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Introduction 

This thesis covers a number of related topics in the 

foundations of set theory. Section 1 contains an analysis of 

the paradoxes which SU:~-_BstS a way of looking at the axioms of 

any formalised set theory as to a certain extent legislating how 

'is a member of' and 'set' are to be used. 

In section 2, two other points of view are examined and 

rejected. There are doubtless other views which directly 

contradict the view put forward in section 1, but clearly one cannot 

examine all the different solutions of the paradoxes in anyone 

thesis. The positions examined in section 2 seem to represent 

views that are most opposed to the general tendency of this 

thesis. 

Section 3 consists of a critical examination of Tarski's 

work on the semantic conception of truth for a formalised calculus 

of classes. This section has two aspects. The first is a 

defence of Tarski against some of his critics; the second an 

attack on certain of Tarski's conclusions. 

Section 4 begins where section 3 leaves off. 

it examines Tarski's conclusions about a definition of truth for 

set theory. It contains an analysis of G8del's results on the 

incompleteness of formal systems and is particularly concerned with 

the transference of certain inferences made from G8del's theorem 
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for a formalised arithmetic to a formalised set theory. rrhe 

conclusion of section 4 returns to the theme of section I and 

utilises certain metatheorems recently proved about fonnalised 

set theories. 

Throughout the thesis no one axiom system of set theory is 

presupposed though reference \till be made to several. The 

discussion is of a general nature and can be taken to be about 

any axiom system of set theory rather than some particular one. 
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Section 1 

I 

In this section I shall be concerned with the set-theoretic 

paradoxes. I wish to propose a way of looking at them which, 

if accepted, should alleviate much of the discomforture felt 

by philosophers, lOG~cians and mathematicians when confronted 

by them. I speak of 'a way of l)oking at the paradoxes' 

rather than of 'a solution of the paradoxes' because, as will be 

made clear in the sequel, the way of looking at the paradoxes 

presented here allows of a multiplicity of 'solutions'. 

It should be said here that, although much of the philosophical 

perplexity caused by the existence of the paradoxes may be 

dispelled, there will remain several problems for the mathematician 

and the philosopher, but these problems are not caused by the 

existence of contradictions. They would have arisen even without 

the discovery of the paradoxes. Indeed, there are two distinct 

problems which will remain to be solved: one of them a purely 

technical problem of direct concern to mathematicians only, 

the other a general philosophical problem analogous to the 

philosophical prob~ems aroused by other mathematical and scientific 

theories. 

The former problem is to construct a set-theory which is 

consistent and adequate for the needs of mathematicians working 
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in theories which employ the concept of set. The problem of 

consistency has itself engendered a body of literature and it 

now seems that a proof of consistency for set-theory is 

unlikely to be forthcoming. But this is a technical question; 

it is sufficient for my present purposes to show that the 

problem of consistency would still be present even if there 

were no paradoxes. Certainly, the paradoxes have made the 

problem of consistency more urgent, because they have shown that 

inconsistencies can occur in the least suspected places. But 

the problem of consittency, at least for formal axiomatics, 

exists not because inconsistencies have occurred but because 

they might occur. The adequacy of a set-theory, referred to 

at the beginning of the paragraph, is needed because the 

mathematical theories which employ the concept of set, for 

example, Le,besgue measure and integration theory and the 

theory of real and complex functions which depends on the 

theory of sets of points, employ theorems of set theory. 

The mathe~ttician working in such fields requires the theorems 

of set theory and, therefore, a set-theory which will provide 

him with these theorems. The related problems of the 

consistency and adequacy of set-theory are not then directly 

caused by the existence of the paradoxes and they will remain 

whatever philosophical solution of the paradoxes is offered 

They are essentially mathematical problems and can be solved 
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only by mathematicians; they are only of indirect interest to 

the philosopher because they are not philosophical problems. 

The general philosophical problem, mentioned on the 

previous page relates to the existeuce of sets. It is the 

problem aroused by the question 'Do sets exist?' or 'in what sense 

can sets be said to exist?' rather than the question 'i,'hat 

sets exist?' This is indeed a philosophical question but not 

one which a solution of the paradoxes will answer. The 

paradoxes help to give a partial answer to the question of 

which sets exist but not of whether sets exist. 
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II 

In this chapter I shall state some of those para.doxEis 

with which I shall deal. The paradoxes are all from set-theory 

and, although I shall speak of the other paradoxes, 'heterological ' 

for example, in section 2, I shall not deal with them directly. 

The list is not intended to be exhaustive. I have picked 

out those that I shall discuss in later chapters, but the 

treatment I propose should be capable of extension to other 

paradoxes of set-theory with which I shall not deal in detail, 

the parddox of all grounded classes, for example. 

There remains the difficulty of characterising the paradoxes 

of set-theory. I think that RamseY'sl division of the 

paradoxes into two groups, the logical paradoxes and the 

'epistemological' paradoxes (now generally referred to as 

the 'semantical paradoxes') will be adequate. Perhaps a 

more precise distinction may be made in the light of more 

recent work on semantics and also the distinction, now 

universally accepted, between object-language and meta-language. 

The set-theoretic paradoxes may then be characterised as those 

paradoxes which may be stated in the object-language of 

set-theory. With this characterisation the Berry, Richard 

1. Ramsey, F.P. ''l'he Foundations of Mathematics't in The 
Foundations of 1~thematics and Other Essays, London 1931 
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and Zermelo-KBnig paradoxes fall 'tithin the domain of the 

semantical paradoxes because they each refer to an object-

language as well as to sets. The Skolem-LBwenheim 

'paradox', although a theorem belonging to the meta-theory 

of formal languages, is sometimes listed as a paradox 

along with the above. l Even if this important theorem 

is regarded as a paradox, it will still fall outside the 

scope of this section because it also belongs to the semantic 

2 
category. 

Throughout this section and section2, then, I shall be 

discussing in some detail the following four paradoxes, 

bearing in mind that the procedure I shall advocate may be 

extended to the other paradoxes in the same category. 

1. The Russell Paradox. Consider the set R of all 

those sets that are not members of themselves. If R is 

a member of R then R is not a member of R; if R is not 

a member of R then R is a member of R. Therefore, R is a 

member of R if and only if R is not a member of R. 

Assuming the law of excluded middle it follows that R is a 

member of Rand R is not a member of R. 

2. The Cantor Paradox. Consider C the set of all sets, 

1. See, for examplet E. Beth, The Fotmdations of ~athematica 
Amsterdam, 1959. pp.448-450 

2. This will be discussed further in section 4 of this thesis. 
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and the set UC of all subsets of C. It follows from a 

general theorem of set theory, namely, for any set the cardinal 

number of Us (the set of all subsets of s) is greater than the 

cardinal number of the set s, that the cardinal number of UC 

is greater than the cardinal of C. Sinc@forall x if x is 

a member of UC x is a member of C, UC is a subset of C, it 

follows from another theorem of set-theory that the cardinal 

number of UC is less than or equal to the cardinal number of C. 

Therefore C has a cardinal number greater than or equal to the 

cardinal number of C and the cardinal number of C is also 

less than the cardinal number of UC. 

diction. 

3. The Set of all Cardinals. 

This is a contra-

Consider the set of all 

cardinals. One theorem in set theory states that there 

is no greatest cardinal and another theorem that for any set 

of cardinals among which there is no greatest member the sum 

of the cardinals of the Ket is greater than any cardinal in 

the set. Therefore, the set of all cardinals, which has no 

greatest member, gives a sum which is greater than any of 

the cardinals in the set, i.e. a cardinal greater than any cardinal. 

4. The Burali-Forti Paradox. Consider the set of all 

ordinal numbers arranged in order of magnitude. This set is 

well-ordered. Suppose its ordinal number is ~ • Consider 
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the set of all ordinals up to and including .n. arranged in 

order of magnitude. The ordinal of this set will bea 

.f\.t +1. Now J)., is less than .r)., + 1 • Since the set of 

all ordinals up to and including ~ is an initial segment 

of the set of all ordinals, n.. + 1 is less than or equal to S\. 

This is a contradiction. 
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III 

To understand how the paradoxes have prevented us from 

seeing their solution, it will be necessary to pay more attention 

to the way they are stated in important works on logic or the 

foundations of mathematics and in many of the text-books dealing 

with these subjects. For example, to quote only a few of the 

many different statements of the paradoxes to be found in such 

books: 

"Let w be the class of all those classes which are not 

members of themselves. Then, whatever cl ass x may be, 'x is a 

w' 1s equivalent to 'x is not an x'. Hence, giving to x the 

value w, 'w is a w' is equivalent to 'w is not a w,.l 

"Consider the set of all sets; call it M.,,2 

"Let us suppose that S is the set of all sets,,3 

" •••• the set of all subsets of a set M has a cardinal 

number higher than that of M. 

set of all sets.,,4 

This is a contradiction if M is the 

These four statements or partial statements of the paradoxes 

as well as the statements of the paradoxes as I gave them in the 

previous chapter have helped to conceal, behind the words "consider" 

or "let us suppose" a 'hidden' existential proposition. (A notable 

exception to this indirect concealment occurs in Fraenkel and 

1. B. Russell and A.I{hi tehead, Principia lllathern."ltica, 2nd edt Cambridge 
1927, p.60 
2. S. Kleene, Introduction to J,:etamath.bmatics, Amsterdam, 1952, p.36 
3. IV & M Kneale, '1'he Development of Loe;ic, Oxford, 1962, p.652 
4. H. Curry, Foundations of l'athematical Logic, New York, 196; p.5 
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Bar-Hillel's discussions of the Russell paradox.)l 

A proof that there does not exist a last prime number can, 

if it is formulated in an analogous way, be turned into a 'proof' 

that there are inconsistencies in number theory. For example, 

instead of the phrase 'suppose there exists a last prime number' 

the 'proof' would start .'consider the last prime number, call 

it P'. From 'consider the number P such that P is prime and, 

for all n, if n is greater than P then there exists an x such 

that x~l, xfn and x divides n' it may be deduced that there 

is and there is not a number wluch is prime and greater than P. 

This is a contradiction. 

It can be seen that such a proof would never be accepted 

by mathematicians because the proof has concealed the 

existential assumption that there exists a last prime number. 

It is valid only if there does exist such a number. But that 

there does not exist such a number only follows from the fact 

that a contradiction has been derived from the supposition that 

it does exist. 

Now if the same reasoning is applied to the set of all 

sets or the set of all cardinals, it can be seen that by rewriting 

the offending phrases 'consider the set ••• ' or 'let the set R 

be ••• ' in the proper existential form 'suppose there exists a 

1. A. Fraenkel and Y. Barr-Hillel, Foundations of Set-Theory, 
Amsterdam, 1958, p.6 
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set, S say, such that ••• ' what might be said to follow from 

the resulting inconsi~ency is not that there is some paradox 

that must be removed but that there is no such set as the set 

~. In the following chapters I shall be considering the 

merits of this argument and, also, what qualifications have to 

be put on it, since in the form given above there is much 

oversimplification. 

, 
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IV 

In this chapter I shall show that there are analogies to 

the Russell paradox in established fields of mathematics. 

I shall consider three examples of existence theorems. 

1. There is no last prime number. 

2. There exists a non-enumerable set. ('ro put this in a 

form more analogous to the paradoxes, there does not exist a 

one-to-one correspondence between the set of all sets of 

natural numbers and the set of all natural numbers or a subset 

of them). 

3. There do not exist natural numbers p and q such that 

p/q is equal to the square root of 2. 

Each of these theorems bears a resemblence to the solution 

put forward here to the Russell paradox. In the case of 1. 

there is no difficulty; it is an accepted theorem of number 

theory and has been so at least from the time of Euclid. In 

the case of 2. opinion is still divided. Arguments have been 

proposed, notably by the intuitionist school, for its rejection. 

In the case of 3., although it is an acc~pted theorem of analysis 

all outstanding difficulties have been cleared up only in the 

last century. 

All are analogous to the statement 'there does not exist the 

class of all classes which contain themselves as members.' All 

could be regarded as JUradoxes if we refuse to aocept that they 
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are results established by the use of reductio ad absurdum 

proofs. There seems little more than prejudice which would 

account for the attitude taken with regard to the Russell 

paradox on the one hand and 1., 2. and 3. on the other. 

Admittedly, that there is no such class as the Russell class 

may be surprising but this should be no criterion for 

rejecting that result. To some it may be just as surprising 

that there does exist a class which cannot be put into one-

one corrdspondence with a subset of the natural numbers. 

The discovery that there exist irrational numbers must have 

surprised the Pythagoreans. In these latter cases, however, a 

new fruitful mathematics has come into being. In the first, 

the theory of transfinite cardinals and ordinals; in the 

second the theory of irrational numbers. 

In other words, the discovery of 2. and 3. have altered 

fundamental assumptions held about numbers and sets. We have 

not been content to say here is a paradox but we have been 

prepared to alter our concept of number. l It would seem then 

that we should do the same for the set-theoretical results. 

Y[e should not say here are some paradoxes, but say :bather our 

concept of set must be altered according to the results we have. 

1. 'l.'he Pythagoreans held that lines were made up of an integral 
number of units. This, however, was found to be incompatible 
wi th the consequences of P~'thagoras I s theorem. Instead of introduoing 
the notion of an irrational number, Greek mathenaticians were forced to 
abandon the attempt to identify the realm of number with continuous 
magnitu~es. C. Boyer The Concepts of the Calculus 1949 p.20 
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Vie may view' the paradoxes not as inconsistencies in set-

theory but as part of unfinished proofs that certain existential 

assumptions are false. The argument which, accordine to this 

theory, should be applied in the case where two contradictory 

propositions are both derivable from some assumption, q say, 

is that not-q is provable. This argument, frequently 

employed in mathematics, is simply an example of reductio ad 

absurdum. This view has some precursers. Solutions along 

1 2 
these lines have been proposed by D. Bochvar , J.F. Thomson 

and G.H. Von Wright3• 

Bochvar contends that the set-theoretic paradoxes result 

from definitions which include or presuppose existential 

assumptions of an extra-logical character. In particular, 

the axiom schema 

where U is any expression conta.ining the free variables 

xl ,x2 ' •••••• ,xp is responsible for the existence of the Russell 

paradox. The logical system Bochvar constructs is a version of 

elementary logic with variables, not subjected to a type hierarchy 

1. D. Bochvar, "ro the ~uestion of Paradoxes of the :Mathematica1 
Logic and Theory of Sets', Mat.Sbornik 15, 365-384. Known to me through 
the review by Wanda Sxmielew, 1946, Journal of Symbolic LoRic, 11, p.129 
and E. Beth, The Foun~tions of 1~thematics, Amseterdam 1959, p.506 
2. J.F. Thomson. 'On ~ome Paradoxes' pp.104-119 
3. G.H. von Wright, 'The Heterologica1 Paradox', Societas Scientiarum 
Fenniea Commentationes Physico-I.;athematicae XXIV 5, 1960 pp.1-28 



- 16 -

Xl' x2' •••• , atoms X (x ,X , •••• ,x ) and excluding every n n1 n2 np 

application of the schema (A). This system is shmvn by 

Bochvar to be consistent. Instead of the Russell paradox 

being derivable from this system, it is provable that there 

does not exist the set of all sets which do not belong to 

themselves. More precisely, the sentence 

N(ex2)(xl)(X2(xlh "'xl (xl) is provable. The solution 

that Bochvar proposes seems to depend upon the difference 

between logical assumptions and extra-logical assumptions. 

According to Bochvar the schema (A) is an extra-logifal 

assumption which is responsible for the appearance of the 

paradoxes. Clearly, if he is right in his contention that the 

paradoxes do result from such extra-logical assumptions he needs 

some criterion by which to determine which sentences are of 

logical nature and which extra-logical. The question that 

arises from this is which assumptions are of a purely logical 

character. If there is to be a set-theory at all, there needs 

to be certain axioms in any set-theory from which set-theoretio 

theorems follow. Are these ~~oms of a purely logical nature? 
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It is difficult to seel the set-theory which Bochvar has 

proved to be consistent and what theorems of a generally 

accepted set-theory remain in such a system as Bochvar's. 

What is certain, however, is that Bochvar proved, in his 

system of set-theory at least, that there does not exist 

the set of all sets which are members of themselves. 'l'here 

are in various standard works on logic and set-theory similar 

results. For example, ~uine's system, referred to as 

lvI.L. contains the theorem that there is no such set as the set 

2 of all sets which do not contain the,,$elves as members, and also 

Fraenkel in Abstract Set Theory in connection with the Burali-forti 

1. The fault is not Bochvar's but mine, because I am dependent upon 
the review by Sxmielew (see note 1 p.13 of this chapter). It is 
clear from that review that Bochvar excludes all existential assumptions 
since he regards them as not belonging to the province of pure logic 
The calculus he constructs, K , is a form of the first-order functional 
calculus with identi ty. 'l'hu~ he proves K to be consi stent whereas 
the extended functional calculus without aOtheory of types is known 
to be inconsistent. K is also a form of the extended predicate 
calculus without the wh81e of the 'extra-logical' part. It is not 
clear on what grounds he rejects these existential assumptions other 
than that they give rise to paradoxes, nor why he labels them extra­
logical. If, as Sxmielew implies, he believes that theorems of 
existential character and the study of the relations of this character 
between things is not proper to logic even when they are expressible 
in logical terms, then what does he say of the existential theorems of 
the first-order functional calculus, (EX)PX~NPX? If these are theorerr~ 
of Ko th~l it remains to show that quantifying with the existential 
quantifier over individual varia.ble is a part of 'pure' logic but 
quantifying over predicates does not belong to 'pure' logic. 

2. W.<i.uine, l'ilathematical Lorde, 1940, pp.128-9 
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antinomy statesl 

'the totality of all ordinals does not constitute a 

set' .1 

But these latter theorems are not regarded by their authors 

2 
as offering a philo 00 phical explanation of the p:l.radoxes. 

Bochvar, on the other hand, does not limit himself to obtaininG 

a theorem which is a consequence of the axioms and rules of 

derivation of a formal calculus only, but contends that the ~~radoxes 

are contradictions resulting from the intrusion of extra-logical 

existential assumptions which are instances of the schema (A)l 

J.F. Thomson3 argues that the 'Barber' paradox, the 

heterological paradox, the Richard paradox and the Russell paradox 

have a common form. He proves the theorem that if S is any set 

and R any relation defined at least on S then no element of S 

has R to all and only those S-elements which do not have R to 

themselves. In itself this is not paradoxical but 'a plain and 

simple logical truth,4 which, hm7ever, provides a foundation on 

which many of the p:l.radoxes are built. 

The answer to the Barber paradox, based upon the theorem 

is that no man exists who shaves all and only those men who do 

1. A. Fraenkel, Abstract Set Theory, AmS'Jerdam 1961, pp.201-2 
2. Fraenkel does not consider that this explains the paradox but 
uses the concept of classes which are not eligible for membership 
rather as an expedient. See his discussion op.cit. p.202. ~uine also 
uses membership-eligibility, op.cit. p.131 
3. J.F. Thomson, op.cit. 
4. ibid. p.104 
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not shave themselves. Indeed, this is the answer which is 

accepted. Yet, the heterological paradox and the Russell 

paradox although based upon the same theorem have not had the 

same conclusion drawn from them. Thomson argues that the 

heterological and Russell paradoxes should be regarded in the 

same light as the Barber and that: 

'a contradiction arises on supposing that there could 

be an adjective which is true of absolutely every adjective 

which is false of itself. Thi~ is, this supposition is 

absurd and must be given up.' 1 

'Formally, this the reasoning that the Russell set is 

a member of itself if and only if it is not a member of itself 

is just the same argument as that of the Barber: so why should 

we not deal with it in just the same way, and say it just shows 

that there is no such set as R? 

The answer is that we should deny that there is such 

a set as R the set which produces the Russell paradox ,.2 

Vihilst I agree, with qualifications,with Thomson on 

these conslusions, the Bchema he gives upon which the paradoxes 

can be based tends to conceal that all the set-theoretic ' 

paradoxes have a common structure, though not that of his schema. 

Certainly the great similarity between the Barber paradox and the 

1. Hid. p.1l2 

2. ibid. p.1l7 
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Russell paradox is brought out very clearly, but the schema is 

no help when we come to the Cantor paradox or the Burali-forti 

paradox. Here it would be necessary to go even deeper to find 

the common proof schema which would show that there is no such 

set as the set of all sets or the set of all ordinals. The 

common schema in all these cases is the theorem from the 

propositional calculus: tp";) (q ... q)\,)",p. Incidentally, 

it is this schema which is used in Thomson's proof of his theorem. 

The main criticism that I have to make of Thomson is that he 

1 does not go far enough. 

2 G.H. von Wright discusses the heterologica~j paradox 

and comes to a similar conclusion, namely, that 'heterological' 

does not name a property which a thing has if and only if it is 

not autological, or, to reformulate this proposition, heterolo~~cal 

is not a property. Since heterological is not a property 

and because the definition of 'heterological' states that x 

is heterological if and only if it is not the case that x has a 

prorerty of which x is a name, it follows tha. t 'heterological' 

is heterological. It does not follow that because 'heterological' 

is heterological, 'heterological' is not heterological, since 

'heterological' is heterological because it is not a property, 

1. Basically, Thomson is showing, thoueh he does not sav 80, 
that Barber, Russell and Grelling paradox have the schema " :, 
(t:x) (y) f(x,y) = ",f(y,y) whilst the negation of this formula is 
provable in the predicate calculus. 
2. G.H. von Wright, op.cito 
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not because it does not ha.ve the property which it names. 

The principal conclusion which von Wright says should be drawn 

is that 'heteroloejcal' is not a property. 

I shall now mention two of his arguments which I shall 

refer to later. Firstly, he considers that objections may be 

made that 'heterological' must still be a property even though 

the modo tollente proof [p :) (q:Aoq)h "p shows that it is not. 

Re maintains that it is necessary to clarify the concept of 

property understood by the objector. For example, it might 

be said that a property is anything which can function as a 

predicate in a true proposition of subject-predicate form. 

Since" 'hexasyllabic' is heterologicBr' expresses a true 

proposition of the subject-predicate form 'heterological' 

must be a property. But the sense of 'property' which 

von Wright understands is the sense implicitly defined by the 

predicate calculus which states '" ~f(x) .... f(x)1 as a 

theorem. It is in this sense that 'heterological' is not 

a property. If it is maintained that 'property' should be 

understood in the objector's sense, then there is no 

contraQiction or paradox because the predications involved would 

not be predications in the sense of the predicate calculus. 

Secondly, he gives an analogy between the heterological 

paradox and the division by 0 in aritpmetic. If for any real 

numbers m, k and 1, ml=mk implied l~k, it could be proved that 5a1, 
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since 0.5=0.7 This contradiction could lead to the 

conclusion that 0 is not a real number. It is more useful, 

however, to admit 0 as a real number than to reject it. 

Instead of rejecting 0 from the class of real numbers, it is 

preferred to say that there is an exception to the proposition 

that for all real number m,k,l, if mk=ml then k=l and the 

proposition is modified accordingly. The proposition becomes, 

for all real numbers m,k,l, if m*O and mk=ml then k=l. 

An; analogy exists between the case of division by 0 

in arithmetic and the case of heterologicality. Von Wright 

contends that if the evidence in favour of calling heterolo,~cal 

a property outweighs the evidence against it (in this case, 

the derivation of a contrdiction from the supposition that it 

is a property), then it could be said that 'for any word x, 

if x is not a name of the property of heterologicality itself, 

then x is heterological if and only if it is not the case that 

x has got a property, of which x is a name. ll 

I shall return to these two arguments later in this 

section. In the next chapter I shall show how similar reasoning 

may be applied to the paradoxes of set-theory, a subject only 

mentioned in passing by von Wright. 

1. G.R. von Wright, op.cit. p.27 
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v 

In this chapter I shall be looking at the paradoxes in 

more detail and showing the implications of viewing them as 

part of reductio ad absurdum proofs. 

In chapter III of this section I maintained that the 

apparent paradoxes were only partial proofs of set-theoretic 

theorems. They served the same function as a contradiction 

in any reductio ad absurdum argument, namely, to negate the 

premise from which the contradiction was derived. 

from the assumption that there exists a class of all classes 

which are not members of themselves, the Russell paradox proves 

that there does not exist such a class. In other words, the 

paradoxes are the penultimate inference steps of theorems. 

In such a manner the paradoxes are removed and 'new' 

theorems take their place in set-theory. The new theorems, 

which replace the four paradoxes taken as examples of the 

paradoxes in general in chapter I of the present section, area 

1) there exists no class R such that, for all x, x is a 

member of R if and only if x is not a member of Xi'~) there 

is no class C such that, for all x, x is a member of C if an,' 

only if x is a class; 3) there is no class S such that, for 

all x, x is a member of S if and only if x is a cardinal number; 

4) there is no ordered class T of all ordinal numbers, ordered 
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according to magnitude. 

Such theorems as these represent gross simplifications of 

what would happen in the case of sl1ch a 'solution' being 

applied; Above, it is applied directly to the 'hidden' 

premises. In practice, however, the implications are far 

more complex. In the case of the Russell paradox, I 

believe a good case can be maintained that no such class 

exists, reasoning on the reductio ad absurdum argument outlined.. 

The other paradoxes require a more subtle treatment because they 

are embeddied rather deeper in set-theory. Al thoueh I have 

not been concerned with any axiomatic or formal system of 

set-theory in this present section and have treated the paradoxes 

and purported solutions as informally as possible, it will 

be necessary to give a more detailed analysis of the Cantor 

paradox and to give the proof of the theorem on which it 

depends. The proof is informal and is not derived from 

any axiom set in particu1ar.1 The proof, and the remarks 

that I shall make on it, should help to answer the question of 

why from the contradiction involved in the Cantor paradox, 

for example, it does not necessarily follow immediately that 

no such class as the class of all classes exists. This 

would seem to contradict what I have said above, but it will 

1. For a treatment of set-theory in an informal manner see 
Sierpinski Cardinal and Ordinal Numbers, Warsaw, 1958 
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be seen that there may be more than one premise involved and 

that the Russell and Cantor paradoxes may not be as independent 

as they seem. 

Cantor's paradox follows from the theorem that for all 

sets X, the cardinal number of X, denoted by ''x", is less than 

the cardinal. number of UX, the set of all subsets of the set 

X. I shall give one proof of this important theorem. For 

the definitions of equality and order amongst the cardinals I 

shall take the following • .. 
X .. Y if and only if X'" Y S- Y and Y'" X S Xl. o 0 .. 

2) X < Y if and only if X '" Y <;; Y and fo r all X if X S X then Y ~ X 
000 0 

Proof: Each x of X can be associated with txJ of UX (where "{x}" 

denotes the set of which x is the sole member). 

Hence X ",X S UX 
a 

(X being the set of Ul1it subsets of X) 
o .... 

By 1) and 2) X < UX or X .. UX 

Suppose X .. UX Le. UXN Xl So X, for some ~ 
I::.t, a 1-1 correspondence, such that to each x & Xl' 

'f (x) "" X" where Xl> is a certain subset of X. 
I 

Let R be the set of all x which are members of XI and 

are not members of 'fJ (x) 

i.e. R' .. tx; x (XI . X ~ ~ (x)1 

1. l)!s not the usual definition of equality between cardinals, 
which is X=Y if and only if X"'Y, but due to the equivalence theorem 
of set-theory, 1) is equi-pollent with it. See A. Faraenkel, Abstract 
Set Theory Amsterdam, 1961, pp.58-78. 
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:Now R' is a sub-class of X 

:. R€ UX 

:. (Ey) ~~(y) =R' • Y€XJ.l 
I 

Now, Y £ ~ (y) if and only if y €. R 

" 

" 

It II " 
tI II " 

since y € XJ., 

II Y cc {x; X E. JS.. x ~ ~ (x)] 

II y~ \Xl • Yft(y) 

Y £ ~ (y) if and only if Yf ~ (y) 

which is a contradiction. 

Hence, by reductio ad absurdum, X f fiX 

(4) X <. fix 
This theorem provides half the basis of the Cantor 

paradox where the set in question is the class of all classes, 

c. 
a <. uC 

The other half is provided by the fact that, in the case 

of C, UC £ C. (since all members of UC are sets, all members 

of UC are members of C, UC ~ C follows from the definition of 

subset). By (1) and (2) uC ~ a which contradicts (5). 

A less precise statement of Cantor's paradox is that 

obviously the cardinal number of the set of all sets is the 

highest that can exist, yet the theorem proved above shows that 

1 the set of all subset of this set must be greater still. 

1. See, for example, E. Beth, The Foundations of 1,Tathematics 
Amsterdam, 1959, p.484. 
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If, for the moment, the paradoxes and the above theorem 

are forgotten and fresh attention paid to the class of all classes, 

a new relationship may be found between it and the class of all 

its subelasses. On an intuitive level, then, the class of all 

classes does have the largest cardinal number, but, as yet, nothine 

is known of the cardinal number of the class of all its subclasses. 

One would expect that, as its cardinal number cannot be higher 

than the cardinal number of the class of all classes, and, on 

the other hand, as the number of its members cannot be less 

than the number of members of the class of all classes, its 

cardinal number should equal the cardinal number of the class of 

all classes. Continuing to disreeard the above theorem, this 

can be 'proved' as follows. 

Let C be the class of all classes, 

Let UC be the class of all subclasses of 0 

(6) A 1-1 correspondence, L, can be set up between 0 and 

a subclass of C of UC, in this ways o 

For each x ~ C let 1 (x) .. {x 1 i.e. the unit class 

consisting of x alone. 

(7) Also, a 1-1 correspondnece,e, can be set up between UC and 

C .. a sub-class of 0, in this wayl 

For each x E. Uc associate x € C 

i.e. tJ (x) .. x 
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(6) and (7) together imply that C ",C S. UC and DC'" esc o • 

which implies, by definition (1), that C == uc (e) 

The last result (8) is not surprising. It is very much 

as one ";Quld expect, if the theorem (4) was ignored. Yet, 

(8) is in direct contradiction to (5). In other words, 

(8) and (5) restate Cantor's paradox. To prove (8) a 1-1 

correspondence was established between C* and DC, but accordihg 

to the proof of (4) no such 1-1 correspondence can be established. 

If, for the moment, one accepts (8) then there must be a fallacy 

in the proof of (4). This proof will be more thoroughly 

examined to see how it comes into conflict with (8). 

That part of the proof which used reductio ad absurdum 

reasoning began with the supposi tion that for some ~, UX.., Xl S; X. 

In the proof of (8) a 1-1 correspondence, 0, was established 

by which DC .. C .. ,'~.C. It is no longer just a supposition that 

there exists such an X related to UX under a 1-1 correspondence, 

for C* and DC are related by e in exactly this way. The 

contradiction which followed in the proof of (4) should, 

therefore, follow when C is substituted for X and i for f 

in that proof. 

The first step (3) was to let R/ be the class of all x 

which are members of ~ and not members of t (x). In the 

case of the 1-1 correspondence i and the olass C*, this becomes, 

let R / be the class of all x which are members of C* and not 
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members of 9 (x) • 

Using the definition of e (x), this becomesl let 

R'= I. C ,-x; x~ *' xfX}, Now, this clasa R/ia a subclass of 

the class of all classes which are not members of themselves. 

In other words, R; is a suspect class already since it is a certain 

sub-class of the Russell class R. The contradiction which 

follows in (4) is transf6rmed into an argument analogous to the 

argument leading to the Russell paradox by the substitutions 

of C and 9. 

Since R I is a certain sub-class of C, R' E. UC. 

Hence, there exists y such that YGC* and 9 (y)=R' • 

From the definition of 9 (y), yaR' • 

Therefore, y' e (y) if and only if y"R' , hence, if and only 

, , I ' 

1. e. R' R if an d only if R t R 

In the proof of (4) the contradiction led to the rejection 

of the supposition that there could be an equivalence between 

Xl and UX, but it was taken for granted that R' would exist 

in the formulation of (3). If, however, the existence of Rt 

is not assumed, the contradiction could equally well prove that R' 

does not exist. In the case of the class of all classes and the 

1-1 correspondence set up between UC and C*, the supposition that 

there could exist such a correspondence between a subclass of 

a class and the class of all its subclasses is no longer just a 
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I 
'rhe supposition that there exists such an R 

must be rejected if the 1-1 correspondence e is accepted. 

'rhe point I have been makin,; in the detailed analysis 

of the proof of (4) is that the existence of Cantor's paradox 

does not prove that there does not exist a class of all 

classes. 

In the Case of the Russell paradox, I have applied the 

method of reductio ad absurdum directly to the Russell class. 

(The reason for so doing I shall explain later). But with 

Cantor's paradox, the situation is different. For the paradox 

to occur, there must be two classes, the existence of which is 

assUI)jed, namely, the class of all classes (together with the 

class of all its sub-classes) and the class R', the class of 

all those classes which do not belong to themselves and also 

belong to C*. As I have shown, the Cantor paradox occurs 

because the existence of C is incompatible with the existence 

of R'. Therefore, the reductio method could be used to show 

that ~' does not exist. As R' was a suspect class in any 

case (since it was a sub-class of the Russell class) this would 

not be 80 surprising. Two 'new' theorems would then be 

established. Firstly, cr=~ and, secondly, for all classes X 

except the class of all classes X <. IDe, Etnalogous to the treatment 

given to "division by zero in arithmetic. " Again, this leads to 
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complications. In the first place, C=UC may still be 

inconsistent with some other result of set-theory; secondly, 

the supposition that C exists (and hence C=uC) implies the 

rejection of an infinite number of classes. 'l'his latter 

implication follows from the fact that there are an infinite 

number of 1-1 correspondences between DC and subsets of 

C. For exampla, e can be taken to be the 1-1 correspondence 

which associates each x belonging to UC with {xl belonging to c. 

T"t,;~s correspondence e
l

, say, thus establishes an equivalence 

between UC and C
l 

a subclass of C. The class which then 

corresponds to R' will be the class of all those classes which 

belong to 01 and do not belong to their only member. 

Le. ~ ={x; ix1' 01' tx1 ~ x 1. By the same reasoning as 

was used previously Rl does not exist if C does. Similarly, 

by establishing the correspondence between each x)f UC 

does not exist if C does. By the 1-1 correspondence 

associa ting tttXm with x and with x etc., 

the classes R3, R4, etc. formed analogously to R', can be shown 

not to exist. If so many classes have to be rejected, it may 

be felt that it is the class of all classes which is the root 

of all the trouble and that it should be rejected rather than 

the classes R', Rl , R
2

, etc. 

R
l

, •••• could be rejected. 

, 
Nevertheless, the point is that R , 
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To sUllllIlarise this chapter I although I said in chapter III 

that the paradoxes could be regarded as implying the non­

existence of the sets that give rise to them, to do so would b~ 

to oversimplify' the si tua tion. For the rejection of one set 

may remove the necessity of rejecting another. 
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v 

It might be said that it is a mistake to talk of 

preferring to reject one set rather than another. It might 

be thought that either there is such a set as the set of all 

sets or there is not. We are not free to choose whether a 

particular set exists. We can only discover that such a 

set exists. One might sa:,! that the paradoxes show that no 

such set as the Russell set exists, in the sense that we 

discover that the set does not exist. To talk in this way 

is to talk as though set-theory is a science investigating 

objects open to our inspection, rather as the physical sciences 

investigate the nature and behaviour of physical objects. 

Now abstract set-triliory, as opposed to theories of 

point sets, set o~ natural numbers etc., is, as its 

name suggests, a theory of abstract sets. Its universe of 

discourse is limited to sets. We are speaking in abstract 

set-theory of 'sets' rather than of 'sets of'. It is this 

change from the faI,dliar to the unfamiliar which should make 

us look askance at the view that we are discovering laws of 

how sets behave. 

Certainly, the familiar talk of sets of points or 

natural numbers guides us in how we shall talk of abstract 

sets. For what we want from a set-theory is a ready-made 
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apparatus which will be applicable when we want to discuss 

sets of some particular kind. 

The 'arithmetisation' of analysis is, as \'langl says, 

a misnomer. For, besides the theory of natural numbers, 

Cauchy convergent sequences and Deilicind cuts, in 

terms of either of which the real numbers can be defined, 

need infinite sets of natural numbers for the 'arithmetisation' 

to be carried out completely. ,Vhat is needed, then, is a 

theory of sets which can be applied to natural numbers. 

i.e. a theory which will give the theorems which we need for 

the 'arithmetisation' of analysis when the 'sets' of the 

abstract theory are identified with sets of natural numbers, 

sets of sets of natural numbers, etc. 

Perhaps Wang is wrong insayihg that since real numbers 

can be regarded as sets of rational numbers the 'arithmetisation' 

2 logically calls for a general theory of sets. Vfna tit does 

call for is only a theory of sets of rational numbers or sets 

of sets of such. I can see no logical reason why a general 

theory of abstract sets is needed, although we may feel more 

intellectually satisfied if we have such a theory. Wang's 

theoryZ with a bottom 'layer' of rational numbers would provide 

1. H. \lang, "fhe Formalisation of lIl8.thernaties', in A Survey 
of Iviatherntttical Lode, PekinG' 1963, p.560 
2. ibid. p.561 
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such a theory but even this theory goes beyond what is needed 

for founding analysis on the theory of natural numbers and sets 

of them etc. 

Al though we are not compelled to cons truct an abstract 

set-theory even for a successful reduction of analysis to the 

theory of natural humbers, nevertheless there is no reason 

why we should not do so in order to satisfy our intellectual 

curiosity. Besides, we do not want to construct a new theory 

each time we want to consider sets of another sort; sets of 

pOints, for example, in measure theory. To do so would be 

wasteful if we could find. a theory which would be applicable 

in each case. 

The abstract set-theory that we create as a result is 

founded on what we know from considering such sets as sets of 

natural numbers, sets of points, etc. This knowledge guides 

us;.in our choice of axioms. It does not, however, force us 

to adopt any particular atiom. As long as we choose axioms 

from which we can derive all the theorems that we need for the 

application of set-theory to some universe of discourse, we 

are free to choose what other axioms we like. (Consistency 

of these other axioms being the only limitation, since, 

otherwise the set-theory would have no applications.) 

This will be ma~e clear in section 4. 

If we look at the paradoxes in this light we should not 
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be so puzzled by them. It should be remembered that the 

syntactic paradoxes have occurred only in abstract set-theory 

and no paradoxes have been found when considering sets of 

natural numbers, points etc. In such contexts the known 

,1 2 paradoxes do not threaten, as ~uine and others have noticed, 

since problems raised by 'xex' do not come up. 

'iI'hat Cantor tried to take as an axiom for this new theory 

of abstract sets is the axiom of comprehension in its naive 

form: 

where 'F' is any condition whatever. When the variable y ranges 

over the members of some set, this axiom will not, taken as the 

only axiom of set-theory, give rise to any contradictions;3 in 

other words, as Kreise14 remarks, when we think of the axiom as 

giving the existence of a set whose members are of a particular 

kind. 

It is when the variable is not so restricted that trouble 

occurs. The Russell paradox follows immediately the moment 

we put in the specific condition '~yey'. The problems arise 

when and only when we do not restrict the range of the variable 

toaa particular kind of object. 

1. 'if. ~uine, Set-Theory and its Logic, Cambridge, lViass., 1963 p.5 
2. K. Gadel, 'What is Cantor's Continuum Problem?' American Matherr:atical 
ll'ionthly, vol-54 1947 
3. Ii .~uine, Set Theory and its logic p.37 
4. G.Kreisel, 'Informal Rigour and Completeness Proofs' in Problems in the 
Philosophy of Mathematics, ed. I.Lakatos, Amsterdam, 1967, 1l.14 ~ .... 
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In abstract set-theory we are only interested in giving 

axiom for sets, considered as sets and not of sets of something, 

though the axioms must be interpretable for application as 

sets of something. In abstract set-theory there is only one 

primitive predicate, the membership relation. The axioms that 

we choose will determine the properties of this relation. r1'he 

axioms determine how we are to use the phras(!) 'is a member of'. 

Initially we try to make these axioms tally with accepted uses 

of the phrase 'is a member of' as when we say that the number 

5 is a member of the set of odd numbers or Jones ia a member 

of the class of unemployed. 

In the field of abstract sets we first meet counter­

instances of the axiom of comprehension. It appears that not 

every condition determines a set. For example 'x¢x' does 

not determine a set. There is no set which consists of 

those sets which do not belong to themselves. We cannot carry 

over, without inconsistency, the assumption that every condition 

determines a class of objects that satisfies it from, say, 

the universe of natural numbers or of human beings to the universe 

of abstract sets. 

All that the paradoxes show is that the axiom of comprehension 

cannot be taken as one of the axioms of abstract set-theory. 

It is a situation which is analogous to other situations that 

have occurred in ma thema tics. The creation of imaginary numbers 
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needed axioms which would be in accord wi th the axioms of the 

real numbers and such that the existence of a root of any 

integer was guaranteed by those axioms. It turns out that 

we cannot keep all the axioms of the real numbers, for it 

could be 'proved' that the square root of -1 is both less than 

and greater than O. The axioms of the real numbers do not 

carryover to the universe of complex numbers. 1'he axioms of 

order are rejecte~ 

We are assured by the predicate calculus that there is 

nothing which bears the relation f to everything which doew 

not bear the';relation f to itself, whatever relation f may be. 

i.e. .. (~x)(y) ~ f(y,x) :. tv f(y,y)) is a valid theorem 

of the calculus. So there can be no barber ~ho shaves all 

and only those who do not shave themselves; there can be no 

set which contains all and only those sets which do not contain 

themselves. We discover that we cannot use the phrase 'is 

a member of' in the way we would have liked. The axioms for 

the universe of abstract sets cannot include the comprehension 

axiom. 

It could be argued that we are not forced to give up the 

axiom of comprehension. Instead we could object to the phrase 

'x€.x' • We could argue that this phrase is not meaningful. 

This is what Russell did. The axiom of oomprehension is retained 

in the fom of the axiom of reducibi.lity and thE phrase 'member 
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but we can note here that Wang, who, perhaps more than any 

other log~cian, sympathises with some theory of types, says 

that Russell went needlessly far in maintaining that such 

expressions were meaningless. l Wang's system ~ presents an 

example of a theory where the objects are stratified in types but 

where it turns out that 'x~x' is false and not meaningless. 

If it should be found that Russell's reasons are not 

sufficient for the conclusion that certain phrases are meaningless, 

there rel1'.ain powerful reasons for saying that the axiom of 

comprehension does not hold in the field of abstract nots. 

For whatever relation f may be, we can be sure from the predicate 

calculus alone that there can be nothing in the universe of 

discourse which has that relation to all and only those things 

that do not bear that relation to themselves. In chapter IV I 

mentioned that von Wright regards the predicate calculus as 

defining what a predicate is. To go back to his discussion of 

'heterolog1cal' if we say analogously that there must be such 

a predicate as 'member of' and, at the same time, maintain that 

this predicate is such that there does exist an x such that y€x 

if and only if y~y, then we must be understanding the tem 

'predicate' in a way which is in need of explanation. 

We cannot in constructing a set-theory use the axiom of 

1. H. Wang, 'The Formalisation of Mathematics', p.577 
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comprehension (if v{e regard 'xu:' as meaningful). How are 

we to replace this axiom? Axioms of set existence are needed 

and the obvious candidate has failed. At the beginning of 

this section I said that it would be misleading to speak of there 

being just one solution of the paradoxes; it would be more 

correct to say that there are a multiplicity of different solutions. 

If we were to ask two (classical) mathematicians what a 

real number is we might receive different answers. One might 

say that it was a set of rational numbers, theother that it 

was a set of sequences of rational numbers. It would depend 

on whether they accepted the Dedekind cut construction of the 

real numbers or the Cauchy ccnstruction. We might say that 

both answered the question of what a real number is, that both 

provided a solution to the problem. 

Similarly, there are many axiomatic set-theories, differing 

greatly in the sets that the theories are committed to. Each 

can be regarded as substituting a number of existential axioms 

to replace the axiom of comprehension. There is no sense in 

asking which theory is the 'correct' theory, although we might 

worry that some system seemed inadequate for the applications 

we wish to make of"tt. By the adequacy of a set-theory I mean 

only ttat it guarantees the existence of any set which we need 

when we interpret the objectsof the set-theory as 'sets of'. 

Thus, for example, we would want the intersection of two sets 
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to exi&t and so any set-theory which failed to provide such 

a set would be inade~uate. 

I shall return to the question of the choice of axioms 

in section 4, where I shall discuss further the 'freedom' we 

have in choosing the axioms of set-theory. 
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Section 2 

I 

As mentioned in the previous section, I shall discuss 

Russell's reasons for denying that the phrase 'X~x' is meaningful. 

I do not intend to discuss all of Russell's philosophy of 

mathematics nor even the whole of the doctrine of ramified 

type theory. I shall be concerned on:'y with that part of 

his doctrine which touches on the above problem. 

Russell's first thoughts on the discovery of his paradox 

seemed to be that the axiom of comprehension had to be given up. 

In his letter to E'rege he writes, 

' ••• there is no class of those classes w[uch, each taken 

as a totality, do not belong to themselves. From this I conclude 

that under certain circumstances a definable collection does not 

form a totality. ,1 

This view is also indicated in his first paper on the subject some 

2 four years later. 

By 1908 his view had changed. A paper published that year 

outlined the theory of types in which it became nonsense to talk 

of a class being a member of itself.; The doctrine was embodied 

1. B. Russell, 'Letter to Frege' (1902) in From Freee to Godel 
ed. J. van Heijenoort, Cambridge, liiass. 1961, p.125. 
2. B. Russell, 'On some difficulties in the theory of transfinite 
numbers and order types' Proceedings of the London l.!8.thenn tical Society, 
1907, pp.29-53. 
;. B. Russell, '1!8.thematical Logic as based on the Theory of Types' , 
(1908) in Logic and Knowledge, ed. R. Iv.a.rch, 1956, pp.59-l02 
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in Principia lTathellk'ltical and his reasons for adopting the theory 

of types were given in greater detail. 

In Principia 1,Jathematica classes were considered to be 

logical fictions. Statements about classes could be translated 

into statements about propositional functions. The explana tion 

of what a propositional function is remains very obscure. As 

~uine2 has noticed, quantification over propositional functions 

which Russell allows (the axiom of reducibility asserts the 

existence of certain propositional functions) implies that Russell 

has not rid mathematics of abstract entitie~. As <tuine 

says, Russell has repL~ced a clearer notion by one that is more 

obscure. Russell himself, in his discussion of propositional 

functions, veers from thinking of the function as what ~\line 

would call an open sentence to thinking that it is some kind 

of entity over which we may quantify. 

He speaks of a propositional function being an ambiguity. 

'A function, in fact, is not a definite object .... , it is a mere 

ambigui ty awaiting determination, and in order that it may occur 

significantly it must receive the necessary determination,.3 

But if propositional functions are not definite objects but mere 

ambiguities how can one apply existential and IDliversal quantifiers 

to them? 

L B. Russell and A. Whitehead, Principia };hthematica, Cambridge, 1913 
2. W. Quine, 'Whitehead and the Rise of 1la.thematical Logic' (1941) in 
Selected Lotical Papers, New York, 1966, p.19-22. 
3. B. Russell, Principia ]\Iathematica, p.48 
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Russell's analysis of classes in terms of propositional 

functions provides his solution of the Russell paradox. For 

to ask of a class whether it belongs to itself is to ask whether a 

propositional function is satisfied by the class determined by 

that function. 1 The problem reduces to the problem of whether 

a propositional function can satisfy itself. 

Russell has two arguments to show tha tit cannot. One 

rests on the simple theory of types and the other on the vicious-

circle principle. (That the simple theory of types is lOGically 

independent of the vicious-circle principle was pointed out by 

Gl3del) 2 

The fom.er argument relies on the essential ambiguity of 

the propositional function. In his discussion Russell considers 

the possibility of substitutihg a propositional function for an 

individual in an elementary proposition. The argument is general 

and its conclusion is that propositional functions are divided 

into ranges of significance or types. The reason he Gives 

for sayinJ that (a propositional function cannot meaningfully 

be an argument to an elementary propositional function is that 

a function is not a definite:thing but an ambiguity awaiting 

determination. Consequently it is nonsense to say that 

1. ibid. p.63 
2. IC. Gedel, -'Russell's :Mathematical Logic', in The Philosophy 
of Bertrand Russell, ed. P. Schilpp, La Salle, 1944, p.147. 
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..... 
sa tisfies '/J x where both r and p are elementary propositional 

functions. 

This would seem too strong an argument and establishes more 

than Russell desires. If a function is 'a more ambiguity' 

it is difficult to understand how a function can ever be an 

argument. That there are functions of higher type Russell does 

not doubt and does talk of functions as arguments to other 

functions. It is not clear how this can come about if functions 

are not 'definite things'. Nor is it clear, as I have already 

indicated, how these mere ambiguities can be quantified. 

Russell makes the distinction betr.-een the symbol 'I x ' 

and 'I ~ '. The first is what is ambiguously denoted, the 

second that which denotes (ambiguously) its many values. 

We may paraphrase Russell's talk of 'ambiguously denoting' 

and 'ambiguously denoted' in more modern terms. It is clear, 

I think, that Russell's use of 'i x ' corresponds closely to 

the idea of an open sentence or sentence frame (Quine). 

For Russell says that 'By a "propositional function" we mean 

something which contains a variable, and expresses a proposition 

as soon as a value is assigned to x. ,1 There is difficulty, 

however, in trying to make the notion expressed by ¢ 

1. B. Russell, Principia 1~thematica, p.38. 

l­
X clearer. 
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For, in one place Russell says that 'p ~ , is 'a single tlung,l 

, J. .... x' , and, further on in the text, he says that f' is not a definite 

object,.2 Any interpretation of Russell's use of '6 X' is 

almost certain to contradict one of these characteristics. 

~uine asserts that Russell's propositional functions are 

attributes, in the sense that the open sentence 'x has fins' 

determines the attribute of finnedness. 3 But this seems to 

contradict Russell's claim that a propositional function ~ x 
denotes its values.4 For the values of a propositional function 

(according to Russell) are propositions. If '-iulne were right 

then an attribute would denote a set of propositions. In 

speaking of propositional functions denoting, Russell implies 

that they are linguistic entities. It is clear that attributes 

in Quine's sense are not linguistic entities. But if px is not 

an attribute but a linguistic entity which is different from the 

open sentence ~~, which denotes and which is a single, thought not 

definite, thing, there would seem to be no possible interpretation 

which would fit. 

As a result of Russell's obscurity at this point, it is 

hard to evaluate his argument for the conclusion that 'px is a man' 

is nonsense. The argument he does &ive, that in '//£ is a man' nothing 

1. ibid. p.40 2. ibid. p.48 
3. W. Quine, 'On Frege's Way Out', Mind 64,1955 p.146 
4. B. Russell, Principia Mathematica p.40 
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defini te is said to be a man can be applied to another of 

Russell's examples which he gives to illustrate the axiom 

of reducibility. In this example Russell considers '¢~~ 

is a predicate required in a great general' which is a function 

of a function. Since ¢!z is nothing definite, it could 

be argued that nothing definite has been said to be a predicate 

required in a great general. Russell needs more argument to 

show that the first case is meaningless but the second 

meaningful. 

Since functions are divided into different types in such 

a way that function is of a meher type than its arguments it 

turns out that a propositional function cannot be meaningfully 

said to satisfy or not to satisfy itself. It is a special 

case of the more general thesis of the simple theory of 

1 types. 

The second argument that Russell gives for denying that 

a propositional function cannot be meaningfully said to satisfy 

1. Convincing arguments against the theory of types in general 
have been presented by M. Black, 'Russell's Philosophy of Language' 
in The Philoso 7 ,hy of Bertrand Russell pp.232-240 who points out 
a new contradiction and suggests ways of modifying the theory, 
though he regards the modifications as unsatisfactory. That the theory 
of types cannot be presented without contradiction has been argued 
by P. Weiss, 'The Theory of Types', Mind 37, 1928 PP.338-348 and 
F. Fitch, 'Self-Reference in Philosophy' 1tind, 55, 1946 pp.64-73. 
Black's problem has been examined by F. Sommers, 'Types and Ontology' 
Philosophical Review 72 1963, pp.327-263. 
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itself depends on the vicious-circle principle. A 

propositional function Russell claims presupposes its values. 

Again, neither open sentences nor attributes will fit, for 

neither presuppose a totality of propositions which could 

be called the totality of their values. (Expressions of the 

form ~(¢a) are not excluded either by the vicious-circle 

principle or the theory of types. Yet another principle has 

to be invoked to ensure the meaninglessness of this 

expression, namely Russell's theory of the proposition.) 

Russell claims that expressions of the form p(¢x) are meaningless 

since tx presupposes ~a, ¢b, ¢c, etc. Consequently the vicious-

circle principle does not allow ¢(px) to be a value of px since px 

would then presuppose one of its values, i.e. b(~x).'rhis 

argument cannot be properly evaluated until an explication of 

the expression '¢x' is given and in what way it can be said to 

presuppose its values. 

The vicious-circle principle is variously phrased by 

Russell. 'Given any set of objects such that, if we suppose 

the set to have a total, it will contain members which presuppose 

this total, then such a set cannot have a total. ,1 '\fhatever 

involves aal of a collection must not be one of the collection. ,2 

1. B. Russell, Principia lIIathematica, p.37 

2. ibid. 
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'If, provided a certain collection had a total, it would have 

members only definable in terms of that total, then the said 

1 collection has no total.' GBdel has shown that these three 

2 statements are not equivalent to each other. There is 

also a vagueness about the first two on account of the words 

'involve' and 'presuppose' which receive no elaboration. 

Although G8del considers that the first two are more plausible 

than the third - he adopts a realist attitude to classes -

it is not clear in what sense an object can be said to involve 

all of a collection, (though, as GBdel points out, a 

description of that object can be said to involve all of a 

collection). The third form of the prihcip1e G8de1 considers 

to be false if classes are considered to be independent of our 

description or construction of them. 3 

Hintikka has a proof that at least one interpretation 

of the principle is insufficient to keep out the contradictions. 

His interpretation is that no definition of a set y should 

include a bound variable which admits y as an argument. 4 Originally 

Hintikka proposed an interpretation of variables occurring in 

formulae mf the predicate calculus in which the variables would 

1. ibid. 
2. K. G8del, 'Russell's :Mathernatical Lo&:ic', p.133. 
3. ibid. p.136 (a further discussion of this point will be 
found in Chapter IV of this section) 
4.· K. Hin~ikka, 'Identity, Variables, and Impredicative Definition', 
Journal of Symbolic Lorde, voL 21, 1956 p.242. Also K. Hintikka, 
'Vicious Circle Principle and the Parado;ces', Journal of Symbolic to ;:i.e 
vo1.22. 1957 p.245. 



- 51 -

exclude each other. An example he g:i ves is the eeometric 

axiom: 

a) Any two points determine a straight line. 

If this is interpreted as allowiijg the points to coincide 

then a) is false. If, on the other hand, the phrase 'any 

two points' is interpreted as 'any two distinct points' then 

a) is true. As applied to set theory distinctions are made 

between the interpretations that may be given for the quantifiers 

occurring in the axiom of comprehension. The quantifiers may 

be interpreted with various degrees of exclusiveness. The 

axiom of comprehension 

1) (Ey)(x)(x~y ~ F(x» 

may be in terpre ted to mean 

or 

where F'(x) is the same as F(x) except that all expressions of 

the form (tz)K and (z)K occurring in F(x) are transformed into 

(£z)(z,ty.K) and (z)(z,ty.) K) respectively. 2) represents 

Frege's suggestion which ~uine has shown to be inconsistent.1 

Hintikka regards 3) as being the simplest way of carrying Russell's 

1. libre strictly Frege's way out is represented by (fy) (x)txG-Ys (~y.F(JC 
Geach has . found this to be inconsistent with (~X)(EY) xfy. 
See W. ~uine, 'On Frege's Way Out'. 
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vicious-circle principle into set theory since the variable 

y cannot be included in the range of any bound variable in 

It turned out, however, that a set-theory based upon 3) 

would be inconsistent with (ex)(£.y)x.,ty.2 Hintikka sug0;Bsts 

that the quantifiers could receive a still more exclusive 

interpretation whereby the variable x in the axiom of comprehension 

is prevented from coinciding with any of the free variables in 

F' (x) as well as the variable y. Such a cou.rse wOll1d be 

su.icidal for set theory as the definition of unit sets, couples etc. 

would be impossible. The vicious-circle principle in one 

interpretation is insufficient to stop the derivation of the 

paradoxes and, in the more exclusive interpretation, is too 

restrictive to be a basis of Bet theory. 

Wang has questioned Hintikka's approach to the vicious-

circle prinCiple, claiming that it is based on 'a strenuous 

misunderstanding,.3 Wang points out that although the range of 

the variable x does not include y in 3) yet it may include sets 

definable only in terms of y, e.g. the unit class whose only 

member is y. Hintikka 's incons i steney proof demonstrates thi s 

1. K. Hintikka, 'Identity, Variables and Impredicative Definitions' 
p.242. 
2. K. Hintikka, 'Vicious Circle Principle and the Paradoxes'. 
3. H. Wang, 'Ordinal Numbers and Predicative Set Theory', in 
A Surve;r of l"'iathematicCtl Logic, Peking 1963, p.640 
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point nicely, for the contradiction is produced by considering 

a set c defined in terms of two sets a and b - in fact c is the 

set consisting of a and b - as a possible member of both a and 

b. l Whether or not Wang is right in saying that Hintikka' s 

approach is based on a misinterpretation of Russell cannot be 

known because Russell's use of 'involves' and 'presupposes' is 

not made clear. It is more correct to say that both Hintikka 

and \fang have given possible interpretations of the vicious-circle 

principle as formulated by Russell. Wang may convince us that 

his constructivist interpretation is more philosophically 

justifiable but this is not to say that it is what Russell 

intended. 

There are, then, many difficulties in Russell's thesis tl~t 

'x~x' is meaningless. It depends on a chain of reasoning the 

links of which are each open to dispute, even the 'safest' of 

these, the vicious-circle principle itself. Wang, himself in 

sympathy with the constructivist version of the vicious-circle 

principle, claims that Russell has merely stipulated that 'XEX' 

shall be meaningless. 2 

1. K. Hintikka, 'Vicious-Circle and The Paradoxes', p.245. 
2. H. Wang, op.cit. p.641 
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II 

I shall nor; consider a more recent solution of the 

paradoxes. This solution is presented by J. '.ruc;;er in 

I trro papers containing major attacks on fonlalism and 

fort1alists. These attacks and the solution proposed have 

to be examined, for if 'fucker is correct then the arguments 

of section I of this thesis are invalid and several points 

tha t I shall make in section 4 contradicted. 

'rhe first of Tucker's papers that I shall consider 

attacks the formalist doctrine and holds that formalism 

is untenable beca..1se formal lancuages cannot be entirely 

separated from informal discourse and because its forr:nl 

concepts are dependent on infor~~l concepts. ?;y a forll1::J.1ist 

Tucker means any loc;ician or ma.thematician who sees any 

special virtue in forITal languiges. I shall deal,i th 

certdn points raised by Tuc':er in his general attack on 

formalism in part III of this section but for the moment 

I shall concentrate on his solution of the paradoxes. 

He contends that formalists have been led astray by 

the paradoxes because they icnore the fact that the paradoxes 

L J. 'rucker, "rhe Fonnalisation of Set-'l'heory', Hind 1963, 
pp.500-518 
J. Tucker, 'Constructivi ty, Consistency and Natural 
La.nguages', Proceedin~'s of the Aristotelian Society: 
1967, pp.145-l6s. 
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occur by the breaking of inforll18,l langua.,;'e rules. 'i'hroughout 

his p::cper he relies on an intuitive or naive notion of set, 

nov[here defining vrhat a set is or [,ti.ving any postulates or 

axioms for it. Accordingly THy criticisms of his arb'Wnents 

will also be on the pre-formal, pre-axioEli:l.tic level. 

AlthouGh I do not believe that we have a c011sistent intuitive 

notion of set I shall pretend throughout tIlis part of the 

thesis tl~t we do have such a notion. 'rucker's solution 

may be r3&arded as a defence of the naive concept of set. 

For if the paradoxes arise solely through the breaking of 

informal lan,SU.3.ce rules then the notion of a set does not 

Mve to be revised in the light of the p8.radoxes (a.s I have 

sug[c;ested in the first section of this thesis) since itt s 

a consistent notion an 1 the paraclT',ces arise only Yvhen 

extraneous languaGe rules are broken. I hope to show, 

:10 wever , that he has not demonstrated that each p2::cadox arises 

from the breaking of an inforElal lan,;uace rule. 

Firstly, it may be noticed that he deals not with 

every paradox but with only a few of them. Although any 

proposed solution of the paradoxes can be illustra.ted only 

by a selection and not by all of them, there is a difference 

between 'l'ucker' s solution and a solution i,hich says, for 

example, that each paradox is caused by violating the 

vicious-circle principle. In the latter case, there is 
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SOIle guide enabling us to see for each parado:..: as it tarns 

up l'lhether it does depend upon a viel-,tian of tilt:: vicious-

ci:ro1e principle. In the former case, however, the rc is 

no such guide. One is told that each parado~;: depends 

upon breai<:ing an informal lc.nGuasse rule, but is ,siven no 

guide to discover \'rlrich informal rule is broken nor how 

it is broken in those Cases he does not discuss. If 

Tucl~er contends th3,t each paraiiox is caused by the neGlect 

of some infornul rule then it is llis job to show the 

rule in each particular case and not just those;; that he 

chooses to illustrate. 'ri.lis does not imply ths.t his 

contention is y,rong but only tha t he has supported it 

inadeQuately. 

I shall now consider the l)aradoxes he does deal with 

and S<10'.[ that in each case he has failed to show that 

they depend upon the violation of sor;ie rule. 

The first parado.[ with w{lich he deal::::; is the Epi;}lenides. 

Al thou,:sh it is not set-theoretic it is apprOl)rii:i,te to consider 

Tucl:er's solution here becaLlse of the corinection he makes 

between this paradox and the Russell paradox. "l'his is 

false' Tucker says is applied only to statements which could 

be false. 'rhis is the rule '.vhich is folloved in informal 

lall{;,'Wlge. The paradox occurs vrhen this requirement is 

icnored and it is pretended that 'this is false' tal~en by 
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itself CQulJ be ei tiler true or f'als e. How it is one "G'litl,J 

to give a rule for inforr!ul lanc:;u -,·C:e ami ,mother to shovi 

tha,t this relle has been broken. Tucke:!.' has t;iven a rule 

it. He says that it is pretended that 'this if false' could 

be either true or false I,hen considered by itself m::d not 

in conjunction with some other st3,tslllent. :aut it is up 

to him to shal'l why it cnn only be pretended tha t 'tlJ is i~ 

false' could either be true or false. In other worJo he 

has to show that' this is false' cannot be either true 

or false when taken by itself. 'l'his he does not do; he 

Llere ly as s erts it. I do not mean to imply that it can..'1ot 

be done, but only that he has not shown it. Certainly 

atteupts hc;.ve been n;ade to show thLd 'this is f""lse' 

cannot be either true or false. For example, Ryle's 

analysis of the paradox in terms of an infinite regTess shows 

just this. Ryle
l 

claims that 'the statement I am now 

making is fa18:3 I is analysable into I the statement I am now 

making, na.;:;ely, the statei.lent I am now making, na.mely •••••••••• 

is false I. (In the form Tucker chooses 'this is false' 

would become 'this, namely, this, namely, •••• is false I .) 

1. G. Ryle 'Heterologicali ty', Analysis, 1961 
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This analysis, if accepted, would show that the sen tG~1Ce 

'this is false' does not express a true or false proposition 

because it does not express a proposition at all. Such 

an analysis would imply that 'this is false' when taken 

by itself could not be either true or false. It would. then 

be breaking an inforIi;al lancuac;e rule to pretend that it could 

be either true or false. .But if we accept the analysis we 

aTe not terapted to break the rule. Tucker's cj,l'gwllent that the 

paradox arises by neglecting an informa.l rule is simply not 

valid, for the rule is not broken if 'this is false' is 

considered to be either true or false. All thn. t has b.cen 

done is to assuJIle a false proposition, namely, the proposition 

tl~.t 'this is false' is either true or false. Once it has 

been shovm that 'this is false' is neither true nor fedse 

then ther'e is no tel!lptation to go on and form tl:e pg.radoJC. 

It seems clear that, whereas Ryle' s analysis does offer a 

possible solution to the paradoxes, Tucker's proposed solution 

is, at best, a hint at WheI'B a solution might be found. 

The first of the set-theoretic paradoxes with which 

'rucker deals is the Russell paradox. He treats it analogously 

to the Epimenides; his discussion of it is even more brief. 

I shall quote it in full: 

'Russel.l's paradox is obtained by breaking the 

rule th::-tt lie say of a class that it is not a member of itself 
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only if there is some way of estaolishinc that it is not a 

member of itself. ,1 

There are two objections to this argament. 
-'1' 

.. irstly, 

that as an informal rule it is im?recise a.nd, on one inter-

pretation of it, questionable. Secondly, even if it is accept'3d 

as an infoI'llial rule Tucker has not shown that it is broken in 

formula ting the p::n:'adoxes. 

In one interpret:.1tion of the above rule, which seems 

to ;;,e to be vague because of the imprecise vlOrd 'sa.y', it 

becomes: we assert of a class that it is not a member of 

itself only if there is some way of establishinG thd,t it 

is not a member of its0lf. But this interprdition is not a rule 

vlhich is necessarily broken when the r(l.rado:~ is formulated. 

For it ignores the fact that the paradox in question is 

the outcotle, 'not of asserting thn. t the class of all classes \7hich 

are not members of themselves is not a member of itself, 

but of sunpQsin?: tr.at it is not a merulJer of itself. '1'he rule 

is inapplicable in this interpreta.tion. If the rule is extended 

to cover a,sserting and SUP;)osinC then the rule is que" tiona ble. 

The rule nov! reads in this new interprets. tion: He assert 

or SUPI)ose that a class is not a J;:ember of itself only if there 

1. op.cit. p.510 
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is some way of establishing that it is not a member of itself. 

But this is a rule which is not followed in mathcm::tiics. 

In some mather[,atical arguments, for exam:Qle, a pro}-,osi tion is 

established by supposing th at its neg:j.tion holds. fro est .. ,blish 

th3. t there is no greatest prime nUL'liJer it is supposed or as:31Ulled 

that there is a greatest prime num1:,er. SUPIlosing a pro posi ti on 

is one of the methods of establishing the negation of tInt 

proposi tion. To bring the argument closer to the Russell 

paradox I shall consider the class of all empty classes, i.e., 

the class y such tha t 

(x) xey if and only if (z) z~x. 

One way of proving tha t y~y is to sho:1 tbn, t y is not empty. 

This can be shovrn by the fact that the null class ¢ belongs 

to y. But there is another metilOd of proving tha t y~y closely 

analogous to the method used in the demonstration of a large 

class of set-theoretic p3.radoxes. Thi s method is to sUPi,ose 

that y"'y. Hence, (E:ll) ZE.y ancl tilerefore Y4Y. It is 

concluded that y~y since if y(y then yh. 

In other words, a proposition is sometimes established, 

8l1d perhaps can be established only by SUPi:osint-; its neg:~tion. 

If a proposi tion of mathematics can be established then there 

is no method of establishing its negation (asswning consi:3tency). 

Its negation, hO\'iever, is supposed even though there is no 

method of establishing this negation. Clearly, this interpret;'ltion 
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of the rule is unsatisfactory. Yet wik'1 t 0 ther ill terpre G:ltion 

is TJOssi 'ole? Possibly all inter},ret:ltion could be that 

"'Ie as:o:ert or suppos", tlF_t a class is not a iLomoer of itself 

only if there is so;:;e ':a/ of establishing '.vhether it is a raen;oer 

of itself or it is not a liiemoer of itself. This does not 

rescue the rule. For the generhl rule which seor;lS to be 1Jehincl 

this particular one is that we assert or suppo::e a 

l"rolJosi tion only if there is some way of establishinG' til ,.t 

proposition or its ne3:ltion. Again there are nu::ctheLntical 

:proofs that involve the supposi tioD of a prof,o~ . .:.aon P in 

order to establish NP. But if P can be supposed only if 

NP can be es-tablished or p can be established, and .. p Can 

be established only if p is sup::?osed then we heve coce 

full circle and cannot answer the Question of whether p can 

be supposed. Furthermore, it is common n:a thclln tical 

practice to exru;lin3 the consequences of some supposition, 

e.g., Cantor's continuurnhYliothesis, when there is the 10gi.ca1 

possibili ty tbl1 t neith8r the proposi tion supposed nor its 

negation can be est:lblished. It may be that 'fucker would 

disallow such suppositions but he has prodLc3d no arGuments for 

such 11 oar. 

Turning now to the second. objection that even if the 

rule is accepted then it is not clear how a formulation of the 

paradox breaks the rule, I shall argue that ,]ucktr h::ts not shown 
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that the paradox does break the rule. As vrith the previous 

paradox, the E:pir:,edides, it is one t:.1ine to sta.te a rule, another 

to sho',i that that rule lIas been oro1(en. In the case of the 

Russell paradox, it is not the case that there is no way of 

establishing that the class of all classes is not a member of 

itself. (Here I am ta.kine 'established I to mea.n the sallle 

as 'proved'. As Tucker does not elaborate on what he meana by 

this vague word I may be misinterpreting his arL'Ument, but it 

is difficult to see what else could be meant by 'est.:tblished' 

in such a context.) It .2!ill. be 'estJ.blished' by a normal 

nuthematical procedure. The problem is not the lack of any 

method of establishing a particular proposi tion but that too 

much can be 'established'. Both the proposition that the cl;J,ss 

of all classes which are no"t members of themselves is a member 

of itself and the proposition tlm t the class of all classes which 

are not members of themselves is not a member of itself can 

be 'established'. Of course, the fact that both propositions 

can be proved can be used to show that there is something lo;'ically 

vlrong with both proposi tions. For example, from t he fact 

tha,t both can be proved it mig:lt be deduced that no such class 

as the Russell class exists and thus that the question of whether 

it belongs to itself or not does not arise.
l

• But thi s argument 

1. See section 1 of this thesis. 
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is not open to Tucker because he bolieves that in forcul9-tine; 

the paradox an informal language rule has been br01\:en, and any 

such conclusion is blocked. 

Gran ted that the totali ty of all classes that are not 

Ii1embers of themselves forms a class, rl'ucl~er has to show how 

his rule is broken by asking if the cbss is not a member of 

itself • This he asserts but does not show. Bnt this is the 

most important 1uestion. It is one which most proposed solutions 

of the Russell paradox have attenpted to ansrler. Russell's 

own solution in terms of the the ory of "type, for eXc1JJlple, is 

designed to show that it is Beaningless to assert of any cbss 

that it is not a Bember of itself and a fortiori it is meaningless 

to assert of the Russell class that it is not a member of itself. 

The many different solutions !lay be said to be just so many different 

ways to ansner the question of why it is meaningless to 

suppose that the class of all classes that are not members 

of themselves is either a rr.ember of itself or not. If any 

of these solutions Viere to be accepted then there would be no 

tempta tion to break the rule. The posi tion i s analoi"~us 

to that created by Ryle's solution of the Epimenides. If 

it is recognised that 'this Ll false' does not express a 

proposi tion \7hen taken by itself, then the:l'e is no temptation 

to ask v!hether it is true or false. If it is recognized that 

it is meaningless to assert that the Russell cl&ss is not a 
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member of itself, then there is no temptation to asl~ y;bether 

it is a member of itself or not. The informal rule in each 

case need not be invoked for it would not be broken. rl'uc~er 

seems unaware th.'"1t he himaelf has not given a solution. 

Furthermore, he has the aJded difficulty of explaining 

why, in the case of some classes it does not break an 

info i:mal rule to ask whether they are members of themselves, and 

in others, the Russell class for exmnple, why it does. To 

ask of the class of all classes v/hich are not members of 

themselves whether or not it is a member of itself seems to me 

to be loCi cally similar to asking of any class whether it is 

a member of itself or not. If we call the predicate from 

which a class is obtained by abs traction the classifying 

predicate, the idea behind Tucker's solution seems to be that 

one must not ask v{hether the class so obtained satisfies its 

classifying predicate. Thus, the predicate 'does not belong 

to itself' collects into a class certain classes, but since this 

is the classifying predicate of that class it must not be asked 

of that class if it satisfies this predicate. But if this 

is the idea behind his solution then the possibility of 

asking of any class whether it is a member of itself is 

ruled out. For in asking this one is asking a question which 

is equivalent to asking whether the class satisfies its 

classifying predicate. 
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For to ask of the class of all unit classes, say, whether 

it is a member of itself is equivalent to asking whether the class 

is itself a unit class. To asle of the class of all finite 

classes whether it is a member of itself is to ask vlhether it is 

a finite class. I do not see how Tucker can draw the line and 

say of one class that it is meaningful to ask if it is a member of 

itself and of another class that it is meaninGless. Russell's 

solution of course was to banish 'member of itself' into the 

realm of meaningless expressions regardless of which class it 

is applied to. 'l'ucker does not intend to do this, for he is 

willing to allow that it is meaningful to ask of some dlasses \7hether 

they are members of themselves, for otherwise there would be no 

problem of applying 'member of itself' to the Russell class because 

there would be no such class. 

In addition, Tucker has the problem of giving the rule 

and showing how it is broken for those paradoxes which closely 

resemble the Russell paradox. I refer to these classes of the 

form: 

and 

Each of these classes give ri se to paradoxes and it is 'rucker's job 

to show why these paradoAes brea.k some informal rule. If he is to 
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maintaiYl his thesis he Luat be able to do just this. It is 

made more difficult by the fact that the class of all empty 

classes, referred to above, bears a striking resembla.nce to 

the paracioxical class y such thc.t Xf:.y if and only if there 

is no z such that XE.Z and ze.x. 1'he only differr,mce 1)et'::een this 

defini tion and the definition of the ChS,3 of all empty 

classes is the addition of 'XEZ'. Wha t informal rule could 

be invoked to stop the application of 'member of itself' to one 

whilst allo-.vin3' it for the 0 cher? 

I do not deny that Tucker is able to deal with these 

paradoxes (and the paradox generated by the class of all 

pounded classes) along the lines that they break informal 

I assert only that it is diffi~Qlt to see 

how they can be so explained. 

I turn to the next set-theoretic Ik1.radox with which Tucker 

deals - the Burali-Forti paradox. He outlines it as a 

consequence of two theorems. Firs tly, there is a theorem whic h 

st:1tes tha t 'the series of all ordinals up to a11d including 

any given ordinal e;,ceeds the given ordinal by one. It 

follows from this theorem t11.:1 t there is no greatest ordinal. 

The other states th)t the series of all ordinals has an ordinal 

number. It follows that there is a Greatest ordinal, namely, 

the ordinal number of the series of all ordinals. The two 
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theorems contradict each other. ,1. 

'rucker then Gives his solution of the rnracLo:;c, t:cacil;i~ 

its forua tion to t(18 orGaldng of info rmal la;IC1.18.,;e rules. 

He points aut th.'1 t the first theorer shoW's tlla t the cl a.ss of 

ordinals is a self-generating class, by which he underst .. wcls 

a class such thc.t \\'hstever group of r.lem~ers is considered, it 

foHm{s by the property of self-generation tl":i.t there is yet 

another Lieli,ber. He arGues th[1 t we cannot 8}J on cs'eneratL1g' 

from such a class since self -genera tion cw only oe a.pplied 

to it by the use of 'more than all' which is a clea.r case of 

breaking a rule of informal 18.l1t,'Ua t;e. 

'fhe difficulty arises when the con~li tiOll thn t the class 

of a.ll ordinals has an ordinal is brouGht in, for it would seem 

that self-generation rlust apply to this ordinal also. .Jut, 

Tuc;,er contends, it is cle~1r tIl t self-Generation c:1nnot apply 

to this ordinal Hi thout breaking an informal rule f,::overning the 

use of the ~,orl 'all', for" when "Vie say aJl we reic.lly m8(;'.n the 

vlhoJJe lot, lie mean there are no more to C01a8. So when vre 

spaak of the claSG of all ordinals we really me:; .. n all of the Iil • 

.Te cannot apply self-6cner"tiol1 to this class because to do so 

would brea':: the rule for this use of 'all'. 

112 
of ',nore than all'. 

1. ibid. p.511 

2. ibid. p.512 
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He does not seem SUl"e ;,-\letller to a1Jllly his conce/c of self-

genera tion to the cla.ss of all ordiYlals or to the ordin3.l 

nwnber of the class of all ordinals. i!'urtLer, ther~, seoms 

some confusion over the theory of ordi~~l nur,bers. lie says 

that 'the series of all ordinals up to a,::-,d includin:;S' an;)' ;"iven 

ordinal exceeds the given ordinal by one.' Yet H is 

not the series that e:{ceeds the Given ordinal "0:/ one but the 

ordi:lal nUl:,oer of tllat series. Ai;uin, this propcrt;y of the 

series 0 f all ordinal nWllbers up to and inc luding a L-i ven 

ordinal th::lt its ordinal nWt:.ber exceeds the tSiven ordinal 

by one is not sufficient to prove that the class of all ordinal 

munbers is a self-generating class in the sense given by 

Tucker. For it is the projJerty of the classes of rationals, 

integers, prime numbers and many other classes thlt given any 

class of them up to and including any KEmber then there e:dst 

yet other members not belonging to the p:1rticular sub-claGs. 

'l'hese lat,:;r classes, however, are not self-Genera.ting, for 

it is not the ca,se th,~t whatever clas3 of them is chosen there 

are other members not included in that class. 'rhe class of 

all rationals, for example, does not yield another rational 

nor included in the class. illlat is needed in addition to 

ensure that the class of ordinals is self-generating is the 
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theoreu! that the orier8d sum of a class of orclinals m,;ol1c; 

which there is no [,Tea,test mell,ber is creater than ccny EleLlb~T 

of ths.t class. 

But these objections r:::ay orlly be IJluddles vlhicl1 'l'uGker 

can cln.rify by a little more precision. '.L'lli re remain much 

greater objections. Firstly, his contention t:1£Lt self-genera,tion 

cannot be applied to the totality ef a self -ce:1era ting ehss 

because it breaks an informal rule for the use of 'all' 

succeeds only in blurrine the distinction between self-

generating classes and ot:10r classes. }'or, if self -genera tiOll 

cannot apply to the totality of the class, it must be apflicable 

to proper sub-classes only. But the definition of a 8elf-

generating class then degener:l,tes into a tautoloGY applicable 

to any class, self-generating or othervrise. For any class, 

there elCists lllembers not included in any proper sub-class. 

lihat, them, is the force of the distinction drawn by the 

definition of a self-cenerating class? All classes mUBt 

become self-generating under rl'uc;~er' s res:triction of the 

applicability of that term to only proper sub-classes. 

Secondly, if, when we say of any class t~1at whatever group 

of its members be considered t:1ere exist other members of 

the class not included in the gro;:p, it ,1ould seem to break 

the inforn:al rule for the use of t.he word 'whatever' if it 

does not cover the class of all members of the class, since 
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'wha.tever' weans 'whatever' and not 'whatever, except'. {(:~t 

this is a conclusion 'fucker is forced to drml by preventinb 

the concept of self -{Sen era tion applying to the totali ty 

of a class. 

If, for the moment, we cccept Tucker's arCll . .ment, it 

still leaves man;I questions which it is impem,tivc to 3.n8,."er 

before the paradox is cle3,red up satisfactorily. In ])articul,:,x, 

if he is willing to acce:pt that the ordinal humber of the 

class of all ordinals, exists, which it appears he is, then if 

this ordina.l is denoted by,n , vrha tis to be said of .n. + I? 

Since.o. is the greatest ordinal number then there are only 

two alternJ.tives open to him. l!'irstly, that [\ + I is equa.l 

to or less than t'l. in trhich case there will be furtber contradictions 

arising because no class can be similar to any section of 

itself which thi s would imply (see below). Secondly, that 

n.. + I does not exist. This would seem to be the most likely 

alternative for Tclcker as he says that self-gc':reration cannot 

ap}Jly to.no • But what does it signify to deny existence to 

this 'ordinal nuru ber I, for it is the ordered sum of two ordinal 

numbers, .n. and 1. It is even possible to find set representatives 

of it, nawely, for t\, the set of all ordinal nurnbers arl'anged 

in order of magnitude and for 1 the set consisting of - 1 alone. 

~ + 1 will then be the order type of the ordered sum of these 

two classes. Since the ordered sum of these two classes will 
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be well-ordered, n. + 1 '..-ill be the ordinal of this class. 

IIOVl ca.n existence be denied in this case? 'ruc;~er rJUst 

answer this question before he can be said to hfwe '00 lved' 

the f-.aradox. 

The above argument rests on Tucker's assUlllption that 

theTe is a greatest ordinal, naLlely the ordinal numoer of the 

cla,,:s of all ordinals, which he st"tes as the seco11(l theorem 

of set-theory needed for the construction of the J3urali-Forti. 

But this statement is not the only way in which the par;ldox 

may be expressed. A much lEOre preci se st_:.ter::cnt of the 

paradox would show le ss grounds for supporting 'rucker's thesis 

tha t the paradox is groUl1ried in the misuse of 'all'. For 

example, consider the set of all ordinals arranged in order 

of rr.agni tude and letn. be the ordinal number of this set. 

Consider the set of all ordinals up to and including th.is 

ordinal arranged in order of magnitude, then the ordinal 

of this class will equal S\a + 1. I)roviding it is not 

assumed that.n. is the greatest ordinal nur.,ber, there is no 

danger of misusing 'all' in the sense of TucJ:.er. For .ru 

is only ohe ordinal amongst many and lies somewhere within 

the series of all ordinals and not necessarily dt the end. 

(Analogou~ly, if the continuum hY];lothesis is assmied, then 

then the set of all cardinal numbers up to and including 
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the c[;.rdinal number of the continuwn has a cariinal number 

which lies wi thin the given set of nWJlbers.) :Sut this latter 

set is a section of the set of all ordinal numbers and, by 

a theorem of set-theory its ordinal nwnber will be less than 

or equal to t!1e ordinal number of the whole 3et. 1. e. 

:Jut this contradicts the theorem which SeWS 

that for any ordinal number w, w is less theW VI + 1. In 

this sk .. tement of the paradox, there is no misuse of the Hord 

\ 

'all' in the sense that \"Ie have tried to use it to mean 

'more than all'. rrhe fact tha~ the class of ordinals is self.;) 

generating has not been used. Nowhere in tIll s deL10nstration 

have we relied on the fact that the cbss of all ordinals 

gives ris e to an ordinal not in the class. I twas 8,E;sumed 

that on.. lay son:ewhere wi thin the class. Now:1ere did we use 

as part of the demonostra tion thl. t there was an ordinal lying 

outside of the class of all ordinals. 

Of course, rrucker may still object that although the 

pro.hl9rty of self-generation has not been used explicitly in 

this proof it has been included implicitly by the use of 

tl1e ordinal nUlllber .n. + 1. rrucker wruld no doubt say that 

this 'ordinal number' can only be procl.uced br self-generation 

from the class of all ordimls which h",6 the ordinal .n.. 

Again, he v.ill be confronted with the difficulty of the status 
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of.t\.+ L In the versi on of the pp.rtd.ox th." t I 11:1 ve i~i ven 

;" oove thi s wo uld be the place lEaS t vulnerable to an a'~ tac;c 

;~.long his lines. It \7ould seem tl-J2. t .{'). + 1 has been ::;enernted 

froEl the class of all ordinals up to cU1d includinG" s\, • 

Tucker, clair:line ui,i1ueness for tllis orllinal, Ylo'J.ld deny 

thnt this is a leeitir.:ate move since n. is the only ordinal 

to which self-generation does not apply. Tl1is in turn would 

imply t11:lt S'l.. + 1 does not exist (since if it existed the proof 

of the paradox would proceed lll1barmed) but, as I have arcued 

pre'viously, there is no clel . .r Reaning to this assertion L 

It would appear that 1'ucker objects to the self-generation 

of the class of all ordinals up to and including n., but there 

are ways in which the ordinal n. + 1 may be generated, other 

t11an by this process of self-generation. One hilS only to 

consi der the definition of an ordere 1 SWil of tyvO ord.inal nur:~bers 

to see that !\.+ 1 can be gei1erated from other sets th[lll t1:.e 

set of all ordinal numbers. B;r definition.{\ + 1 is the oTtUm 1 

number of t~le ordered sum of the tl'lO represent;J. ti ve sets, 

the set of all ordinal numbers (it must be remembered thi:1.t this 

aSSUliies thJ.t such ~:, set exists, an assumption Tucker is willing 

to allow) and a set consi sting of one roem bel' alone, - 1 say. 

A set-representative of.1'\. + 1 can t,ms be fOLmci which is different 

from the set of all ordinals arranged in order of lilagni tude up 

to and including ru. Provided that the set of all ordinals 
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exists, there seems little reason to deny e:ds"vsnce O~O ttis 

new set DDd b;I cl.efini tion .!).. + I will '08' its ordinal munber. 

To ~ert, in the face of this set, thc"t the:ce is no such 

ordinal as .n. + 1, as Tucker's view ilD.plies, is to n;isLmderst:"nd 

the notion of an ordered sum of two ordered sets. tlis 

argu:wents could only apply if tl,er(~ were just one way of 

generating the ordinal .ru + 1 and that way v:as by self-eene:cation. 

As I have shown, there aTe other viays aDd for the se more explanation 

is needed than he has [;iven. 

Even if 'rucker could show tk1. t there was no such ordinal 

number as .f' .. + 1, there are other ways of stc;,ting the paradox 

which do not depend on this number in any Vlay and do not, as far 

as I can see, depend upon self -genera tion from the class of all 

ordinals. 

Let.n. be the ordinal nUJ:lber of the class of all ordinal 

numbers. Then, by a theorem froffiohe theory of ordinal numbers, 

the class of all ordinal nwnbers, arranged in order of maf,'ni tude, 

less than C\. has the ordinal n.. But this latter class is a 

section of the clas;;: of all ordinal numbers whic]l has the same 

ordinal nill,1ber, .(\. • Now", two classes h<.'1,ve the sante ordinal 

number if and only if they are similar. Therefore, the class 

of all ordinal nill~bers is similar to a section of itself, the 

section consisting of all ordinal numbers le:3s than.n. • 'l'l1is 

contradicts the theorem of set-theory which states that no set 
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can be sildlar to a section of itself. 

Stating the paradoA in this wa~F, there is no use made 

of the self -genera ti ve property- of the class of all ordbals 

explicitly or implicitly. It is not based on the class of all 

ordinals up to and i1:1cl ueling s... but only with the class of 

all ordinals less than .1\. • Tuc;~er h3,9 to shovr, if his thesis 

is to be maint.:1ined, thc.t some infon:nl IcU1["11ag8 rule has been 

broken in such a demonstration of the raradox. So far as I 

can see he will be unable to appeal to either the pro1)erty 

of self-generation or to any suspicious use of 'all'. 

Finally, there is the additional dr:.nvbac'( th .. Lt if 'rucker's 

reasoning is accepted many proofs in mathematics become 

more doubtful. Some mathematical proofs depend on a reductio 

ad absurduJTI which involve classes that cenerate i"embers not 

included in the totality of members of that class. '1'hi8 is 

perhaps easier to see in examples; I shall 6'ive tv/o. 

a) If every class of integers has a least member then 

the principle of rr.athematical induction holds, i.e. if pel) 

and if pen) implies p(n+l) then for all n p(n). Suppose 

the statement a) to be false. Then, every class of integers 

has a least member, pel), pen) implies p(n+l), and there is 

an n such th8.t tV pen) • Let s be the cla.ss of all n such tlut 

.. p(n), then there is a least member of s, m say. mf 1 since p(l). 

Therefore m is Grea.ter than 1. Now, if p(m-l) v:e should be 



- 76 -

able to deduce p(m), therGfore, ., p(m-l). I.e. m-l is a 

j~,ember of s, but III is the least member of s which is a conc:r:::,lictiol1. 

hence a) holds. 

b) A. sir:ilar mappil!fi of a Vlell-ordered setil onto a subsot 

never relates a L"ember w of -'.i to an ir;-IaCSe which preceded VI in 'J. 

Suppose b) false. Then, there is a mappinG f such tlli1t at 

least one member of W is mapIJed onto an imaCe which precedes 

it in '~{. Let t be the set of all meLlbers of 'Ii which, by the 

mapping f, are related to ima::;es preceding them in -il. Since 

t is a sabset of W t will be well-ordered and have a first 

Llember x. Let f(x)=y. y is less tll.c'1n x. Because f is a 

similar mapping f(y) is less tr.an f(x), Le. y. '1'herefore 

y beloni'Ss to t, but y is less than x and x is the least member 

of t. Since this is a contradiction b) holds. 

In both of the above eJC.:'1.mples use has been m3.'ie of clas~es 

which generate members different from any r.1ember of the totali ty 

of that class. In a) s was such a class and m-l the merr,oer 

generated from it which was different from the to tali ty 

of members. In b) t was such a class and y such a member. 

In both cases the rosu1 ting contradictions were used to negate -

the hypothesis from wrJ.ch they were proved. How does such a 

use of these classes differ from the use ll13.de of the class of 

all ordinals to generate on. + I? If such a use really does break 

an informal rule for the use of 'all', then not only does Tucker 
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prEi'vent self-gener3tion beine applied to the class of all 

.ordinals, but also self-gel1er1tion as a~:·pliecl to these classes. 

l'he theorems which a) and b) state can no loncer r"ly on the 

proofs presented allove, since these proofs depend upon a 

Llisuse of 'all' (according to '.!lucker). One consequence of 

'rucker's c.rgument is that accepted TIlather:ntical proofs like the 

a,bove can no lonGer sta.nd. Such proofs arlo often used in 

anal~rsis as well as in set-theory (e.(;. the I,roof of~he theoreili 

that a continuous function in a closed interval is bounded 

and takes every value between the values of the function at its 

end points). Perhaps 'l.'uck,;r believes that these proofs are 

invalid, but it is important to realise t:1ese iuplica tions of 

his arguments. 

I shall conclude DrY objections to 'rucker's Lethod. of solving 

the Burali-Forti paradox oJ observing that it is misleading 

to talk of tl:e Burali-Forti paradox and it is thi s way of 

talking which leads (or rr.isleads) paradox-solvers into thinking 

that there is but one paradox to soibve. In fact, 'the Burali-

Forti paradox' covers a class of differer,t, thOU[9.1 connected, 

t d " t" -r. con ra ~c ~ons. I bave Given abolTe ti"m different st::1tements 

of tb.e par''cdox, one of which Ins the contr'tJ.ictor;:r conclusion 

L ibid, r.l5} 
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that .n. + 1 is le Cd tban or equal to J\., , tllG oL:;eT ti,,} t tlLTe 

is a set y,'hich is sir:lilar to a section of' i t'oelf. 'fhm'e is a 

third, ...-hicl1 'l'ucker secus to concentrate on, tbat, steLuliing 

from the theorem that for any set of ordLlals tho:ce is an 

ordinal greater th3J1 any in the set, st .. ' tes that th 2re is [ill 

ordinal greater tl1~Ul any ordinaL It is only in t;lG last til ,t 

tr"e notion of self-generation is applied to the set of all 

ordinals aDd which can be attacked alone the lines ri'ucker 

sug,~;'e s t s • ConcentratinG only upon this e:cpression of the 

llara J.o x , it would appear th.1.t l:le neslects the first tKO which 

do not involve the r:.oticJl1 of self-[;ellercl.tion Q,;plied to the 

set of all ordir:.a.ls. A solution of the Burali-Forti p:J.radox 

must 'solve' all of the contradictions which arE; referred to by 

that name. 

If T ' l' 1. t . t·· t tl ,as aCreer calms, :L :LS necessary 0 p:Ln-pO:Ln -le 

exact place :l.t which the contr'-Ldiction occurs and then see v;h~t 

lansuage rule has been broken, then it is precisely this v.Thich 

he has failed to do. He has c11o",e11 only one of Irli:.1.ny contradictions 

Y:hich fall under the sallie head and is thus led to pin-pointinc 

self-generation as the cause of the contr:ldiction. A wider 

viev{ of the paradox which would include all tbree expressions 

of it might have prevented this. For, if~e can specif;>r the 

1. ibid, p.153 
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one concept which is essential to allotl the workinG" of the 

raradox and whic;l is Cor.,,'lon to all three forms then tin t concept 

is not self-generatioil but the concept of the set of all o:'''1innls. 

It is this r:hich leads us to talkin(l" abol1t X~ Bur8li..}<'orti 

paradox. By 'the .Jure.li-Forti paradox' we really mea)l any 

paradox which involves this concept and as lonG' as it is 

understood in this way no harm ensues. '1'he Illis take of 

confusing just one paradox wi th a C1;.13S of p'lr'l,do:ces leads to 

such unsatisfa~tory solutions as 'l'uc;;:er's. It is, perhaps, 

the fact tha.t the set of all ordinals enables contradictions 

in a variety of contexts to be dedu.ced that arouses slwpicion 

of the set in question rather tlnn the deductions which ure E1ade 

from it. Only if TLIcker can show that each paradox be lonsing 

to this class relies on a faul ty applicQ. tion of a LW.1G'lJ.3.s·e 

rule can he be said to h:1.ve given a solution of tL.e .Jurali-}'orti 

paradox. It is for a very good reason that logicia.ns lave been 

unhappy about the set of all ordinals. 

'1'l1e next paradox wi th "rhich 'rucr:.er leals illustr8.tes all 

the faults of his discussion of the Bilrali-Forti. This time 

he manaGes to confuse not t.,-o p3.r:.l.doxes belonging to the sallie 

Cla.3S but two altogether different paradoxes. I give his 

discussion in full. 

'There is a theorem to the effect that the cardinal of tile 

set of all sub-sets of a Given sot is createI' than the cardinal 
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one concept which is essential to allow the vforkinG of the 

ruradox and which is COlDmon to all three forms then Un t concept 

is not self-generatioii but the concept of the SGt of all ordinals. 

It is this which leads us to talking about .:0~ Burali-:b'orti 

paradox. By 'the .Jurali-Forti paradox' l[e really mean any 

parado~c which involves this concept i:i,nd as lon,; as it is 

understood in this way no hann ensues. 'l'he mistake of 

confusing just one paradox wi th a class of p'],rcldoxes leaJs to 

such unsatisfa:tory solutions as 'ruc'~er' s. It is, perhaps, 

the fact that the set of all ordinals enables contradictions 

in a variety of contexts to be dediJ.ced that arouses suspicion 

of the set in question rather than the deductions which are made 

from it. Only if Tuc;,:er can show that each paradox be lonCing 

to this class relies on a faulty application of a laJ.1,';t11.'l,£;'e 

rule can he be said to have gi.ven a solution of tl""e 13urali-t'orti 

paradox. It is for a very good reason that lo,;rJ.cians bave been 

unhappy about the set of all or:l.inals. 

The next paradox wi th vrhich 'fucker leals illustrates all 

the faults of his discussion of the Burali-Forti. This time 

he r.unages to confuse not t,IO paradoxes belonv.ng to the same 

eliss but two altogether different paradoxes. I give his 

discussion in full. 

'There is a theorem to the effect tbl,t; the cardinal of the 

set of all sub-sets of a Given set is creater thon the cardinal 
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of the given set. So for any given carJinal there is a 

Greater cardinal. The noti·Jn of a carJin:.ll is self-ge er:.1tin;. 

By applying this rGsul t to the set of all sets Ca.1'l tor 

11Zd alrealJ obtained a contradiction vlhich is isor,lOrllhic wi th 

that obtained later lW Burali-Forti. It is solved in the 

sm;;e way.' 1 

From this paragraph it is necessar,Y to extricn te the two 

paradoxes D.nd see how ~~ell the solutio!l in ten.s of mis-appl,;ing 

the notion of self -genera tion to a to tali ty fi ts each of the 

two cases. 

Firstly, as WaS the case with '1'uc::er'3 treatment of sets 

of ordirc,ls, it should bE: .1oticed tkLt Cantor's theorem - tl1L1.t 

the cardinal nUDber of a c,i ven set is less than the c".rdinal 

nWl1ber of the set of all the sub-sets of tha tEet - does 

not ensure that the notion of car,linal l1ULlber as self-ecmerating 

in the sellse 'ruc' .er uses it. 2 To deduce th:::.t the notion 

of ca.rdina.l nuuber is self-eeneratint'; it is necessa.rJ to -:'WG t,£) 

theorem of set-tlcJry which asserts that for ::.:.ny set of cardinals 

ar.,on,;st which there is no greatest raeHljer there is a cc:.r,iinal 

greater than any cardinal in the set, namely the carJ.inal l11.uuber 

eiven by the S'J.ill of all cardinals in tae set. It is only by 

combinins this theorem i7i th CCU~ t~r.' s the orem that \ie are able to 

------_.-•. _-----------------
1. ibid. p.512 
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is bYe.]" ter tha.l1 L? .. l1J'" ill tIle set. 

Jecondly, only one of t:le 1~:1::,,\~~oX:GS in\To 1 ved in ~:.i s 

discilssion C311 oe said to rol/ on 3el.~'-;3'ener;1tion. 

z;eeL1S inde:r,.1endent of it. It is with t,18 lutter thL1t I (loCll 

first. 

!lot need the notion of cardinal nU~llber at all; it needs only 

the cOnCelJt of one-one corrcspolHlenco. It st;>tGS that the 

set of all sub-sets of a given set cannot be lJiIt in one-

oile corres~)ondence l1i tll any sub-set of that set. hence, 

if S denotes the ;Jet of all sets and lJS the c;et of all i :;8 

subsets, US cannot be l:ut in one-onG corresponlence wi tll an;;' 

Oll the other lund, since US is a sul)j·cct of S, 

DS is in one-one correspondencG with a sub-set of S. 

'1'his is a contracliction. It is orle of t}~e I'<':i,ralo~ws ':ri tll which 

'rucker should be d(3[llin:;. The question tha t ~)resents ib;elf 

is (,hee dOGS the notion of self-Generation enter'? ::8 are 

no lonGer deEilinG' wi th ca.C'clinal mmloer8 but \ti th sets and one-

olle correspondences betY{eon them. Nor h;J.3 the pam.do.;;: been 

rephr:lsecl in terras of sets in such a rrFty tlu t self-gener.ltion 

is still nece::Jsary for a (leiuotion of t, e p:J,radox. Certainly 

the concept of set is self-~3ener3.ting as a ruraphrasing of the 

second paradox involved would show. But the fnc t th,~t the notion 
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of sot is self-Gene1'atinc is not G.1c:t,lied :101'e. 

of all subsets of S is no t anot;1er set difforont frora ,Ln;r 

r:,on;ber of S, nor does the rn.ro.Qox 'prove' t:'lis. It delJeYhls 

on the e1uivalence and the non-01uivalence oftl:is set with 

any suo-set of S, not vii th any member of S. l~eJ:ce the notion 

of self-Generation is L-relevant for the 'iell'.c-tion of this 

rarauox. 

The secon,i paradox does involve the r;otiOl1 of 8elf-

generation and here Tucker's solution is relevant. The 

paradox involves the set of all cardinal l1UIabers. Since 

to 0Dy set of cardirL9.1 l1Uilbers the:ce is a greater cardinal _ 

if, among the set there is a greatGst cardinal, c, then 

the cariiinal of thozet of all sub-sets of a represent,~tive set 

of th"t cardinal c is cre:::terthan any cariiina,l in the 

gi.ven set; if there is no e,Te::1test ca:'Qiml nlllilber in the 

set then the sum set of ti,eile carJinals is {STe,lter tha,n any 

member of the set - there will be a cardinal creater than 

allY cardinal in the set of all cal'iinals. 'l'rJat is, there 

will be a c8r1inal greater than any cardinal, which is absurd. 

'rucker's solution to this raradox, since he says tba tit is 

solved in the same. way as the Burali-Forti would be to maintain 

that an infomal lmlc,''Uace rule has been broken: - the rule 

governing' the use of 'all'. The swue objections apply to 
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this .s,rgument as we.c'e made ag'ainst the solution of the 

Burali-Forti. 

It should be clear that this solution le;:::,ves OJ8n 

LJany import3..'1t questions wldch have to be answered before the 

paraio~{ can 1e said to be solved. For e,~i.lmple, if it is 

correct to talk of the set of all sets a11(1 the set of all 

ca1'1inals 8..'1d also to talk of these sets haviniS' cardinals 

as Tucker seems to imj!ly, wlnt is interesting and raises grave 

problems for his solution is the relationship between these 

c~rdinals and the cardinal of the set of all sub-sets of S 

8.nd the cardinal of the sum of all cardinals. If both Sand 

U::; have cardinals, 'which is the [,Teater or are they eqLL:'J.l? 

.. l1atever answer to this question is g1.V"en, it will conflict 

wi th at least Oi18 theorem from set theory. If the car,-linal 

of US is Ie ss than or equal to the cardinal of S then Cantor's 

theorem is contra,tided; if the car1inal of US is greu.tel' than 

S then the very defidtion of 'G:t'eater' in cardinal mlJaber 

theory must come under revision. Tucker is silent on these 

implications of his solution. A:;ain, if it is admitted that 

for anyone cardinal there is a greater, what is to be said of 

the SUll of all cardinals? For it is not the Cdse that we 

simply use the theorem that for any set of cardinals there is 

a [;-reater ca:rdinal and, bJ applying this theorem to the set 
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of all cardinals, arrive at a con traUi ctiOil. lie can be 

more explicit them t;1is. 'file SULl of all cardiilals will be 

a cardinal greater tll8.n any cardinal, providing that therE: is 

no gI0atest cardinal. '.'hat relationship holds between this 

cardinal (e1ual to the SWll of all cardinals)' and any cardinal? 

Tucker's solution implies that it is le.~s tluln or equal 

to SOf,le cardin:;,l in the set of all Ck1.rdinnls. But this imillies 

in turn th3.c the theorem of set-theory which says that the sum 

of any set of cardinals amonb'st which there is no c,reatest 

member is ::;rea ter than an;)" in the set. He has not removed 

the parada .. : "out shifted it so that other theorems of set-theory 

become paradoxical. If there were a createst ca.rdinal then 

of course there would not be a p3.radox involved. in the notion 

of the set of all cardinals bLl.t t~lcre would be a par2.dox 

produced by Cantor 1 s t;leorem. It is from Cantor's theorem 

that both the lk'1radoxes under di scussion sprinc. If there 

were some set - the set of all sets, say - which had the 

highest ca'dinal number then the cardinal number equal to the 

sum of all cardinal nmnbers 'l"TC)uld again be the greatest cardinal. 

But cO.n it be deduced that there is a grea.test cardinal? 

Cantor's theorem says there is no CTeatest cardinal. 

So it should be Vii th t~lis theorem th:1. t Tucl~er should be concerned 

since it is fundar:1en tal to the cons tructi 011 of the two paradoxes. 
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As I have made clear above the notion of self-ceneration ,nd 

its limitations is of no help in this context. 

There are a:doraa tic set-theories, and in particular <i"line' s 

';(ew Foundation', in ·which Cantor's theorem is not forthcoming.l 

In this axiomatisation there is a set - the universal set -

v[hich is equi valen t to the set of all its sub-sets. \[orkiuc; 

in this set-theory, there v/Ould be a set of hichest card.inality 

and consequently no problem over the set of all carlinal numbers. 

But the fact tl1a. t there is a set-theory vrhicn provides a set 

of greatest cardinality in no rray supports Tucker's contention 

tbat there is a greatest cardinal number. There is no 

primarily philosophic motive behind-iuine's system ocher than 

to effect a simplification and clarification of the theory of 

types in terms of stratified and unstratified formulae. It is 

a sUGGested axiom system among otr,ers. It has not been 

constructed from allY conviction that the universal set must 

be a set of hichest cardinality. ~uine' s axiom system does 

not then support Tucker's thesis that there is a sec the cardil19.1 

of which is t,-rea ter than any other cardinal. The difference 

between the bro positions is between what a theory says to be so 

1. if.~uine, 'New ]!'oundations for I,;athematical LoGi.c', in From 
a Logical Point of View, Cambridse, I.!a::.os, 1953. 
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and what is claimed to be so. 

The difficulty would be more apparent if 'l'ncker -!ncklnd 

the ta.s:!;: of axiom at is in,,; his set-theory so til t one could :Jee 

from exactl:i what assamptions he deduces such theore);ls tk.t siB. te, 

for example, that the set of all ordinals arrangerl in order of 

mac;nitude has the createst ordinal nU1:.ber. One could then see 

wl'd.ch theorems of classical settheory remained anJ. measure 

how adequate the theory was for the tasks a.sked of it anJ. wbetller 

there was some way of reconciling, for eX:!llnple, Cantor I s theorem 

y;i th the theorel,1 that there is a Grea tes t cardinal number. 

Until such an a.:domatised systelil is cOl';structed it will be irapossible 

to judge the success of the solutions proposed by 'rucker. 

It is possible, honever, (and this I have attempte(l to do) to 

sho.: ~'!here the main difi.±cul ties lie and why the solution 

appears unsatisfactoI"J and in some Cases irrelevant. 

I shall nOVi consider 'l'ucker's arguments concerning the 

iiagonal argument and impred.icative definitions. According to 

'rucker impredicative definitions do not cause the p:3.rad.ox8s 

for 'the sole causes of the contn:!.dictions are those already 

mentioned' •
1 

However, cerbin uses of imlJredicati vc tlefini tions 

occur in invalid arGuments, not because they are imllredicative 

-----------------------------------------------------------"-----
1. Tucker, OPe ci t. p.514 
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but because the argwilents involving them are invalid. 

AS an e:G:uaj.ile of such an invalid ar::;tlLlent lI'uc;~er takes the 

diagonal argument contending t:~at the use of iupredicative 

lefini tions to establish th'l,t the set of all ,;ets of natural 

numbers cannot be put in on8-one correspondence,;i t~1 the set 

of all natural numbers involves an in.-alid argwnent. I!'urtllerlllOre, 

he n.ainca :ns, the diagonal arS'Ulllent crm be reformulated in 

such a lray trl<1.t the Ut:e of irupredica tive d.efini tions is 

unnecessary. 

'rhe proof of the non-denumerabili ty of the set of all 

natural numbers that Tucker wishes to show cont[]ins an inv(11icl 

f " 1 argument is taken rom liang. 

' ••• suppose that; the set of all sets of positive integers 

is denumcrQ,ble. '1:hen each positive integer hus its cor"esponding 

set and each positive inte ,er eit .er is or is not a member of 

its corres?onding set. Cons ider the set l; of all t 110 se 

positive inteGers vihich are not I,lelll;,Jen; oft;heir corresponding 

sets. Is n the positive inteGer vihose co crelate is H a member 

of II or not? If it is a men;1)c;l' of N then by the condition 

of Ii,emoer:ship of :i.J it is not a member of }.. If it is nota 

member of lJ, then by the same condition it is a member of N. 

1. Hao ".fane, 'l"ormalisation of lhtlwmatics', Journ:cl of 
S,yubo lie Lo,r::ic, 1954, p. 246. 
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';3.11,~~ thinks that these contradictions p:cove that the l,r-:miss 

is false and. concludes that there is no such one-one 

correlation. ,1 

'i'ucicer continues :,~S c,rrrument: 

I:~O~-{ this argurlient is isomorphic wi tll the LeteroloG'ical 

family of raradoxes. :b'or His the set of all those rosi ti ve 

inte(:;,ers which are not members of their correIa ting sets, 

c1nd in order to be a mel1ber of l-J a positive integer must 

already be cor_,-elated with a set. N is a second-order set 

rrhich is parasitic for its members on other first-order sets. 

• •• "is n a member of N?" could only be 3.1:SI';ered in the affirm3. ti ve 

or the neGative if n were already assie,l1ed to some set other 

than N. But this would be contrury to the condition that it 

is assi,sned to N and only to iii. '1'he ar,sument turns on the 

brea;,:inb" of this rule and is therefore invalid. ,2 

'J:'here are two points to be made wi th reSl)ect to this 

Firstly, the use of 'already' which occurs tvrice in 

the abo'l8 quotation, and, secondly, the u~e of 'first-order' 

cU1d 's econd-orier' • \o'na tis the force of the wore1 'alrea.dy'? 

Presunably, tha t the set N' is not one of the sets of posi tive 

integers in the enumeration. .Jut since, by hy!,.'othesis, the 

1. Tucker, op.cit. p.515 

2. ibii, pp.515-5l6 
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emmeration is of 2.11 sets of p,)sitiv8 intecers atld L is a 

set of posi ti ve inteGers, N nill occur some',;he:L'e in t:;e 

el1umerc~, tion. So it is not the case the.;; t:1e1U0:stion 

'Is n a member of N?' can only be answered if n is a:;sii:::ned. 

to SO;;le set other th3.n ~J. Tile enumeration is of 0,11 sets 

of posi ti ve integers and IJ will be one such. T,1C~;,er' s 

argument would be more to the point if he were supportinG a 

radical constructivist view which demands tba t a definition 

describes a construction involving the creation of some new 

enti ty which carmot be assumed to exist independently of the 

construction. This is the constructivist argument 8.(:rdnst 

impredicative iefinitioi1s which 'dang nas discussing in the 

paper ci ted.
l But no such scruples activate Tu.cke1', for he 

says: 'If :":npreJicative definitions o,1'e needed in tutheruatics, 

ma thema ticians can have as r;-,any of them as they like'. 2 

He is prepared to accept that an impredicative definition is 

a method of picking out one entity frora a pre-existing 

totality of entities. Thus he must be prepared to accept 

that H will be one of the sets by lileans of vihich h v;as defined. 

'1'he conseQuence of this is that he may not use the phrase 'already 

be correlated with a set' to mean 'correlated with some set 

other than N'. 

1. 'dang, op.cit. p.246 et sec. 

2. Tucker, op.cH. p.514 
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Secondly, the use of the e~'cr!r(,s:3ions 'first-order' and. 

'seconJ.-order' to def3cribc sets seems an inv~,lid 011e, or a.t 

least constitutes a retrocrade step. It YJaS pointed out by 

Ramsey in a discussion of Russell's adom of reclucibiliGJ tlL~,t 

tlle property of being elementar;{ or non-elementary belon~"s 

not to a proposition, as Russell claimed, but more properly to 
1 

instances of a proposition. A propos.L tion, according to liamse;y, 

Illay occur in t"VQ instances I one instance elementary, the 

other non-elementarJ. As an ex::mple he gives the proposition 

instclllces 'pal and ,pa.(Ex)px' which are two insknces of the 

same proposition, yet the first is elementary and the second 

non-elementary (in the sense of llussell). Such an argument 

rests on the assULlption that two proposition symbols are 

inst;mces of the same proposition if and only if they 

express agreement or disagreement with the same set of truth 

possi bi li ties. 'rhus the whole hierarchy of orders stratifies 

proposi tion s.¥JTiboihs rather than proposi ~ions (as the axiora of 

reducibility itself seems to suggest). rrurning from Ramsey's 

theory of propositi ons, th e same }:oint may be made in connection 

with 'l'ucl~er's division of sets into first-order and second-order. 

The notion of first-order and second-order prorerly belon/?: to 

the Ef.tJmer of definition of a set rather than the set itself. 

1. F. Ramsey, The Foundations of I,:athenutics, p.34 
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A set of posi tivG nwnbers re17lains a set of positive nur;:bers 

no matter ho¥[ defined, providing the definition itself is 

ullobjectionable. It is even clea,rer in the ca3e of sets 

tr.tan in the case of propositions since there is a well 

recognised cri teriol1 for the i den ti ty of tlIO sets I tyro 

.sets are identical if and only if they haV'e the same 

Tr.ernbers (the axiom of e.densionali ty) • Thus, the set 

.lefined r;k.'1Y have yet another definition of firs t-order. 

In order to clarifJ these tVIO objections I shall giv~ an 

illus tra tion from set-theory which \1ill show why it is absurd 

to say that Yie cannot pTollerly ask of a set whether its co-relate 

belongs to tl1d.t set and also why it is dangerous to talk 

in terns of the order of a set. 

It .rill be instructive to consider not the set of aibl 

sets of natural n1.llllbers but the set of all :f..ini tel sets of 

natural numbers. I do so because thi s set is equiva.lent to 

the set of natural numbers and a correspondence can be 

f)stilblished bet',;een each natural l1WUoer v.nd each finite set 

of natural nUl:lbers, thus simplifying the cons ~ruction of 

'second-order' sets. 'rhe correspondence can be established 

by means of arranGing the sets in a sequence: A precedes B 

1. In the caGe I run discussing, it is the set of all nQU­
empty fini te sub-sets of the sc)t of all natural num'bers. 
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in the sequence if the sum of the members of • .\ is less t;l3,n tile 

smil of the melabers of B; if their S1liIlS are equal' A precedes 

B if the least member of A is lesr3 than the least lf10mber of 

I )r, if these are equcu, if the ne:ct to least mem:Jer of A 

is lees than the next to leetst metlber of 3, and so on. 

It is cle8.r that before Wly set in tL.is seluence there will 

only be a finite number of sets at most and that all finite 

sets of na tura1 numbers can be re ..... ched in tllis "Yay after only 

a finite number of sets. Hence, a cor1'es pondel:ce has been 

set up, the first few terr[;s of which are: 

1 .... (1) 

2 ~ (2) 

3 ~ (1, 2) 

4 '" (3) 

5 ~ (1, 3) 

6 (ot (4) 

7 ~ (1, 4) 

8 ~ (2, 3) 

9 ..., (5) 

10 .., (1, 2, 3) 

11 " (1, 5) 

12 '+ (2, 4) 



13 

14 

15 

16 

17 
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~ 

~ 

~ 

~ 

4-) 

(6) 

(1, 2, 4) 

(2, 5) 

(3, 4) 

(7) 

In this correspondence it is cle,'lr that the set of all 

na tural numbers '\1hich do not belong to their corresponding 

sets C]' second-orcler set in Tucker's usa,'je) is the set of all 

numbers GTeator than 2 (a first-order set). So that although 

the set has ()een defined by means of a second-order expression 

i-I; does not entail that the set is of 'second-order'. '1'he 

,lifference between 'second-order' and 'first-order' as applied 

directly to sets is seen to be unreal. 

The correspondence also i11us j;ra tes a much gre3.ter 

objection to Tucl;er's argtunent. On his own account we ac::e-

debarred from as~dng of the 'second-order' set N whether n 

is. a member of U or not. On exactly similar grounds he 

would havo to adilli t tha. t the same reasoning a:pplied to the 

set of all positive inteGers that ,iere members of their 

corresponding sub-sets. For this set too is a 'second-

order' set parasitic for its members on 'first-orcler' sets. 

In the above correspondence betl'teen the set of l}osi ti ve 

inteGers al'ld the sot of all finite sub-sets of this set the 
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set of all positive integers which are not members of th.il' 

corres)onding sub-sets is the set of all positive intecers 

Greater than 2 0.11,1 the set of all positive inteGers rrllich 

::\,re members of their corresponding sub-set iel the sel; (1,2). 

3ince there is no posi ti ve inteGer correspondin,; to the 8Gt of 

all in tegers £,Tea tel' than 2 (the set being infinite) the 

question of vrhether the n Y/hich correspol1ds to it is a mem"LJer 

of the set does not arise. Bu t the '1uestion may be aksed of 

the other 'second-order' set, the set of all Ilositive integers 

which do belong to their corresponding sub-sets and, in 

this case, answered neg3.tively, for 3 (which corresponds to 

the set (1, 2» does not belong to (1, 2). In this case it 

is clearly absurd to maint3.in that all questions of the form 

'Is n a member 0 f II?' where H is a second-order set can 

only be ans',rered in the affirmative or in the necative if n 

is assic;"ned to some set other than N. For al th, Ill,Zh we are 

discussin,z- a diff,,,rent set from the set Nit is still of the 

same 'order' 3.S n and. the question has been answered even 

though 3 is not assigned to some set other than (1, 2). 

I am not assertin,3 that in all cases a second-order 

defini tion can be replaced by a first-order one. Such an 

assertion 'ilO\lld be tantamount to asserting the axiom of 

reduci bili ty and di smissing the difficulties involved in the 

notion of impredicative definition. It is sufficient to 
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poin tout that whore a second-order can be replac(~cl bJ a 

first-order definition Tucker's differentiation betrreen first 

and second-order sets disappears and his arGUIllent;s about 'ahat 

questions cannot be answered is seen to be invalid. Hor 

is it o})en to him to say that in other cases where the 

definition cannot be so replaced his arGUment still stands. 

For, since he expresses no ,'ID!'ries about impredicative 

definitions, he must accept that a set of positive integers, 

no matter how defined, is still a set of positive intet;ers 

and thus belongs to an enumeration of all sets of positive 

integers, should such an enumeration exist. If impredicative 

defini tions of tais type are legitimate then he L1USt accept 

the reasoning involved in the proof of ti1e theorem thi'l. t the 

set of all positive integors is not equivalent to the set of 

all sub-sets of that set. 'ro adrui t that the definition of H 

is impredicative is to admit that Ii is one of tho sets by 

means of \Ihich H is defined. 'l'his is the meaning of 

'impredicative'. By allowing impredica ti vo definitions, it 

is invalid to arb'Ue that 'II is a second-order set which is 

parasitic for its members on other first-order sets,.l 

For N is one of the sets amont:; the se 'first-order' sets. 

His argument expresses a contradiction: on the one hand, 

he states that impredicative definitions are legitimate, tllat 

is, it is leJi tiliL'.te to define such a set }j oy means of a 

1. Tuc~er, op.cit. p.515 
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totality of sets of which :r is a member, and, on the otl:er 

hand, that the clefini t-i on of H emmres that N is s:)mehOH 

differen t from ea,ch of the J::lembers of tlla. t toti':,li t,;:. 

After arguin!5 tha. t tho se forms of Cantor I s diaGonal 

ar[;1:.nent which involve impredicative clefini tions are invalid, 

Tuci(er proceeds to show that there are forms oi' the dia{;ona.1 

arGument irhich do not Fake use of imllredicative definitions. 

As an example he takes the proof that the set of all 1.mendinG' 

decitJals is not denumerable. The proof, he says, consiuts 

in civins a rule whereby a decimal is constructe,l ,"{hich 

differs frOLI eacLl d.8cimal in a denuITler:~.ble set of ll..'1ending 

clecimals. If the unendinG decimals are arranged in a 

sequence then corresponding to each positive integer there 

\';ill 1:e an unendini; decimal. To cons truct tbe required 

clecie:al all one needs is the rule t~la t in its nth. place 

is an intecer different from the inteGer in the nth place 

of the clecimal corres)onJ.ing to the posi ti ve int eger n in the 

enumeration. 'It (this (leciIilal) cannot appear (L1 the 

enumeration) 'because the rule for writing it down consi sts 

in making it differ from each lmendin,3' d.ecimal in the 

denm:L:.:rable series. It fo11011S that there are more 

unend.ing decir:Ials than theTe are intcbers. ,1 

1. ibid. p.5l6 
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A:l->'lrt from the fL1ct tha,t the rule ;.18 'l'ucl.:er gi vc:s it 

need not succeed in ei vin,:; em unendinG decir.::.al different froLl 

each of the decimals in t:1e denuLlcrable set (since the iJusGibili ty 

of replacing the irtegers nith 0 has been overlooked, thus 

pro duciuG' a t erminatin,; decll)al), the re is a nore inr,:;()rt:::n t 

objection. It does not follow, from the fact that there is 

an unending decimal not included in the sequence th:,t the set 

of unending deciL1als cannot be put in onc-one corl',:sponder,ce 

with the set of all pocitive integers. It only foHovTs from 

the theorem till t there is a decimal not included in any 

enumeration of unending decima,ls. The addition of one 

object alone would not alter the cardinality of any in i~ui te 

set. 'l'his mistake would not, perhaps, be very important if 

it ,yere not fhe case that 'rucker uses this incoaect aCC01111t 

in his argwilent and rrhich a correct account of this forlLl of 

the diae;onal argllIllent would invalidate. He says: 

'How this argu.r:~ent differs entirely from th:. t g~ven 

by Jang .. For the decimal whi.ch differs from each decimal in the 

denumerable list is not iefined in terms of a to tali ty of 

which it is a member. It is not defined in terms of a to tali ty 

at all ••••• It is not laid dO',m that the totality of unending 

decimals is required prior to its construction. 

is mentioned. ,1 

1. ibid. p.5l6 

No totality 
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A more car·:?ful stat811F)nt of tilE: proof i'lould h,J,ve sho',m ti.l. .. t 

refenmce to the totality of unendinG' decimals is in·7.vi table. 

There are at least two W!"ys of llrovin;; tLa t the set of all 

unending decimals is not equivalent to the set of all positive 

integers, though the two proofs are not essentially diffeJ:imt. 

'.che firs tis to aSSUT,1e thJ,t an enumeration of the unending 

decimals is possible and then proceeds to construct a decimal 

which is different from all decimals in the enumeration which 

is a contradiction and, hence, by reductio ad absurdum the unending 

decimals cannot be put in one-one correspondence with the positive 

, J. In,,egers. Such a proof does involve the totality of all unending 

decimals since it is assumed that the set of all unending deciLl'3.1s 

can be enumer.l.ted. (This type of proof is barred to Tucli:er 

because from all of a collection vie have generated one of 

that collection which does not belonG' to that collection. 1) 

The totality of all unending decil!luls II required prior to its 

con struction . 

. 'rhe second method of proof is based on a leillllla. The lemma 

states that given any denumerable sub-set of the set of all 

unendin0 decimals there exist members of that set which are not 

in the sub-set. This is proved by the usual construction of a 

decimal following the rule given above. This certainly does not 

1. see abov8, p. 
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require the totality of all unendinG decinmls. .Jut the 

lerilllJa does not prove that the set of all Ul1ending decimals 

is not equivalent to the set of all positive integers. 'l'he 

proof of the latter from the lemma is easy and proceeds by 

reductio ad absurdurJ. It is assumed that there is a one-

one correspondence between the tvlO sets and from this it follorrs 

that the 2et of all unending decimals is a proper sub-set 

of itself, which is a contradiction. I-e can be seen that the 

totali ty of unending decimals is again required in the assuu;tion 

that they can be put in one-one correspondence with the 

positive integers. Nor is it the case tl:.li.1 t the to tali ty 

of l.U1dnding decimals is not I'equired for the construction 

of the decimal. For, although the lemma was proved before 

the latter thoorem, the theorem is only a disguised version 

of the firs t r;;ethod of proof. The lemma s t,ltes that all 

denumerable sub-sets of the set of unending decimals are 

proper sub-sets of that set. '1'he theorem is only one 

particular case of this lemma where the set in question is the 

t 1 di d ' 1 1. se of £1.1 unen ng -ec~ma s. It is equivalent to the 

first proof in this respect I that it is based 011 the as::mmption 

1. This is perhaps clearer if we write the lernma (Do) (P.,Dos,:J)",) Doc. l} 
where P is the set of all positive integers and D the set of all 
unending decimals. 'rhc theorem fo Il0H s by the substitution of 
D for the "bound variable Do Thus (pAID)';) (DeD) '~he theoreJ!l is 
proved because it is assumed tInt the lenma is true vrhen Do is D 
and this is so only because the construction of the decimal is 
assumed to be possible even when Do is the to tali ty of all unending 
decimals. 
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that the totality of all unendinG decimals <."re lCt,id out in 

an enWi1erd ti on. Tucl:er is therefor vTrong in assuming tl1:1 t 

the construction of such a decimal does not Te'1uire the totJlity 

of unending ,6.ecimals. 

If he were riGht th::lt it invol vas no men tion of the 

totali ty ond that this decillk'l,l only differs from each of tlle 

decimals in the enwneration t~len it would. be equally pos:dble 

to maintain that the set N of all positive inteGers not 

belonging to their corresponding SUD-sets differ from 

each of tho:3e SUD-sets. Indeed such a proof is often given 

1 
by means of an analogous lerriL1a follO":red by a theorem. 

It is curious that Tucl:er did not consider this to [ie a way out 

of referl'ing to a totality of which N is a member. 

rrucker t s view al so stops Can tor t s theorem from being 

proved because it relies on the impre,iicati ve definition of such 

sets as N, 17he th er we prove it directly or b;)" means of a lemma. 

Cantor's theorem is aoout any set qnd the set of all sub-sets 

of that set. Thus the particular fonn of diagonal 

argument wl1ich meets vdth 'rucker's approval is not available 

for the theory of abstract sets. It may be that he does not 

1. S. Kleene, 'Introiuction to l,ret1Jl:~~theJ:utics.' Arnsterdam 
1952, pp.14-l5 
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object to the rejection of Cantor's theorem but trus imlJlication 

sho.lld at least be ~·ealised. 

Lastly, 'rucker dea13 1'.1 th the Richard pClraclox. Let 

E be the class of all finitely definn,1)le liecimals. 'l'hen E 

has ~o members. Let N be a decir,lal defined by means of tile 

,ia&onal rule applied to an enumeration of all fini tely 

definable decimals. Then N differs from each memoer of 

E. But since N is thus a finitely definable deciual i.f 

belonGS to E. This is a contra:1ic tion. 1'1;e J)aradox is 

sW'iftly deal t wi th: 

'But this is not a paradox at all. The diagonal m.othod 

does not of itself generate contr~dictions. For from the 

fact tlnt Ii is fini tel,,! defined by the dial3'onaJ. rule, it 

follows tha.t E has more tllan no r;,embers. So the assertion 

that E has No IL8Elbers is thereby proved to be fa13e, th:lt 

is all. The form of the argll1ll(mt is simply th;c1.t il. is 

asserted and not-A is s:10wn to be the case. ,1 

Once again a paradox is not solved but only 

moved to anotl:.cr J luce. It is not <the case that it is 

simply asserted that the set of all finitely definable decimals 

is e1.uivalent to the set of all lo:i;itive inte[Sers. It can be 

proved on one highl~,r plausible assumption: that the number of 

letters and punctuation marks e;,:ployed in the English 1anbUace , 

1. 'l'ucker, op.ci t. p.516 
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say, is at lilOS'-t denumerable. lIo",7 the set of all fini tel,y 

defin",ble decimals will be a sub-set of the SEt of all seClUe'lCE!S 

of letters and punctua tion m~:rks and this in turn will be equivalent 

to the set of all finite seqQences of positive integers. 'l'l.is 

last set can be proved to be equivalent to the set of all 

positive integers. Hence, the set of all finitely definable 

decimals has the cardinal ~o • If T'.lc1:er really means to pursue 

his ergurnent to its loGical conclusion, what is proved by 

:i.~eductio ad abG::rdum is that the number of different letters 

2..nd pLllctuation marks available in the English lancwlGe is 

creater tl1an the number of posi ti ve integers, an assertLm 

vrhich is only a little less repUG11ant than the pU,l'aclox with 

which YJe started. It is clearer still if we restrict the 

symbols which we are to use in a lanuuage to a finite number, 

to all the sJIlJ.bols on this rage, sa:>", , 

decimals finitely definable b r means of the symbols on this 

pa::'e is N •. and the paradox follows through 011ce II is defined 

as th2 decimal constructed by the diagonal rule for an enwneration 

of these decimals. Since all sJlllbols occurring in the 

definition of Ii are on this p ge it must belon,; to the ;cet 

of all decimals finitely definr;,ble by means of symbols on 

this paGe. The definition of N however ensures that it does 

not belonG to that set. By reductio ad absurdum the set of 

all Svffilbols on this ps.ge is non-denumerable. 'fhis is the 

conclusion 'I.e have to accept if we are to allow the 
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diagonal areumen t as a valid areument and the notion of 

'finitely definable J.ecil[k'11' as a legitimate concept. It 

i;::; clear th;::,t the nuraber of sYlnbols on the rrr'8vious page 

is not non-denumerable but finite. .A solution 0 f the pi:ll'J.ao~~ 

which involves adlai ttinG that a set of symbols ,'[hich }13,8 

thirty members (the nurilber of symbols used on the previous 

IJ1J'e) has a non-denwneruble number of members is wllikely to 

convince one of its plausibility. 
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III 

I have devoted the r,hole of the last cha.pter to a de ccdled 

discussion of 'rucker's solution of the pCU'adoxes in cenls of 

informal language rules becau3e it is in direct contradiction 

wi th the position outlined in section I of this thesis. Also, 

t'le attack on formalism contained in his pa;Jer seems to be a 

baclmard step in foundational studies. '1'1:1e doctrine of 

formalisul that is being att::ocked is not wha.t miGht be called the 

'strict' formalism of Hilbert (althvw:h this posi-tion ViQuld 

of cO'cU.'se be open to the same attack); the net is spread 

wLler to catch such different views as those of~uine, Curry 

and Church. '1'he attack is to deny the need to formalise, 

to deny th0.t formalisation succeeds in any clarification of 

mathematical concepts.
l 

There are tl10 separate theses involved. '1'he firs tis t ht.l. t 

there are indispensable concepts without which we should be 

unable to operate formal systems. The second is th","t any 

formalisation of these concepts must retain all the inprecision 

of their informal counterparts. 'rhe tIm concepts Tucker picks 

out for examination are the concepts of rule and the concept 

of substitution. These are both needed in the opera.tion of 

1. ibid. pp. 501-2 
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the formal system and any atterc.pted fornlalisation of theLl 

will carryover any vagueneS8 the.t the informal concepts 

have. 

'l'he first thesis is correct in as much as there must 'oe 

one meta-level v/here the rules of a formal system are 

stated in inforLal discourse. Por, in order to operate a 

formal system it is necessary to 1l..'1derstand thG rules of 

formation awl transformation of that fonnal system. If 

these are forumlised in turn, then clearly the rules of the 

meta-metalanguaGe have to be understood. 'l'he fOrlilalisation 

of the various meta-levels will still need a meta-lanb'1la.:;e 

in whicl1 the rul es are of an "LUlforr.1alised nature - framed 

in terms of inforLlal discourse. But this thesis does not 

refute fomalis11, since formalists, incluiin,j Hilbe,·t have 

not claimed that one could operate a formal Syst2TI1 \vithout 

havinG' some pre-formal concepts. Kleene, for eAample, 

in a bool~ devoted to meta-mathematics (in the strict 

Hil bertian sellse of fini tary methods as opr·o sed to what Kleen-" 

calls set-theoretic methods) writes: 

I'rhe meta-theory belongs to intuitive and informal 

llIB.therna tics. • •••• 'l'he assertions of the meta-theory must 

be understood. The deductions must carry conviction. 

must proce(')d by intuitive inferences, and not, as the deJ.uctions 

in the formal theory, by applications of stated rules. Itul(!s 
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have been stated to formalise the objec I; theory-, but now 

we must underst::1nd without rules how those rules work. 

An intuitive mathematics is necessary even to define the 

formal \2iatheLiutics. ,1 

If 'rucker -,vere only arGuinG this thesis thene would 

be Ii ttle or no disagreereent between him and those he 

attacks.
2 

To understand and operate a formal lanc,'uage it is 

necessary to understa.nd and er.lploy those concepts both 

formal and informal used in the met3,-theory. nut he is not 

content to stop there. He maintains th2.t formal concepts, 

dependent as they are on informal concepts retain all the 

unclari ty of those informal concepts and therefore a formalist 

rejecting informal lancuaGe because it is unclear 

must reject the formal lanG~age also. Eut even for those 

iiiiispensible concepts th:.1t 'rucb:er lists it is by no means 

certain that because they are informal concepts any 

unclarity attachei to them carries over to a formal systelll 

which needs them as a basis. 

For eX:::1mple, Tucker's argwnent that the informal 

notion of a rule is necessary in settin;:, up a formal lan:;ua.;;e 

1. S.C. IGeene, Introcluction to Lebmnthematics, j"ms"terdrl.m, 
1952, p.62 

2. Even Church s ta,tes that "In order to set up a forr.li3.lised 
lanu"'U[:J.,J'e rIe !:lust of course ma.ke use of a lan[,'t~ise alre3.Jy k.nexfn 
to us, ••• , st::ttin,; in tlut. laneua;,;e the vocabulu.ry and rules 
of the formalised 18J1£,"'Uage." A. CllUrch, Introduction to 
1,~.?~th8111atic('l\ LO';ic, 1. 1'.47 
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does not imply that beC:lUG8 the informal notion is uncle3.r 

the fOTIJ.al lan.:u[, ~"e is unclear also. l].is ar,:,Ul;}ent is bo,sed 

on the fact that any formal lmiL;ua;e depends on ,i;ivin,z a 

set of rules: rules of formation which Clve conJi tio11s for ., 

forr:lUla to be well-formed and lules of transformation ;;i vini:; 

condi tions for a sentcl1ce to be an ilfu.,edia te consequeDce of 

another and for a string of sentences to be a proof of another. 

Certdnly, the infornal notion of a rule is erJplo./ed. in 

cons tructinz a formal languaG"e. It mus t be unders tood tlB,t; 

the rules of forIJa tion and trDDsf::n.'11lation are rules; it does 

no t follow, hov/ever, tha.t the formal lancu.ac;e is unclear 

because the infornnl concept of rule is unclear. For there 

is a perfectly harmless way in which inforrilal notions can 

be said to be unclear. It is unfortunate that 'I'ucker does 

not say in w11.1. t way the ix:formal no tions are 11.'YJ.cle!:'..r. 

Kerner, on the other hand, has given a definition of a type 

of unclari ty es:pecially useful in discussions of the problems 

of pure and applied mathematics.1. Concepts are dividod 

in to two cat egori es : exac"1; and inexe.c"~. It is his contention 

th:~t mathematics1 concepts such as 'line', 'croup', '3' etc. 

are exact whereas the corresponding empirical concepts are 

1. S. Kerner, The Philosophy of l:~",them~.tics, London, 1960, 
p. 159ff. 
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inexact. 11. concept is e{'~ct if it does not athni t of 

borderline cases; a concept is inexact if it does. If 

~L concept is unclear because it aruni ts of borderline cases, 

i.e. because it is inexEl.ct, then tiLLS type of unclarity is 

not necessarily transferred to a formal lml{;ua.~·e which 

employs such a concept. In the case considered here, if 

'rule' is unclear in the sense that it is inexact then it 

does not follow that the formal system must stare this 

inexactness. For althou~h the construction of any formal 

system is dependent on the informal notion of a rule, what 

is required in connection with the rules of forIl~2.tion Wld 

transforraa tion is the recognition tln t they are rules. 

'rile fact that the concept of 'rule' admits of borderline 

cases does not imply tlv1t the rules of formation and 

transformE;tion are borderline cases. !fhe fact that there 

are some cases which are ne'ltral instances of the concept 

'rule' does not imply that all cases are neutral instances 

of the concept 'rule'. Tae inexactness of the concept 

'rule' does not carryover to a fOllilal system ~ivel1 as a body 

of rules. 

TJle same arE;UTiLent applies to Tucker's second. thesis 

that the formalisation of the concept of a r11le carries with 

it all the l.U1clari ty of the inf~rnal notion it is supposed to 
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formalise. To formalise the concep" of 'rule' a rule 

must be Given to show that the formalised concept of a relle 

is intended to replace the informal notion. A rule is 

employed in layin.;; dOi'm uhat is to be cOW"lted as a rule in 

the new, forrualised sense. AGEan the concer,t of rule is 

informal and 'rucker a,'71in argues that any unclarity pertaininG 

to this concert of 'rule' is carried over to the fO:l.'I;;cLlised 

concept. But if the notion of 'rule' is ul1cLar because it 

is inexact then the forrualised notion of rule need not be 

ulJ.clear in that sense. Providing the rule layinG down 

that the forr.;alised notion of a rule is to replace the 

unformalised notion of a rule for some specified meta-laEGua?;e 

can be recognized as a rule, then there is no inexactness 

cai.Tied over to the fOI'I'lalised concept. Sin;ilar arc.;ulIlents 

apl;ly to the other indispensible concepts listed by 

1'uc1::er. 

Another, though related, sel1de in which the conceDt of 

rule r;a;f be said to be unclei,r is in the difficul ty of [,'i ving 

a precise definition of 'rule'. In a discussion of rules 

\[aismann claiI::ls that it is indeed difficul'G to tc'i V2 a clear 

uefini "cion. T:iis, he says, is 1ecCl,use ' ••• the riOI'd "rule" 

like t:1e term I'ostensive definition" is one vihie:. stands for all 

sc)rts of different tLinC;3 which werelJ have a ee::::tclin similarity 
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In other words, the thin,,:;s t11 it -,te call rules 

;lave a 'fauily likenesu' in liittG'enctein's pin·ase. If 

rules are like this then clearly an;: pro,?oseJ formalisation 

of the rule concept is [,t)il1,_; to u.iffer c}ywide',;LJl.,r from 

the infon .. al concept. 'de lr,a,I look .a t SUCl:l a forIlalisation 

2 
as an e:q:lication of the concept. If t:lis is the Se113e in 

"'hieh 'rule' is thought to be unclear then the forn:o.li sa hon 

vdll escape this kind of unclarity. 

It may be that Tucker Ul1J'3rst.:mJs 'unclear' in some other 

sellse than I ine:Cc'1.ct' or 'lac:-;:s 1:1 e1';;3,r defini "Cion' in whieh 

case it n;ay be th~t tile unc1ariGJ is transferred froill the 

indispensable inforJ:ul concepts t::> the fon,lal 1::nJ.,-;11arse i'tself. 

l3ut it is necess.J,r;:r to explain e:~actly vr1,13.t se71se of thG -Nord 

I unc1e.::.r , is to be Ullderstood -",hen he affir;.!s Unt 'if the 

formalist premiss that all tc.e usage which oC::;U:y"S in informal 

1&1isuac'e is Ul1cle,,~ .. r is cor:cect, then rle are couJelT':neJ. by the 

preE:iss to perpetual unclarity,.3 The formalist may still 

argue that informal law,u8.,;e is unclear in the sense th",t it is 

1. F. Ylaisn:11n:;, TLe P""inq,inles of Lin'''l1istic n,il,:sopb.;r, ed. 
R. Rarre, London, 1905. f.140 

2. '1'h8 concept of explication is e;ul.r.:ined in section 3 of 
tUs thesis. 

3. Tuc~er, op.cit. p.503 
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cO;li;ain this- ul1clari ty, 

In the sar:le wa;, ti:Ie fact tInt in the s trine?: of rGek,-

lanGuaGes th",t 3. forr;,alist way set up to construct a,nu 3 tujf 

a fOl'lJal syste,,; tilere ll"J.st be one which is sta,ted in inforcal 

lanGuace does not imply tll,·;:t the forlinl L1.1lg!la!~e is !~s 

unclear as the infol'lHal If.neuCLce llsed in that meta-theory, 

Anf notion used in the inforE;al IB--1'1,;uaGe of the weta-theor~' 

J;!D,,Y be inexact. '.chere lila] be contexts ,,, .. heTG the concept~; 

are unclear but this does not i:r::tply t~le.t they are wlcle,J.r 

in the context of the meta-theory. For example, in a 

meta-theory the class of provable forr;mlae 1'18,y be defined as 

'the sUiallest class of fOTImlae which con tains the axioms and is 

closeo. ni til respect to the relation "inlI:ledia te conse',luEmce of",.l 

The concept of 'rela tiOll' eElployed in tl"!.is defini tion Lay be 

inexact in the sense tlu,t it is not abm,{s cled!' vIhettler any 

particular ten," is a relation or not. It i ~3 suffic i en t, hO'Never, 

for the fonaal lancua,:;e not to carry with it this inex-:;ctness, 

tha t tb.e COnCel)t of I ilTWledia tG COilse'luence. of' be recogili8ed as 

an insknce of the concept I 1'ela tion' , 

In SUL1TIldry, then, fOI'lllal lanG'u<1,2,'8s depend upon informal 

lan.;uages and informal concepts, but any ullclari ty in the 

1. K. GCHel, On Forman;! UndecicL'1.hle Pro}Josi tions of Princi nia 
l,;a,ther:u:'ltica trans. :b, lu:eltzer, London, 1962, p.45 
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SGllSe of inexuGtness of tho3e informal concG.iJts dOGS ilOt iL:plJ 

that a fonnal lant',Ll.ace is doomed to the S3.ltle inexactness. 

At one lJoint 'rucker SeellJ3 to De saying tlJ.:lt no clarification CC1n 

ever be made by using mathem2"tical loCSic since matheilntical 

logicians fl'equently fall into conceptual cOl1fu~'lion;J. He 

cites S':colem's view that the concepts of set-{;:18ory are r(c:b,tive. 

Yet surely S~(Qlem' s proposal to replace Zermelo' s 'definite 

proposi tion' by the notion of an expression wllich contains as 

atoms only expressions 0:: the form 'aeb' or 'a=o' is a 

clarific.tion of that notion.l. 'fhe fact tba t Skolem uiUy 

have fallen victim to a conceptual confusi0n elsewhere does 

not mean that no clarific:Ltion has been achieved at this point. 

:Defore concluding this chapter I should like to discuss 

tyro other theses Tucker holds. :B'irstly, that contradictions 

occurring in a fOTInal languaGe are understood if they are 

understood in infor.nal lanG~ge. Seconclly , that the 

contradictions can be solved only by looking to see which 

informal laneuage rule has been broken. The syntactic contra-

dictions of set-tlleory are just as much paradoxes when stated 

in informal la..'rlguages as they are when statei in formal sys tems. 

One may agr-ee to tr.is without rejecting as fl'ucker does the 

1. E. Z~rmelo, 'untersuchenden liber die Grundla2;en der l\;enc;enlehre I' 
IIB,them.ltische Annalen 59, p.262. 'f. Skolem, 'Einige Bemerkungel] ZiLr 
axiollL'1 tischen .tlec;rtlndung del' Lenge111ehre' , 1I;a, tema ti kerkol1i';ressen i 
Helsinf'ors den 4-7 Juli 1922, Den femte S!\andinavisJ<a J:latimatiker­
konrrressen, Redo,:;or-lse, AkE.der;:,.iska Bokhandeln, Helsinki 1923~pJh8 
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distinction drmm b,/ Russell 1Jetween the mathematical and 

philosophical aspects of foumlational ::?roblems. 

distinct even though the pars,ctoxes of set-theory f:l11J be 

solved in the same manner for both the f01'];1"l,l and inforE:al 

sbter1ents of them. ',~ t R 11~" . tl 1. .IGa usse L.eans].n n.e p.'1ssaze 

cited bJ Tucker is th·".t the mathematics of the theory of types, 

i.e. the deduction of theorems from assumptions embodyinG type-

theory, is separable from the philosophic .justification of the 

theory of tJpes. Even if the the()r~r of types turns out to be 

without such justification and philosophically llnsow1d, the 

lila tl" e;Ja, tics of type-theory may still be developed. 'rhe 

mathematics of a certain set of assumptions is indC::'IJewLent of 

the justification of th?se assumptions although interest in the 

mathematical developliient of t:lem may not be. 

Syntactic paracloxes that are contnined in any forrnlised 

system of set-theory are st3.table in infoY.'E:al lanc-uLl.ce. 

PODllalists t>..ave not denied this and often intro,luce tile problens 

involved in the construction of a, formal set-theory by the 

paraclo".;:es wi t;h an inforillal discussion of the pa.raloxes. 2 

'.rhis should be qualified, however. A paraclox occurring in a 

formal systew is a purel;Jr forr,al characteristic. It occurs when, 

1. B. Russell, Lordc a119:: Kno1.'!led c,;e, London 1956, p.102 

2. e.G. R.L. Goodstein, ~"~ltheffi'ltical LO,cic 
Curry, In tro iuc~ion ~o i'lih3ma ticC'"l Lotic 
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3ay, h;o fOl'LlUlae are provaole one of which is identical in 

form to the other e:~cept; tlu,t it is }:r'o'faceri by 'AJ'. 

A fOI'l!ial 11i1::,"u:i,:'e cOllsistinG' of a cert:',in vocabCl13,rJ and 

certnin s;yn"Gactic rules may be c;i ven such a defini tion ,~f 

inconsistenc:r. Any triO forrilulae ',,'hich have the above tile fonll 

vroulri constitute a contraiiction in th"1,t forn:al langu.'), ,:e. 

But, villa,t does it signify to say tha,t BelCh a contra-iiction if 

understooi call be lmderstoocl in inforr';al lanc;ua,;'e? As ~ret, 

the lan;;uar;e is considerod to bo fOrI,;al a,nd not as a forl11alioed 

lanGuage. In the role of formal laIl[,"llage it is a Game played 

wi th cert~,in pieces accorJins to a certo.in :0et of niles. A 

contradiction occurrin,; in a forr:lfJl 1Cl1C:,ua2,'e will act (if the 

propositional calculus is an interpretdtion of a sub-sJstem cf 

that lan,:,"ua~;e) as a lice'ose to Ci ve theorcr;, status to any uell-

forLled forrr,ula of th.:J; lan,;U:1.:e. 

In order to 'understand I the contradictions in infol'lnal 

lanLo'UE.~e it is necess3xf to ~i ve senlallti,J rules in add.i tion to 

the s;yntactic rules. 'l'here have to be some rules of t:rJ.nsla tion 

for the fon,al system to reltjive an interpret.:).tion. !"'ormal 

lan,SLlages as opposed to form'llised languages rna;! have no obvious 

translation or interpretation. If a contradiction occurred in 

such a formal lanGU3.:;e, it would be puzz linG to saI thc.t one co uld 

'ul1,ierstLu:.d I why the con'~r[j,diction occurred. 'l'he TIIOS t one could 

hope for would be some alteration to the axioms of the system V1J:lich 
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would avoid. the proof of that contradiction bGin(i aVJ.ila-ble. 

~lor, il';. this case, would it be possible to usc the ~lOtion of 

interpreta tion, for aD inconsistent fo1',,1al system has no 

interpretation. 1<'or a purely foril,al languaGe it wakes no sense 

to say the1- t we can 'unders tan a.. ' the con tr ",dictions th<l t 0 ccur. 

At most the axior£.s ElaY be altered so th.:it no contradictions can 

oe proved., but the alterations thu.t nlay be mad.e will not be made 

as a result of eXdmining the informal transln. tiOll of the fonnal 

system. (It vrould in any case be wrong' to talk of the transla tior! 

or the interpretation of a forunl system, because for forrrni 

systems "Thich have an interpretation in an infini t8 dor:Jain there 

y[ill be tvlO nOl1-ison,orphic interpretEi.tiol1S1 • Rather, the 

corrections will be m:;.de as a result of technical eX,gerti;;e resultinG 

from workint~ wi th fonnal languages. Of course, anY' solution 

of an informal paradox vThich (.rains general acceptance will be 

incorporated. in the fornalised. languaGe. An informal solution 

will be reflected in the forraali sed theory. [l'here are, as 

Tucker says, no formal contradictions to solve as 1/ell, once the 

informal contradictions are ironed out. For formal langua:}?s, 

however, there is no po,-.;sible way of 'understandinG' the cauze 

of any contra.dictions tha.t occur, so that there will be a fear that 

the forrnal sys tem is inconsistent. Tucker is wrong in saying 

1. see section 4 of this thesis for fll.rther discussion. 
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tr ... at in fon1al systeT!iS I •••• there is no such tilinG as a 

contradiction whic:l has no C2,use, no such thiflg as a contr,l-

t d t ·t I 1. J.iction tha cannot be tracke 0 l S source •• For a 

f'oTijal system the only thin:; that cOllld be reCS::J,;'ded as the 

cause of a contr;diction would be an adom of the sJ"sted such 

that its rOllioval 170ul;1 result in a consistent system. l.3u t 

this is not to give an explanation of why its contracl:lcts the 

other axior"s; it is to say only ti:1at it (loes contraJict the];}. 

1. ~"{. 'rucker, Pormalioation of Set-'l'l,eorv, p.5l3. J,:ore 
explici tly he maintains tlu,t the following are false I ".i'hat in a 
formal system for which there is no G"J.arantee of cO!lsistency a 
contradiction may turn up unexpectedly an;:/17here. 'ri.:at there may 
be latent contradictions SIlTead through such a system. I ibid. p.510 
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IV 

Having disposed of formalism to his own satisfaction 

and given solutions to the paradoxes in tenus of infonual 

language rules, Tucker turns to the problem of constructivity 

which he considers to be logically pnor to the problem of 

I consistency Once it has been shown that a lanJuage is constructive 

there will be no worry over the problem of consistency. 

To make sense of this thesis it will be necessary to see 

how Tucker uses the word 'constructive' as it is not clear 

how it is to be used in all the contexts in which it occurs. 

As employed by Tucker it is an adjective that can qualify 

'conditions ,2, 'procedures,3 and 'language,4. He defines 

it, however, only as it applies to procedures. 

'Constructive procedures are defined as procedures which 

can, in some sense, be carried out whereas non-constructive 

procedures are those which, while they can (in some sense) 

be specified cannot be carried out.,5 

It is not at all clear how such a definition can be 

extended to cover the case of a natural language being 

constructive. 

1. J. Tucker, 'Constructivity, Consistency and Natural 
Languages', Proceedinr,s of the Aristotelian SOCiety, 1967 pp.145-16B. 
2. ibid. p.164 3. ibid. p.152 4. ibid. p.145 
5. ibid. p.152 
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Tucker admits that his definition of 'constructive' 

differs from any given in the past. For there will be some 

procedures that have been regarded in the past as constructive 

that are not constructive ~ccording to the new definition and 

vice versa. l He maintains, in addition, that the limitations 

imposed on the methods of proof by constructivists are merely 

arbitrary chosen restrictions having no significance for foundational 

studies. 2 

There are two objections I wish to make at this point. 

Firstly, it does not follow from the definition that 

there will be procedures which turn out to be constructive (non­

constructive) under the definition, but have in the past been 

considered non-constructive (constructive). It is doubtful 

whether any constructivist would wish to disagree with th;" 

defini ti on. What is doubtful is whether there would be agreement 

over what counts as 'a procedure which can be carried out'. 

It is not over the definition that there would be dispute but 

over what procedures can be carried out. The reason that there 

appear to be many different standards of constructivity is due 

to there being many different views as to what constitutes a 

procedure which can be carried out. For varied reasons one 

rray reject impredicative definitions, pure existential theorems, 

1. ibid p.153 

2. ibid p.153 
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any proof involving the notion of the totality of all real 

numbers, L~ly proof involving the notion of an arbitrary 

set, etc. as non-constructive. Constructivists who reject 

aome or all of these as being examples of non-constntctive 

procedures may do so because the procedures cannot in some sense 

be carried out. Tucker's definition can be seen to be virtually 

useless as a clarification of constructivity and for differentiating 

between his notion and those of other constructivists. He 

claims that there is a ' a single basic notion of 

constructivity that is essential to foundations' and, further, 

that non-constructive procedures are non-constructive' •••• in 

the precise sense that they are impossible of execution,l 

(my italics). It is clear from the above argument that the 

definition has not given any precision to the notion of 

constructivity nor does it help us to classify procedures that 

are constructive and those that are not. 

Secondly, Tucker's assertion that the limitations on 

methods of proof have in the past been arbitrary restrictions 

imposed by constructivists is a gross misrepresentation of the 

facts. A general account of constructivity is beyond the 

scope of this thesis but in order to see that Tucker's account 

of the 'arbitrary limitations' is incorrect it will be necessary 

1. ibid. p.153 
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to examine some of the constructivists' views and why they reject 

certain proof procedures. 

The intuitionists, for example, believe that mathematical 

assertions are reports of successful mental constructions. 

The exact nature of these mental constructions is difficult to 

specify and its dependence on an intuition or acts of intuition 

unappealing to empiricist or analytic philosophers. But if we 

grant, for the moment, that it makes sense to talk of mental 

constructions it should be clear that the logical connectives 

which the intuitionists themselves use in their reports of 

mental constructions will receive very different interpretations 

from the usual truth-table interpretation. 

The proposition 'NP', since even negative propositions are 

reports of a mental construction, is not just a report of the 

absence of a construction but is the report of a construction 

which deduces a contradiction from the supposition that the 

construction reported by 'pI were brought to an end. l 

Existential propositions of the form (~x)A(x) have no 

other meaning thanl 'A mathematical object x satisfying the 

condition A(x) has been constructed,.2 

For the intuitionist mathematical objects, whether they 

are sets or natural numbers or real numbers are essentially 

1. A. Heyting, Intuitionism - an Introiuction', Amsterd.a.Q:), 1956 
2. A. Heyting, 'Some Remarks on Intuitionism' in Constructivity 
in Ma theffi'l.tics, Amsterdam 1959, p.70 
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constructible objects. l The apparent peculiarities of 

intuitionist mathematics spring from this conception of 

mathematical objects. If mathematical objects do not exist 

prior to their construction - Heyting claims that he is 

unable to make sense of the assertion that they do - then the 

rejection of pure existential proofs follows as a consequence. 

Similarly some instances of the law of excluded middle must 

be rejected since, both 'p' and·'Np'.being reports of constructions, 

there will be cases - in particular, cases involving quantification -

where we are in possession of neither construction. Other 

logical laws to which the intuitionists object can be considered 

in the same way. The justification for their rejection is the 

nature of m~thematical objects. 

There is nothing arbitrary about the restrictions and 

limitations on methods of proof, for the limitations are laid 

down by the nature of the mathematical objects and, IIeyting 

says, there is nothing arbitrary in the notion of a constructible 

2 object. The notion of a constructible object must itself be 

a primitive undefined notion since any attempt to define those 

operations that are constructive would need existential 

quantification3• Nevertheless, what is meant by a construction 

1. ibid. p.70 2. ibid. p.70 
3. R. Peter, 'Rekursivitat und Konstruktivitat' in Constrmctivity 
in IvTathematics, p.228. 
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1 can be made clear by examples. Since the notion of a 

constructible object is not arbitrary neither are the methods 

of proof which the intuitionists allow. 

Another constructivist, Wang, gives good reasons for 

rejecting impredicative definitions. There is nothing 

arbitrary in this rejection. It is not a ban on impredicative 

definitions imposed simply because impredicative definitions 

sometimes lead to paradoxes. Nor is it necessarily a ban 

on all kinds of impredicative definitions. One may, for example, 

accept impredicative definitions of natural numbers but not of 

sets of natural numbers. 2 But where one allows impredicative 

definitions and where one disallows them is not purely arbitrary; 

it will depend on what one considers to be the nature of the 

objects over which the quantified variable in the impredicative 

definition ranges. 

Wang, speaking of the vicious-circle principle, says that 

the principle is directed against the introduction of new 

objects. 

'Impredicative characterisations are objected to not just 

as such but only as a means for initially introducing an 

object. ,3. 

If a set can be said to exist only after it has been defined 

1. i... Heyting, 'Intuition ',':'anlntroduction' _ . ,', 
2. H. Wang, 'Ordinal Numbers and Predicative Set-Theory', in 
A Survey of Mathematical Logic, Peking, 1963 p.642 
3. H. Wang, ibid. p.640 
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then clearly it is circular for this definition to contain a 

quantifier ranging over this set. Only if sets exist prior to 

their definition, in which case the 'definition' would be a 

specification of one object from an existing totality of sets, 

would predicative definitions be legitimate. l The ban imposed 

by constructivists on impredicative definitions is an outcome 

of how the mathematical objects - in this case, sets - are 

conceived. Constructivists would reject Tucker's contention 

that since impredicative definitions do not give rise to contradictions 

t diff lt th · 1 ·t· 2 here is no . icu y over e~r e~ ~cy. 

Similar constructivist arguments may be given for rejecting 

proofs involving the notions of 'all real numbers', 'all sets 

of positive inte$ers', 'arbitrary set', 'arbitrary law', etc. 

In all the cases so far considered there' have been no 

purely arbitrary decisions on what is to count as a constructive 

proof. There are differences between constructivists as to 

what constitutes a constructive proof but the differences can 

be traced to the different ways that the mathematical objects are 

seen by them. But the fact that differences exist does not imply 

1. It is odd that ~uine can treat the problem so lightly. There 
is no harm in impredicative specification, he maintains, for 'we are 
not to view classes as literally created through being apecified • 
•••• The doctrine of classes is rather that they are there from 
the start. This being so, there is no evident fallacy in impredicative 
specification.' (W. Quine, Set-Theory and its Logic, Cambridge, 1~ss., 
1963, p.243) The question here 1s, surely, whose doctrine of classes, 
Brower's? Wang's? 

2. J. Tucker, 'Formalisation of Set-Theory' p.514 
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that they are arbitrary. 

Tucker's notion of constructivity is not based on any 

previous view about the nature of mathematical objects. It is 

put forward to us as 'what can be carried out'. 'l'here is no 

attempt to expand this definition although he does give an 

example of a procedure which though it appears to be non-

constructive turns out to be constructive and an example vfuich 

though normally taken to be constructive (even by some 

intuitionists) turns out to be non-constructive under his 

definition. 

I shall deal with the former example first. It is an 

attB~pt to show that diagonal procedures are constructive in 

his sense. The attempt depends on his analysis of the term 

'indenumerable set'. 'Taken in the referential sense, the 

expression "indenumerable set" means an actual infinity which is 

greater than an actual denumerable infinity,l But there is 

another interpretation open to us, namely, 'a non-referential 

interpretation in which it means a set which contains an 

indenumerable element; where by an indenumerable element is 

meant an element which differw systematically from each element 

in an unending series whose generative recipe is given.,2 

1. J. Tucker, 'Constructivity, Consistency and Natural Languages', 
p.156 

2. ibid. p.l56 . 
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It is difficult to make sense of this interpretation. 

\/hat i8 needed is a clarification of the terms 'indenumerable 

element' and the terlJl on which it depends, 'generative recipe'. 

From a.:;la ter exposi tion that Tucker gi vesl it appears that D is 

an indenumerable element of S if D belongs to S and is different 

from each element of S given by some law determining an initial 

element and the successor of any element. Under this definition 

it will turn out that many sets thought of as denumerable 

will beindenumerable. . (Perhaps both denumerable and indenumerable, 

but Tucker does not define denumerable.) Even the set of 

natural numbers would become indenumerable. For the generative 

recipez - initial element 3, successor of an element x, x+l -

will give two indenumerable elements, 1 and 2. 1 and 2 belong 

to the set of natural numbers and yet differ from each of the 

elements given by the generative recipe. That the set of 

natural numbers is non-denumerable is an absurd consequence and 

makes nonsense of the distinction initially brought in by 

Cantor. 

It might be said that my example ignores the fact that 

there is a generative recipe for the natural numbers and if I 

had taken this recipe then I should not have succeeded in obtaining 

1. ibid. p.159 
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an indenumerable element. In general this would mean 

that there is only one proper generative recipe and the 

notion of a proper recipe would need to be defined. For 

non-denumerable sets (in the usual sense) there can be no proper 

generative recipe; in fact, there can be no generative recipes 

at all, for that is what the proofs of non-denumerability 

show. 

Talk of an indenumerable element of a set prompts the 

question: which element is an indenumerable element? But 

the production of an element D, purported to be the in denumerable 

element, would result in our being able to give a generative 

recipe in which D would occur. (By taking D as the initial 

element and:.tacking on the other elements given by the original 

generative recipe which left out D.) A denumerable totality 

does not become indenumerable by adding one element. 

Rather than talk of an indenumerab1e element, we could 

talk of an indenumerable element relative to a given generative 

recipe. Perhaps Tucker would then say that an indenumerable set 

would be one in which for any given generative recipe there 

remained an element of the set not included in the generative 

recipe. But does this mean that we have a 'non-referential' 

interpretation of 'indenumerable .. set'? The non-referential 

interpretation is the interpretation in which the sense of 

'indenumerable set' is a set that contains an indenumerable 



- 126 -

an indenumerable element. In general this would mean 

that there is only one proper generative recipe and the 

notion of a "roper recipe would need to be defined. For 

non-denumerable sets (in the usual sense) there can be no proper 

generative recipe; in fact, there can be no generative recipes 

at all, for that is what the proofs of non-denumerability 

show. 

Talk of an indenumerable element of a set prompts the 

question: which element is an indenumerable element? But 

the production of an element D, purported to be the indenumerable 

element, would result in our being able to give a generative 

recipe in which D would occur. (By taking D as the initial 

element and.tacking on the other elements given by the original 

generative recipe vmich left out D.) A denumerable totality 

does not become indenumerable by adding one element. 

Rather than talk of an indenumerable element, we could 

talk of an indenumerable element relative to a given generative 

recipe. Perhaps Tucker would then say that an indenumerable set 

would be one in which for any given generative recipe there 

remained an element of the set not included in the generative 

recipe. But does this mean that we have a 'non-referential' 

interpretation of 'indenumerable set'? The non-referential 

interpretation is the interpretation in which the sense of 

'indenumerable set' is a set that contains an indenumerable 
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element. The only sense that can be given to this is an 

element which escapes every generative recipe. This is far 

stronger than Cantor's original definition and, if the Zermelo­

KBnig paradox is to be avoided, demands a precise definition of 

'generative recipe'. 

The non-referential interpretation that Tucker gives is 

unsuccessful. Again it shows a misunderstanding of 

constructivist objections to infinite sets. According to 

Tuc'ker, the referential sense of 'indenumerable set' is 

'an actual infinity which is greater than an actual denumerable 

infini ty' • But the meaning of 'indenumerable set' in most set-

theories, is given by some such definition as. a set which 

cannot be put in one-one correspondence with the set of natural 

numbers ~nd which contains a subset which can. Its meaning 

is fixed by this definition. The definition does not mention 

'greater than' or 'actual infinity'. It might be objected 

that even though this definition does not mention actual 

infinities it nevertheless presupposes them. In fact, the 

definition says nothing of whether the sets involved are 

infinite in the sense that they lie spread out before us in 

their entirity or in the sense that given any finite number 

of elements of the set there are yet others of the 

set. 

The diagonal procedure which, Tucker says, has been regarded 
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as non-constructive is, in fact, regarded as constructive by 

, t 't' 't 1 some 1n U1 10n1S s. It is the conclusions drawn from the 

diagonal procedures that are regarded as non-constructive. 

Take, for eAample, the proof that the set of all sequences 

of positive integers is non-denwnerable. First, suppose a 

correlation has been set up between the natural nwnbers and 

a set of sequences of positive integers. The usual diagonal 

procedure then gives a sequence which is not correlated to 

any natural number. It follows that the set of all such 

sequences cannot be correlated to the set of all natural 

numbers. Now, the intuitionist does not object to the diagonal 

procedure employed here. For, given a law which correlates 

the natural numbers with a set of sequences of positive integers, 

it is possible to construct a sequence of positive integers 

which is not correlated by the law. The construction needed 

is, of course, provided by the diagonal rule. It is the 

conclusion drawn from this to which the intuitionist objects. 

\Ie cannot concude that the set of all sequences of posi ti ve 

integers cannot be correlated with the set of natural numbers 

since, he would say, it does not make sense to speak of all 

such sequences. The diagonal procedure is not rejected because 

it appeals to an actual infinity, as Tucker maintains. 2 Nor 

1. see A. Fraenkel, Abstr~ct Set Theory, ~nsterdam 1961. p.55 
2. J. Tucker, 'Constructivity, Consistency and Natural Languages' 

p. 159 
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is it recarded as non-constructive. The reason for rejecting 

such sets as the set of all real numbers, the set of all sets 

of positive integers, etc. is not just that the sets involved 

are 'actually' infinite. As with predicative definitions 

constructivists argue that a set must be defined by a rule or 

a law. A real number must be defined by a law - for intuitionists, 

I spread laws. Wang argues that the totality of laws is ill 

defined. We can have no 'clear and distinct idea of the totality 

of all sets or laws defining enumerations,.2 In other words, 

the set of all sets of positive integers is non-constructive 

because each set of positive integers would have to be given by 

a law and we are never in a position to contemplate all laws, 

having knowledge of only a finite number at any time.' 

Similar reasoning applies to the set of all real numbers 

etc. 

To say anything of the set of all real numbers is non-

constructive, so to say of that set that it cannot be correlated 

with the set of natural numbers is non-constructive. 'l'he fact 

that a proof of Cantor's theorem involves the diagonal procedure 

does not mean that the procedure is non-constructive. Cantor's 

theorem would still be non-constructive even if it involved only 

the intuitionist propositional calculus, for the very statement 

of the theorem is non-constructive in that it refers to a non-

1. A. Heyting, Intuitionism - An Introduction p.,4 
2. H. Wang, 'The l!'ormalisation of lv1a.thematics' in 'A Survey of 
:Mathematical LoGic', p.580 
,. ibid, p.~80. 
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constructive set. Tucker's plan to rehabilitate the diagonal 

procedure as a constructive procedure is unnecessary and if 

he is to rehabilitate Cantor's proof as constructive, he will 

need to show that such phrases as 'the set of all real numbers' 

are constructive. Since, however, he has defined only 

constructive procedures it is difficult to see how he can 

cope with what have been regarded as non-constructive 

entities. 

These are hints of how he would deal with such entities 

in his discussion of the interpretations of '31,,'. Again 

he refers to the referential and non-referential interpretations 

of symbols. On the referential interpretation, according to 

Tucker, 'N: stands for an actual denumerable infinity of 

eleihents. But there is a non-referential interpretation, he 

says, in which 'the function of a class symbol is to express the 

notion "the elements of the class such that •••• " where the 

elements mentioned fall under the recipe for the generation of an 

unending series of elements. ,1 

Exactly what 'No' stands for can only be determined within 

some specified set-theory. There are theories in which 'l\{' 
o 

is the set of all sets which can be put in one-one correspon.lence 

with the set of natural numbers. 2 
Here 'No' does not denote 

1. J. Tucker, 'Constructivity, Consistency and Natural Languages', 
p.158 
2. e.g. Cantor, Russell. 
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a denumerable set a.t all, since it is the set of all denumerable ... 

sets, i.e. an indenumerable set. There are other theories in 

which ''No' will be a denumerable setl but because of such 

variety of usage it is unsafe to claim that 'No' has some one 

particular denotation. 

As all that can be said with the use of transfinite 

numerals can be said without their use, there are no extra 

difficulties brought in for the constructivist by their 

introduction. It is not to the introduction of transfinite 

numerals that the constructivists object but to the sets which 

have transfinitecardinals. Tucker should then deal with the 

interpretation of 'N' (the set of natural numbers) rather than 

wi th 'N.'. The remarks he makes about the interpretation of 

'w. ... ' must be considered as if they are about IN I • 

Interpreted in this way, the function of class symbols, 

instead of referring to an actually infinite number of elementsj 

expresses on Tucker's non-referential interpretation the 

notion 'the elements such that •••• , where the elements fall 

under the recipe for the generation of an unending series of 

elements. The distinction here, if indeed there is one, 

is very fine. 'H' does not refer to the set of all natural 

numbers but expresses the notion 'the elements such that ••• '. 

1. e.g. von Neumann 
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It would seem that Tucker wishes to escape by taking 'N' as 

a way of talking about the elements of a set rather than the 

set. Now there are things which we wish to say about the set 

'N' and other things which we wish to say of the elements 

of N. To say that each natural number has a unique representation 

as a product of primes is not to say that N has a unique 

representation. 'ro say that each non-empty sub-set of N has 

a least member is not to say something of each element. 

Perhaps Tucker means something other than the reading 

above by 'expresses the notion of' but I find it difficult to 

regard such a phrase as 'the elements such that •••• , as a 

notion at all. I can understand' the set of aU elements 

such that' or 'being an element such that •••• , as notions. 

But the first seems to be the referential interpretation of 

'If' and the second not what would be meant by 'N' in 

any theory. 

However, Tucker does talk of '~' as b~ing the claws of .. 
entities generated from 0 by the successor operation despite 

his analysis of transfinite class symbols in terms of elements 

1 rather than classes. In this case he says th'l.t it cOTllmi ts a 

category a mistake to ask for this class to be constructed. 

The reason given is t~~t it i8 a class of classes of classes 

1. ibid. p.158 
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whereas the elements of the class are classes of classes. 

(Again this is only true in certain theories) But just because 

, W' (or 'N' to be safer) is of a different category from its 
o 

elements it does not follow that all question of its constructivity 

does not arise. A strict constructivist could say that the 

class of all natural numbers is not constructible because, even 

though each natural number may be constructed (in principle), 

there will never be a time when we have constructed all of them. 

To a constructivist classes have to be constructed. 'fhe fact 

that the elements of a class belong to a different category from 

the class is irrelevent. 

But the non-referential interpretation of class symbols 

that Tucker gives will not work for classes which are non-denumerable. 

There is no way of filling out the expression 'the elements 

such that ••• ' by any generative recipe giving an unending 

series of elements. What could be the generative recipe for 

the real numbers? That there is no such recipe is just 

What Cantor's theorem proves. Class symbols for non-denumerable 

sets cannot receive such an interpretation. If there could be 

an interpretation in terms of generative recipes then the 

construotivist who accepts as oonstructible sets given by a 

generative recipe would have no worries about the sets denoted 

by these symbols. One may look at the construotivist demand as 

a demand for generative recipes. It is the notion of a set 
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not given by any generative recipe, the idea of an arbitrary 

set, that worries the constructivist. 

It is not clear how infinite sets of greater cardinality 

are to be interpreted. Even if indenumerable sets could 

receive a non-referential interpretation in terms of containing 

an indenumerable element, there is no guide given by Tucker for 

finding a non-referential interpretation for such sets as the 

set of all real functions of a real variable. To show that 

this set is of greater cardinality than the set of real numbers 

it will not be possible to replace the usual 'diagonal' 

procedure by a procedure showing that there is a function 

different from each function in an unending series of functions 

given by some generative recipe. The most that the latter 

would show would be that the set of all real functions was 

indenumerable. Generative recipes are out of place here 

since the set of all real numbers itself is not given by a 

generative recipe. 

Similar problems arise when sets of the same non-denumerable 

cardinality are considered. \Vhat is Tucker's constructive 

interpretation of the proof that the set of all real numbers has 

the same cardinality as the set of all continuous functions? 

We could perhaps show that both are indenumerable in Tucker's 

sense of containing an indenumerable element but, since neither 

is given under a generative recipe and Tucker's non-referential 
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interpretation always mention the existence of a generative 

recipe, there would seem little chance of showing 'constructively' 

that they have the same cardinal. 

Lastly, the axiom of choice is dealt with swiftly by 

Tucker. According to him the axiom is non-referential in 

character. l But it is not at all clear what Tucker means by 

non-referential in this context as he has only discussed 

'non-referen tial' for the case of 'i~ • .' and 'indenumerable'. 

If he wishes to say that in addition to being non-referential 

it is also constructive - as it would seem from his allegation 

that it is the referential interpretation which makes the 

constructivist regard certain procedures as non-constructive ~ 

he must introduce some other notion than that of generative 

recipes, for the axiom is needed precisely when there is no 

generative recipe. If there were a generative recipe for a 

set with the property stated by the axiom of choice then there 

would be no need of the axiom of choice. The axiom of choice 

is a purely existential axiom of the form (~x) F(x). If 

there were a generative recipe giving a set with the property 

F it would follow from the predicate calculus alone that 

(tx)F(x) • 111e axiom of choice is needed only if there is no 

way of obtaining the set from the other axioms of set-theory. 

1. ibid. p.157 
2. ibid. p.156-157 
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In the case of a set of indenumerably many sets there could 

not be a generative recipe (in the sense of a recipe giving an 

unending series of elements) which Gives a set containing just 

one element from each set since there are indenumerably many 

of them. But even in the case of a set of denumerably many 

sets the axiom of choice could not be dealt with in Tuckerls 

terms for the existence of a generative recipe would imply that 

'there is no need to invoke the axiom. 

In conclusion, it would seem that each of Tucker IS attempts 

to rehabilitate the non-constructive as constructive fails. 

Also, his approach ignores what seem to me the main problems 

that the constructivists bring to the fore. Since he sees their 

problems as arising from the doctrine that class symbols 

refer to actual infinities he misses the most interesting and 

clearest of their objections - their objections to impredicative 

definition, the notion of an arbitrary law and the notion of 

arbitrary set. 

The example of a constructive proof which Tucker says is 

in fact non-constructive is proof by reductio ad absurdum. 

'All arguments to contradiction are non-constructive 

since the emergence of a contradiction shows th~t what has 
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been tried in the given argument cannot in fact be carried 

out.' 1 

There are different arguments which may be labelled as 

arguments to contradiction, some of which even intuitionists 

accept. Consider an argument of the form: tP .,:) (q • .., q)'~ :> '" p. 

This form of reductio 'ad: absurdum some intuitionists accept. 

(Indeed, as stated earlier in the chapter, NP may only be 

asserted after having derived a contradiction from the 

supposition that the construction denoted by p has been carried 

out. Some intuitionists would say that this is what' ,., p' means. 2) 

It would appear that this form of argument has certainly been 

accepted by constructivists. But there is another form which 

has been rejected by constructivists since it relies on the 

law of excluded middle. Consider an argument of the form: 

Clearly this is unacceptable on constructivist 

grounds, for the fact that a contradiction has been derived from 

the supposition that OJ p entitles us to say only that" P is 

absurd, i.e. "'NP. We could move to p from MOl p only if we 

assumed some such logical rule as N .. p ;) P which is tantamount 

to assuming the law of excluded middle. 

1. ibid. p.152 

2. It cannot be quite as simple as this since OJ q would have to be 
explained first, and so on. To break this infinite regress some 
intuitionists have two interpretations of negation. Kolmogorov 
speaks of a primary interpretation in terms of the :::ncompatibility 
of a subject with a predicate. Brower's notion of absurdity could 
then be defined in terms of this primary interpretation. See 
Kolmogorov, 'On the Principle of Excluded ~lddle' (first) 
published in 1925) included in From Frege to G3del, ed. J. van Heijenoort. 
Cambridge, W~ss., 1967. pp.420-421 
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Constructivists have certainly objected to the second of the 

two schemata mentioned abovel , but in general they have accepted 

the first. 2 

It remains to investigate why Tucker regards the first as 

non-constructive. His explanation rests on the idea that the 

appearance of a contradiction shows that 'what has been tried cannot 

be carried out'. In geometry one might, I suppose, talk in a rather 

imprecise fashion of 'trying to construct two tangents at the 

same point on a circle' and, from the contradiction that results from 

supposing this to be done, say that what we tried to do cannot 

in fact be carried out. Elementary geometry text books may be 

written in such language. To do so is to treat geometry as a 

description of the physical world and reductio ad absurdum proofs 

look as though they report that certain lines cannot be 

drawn etc. Such a view of geometry has long been abandoned. 

Talk of 'construction' in arithmetic, analysis or set 

theory remains metaphorical unless backed up by some definition 

or explanation. Tucker speaks of 'constructive procedures' 

1. e.g. R. Goodstein, 'Proof by Reductio ad Absurdum', Mathematical 
Gazette, vol xxxii, 1948 

2. Some intuitionists reject the whole idea of negation in 
mathematics, so that reductio ad absurdum as a legitimate proof 
procedure would be rejected. But their arguments are not 
directed against the reductio ad absurdum procedure in particular 
See the discussion of Griss's and van Dan~g's attitude in Fraenkel 
and Bar-Hillel, Foundations of Set-Theory, pp.2~9-244. 
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and 'non-constructive procedures', of 'procedures which can 

be carried out' and 'procedures which cannot be carried out'. 

Bu t what' procedures' are there in ma thema tics? Nia thema tics 

consists of proofs. Are procedures supposed to be different 

from proofs? 

In a reductio ad absurdum proof what is it that I 'try' 

and that I find cannot be 'carried out'? Both phrases suggest 

that it is some kind of action. Wba t happens in a reductio 

ad absurdum proof is that I suppose something to be the case and 

find that what I supposed cannot be the case. There is no 

mention here of something that I try to do and find that I cannot 

do. It is true that I indulge in the activities of proof-

making and supposing. But it is neither of these activities 

tha t I try and find that I cannot carry out. For I have 

successfully carried out the proof and, although what I 

supposed turns out to be impossible, it does not follow 

that I cannot suppose what I did suppose. If there is 

something else in the reductio ad absurdum proof which I tried 

and found I could not carry out Tucker has given no hint of 

what it might be. 

Apart from this difficulty, there remains the problem 

of finding out when a proof is of the reductio ad absurdum form. 

1· A discussion of reductio ad absurdum proofs by Goodstein will 

illustrate this problem. Goodstein, disliking reductio ad 

L R. Goodstein, 'Proof by Reduotio ad Absurdum' 
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absurdum arguments because of the lack of info rma tion tha.t they gi'! e, 

tries to give direct proofs of theorems normally proved by this 

method. As an example he considers a direct proof of the theorem 

that the square root of 2 is irrational. 

Starting from the fact that for all positive integers p and q 

\p2 _2q2\~I, it follows that \i/q2 - 2\~ l/q2. This, he 

says, is a direct proof that 2 is not the square of a rational . 
number. But this latter statement is surely an inference made 

from the above inequaiity. It may follow almost immediately but 

an inference does have to be made nevertheless. The inference, 

it seems to me, that has to be made here will be made in the following 

way. Suppose that 2 is the square of a rational number p/q. 

Then p2/ q2 _ 2 .. O. Therefore' p2/ q2 _ 2\ < 1/ q2 which contradicts 

the above inequality. In other words, the proof th at the square 

root of 2 is irrational still needs a reductio ad absurdum proof. 

Goodstein has not shown conclusively that the use of reductio 

ad absurdum in this example is unnecessary. 

When proving theorems in an informal way, without reference 

to any axiom systems, it is diffioult to say when reductio ad 

absurdum has been used. In the above example there is no indication 

of what we are allowed to assume. An axiomatisation of arithmetic 

would settle this. If, among the axioms, there occurred the schema 

'a)b ;:, a ~ b l then there would be no need to employ reductio ad absurdum. 

Suppose, instead of this schema, one of the axiom schemata was 
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' ... (a') b.a - b). Then the proof would continue as indicated in 

the previous paragraph. Whether we have to use reductio ad 

absurdum can be decided only after we have laid down an initial 

set of assumptions. 

Tucker, as can be seen from his talk of 'trying' and 'carrying 

out', takes reductio ad absurdum in its rule form rather than in 

its schematic propositional form. That is, in the form:-

if a certain hypothesis leads to a contradiction then the negation 

of that hypothesis holds. iii thout entering too deeply into the 

technical details of the propositional calculus, it may be pointed 

out that this rule corresponds to the rule of the propositional 

calculusl- if there is a hypothetical proof's \-t. '" t' then there 

is a categorical proof of 'NS'. In most systems mf the propositional 

calculus this will be derived as a subsidiary rule from the 

axioms and rules of the system. But the import of the rule is 

that a categoric proof of ~s' can be found whenever we have found 

a hypothetical proof of the form IS\- t ... t l • In other words we 

can prove categorically from the axioms alone the formula '., s' 

without the use of any hypothesis. Suppose some mathematical 

theory is formalised within the first order predicate caloulus. 

It is a short cut to use the derived. rule of reductio ad absurdum 

in order to prove a proposition NP of that theory. Nevertheless, 

there will be a categoric proof of #I P which will not involve using 

P as a hypothesis in a deduction. If we now consider the categoriC 

\ 
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proof of NP, what is it that has been tried and cannot be carried 

out in this prqof? Can it make any sense at all to talk of the 

categoric proof in this way? 

Tucker may still object that, even though categorical proofs 

as opposed to hypothetical proofs do not involve suppositions or 

hypotheses from which a contradiction can be derived, reductio ad 

absurdum has been used implicitly in the sense that the proposition 

{p ~ (Q. N Q)}::l N P or axioms from which this proposition can be 

derived have been used in the categoric proof. This may be the 

case. ~ucker then has to show that these axioms themselves are 

non-constructive. 
~ 

We may, for example, prove ~ P '.) (Q."'{).~ :.- '" P 

from the two axiom schems.ta '" (P .... p) and (P;:lQ) ":I (NQ :;,,,,,p) 

added to suitable axioms for the logical connectives ,~, and '.'. 

Which of these axioms is non-constructive? Which of these does 

it make sense to talk in terms of 'trying' to do something and 

finding that it 'cannot be carried,out'? 

Non-constructive procedures in general Tucker regards as 

impossible of execution because their execution would require the 

1 contravention of already accepted constructive conditions. 

As I have argued above I am unhappy about Tucker's use of 'procedure' 

in the context of mathematical proofs. It is clear from his use 

1. J. Tucker, 'Constructivity, Consistency and Natural Languages' 
p. 153 
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of the word that it is not a synonym of 'proof'. Yet it is 

difficult to see what he can mean if it is not 'proof'. 

Reductio ad absurdum proofs, since they are non-constructive, 

cannot be admitted as proofs proper, he says, but should be 

regarded as arguments. 'rhey may provide us wi th the only 

information that we have. But they should be regarded only as 

'temporary scaffolding' from which we may later construct a proofs 

1 proper. 

The point that arises here is how these arguments manage to 

provide any information when they can only be made by breaking 

rules. 'The impossibility of the procedures is of a 

2 rule-breaking character'. It seems odd, if not inoons~ent, 

to maintain that certain rules have been broken and yet that 

information is provided by breaking those rules. If 

information and correct information at that, for Tucker nowhere 

suggests that the ~nformation so given is wrong, can be gained by 

breaking the rules, what possible purpose do the rules oorve? 

One would expect to get mislea~ing information, in some cases, 

from rule-breakine, just as fallacious reasoning would produce, 

in some cases, incorrect consequences. 

From the arguments presented in (i) and (i1) it can be seen 

1. ibid. p.155 

2. ibid. p.153 
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that 'rucker has failed to make his new distinction between 

constructive and non-constructive procedures clear. It is 

not at all clear how the term 'procedure' itself is to be 

understood. It is true that we sometimes speak of Cantor's 

theorem as involving the diagonal procedure. But this way of 

speaking is harmless. It means only that a certain way of defining 

a particular object has been used. The intuitionists can make 

their notion of constructive proof clear in the examples they give. 

To say, for example, that an existence theorem in arithemtic lLas 

a non-constructive proof is to say that the proof does not tell 

us how to compute a number with the required property. Tucker's 

notion of constructivity is made no clearer by the examples he 

gives. It is essential that he makes this notion comprehensible 

if he is to go on and maintain that natural languages are constructive 

in tendency. 

Vihat is meant by a natural language being constructive in 

tendency is even more obscure than of procedures being constructive. 

The only evidence he gives for this conclusion about natural 

languages is that the paradoxes of set-theory are produced by 

breaking constructive conditions. He gives the Russell paradox 

as an example. The condition '",a€a', he maintains, is a constructive 

condition, as is '£.£lc if and only if .. a£a'. \{hat is meant by 

a constructive condition is never enlarged upon~ '.J:he solution of 

the paradox is then given as described in chapter II of this Section. 



- 145 -

Since the paradoxes are generated by breaking constructive 

conditions, natural languages, in which tile paradoxes can be 

expressed, must be constructive. 

Because of the undefined notion of a lan6~ge being 

constructive, it is difficult to see what indeed has been established 

by this argument. Even if the phrase 'constructive condition' 

were defined it would still be difficult to see what Tucker means 

by 'a natural language beinG constructive in tendency'. 

It seems to Tucker that this is 'a significant discovery and one 

I which is contrary to Tarski's thesis about natural languages'. 

But it is hard to see what the discovery is or how the discovery 

contradicts Tarski. Certainly Tarski says th at natural languages 

seem to preclude a consistent use of the expression 'true 

sentence,2 and, further, that natural languages must be inconsistent. 3 

But there is no indication in Tarski's paper of what it would mean 

to say that a natural language is constructive (or non-constructive). 

Consequently, reference to Tarski's paper fails to clarify Tucker's 

contention. 

1. ibid. p.145 
2. A. Tarski, 'The Concept of Truth in Formalised Languages' in 
Logic, Semantics, and I1Ietamathematii3s, Oxford, 1956, p.165 

3. ibid. p.164-165 
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v 

Throughout Tucker's papers there is constant reference to 

his view that the contradictions have to be explained. 

'The paradoxes have to be explained, they have to be fully 

understood, and the manoeuvres of formalisation cannot provide 

any such information or inSight,l 

, •••• in any satisfactory account of the paradoxes of set 

the ory a founda ti onal accoun t mus t be an exp 1 ana tory account. For 

this reason the usual devices for avoiding the paradoxes of set 

theory are unsatisfactory since they do not satisfy the explanatory 

requirements of the foundational level.,2 

His insistence that the paradoxes ~ to be explained shows 

that he believes there is an explanation. What sort of explanation 

is made clear by his purported explanations critiCised in chapter II 

of this section. The explanations will be in terms of the rules 

of language. Now these rules of language must already be 

embeddied in the language before the appearance of the contradictions. 

The rules which have been laid down by philosophers and logicians 

to prevent the occurrence of contradictions he regards as evasions 

and not explanations. They are rules designed solely for the 

purpose of avoiding the contradictions. Since this is the 

1. ibid. p.165 
2. ibid. p.150 
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only reason for the rules' existence they lack any explanatory 

force. Instead of such ad hoc rules Tucker says that we must 

find rules which can be seen to hold before the contradictions 

arise. 

'There is the view that the appearance of a paradox is quite 

unpredictable, that nothing can be done beforehand, that we just 

have to wait for them to turn up and then avoid them.' This, 

Tucker claims, is not the case. Instead, W4 Can investigate 

the constructive working conditions of these words prior to, 

and independently of, the appearance of contradictions. The 

view that the paradoxes are unpredictable is irrational since 

we could in each case have avoided the contradictions by giving 

due attention to the constructive working conditions of the words 

involved. 1 

The paradoxes can always be explained by drawing attention 

to the linguistic rules of language. Underlying this thesis is 

the thesis that natural languages are consistent; that the rules 

of language never give rise to contradictions. He offers 

solutions to the paradoxes by locating a linguistic rule which 

has in some way been broken in the 'proof' of the supposed paradox. 

If natural languages did produce contradictions, and, in particular 

these contradictions as has been maintained in the past (for example 

by Tarski2), then Tucker's search for an explanation would be totally 

1. ibid. pp.164-l65 

2. A. Tarski 'Concept of Truth in Formalised Languages' 
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misplaced. I have tried to show in a previous chapter that 

Tucker's attempts to solve the paradoxes are each lU1successful. 

He has not, so I maintain, located a linguistic rule wbich has 

been broken. How does the thesis that natural language is 

consistent stand up? If it could be shovm that such a language 

is inconsistent without breaking any linguistic rule, then we should 

have less reason to continue looking for 'explawitions' of the 

paradoxes. 

In another paper1, Tucker claims that 'formalisers reject 

infonnal language because it gi. ves rise to contradic tions. Yet 

there is ho evidence whatever for their view. 1 He goes on to 

demand 

••• an 0xawple of an intraUncui stia contradiction whicll 

is obtained by conforming to the working condi tiona of a 1'1'1 tural 

language. Formalisers do not back up their faith with mere examples. 

They are committed. 2 They do not look at the facts.' 

If the phrases 'working conditions' and 'linguistic rules' are 

interchangeable, this is the lU1derlying assumption that Tucker 

has been making throughout his other papers. 

The inclusion of the word 'intra-linguistic· in the above 

quotation succeeds only in confusing the issue. According to 

Tucker 'extra-linguistic' contradictions can occur in natu.ral 

lan~lages without a breakdo\Vl1 of working c~nditions, though it is 

-1. J. 2,'ucker, 'Philosophical Argu..'!lent I Supplementary Voiume XXXIX 
1965, The Aristotelian Society. 
2. ibid. p.51 
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by no means clear how this comes about. The only example of an 

extra-linguistic contradiction that he gives is of a man who says 

tha tit is raining and it is not raining. Both the assertion that 

it is raining and that it is not raining have empiric content. 

r.rhey assert contradictory things about an extra-linguistic state 

of affairs. 'Each has content. Each is well-used. They simply 

contradict each other head on.,l In this example I cannot see 

how, at the same time, this can be a contradiction and for both 

expressions to be well-used, for either it is meant as a report 

of light-drizzle, in which case it is not a contradiction or 

one of the expressions is not well-used, at least in any sense 

of 'well-used' with which I am familiar. 

If 'extra-lingufstic' and 'intra-line'llistic' are to be 

distinct mutually exclusive categories into which vH;J can divide 

propositions and in particular contradictory propositions, then 

we need more of a guide than is given by one exainple. Into 

the intra-linguistic category Tucker wishes to put the set-

theoretic paradoxes and into the other every contradiotion which 

has not been labelled a paradox. If we did not know that this is 

the division he wants we would not be able to see which propOSitions 

belonged to which category. It may, however, be the case that the 

distinction is between a p:dori and empirical propesi tiona, but , 

L ibid. p.58 
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this would be unlikely as this \'10 uld render the two new terms 

superfluous. In order to see the inadequacy of the purported 

distinction, has the man who says that two and two are four ru1d two 

and ~vo are not four made an extra-linguistic or an intra­

linguistic oontradiction? Certainly both are well-formed and 

each has con tent. So it would appear from Tucker's example that 

it is extra-linguistic, but so too would Russell's paradox appear 

as an extra-linguistic contradiction. Clearly, he would like to 

separate out the arithmetic contradiction from the paradoxical 

ones of set-theory, but he has not given any oriterion to enable 

us to do so. 

Leaving aside the question of the precise meaning of 

'intra-linguistic', we can return to the thesis contfulned in a 

previous quotationa- that there is no evidence that contradictirons 

occur in ordinary discourse when conforming to the w'orking oondi tions 

of that language and that formalisers overlook this fact. 

For anyone committed to the belief in the consistency of 

natural languages, as Tucker is, there is no way of refuting him. 

Each time an apparent contradiction turns up which does not seem 

to violate the working conditions of that language, it is always 

open to him to say that althou~l it does not seem to violate any 

of the working condi tiona that we have found~ heverthHess ,1 t does 

violate some condition, but it just hhppens that we l~ve not found 

it yet. The thesis is irrefutable. Unlike fomal languages 
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where the 'working conditions' are laid down in advance in 

the form of rules of inference, informal languages have 

to be inspected after their use for their working conditions. 

Vie have no guarantee at any time that we have found all these 

conditions and that since a given contradiction does not break 

any of these cond! tions it m-gst be a contradiction which does 

not violate any working condition of that language. 

The reason why some philos ophers have rejected such a thesis 

in the past is the existence of several contradictions which do 

not seem to break any linguistic rule. The existence of these 

contradictions,is the fact which formalisers look at. They are 

the evidence which formalisers produce. To accuse them of not 

producing evidence and of not backing up their faith with 

'mere examples', is to ignore the amount of research into the 

paradoxes in the last sixty years. If some philosophers maintain 

that informal language is inconsistent then it is because the 

'explanatory' solutions offered in the last sixty years fail to 

satisfy them. The justification such a philosopher would b'1:ve 

then for, saying that informal language is inconsistent. though 

not of oourse oonolusive, is reasonable and not the result of 

an irrational beli ef. 

In passing, it may be noted that many of those Tucker refers 

to as formalisers have themselves offered solutions of the ps.radoxes 

in inforrnal terms and maintainedtbat they do arise from the 
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violation of some implicit linguistic rule. Even the formalists 

themselves have given an explanation of the paradoxes in terms of 

an unjustified extension of the usual rules of logic from finite 

domains to infinite donains. 

'Does material logical deduction somehow deceive us or leave 

us in the lurch when we apply it to real things and events? No 

1~terial logical deduction is indispensible. It deceives us only 

when we form arbitrary abstraot definitions, especially those which 

involve infinitely many objects. In such cases we have illegitimately 

used material logical deduction; i.e. we have not paid sufficient 

attention to the preconditions necessary for its valid use.,l 

This quotation shows that even Hilbert, the foremost formalist, 

believed that contradictions occurred only when the rules implicit 

in the language were forgotten. Indeed, if the word 'preconditions' 

in the above quotation were to be changed to 'working conditions' 

then its last sentence would not look out of place in Tucker's paI~r. 

Russell also is included.in Tucker's list offormalisers and 

the theory of types which Russell devised to deal with .the paradoxes 

Tucker regards as an evasion and not an expla~ltion. Now, 

although Russell does say that the main recommendation for the 

theory of types is that it solves the paradoxes he also believes 

it to conform with common sense. 2 But behind the theory· of types· 

1. D.Hilbert, 'On '11 he Infinite', in Philosophy of li[;l.thematicfih ed. 
P. ~enacerraf and H.Putnam, Oxford, 1964. 
2. B. Russell, Principia Mgthematica, Cambridge, 1913 p.37 
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there is the vicious circle principle which is the justification 

for the theory. The vicious circle principle is derived in turn 

'from the principle that in a definition the definiendum must not 

appear in the defininiens, which has been considered a sound 

principle from the time of Pascal at least, and may be found in 

elementary logic: textbooks. It is true that belief in the 

principle does not by itself lead to a theory of types. Hintikka's 

more recent work on applying the vicious-oircle principle in its 

simples~ form does not lead to the theory of types. l • The 

theory of types cannot be derived from the vicious circle 

principle alone: it needs Russell's analysis of classes in terms 

of propositional functions, for example. 

The reasons for accepting the theory of types as put forward 

by Russell are philosophical. The theory of types was no't just 

an evasion but an outcome of the vicious-circle principle and 

Russell's philosophical doctrine of propositional functions. 

The subsequent rejection of Russell's theory of types by 

sympathetic logicians was cau~ed not by the lack of any philosophical 

justification for the theory but by the unsatisfactory nature of 
, 

the axiom of reducibility and the doctrine of propo$itional 

functions. 

1. J. Hintikka, 'Identity, Variables and Iropredicative Definition', 
Journal of Symbolic Lorlc, 21, pp.225-245· 
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The so-called formalisers have looked at the facts and have 

presented examples. It would seem that the implicit rules of 

informal language do b~ve rise to contradictions. The set-

theoretic paradoxes provide good evidence for this. Their 

existence cannot of course show conclusively that informal language 

is inconsistent, i.e. that the implicit rules of language allow 

a situation to occur where ~vo sentences one of which is the 

negation of the other both appear to have the same truth value. 

For the rules of informal language are not open to our inspection 

as the rules of formal languages are. We may inspect a formal 

language and show conclusively that it leads to a contradiction, 

the rules of inference and any axioms that it may have are precise 

and explicit. For natural languages the rules have to be found 

and even then preCision cannot be expected. One may draw the 

analogy between extracting the rules of natural languages and 

extracting the rules of a game from the observation of the game 

itself. If the only guide to the rules of that game was our 

observation of that game then we could never be sure that the 

rules we had extracta.:l were the complete rules of the3'8.l!le, nor 

that any of the extracted rul~s corresponded with precision to 

any actual rule of the game. For there may alwayabe the 

possibility that some rule has not been employed while the observer 

was watching and that the rules have the disjunctive form; do. 

A or do B or •••• for some finite number of.' possi bili ties At B, •••• 
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Since the observer may only watch for a finite time the disjunctive 

rule may have been employed for doing only a finite number of 

these possibilities and at no time could the observer be sure he 

has listed them all. 

The analogy breaks dOi'm when we oonsider that, unlike the 

hypothetical observer, we are not only extracting the rules but 

at· the same time playing t J:e game, Nevertheless, the point 

brought out by the analogy is that it cannot be proved that informal 

language is inconsistent. The most that we can say is that there 

is evidence for this conclusion. 

It may be that Tucker believes that not only is it the case 

that natural languages are consistent but also that they ~ 

be consistent. But if i~ is correct to talk of language rules, 

as Tucker does, then it does seem possible that these rules could 

conflict. The rules we use have been made by us, and, as we are 

unable to see all the consequences of these rules straight ~{ay, 

it may turn out that they confliot. In designing a game or a 

system of laws we may find that the rules or the laws are such· 

that direot us to do contradictory things. In ohess, for example, 

there are ~{o rules, one of which says that the king must be moved 

out of check and another which says . that the king must not move 

into check. On oertain oocasions these rules confliot; they 

conflict when a post tion of checkmate is reaohed.·' Suppose. that 

winning .the game of chess consi stedt not in ,forcing cheokmn.te, 
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but in removing all the opponent's pieces from the board. 

Then the rules would create an impasse when the checYJllate 

position was reached. If language is thought of in this way, 

as a system of rules which we have Ill.::'1.de, then it seems not unlikely 

tha t such conflicting rules should 0 ccur. Perhaps the classic 

example of this is frior's introductionl of the propositiona~ 

connective 'tonk' by means of two rules of inference. From a 

proposition A one can derive the proposition A-tonk-B and 

from the proposition A-tonk-B one can derive the proposition 

:B. Consequently, from A one Can derive the proposIiltion tv A. 

The rules for the connective 'tonk' are such that two contradictory 

propositions can be derived. It is, of course, easy to see that 

these two rules allow the derivation of contradictory proposi tiona, 

but the example does show that in talking of lan~~ge rules the 

possibility of rules which allow contradictory propositions to be 

derived may exist. 

In the case of the set-theoretic paradoxes one could regard 

the axiom of comprehension (in its naive form) as a rule for the 

introduction of the phrase 'a.-belongs-to-b '. What is sh~wn by 

the appearance of paradoxes is that one cannot cadopt such a rule 

(along with others) without falling into inconsistency, justa.s 

one cannot adopt the rules for 'tonk' without falling into 

1. A. Prior, 'The Run-about Inference Iricket t, Anal:ysis ,vo1.21, 
1960, pp.38-39 
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inconsistency. 

As I have argued earlier in section 1 of thi s thesis, the 

appearance of contradictions in set-theory reveal only that we 

cannot operate consistently with the axiom of comprehension in 

its naive form. We are forced to change the rules for the use 

of the word 'set'. 

To ask, as rrucker does, for some explanation of why certain 

purported sets lead to contradictions is as futile as asking for 

an explanation of why there is no greatest prime number. 

Since each paradox of set-theory can bC;3tated in a natural 

language there may be a temptation to think of solutions of paradoxes 

in terms of spotting a fallacy, rather as one spots that an aritr~etic 

contradiction is produced by a fallacious move of dividing by O. 

To spot such a fallacy it is necessary to recognise the rule that 

division by 0 is illegitimate. To spot some fallacy in set-theory 

we need to recognise the rule that has been illegitimately disregarded. 

In what sense there are such rules in abstract set-theory has been 

discussed in section 1. rrhere I tried to show that the rules of 

abstract set·theory were our own creation, utilising certain 

analogies from a pre-formalised notion of collections of objeots. 

A first attempt at set-theory included the axiom of oomprehension. 

It produced contradiotions in the field of abstract sets. 

Consequently it was necessary to abandon the axiom if we desired a 

oonsistent system. The rules introrulced for the word tset' would 
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have to be revised. To look for wxplanatious in terms of ordinary 

linguistic rules seems to me a mistake as they could at most guide 

us in choosing the axioms of set-theory. In abstract set-theory 

we may use the words f set' and I class t but it must be remembered 

that we have chosen to use them in a certain way, the way laid down 

by the axioms we have chosen. 

Perhaps the simplest solution in terms of linguistic rules 
~R 

would be that the phrase 'abstract set' is itself illegitimate 

for whenever we speak of sets we must speak of sets of something, 

e.g. numbers, students, chairs etc. To talk of 'abstract sets' 

is to forget this rule, to think that there could be sets wlllch are 

not sets of something. l But this demolishes not only the paradoxes 

but the whole edifice of set-theory. There would be no paradox6rl 

of set-theory since there would be no set-theory. 

1. I am not suggesting that this is a rule of language. although 
it seems to me just as acceptable a rule as those cited by Tucker in 
his solutions of the paradoxes. 
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Seotion 3 

In this seotion I shall be oonoerned with Tarski's definition 

of truth for formalised languages. This definition is the subjeot 

of his two papers, 'The Conoept of Truth in Formalised Languages,l 

and 'The Semantio Conception of Truth,2. In the former, Tarski 

oonstruots a definition of truth for a formalised language and 

explains how, and Within what limits, this definition may be modified 

for other formalised languages. In the latter paper, the construction 

is only outlined but there are, in addition, replies to various 

oritioisms made of Tarski's definition. 

Whenever a definition is given for some stated p~pose, one 

method by which that definition can be judged is to see if it does 

achieve the purpose intended. Tarski's definition is in this 

catagory sinoe he states the aim of his definition and the oonditions 

that it must satisfy. In the examination that follows I smll 

show that he has not suooeeded in oonstruoting a definition 

which accomplishes the task that he has set for it. To show this, 

is not to show that the definition is either wrong or valueless. 

A definition may be regarded, for example, as a proposal to treat 

the definiendum as a synonym or an abbreviation of the definiens; 

the definition may then be accepted or rejected on other grounds than 

1. A. Tarski, 'The Conoept of Truth in Formalised Languages' included 
in Lode, Semantios and Metamathematios, trans. Woodger, 1956, pp.152-278 

2. A. Tarski, 'The Semantio Conception of Truth' t Philos()'Qh;,! and 
Phenomenologioal Research, vol. 4 (1944). 



- 160 -

accomplishment of purpose. It may be held that acceptance of 

such a proposal might lead to a confusion or that the definition 

is fruitless because it allows few or no relevant consequencies 

to be drawn. Considerations like these may enable the definition's 

worth to be evaluated and, in general, they will be independent of 

those concerned with its satisfaction of the author's purpose or 

purposes. In the present section I shall leave aside all 

considerations that do not directly affect the question of whether 

Tareki'sdefinition of truth fulfils, or fails to fulfil, his 

programme. 
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I 

By means of quotations from his papers t I shall begin by 

isolating the purpose Tarski's definition of truth has to fulfil. 

'The present article is almost wholly devoted to a single 

problem ... the definition of truth. Its task is to construct -

wi th reference to a. given language ... a flk1.terially adeguate and 

formally correct definition of the term "true sentence". This 

problem, which belongs to the classical questions of philosophy, 

raises considerable difficulties. ,I. 

'The desired definition does not aim to specify the meaning of 

a familiar word used to denote a novel notion; on the contrary, it 
.. 2 

aims to catch hold of the actual meaning of an old notion.' • 

Tarski elaborates further this 'old notion'a 

' ••• throughout this work I shall be concerned exclusively 

with grasping the intentions which are contained in the so-called 

classical conception of truth (rttrue_ corresponding with reality") 

''lIe should like our definition to do justice to the tntu! tions 

••• 

which adhere to the clas,sical Aristotelian· conce:pt1on of truth ...... I 

,3 

To say of what is that it is not, or of wh.:'lt is not th7't it 1St is f&ls~, 

while to say of wha.t is th~t it is. or ofwhl\t is not that itisnot, 

is true. ,4 

1. .A. Tarski, 'The Concept of Truth in Formalised Languages t, 
Introduotion. I SMll refer to this work as OTF. 
2. A.Tarski, 'The Semantic Conception of Truth', seotion 1; I 
shall refer to this work as s~r. 
;. CTF. Introduction 
4. SOT, section 3. 
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The definition of truth must be conformable to this classical conception 

of truth, if the definition is to fulfil the aims Tarski has set for it. 

According to Tarski the definition must have as consequences, such 

equivalences as the following: 

"Snow is whi te"' is true if and only if snow is whi te." 

He maintains that in this equivalence "Snow is whi te" occurs as a 

name of a sentence and not as a sentence itself since the subject 

of "is true" can only be a noun or an expression funotioning like 

a noun. 

Tarski holds that the problem of construoting a definition 

conformable to the classical conception of truth becomes the problem 

of construoting a definition the consequences of whioh will be 

equivalences of the forma 

X is true if and onll if p. 

In these equivalences, "pit will be replaced by a sentenoe and .'IX" by 

a name of that sentence. 

For natural languages such as English, the oonstruction of a 

definition which will imply oonsequences of the above type raises 

several problems •. ' One of these is the diffioulty whioh is produced 

by generaliaing such sen tenoee as the followingt "Snow is whi te" is 

true if and only if snow is white. The natural generalisation would 

be a sentence of the following form: 

for all p, "p" is a true sentenoe if and only if p. 

(lip" is here a. name of the sentence Uplf). The diffioul ty lies in 
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the function of names in such sentences, for if names like "Snow 

is white" are treated as syntactically. simple expressions (like single 

words of a language) then parts of the name may not be r~placed, 

just as parts of a word (the letters) may not be replaced in a 

natural language. Under these conditions, "p" denotes the letter 

of the alphabet, p. Consequently, the sentence 'For all p, "pit is 

a true sentence if and only if p' will have such implications as 

'''p'' is true if and only if it is snowing.'. Clearly, this treatment 

of quotation-mark names leads to undesirable results. Similar 

considerations applied to other forms of names force Tarski to give 

up the attempt to construct a definition of truth for a natural 

language. Apart from the difficulties entailed by the function of 

names in such a definition of truth, there occurs in the application 

of the term "true" in a natural language a variant of the tliar'. 

antinomy.' In view of these problems Tarski turns his attention away 

from natural languages to formalised languages. 

For such formalised languages Tarski tries to construct a 

definition of truth, consequences of which he desires to be sentences 

of the following form~ 

Xis true if and only if p. 

(Here "X" is a name of the sentence "p".) 

It is seen tha. t this attempt is analogous to the previous, 

attempt to constructs. definition for a natural language. Tarski 

contends tha. t for some formalised la.:ngua.ges, a definition which would 

fulfil the above condition can be constructed and moreover 
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is possible to give a precise condition, which these languages 

must fulfil if they are to allow of such a definition to be tonstructed 

for them. 

Tarski then constructs a definition for one formalised language 

in some detail and shows how other definitions of truth may be 

constructed for other formalised languages. 

The above is an outline of Tarski's paper 'The Concept of 

Truth in Formalised Languages', the details of which I shall 

consider later. At present it will be sufficient for my,purpose to 

extract from this outline the several aims that he has met for his 

defini tiona 

Firstly, the definition and the investigations relating to it 

should be concerned with concepts dealt with in classical philosophy 

· ile. be such that they have philosophical value and not only ,technical 

1 1. va ue." 

Secondly, the definition should be conformable to the classical 

conception o£truth, i.e. "true ~ agreeing with realitylt.
2• 

Thirdly, the definition should have as consequences sentences 

of the following type. Xis true if and onlxif p, inwh!ch IIpH is 

',a sentence and "X" is a name of that sentence. 3• 

Fourthly, the definition should satisfy several formal conditions, 

e.g. the definiens should be in terms whose sense is precisely known, 

4. or in ,terms which are reducible to other known terms., 

1. ,CTF, Introduotion. SCT. paragraph,3. 
2. CTF, Introduction. SOT, section 3. 

, ,,,. CTF t ,section li, seotion 3, paragraph4. 
" 4. CTF, Introduction. SOT t section 1. .. 



- 165 .. 

Now, if· the investigations are to have any concern with the 

philosophical problems of truth then that part of the papers which 

is concerned with defining truth for formalised languages should 

not only be a concern of mathematicians but a concern of philosophers, 

since this part is the main subject of the paper. Implicit in 

the first aim is that the definition of truth for formalised 

languages should be of some philosophic value, since it is not to 

be supposed that classical philosophy has been concerned merely 

with a technical term related to formalised languages only, 

the study of formalised languages being of more recant origin than 

classical philosophy. Implicit in the second aim ia that the 

'correspondence' theory(or whatever Tarski understands by this 

term) should be applicable to formalised languages, for there would 

be little support gained for his contention, that he is dealing 

with a problem that.has occupied philosophers, if he were constructing 

a definition of truth conformable to a theory which is inapplicable 

in the domain of formalised languages. 

The third aim presupposes that consequences of the type .~ 

true if and only if p, should be conformable to the Aristotelian 

conception of truth. But Tarski does not elaborate on what he under-

stands by 'confoxmable'. Presumably, he wants these consequences to be 

consistent with the Aristotelian conception of truth, i.e. such that 

acceptance of the Aristotelian conception of truth implies aooeptan.ce 

of the schema a X i§! true if and only if Ih where "X',· and "pit are 

.. replaced acoording to the conventions mentioned above. 
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The fourth aim is of a formal nature and its fulfilment may be 

determined by inspection of the definition Tarski constructs. 

In connection with the second and third aims listed above, the 

defini tion should have no consequences which are in,:,conflict with 

the concept of truth with which Tarski is concerned. For, if the 

definition is to be conformable with (which is interpreted here as 

'consistent with') such a conception of truth, then, besides givir~ 

consequences of the fonn X is true if and only if 12, the defini ti on 

should not imply sentences which would be unacceptable to anyone 

allowing those consequences. 

In the past criticisms of the definition have been directed at 

the suitability of Tarski's procedure for natural languages and 

have ignored the prodedure for formalised languages. After a 

discussion of these criticisms I shall show that Tarski bas not 

fulfilled all of the above aims for the more limited domain of 

formalised languages. 
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II 

In this chapter I shall consider cri ticisrns of the defini tion 

made by Black, Strawson and Kneale. 

Black has arguedl that Tarski's definition of truth for formalised 
\ 

languages would be inapplicable to any natural language and that 

conse~uently Tarski's investigations are without philosophic 

relevance. 

Firstly, he maintains, Tarski's definition would necessitate a 

complete enumeration of the terms occurring in the lanb~ge for which 

the definition is being constructed. But natural languages have 

an 'open' character, that is, they can have added to them new terms. 

There would have to be some rule that would stipulate that no new 

terms were to be introduced into those languages, if a definition 
" -' 

based on Tarski's procedure were to be possible, The fact that 

there is no such rule would condemn any such attempt to failure. 

Secondly, Tarski's definition of truth applies' to only one 

language at a'time. In other words, Tarski does not give a 

definition of truth in general, but gives a definition of truth for 

a language, 'Li , say." If the definition of truth fol' Li is known, 

then how is a definition 'of truth for another langUage !'j to be 

constructed? . To extend the principle of the d~fini tion'to' another 
- - '., " - ",~', - - -r 

language, Black says, it is necessary to understand that principle. 

1. Max Black, 'The Semantic Definition of Truth', =:;;.;:..,~~ 
Vol. 9. No.4, 1946, pp.49-6, 
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But to state that principle will only be a crude reformulation 

of the sentence: For anp. lip" is a true sentence if and. only if p. 

This sentence was found to be unacceptable by Tarski because of the 

difficul ty involved by the function of the name "pit. It is 

impossible to state a general criterion or definition of truth by 

Tarski's procedure. Black contends that the philosopher is searching 

for a eeneral criterion for truth. 

Thirdly, the philosophio problem of truth is left untouched 

by the definition that Tarski proposes, since adherents of the 

correspondence, coherence and pragmatist titeories of truth would 

all agree (subject to certain qualifications) that "it is snowing" 

is true if and only if it is snowing. 

Black t s conc lusion is that Tarski' s pro cedure has no philosophio 

relevance, since it is inapplicable to natural languages and also 

neutral to conflicting theories of truth. This conclusion, however, 

does not follow from Black's arguments. 

Assuming his arguments are valid and he is entitled to say 

that the definition cannot be applied to natural languages, that 
, -. . 

a general cr! terton for truth based on Tarsk! t s lines oannot be 

stated consistently and that the definition of truth which Tarski 

gives is ne1,1.tral to conflicting theories of truth, do these statements 

imply the conclusion that the investigations'ofTarskiarewithout 

any philosophical relevance? It very much depends on what Black 

understands by 'philosophical relevance'. If he regards MY 
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definition as without philosophical relevance which is neutral 

to conflicting theories of truth, then there does seem to be some 

support from his arguments for his conclusion. But to say that 

the definition is neutral to mutually inconsistent theories, 

because those theories would all accept sentences of the following 

forma "It is snowing" is true .. if and onlI if it is snowing'., is 

incorrect. For there may be other consequences of the definition 

which are incompatible with these theories. For example, there 

is, the conclusion that Tarski's definition implies, 'It turns out 

that for a disCipline of this class (a very comprehensive class of 

mathematical disciplines) the notion of truth never coincides with 

that of provability. ttl. It may be the case that this consequence 

might be incompatible with some theory of truth; it is not 

sufficient for BlaCk's conclusion to examine just those consequences 

represented by .the sche~at ~_is true if ~~d only if p_ 

If Black understands by 'philosophical relevance' the 

relevance, of the definition for natural languages • in which case 

consequences of the definition of the type quoted above, having 

reference to formalised languages only, would be ignored,. then 

it still seems that the conclusion doesl'lot follow. For 

even though Tarski's procedure may not .be applied to natural 

languages, there are consequences about them which can be infered 

1. SOT. Section 12. 
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from his investigations. One such consequence is that no 

definition can be constructed, consistent in the language, which 

will imply all sentences of the form. X is true if and only if p. 

Again, whether this has 'philosophical relevance' depends on what 

Black means by that term, but Black's paper contains sentences of 

this same negative type of which he does not wish, presumably, to 

deny 'philosophical relevance'. Also, the claim that Tarski's 

investigations have only philosophical relevance if his 

procedure is applicable to natural languages seems to be an 

unwarranted restriction. If, as is the case, a term such as 

'true' is used in connection with sentences of a formalised 

language as well as with sentences of a natural language, then 

there seems to be no reason why this term should not be of philosophical 

interest. In the same way, a philosopher may consider some term 

which is used mainly in connection with SCience, e.g .. 'theory', 

'hypothesis', 'model', without ceasing to. be a philosopher. In·· 

addition, there is the philosophy of mathematics which, in general, 

is not concerned with applications to natural languages. 

The arguments which Black proposes are not ones which 

Tarski would contradict. The first argument, that Tarski's procedure 

is inapplicable to natural languages t Tarski has made himself. 

Tarski contends that· it is' b~cause of'1;he ind~iini te-character· . 

ora natural language which makes any definition of truth,materially 

adequate and formally correct in Tarski's sense, inapplicable in a 
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natural language. 'The problem of the definition of truth 

obtains a precise meaning and can be solved in a rigorous way. 

only for those langwlces whose structure has been exaotly 

specified. ,1 

Secondly, Tarski does not claim that his definition has 

anything to do with the philosophical problem of truth 

he writesl 'In general, I do not believe that there is such a 

thing as "the philosophical problem of truth". I do believe 

that there are various intelligible w1d interesting (but not 

necessarily philosophical) problems concerning the notion of truth, 

but I alBobelieve that ,they can be exaotly fonnulated and possibly 

solved only on the basis of a precise conception of this notion. ,2 

Tarski might not object to any of Black's arguments, it is only 

with Black's conclusion that he might disagree. This conclusion, 

I have shown, rests, for its~alidity, on the extension of the 

term. 'philosophica.l relevance', which Black appears to have restricted 

unduly. 

Strawson has argued that the Semantio ''cheery of, Truth is a 

misconception. 3• He maintains .tha.t the word 1 true I is not 

normally used in the way the semantic theory describes, though 

it may be so used for some teoltnioal purposes. 

1. SCT. Section 6 
2. SCT. Section 18 
,. P.F. Strawson, 'Truth' t Analysis, 1ol~9; No.6, 1949 pp.83-97 
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the semantio theory has its probable genesis in a oonfusion. 

the confusion between the use of 'true' in a phrase employed 

metalinguisticallyand the use of the word 'true' when isolated 

from this phrase. Strawson considers the meta-statementsl 

(i) "The monarch is deceased ll is true if and only if 

the king is dead. 

(ii) "The monarch is deceased" is.. true in English if and 

only if the king is dead. 

In these two statements lIis true if and only if"ls used synonymously 

by Strawson for the phrase "means thatlt. (the case of a queen being . 
disregarded by Strawson). He stutes that this use of the phrase 

"is true if and only if II is metalinguistic. lIe next considers 

the follo\nng sentence, 

(iii) liThe monarch is deceased" is true in English if and 

only if the monarch is deceased. 
. 

Sentences like (iii) he considers as degenerate cases of metalinguistic 

statements of the type of .. (i) and (11). He then notices the 

similar! ty between the us e of the phrase "1f and only it''' in. this 

type of metasta. tement and its use in expressions ot' the .. following 

type I 

(iv) The monarch is deceased if and only if the king is 

dead. 

In sentence (iv) ttif and only if" occurs. but the sentence is what 

Strawson calls a: 'necessary or. defining formula " whereas in 
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, , 

(i), (ii) and (iii) Itif and only if II occurs as part of "is true 

if and only if" in contingent metastatements. (They are contingent 

because. it is a contingent matter that the sentences mean what 

they do mean.) The similarity of the use of the phrase "if 

and only if" in necessary formulas to the use of it as part 

of the phrase "ia true if and only if" in contingent metastatements, 

Strawson contends, may have constituted a strong temptation to 

regard what follows the phrase "if and only if It in the degenerate 

cases of metastatements as the definiene of what precedes 

it. 

Having analysed a probable source of the misconoeption " 

involved in the Semantic Theory of Truth, Strawson argues that the 

normal uses of the word "true" are those in which the word 

might be'replaced by some such phrase as "I confirm it". 

These criticisms are not directed against Tarski in 

particular, but, as Tarski and Carnap are the only two writers 

mentioned by Strawson in his attack on the semantio oonception 

of truth, I shall understand that Strawson does mean them to be 

included among those that he crt tioises. I shall now offer "'!!!lOme 

objections to Strawsonts arguments. 

The premiss of Strawson's argument is thatthesemantio 

, oonception of truth rests on a mistaken idea of the aotual or 

normal use of the word "true ll
• This implies that those who 

put forward the Semantio Theory of Truth have either been unaware 
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of the uses of the word "true", other than those proposed in the 

theory, or in some way have confused the uses. But in fact 

Carnap is well aware of the different uses of the word "true". 

Carnap writes in his 'Introduction to SenL~nticslt 

'It is to be noticed that the concept of truth in the sense just 

exp~ained - we may call it the sem~ntical concept 9f truth - is fundamentally 

different from concepts like "beHeve", "verified", "highly confirmed", 

etc. The latter concepts belong to pragmatiCS and require a refe]9nce 

to a person. ,1. 
Strawson's contention that "true" may be adequately replaced by some 

such phrase as "I confirm it", If I concede that" etc. ensures that 

these uses belong to what Carnap calls pragmatics, that is, they 

require reference to a person. Consequently, the uses of the word 

"true" which Strawson takes to be the normal uses of it fall outside 

the Semantic Theory of Truth, but at least there is no confusion 

involved since the uses are clearly demarcated by Carnap. Tarski 

also accepts that there may be other uses of the term "true" and 

maintains that this will make no difference to his thes1s~,l. 

'A time may come when we find ourselves confronted with several 

incompatible, but equally clear and precise, conceptions of truth.' It 

will then become necessary to abandon the ambiguous usage of the word' 

"true lt and to introduce several tenls instead, each to denote a different 
2' 

notion.' • 

1. Rudolf Carnap, Introrulction to Semanttc~ 1942 p.28 
2. SCT. Section 14. 
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'We should reconcile ourselves with the fact that we are 

confronted, not with one concept, but with several different concepts 

which are denoted by one word; we should try to make these concepts 

as ~learl~s possible (by means of definition, or of an axiomatic 

procedure, or in some other wa~.,l 

It is clear from the above quotations from both rrarski and Carnap 

that the semantic theory does not claim to be the only theory of 

truth. The concept of truth with which the semantic _ theory is 

concerned may be different from Strawson's concept of truth, but, 

nevertheless, Strawson does not argue that the semantic theory 

offers merely a differen~ concept of truth. Strawson is arguing 

that the semantic theory of truth is based on a misconceptign. 

I think that I have made it sufficiently clear that Carnap. 

and Tarski,have taken considerable care to disentangle the semantio 

concept of truth from other concepts of truth and to guard 

themselves against the accusation of misconceiving the notion of 

truth. The claim that Strawson IllS.kes, that the semantio theory 

involves a misconception of the ordinary use of the word "true lt 

can only, be substantiated if ,those who put forward the-theoryc :. 

contend .that their definition of "truett results in a use of trnt 

word which is coincident with its ordinary use. ThiS, however, is 

not the case, for Tarski writesl 

1. SeT. Section 14. 
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trrhe problem of assigning to this word ("tr\le") a fixed and exact 

meaning is relatively unspecified, and every solution of this problem 

implies necessarily a certain deviation from the praotice of everyday 

language. ,1. 

This is not just a reiteration of the statement that more than one 

concept falls under the word "true "; it asserts that the replacement 

of a vague ooncept by a precise one necessitates a deviation from the 

ordinary use of the word that expresses that vague concept. Tennesson 

2 has argued that verbal communication is dependent upon the use of 

linguistio locutions that are either a) suitable for some special 

purpose or b-) clear or c) in aocordance with ordinary language. If 

either of the first two conditions is considered most important, then, 

he ooncludes, the locution in question will no longer be in accordance 

with everyday usage. (He mentions in this context Strawson's use 

of "presupposition".;) Tarski's aims of clarity and precision ensure 

that his definition of truth will give a use of the word II true " that 

is not ooincident with its everyday use. 

MOre important still, the definition that Tarski has tried 

to oonstruot for everyday. language would not only imply a deviation , 

from the standard use of the word "truett, it is not even 

intended to make precise the normal use of the word, for Tarski 

writes. 

1. SCTSection 17 
2. H. Tennesson, 'Permissible and Impermissible Looutions' in Studies 

,Dedicated to Pro.f.!t~sor Carnap on his Seventieth BirthdnI: 1962 
;. P.F. Strawson, Introduction to 10&98.1 fllheon. 1952, p,175f£. 
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'A thorough analysis of the meaning current in everyday life 

of the tem "true" is not intended here. • •• I would only mention 

that throughout this work I shall be concerned exclusively wi th grasping 

the intentions which are contained in the so-called classical conception 

of truth. ,1 

It is true that Tarski believes that the semantio conception of truth 

do es conform to some exten t with common-senseusa.ge , but he regards 

this as unimportant for his thesis. In the passage in which Tarski 

states this belief2 ., he takes oare tod1fferentiate between the 

aims of the semantic definition of truth and his belief about the 

semantic definition. It would be wrong to suppose that trde belief 

is part of the semantic theory's claims; it is only an opinion about 

the semantic definition of truth, an opinion which may be mistaken 

as Tarski admits. If Strawson had wanted to show that the semantic 

theory of truth involves a misconception, then he would have had to show 

that this misconception was of the Aristotelian conception of truth 

which is the only conception of truth with which Tarski was concerned. 

It may be that Strawson is correct in asserting that his own use of ' 

the word "true" is more prevalent than the metaling-gisticuse of the 

word, ,but this is no criticism of the semantio theory for .the semantic· 

theory does not aim at offering adefini tion that is in aoco rdance 

with everyday usage. 

l. 
2. 

Introduction· 
section 17 
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The foregoing arguments have shown that Strawson's criticisms 

are misguided for they are directed against clairr$ that the 

semantic theory doesnot in faot make. These are my major 

arguments agiinst Strawson but there is one point of detail in his 

paper that I should like to consider further. 

V7hen Strawson shows what he believes to be a probable genesis 

of the 'misconception' he emphasises the importance that sentences 

like '''It is snowing" is true if and only if it is snoWing' play in 

the semantio theory of truth. He calls these sentences degenerate 

metalinguistic sentences because they are degenerate forms of sentences 

like t "The monarch is deoeased" is true if and only if the king is 

dead' which are metalinguistio sentences. His main argument in this 

section of his paper is based upon the assumption that the semantic 

theory of truth is concerned primarily with such 'degenerate' sentences. 

Strawson writes. 

'To read the degenerate cases, then, as specifications, or parts, 

of some ideal defining fonnula for the phrase "is true II is to separate 

the phrase from the context which alone confers this meta-linguistic 

use upon it, and to regard the reaul t as a model for the general 

use of "is truett.,1 

And againl 

••• the muddle of reading a degenerate case of contingent, 

statements meta11nguistically employing the phrase is true if ~donll 

1. Strawson, . 'Truth 1. 



- 119 -

if,as a pseudo-defining formula of which the definiendum consists 

of a quoted sentence follows by the phrase is true 

contributed to the plausibility of the theory. ,I 

••• may have 

The 'muddle' that Strawson attributes to the adherentw of the semantic 

theory should not be ascribed to either Tarski or Carnap since they 

do not consider it necessary to insist on 'degenerate' cases like 

'''It is snowing" is true if and only if it is snowing'. In 'The 

Semantic Conception of Truth' Tarski does consider such sentences 

throughout his paper, but it should be remembered that this paper 

is only expositary in character and is limited to the non"technical 

aspects of his earlier investigations. Yet, even, here he 

writes. 

'(This reqUirement that every sentence which occurs in the 

objeot-language must also occur in the metalanguage can be 

somewhat modified, for it suffices to assume that the objeot­

language can be translated into the metalanguage)t. 2 

I.e. it is not neoessary that "it is snowing" ooour on the:right 

of "if and only if" in the sentence .. IItIt is snowing" is true 

if and only if it is snowing'~; it is only necessary that there 

should be some translation of IIi t is snowing" on the right. The . 

problem of oonstruoting a definition which will have as consequenoes 

sentences represent ed by the tlchema t ~~X is true it and only if p" •. 

1. 

2. 

... Stra:Wlion, 'Truth', section II 

. SOT. seotion 9 . 
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where "X" is the name of a sentence, is not concerned solely with 

those cases in which "p" is that sentence; it is equally 

concerned with those sentences in which "p" is a 'translation' of it. 

~arski has made a simplification of his arguments contained in 'The 

Concept of Truth in Formalised Languages' and, in doing so, leaves 

aside the extra complication which would arise from the consideration 

of such sentences as '''The monarch is deceased" is true if and only 

if the king is dead'; but this simplification should not be 

seen as a:ny part of the muddle to which Strawson ::re fars. Indeed, 

when Tarski comes to construct a definition for an actual language 

in 'The Concept of Truth in Formalised Languages', he no longer 

considers 'degenerate' cases even as part of his criterion of 

1 adequacy for a definition of truth. I shall discuss this actual 

defini tion later; for the moment I should jus t like to show that 

Tarski, in the main body of his work, dispenses with these 

'degenera te', ,sentences. It seems unlikely, rather than plausible 

as Strawson maintains, that such sentences which play eo little 

part in Tarski's investigations should have been the basis Qf a. 

muddle in the semantic theory. 

Carnap also pays little attention to sentences of the 'degenerate' 

type for he wri tea. 

fA predicate pro in M is an adequate predioate for the concept , 
. l. 

of trl.lthwi th respect to anobje,ct language S -df froID' the 

1. I shall not discuss this criterion further a.t this 'Point as it 
involves a certain knowledge of Tareki's terminology. ' 
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definition of pri every sentence in M follows which is construoted 

out of the sentential function "x is F if and only if p" by sub­

sti tuting, pri for "F", a translation of any sentence~ k of S 

into M for "pit, and any name ofr6 k for "x".l 

It is only as examples in the expositary sections of Tarski's 

paper that these degenerate sentences occur, and, Carnap treats 

them as special cases of a more general type, not as sentences to 

which special importance is attached. It may be the case t~lt 

some confusion of the kind Strawson points out may be the source 

of the semantic conception of truth, but it does not appear from 

the investigations of Tarski and Carna.p. Vfhat does appear is 

that Strawson has exaggerated, if not mistaken, the role played 

by such sentences as 1 "It is snowing" is true if and only if it is 

snowing' in the semantic theory of truth. 

Strawson has chosen to ignore the domains to which the semantic 

theory has been applied in detail by Tarski. Straw80nis 

concerned only with empirical statements; the truth of "sentenoes 

in a formalised language does not concern him inthis:Particular 

paper. He states, however, that "truelf'is certaillly used meta~" 
, . ;, ,<:. ,< 

linguistically for some teclU1ical purposes and presumably he considers 

that the definition of truth for formalised.la~ges' as given by 

Tarski is constructed for such a purpose. If this is SOt then a 

1. R. Carnap, Introduction to Semantics, pp.27-2S 
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more thorough analysis of the term "technical purposes" is needed • 
• 

It appears that there are at least two ways in which "technical 

purposes" may be interpreted. Fir:jtly, a' term may be used in a 

technical field e.g. mathematics or physics. Thus the definition 

of "force", "work", "energy and "mass" in physics and "group", "field" 

and "set" in mathematics are technical definitions, the definiens 

of which belong to symbols and terms of a technical subject. These 

words in a physical or mathematical context are certainly defined 

for a technical purpose; their definitions have little oonnection 

with their use in everyday language. It is not in this catagory 

that Tarski's definition of truth falls. for it is not constructed 

Wi thin any techni cal language. Seoondly, the definition may be 

constructed for some purpose conneoted with a technical field but 

not as part of that technical field.· Such terms as IImodel" , 

"hypothesis" and "explanation" in oonnection with physios, "proof" 

and "implies" in conneotion with matherna tics and "complete", 

"consis tent l
' and "independent It in connection with formalised 

languages are used in this technical way. Tarski's definition of 

"true" should come intl1is catagory rather than the fonner. :But 

it is still not clear for wb.e.t technical purposes the word "true" 

is defined oruaed by him.· It lahia intention to make more 

accurate the notion of truth that is oontained in the classical 

oonoeption of truth for actual languages or for artificial languages.· 

There is no change of procedure when he considers formalised 
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languages; there is a change in the results of applying this 

procedure to formalised languages but it is the same conception of 

truth in both cases with which Tarski is concerned. The use of the 

term "true" that his .definition would imply would be the same whether 

for formalised or actual languages. Tarski 's use of "true lt 

differs in this respect from the use of those terms that I have 

listed in the second catagory, for they are terms that are used in 

oonnection with their technical fields in a way that is not intended 

for everyday usage. Tarski intends to use the word "true" in the 

same way for both the technical field of formalised languages and 

for the non-technical field of everyday language. That is, his 

criterion for the adequacy of a definition of truth remains unchanged 

whether he is considering formalised or inforDlS.l languages. If 

it is the case that Strawson is willing to allow the metalinguistic 

use of the word "true" in connection wi th formalised languages , then 

he should allow that it is so used in conneotion with everyday 

language. I shall not oonsider this point further as it may. be 

that Strawson is referring to some other use of "true" when he talks 

of 'ttechnioal purposes lt
• 

K'neal&.e makesona objection against Tarski's definition in his 

discussion of truth. l • He contends tha t truth is applicable 

1. W. Kneale and M. Kneale, The Development of Lor,ic 1962, ch.X 
.. section I. 
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primarily to propositions and that Tarski holds that it is applicable 

primarily to sentences. He argues further that Tarski's assumption 

that truth is primarily concerned with sentences leads to difficulties 

in the case of those sentences that contain token-reflexive words 

(i.e. words which locate things or events by relation to the circumstance 

of their own utterance). A sentence may be uttered on one occasion to 

express a true proposition and on another to express a false proposition. 

For example, the sentence "I am hungry" may be used at the same time by 

two different people to express two different propositions, one of which 

may be true, the other false. 

To defend himself from these difficulties, an adherent of Tarski's 

conception of truth, Kneale suggests may say that truth is aSCribed 

in some primary sense to token utterances. (A token utte~ance in 

Kneale's sense is a passing event of speech, as, for example one 

might say that someone stuttered in his last sentence.) If it is to 

token utterances that those who subscribe to Tarski's theory attribute 

truth, then the diffioulties of a sentence cranging its truth value with 

varying circumstances are met. But then it becomes impossible to use 

1arski 'sdeviceof saying "if and only ii'n followed by the sentence 

under consideration as a condition of the truth of that sentence. For 

it is impossible to use quotation-mark names for token utterances or 

to use the structural-descriptive narr,es, ile. narues given to the sentences 

by some such device as spel1in;;. Also, it .is imposei'bleto .. usethe 

same tOken utter",nce following "if and only if" since a token utteranoe 
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is not a form of words but a passing event. 

I shall attempt at this point to answer Kneale's 

objection. 

Firstly, Kneale appears to be wrong on a question of fact. 

As indicated above, he maintains that Tarski assumes tl~t truth 

or the adjective "true" is applicia.ble primarily to sentences, 

whereas "true" is properly applicable to proposi tiona. He 

writes I 

'We hold that the adject! ve "true" is applicable primarily to 

propositions, whereas he (Tarski assumes that it is applicable 

primarily to sentenoes. ,1 

In the same paragraph he makes the stronger aocusation: 

t ••• the source of the trouble seems to be Tarski'sunguestioned 

beli~f that truth is primarily a property of sentences. ,2 (the under­

lining is mine.) 

In fact, rrarski makes no olaim that "true'l is applicable mainly to 

sentences, at least, in neither of the papers referred to in my 

discussion nor in those referred to by Kneale in his book.. .. It, 

does not appear that Tarski, although nOWhere st;.:Gnsthattruth is 

primarily a property of sentences, might still be assuminathat it is 

such a property. On the contrary, Tarski is quite explioit onthie 

matterl 

1. Kneale, The Development of Logic, p.;88 
2. ibid, p.;89. 

.. 
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't.Che predicate "true" is sometimes used to refer to psychologi.cal 

phenomena such as judgements or beliefs, mmetimes to certain physical 

objects, namely, linguistic expressions and specifically sentences, 

and sometimes to certain ideal entities called Itpropositionslt. 

By "sentence" we understand here what is usually meant in grammar 

bylldeclarative sentence"; as regards the term "propositionll, its meaning 

is notoriously a subject of lengthy disputations by various philosophers 

and logicians, and it seems never to have been made quite clear and 

unambiguous. For several reasons its appears ~ost convenient to 

1 
§.Ri!ly the term "true" to sentences t and \ve shall follow this course.' 

(The first underlining is mine.) 

'Of course, the fact that we are interested here primarily in the 

notion of truth for sentences does not exclude the possibility of a 
2 

subsequent extension of this notion to other kinds of objeots.' 

(The underlining is mine.) 

From these quotations it can 'easily be seen that Taraki does not hold 

that truth is primarily a property of sentences. ¥fh.a.t he says is 

that he is primarily interested in truth as applied to sentences, not 

that it is applied primarily to sentences. For the-waY'in which 

fl'arski,considers "true", .it is most convenie:r~:~;to applythe'term to 

sentences; he does not say tha. t it is the only application of the term 

Ittrue lt nor the prima.ry application of it. No drubt the. difficUlties 

1. SeT. seotion 2. 
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. of extending his treatment of the word "true lt from sentences to 

propositions involves considerable difficulties, both philosophical 

and technical, but Tarski does not consider it impossible or 

incorrect to extend his trea truent to propositions. It appears that 

Kneale' is mistaken when he aocuses Tarski of assuming t.hat truth is 

primarily a property of sentences. It is true that Tarski's papers 

deal' only with sentences, but it is equally clear from the above 

1 quotations that he does not assume what Kneale sug&~sta. 

Secondly, Y..neale write:') of the diffioulties that treating 

sentencds as the objects to which the attribute "truallts applied. 

But he does not say explimitly What these diffioulties area 

'\Vhen we are concerned with mathematical formulae ••• or with 

other phr'e'tses that resemble his example in not containing. token-

reflexive words .... , Tarski's assumption'leads to no serious 

difficulties. . .... But thesearespeoia.l cases. A sentence of the 

oommonest kind may be uttered at different times and in different 

ciroumstances to express different propositions, some true and Bome 

false. .. Wba t Jones asserts by saying "I am hungry" is not the .same 

proposi tion as that Smith asserts by uttering the words at the same 

time, nor yet the'same as that uones asserted. by uttering the words 

1. I should qualify. this remark. .Although it is olear from these 
quotations that Tarski has not assumed that truth is primarily a 
property or sentences , it may not be olear from the];laper CTF, both 
quotations being taken from SCT.· Indeed, the:l"eader mayg€l't this 
impression fremCTE, but seotion 2 of SOT does appear to deny exp]oitly 
the charges of such an assumption or "unquestioned. beliefll

• 



- 188 .. 

yesterdayl And when we say, as we sometimes do, that a sentence was 

true at the time of speaking or wri t:l.ng, we obviously mean that it 

was used then to express a true proposition though it could not be put 

to that effect now. ,1 

The next paragraph begins: I In order to escape from these difficulties 

••• '. As no difficulties have been specified, it may be assumed that 

Kneale is referring to some difficulty entailed for Tarski'a procedure 

by the changing truth-value of sentendes containing token-reflexive 

words. But in what way does the changing truth-value of a 

sentence affect Tarski'a method? Tarski' is not trying to establish 

a criterion of truth for sentences that will automatically decide 

whether that sentence is true. ,It is not the form of words that 

establishes the truth or falsity of the sentence by Tarski's definition 

of truth2; the truth of a sentence like "It is snowing lt is decided 

eventually by making an observation. Tarski does not intend that 

the truth of "It is snowing" to be divined by looking at the form 

of the sentence. The fact that "I am hungry" has a. cbangingtruth .. 

value in no way conflicts with Ta.raki's definition or prooedure. 

He does not intend to fix the truth-value of all sentences for all 

time. The most that Tarski's definition allows as inferences a.re 

1. The Development of Logic p.589. 
2 •. Although I speak of "Tarski t s definition", it must be remembered 
that he has not given a. definition of "true" for ordinary langl.1<'lge, but 
only 1I0utl1ned" it. 
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such sentences as '''I am hungry" is true if and only if I am hun€,TY". 

I do not see that any extra difficulty is entailed by the fact that 

"I am hungry" is now true and now false, for it is still the 

case that '''I am hungry" is true if and only if I am hungry- f is true. 

The same 'difficulty' applies to all sentences of the English language, 

since all such sentences contain verbs and all these verbs are tensed. 

Tensed verbs are token-reflexive words according to Knealel , therefore 

the same argument applies to "It is snowing" as to "I am hungrylt. 

If he is to be consistent then he should place "It is snowing" in 

the same category as "I am hungry" rather than in theca teg-ory of 

mathematical formulae. Similarly, however, mathematical formulae 

may also change their truth-value, i.e. they nlaY be 'true I in one 

mathematical system and 'false' in another. (This will be the case 

when both mathematical systems have the same rules of sentence 

formation but differ in the rules of transformation, e.g. by taking 

different axioms for the two systems.) Y~eale should conclude 

from these considerations that all sentences whether of ordinary 

language or of some formalised language are susceptible"to the sarne 

or related fifficul ties; but this is perhaps wandering from the 

point. What is in question at the moment is whether the changing 

truth-value of a sentence is of any importance to Tarski 'a procedure. 

1. 'The Development of Lo~c, PI'. 51 .. 2 
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I have shown above the reasons why I do not consider that it is 

relevant to Tarski' s method, but I shall perhaps make my point more 

clear by giving an example. Carnap has given a simple semantic 

system which contains token-reflexive words in the form of tensed 

verbs 11. 

'We construct a semantic system S in the following way. S 

(that is to say, the object language of S) contains seven signs: 

three individual constants, i~, in2, in3, two predicates, pr1, and 

pr
2

, and the two parentheses "(,, a.nd ")". ••• Sentences of S are 

expressions of the form pr(in). The truth-conditions are given 

separately for each sentence by the following rules I 

1. prl(inl ) is true if and only if Chicago is large. 

2. prl (in2) is true if and only if New York is large. 

3. prl (in
3
) is true if and only if Carmel is large. 

4. pr2(inl ) is true if and only if Chicago is a harbour. 

5· pr2(in2) is true if and only if New York is a harbour. 

6. pr2(in
3
) is true if and only if Carmel is a harbour. 

This is very similar to Tarski's procedure very much reduced in 

application. It is to be noticed that "Chicago is large'! contains 

a token-reflexive word, namely, "is". If pr1 denotes the. word "large" 

and pr2 denotes "a harbour" (or "is large" and "is a harbour" respectively) 

and in a similar fasion inl denotes the word "Chioago" etc., then the 

1. Carnap, Introduction to SemantiCS, pp.23-4 
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pri are nBllles, in Tarski's phraseology, of the worda "is large", "is 

a harbour", "Chicago" etc. The system S is then Tarski's procedure 

exactly applied to the six sentences pr.(in.). 
~ J 

As can be clearly 

seen, there is no contradiction or difficulty involves in the semantic 

system S by the fluctuating truth-value of "New York is large'! or, 

It is not part of the semantic 

system S to fix the truth-value of the pri(in j ), the semantic system 

fixes only the truth conditions of the pri(inj ). The SBllle applies 

to Tarski I s procedure; it is only the truth condi tions of sentences 

in which he is interested, it is not his intention to give a truth-

value for each sentence that will : .. remain unchanged for all 

time. 

Thirdly, Kneale argues that to escape from these difficulties 

anyone who agrees with Tarski.'s prodedure might take refuge in token-

sentences or utterances. That is, he might say that "true" is 

primarily an attribute of token-utterances. Apart from the difficulties 

involved in the use and mention of sllch an utterance which Kneale 

has indicated, it seems an unlikely hypothesiS, bearing in mind what 

Tarski has written. 

'Statements (sentences) are always treated here as a particular 

kind of expression, and thus as linguistic entities. Nevertheless, 

when the terms "expression", lIstatement", a.re interpreted as names 

of concrete series of printed signs, various formulations which occur 

in this work do not apPear to be quite correot, ani give the appea.ranoe . 
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of a widespread error which consists in identifying expressions of 

like shape. This applies especially to the sentence '''It is snowing" 

is a true sentence if and only if it is snowing.', since with the above 

interpretation quotation-mark names must be regarded as general (and 

not individual) names, which denote not only the series of signs 

in the quotation marks but also every series of signs of like shape. 

In order to avoid both objections of this kind and also the introduction 

of superfluous complications into the discussion, ••• it is 

convenient to stipulate tba t terms like "word", "expression", "sentence", 

do not denote concrete series of signs but whole classes of such 

series which are of like shape with the series given; only in this 

sense shall we regard quotation-mark names as individual names of 

expressions. ,I 

From the above it may be deduced that Tarski would not apply his 

procedure to token-utteranoes. He ia well aware of the difficulties 

that would arise if he were to do so. But (referring to the second 

argument) he is fortunately nmt obliged to use any Bueh Bubterfuge. 

It must first be shown that the chaning truth-values of certain 

sentences do lead to real difficulties for his procedure. 

believe that Kneale has shown satisfactorily that they do. 

I do not 

I have now dealt in some detail with the criticiems of Black, 

Strawson and Kneale. There is one point that may be notioedl in 

their objectionsl they all consider the semantic conception of truth 

1. CTF, Loa:1.c Semantics and lvIathematics, p.156, footnote I 
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truth in connection with ordinary language, but as I l~ve said in the 

first c~pter of this section, if Tarski's claims are to be discussed 

then it will be necessary to investigate the main part of his work, 

which is devoted to formalised langu~ges. I shall leave the foregoing 

criticisms for the moment. In the next chapter I shall discuss in 

more detail Tarski'a aims and purposes and then reoonsider these criticisms 

in the ilght of that chapter. 
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III 

Carnap asserts that the semantic conception of truth is intended 

as an explication of the concept of truth as used in everyday lan(~ge 

and in all of traditional and modern logic,l By "explication", 

Carnap understands I the task of making more exact a vague or not 'lui te 

exact concept used in everyday life or in an earlier stage of scientific 

or logical development, or rather of replacing it by a newly constructed, 

more exact conceptt. 2 In this task of explication, the earlier 

concept is called the explicandmn and the new, replacing concept, 

the explicatum. Carnap enlarges further on the notion of 

explication. 

'Generally speaking, it is not required that an explicatum 

have, as nearly as possible, the sruae meaning as the explicandumt it 

should, however, correspond to the explicandum in such a way that it 

can be used instead of the latter." 

Although Carnap states that the semantic conception of truth 

is intended as an explication of the everyday concept of truth, it 

is not certain whether Tarski intended hi! definition of truth as 

an e~plication or if Carnap chooses to regard it as such. Since I 

have said that I shall consider Tarski's definition a success or a 

failure if it achieves or fails to ~chieve its intended purposes, it 

1.Carnap, Mee,n;frng and Necessit;z, 1956, p.e 
2. ibid p.8-9 
,. ibid p.e 
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will be necessary to take some care over this point. 

It is not necessarily the case that Tarski did intend his 

concept of truth to be an explication of any earlier concept or to 

be an explication of the everyday concept in particular, even though 

Carnap may regard his own approach to the semantic concept as explic-

atory. For example, Strawson's analysis of the actual usages of 

the word "true" could be regarded as an explication of the ordinary 

concept of truth, but, to judge from the number of categorical 

statements contained in his paperl" it is extremely doubtful if it 

was intended as such. 

It is, however, the case that Il'arski is engaged on a task of 

clarification, thus fulfilling Carnap's definition of explication, 

and, moreover, from a reading of The Semantio Conception of Truth 

or from the quotations on pages 175, 1'76 and \'7'7 of this thesis it is 

clear that Tarski, in maintaining that his conception of truth is 

not the only one possible, intends to give what is called by Carnal' 

an explication. For itis one of the properties of an explication 

that it allows other explications of the same concept. (This 

distinguishes the t,ype of analysis given by Strawson from that 

given by Carnal'; the former analysises the actual uses of the word 

"true", the latter replaces the aotual use by another.) 

The further condition that Carnal' gives in order that a 

clarification should rank as an explication is that the explicatum 

1. Strawson, Truth. 
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'should ••• correspond to the explicandum in such a way that it 

can be used instead of the latter'. As a condition, this is still 

very vague. Quine enlarges on and clarifies this notion. l He writes 

of explica hon I 

'We do not claim synonymy. We do not claim to make clear and 

explicit what the users of the unclear expression had unconsciously 

in mind all along. We do not e.{pose hidden meanings, as the words 

"analysis" and "explication" would suggest; we supply lacks. We 

fix on the particular functions of the unclear expression tha. t make 

it worth troubling about, and then devise a Bubstitute, clear and 

couched in terms to our liking, that fills those functions. Beyond 

those conditions of partial agreement, dictated by our interests and 

purposes, any traits of the explicans come under the head of "don't 

cares". ,2. 

He continues further, 

'ile have, to begin wi th, an expressio~ or form of expression 

that is somehow troublesome. It behaves partly like a term but not 

enough so, or it is vague in ways that bother us, or it puts kinks 

in a. theory or encourages one or a.nother confusion. But also it serves 

certain purposes that are not to be abandoned. Then we find a way 

of accomplishing those same purposes throu~hother channels, using 

other and less troublesome forms of expression.'; 

1. Q,uine, Word and Object, 1960, p.257 ff. 
2. ibid, p.258 
,. ibid, p.260 
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As an example of an explica.tion ~uine uses the ordered pair. 

I shall use this example here, as it will serve as a model of 

explication with which to compare Tarski's definition of truth. 

According to Quine, the ordered pair, when first introduced by 

mathematicians, was subjected to the single postulate 

(i) (x,y) • (z,w) implies x = z and y = w. l 

There are many "explications" of the ordered pair. It is only necessary 

that they fulfil the condition (i). Thus, (x,y) may be taken as 

2x.3Y or as x+(x+y)2 or as {lx1, {x,yE' They are all adequate 

explications of ordered pair (with the reservation tl~t the first two 

are only explications of an ordered pair of numbers) because all satitfy 

(i). Quine contends that the utility of "orderad pair" depends on 

there being denoted objects for it. Any of the above explicantia 

will suffice. Not only do they fulfil condition (i), but they also 

define ordered pairs as numbers or classes which may be admitted as 

objects. 

To return to Tarski's definition of truth, the sit~tion is 

found to be similar to the definition of the ordered pair. The 

problem for Tarski is to construct a definition of truth for a 

language L which will be formally correct, that is, a definition 

the definiens of which is expressed in clear and unequivical terms 

or terms which are .reducible to euch. The difference.between the 

1. ~uine may be right here but modern mathematioians would use 
logical equivalence rather than implioationin (1). 
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explication of the concept of ordered pair and the concept of 

truth lies in the conditions that they have to satisfy. For the 

ordered pair the condition is clear and unambiguous as stated in 

(i) above; for truth the condition or conditions are not obvious 

nor unambiguous, Before any explication can be attempted it is 

necessary to specify the conditior~ that the explicatum must 

fulfil. 

At this point Tarski fixes his attention upon sentences as 

opposed to propositions and upon the correspondence thoory of truth 

as ~pposed to the coherence theory of truth, the pragmatic theory 

of truth etc. But the formulations of the correspondence theory 

of truth are insufficiently precise for Tarski's purpose. He 

finds it necessary to fonnulate a clearer condition than, for example, 

T,l1e truth of a sentence consists in its agreement wi th reality or 

A sentence is true if i tdesir;:nates an exi.sting state of affairs. 

Finally, he formulates the condition thus I 

(T) the sentence X is. true if and only if p 

where up" is to be replaced by any sentence in the language and 

IIX" by any name of that sentence. He modifies this condition to 

allow a translation of the sentence named by "X" to replace up". 

The definition must have as consequences of t,rpe T. (T) functions 

as (i) in the case of the ordered pair. The explicatum of ordered 

pair must have as a consequence (i); the explicatum of truth must 

have as consequences sentences schemat1sed by (T). It 1s to be 
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noticed that (T) does not offer a definition of IItrue" but only 

furnishes what Tarski calls a condi tion for the material adequacy 

of any definition of "true". ~'his explains why the criticisms of 

Strawson, Kneale, and Black appear to be misdirected. 

Leaving aside the arguments Black proposes about the 'philosophical 

relevance' of Tarski's definition, with which I have already dealt, 

I shall now consider another of his arguments. Black argues th at 

even if a complete enumeration of words in a natural language could 

be achieved and a definition of truth constructed for it, the definition 

would still be unsatisfactory because no extension of it to other 

languages would be legitimate. For suppose that a definition of "true 

in the English language as of January 1, 1940 "could be constructed, 

then the difficulty remains of extending the definition to cover, for 

example, "true in the English language as of January 1, 1941". 

According to Black it would be impossible to extend the definition 

of truth to this second language without involving the difficulties 

which were noted in the discussion of quotation-mark names. Black 

writes. 

'Anybody who is offered a definition of "true in the English 

language as of January 1, 1940'1 must, therefore, resolutely abstain 

from supposing that he "understands'! the principle of the datini tion, 

in the sense of being able to give an explicit definition of the 

concepts defined. If he tries to give such a formulation, he will 

succeed only in talking nonsense (uttering a sentence which breaks the 
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syntactic rules of the language to which it belongs.)l 

This argument seems to confuse the definition with the 

condi tion, a. confusion tha t Black has been careful to avoid elsewhere. 

Blac~ states the generalisation of the sentences, "'It is snowing" 

is true if and only if it is snowing', "'London is a. ci ty" is 

true if and only if London is a city' and so on in the following 

fOrIna 

'(0) For all x, if x is a sentence, then "x" is true if 

and only if x. ,2 

(Black should have written "if "x" is a sentence" instead of "if x 

is a sentence" in the above.) The sentenoe e is unacceptable for 

reasons that have already been given in connection with quotation-

mark names. J31a.ck agrees wi th Tarski that defini tiona of type (a) 

would fail to fulfil the condition whioh states that a materially 

adequate definition of truth must give as consequences "'It is 

snowing" is true if and only if it is snowing' etc. Black continues I 

'In default of a simple defintion expressing the intent of 

the condition, the best we can do is to write a sChema. 

(8) s is true if and only if x • 

. We may say, infornally and 7;nexactly, that an aooeptable definition 

of "true" must be such that every.sentenoe obtained from (8) by 

replacing 'x' by an object-sentence and's' by a name of definite 

1. Black, ''llhe Semantic Definition of Truth' section 7 
2. ibid, section 3 
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description of that object-sentence shall be true. But we must 

remember tl~t to talk in this way is equivalent to paraphrasing 

the unacceptable formula 9. At all events, (S) is not a definition 

of truth, but at best a criterion to b~ide us in the search for a 

definition.,l Black's formula (S) is the same as the condition (T) 

gi ven above. If Black's assertion is correct then Tarski is unable 

to formulate condition (T). But (T) (and likewise (S) ) do not seem 

to be 'paraphrases' of (9), for (e) uses an instance of a name. 

function, in faot quotation-roark-names, and is only an attempted 

definition of truth which is found not to satisfy condition (T). 

It may be the case that a name-function cannot be found that could be 

used in a definition of truth and would satisfy condition (T), but at 

least condition (T) can be stated without inconsistency. If a 

defini tion were to be constructed in some language L1 then it may 

be the case that the definition could be extended to another language 

L. without involving the formula (e) either explicitly or 
J 

implicitly. This is the case when Tarski extends his procedure from 

the calculus of classes to the caloulus of relations and the calculi 

of many-termed relations. On the other hand, it may be the case 

that the definition is not extendible to other languages, as would be 

the case of extending Tarski's definition of truth for the calculus of 

classes to the general theory of classes. But it cannot be extended, 

1. ibid, section 3. 
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because of the peculiarities .involved in the 1anb'Ullge which 

expresses the general theory. It is not because it involves the 

formula (e). In this respect it resembles the definition of the 

ordered pair, for, depending on the language in which "ordered 

pair" is to be defined, ordered pair may be defined as \lX~ txYl~ 
x y or 2 .3 • If it is to be defined in the calculus of classes then 

{\x\ ~X:YH will serve, 'if in the theory of numbers, 2X.3Y• The 

only requirement is that the definition should have the consequence, 

(x,y) • (z,w) if and only if x=z and y=w 

Similarly, for the definition of truth the only requirement is that 

it should give as consequences sentences schematised by (T). 

As can be seen from the case of the ordered pair, it is not necessary 

the. t the definition be capa bl e of extensi on to ana ther language, 

but only that the condition it satisfies should be. 

Strawson too has mistaken the condition for a definition. He 

writes I 

••• the muddle of reading a degenerate case of contingent 

statements meta-linguistically employing the phrase is true if and 

only if, as a pseudo-defining-formula of which the definiendum 

consists of a quoted sentence followed by the phrase ia true ••• t l 

The objeotions of Strawson against the definition of truth, should. 

be directed against the condition for the mat.rial adequacy of 

1. Strawson, 'Truth' seotion II 
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such a definition, for, gTanted the condition, any objection against 

a proposed definition would be that it did not satisfy tIns condition. 

"What ar~ents may be put forward against a condi tion? The argument 

of Strawson from actual usage may show that normal uses of the word 

"trueu do not coincide with Tarski' s use of the word "true", but 

it is clear that Tarski deals with none of these uses. Tarski is 

content to find a definition that will satisfy condition (T). It 

may certainly be objected that the condition is of no use for ordinary 

language because any definition that satisfies it will be inconsistent 

or that no definition can be found that will fulfil it. But such 

objections can only be discovered after the formulation of the 

condition and they do not stem from. such conSiderations as Strawson's 

Condition (T) does not act as the conclusion of Tarskifs investigations, 

it acts as the starting point for all later discussion. 

turn shows that Kneale is inoorrect in his assertion that: 

' ••• he (Tarski) even goes on to argue that the possibility 

of construc.t:i;ng the paradox: of the Liar wi thin ordinary. language 

shows that for this. as distinct from a formalised language of SCience, 

there can be no satisfaotory definition of trut};!:. ,I 

To make this into a correct assertion 'that satisfies condition (T)' 

should be added at the end of the quotation. . Tarski makes such 

assertions only about those definitions that would satisfy condition ~). 

1. Kneale, The Development of Lop;ic, p.589. 
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It is not his critics alone who exaggerate Tarski's claims. 

Russell has written: 

'Tarski ••• has shown that the words "true" and "false", as 

applied to the sentences of a given language, always require another 

language, of higher order, for their adequate definition. ,I Unless 

Russell means by 'adequate definition' the same as Tarski's 'materially 

adequate definition' in the sense that the definition satisfies 

condition (T), then this too n~y be incorrect, for Strawson's use 

of the word "true" does not need a hierarchy of languages or even 

another language. If the role that explication plays is overlooked, 

it is possible that statements made by Tarski about definitions of 

truth which satisfy conlU tion (T) may be confused with eta tements 

made about "true". Tarski has guarded himself against allegations 

that he is making categorical statements about the use of the word 

"true", by accepting the existence of uses other than his own. 

he writes in one paperl 

'The concept of truth also is to be included here, (among 

semantic concepts) at least in its classical interpretation,2. 

Although 

It is not such a definite assertion as it appears, for by "semantics" 
\ 

Tarski in this context means. 

' ••• the totality of considerations concerning those concepts 

which ••• express certain connections between the expressions of a 

language and the objects and states of affairs referred to by these 

1. . B. Russell, An Enquiry into Meaning' and Truth, 1940 ch.4 
2. A. Tarski, 'The Establishment of Scientifio Semantios' inoluded 
in Lop;ic, Semantics, Metamathematics. 
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expressions.,l 

Thus, what appears to be a dogmatic assertion about the nature of 

truth turns out to be tautologous. 

In the remainder of this section I shall consider Tarski's 

definition of truth as an explication and I shall judge it accordingly. 

In the next two chapters I shall be concerned with the definition 

of truth for formalised languages in which Tarski's investigations 

are conducted in more detail but which the above critics have 

neglected. 

1. ibid. 
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In this chapter I shall give an exposition of Tarski's 

procedure for the construction of a definition of truth for a fcrn~lised 

language.l It will be necessary to give this exposition in some 

detail since my criticisms of Tarski's definition will require 

it. 

Firstly, Tarski characterises formalised lanroutges as artificially 

constructed languages in which the sense of every expression is 

unambiguously determined by its form. The essential properties 

possessed by all formalised languages are the followinga 

a. for each language a list or description is given of all 

the signs with which the expressions of a language are formed; 

b. by purely structural properties those expressions called 

sentences are distinguished from all other expressions of the 

language; 

c. a list or description is given of the sentences called 

axioms; 

d. in special rules, called rules of inference, certain 

structural operations are embodied which permit the transformation 

of sentences into other sentences; in particular, sentences which 

can be obtained by the application of this operation on the axioms 

are ca~led provable sentences. 

1. Tarski's procedure may be found in CTF, section 2. 
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Tarski adds that he is not concerned with formal languages 

the expressions of which have no material sense. The problem of 

defining truth for such languages is not even meaningful. He 

writes' 

'We shall always ascribe quite concrete and, for us, intelligible 

meanings to the signs which occur in the languages we shall consider. 

The expressions which we call sentences still remain sentences after 

the signs which occur in them have been translated into colloquial 

language. The sentences which are distinguished as axion~ seem to 

us to be materially true, and in choosing rules of inference we are 

always guided by the principle that when such rules are applied to true 

sentences the sentences obtained by their usa should also be true. ,I 

Before passing to a specific language, Tarski distinguishes 

an object language from its metalanguage. The metalanguage is the 

language in which we speak about the object language. lJ.~us, the 

description of expressions of the object language and the name s of 

expressions of the object language belong to the metalanguage. 

For his object languace Tarski chooses the calculus of 

classes which, he says, can be regarded as an interpretation of the 

algebra of logic. 

I shall briefly summarise Tarski's description of the object 

language (which I shall call "011) and metalanguage (which I shall 

call "lUff). 

1. CTF, section 2 
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Among the si gns of 0 are "N", "A'I, "1T", II I" which oomprise the 

oonstants of ° and the variables "x,", "XI I", "x" ," and analogous 

signs oonsisting of "x" with a number of small strokes added below, 

whioh funotion as the variables of O. These are the primitive signs 

of 0, all other oonstants being introduoed by definition in terms of 

these. 

In the meta-language M, there are 'translations' of the 

expressions of 0 and what Tarski calls 'struotural-descriptive' names 

'of those expressions. Thus I 

"N" has the translation "not" in !vI and the name "ng" , 

"A" has the translation "or" in M and the name "sm", 

''IT"'' has the translation "for all" in M and the name "un", 

"I" has the translation "is included in" in M and the name "inll
• 

"x" followed by k sUlall strokes has the translation "vk" in M 

and is translated in Iv~ by one of the class variables of M, 

"a", "b" etc., 

and "st ll where "s" and lit" are expressions of ° has the name 

"s"t'l. 

It oan be seen that every expression of the object language 

has both a translation and an individual name in M. For example, 

uIIx,lxlx," has the na~e "((un"vrY'in)"'vI)"vI " and the translation 

"for all a, a is included in a". 

In addition to these names and translations of the expressions 

of 0, the metalan~lage requires expressions of a general logical 
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character, e.g. "if and only if", and expressions from the theory 

of equivalent classes and the arithmetic of cardinal numbers, e.g. 

"infinite cardinal number". 

By means of definitions the following signs of the metalaneu~ge 

are introduced. 

1. x ... ik,l if and only if x .. (in(\vk)" VI 

2. x .. Y if and only if x .. ng~y 

3. x .. y+z if and only if x .. ( sm~y)~z 

4. x ... ~ tk if and only if t is a finite n-ter.med sequence of 

expressions which sa tisfies one of the following condi hons : 

~n-I 
a. n=I and x-tI , b. n>I a~x ·~k tk + tn' 

5. x .. y.z if and only if x ... y+z. 
6. x .. () k y if and only if x .. (un"vkr y. 

7. x - \J k y if and only if x ... «( (ng"un) ling)" vkY' y • 

. Next, therefollows the definitions of sentential function and 

of sentence. 

x is a sentential function if and only if x satisfies one of 

the following conditionsl (a) there exist natural numbers k and 1 

such that x - ik,l' (b) there exists a sentential function y such 

that x .. y; (c) there exist sentential functions y and z such that 

x .. y+z; (d) there exists a natural number k and a sentential function 

Y such tha t x -f\y, 
x is a sentence if and only if· x is a sentential function 

and no variable vk is a free variable of the function x. 
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The latter definition depends upon the concept of 'free variable' 

which is defined as follows. 

Vk is a free variable of the sentential function x if and only 

if k is a natural number f 0, and x is a sentential function which 

satisfies one of the following conditionsl (a) there is a natural 

number 1 such that x .. ik,l or x .. il,k; (b) there is a sentential 

function Y such that vk isa free variable of Y and x .. y; (c) there 

are sentential functions y and z such that vk is a free variable 

of y and x .. y+z or x .. z+y; (d) there is a number 1 distinct from 

k and a sentential function y such that vk is a free variable of y 

and x =(\lY. 

The following are the axioms of M. 

1. ng, sm, un and in are expressions, no two of which are 

identical. 

2. vk is an expression if and only if k f 0; vk.is distinct 

from ng, am, un, in, and from each of the expressions v
k 

if k f 1. 

3. x~y is an expression if and only if x and yare expressions; 

x"y is distinct from ng, sm, un, 'in and from each of the expressions 

4. If x,y, z, and t are expressions, then x~y .. zfttif and 

only if one of the following conditions are satisfied. (a) x .. z and 

y .. t, (b) there is an expressionu such that x .. z"u and t • uny; 

(c) there.is an expression u such that z -xPu and y. uftt. 

5. Let X be a class which satisfies the following conditioruu 
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(a) ngeX, am~X, uneX, in~X; (b) if k is a natural number distinct 

from 0, then vk~X; (c) if x~X and Y6X, then xAyeX. Then every 

expression belongs to the class X. 

The Axioms of 0 are. 

(d) (\ I 112 U 3(i3 ,r i ,,2'1\ 4 (i 4, 1+i 4,~+i 4,3» 

(e) 1\ I \.l2( () ; (\4«3':3,1+3':3,2 +i;, 4)' (iI, 3 +I2, 3 +i4,;»' r\ 5(i5, 2+ 

together with the logical axioms schematisedby the followingt 

(a) "ANA ppp II , 

(b) 1t.Al1pApq" , 

(c) "ANApqAqp", 

(d) 11,AN,ANpqANArpArqlt • 

In these schemas the sentential variables p,q,r are replaced by 

sentential functions, the resulting expressions, if they are not 

already sentences, being converted into sentences by universal 

quantification ~ver the free variables contained in them • 

. 'Tarski then defines the notion of consequence and of provable 

sentences.' I shall not give the definitions here, as I shall not need 
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them in the later sections of this thesis. 

Having constructed the definition of provable sentence, 

Tarski turns his attention to the definition of truth for the 

formalised language 0, the calculus of classes. Tarski rejects 

the identification of "true sentence U with "provable sentence". 

"Provable sentence" has been defined (in M). but in such a way that 

there remain sentences which are not provable and the negations of 

which are unprovable. For example, the sentence (\1 r\ 2ir,2 is not 

provable. nor is its negation (\ r (\ 2ir, 2' Such an identifi ca ti on 

would result in the contradiction of the law of excluded middle. 

Tarski is impelled to construct some other definition of "true 

sentence" in order to avoid this contradiction of the law. Reverting 

to the semantio conception of truth, he formulates the condition of 

material adequacy in the following convention •• 

'CONVmfrION T. A fomally correot definition of the symbol 

'Tr' (denoting the olass of all true sentences)! formulated in the meta­

language,will be called an adequate definition of truth if it has 

the following consequences: 

(a) all sentences which are obtained from the expression 

fIX ~Tr if and only if pIt by subat! tutingfor the symbol "x" a 

structural-descriptive name)of any sentence of the language in 

question and for the symbol "pit the expression which fOrIna the 

translation of this sentence into the metalanguage, 

(b) the sentence "for any x, if x (; Tr then .x: " S (where· "s" 
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denotes the class of sentences).l. 

The definition of "true sentence" depends on the concept of 

satisfaction which Tarski defines thus: 

'The sequence f satisfies the sentential function x if and 

only if f is an infinite sequence of classes and x is a sentential 

function and these satisfy one of tile following four conditions: 

(a) there exist natural numbers k and 1 such that .x ",. i k t 1 and 

fk ~ f 1 ; (b) there is a sentential function y such that x = y and 

f does not satisfy the function y; (c) there are sentential funotions 

yand z suoh that x • y+z and f either satisfies y or satisfies z; 

(d) there is a natural number k and a sentential function y such that 

x • f\ kY and every infinite sequence of classes which differs from f 

in at most the k .. th place satisfies the function y.2. 

(In the above definition Itf It and "f It denote -the k .. th and I-th members k ,I 

of the sequence f.) 

From this definition it follows that a sentential function with 

no free variables (i.e. sentenoes) is satisf~ed either by all 

sequences of classes or by none. The definition of lItrue sentence" 

follows. 

IIX is a true sentence if and only if x E. S and every infinite 

sequence of classes satisfies x';, 

1. CTF, section; 
2. CTF, section 3 
3. ,ibid. 
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This d~finition is materially adequate in the sense of 

convention T, but that it is so may only be shown in the meta­

metatheory. It implies the following consequences, 

(1) for all sentences x either xfTr or i ¢ Tr; 

(2) for all sentences x, either x ~ Tr or i € Tr. 

These last sentences (1) and (2) may be proved in the metatheory 

and they show that the class Tr is a consistent and complete dernlctive 

system. Thus, for every sentence of the language of the calculus 

of clas:::es it will be either true or false and the law of excluded 

middle will not be violated. 

Tarski proceeds to define a related concept, the concept of 

correct or true sentence in an individual domain. 

'J3y.this is meant (qUite generally and roughly speaking') 

every sentence which is true in the usual sense if we restrict 

the extension of tile individuals considered to a given class at 

or .. somewhat more prelhisely ... when we agree to interpret the terms 

"individual!f, "class of individuals lf
, etc., as "element of the class 

a", "subclass of the class all etc., respectively.t l • 

With this restriction on the individuals considered, it is necessary 

to interpret expressions of the .type '11" xl? I as .1 for everysubolass 

x of the class a we have pl. and expressions of the type 'Ixy' as 

'the subolass x of the subclass a is contained in the subclass y of 

the class at. 

1. CTF, section 3. 
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There follows the prcise definitions of the concepts of 

correct sentence in an individual domain of k elements and correct 

sentence in an individual domain a. These depend upon the 

definition of satisfaction, defined in accordance with the 

limitation of the individuals to a class a. The definition of 

the satisfaction of the sentential function x in the individual doma;i~n 

a by a sequence f is the preceding definition of satisfaction with the 

single modification that the sequence f must be an infinite sequence 

of subclasses of the class a. 1~en follows the definition of 'correct 

sentence' in two forms: 

DEFIlfflIon 251. x is a. correct (true) sentence in the individual 

domiina if and only if x t S and 'every infinite sequence of sub­

classes of the class a satisfies the sentence x in the individual 

domain a. 

DEFINITION 26. x.is a correct (trme) sentence in an individual 

domain with k elements - in symbols x E Ctk - if and only if 

there exist a class a such that k is the cardinal number of 

the class a and x is a correct sentence in the individual 

domain a. 

DEFIlU'rION 27. x is a correct (true) sentence in every 

individual domain - in symbols x f at - if and 'only if for every 

olass a x is a correct sentence in the individual domain a. 

. . 
1. The numbers of the definitions given here are those in the text 
of CTF. 
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At this point in Tarski's paper there follows a number of 

important definitions and theorems, a knowledge of which I shall 

need in the next section. 

DEFINITION 28. x'" f k if and only if 

x .. \\k+Iik,k+I t \\k+I«(\k+2ik+I,k+2+ik+I,k+ik,ktI). 

(This states that the class denoted by the variable vk consists of 

only one element.) 

DEFINTrION 29. x... ~ if and only if 

(This states that every non-null class includes a one-element 

class as a part.) 

DEFInITION ;0. x'" 0 n if and only if either 

n ... 0 and x ... \\ I € I or 

(Pn states that there are at most n distinct one element classes.) 

DEFIHrrrON 31. x .. 'On if and only if either 

n III 0 and x OIl poor 

<pn states that there are exactly n distinotone-element classes.) 

DEFINrrrOU 32. x is a quantitative sentence (or a sen'cence 

about the number of individuals) if and only if there exist a 

finite sequence p of natural numbers suoh that ei th:er x..- t! .. ~ "'61\ 
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TEEOREM 8. If a is a class of individuals and k the cardiml 

number of this class, then in order that x should be a correct 

sentence in the individual domain a it is necessary and sufficient 

that x t Ct
k

• 

TI{EOREa~ 9. For every cardinal number k the class Ct
k 

is a 

consistent and complete deductive system. 

THEOREM 10. For every cardinal number k, Pr C;Ctk but C\ 11'r. 

(rtpr" is the symbol denoting the class of provable sentences). 

THEOREM 11. If k is a natural number, and X the class con-

siating of all the axioms together with the sentences d. and ~k' 

then Ctk • Cn(X). 

~Cnt denotes the class of cOl~equenoes of the class denoted by tt& 

symbol in the brackets.) 

THEOREM 12. If k is an infinite cardina.l number, and X the 

class consis ting of all the axioms together with the sen tence d.. 

and all the sentences ~l (where 1 is any natural number), then 

Ctk - On(X). 

Theorems 11 and 12 depend on these three important 

lemmas t 

LEI..ni:1A H. For every cardinal number k ol'O\_ 

LEMMA. I. If k is a natural number and 1 a cardina.l number 

distinct from le, then '! k t Ctk and '6 k f Otl , but ~ k f Ctk and 

'Ok ( etIo l • 

1. See Appendix II. of my M.A. 
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If xES and X is the class consisting of all 

the axioms together with the sentence~, then there is a sentence 

y which is equivalent to the sentence x with respect to the class 

X and suc~ that either y is a quantitative sentence, or y € Pr or 

y. e Pr. 

THEOREM 13. If k is an infinite cardinal number, then 

there is no class X which oontains only a finite number of 

sentences which arenot axioms and also satisfies the 

formula 

Ctk ... Cn (X). 

TF.EOREM 14. If k is a natural number and 1 a cardinal 

number distinct from k, -then Ctk $ Ct~ and Ctl $ Ctk• 

TEEOREII'I 15. If k and 1 are infi nite cardinal numbers t 

then Ctk "" Ctl , 

THEOREM 16. If k is an infinite cardinal number and x t Ctk, 

then there is a ns\. tural number 1 such that x. " C\ (in other words 

the class C~k is included in the sum of all the classes Ctl ). 

f.rllEOREl'J 17. If X is a consistent class of sentences which 

contain all the axioms together with the sentence ~ t then there 

is a cardinal number k such that X ~ C~; if X is a oomplete 

deductive system, then X ... C~. 

THEOHEl1 18. In order tba t x Eo Ct it is necessary and sufficient 

that for every cardinal number k, x " C~. 

TBEOREM 19. In order that x: E. Ct it is necessary and suffici.e nt 
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that for every natural number le, x ~ Ct
k

• 

THEOREM 20. For every cardinal number k we have Ct c::: C~, 

but Ctk ~ Ct. 

Trm:OREM 21. The class Ct is a consistent but not a complete 

deductive system. 

THEOREM 22. Pr!:: Ct, but Ct f Pro 

LEMMA. L. .;,. t Ct, but 01,. ~ Pro 

THEOREM 23. If x is a quantitative sentence then 

x t Ct. 

THIDREM 24. If X is the class consisting of all the axioms 

together with the sentence d.., then Ct .. Cn (X). 

T}EOREM 25. If x (. S, x , Ct and i f Ct, then there is a 

quantitative sentence y, which is equi~lent to the sentence x 

with respect to the class Ct. 

THEOREM 26. If a is the class of all individuals then 

x ~ Tr if and only if x is a correct sentence in the domain a; 

thus if k is the cardinal number of the class a, then Tr - C~. 

THEOREM 27. Ct S Tr, but Tr $ Ct. 

THEOREM 28. In order that x ~ Tr, it is necessary and 

sufficient that x is a consequence of the class which consists of 

all the axioms together with the sentence ~ and all the sentences 

'6 , where 1 is any na tIlral number. 
1. 

Tarski has been able to find a structural charaoterisation 

of true sentences, but, he says, this is purelyaocidental. 
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It is owing to the specific peculiarities of the calculus 

of classes ru1d such a charaoterisation could not be carried 

over to other formalised languages. 

In the next chapter I shall discuss in detail the preceding 

theorems and Tarski's arguments. 
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v 

In a short discussion of the Tarski definition of truth 

Luschei has written: 

'It is not incorrect to stipulate, for instance, tp~t (an 

expression of the form) "It is snowing here now" is a true 

proposition in English if and only if it is snowing here now; 

indeed, any definition that yielded an incompatible consequence 

or failed to satisfy this criterion would be wrong or inadequate; 

but neither is it illuminating.,l. 

This would be so if Tarski's definition allowed no other 

consequences than those illustrated by the above example. Luschei 

shares with Black a total disregard for the important and 

interesting results of Tarski's investigations. rrhere is one 

such result, which I have mentioned in the discussion of Black's 

criticisms, namely, that for certain mathematical disoiplinesl 

'.,. the notion of t~lth never cOincides with the notion of 

provability; for.all provable sentences are true, but there are 

true sentences which are not provable. ,2. 

That there are true but unprovable sentences follows from 

Lemma L and Theorem 28. Lemma. L states that the sentence d.. is 

not provable and from Theorem 28, together with thadefini tiO!l of 

1. Luschei, The Loajcal Systems of Lesniewski, 1962,p.314 

2. SGT, section 12 
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consequence for the language 0, it follows that ~ is true. 

Similarly, the quantitative sentences ~., are true but not . 
provable. The fact that these sentences have such propertlos 

is surprising. It is surprising when the attitude of !rany 

mathematicians is considered. Einstein has written. 

I A proposi tion is then correct ("true") when it has been 

derived ••• from the axioms,. The question of the "truth'! cf 

the individual geometrical propositions is thus reduced to 

one of the "trudlh" of the axioms. Now it has long been knOl'ln 

that the question is not only unanwerable by the methods of 

geometry, but that it is in itself entirely without meaning. 

We cannot ask whether it is true that only one straight line 

goes through two points. •••• The concept "true" does not 

tally with the assertions of pure geometry, because by the 

Vlord "true 11 we are eventually in the ha bi t of designating 

always the correspondence wi tha "real" object; geometry, however 

is not concerned with the relation of the ideas involved in 

it to the objects of experience, but only with the logical 

connection of these ideas among themselves. l • 

ThiS a tti tude is found in a modern book on logic1 

1 ••• it has become more and more widely .accepted during 

1. A. Einstein, Relatiyity, translated R.W. Lawson, 1920, p.2. 
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the past hundred years, with the result that it is now the 

orthodox doctrine, that to say of a mathematical proposition 

P that it is true is merely to say that p is true in some 

mathematical system S, and that in turn is merely to say that 

p is a theorem in S. Thus, the semantic notion of truth of 

mathematical propositions is replaced by a syntactical one; 

instead of the ordinary meaning of truth, there is offered 

a criterion of "truthlt solely in terms of logic ... formal 

1 deducibility within a given postulational system.' 

Tarski has stressed the importance of Ids result (the second 

quotation of this section was italicised in the original) so 

that, in view of the above considerations, it would be useful 

to investigate how the result was deduced. I have already 

given the theorems from which the result that ~ is true but 

unprovable follows but I shall now investigate in more detail 

the assumptions necessary for suoh a deduotion. 

It follows from Lemma H that cA. E. Ctk for every oardinal 

number k and thus from Theorem 19 tha.t « € Ct, which, in combination 

wi th Theorem 27 yields the consequence that «€ Tr ot, in othe'r 

words, d.. is a true sentence of the calculus of classes.. The 

origin of the theorem that C\ is a true sentence may therefore be 

1. P.ll. Nidditch, Elementaru Lo~ic of Science and t~thematicB. 196Q 
pp. 286-287_ 
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traced back to Lemma li, which, trarski wti tea, is 'almost 

iDmlediately evident I. Ij.lhe problem now is to prove Lemma H, for 

although Lennna Ii may be almost immediately evident it requires 

more than this for Lemma H to be asserted as a theorem. It 

is easy to see that Lemma. II is "self-evident" if the procedure 

that Tarski illustrates in the third section of "The Concept 

of Truth in Formalised Languages" is followed. In this 

procedure, the sentence under consideration i.e. c{ It Ct
k 

is 

submitted to a succession of transformation rules, which remain 

implicit in the unfor.malised meta-theory, until the following 

sentence is reached& 

c\ f. Ct
k 

if and only if for all sub-classes a of a class 

g with cardinal number k either (for all classes b a. is included 

in b) or (there is some class c such tha t t (c is includ.ed 

in a) and (not for all classes d is c included in d) and (for 

all classes €I €I is included in 0 implies lOis included in 

€I or for all classes f €I is inoluded in f)J ). 

Raving obtained this translation, the seoond part of 

the equivalenoe being inferred from the theorems of the 

.caloulus of classes, it can be deduoed tha.t ~is a correot 

sentence in a domain with k elements. This procedure is exactly 

analogous to that given belowa 

I () I \J ~iI,2 f. Tr if and only if f~; all olasses a. there 

is a class b such that a S b. 
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From this we infer without difficulty, by using the 

known theorems of the calculus of classes, that ~ I V 2iI,2 

is a true sentenoe.,l 

At this point it can be seen why" d.. £ Ctk
lt is irnme dia tely 

evident. It is because a translation has been effeoted into 

a more familiar language. But such a procedure is dangerous 

as it tends to slide over the question of how the trcmslation 

is established as a theorem of the calculus of classes. This 

is not only the case of" t\ E C\1t but also of any other sentence 

of the formalised lanb"U8.ge. Such sentences as It {\ I \j 2i r, 2 €. 

Tr" can be established by reading off the translation of w:ba. tever 

procedes " E Tr" and checking to see if it is in fact the 

case. 

Finally, the~, the investigation of how it is deduced 

that ~ is a true sentence leads back to an examination of the 

initia.l assumptions of the meta-theory. It is quite clear what 

Tarski intended, the analogy with I"Snow is whi tel' is true if 

and only if snow is white' is aPPlrent. Although there is 

no paraphrase in the last mentioned sentence, there is a similarity 

of approach - a meta .. linguiatic sentence is aaserted. by appeal 

to an extra-linguistic fact. In the case of f ItSnow. is whi tet! 

is true I (a meta-linguistic statement), it is asserted or denied 

1. CTF, section ,. 
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after an empirical enquiry. In the case of " 1\ I V 2i I, 2 e rrr" , 

it is asserted or denied after it is known whether, for all classes 

a, there is a class b such that a is included in b. It is 

here that the analogy breaks down, for how is it to be established 

that this is the case? Unlike "Snow is white" there is no 

empirical fact to which a statement about classes can correspond. 

There are only three ways in which such a statement could be 

established.- ]'irstly, by an appeal to intuition; secondly, 

by appeal to some model of the calculus of olasses; thirdly, 

by an investigation to discover whether it is a proven sentence 

in some axiomatised system incorporating the calculus of classes. 

It is unlikely that Tars~i intends that intuition should 

participate in the establishment of theorems, for intuition is 

a notoriously bad guide for the calculus of classes. If, 

as in the second case, it is assumed that the translations can 

be checked against some model (for example, the statements could 

be interpreted as being "about" the regioll$.of a square) then 

generality is lost. (I do not use the.word "model" in its 

tect~ical mathematical sense as this would imply a postUlate 

set for the translation statements, 01 use the term in the sense 

that each statement can be read as a. statement about the regions 

of a square). The last case presents what appears to be a 

r~asona.ble alternative, bute~en '~isis not'without its difficulties. 

If the translation statement can be asserted if and only if it is 
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a theorem in some axiomatised system, what system is it? 

Bec~use the translation is written in terms of "classes", 

"is included in", "for all" and "there is" it would be na tura,l 

to assume that the axiom system would be the calculus of classes. 

The difficulty of this approach is that the axiom system would 

then be the calculus of classes, differing only from the 

formalised axioms (given already as the axioms of 0) in its 

notation. l 

Unfortunately, this would not allow for true but unprovable 

sentences such as ~ or ~ .• 
1 

That this is so can easily be seen 

from the fact that the axiom system 0 yields exactly the same 

theorems as the axiom system from which the translation statements 

are deduced. So the new axioms system cannot be equivalent 

with the axiom system 0 if it is to give as a consequence the 

(translation of) the sentence ~ • These axioms, whatever they 

may be, will form part of the axiom set for the meta-language, 

some of which have beel'! given in the last seotion. Tarski does 

not indicate what axioms they are in particular, he does say 

that they are e~neral logical axioms which suffice for a· 

sufficiently comprehensive system of rna thematioa,l 10f.t;l.C. 

rrhe conclusion of the preceding parab'Taph is that the meta, ... 

1. Of course, the ~xiom sets n~y differ but if both are to 
be called ~ calculus of classes it would be necessary 
that they be equivalent axiom sets. . 
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theory has as its axioms those axioms of the meta-theory listed 

in section IV together with axioms of a general logic which 

allow as theorems ~ and ~i. Amongst the axioms there must 

be some from which the aXioms of 0, when translated, can be deduced 

since it is one of the theoren~ of the meta-theory that all 

provable sentences (of 0) are true sentences. But the result of 

the meta-theory that there are true but unprovable sentences of 

o would then say little more than that the calculus of classes 

(given by the axioms of 0) is incomplete, i.e. there are 

sentences of 0 which are unprovable and the negations of 

which are also unprovable, but can be completed by the 

addition of sentences as axiOlLS (in this case the sentences ~ and 

~. ). 
I 

This is the import of Theorem 28. Tha. tit is pOBS! ble 

to complete the axiom set by additional axioms which are again 

provable from a more comprehensive axiom system is a peculiarity 

of the caloulus of olasses. It is so because the oalculus 

of classes is part of a larger general system of logic. It 

would not be possible in the case of a geometry of "lines It 

and "points", for then the prinCiples of logic employed would 

be the same in the fonnalised geometry as in its unformalised 

counterpart. (I shall show this later). It is apparent that 

in the case of the calculus of classes, there are two different 

logios employed. In the formalised language 0, the only axioms 

specified are the axioms for the calclllus of classes and certain 
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axiom schemata which are limited to the axiom schemata of the 

1 proposi tional calculus. In the meta-language lVI, not only 

are the axiom schemata for the propositional calculus allowed 

as axioms, but also the whole set of primitive propositions 

that are included in Principia 1v18.themaUca. 2 This accounts 

to some extent for the difference between the theorems of 0 

and the theorems of M. But this raises yet another question. 

,That makes the axioms of 0 form an axiom system for ~ calculus 

of classes? Why are there just those axiom schemata belonging 

to the propositional calculus and no other logical axioms such 

as those used for the meta-theory M1 'l'he question is now 

removed to more fundamental grounds and the relationship between 

the formalised calculus of classes (called by Tarski lithe 

a.lgebra of logic") and the unforrnalised language in which the 

formalised calculus finds an interpretation must be investigated 

further. 

Besides the proof that ~ is a true but unprovable sentence 

of the calculus of classes, there are other proofs embeddied 

in the meta-theory that raise different though related 

problems. 

1. cf. section IV of this thesis 

2. I have assumed this as Tarsk~ directs the reader to the 
f1:rincipia l\{'tthematica for the general logical axioms; he 
does not, however, specify anyone part of that work, cf. 
CTF, section ,. 
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Theorem 28 is proved from Theorems 12 and 26, but only 

because: 

'We can show, on the basis of the system of assumptions 

here adopted, that the class of all individuals is 

infini te. ,1. 

These assumptions must be derived from the general logical 

axioms of the metatheory since the specific axioms of the 

meta theory (see section IV) do not include any axioms about 

'indi viduals I • These auxiliary axioms do not occur as 

axioms of the object langouage O. Again the legitimacy of 

the approach depends on the relationship bet'ween the formalised 

axiom system 0 and the axiom system for the unformalised 

interpretation of O. 

At this point it will be necessary to look more closely 

at the nature of the terms 'formalised language', 'interpretation', 

'the calculus of classes f, and 'the algebra of logic' t all of 

which playa fundamental role in Tarski's investig~J.tions. 

Unfortunately, Tarski is not very explicit about his use of 

these terms. At the beginning of Section IV I tk~ve given a list 

of what Tarski considers to be the essential characteristics 

of a formalised language. The one characteristio that is 

1. CTF, section ,. 
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important for the present enquiry and serves to distinguish 

formalised languages from formal lanb~ges is the existence of 

an interpretation of the symbols of the formal language. 

'We shall always ascribe quite concrete and, for us, 

intellib~ble meanings to the si~1s which occur in the language 

we shall consider. The expressions which we call sentences still 

remain sentences after the signs which occur in them bave been 

translated into colloquial language. The sentences which are 

distinguished as axioms seem to us to be materially true, 

and in choosin(j rules of inference we are always guided by the 

principle that when such rules are applied to true sentences 

1 the sentences obtained by their use should also be true.' 

The above quotation still leaves a certain vagueness for 

what does 'ooterially true' mean? Surely it cannot mean 

'intui tively true' nor 'true for some model' since the'se 

terms are also surrounded by difficulties, as I have already 

indicated. The 'materially true t must refer to provability. 

in some axiom system. It is the same for the term "concrete 

and ••• intelligible meanings' - how much more concrete and 

intelligible is ffor all classes x, :x: is included in x~ 

than 'nxilx.:x:.'? It is true that 'for all cla.$ses Xl x 1s 
;]. ;]. 

1. CTF, section 2 
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included in Xl has the appearance of being more lll1derstandable, 

but for the reason that it is written in everyday English. 

It must not be forgotten, however, tl1.atthe terms in this sentence 

differ in their use in a rna them tical context from thei l' use 

in colloquial language. They are subject to exact rules in a 

mathematical context; their use in colloquial language is not 

exactly defined. l It is a false impression of 'intelligibility' 

that is gained. There is a psychological impression of 

'intelligibility' because of the paraphrase into colloquial 

language; it is a false imFression because it ic~ores the 

essential difference between the colloquial and mathematical 

uses of the terms. The rules whi ch govern 'for all classes X', 

lis included in' etc. in the mathematical sense would turn out 

to be those rules already formalised in the axiom system from 

which tJ;;le paraphrases were made. 

It may be assumed then tm t I the concrete meanings t 

ascribed to the signs of the formalised languaee are elements 

of another axiom system. It remains to discover between whi oh 

two axiom systems the semantic rules establish this 'meaning' 

rela tionship_ There is no doubt that the formalised language 

1. Ryle, Dilerrunas, 1954, chapter VIII; F. vfaismann, 'Vel'ifiabili tyl 
in Ess!3.:'[s on LoMc and L..qngu8.,ee, edited by Antony It''lew, 
1951. 
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o is one of the axiom systems and, in fact, the one to which 

meanings are ascribed. I£he other is the axiom sys tem for a 

general logie, for example, the set of primitive propositions 

taken from the Principia 1i;atheIlk1.tica, suitably translated into 

the language of the meta-theory. Thus, if the calculus of 

classes is interpreted as a part of this larger general lODic, 

certain sentences of the calculus of classes follow from ti1e 

general logical axioms alone. In this way, the sentences 01, 

and ~. can be proved as theorems in the calculus of classes 
I 

in the metatheory. That this is possible in the meta-theory 

and not in the object language is because of the l~stricted 

number of logical axioms allowed in O. It must be remembered 

that 0 contains only a limited number of loeical axioms schemata, 

namely, an axiom schemata set sufficiant for the deduction 

of all true sentences from the sententia.l calculus. 

This explains the difference in extension of "true" 

and "provable", a different set of logical axioms is taken 

in the meta-theory. The additional assumptions aocouht for the 

fact that Q, appears as a theorem in the mata-language.1 • 

The validity of this approach now rests on thera baing 

good reason for the restriction on the logical assumptions employed 

-1. I have written. It ~ If and It 'lSi"; when atrict].y I should. have 
wri tten "translation oflil. 11 and Htranslation of "i It; but whioh 
one is intended should be apparent from the oontext. Sometimes both 
are understood by ft 0,. It, but here again it should be apparent from 
the context. 
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in the object language. 

Ultimately, it must be decided which axioms are necessary 

and sufficient for the calculus of classes. This in turn 

demands that f~ calculus of classes' be adequately defined. 

It is Tarski's responsibility to provide a precise and 

rigorous definition of the calculus of classes so that there 

may be no doubt as to which assumptions are made for 

it. 

Unfortunately, Tarski nowhere defines what he means by 

the calculus of classes. Trill only reference that is made 

which relates to this point is as follows: 

'The calculus of classes is a fragment of mathematical 

logic and can be regarded as one of the interpretations of the 

1 b f 1 . ,1. a ge ra oogJ.C. 

By "the algebra of logic" Taraki means the follovnng: 

A class K of elements with v and ~ elements of combination 

subject to the set of postulatest 

Ia) a \J b is an element of K when a tl.'1d b are elements 

of K. 

Ib) a C'\ b is an element of K when a and b are elements 

of K. 

1. CTF, section 2. 
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IIa) There is an element 1\ of K such the. t 

a~A =a for all elements a of K. 

lIb) There is an element ~ of K such tbat 

al'l V =a for all elements a of K. 

IlIa) a \J b ... b \J a whenever at b, and a v bare 

elements of K. 

IIIb) a 1\ b = b f\ a whenever a, b, and a f\ bare 

elements of K. 

IVa) a \J (b " c) III (a \I b) 1'1 (a v c) whenever a, b, 

c, and a v (b (\ c) are elements of K. 

IVb) a f'\ (b \J c) - (a f'I b) v (a. " c) whenever a.t b, 

c, and a f'I (b v c) are elements of K. 

V) If f\ and V exist and are unique then for all 

all elements a,of K, there exists an element 

.. a of K such that a 1J .... a -Y and a. f1 -a ... )\.. 

VI) There are at least two elements x and yof the 

class K such that x ~ y.l. 

At least the algebra. of logic is rigorously defined. 

It cannot be said that the sarre is true of the calculus of classes. 

Tarski's readers know only that the calculus of classes is an 

1. Tarski indicates this by referring to Vlhitehead and Russell, 
Principia Ifl8.thematica 2nd. edition, Vol. i, pp.205-12 from which I 
have taken the postUlates in the above forll1_ They are due to Huntington, 
'Sets of Independent Postulates for the Algebra of LogiC I, ::eransla tiol1s 
of the American lTathematical Societ;y;, V, (1904), pp.288-309. 
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interpretation of the algebra of logio defined above. It 

is not clear what is meant by an "interpre ta tion". Presumably, 

"interpretation" is used hare in the sense of "model", Le. 

A is a model of B if and only if there is a oorrelation 

between the elements of A and the elements of B and between 

the operations of A and the operations of B such that the 

elements of A satisfy the axioms of B under these operations. 

But this does not necessarily imply that the algebra of logic 

exhausts the calou1us of olasses. E'or example, the postulates 

of group theory have a model in the domain of integers but not 

all properties of integers are provable from these postUlates 

alone, e.g. the oommutative law of addition. In the latter 

case the postulates of the group theory would not be called a 

formalisation of the theory of integers. Analoe;ously, unless 

all the theorems of the calculus of olasses Were given by 

the postulate set for the algebra of logic, the algebra of 

logic should not be regarded as a formalised theory of t}~ 

calculus of classes. For it is not with the truth of 

sentences belonging to the algebra of logio that Tarski is 

concerned but the truth of the sentences of the calculus of 

olasses. 

Russell also writesl , that the caloulus of classes is 

1. Whitehead and Russell Principia lI'Tathematica, vol.i, p.205. 



- 231 ... 

an interpreta.tion of the algebra of 10g1.c and with the introduction 

of definition of 'c I, I V I , tnt, t ... 1 proves that the 

calculus of olasses satisfies the l~stulates of that algebra. l 

But this is no help in the takk of olarification. It does not 

say what the calculus of classes is taken to be. Does the 

calculus of clas:3es include the axiom of infinity for ex:ample'? 

(The axiom of infinity is crucial for the proof of ~. in the 
\ 

meta-theory M). 

There are two alternative explanations that now account 

for the difference between the extensions of "true" and IIprovable". 

Either there is some axiom set in the calculus of olasses which 

has as consequences the sentences 0( and ~i or there is some 

extraneous logical axiom set, which, together with the axioms 

of the calculus of classes, allow' the deduction of the sentences 

d. and ~ .• , Neither alternative is satisfactor,y. 

first alternative is the case then the axioms should appear in 

the formal axioms of 0 and if, on the other hand, the second 

alternative is the case then the lOb~cal axioms of 0 would be 

unduly restricted. 

The resulting confusion between the a~ioms of 0 and the 

axioms of the meta-theory l\iI is due to one peouliarity of the 

1. ibid. Definitions *22.01 - *22.05 
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formal ma thema tical discipline considered by 'farski. '1' lie 

calculus of classes is part of a more general logic. ('l'he 

other disciplines that Tarski considers in this paper 

possess the same characteristic. The calculus of two-term 

three-term, and n-term rGlations and the generalised theory 

of classes all fall within the province of mathematical logic). 

To place the problem in a clearer light it will be sufficient 

to consider some formalised language, the content of which 

does not form part of logic. rfhere seems no reason why 

this should not be done as Tarsld does not indicate that only 

formalised languages belonging to mathema. tical lOgic can be 

trea ted in this manner. I shall consider some axiom set 

from the axioms of pla~ projective geometry. 

I wish to consider the following propositionsl 

a) for any two lines there is a point that lies in both, b) there 

is at moet one point belonging to two distinot lines and c) for 

any two points there is a line which passes th:rough. them. If 

these three propositions are treated aSaxion~ of some projective 

geometry, they will form a set of axioms of incidenoe for that 

geometry. In order to bring these considerations into closer 

analogy with the pre ceding, I shall call .proposi ti ons a.) t b) 

and c) Itaxioms of incidence theoryttin the same way . that the axioms 

of 0 aTe called ttaxioms of the caldulus of classes lt
• 
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I may now formalise these axioms thus: 

Axiom I (Li )(LjXE x0 (I~Li .I~Lj)' 

Axiom II (Li)(Lj ) (Li ~ Lj ) 

(The difference of type indicates difference of semantic 

categoryl) • 

In a similar way, other propositions from projective geometry 

. may be forma.lised. An approach analoguus to that adopted 

by Tarski for the calculus of classes may be made to this 

calculus of incidence theory, treating the latter as an object 

lano~ge. A newmeta.languaee may be constructed in which 

the objec·c language may be talked about. Following the 

procedure outlined in section IV of this paper it is possible 

to ·construct in the metalanguage the definitions of sentential 

func tion and sentence. The definition of "axiom'· (in the meta .. 

language) will be such that Axioms I, II, and III would be 

axioms under the definition. Also included in thedefini tion 

of "a.xiom" would be axioms from the sentential calculus (as in 

1. For a further discussion of semantio categories, see 
crrF, section 4. 
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the previous definition for the calculus of classes) and axioms 

governing ":". 

The axioms for the metatheory would be similar to the 

axioms for the metatheory M of the calculus of olasses, that 

is, axioms relating to expressions of 0 and the formation 

of these expressions. The notion of consequence and provable 

sentence may then be defined in the metalanguage; the 

definitions would not be difflfi'rent, in principle, from those 

of the same notions for the cla.ss calculus. (The logic of 

quantification theory would be incorporated in the definition 

of consequence) 

After this meta-language has been constructed it becomes 

possible to formulate a convention similar in outline to 

Convention T (Section IV of this pa.per). In fact, Convention 

T may be transferred to the new metatheory exactly as it 

I . stands , if it is remembered that the language referred to 

in the Convention is, what I have called, "incidence thaoryll. 

It still remains, however, to construct some notation 

in which names of the various expressions in the new object 

language could be formulated. This offers no new difficultiesJ 

a procedure analob~us to that exemplified in 1 - 7 on page 

1. CT~', section 3 or section IV of t!'liS thesrlil. 
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of this paper could be adopted. 

The concept of satisfactioh is more complicated 'because 

of the difference of semantic category between the variables 

of the object language. This difficulty may be overcome by 

employing the method of two-rowed sequences which rrarski 

eXPlains.1. The definition' of satisfaction would then be formulated 

as follows, 

The sequence f of points and the sequence ]1 of lines together 

satisfy the sentential function x if and only if these 

satisfy one of the four following conditions: (a) there 

exist natural numbers k and 1 and fk lies on Fl and x = ik,l; 

(b), (c) and (d) as in the previous definition of 

satisfaction2 but with relevant changes made as in (a). 

(It should be noted that "lk ,l" in condi tion (a) is the 

structural-descriptive name of IIIx. L It and not ItIx. x II as it 1.<1· . Kl 

was in the last section of this paper. Also, condition (d) 

will now be divided into two divisions correspondin,'S to the 

two distinct operations of universal quantification over 

points and universal quantification over lines. The symbolism 

employed in Axioms I~III may be transfonmed into a symbolism 

oloserto that employed by Tarak! in his paper by using the 

Lukasiewicz-Tarski notation rather than the Peano.Russell, 

reduoing the sentential cOlmeotives to "A" and UN" ,changing 

1. CTF seotion 4 
2. Seotion IV, p.54 
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the notation of the quantifier flC )11 to "n" and defining all 

other logioal terms by means of these. Axiom I would then 

read: 

Strictly, these changes would be neoessary for the conditions 

(0) and (d) above to be transferred to this theory simply and 

directly. I shall, however, continue to use the Peano-Russell 

notation as I think it is easier to understand in longer 

sentences). 

Results follow which are analogous to the consequences 

of the definition of satisfaction for the calculus of classes. 

"True sentence" may now be defined: .x: is a true sentence if 

and only if x is a sentence and every i.nfinite sequence of points 

and every infinite sequence of lines together satisfy x. 

It follows that the class of true sent,:nces is c'onsistent 

and complete.. . The class of provable sentences, on the other 

hand, although consistent is not complete. There remain 

sentences which are not provable, the negations of which s.re 

also unprova.ble. Such an example is provided by Desargues' 

Theorem or Pascal 'a Theorem. Desa.rguea' Theorem may be written 

in the notation employed for Axioms I-III as. 

(~) (x2) (X;) (x 4) (x5) (x6) ( ( (~=f.x';x;ix;xl~6) .EL7 (Ixl L7 .Ix 4 L
7
) 
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oE1a(IX21a·Ix51a)·E19(Ix319Ix619)·E110(IX1110·Ix2110) 

.E~l(Ix4111·Ix5111)·E112(Ix2112·Ix3112)·E113(Ix5113·Ix6113) 

oE114(IXI114oIx31l4)·E115(Ix41l5·IX61l5)·EX16(Ix1617oIxl61soIx1619) 

.Ex17(Ix17114·Ix1711S)·EXlS(IxlSLr2oIxlS113)·Ex19(Ixl91lO:Ix19111» 

(E120(Ix17L20·IXIa120·Ix19L20»)· 

The trans 1a. tion of tbi s sent enoe in the metalarlguage 

would bea if two coplaner triangles are in perspective then 

the intersections of their correspondi~~ sides a.re collinear. 

It is known that this sentence may not be deduced from Axioms 

I-III f nor its~negation be so deduced. It is undecidable relative 

to these axioms. It is possible to construct theories for 

wl"J.ch Desargues' theorem does not hold. In the meta-theory, 

therefore, any additional geometric assumptions rous t be arbitrary 

to some extent. ,The adoption of any such assumption as Pascal's 

'l'heorem from which Desargues I Theorem may be deduced is decided 

on grounds outside the bounds of the cons tructed meta-

theory. 

For example, it may be proved that Desargu.es' Theorem 

is a consequence of the axioms of incidence for three-dimensional 

projective geometry. This will, of course, necessitate the 

introduction of more axioms dealing with the inCidence of planas 
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with planes, lines and points. If it is wished that the 

geometry under consideration be a special case of the geometry 

of three-dimensions subject to the axioms of incidence, 

then the inclusion of Desargues' r.rheorern or some logically 

equivalent or stronger theorem is no longer an arbitrary 

decision. But, considerations such as these were not taken 

into account in the construction of the meta-theory, 'rlhe 

semantic definition of truth for this lan~3ge does not give 

a truth-value to all the sentences that may be constructed 

in it. It does not give a truth-value for the sentence sta.ting 

Desargues' Theorem, nor does it give a truth-value for the sentence 

IIExlEx2(xlfx2)'" 

Unlike the case of the calculus of classes extra-logi~~l 

axioms in the meta-theory .. are unable to determine the truth 

or falsity of the sentences mentioned in the last paragraph, 

for the translations of them, namely, lIif two triangles are 

in perspective then the intersections of their corresponding 

sides are collinear" and "there exist two different points" 

oontain the words "points" and "oollinear" which are not part 

oftha logical vocabulary of the meta-theory. (I do not 

maintain, I should like to point out, that there is any 

definable distinction between 'logical vocabulary' and some 

'extra-logical vooabulary' of which "points" and "lines" form 
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part; but only that those branches of mathematical logic 

assumed in the meta theory would be insufficient for the deduction 

of such sentences).l 

From the semantic definition of truth constructed for 

,"incidence theory" it may be deduced that '''EXlEX2(X:l~X:2)'' is 

true if and only if there exist two dis tinc t points t but neither 

fIlExIEx2(~fx2)1t is true' nor '"EXIEx2(xl~X2)1t is false' may 

be deduced. If these conclusions were all that the semantic 

definition of truth involved then there would be little 

to argue against, for there would be no sentence tha t could 

be produced which would be both tl~a and unprovable at the same 

time. This was not the case with the calculus of classes; 

both do. and the sentences "6 i were true hut unprovable. 

I have shown that in order to establish the exis tence 

of true but unprovable sentences for the calculus of classes, 

it was necessary to make in the 11lsta-theory addi tioml 

assumptions, that is, to have in the axiom set of the meta­

theory sentences which may be translatable into the object 

language 0 but which occur there neither as axioms nor 

theorems. For the calculus of classes it was neoessary to ., 

introduce some axiom from which the transla. tiona of the sentences 

~.i could be deduced in the meta-theory~ 
I 

In the case or· 

1. For arguments against the theory that there is a division. 
between logical vocabulary and scientific vocabular~, vide ~uine. 
'Carnap and Logical Truth' t in Lo5io and Lanr,u .. "te;e, 1962. p.53 et 
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the geometry sketched above, additional geometric ass~~ptions 

may be brought into the meta-theory only with a subsequent 

loss of generality for the application of the geometric 

theory embodied in Axioms I-III. Since IIExlEx2(Xlfx2)II is 

independent of these axioms, it would be possible to have the 

translation of it, namely, "there exist two distinct pOints" 

as an axiom of the meta-theory. On the other hand, for 

exactly the ~~ reason it is equally possible to have the 

negation of it as an axiom. To do either would result in 

The point to notice is 

that the truth-values would be different depending on the 

axiom chosen. It wo~ld thus be possible to constn~ot a 

semantic definition of truth reslllting in a contradiction without 

altering either the definition or the semantio rules of 

translation from the object'language into the meta. ... la.l1e,'l'I.1age. 

Of oourse, it is possible to say that a 'sensible' geometry 

demands that there exist two distinot pOints, but this is to go 

beyond the object langua&"e and the meta-theory designed for 

the construction of the definition of truth. 

It may still be objected that this is merely playing 

with words for Tarski has said that the ,language to ,be investigated 

ha~ a vocabulary which has 'quite concrete. and. for us, intelligible 

meanings,1 ascribed to its constituents, whereas in considering 

1. CTF, seotion 2 
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the geometrical theory I have merely offered a translation 

of the expressions occurring in the formalised language in 

terms of a vocabulary which is part of another fornnlised 

language. 

In answer to thiS, it is possible to ask for some 

concrete and intelligible meanings to the terms of the object 

language to be produced. 'I have given an outline of how 

the semantic rules of translation give a 'meaning' to the 

terms of the object language, and in this case I have (~ven 

points and lines as the 'meanings' of the signs occurring 

in it. Now I do not know what Tarski had in mind by the term 

'quite concrete and intelligible' but it seems to me th~t 

expressing the meanings of the sentences of the object lal1t:,oouage 

in terms of points and lines is as far as one rr~y safely go; 

to demand more would be dangerous, As I have said earlier in 

this section, the translation of the object langua.ge in terms 

of points and lines at once gives the impression of 'concrete 

and intelligible meanings' attached to the signs of that 

language. But the impression is a false one, for although 

"points" and "linesu are words in common currency and. thereby 

gain in intelligibility if not in 'concreteness', it must 

not be for&,utten tba t for the object language "points" and 

1I1ines" are used subject to exact rules. in ordinary discourse 

they are not. Nor should there be any confusion between the 
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mathematical use of the word "point ll (as an element of a 

Ira thematical sys tern) and its use in a perceptual sta it.ament, 

since there would be a confla tion of empiric and non-empiric 

concepts. K8rner has pointed out that to do so would be to 

overlook the difference in kind between the two concepts; tl~ 

former is an exact concept ani the latter an inexact 

1 concept. 

The only alternative to giving 'concrete and intelli6,"ible 

meanings' to the signs of the object language is to give another 

na thematical 'meaning' to ea.ch of the signs. 'l'his entails 

that the semantio rules of translation from the sentences of 

the object language to the metalan@lage will effect a 

transla tion between tvrc axiomatic sys tems. There is no way 

of deciding whether there are tlYO distinct points, when "point" 

is used as in the translations in the meta-theory of Axioms 

I-III. To ask 'Are there two points, distinct from one another?' 

is to ask what Carnap calls an internal question. 2 • By an 

internal question Carr~p means a question which may be 

answered by reference to a linguistic framework, in this case 

the framework being an axiomatic system of geometry, since a 

1. K8rner, The Philosophy or 1t'lthematlcs 1960, pp.58 ... 62 , 101 ... 111 

2.. Carnap, 'EmpiriCism, semantics andontology' in Se~lntics and 
the Philosophy c.r Lang'lll.1r:e, edt LifiSky.1952, p.209 at seq,. 
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linguistic framework for "points" and "lines" considered as 

physical entities would not be satisfactory, as I have 

shown. 

Other languages, and in particular, the system S 

1 which Carnap constructs do not need an axiomatic system 

for their meta-language. Carnap's 'rules of truth' for the 

system S allow the truth-value of any sentence of S to be 

found wi thou t recourse to any axioms of the meta-theory. 

But this is so because the 'rules of truth' are also 

translation rules which translate the sentences of S into 

sentences about the physical world. 

is true if and only if Chicago is a harbour" allows the 

establishment of "pr2 (in1) is true" on the basis of 

observation. 
I > 

For formalised ~~thematical languages, on 

the other hand, no observation will provide sufficient grounds 

for asserting sentences of the type "Exl EX2 (Xl',{X2)" ~ 

I think I r~ve said sufficient to show the impor~~nce 

of having axioms in the meta-theory when the object language 

is mathematical in content (lncontrast to an object language 

of 'physical object' content as in system S above). On this 

point, however, I think Tarski would agree, for he writes: 

1. For the system S, see of this thesis. 
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'Corresponding to the three groups of primitive 

expressions, the full axiom system of the meta-theory 

include three gro:'ps of sentences: . (1) axioms of a general 

logical kind; (2) axioms whi oh have the same meaning as 

the axior.,s of the science under investign Han or are 

lord.cnlly stronger than them, but which in any case suffice 

(on the basis of the rules of inference adopted) for the 

establishment of all sentences having the same meaning as 

the theorems of the science investigated; finally (3) axioms 

which determine the fundamen tal properties of the primitive 

concepts of a structural-descriptive type. ,1 (The underlining 

is my own) 

Even though Tarsld admi ts the need for some axioms of 

the second type, it is hard to understand on the hasis of 

the previous discussion in this section how logically stronger 

axioms may gain ad~ission into the meta-theory whilst not 

admitted into the object theory. It ieat this point that 

I disagree with Tarski for I do not understand how the 

stronger logical axioms are to be justified. It is relevant 

to consider what Tarski says on the Sllb j ect of these axioms. 

1. CTF, section 4 pp.210-211 
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He writes: 

••• we are here interested exclusively in those 

deductive sciences which are not 'formal' in a quite special 

meaning of this word. I have, moreover, brought forward 

,various conditions - of an intuitive not a formal nature -

which are satisfied by the sciences here investigated: 

a strictly determinate and understandable meaning of the 

constants, the certainty of the axioms, the reliability of 

the rules of inference. An external characteristio of this 

standpoint is just the fact that, among the primitive 

expressions and the axioms of the meta-theory the expressions 

and axioms of the second group occur (of (2) above). For as 

soon as we rei§ard certain eX'Qre ssions as in tellil'si ble t or 

believe in the truth of certain s~ntences, no obstacle exists 

. '1. to using them as the need arises. (The underlining is 

my own). 

To be.fair to Tarski, however, it should be pointed out 

that the sciences he investigates are t:1ken from general logic 

and not from a:ny geometric eye tem. For geometry, although 

it is not strictly impossible to believe in·the truth of 

certain sentences, such a belief would constitute a very weak 

1. CTF, section 4, p.211, footnote 1. 
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foundation for the use of those sentences in the meta-

theory. Even if the case of 'there exist at least two 

distinct points' seems pathological, other sentences may. be 

brought forward which are less so. For exam~le, if some 

axiomatised Euclidean geometry were formalised by means of 

some procedure analogous to Tarski's for the calculus of classes 

with the single exception of the axiom corresponding to the 

parallel postUlate, then it would be clear that belief in 

the truth of thG parallel postUlate would be irrelevant. 

For, if the axioms of that system are independent, and in 

particular if the parallel postUlate is independent of the 

other axioms (as in the system given by Veblenlo ), the 

sentence that is the translation of the postUlate in the object 

language is unprovable but will still be a sentence of that 

object language (providing that the rules of sentence formation 

fOT.the language allow for its construction). In this case, 

as in the case of Desargues' 'llheorem considered previously, 

an appeal would have to be iia.de to an axiom in the meta-theory 

that has no counterpart in the object theory. It is not 

possible to appeal to a belief in the truth or falSity of 

1. . Veblen, 'Foundations of GeometrY't in f,ionor;raphs on 'J.lop:1cg 
from Modern Mathem'1tics, 1955, pp.3-49. 
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this sentence to determine its truth, for the existence 

of alternative geometries, Lobashevsky's or Riemann's, 

allow a contradictory sentence to replace the parallel postulate 

and still retain the consistency of the axiom set. In this 

case no help is given by an appeal even to applicability 

since both Euclidean and non-Euclidean geometry may be used 

in physics. 

I shall now give a brief sununary of the preceding 

paragraphs on the subject of geometry. For 'true but unprovable' 

sentences to occur in the formalised language of a geometry , 

that geometry needs to be incomplete and also a logically 

stronger axiom set must be included in the meta-theory. 

The question then arises of how to justify tile stronger axioms. 

An appeal cannot be made to an intuitive belief in the truth 

of these axioms; the 'intelligibility' of the translations 

in terms of the ordinary use of the words occurring in the 

meta-theory was found to be illusory; perceptual points and 

lines as translations of the expressions of the object theory 

were unsatisfactory. 

Returning to the calculus of classes in which Tarski has 

shown the existence of 'true but unprovable' sentences, the 

argument loses a little of its weight, since here, .. axioms 

were introduced in to the meta .. theory which were members of a 

set taken from a general mathematical 10&io. In this case t 
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there may be some defence in appealing to 'intelligibility' 

or 'belief in the truth of certain sentences', since logical 

principles could be said to be self-evident. Such a 

view of logic would be a little naive in the light of the 

history of mathematical philosophy. Even the more 

sophisticated notion of the 'analyticity' of logical truths 

and Carnap's 'L-true' have their critics. l • 

For the calculus of classes, extra axioms were needed 

in the meta-theory in order that the sentences cJ... and of could 

be proved to be true. The latter demanded that some axiom 

of infinity, or a modified version of that axiom be included 

in .the meta-theory 1II so that the existence of an infinite 

number of individuals could be proved. But the axiom of 

infinity or the statement that there are an infinite number 

of individuals has itself been doubted by Russell. 

'From the fact that the infinite is not self-contradiotay, 

but is also not demonstrable logically, we must conclude 

that nothing can be known a priori as to whether the number 

of things in the world is finite or infinite. ••• The axiom 

of infinity will be true in some possible worlds and false in 

others; whether it is true or false ill this world, we cannot 

tell. ,2 

1. vide, Quine , From a Lo~cal Point of View, 1953 pp.45-46. 
also M.G. White, !.(.lhe Analytic and Synthetic I in John Dewell 
Philosopher of Science and Freedom, 1950, pp.;16-330 

2. Russell, Introduction to lTatherra tical PhilosophY,1930 p.143 
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There are still other difficulties involved in the 

assumption that there are an infini te number of individuals. 

Kneale writest 

'What are the individuals of which Russell speaks, 

and how can we tell whether there are infinitely many of them? 

Russell says that he intends to refer to those things, ma tever 

they may be, which can be named by logically proper names and 

cannot occur in propositions except as subjects. But he 

admits that it is difficult to indicate such things directly, 

and he even suggests that there may possibly be none because 

everything which appears to be an individual is in fa.ct a 

class or complex of some kind. l • 

As in the case of the geometries considered above, there 

is little to be hoped from an appeal to a belief in the truth 

of the additional assumptions made in the meta-theory; Tarski 

is not more explicit than Russell about the term 'individual'. 

I shall now summarise the oonclusions of this section. 

It was found by examining the proofs of some of the theorems 

in the last chapter that the exitence of 'true but unprovable 

sentences' could only be deduced in the meta-theory by the 

assUlllption of additional axioms whi ch, though statable in the 

vocabulary of the object lallb~ge, were not assUllled there. Since 

1. Kneale, Vi .M. rr"le Development of Logic p.669. 
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these axioms were principles of general logic, there seemed 

no satisfactory reason why they should not appear in the 

object theory as well as the meta-theory. Also, it was 

found that for geometrical theories the existence of true 

but m1provable sentences would be extremely artificial since 

additional axioms in the meta-theory would be hard to justify. 

The calculus of classes was put in the same predicament by 

the assumption of the axiom of infinity which was necessary 

for the deduction that the sent,mces 0" are true. 
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Section :1 

I 

In the last section I described Tarski's work on the semantie 

conception of truth for a cart in formalised lan::;uLl.ee - the calculus 

of classes. In the last chapter of that section I gEtve my criticisms 

of Tarski's definition based for the most part on the apparent 

difference between what is cOlmted a.s the oalculus of classes in 

the object la'1g'L'k1.0'8 and what is counted as that calculus in the 

metilanguage. In :r;articular t I disagreed wi tIl Tarsld I s conclusion 

that for this lcm,').l.:'1ce there could be tru.e but unprovable ~)entE.nces. 

'1'he remi::l.ining sections of rrarsl:i' s pa:per deal with thep::coblern 

of definin;; the sema,ntic conception of truth for other Ian [;'Ucl/:,e8 • 

Pirstly he succeeds with tho language he calls the calculus of 

relations, defining f1true r
: in ternL; of satisf,~,ction analogous to 

the definition for the calculus of classes. LIe then deals. wi th 

the lOGic of li:any-terr::eJ. relations which resembles tho ,~;econd-

order predicate calculus. Again a definition is given. 

The last laJ:1b'Ua..;e with which he deeds is wMt he colIs lthe 

general theory of classes', a language resembling that of Itasce1l1 s 

in the pr:ill.£.:iJ2.ia L:at.h;ematica bu.t without the axiom of reducibility 

and the SyTIlbols for many-termed relations.1 Thelaneua;:;e considered 

1. Instead of the axiom of reducibility, there are an infinite number 
of axioms vlhich Tarski cil.lIo pseudo-definitions. rany ... termed relatidms 
ce.n be i11troduced by the Kuratowski-Wiener device of classes of ordered 
pairs, which are in turn defined as classes of clas$es. 
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is then a set-theoretic lan.;uage com]:ur3.ble to those of 

Russell, Quine, Zerme 10, etc • ,':hich were'; discussed in the first 

two sections of this thesis. 

'1'ransla tin!5 Tarski IS lan[,'1W.ge in to a more fo.railiar one, the axioms 

he chooses are: 

1. (Exn+1)(lX~'h:n+l;: p) (nxiom scherrlE1.) 

where p does not contJ.,in xn+1 free. 

(axiom of il1finityl) 

The superscripts indicate tYpe-levels. 

, ]'01" this langua.,.-;e Tarski o.ttt;mpts to construot a (lefini tion of 

truth in terms of satisfaction, but finds th.,-~ t such Cl. definition 

is oblJtructed in the meta-theory by the lack of variables of bigher 

type than any in the object language. 

'In the language with which we o,re now dealing variables of 

arbi tarily high (finite) order occur: consequently in applying 

the method of unificition it would be necessary to operate with 

expressions of 'infinite order'. Yet neither the meta-laneuCl.0'e' which 

1. l1:hi8 translation h3.8 been male in terms of class membership so that 
it can be seen "'oS set-theoretic. Tarsid's o,m formu.lation allows two 
readings of ~C(Y): IX has as an element the object Y, oI'thE objeot Y 
has· the property X' (CrrF p.243) i:tuine' s objectior1l3 to the notation X(Y) 
in co:n.~ection Vii th Ell bert and Ackerrna,.vm, Prinoiple.s of .t[,} thepla tical to:,:io, 
viOuld apply equally to Tarski I s notation and the dual reaJing of it which 
Tarski gives. vide. W. ~uine, Sei-'rl18orya,11d its I,00ic. Cambridge, 
lrass. 1963. In connection with this axiom of infinity see the a:ppendix 
of this thesis. 
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forms the basis of the :present investic.>'S tion~~, nor G.ny othel' 

of the ezisting lcll1gtlas.s, cont,,:.ins such expressions. It :is 

in fact not clear \Iihat intuitive meaning could be Given to 

1 . ,1 sue '1 e~{press~ons. 

He then enquires whether tho di::ficul ties he encounters 

in trying to define the notion of truth are accidental or if 

they are a consequence of the lan::.;Ui1gG studied. In other 

words: is it loc;ically impossible to construct a definition 

of truth for this languz..:;e which satisfie;; convention 'r? 

He then g:i. ves a much simplified account of Gl:3del' s theorem 

and concludes that no !.latter how a class of e::r.:preGsions 

is defined in the met a-la.'1gua se , this class must have members 

which are not in accord wi th condi tion ~ of convention 'r. 

I. e. Suyrpose a class, r.er, of eXl)ressions is defined, then 

there must be an expression in the object In.nt).lilge such 

that: 

x ~ Tr if 0.1'1,1 only if p. 

'X' is here the name of an expression and 'pI the translation 

of that expression into the meta-lan,sl.w:;;e. As a result no 

definition Y!'.r.1.y be Ci ven for the semantic concept of truth which 

does not contravene convention '1'. 

-----------------------------------------------------------------------
1. C'rF. p.244 
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In the post-script to his paper, 'J:arski abandons the 

idea that to talk of expressions of infinite order has no 

clear meaning. InstE):ld, by utilising the theory of transfini te 

ordinal numbers he then talks of allovring in the rneta-1al1i;uage 

variables of order greater t:b.fln any in the object lanf!,'ullt;e. 

For the object lanc;uaS8 under investigation where the variables 

that occur r1..ll1 through all fini te types the meta-l8,n[;uag'e nee,is 

a variable of order (.) • A definition of truth whicr, ;sj~tisfies 

convention T can then be C;i ven successfully. As a consequence 

of this definition sentences of the follow"ing kind r£ay be 

proved: 

• X €. lI'rue if and only if p. 

where ';{' is the name of a· sentence of the object lan(:;ul1ce 

which tra.nslates into the meta-lan::;uage as 'pt. Tbe class of 

provable sentences may be defined without the use of these 

variables f and GtHel t s theorem;i ves for this class (Pr) 

the result noted on the previous page tInt there is a.."1 expression 

of the object languBe0 such tr~tl 

X ~ Pr if and only if p 

where 'X' is the name of that expression and '1" its translation 

into the meta-laneuage. Since it also follows that if 

X E. Pr then X Eo Tr and if (III X) ~ Pr then (AlX) E:. Tr, the expression 

designated by 'JE' must belong to the class of tru<,; sentences but 

not to the class of provable sentences. 
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There are for this langu.age, if Tarski t s reasoning is 

COl'-Teet, true but lli"1provable sentences. The proof of this 

assertion rests on G~He1' s theorem appli e(1 to the general 

theory of classes. G(5del, independar:tly of 'rarski, came to 

the same conclusion that such sentences erist, but G1:ldel relied 

on a naive notion of truth rather tha.n any technical concept 

of the kind Tarski defined. From GCldel onwards, it has been 

taken for granted that there are uri trJ1letical sentences which 

a.re tru.e although they ar(3 lU1provable in a formalisation of 

tha t ari thme ti c. Since the ari tbrIletic notions of 0 and 

successor can be defined \vi thin se ~;-theory it has been assumed 

1 that Calel's theorem carries over to set-theory: there are , 

sen tencen of set-theory vihich are true but cannot be rroved in 

1. e.g. 1.1. Dummet, 'In view of the fact tha,t Gtlu.",lt s theorem 
applies to any systern which contains ari tbmetic t there YlOuld be 
an ari ti1lJl.etical statemcnt expressible but not provable in this 
system, which we could recognise to be true. 1 1.~. Dumrnett, 
'The Philosophical Significance of Ged.el' s r.1:heorem', 

'Every axioma.. tic theory, rich enuugh to contain a formalisation 
of aritbIlletic, is either inconsistent or contains a fonnula such 
that n8i ther it nor its ne,c,"atiOll is rJrovable wi thin the theory and 
such that its truth can be demonstrated. by extra-theoretic arguments.' 
S. Kerner, 'On the relev0..:.'1.ce of Post-G8delian Mathematics to 
Pb.ilosophy', Problems in the PhilosoDlrr of },Ir:,them'EL ti.cs, edt 
I. Lakatos, Amsterdam 1967 t p.124 
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a formalisa.tion of set-t:1eory. 

In the last section I cri ticizcu 'rardd':3 definition 

because i·t led to the odd conolusion tha.t for tl1G Iml,) .. l.:i,:.;e 

oon8ide1'8(1 in that section there "<,teTG tru·:;; tnt i111l.lTOVable 

sentences. 

\Ias due to the different sets of axioms which seemed. to be 

elilployed in the t",r;o 1 all L;Uci,{So S : the meta-languai.se und the 

object lant';'llD.ge. 

I shall argue tha t Tal'sj~i Call110t aS~~Ulae 

that oertdn inri:ilicr3,ti0l1S of Gl;l d.e 1 I s theOl~'em on the incol;'l;letabili t;y 

of arithmetic c.:1rry over to the set-theory in which that a.ritJllEetic 

is expressed. I shall 1:;e;"1n b,>, ef_n .. mining GCliel t s theor£;)il for 

arithmetic in some detail. 

Gl,Well establishes ~ oorresp0l1denC0 between the expr,:,)0sions 

of tb.e fOI'f.1alise'd ari tJ:ll:cetic lanS'W1E:e and sequer;,ces of such 

expressions Yli til the natural nUiilbe. s. He then shows that certain 

• mata:rIlD.thematical relations betv.reen expressions of thcobject 

lan,:;uaeEl hold if an,d onlr if an a:d tlmatic relation holds bCltween 

tho nwu'ber,:J corresponding to the ox:pros3ions. 

corrGsponding to an expre3sion of the object lanb1..lllge is cS\.lled 

1. K. G8de1, "Uber formal unentsclleidbare Slftze del' Principia 
l"athernatica und vel'i'Jamite Syste11l8 I l\;ol1atchefte fUr Il1.thematik und 
HlYick, vol. 38 Pl).173-198; the foliowing is a paraphrl3.se of " .. 
Geidel's a.r;::'''Lm,ent, follo-Iving KleGh'l€l t ,Intro,iuctlon .t~ !\~et::;fJath.€:1\ati..c8 t 
,Amsterdnm 1952. 



- 263 -

the Gedel number of tl1il t expression. Consider the fo110'11n;; 

metamathematical relation bat,/cen aYl expre3sioYl of the object 

lal1g'l111{Se ani a sequence of expressions of the object 

P(A, :a): A(x) is a,;ell-formed forr;mla with free 

variable x and B is a sequence of v/ell-formed formulas Guch 

tha t n is a proof of A(ll) whe'r'e .n is the l1tuneral of the object 

languaGe exprGssing the Gddel nUIitber of A(x).l 

To this metamathenk":l. tical reI a tion there corresponds an 

ari thmetio relation that holds bet,/e(;n the Oeie1 numbers of A 

and B, when and only when the rata,mathennUcal x'elation holds. 

If the aritbJriotic relation is denoted by tR' the above equivalence 

is e~c:pressed by '?(A,:a) if and only if R(c(A) , g(:8» I where g(A) 

is the G~Liel number of A. 

Gadel introduces the concdpt of numerioal 9xpressibility. 

An n-terrn ari thmeUc relation F(x
l

, ••• xn) is muncrically expressed 

in the object lar1g1Ulge if and only if there is OJ well-formed 

formula of th'3 object laTIt~age wi th :n free variables 
,,,~ ~, 

'l(xl, ••• ,x )~that if F(a.l, ••• ,a ) holds then ~ F(~lt •••• ,a ) - -n n ~-xl 

and if F(al , •••• ,a ) does not hold then'r NF([l'I, ••• a ) for n . ---n 
2 

each n-tuplet of numbers. Since the definition of the arithmetic 

1. frha object lanp-uaze has terms which fu.'1ction as nUi11erals e.g. 
0,11'(0), F[F(o)l, Ftli'(F(O)]~ , ........ (GCMel of cit.p.177) and these 
e:.;;:press the numbers 0, l,:2, 3. • •• • • • Thus, the nUIllber ,is e :<:pressed 
by l!'{F tp( 0 >l! 
2. From here on expressions of the object 18l:l.t\Ul,s·(~ a:re underlined 
vrhenever oonfu;310n coull arise i3etwecm expressions of the objeot languat'El 
and expressions of the h,e'ta-langua.ee. 



- 264 -

relation R is primitive recur;~ive and sinoe all primitive 

recursive relations can be munerically expressed in tl1e 

object lant£,uage, it follows tl13.t there is a vrell-fo:rr.'1ed 

formula of the object lant':,ruage liCy,]') such tha:t 

if, for two numbers a l ,a2 ,R(al ,a2) holds then 

\- g,(ill 'il2) and 

if, for tvvo l~umbers a l ,a2 ,Il(al ,a2) does not hold 

then \- N gGl ,1?2) 

'rhe incompleteness theorem t£1y noV{ be proved. 

SUi:Jllose \- (:r)IIIE,(lh,;y) where :p is the Gl1del nu.r!lber of 

Cl!)"'E(.;;;,;[) then there would be a sequence of well-formed 

fOrL'1ulas ~ which ,muld be a proof of the well-formed formula 

(,;y)Nli(~,,;y). I.e. p«i)~B(~,;[), ~). Therefore, 

R(g I (,;y)"'E.(~,,;y~, g(E,)) by the equivalence of the arithmetic 

and metamathen~tical relations. Let g(]) = q. Then, since 

R is numerically expressed by li,rli(~,.9). From the predicate 

calculus incorporated in the object language it follows that 

language to be consistent, :Lt follows that it is not the case 

Having esta.blished that it is not the case that 

I- ll)III!l(~':i) if the obuect lan0"Uage is con:,istent, it follows 

that no sequence of well-formed fonnulu.s is a proof of 

(,;y)N!i(J2,,;y). 'rhus, it is not the case that R(p,l) nor 
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R(p,2), nor R(p,3) •••••.•• (Again from the eCJ.1.:tivalence of P 

and R). Since R is numerically expressed by :R it follows thclt 

If the assumption that the object ls...nguage is II)-consi stent is Hl:<:tde, 

it is immediate that it is not the case that )- ,., (X)'" B:C12,X) • 

On the assumption that the object langUc'1ge is tAl-consistent, it can 

:L'his is the incompleteness theorem in it syntactic sense. 

Generally, however, more is cl::dmed for the GULel 

incom~)leteness theorem than this. There is also the consequence 

tha t there is a. true ari thru8tic assertion tha.t cannot l)e proved 

in the object languaee. For the truth of (Y)NR(p,y) can l)e seen 

from the truth of ~R(p,1),"'R(p,2), etc. 1'he well-formed fonmla. 

which expresses this proposition in the object lanQ1!:1{;'e is 

(;Y)N}'i(J2,;Y) which has just been ahoi'm to be unprovable. 1'he 

existence of a true but 1.L.'1prova.ble sentence of the formalised lant~;uage 
1-

has been sho'lom. It is at thi.s point that a leap is made in 

transferring this semantic implic~ltion of GUdel's theorem to a 

formalised set-theoretic 1ana:uage. It is claimed that arithmetic 

can be incorporated into abstract set-theory by mes.ns of a series 

of definitions, defining numher in terms of sets. There a:J:'e of oourse' 

1. 1J.1his 'bas been disputed Goddard "True and Provable" !1in1, 1958 
pp.13-31 \Ii ttgenstein Ref'Jarks on tb:; Foundations of Mathem;s,tics I 
Oxford 1956 
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many vmys in ,:hich this Illay be done, and the method chosen 

will depend rartially on the set-theory chosen. 1. 

I shall suppose that a set-theory L1as been eho sen and 

that in this set-theol'Y a construction of arH})Detic is 

attempted. A construction of aTi thmetic VIi thin sot-t:18ory 

is reckoned as successful if the c.eflnition of '0' and 

'successor of' C2n 1)e given in terms of sets only, in such 

a nay as to preserve the laws of aritl1rnetic.
2 Whatever 

definitions are Given at leu.si; the +'" .I.~ve PeOllo [1..):iorr~s nu;;;t 

be provable. :5 Three of these dennud in adJition to '0 f a.Hd 

'successor oft trot the term 'nt.l.Ii1bGr' be defined, for each 

of the following is a Pea .. '1o axiom: 

(i) 0 is a nun:ber 

(ii) • the successor of a nU:ilb8r is a DU!i1'Der 

(Ui) if P(O) and for each n,P(n):lP(successor of n) then 

for each n, if n is a nUJub<;;r then P(n). 

It is necessary then to define 'munber' as ,,'ell as '0' al:'ld 

'succe;;;sor of'. (As the u):1i V21'se consi<,ts of sets, the 

extra clause in (iii) - the indti.Ction schema 'if' n is a nun:he:r' 

1. Clearly a set-theor,y wi th tYf,e-distinotions will not aHo,; a 
d8fin1 tion of nu.nber which has oixed types. J?or a comparioon of 
set-th8ories see ,~nine IISet fl'lv:'!or~r and its Isor;i ell. 

2. W.~uine, 1Set-theory and Its Lobic' f p.81 

3. This is a. II!inir,~a1 condi tion. It is also necessary to give a 
defini tion of f + I and f. I, to satisfy the usu:11 recursive definitions. 
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is necessary since otherv7ise the induction schema would 

imply the. t all sets had. the pro}Jerty I) \;hich is not desired 

since in the sot-theory there will be soots w~lich are not 

nU;7lbers, although all nwnbers will be sets.) 

If Vie 8up~)ose th'1 t the set-theory chosen i8 one vihich 

allows mixed types, the definitions Illay "be given as fol10Y1s: 

(Iv) 0 = df the nul set, i.e. ¢ 

(v) tho successor of x,S(x), = df the set consisting 

}x11 solely of x, i.e. t } 

(vi) the set of nur.ibers = df the intersection of all 

sets containing 0 !1!d closed vii til respect to the 

operation'sucCGGsor of' 

rot is clear that the first two Pec .. Ylo axioms are satisfied 

by these ·definitions. The axiom schema of induction follows, 

for if p(O) and (x){ll(X:):>P(S(x» then P determine's a sot 

thD,t contains 0 aIlei is closed with respect to 'successor'. 

l~'ovr if y(lJ, Y belongs to everJ such set and therefore p(y). 

It seems then as if the constru.ction of arithmetic within set .. 

theory is successful. Permo' saxioms a.ppear as pro \Table theorems 

1. essentia.lly Zermelo's 'ethed ''Untel'suchenden Hbel' die 
. Grundlagen der 1,Zengenlehre' :~;'l. theu:'1 tische Ann:11en 65 
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wi thin the tLeory \."11en defini ti on (i v), (v) and (vi) are 

given. 

Since G(1del t s theorem was proved originally for a system 

of arithmetic which, apart fr)IU the propositional calculus and 

the predicate calculus of order 113, includes only the Pf?ano 

axioms, it seems that the results of this theorem 11lUSt carry 

over to the set-theory in which arithmetic has bsen constructed.
l 

However, Glliel' s original the orem eli d no t need a choi ce 

of terms to fune tion as the natural l1'Lmbers. The uni ve:cse of 

discourse - the value of the variables -,ras lind te(l to the 

nwnbers, the only constant terms being '0', and its Sllccossors. 

The Peano axioms included in the system are the trJ.I'ee tba,t do 

not mention number at all, i.e. (x) (S(x) 1= 0), (x)(y) (S(x)=S(:r})x=y) 

and the induction schema (iii). 2 Since there are only mUIllJers 

wJ:rich can be values of the variable, there is 110 se t 1'1 conSisting 

only of the na tura.l 11wabers to define. The same may be said 

of the treatment Kleene e;ives. 3. His object langu:lg-e is 

the proi,osi tional calculus, the first-order predicate 

calculus, the same three Peano axioms as for.G(1del's language, 

1. K. Gadel, op.cit. pp. 177-170, 190-191 

2. ibid. p.177 

3. S. Kleene, op.cit. p.82. 
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recursive definitions of addi tiO;1 and mul til)lication and 

various axioms of identity. Clearly, there will be no 

necessi ty for a defini tion of nUJliber since here ag'C;,in ther(~ are 

only numbers admitted as possible values of the variable-. 

The problem now is to prove Gl:)del' s theorem for a sye tam 

in which there are other objects besides l1UlTibers. 'rhe 

set-theoretic construction of the numbers that has just be(;ll1 

outlined is one such lane;1..k1.ge. As before, a corres i-ondence 

may be set up between the expressions of the lrul,:;u::1..c;e (and 1111 

sequen(~es of such expressions) and the natural numbers. 

In thi s way the metamC1 the:.la ti cal pr ed.ica te P and the 

arithmetic relation R co:r:respond Le. 11'0'1' any two expressIons 

of the lani?,;uace, A and B, P(A,E) if and only if 

R(g(A) ,g(E). The idea of numerical expressibi Ii ty is slichtly 

changed, for whereas in the formalised ari thmotic case there 

was no choice as to vlhich terms should be re,~!1rded as 

corresponding to the nwnbers 0,1,2, •••• , a decision 

must be to.~\:en as to which sets in the lanb'Uage are to rer;resel1t 

them. Following Zermelo I hmre , ... but 

it should be remembered that another choice 'IfaS equa.lly 

possible; von l~eUl1l!3.nn took p,til,t,s,{p\\ , ... 1. After 

1. J. von. lTet1111al'l1l, lI;~ur Eil1filhr'J.ll,g der tx':msfiniten Zr.,hlen" 
Acta I..Ji tterfl;rmTl ac Scientia:r:ulil Rer>;iCle Unt vers! tatis Irlmr~!lricae 
]'rancLsco-Jo.§.92Qinae (sect. scient. ma.th.) 1,1923 pp.199 .. 208 
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this decision has been taken, the J.efinitiol1 of numerical 

expressibility can be given. The arithmetic relation Ie is 

expressed by a well-formed forr:mlas of the system with two 

free variables li(~,~) so that, 

(i) if R(a
l
,a2) holds for a pair of number a l ,a2 then 

\- R(~l &2) 

and (ii) if 11(a
l

,a2) does not hold for a pair of numbers 

al ,a2 then h, B(Sll ,51) 

Consider the vrell-formed formula (J:)fII n(n,;y) where p is the 

GHdel number of the vlell-formed formula (.Y~ EC!£,;~) v;l1ers Z; 

is a free variable. \Je are now in a position to prove that 

The proof is identical to the 

proof given preV'iously for aritbmetic. 

is consistent, (.Y~E(J2,.:i) is unprovable. If now we attempt 

to show that "'(;r)IIIE,(lhZ) is unprovable proyided that the langlk1.g(;: 

is lIo\-consistent, the original proof fails. ,I.nthough we can 

show thaI:; it is no·c the case that n(p,l), nor n(p,2) t nor 

R(p,3) etc. o.nci thence that h'EClhJJ, hIlE(R,'£), r 1\1 11(.12,3) etc. 

we may not say that therefore ... (Z) N li(,I?,;y) is unprovable 

for there are expressions in the. Lmd.uage besides 

f;, tf; 1 , \ \ f; 1 \ , • • · · · (1. e. 0, 1, 2, ••• ). The only conclusion 

we tl8.y rea.ch is tba t 1\1 Cd t ;rE.~~ ;:) N R(Jl,z)} is unprovable which 

Theundetidability of 
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Choosin~~ a,;other formula 

will give us the incompleteness theoren. Suppose we 

choose the well-fo:rr;led forL1ula (y) [ y<rr ,) AI gC~hl)j with 

free 1£, then this formula will have a Gtktel number, q, say, 

and Vfe may shovr th.1.t both this formula wi th .9. substituted 

for the free variable 1£ and its negation ar'e unprovable 

provided that the lan[,'1lace is l<.l-consistent. Suppose that 

(y) \ iLE.li":l '" Ei(.9.,iL)) is provable, then there would be amllnber 

k such that R(q,k). Since R is lTwnerically expressel by 

li it follows that li(.9.,k) is provable. 11.1s0, if x is a 

number \- ~~.N (where '1S' is not a variable but the term 

representing the number x). Hence ls(fi is provable. By 

the predicate c~lculus tll1.t is incorporated in the 1ansuage 

Assuming consistency (iL) \ iLE.l{'N E,(.9.,1')1 is unprovable. ~'ve 

may now prove tlnt the negation of this formula. is unprovable, 

provided that the set-theory i3 t..3-consistent. As before, 

since (I) l!6~i:> IIIE(.9.,l:)! is unprovable, it is not the 

case tr~l,t R(q,l), R(Cl,2) ••• lienee r III £1(90,1) , \- ... g(,9,,£,), ...... 
and if the set-theory is I.)-consistent ~ (y) t :lEli) IV R~.9.'.In 

is unprovable. 

An undecidable well-formed. fOrITiula has been constructE;Q 

on the aSS1.lInption that the set-keory is I.) -consistent. l3u'c 

l.,3 ... consistency for set-theory is not a predicate of set .. t:leQry· 
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of the sartle category as consL.:tency. It demands for its 

defini tion th:l t certain sets have been chosen to rer:resent 

o and its descendents (via the successor function) as liell 

as a set trnt cont3.ins just Q,-1, .f" etc. (the set denot;ed by-

In') Al though (",)-consistency is desiri:::l:ble, if not essential 

for any formal system of arithmetic, t~1ere is no such can(ii tiol1 

for set-theory'. :B'or if that set-theory v.'i tl.l a IA'uticular 

choice of sets for the natural numbers turned out to be 

w-inconsistent then this Vlould sU,.SO'C)st, Lot a rejection of th:! 

set-theory, but a rejection of the particuln.r choice that Wf3 

had marie for the natural ntullb.,;rs. I t may be the C:..1,:::;0 thl t 

for every ohoioe of sets for tb.e natuxa1 numbers, the resulting 

theory Vlould be to) -inoonsistent, in v{hich case tb::I'e has 

been no undecidable formula constructdd for the set .. theoT'J, 

al though vre 11laY say tha, t the set-tLeory is not Sllitable for 

the construction of arithmetic within it. I sIlal1 return to 

this subject luter in this Ch3.:l:itcr. 

iUthough ~ -oonsis toney is nut of overriding importance 

for set-theory, consistency certainly is. Rosser has shown 

th;;-lt GBdel's mOI'€Lstringellt requirement th.:tif a theory is 

~-conSif:1tt1nt then an undecid.3.ble formula exists, may be 

droPJ)ed for the we3.1~er condi tl on of c011si stoncy .1. Following Kleeme, 2 " 

1. J .13. Rosser, fE:-:te:nsion:3 of some theQrelhS of Cedel and Church't 
Journ"l.l of S.l%oolic ,Lo(';1£" 1936 vol.l, pp.87-9l . 

2. H. Kleone, Introducti.on ,to :; et:~.mathmn8tics, pp.20S-209. 
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the metru;lathematic;J.l relation U that the 88:1u81we of ',';e11-

fonIled. foruu1as 13 is a proof of the well-forIl,€d formula 

..,.!(.n) where p is the G(jd.el nUlJber of the ,lell-formed 

for1;)u1a :!he];) with free va.riable .f. is e:111i valent to an 

ari thrnt:tic relation '1: bet\veen the GlJdel m .. unbers of A and 

Lb. U(A,13) if and only if T(g(A), geE) ) • POI' 

a formal system of arithmetic the rela tion ~ is l1mJcI'ically 

expressed by a well-formed formula~. Consider the well .. 

This is a ficll-formed fOI'IllUla 'ui th one frGe variable. S~lT)POS(j 

its Gt3J.el nU.mber is p. '11hen it can be shown thl.t for the 

forUlalised arithmetic wi thin which we are vlO}kin{!, the forn11l1a 

the theory is consistent. For suppose that the above 1"v'ell-

formed formula is provable, then for some k, R(p,k) emd, on the 

is Ul1provable. Therefore it is not the case that 

\- I,n(n?) \- ",rr(n 1.) AI-±, ~,.= , • ., •• t _ ~,~ • From the axioms.and definitions 

From the predicate calculus incorporated in 

the lB.'t1{;uc:gf~ it follows that 

\- (E~) [B:.(~'Jf) • (~) (z. ~ E ;> ~ (lh~» J and hence 

\-- ",tr)tr.H.n,;t).) ('Cz.)(J1. ~ ,;y:.!(.g,1!»1 which is thenego,tion 
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of the lyell-formed. formula tba.t was assumed provable. 

Ifherefore if the fOrII:alised ari tilt-netic is consistent 

Assume that the negation of the last well-formed formula 

is provable, then for some nuniber k, rr(p,k) hold.s. 

\- !(lhls) and by the definitions anJ. axioms of the formalised 

aritl1metic we have (ii) (;1)tX~ k::>(E~)(1! ~ X ·1.Clh1!»]. 

Prom the resul tat th e end of the las t paragra rh, we know tha t 

it is not the case that nC:~'to), R(p,l), H(p,3), ••• , H(p,kli) 

lIenee, \- ... g(12,g), \-"'ECrr,l), ••.• , \-"li(l?,.1£). From the 

ari thmetio acain, (iii) \- (X) 2f $ k ::>,., !l(12,2S) 

Combining (ii) and (iii) and since \- (X)tx ~ }; y X ~ k 1 

it follows tba.t \-- (X) [E(J2,:Y) :l (£.E.H .. ~ ~ Y.. • X(J1,~»1. 

Eu t we had supposed tra t the negation of this formula '1£1.8 

provable. Therefore, assUlning eonsi steney, it follows that 

For the ari thmetic lan~~,la5es of GtHel and Kleene, the 

aSb'Ulllption of consi8tency ento.ils the .eY.istenoe of Ul1deoidll.ble 

. well-fonned formula.s. As with the previous Gedel result, it 

does not follow automatioally tha.t this undecida.bili ty ca.rries 

over to a set .. theory in whioh arithmetic can be constructed. 

It must be rememb(,red that the uni"lterse no\v consists of sets, 

some of which represent ll'ctClhers and others that do not • 

.An extra difficulty arises at this point for the Hosser 
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proof since the well-formed formula contains the symbol I~'. 

In order for the proof to be forthcoming a definition of ,~, 

is required for sets. [rhe properties this must have for the 

proof to go thrOUGh may be found by examining the proof a,bove. 

rrhey are as follows: 

(a) if \- !(Q) , \- 11(1), •••••• , \- .4(k) where k is a number, 

then t (~)(2f ~ k :> .4 (~) ) 

(b) whenevel' Ie is a number \- (ll)(.Y~lf Y .:nk).1. 

~uinels definition of ,~' for sets is when inverted 

(Quine's definition of IN' is the inverted version of the 

defini t ion of 'l~ I given on page ) 

~ 4.Y = df (~)n.!~.h «.Yh~,~ 'l 2C'l)'~));:) 'yf~ 1·2 
r.rhis definition fails to meet condition (b) for whenever 

~ kG,!! and \- m{li it is not the case that \- ~ ~ !!l v ~~1]}, thus 

blocking the derivation from (ii) and (iii). 'rhe dotini tion 

may be modified, hOY18Ver, in such a 'i!f),y as to satisfy (a) and 

(b). Irlle following definition does satisfy both conditions. 

;;f~'y '" df (;;f'li·:rtli) v (J!) ('!~J!.~~~) (1l1:~ ::> SC'l)(.~)l:» :LEe) 

This definition of ',' does not connect all sets (unless all 

sets belong to li!) but it does connect a set which belonf,"Sto 

ll. to every set. Wi tll this defini tion of f , I the Rosser . 

1. Assuming trk1. t 'y ~ x' is defined as ':t' y I • 

2. W. ~uine, Set-Theory and, its Lc\'r,ict p.'n 
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proof goes through as it stands and there is therefore an 

undeoidable well-formed formula for set-theor;y~. '}.'his time, 

unlike transferring the original GBclel proof to set-theory, 

there is no problem about the neoessity of there being a. 

class rr whioh includes all and only the rk'1. tural nUElbers. 

If,tuine 1 s definition of 1 ~ Iz tlere to be used in set-

theory rather than the rwdified version, then Q, proof of 

Rosser's theorem can be constructed. by modifying the vvell-

fonned forraula thrl, t is to lie shorm tmdecida.ble. If we 

replace in the following vlell-forme1i fomula the free variable 

by the set representing the G15del number of the well-formed 

formula we have a fOTnula which er.:m be shovrn undecidable. 

·The fOTr:ru.la is 

Suppose tbJ}.t the D8del number of -I;he above formula is m, 

then consider the forruula when 'x' is replaoed by 'mI. 
, --

Suppose the resulting fa mula is provable. 11hen R(m, k) 

for some number k. Also, if the 

1anE;uage is con8i8 tent it is not the case that the follcw:i,ng 

hold: -1 T (rn,O) "ir (m, 1) t ••• " • ,T(m, k) ) • From the definition 

OOilibining by 

the prodicate calculus, we may deduce thtl. t the necation of 

the formula we supposed was provable is also prova.ble. ASSuming 
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is unprovable. 

Hov? Vie E>.ay sho'1 that the nec:tion of the las", fell-formE;d 

formula is unprovable. SUFPose that it is provable, then 

T(l:1,k) for some number k. From nUJItcric;al f.lJq)re.ssibilit~r 

and the predicate calculus it follows that 

if'the languiJ;,:;e is consistent it follows that none of 

R(m,O), R(m,l), •.•..•• , R(m,k) hold. 'llherefore, 

Since 

\- (lsc;li.x£~) ::, (X ~.k 1: 'J ) k) and ~ k (E we lllay combine (iv) 

a.nd (v) to eive \- (Y)lx<~i ':) (E(m,y)::> (EZ.)(Z. ~ y.~ (l!1'~)))) 

Thus, if the lanL;"'UaG8 is consistent then 

NCY)(YC.ll ::> (g(m,;y);:, (~.~) (~ ~ ;y'!(E1,~)))1 is unprovable 

AZ:lin, in this proof there Y1aS no necessi tjr, that ~ should 

be a set that consisted of those and only those sets which 

repre.:;el"lted tbe natural nULibers. 

Analogously, we may show tlu t the following tI'Jovlell-formed. 

formulas are l..U1deciclable: 

number of the S8xne well-formed fonnula wi th the free variable 

12£1 replacing ',1:' a.nd the definition of '~t is trle mOllified 

version above. 

G8del number of the same w'ell-formed formula wi th th~ free 
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variable '2£' rep1s.cing 'n', ;:;.11d '~' is defined:)":.: the 

inverse of \~uine' s definition. 

Thel~ is for set-theory no lack of viell-forDed 

formulas that can be shown to be undecidable • (Clearly, 

• there are an infinite munber, since, to the above un:iecidablc"i 

formulas we ffi:l.Y prefix 8l1Y theorem of the 11ll1{j11age as an 

antecedent of a conditional the consequence of which is one 

of the undeciwlble formulas.) .Ie cannot doubt tha. t GBdel 

and Rosser's undecidability results do carryover to set-theory. 

But this bas only syntactic import. Tarski has alleged 

that the incompleteness results also have sem.a.ntic implicatioi;s 

t t - 1-for se - t1eory It is just this that I wish to deny. 

There are convincing reasons for saying that any intended 

formalisation of a.ri t1'illletic must oontain formulas that are 

unprovable even though they express true propositions when 

interpreted as aritl1ffietic propositions, i.e. when the formal 

variables are taken as ranging over the natural nmnbers 

and the formal operations interpreted as arithmetic operations. 

The first G~del formula t~~t we have shown to be unprovable is 

'\'{hen this is interpreted as expressing an 

aritr~etical propOSition we can see that the interpretation 

is true. For, as we have shown NR(p,n) holds for each ~ltural 

1. See beginning of this section, 
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number n. Therefore (y )IVR(p,y) is true and this is expressed 

in the formal system by (y)"'!i(.:Q,y). Iro show this more rigourously 

a definition of a formula being true is needed, but this can be 

given easily in terms of the satisfa.ction of formulas in the domain 

of natural numbers in the same way as for any set of formulas of 

1 
the first-order predicate calculus. 

The Rosser formula fares Similarly, for we have shown that 

of consistency). That is, there is no sequence of formulas 

such that this sequence is a proof of the well-formed formula 

(y)(g,C;l£,Y) ::l (c~)(~' y. !C~,~») when the free variable is 

replaced by the G8del number of the formula, namely p. From 

the equivalence of the metamathematical predicate P and the 

arithmetic predicate R we see tr~t for each natural number n 

it is not the case that R(p,n) and hence that it is the case that 

for each natural number n if R(p,n) then there exists a number 

z such tba t z:!:: y and rrep, z). The formula th"1 t expresses this in 

the formalised arithmetic is the unprovable formula at the 

beginning of this paragraph. Here again '\Ve have an unprovable 

but true formula of formalised ari thmetic or an unprovable 

formula that expresses in the formalised arithmetic a true 

arithmetic proposition. 

1. see A. Church, Introduction to Mathematic:,.! IJop;ic, pp.174-175 
ahd 227 .. 228. 
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The problem now is to see if there are any corresponding 

results for set theory. Ue know that the set theory 

incorporates arithmetic in as much as Peano's postulates are 

deducible in it for a certain sUb-system of sets. Vie also. know 

that any formalised language in which Peano's postulates can be 

derived contains a formula th~t is unprovable but which expresses 

a true arithmetic proposition. But it does not follow that there 

is in formalised set theory a formula t~lt is unprovable but which 

expresses a true set-theoretic proposition. 

IJ:lhe position is made clearer if we consider those e;camples 

of undecidable formulas which we discussed earlier. The set 

theoretic version of GI3d.el's formula is CX)(;y:(£!: :) IV E,(g"X» and tle 

two set theoretic versions of Rosser's formula are 

(xHy~!! ~ (li(m,;y:) 'j (I: ~)(~ ~ ;Y:.T.(mf~»)1 and 

(y)[]lClhX) ':) (E~)(z.~:v;,!Cl1'~»)} • 

When discussing the GBdel formula, we found that li(!l,Q), 

li(~,l), ••.. all numerically expressed true propositions of 

ari thmetic. Can vIe say that they also express true set-theoretic 

propositions? Trivially that is so, for they are also all 

provable. Hence they must be true in any model of the axioms, 

i.e. whenever an interpretation of the axioms is given for the 

axioms in which they are all true, then with this interpretation 

all theorems are true. Clearly the G8del formula is not true 

in this sense, Since its undecidability ensures that there are 
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models for the axioms in which it is true and others in which it 

is false. 1 ~nat must be presupposed in saying that the G~del 

formula expresses a true set-theoretic proposition is that 

there is some one interpretation of tl~ axioms in which the 

formula is true, that there is some intended model of the formalised 

set theory just as in tr~ case of formalised arit}~etic there 

is an intended model. 

Let us suppose that there is such an intended model. Then 

in this model 'IJ E(g.,91, "E(.9"l.J, ••• will express true set-

theoretic propositions, for the aforesaid reason. If it is 

asserted that in this model (Z}(ZE! ":) I\J R(Sl,Z») also expresses 

a true set-theoretic proposition then this could only be the 

case if the set in the model corresponding to ! consisted of 

those and only those sets which correspond in the model to the 

sets that represent the natural numbers in the formalised set 

theory. That is, the set in the interpretation that corresponds 

to {~; <'~J LQE~.(!!)(!!E~;) §.(!!)£~)1;:> ~f~1 consists only of 

the s~ts corresponding to i, fi~ , H i ~~ , {{\~m , ..... 
For if in the model there was a set a such that a~N and 

af¢, aftp\, a~~¢!\,2 etc. then we should be unjustified in saying 

1. Derived strs.ightforwardly from Gadel's completeness theorem 
of the predicate calculus. 
2. The set of the model oorresponding to a particular set of the 
forn~l theory is here written identically except for the absence of 
underlining. 
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that since AlR(..a.,Q), "'!l(Q.,lJ, ••• each express true propositions 
, 

of the model so must (X)(X~1L ';) IV R(..a.,x»). In other words, to say 

a model in which N consists of those and only those sets 

~, Vl, {{p~~ "etc. and that this model is, in some sense, the 

intended or proper model for the formalised set theor,r. 

Exactly the same remarks can be made about the Rosser 

formula (X) b:~li ';.) (R(m,x)' (E~) (~ ~ x.~(m,~»») because the 

antecedent of the hypothetical is the formula ~(li. 

'rhe third formula is more difficult to deal with since it 

does not contain the antecedent clause X~ explicitly. (It may, 

of oourse, occur implicitly in that if the function R(~,~) 

were spelled out in full ~~! might occur as an antecedent clause 

in this expansion, The above rerrarks would then apply directly 

to this formula.) To say that the formula expresses a true 

proposition would then be to say that in the intended model 

whenever R(p,x) is true for the set x then (£z)(z ~x.T(p,z» 

is true. Whether or not this is so can only be decided when the 

intended model is known. 

To talk of the truth of an undecidable formula of a formalised 

set theory is to presuppose a model which we think of as the 

intended model of the theory. What one may question is whether 

one can talk of proper models of set theory in any clear manner. ' 

If one could talk of a unique intended model then it would be 
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, proper to talk of the truth (or falsity) of the above 

formulas. 

Recently there has come into vogue the term 'standard model' 

to describe such a model. Myhill, for example, claims that 

I there is only one standard model of set-theory. Further, he 

claims that in the denumerable models of set-theory, the 

existenoe of which is assured by the L8wenhdim-Skolem theorem, 

when the predicate letter It' is assigned it no longer represents 

the relation 'is a member of' since the standard model contains 

an indenumerable field of sets. 'Class-membership oertainly 

has a vast non-denumerable fi eld' •
2 

As a corrective to this 

one should bear in mind that there are set-theories in which the 

membership relation has a denumerable field. Would it then be 

proper for Myhill to say that such theories do not contain the 

relation of class membership? 

The LBwenheim-Skolem theorem assures us that there are models 

of a formalised set theory in the domain of natural numbers. .' I 

think a case could be made out for saying th at such a model is 

'non-standard' in the sense that an arithmetic predicate would 

then be the interpretation of '!I. e. g.lf the axiom of 

infinity is ommitted from the Zermelo-Fraenkel axioms the 

1. J. Myhill Irrhe Ontolob"ical Significance of the LBwenheim­
Skolem Theorem' ACademi.c Ji'reedom, Lo?-c a.nd Religion, Philad~hia' 
1953, p.68. 
2. ibid. 
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membership relation XEY can be interpreted as the relation 

that the quotient of dividing y by the xth: power of 2 is an 

odd nUlnber. l There is a sense here in which the arithmetic 

relation cannot be said to be the relation of class membership. 

But this sense is just that the relation holds between arithmetic 

entities, natural numbers, rather than, say, between numbers and 

sets of them. Certain formulations of the propositional 

calculus can in a like manner be construed as formulations of 

a partial arithmetic. Myhill's worry that set theory Will turn 

out to be some complicated arithmetic relation
2 

if the standard 

model is forgotten is misplaced. It would be as sensible to 

worry about the propositional calculus turning out to be a simple 

aritl1ffietic theory. 

But Myhill goes too far in saying that any denumerable model 

of a fonnalised set theory does not contain the relation of class 
1. • 

membership. Various 'inner' models of certain set-theories 

are known. 3 One wonders if Myhill would say that these too do 

not contain the notion of class-membership, since the model 

contains only ~ of the sets of the whole theory. 

There is another difficulty which Myhill overlooks and this 

is the difficulty of a preassigned interpretation of the predicate 

. "1. due to Ackermann, mentioned 6n H. Wang, A SurvG;Z of l;~thematical 
LogiC p.392 • 
2. J.Myhill, op.cit. p.69 
3. G~del's proof of the consistency of the axiom of choice relies 
on such a mo(iel. 
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letters occurring in the formulas a: the formal system. Myhill's 

definition of a standard model of a system is relative to 

interpretations being given to some of predicate letters of the 

system. Certain of the predicate letters of the formal system 

are given an interpretation and then a standard model is 

defined as a model in which those predicate letters receive 

the preassigned interpretation. Now such a definition is 

legitimate only if we can specify the preassigned interpretation. 

In order to talk of the standard model of set-theory l1yhill 

says that we must first assign to the predicate letter 'E,' of the 

formalised set theory the relation of class membership. But 

in order to specify this relation, we succeed only in giving 

a set of conditions which the relation fulfills. This set of 

conditions in turn can receive odd interpretations; it is 

no more safe from the consequences of G8del's completeness 

theorem than the formal system itself. On the subject of such 

preassie;ned interpretations Wang has likewise said that the 

explicit specification of the preassignment meets insuperable 

difficul ties. 1 

If there is no model wr~ch could be regarded as th~ standard 

model of a formalised set-theory or, in the phraseology of three 

1. H. Wang, 'On Denumerable Bases of Formal Systems', in 1~thematical 
Interpretations of Formal S:rstems, edt A. IIeyting t AQjsterdam, 1955 p.72 
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pages back, the intended model, then it is difficult to see how 

we could talk sensibly of the truth of some formula of the formal 

system which is unprovable. 

In spite of these difficulties, it might be thought that 

even if we could not specify completely the intended or standard 

model we might be able to specify .§2..~ of the conditions which a 

model must fulfill in order to be called standard. Thus, as 

we noted above, the standard model must include (y)(ycn';) 'VR(q,y» 

as one of its true propositions if we are to say that 

(~)(X'~ ~ 'VR(1,~» expresses a true proposition. It follows 

that N must contain only rj, tt>l, \l¢ \\, •••• This means that 

~ receives as a translation in the model 'the set consisting solely 

of p, {¢~', ••• Now, suppose that we use Tarski's method for 

translating the fonIal sentences of the language into an 

informal language (belonb~ng to the metalanu~ge). If we are 

conSidering Zennelo's set theory, for example, we may do so sinoe 

the variables belong to one type. There are no difficulties 

for such a theory caused by the variables of the formal system 

belonging to infinitely many types. The concept of satisfaction 

can be successfully defined and closed formulas of the system will 

receive translations in terms of 'for all sets' and 'there is a set 

such that'. It is clearly that the import of the tr$Jlslation 

of li will be 'the intersection of all sets z that contain the 

nul set are such that if they contain a set y, they also contain 
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the unit set whose only number is y. The trru1slation will 

not be 'the set consisting solely of the nul set, the unit set 

of the nul set, I • •• • Furthermore, the translation could 

not be 'the set consisting solely of ¢, \f6I, •••• ', since -

no formula of a formalised set theory contains the means for 

expressing dots, or the phrase 'and so on' or 'etc'. The 

description is not expressible in the formal system and so any 

proposition which contains this description will not be directly 

expressible in the formal system. The most that we can hope for 

is that we can express it indirectly by some other description. 

This is what we attempt to do when we define li by means of an 

intersection. 

Nothing, however, has been achi eved by this translation. 

If the metalanguage is formalised then the translation of the 

formal system is once more Zermelo's set tlwory. The 

problem is the same as that which occurred in section 3. 

We have effected a translation of a formal language into what 

might be described as 'realistic' terms. 'fhe exis ten tia 1 

operator is not, in the translation, just a mere s~~bol but is 

used to assert the existence of some p!l.rticular set. In 

order to segregate the set theoretic propositions in the translation 

which are true from those which are false we should have to have 

some standard set theory which we could use as a ~lide for deciding 

which of the proposi tionsof the translation held and which did 
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not. Until this standard set theory is specified, at least 

in part, there is no way of so classifying the propositions 

of the translation. 

The propositions that are of most interest in this 

context are the undecidable sentences of the fOX'L'1al system. 

The translation of (Y)(Y~li ~ N E(g,y» will be 'for all 

sets y, if y belongs to the intersection of all sets that 

contain y and are such that if they contain a set w, they also 

contain its unit set, then .. R(q,y) I (where ",R(q,y) is the 

translation of NR(g,y». Whether this translation is a true 

propOSition depends on whether the intersection does contain 

just 1, t¢! , etc. A proof that this set does contain just 

these sets presupposes the existence of a set which contains 

just these • For suppose that every set which contained p, ~ , 

••• also contained some additional member. Then there is no 

assurance that ¢, t¢!, etc. are the only sets common to all 

I 
sets that contain them. That there is a set consisting only 

of ¢, l¢~, etc. we could take as a true proposition of the standard 

< model. Then it would follow that the intersection set contained 

only~, t~l, etc. and, hence, that, for all sets y, if ybelongs 

to the intersection set then ovR(q,y). 

expresses a true proposition of the model. 

1. L. Henkin mentions this argument in hid discussion of the non­
isomorphic chara.cter of the Peano axioms, 'Completeness in the rrheory 
of Types', Journal of S:rtnbolic tarde, 1950, p.89. 
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We shall find that this has unwelcome consequences. 

Q,uinel, discussing t.a-inconsistency and its impliclttions for the 

system NF, says that if his system turned out to be w-inconsistent 

it would only mean that a set of the system was wrongly chosen as 

the set containing Q, 1, ~ etc. NF contains the set Nn defined 

rrhe only 

difference between this set and the intersection set I have been 

using is the different definition that the successor of a set 

has in }JF. Quine supposes that there could be some formula 

of the formal system such that~(Q), tel), ~(g), ••• are all 

provable and also (I: Z)(J.£dIn • "':/!-(1£) ). This si tua tion, should 

it occur, would mean that Nn must contain other sets than Q, 1, 1, 

etc. The notion of w-inconsistency loses its importance (in 

set theory) because: we may be able to choose another set which 

will contain Q, 1, g, •.• but no .; such that"t(z), e.g. {1£;.;tli!1. ~(1£)~ • 

This process of continual refinement maynot end, in which case, 

Q,uine says, we may say too t the system is pumericall;y ins8,\',Ta ti va, 

i.e. the system fails to contain a proper translation of 'x is: a 

natural number', 
2 

Reinterpreting ~inels argument for the translations put 

fOTV/ard here, if there is a formula £~) such that 

*C~), ¥({#), etc. are all provable and (E];)(.!(!I • .,~(.!» is 
1. W. ~uine, I Onlol-Inconsi stency and the so -called ax:i om of 
Infinity Journal of Symbolio Logic, 1953. 
2. ibid. 
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provable then 1.. should not be translated as the set consisting 

solely of l' t~l, etc. But if we accept the idea of 

an intended model in which there is a set consisting solely 

of (", t~\, etc. and Tarski's method for translating the formal 

language into 'realistic' terms, the set corresponding to E 

in the model will consist of just p, 061, etc. 

Let us suppose that there is a formula of the formal 

system *(~) which has the above property. Now if we are 

prepared to say of the formula (X) (;,y:(l! ~ '" E(n.,;,y:» that it 

expresses a true proposition in the intended model we roost 

be equally prepared to say that (;,y:)(;,y:t~~ t(;,y:» expresses a true 

proposition of the intended model. In this case we must say 

that at least one of the axioms is f,'11se in the intended 

model, since, if they were all true in the intended model 

then so too would be all the formulas derived from them, one 

This would be a surprising result because When we build 

up the axiom system we choose axioms which correspond as 

closely as possible to our 'intuition' of sets. VIe may not 

succeed in capturing all the 'correct' axioms but at least, 

we feel,we have not chosen any of the 'incorrect' ones. 

But there seem to be worse consequences tr~n this. If 

the axioms contain at least one wh.ich is false in the intended 

model, then it may be the case thE'.t t(~J where A is one of the 
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sets t, {$J, ({ ill is false in the intended model. It may 

be remembered that the reason for considering such formula.s to 

be true in the intended model VIetS that they must be true in 

all interpretations in which the axioms were true. Since 

it turns out that the axioms are not true for the ihtended model, 

we have no good grounds for saying tba t each of f(~)' <p ( t~ p, 
••• etc. are true. It might be thought, however, that there could 

be independent grounds for saying that they are each true, 

e.g. by inspecting the translations and seeing if they are true 

of the intended model. But there is good reason to suppose that 

t(X) would be more complex than any of the axioms. That is, 

it would be harder to tell whether it was true of some particular 

set in the model than to tell whether the axioms are true in the 

intend.ed model. It may, for example, conta.in more quantifiers 

than any of the aXioms and be notationally longer than them. 

Consider the case of ~(2'~)' The expanded version of this will 

not even be surveYable in v{1 ttg'enstein t s sense. Now, if 

*(~) does not express a true proposition of the intended model 

where a is one of the sets ~, {¢l, H ¢ \!, etc. we no longer 

have ground.s for saying that (X)(XE:.1! ~ 'f!.(:r.» expresses a true 

proposi tion of the intended model, for our bTounds for saying 

this was that ~(~) e~pressed a true proposition of the intended 

model. In fact, if *(g) were to express a false proposition 

of the intended model, . (:l)(:l:~!~ ~0L) would express a false 
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proposi tion. For ",.i(§:) would express a true prollosi tiol} and 

therefore (t::.I)(.I(B: ... ~H,J) would be true, i.e. (.I)Cy'l!:> ~(.I)) 

would express a false proposition of the intended IHodeI. 

This is in direct contradiction to the initial position when 

we said thEl.t it expressed a true propos! tion. 

Sl~ch a consequence is intolerable. Viha t were the 

suppositions on which it rested? One was that such a formula 

existed. Now we could reject this, but to do so would be 

foolhardy. Formal systems have a habit of producing the most 

unlikely consequences. It is not beyond the bou.nds of 

possibili ty for such a formula to turn up. ''chere is 110 

guarantee that one will not, for if Yle coull prove that a fonnal 

set theory is ~-consistent we would have a proof of its 

consistency. \/e know that vIe can have no proof of consistency 

which employs only those Dlethods available in the formal theory. 

Any methods that we employ which are stronger than those in the 

system may themselves be inconsistent. 

The other supposition was that we should accept that 

(X)(£-! ~ tC.I» as expressing a true proposition in the intended 

model. We expressed doubts about the legitimacy' of intended 

or standard models since they can never be completely specified. 

The notion of an intended Olo.iel is unclear. Since the above 

argument.produces a contradict'ion on the assumption of the 

formal language being~-inconsistent Crela ti ve to N) if we allow 
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the notion of an intended model to settle the truth and falsity 

of the sentences of the formal lanf,Uage, it would be a wiser 

course to abandon speaking of a. fOI'Ulula expressing a true 

(or false) proposition of the intended model. 

Once we do so, we can no longer talk of an unprovable 

formula expressing a true proposition of set-theory. 

rrhus the claim too t there are true but unprovable formulas of 

any formalised set theo!"J can no longer be made. 

There is no mystery about this. If we bear in mind that 

a set theory is only committed to What it says exists, there 

remain proposi tions that are not expressible by means of any' 

formalised set theory. One such proposition is that there eXists 

a set which contains only the n~l set and sets generated from 

it by llleans of the operation of forming the unit set. As we 

know from Henkin's work
1 

it will always be I)Ossible to add to the 

axioms of any set in which Peano's axioms are derivable 

(relative to some set l! of the theory) the' set of axioms ~t1i, 

~Q, ~l, ill, .... without inconsistency. Indeed Skolem has 

given a model of Peano's axioms which, though denumerable, is 

not isomorphic Wi th the natural numbers. 2 'l'he consequence of 

m3del's and Henkin I s completeness theorems is that there are 

1. L. Henkin, 'Completeness in the rrheory of '.rypes 1 

2. T. Skolem, 'Peano's Axioms and 11ode18 of AritpJnetic', 
Iila,therIlfJ,tica.l IJ:1terpretations of Formal S,'{st~!!:u!t pp.1-14. 
(:rhis paper utilises reaul ts published by Skolem in 1934). 
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propositions which are not even expressible in a formalised set-

1 theory. 

1. R. Goodstein makes the r8a~rk that what G8del's theorem shows 
for a formalised aritbmetic is not that there is a true. but unprovable 
formula but that the universal quantifier does not express 'for alIt. 
R. Goodstein, 'The Significance of Incompleteness Theorems', 
Dri tish Journal for the Philosophy of.Science, vol. xiv, 1963. 
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II 

Recently certain axioms of set theory have been shoi'm to 

1 be independent. Cohen has produced proofs that shoVl the axiom 

of choice is not derivable from the other axioms of Zermelo's 

axioms. Together with GBdel t s resul t
2 

that the axiom of cholce 

is consistent with the other axioms, its independence is 

established. Cohen has proved that a s:imiliar result holds 

for Cantor's continuum hypothesis. 

The independence of both the axiom and the hypothesis 

shows clearly that we are free to choose either (or their 

negations) as axioms for set theory. Opposed to such a view, 

the realist argues that there are sets (in some none too clearly 

defined sense) and that the nuthematician's job is to describe 

them and t hei r be ha vi our • Consequently either the a~dom of 

choice is true of this reality or it is not; if it is true we should 

adopt it as an axiom, if it is false we should adopt the negation 

of the axiom. Yet even if we accept the existence of this 

reali ty which set theory is supposed to be describing what 

kind of evidence can point either to its truth or its falsity? 

Both Cohen' and Gode14 are realis ts and bo til suggest toot the 

1. P. Cohen, Set Theory and '1'ha Continuum Hy:pothesis, New York, 1966 
2. K. GBdel, 'The Consistency of the Axiom of Choice and of the 
Generalised Continuum Hypothesis', Proceedinv,s cf the Nation!'!,;). 
Academy of Sciences U.S.A. 1938 
3. It: !,.Cohen, op.ci t. p.151 . 
4. h ... Gddel, 'What is Ca.ntor t s Continuum Hypothesis?' t American 
Mathematical r:on,thly, 1947 
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continuum hypothesis or its negation may be derived from 

some other proposi tion which Yle can see describes the 

reality. But now we would want to know how this 'higher' 

~~iom can be seen to be a description of this reality. C6hen 

mentions another argument which he thinks might be used by 

future generations to show that the continuum hypothesis is 

'obviously false,l This is that Zermelo's axiom of power ':\e..\:s 

sets that cannot be reached by means of the other axioms of 

set theory. Again one wants to know how it co uld be seen 

that such sets cannot be reached by such means. Eventually 

realists would have to fall back on the self-evidence of such 

axioms or at least on some metaphor or analogy. But self-

evidence as a criterion of truth has obvious drawbacks2 and 

no metaphor can compel us to accept that it is the most appropriate 

metaphor. 

We are free to chose the continuum hypothesis or its 

negation as we like. Vfuichever way is cho5"en the result is that 

the rules for the use of 'is a member oft are specified further 

in the field of abstract sets. In section 1 I said that the 

construction of abstract set theory involved the setting up of 

rules for the use of 'is a member of' and tset t • Our choice 

1. P. Cohen, op.cit. 1'.151 
2. see, for examplet S. Korner, TJle Philo:':'oy;hy of Mathematics, 
1'.135 et seq. 



- 297 -

of rules would be guided by the use of 'set' and 'is a member 

of' as they commonly occur outside of set theory. Clearly 

we want a set theory which will have application, particularly 

in the area of natural number or real number theory. 

we will be buided by the needs of these disciplines. 

Thus 

But, then, 

as we have seen, the creation of this set theory creates its 

own problems. frhe syntactic paradoxes arise at precisely the 

point where the notion of 'set· of' is replaced by the notion 

of an abstract set. The failure of the axiom of comprehension 

indicated only that care must be taken in setting up the rules 

for the use of 'is a member of' in tr~s field. flfhe different, 

non-equivalent axiomatic set-theories that have been set 

up each replace the axiom of comprehension by a set of existential 

axioms. Which one is the correct one? The question 

makes no sense without there being some set theory with which 

we are comparing all the iifferent axiomatic set theories. 

In the last chapter ;the tliffi"n ... lthg inherent in holtlil't~ 

th90riQiiI and. j,1:* thQ la.d ChlilPtw'- we saw the difficulties 

involved in such an approach. There is nothing to force us to 

use one set theory rather than another except for ease of 

applicability or aesthetic preference. 

Each axiom of abstract set theory chosen is not so 

chosen because of its 'truth'; rather, each. chosen axiom reflects 

a d.ecision to use tis a member of! and 'set' in a certain way. 
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We may use some metaphor to explain why one has made thi,s 

particular decision, but one is always free to reject the 

metaphor. \Ie can see this at a sta~e earlier than the 

continuum hypothesis, particularly in the case of the axioms 

1 
of fOW1da tion and replacement. In Zermelo1s set theory 

(excluding the axiom of fOW1cia.tion) it is not POB si ble to shovr 

that there is no set which belong to itself, nor is it 

possible to show that non-gro1.ll1.ded classes do not exist. 2 

We may argue that it is clear that the members of each set 

may contain members and that these members may contain members 

and so on. :But we may feel tba t there must be a layer which is 

fundamental and contain no members. Hence we a.dopt an axiom 

which will stop such sets arisine. That is, ~B make a 

decision that no such sets e)dst, we do not find out tl'1:1.t no 

such sets exist. For what would cOlU1t as a proof that no 

such sets exist? Again the axiom of replacement can be 

justified only by recourse to such arguments as, ["ivan that there 

is an infinite set Z and the axiom of power set producing the 

sets UZ, UUZ, UUUZ, etc. why should there not be a. set 

consisting of all of these. The analogy here i s wit h the 

a.xiom of infinity, since this gives us a set com~sting if all 

the sets ¢, {P\, \t~ll., ate. But there is nothing to force 

1. As formula.ted in :l!'raenkel and Bar-Hillel, l<'oundations of tie'ti'" 
Theory pp.85-91 
2. In the sense that it is not inconsistent to suppose that there 
are such sets. 
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. 
us to accept that such a set exists • \[11e11 we accept the axiom 

. ' 
we make a decisiml that such a set exists; we make a decision 

to use I is a member of' and 'set' in a way which was no t determined 

by the other decisions we had taken. 

The axiom of infinity which asserts the existence of a set 

with infinitely many members can also be rejected. Strict 

finitists would reject it. Of course such a rejection would 

mean that we could not construct mathema tics in such a set theory 

but there is no reason for supposing that mathematics must be 

constructible in set theory. There are some who prefer that 

set theory flhould be capable of. containing mathematics. 

~uine, for example, prefers a homogeneous universe to a 

heterogeneous one and wi 11 naturally prefer a set theory Which 

will explicate numbers in terms of sets. But there is no 

logical necessity for a set theory to contain mathematics. 

However, if we do reject the axiom of infinity "Ie are on 

the point of departing from the normal use of 'is a IT,ember of' 

for we do talk of the set of all natural nwnbers and the 

na tUi'al numbers are infinite. We are pa.rting company wi th the 

ordinary use of 'set' and 'is a member of' which We take as a g~ide 

for constructing our set theory, \lhereas the ordinary use 

of the phrases gCLve us no [,Uide with the other axioms it does 

so here. Even so, if we t\lke a set theory in which there are 

no individuals, e.g. the Zermelo-Fraenkel axioms, the axiom 
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of infinity is stated in terms of the nul set and sets generated 

out of the nul set by some set operation. Now talk of the nul 

set itself reflects a decision to use 'set' in a certc..in way even 

though such talk is so familiar that we tend to forget this. 

'vIe have decided that we can talk of a set which has no members 

which is perhaps unjustified by any 'ordinary' use of 'set'. 

Whether there exists a set which contains this set and all unit 

sets obtained from it is not then determined by thenonnal use 

of 'set' or 'is a member of' since the existence of the nul set 

itself is not so ddtermined. Similar remarks apply to the other 

axioms of Zermelo-~'raenkel set theory. But once we have aocepted 

this extension of 'set' then we have no choice but to accept the 

axioms of sum-set, pairing etc., if we are using the pre-set­

theoretic use of 'is a member of' and 'set' as our guide. 

When we speak of Borne proposition of set theory being true, 

we are tacitly understanding a ~~rticular set theory in vfuich 

tha t proposition is a theorem. No sense can be made of the 

question: 'I know it is a the.orem but is it true?' The only 

sense such a question could have would be: 'I know it is a 

theorem of the set theory Sl but is it also a theorem of set 

theory S2'. It is our decision to use 'set' and 'is a member of' 

in a particular way which detenYlines which proposi tiona containing 

only such phrases are true. 
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Appendix 

Tarski'g axiom of infinity as given in CT]' (p.243) seems 

to contain an error. As stated there it could be translated 
\\.a\ 

as: There is a non-empty set z such.if X£~ there is a proper sub-

set of x which is also a member of z. This clearly is not what 

Tarski intended for he says thnt such an axiom 'guarantees the 

existence of infinitely many individuals'. As stated by 

Tarski, the set postulated by the axiom of infinity cru1not 

contain even one individual, since individuals do not possess 

proper sub-sets. 

We may correct ffarski' s axiom by altering the neg,:),tion bar 

in two places. Then the axiom will confonn to Q.uine' s 

interpretation of the axiom as given by him in Set Theory and itq 

Lordc, p.280. Q.uine explicitly states that this is 'l'arski' s axiom 

but Quine's axiom can be interpreted as: there is a non-empty 

set z such that if x,z then there is a set of which x is a 

proper subse t which also belongs to z. With the alterations 

given above Tarski's axiom can indeed be given this interpretation. 
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