class whether it is

a member of itself or not. If we call the predicate from

which a class is obbtained by abstraction the classifying

predicate, the idea behind Tucker's solution secems to be that

one must not ask whether the class so obtained satisfies its

classifying predicate. Thus, the predicate 'does not belong

to itself' collects into a class certain classes, but since this

is the clagsifying predicate of that class it must not be asked

of that class if it satisfies this predicate. But if this

is the idea behind his solution then the possibility of

asking of any class whether it is a member of itself is

ruled out. For in asking this one is asking a question which

is equivalent to asking whether the class satisfies its

classifying predicate.
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For to ask of the class of all unit classes, say, whether
it is a member of itself is equivalent to asking whether the class
is itself a unit class. To ask of the class of all finite
classes whether it is a member of itself is to ask whether it is
a finite class. I do not see how Tucker can draw the line and
say of one class that it is meaningful to ask if it is a member of
itself and of another class that it is meaningless. Russell's
solution of course was to banish 'member of itself' into the
realm of meaningless expressions regardless of which class it
is applied to. Tucker does not intend to do this, for he is
willing to allow that it is meaningful to ask of some dlasses whether
they are members of themselves, for otherwise there would be no
problem of applying 'member of itself' to the Russell class because .
" there would be no such class.

In addition, Tucker has the problem of éiving the 1ule
and showing how it is broken for those paradoxes which closely
resemble the Russell paradox. I refer to these classes of the
form:

xey if and only if (Zl)(ZQ) cens (zn)u (xezl.z§ Zye eeZ ¢ x)

and

xey if and only if (Zl)(ZZ) ...(zn)&(x=zl4zl=z2...qv‘na):x¢z#\

Each of these classes give rise to paradoxes and it is Tucker's job

to show why these paradoxes break some informal rule. If he is to
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maintain his thesis he rust be able to do just this. It is
nade more difficult by the fact that the class of all empty
classes, referred to above, bears a striking resemblance to

the paradoxical class y such that xey if and only if there

is no z such that xez and zex. The only difference between this
definition and the definition of the class of all eupty

classes is the addition of 'wez'.. What informal rule could

be invoked to stop the application of 'member of itself' to one
whilst allowing it for the other?

I do not deny that Tucker is able to deal with these
paradoxes (and the paradox generated by the class of all
grounded classes) along the lines that they break informal
languace rules. I assert only that it is difficult to see
how they can be so explained.

I turm to the next set-theoretic paradox with which Tucker
deals -~ the Burali~Forti paradox. He outlines it as a
consequence of two theorems. Firstly, there is a theorem which
states that "the series of all ordinals up to and including
any given ordinal exceeds the given ordinal by one. It
follows from this theorem that there is no greatest ordinal.
The other states that the series of all ordinals has an ordinal
number. It follows that there is a greatest orﬁinal, namely,

the ordinal number of the series of all ordinals. The two
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theorems contradict each other.'l

Tucker then gives his solution of the paradox, tracing
its formation to the breaking of infommal laisuage rules.

He points out that the first theorer shows that the class of
ordirnals is a self-generating class, by which he understands
a class such that whatever group of members is considered, it
follows by the property of self-generation that there is yet
another member. He argues that we cannot go on generating
from such a class since self-generation can only be applied
to it by the use of 'more than &ll' which is a clear case of
breaking a rule of informal language.

The difficulty arises when the condition that the class
of all ordinals has an ordinal is brought in, for it would scem
that self~generation rust apply to this ordinal also. sut,
Tucker contends, it is clear th .t self~-generation connot apply
to this ordinal without breaking an informal rule governing the
use of the word 'all', for “when we say dl we really mean the
whole lot, we mean there are no more to coume. So when we
speak of the class of all ordinals we really mezn all of them.
e cannot apply self-generation to this class because to do so
would brea the rule for this use of 'all'. Ve cannot speak

'"2
of 'more than all'.

1.  ibid. p.511
2. ibid. p.5l2
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Tucrer's arpument as expressed in his is confuced,.

He does not seem sure vhether to apply his concept of self-
generation to the class of all ordinals or to the ordinal
number of the class of all ordinals. Purtlher, there seems
some confusion over the theory of ordinal numbers. He says
that 'the series of all ordinals up to and including any given
ordinal exceeds the given ordinal by one.' Yet it is

not the series that exceeds the given ordinal by one but the

ordinal number of that series. Again, this property of the

series of all ordinal numbers up to and including a given
ordinal that its ordinal nurber exceeds the given ordinal

by one is not sufficient to prove that the class of all ordinal
nunbers is a self-generating class in the sense given by
Tucker. For it is the proverty of the classes of rationals,
integers, prime numbers and many other classes that given any
class of them up to and including any member then there exist
yet other members not belonging to the pariicular sub-class.
These lat'2r classes, however, are hot self-generating, for

it is not the case that whatever class of them is chosen there
are other members not includad in that class. The class of
all rationals, for example, does not‘yield another rational

nor included in the'class. What 13 needed in addition to

ensure that the class of ordinals is self-generating is the
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theorem that the ordered sum of a class of ordinals anong
which there is no greatest member is greater than any member
of that class.

But these objections way ounly be muddles wvhich Tucker
can clarify by a little more precision. Tere remain much
greater objections. Firstly, his contention that self-generation
cannot be applied to the totality of a self-generating class
because it breaks an informal rule for the use of 'all'
succeeds only in blurring the distinction between‘self-
generating classes and other classes. For, if self-generation
cannot apply to the totality of the class, it must be applicable
to proper sub-classes only. But the definition of a self=~
generating class then degenerates into a tautology applicable
to any class, self-generéting or otherwise. Tor any class,
there exists members not included in any proper sub-class.
What, then, is the force of the distinction drawn by the
definition of a self-generating class? All classes must
become self-generating under Tucker's reztriction of the
applicability of that term to only proyper sub-classes.
Secondly, if, when we say of any class that whatever group
of its members be cqnsidered there exist other members of
the class not included in the group, it would seem to break
the informal rule for the use of the word 'whatever' if it

does not cover the class of all members of the class, since
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'whatever' means 'whatever' and not 'whatever, ewcept'. Yet
this is a conclusion Tucker is forced to draw by preventing
the concept of self-generation applying to the totality
of a class.

If, for the moment, we cccept Tucker's argument, it
still leaves many questions which it is imperative to answer
before the paradox is cleared up satisfactorily. In particulwr,
if he is willing to accept that the ordinal humber of the
class of all ordinals, exists, which i1t appears he is, then if
this ordinal is denoted by £, what is to be said of K+ 17
Since & is the greatest ordinal number then there are only
two alternstives open to him. TFirstly, that n+ 1 is egual
to or less than{y in which case there will be further contradictions
arising because no class can be similar to any section of
itself which this would imply (see below). Secondly, that
0. + 1 does not exist. This would seem to be the most likely
alternative for Tucker as he says that self-gewueration cannot
apply to&s . ‘ But what does it signify to deny existence to
this 'ordinal number', for it is the ordered sum of two ordinal
numbers, fu and 1. It is even possible to find set representatives
of it, namely, for tn , the set of all ordinal numbers arranged
in order of magnitude and for 1 the set consisting of - 1 alone.
S+ 1 will then be the order type of the ordered sum of these

two classes. Since the ordered sum of these two classes will
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be well~ordered,{u + 1 will be the ordinal of this class.
LHow can existence be denied in this case? Tucker must
answer this guestion before he can be said to have ‘'solved'
the paradox.

The above argument rests on Tucker's assumption that
_there is a greatest ordinal, nanely the ordinal number of the
cla:s of all ordinals, which he stutes as the second theorenm
of set-theory needed for the construction of the Surali-Forti.

But this statement is not the only way in which the paradox

may be expressed. A much wore precise staitencnt of the
paradox would show less grounds for supporting Tucker's thesis
that the paradox is grounded in the misuse of 'all'. For
example, consider the set of all ordinals arranged in order
of magnitude and letfu be the ordinal number of this set.
Consider the set of all ordinals up to and including this
ordinal arranged in order of magnitude, then the ordinal

of this class will equal fu + 1, FProviding it is not
assumed that fu is the greatest ordinal nuuber, there is no
danger of misusing 'all' in the sense of Tugker. . For N\
is only.ohe ordinal amongst many and liesAsomewhere within
the series of all ordinals and not necessarily st the end.
(Analogously, if the continuum hypothesis is assuﬁed, then

then the set of all cardinal numbers up to and including
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" the cardinal number of the continuum has a cardinal number
which lies within the given set of numbers.) But this latter
set is a section of the set of all ordinal numbers and, by
a theorem of set-theory its ordinal number will be less than
or equal to the ordinal number of the whole set. I.e,

M+t ¢ Qu . But this contradicts the theorem which says
that for any ordinal number w, w is less than w + 1. In
this statement of the paradox, there is no misuse of the word
1all' in the sense thet we have tried to use it to mean

'more than’all'. The fact that the class of ordinals is selfs
generating has not beeh used., lNowhere in this demonstration
have we relied on the fact that the class of all ordinals
gives rise to an ordinal not in the class. It was sssumed
that £ lay sowewhere within the class. HNowhere did we use
as part of the demonostration that there was an ordinal lying
outgide of the class of all ordinals.

Of course, Tucker may still object that although the
property of self-generation has not been used explicitly in
this proof it has been included implicitly by the use of
the ordinal number fu+ 1. Tucker would no doubt say fhat
this 'ordinal number' can only be produced b, self-generation
from the class of all ordinals which has the ordinal L

Again, he will be confronted with the difficulty of the status



- 73 =

of {u+ 1. In the version of the peradox that I have given
i

4l

~oove this would be the place most vulnerable to an aitac
along his lines. It would seem thet S+ 1 has been zenerated
frou the class of all ordinals up to and including .

Tucker, claiming unijueness for this ordinal, would deny

that this is a legitimate move since L is the only ordinal

to Wﬁich self-generation does not apply. This in turn would
inply that £ + 1 does not exist (since if it existed the proof
of the paradox would proceed unharmed) but, as I have argued
previously, there is no cleir meaning to this assertion.

It would appear that Tucker objects to the gelf-generation

of the class of all ordinals up to and including £, but there
are ways in which the ordinal fL+ 1 may be generated, other

than by this process of self-generation.  One has only to
consider the definition of an ordersl sum of two ordinal nucbers
to see that L+ 1 can be generated from other sets than the

set of all ordinal numbers. By definitionfu+ 1 is the ordiral
number of the ordered sum of the two representutive sets,

the set of all ordinal numbers (it must be remembered that this
assumes that such o set exists, an assumption Tucker is willing
to allow) and a set consisting of one member alone, - 1 say.

4 set-representative of fu + 1 can thus be found Which is different
from the set of all ordinals arranged in order of magnitude up

to and including §¥ . Provided that the set of all ordinals
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exists, there seems little reason to deny existznce to this

new set and by definition L), + 1 will be its ordinal number.

To assert, in the face of this set, that there is no such

ordinal as D + 1, as Tucker's view implies, is to misunderstand

the notion of an ordered sum of two ordered sets. His

arguments could oniy apply if there were Just one way of

generating the ordinal Lu + 1 and that way was by self-generation.
Ag I have shown, there are other ways and for these more explanation
is needed than he hag given.

Even if Tuclker could show that there was no such ordinal
number as f + 1, there.are other ways of stating the paradox
which do not depend on this number in any way and do not, as far
as I can see, depend upon self-generation fromkthe class of all
ordinals.

Let £ be the ordinal number of the class of all ordinal
numbers. Then, by a theorem from the theory of ordinal numbers,
the class of all ordinal numbers, arrangzd in order of magnitude,
less than Q. has the ordinal o, . But this latter class is a
section of the class of all ordinal numbers which has the same
ordinal number, & »  Now, two classes have fhe gsawe ordinal
nunber if and only if they are similar, Therefore, the class
of all ordinal numbers is similér to a section of itself, the
section consisting of éll ordinal numbefs less than & . This

contradicts the theorem of set-theory which states that no set
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‘ can‘be similar to a section of itself.

Stating the paradox in this way, there is no use made
of the self-generative property of the class of all ordinals
explicitly or implicitly. It is not based on the class of all
ordinals up to and including . but only with the class of
all ordinals less than & . Tucker has to show, if his thesis
is Yo be maintained, that some informal language rule has been
broken in such a demonstration of the paradox. So far as 1
can see he will be unable to appeal to either the property
of self-generation or to any suspicious use of 'all'.

Fiﬁally, there is the additional drawback thut if Tucker's
regsoning is accepted many proofs in mathematics become
more doubtful. Some mathematical proofs depend on a reductio
ad absurdur which involve classes that generate nembers not
included in the totality of members of that class. This is
perhaps easier to see in examples; I shall give two.

va) If every class of integers has a least member then
the principle of mathematical induction holds, i.e. if p(l)
and if p(n) implies p(n+l) then for ail n p(n). Suppose
the statement a) to be false. Then, every class of integers
has a least member, p(1), p(n) implies p(n+l), and there is
an n such that ~ p(n). Let s be the class of all n such that
ulp(n), then there is a least member of s, m say. m# 1 since p(1).

Therefore m is greater than 1. Now, if p(m—l) ve should be
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able to deduce p(m), therefore, «'p(m—l). I.e. m=1 is a
member of s, but m is the least member of s which is a convvodiction.
Hence a) holds.

b) A sivilar mapping of a well-ordered set W onto a subset
never relates a rember w of W to an image which preceded w in V.
Suppose b) false. Then, there is a mapping f such that at
least one member of W is mapped onto an image which precedes
it in W. Let t be the set of all members of ¥ which, by the
mapping £, are related to images preceding them in W, Since
t is a subset of W t ﬁill be well~-ordered and have a first
member x. Let f(x)=y. y is less than x. Because f is a
similar mapping f(y) is less than £(x), i.e. y. Therefore
v belongs to t, but y is less than x and x is the least member
of t. Since this is a contradiction b) holds.

In both of the above examples use has been made of clas:ces
which generate members different from any member of the totality
of that class. In a) s was such a class and m-1 the member
generated from it whiéh was different from the totality
of members. In b) t was such a class and y such a member.

In both cases %he regulting contradictions were used to nezate -
the hypothesis from which they were proved. How does such a

use of these classes differ from the use made of the class of

all ordinalg to generate L+ 17 If such a use really does break

an informal rule for the use of 'all', then not‘only does Tucker
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prevent self-generation being applied to the class of all
.ordinals, but also self-generation as aypplied to these classes.
‘ne theorems which a) and b) state can no longer rely on the
proofs presented above, since these proofs depend upon a
risuse of ‘'all' (according to Pucker). One conscquence of
Tucker's argument is that accepted mathematical proofs like the
a2bove can no longer stand. Such proofs are often used in
analysis as well as in'set-theory (e.g. the rroof of the theorem
that a continuous function in a closed interval is bounded
and takes every value between the values of the function at its
end points). Perhapé Tucker believes that these proofs are
invalid, but it is important to realise these implications of
his arguments.

I shall conclude my objections to Tucker's nethod of solving
the Burali-Forti paradox by observing that it is misleading
to talk of the Burali-Forti paradox and it is this way of
talking which leads (or risleads) paradox-solvers into thinking
that there is but one paradox to sodve. In fact, 'the Burali-
Forti paradox' covers a class of different, though connected,
contradictions:in I heve given above two dif ferent statements

of the paradox, one of which his the contrasdictory conclusion
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that S+ 1 is less than or equal to M., the otlexr that thore
is a set which is similar bto a section of itself. There is a
third, ﬁhich Tucker seems to concentrate on, that, stemming
from the theorem that for any set of ordinals there is an
ordinal greater than any in the set, stotes that there is an
ordinal greater than any ordinal. It is only in the last th:t
the notion of self-generation is applied to the set of all
ordinals and which can be attacked along the lines Tucker
sugzests. Concentrating only upon this expression of the
paradox, it would appear that he neslects the first two which
do not involve the notion of self-generation auplied to the

set of all ordizals. & solution of the Surali-Forti puradox
must 'solve! all of the contradictions which are referred to by
that name.

If, as Tucker claims,l it is necessary to pin-point the
exact place at which the contrudiction occurs and then see whet
language rule has been broken, then 1t is precisely this which
he has failed to do. Ue has chosen only one of many contradictions
vhich fall under the saume head and is’thus led to pin-pointing
self-generation as the cause of the contradiction. A wider
view of the paradox which would include all three expressions

of it might have prevented this., Tor, ifwe can specify the

1. ibid, p.153
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one concept which is essential to allow the working of the
maradox and which is common to all three forms then tiut councept

is not self-generatiou but the concept of the set of all ordinals.

It is this which leads us to talking abont fthe Burali-Forti
paradox. By 'the durali-Forti paradox' we really mwean any
paradox which involves this concept und as long as it is
understood in this way no harm ensues. The mistake of
confusing just one paradox with a class of paradoxes leads to
such unsatisfa:tory solutions as Tucker's. It is, perhaps,
the fact that the set of all ordinals enables contradictions
in a variety of contexts to be deduced that arouses suspicion
of the set in question rather than the deductions which are made
from it. Only if Tuclker can show that each paradox belonzing
to this class relies on a faulty application of a languase
rule can he be said to have given a solution of the Burali-Forti
paradox. It is for a very good reason that logicians have been
unhappy about the set of all ordinals.

The next paradox with which Tucker deals illustrates all
the faults of his discussion of the Burali-Forti. This time
he manages to confuse not two paradoxes belonging to the same
class but two altogether different paradoxes. I give his
discussion in full.

'There is a theorem to the effect that the cardinal of the

set of all sub-sets of a given set is greater than the cardinal
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one concept which is essential to allow the working of the
peradox and which is common to all three forms then tlhat concept

is not selfw-generation but the concept of the set of all ordinals.

It is this which leads us to talking about the Burali-Forti
paradox. By 'the Burali-Forii paradox' we really mean any
paradox which involves this concept and as long as it is
understood in this way no harm ensues. The mistake of
confusing just one paradox with a class of paradoxes leads to
such unsatisfaztory solutions as Tuczer's. 1t is, perhaps,
the fact that the set of all ordinals enables contradictions
in a variety of contexts to be deduced that arouses suspicion
of the set in question rather than the deductions which are made
from it. Only if Tucker can show that each paradox belonging
to this class relies on a faulty application of a language
rule can he be said to have given a solution of tle Burali-Forti
paradox. It is for a very good reason that logicians have been
unhappy about the set of all ordinals.

The next paradox with which Tucker deals illustrates all
the faults of his discussion of the Burali-Forti. This time
he manages to confuse not tiWo paradoxes belonzing to the came
cliss but two altogether different paradoxes. I give his
discussion in full.

'"There is a theorem to the effect that the cardinal of the

set of all sub-sets of a given set is greater than the cardinal
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of the given set. So for any given cardinal there is a
greater cardinal., The notion of a cardinal ig self-ge erating.
By applying this result to the set of all sets Cantor
hed already obtained a contradiction which is isomorphic with
that obtained later by Burali-Forti. It is solved in the
sane way.'l

From this paragraph it is necessary to extricate the two
paradoxes and see how zell the solution in terws of mis-applying
the notion of self-generation to a totality fits each of the
two cases.

Firstly, as was the case with Tucier's trecatment of sets
of ordimals, it should be soticed that Cantor's theorem - that
the cardinal number of a given set is less than the cerdinal
number of the set of all the sub-sets of that set - does
not ensure that the notion of cardinal number as self-generating
in the sense Tucier uses it.2 To deduce that the notion
of cardinal nuwber is self-generating it is necessary to use tie
theorem of set-tlicory which asserts that for any set of cardinals
amongst which there is no greatest meumber there is a cardinal
greater than any cardinal in the set, namely the cardinal nuwuber
given by the sum of all cardinals in the set. It is only by

combining this theorem with Canisr's theorem that we are able to

1. ibid. p.5l2
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deluce thut for any set of cardinals there . is a curd nich

is greater than any in fthe set.

Secondly, only one of the parsioxes involved in his
discussion can be said to rely on sell-zeneration. The other
seens independent of it. It is with the latiter that I deal
first.

Canfor's theorem loads directly to a parados< which does
not need the notion of cardinal nuuber at all; it needs only
the concept of one-one corrcspondence. It stutes that the
set of all sub-sets of a given set cannot be put in one-
one correspondence with any sub-set of that set. IHence,
if B denotes the set of all sets and US the zet of all iis
subsets, US cannot be put in one-one correspondence with any
sub-set of 5. On the other hand, since US ig a subjsct of S,
TS is in one-one correspondernce with & sub-set of S,

This is a contradiction. It is one of the paraloxes with which
Tucker should be dealing. The question that sresents iteelfl

is whew.e does the notion of self-generation enter? e are

[

no longer dealing with cardinal numbers bui with sets and one-
one correspondences betwecn them. Hor has the paradox been

rephrassd in terms of sets in such a way that self-gener.tion
is still necessary for a deduction of tie paradox. Certainly
the concept of set is self-generating as a paraphrasing of the

second paradox involved would show. But the fact that the notion
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of set is self-generating is not applied here. The seb

of all subsets of S is not another set different from any
member of S, nor does the paradox 'prove' this. It depends
on the équivalence and the non-ejuivalence of this set with
any sub-set of S5, not with any member of 3. Hence the notion
of self-generation is i-relevant for the deduction of this
raradoX.

The second paradox does involve the notion of self-
generation and here Tucker's solution is relevant. The
paradox involves the set of all cardinal numbers. Since
to eny set of cardinal nunbers there is a greater cardinal -
if, among the set there is a greatest cardinal, ¢, then
the cardinal of theset of all sub-sets of a representative set
of that cardinal ¢ is grezterthan any cardinal in thé
given set; 1if there is no greatest cardinal nuwwber in the
set then the sum set of these cardinals is greater than any
menber of the set - there will be a cardinal gsreater than

any cardinal in the set of all cardinals. That is, there

will be a cardinal greater tﬁan any cardinal, which is absurd.
Tucker's solution to this paradox, since he says that it is
solved in the sesmé way as the Burali—Forti would be to maintain
that an informal language rule hds been broken:- ﬁhe rulé

governing the use of 'all's The same objections apply to
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this argument as were made against the solution of the
Burali-Forti.

It should be clear that this solution leaves onen
pany important questions which have to be answered before the
paradox can be said to be solved. For exsample, if it is
correct to talk of the set of all sets and the set of all
cardinals and also to talk of these sets having cardinals
as Tucker seems to imply, what is interesting and raiszes grave
problems for his solution is the relationship between these
curdinals and the cardinal of the set of all sub-szets of S
and the cardinal of the sum of all cardinals. If both S and
US have cardinals, vhich is the greater or are they equal?
whatever answer to this question is given, it will conflict
with at least one theorem from set theory. If the cardinal
of US is less than or equal to the cardinal of S then Cantor's
theorem is contraldicted; if the cardinal of US is greater than
S then the very definition of 'greater' in cardinal number
theory must come under revision. Tucker is silent on these
implications of his solution. Again, if it is admitted that
for any one cardinal there is a greater, what is to be said of
the sum of all cardinals? TFor it is not the case that we
simply use the theorem that for any set of cardinals there is

a greater cardinal and, b, applying this theorem to the set
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of all cardinals, arrive at a contradiction. We can be

more explicit than tnis. The sunm of all cardinals will be

a cardinal greater than any cardinal, providing that there is

no gruatest cardinal. What relationship holds between this
cardinal (equal to the sum of all cardinals) and any cardinal?
Tucker's solution implies that it is less than or equal

to some cardin:l in the set of all cardinals. But this implies
in turn that the theorem of set-theory which says that the sum
of any set of cardinals amongst which there is no greatest
member is zreater than any in the set. He has not removed

the parados but shifted it so that other theorems of set-theory
become paradoxical. If there were a greatest cardinal then

of course there would not be a paradox involved in the notion

of the set of all cardinals but tiiere would be a paradox
produced by Cantor's theorem. It is from Cantor's theoren

that both the paradoxes under discussion spring. If there

were some set - the set of all sets, say - which had the

highest cadinal number then the cardinal number equal to the
sum of all cardinal numbers would again be the greatest cardinal.
But can it be deduced that there is a greatest cardinal?
Cantor's theorem says there is no greatest cardinal.

So it should be with this theorem that Tucker should be concernéd

since it is fundamental to the construction of the two paradoxes.
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As I have made clear above the notion of self-generation cnd
its limitations is of no help in this context.

There are axiomatic set-theories, and in particular Jnine's
'Jew Foundation', in which Cantor's theorem is not forthcoming.l
In this axiomatisation there is a set - the universal set -
which is equivalent to the set of all its sub-sets. Working
in this set-theory, there would be a set of highest cardinality
and consequently no problem over the set of all cardinal numbers.
But the fact that there is a set-theory which provides a set
of greatest cardinality in no way supports Tucker's contention
that there is a greatest cardinal number. There is no
primarily philosophic motive behind duine's system other than
to effect a simplification and clarification of the theory of
types in terms of stratified and unstratified formulae. It is
a suggested axiom system among others. It has not been
constructed from any conviction that the universal set must
be a set of highest cardinality. duine's axiom system does
not then support Tucker's thesis that there is a sei the cardimal
of which is greater than any other cardinal; The difference

between the two positions is between vwhat a theory says to be so

1. W. Quine, 'New Foundations for llathematical Logic', in From
a Loxical Point of View, Cambridge, lass, 1953.
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and what is claimed to be so.

The difficulty would be more apparent if Tucker tackled
the task of axiomatising his set-theory so th~t one could see
from exactly what assumptions he deduces such theorems thet ste te,
for example, that the set of all ordinals arranged in order of
magnitude has the greatest ordiral nuwber. One could then sce
which theorems of classical settheory remained and measure
how adequate the theory was for the tasks asked of it and whether
there was some way of reconciling, for example, Cantor's theorenm
with the theorem that there is a greatest cardinal number.

Until such an axiomatised system is constructed it will be impossible
to judge the success of the solutions proposed by Tucker.

It is possible, however, (and this I have attempted to do) to

shos wvhere the main difiiculties lie and why the solution

appears unsatisfactory and in some cases irrelevant.

I shall now consider Tucker's arguments councerning the
ilagonal argument and impredicative definitions. According to
Tucker impredicative definitions do not cause i{lie paradoxes
for 'the sole causes of the contradictions are those already
mentioned'.l However, certain uses of impredicative definitions

occur in invalid arguments, not because they are imoredicative

1. Tucker, op.cit. p.514
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but because the arguments involving them are invalid.
4s an example of such an invalid argument Tucker takes the
diagonal argument contending thatl the use of impredicative
lefinitions to establish that the set of all cets of natural
numbers cannct be put in one-one correspondence with the set
of all natural numbers involves an invalid argument. Turtheruore,
he maintains, the diagonal arguument can be reformulated in
such a way that the use of impredicative definitions is
unnecessary.

The mroof of the non-denumerability of the set of all
natural numbers that Tucker wishes to show contains an invalid
argument is taken from Wang.l

‘... suppose that the set of all sets of positive integers
is denumcrable. Then each positive integer has its corresponding
set and each positive intewer eitier is or is not a member of
its corresponding set. Consider the set ¥ of all those
positive integers which are not memvers of their corresponding
sets. Is n the positive integer whose correlate is N a member
of W or not? If it is‘a member of N then by the condition
of membersghip of ¥ it is not a membef of N, " If it is not a

member of N, then by the same condition it is a member of N.

1. Hao Vang, 'Formalisation of Mathematics', Journal of
Symbolic Lozic, 1954, p.246.
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Wang thinks that these contradictions prove that the promiss
is false and concludes that there is no such one-one
correl&tion.'l

Tucker continues lils argument:

‘ow this arsument is isomorphic with the heterological
family of jaradoxes. For N is the set of all those positive
integers which are not members of their correlating sets,
and in order to be a member of N a positive integer must
already be correlated with a set. N is a second-order set
vhich is parasitic for its members on other first-order sets. ....
+eo i n a member of H?" could only be answered in the affirmative
or the negative if n were alrcady assigned to some set other
than . But this would be contrary to the condition that it
is assigned to ¥ and only to N.  The argument turns on the
brealing of this rule and is therefore invalid.'2

There are two points to be made with respect to this
argument. Firstly, the use of ‘already' which occurs twice in
the above quotation, and, secondly, the uce of 'first-order!
and 'second-order's What is the force of the word 'already'?
Presunably, that the zet N is not one of the sets of positive

integers in the enumeration. but since, by hycothesis, the
y DY Nyt ’

1. Tucker, op.cit. p.515
2., ibid, pp.515-516



- 89 -

enuneration is of all sets of positive integers and K is a
get of positive integers, N will occur somevhere in tie
enumerction. So it is not the case that the question

'Is n a nmenber of N?' can only be answered if n is assigned
to some set other than H, The enumeration is of all sets

of positive integers and ¥ will be one such. Tucher's

w

argument would be more to the point if he were supporting a
radical construcﬁivist view which demands that a definition
describes a construction involving the creation of some new
entity which cannot be assumed to exist independently of the
construction. This is the constructivist arguuent agsinst
impredicative definitions which Wang was discussing in the
paper cited.l But no such scruples activate Tucker, for he
sayss: l'If Impredicative definitions are needed in mathematics,
mathematicians can have as many of them as they like'.2
He is prepared to accept that an impredicative definition is

a method of picking out one entity frdm a pre-existing

totality of entities. Thus he must be prepared to accept

hat § will be one of the gets by means of which‘N was defined.
The consequence of this is that he may not use the phrase 'already
be correlated with a set' to mean 'correlated with some set

other than N'.

1. Wang, op.cit. p.246 et sec.
2. Tucker, op.cit. p.514
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Secondly, the use of the expressions 'first-order' and
'second-order' to describe sets seeuws an invalid oane, or st
least constitutes a retrograde step. It was pointed out by
Ramsey in a discussion of Russell's axiom of reducibility that
the property of being elementary or non-elementary belongs
not to a proposition, as Russell claimed, but more properly to

1
instances of a proposition. A proposition, according to Ramsey,
may occur in two instancest one instance elementary, the
other non-elementary. As an example he gives the proposition
instances 'ﬁa' and ‘ﬁa.(Ex)ﬁx! which are two instances of the
same proposition, yet the first is elementary and the second
non-elementary (in the sense of Russell). Such an argument
rests on the assumption that two proposition symbols are
instances of the same proposition if and only if they
express agreement or disagreement with the same set of truth
possibilities. Thus the whole hierarchy of orders stratifies
proposition symbods rather than propositions (as the axion of
reducibility itself seems to sugzest). Turning from Ramsey's
theory of propositions, the same point may be made in connection
with Tucker's division of sets into first-order and seoond-order.

The notion of first-order and second-order properly belong to

the manner of definition of a set rather than the set itself.

1. ¥, Ramsey, The TFoundations of lathematics, p.34
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A set of positive numbers remains a set of positive numbers
no matter how defined, providing the definition itself is
unobjectionable. It is even clearer in the case of sets
than in the case of propositions since there is a well
recognised criterion for the identity of two sets: two

sets are identical if and only if they have the same

members (the axiom of extensionality). Thus, the set
defined may have yet another definition of first-order.

In order to clarify these two objections I shall give an
illustration from set-theory which will show why it is absurd
to say that we cannot properly ask of a set whether its co~-relate
belongs to that set and also why it is dangerous to talk

in termeg of the order of a set.

It will be instructive to consider not the set of adl
sets of natural numbers but the set of all gigiggl sets of
natursl numbers. I do so because this set is equivalent to
the set of natural numbers and a correspondence can be
pstablished between each natural rnumber end easch finite set
of natursl numbers, thus simplifying the construction of
'second-order' sets. The correspondence can be established

by means of arranging the sets in a sequence: A precedes B

1. In the case I am discussing, it is the set of all non-
enpty finite sub-sets of the set of all natural numbers.
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in the sequence if the sum of the members of 4 is less than the
sun of the members of By if their sums are egual & precedes

B if the least member of A is less than the least member of

L or, if these are equal, if the next to least member of 4

is less than the next to least member of 3, and so on.

It is clear that before any set in this sequence there will
only be a finite number of sets at most and that all finite
sets of natural numbefs can be re.ched in this way after only
a finite number of sets. Hence, a correspondence has been

gset up, the first few terms of vwhich are:

1 o« (1)

2 e (2)
3 e« (1,2
4 o (3)
5 o (1, 3)
6 o (4)
T e (1, 4)
8 e (2, 3)
9 ) (5)

10 o« (1, 2, 3)
11 e (1,59

12 N (2, 4)



-93

13 s (6)

14 e (1,2, 4)
15 & (2, 5)
16 e (3, 4)
17 & (7

In this correspondence it is clear that the set of all
natural numbers which do not belong to their corresponding
sets (1 second-order set in Tucker's usage) is the set of all
numbers greater than 2 (a first-order set). So that although
the set has been defined by means of a second-order expression
it does not entail that the set is of 'second-order'. The
difference between 'second-order' and 'first-order' as applied
directly to sets is seen to be unreal.

The correspondence also illustrates a much greater
objection to Tucker's argument. On his vwn account we are-
debarred from asking of the 'second-order' set N whether n
is a member of N or not. On exactly similar grounds he
would have to admit that the same reasoning applied to the
set of all positive integers that were members of their
corresponding sub-sets. TFor this set too is a 'second-
order' set parasitic for its members on 'firste-order! sets.

In the above correspondence between the set of vpositive

integers and the set of all finite sub-sebs ¢f this set the
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set of all positive integers which are not members of th.ir
corresponding sub-sets is the set of all positive integers
greater than 2 and the set of all positive integers which

are members of their corresponding sub-set is the sei (1, 2).
3ince there is no positive integer corresponding to the set of
all integers greater than 2 (the set Veing infinite) the
question of whether the n which corresponds to it is a member
of the set does not arise. But the question may be aksed of
the other 'second-order' set, the set of all positive integers
which do belong to their corresponding sub-sets and, in

this case, answered negatively, for 3 (which corresponds to
the set (1, 2)) does not belonz to (1, 2). In this case it
is clearly absurd to maintain that all questions of the form
'Is n a wember of N?' where N is a second-order set can

only be answered in the affirmative or in the negative if n

is assizned to some set other than N. For although we are
discussing a different set from the set N it is still of the
same 'order' as N and the question has been answered even
thoush 3 is not assigned to some set other than (1, 2).

I am not asserting that in all cases a second-order
definition can be replaced by a first-order one. Such an
assertion would be tantamount to asserting the axiom of
reducibility and dismissing the difficulties involved in the

notion of impredicative definition. It is sufficient to
p
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point out that where a second-order can be replaced by a
first-order definition Tucker's differentiation between first
and second-order sets disappears and his arguments about what
questions cannot be answered is seen to be invalid., Tor

is it open to him to say that in other cases where the
definition cannot be so replaced his argument still stands.
For, since he expresses no worries about impredicative
definitions, he must accept that a set of positive integers,
no matter how defined, is still a set of positive integfers
and thus belongs to an enumeration of all sets of positive
inteéers, should such an enumeration exist. If impredicative
definitions of this type are legitimate then he must accerpt
the reasoning involved in the proof of tine theorem that the
set of all positive integers is nou equivalent to the set of
all sub-sets of that set. To adnit that the definition of N
is impredicative is to admit that N is one of the sets by
means of which W is defined. This is the meaning of
Yimpredicative'. By allowing impredicative definitions, it
is invalid to argue that 'N is a second-order set which is
parasitic for its members on other first-order sets'.l

For N is one of the sets among these 'first-order' sets.

His argument expresses a contradiction: on the one hand,

he states that impredicative definitions are legitimate, that

is, it is legitim:te to define such a set ¥ by means of a

1. Tucker, op.cit. p.515
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totality of sets of which i is a menbver, and, on the other
hand, that the definition of N ensures that ¥ is somehow
different from each of the members of that totality.

After arguing that those forms of Cantor's diagonal
argunent which involve impredicative definitions are invalid,
Tucker proceeds to show that there are forms or the diagonal
argument which do not rake use of impredicative definitions.
As an example he takes the proof that the set of all unending
decimals is not denumerable, The proof, he says, consists
in glving a rule whereby a decimal is constructed which
differs from each decimal in a denumerzble set of unending
decimals. If the wnending decimals are arranged in a
sequence then corresponding to each positive integer there
will be an unending decimal. To construct the required
deciral all one needs is the rule that in its nth. place
is an integer different from the integer in the nth place
of the decimal corresponding to the positive integer n in the
enumeration. 'It (this decimal) cannob appear (in the
enumeration) because the rule for writing it down consists
in making it differ from each unending decimal in the
denwazrable series. sseo It follows that there are more

. . . 1
unending decinmals than there are integers.'

1. - ibid. p.516
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Apart from the fact that the rule us Tucker gives it
need not succeed in giving an unending decimal different fron
each of the decimals in the denumcrable set (since the possibility
of replacing the irbegers with O has been overlooked, thus
producing a terminating decimal), there is a nwore importaznt
objection. It does not follow, from the fact that there is
an unending decimal not included in the segquence that the set
of unending decimals cannot be put in one-one corruspondence

[}

with the set of all pocitive integers. It only follows from
the theorem that there is a decimal not included in any
enumeration of unending decimals. The addition of one
object alone would not alter the cardinality of any infinite
set. This mistake would not, perhaps, be very important if
it were not fhe case that Tucker uses this incoirect account
in his arguuient and which a correct account of this form of
the diagonal argument would invalidate. He says:

'How this argument differs entirely from thut given
by wWangl TFor the decimal which differs from each decimal in the
denumerable list is not defined in fterms of a totality of
which it is a member. It is not defined in terms of a totality
at all «ssee . It is not laid down that the totality of unending
decimals is required prior to its comstruction. Ko totality

. . 1
is mentioned.'

1. ibid. p-516
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A more careful sbtatemant of the proof would have shown thet
reference to the totality of unending decimals is inevitable.
There are at least two ways of proving that the set of all
unending decimals is not equivalent to the set of all positive
integers, though the two proofs are not essentially differsnt.

The first is to assume that an enumeration of the unending
decimals is possible and then proceeds to construct a decimal
which is different from all decimals in the enumeration which

is a contradiction and, hence, by reductio ad absurdum the unending
decimals cannot be put in one-one correspondence with the positive
integers. Such a proof does involve the totality of all unending
decimals since it is assuned that the set of all unending decimals
can be enumerated. (This type of proof is barred to Tucker
because from all of a collection we have generated one of

that collesction which does not belonz to that collection.l)

The totality of all unending decimals is required prior to its
construction.

. The second method of proof is based on a lemma. The lemma
states that given any denumerable sub-set of the set of all
unenaing decimals there exist members of that set which are not
in the sub-set. This is proved by the usual construction of a

decimal following the rule given above. This certainly does not

1. see abova, D.
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require the totality of all unending decimals. sut the

lerma does not prove that the set of all unending decimals

is not equivalent to the set of all positive integers. The
proof of the latter from the lemma is easy and proceeds by
reductio ad absurdua. It is assuwmed that there is a one-

one correspondence between the two sets and from this it follows
that the cet of all unending decimals 1s a proper sub-set

of itself, which is a contradiction. It can be secen that the
totality of unending decimals is again required in the asswi;tion
that they can be put in one-one correspondence with the

positive integers. TNor is it the case that the totality

of undnding decimals is not required for the construction

of the decimal. For, although the lemma was proved before

the latter theorem, the theorem is only a disgulsed version

of the first method of proof. The lemma states that all
denumerable sub-sets of the set of unending decimals are

proper sub-sets of that set. The theorem is only one
particular case of this lemma where the set in question is the
set of all unending decimals.l' It is equivalent to the

first proof in this respectt that it is based on the assumption

1. This is perhaps clearer if we write the lemma (Dg) (PaDoeD) 3 Dyc 1y
where P is the set of all positive integers and D the set of all
unending decimals. The theorem follows by the substitution of

D for the bound variable D, Thus (P~D)> (DeD) The theorem is

proved because it is assumed that the lerma is true when Dy is D

and this is so only because the construétion of the decimal is

assumed to be possible even when Dy is the totality of all unending
decimals.
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that the totality of all unending decimals are laid out in

an enumeration. Tucker is therefor: wrong in assuming that

tﬁé construction of such a decimal does not rejuire the totality
of unending decimals.

If he were right that it involwves no mention of the
totality and that this decimal only differs from each of the
decinals in the enumeration then it would be equally posaible
to maintain that the set N of all positive integers not
belonging to their corresponding sub-sets differ from
eacn of those sub-sets. Indeed such a proof is often given
by means of an analogous lemma followed by a theorem.l
It is curious that Tucker did not consider this to be a way outb
of referring to a totality of which N is a member,

Tucker's view also stops Cantor's theorem from being
proved because it relies on the impredicative definition of such
sets as N, whether we prove it directly or by means of a lemma.
Cantor's theoren is about any set gnd the set of all sub-sets
of that set. Thus the particular form of diagonal

argument which meets with Tucker's approval is not available

for the theory of abstract sets. It may be that he does not

1. 3. Kleene, 'Intro uction to IMetamithematics.' Amsterdam
1952, pp.14-15
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object to the rejection of Cantor's theorem but this implication
should at least be realised.

Lastly, Tucker deals with the Richard paradox. Let
E De the class of all finitely definable decimals. Then L
has X members. Let W be a decimal defined by means of the
J{iagonal rule applied to an enumeration of all finitely
definable decimals. Then N differs from cach membver of
E. But since I is thus a finitely definable decimal N
belongs to B. This is a contradiction. The paradox is
swiftly dealt with:

'But this is not a paradox at all. The diagonal method
does not of itself generate contradictions. For from the
fact that W is finitely defined by the diagonal rule, it
follows that B has more than N members. So the assertion
thét E has Na rembers is thereby proved to be false, that
is all. The form of the argament is simply thet A is
asserted and not-A is shown to be the case.'l

Once again a paradox is not solved but only

moved to another rlace. It is not «the case that it is
simply asserted that the set of all finitely definable decimals
‘is equivalent to the set of all roditive integers. It can be
proved on one highly plausible assumption: that the number of

letters and punctuation marks euployed in the English language,

1. Tucker, op.cit. p.516
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say, is at most denumerable. How the set of all finitely
definable decimals will be a sub-set of the set of all sequences
of letters and punctuation moerks and this in turn will be equivalent
to the set of all finite sequences of positive integers. This
last set can be proved to be equivalent to the set of all

positive integers. Hence, the set of all finitely definable
decimals has the cardinal ¥, . If Tucker really means to pursue
his argument to its logical conclusion, what is proved by

reductio ad abszrdun is that the number of different letters

and punciuation marks available in the English language is

greater than the number of positive integers, an assertion

which is only a little leés repugnant than the paradox with

which we started. It is clearer still if we restrict the

symbols which we are to use in a language to a finite number,

to all the Fymbols on this mge, say. Again the number of
deecimals finitely definable by means of the symbols om this

pare is N, . and the paradox follows through once N is defined
as the decimal constructed by the diagonal rule for an enumeration
of these decimals. Since all symbols occurring in the
definition of N are on this p:ge it must belonz to the set

of all decimals finitely definable by means of symbols on

this page. The definition of N however ensures that it does
not belong to that set. By reductio ad absurdum the set of

all s;mbels on this page is non-denumerable. This is the

conclusion we have to accept if we are to allow the
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diagonal argument as a valid argument and the notion of
'finitely definable dJdecimal' as a legitimate concept. It

is clear that the number of symbols on the wrevious page

is not non-denumerabvle but finite. A solution of the paradox
which involves admitting that a set of sywmbols which has
thirty members (the number of symbols used on the previous

page) has a non-denumerable number of members ig unlikely to

convince one of its plausibility.
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ITI

I have devoted the whole of the last chaptler to a detailed
discussion of Tucker's solution of the puaradoxes in terms of
informal language rules becaﬁse it is in direct contradiction
with the position outlined in section I of this thesis. Also,
the_attack on formalism contained in his pajer seems to be a
backward step in foundational studies. The doctrine of
formalism that is being attacked is not what might be‘called the
'strict! formalisnm éf Hilbert (althuugh this position would
of course be open to the same attack); the net is spread
wider to catch such different views as those of Juine, Curry
and Church. The attgck is to deny the need to formalise,
to deny that formalisation succeeds in any clarification of
mathematical concepts.l

There are two separate theses involved. The first is that
there are indispensable concepts without which we should be
unable to operate formal systems. The second is that any
formalisation of these concepts must retain all the inprecision
of their informal counterparts. The two concepts Tucker picks
out for examination are the concepts of rule and the concept

of substitution. These are both needed in the operation of

1. ibid. pp. 501-2
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the formal system and any atterpted formmlisation of thenm
will carry over any vagueness thet the informal concepts
have.

The first thesis is correct in as much as there must be
one meta-level where the ruleé of a formal system are
stated in informal discourse. For, in order to operate a
formal system it is necessary to understand the rules of
formation and transformation of that formal system. If
these are formalised in turn, then clearly the rules of the
meta-metalanguage have to be understood. The formalisation
of the various meta-levels will still need a meta-languaze
in which the rules are of an unformalised nature - framed
in terms of informal discourse. But this thesis does not
refute formalism, since formalists, includinr Hilbert have
not claimed that one could operate a formal system without
having some pre-formal concepts. Kleene, for example,
in a book devoted to meta-mathematics (in the strict
Hilbertian sense of finitary methods as opposed to what Kleens
calls set-theoretic methods) writess

'The.meta—theory belongs to intuitive and informal
mathematics. ceeas The assertions of the meta-théory mist
be understood. The deductions must carry conviction. They
mist proceed by intuitive inferences, and not, as the deductions

in the formal theory, by aprlications of stated rules, - Rulng
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have been svated to formalise the object theory, but now
we must understand without rules how those rules work.
An intuitive mathematics is necessary even to define the
formal mathematics.'l

If Tucker were only arguing this thesis there would
be little or no disagreenent bvetweer him and those he
attaoks.2 To understand and operate a formal languasze it is
necessary to understand and employ those concepts both
formal and informal used in the meta-theory. But he is not
content to stop there. He maintains thet formal concepts,
dependent as they are on informalconcepts retain all the
unclarity of those informal concepts and therefore a formalist
rejecting informal language because it is unclear
must reject the formal languasze also. But even for those
idispensible concepts that Tucker lists it is by no means
certain that because they are informal concepts any
unclarity attachel to them carries over to a formal systenm
which nceds them as a basis.

For example, Tucker's argunent that the informal

notion of a rule is necessary in setting up a formal languase

1. S.C. Kleene, Introduction to letamathematics, dmsterdan,
1952, p.62

2. Dven Church states that "In order to set up a formalised
lansuace we mst of course make use of a languase already knorn
to us, ..., stating in that lansuaze the vocabulary and rules
of the formalised language." 4. Ciurch, Introduction to
bizthematics) Losic, I. p.47
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does not imply that because the informal notion is unclear

the formal lancusz e is unclear also. His argument is based
on the fact that any formal lauguae depends on giving a

set of rules: 1rules of formation which give conditions for o
formula to be well~formed and rules of itransformation iving
conditions for a senbtence to be an imnediate consequence of
another and for a string of sentences to bhe a proof of another.
Certazinly, the informal notion of a rule is employed in
constructing & formal languase. It must be understood that
the rules of formation and transformation are rules; it does
not follow, however, that the formal language is unclear
because the informal concept of rule is unclear. For there

is a perfectly harmless way in which informal notions can

be said to be unclear. It is unfortunate that Tucker does
not say in what way the informal notions are unclear,

K8rner, on the other hand, has given a definition of a type

of unclarity especially useful in discussions of the problems
of pure and applied mathematics.l' Concepts are divided

into two categories: exact and inexact. It is his contention
that mathematicsl concepts such as 'line', 'zroup', '3' etc.

are exact whereas the corresponding empirical concepts are

1. S. E8rner, The Philosophy of Fathematics, London, 1960,
p. 159f£f.
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inexact. A concept is exact if it does not admit of
borderline cases; a concept is inexact if it does. If
a concept is unclear because it admits of borderline cases,
i.e. because it is inexact, then this type of uwnclarity is
not necessarily transferred to.a formal languase which
employs such a concept. In the case congidered here, if
'rule' is unclear in the sense that it is inexact then it
does not follow that the formal system must share this
inexactness. For although the construction of any formal
gystem is dependent on the informal notion of a rule, what
is required in connection with the rules of formntion and
transformation is the recognition that they are rules.
The fact that the concept of 'mule'! admits of borderline
cases does not imply that the rules of formation and
transformation are borderline cases. Ihe fact that there
are some cases which are neitral instances of the concept
'rule' does not imply that all cases are neutral instances
of the concept 'rule'. The inexactness of the concept
'rule' does not carry over to a formal system given as a body
of rules.

The same argument applies to Tucker's second thesis
that the formalisation of the concept of a rule carries with

it all the unclarity of the infortal notion it is supposed to
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formalise. To formalise the concept of 'rule' a Tule

must be given to show that the formalised concept of a rale

is intended {0 replace the informal notion. A rule is
employed in laying down vhat is to be counted as a rule in

the new, formalised sense. Aizein the concept of rule is
informal and Tucker asgain argues that any unclarity pertaining
to this concept of 'rule' is carried over to the forpaliszed
concept. But if the notion of 'rule' is unclear because it
is inexact then the formalised notion of rule need not be
unclear in that sense. Providing the rule laying down

that the fornalised notion of a rule is to replace the
unformalised notion of a rule for some specified meta-languaze
can be recognized as a rule, then there is no inexactness
cairied over to the formalised concept. Siumilar arsuments
apely to the other indispensible concepts listed by

Tucicer.

Another, though related, sense in which the concept of
rule ray be said to be uncleir is in the difficulty of giving
a precise definition of 'rule'. In a discussion of rules
Waismann claims that it is indeed difficult to give a clear
definition. Tiils, he says, is vecause '... the word "rule"
like thie term "ostensive definition" is one which stands for =1l

sorts of different tidngs which merely have a certain similarity
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in their use, and vhich the use of languagse grouvs loosely
together.'l In other words, the things that wve call rules
have a 'family likeness! in Wittgenstein's piarase. Iir
rules are like this then clearly any vroposed formalisation
of the rule concept is goiny to differ considersbly from
the inforual concept. e may look at such a formalisation

as an explication of the concept.2 If this is the sense in
which 'rule' is thought to ve unclear then the formalisation
will escape this kind of unclarity.

It may be that Tucker understands 'unclear! in some other
sense than ‘'inexact' or 'lacks a clear definition' in which
case it may DPe thit the unclarity is transferred from the
indispensable informal concepis to the formal lansuage itself.
But it is necessary to explain exactly what sense of the word
'unclear'! is to e understood when he affirus that 'if the
formalist premiss tlat all the usage which occurs in informal
language i1s unclear is correct, then we are condemned by the
>

premiss to perpetual unclarity'. The formalist may still

argue that informal language is unclear in the sense that it is

1. . Waisman:, The Princinles of Lin~uistic Frhilosophy, ed.
R. Harre, London, 19065. 1.140

2. The concept of explication is examined in section 3 of
this thesis.

-

3. Tuchker, op.cit. p.503
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inexact and yet maintszin that his formal lansvage does aot
contaein this uwnclarity.

In the same way, the fact that in the siring of meto-
languages that a formalist may set up to construct and stuly
a formal syste. there must be one which is stated in inforial
lanuage does not imply that the formnl languaze is as
unclear as the informal languase used in that meta-theory.
Any notion used in the informal language of the meta~theory
méy be inexact. ‘fhere may be contexts where the concepts
are unclear but this does not imply that they are unclear
in the conbext of the meta-theory. For example, in a
meta-theory the class of provable formulae may be defined as
'the smallest class of formulae which contains the axioms and is
closed with respect to the relation "inmediate consequence of"'.l
The concept of 'relatich' employed in this definition ray be
inexact in the sense that it is not always clear whether any
particular term is a relation or not. It is sufficient, however,
for the formal languase not to carry with it this inexactness,

hat the concept of 'imwediate consequence of' be recognised as

an instence of the concept 'relation'.

In summary, then, formal languages depend upon informal

b

langzuages and informal concepts, but any unclarity in the

1. K. GBdel, On Formally Undecidable Propositions of Princiwvia
liathematica trans. B. lieltzer, London, 1962, p.45

—
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seunse of inexaofness of those informal concepts does not inply

that a formal language is doomed to the same inesactness.

At one point Tucker seems to ve saying thut no clarvification can

ever be made by using mathematical logic since mathemntical

logicians frequently fall into'conce;mual confusions. He

cites Skolem's view that the concepts of set-theory are relative.

Yet surely Skolem's proposal to replace Zermelo's 'definite

proposition’ by the notion of an expression which contains as

atoms only expressions ¢£ the form ‘'aedb' or 'a=b' is a

clarific.tion of that notion.l' The fact that Skolem uay

have fallen victim to a conceptual confusion elsewhere does

not mean that no clarification has been achieved at this point.
Before concluding this chapter I should like to discuss

two other theses Tucker holds. TFirstly, that contradictions

occurring in a formal language are understood if they are

understood in informal language. Segondly, that the

contradictions can be solved only by looking to see which

informal language rule has been broken. The gyntactic contra-

dictions of set-tueory are just as much paradoxes when stated

in informal languages as they are when stated in formal systems.

One may agree to this without rejecting as Tucker does the

1. E. Zermelo, 'untersuchenden Uber die Grundlagen der lengenlehre T 1
Mathematische Annalen 59, p.262. T, Skolem, 'Einige Bemerikungen zir
axiomatischen Begrindung der Mengenlehre!, latematikerkonsressen i
Helginfors den 4-7 Juli 1922, Den femte Skandinavisika matimatiker-
kongressen, Hedogor-lse, Akademiska Bokhandeln, Helsinki 1923. p.218
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distinction drawvn by Russell between the mathematical and
philosophical aspects of foundational »roblems. They remain
distinct even though the paradoxes of set-theory may be

solved in the same manner for both the formal and informal
statements of them. Wnat Russell neans in the passagel

cited by Tucker is that the mathematics of the theory of types,
i.e. the deduction of theorems from assunptions embodying type-
theory, is separable from the philosophic Justification of the
theory of types. Even if the theory of types turns out to be
without such justification and philosophically unsound, the
uathematics of type-theory may still be developed. The
mathematics of a certain set of assumptions is independent of
the justification of thgse assumptions although interest in the
mathematical development of them may not be.

Syntactic paradoxes that are contained in any formalised
systen of set-theory are statable in inforual lansunie.
Formalists have not denied this and often introduce tnue problems
involved in the construction of a formal set-theory by the
raradoies with an informal discussion of the pa,raioxes.2
This should be qualified, however. A paradox occurring in a

formal system is a purely forual characteristic. It cccurs when,

1. B, Russell, Lozic and fnowledse, London 1956, p.l02

2. e.g. R.L. Goodstein, sathematical Losgic ;
Curry, Introiuction to Lathematical Lowmic
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32y, two formulae are provavle one of which is identical in
form to the other except that it is pre=faced by 'u'.
A formal languare consisting of a certoin vocabulary and

certain syntactic rules may be given such a definition of
inconsistency. any two formulse which have the above the form
would constitute a contradiction in that formal langua:ie.
But, what does it signify to say that such a contradiction if
understood can be understood in infornal languane? Az vet,
the lanuase is considered to be formnal and not as a formalised
language. In the role of formal language it is a game played
with certzin pleces according to a certain set of rules. 4
contradiction occurring in a formal longuage will act (if the
propositional calculus is an interpretation of a sub-system of
that language) as a license to give theorem status to any well-
formed formula of thit langda;e.

In order to 'understand' the contradictions in informal
language it is necessary to give semantic rules in addition to
the syntactic rules. There have to be some rules of translation
for the formal system to recviive an interpretation.  Formal
lansuages as opposed to formalised languages may have no obvious
translation or interpretation. If a contradiction occurred in
such a formal languaze, it would be puzzling to say thaot one could
tunderstand' why the contradiction occurred. The niost one could)

hope for would be some alteration to the axioms of the system which



- 115 =

would avoid the proof of that comtradiction being available.

Hor, ir this case, would it be possible to ﬁse the notion of
interpretation, for an inconsistent formal system has no
interpretation. For a purely formal language it wakes no sense

to say that we can 'understand! the contrudictions that occur.

At most the axioms may be altered so that no contradictions can

be proved, but the alterations that may be made will not be made

as a result of examining the informal translation of the formal

sy sten. (It would in any case be wrong to talk of the translation
or the interpretation of a formal system, because for formal
systems which have an interpretation in an infinite domain there
will be two non-isomorphic interpretationsl. Rather, the
corrections will be made as a result of technical expertise resulting
from working with formal languages. Of course, any solution

of an informal paradox which gains general acceptance will be
incorporated in the fornalised language. An informal solution
will be reflected in the formalised theory. There are, as

Tucker says, no formal contradictions to solve as well, once the
informal oontrgdictions are ironed out. For formal languarnes,
however, there is no possible way of 'understanding' the cause

of ény contradictions that occur, so that there will be a fear that

the formal system is inconsistent. Tucker is wrong in saying

1. see section 4 of this thesis for further discussion.
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that in forual systems '.... there is no such thing as a
contradiction whieh has no cause, no such thing as a contra-
. o . , 1.

diction that cannot be tracked to its source.’. For a
formal system the only thing that could be regarded as the
cause of a contr:adiction would be an axiom of the systen such
that its removal would result in a consistent system. But
this is not to give an explanation of why its contradicts the

other axioms; it is to say only that it does contradict then.

1. J. Tucker, Formalisation of Set-Theorv, p.513. Iore
explicitly he maintains that the following are falset 'That in a
formal system for which there is no guarantee of consistency a
contradiction may turn up unexpectedly anywhere. luat there may
be latent contradictions spread through such a system.' ibid. p.510
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Having disposed of formalism to his own satisfaction

and given solutions to the paradoxes in terms of informal
language rules, Tucker turns to the problem of constructivity
which he considers to be logically pror to the problem of
consistency1 Once it has been shown that a language is constructive
there will be no worry over the problem of consistency.

‘ To make sense of this thesis it will be necessary to see
how Tucker uses the word 'constructive' as it is not clear
how it is to be used in all the contexts in which it occurs.
As employed by Tucker it is an adjective that can qualify

3 .

'conditions'z, 'procedures'” and 'language He defines
it, however, only as it applies to procedures.

'Constructive procedures are defined as procedures which
can, in some sense, be carried out whereas non-constructive
procedures are those which, while they can (in some sense)
be specified cannot be carried out.'5

It is not at all clear how such a definition can be

extended to cover the case of a natural language being

constructive.

1. J. Tucker, 'Constructivity, Consistency and Natural

Languages', Proceedings of the Aristotelian Society, 1967 pp.145-168.
2. ibid. p.164 3. ibid. p.152 4. ibid, p.145

5. ibid. p.152
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Tucker admits that his definition of 'constructive!
differs from any given in the past. For there will be some
procedures that have been regarded in the past as constructive
that are not constructive gccording to the new definition and
vice versa.l He maintains, in addition, that the limitations
imposed on the methods of proof by constructivists are merely
arbitrary chosen restrictions having no significance fdr foundational
studies.2

There are two objections I wish to make at this point.

Firstly, it does not follow from the definition that
there will be procedures which turn out to be constructive (non-
constructive) under the definition, but have in the past been
considered non-constructive (constructive). It is doubtful
whether any constructivist would wish to disagree with the
definition. What is doubtful is whether there would be agreement
over what counts as 'a procedure which can be carried out'.
It is not over the definition that there would be dispute but
over what procedures can be carried out. The reason that there
appear to be many different standards of constructivity is due
to there being many different views as to what constitutes a
procedure which can be carried out. For varied reasons one

may reject impredicative definitions, pure existential theorems,

1. ibid p.l53
2.  ibid p.15%



- 119 -

any proof involving the notion of the totality of all real
numbers, any proof involving the notion of an arbitrary

set, etc. as non-constructive. Constructivists who reject

dome or all of these as being examples of non-constructive
procedures may do so because the procedures cannot in some sense
be carried out. Tucker's definition can be seen to be virtually
useless as a clarification éf constructivity and for differentiating
between his notion and those of other comstructivists., He
claims that there is a ! ... & single basic notion of
constructivity that is essential to foundations' and, further,
that non-constructive procedures are non-constructive ' .... in
the precise sense that they are impossible of execution'1

(my jtalics). It is clear from the above argument that the
definition has not given any precision to the notion of
constructivity nor does it help us to classify procedures that
are constructive and those that are not.

Secondly, Tucker's assertion that the limitations on
methods of proof have in the past been arbitrary restrictions
imposed by constructivists is a groess misrepresentation of the
facts. A general account of comstructivity is beyond the
scope of this thesis but in order to see that Tucker's account

of the 'arbitrary limitations' is incorrect it will be necéssary

1. ibid. p.153



- 120 =~

to examine some of the constructivists' views and why they reject
certain proof procedures.

The intuitionists, for example, believe that mathemstical
assertions are reports of successful mental constructions.
The exact nature of these mental constructions is difficult to

specify and its dependence on an intuition or acts of intuition

unappealing to empiricist or analytic philosophers. But if we
grant, for the moment, that it makes sense to talk of mental
constructions it should be clear that the logical connectives
which the intuitionists themselves use in their reports of
mental constructions will receive very different interpretations
from the usual truth-table interpretation.

The proposition 'sp', since even negative propositions are
reports of a mental construction, is not just a report of the
absence of a construction but is the report of a construction
which deduces a contradiction from the supposition that the
construction reported by 'p' were brought to en end.l

Existential propositions of the form (Ex)A(x) have no
other meaning thant 'A mathematical object x satisfying the
condition A(x) has been constructed'.?

For the intuitionist mathematical objects, whether they

are sets or natural numbers or real numbers are essentially

1. A, Heyting, Intuitionism - an Introiuction', Amsterday, 1956
2. A, Heyting, 'Some Remarks on Intuitionism' in Constructivity
in Mgthematics, Amsterdam 1959, p.70
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constructible objects.1 The apparent peculiarities of

intuitionist mathematics spring from this conception of
mathematical objects. If mathematical objects do not exist
prior to their construction - Heyting claims that he is
unable to make sense of the assertion that they do ~ then the
rejection of pure existential proofs follows as a consequence.
Similarly some instances of the law of excluded middle must
be rejected since, both 'p' and -'wp'mbeing reports of constructions,
there will be casés - in ?articular, cases involving quantification -
where we are in possession of neither construction. Other .
logical laws to which the intuitionists object can be considered
in the same way., The justification for their rejection is the
nature of mathematical objects.

There is nothing arbitrary about the restrictions and
limitations on methods of proof, for the limitations are laid
down by the nature of the mathematical objects and, Heyting
says, there is nothing arbitrary in the notion of a constructible
objec’c.2 The notion of a constructible object must itself be
a primitive undefined notion since any attempt to define those
operations that are constructive would need existential

3

quantification”. Nevertheless, what is meant by a construction

1. ibid. p.70 2. ibid. p.70 , ‘
3. R. Peter, 'Rekursivitat und Konstruktivitat' in Constrmctivity
in Mathematics, p.228.
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can be made clear by examples.l Since the notion of a
constructible object is not arbitrary neither are the methods
of proof which the intuitionists allow.

Another constructivist, Wang, gives good reasons for
rejecting impredicative definitions. There is nothing
arbitrary in this rejection. It is not a ban on impredicative
definitions imposed simply because impredicative definitions
sometimes lead to paradoxes. Nor is it necessarily a ban
on all kinds of impredicative definitions. One may, for example,
accept impredicative definitions of natural numbers but not of
sets of natural numbers.2 But where one allows impredicative
definitions and where one disallows them is not purely arbitrary;
it will depend on what one considers to be the natnre of the
objects over which the guantified variable in the impredicative
definition ranges.

Wang, speaking of the vicious-circle principle, says that

the principle is directed against the introduction of new

objects.

'Impredicative characterisations are objected to not just
as such but only as a means for initially introducing an
object.'a‘

If a set can be said to exist only after it has been defined

1. &, Heyting, 'Intuition = an-Introduction' . ..

2. H. Vang, 'Ordinal Numbers and Predicative Set-Theory', in
A Survey of Mathematical logic, Peking, 1963 p.642

3.. H, Wang, ibid. p.640
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thén clearly it is circular for this definition to contain a
quantifier ranging over this set. Only if sets exist prior to
their definition, in which case the 'definition' would be a
specification of one object from an existing totality of sets,
would predicative definitions be legitimate.l The ban imposed
by constructivists on impredicative definitions is an outcome
of how the mathematical objects - in this case, sets ~ are
conceived.  Constructivists would reject Tucker's contention
that since impredicative definitions do not give rise to contradictions
there is no difficulty over their legitimacy.2

Similar constructivist arguments may be given for rejecting
proofs involving the notions of 'all real numbers', 'all sets
of positive integers', ‘arbitrary set', ‘arbitrary law!, etc.

In all the cases so far cmsidered there have been no
purely arbitrary decisions on what is to count as a constructive
proof. There are differences between constructivists as to
what constitutes a constructive proof but the differences can
be traced to the different ways that the mathemstical objects are

seen by them. But the fact that differences exist does not imply

1. It is odd that Quine can treat the problem so lightly. There

is no harm in impredicative specification, he maintains, for 'we are
not to view classes as literally created through being specified,

eess The doctrine of classes is rather that they are there from

the start. This being so, there is no evident fallacy in impredicative
specification.' (W. Quine, Set-Theory end its Logic, Cambridge, Mass.,
1963, p.243) The question here is, surely, whose doctrine of classes,
Brower's? Wang's?

2. J. Tucker, 'Formalisation of Set-Theory' p.514
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that they are arbitrary.

Tucker's notion of constructivity is not based on any
previous view about the nature of mathematical objects. It is
put forward to us as 'what can be carried out'. There is no
attempt to expand this definition although he does give an
example of a procedure which though it appears to be non~
constructive turns out to be constructive and an example which
though normally taken to be constructive (even by some
intuitionists) turns out to be non-constructive under his

definition.

(1)

I shall deal with the former example first. It is an
attempt to show that diagonal procedures are constructive in
his sense., The attempt depends on his analysis of the term
'indenumerable set'. '"Taken in the referential sense, the
expression "indenumerable set" means an actual infinity which is
greater than an actual denumerable infinity'l But there is
another interpretation open to us, namely, 'a non-referential
interpretation in which it means a set which contains an
indenumerable element; where by an indenumerable element is
meant an element which differw systematically from each element

in an unending series whose generative recipe is given.'2

1. J. Tucker, 'Constructivity, Consistency and Natural Languages!,
P0156

2. ibid. p0156 . :
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It is difficult to make sense of this interpretation.
What is needed is a clarification‘of the terms 'indenumerable
element' and the term on which it depends, 'generative recipe'.
Froma:later exposition that Tucker gives1 it appears that D is
an indenumerable element of S if D belongs to S and is different
from each element of S given by some law determining an initial
element and the successor of any element., Under this definition
it will turn out that many sets thought of as denumerable
will be indenumerable. (Perhaps both denumerable and indenumerable,
but Tudker does not define denumerable.) Even the set of
natural numbers would become indenumerahle. For the generative
recipet - initial element 3, successor of an element x, x+l -
will give two indenumerable elements, % and 2. 1 and 2 belong
to the set of natural numbers and yet differ: from each of the
elements given by the generative recipe. That the set of
natural numbers is non-denumerable is an absurd consequence and
makes nonsense of the distinction initially brought in by
Cantor.

It might be said that my example ignores the fact that
there is a generative recipe for the ngtural numbers and if I

had teken this recipe then I should not have succeeded in obtaining

1. ibid. p.159
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an indenumerable element. In general this would mean
that there is only one proper generative recipe and the
notion of a proper recipe would need to be defined. For
non-denumerable sets (in the usual sense) there can be no proper
generative recipey in fact, there can be no generative recipes
at all, for that is what the proofs of non-denumerability
show.,

Talk of an indenumerable element of a set prompts the
question: which element is an indenumerable element?  But
the production of an element D, purported to be the indenumerable
element, would result in our being able to give a generative
recipe in which D would occur. (By taking D as the initial
element and tacking on the other elements given by the original
generative recipe which left out D.) A denumerable totality
does not become indenumerable by adding one element.

Rather than talk of an indenumerable element, we could

talk of an indenumerable element relative to a given generative

recipe. Perhaps Tucker would then say that an indenumerable set
would be one in which for any given generative recipe there
remained an element of the set not included in the generative
recipe. But doeg this mean that we have a 'non-referential'
interpretation of 'indenumerable set'? The non-referential
interpretation is the interpretation in which the sense of

'indenumerable set' is a set that contains an indenumerable
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an indenumcrable element. In general this would mean
that there is only one proper generative recipe and the
notion of a proper recipe would need to be defined. For
non-denumerable sets (in the usual sense) there can be no proper
generative recipe; in fact, there can be no generative recipes
at all, for that is what the proofs of non-denumerability
show.,

Talk of an indenumerable element of a set prompts the
question: which element is an indenumerable element?  But
the production of an element D, purported to be the indenumerable
element, would result in our being able to give a generative
recipe in which D would occur. (By taking D as the initial
element and.tacking on the other elements given by the original
generative recipe which left out D.) A denumerable totality
does not become indenumerable by adding one element.,

Rather than talk of an indenumerable element, we could

talk of an indenumerable element relative to a piven generative

recipe. Perhaps Tucker would then say that an indenumerable set
would be one in which for any given generative recipe there
remained an element of the set not included in the generative
recipe. But does this mean that we have a 'non-referential'
interpretation of 'indenumerable‘get'? The non~referential
interpretation is the interpretation in which the sense of

'indenumerable set! is a set that contains an indenumersble
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element. The only sense that can be given to this is an
element which escapes every generative recipe. This is far
stronger than Cantor's original definition and, if the Zermelo-
K8nig paradox is to be avoided, demands a precise definition of
'generative recipe’.

The non-referential interpretation that Tucker gives is
unsuccessful. Again it shows a misunderstanding of
congtructivist objections to infinite sets. According to
Tucker, the referential sense of 'indenumerable set' is
'an actual infinity which is greater than an actual denumerable
infinity'. But the meaning of 'indenumerable set' in most set-
theories, is given by some such definition ass a set which
cannot be put in one-one correspondence with the set of natural
numbers and which contains a subset which can. Its meaning
is fixed by this definition. The definition does not mention
'greater than' or 'actual infinity'. It might be objected
that even though this definition does not mention actual
infinities it nevertheless presupposes them. In fact, the
definition says nothing of whether the sets involved are
infinite in the sense that they lie spread out before us in
their entirity or in the sense that given aﬁy finite number
of elements of the set thére are yet ofhers of the
set.

The diagonal procedure which, Tucker says, has been regarded
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as non-constructive is, in fact, regurded as constructive by
some intuitionists.l It is the conclusions drawn from the
diagonal procedures that are regarded as non-constructive.

Take, for example, the proof that the set of all sequences

of positive integers is non-denumerable. First, suppose a
correlation has been set up between the natural numbers and

a set of sequences of positive integers. The usual diagonal
procedure then gives a sequence which is not correlated to

any natural number. It follows that the set of all such
sequences cannot be correlated to the set of all natural
numbers. Now, the intuitionist does not object to the diagonal
procedure employed here. For, given a law which correlates

the natural numbers with a set of sequences of positive integers,
it is possible to gonstruct a sequence of positive integers
which is not correlated by the law. The construction needed
is, of course, provided by the diagonal rule. It is the
conclusion drgwn from this to which the intuitionist objects.

We cannot concude that the set of all sequences of positive
integers cannot be correlated with the set of natural numbers
since, he would say, it does not make sense to speak of all

such sequences. The diagonal procedure is ndt rejected because

it appeals to an actual infinity, as Tucker maintains.2 Nor

1. see A. Fraenkel, Abstract Set Theory, Amsterdam 1961. p.55

2. J. Tucker, 'Constructivity, Consistency and Natural Languages'
p. 159 : '
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is it regarded as non-constructive. The reason for rejecting

such sets as the set of all real numbers, the set of all sets

of positive integers, etc. is not just that the sets involved

are 'actually' infinite. As ﬁith predicative definitions
constructivists argue that a set must be defined by a rule or

a law. A real number must be defined by a law - for intuitionists,
spread laws.l Wang argues that the totality of laws is ill
defined. We can have no 'clear and distinct idea of the totality
of all sets or laws defining enumerations'.2 In other words,

the set of all sets of positive integers is non-constructive

because each set of positive integers would have to be given by

a law and we are never in a position to contemplate all laws,

having knowledge of only a finite number at any time.3
Similar reasoning applies to the set of all real numbers

etc.

To say anything of the set of all real numbers is non-
constructive, so to say of that set that it cannot be correlated
with the set of natural numbers is non-constructive. The fact
that a proof of Cantor's theorem involves the diagonal procedure
does not mean that the procedure is non-constructive. Cantor's
theorem would still be non-constructive even if it involved only
the intuitionist propositional calculus, for the very statement

of the theorem is non-constructive in that it refers to a non-

1. A, Heyting, Intuitionism - An Introduction p.34

2., H. Wang, 'The Formalisation of lkiathematics' in 'A Survey of
Mathematical Logic', p.580

3.  ibid, p.580.
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constructive set. Tucker's plan to rehabilitate the diagonal
"procedure as a constructive procedure is unnecessary and if
he is to rehabilitate Cantor's proof as constructive, he will
need to show that such phrases as 'the set of all real numbers'
areé constructive. Since, however, he has defined only
constructive procedures it is difficult to see how he can
cope with what have been regarded as non~constructive
entities.
These are hints of how he would deal with such entities
in his discussion of the interpretations of ' '. Again
he refers to the referential and non-referential interpretations
of symbols. On the referential interpretation, according to
Tucker, 'x.! stands for an actual denumerable infinity of
elehents. But there is a non-referential interpretation, he
says, in which 'the function of a class symbol is to express the
notion "the elements of the class such that ...." where the
elements mentioned fall under the recipe for the generaﬁion of an
unending series of elements.'l V
Exactly what "' stands for can only be determined within
some specified set-theory. There are theories in which 'n%'
is the set of all sets which can be put in one-oﬁe correspon.lence

with the set of natural numbers.2 Here '3 does not denote

1. J. Tucker, 'Constructivity, Consistency and Natural Languages',
p.158
2. e.g. Cantor, Russell.




- 131 -
'
a denumerable sgt at all, since it is the set of all denumerable
sets, i.e. an indenumerable set. There are other theories in
which 'ag' will be a denumerable setl but because of such
variety of usage it is unsafe to claim that '« ' has some one
particular denotation. .

As all that can be said with the use of transfinite
numerals can be said without their use, there are no extra
difficulties brought in for the constructivist by their
introduction. It is not to the introduction of transfinite
numerals that the constructivists object but to the sets which
have transfinitecardinals. Tucker should then deal with the
interpretation of 'N"(the set of natural numbers) rather than
with '3&'. The remarks he makes about the interpretation of
‘o' must be considered as if they are about 'N'.

Interpreted in this way, the function of class symbols,
instead of referring to an actually infinite number of elementss
expresses on Tucker's non-referential interpretation the
notion 'the elements such that ....' where the elements fall
under the recipe for the generation of an unending series of
elements. The distinction here, if indeéd there is one, -
is very fine. 'W' does not refer to the set of all natural

numbers but expresses the notion 'the elements such that ...

1. e.g. von Neumann
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It would seem that Tucker wishes to escape by taking 'N' as

a way of talking about the elements of a set rather than the

set. Now there are things which we wish to say about the set

'N' and other things which we wish to say of the elements

of N, To say that each natural number has a unique representation
as a product of primes is not to say that N has a unique
representation. Yo say that each non-empty sub-set of N has

a least member is not to say something of each element.

Perhaps Tucker means something other than the reading
above by 'expresses the notion of' but I find it difficult to
regard such a phrase as 'the elements such that ....' as a
notion at all. I can understand 'the set of all elements
such that' or 'being an element such that ....' as notions.
But the first seems to be the referential interpretation of
'N' and the second not what would be meant by 'N' in
any theory.

However, Tucker does talk of 'N; as béing the claws of
entities generated from O by the successor operation despite
his analysis of transfinite class symbols in terms of elehents
rather than classes.1 In this case he says that it commits a
category a mistake to ask for this class to be constructed.

The reason given is that it is a class of classes of clasgses

1. ibid. p.158
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whereas the elements of the class are classes of classes.
(Again this is only true in certain theories) But just because
') (or 'N' to be safer) is of a different category from its
elements it does not follow that all question of its constructivity
does not arise. A gtrict constructivist could say that the
class of all natural numbers is not constructible because, even
though each natural number may be constructed (in principle),
there will never be a time when we have constructed all of them.
To a constructivist classes have to be constructed. The fact
that the elements of a class belong to a different category from
the class is irrelevent.

But the non-referential interpretation of class symbols
that Tucker gives will not work for classes which are non-denumerable.
There is no way of filling out the expression 'the elements
such that ...' by any generative recipe giving an unending
series of elements. What could be the generative recipe for
the real numbers? That there is no such recipe is just
what Cantor's theorem proves. Class symbols for non-denumerable
sets cannot receive such an interpretation. If there could be
an interpretation in terms of generative recipes then the
constructivist who accepts as constructidble sets given by a
genérative recipe would have no worries about the sets denoted
by these symbols. One may look at the constructivist demand as

a demand for generative recipes. It is the notion of a set
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not given by any generative recipe, the idea of an arbitrary
set, that worries the constructivist.

It is not clear how infinite gets of greater cardinality
are to be interpreted. Even if indenumerable sets could
receive a non-referential interpretation in terms of containing
an indenumerable elehent, there is no guide given by Tucker for
finding a non-referential interpretation for such sets as the
set of all real functions of a real variable. To show that
this set is of greater cardinality than the set of real numbers
it will not be possible to replace the usual ‘'diagonal’
procedure by a procedure showing that there is a function
different from each function in an unending series of functions
given by some generative recipe. The most that the latter
would show would be that the set of all real functions was
indenumerable. Generative recipes are out of place here
since the set of all real numbers itself is not given by a
generative recipe.

Similar problems arise when sets of the same non-denumerable
cardinality are considered. What is Tucker's constructive
interpretation of the proof that the set of all real numbers has
the same cardinality as the set of all continuous functions?

We could perhaps show that both are indenumerable in Tucker's
gense of containing an indenumerable element but, since neither

is given under a generative recipe and Tucker's non-referential
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interpretation always mention the existence of a generative
recipe, there would seem little chance of showing 'constructively!
that they have the same cardinal.

Lastly, the axiom of choice is dealt with swiftly by
Tucker., . According to him the axiom is non-referential in
character.l But it is not at all clear what Tucker means by
non-referential in this context as he has only discussed
'non-referential' for the case of ' ' and 'indenumerable'.

If he wishes to say that in addition to being non-referential
it is.also constructive - as it would seem from his allegation
that it is the referential interpretation which makes the
constructivist regard certain procedures as non-constructive:%
he must introduce some other notion than that of generative
recipes, for the axiom is needed precisely when there is no
generative recipe. If there were a generstive recipe for a
set with the property stated by the axiom of choice then there
would be no need of the axiom of choice. The axiom of choice
is a purely existential axiom of the form (gx) F(x). If
there were a generative recipe giving a set with the property
F it would follow from the predicate calculus alone that
(Ex)P(x). The axiom of choice is needed only if there is no

way of obtaining the set from the other axioms of set-theory.

1. ibid. p.157
2.  ibid. p.156-157
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In the case of a set of indenumerably many sets there could
not be a generative recipe (in the sense of a recipe giving an
unending series of elements) which gives a set containing just
one element from each set s%nce there are indenumerably many
of them. But even in the case of a set of denumerably many
sets the axiom of choice could not be dealt with in Tucker's
terms for the existence of a generative recipe would imply that
‘there is no need to invoke the axiom.

In conclusion, it would seem that each of Tucker's attempts
to rehabilitate the non-constructive as constructive fails.
Also, his approach ignores what seem to me the main problems
that the constructivists bring to the fore. Since he sees their
problems as arising from the doctrine that class symbols
refer to actual infinities he misses the most interesting and
clearest of thelr objections - their objections to impredicative
definition, the notion of an arbitrary law and the notion of

arbitrary set.
(1)

The example of a constructive proof which Tucker says is
in fact non-constructive is proof by reductio ad absurdum.
'All arguments to contradiction are non-constructive

since the emergence of a contradiction shows that what has
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been tried in the given argument cannot in fact be carried

out.'1
There are different arguments which may be labelled as

arguments to contradiction, some of which even intuiticnists

acoépt. Consider an argument of the form: {p o) (q. N q)k > ~ p.

This form of reductio wd! absurdum some intuitionists accept.

(Indeed, as stated earlier in the chapter, ~p may only be

asserted after having derived a contradiction from the

suppésition that the construction denoted by p has been carried

out. Some intuitionists would say that this is what ' w~p! means.z)

It would appear that this form of argument has certainly been

accepted by constructivists. But there is another form which

has been rejected by constructivists since it relies on the

law of excluded middle. Consider an argument of the form:

kf‘p 5 (q.~q)\ > pe Clearly this is unacceptable on constructivist

grounds, for the fact that a contradiction has been derived from

tﬁe supposition that ~p entitles us to say only that ~p is

absurd, i.e. ~»~Dp. We could move to p fromwwp only if we

assumed some such4logical rule as ww P » p which is tantamount

to assuming the law of excluded middle.

1. ibid. p.152

2. It cannot be quite as simple as this since ~ g would have to be
explained first, and so on. To break this infinite regress some
intuitionists have two interpretations of negation. . Kolmogorov

speaks of a primary interpretation in terms of the incompatibility

of a subject with a predicate. Brower's notion of absurdity could

then be defined in terms of this primary interpretation. See

Kolmogorov, 'On_the Principle of Excluded Njiddle' (first)

published in 1925) included in From Frege to (8del, ed. J. van Heijenoort‘
Cambridge, Mass., 1967. pp.420-421 ~
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Constructivists have certainly objected to the second of the
two schemata mentioned abovel, but in general they have accepted
the first.2

It remains to investigate why Tucker regards the first as
non-constructive. His explanation rests on the idea that the
appearance of a contradiction shows that 'what has been tried cannot
be carried out'. In geometry one wight, I suppose, talk in a rather
imprecise fashion of 'trying to construct two tangents at the
same point on a circle' and, from the contradiction that results from
supposing this to be done, say that what we tried to do cannot
in fact be carried out. Elementary geometry text books may be
written in such language. To do so is to treat geometry as a
description of the physical world and reductio ad absurdum proofs
look as though they report that certain lines cannot be
dravn etc. Such a view of geometry has long been abandoned.

Talk of 'construction' in arithmetic, analysis or set
theory remains metaphorical unless backed up by some definition

or explanation. Tucker speaks of 'constructive procedures'

1. e.g. R. Goodstein, 'Proof by Reductio ad Absurdum', Mathematicsl
Gazette, vol xxxii, 1948

2, Some intuitionists reject the whole idea of negation in
mathematics, so that reductio ad absurdum as a legitimate proof
procedure would be rejected. = But their arguments are not

directed against the reductio ad absurdum procedure in particular
See the discussion of Griss's and van Danzig's attitude in Fraenkel
and Bar-Hillel, Foundations of Set-Theory, pp.239-244.
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and 'non-constructive procedures', of 'procedures which can

be carried out' and 'procedures which cannot be carried out'.

But what 'procedures' are there in mathematics? Mathematics

consists of proofs. Are procedures supposed to be different
from proofs?

In a reductio ad absurdum proof what is it that I 'try'
and that I find cannot be 'carried out'? Both phrases suggest
that it is some kind of action. What happens in a reductio
ad absurdum proof is that I suppose something to be the case and
find that what I supposed cannot be the case. There is no
mention here of something that I try to do and find that I cannot
do. It is true that I indulge in the activities of proof-
making and subposing. But it is neither of these activities
that I try and find that I cannot carry out. For I have
successfully carried out the proof and, although what I
supposed turns out to be impossible, it does not follow
that I cannot suppose what I did suppose. If there is
something else in the reductio ad absurdum proof which I tried
and found I could not carry out Tucker has given no hint of
what it might be.

Apart from this difficulty, there remains the probiem
of finding out when a proof is of the reductio ad absurdum form,
A discussion of reductio ad absurdum proofs by Goodstei%.will

illustrate this problem. Goodstein, disliking reductio ad

1. R. Goodstein, 'Proof by Reductio ad Absurdum!
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absurdum arguments because of the lack of information that they give,
tries to give direct proofs of theorems normally proved by this
method. As an exa@ple he considers a direct proof of the theorem
that the square root of 2 is irrational.

Starting from the fact that for all positive integers p and q

2 203 5 1, it follows that |p/a° - 21> 1/q%.  This, he

\p
says, is a direct proof that 2 is not the square of a rational
number. But this latter statement is surely an inference mdde
from the above inequality. It may follow almost immediately but
an inference does have to be made nevertheless. The inference,
it seems to me, that has to be made here will be made in the following
way. Suppose that 2 is the square of a rational number p/q.
Then pz/q2 - 2 =0, Therefore \pz/q2 - 2]« l/q2 which contradicts
the above inequality. In other words, the proof that the square
root of 2 is irrational still needs a reductio ad absurdum proof.
Goodstein has not shown conclusively that the use of reductio
ad absurdum in this example is unnecessary.
When proving theorems in an informal way, without reference
to any axiom systems, it is difficult to say when reductio ad
absurdum has been used. In the sbove example ?here is no indication
of what we are allowed to assume. An axiomatisation of arithmetic
would settle this. If, among the axioms, there occurred the schema
'ayb >a # b' then there would be no need to employ reductio ad absurdum.

Suppose, instead of this schema, one of the axiom schemata was
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'N(a> b.a = b). Then the proof would continue as indicated in
the previous paragraph. Whether we have to use reductio ad
absurdum can be decided only after we have laid down an initial
set of assumptions.

Tucker, as canAbe seen from his talk of 'trying' and 'carrying
out', takes reductio ad absurdum in its rule form rather than in
its schematic propositional forme That is, in the form:-
if a certain hypothesis leads to a contradiction then the negation
of that hypothesis holds. Without entering too deeply into the
technical details of the propositional calculus, it may be pointed
out that this rule corresponds to the rule of the propositional
calculus:- if there is a hypothetical proof 's ¥ t.w~t' then there
is a categorical proof of '~s'. In most systems &f the propositional
calculus this will be derived as a subsidiary rule from the
axioms and rules of the system. But the import of the rule is
that a categoric pioof of %' can be found whenever we have found
a hypothetical proof of the form 'st t.«t',  In other words we
can prove categorically from the axioms alone the formula 'wg'
without the use of any hypothesis. Suppose some mathematical
theory is formalised within the first order predicate calculus.

It is a short cut to use the derived rule of reductio ad absurdum
in order to prove a proposition @P of that theory. H Nevéfﬁheléss, 
there will be & categoric proof of »P which will not involve using

P as a hypothesis in a deduction. If we now consider the categoric
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proof of ~P, what is it that has been tried and cannot be carried
out in this proof? Can it make any sense at all to talk of the
categoric proof in this way?

Tucker may still object that, even though categorical proofs
a3 opposed to hypothetical proofs do not involve suppositions or
hypotheses from which a contradiction can be derived, reductio ad
absurdum has been used implicitly in the sense that the proposition
{_P > (Q.AJQ5}3 ~ P or axioms from which this proposition can be
derived have been used in the categoric proof. This may be the
case. Tucker then has to show that these axioms themselves are
non-constructive. We may, for example, prove §P i (Q.NQ)} 2 ~P
from the two axiom schemata ~ (P.~P) and (P3Q) » (~Q 2~P)
added to suitable axioms for the logical connectives 'w! and ',!.
Which of these axioms is non-constructive? Which of these does
it make sense to talk in terms of 'trying' to do something and
finding that it 'cannot be carried-ocut'?

Hon-constructive procedures in general Tucker regards as
impossible of execution because their execution would require the
contravention of already accepted constructive conditions.1
As I have argued above 1 am unhappy about Tucker's use of 'procedure!

in the context of mathematical proofs. It is clear from his use

1. J. Tucker, 'Constructivity, Consistency and Natural Languages'

p. 153
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of the word that it is not a synonym of 'proof’. Yet it is
difficult to see what he can mean if it is not 'proof'.

Reductio ad absurdum proofs, since they are non-constructive,
cannot be admitted as proofs proper, he says, but should be
regarded as arguments. They may provide us with the only
information that we have. But they should be regarded only as
'temporary scaffolding' from which we may later construct a proofs
proper.l

The point that arises here is how these arguments manage to
provide any information when they can only be made by breaking

rules. 'The impossibility of the procedures is of a

rule-breaking chara.cter'.2 It seems odd, if not inconsistent,

to maintain that certain rules have been broken and yet that
information is provided by breaking those rules. If

information and correct information at that, for Tucker nowhere
suggests that the information so given is wrong, can be gained by
breaking the rules, what possible purpose do the rulesserve?

One would expect to get misleading information, in some cases,
from rule-breaking, just as fallacious reasoning would produce,

in some cases, incorrect consequences.

From the arguments presented in (i) and (ii) it can be seen

1., ibid. p.155
2, ibid. p.153



- 144 -

that Tucker has failed to make his new distinction between
constructive and non-constructive procedures clear. It is

not at all clear how the term 'procedure' itself is to be
understood. It is true that we sometimes speak of Cantor's

theorem as involving the diagonal procedure. But this way of
speaking is harmless. It means only that a certain way of defining
a particular object has been used. The intuitionists can make
their notion of constructive proof clear in the examples they give.
To say, for example, that an existence theorem in arithemtic has

a non-constructive proof is to say that the proof does not tell

us how to compute a number with the required property. Tucker's
notion of constructivity is made no clearer by the examples he
gives. It is essential that he makes this notion comprehensible

if he is to go on and maintain that natural languages are constructive
in tendency.

What is meant by a natural lenguage being constructive in
tendency is even more obscure than of procedures being constructive.
The only evidence he gives for this conclusion about natural
languages is that the paradoxes of set-theory are produced by
breaking constructive conditions. He gives the Russell paradox
as an example. The condition 'waea', he maintains, is a constructive
condition, as is 'eek if and only if ~aea'. What is meant by
a constructive condition is never enlarged upon. The solution of

the paradox is then given as described in chapter II of this Section.
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Since the paradoxes are generated by breaking constructive
conditions, natural languages, in which the paradoxes can be
expressed, must be constructive.

| Because of the undefined notion of a language being
constructive, it is difficult to see what indeed has been established
by this argument. Even if the phrase 'constructive condition'

were defined it would still be difficult to see what Tucker means

by 'a natural language being constructive in tendency'.

It seems to Tucker that this is 'a significant discovery and one
which is contrary to Tarski's thesis about natural languages'.

But it is hard to see what the discovery is or how the discovery
contradicts Tarski. Certainly Tarski says that natural languages
seem to preclude a consistent use of the expression 'true

sentence'2 and, further, that natural languages must be inconsistent.3
But there is no indication in Tarski's paper of what it would mean

to say that a natural language is constructive (or non-constructive).

Consequently, reference to Tarski's paper fails to clarify Tucker's

contentione.

1. ibid. p.145
2. A, Tarski, 'The Concept of Truth in Formalised Languages' in
Logic, Semantics, and Metamathematifs, Oxford, 1956, p.165

3,  ibid. p.164-165
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Throughout Tucker's papers there is constant reference to
his view that the contradictions have to be explained.

'The paradoxes have to be explained, they have to be fully
understood, and the manoeuvres of formalisation cannot provide
any such information or insight'l

'v.e.. in any satisfactory account of the paradoxes of set
theory a foundational account must be an explanatory account. For
this reason the usual devices for avoiding the paradoxes of set
theory are unsatisfactory since they do not satisfy the explanatory
requirements of the foundational 1eve1.‘2

His insistence that the paradoxes have to be explained shows
that he believes there is an explanation. What sort of explanation
is made clear by his purporited explanations criticised in chapter II
of this section. The ekplanations will be in terms of the rules
of language. Now these rules of language must alréady be
embeddied in the language before the appearance of the contradictions.
The rules which have been laid down by philosophers and logicians
to prevent the occurrence of contradictions he regards as evasions
and not explanations. They are rules designed solely for the

purpose of avoiding the contradictions. Since this is the

1.  ibid. p.165
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only reason for the rules' existence they lack any explanatory
force. Instead of such ad hoc rules Tucker says that we must
find rules which can be seen to hold before the contradictions
arise.

'"There is the view that the appearance of a paradox is quite
unpredictable, that nothing can be done beforehand, that we just
have to wait for‘them to turn up and then avoid them.' This,
Tucker claims, is not the case. Instead, wd¢ can investigate
the constructive working conditions of these words prior to,
and independently of, the appearance of contradictions. The
view that the paradoxes are unpredictable is irrational since
we could in each case have avoided the contradictions by giving
due atteﬂtion to the constructive working conditions of the words
involved.l

The mradoxes can always be explained by drawing attention
to the linguistic rules of language. Underlying this thesis is
the thesis that natural languages are consistent; +that the rules
of language never give rise to contradictions. He offers
solutions to the paradoxes by locéting a linguistic rule which’
has in some way been broken in the 'proof' of the supposed paradox.
If natural languages did produce contradictions, and, in particular
these contradictions as has been maintained in the past (for example

by Tarskiz), then Tucker's search for an explanation would be totally

10 ibido pp.164-165
2. A. Tarski 'Concept of Truth in Formalised Languages'
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misplaced. I have tried to show in a previous chapter that
Tucker's attempts to solve the paradoxes are each unsuccessful.
He has not, so I maintain, located a linguistic rule which has
been broken. How does the thesis that natural language is
consistent stand up? If it could be shown that such a language
is inconsistent without breaking any linguistic rule, then we should
have less reason to continue looking for 'explanations' of the
paradoxés.

In another paperl, Tucker claims that 'formalisers reject
informal language because it gives rise to contradictions. Yet
there is no evidence whatevér‘for their view,' He goes on to

demand

'eeo an example of an intralinsuistic contradiction which

is obtained by conforming to the working conditions of a natural

language. - Formalisers do not back up their faith with mere examples.
They are committed,  They do not look at the facts.'

If the ﬁhrases 'working conditions' and 'linguistic rules' are
interchangeable,ythié is the undérlying assumption thdt Tuckér,f
has been making througﬁout his other papers.

The inclusion of the word 'intra-linguistic! in the above
quotation succeeds only in confusing the issue. - According to -
Tucker 'extra-linguistic'kCOntradiGtionS caﬁVgccuf in'natural"'

languages Without a breakdown'of working éénditions;”thaﬁgh it is

E: -J. Tucker, ‘Plilosophlcal Argument' bupplementarj Volume KXXIX a
1965, The Aristotelian Sac1ety.,~ : R i
2, ib:.d. Do 57 = :
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by no means clear how this comes about. The only example of an
extra-linguistic contradiction that he gives is of a man who says
that it isrraining and it is not raining. Both the assertion that
it is raining and that it is not raining have empiric content.
They assert contradictory things about an extra-linguistic state

of affairs. 'Each has content. Each is well-used. They simply
~contradict each other head on.'l In this example I cannot see
‘how, at the same time, this can be a contradiction end for both
expressions to be well-used, for either it is meant as a report

of light-drizzle, in which case it is not a contradiction or

one of the expressions is not well-used, at least in any sense

of 'well-used' with which I am familiar.

If 'extra-lin?ufétic‘ and 'intra-linguistic' are to be -
distinet mutually exclusive categories into Which we can divide
prop031t10ns and in particular contradictory propasitions, then~,~~
~ we need more of a guide than is given by one example. - Into
the‘intra-linguistic category Tucker wisheS‘tc'puﬁ the getw
" theoretic paradoxes and into the other every contradiction Which
" has not been 1abelled a paradox..' If we did,not know that thia iB
“the divmsion he wants we would not be able to ‘Boe whlch propositlons -
,belonved to whioh category. ; It may, however, be the caae thax the H"

~distinction is,between a priori and” empirical~pr¢p051t;ens, bnta

1. ibid. p.58




this would be unlikely as this would render the two new terms
superfluous. | In order to-see the inadequacy of the purported
distinction, has the man who says that two and two are four and two
and two afe not four made an extra-linguistic or an intrae
lihguistié oontradiction? Certainly both are well-formed and
each hasg confent. So it would appear from Tucker's example that
it is extra-linguistic, but so too would Russell'srparadox appear
as an extra-linguistic contradiction. Clearly, he would like to
separate out the'arithmetic contradiction from the paradoxical
ones of sét-theory, bﬁt he has_not given any criterion to enable
us to do s0. | | |

Leav1ng aside the question of the‘precise meaning of
'intra—linwuistic', we can return to the thesis contiined in a
kprevmous quotaticnauf that there is no evidence that contradictimns
occur in ordinary discourse when conforming to the working conditions
of that language and that formalisers overlook ﬁhis faot.

7 For any one committed to the belief in the con31stency of L
natural 1anguages, as Tucker is, there ia no way of refuting hlm.‘
Each time an apparent contradiction turns up which does not seem '
to violate the worklng conditions of that 1anﬁuage, it is always
open to him to say that although 1t does not seem.tc violate any

of the working conditions that we have found, neverthrless it does_ll'l

 violate some condition, but it just huppens that we have nct foundiﬂ ifj71' e

it yet. The thesis is irrefutable. ‘ Unlike fonnal 1&nguages
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where the 'working conditions' are laid down in advance in
the form of rules of inference, informal languages have
to be inspected after their use for their working conditions.
We have no guerantee at any time that we have found all these
conditions acd that since a given contradiction does not break
any of these conditions it mgef be a contradiction which does‘
not violate any wcrking condition of that language.

The reason why sce philosopheis have rejected such’a theeis
in the past is the existence of several contradictions which do
not seem tc break eny 1inguistic ruie. | The existence of these
contradlctlcns is the fect Which formalisers 1ook et. They are
the evidence which formellsers produce. ’ Tc eccuee them of not
producinv evidence and cf not backlng up their feith W1th
'mere examples' ie to ignore the amcunt of research into the :
paradoxes 1n the last sixty yeare. If some pniloeophers maieteln'
that 1nfcrma1 1envwage is inconsistent then it 18 beceuse the |
'explanatcry solutions o*fered in the 1ast sixty yeare fail to :e‘* -
satiefy them.~ The ;ustificaticn eﬁch & philosopher would glve .
kthen for eaylng that 1nformal lan uage is inconuietent though
knot of course conclusive, is reasoneble and not the result of
-an ;rretienel belief. . | B

In7pessin gy it may De ncted that many’ of thcae Tucker refers ;ﬁﬁ»

%o as formalisers have themselves offered scluticne cf the peredcxee . , ‘“

~in ;nfcrmal{texms and maintained*th&t they‘dckerieehfrcmlthele“;.e
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violation of some implicit linguistic rule. Even the formalists
themselves have given an explanation of the paradoxes in terms of
an unjustified extension of the usual rules of logic from finite
domains to infinite domains.
'Does material logical deduction somehow deceive us or leave
us in the lurch when we apply it to real things and events? No
Material logical deduction is indispensible. It deceives us only
when we fprm'arbitrary abstract definitions, especially those which
involve infinitely many objects. In such cases we have illegitimately
used material logical deduction; i.e. we have not paid sufficient
attention;to‘the preconditions necessary for its valid use.'l
This quotat;op‘sbowsvthat even Hilbert, the foremost formalist,
believed thatkgontradictions occurred only when the rules implicit
in the language were forgotten. Indeed, if the word fpreéonditions‘
in‘the above’quofation were to be changed to 'Woiking conditipns‘
then its last sentence would not look bﬁt df'place in Tﬁckar's~paper.
Russell also is included in Tucker 8 1ist of formalisers and
the theory of types which Russell devised to deal with the. parada}:es :
Tucker regards as an. evasian and not an. explanation.: ‘Naw,’,,?‘
although Russell does sayrthat the main ;ecommendationijx'the~ =
theory of types is that‘if solves the paradoxés ha,éiso'bélieves

it to conform with common sense.2~ But behih&'the'theotyibf t&ﬁéé‘f“A'

l.  D,Hilbert, 'On The Infinite', in Philosophy of Mchematlcg, ,Qd.ff
" P. Benacerraf and H.Putnam, Oxford, 1964. R
2. B, Russell, Principia thhnmatica, Cambridve, 1913 p.§7 .
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- there is the vicious circle principle which is the justification

for the theory. The vicious circle principle is derived in turn
‘from the principle that in a definition the definiendum must not
appeaf in the Qefininiens, which has been considered a sound
principle from the time of Pascal at least, and may be found in
elementary logic. textbooks. It is true that belief in the
principle does not by itself lead to a theory of types. Hintikka's
more recent work on applying the vicious~circle principle in its
simplesﬁ form does not lead to the theory of types.l' The
theory of £ypes cannot be derived from the vicious circle
principle alone: it needs‘Russell's anglysis Qf classes in terms
of propositional funétions,‘for example,

The reasonskar accepfing the theory of types as‘put fdrward‘
by Russell are’philoéOPhiéal. The théory df fypes‘wés not’jﬁst
an evasion but an outcome of the vicious-clrcle prlnclple and |
Russell's philosophical dcctrine of proposit1onal functions.'*
" The subsequent rejectlon of Russell's theory‘of types by
sympathetic logicians was cauged not by the lack of any philesophical
'justiflcatlon for the theory but’ by thé unsatisfactory nature’ Qf
the axiom of reducibilityjand the dootrlne of’propo%itional :

' fuhctioﬁs. 3 =

1. J. Hintikka, 'Identity, Variables and lmpredicative Definitian‘ f*riif;&

Journal of Symbolic LOﬂic, 21, pp.225-945
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The so-called formalisers have looked at the facts and have
presénted exﬁmples. If would geem that the implicit rules of
informal language do give rise to contradictions. The set-
the oretic paradoxés provide good evidence for this. Their
existeﬁce cannot of course show conclusively that informal language
ig inconsistent, i.e.‘that the impiicit rules of language allow
a situation to occur where two.senteﬁoes one of which is the
negation of the‘otﬁer both appéar to have the same truth‘value.
For the ruies of informél‘laﬁguage are not open to o@r ingpection
as the rules of formal languagés are, Ve mayrinspect a formai
language and éhow ccnciusively that it leads to a contradiction,
the rules of inference and any axioms that it may have are precise
and expliclt. For natural languafes the rules have to be found
and even then pre01sion cannot be expected. One m&y draw the 4
' analogy between extracting the rules of natural languages and
extract:.nb the rules of a game from the observatlcn of the game 7
1tself. | If the only guide to the rules of that game was Qur ‘
observatlon of that game then we could never be sure that tha -
'rules we had extraetal were the complete rules of the 3ame, nor -
that any of the extracted rules correspon&ed with precision to

any actual rule of the game. For there may always ‘be the

p0831bllity 4hat some rule has not been employed While the oﬁéérﬁéf’  ”i ff“

was watching and tlat the rules have the dlsaunctive ferm;‘ défv*

A or do B or oven for some flnite number of possibilities & B, ....’k
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Since the observer may only watch for a finite time the disjunctive
rule may have been employed for doing only a finite number of
these possibilities and at no time could the observer be sure he
has listed them all.

The analogy breaks down when we consider that, unlike the
hypothetical observer, we are not only extracting the rules but
at the same time playing the game, = Nevertheless, the point
brought out by the analogy is that it cannot be proved that informal
language is inconsistent. - The most that we can say is that there
is evidence for this conclusion.

It may be that Tucker believes that not only is it the case
that natural languages are consistent but also that they must
be consisﬁent. But if it is correct tc talk of language rules,
as Tucker does, then it does seem possible that‘these rules could
conflict. - The rules we use have béen made by‘us, aﬁd,'a$'we'are'
unable to see all: ‘the consequences of these rules straight away,
1t may -turn out that thef conflict. In &esigninb a game or-a-
: system of laws we may find that the rules or tha laws sre such
-that direot us to do contradlctory thlngs.‘ .In chess,‘for'examgle,'i
there are tvo rules, one of which says thax the kinﬂ'must be mcved |

‘ out of check and another which says . that the king must not movs D

1nto check. . On certaln occasions theae rules conflict; they SRR R

conflict When & positlon of checkmate is reached. Suppase that

w:.nninb tha game of chess con51sted, not 1n forcing checkmate,»* ’k
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but in removing all the opponent's pieces from the board.
Then the rules would create an impasse Wheh the checkmate
position was reéchéd. If language is thought of in thisg way,
as a Sysfem of rules ﬁhich we have made, then it seems not unlikely
that such conflicting rules should dccur. Perhaps the classic
examﬁle of fhis'is Prior's introauctionl of the propositional
connective ‘tonk' by means of two rules of inference. From a
proposition(A éne éan derive thé propésition A—tonkQB and
from the prop081tion A-tonk B one can derive the propoaition
B, Consequently, from 4 one can derlve the proposmtlon ~A,
The rules for the connectlve "tonk' are such that two contradlctony
prop051tions can be derived. It is, of course, easy to see that
thesé two'rules allow the deriﬁétionbof contrédidtdry prdpositions,
but the examnle does show that in talklnﬂ of 1an5uage rules the
‘possibility of rules which allow ccntradictory propesitlons te be
derlved may ex1st.l e

) In the case of the set~theoret1c paradoxes one ceuld régard
‘ the axiom‘of comprehen81on (1n its naive form) as a rule for tha
1ntroduct10n of the phrase 'a-belongs-to~b"h: What 1s shown by
:the appearance of paradoxes is that one canhgt adopt such a rule f "
: (along with others) without falling into inconaistency, just as'k~iu

one cannot adopt the rules for 'tonk' without falling~inta

1. A, Prior, 'The Run-about Inference Tleket' Anélzsis)'vnl.él;*'”f.'”L':
1960, pp.38-39- s i Tt R
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inconsistency.

As I ha#e argued eariier in section 1 of this thesis, the
appesarance of contradictions in set-theory reveal only that we
cannot operate conéistently with the axiom of comprehension in
its naive form. We are forced to change the rules for the use
of the word 'set',

To ask, aé Tucker does, for some explanation of why certain
purported seté iead td contradictions is as futile as asking for
an explanation’of why there isbnb greatest prime number.

Since each_paradox of set-theory can be atated in é natural
languége there may be a temptation to think of solutions of paradoxes
in terms bf spotting a failacy, rather’aé‘oné c*;pcﬁ;svthaf‘; an arithmetic
oontradictlon is produced bj a fa11a01ous move of div:,dn.no by 0.

To spot such a fallacy it is necessary to recognlse the rule that
div1s1on by o 1s illegltimate. To spot some fallacy in set theory

we need to recognise the rule that has been 1lleg1t1mately disregarded.
In what sense there are such rules in abstract set-theary has been
dlSCUSoed in section l., There I tried to show that the rules af, 
abstract set-tbeory were our own cre&tiéng utilisiné’eéitain'

analouies from a pre—formallsed notion of collectiona of objects.

A first attempt at gt~ theory included the ax1om of ocmprehensianyifv
Tt produced contradictlons in the field of abstract sets. !f"’fﬁ"'>‘ /
,ConseQuently it was necessary to abandon the axiom if VCR &esired § t~

- consistent system.f The rules introduced for the wcrd»’setf'wnuld{f*
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have to be revised. To look for explanations in terms of ordinary
linguistic rules seems to me a mistake as they could at most guide
ug in choosing the axioms of set-theory. In abstract set-theory
we may use the words 'set' and 'class' but it must be remembered
that we have chosen to use them in a certain way, the way laid down
by the axioms we have chosen.

Perhaps the simplest solution in terms of linguistic rules

would be that the phrase 'abstract set' is itself illegitimate

for whenever we speak of sets we must speak of sets of something,
e.g. numbers, students, chairs etec. To talk of 'abstract sets'
is to forget this rule, to think that there could be sets which are
not sets of something.l But this demolishes not only the paradoxes
but the Whole edifice of set-theory. There would be no paradoxew

of set-theory since there would be no set-theory.

1. I am not suggesting that this is a rule of language, although

it seems to me just as acceptable a rule ag those eited by Tucker ino oo

his solutions of the paradowes.
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Section %

In this séction I shall be concerned with Tarski'svdefihition
of truth for formalised ldnguages. This‘definitioh is the subject
of his two oapers;"The'Conoept of Tfuth in Formalised Lahyuoges'l

2. In the former, Tarski

and 'The Sem&ntic Conception of Truth'
oonstruots a deflnitlon of truth for a formallsed language and ;
explalns how, and within what llmlts, ﬁhis deflnitlon may be modified
for other formalised 1anguages. In the latter paper, the oonstruotlon
is only outlined but there are, in additlon, replies to various
oriticismé’made of Tarski's definition.

Whenever a definition is glven for some stated pmrpose, one
method by which that definltlon can be judged is to see if it does
achieve the purpose intended. 4  Tarski's definition is in this |
- catagory since he stotes the aim of hié définiﬁion aﬂd;the cohditioné
that 11;' must satisfy; ~ In the examination that follows‘ Isall
show that he has not succeeded in oonstruoting a definition k | ‘
which aooompllshes the task that he has set for it.‘ To show this, _‘

V is not to show that the definition is either wrong or valueloss. |
‘A derinltion may be regarded, for example, as a proposal to trsot
the definiendum as a synonym or an abbrevxatlon of the definiena;

the definltion may then be acoepted or regected on oﬁher grounds than

1. A, Tarski, 'The Concept of Truth in Formalised Languageé' inoluded'r; :
~in Logic, Semantics and Motamathematlos, trans. Woodger, 1956, pp.lﬁ -278

2. . A, Tarski, 'The Semantic Conoeption of Truth', Philosoghx and L{f;f f[j

Phenomenological Researoh, vol. 4 (1944)." : : ; e
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‘accbmplishment of purpose. It may be held that acceptance of

such a proposal might lead to a confusion or that the definition

is frﬁitless>because it allows few or no relevant éoﬁsequencies

to bé dxawn. Considerations like these may enable the definition's
~worth to be evaiuated and, in general, they will be ihdgpendent of
those céﬁcerﬁédeifh its satisfaction of the author's purpose or
purposes. | Ih.thé'preseﬁt sedtion I ghall leave aside all
con51deratlons that do not dlrectly affect the questlon of whe ther
Tarskl sdeflnltlon of truth fulflls, or fails to fulfll, his

programme.
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By means of quotations from hls papers, I shall bevin by
isolating the purpose Tarski 8 definition of truth has to fulfil.
'The present article is almost wholly devoted to a single

problem - tbe definition of truth. Its task is to conetruct -

with reference to a given 1angua*e -8 materiallv adquate and

formally correct definition of the term "true sentence" This

problem, which belonge to the ola531oa1 questions of phllOSOphy,
raises con31derable difficulties. e |

'The desired definition does not aim to specify tbe meaning of
a familiar word used to denote a novel notion; on the- contrary, it
aims to catch hold of the actual meaning of en old notion.'zf
vTarski elaborates further this 'old notion'x |

oo throughout thls work I ehall be concerned axclusmvely |

With grasping the intentions which are contained in the so~ca11ed

ola331cal oonception of truth (“true - corresponding with reality") son '3

Je ehould like our definitlon to do justice to the intuitions

which adhere to the olassical Arletotelian conoeption of truth - ...l

"l‘o say of what 15 that it is not. or of‘ what ie not tha‘t; it is, i mlse,*_‘

while to say of what is that it is, or of what is not that it ie not, i ;f
e s i N
'

isg true._

"~ 1. - A.Tarski, 'The Concept of Truth in Formalised Lan gea"‘
Introduction. I shall refer to this work as CTF. -~ A T
.2+  A,Tarski, 'The Semantic Conception of Truth‘, soction 1._1I B
ghall refer to this work as 5CT. R

3. CTF, Introduction
: '4." SCTy section 3.
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The definition of truth must be conformable to this classical conception
of truth, if the definition is to fulfil the aims Tarski has set for it.
According to Tarski the definition must have as consequences, such
equivalences as the foiiowings

"Snow is white' is true if and only if snow ig white."

He maintains that in this equivalence '"Snow is white" occurs as a
name of a sentence and not as a sentence itself since the subject
of "is true" can only be a noun or an expression functioning like
a noun.
Tarski holds that the problem of constructing a definition
conformable to the g¢lassical conception of truth becomes the problem
- of constructing ardefinition the -consequences of‘which wili be
equivalences of the forms . |
X is true if’and only if D
In these equivalences,‘"p" will be replaced by a sentence and "X" by
a name of that sentence. -
| Forynatdral'languages sudhvaékEngiiSh,,the Cthffuéti§ﬁ p£ a :
definition whidh7will imply«consequéngeg.of’the abOVe;tjpéfrgisae:’fﬁ
several problems.  One of these is the',aiffi'cultyfwhiéh is pmdﬁcea.
by géheralising such.sentencéékas thekfdilowing: "Snow is white" is
tfue if énd;only:if sndwris‘white.z The natural genaralisation would ff
be & sentence of the following‘form: a»éii‘fﬁﬁffw‘ ; : :
| for all p “p“ is & true sentenca if and only if p.;: i

("p" is here & name of the. sentence "p") The difficulty 1165 in
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the function of names in such sentences, for if names like "Snow
ié white" are treated as syntactically simple expressions (like single
words of a language) then parts of the name may not be replaced,

just as parts of a word (the letters) may not be replaced in a
natural language. . Under these conditions, "p'" denotes the letter

of the alphabet, p.  Consequently, the sentence 'For all p, "p" is

a true sentence if and only if p' will have such implications as

""p" is true if and only if it is snowing.'. - Clearly, this treatment
of quotation-mark names leads to undesirable results, . Similar
considerations applied to other forms of names force Tarski to give
up the attempt to construct a definition of truth for a natural
language.  ‘Apart from the difficulties entailed by7the'function of
names in such a definitioﬁ of truth, there 6ccurs in the application
of the term "true" in a natural‘languagé a;varignt of the 'liar'

antinomy;; In view of these pfobléms Tarski turns his attention away

from natural languages to formalised languages.

| For such formalised lanvuages Tarski tries to conatruct 8
definition ofutruth, consequences of wbich he_deaires‘to be senthqeaf
~of.the following form:~  } i

X is true if and onlv if De

(Here “X" is a name of the sentence "p" ) afaxva‘Vwi4i§;&agxl;#au;;,.,q

oIt is seen that this- attempt is analogous to the: previaus

attempt to construct a definition for a natural 1&nguage. Tarski

contends that for some formalised langua es, a definltion which,wou1d ;£‘f

‘~rfulfi1 the above ccndltion can be eonstructed and marecver ﬁhat it
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is possible to give a precise condition, which these languages
must fulfil if they are to allow of such a definition to be €fonstructed
~for them."

. Tarski: then constructs a definition for one formalised language
in some detail and shows how other definitions of truth may be
constructed for other formalised languages.

The above igs an outline of Tarski's paper 'The Concept of
‘Truth in Formalised Languages', the details of which I shall
-consider later, At present it will be sufficient for my.purpose to
‘extract from this outline the several aims that he has met for his
definition. v

- Firstly, the definition and the ihvestigatiansfreiating to it
should‘be conéérned.with»conoepts~déalt Withvin’classical‘philosophy

bﬁi‘e. be such that they have philosophlcal value and not. only technical
‘value.;‘~ ’ » | | v

 Secondly, therdnefinition 'sheaula.*oe’confomable %o the classical
l,conoeption of truth, i.e. "true - agreeing with reality' 2'_  |
Thirdly, the definitlon should have as consequences sentences   _
“of the following typet X is true if and onlv if p, 1n which “p" is o
3.

-1 sentence and: "X" is a name of that sentence.,‘”,e o ej;&éf

Fourthly, the definltian should satisfy saveral fcrmal condlticns,J  f

"@ee the defzniens should be in terms Whose sense. is preciaely known,

,'kar in terms whlch are reducible o other known terma.4{1§;;g 5i; { $»;.v‘,

D P CTF’ IntrOductiOn. SCT, . P&x’&gr&ph 3;/:" I I R e

2, CT¥, Introduction. 5CT, section 3. -

3. . CTF,.section Ij section 3, paragraph 4.
4o CTF, Introductlon. SCT, section 1.‘,
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Now, ifithe investigations are to have any concern with the
rhilosophical problems of trﬁth then that part of the papers which
is concerned with defining truth for formalised languages should
not only be a concern of mathematicians but a concern of philosophers,
since this part is the main subject of the paper.  Implicit in
the»first aim is that the definition of truth for formalised
languages should be of some philosophic value, since it is not to
be supposed that classical philosophy has been concerned merely
with a technical‘terﬁ related to formalised languages only,
the study of formalised languages béing of more recent origin than
classical philoaophy. “Implicit in the seoond‘aim is that the '
‘correspondence' theory(or whatever T&rski understands by this
lterm) should be applicable to fonnalised 1anguages, for there would
be little support gained for his contention, that he-is dealing
with a problem that has occupied phllosophers, if he were conatructlng
8" definition of truth conformable to a theory which is inappllcable
in the domain of formalised langu&"es.4 | .

The third aim presupposes that consequences of the type E_Lg'

true if and onlx if g, should be conformable to the Aristotellan e

conoeptlon of truth. , But Tarski does not. elaborate on What hﬁ undernk

stands by 'conformable . Presumably, he wanta these conaequences to be ;J”

consistent w;th the Aristotelian conceptlon of truth, i.e. such that

:'acceptance of the Aristotelian Gonception of truth implles aoceptanca i  3}¥

of the schemat X is true if and Oan‘if D where "X" and "p"‘ara  ? :

.';,raplaced accarding ta'the'canventioms_mentioned~above.j{f
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The fourth aim is of a formal nature and its fulfilment may be
determined by inspection of the definition Tarski constructs.

in commection with the second aﬁd third aims listed above, the
definition ehould have no ccnsequeﬁces which are incconflict with
the concept of trﬁthkwith which Tarski is concerned;‘ for, if the
definition is to\be conformab1é with (which is interpreted here as
'consisfent with') eﬁch a concepticn of tfuth, then, besides glving

consequences of the form X is true if and onlv if py the definltlon

should not 1mp1y sentences which wculd be unacceptable to anyone
allowing those consequences. B | |

| In the past cr1t101sms of the deflnition have been directed at
the suitability of Tarski's procedure for natural 1anguegee and
have ignored the prodedure for formalieed languages' After a
discuss1on of these criticlsms I shall show that Tarski hae not
fulfllled all of ﬁhe above aims for the nmre 1im1ted dcmain cf |

formalised languages.
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II

" In this chapter I shall consider criticisms of the definition
made by Black, Strawson and Kneale.

1

' Black has argued” that Tarski's definition of truth for formalised

Ecnguagés would be inapplicable to any natural language and that
consequently Tarski's investigations are without philosophic
relevance.

Firstly, he maintains, Tarski's definition would necessitate a
complete enumeration of‘the ierms occurring in the language for which
the definition is being constructed. But natural 1anguages have
an ‘open' character, that is, they can have added to them new terms.
There would have to be some rule that would.stipulate that no new
terms were to be 1ntro&uced into those 1anguages, if a definition k
based on Tarski'S'procedure were to be p0581ble.k"‘The fact that

there is ‘no such rule would condemn any such attempt to failure.

Secondly, Tarski's deflnltion of truth applies’ to only one |
language'at‘avtime. In other Words, Tarski &oes not glve a hicr
definlticn of truth in general, but gives a definition of truth for"

 & languaga, L., say.  If the deflnitlcn of truth for L is known,  ;~

i i
then how is a definlticn of truth for anoﬁher language Lj to be

constructed? To extend the principla of the definitlon to another$ﬁi;;;?

language, Black says, it is necessary to understand that grlnciple. f'n"‘“’“

1. Max Black, 'The Semantic Dcfinltion of Truth‘ lxgi ,‘,_ ;3-cf.5cﬁ5‘

Vols 9 NQ.4, 1G4;8’ ppc49"63
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But'to'étate that principle will only be a crude reformulation

of the sentence: For all p, "p" is a true sentence if and only if op.

This sentence was found to be unacceptable by Tarski because of the
difficulty involved by the function of the name "p" . It is
‘impossible'to state a general criterion or definition of truth by
Tarski'skprocedure;i Black contends that the philosopher is searching
for a general criterion for truth.
Thirdly, the philosophic problem of truth is left untouched
by the definition that Tarski proposes, since adherents of the
correspondence, coherence and pragmatist theories of truth would
all agree (subject to certain qualificaticns)'that "if is snowing"
45 true if and only if 1t is snowing.
Black's,cqnoluSion'is'that‘Tarski's procedure has no philosophic
rélé#&hce,=since\it is'inapﬁliCable'to‘nétural'1éthageé and qiséill’
neutral to conflictinb theories of - truth.,v This cbnclusion,thowever,
does not follow from Black's arguments. S | |
Assumlng his arguments are Valld and he is entitled tc say
‘that the definition cannot be applied to natural languaaes, that
a general criterion for truth,based on Tarski's lines cannot be
,stated consistently and that the definltion of truth which Tarski

’gives is neutral to conflicting theories of truth. do’ these statements

imply the conclusion that the investlgaticns of Tarski are withyit .:3‘ «;;,g

any phllosophlcal relevance? It very much dapends on what Black

understands by 'philosophical relevanca’. :va he regards any\
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definition as without philosophical relevance which is neutral

to eonflicting fheories'of truth, then there does seem to be some
support from his arguments for his conclusion. But to say that

~ the definition is neutral to mutually inconsistent theories,
because those theories would all accept sentences of the following

form: "It is snowing" is true if and only if it ig snowingz., is

incorrect, For there may be other consequences of the definition
which are incompatible with these theories.  For example, there

is the conclusion that Tarski's definition impliest - 'It tumrns out
that for a discipline of this class (a very comprehensive c¢lass of
mathematical disciplines) the notion of truth never coincides with

‘that of provebility.?l. - It may be the case that this consequence

might be incompatible with some theory of truth; it is not
sufficient for Black‘s conolu51on te examine gust those. consequences

represented by the schema, X is true 1f &nd only if p.

If Bleck underetands by philosophlcal relevance the
relevance of the definition for gatural 1anguagee, in which case.
conaequepqesﬂoi_the def;n;t;on of_the;typekquotedkepoye,rheving |
8 referehce to formelieed 1anguageskonly,”woﬁld be'ignored,ftheezrekf

.it etill seems. that the oonclueion doee not followg ,:Eexima:‘
even though(Tarski's precedure may not be applied to naturel

"lenguages, there‘ere eensequences ebeutithem,which;can be;infered;i'}V

1.  SCD. Section 12,
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from his investigations. One such consequence is that no
definition can be consfructed, congistent in the language, which

“will imply all sentences of the forms X is true if and only if p.

Again, whether this has 'philosophical relevance' depends on what

Black means by that term, but Black's paper contains sentences of

this same negative type of which he does not wish, presumably, to

deny 'philosophical relevance'., 4lso, the claim that Tarski's
.investigations have only philosophicai relevance if his

procedure is applicable to natural languages seems to be an
unwarranted reétriction.‘ If, as is the case, & term such as

'true' is used in connection with sentences of a formalised -
blanguage‘aé:well as with sentences of a natural language, thenk“:

there seems to be no reason why this terméhouldnot ﬁe of philosophical
interest. In tﬁe same way; a philosbpher may‘consider gsome term
“which is used mainly in connection with science, e,g., 'theory!,

"hypothesis 'model', without ceasing to be a phllosopher.‘,In
- faddltion, there is the phllosopby of mathematica which, in general,’
18 not concerned with appllcations to natural 1anguages¢ o |

: The arguments which Black proposes are not ones which FEORY

Tarski would contradlct. ~ Tha first argument that Tarski 8 procadurer‘ 7f
‘ia inapplicable to natural” 1anguagea, Tarski has made himself‘ §a ‘
:“'l‘a,rski contends that it is because of ‘the __g,@gg_i_gljc__ chamcter
‘;:of a natural language which makes any definition of truth, materi&lly 2117 

‘ adequate and formally gorrect in Tarsﬁi 8 sense, inapplioable in a




, -171 -

natural language. 'The problem of the definition of truth

obtains a precise meaning and can be golved in a rirsorous way

only for those lansares whose structure has been exactly

specified.'l
Secondly, Tarski does not claim that his definition has

anything to do with the philosophical problem of truth
he writest  'In general, I do not believe that there ig such a
thing as "thefphilosopﬁical problem of truth". I do believe
that there are various intelligible and interesting (but not
necessarily philosophical) problems concerning the notion of truth,
but I alsgo believe that they can be exaotly formulated and possibly
solved;oﬁly on the basis of a precise condeption1of this notion.'2
Tarski might not object to any of Black's argumentsy it is cnly
with Black's,conclusion'that'hevmight disagree.  This conclusion,
I have showﬁ, rests, for its balidity, on the extension of the
term"phildsophical reiévance‘,‘which Blaék appears’td havé'réétriéted;
1m&ﬂyr, i k | ‘ oy | S
Strawson has argued that the bemantie Theory of Truth is a.
’hisconception.3 . He malntalns;thax~the word_!true‘sis.ﬁnqt;@;;};;:,
,normaliy used inithé wéy tha_semanfig theorj daspribés,‘thpﬁgﬁk

it may be so used fof some technical purposes.'} He,maihtains¢tha$:;.ﬂ}

1. SCI. Section 6 g | ;
2. - SCT. Section 18 ‘ 3 i e
3+ P.F. Strawson, ‘Truth', Analxsis, Vol 9, No.é 1949 pp.83-97 S
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the semantic theory has its probable genesis in a confugion:
the confusion between the use of ‘'true' in a phrase employed
metalinguistically and the use of the word 'true' when isolated
from this phrase. = Strawson considers the meta-statementst
(1) "Ihe monarch is deceased" is true if and only if
the king is deéd.,
(i1) "The monarch is deceased" is true in English if and

only if the king is dead.
In'thése two statements "is true if and only if'is used synonymously
by Strawson for the phrase "means that". (the case of a queen being
‘disregarded by Str&wson)., He states that this use of the phrase
"is true if and ohly if" is‘métaiinguiatic.‘f He next considers
the following sentences

(1i1) "The monarch'is~deceased“:is\true in Bnglish if and
only if the monarch is deoeased. | |
_Sentences like (iii) he considers as degenerate cases of metalinguistio
statementS'of'the type of (1) and‘(ii) fHe.then~notlcea»the ;, 
‘simllarity between the use of the phrase " oand only if" in thia ;”
’type of metastatement and its use in: exyressions of: the fcllcwing }
typer = i e T
(iv) The monarch is deceased if and only if the kinﬂ is’
- dead. | : ; : 4; R | ; _i, oy
In sentence (iv) "wif and only ig" occurs, but the senteﬁce is’whatf~vv"’:1

Strawson calls a 'necessary or deflnlng formula 3 whareas in
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(1), (i1) and (iii) "if and only if" occurs as part of "is true
if and only if" in contingent metastatements. (They are contingent
because it is a contingent matter that the sentences mean what
théy do mean.) The similarity of the use of the phrase "if
and only if" in necessary formulas to the use of it as part
;of ‘the phrasé "is true if and only if" in contingent metastatements,
Strawson contends, may have consfituted a strong temptation to
- regard what follows the phrase "if and only if" in the degenerate -
cases of metastatements as the definiens of what precedes
it. - |
Having analysed a probable source of the misconception:
- involved in thé Semantic Theory of Truthg StrQWSOh,arguas'that the
normal uses of the word "true" are those in which the word
might be}réplaced bj some sﬁchrphrasé as "Ifconfirm it".
These criticisms are not directea against Tarski in o
~ particular, but, as Tarski and Carnap are the only two Writars
‘fmentioned by Strawson in his attack on the semantic conception
‘cf truth, I shall understand that Strawson does mean - them to be
:included among~those that he,criticises;*~'1-sha11 now offerisome“frs'
r ‘objectiona to Strawson 8 arguments. » | i ek

‘The premiss of Strawson s argument is that the aemantic Wy

'iconceptlon of truth rests on a miqtaken idea of the actual or

normal use of the word "true ' Thie implles ﬁhat thcsa whc B

RS

“e“‘put forward the Semantic Theory of Truth have either baen unawaref¥‘
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of the uses of the word "true", other than those proposed in the
theory, or in some way have confused the uses. But in fact
Carnap is well aware of the different uses of the word "true",

Carnap writes in his 'Introduction to Semantics®

'It is to be noticed that the concept of truth in the sense just
explained - %e may call it the semantical concept of truth ~ is fundamentally
different from concepts like "believe", "verified", "highly confirmed",
etc. ~ The latter concepts belong ﬁo pragmatics and require a referm nce
to a‘person.'l;

Strawson's contention that "true" may be adequately replaced by some
such phrase as "I confirm it", "I concede that" etc. ensures that
these'uses’beIOng'to what Carnap calis pragmatics, that is, they
require refereﬁce to a person, Consequently, the uses of the word
"trﬁe" wﬂich Strawson takes to be the normal uéeé of it fall outside
the Semantic'Théory of Truth, but at least there is no confusion
involved since the uses are clearly denarcated by Carnap, - Tarski
also accepts that there may'be\other;uses of the term "true" and
maintaihs that'this will make no difference to his thesié?t"

A time may come when we find ourselves canfronted with several
| incompatible, but equally clear and pracise, conceptions of truth.' It
will then become necessary to abandon the ambiguous uﬁawe of the word

"true" and to introduce several terms instead, each to denote & different o

notion. 2’i: B

1. Rudolf Carnap, Introduction to Semantics 1942 p 28 L
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'Wélshpuld reconcile ourselves with the fact that we are
confronted, not with one concept, but with several different concepts
which are denoted by one word; we should try to make these concepts
as élearlgs possible (by means of definition, or of an axiomatic
procedure, or in some other waﬁ.‘;

It is clear from the above quotations from both Tarski and Carnap
that the Semantic,theory does not claim to be the only theory of
truth. The concept of truth with which the semantic theory is
éonéérned may be different from Strawson's concept‘of truth, but,
, nevertheless, Strawson does not argue that the semantic theory

offers merely a differentbconcept‘of truth.  Strawson is arguing

_ that the semantic theory of truth is based on a misconception.

- I think that I have made 1t sufficiently clear that Carnap
and Tarski have taken considerable care to- dl%entangle the semantic
concept of truth from other concepts of truth and to guard
: themse1ves against the accusation of mlaconceiv1ng the notlon of“;
~'truth.i The claim . that Strawson makes, that the semantio theory
; in#olves almiscpnoeptioq of the ordinaryvuga of,ﬁha_wcrd,ﬂtrue? :
_can only be substantiated if~tho$e whb puﬁ fcrﬁard'the'ﬁhééryal;;_‘, 
contend that their deflnition of "true" results in a use of thaﬁk;;
“word which is coincident with its Qrdinary usa.f 1hls, hewev&r, i5a~’

“not the case, for Tarski writes:'

1. SCr. Section 14.
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'The problem of assigning to this word ("true") a fixed and exact
meaning is relatively unspecified, and every solution of this problem
implies pecessarily a certain deviation from the practice of everyday
language.'l'
This is not jﬁst a reiteration of the statement that more than one
concept falls under the word "true"; it asserts that the replacement
of a vague concept by a precise one necessitates a deviation from the
ordinary use of the word that expresses that vague concept. Tennesson
has argued2 that verbal communication is dependent upon the use of
linguistic lqcutions that are either‘a) suitable for some special
purpose or b) clear oi ¢) in accordance with ordinary language. If
either of the first two conditions is considered most important, then,
he concludes, the locution in Qﬁestion will no longer be in accordance
with‘éVeryday usage. . (He mehticns in this‘context‘Strawson‘s use
of "presupposxtlon" 5) Tarski's aims of clarlty'and precision ensureu'\
that his deflnitlon of truth will give a use: of the word "true" that
is not 001ncidenﬁ with 1ts everyday use.v 7

hore impartant still, the. definztion tbat Tarski has trmed
to construct for everyday 1anguage would not only imply a- deviation
from the standard use of the word ”true y it is not even
intended to make prec1se the normal use of the word, for Tarski

wrltes:

1.. SCT Section 17 ‘ ‘ e

2. H, Tennesson,"Perm1581ble and Impermissible Lccutions' in gui;@a
 Dedicated to Professor Carnap on his Seventieth Birthday 1962 :
3.0 P F.kStrawson, Introduction to losical Theorv,‘19b2,;p.17ﬁff.
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'A thorough analysis of the meaning current in everyday life
of the term "true" is not intended here. +os I would only mention
that throughout this work I shall be concerned exclusively with grasping

the intentions which are contained in the so-called ¢lassical conception

of truth.'l

It is true that Tarski believes that the semantic conception of truth
does conform to some extent with common-sense usage, but he regards
this as unimportant for his thesis.' In the’passage in which Tarski
states this beliefz', he takes care to differentiate between the

aims of the semantic definition of truth and his belief about the
semantic definition.. It would be wrong to suppose that this belief
‘ia particf-thébsemanfic theory's claimss . it is only an opinion about
the semantic definition of truth, an opinion which may be mistaken
éskTﬁrski admits.\v‘If Strawéoh‘had‘wanted‘tb‘shOW'that»the sémantic‘ &
theory of truth involves a misconception, then he would have had to show

that this misconception was of the Aristoteliqn ccnception of truth

 which is the only conception of truth with whlch Tarski wag concernad.‘
It may be that Strawson is correct in asserting that his own- use of

the word "true“ is more prevalent than: the metaling@istic use af the

~ word, . but this is no crltlwism of the semantic theory for the semantio  f‘y:’

theory does not aim at offerlng a deflnition that is in aocordance :

’w1th everyday usage.:f

1. CIF, Introduction™ =
2. - SCI, -section 17 =~ =~
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The foregoing arguments have shown that Strawson's criticiems
are misguided for they are directed ag&inét claims that the
semantic theory doesnot in fact make. These are my major
arguments agiinst Strawson but there is one point of detail in his
paper that I should like to consider further.

Vhen Strawson shows what he believes to be a probable genesis
of the 'misconception' he emphasises the importance that sentences
like '"It is snowing" is true if and only if it is snowing' play in
the semantic theory of truth. - He calls these sentences degenerate
metalinguistic sentences because they are degenerate forms of sentences
like '"The monarch is deceased" is true if and only if the king is
deadf which are metalinguiétic éentences. His main argument in this
gsection of his paper is based upon the assumption that the. semantic
thebry of,truﬁh is concerned primarily with such fdegenérate? gentences.
Stmwsonkwrités:l H »
"v ,'To read;thé degenetafé cases, then, ag spedificétions, or parts, .
of some ideal deflning formula for the phraga "15 true vis ta separate T
the phrase from the context which alcne confers this meta»linguistlc
use upon it, and 1o regard the result as a model for the general
use of "is true”. ‘1
And againt‘ | | |

/ ‘-‘.Q;“ tha muddle of readlng a dagenurate casé of contingent

statements metalingulstically employing the phrase 18 ﬁrue jﬁ gg g]x

1. ,Strawson,;'Truth‘.
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if,as a pseudo-defining formula of which the definiendum consists

of a quoted sentence follows by the phrase ig tfue «es - Inay have

contributed to the plausibility of the theory.‘1
The 'muddle' that Strawson attfibutes to the adherentw of the semantic
theory should not be ascribed to either Tarski or Carnap ain;e they
do not consider it necessary to insist on 'degenerate' cases like

'""It is snowing" is true if and only if it is snowing'. In 'The
Semantic Conception of Truth' Tarski does consider such sentences
throughout his paper, but it should bé remembered that this paper
is only expositarykin character and is limited to the non-technical
aspects of his earlier investigations.. Yet, even, here he
writes!t .

*(This requirement that every éehtencé which occurs in the

object-langﬁage muSt also 6ccur in'the meta1anguage-‘can be
somewhat modifled “for it suffices to assume  that the obaectay
1anguage can be translated 1nto the metalanguaga)' |
,I e. it is not necessary that "it is- snowing" oacur on the right
of M"if and only if" in the sentence.. ’“It is snowinﬁ" ig: true
if and cnly*if it is anowing“* it is only necessary that thers
| '»should be some translation of it is sncwxng“ on the right. Tha‘~f¢»*“ﬁ 

| problem of. construoting a definition which will have as ccnsequenoee

i sentences represented by the §chema = ia trua if and only 1f p“

1. Strawwon, 'Truth', section II

SCT. section 9
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where "X" is the name of a sentence, is not concerned solely with
those cases in which "p" is that sentence; it is wquslly

concerned with those sentences in which "p" is & 'translation' of it.
Tarski has made a simplification of his arguments contained in 'The
Concept‘ofiTruth in Formalised Languages'_and, in dqing 80, leaves
aside the.extra complication which would arise from the consideration
~of such sentences as '"The monarch is deceased" is true if and only
‘if’the king is dead'; but this simplifiCation should‘not be

seen as any part’of the muddle to which Strawson refers. Indeed,
when Tarski comes to construct a definition‘fqr an actual language
in YThe”Congept of Truth in\Form&lised Languages', peinoylbnger

. conslders ?degenerate’,caées eéep as:parﬁ,of his critgrion’of
adequacy for a definition of truth.l I shall discuss this actual
definitioﬁ'latér; for the moment 1 should just like to show that
.’Tarski, in the main body cf hls Work, dispenses with these
_'degenerate sentences.; It seems unlikely, xather than plausible_
&8 Strawson maintains, that such sentences which play 80 little

~part in Tarski‘s investigatlons should have been the basis of a -
_muddle in the semantlc thgory. ‘:' ' k | ‘
Carnap also pays little gttentiqn:to;ééntéhcgsépf;tbag?dggeh?rgta';
!“type for he wrltes:. v4 | B

‘ 'A predLCate pr in M is an adequate predioate for the coﬁcept ;’  :T1

| ~of truth with respect to an object languaga S "df from tha

1. I shall not discuss this criterion further at. thia,point a8 it o
‘involves a certain knowledga of Tarski’s terminology. .
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definition of pr; every sentence in M follows which is constructed

out of the éentential function "x is F if and ohly if p" by sub-

for "F", a translation of any sentence@Jk of S
1
1]

stitﬁting»rri
into M for "p", and any name of@ for "x".
It is only as examples in the expositary‘sections of Tarski's
paper fhat:thesé degeﬁerate sentencés occur, and, Carnap treats
themvas‘speoial cases of a more general type} not as sentences to
which spedialrimpdrfahce ié\aftachéd; :'Itjmay be the case thut
some confusion of the kind Strawson points out may be the source
of the semantic conception of truth, but it'dcés not appear from
the‘inveSEigafionsiof Tarski and Carﬁép. What does appear is
that Strawson has exaggérated, if not mistéken,'the role played
by such sentences as '"It is snowing" is true if and only if it is
sncwing' in the semantlc theory of truth. |
Strawson has dhosen to ignore the domalns to which the semantlc
theory has been applled in detail by Tarski. Strawson,is;"
concerned only with emplrlcal atatements; the'fruth’af:“éeﬁténcés
in a formallsed 1anguage does not” concern him in thia particular £
Vpaper. " He states, however, that "true“ 18 certainly uaed meta-’
linguistically for some teohnlcal purposes and presumably ha eensiders
that the deflnltion of truth for formalised languages as given by |

Tarsk1 is constructed for such a purpose. If thia is so, then a t:kk'

"1.“ R, Carnap, Introduction to Sem&ntics, pp.27—28 I RN
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more thorough analysis ofkthe term "technical purposes™ is needed.

It appears that there afe at least two ways in which "technical

purposes" may be interpreted. = Firitly, a’ term may be used in a

technical field e.g. mathematics or physics. Thus the definition

of "force", "work", "energy and "mass" in physics and "group", "field"

and "set" in mathematics are technical definitions, the definiens

of which belong to symbols and terms of a technical subject. These

words in a physical or mathematical context are certaihly defined

for a technical purpose; their definitions have little connection

with théir'use in everyday 1anguage;' It is not in this catagory

that Tarski'skdefinition of truth falls, for it is not constructed

within any technical languasge. Secondly, the definition may be

constructed for some purpose connected with a technicalvfield but

not as part of that technicalyfield;‘i Such terms as "model",
“hypothesis" and "explanatlon in oonnection with physics, "proof":

and "implies" in connection wmth mathemat1cs and "complete", |
consistent" and "independent" in connection with formalised

1anguages are used in thls technical: way. Targki 8- definltion ofjlﬁ
"true“ should come . in- this catagorJ rather fhan thﬁ former':: But

it is still not clear for what technical purposes the word ftrgg"zia ‘

'is defiﬁed’or.uSed‘bY“him;“ It’iS'his intenfion fo‘make'ﬁbré:k
accurate the notion of truth that is oontained in the classical
conoeption of truth for actual langwages or for artificial lanaua"eQ.* 

There is no change of procedure when he ccns1ders fbrmalieeﬁ
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languages; there is a change in the results of applying this
procedure to formalised languages but it is the same conception of
truth in both cases with which Tarski is concerned. The use of the
term "true" that his definition would imply would be the same whether
for formglised or actual languages.  Tarski's use of "true"
differs in this respect from the use of those terms that I have
listed in the second catagory, for they are terms that are used in
connection with‘their;technical fieldé‘in a way that is not intended
for everyday usage., Tarski intends to use the word "true" in the
same way for both the technical field of formalised languages and
for the non~technical field of everyday language. That is, his
criterion for the adequacy of & definition of truth remains unchanged
whether he is considering formalisdd or informal languages.-' Ir
it is the case that Strawson is willing td all0w the metalinguistic
use of thekwofd “"true" in connection with formalised'languagés, then
" he should allowvthatkit‘ié 80 used in.Conneétioﬁ Witﬁ é#eryday'
k~languager I shall nct consider this point further as it may be -

that Strawson is referring to some other use of "trua" when ha talks -

“kof "technical purposes VoS g

Knealne makes ona obgection against Tarski 8 definition in his

discussion of truth.lle He contends that truth is applicable

1. W, Kneale and h. Kneale, The Develcnment of LOﬁic 1962, eh.K - er;E;{

*section I
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primarily to propositions and that Tarski holds that it is applicable
primarily to sentences. He argues further that Tarski's assumption
that truth is primarily concerned with sentences leads to difficulties
in the case of those sentences that contain token-reflexive words
(i.e. words which locate things or events by relation to the circumstance
* of their own utterance). A sentence may be uttered on one occasion to
express & true proposition and on another to express a false proposition.
For example, the sentence "I am hungry" may be used at the same time by
two different people to express two different propositions, one of which
may be true, the other false.

To defend himself from these difficulties, an adherent of Tarski's
Vyconeeption of truth, Kneale,suggeSts'may‘say,that truthkia ascribed
in some primary sense to token utterances. (A token utterance in
Kneale's sense is a passing event of spesch, as, for example one
‘might say that someone stuttered in his last sentence.) If it is to
token utterances that those who subscribe to Tarski s theory attribute
truth, then the difficultles of a sentence changing its truth value with ‘
 varying circumstances are met.  But then it becomes impossible to use
Tarski's’déVicé,of:saying~”if‘and only 1f”,followed,hyfthe'sentenceh a
under consideration as a condition of the truth of that sentence. For:
‘it is 1mpo~51ble to use quotation-mark names for Yoken utterances cr
;to use thﬁ structural-descriptxve namas, ile. namss given to the santencea i
jby some such device as spellin . Alao, it is impossible ta use ths k

:f §gmg_§gkgg utter nce follow1ng'"if and only if" smnce a token utterance
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is not a form of words but a pasging event.

I shall attempt at this point to answer Kneale's
objection.

Firstly, Kneale appears to be wrong on a question of fact.
As indicated above, he maintains that Tarski assumes that truth
or the adjective "irue" is applicdable primarily to sentences,
whereas "true" is properly applicable to propositions, He
writesty. .

~'We hold that the adjective "true" is applicable primarily to

propositions, whereas he (Tarski assumes that it is applicable
primarily to'sentences.'l

In the same paragraph he makes the stronger gccusationx

'4ss the source of the trouble seems to be Tarski's unquestioned
beliéf;that ﬁruth is primarily a'prbperfy'of Sentences.‘z;(the under-
‘lining is mine.) ‘ | |
In fact, Tarsk1 makes no claim that "true" is applicable malnly to
‘sentences, at least, in neither of the papers referrad to- in my .

: diSCuSSlon nor in those referred to by kneale in hla bcok. ;,Itas

‘does not appear that Tarski, although nowhere sax;gg,tnaﬁwtruth‘ia,,- R

primarily a'property’of'sentences, might still be assumigg.ﬁhat;itris

‘such a property. On the contrary, Tarski isJQﬁite?éxplicitTbnﬁthisf?~‘1*"

y'matterx  ::

~ Kneale, The Development of Logic,. p 388 -
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'The predicate "true" is sometimes used to refer to psychological
phendmenaisuch as judgements or beliefs, smetimes to certain physical
objects, namely, linguistic expressions and specifically sentences,
and sometimes to certain ideal entities called "propositions".

By "sentence" we understand here what is usually meant in grammar

by "declarative sentence'; as regards the term "proposition", its meaning
is notorioﬁsly a subject of lengthy disputations by various philosophers
and logicians, and it seems never to have been made quite clear and

unambiguous. For several reasons its appears most convenient to

apply the term "true" to sentences, and we shali follow this oourse.'l
(The first underlining is mine,)

10f course, the fact that we are interested here primarily in the
notion of truth for sentences does not exclude the possibility of a
subsequent eitension of'this'notidn~t6”other Kinds of objeots.'
(The underlining is mine.) |
From these quotaticns 1t can easily ‘be seen that Tarskl does not hold
“that truth is primarily a property of santences.~ What he says is

that he is primarily interested in truth as applied to sentences, nat

that it de &pplled primarilyato,sentencea.,74F0r~the;way:in\which»

‘Tarski considers "true y it im mosf‘convgnient’fo*épply'thefferm”fo s

sentences; he does not say that 1t is the only appllca%ion af the term“'kj
"true nor the primary applicatlon of it. ho doubt the difficultiea =

1. . SCr. section 2.
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of extending his treatment of the word "true" from sentences to
propositions involves considerable difficulties, both philosophical
and technical, but Tarski does not consider it impossible or
inoo;rect to extend his treatment to propositions. =~ It appears that
Kneale is mistaken when he accuses Tarski of assuming that truth is
primarily a property of sentences. It is true that Tarski's papers
deal only with sentences, but it is equally clear from the above
quotations that he does not assume what Kneale suggesta.;

Secondly, Kneale writes of the difficulties that treating
aentencéé as the objects to which the attribute "true" is applied.
But_he does not say explititly what these diffioulties are

~ "When we are céncerned with mathematical’formulae ses oOT with
| other phrases that resemble his example in not cqntainihg,tmken-
‘reflexive WOTAS esvey Tarski's assumptionileads ta.ne‘serious.>'f i
'difficulties.' ;;.. ‘But these are- specxal cases, A sentence of the
commonest kind may be uttered at different tlmea and in different |
circumstances to express different propositions, some true an& some .
false. What Jones asserts by s&ying "I am: hungry" ia not the same 
'propasition as that Smith assartScby utterlng:ﬁhe;wordgkatjthsksama__f”

time,’nof~yet thefsame as that 3ones/asserted'by'uttaringuthefwords

1. . I ghould qualify this remark;\ Although it is clear from these
‘quotations that Tarski has not assumed that truth is primarily a G
property of sentences, it may not be c¢lear from the paper CTF, hoth o

quotations being taken from SCT. Indeed, the reader may get: thia lnéim* o

impression from CTF, but section 2 of SCT does appear to deny expﬁniti& |
the charges of such an &ssumption or "unquestione& belief“ " : o
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yesterdayl ~And when we say, as we sometimes do, that a sentence was
true at the ﬁime of speaking or writing, we obviously mean that it

was used then to express a true proposition though it could not be put
~ to that effect now. 't
The next‘paragraph beging: 'In order to escape from these difficulties
seels '»As no difficulties have been specified, it may be assumed that
Kneale is referring to some difficulty entailed for Tarski's procedure
by the changing truth-value of sentendes cont&ining’token»reflexive
words,  But in what way does the changing truth-value‘of a

sentence éffect Tarski's method? Taiski‘ is not trying to establish
a criterion of truth for sentences that will automaticaliy decide:
whether that sentenéé is true, It is not~the\fbrmfoffwofdsfthat
estéblishes‘the truth or falsityiof thé séntence by Tarski's definition
 kofvtrufh2; thé frﬁth'ofka sentencé like "It ia'snowingﬁ ié decided
eventually by making an observation. "Tarski does n6£ infénd that

’the truth of . "It is snowxng" to be divined by looking at the form
of'the‘sentence.v‘ ‘The fact that "I am hungry" has a changing truth-
value in no way’conflicts with Taxski g definitlon or prooedure. B

'he dses not intsnd to fix the truth-value cf all sentences far all

time. The most that Tarski! s;definition,allowg~as;inferences are 1

1. The Development of Logic P589, L e e
2. Although I speak of "Tarski's: definition $ it mu&t ‘be remanberad

that he has not given a definltion of "true" for ordinary 1anguage, but:if*x

only "outlined" it.“
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such sentences as '"I am hungry" is true if and only if I am hungry".
I do not mee that any extra difficulty is entailed by the fact that

"I am hungry" is now true and now false, for it is still the

case that '""I am hungry" is true if and only if I am hungry' is true.
The same 'difficulty' applies to all sentences of the English language,
since all such sentences contain verbs and all these verbs are tensed.
Tensed verbs are token-reflexive words according to Khealel, therefore
fhe same argument applies to "it is mowing" as to "I am hungry".

If he is to be consistent then he should place "It is snowing" in

the same category as "I am hungry" rather than in the category of
mathematical formulae.  Similarly, however, mathematical formulae
nay also changéktheir truth~value, i.e. théy'may~be 'true! in one
mathematical system and 'false' iﬁ another. (This will be the case
when both mafhematical systems havekthe'samé rulés of sentence
formdfion but differ'in the rulesfof %rahéfdrmatioh, e.g. by taking
differenﬁ axioms for the two ay;tems.); Kheale‘shouldroénclude"

from these considerations that all'Sentenées whether 6f brdihary
language or of some formalised 1angmage are susceptible to the same
or related gifficulties; but this is perhaps wandering from the

point.  What is in quéstion at the momentkia whether th&,cagnging o

" truth-value of & sentence is of ahy“importéhceffstTarski’s'éi&cé&ure;1 '*'m'

1. The Development of Logic, pp. 51-2° C L i
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I have shown above the reasons why I do not consider that it is
relevant to Tarski's method, but I shall perhaps make my point more
clear by giving an example. Carnap has given a simple semantic
system which contains token-reflexive words in the fom of tensed
verbs:l'

'We construct a semantic system S in the following way. 8
(that is to say, the object language of S) contains seven signs:
three individual constants, inl, in2, in5, two predicates, 1290 and
PTss and the two parentheses "(" and "M, ... Sentences of S are
expressions of the form pr(in). The truth-conditions are given
separately for each sentence by the following rules:

1. prl(inl) is true if and only if Chicago is large.

2. prl(inz) is true if and only if New York is large.

3. prl(inB) is true if and only if Carmel is large.

4. prz(inl) is true if and only if Chicago is a harbour.

5. piz(inz) i§ true if and only if New York is a harbour.

6. pr2(in3) is true if and only if Carmel is a harbour.

This is very similar to Tarski's procedure very much reduced in .
application. It is to be noticed that "Chicago is large" éontains
a;tdken—reflexive word, namely, "is", If pri den@tes the{word:ﬁlarge"

and pr, denotes "a harbour" (or "is large" and "is a harbour" respectively) :

2 B
and in a similar fasion in, denotes the word "Chicagd?-etc;;thenvthe

1. Carnap, Introdﬁotion to Semantics,‘pp.23§4
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Pr; are names, in Tarski's phraseology, of the words "is large', "is
a harbour", "Chicago" etc. The system S is then Tarski's procedure
exactly applied to the six sentences pri(inj). As can be clearly
seen, there is no contradiction or difficulty involves in the semantic
system S by the fluctuating truth-value of "New York is large" or,
in Carnap's notation, prl(inz). It ie not part of the semantic
system S to fix the truth-value of the pri(inj), the semantic systenm
fixes only the truth conditions of the pri(inj). The same applies
to Tarski's procedure; it is only the truth conditions of sentences
in which he is interested, it is not his intention to give a truth-
value. for each sentence that will :rremain unchanged for all

time, -

Thlrdly, Kneale argues that to escape from these difficulties
anyone who agrees with Ta:skl s prucedure might take refuge in token=-
sentences or utterances. ; That is, he might say that "true" is
primarlly an attribute of token—utterances; .~ Apart from the difficulties
involved in the use and mention of . such an utterance vhich Rn&ala |
has indicated, it seems an unlikely’hypothesis, bearlng in mind what
Tarskl has writtens.

:'Statements (sentences) are always treated here a8 & particular
kind of expression, and thus as 1ingulstic entities. Nevertheless,
when the terms "exPresslon ' "statement", are 1nterpreted as names
Qf‘égﬁg&ete series of printed slgne,,various.formulations which oceur

~ in this work do not appeaT td'be‘éuiﬁemébrrect}7dnd'givéf”tha”appéérgnca“”’
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of & widespread error which consists in identifying expressions of
like shape. This applies especially to the sentence '""It is snowing"
is a true sentence if and only if it is snowing.', since with the above
interpretation quotation-mark names must be regarded as general (and
not individual) names, which denote not only the series of signs
in the quotation marks but also every seriés of signs of like shape.
In order to avoid both objections of this kind and also the introduction
of superfluous complications into the discussion, ... it is
convenient to stipulate that terms like "word", "expression", "sentence",
do not denote concrete series of signs but whole classes of such
series which are of like shape with the series giveny; only in this
sense shall we regard quotation-mark names as individual names of
expressions.'1
From the above if may be deduced that Tarski would not apply his
procedure to token-utterances. .He is well aware of the difficulties
that would arise if he were to dg 80, But (referring‘to the second
argument) he is fortunately not obliged to use anybsuch'subterfuge.
It must first be shown that the chaning truth-values of certaiﬁ
sentences do lead to real difficulties forvhis»prooe&ufe. I do not
believe that Kneale has shown satisfactorily that they do.

I have now dealt in some detail with the criticisms of Black,
Strawson and Kneaie. Thérebis one'pqint that may»be notiéedé in

their'objections} they all consider the semantic conception of truth

1. CIF, Losic Semantics and Mathematics, p.156, footnote 1 =
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truth in connection with ordinax"y language, but as I have said in the
first chapter of this section, if Tarski's claims are to be discussed
then it ﬁill be necessary to investigate the main part of his work,
Which’ié dévbted to formalised languages. I shall ieave the foregoing
cfiticismé fbr the moment.r In the next chapter I ghall discuss in
moré detail Tarski's aims and purposes and then reconsider these eriticisms

in the light of that chapter.
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III

Cérnap asserts that the semantic conception of truth is intended
as an expllcatlon of the concept of truth as used in everyday language
and in all of tradltlonal and modern 1om.c.l By "expllcation",

Carnap understands 'the task of making more éxact a vague or not quite
éxact concept used in everyday life or in an earlier stage of scientific
or 1oglca1 development, or rather of replacing it by a newlj consgtructed,
more exact concept‘ 2 In this task of expllcatlon, the earlier
concept is called the explicandum and the new, replacing concept,
the exglicafum;‘ Carnap enlarges further on the notion of
 explication: T “ o | |
) 'Generally speaking, it is not required that an explloatum
.haQe, as nearly as possible, the same msanlng as the explicandum: it
should, however,correspond to the explicandum 1n such a way that it
can be used instead of the 1atter.'3 | o
Although Carnap states that the semantlc conception of truth
is 1ntended as an explioation of the everyday concept of truth, it
is not certain whether Tarski 1ntended his deflnition of truth a8
an eﬁplication or 1f Carnap chooses to regard it aa such._‘ Slnce ir‘dﬁ‘
‘,have said that I shall consider Tarsk1 8 derinition a success oi ak

- failure if it achieves or fails to qchieve ita intended purpoaesg it

~le Carnap, Meanine and Necessit 1956?'?!8 S e
3. ibid p.8- - s s ,'>-‘.,-V,u,.,w.ﬂA
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will be necessary to take some care over this point.

It is not necessarily the case that Tarski did intend his
concept of truth to be an explication of any earlier concept or to
be an explication of the everyday concept in particular, even though
Carnap may regard his own approach to the semantic concept as explic-
atory. For example, Strawson's analysis of the actual usages of
the word "true" could be regarded as an explication of the ordinary
concept of truth, but, to judge from the number of categorical
statements contained in his paperl’, it is extremely doubtful if it
was intended as such.

It'is, however, the case that Tarskil is engaged on a task of
clarification, thus fulfilling Carnap's definition of explication,

and, moreover, from a reading of The Semantic Conception of Truth

or from the quotations on pagesws,lje and \77 of this thesis it is
clear that Tarski, in maintaining that his conception of truth is
not the only one posalible, iﬁtends to givevwh&t is called by Carnap
an explication. ' For itis one of the properties of an explication
that it allows other explications of the same concept.i‘,(This
distinguishes the type of analysis given by Strawson from that .
given by Carnap; the former analysises the‘aétual'uses of the word
‘"grue", the latter replaces the actual use by another.)’“"

The further condition that'Cérnap givesiin:order fhat a

clarificaﬁiqﬁyéhould rank as‘ah expiication isvthat thékexﬁliéatu@

1.  Strawson, Truth.
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'should ... correspond to the explicandum in such a way that it

can be used instead of the latter'. As a condition, this is still
very vague. Quine enlarges on and clarifies this notion.1 He writes
of explication?

'"We do not claim synonymy. We do not claim to make clear and
explicit what the users of the unclear expression had unconsciously
in mind all along. VWe do not expose hidden meanings, as the words
"analysis' and "expliecation" would suggest; we supply lacks, e
fix on the particular functions of the unclear expression that make
it worth troubling about, and then devise a substitute, clear and
-couched in terms to our liking, that fills those functions. Beyond
those conditions of partial agreement, dictated by our interests and
purposes, any traits of the explicans come under the head of "don't
cafes".'z'

He continues further:

'We have, to begin with, an expression or form of expression
that is somehow troublesome. It behaves partly like a term but not
enough so, or it is vague in ways:that bofher usg, or it:pﬁts kinks
in a theory or encourages one or another confusion. But'alao~it gerves
certain purposes that are not to be abandoned, Then werfind a8 way
of accomplishlng those "same purposes throu gh other channels, using

other and less traublesome forms of expression."3

1. Quine, Word and Object, 1960, D 257 ff.
2. ibid, p.258
3. ibid, p.260
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As an example of an explication duine uses the ordered pair.

I shall use this example here, as it will serve as a model of
explication with which to compare Tarski's definition of truth.
According to Quine, the ordered pair, when first introduced by
mathematicians; was subjected to the single postulate

(1) (x,y) = (z,w) implies x =z and y = w.l
There are many "explications" of the ordered pair. It im only necessary
that they fulfil the condition (i). Thus, (x,y) may be taken as
2*,37 or as x+(x+y)2 or as {{x}, {x,y}?. They are all adequate
explications of ordered pair (with the reservation that the first two
are only explications of an ordered pair of numbers) because all satiéfy
(1). . Quine contends that the utility of "orderdd pair" depends on
there being denoted objects for it. Any of the above explicantia
will suffice, Not only do they fulfil condition (i), but they also
definé ordered pairs as numbers of classes which may be admitted as
objects.

To return to Tarski's definition of truth, the situation is
found to be siﬁilar to the definition of the ordered pair.lvahe
problem for Tarski is to construct a definition of truth fér &
language L which will be formally correct, that is, a definition
the definiens of which is expressed in clear and,unequivical terms:n

or terms which areAreducible to such. v2The,difference<between‘the

1. Quine may be right here but modern mathematiclans would use
logical equivalence rather than 1mp110ation in (1)s
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explication of the concept of ordered pair and the concept of
truth lies in the conditions that they have to satisfy. For the
ordered pair the condition is clear and unambiguous as stated in
(1) aboves for truth the condition or_conditions are not obvious
nor unambiguous. - Before any explication can be attempted it is
necessary to specify the conditiors that the explicatum must
fulfil.,

At this point Tarski fixes his attention upon sentences as
opposed to propositions and upon the correspondence theory of truth
as ppposed to the coherence theory of truth, the pragmatic theory
of truth etc. But the formulations of the correspondence theory
of truth are insufficiently precise for Tarski's purpose. He
finds it necessary to formulate a clearer condition than, for example,

The truth of a gsentence consists in its agreement with reality or

A gentence is true if it desisnates an existing state of affairs,

Finally, he formulates the condition thus:

(T) the sentence X is true if and only if p

where "p" is to be replaced by anj sentence in the language and

"X" by any name of that sentence. He modifies this oonditicn’to,
allow a translation of the sentence named by "X" to replace "p".

The definition must héve as consequences of type T. = (T) functions -
as (i) in the case of the ordered pair. Thé‘explicatumréf’ordered
pair must havé a8 a conséquencg (i); the explicatum 6? trutb ﬁusf

have as consequences sentences schematised by (T). It is to be
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noticed that (T) does not offer a definition of "true" but only

furnishes what Tarski calls a condition for the material adequacy

of ény definition of "true". This explains why the criticisms of
Strawson, Kneale, and Black appear to be misdirected.

Leaving aside the arguments Black proposes about the 'philosophical
relevance' of Tarski's definition, with which I have already dealt,
I shall now consider another of his arguments. Black argues that
even if a complete enumeration of words in a natural language could
be achieved and a definition of truth constructed for it, the definition
would still be unsatisfactory because no extenéion of it to other
languages would be legitimate, For suppose that a definition of "true
in the English language as of January 1, 1940 "could be constructed,
then the difficulty remains of extending the definition to cover, for
example, "true in the English language as of January 1, 1941".
According to Black it would be impossible to extend the definition
of truth to this second language without involving the)difficulties
which were noted in the discussion of quotation-mark mames.. Black
writes: | | |

*Anybody who 1s offered a definition of "true in the English
language as of January 1, 194Q" mist, therefore, resolutely abstain
from supposing that he "understands" the principle of the defiﬁition, :
in the sense of being able to give an.éXplicitrdefinition bf the
c?ncepts defined.: If,hé tries té give sucﬁ é fdrmulatiﬁn;ihe will.

succeed only in talking nonsense (uttering a sehtencé which breaks the-
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syntactic rules of the language to which it belongs.)™

This argument seems to confuse the definition with the
condition, & confusion that Black has been careful to avoid elsewhere.
Black states the generalisation of the sentences, '"It is snowing"
is true if and only if it is snowing', '"London is a city" is
true if and only if London is a city' and so on in the following
forms

. *(Q) For all x, if x is a sentence, then "x" is true if

and only if x.'2
(Black should have written "if "x" is a sentence" instead of "if x
is a sentence" in the above.) The sentence © is unacceptable for
reasons that have already been given in connection with quotation-
mark names. Dlack agrees with Tarski that definitions of type (&)
would fail to fulfil the condition which states that a materially
adequate definition of truth must give as consequences '"It is
‘rsnowing" is true if and only if it is snowing' etec. Black continues:

MIn default of a simple defintion expressing the irntent of
the condition, the best we can do is to write a gchemas

(8) s is true if and only if x.
. We may say, informally and #nexactly, that an acceptable definition
of "true" must be such that every sentence obtained from (8) by

replacing 'x' by an object-sentence and 's' by a name.of‘définité» G

1. Black, 'The Semantic Definition of Truth' section 7
2. ibid, section 3 o ‘ ‘
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description of that object-sentence shall be true. But we must
remember that to talk in this way is equivalent to paraphrasing

the unacceptable formula 6. At all events, (S) is not a definition
of truth, but at best a criterion to guide us in the search for a
definition. 't Black's formula (S) is the same as the condition (T)
given above, If Black's assertion is correct then Tarski is unable
to formulate condition (T). But (T) (and likewise (8) ) do not seem
to be 'paraphrases' of (8), for (6) uses an instance of a name-
function, in fact quotation-mark-names, and is only‘an attempted
definition of truth which is found not to satisfy condition (T).

It may be the case that a name-function camnot be found that could be
used in a definition of truth and would satisfy condition (T), but at
least condition (T) can be stated without inconsistency. If a
definition were to be constructed in some language L, then it may

be the case that the definition could be extended to another language
L, without involving the formila (6) either explicitly or

implicitly. This is the case when Tarski extends his procedure from
the calculus of classes to the calculus of relations and the caleuli
of many-termed relations. = On the other hand, it may bé_the'casa
that the definition is not extendible to other languages, as would be
the case of extending Tarski's definition of truth for the calculus of

classes to the general theory of‘clésses. But it cannot be extended,

1, ibid, section 3.




- 202 -

because of the peculiarities involved in the language which
expresses the general theory. It is not because it involves the
formula (8). In this regpect it resembles the definition of the
ordered pair, for, depending on the language in which "ordered
pair" is to be defined, ordered pair may be defined as {ixg {xyig
or 2x.3y. - If it is to be defined in the calculus of classes then
{{x} {xol} will serve, if in the theory of mumbers, 2,3,  The
only requirement is that the definition should have the consequence:
(x,y) = (2,w) if and only if x=z and y=w

Similarly, for the definition of truth the only requirement is that
itrshould give as consequences sentences schematised by (7).
As can be seen from the case of the ofdered pairy it is not necessary
that’the definition be capable of extension o another language,
but only that the condition it satisfies should be.

| Strawson too has mistaken the condition for a definition. He

writes:

- '+ the muddle of reading a degenerate case of contingent

stateménts meta-linguistically émploying»the phfase ig true if and
only if, as a pseudo-defining-formula of which the definiendum -

consists of a quoted sentence followed by the phrasevis‘true ..,'1

The objections of Strawson against the definition of truth, should.

' be directed agaihst‘the condition for the matdrial adequacy of =

1. Strawson, 'Truth’ section IT e
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such a definition, for, granted the condition, any objection against
a proposed definition would be that it did nét satigfy this condition.
What arguments may be put forward against a condition? The argument
of Strawson from actual usage may show that normal uses of the word
"true" do not coincide with Tarski's use of the word "true", but
it is clear that‘Tarski deals with none of these uses. Tarski is
content to find a definition that will satisfy condition (T). It
may certainly be objected that the condition is of no use for ordinary
language because any definition that satisfies it will be inconsistent
or that no definition can be found that will fulfil it. = But such
objections can only be discovered after the formulation of the
condition ahd they do not stem from,aubh considerations as Strawson's
Condition (T) does not act as the conclusion of Tarski's investigations,
it acts as the starting pﬁint for all later discussion. This in
turn shows that Kneale is incorrect in his assertion that:

Deis he:(Tarski) even goes on to argue that the possibility
of conétructxngvthe'ﬁaradox of the Liar within ordinary,ianguage
shows that for this, as distinct from a fomalised 1anguagé‘of sciencé,
" there can be no satisfactory definitlon of truth.: ,.4‘¥
To make . this lnto a correct assertion 'that aatisfies conditicn (T)'
‘should be added at. the end of the quotatlon. Tarski makes Buch

: assertiona only about those definitlons that would satisfy condition @)‘

1§_  tKneéle,.Thébbévéldpﬁeht‘of‘Loéic)’p{589;,
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It is not his critics alone who exaggerate Tarski's claims.
Russell has written:

'Tarski ... has shown that the words "true" and "false", as
applied to the sentences of a given language, always require another
;anguage, of higher order, for their adequate definition.'l Unless
Russell means by 'adequate definition' the same as Tarski's 'materially
adequate definition' in the sense that the definition satisfies
condition (T), then this too may be incorrect, for Strawson's use
of the word "true" does not need a hierarchy of languages or even
another language. If the role that explication plays is overlooked,
it is possible that statements made by Tarski about definitions of

truth which satisfy condition (T) may be confused with statements

made about "true". Tarski has guarded himself against allegations
that he is making categorical statementé about the use of the word
"true", by accepting the existence of uses other than his own. Although
he writeé in one papers |
'The concept of truth also is to be included here, (among
semantic concepts) at least in its classical interpretation'z‘v
I£ is not such a definite assertion as it'appearé, fot by "semantics"
Tarski in this context means:
'ees the totallty of considerations concerning those concepts
which ... express certain connectlons between the expressions of a

language and the objects and states of affairs referred to by these,

1. 3B. Russell, An Enquiry into Meanine and Truth, 1940 ch.4 :
2. - A, Tarski, 'The Egtablishment of bcientific bemantics' includad
in Logic, Semantics, Metamathematics. R
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1
expressions.'

Thus, what appears to be a dogmatic assertion about the nature of
- truth turns out to be tautologous.

In the remainder of this section I ghall consider Tarski's
definitioh of truth as an explication and I shall judge it accordingly.
In the next two chapters I shall be concerned with the definition
of truth for formalised languages in which Tarski's investigations
are conducted in more detail but which the above crifics have

neglected.

1. ibid.
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In this chapter I shall give an exposition of Ta?ski's
procedure for the construction of a definition of truth for é formalised
language.l It will be necessary to give this exposition in some
detéil gince my criticisms of Tarski's definition will require
it.

Firstly, Tarski characterises formalised languages as artificislly

constructed languages in which the sense of every expression is
unambiguously determined by its form. The essential properties

possessed by all formalised languages are the following:

‘a. for each language a list or description is given of all
the signs with which the expressioﬁs of a language are formed;

b. by purely structural properties those expressions called
sentences are distinguished from all other expressiéns of the
language}

¢. a list or description is given of the sentences called

axioms;

- d.  in special rules, called rules of inference, certain .
structural operations are embodied which permit the transformation
of gsentences into dther sentences; in particular,,séntences which

can be obtained by the application of this 0peration on the axioms

are called provable sentences.

1.~ Tarski's procedure may be found in CTF, seotion 2.
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Tarski adds that he is not concerned with formal languages
the expressions of which have no material sense., The problem of
defining_truth for such languages is not even meaningful. He
writess

'We shall always ascribe quite concrete and, for us, intelligible
meanings to the signs which occur in the languages we shall consider.
The expressions which we call sentences still remain sentences after
the signs which occur in them have been translated into colloquial
language. The sentences which are distinguished as axioms seem to
us to be materially true, and in choosing rules of inference we are
always guided by the principle that when such rules are applied to true
senfences the sentences obtained by their use should also be true.'l

Before passing to a specific language, Tarski distinguishes
an objedt language from ité’metalanguage. The metalanguage is the
language in which we speak about the object language.  Thus, the
description of expressions of the object language and the names of
expressions of the object language belong to the metalanguage.

For his object language Tarski chooses the calculus of
classes which, he says, can be regarded as an interﬁretation of the
algebra of logic. |

I shall briefly summarise Tarski's.déscription of the object
ianguage (vhich I shall call "0") and metalénguégé (Which I shall

call "M"),

1.  CIF, section 2
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Among the signs of O are "N", "A", "T", "I" which comprise the
constants of O and the variables "x,", "x,,", "x,,," and analogous
signs consisting of "x" with a number of small strokes added below,
which function as the variables of O, These are the primitive signs
of O, all other constants being introduced by definition in teims of
these.

In the meta-language M, there are 'translations' of the
expressions of O and what Tarski calls 'structural-descriptive' names
‘of those expressions. Thust

"N" has the translation "not" in M and the name "ng",

"A" has the translation "or" in M and the name "sm",

"T" has the translation "for all” in M and the name "un",

"I" has the translation "is included in" in M and the name "in",

"x" followed by k small stques has the translation "vk" in M

and is translated in X by one of the class variables of M,

||a", |lb" etc.’

and "st" where "s" and,"t"’are expressions 6f 0 has the name

"g ",

It can be seen that every expression of'fhé cbjectllanguage:g'
has both a transiation‘and an individual‘name iﬁ_M. ;;For‘examéia,
"TIx,Ix,x," has the naﬁe,"(((un“vi)“in)ﬁvIY\vI",and‘iheftransiation
"for all a, a is included in a".

In additic#rto these names énﬁvtranslatioﬁs“of;the expressions

of 0, the mefalangmage requires expressions‘of a genaral logigalf~   '
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character, e.g. "if and only if", and expressions from the theory
of equivalent classes and the arithmetic of cardinal numbers, e.g.
"infinite cardinal number".
By means of definitions the following signs of the metalanguage
are introduced.
L. x =4, if and only if x = (in"v ) v
2. x =y if and only if x = ng"y
3, x = ytz if and only if x = ( su'y)'z
4. x =z§ tk if and only if t is a finite n-termed sequence of
expressions which satisfies one of the following conditions:
a. n=I and x=t;, b. I a_rf__ x «z"k‘I LR
5. x = y.,z if and only if x = ytz.
6. x nf\k y if and only if x = (un”ka‘Yo
7. x =V, yif and only if x = (((ng"wn)"ng)"v,)"y.
. Next, therefollows the definitions of sentential function and
of sentencet

X is a sentential function if and only if x satisfies one of

the following conditions: (a) there exist natural numbers k and 1

such that x = § 1} (b) there exists a sentential function y such
¢

k
that x = §; (c) there exist sentential functions y and z such that

X w ytzg (d) there exists a natural number k and a senténtial function
¥ such that x =ﬂky.

X 1s a sentence if and only if x is a sentential function

- and no variable Vi is a free variable of the function x.
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The latter definition depends upon the concept of 'free variable'
which is defined as follows:

Vie is a free variable of the sentential function x if and only
if k is a natural number £ o, and x is a sentential function which
satisfies one of the following conditionss (a) there is a natural

number 1 such that x = i or X = iy 3 (v) there is a sentential
y

k,1
function y such that Vi is ' a free variable of y and x = i; (c) there
are sentential functions y and z such that Vi is a free variable

of y and x = y+z or x = z+y; (d) there is a number 1 distinct from

k and a sentential function y such that Vi is a free variable of y

and x n(\ly.

»

The following are the axioms of My

1. ng, sm, un and in are expressions, no two of which are

1dentical.
2. Vie is an’exPression if and only if k A of deis - distinct
from ng,‘am, un, in, and from each of the expreésiona v, if k ﬂ 1,

k
3. x“y{ig an gxpreséion’if an& only if x and y are expressionsy
x"y is distinct from ng, sm, un,vin‘and from each of tﬁe expréssians~
| 4. If Xy y, Zy and t are expressions, then x" y= z“t if and
'only if one of the follow1ng condltions are aatisfiedt (a) x = 7 and
: Y=t (b) there is an expression u such that x =z u and t - u.y;

(c) there is an expression 1 such that . - x u and y - u “t.  '

5. Let X be a class whioh satisfies the following con&ltions:
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(a) ngeX,‘smeX, uneX, ineX; (b) if k is a natural number distinct
from o, then vktX; (¢) if xeX and yeX, then x*yeX. Then every
expression belongs to the class X,

The Axioms of O aret

(a) N qig 1
,(b) . 1“2(\3({:[,2 + {2,3*"11,3)
(c) n1n, OB(iI,B'i?-,}'(\4(51,4&2,4 *ig o))
| ’(d) dI hr203(13,1°i3,2’ﬁ4({4,I+{4,g*14,3))
(e) ﬁl\)zm}n4(({3;1+i'3’2+i3’4).(51’544{2’3&4,3))- N 5lig o*
| | | Us(.is,i'«{e,a'is,s)))

together with the logloal axioms schematised by the following:

(a) "ANAppp",

© (b) "aNpapg",
(c) "ANApqAqp",
| (d) "ANANquNArpArq"

In these schemas ‘the sentential varlables p,q,r are replaced’by
sententlal functlons, the resulting expressions, 1f they are nat
’ already sentences, being converted inta sentenoes by unlversal
— quantiflcatian over ‘the free variables contained.in them.b.. f -

Tarskl then deflnes the notion af consequanoe and of provable

v sentences. 1 shall not give the definltions here, as I shall not neeﬁg.:f?wy
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- them in the later sections of this thesis.

Having constructed the definition of provable sentence,
Tarski turns his attention to the definition of truth for the
formalised lanéuage 0, the calculus of classes, Tarski rejects
the identification of "true sentence" with "provable sentence".
"Provablé sentence" has been defined (in M), but in such a way that
there remain sentences which are not provable and the negations of
which are unprovable. For example, the sentence’ (\I nZiI,Q is not
provable, nor is its negation m. Such‘an identification
would result in the contradiction of the law of extéluded middle.
Tarski is impelled to construct some other definition of "true
sentence" in drder tb avoid this contrédidtidn of the law.- Reverting
to the semantic concepfion of truth, he formulateé the condition of
material ,adeQuacy in fhe fdllowingccrnventiéns

'CONVENTION T. A formally correct definition of the symbol

iTr' (’deﬁofing the,dlass of allytrue sentenées), fomﬁl&ted in the metg-

1anguage, wi11‘be7cg11ed an adequatg definition of truth if it has

the following consequencess | : |

| “(a) all seﬁténcés which aré obtained from the e.kpreéaioh'

"y Ty if and only if rp“‘ b,%f substitu’cing for the ‘sym‘bcl "Sc" ‘a
‘stmoturabdescriptlve name )of any sentence of the 1anguage 1n -

questlon and for the s,;mbol p" the expresaion which forma the
: translation of this sentence into tha metal&ng&mg@; |

(b) the sentence "for any x, 1f xeTr then x e E (Whera ubn '_ S
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denotes the class of sentences).l

The definition of "true sentence" depends on the concept of
satisfaction which Tarski defines thus:

'The sequence f satisfies the sentential function x if and
only if f is an infinite sequence of classes and x is a sentential
function and these satisfy one of the following four conditions:

‘ (a) there exist natural numbers k and 1 such that x = ik,l and

f (b)  +there is a sentential function y such that x = § and

x =1 |
f does not satisfy the function y; (c) there are sentential functions

cf

y and z such that x = y+tz and f either éatisfies y or satisfies z;
(d) there is a natural numbei k and a senténtial function y such that
X = f\ky'and every infihite sequence,of:classes which dif fers from £
in at most the k-th place satisfies.the function y.o'
’(In the above definitipn "fk"‘and‘"fl“ denoté the k-th and 1l-th members
of the sequence f. ) |
From this definition it follows that a sentential function w1th
no free“variables (i.e. sentenoes) is satisf;ed eitherjby all
sequencesgéf classes or by none;«f!Thefdefinition of "true éentehca"
follows:i e | ’
Loy is a. true sentence if and only if x ¢ 8 an& every infinite

"sequence of classes satisfies x'S“k‘ 

1.  CTF, section 3
2. CTF, section 3
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This definition is materially adequate in the sense of
convention T, but that it is so may only be shown in the meta-
metatheory. It implies the following consequencess?

(1) for all sentences x either x{Tr or X ¢ Tr;

(2) for all sentences x, either x ¢ Tr or X € Tr.

These last sentences (1) and (2)bmay be proved in the metatheory

and they show that the class Tr is a consistent and complete deductive
system.  Thus, for every sentence of the language of the calculus

of claszes it ﬁill be either true or false and the law of excluded
middle will not be violated,

Tarski proceeds to define a related concept, the concept of

correct or true sentence in an individual domaint

"By this is meant (quite generally and roughly speaking)
every senfénce which is tfué in the usual gense if we restrict
the extension of the 1nd1v1duala considered to a given class a, -
oY = somewhat more pretlsely - when we agree to xnterpret the terms
"individual", "class of individuals”, etc., as "element of the class
a“,'"subclass of the class a" eto., respectiveiy.’l'
| With thls restriction on the 1nd1vi§uals con51dered, it is neoeqaar&
to interpret expressions of the type 'Txp' as 'for every aubolass A
X of the class 8 we have 'y and etpre851ons of the type 'Ixy a8

'the subclass X of ﬁhe subclass a is contained in the subclass y of

the class a'

'13 R CTw, seotion 3. -




- 215 -

There follows the prcise definitions of the concepts of

correct sentence in an individual domain of k elements and correct

sentence in an individual domain a. These depend upon the

definition of satisfaction, defined in accordance with the
limitation of the individuals to a class a. The definition of
the satisfaction of the sentential function x in the individual domein
& by a sequence f is the preceding definition of satisfaction with the
single modificafion that the sequence f must be an infinite sequence
of subclasses of the class a. Then follows the definition of 'correct
sentence' in two forms:

DEFINITION 25%° x is a correct (true) sentence in the individual
"domiinla if and only if x € 5 and every infinite sequence of sub-
classes of the class a satisfies the senience x in the individual

domain'a.k

DEFINITION 26 X is a correct (trme) sentence in an individual
domain with k elements - in symbols X € Ctk - if and onlyvlf
'there exist a class a such that k is the cardinal number of
the class a and x is a correct sentence in the individual
domain a.. |

DEFINITION 27 x is a correct (true) senténce ih.every
vindividual domain - in symbols x € Ct - if and only if for every» ’

clasa axisa correct sentence in the individual dcmain a.

1. The numbers of the defznitions given here are those in the text
‘ of CTF FURTINT DA ) R ‘
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At this point in Tarski's paper there follows a number of
important definitions and theorems, a knowledge of which I shall
need in t'he next section.

DEFINITION 28. x = & K if and only if

£ = Oy it Vet erobions ore e T, i e k) »
(This states that the kclass denoted by the variable Vi consists of
only one element.) |

DEFINITION 29. x = o\ if and only if

X = (\I((\zil,z + U 2(12,1. 62)).
(This states that every non-null class includes a one-element

class as a part.)

DEFINITION 30, x = {3 n if and only if either

,n4~i0andx= Ni€qor

n k¢ n+I(2 n+I

n ;4 0 and x = 1Ek(ik 1+I'11+I k))

( Fn states that there are at most n distinct one element classres.)
:DEFB@ITION 3l x = ‘6 if and only if either

naOa,ndxa[!.oor

n# 0 and x = (‘Zn I'Fﬁ'
({3 states that there are exactly n distinct one—alemen’c elassas.) »
o DEFINITIOu 32. xis a quwtltatlve sentenee (or a sentence
about the number of indiv:.duals) 1£‘ and only if the:ce exist a

Vfinite sequence P of natural numbers such that either x = Z"ln ”6
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orT X = 2 Ili ka.

THEOREM 8, If a is a cléss of individuals and k the cardimal
number of this class, then in order that x should be a correct
sentence in the individual domain a it is necessary and sufficient
that x e Ctk.

THEOREM 9., For every cardinal number k the class Gtk is a
consistent and complete deductive system.

TIEOREI-I 10, For every cardinal number k, Pr;Ctk but C%%Pr.
("Pr" is the symbol denoting the class of provable sentences).

THEOREM 11. If k is a natural number, and X the class con~

sisting of all the axioms together with the sentences o and K:k,

then Ctk = Cn(X).

fCn' denotes the class of consequences of the class denoted by the

symbol ‘in the brackets.) } .

Twmmla If k is an infinite cardinal number, and X the
class consisting of all the axioms together with the sentence o
andk all the sentences %l (where 1 is any natural 'numbér), then
Ct, = Ca(X). o
| "Theoi'ems 11 and 12 depexid on these three 'impoxy'tahff:‘" S
16@8: ’ - | : - o

IEMA H. For ‘e\}er}r cardiml number k .;\gctk. : |

| LEI;-—-;}&‘I.’ I‘fl k is a natural numf:ez": and li,.a;éardinraal ;numbexj :
di’sti‘nc# from k, then Ty € Ct, anaxkfmi,bgt ¥y § Ot and

L ecws

1. '._See;Apperidix 1. of m&_l‘a‘-#; ,"th?S%a‘Bfiaiﬁéi? 1%3}
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LEMVA K. If x € S and X is the class consisting of all
the axioms together with the sentence &, then there is a sentence
Y which is equivalent to the sentence x with respect to the class
X and such that either y is a wuantitative sentence, or y ¢ Pr or
y € Pr,

THEOREM 13, If k is an infinite cardinal number, then
there is no class X which contains only a finite number of
sentences which arenot axioms and also satisfies the

formla
Ct, = Cn (x).
THEOREM 14. If k is a natural number and 1 a cardinal

number distinct from k, then Ct ¢ Ot and Ct ¢ Ct, .

THEOREM 15. If k and 1 are infinite cardinal numbers,

then Ctk'u Ctl. .
THEOREM 16. If k is an infinite cardimal number and x ¢ Ctk,

then there is a natural number‘l such that x ¢ Ctl (in other words

fhe,class Cpk is included in the sum of all the classea Ctl).
TBEOREM 17. If X is a‘consistent claas of sentences which

contain all the axioms together with the sentence “ s then there

’is a cardinal number k such that X s Ctk; if X 13 a complete

~ deductive aystem, then X = Ctk : R

TEEGREm.la. In order that x:eCt,it is. necessary and sufflcient

'that for every cardlnal nnmber k, x & ctk | |
TIEGREM l9a In order th&t b 4 G Ct :Lt is necessary and B‘lffl(}le nt
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that for every natural number ¥, x ¢ Ctk.

THEOREM 20. TFor every cardinal number k we have Ct C Ctk,
but Ctk $’Ct.

THEOREM 21. The class Ct is a consistent but not a complete
deductive systen.

THEOREM 22. Pr &t Ct, but Ct ¢ Pr.

LEMA L. A € Ct, but « ¢ Pr,

THEOREM 23. If x is a quantitative sentence then
x ¢ Ct.

THEOREM 24, If X is the class consisting of all the axioms
together with the sentence &, then Ct = Cn (X).

THEOREM 25. If x ¢ S, x § Ct and i’f‘ci, then there is a
quantitative sentence y, which is equivalent to the sentencé b'e
with réSpect tovthe clags Ct,

THEOREM 26, If & is the class of all individuals then
x ¢Tr if a.na only if x’kis’ a‘correctk sentence in ‘yilzhe ,d’omain a3
 thus if &k is the cardiral number of 'th‘e',class a,i thex_d Tr = Ct,.

' THEOREM 27. Ct & Tr, but Tr ¢ Ct. -

’THEOREM 28. In order that x C: 'l‘r, it is necesaa,ry and
éufficient'thﬁt x is a consequence of the olass which consists of
}all the axioms together with the santence ek a.nd. all the sentmces
-‘EL ' where 1 is any natural number. l e | v -

. Tarski has beep able to find a strﬁctﬁral~characpe;isatiqn

_of true sentences, but, he says, this is purely accidental,
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It is owing to the specific peculiarities of the calculus

of classes and such a characterisation could not be carried

over to other formalised languages.

In the next chapter I shall discuss in detail the preceding

theorems and Tarski's arguments.




o 2,]( SCT, sectlon 12
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In a short discussion of the Tarski definition of truth
Luschei has writtent

'It is not incorrect to stipulate, for instance, that (an
expression of the form) "It is snowing here now" is a true
proposition in English if and only if it is snowing here nowj
indeed, any definition that yielded an incompatible consequence
or failed to satisfy this criterion would be wrong or inadequate;

but neither is it illuminating.'l'

This would be so if Tarski's definition allowed no other
consequénces'than those illustrated by the above example. Luschei
shares with Black a total disregard for the important and
interesting results of Térski‘s investigations, There is one
such’result,;which I have mentioned in the discussion of Black's
criticisms, namely, that for certain mathematical disciplinest

'.,. the notion of truth never coincides with the notion of

provability; for all provable sentences are true, but there are
true seniénces Wﬁich are not provablé.’gf' | '

‘ That there are. true but unprovable sentences follows from
,;,Lemma L and Theorem 28, Lemma L states that the sentence *is

not provable and from Theorem 28, together with tbe deflnltian of :

1. Luschei, The Loﬁical Svstems of Lesniewski, 1962, e 314
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consequence for the language 0, it follows that A is true.
Similarly, the quantitative sentences-gz, are true but not
provable. The fact that these sentences have such propertics
is surprising. It is surprising when the attitude of many
mathematicians is considéred. [Einstein has writtent
'A proposition is then correct ("true") when it has been

derived ... from the axioms,. The question of the "truth" o
the individual geometrical propositions is thus reduced to
one of the "trush" of the axioms. Now it has long been known
that the question is not only unanwerable by the methods of
geometry, but that it is in itself entirely without meaning.
We cannot ask whethér it is ﬁrue that only one straight line
goes through two points. «... The concept "true" does‘not
tally With'the‘assertiong"of pure geometry, because by the
word "true" we are eventua11y in the habit of designating
always the’correspohdence witha "real" object geometry,vhowever
is not conéerned'with'the relation of ‘the ideas involved“in
it to the obaects of experience, but only w1th the 1ogioal
connection of these iﬁeas a.monb themselves.l

This attitude is found in a modﬁrn‘book>onklagidizf’"k

kf.;;kityﬁés become more ahd'mbre“widelyéaccéﬁted-dﬁring

1. A, Einstein, Relativity, translated R.W. Lawson, 1920, p.2. -
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the past hundred years, with the result that it is now the
orthodox doctrine, that to say of a mathematical proposition
p that it is true is merely to say that p is true in some
mathematical system 5, and that in turn is merely to say that
p is a theorem in 8, Thus, the gemantic notion of truth of
mathematical propositions is replaced by a syntactical one;
instead of the ordinary meaning of truth, there is offered

a criterion of "truth" solely in terms of logic « formal
deducibility within a given postulational system.'l

Tarski has stressed the importance of his result (the second
quotation of this section was italicised in the original) so
that,‘in view of the above considerations, it would be useful
to investigate how the result was deduced. I have already
given:the theorems:from which the result that & is true but
unprovable follbws but I shall now investigate in more detail
’the agsumptions necessary for such a deduction.

It follows from Lemma H that d.€Ctk for every cardinal
number k and thus from Theorem 19 that & €¢Ct, which, in combination
* with Theorem 27 yields the consequence that . « € Tr of, in other
words, & is a true sentence of'the]calcﬁlus,of,claases.;;tTha

origin‘of the theorem that & is a true sentanbe may therefore be

1. CPLH. Nidditch, Elementarv Lomlc of 8019nce and Nathematics. 1960
PP. 286-287. . , , } ,




- 224 -

traced back to Lemma H, which, Tarski writes, is 'almost
immediately evident'. The problem now is to prove Lemms H, for
although Lemma H may be almost immediately evident it requires
more than this for Lemma H to be asserted as a theorem. It

is easy to see that Lemma H is "self-evident" if the procedure
that Tarski illustrates in the third section of '"The Concept

of Truth in Formalised languages" is followed. - In this
procedure, the sentence under consideration i.e., de Ctk is
submitted to a succession of transformation rules, which remain
implicit in the unformalised meta-theory, until the following

sentence is reachedt

~ d~ectk if and only if for all sub-classes a of a class
g with cardinal number k either (for all classes b a is included
in b) or (there is some‘class ¢ such that {(c is ineluded
in a) and (not for all classes d is ¢ included in d) and (for
all classes e e is included in ¢ implies [‘c ig included in
e or for all classes f e is included in £])})

Having obtained this translation, the sacond‘part‘cff
théfequivalence being inferred from the theorems of the

.caleculus of classes,. 1t can be deduoed'thatt%ﬁis-a-éorréot~'

sentence in a domain with k elements.,  This procedure is exactly

" analogous to that given belowt

ﬂ \)2 I, 2‘ € Ty if and only 1f for all clasees 8 there

is a class b such that 2 © b.. .
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From this we infer without difficulty, by using the
known theorems of the calculus of classes, that () I Y 211’2
is a true sentence.'l
At this point it can be seen why " &€ Ct," is immediately

evident. It is because a translation has been effected into
a more familiar language. But such a procedure is dangerous
as it tends to slide over the question of how the trunslation
18 established as a theorem of the calculus of classes., This
is not only the case of " chCtk" but algso of any other sentence
of the formalised language. - Such sentences as " C\I\) 211,2 '3
Tr" can be established by reading off the translation of whatever
procedes " € Tr“ and checking to see if it is in fact the
case. | |

~y4,Finally, then, the investigation of how it is deduced
that & is a true sentence leads back to an examination of the
initial assumptions of the meta-theory. It is Quite clear what
Tarski intendedy the analogy with '"Snow is white'" is true if
and only if snow is white' is apparent. .  Although there is
*no'pafgphrase:iﬁ'thellast mentioned sentence, there is a gimilarity
of approach - a‘meta—linguistic.senténce,is,aaserted,bj‘appeal. |
to an.éxtfé-iinguistic fact, In‘the;cééé of '“SﬁdW.is whi te™

is true' (a meta-linguistic statement), it is asserted or denied

‘1. CTF, section 3.
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after an empirical enquiry. In the case of " C\I\J 211’2 e Tr",
it is asserted or denied after it is known whether, for all classes
a, there is a class b such that a is included in b. It is

here that the analogy breaks down, for how is it to be established
that this is the case? Unlike "Snow is white" there is no
empirical fact to which a statement about classes can correspond.
There are only three ways in which such a statement could be
establishedt- Firstly, by an appeal to intultion; secondly,

by appeal to some model of the calculus of classes; thirdly,

by an investigation to discover whether it is a proven sentence

in some-axiomatised system incorporating the caloculus of classes.
It ié~unlikely that Tarski intends that intuition should
participate in the establishmeht of theorems, for intuition is

a notofiousiy bad guide for the’calculus~6f;classes.i~ Ir,

as in the secénd,case, it is assumed that the translations can

be checked against some model (for.example, the»statements could
be interpreted as being "about" the regionaqu a squara),then
generality is lost. = (I do not use the word "model"™ in its -
'technicél,maﬁhématical sense'as'this would‘imply‘a pbstulate ‘
set‘for tbe transiation statementsy -1 uselfhe term~ih thévsense
that each stateméht can bekread as a'gtatemehf gbqﬁtathérregiéns
of a sqﬁare).~ The last case presenté»wh§t~appearé~tcrbe a-
réasonaple é}ternative;lﬁut‘eéeniﬁais?is hdtfﬁithauﬁ ité éifficultias.

If the translation statement can be asserted if and only if it is
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a theorem in some axiomatised system, what system is it?
Because the translation is written in terms of "classes",
"is included in", "for all" and "there is" it would be natural
to assume that the axiom system would be the calculus of classes,
The difficulty of this approach is that the axiom system would
then be the calculus of classes, differing only from the
formalised axioms (given already as the axioms of 0) in its
notation.lf

Unfortunately, this would not allow for true but unprovatble
sentences such as & or‘§‘. That this is so can easily be seen
from the fact that the axiom system O yields exactly the same
theorems as the axiom system from which the ftranslation statements
are deduced. So the new axioms system cannot be equivalent
kwithkthe axiom system O if‘itvis~to gi#e ag a consequence the
(translation of) the sentence & . These axioms, whatever they
may be, will form part of the axiom set for the meta-language,
some of which have been given in the last section. - Tarski does
 not indicate what axioms they are in particular;k‘he does say
kthathfhéy'are'ﬁeneral‘iogical axiéms:whiohfsﬁffice fora
sufficiently comprehensive system of mathematical 1@&10.

The conclu31on of the preceding parawraph 15 ﬁhax the metaw

1. Of course, the gxiom sets may dlffer but 1f both are to
" be called the calculus of classes it would be necessary
that they be equivalent axiom sets. ‘ .
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theory has as its axioms those axioms of the meta-theory listed
in section IV together with axioms of a general logic which
allow as theorems & and E;. Amongst the axioms there must

be some from which the axioms of O, when translated, can be deduced
gince it is one of the theorems of the meta-theory that all
provable sentences (of 0) are true sentences. But the result of
the meta-theory that there are true but unprovable sentences of
0 would then say little more than that the calculus of classes
(given by-the axioms of‘O) is incomplete, i.e. there are
sentences of O which are unprovable and the negations of

which are also unprovable, but can be completed by the

addition of sentences as axious (in this case the sentencesd and
%i)’ This is the import of Theorem 28. That it is possible
to complete the axiom set by additional axioms which are again
provable from a more comprehensive axiom system is a peculiarity
of the calculus of classes. It is so because‘the calculus

of classes is part of a larger general system of logic, It
would not be possible in the case of & geometry‘ofi“iines"

and "points", for then the principles~of~ldgic;émployed would

be the_same in the formalised geometry as in its ﬁnformalised
éounterpart; (I‘shall show this 1ater) It is apparent that :
1n the case of the calculus of classes, there are two different
;‘logios employed. In the formalised‘language 0 the only axioms

’_ pecified are the axioms for ‘the calculus of classes and certain :
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axiom schemats which are limited to the axiom schemata of the

propositional calculus.l In the meta-language M, not only

are the axiom schemata for the propositional calculus allowed
as axioms, but also the whole set of primitive propositions

that are included in Princinpia Mathematioa.z This accounts

to some extent for the difference between the theorems of O
and the theorems of M. But this raises yet another question.
What makes the axioms of O form an axiom system for the caleculus
of classes? VWhy are there just those axiom schemata belonging
to the propositional calculus and no other logical axioms such
as those used for the matatheory M?  The question is now
removed to more fundamental grounds and the relationship between
the formalised calculus of classes (called by Tarski "the
~algebra of logic") and the unformalised language in which the
fqrmalised calculus finds an interpretatioh>must be investigated
further. »

Besides the proof that < is a true but unprovable sentence
of the calculus of classes, there are other préofs embeddied
inkthé‘méﬁastheory that raise differént‘thnugh related -

problems.,

1. cf. sectlon IV of thls thesls

2, I have assumed this as Tarski dlrects the reader to the
 Principia Mathematica for the general logical axiomsj he
~does not, however, speclfy any one part of that work, cf.
CTF, sectlon 3
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Theorem 28 is proved from Theorems 12 and 26, but only
because:
| | "We can show, on the basis of the system of assumptions
here adopted, that the class of all individuals is

infinite. 't

These assumptions must be derived from the general logical
‘axioms of the metatheory since the specific axioms of the
metatheory (see section IV) do not include any axioms about
'individuals'. These auxiliary axioms do not occur as
axioms of the object languagéyo. Again the legitimacy of
the approach depends on the relationship between the formalised
- axiom system 0 and the axiom system for the unformalised
interpretation of 0.

At this point it}will‘be'necesSary to look more closely
‘&t the nature of the terms 'fomalised 1énguage‘, "interpretation',
'the calculus of classes'y, and 'the algebra of logic!, all of
~ which play a fundamental role in Tarski's investigutiOﬂs.
_bUﬁfoftunately, Tarski is not very explicit about his use of
; tﬁeéa terms, At the beginning of Séctioﬁ IV I have given a list
éf whét Tarski éonsiders‘ta bevthe essential cﬁaracﬁeristics |

_of a fornalised language. The one characteristic that is

’fi; ’kCTF;'section bR
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important for the present enquiry and serves to distinguish

formalised languages from formal languages is the existence of

an interpretation of the symbols of the formal language.

'We shall always ascribe quite concrete and, for us,
intelligible meanings to the signs which occur in the language
we shall consider. The expressions which we call sentences still
remain sentences after the signs which occur in them have been
translated into colloquial language. The sentences which are
distinguished as axioms seem fo us to be materially true,
and in choosing rules of inference we are always guided by the
principle that when such rules are applied to true sentences
the senterices obtained by their use should also be true, !

The above quotation still leaves a certain végueness for
what does 'materially true' mean?  Surely it cannot mean
'intuitively true' nor 'true for some model' since these
terms are also surrounded by diffioulties, as I have already
indicated.‘¥ The 'materially true' must iefer~to~brbvability;
in'some aﬁiom system. It is thé samé for the‘term ﬁconcrete
énd ...’ihtelligible meaningé' - how much mbrévcpﬁcrefe énd w
intélligiblé,is"fqr all*gl&séés'x; x is inélude&’in x!

than 'TIx, Ix;x.'? It is true that 'for all classes X, x is

1.  CTF, section 2
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included in x' has the appearance of being more understandable,
but for the reason that it is written in everyday English.
It must not be forgotten, however, thatthe terms in this sentence
differ in their use in a mathematical context from their use
in colloquial language. They are subject to exact rules in a
mthematical context; their use in colloqulal language is not
exactly defined.l It is a false impression of 'intelligibility!
that is gained., There is a psychological impression of
'intelligibility' because of the paraplrase into colloquial
languages it is a false impression because it ignores the
essential difference between the colloquial and mathematical
uses of the terms. The rules which govern 'for all classes X',
'is included in' etc. in the mathematical sense would turn out
to be those rules already formalised invthe axiom system from
which the paraphrases were madé. S e

Ithay be assumed then that 'the ccncrete meanings!
ascribed to the signs: of the formallsed 1&nguage are alements
of another axionm system. It remains to discover between which
two ax1om systems the semantlc rules establlsh thxs 'maaning

relatlonshlp. iThere 1s ‘no doubt that,the formallsedulanguage

1. Ryle, Dllemmas, 1954, ch&yter VIII; F. haismann, "Werifiability!
in Easavs on Logic and Lan”uaﬂe, edited hy Antony Elsw, -
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O is one of the axiom systems and, in fact, the one to which
meanings are ascribed. The other is the axiom system for a
general logic, for example, the set of primitive propositions

taken from the Principia Mathematica, suitably translated into

the language of the meta=-theory. Thus, if the calculus of
classes is interpreted as a part of this larger general logic,
certain sentences of the calculus of classes follow from the
general logical axioms alone. In this way, the sentences o
and.‘;Si can be proved as theorems in the calculus of classes
in the metatheory. That this is possible in the meta-theory
and not in the object language is because of the restricted
number of logical axioms allowed in O. It must be remembered
that O contalns only a limited number of logical axioms schemata,
namely, an axiom schemata set sufficient for the deduction
of 311 true sentences from the senteﬁtialkcaléulus.

This explains the difference in extensionkofi”trua"
and "provable"s a different set of logical axioms is taken
in the meta-theory. Thekadditional assumptions account'fcr the
fact that<i appears as a theorem in the méta-language.l
E The valldity of this approach now rests on there baing

good reason far the restrlotlon on the 1ogioal assumptians amplcyed

1., I have written." A" and "y, "; when strictly I should h&ve
written "translation of %™ and “translation of ¥. "5 but which

one is intended should be apparent from the context. Sometimes both
are understood by "o, but here again it should be apparent from

~ the context.
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in the object language.

Ultimately, it must be decided which axioms are necessary
and sufficient for the calculus of classes. This in turn
demands that 'the calculus of classes' be adequately defined.
It is Tarski's responsibility to provide a precise and
rigorous definition of the calculus of classes so that there
may be no doubt as to which assumptions are made for
it.

Unfortunately, Tarski nowhere defines what he means by
the calculus of classes. The only reference that is made
which relates to this point is as follows?

"The calculus of classes is a fragment of mathematical

logic and can be regarded as one of the interpretations of the

algebra of logic;'l‘

By "the algebra of logic" Tarski means the following:

A class K of elements with v and o elements of combination

subject to the set of postul&tes:

Ia)  ‘ avb is an element of‘K’when>a énd'b;aré‘elements
of K. |
Ib)  anbis an elenent of K when a and b are elements

of Ke oo

1,  CIF, section 2.




- 235 -

IIz) There is an element, N of X such that
au\ =a for all elements a of K.
IIb) There is an element W of K such that
anV =a for all elements a of K,
ITIa) a. b =b . a whenever a, b, and a v b are
elements of K.
IIIb) é an b="5ba a whenever a, b, and a n b are
elements of K.
IVa) a . (b w e) = (av b) n (a v c) whenever a, b,
¢, and av (b n c) are elements of X.
o) ani(bvwe)={(an b)v (a ~c) whenever a, b,
¢, and a o (b v c) are elements of X,
V), If N andV exist and are unique then for all
| all elements,a‘ofbK,,there exists an element
. -a of K such that a v »a =V and a n -a =A.
VI)  There are at least two elements x and y of the
| ~class K such that x A y.lf 5
. At least the algebra of logic is rigorously defined.
It cannot be said that the same is true of the calculus of classes.

Tarski's readers know only that the calculus of classes is en

- 1. . Tarski indicates this by referring to Whitehead and Russell,
Principia Mathematica 2nd. edition, Vol.i, pp.205-12 from which I

- have taken the postulates in the above form. - They are due to Huntington,
‘1Sets of Independent Postulates for the Algebra of lLogie'y, Translationa
of the American Mathematical Society, V, (1904), pp.288-309, »
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interpretation of the algebra of logic defined above. It

is not clear what is meant by an "interpretation".  Presumably,
"interpretation" is used hdre in the sense of "model", i.e.

A is a model of B if and only if there is & correlation
between the elements of A and the elements of B and between

the operations of A and the éperations of B such that the
elements of A satisfy the axioms of B under these operations.
But this does not necessarily imply that the algebra of logic
exhausts the calculus of classes. For example, the postulates
of group theory have a model in the domsin of integers but not
all properties of integers are provable from these postulates
alone, e.g. the commutative law of addition. = In the latter
case the postulates of the group theory would not be called a
formalisation of the theory of integers. - Analogously, unless
all’the.theorems of the calculus of classes were given by

the postulate set for the algebra of loglc, the algebra of
logiefshéuld not be regarded as a formalised theory of the
calculus’of ¢lasses. | qu it is not with the truth of -
sentehces.bélongihg to tﬁe algebra ofklogicythat‘Tarski is
concerned but the truth of the'senienées’afwthe:calculus 6f

¢classes.

Russell‘alsoiwritesl"that the Caleﬁlus of ‘classes’ is

1.0 Whitehead and Russell Principia Mathematica;‘vol.i, P.208,
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an interpretation of the algebra of logic and with the introduction
of definitionof 'C ' '¢'y "o 'y ' = ' proves that the
calculus of classes satisfies the postulates of that algebrg.l
But this is no help in the takk of clarification. It does not
say what the calculus of classes is taken to be. Does the
calculus of classes include the axiom of infinity for example?
(The axiom of infinity is crucial for the proof of EK in the
meta~theory M).

There are two altermative explanations that now account
for the difference between the extensions of "true" and "provable".
Either there is some axiom set in the calculus of classes which
has as consequences the sentences o ami'gior there is some
extraneous logical axiom set, which, together with the axioms
of the caICuius of classes, AIIOW'the deduction of the sentences
o gnd,i;,, Neither alternative is satisfactory. For, if the
first alternative is the'casé,then the axioms should appear in
‘the formal axioms of 0 and if, on the other hand, the second
alternatlve is the case then the loslcal axioms of O would be
unduly restrlcted. | | '
The resulting confusmcn between the aﬁioms ‘of 0 and the

 axipms ofrthermetaftheory'l is due,to‘qne peculiaplty,of the

1. ibid. Definitions *22.01 - %22,05
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formal mathematical discipline considered by Tarski. The
calculus of classes is part of a more general logic.  (The
other disciplines that Tarski cbnsiders in this paper
'possesé the same characteristic. The caioulus of two-term
three~term, and n-term relations and the generslised theory
of classes all fall within the province of mathematical logic),
To place the problem in a clearer light it will be sufficient
to consider some formalised language, the content of which
does not form part of logic. There seems no reason why
this should not be done as Tarski does not indicate that only
formalised languages belonging to mathematical logic can be
treated in this manner. I shall consider some axiom set
from the axioms of plaie projective geometry,

. I wish to consider the following propositionss
,a) . for any two lines thére is a pcint,that lies in.both, b) there
is at most one point belonging to two distinct lines and ¢) for
any two poinfs there is a 1ine”which,yasses;through them, L If
theée‘thrée pr0posifions areytreated‘as,axioms‘of‘éome:projeotive
geometr&, they will form aléet of,axioms‘of’inoidencé for thét
' geqmetry.w_’In order to b:ing‘thesé'cénsiderationé into cloéer'k
anélogy‘with the,gieced;ng, I shalllgali,prgpégitiqnsy&); b)_~
‘ ‘and o)\faxioms,cf incidence theory"_in.fhe~same way,thatvthe,axicmé;

of 0 are called "axioms of the caldulus’of c1asses“s




- 239 -

I may now formalise these axioms thusi

M (Li)(LjIE %) (kaLi.IxKLj).

Axion 1T (1)(L,) (Li;éLj) ((xk)(xl)((rkai.kaLj.leLi.xlej)
(x,=x,)))

M (xi)(ijELkXIini.Iijk).

(The difference of type indicates difference of semantic

categoryl).

In a similar way, other propositions from projective geometry

- may be formalised. 4An approach analogous to that adopted

by Tarski for the calculus of classes may be made to this

ﬁalculus of incidence theory, treating the latter as an object

1angugge,'"A’new'metélanguage may be constructed in which

the‘cbjectflanguage'may be talked about. - Following the

‘»'procedure outlined in section IV of this paper it is possible
~to construct in the metalanguage the definitlons of sententlal
‘rfunotion and sentence,  The def;nltlon of "axiom" (in the me ta-
: 1anguage) will be such that Axloms I, I, a.nd III Would ‘be
,axioms‘under the definitlon. Also‘inqluded‘inithejdeflnition

" of "axiom" would be axioms from the aententia1 calcu1us~(as in

: 1; : For a further discussion of semantic categnrias, see
CTF, section 4. ~ . ;
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the previous definition for the calculus of classes) and axious
governing "=",

The axioms for the metatheory would be similar to the
axioms for the metatheory M of the calculus of classes, that
is, axioms relating to expfessions of O and the formation
of these expressions. The notion of consequence and provable
sentence may then be defined in the metalanguage; the
definitions would not be différent, in principle, from those
of the same notions for the class calculus. (The logic of
quantification theory would be incorporated in the definition
of consequence)

After this meta~-language has been consiructed it bvecomes
possible to formulate a convention similar in outline to
Convention T (Section IV of this paper). In fact, Convention
T may be transferred to the new metatheory exactly as it

‘standsl, if it is remembered that the language referred {o
~in the Convéntion’is, what I have called, "incidence theory",

It still remains, however, te‘constrﬁct éoﬁe.notation‘
iﬁ which/hames of the various expressions in thé new dbject,
langumge could be formulated, This offers mo new difficulties

. a procedure analogous to that exemplified in 1 - 7 _cn»page

1; : CTF, sectian 3 or section IV 6fiﬁais,tﬁesis; L
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of this paper could be adopted.

Thekconcept of satisfactioh is more complicated hecause
of the difference of semantic category between the variables
of the object language. This difficulty may be overcome by
employing the method of two-rowed sequences which Tarski
explains.l' The definition' of satisfaction would then be formulated
as follows:

‘The séquence f of points and the sequence ¥ of lines together
satisfy the sentential function x if and only if these
satisfy one of the four following conditions: (a) there
exist natural numbers k and 1 and fk lies on Fl and x = ik,l’
(v), (c) and (d) as in the previous definition of
satisfaction® but with relevant changes made as in (a).

i ”(xt should be noted that "ik;l" in condition (a) is the
structural-descriptive name of “kaﬂl", and'not("lxkxl" as it
was in~the’la3t section of this paper. Rlso, condition (&)
‘will now be divided into two divisions‘correSPQnding'to the
‘two distinct operations ofkuniVersal quantification over
_points and universal quéntification’overﬁlinés.  \Thé;symboliam
" employed in Axioms I-III may be trangfdnméaﬂiﬁto‘a'syﬁboliém‘
eloser to that employed by Tarski in hié papér”by uéing the
Lukasiewicz-Tarski notation rather thanlthE”PéahoéRussall§

reducing the sentential connectives to "A" and "N", changing

S 1, CIF, sectiond4
2.  Section IV, p.54
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the notation of the quantifier "( " to "II" and defining all
other logical terms by means of these. Lxiom I would then

read?

n
,,"IILlIILllNIlellNNANlellLlhlellLll .

Strictly, these changes would be necessary for the conditions
(c) and (d) above to be transferred to this theory simply and
direéﬁly. I shall, however, continue to use the Peano-Russell
notation as I think it is easier to understand in longer
sentences).

Results follow which are analogous fo the consequences
of the definition of satisfaction for the calculus of classes,
"I'rue sentence" may now be definedt x is a true sentence if
and only if x is a sentence and every infinite sequence of points
and evéry infinite sequence of lines together satisfy x.

It follows that the class of true sentences is consistent
and complete,. jThe class of provable sentences, on the other
haﬁd; although consistent is not complete, There remain
sentences Whlch are not provable, the negatlons of which are
also unprovable. Suoh an etample is prov1ded by Besargues'
Theorem or Pascal's Theorem. Des&rgues' Theorem may be wrltten

in the notation employed for Axioms I~III ass

(xl)(x )(xy )(x ) (x5) (g ) (((xy #xz%x #x #xﬁfxé).EL (le 7.Ix L)
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EL (Ix2 Ixg L ).mL (Ix Ix6L9).ELlo(leLlo.Ix2 10)

8

.ELll(Ix4L11.Ix5 11) EL, (Ix2 12.Ix3L12) EL13(Ix5L13.Ix6L13)

.EL14(Ix1L14.Ix3Ll4).EL (Ix4 15.Ix6L15).Ex16(Ix16 7 T%165g- Tx 6 T)
-Ex; (le7 14° 797 15) Exm(leBL12 (Ixp gLy 5) o Bxy (le9 101 7% gL 1)

(EL (leYLZO'IXIBLZO X L))

The translation of this sentence in the metalanguage
would bet if two coplanerutriangles are in perspective then
the intersections of their corresponding sides are collinear.
' It”is known that this sentence may not be deduced from Axioms
I-IIi, nor its_negation be so deduced. It is undecidable relative
to these axioms. It is possible to construct theories for
which Desargues' theorem does hot hold. In the meta~theory,
therefore, any additional geometric agsumptions must be arbitrary
to some extent. ;Thev&dQPticn of any such assumption as Pascél's
Thedrem’from‘Wﬁich,Desargues' Theorém may be‘deducgd is,decided
on grounds outside the bounds of the constructed meta- |
W@“Vf.: ; , | sy
VVFor example,$it may be pmovéd_that‘Qesa:gqésjiThgoremf
is a consequence of the axioms ofgincidencgwfqr‘thregfdimensional

projedtivekgeometry. ,Thia will, of course, necessitate the

_ introduction of more axioms dealing with the incidence of planes e
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with planes, lines and points. If it is wished that the
geometry under consideration be & special case of the geometry
of three-dimensions subject to the axioms of incidence,

theﬁ the inclusion of Desargues' Theorem or some logically
equivalent or stronger theorem is no longer an arbitrary
decision. But, considerations such as these were not taken
into account in the construction of the meta-theory. The
semantic definition of truth for this language does not give

a truth-value to all the sentences that may be constructed

in it. It does not give a truth-value for the sentence stating
Desargues' Theorem, nor does it give a truth-value for the sentence
"ExlExg(xl%xz)."

. Unlike the case of the calculus of classes extra-logical
axiomé in the meta;theory,are‘unable to determine the truth

or falsity of the sentences mentioned in the last paragraph,
for the translations of them, namely, "if two'triangles are

in perspective then the intersections of their corresponding
sideskafe collinear” and “there exist two different péintsa
dontain the wofds "points" and "collinear"awhiCh'dra,not part
of tﬁé iégiéal,vocabulary of the meta~£heary;r (I do not
maintain,71 should~like'to'pointfout, that there is any
definable distinction between "logical mmlmrm sm‘

 vextra;ldgicalfvooabulﬁry' ef whibhwﬂpdihtsﬂ and;ViiﬁééV‘fofﬁm" o
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part, but only that fhose branches of mathematical logic
gasumed in the metatheory would be insufficient for the deduction
of such sentences).

From the semantic definition of truth constructed for
Mincidence theory" it may be deduced that '"Ex Ituc (x %x
true if and only if there exist two distinct points' but neither
‘"ExlExz(xlfxg)"'is true'! nor '"Bx Ex (X %x )" is falsge! may
e deduced, If these conclusions were all that the semantic
definition of truth involved then there would be little
to argue against, for there would be no sentence that could
be produced which would be both trué and unprovable at the same
time. This was not the caée with the calcuius of classes;
both & and the sentences "2\ were true but unprovable,

I have shown that in order to establish the existence
of true but unprovable sentences for the calculus of classes,
it was necessary to make in the mata-theory additiomal’
asSumptionsé that is; to have in the axiom set of the meta-
theory’sentenCeslwhich may be tfanalatable‘into‘the objéét
ianguagé 0 but which bccuf'there‘neiﬁher as axioms nor
theorems.  For the calculus of classes it waé:hééessary to
introduce some axiom from which the translations of the sentences

%,‘;f could be "d'ed.uc‘eyd in 'thé nie‘ba;theorj:f;’ 5 Ihfjthé Hc“aiéét‘ of

1. For arguments against the theory that there is a dxvialon :
between logical vocabulary and scientific vocabulary, vide Quine, IR
"Carnap and Logical Truth', in nglc and Lanﬂuage, 1962, p.53 et seq.,ﬁ
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the geometry sketched above, additional geometric assumptions
may be brought into the meta~-theory only with a subsequent
loss of generality for the application of the geometric
theor& embodied in Axioms I-IIT, Sinoce "Ex,Ex, (x %x
independent of these axioms, it would be possible to have the
translation of it, namely, "there exist two distinct points"
as an axiom of the meta-theory. On the other hand, for
exactly the same reason it is equally possible to have the
negation of it as an axiom. To do either would result in
nExlExz(xlgxza" having a truth-value. The point to notice is
that the truth-values would be different depending on the
axiom chosen. It would thus be possible to construct a
semantic definition of truth resulting in a contradiction without
altering either the definition or the semantic rules of
translation from the object language into the meta-language.
Of course, it is possible to say that a 'sensible' geometry
demands that there’exist two distinet points, but this is to go
beyond the object languaﬂe and the meta-theory. designed for
the constructlon of the definltion of truth. | '

_ It way still be obaected that thls 1s merely playing
with wcrds for Tarski has said that the langu&ge to be investigated
has a vocabulary which has"quite concrete, and,ier us, 1nte11ig1ble

neanings’ ' ascx;bedkto ;ts‘constituents, whereas_in considering.

1. CIF, section 2 T
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the geometrical theory 1 have merely offered a translation

of fhe expiessibns occurring in the formalised language in
terms‘of 8 vocabulary which is part qf another formalised
language. |

In énswer to this, 1t is possible to ask fof some

concrete and intelligible meanings to the terms of the object
language to be produced. ‘I have given an outline of how

the sémanfic’rules of translationvgi§e a 'meaning' to the
terms of the object language, and in this case I have given
kpoints and lines as the 'meanings' of the signs occurring

in lt. ‘Now I do not know what Tarski had in mind by the term
'qulte concrete and 1nte111g1ble but it seems to me that
/express1ng the meanlnbs of the sentences of the object language
in terms of p01nts and 1ines is as far as one may‘safely €03
to demand more would be dangerous. Ag I,have sald earlier in
'thls section, the translation of the object language in terms
"of points and llnes at once gives the imprebaion of 'cancrete
\ and intelllgible meanin&,s attaohed to the si,g:ns of that
k 1angua But the 1mpressxon is a false one, for althouwh
‘k"points" and "lines are words in commcn currency and thereby

'gain in lﬂtEIllglbllltJ 1f not in 'cancreteness', it must o

" not be forgotten that for the’ obgect 1anguage points" and

’;,“lines" ére used subJect to exact rules; 1n ordinary discourse

. they are not. kNorrshouldkthereibe‘any_gonfusign4between,the e ;"53 /L
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mathematical use of the word “point"}(as an element of a
mathematical system) and its use in a perceptual statement,
since there would be a conflation of empiric and non-empiric
concepts. K8rner has pointed out that to do so would be to
overlook the difference in kind between the two concepts; the
former is an exact concept and the latter an inexact
concept.l

The only alternative to giving 'concrete and intelligible
_ meaningsé to the signs of the object language is to give another
mafhematical 'meéning' to each of the signs. This entails
that’the semantic rules of translation from the sentences of
the object language té the metalanguage will effect a

translation between two axiomatic systems. There is no way

of deciding whether theré are two distinet points, when "point"
bisrused as’in the translations in the meta~theory of Axioms

I;iII; ~ To ask 'Are there two points,,disﬁincttfrgm one another?!
is to ask what Carnap calls an internal'question,zf By an
internal question Carnap means’arquesticn which m&& be

answered bj‘référeﬁce‘tq a linguisticﬁframew¢ﬁk, iﬁkﬁhié:case

fherframewofk being an axiomatic system of geometry, since a

1.  Kbrner, The Philosophy of Mathematics 1960, pp.56-62, 101-111
2. " Carnap, 'Empiricism, semantics andontology' in Semantics and
 the Philosophy of lansmuacse, ed. Lifaky.1952, p.209 et seq.
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linguistic framework for "points" and "lines" considered as
physical entities would not be satisfactory, as I have
shbwn. 7
| Other languages, and in particular, the system )

which Carnap constructsl do not need an axiomatic system

for their meta-language. Cdrnap's 'rules of truth' for the
gystem S ailow the truth—value of any sentence of 3 to be
found without reéourse to ény axioms of the meta-theory.

But this is so because the 'ruies of truth' are also
translation rules which translate the sentences of 5 into
sentenceélabout the physical‘world. Thus, rule 4, "prz(inl)
is true if and only if Chicago is a harbour" allows the
establishment of "pr, (in ) is true" on the basis of
observatlon. _ For formallsed mathematical languageg, on

the other hand, no observation will pr0v1de suff101ent gréunds
for asserting sentences of the type "Ex Exg(A #x )

- I th;nk I have sald sufflclent to show the 1mportance

of hav1ng axioms 1n the meta-theory when the obaect languagé

| is mathematlcal in content (in contrast to an object languagm
Vof physical obaect' content as in system S above) On thlsr

point, hanver, it think Tarski would agree, for he writes:

1.  For the system S, see  of this thesis.
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'Cgrresponding to the three groups of primitive
expressions, the full axiom sysiem of the meta-theory
include three groips of sentences: (1) axioms of a general
logical kind; (2) axioms which have the same meaning as

the axioms of the science under investigntion or are

lomically stronmer than them, but which in any case suffice

(on the basis of the rules of inference adopted) for the
establishment of all sentences having the same meaning as
the theorems of the science investigated; finally (3) axioms
which determine the fundamental properties of the primitive
concepts of a structural-descriptive type.'l (The underlining
is my own)

~Even though Tarski admits the need for some axioms of
the second tyée, it is hard to understand on the basis of
the previous discussion in this sécﬁion how logically stronger
aiioms may gain aduission intovthe meta~thaory whilst not
adnitted into the object theory., It is at this point that
I disagree ﬁith Tarski for I do not understand how the
stronger logical axioms are to be justified. »Itris‘relevant

to consider what Tarski says on the subject of these axioms.

1. CIF, section 4 pp.210-211
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He writes:

.+» We are here interested exclusively in those
deductive sciences which are not 'formal' in a quite special
meaning of this word. I rave, moreover, brought forward
-various conditions -~ of an intuitive not a formal nature -
which are satisfied by the 5ciences here investigated:

a strictly determinate and understandable meaning of the
constants, the certainty of the axioms, the reliability of
the rules of inference. 4n external characteristic of this
standpoint is just the fact that, among the primitive
expressions and the‘axiems‘of the meta-theory the expressions

and axioms of the second grqup’occur (of (2) above). For as

soon as we reiard certaln expresgions as intellisible, or

believekin the truth of certsin sentences, no obsgtacle exigts

to using them as the need,arises?l' (The underlining is
my om).

| ".TQ be fair to Tarski, however, it should be pointed out
that‘thg,scienoes ﬁelinvastigates are taken ermkgene?al_ngiﬁ
and not from any geometric system. Por,gﬁometry;}aithoughv
it is‘pot strictly impossible to believevinfthé-ﬁrﬁth 0fl<~

certain sentences, such & belief would constitute a very weak

1. CIF, section 4, p.211, footnote 1.
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foundation for the use of those sentences in the meta-

theory. Even if the case of 'there exist at least two
distinct points' seems pathological, other sentences may be
brought forward which are less so. For example, if some
axiomatised Euclidean geometiry were formalised by means of

some procedure analogous to Tarski's for the calculus of classes
with the single exception of the axiom corresponding to the
parallel postulate, then it would be clear that belief in

the truth of the parallel postulate would be irrelevant.

For, if the axioms of that system are independent, and in
pa;ticular if the parallel postulate is independent of the
other axioms (as in the system given by Veblenl'), the

sentence that is the translation of the postulate iﬁ the object
language is unprovable but will still be a sentence of that
object language (providing that the rules of sentence formation
for the language alloﬁ for its construction). In this case,
-as in,the case of Desargues' Theorem considered previously,

an appeal would have to be wade to an axiom in the meta-theory
that has no counterpart in the object theory. , If‘is not

possible to appeal to a belief in the truth or falsity of

1.  Veblen, 'Foundations of Geometry', in Monorsraphs on ‘Topics
~ from Nodern Mathemtics, 1955, pp.3-49.
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this sentence to determine its truth, for the existence
of alternative geometries, Lobashevsky's or Riemann's,
allow a contradictory sentence to replace the parallel postulate
and still retain the consistency of the axiom set. In this
case no help is given by an appeal even to applicability
since both Euclidean and nén-Eﬁclidean geometry may be used
in physics. ’ |

I shall now giveva brief sﬁmmary of the preceding |
paragraphs on the subject of geometry. For 'true but unprovable'
sentences to oceur in the formélised language of a geometry,
thax geometry needs to be 1ncomplete and also a loglcally
stronger axiom set must be 1ncluded in the meta-theory. \
The questlon then srigses of how to Juatlfy the stronger axxoms.
An appeal cannot be made to an 1ntuitive belief in the truth
of these axioms; the '1ntelllgib111ty of the translatlons
in terms of the ordinary use of the words occurrlng in the
meta-theory was found to be 1llusory, pe;ceptual pqints and
1ines_as translatipns ofythe expressions quthg“ébjact theofy
were unsatlafactory. | L e | [ % ‘  \'

Returnlng to the calculus of claases in which Tarski has
shown the existence of 'true but unprovable sentences, the ;
argument loses a little of its weight, since hare, e ax1oms”i
were introduced in to the metautheo:y whlch were members of a .

set taken from & general mathematical 10613.‘- In thls case, i
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there may be some defence in appealing to 'intelligibility'
or 'belief in the truth of certain sentences', since logical
principles could be said to be self-evident. Such a
view of logic would be a little naive in the light of the
history of mathematical philosorphy. Even the more
gsophisticated notion of the 'analyticity' of logical truths
and Carnap's 'L-true' have their critics.™’

For the calculus of classes, extra axioms were needed
in the meta-theory in order that the sentences A and ¥; could
be proved to be true. The latter demanded tﬁat some axiom
of infinity, or a modified version of that axiom be included
in the meta-theory M so that the existence of an infinite
number of individuals could be proved. But the axiom of
infinity or the statement that there are an infinite number
of individuals has itself been doubted by Russellt

!From the fact that the infinite is not self-contradictay,
but is alsc not demonstrable logically, we must conclude
that nothing can be known g _priori as to whether the nuﬁber_
of things in the world is finite or infinite. ... The axiom :

of infinity will be true in some possible worlds and false in =~

others; whethér it is true or false in this world,'we cannot

tell.'?

1.’ «#ide,Quiné, From'ﬁ‘Loéical Point of Viéw,‘1§53kpp.45446;:~  ? ,>~
: also .G, White, The Analytic and Synthetic' in John Deweys -
Philosopher of Science and Freedom, 1950, pp.316-330

2. Russell, Introduction to Vathematical Fhilosophy,1930 p.143
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There are still other difficulties involved in the
assumption that there are an infinite number of individuals.
Kneale writess

"What are the individuals of which Russell speaks,r
and how can we tell whether there are infinitely many of them?
Russell says that he intends to refer to those things, watever
they may be, which can be named by logically proper names and
cannot occur in propositions except as subjects. But he
admits that it is difficult to indicate such thihgs directly,
and he even suggests that there may possibly be none because
everything which appears to be an individual is in fact a
class or complex of some kind.l'

Ag in the case of the geometries considered above, there
is little to be hoped from an appeal to a belief in the truth
of the additional assumptions made in the meta-theory; Tarski
is not more explicit than Russell about the term 'individual',

I shall now summarise the conclusions of this section.
It was found by examining the proofs of some of the theorems -
in the last Chapfer that the exitence of 'true but unprovable
sentences' could only be deduced in the meta-theory Ey the
aséumption of additional axions which, fﬁough ététabie‘inbthe

vocabulary of the object language, were not assumed‘there.‘ Since

1. Kneale, W.M, The Development of Logic p.669.
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these axioms were principles of general logiec, there seemed
no satisfactory reason why they should not appear in the
object theory as well as the meta-theory. Also, it was

. found that for geometrical theories the existence of true
but‘uhprovable sentences would be extremely artificial since
additional axioms in the meta-theory would be hard to justify.
The calculus of classes was put in the same predicament by
the assumption of the axiom of infinity which was necessary

-

for the deduction that the sentsnces ¥, are true,
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Section 4
I

In the last section I described Tarski's work on the semantic
conception of truth for a cert in formalised lansuage - the calculus
of classes, In the last chapter of that section I gave my ériticisms
of Tarski's definition based for the most part on the apparent
difference between whatl is counted as the calculus of classes in
the object languaze and what is counted as that calculus in the
metalahguage._ In particular, I disagreed with Tarski's conclusion
“that for this language there could be true but uaprovable sentences,

The remaining sectioﬁs of Tarski's paper deal with the problem
of deflnlng the uem@ntlc copcentlon of truth for other 1anfu@“‘"
blr“tly he succeeds with the ]an*uaﬂe he calls the calculus of
relatlonu, deflnlnﬂ "true in term: of Sdtluwauion analogous to
the deflnltlon for t}e calculus of classesg., lie tﬁén déaIS'with
the logic of many~terméi relafions‘ﬁhich resembles the second-
order predicate calculus. Again a definitioﬁ is given;'

The'iasﬁ 1&nguagévwith Whiéh he dealé is what he'éallé/‘ihé;‘f
gencral theor" of class ﬁ', a lanpuaﬂe rcsemﬁllnv that of Rus mpll’

in Lhe Ir1nc1p1a na%hemwtiCd but wit hout the axiom of rcdacszllty

and the sy LbOlS for mwnj-termed relatiams.l ~The»lan§uagﬁ'considereaﬁw}f

L. Inate@d of the axiom of rcdcclbllltd, tﬂb?@ are en infinite numbér,;4ﬂ o

of axioms which Tarski calls pseudo-definitions. Many-termed relatidns
can be introduced by‘the Ruratowski-Wiener device of classes of. ordered;;
pairs, which are.in tw defzned as classea of cl&&aes.,fr‘ o ;
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is then a set~-theoretic lenguage comrparable to those of

Russell, duine, Zermelo, etc. which were discussed in the first
fwo sections of this thesis.

Translating Tarski's language into a more familiar one, the axioms
he chooses aret |

1. (Ex" 1)( ?XB n+1 ) (axiom schemn)

. n+l
where p does not contain x free.

2f (xn)(yn+l)(zn) (x" ¢ wn+l:>(z ¢ y‘ L X 2))

5. (Ex?')(\‘:yl){ylé 2 . (N (re 2o M (e 2t . oate )
(axiom of infinityl) ‘
The suﬂerscripts indicafé type-levels.
. For tals 1@n"u age Tarski attempts to construct a'dgfinition of

truth in terms of satisfaction, but finds thuet such a definition
is ob&truéted’in the méta-theer; by the lack of variables of ki igher
type than any in the objéct lan?@age. |

’In the lanﬁuawe with whlch we are now dealing variables of
arbitarily hlgh (flnltc) crder occurs oonseouently in aplelnﬂ

the methcd of un1¢ic¢tlon it would be necessary to- opurate Wlth

expressions of 'infinite order'. Yet neither~thekmeta-l&nguagejwhich‘f"

1. This translation has been made in terms of ClmS“ members axp 80 that
it can be seen as set-theoretic,  Tarski's own formulation sllows two -
readings of ‘(Y): '{ has as an element the object Y, orthe object ¥ ,
has the property X' (CTF p.243) Quine's objections to the notation (Y)
" in comnection with Hilbert and Ackermann, Principles of Ilsthematical chin,

would apply equally to Tarski's notation and. the dual reading of it mhlch 5
Tarski gives. vide. W, Quine, Set-Theory and its Looic. Cm@bfld”@, s
Vass. 1963, In connection with this axiom of 1ﬂ&lﬂltJ see the aﬁﬁ@ﬁﬁlx e

of thls the01s.
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forms the basis of the present investi ztions, nor any other

of the ezisting languazss, contains such expressions. It is
in fact not clear what intuitive meaning could be given to
such expressions.’

He ‘then enquires whether the diffieulties he encounters
in trying to define the rnotion of truth are accidental or if
they are a consequence of the language studied. In other
words: is it logically impossible to construct a definition
of truth for tals languace whlch satisfies convention T7
He then gives a much simplified account of GHdel's theorenm
and concludeg that no matter how & class of expressions

is defined in the meta~language, this class nmust have members

¥
"

which are not in‘accord with condition d of convention T.
I.e. Sgppose a clags, Tr,vof expressiogs is defired, then
there must bg’anvexpressian in the object language suqh
fhat:’ v ,
X 4 Tr if and oﬁly‘if p.

iK"isbhere fhe name of an exyfession and ‘p the translatlén
- éf that er@reésicﬁ into the meté-languaze. As a result no .

deflnltlon may be gaven for the sehantic cozcept of truth Wﬂlvh’

does not conuravene convenulon P

1. CIF. p.244




In the post-script to his waper, Tarski abandons the
idea that to talk of expressions of infinite order has no
clear meaning. Instesd, by utilising uhe theory of transfinite
ordinal numbers he then talks of allowing in the meta~-language
variables of order greater than any in the object language.
For the object languaze under investigation where the wvariables
ﬁhat occur run through all finite types the meta-language needs
a variable of orderw. A definition of truth which satisfies
convention T can then be given successfully. As & consequence
of this definition sentences of the following kind may be
provedt

, X € True if and only if p.

vhere 'X' is the name of a.-sentence of the object language
rﬁhich tranélates‘into‘the metd—ldnguige as ‘'pl. ‘The class Qf
provable eatences ‘nay be deflred WlthOHt tue use‘df'thesé
 var1ables, avd G&iel's theorem qu for thls class (Pr)
the rcsult noted on the prev10us pa e that there ig an expresszbn
‘of th@ object langu ke such that: ’ \ ’ e
X # Pr if and iny if p
where 'X';is”the'ﬁaﬁe 0f‘ﬁhét exﬁréssioh'and ’Pi iﬁs“’ﬁr&nsl&tioﬂ_,ka

into the meta-language. Since it also follows that if -

»

‘X e Pr then,x € Tr and if (3 ) € pr then (~X) ¢ Tr, the expreuslon‘ ’"

QEeldﬂ&tGd b' X must belong to the class of truo bentences but i b

not to the class of provable sentences.
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There are for this language, if Tarski's reasoning is

orrect, true but unprovable sentences. The proof of this
assertion rests on Gldel's theoren applied to the general
theory of classes. GB3del, independantly of Tarski, came to
the same conclusion that such sentences exist, but GHdel relied
on a naive notion of truth rather than any technical concept
of the kind Tarski defined. TFrom G8del onwards, it has been
taken for granted that there are‘arithmetical sentences which
are true although they ars unprovable in a formalisation of
that arithmetic., Since the aritlmetic notions of 0 and
successor can be defined within sei-theory it has been as sum@d
that G8del's theorem carries over to set—theoryls thers are

sentences of set-theory which are true but cannot be proved in

l. evge Mo Dummet, 'In view of the fact that G8uel's theorem
applies to any system which contains arithmetic, there would be

an arithmetical statement expressible but not provable in this
system, which we could recognise to be true.' I, Dummett,

'"The Philosophical Significance of GBdel's Theorem',

: 'Bvery axiomatic theory, rich enocugh to contgln a formallsablon

of arithmetic, 1s either inconsistent or contains a formula such
that neither it nor its negation is provable within the theory and
such that its truth can be demonstrated by extra-theoretic arvumaﬂts.
S. EBrner, 'On the relevance of ?ost»Gﬁdellan Mathematics %o

Philosophy', Problems in the Fhilosophv of lathemstics, ed.

I. Lakatos, Aumsterdam 1967, p.124 :
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a formﬁlisation of set-theory.

In the last section I criticised Tarski's definition
because 1t led to the odd conclusion that for the langsuage
considered in that section there were trus but unprovable
sentences. The funlt in Tarski's argument, I maintained,
was due to the different sets of axioms which seemed to be
enployed in the two lenguagess the meta-language and the
object languwaze.

For this new language, however, I shall use an entirely
53]

different argument. I shall argue that Tarshi cannot assunme

that certuin implications of GB3el's theoren on the incomyleﬁabiliﬁy
of arithmetiq carry over to the set~theory in which that ‘11VAmut‘c
is exp e?séd I shall ve; Ln by examining G83el's theoren for
arithmetic in some detail.

GBiell establishes é,correspondence’between the expressions

of the formalisesd arithretic 1&&*@4 € and seguences of such
expressions witn the navural nusbe.s. e then shows “that certain
‘matamathematical relations between expressions of theobg

1au‘u¢ue kold if aﬂi onlr 1f aﬁja“1+bm@t1n rel& 1on holds =hween‘
theknumbers corresponding to’tha,exprcssions.fvahe‘numbgr

 corresponding to an expression of the object langunge is called

1. . G8del, "Uber ormal unent caeldnare u&tae der frlnClLl& :
xdthematioa und vervandte Systeme I lonatchefte filr xmt%@naula wni
PlYle, vols 38 pp.173-198; the f0110x1n is & paraphrase of . o
GYdel's argument, following : Kiéene, Introduction to Ret }atno“gfxca,

Anqterimn 1952,
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the GB&ei number of that expression. Consider the following
metamathematical relation between an expression of the object
language and a seguence of expressions of the object
language.

P(A, B): A(x) is a well-formed formula with free
variable x and B is a sequence of well-formed formulas such
that B is a proof of A(E) where p is the numeral of the objsct
language expressing the G8del number of A(K).l

To this metamathematical relation there corregponds an
arithmetic relation that holds between the G8del numbers of A
and B, when and only when the ratamathematical relation holds.
If the arithmetic relation is denoted hy 'R' the above equivalence
is expressed by 'F(A4,3) if and only if R(g(4),g(B))! where g(4)
is the GBiel number of A.

G8del introduces the concdpt of numerical expressibility.
An n-term arithmetic relation F(xl,;..xn) is numerically expressed
in the object language if and only if there is a well-formed |
formula cf the object language with n free variables

(xl,...,x f“;aat if F(al,...,a )} holds then }'wigl,..‘.,a )

and if F(al,....,a ) does not hold ‘then ¥'~E191,...u ) for

o ,
each n-tuplet of numbers. Since the definition of the arlthmcbzc

1.  Phe object languare has terms which fuﬁctlcn 28 numersls e.g

o, F(0), F[F(0)], {m{w(o)]g yesvesevs (CBdel of cit.p.177) and uhese ;
express the numbers 0413253000 0ese Thus, the number 3 is expressed

vy F{F[F(0)1} ~ b : s L e e

2. « From here on expressions of the object language are underlined o
whenever confusion coull arise Between expres sions of the object language
~end expreselonm of the weta-language. L ETE e R e
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relation R is primitive recursive and since all primitive
recursive relations can be mumerically expressed in the
object language, it follows that there is a well-formed
formula of the object languagze R(y,z) such that

if, for two numbers al,aZ,R(al,a2) nolds then

+ E‘g(g_l,gz) and

if, for two numbers al,a,z,R(al,a2) does not hold

then \‘NE(@P@?_)
The incompleteness theorem ray now be proved.

Suupose ¥ (y)nR(p,y) where p is the GHdel number of
(x)w'_f_l_(g,x) then there would be a sequence of well-formed
formulas B which would be a proof of the well-formed formula
(gR(psx).  I.e. P((g)8R(x,x)» B). Therefore,

R(g [(x)'«}}(gg,x}l, g(8)) by the equivalence of the arithmetic
and mstamathenmticalybrelations. Let g(B) = q. Then, since
R is numerically expréssed by B_,\‘__'fg(_g,_g_). From the predicate
calculus‘ incdrpomted in the object language i‘cki‘ollows ktha'tb
+ €&x) R(p,x) and thence Y ~(z)~ R(p,y)+ Assuming the ob,je’ct‘
. language to be consistent, it follows that it is not the case
that ¥ (x) ~R(p,2).

Haviizg established that it is not "the céée’ thatr, p_~
= _(z)yﬁ(;g,z)kif the object lanouage is cdnzsis‘tént,‘ :1.’(: follows
that’no sequence of well-fcmed formulas is a kprodkfv of /, |

(~B(pyx). Thus, it is not the case that R(p,1) wor |




R(p,2), nor R(p,3) +ev.v... (Asmin from the eguivalence of P

and R). Since R is numerically expressed by R it follows that
FoR(p,1), FaR(22),  WeR(z,3), .ee...l.

If the assumption thgt the object language is w-consietent i8 made,

it is immediate that it is not the case that Fw(y)sR(p,y).

On the assumption that the object language is w-consistent, it can

be seen that neither (X)NR(Q,X) nor (r)~?(p,1) can be yproved,

This is the incompleteness theorem in it syntactic sense.
Generally, however, more is claimed for the GHiel

“incomileteness theorem than this. There ié also the consequence

that there is a true arithmetic assertion that cammot be proved

in the object language. For the truth of (yWR(p,y) can be seen

from the truth of ~R(p,1),~R(p,2), etc. The well-formed formula

which expreSses‘this'propositiﬁn in the object language isg’

(E)~§(Q,1)'which has just been showm to be unprovable.  The

existence of a true but unprovable sentence of the formalised language

has been shown} It is at this’point that a leap is made‘in/

tr;nsferrlng this semantic 1mpllcat10n of G8del's theorem to a,

formalised set-theoretic lan?uage; It is claimed thaﬁ ar1thmetic

can be 1ncorporated into ab:tr%ct set theery Dy means of a Sbrieﬁ

of deflnltlons, defining number in terms oz‘sets.' There are of course ™

1, Thls has been dlsputed God&ari "True and Prevamla" Plnd 1958 »
PD. 13 31 Wittgenstein Rer arles on the Foundationg of “ﬁfk@mqtic .
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many ways in which this may be done, and the method chosen
will depend partislly on the set-theory chosen.l
I shall suppose that a set-theory has been chosen and
that in this set-theory a construction of arithmetic is
attempted. A construction of arithmetic within set-theory
is reckoned as successful if the definition of '0O' and
'successor of' can be given in terms of sets only, in such
a way as to preserve the laws of rltxxetlu.g‘ Whatever
definitions are given at least the five Peano axioms muzt
be provable.3 Three of these demand in addition to '0' and
successor of' that the term 'number' be define&, for each
of the following is a Peano axiom:
(i) 0 is a nuxber
(ii)'fthe successor of a number is a numb
(1i1) if P(0) and for each n,P{n)>P(successor of n) then
for each n, if n is & mmber then P(n).  (Schema)
l£ is necessary then to define 'mumber' as well ag '0! ana’
'successor of . (4s the universe consists of sets, the

extra clausze in (iii)‘— the induction schems =/ if' n is a number'

1. Cle Ilf a set—tneory Wlud tvf —di@t tloﬂs w11¢ not &;lo .
definition of number which has mixed types.  For a comparison ef_ﬁ-
- set- theorlcs see %umne lat TH“OT" and its I@LJQ" L

2. W Quine, etabhech and. I* Logic!y p.81;w~

3., This is a minim&l cuﬁdit101. It is also necess arv to glva R S
definition of '+' and '.', ‘fo satiafj the usual recursive def 1n1tlone..-i_[;
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is necegsary since otherwise the induction schema would
imply that all sets had the proverty P which i not desired
gince in the set-theory there will be sets which are not
numbers, although all numbers will be sets;)
If we supuose that the set-theory chosen is one which
allows mixed types, the definitions may be given as follows:
(iv) 0 = af the nul set, i.e. ¢
(v) the successor of x%,5(x), = df the set consisting
golely of %, i.e. {x}l
(vi) the set of numbers = 4f the intersection of all
sets containing O and cloged with respect to the
operation 'successor of! .
i.e. N =4ar {x; (z) {(Cez. (y)[yezaS(y)ezJ);xez}
‘It is clear that the first two Peano axioms are satisfied
by these definitions. ~The axiom schema of induction follows, .
for if P(0) and (x)(P(x)>P(8(x)) then P determines a seot
that contains O and is closéd‘with respeét to 'successor!',
Yow if yell, y belongs to'evary such set and therefore P(y).'
It seems then as if the CQRstruCticn'of,arithmetic,Within setw

theory is successful. DPeano's axioms appear as provable theorens

1. ~essentially Zermelo's ethod 'Untersuchenden tlber die
Grundlagen der lengenlehre! iathemntische Annalen 65
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within the theory when definition (iv), (v) and (vi) are
given.
Since GHdel's theorem was proveld originally for a systen
of arithmetic which, apart from the propositional calculus and
the predicate calculus of order w, includes only the Peano
axioms, it seems that the results of this theorem wust carry
over to tﬁe set-theory in which arithmetic has bsen construoted.l
However, GBdel's original theorem did not need a choice
of terms to function as theknatural mubers,  The universe of
discourse -~ the value of the variables - was limited to the
numbers, the only constant terms being '0', and its successors.
The Peano axioms included in the system are the three that do
not mention number &t all, i.e, (x) (S(x) % 0), (X)(y)k(s(x)==3(ﬁJX*y)
and the induction schema (iii).z‘ Since there are only numbers.
which can be values'of,the variable, there is nbjset N consisting
oﬁly of the natural numbers to define. The same may be said
of the treatment Kleene gives;sf His object languapge is
the progoéitional calculus, the firstéorder predicate"

caleulus, the same three Peano axioms as'feriGddel{s language,

1. K, G8del, op.cit. pp. 177-178, 190-191
2. ibid. p.177 |

3, 8. Kleene, op.cit. p.82.
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recursive definitions of addition and multiplication and
various axioms of identity. Clearly, there will be no
necessity for a definition of number since here agmin there are
only numbers admitted as possible values of the variable.

The problem now is to prove G8del's theorem for a systenm
in which there are other objects besides numbers. The
set-theoretic construction of the numbers that has just been
outlined is one such language. As bvefore, a correscondence
may be set up between the expressions of the languasze {and all
sequences of such expressions) and the natural numbers.

In this way the metamatheuastical predicate P and the

arithmetic relation R correspond i.e. For any two expressions
of the lengzuaze, A and B, #(4,3) if and only if

R{g(a),s(B)). The idea of numerical expressibility is slightly
changed, for whéreaﬂ in the formalised arithmetic case there

was no choice as to which terms should be rezarded as
corresponding to the numbefs 01,2, sseey & decisionf

must be tulken as to which sets,ih the language apé idvfepresent
them.  Following Zemxelo I have taken ﬁl{ﬁ{} F {{ﬁﬂ ",..\. 'bu%;,v

it should be remembered that ano%her?chcice #as equally

possible;’ von Heumann took ﬁ,{{!,{é,{ék!,...l'~ CAfter

1. J. von. Meumann, "Zur Einfithrung der tronafiniten Zahlen™
Aeta Iitterarum ac Scientiarwn Resisne Universitatis Huwnenrieae
Framcisco-uaeﬁnhinaef(sect‘ scient. math.) 1,1923 pp.199-208 -
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this decision has been taken, the definition of numerical
expressibility can be given. The arithmetic relation it is
expressed by a well-formed formulas of the system with two
free variables g(:g,‘j_) so that,

(i) if R(al,az) holds for a pair of rumber a,,a, then

+ 3(@19,@2)
and (ii) if R(al,aQ) does not hold for a pair of numbers
a3, ;then\’«'_li(g_l,gg)

Consider the well-formed formula (x)wﬁ(ﬂ,;z)where p is the
G8del number of the well-formed formula (X)'“ n( ,,“_) where X
ié a free variable. Ve are now in a position to prove that
(nR(p,y) is unprovablé. The proof is identical to the
proof given p:c‘evi@usly’ for arithmetic. Thus, if the language
is consistent, ~(:g)~§_{‘(_g,3{) is unprovable..  If now we attempt
to show that ~(z)~i}(}g,g) .is unprovable provided that the language
is ‘}a-oonsisteﬁ’c, the original proof fails.  Although we can
show that it is not the case that B(p,1), nor ®(p,2), nor
R(p,3) etc. and thence thathl(p,1), ¥sR(p,2),¥~R(p,3) etc.
~we nay not say that therefore ~ ~(}£)~R(p_,x) is unprovable

for there are upreqs:.ons in thc-, lanmage besides

4y 1AYs {\ﬁn,. (1.e. O, 1, 2, ...)*’ ’the,oniy conclusion

we pay reach is that w(y) [ yel aw R(:g,;i)} iu unk;mmble zmich

blS vxot the ‘negation of (,x)'m(}_,x) The ,,und.e:md,aoila.ty,of,
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(xWwR(p,y) has not been shown. Choosingz another formula
will give us the incompleteness theoren. Suppose we
choose the well-formed formula (y) [ yell o~ R(x,y)] with
free x, then this formula will have a GBdel number, q, say,
and we may show that both this formula with g substituted
for the free variable x and its negation are unprovable

" provided that the language is w-consistent. Suppose that
(x) { ye¥>~E(g,¥)) is provable, then there would be a number
k such that R{q,k). Since R is numerically expressed by
R it follows that R(g,k) is provable. 4lso, if x is a

- number v xell (where 'x' iz not a variable but the term

representing the number x). Hence kel

is provable. By -
the predicate calculus that is incorporated in the language
v Ex) [yel.R(a,x)).  Therefore ko(y){xel>~R(g,x)]
Asswhing congistency (;y;) ‘ j[eﬁ :>~B_(_g,;,[)] is mlprovablé. Cie
may now pro"ve that the negation of this formula ié unprovable,
providea that the set-theory is w-consistent. As before,
‘ sincie (x) H{e_lia ~§(Q_;3£)l is unprovab‘le, it is nc‘;t‘ thé' .
case that R(q,1), R(q,2) ...  Hence F~R{g,1), \-~§§(g,2) iy
‘and if the set—theor:;‘r is w-consistent w(y) { Xeyg‘ayugég_,xn
is u'ﬂprovable.l‘ SR |
‘Ain undecidable well-formed formula hasv‘lééeﬁ kcoﬂstmctedk*
Aenﬂt}ié éss@*ﬁpﬁidﬁf %iiei’é rthe,.éef*-tiaeéx;y is’\u-@dh’gistéﬁt;" .'But N

w-consistency for set-theory is not a predicate of set-theory . . .
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of the same category as consiutency. It demands for its
definition that certain sets have been chosen to represent

0 and its descendents (via the successor funotion) 88 well

as a set that contains just Q, 1, 2, ete. (the set denoted by

') Although w-consistency is desirable, if not essential
for any formal system of arithmetic, there is no such condition
for set~theory. Tor if that set-theory with a particular
choice of -sets for the natural numbers turned cut to be
w~inconsistent then this would sugzgest, not a rejection of tie
set-theory, but a rejection of the particular choice that we
had made for the natural numbsrs. It may be the cuse that

for every choice of sels for the natural numbers, the resulting

¥

5

theory would be w~inconsistent, in which case there has
been no undecidaeble formula constructed for the set-theory,
although we may say that the set«theory is not suitable for
the cnnstruction of aritlimetic within it. I shall return to
this subject later in this chapter.
Although w~consistency is not of cverridingkimportancét

for set=theory, consistency ceritainly is. Rosser has shown

that GBdel's more.stringent requirement that if a theory is-

- w~consiotent . then aﬂ'undecidqble'formulg exists, may be.

dropped for the wealker condltlon of consistency.”" Follo win ﬁ n19w19,g“

1. ' J.B. Rosser, 'Extensions of some theorems of G8del and Cnureh'
Journal of Syubolic Losgic, 193b vol. 1, pp. 87 91

2 leene, infroductlon to i eta mnunﬁmaolcs, pn.“O 9”_.  .
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the metamathematical relation U that the sequence of well-

formed formulas B is a proof of the well-formed fomula

wA(p) where p is the Gddel number of the well-formed

foruula A(x) with free variable x is ejuivalent o an

aT;Lthme’cic relation T between the Gddel numbers of A and

B, I.¢. U(A, B) if and only if T(g(4), 2(B) ). Por

a formal system of arithmetic the relation ¥ is numerically

expressed by a well-formed formula L. Consider the well-

formed formula (P[R(x,x)> E€z)(zx « 2(x,2)) |

Thisy is a well-formed formula with one frse variable. Suppose

its CG8del number is p. - Then it can be shown that for the

formalised arithmetic within which we are working the formula

1) @ Rpr)> €@2)z¢ 1. 2(2:2))] is undecidable if

the theory ig consistent.  For suppose that the above well-

formed fomula is provaible, then for some k, R(p,k) and, on the

assumption of consistency () 13(3,1’)3 ®z)(z¢x . Q{Es.‘é)}

is unprovable.  Therefore ‘it is not the case tha‘t

T(p,O), VT(P:]-)’ T(?’z)) seeny T(Pak) i‘ffence‘-*‘iif,(.p,g), \'"2(12’.];% ; -
NE(Q,;E__),'....,\WQ(Q,};); - From the axismsa -and tiefiniticms
of the aritimetic it follows ‘t}mt \-(z){z k}~’l"(1:g,z)} |

Also,V ?(ﬂ,{\) - From the predlcate caloulus :Lnuarpc:mted»in

the langusgs it follows that

b &2 [R(2x) + (2) {24z 2(p,2))]  and bence

bl R(pix) > €2)(z ¢ z2{p,2))  which is the negation A
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of the well-formed formula that was assumed provable.
Therefore if the formalised arithmetic is consistent
(‘[)L‘i(g,x) > €z)(z¢ z . 2p,2))] is unprovable.

Asgume that the negation of the last well-formed formula
is provable, then for some number k, T(p,k) holds. ‘Therefore
| T(p,k) and by the definitions and axioms of the formalised
aritimetic we have (ii) (I)[.‘z? kxEz)(z ¢ ¥ . (2,21,

From the result at the end of the last paragrath, we know that
it is not the case that ®(v,0), R(p,1), B(1,3)y veey R{p,kek)
Hence, F~R(p,0), b #»R(2y1)sesesy ¥oR(p,k). From the
arithmetic again, (iii) b (x) x¢k > R(p,x)
Combining (ii) and (iii) end siree v (¥){x ¢k ¥ ¥y k)

it follows that ¥ (X)[ R(pyy) o €z)(z ¢ x . 2(p,2)].
But we had supposed that the negation of this formula was
provable. Therefore; assuwning consistency, it follows that

o (1) R(pyx) > E2)(z¢x . X(p,2)) is unprovadle,

Por. the arithmetid lanuages of G8del and Kleene, the

a»sumptlon of consistency entails the emigt@nce of undeu1dab1e 
~well-formed formulas. - - As with the pr@v1ous G&del’result, it
'does not follow auﬁomatically that this unde01dab111ty carrieé‘

over to a sei- theerj in which arlthmstlc can te congtruuted.
ikIt must be rbmomb red that the universe now consists of &eta, g
w’some of -which reprcsent ngﬁLers and o»mezﬂ that do not.‘f U

An extra dlfflu&ltj arises at thxs poxnt fo the Rassbr."




- 275 -

proof since the well-formed formula containg the symbol '¢!'.
In order for the proof to be forthcoming a definition of '¢!
Cis required for sets. The proverties this must have for the
proof to go throusgh may be found by examining the proof above.
They are as follows:

(2) if ¥ A(Q), % A1) yereeesy - A(k) vwhere k i & number,

thent (x)(x¢ k > é(ﬁ))

(b) whenever k is a number ¥ (y){y¢k v Z}k)-l'

Quine's definition ofl's' for sets is when inverted
(guine's definition of 'W' is the inverted version of the
definition of 'N' given on page )
x¢y =4df (.Z.)[(zsez,-_k‘ ((Dyez > S(ez))s yez)®
This definition fails to meet condition (b) for whenever
b kel and - md¥ it is not the case that v k> m v k¢m, thus
blocking the derivation from (ii) and (1ii). The definition
' may be modified, howéver,‘in such a way as to satisfy (a) énd
(b)} . The following definition does satisfy both conditiohs.

xex = af (xllfl) v () (xezXu) (zez > S(xez)o zez)
This definition of '¢' does not c@nnect,all~3etév(unless all:
sets belong to H!) but it does connect a sé£ which helongs to

N to every set. o With this definition of ! ¢ ' the Rosger .-

1.  Assuming that 'yyx' is defined as 'z ¢y's

2. o We Quine, Set-TheorV and its L@qic,'g.77
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proof goes through as it stands and there is therefore an
undecidable well-formed formula for set-theory. This time,
unlike transferring the original GHdel proof to set-theory,
there is no problem about the necessity of there being a.
class N which includes all and only the natural numbers.

If Quine's definition of '¢%“were to be used in set-
theory rather than the m&dified version, then a proof of
Rosser's theorem can be comstructed by modifying the well-
formed formula that is to be shown undecidable. If we
replace in the following well-formed formula the free variable
by the set representing the GBdel number of the well-formed
formula we have a formula which can be shown undecidable.

‘The formula is |
Mozl s Rxp) > C2)(zer Iz N

poée that the GBdel nunber of the above formula is m,
_then consider the formula when 'x! is replaced by 'm'.
Suppose the resulting form&ia is provable. ThenuR(m,k)‘
for éomernumber ke Thence ¥ heg R(m,Xk) .  AlsQ,'if,fhe "
language is consistehﬁiit‘iS'nét/the cas@’that“thé féll@wihg,f
hold:-éf@(m,o),fff(m,l),.....,T(:a,k)).‘ Fron the definition
of ' ¢' it follows that b @(m :éz(g,g)). : b«‘Combin:kmgb;‘;’
the pr&“icate calculus; we may dadudekﬁhat the’hEﬁafion‘éf SRS
the formula we suwposed was provable 15 &luo provable. Asau&ln?

cons1stenc; the vell~farwﬂd formula v){fejﬁ> (R\m,g): (Ez)(£,¢QT(@;Z)>n
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is unprovable.
Wow we may show that the negztion of the lasti rell-formed

formula is unprovable. - Suppose that it is provable, then
T(m,k) for some number K. Prom numerical expressibility.
snd the predicate calculus it follows that

(iv) - (Myer > Wﬂ(y k> Xz ¢ y.T(m,z)))].» Also,

if the language is consistent it follows that none of

R(m,0), R(w, l),......., R(u,k) hold. Therefore,

(v) P (zell > (zek >~R0mx))). Since

b (eell,yell) > (y ek vy k) and Y kel we may combine (iv)
and (v) to give ¥ (plzed > R(mx)> (€2)(z ¢ 2.0 (m,2))))
Thus, if the language is consistent then
@zl > @) > (¢2) (2 ¢ 2.2(2,2)))] s wiprovable
Again, in this proof there was no necessity that & should
be a set that cansistei of those and only those sets which
réPre&ented the natural nusbers.

Analogously, we may sho& that the following,tWowell-formed
formulaé are ﬁndecid&blé:

'(X)(E(E’X) > (€z)(z ¢ y.R(z,z ))) where T is the GB&el
number of the same well-formed formula with the'fre@ variablef
'x"rebiaciﬂﬁ 'r' ‘and the definition afs‘&"is:the;&mdifiéd‘~:”'
VETSlun above.‘ ’ ‘

(">(19“ 2 (f(ﬂyl) b (E X.R(n,?) )))w}ere nis tnéli‘ ,,,’

G8del number of th« san 1l~f0rﬁe formala with the freo
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variable 'x' replacing 'n', and '¢' is defined 4u the
inverse of Juine's definition.

There is for set~theory no lack of well-formed
formulas that can be shown to be undecidable. (Clearly,
sthere are an infinite number, since, to the avove undecidable
formulas we may prefix any theorem of the language as an
antecedent of a conditional the consequence of which is one
of the undecidable formulas.) e cannot doubt that GBdel
and Rosser's undecidability results do carry over to set-theory.
But this has only syntactic import. Tarski has alleged
that the incompleteness results also have semantic implications
for set-theory1'~ It is just this that I wish %o deny.

There are convincing reasons for saying that any intended
Cformalisation of arithmetic must contain formulas that are
‘unprovable e?en‘though,they express true propositions when
interpreted as arithmetic propositions, i.e. when the formal
: vafiables are taken as ranging over the natural numberSf 
and the fdrmal opefations interpreted as arithmetic opeiatiéns.k
The first GBdel formula that we have shown‘to be anprb¢&ble is
(E)"R(E,I) When this is interpreted as expr8351nv an’ |

“arithmetical proposition we can see that the interpretation =

is true.’ For, as we have shown ~R(p,n) holds for each mxtux;a’l:

1. See beginning of this section,
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numnber n. Therefore (y)~R(p,y) is true and thisvis expressed
in the formal systenm by (x)vﬁ(g,z). To show this more rigouréusly
a definition of & formula being true is needed, but this can be
giveﬁ easily in terms of the satisfaction of formulas in the domain
of natural numbers in the same way as for any set of formulas of
the first-order predicate calculus.l

The Rosser formula fares similarly, for we have shown that
(I) (_1_2_(3,3) > (Ez)(z ¢y, _T_(,p,g))) is unprovable (on the assumption
of consistency). That is, there is no sequence of formulas
guch that this sequence is a proof of the well-formed formula
(y)(R(x,x)  (Ez)(z¢y. L(x,2))) when the free variable is
replaced by the GBdel number of the formula, namely p. From
the equivalence of the metamathematical predicate P and the
arithmetic predicate R we see that for each natural number n
it is not the case that R(p,n) and hence that it is the case that
for each natural number n if R(p,n) then there exists a number
z such that z ¢y and T(p,z). The formula that expresses thisrih
 the formalised arithmetic is the unprovable formﬁla at the
beginning of this paragraph._f Here again we have an unprovable
but true formula of formalised arithmetic ér ahyunprbvable\
formula that expresses in the fofmalised érithmeiic é £rue =

arithmetic proposition.

1. see A, Church, Introduction to Mathematical Logic, pp.l74-175
and 227-228, , ; , .
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The problem now is to see if there are any corresponding
results for set theory. We know that the set theory
inCor?orates arithmetic in as much as Peano's postulates are
deducible in it for a certain sub-system of sets., We also know
tﬁat any formalised language in which Peano's postulates can be
derived contains a formula that is unprovable but which expresses
a true arithmetic proposition. But it does not follow that there
is in formalised set theory a formula that is unprovable but which

expresses a true set-theoretic proposition.

The position is made clearer if we consider those ewamples
of undecidable formulas Wthh we discussed earlier. The set
theoretic version of G8del's formula is {g)(ye¥ o NR(Q,E)) and the
two set theoretic versions of Rosser's formula are
Dz > @@y * (Ez)(z¢z.0(mez))] and
| (x)[R(pyy) @ (Ez)(wx#'l?(_r;m))] .
Vhen disoussin* the GBdel formula, we found that R(Q,O),
R(g,l),.... all numerlcally expressed true proposxtlons of
arithmeticf Can we say that they also,express,true Set«theoreﬁiél
prqpositions? Trivially that is 50, for they are also all
provable. Hence they must be true in any model of the axxoms,‘,
i.e. whenever an 1nterpretatiﬂn of the axioms is gmven for the ,i
'axloms in which uhey are all true, then w1th tnls 1nterpretat10n
all theorems are true. Clearlj thﬁ G&del formula is nct true  ‘

=in this- sense, since itz undec1dab111tf ensures that there are
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models for the axioms in which it is true and others in which it

is false.l What must be presupposed in saying that the GHdel
formula expresses a true set-theoretic proposition is that

there is some one interpretation of the axioms in which the

formula is true, that there is some intended model of the formalised
set theory just as in the case of formalised arithmetic there

is an intended model.

Let us suppose that there is such an intended model.  Then
in this model ~R(g,0), vR(g,1), ... will express true set-
theoretic propositions, for the aforesaid reason. If it is
asserted that in this model (y)(yeN » ~R{g,y)) also expresses
a true set-theoretic propdsition then this could oniy be the
case if the set in the model corresponding to N consisted of
those and only those sets which correspond in the model to the
gets that represent the natural numbers in the formalised set
theory. . That is, the set in the interpretation that corresponds
to {?.C_; (2) {QE.%-(E) (mez _S.(zr:)e.z:)];) KQZ_K ~consists only of
the sets corresponding to ¢, {g} , {{gﬁi , {f{ggu«~, PP
For if in the model there was a set a éuch that ael and

afb, afipl, aﬁ{}¢3§;2,etc.vthen we should be unjustified in saying

1., Derived straightforwardly from GBdel's comzleteness theorem '
of the predicate calculus. '
2,  The set of the model corresponding to a particular set of the
formal theory is here wrltten identlcally except for the absence of
underlining. S
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that since ug(g,g), NE(Q,;), .+ each express true propositions
of éhe model so must (y)(yeN o ~R(a,y)). In other words, to say
that (y)yeN 9 ~ R(g,y)) expresses a true proposition is to presuppose
a model in which N consists of those and only those sets
6, Yy WPY . etc. and that this model is, in some sense, the
intended or proper model for the formalised set theory.

Exactly the same remarks can be made about the Rosser
formila (y)[zeN > @(my) > (€2)(z<¢y.2(m,z2)))] because the
antecedent of the hypothetical is the formula yeN.

The third formula is more difficult to deal with since it
does not contain the antecedent cléuse YN explicitly. (It may.,
df course, occur implicitly in that if the function R(x,y)
were spelled out in full yeN might occur as an antecedent clause
in this expansién. -The above remarks would then apply directly
to this f&rmula.) To say that the formula expresses a true |
proposition would then be to say that in the intended model
‘whenever R(p,x) is true for the set x then (Ez)(z ‘x.T(p,z))
is true. Whether or not this is so can only‘be deaided when the

intended model is known,

To talk of the truth of an undecidable formula of & formalised

set theory is to presuppose a model which we think of as the
intended model of the theory. Vhat one may. question is Whether o
one can talk of proper models of;set'theory in any clear manner.v,'\

If one could talk of a unique intended model then"it would be
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" proper to talk of the truth (or falsity) of the above
formulas.

Recently there has come into vogue the term ‘'standard model!
to describe such a model. MNyhill, for example, claims that
there is only one standard model of set-theory.l Further, he
ciaims that in*the denumerable models of set-theory, the
existence of which is assured by the LBwenhdim-3kolem theorem,
when the predicate letter 'e' is assigned it no longer represents
the relation 'is a member of' since the standard model contains
an indenumerable field of sets. 'Class—membership certainly
has a vast non-denumerable field'.2 As a corrective to this
one should bear in mind that there are set-theories in which the
membership relation has a denumerable field. Would it then be
proper for Myhill to say'that'sﬁch theories do not contain the
relation of class membership?

Thé LBwenheim-Skolem theorem assures us that there are modeis
of a formalised set‘thepry in the domain of natural numbers. I
think a case could be made out for saying’that’suéh a model 15 ,f
!nén;st&ndard' in the;seﬁse that an arithmetic predicaﬁe;wéuld,
then be the intér?retation_of Te's e;g;‘Ifrthé axi§m of

infinity'is omtiitted from the Zermelo-Fraenkel axioms the

1. J. liyhill 'The Ontological Significance of the Léwenheim- .
Skolem Theorem' Acgdemic Freedon, Lozic and Religion, PhlladéPhla‘?

1953, p.68.
2. ibid.
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membérship relation xey can be interpreted as the relation

fhaﬁ the quotient of dividing y by the xth poWer of 2 is an
oddknumber,l There is a sense here in which the arithmetic
rélétion cannot be said to be the relation of class membership.
But this sense is just that the relation holds between arithmetic
entities, natural numbers, rather than, say, between numbers and
sets of them. Certain formulations of the propositional
‘caleulus can in a like manner be construed as formulations of

a partial arithmetic. 1llyhill's worry that set theory will turn
out to be somé‘complicated arithmetic relation2 if the standard
model is forgotten is misplaced., It would be as sensible to
-worry abéut the prcpositional calculus turning'outyto be a"simple
arithmetic theory.

But Myhill?goés too far in saying that any denumerable model
of a foimalised set theory does not contain the relation of class
4membérsﬁip. Various 'inner' models of certain set-theories
ave known.  One wonders if lMyhill would say thax‘these'too dbo
"not contain the notlon of class—membership, s1nce the model |
'contalns only some of the sets of the whole theory.

There is anothér difficulty whichfhyhill‘overlooks‘and‘this

'is the difficulty of a preassigned interpretation of the wedicate

1. due to Ackermann, mentloned Hhr H, Hang, A SHTV@J of “&themﬁti031: @g7faf

Logic p.392. .
2, J« Myhill, op.clt. De 69 e , v
3, GBdel's proof of the consistency of the axlam of choice relles

on such a models




- 285 -

letters occurring in the formulas o the formal system. Myhill's
definition of a standard model of a system is relative to
interpretations being given to some of predicate letters of the
system. Certain of the predicate letters of the formal system
are given an interpretation and then a standard model is

defined as a model in which those predicate 1etters‘receive

the preassigned interpretétion. Now such a definition is
legitimate only if we can specify the preassigned interpretation.
In order to talk of the standard model of set-theory liyhill

says that we must first assign to the predicate letter te! of the
forﬁalised set theory the relation of class membership., But

‘in order to specify’this relation, we succeed only in giving

-a get of conditions which the relation fulfills. This set of
conditions in turn can receive odd interpretations; it‘is

’no mofe safe from the consequences of,GBdel's completeness
theorem than the formal system itself. On‘the subject of sﬁch
preassignéd interprétations;wang has likewise sai@ that the
eXplicit gpecification of the preassignment meets insuperablé’
difficulties.®

If there is no model whiéh cguld be‘regarded as the standar@’,

model of a formalised set-theory or, in the phraseology of three

1. H. Wang, 'On Denumerable Bases of Formal Systems', in Mﬁthematicﬁll},;t‘;
Interpretations of Formal Systems, ed. A. Heyting, Agsterdam, 1955 p.72 =~
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pages back, the intended model, then it is difficult to see how
we could talk sensibly of the truth of some formula of the formal
system which is unprovable,

In spite of these difficulties, it might be thought that
even if we could not specify completely the intended or standard
model we might be able to specify some of the conditions which a
model must fulfill in order to be called standard. Thus, as
we noted above, the standard model must include (y)(yel = ~R(q,y))
as one of its true propositions if we are to say that
(1) (z¢¥ »> ~R(a,y)) expresses a true proposition. It follows
that N must contain only ¢, {6}, {¥W, .ese This means that
N receives as a translation in the model 'the set consisting solely
of ¢, ¥,y »+.' Now, suppose that we use Tarski's method for
trenslating the formal sentences of the language into an
informal language (belonging to the metalanguage). If we are
considering Zermelo's set theory, for example, we may'do 80 sihce
the variables belong to one type.  There are nobdifficulfies -
for such a theory caused by the variables of the fofmaifsysfem
'belonging to infihitely many‘typés;" The conéé?tfbf éétiéféétiéﬁ
can be successfully defined and closed formulas of fhé system will
receive translationékin terms of 'for all sets'yand"ihefé is a ééfrlfﬁ
such that'., It is élearly'that fhekimport oﬁ‘thé ¥ianéléti;nx |

of N will be 'the intersection of all sets z that contain the =

nulyset are sﬁdh'thét_if theykcohtain:a éef‘yy‘théy disd éohﬁéiﬁ  :
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the unit set whose only number is y. The translation will
not be 'the set consisting solely of the nul set, the unit set
of the nul set, ...'. Furthermore, the translation could
not be 'the set consisting solely of ¢, {gl, ....', since -
no fonwdla of a formalised set theory contains the means for
expressing dots, or the phrase 'and so on' or 'ete'. The
description is not expressible in the formal system and so any
proposition which contains this description will not be directly
expressible in the formal system. The most that we can hope for
is that we can express it indirectly by some other description.
This is what we attempt to do when we define N by means of an
intersection,.

Nothing, however, has been achieved by this translation,.
If the metalanguage is formalised then the translation of the
formal system is once more Zermelo's set theory. The
problem is the same as that which occurred in section 3.
We have effected a tr&nélation of a formal language into what
might be described as 'realistic' terms. The existential
operator is not, in the translation, just a mere symbe1 bﬁt'is
used to assert the eristence of some particular set. In
order to seﬁrenate the set theoretic propcsitions,iﬁ the translation-f

Wthh are true from those which are false we should have to have

some standard set theary which we coald use as a guide for decidlng g

which of the proposxtlons of the translatlon held and Which did
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not. Until this standard set theory is specified, at least

in part, there is no way of so c}assifying the propositiong

of the translation. .

The propositions that are of most interest in this

context are the undecidable sentences of the formal system.

The translation of (y)(y¢¥ >~ R(g,y)) will be 'for all

sets y, if y belongs to the intersection of all sets that

contain y and afe such'that if tﬁey contain a set w, they also
contain its unit set, then ~R(q,y)' (where ~R(q,y) is the
translation of ~3(g,x)). Wnether this translation is a true
proposition depends on whether the intersection does contain

just ¢, {¢1 , etc. A proof that this set does contain just

these sets presup?oses the éxistencevof a set which contains
jus£ these. For sﬁpéoée,thatvevery set which éontained'b, §qk ,
bss 8l80 oontained some aiﬂitional member. Thén there is no |
assurance that g, gl, etc. are the only sets common to all
‘sets that ¢oﬁtain'them.1 " That there is a set cbnsisting'only"
of ¢, {¢}.~etc. we could take as a true proposition of thé‘sﬁandard
"model.  Then it Would follow that the intersectiEn get coﬁtaiﬁéd‘
only s {¢3, etc. amd, hence, that, for all sets y, if v belonps‘f'
to the intersection set then ~R(q, y). Therefore, (x)(y;N'OAJR(g,x) i

expresoes a true proposition of the model.w,j

1. L. Henkin mentions this argument in hid dlscussicn cf ths non=-" .
"isomorphic character of the Peano axioms, 'Completeness in the Thecry e
of Types‘ Journal of Svmbolic Losic, 1950, .89.. : P
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We shall find that this has unwelcome conseguences.,
Quineladiscussing w-inconsistency and its implicdations for the
system NF, says that if his system turned out to be w-inconsistent
it would only mean that a set of the system was wrongly chosen as
the set containing O, 1, 2 etc. NF contains the set Nn defined
as {x; (z){0ez.(wiwez » S(w)ez)ﬁ > xezl « The only
difference between this set and the intersection set I have been
using is the different definition that the successor of a set
has in NF. Quine supposes that there could be some formula
of the formal system such thai:ﬁfg), {(;), g(g), ve. are all
provable and also € x) (xeMn f~$(§)). This situation, should
it occur, would mean that Nn must contain other sets than O, 1, 2,
etc. The notion of w-inconsistency loses its importance (in
set theory) because we may be able to choose another set which
will contain O, 1, 2, +.» but no x such thatep(x), e.g. {x:xeln. £(§)§'

This process of continual refinement maynot end, in which case,

Quine says, we may say that the system is numerically insegrative,
1e€e thé system fails to contain a proper translatiqn ofJ’x is‘a
~natural number'.2 |

| 'Reinterpreting Quine's argument for the tranglations pﬁt, "‘
forward here, if fhere is a formula P(x) such that

*(_@), #g({ik ), etc. are all provable and (Eg)(:geﬂ. wﬂ_}g)) is

1. W, quine, 'Onw~Inconsistency and the so~called axiom of
Infinity Journal of Symbolic Logic, 1953. .
2. ibid. ;
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provable then I should not be translated as the set consisting
solely of ¢, Wy etc.  But if we accept the idea of

an intended model in which there is a set consisting solely
of ¢, {$y y etc. and Tarski's method for translating the férmal
language into 'realistic' terms, the set corresponding to N

in the model will consist of just ¢, {p|, etc.

Let us suppose that there is a fommula of the formal
system ﬁ(g) which has the above property. Now if we are
prepared to say of the formula () (<X > v R(g,y)) that it
expresses a true proposition in the intended model we must
be equally prepared to say that (y)(yeNo {(y)) expresses a true
proposition of the intended model.  In this case we must say
that at least one of the axioms is false in the intended
model, since, if they\werekall true in the intended model
then so too Would‘be all the formulas derived from them, one
of which is ~(x)(xzel» p(x))

This unld be a surprising result because vhen we buil& i
up the axiom system we chqose‘axioms which correspgnd as _
' clésely as‘possible tb our,'intﬁiticn' of sets, uﬁe may not
succeed invcapturing all the 'correct! axigms but’at;least,.f;
we feel we have not chosénkqnyLOf the *incorrectf_ones.kv

HBut there seem to be worse consequences than this.. _va

the axioms contain at least one which is false in the,inténdéd

| model, then it mayvbe the case that %ﬁﬁ) where g ié one éf the -  »
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sets §, {#), {{ gl is false in the intended model. It may

be remembered that the reason for considering such formulas to

be true in the intended model was that they must be true in

all interﬁretations in which the axioms were true. Since '

it turns out that the axioms are not true for the ihtended model,
we have no good grounds for saying that each of %(é), $({¢}),
«es etc. are true. It might be thought, however, that there could
be independent grounds for saying that they are each true,

e.g. by inspecting the translations and seeing if they are true
of the intended model. But there is good reason to suppose that
%(x) would be more complex than any of the axioms. That is,

it would be harder to tell whether it was true of some particular
‘set in the model than to tell whether the axioms are trué in the
intended model. It may, for examplé, contain more qﬁantifiers
than any of the axioms and be ngtdtionally’longer than thém,
Consider the case of g(g,x)‘ .~ The expanded version of this will
not even bé~surveyable in Wittgenstein's gsense, - Now, if

ﬁ(@) doeé not e#preSS értrué‘?roposition of’the ihténdéd mddei
whére a iézoné df the séts ¢,4{¢}; {{¢§§; efc.f’Wé:ﬁéylohgér |
have grouﬁds for saying %hat'(x)(xeﬁ > ﬁ(ﬁ))' exﬁrééses é'fruE‘ 

- proposition of'the intended,modeli for our gfounds for sayiﬁg .

this was that ¢(a) edpressed a true proposition of the intended
model. In fact, if $(§) were to express a falsevpropbsition

of the intended.model,_(x)(xe§> %CX)) would express‘a false f o




- 292 -

proposition. For ~y(a) would express a true proposition and
therefore (Ex)(xeﬁmﬂi(&)) would be true, i.e. (¥)(yelo ¢(y))
would express a false proposition of the intended model.,

This is in direct contradiction to the initial position when
we saii that it expressed a true proposition,

Such a consequence is intolerable. What were the
suppositions on which it rested? One was that such a formula
existed.,  Now we could reject this, but to do so would be
foolhardy. Formal systems have a habit of producing the most
unlikely consequences. It is not beyond the bounds of
possibility for such a formula to turn up. There is no
guarantee that one will not, for if we coull prove that a formal
set theory is w-consistent we would have a proof of its
,consistenby.' Ve know‘that we can have no proof of consistency
which employs only those methods available in the formal theory.
HAny methods that we employ which are stronger than those‘in the
system may themselves be incdnsistent. | |

The other supposition was that we should accept that
(x)ix€ﬁ d ﬁ(x)) as expressing a true prdposi%ion:in'the inténde&”
«model. Ve expressed doubts about the levltimacy of intended
: or standard models sxnce they can never. be completely Sp601flad;i
The notion of an 1nt¢nded model ib unclear.v, Slnce thb above

| argument produces & oontraiictlﬂn Qn the asqumptlon of the

formal 1anguabe beln u-1n00n31stcnt (relatlve to N) 1f we allow ; 
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the notion of an intended model to settle the %ruth and falsity
of the sentences of the formal language, it would be a wiser
course to abandon speaking of a formula expressing a true
(or false) proposition of the intended model.

Once we do so, we can no longer talk of an unprovable
forﬁula expressing a true proposition of set-theory.
Thus the claim that there are true but unprovable formulas of
any formalised set theory can no longer be made.

There is no mystery about this. If we bear in mind that
a set theory is only committed to what it says exists, thére
‘remain propositions that are not expressible by means of any
formalised set theory. One such proposition is that there exists
a set which contains only the mjl set and sets generated from
it by means of the operation of forming the unit set.  As we
know from Henkin's Workl it will always be possible to add to the
axioms of any set in which Peano's axioms are derivable
(relative to some set N of the’theory) the set of axioms gel,
a#0, afl, 842, .... without inconsistency. Indeed Skolem hag
" given a model of Peano's axioms which, though déhumérable; is
not isomo;phic with the natural numbers.zk The Qonsequencé‘éf

GBdel's and Henkin's completeness theorems is that there are

1. L. Henkin, 'Completeness in the Theory of Types'

2. . T. 8kolem, 'Peano's Axioms and Models of Arithmetic!',
Mathematical Interpretations of Formal Systems, pp.l-14.

- (fnis paper utilises results published by Skolem in 1954).
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propositions which are not even expressible in a formalised set-

theory.l

1. R, Goodstein makes the remark that what G8del's theorem shows
for a formalised arithmetic is not that there is a true but unprovable.
formula but that the universal quantifier does not express 'for all'.
R. Goodstein, 'The Slgnlficance of Incompleteness Theorems',

British Journal for the Philosophy of Science, vol. xiv, 1963.,,,
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II

Recently certain axioms of set theory have been shown to
be independent. Coﬁenl has produced proofs that show theAaxiom
of choice is not derivable from the other axioms of Zermelo's
axioms. Togzether with GUdel's result2 that the axiom of choice
is‘cbnsistent with the other axioms, its independehce is
established. Cohen has proved that a zimiliar result holds
fof Cantor's éontinuum hypothesis.

The independence of both the axiom aﬁd the hypothesis
ghows ciearly that we are free to choose either (or their
negations) as axioms for sét theory. Opposed to such a view,
the iealist argﬁes’fhat there are sets (in some none 0o clearly
defined sénse) aﬁd that the mthematician's job’is to describve
them and fheir behaviour. Cdnsequently either‘the axiom of
choice is true of this reality or it is not; if it is true we should
adopt it as an axiom, if it is false we should adopt the ﬁegation
of the éxiom. Tet even if we accept the ex1stence of thls : |
reallty whlch set theory is supposed to be degcrlblng what
kind of ev1dence can point elther to its truth or 1ts falsity?

Both Cohen3 and Godel4 are realists and both ﬂuggest that the

1. P, Cohen, Set Theory and The Continuum Hypothesis, New fork, 1966
2, K. GBdel, '"Ihe Consistency of the Axiom of Choice and of the e
Generalised Continuum Hypothesis'!, Proceedinss of the Hational -
Acadeny of Scienceg U.S.A. 19383 . '

3, E.eCohen, op cit. p.151 Co :
4. k. Gddel, 'What is Cantor's Contlnuum Hypothesis?' Amérxcaﬂ
hhihpmatlcal Tonthlv, l947 T A
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continuum hypothesis or its negation may be derived from

some other proposition which we can see describes the

reality. But now we would want to know how this 'higher!
axiom can be seen to be a description of this reality.  Cohen
mentions another argument which he thinks might be used by
future generations to show that the continuum hypothesis is
'obviously false‘l This is that Zermelo's axiom of power sels
sets that cannot be reached by means of the other axioms of
gset theory. Again one wants to know how it could be seen
that such sets cannot be reached by such means. Eventually
realists would have to fall back on the self-evidence of such
axioms or at least on some metaphor or analogy. But self-

. x 3 2
evidence as a criterion of truth has obvious drawbacks™ and .

(&\\IQS

no metaphor can compel us to accept that it is the most appropriate

metaphor,

Ve are free to chose the continuum hypothesis or its

’negatidn as we like. =~ Whichever way is chowen the result is that

the rules for the use of 'is a member of' are specified further

in the field of abstract sets. In section 1 I:said that the = -

construction of abstract set theory involved the setting up of

’rules for the use of 'is a member of' and 'set'. Our choice

1. P, Cohen, op.cit. p.151

2.,  see, for example, 5. Korner, The Philozorhy of KMathematics,

p.135 et seq.
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of rules would be guided by the use of 'set' and 'is a member

of ! as they commonly occur outside of set theory. Clearly

we want a set theory which will have application, particularly
in the area of natural number or real number theory. Thus

- we will be guided by the needs of these disciplines. But, then,
as we have seen, the creation of this set theory creates its

own problems. The syntactic paradoxes arise at precisely the
point where the notion of 'set of' is replaced by the notion

of an abstract set. The failure of the axiom of comprehension
indicated only that care mst be taken in setting up the rules
for the use of 'is a member of' in this field. The different,
nén-equivalent axiomatic set-theories that have been set

up each replace the axiom of comprehension by a set of existential
axiomé. ~ VWhich one is the correct one? The question

makes no sense without there being some set theory with which

we are comparing all thg différent axiomatic set theories.

In the last chapter the-difficultics inhereni—in-holding
theories—and-in—the-last chapter we saw the difficultiaé 2

"~ involved in such an approéch. | There is nathihg~tb force us,ﬁa
use one set theory rather than another except for ease of |
applicability or aesthétic ﬁfeference. e ‘

| Each axiom of aﬁstréctvset theo?y chdééhjié ndfkso:1 >‘
chosen‘ﬁéoéuSé’dfvits'ftrufh';” rather, each chosen axiom réflectéwf

o decision to use 'is a member of' and 'set' in a certain way.
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e may use some metaphor to explain why one has made this
rarticular decision, but one is always free to reject the
metaphor. | We can see this at a stage earlier than the
continuum hypothesis, particularly in the case of the axioms
of foundation and replacement.l In Zermelo's set theory
(excluding the axiom of foundation) it is not possible to show
that there’is no set which belong to itself, nor is it
possible to show that non-grounded classes do not exist.2
We may argue fhat it is clear that the members of each set
may contain members and that these members may contain members
and 80 on. . But we may feel that there must be a layer which is
fundaméntal and contain no members.,  Hence we adopt an axiém
which will stop such sets arising. That is, we make a
decision thét no suchvsets exist, we do not find out that no
" such sets exist. For what would count as a proof that no
such sets exist?  Again the axiom of replacement cﬁh be
justified only by recowse to such arguments as, glven that t‘ne‘are, '
is an infinite’set % and the axiom of powerksét prcducing the
sets UZ, UUZ, UUUZ, etc. why should -there ﬁotbe & met
. consisting of all of these. The analogy}heré is with the .
axiom of 1nf1n1ty, 81nce thls glvus us a set cont*stlng if all

the sets ¢, {pg, B ,,utc. ~ But there is nothxng to force  :

1+ As formulated in Fraenhel and Baf*ﬁlll@l, FOdndathﬁS Df bet~ :

“Theoxy pp.85-91 LA
2+ In the sense that it is not 1nconslstent to supyese that there‘~-r—f

are such sets,.
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ug to accept that such a set exists. When we accept the axionm

we make a decision that such a set exists; we make a decision

. to use 'is a membervof' and 'set' in a way which was not determined
by the other decisions we had taken.

The axiom of infihity which asserts the existence of a set
with infinitely many members can also be rejected.  Strict
vfinitists would reject it. Of course such a rejection would
mean that we could not construct mathematics in such a set theory
but there is no reason for supposing that mathematics musgt be
constructible in set theory. There are some who prefer that
set theory dhould be capable of containing mathematics.

Quine, for example, prefers a homogéneous universe to a
heterogeneous one and will naturally prefer a set theory which
will explicate numbers in terms of sets. DBut there is no
‘logical hecessity for a set thecry to contaln mathematics.

However, if we do reject the axiom of infinity we are on
the point of departing from the normal use of 'is a member of'
fér,we do talk of the set of all natural numbers and»thef"‘

‘natutal numbers are infinite,  We are parting company with the '

ordinary use of 'set' and 'is a member of' which we take as a gide =

for constructing our set theory, Whereas the ordinary use
of the phrases gave us no guide with the other axioms it does
80 here. . EBven so, if we take a set theory in which theré are

”no individuals, é.gQ the Zermelo—Fraenkél axicms, the axiom
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of infinity is stated in terms of the nul set and sets generated
out of the nul set by some set operation. How talk of the nul
gset itself reflects a decision to use 'set' in a certain way even
though such talk is so familiar that we tend to forget this.
We have decided that we can talk of a set which has no members
which is perhaps unjustified by any 'ordinary' use of 'setl!'.
Whether there exists a sét which contains this set énd all unit
sets obtained from it is not then determined by the normal use
of 'set' or 'is a member of' since the existence of the nul set
itself is not so ddtermined. ’Similér remarks apply to the other
axioms of Zermelo-Fraenkel set theory. But once we have accepted
this extension of 'set! then we have no choice but to accept the
axioms of sum-set, pairing etc., if we are using the pre-set-
theoretic use of ‘is a member of ' and 'set' as our guide.

When we speak of some proposition of set theory béing true,
we are tacitly understanding a particular set theory in which
that proposition is a theorem, No sense cen be made of the
question: 'I know it is a theorem but is it true?' The only
sénse such a Quéstion could have wouid be: T kndw it is a |
theorem of’the set theory S1 but is it also a theorem of set
theory S,'. It is our decision to use 'set"&nd'fiska_membérkoff
in a particular way which4determines which propositions containing

only such phrases are true.
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) Appendix

Tarski's axiom of infinity as given in CITF (p.243) seems
to contain an error. As stated there it could be translated
ast There is a non-empty set z sucﬁfgf xez there is a proper sub-
set of x which is also a member of z. This clearly is not what
Tarski intended for he says that such an axiom 'guarantees the
existence of infinitely many individuals', As stated by
Tarski, the set postulated by the axiom of infinity cannot
contain even one individual, since individuals do not possess
proper sub-sets.

We may correct Tarski's axiom by altering the negation bar

in two places.  Then the axiom will conform to duine's

‘interpretation of the axiom as given by him in Set Theory and its

Logic, p.280. Quine explicitly states that this is Tarski's axiom
but Quine's axiom can be interpreted ag: thére is a non-empty
~set z such that if x¢z then there ié a set of which x is a

proper subset which also bélongé to z.  With the alterations

- given above Tarski's axiom can indeed be given this interpretation.
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