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Abstract

We have investigated the provenance of Late Triassic and Jurassic siliciclastic sediments 

(Zacatecas, Nazas and La Joya formations) in the Mesa Central region (areas of La Ballena, 

Charcas and Real de Catorce) in central Mexico. The sediments were deposited during 

activity of the Nazas volcanic arc at the western margin of Pangaea. Provenance 

characteristics are essential for reconstructing the palaeotectonic setting of the region. 

Overall, 26 sediment samples and 3 volcanic rock samples from the Nazas volcanic arc were 

analyzed. The latter are potential source lithologies. Petrographic analysis reveals that the 
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analyzed sediments are mainly composed of monocrystalline quartz, polycrystalline quartz 

(chert and composite quartz), feldspar, and rock fragments of mainly volcanic origin. Th/Sc 

vs. Zr/Sc values illustrate low sediment recycling in the source area(s). For the majority of the 

analyzed samples low Cr and Ni values exclude input from a mafic/ultramafic (ophiolitic) 

source. The majority of the translucent heavy minerals (Pxn, Amp, Ep, Spn, Grt, Chl, Tur, 

Ant, Rt) are scarce in almost all samples. The most abundant translucent heavy minerals 

occurring in the samples are apatite and zircon. Apatite grains decrease from the southeast (La 

Ballena) towards the northeast (Real de Catorce) either indicating stronger weathering 

conditions in the area of Real de Catorce or a source area that delivered detritus exclusively 

for the zone of Real de Catorce. Sediments of the Zacatecas Formation illustrate maximum 

depositional ages ranging from Norian (Late Triassic) to the Hettangian/Sinemurian boundary 

(Early Jurassic). Detrital zircon U–Pb ages suggest that they received detritus from the 

Amazonian craton (~1780–1300 Ma), the Oaxaquia microcontinent (~1290–900 Ma), the 

Maya (Yucatan–Chiapas), Oaxaquia, Coahuila and possible Chortis, and Florida blocks 

(~720–450 Ma) and the Permian–Triassic magmatic arc (~300–240 Ma). The Acatlán 

Complex and the Maya (Yucatan–Chiapas) block are likely source areas for ~445–310 Ma-

old zircon grains. The source of the ~240–200 Ma-old detrital zircons are likely magmatic 

rocks related to the early disassambly of western Pangaea. Detrital zircons from sediments of 

La Joya Formation provide maximum depositional ages from the Pliensbachian (Early 

Jurassic) to Oxfordian (Late Jurassic). The most probably source areas are the Oaxaquia 

microcontinent (~1290–900 Ma), and the Maya (Yucatan–Chiapas), and Coahuila blocks 

(~720–450 Ma). Zircon ages ranging from ~200–150 Ma are indicative of detritus from the 

Nazas volcanic arc, which explains the presence of the volcanic fragments in La Joya 

Formation deposits.

Keywords: Sediment provenance; Heavy mineral analysis; U–Pb zircon geochronology; 

Mesozoic; Nazas arc; NE-Mexico

1. Introduction

This study is part of a project that aims to reconstruct the palaeotectonic and 

palaeogeographic situation in central and northeastern Mexico during the Mesozoic. 

Furthermore, it focuses on identifying similarities and differences among the study areas of 

La Ballena, Charcas and Real de Catorce (Figs. 1, 2) in central Mexico. A provenance 
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analysis of Triassic and Jurassic siliciclastic sediments was carried out to contribute to the 

understanding of transport directions and depositional areas. So far, only a few studies have 

been published presenting provenance sensitive data from this area. For example, Rubio-

Cisneros and Lawton (2011) presented zircon U–Pb dates of continental redbeds at Valle de 

Huizachal, which is located ~260 km to the ENE of our northeasternmost study area (Real de 

Catorce, located in the Sierra de Catorce range) (Fig. 2). 

Twenty-nine samples (26 sedimentary and 3 volcanic rocks) in the study areas of La 

Ballena, Charcas and Real de Catorce in the Mesa Central region were collected for follow-up 

investigations. The Triassic and Jurassic stratigraphic succession of the selected study areas 

can be described as diverse because of the complex evolution of the Gulf of Mexico province 

and the western Pacific Mexico province (Goldhammer, 1999, Martini and Ortega-Gutierrez, 

2016). Triassic rocks assigned to the Zacatecas Formation underlie volcanic rocks attributed 

to a volcanic arc (Nazas arc) or volcanic province (sensu Martini and Ortega-Gutierrez) that 

was active for a period of 40 Ma during the Jurassic (Barboza-Gudiño et al., 2008). Jurassic 

redbeds including conglomeratic rocks as well as siltstones and sandstones are interlayered 

with (Lower Jurassic La Boca Formation) or rest also unconformably (Middle-Jurassic La 

Joya Formation) on volcanic rocks of the Nazas arc (Fig. 3). However, complete and 

undisturbed sections without fault zones and other disturbing factors (e.g., weathering) 

influencing the stratigraphy are nowhere present. Therefore, the assignment of rock samples 

based on field observations to Triassic or Jurassic geological formations is anything but 

straightforward and needs to be confirmed by further investigations (e.g., petrography, 

geochemistry, heavy mineral analysis, and detrital zircon U–Pb geochronology). The 

characterization and description of rock samples are necessary to compile and correlate 

stratigraphic profiles of each study area. The identification of the source area is of great 

importance for the reconstruction of transport directions and depositional regimes. 

In this study, different methods were applied in order to characterise the siliciclastic 

sediments and to unravel their provenance. Petrographic analyses of thin sections deliver 

valuable information about the mineral composition. Furthermore, the application of Quartz–

Feldspar–Lithoclast (QFL) diagrams assigns the samples to a certain provenance area. X-ray 

fluorescence (XRF) measurements provide new geochemical data for the Triassic and Jurassic 

siliciclastic sediments. Major and trace element characterizations were employed to 

discriminate the samples from the three study areas. Heavy mineral analysis has also been 

applied since it is a useful technique to determine potential source lithologies (Pettijohn, 

1941; Mange and Maurer, 1992; Morton and Hallsworth, 1994, 1999). However, heavy 
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mineral assemblages are sensitive to processes that occur during the sedimentary cycle (e.g., 

weathering, diagenesis, burial), and thus, they often do not reflect the original composition of 

the source area (e.g., Morton and Hallsworth, 1994, 1999). Therefore, different heavy mineral 

values using minerals with similar mechanical stability and hydraulic properties were 

calculated. Because zircon is present in almost all siliciclastic sedimentary rocks and it has a 

strong chemical and physical stability (e.g., Hubert, 1962), detrital zircon U–Pb 

geochronology is an important method in modern provenance analysis (e.g., Fedo et al., 2003; 

Meinhold et al., 2010a, 2011, 2013). The U–Pb dates of the detrital zircons yield new 

information on the stratigraphic ages of the Triassic and Jurassic redbeds. Furthermore, they 

identify potential basement complexes as sources for the detrital material, and thus, together 

with the other data, they contribute to the reconstruction of sediment transport paths and the 

palaeogeography of central Mexico during the Mesozoic.

2. Geological setting

2.1. The Mesozoic evolution of central Mexico 

Central Mexico is the interface of two different stratigraphic and tectonic regimes. The 

evolution of the eastern Gulf of Mexico province and the western Pacific Mexico province 

(Goldhammer, 1999) or the Mesozoic Atlantic Sytem and the Mesozoic Pacific System 

(Martini and Ortega-Gutierrez, 2016) affected its stratigraphic and tectonic evolution. The 

development of the Gulf of Mexico province was affected by rifting and extension of Pangaea 

succeeded by break-up, sea-floor spreading and subduction (Pindell and Dewey, 1982; 

Marton and Buffler, 1994, Dickinson and Lawton, 2001; Pindell and Kennan, 2009, Martini 

and Ortega-Gutierrez, 2016). The main factor controlling the tectonic evolution was the 

development of the passive margin related to the opening of the Gulf of Mexico in the 

Jurassic (Stern and Dickinson, 2010) and the Laramide orogeny in the Late Cretaceous and 

Cenozoic (English and Johnston, 2004; Fitz-Díaz et al., 2017). The stratigraphic phase was 

controlled by eustatic sea level oscillations resulting in different depositional areas. These 

different depositional areas are consistent with Middle-Upper lowstand deposits including 

redbeds, evaporites, marginal-marine siliciclastic rocks and low-relief, shallow marine high-

energy carbonates (Goldhammer et al., 1991). Lower Cretaceous highstand deposits consist 

of high-relief, shallow-marine carbonate platforms, deep marine shales and pelagic carbonates 

(Goldhammer et al., 1991). 
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In contrast, the evolution of the western Pacific Mexico province is characterized by 

the development of an active continental margin and Mesozoic subduction along the pacific 

margin (e.g., Sedlock et al., 1993, Martini and Ortega-Gutierrez, 2016). Mesozoic subduction 

at the Pacific margin was the driving force that influenced the basin evolution in western 

Pacific Mexico (e.g., Sedlock et al. 1993). The sediment supply and the developing facies 

types were highly affected by the tectonics of the Jurassic to Late Cretaceous Sinaloa arc 

(e.g., Sedlock et al., 1993). During the Mesozoic, this arc was near the Pacific margin of 

Mexico. According to Johnson (1989), Pacific related subduction of the Kula plate (Barboza-

Gudiño et al., 2008) caused two main phases of backarc extension and backarc closure in the 

western Pacific Mexico province. The first phase occurred in the Late Triassic–Middle 

Jurassic (west of the Coahuila block) and was accompanied by the development of the 

Chihuahua trough and the northern Mexican rift basin (“Mexican geosyncline”). Furthermore, 

the first phase also affected the Gulf of Mexico province, inasmuch as the rotation of Yucatan 

initiated the Gulf of Mexico province rift phase (Johnson, 1989, Pindell and Deway, 1982; 

Marton and Buffler, 1994, Dickinson and Lawton, 2001). In the latest Jurassic, partial closure 

and inversion of the backarc basin occurred (Johnson, 1989, Sedlock et al., 1993, 

Goldhammer et al., 1999, Martini and Ortega-Gutierrez, 2016). The Early Cretaceous was 

characterized by the second phase of back-arc extension in the west of the Coahuila block, 

resulting in the deposition of volcaniclastic material in the Chihuahua trough and the northern 

Mexican rift basin (Dickinson, 1981). In the east of the Coahuila block, the Gulf of Mexico 

province was affected by subsidence (Sedlock et al., 1993). The Late Cretaceous was 

characterized by the Laramide orogeny and the closure and inversion of the Chihuahua trough 

and the northern Mexican rift basin. During the latest Cretaceous, the Sierra Madre Oriental 

fold belt was formed due to regional east-directed uplift of the Alisitos arc (Sedlock et al., 

1993). 

2.2. Geological formations 

Geological formations in central Mexico are often highly affected by weathering. As a result, 

assigning rock samples to geological formations seems to be a difficult task. Nevertheless, it 

is certain that overall three different geological formations including the Triassic Zacatecas 

Formation and the Jurassic Nazas and La Joya formations were sampled in the field. 

Interlayered red beds comparable to the Lower Jurassic La Boca Formation, from the Sierra 

Madre Oriental, are considered in the Mesa Central province as part of the Nazas Formation 

(Figs. 2, 3). Hence, it is arguable if La Boca Formation was sampled. Different authors 
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provide various classifications for the stratigraphy in the Sierra Madre Oriental and the Mesa 

Central region (Fig. 3). Imlay et al. (1948) suggested the name Huizachal Formation for 

redbed strata. Mixon et al. (1959) compiled a more detailed differentiation by the separation 

of two different redbed units assigning the older La Boca Formation and the younger La Joya 

Formation to the Huizachel Group. Barboza-Gudiño et al. (2010) suggested a new 

classification for the stratigraphy in both areas (Fig. 3). The Mesozoic record in the Sierra 

Madre Oriental and the Mesa Central region begins with Triassic successions including El 

Alamar Formation (continental) and Zacatecas Formation (marine) (Barboza-Gudiño et al., 

2010). In La Boca Canyon, near Ciudad Victoria,Tamaulipas, the Triassic El Alamar 

Formation is overlain by La Boca Formation, which interfingers with volcanic deposits of the 

Nazas Formation (Barboza-Gudiño, 2012, 2014), contrary to a description of Eguiluz de 

Antuñano et al. (2014) that described La Boca Formation as Triassic in age. In Galeana, 

Nuevo León, where ocure the more extensive outcrops of El Alamar Formation, this unit is 

overlain by the Middle Jurassic La Joya Formation, because no deposit of the Lower Jurassic 

La Boca Formation. In the entire region, the distinct Lower Jurassic, Triassic or in some cases 

older units are overlain unconformably by La Joya and Zuloaga formations. In the Mesa 

Central region, marine Triassic strata of Zacatecas Formation underlie the volcanic Nazas 

Formation. Similar to La Boca Formation in the Sierra Madre Oriental, La Joya and Zuloaga 

formations overlie the Nazas Formation in the Mesa Central.

2.2.1 Zacatecas Formation 

The Zacatecas Formation in the Mesa Central, first described by Burckhardt and Scalia 

(1905), is the deep marine counterpart of the continental El Alamar Formation defined by 

Barboza-Gudiño et al. (2010) in the Sierra Madre Oriental, as remnant of fluvial deposits 

distinct in age and distribution to other previously defined continental units in the region. 

Hoppe (2000) measured a ~200 m thick succession of the Zacatecas Formation northwest of 

Charcas. Generally, the Zacatecas Formation is composed of siliciclastic successions that 

consist of interstratified sandstones, siltstones, shales and conglomeratic sandstones (Barboza-

Gudiño, 2012). The Zacatecas Formation, especially in the states of Zacatecas and San Luis 

Potosí, represents deposits that can be assigned to the submarine Potosí fan system (Centeno-

García, 2005). The Nazas Formation (Fig. 3) unconformably overlies the Zacatecas 

Formation.
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Barboza-Gudiño et al. (2004) and Venegas-Rodríguez et al. (2009) described in Real de 

Catorce an informal unit named “Cerro el Mazo beds”, which is a succession of quartzite, 

yellow to red nodular shales and interlayered "greenstone" layers. They considered it as the 

base of the Nazas Formation. According to new data (this study), we know that part of this 

succession corresponds to the latest Triassic, including massive slump deposits and 

amalgamated sandstone beds at the top of the Zacatecas Formation. This Upper Triassic to 

Lower Jurassic marine marginal sandstone and siltstone beds, represent probably subaqueous 

deposits occurred close to the continental shelve and seaward deposits of a possible delta 

related to El Alamar fluvial system. These deposits in Real de Catorce interbedded with 

volcanogenic rocks of the basal part of the Lower Jurassic Nazas Formation, stratigraphic 

relation that can be identified in other localities of the Mesa Central as an unconformity.

2.2.2. Nazas Formation 

The Nazas Formation (Pantoja-Alor, 1972) consists of volcanic and volcano-sedimentary 

successions. Blickwede (2001) described a 1000 m thick volcanic succession in the Sierra De 

San Julián, in northern Zacatecas. The evolution of the volcanic succession is related to a 

volcanic arc associated with the active continental margin of southwest North America during 

Early to Middle Jurassic time (Barboza-Gudiño et al., 2008). Geochronological data obtained 

by U–Pb geochronology of detrital zircons imply that the volcanic arc was active for a period 

of 40 Ma during the Jurassic (Barboza-Gudiño., 2012, Lawton and Molina-Garza, 2014). 

2.2.3. La Boca Formation 

Imlay et al. (1948) first described the redbeds exposed in the Huizachal valley as Huizachal 

Formation. The separation of two redbed units by Mixon et al. (1959) into the older La Boca 

and the younger La Joya Formation, to conform the Huizachal Group, led to a more detailed 

differentiation. Well-developed outcrop conditions of La Boca Formation can be found in the 

Huizachal Peregrina anticlinorium in Tamaulipas. In La Boca Canyon, La Boca Formation 

consists of a 1500 m thick succession composed of red sandstone, siltstone, mudstone and 

interlayered polymictic matrix-supported conglomerate and conglomeratic sandstone as well 

as some volcanogenic layers, equivalent to the volcanic succession exposed in the Huizachal 

Valley and comparable in age to the Nazas Formation. The conglomeratic sandstone is thick 

bedded and shows well-developed curved cross lamination. The pelitic rocks are structureless. 
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The sandstone and siltstone exhibit well defined stratification and a fine lamination (Barboza-

Gudiño 2012). 

2.2.4. La Joya Formation 

La Joya Formation (Mixon et al., 1959) constitutes an upward-fining sequence composed of 

conglomerate and red sandstone to siltstone  (Barboza-Gudiño, 2012). In different localities in 

central and northeast Mexico, the thickness of La Joya Formation varies from zero 

(Miquihuana, Tamaulipas or northwest of Characs, San Luis Potosí) to over 500 m (Sierra de 

Catorce). The base of La Joya Formation consists of polymictic conglomerate. The 

components were derived from volcanic, plutonic and metamorphic rocks as well as from 

sedimentary rocks (Barboza-Gudiño, 2012). The middle part of La Joya Formation consists of 

fine-grained to medium-grained sandstone whereas the overlaying unit is composed of 

siltstone. Generally, La Joya Formation represents an environmental change from terrestrial to 

marine conditions (Michalzik, 1991). La Joya Formation is Middle to early Late Jurassic in 

age and is overlain by Oxfordian–Kimmeridgian shallow marine carbonates of Zuloaga 

Formation (Fig. 3). Detrital zircon U-Pb geochronology of the lower part of La Joya 

Formation northwest of Real de Catorce yielded a maximal depositional age of ca. 170 Ma 

and Grenvillian, Panafrican, early Paleozoic, Permo-Triassic and Early Jurassic grains 

(Barboza-Gudiño et al., 2012; Pérez-Casillas, 2018). In the Huizachal Valley, in the Sierra 

Madre Oriental, Rubio-Cisneros and Lawton (2011) reported a sigle younger grain age of 

163.6 ±2.6 Ma in the upper part of La Joya Formation.

2.2.5. Study areas

The location of the study areas La Ballena, Charcas and Real de Catorce is shown in Figure 

2. The geographical position and the distance between the study areas are important criteria to 

produce reliable correlations among these areas. The three study areas are located on a NE–

SW profile and have a distance of ~80 km between each other (Fig. 4). La Ballena is located 

~83 km to the WNW of the city of San Luis Potosí in the states of Zacatecas and San Luis 

Potosí. Charcas is located in the state of San Luis Potosí, 110 km to the north of the city of 

San Luis Potosí. Real de Catorce represents the northernmost study area and is located in the 

state of San Luis Potosí with a distance of approximately 150 km from the city of San Luis 
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Potosí. In total, 29 rock samples were collected from surface outcrops in the three study areas 

(Table 1).

The study area of La Ballena represents the worst outcrop conditions among the three 

study areas. As a result, only three samples were taken (Fig. 4). Coarse-grained sandstone to 

conglomerate with volcanic fragments form the base of La Ballena section. These strata have 

a thickness of ~150 m. volcanic rocks unconformable overlie these strata and possess a 

thickness of ~200 m. The top of La Ballena profile is represented by coarse-grained sandstone 

without volcanic fragments (unknown thickness). 

At Charcas, well-developed outcrop conditions are characteristic. Charcas was divided 

into two study areas (San Antonio and La Medalla) and overall 11 samples were taken (Fig. 

4). In San Antonio, volcanic rocks and conglomerate as well as sandstone and siltstone were 

sampled. The stratigraphy begins with a volcanic breccia (thickness was not measured). Fine- 

to medium-grained sandstone and a conglomerate overlie these rocks. Both, the sandstone and 

the conglomerate include volcanic fragments. This succession is overlain by very fine- to 

fine-grained sandstone without volcanic fragments. The top of this ~219 m thick succession is 

formed by siltstone including intercalated limestone horizons. The Zuloaga Formation is also 

present here, but was not sampled. The transition between the siltstone and Zuloaga 

Formation is considered as gradational. Intercalated limestone horizons assigned to the 

Zuloaga Formation are present in the siltstone section and thus, evident for a continuous 

transition. The stratigraphic profile of La Medalla begins with a fine- to medium-grained 

sandstone without volcanic fragments (thickness was not measured). A ~120 m thick 

succession with volcanic fragments starts with a conglomerate. Due to an advanced degree of 

weathering, the conglomerate was not sampled. The top of this ~120 m thick succession is 

composed of medium- to coarse-grained sandstone with volcanic fragments.

The study area of Real de Catorce is the most diverse, complicated sampling area 

among the three study areas, and can be divided into a lower (~ 702 m) and an upper part (~ 

512 m). In total, 15 samples were taken (Fig. 4). The lower part of the Real de Catorce profile 

consists of siltstone. The succession continuous with thick sandstone strata composed of very 

fine- to medium-grained sandstone. These sandstone strata are overlain by siltstone 

interlayered with thick-bedded, commonly cross-laminated quartzite. The described 

succession does not include volcanic fragments. However, a succession of fine-grained 

sandstone with volcanic fragments and a highly weathered volcanic rock are also assigned to 

the lower part of the profile. The upper part of the profile consists of a fine sandstone with 

ripple marks without volcanic fragments, overlain by conglomerate and sandstone with 
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volcanic fragments. The top of the upper part consists of a siltstone with intercalated 

limestone horizons of the Zuloaga Formation. Similar to the realm of Charcas the transition 

between the redbeds and the overlying Zuloaga Formation is considered as transitional.

3. Sample description

3.1. Volcanic rocks

Volcanic rocks occur in each of the three study areas. The sample LaB A2 taken in La Ballena 

was identified as a conglomeratic rock during the fieldwork. However, the thin section 

analysis indicated that this sample is a volcanic rather than a sedimentary rock. The volcanic 

rock sample Cha B1 taken in Charcas is a massive volcanic breccia of grey color, which is 

highly affected by weathering. In Real de Catorce, a red to purple massive volcanic rock 

(sample RdC C9) also highly affected by weathering was sampled.

3.2. Conglomerate 

The conglomerate often occur in reddish to light reddish or grey colors and can be described 

as polymictic conglomerate with sedimentary, volcanic and metamorphic clasts. The clast 

sizes range from 1–15 cm, whereas the shape of the clasts varies from rounded to poorly 

rounded to angular. The predominant fabric of the conglomeratic rocks is clast-dominated but 

in some cases, they also occur with a matrix-dominated fabric. The detected sedimentary 

structures are horizontal bedding and in some cases tabular cross bedding. The conglomeratic 

rock sample from La Ballena (sample LaB A1) is mostly light reddish and clast dominated. 

The clasts are rounded and angular. In comparison, the conglomeratic rock from Charcas 

(sample Cha B7) is purple to reddish and matrix dominated. Towards the base of the 

conglomerates an increase in clast size was detected in the field. Moreover, the clasts near the 

base of the conglomerate horizons are more rounded than the other clasts. The conglomeratic 

rock collected in Real de Catorce (sample RdC C11) is grey and clast dominated and provides 

the smallest clasts among the analyzed conglomeratic rocks. 

3.3. Sandstone
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The grain size varies from fine-grained to coarse-grained, and the grains are subrounded to 

subangular. The grain assemblages are poorly to well sorted. The majority of the sandstones 

is affected by weathering and provide colors from pale grey to intense red. Characteristic 

sedimentary structures encompassing ripple marks and cross bedding are scarce and restricted 

to a few samples. Most of the analyzed sandstones do not show sedimentary structures. The 

cross bedding structures only occur in small scales and the stratification ranges from thin to 

thick beds. 

3.4. Siltstone

The siltstones are fine-grained and mostly red or pale grey, comoonly structureless but 

sometimes thin-bedded, showing graded bedding and curved cross-lamination, compossed of 

subangular to angular quarz and minor feldspar and lithic fragments. In some cases, fine-

grained sandstone strata are interbedded with the siltstone. Intercalated limestone horizons 

assigned to the Zuloaga Formation are interbedded in the upper part of the siltstone section 

and thus, evident for a continuos transition between the siltstone and the overlying limestone 

of the Zuloaga Formation, which is considered as gradational.

4. Sample preparation and analytical methods

For simplification, the term LaB is used for the samples collected in La Ballena, Cha for the 

samples collected in Charcas and RdC for the samples colected in Real de Catorce. The 

samples were prepared for different analytical purposes including petrographic analysis, 

geochemical and heavy mineral analysis as well as for detrital zircon U–Pb geochronology. 

Details about sample preparation and analytical methods are found in Appendix 1. 

Petrographic data are given in Table 2. The full set of analytical data is given as 

supplementary data. 

5. Results

5.1. Petrographic analysis

Petrographic analysis is an extremely valuable technique to determine the mineral 

composition of different lithologies. The volcanic rock samples were also described in thin 
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sections but only sandstone and coarse-grained siltstone samples were counted and used for 

the Quartz–Feldspar–Lithoclast (QFL after Dott, 1964, Weltje, 2006) analysis (Figure 5 

and Table 2). 

5.1.1. Volcanic rocks

The thin section analysis revealed that LaB A2 is a weakly deformed volcanic rock that 

contains numerous plagioclase crystals. The plagioclase occurs as well developed, long and 

thin laths. The fabric of the plagioclase laths shows a preferred orientation with a distinctive 

shear motion. 

Sample Cha B1 is a volcanic breccia with subrounded to subangular grains. This 

sample consists of feldspar, volcanic and metamorphic fragments. The most abundant 

feldspar grains are plagioclases. The plagioclase laths within the volcanic fragments are 

mostly small. Furthermore, K-feldspar grains are mostly broken. This might be indicative of 

mechanical stress. 

Sample RdC C9 is a volcanic rock and mostly consists of opaque minerals as well as 

plagioclase between the opaque minerals. Notably, the plagioclase provides a fabric that 

might be the result of weak deformation. Furthermore, the opaque minerals offer a preferred 

orientation accorded to the deformation structures.

5.1.2. Sedimentary rocks - QFL analysis

Samples from the Zacatecas Formation are quartz arenites and sublitharenites (Fig. 6). A 

sandstone sample from the Nazas Formation is classified as lithic arenite, and samples from 

La Joya Formation are more diverse, being classified as quartz arenites, subarkoses, arkosic 

arenites, sublitharenites, and lithic arenites. The majority of all samples plot in the field of 

recycled orogen provenance. With a few exceptions, samples from Nazas and La Joya 

formations are characterized by feldspar and volcanic lithoclasts whereas samples from 

Zacatecas Formation only contain minor amouts of feldspar and lack volcanic lithoclasts 

(Table 2).  

5.2. Geochemistry 
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Whole-rock geochemical analysis of major and trace elements was carried out to determine 

element concentrations in order to characterise the different lithologies. From the three 

volcanic rock samples, only two samples were analyzed by XRF. Note that for the 

sedimentary rock samples the data are not used for an in-depth geochemical interpretation 

since the samples show signs of alteration (likely due to weathering). The mobility of major 

elements during weathering and diagenetic processes can be seen as a disadvantage 

(Rollinson, 1993; Armstrong-Altrin and Verma, 2005). Hence, discrimination diagrams for 

lithology, provenance and tectonic setting utilising major elements have to be used with great 

care to avoid misleading interpretations. Trace elements mostly react immobile under surface 

conditions and hence trace element data can be considered to be more reliable (e.g., 

Zimmermann and Bahlburg, 2003).

5.2.1. Volcanic rocks

The samples (Cha B1, RdC C9) can be distinguished on the basis of major element 

concentrations. However, due to the advanced degree of weathering of the volcanic rocks 

analyzed in this work, it is questionable if the major element data are reliable. Generally, the 

high mobility of alkaline elements during secondary processes limits the application of the 

TAS diagram [(Na2O + K2O) vs. SiO2] to fresh and mostly unweathered volcanic rocks (e.g., 

Barboza-Gudiño et al., 2008). The mobility of an element depends on the charge/radius values 

(ionic potential). Elements with a low ionic potential are more easily removed than elements 

with a high ionic potential. An intermediate ionic value enables elements to remain in the 

solid phase (Pearce, 1996). Therefore, the volcanic rocks were classified using trace element 

values (Zr/TiO2 and Nb/Y) including immobile elements (Winchester and Floyd, 1977). 

Sample Cha B1 can be classified as rhyolite and sample RdC C9 as rhyodacite/dacite. 

Regardless of the diagrams used, the samples are subalkaline intermediate and acidic volcanic 

rocks.

5.2.2. Sedimentary rocks

Due to possible mobility of major elements, we will only focus on selected trace elements. 

The Th/Sc vs. Zr/Sc diagram after McLennan et al. (1993) is shown in Figures 7a and can be 

used to evaluate igneous chemical differentiation processes and the degree of sediment 

recycling consistent with zircon enrichment (McLennan et al., 1993; Meinhold et al., 2007). 
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The Th/Sc value is a useful indicator of magmatic differentiation processes because Th is an 

incompatible element and thus, enriched in felsic rocks, whereas Sc is compatible in igneous 

systems. The Zr/Sc value reflects the degree of sediment recycling, inasmuch as a high Zr/Sc 

value is indicative of high sediment recycling and weathering rates (McLennan et al., 1993). 

The majority of the analyzed samples illustrate intermediate Th/Sc and Zr/Sc values, with Th/

Sc of 0.14‒1.28 and Zr/Sc of 4.6‒62 respectively, suggesting no significant reworking and 

zircon enrichment.

The discrimination diagram by Floyd and Leveridge (1987) uses La/Th vs. Hf to 

classify different arc compositions and sources. Referring to Figure 7b, the analyzed samples 

are primarily located in the acidic arc source field or at least very close to this field. A single 

sample from the La Joya Formation tends towards an andesitic arc source.

In Figure 7c, Cr and Ni values are used to identify a possible ultramafic (ophiolitic) 

input derived from the source area (Garver et al., 1996; Meinhold et al., 2009). The majority 

of the samples contain low Cr and Ni values (<150 ppm Cr and <100 ppm Ni). 

Interestingly, the two sandstone samples from the Zacatecas Formation and the single 

sandstone sample from the Nazas Formation show high Cr and Ni values similar to the 

volcanic rock sample RdC C9 from the Nazas arc. 

5.3. Heavy mineral analysis

In total, the heavy mineral content of 2 volcanic rock samples and 15 sedimentary 

samples was analyzed. Generally, 250 heavy mineral grains were counted in heavy mineral 

slides using a polarising microscope (Zeiss Axioplan2). The heavy mineral abbreviations used 

in this study are according to Whitney and Evans (2010). The main translucent heavy 

minerals detected in the studied samples are pyroxene (Px), amphibole (Amp), epidote (Ep), 

sphene (Spn), garnet (Grt), chlorite (Chl), tourmaline (Tur), apatite (Ap), anatase (Ant), rutile 

(Rt) and zircon (Zrn) (Fig. 8). Both, clino- and orthopyroxene occur in the samples but they 

have not been separately counted. Chlorite, epidote and mica are often attached to opaque 

minerals. Garnet occurs only in a few samples; the grains are colorless and are mostly angular 

and irregular fragments. Apatite grains occur in angular and subrounded forms. They are 

colorless or reddish-brown. Anatase grains are yellow to pale brown with an angular shape. 

Rutile grains are red-brown. They mostly occur as prismatic grains or as fragments of 

prismatic grains. Zircon grains are rounded or show well developed prismatic shapes. They 

are colorless or pale pink. 
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Heavy mineral analysis is one of the most sensitive and widely used method to 

determine possible provenance areas of sandstones (e.g., Mange and Maurer, 1992; Morton 

and Hallsworth, 1994, 1999). However, heavy minerals are sensitive to processes that occur 

during weathering. Hence, they often do not reflect the original composition of the source 

area (Morton and Hallsworth, 1994). The most abundant translucent heavy minerals, zircon 

and apatite, appear in nearly all samples in different abundances. Samples from the Zacatecas 

Formation and from the lower part of the La Joya Formation have a high abundance of zircon. 

The volcanic rock sample Cha B1 contains more zircon (6 %) and apatite (18 %) compared to 

sample LaB A2 (zircon: 1.6 %, apatite: 1.2 %). Remarkably, a decrease of apatite referring to 

the geographical position of the study areas can be recognised. Apatite decreases from SW 

(La Ballena) to NE (Real de Catorce) (Fig. 8). Further differentiations can be made on the 

basis of pyroxene. Generally, the pyroxene abundance is low in all samples. Nevertheless, 

with the exception of sample RdC C2, samples from the Zacatecas Formation show greater 

abundances of pyroxene than those of the other formations. 

Heavy mineral assemblages are highly affected by processes occurring during 

weathering, transport, deposition and diagenesis. These processes have the capability to alter 

the heavy mineral composition before their incorporation into the sediment. Hence, analysis 

only based on the variety of heavy mineral compositions may not reflect the original heavy 

mineral composition of the source area (Morton and Hallsworth, 1994, 1999). The application 

of heavy mineral values including minerals with similar mechanical stability and hydraulic 

behaviour is a useful tool to characterise the source area (Morton and Hallsworth, 1994, 

1999). The mechanical stability and hydraulic behaviour depends especially on grain size, 

grain density and grain shape (Morton and Hallsworth, 1994, 1999). 

Provenance-sensitive heavy mineral index values were calculated as suggested by 

Morton et al. (2005): ATi (apatite: tourmaline index), RuZi (rutile:zircon index), and GZi 

(garnet:zircon index). In addition, the ZTR index (zircon, tourmaline, rutile) was calculated as 

defined by Hubert (1962) (Fig. 9). The ATi index ranges from 0 to 100 and exceeds 70 in the 

most cases. Sample Cha B9 provides values below 50 resulting from the highest tourmaline 

abundances among all samples. The samples LaB A2, Cha B1, Cha B5, Cha B7, Cha B8, Cha 

B10 as well as RdC C2 have no tourmaline and hence, yielded ATi values of 100. Sample 

RdC C8 has neither tourmaline nor apatite. The calculated RuZi index shows variations 

among the volcanic rock samples. The sample LaB A2 contains no rutile and thus, the RuZi 

cannot be calculated. However, sample Cha B1 reveals a RuZi of 6.3 (Fig. 9). RuZi values 

range from 0–8.5 (Fig. 9). Due to a lack of rutile grains, it was impossible to calculate the 
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RuZi values for samples Cha B6, Cha B7 and Cha B11. RuZi is not appropriate to distinguish 

the sediments with regard to the three formations since values are roughly similar. These 

values result from approximately similar rutile abundances. In contrast, GZi seems to be a 

useful parameter to distinguish the sediments. The volcanic rock samples (LaB A2, Cha B1) 

do not contain garnet; hence, GZi values could not be calculated. Sandstones from the 

Zacatecas and Nazas formations reveal very low GZi (0–3.2) resulting from low abundances 

of garnet, accompanied by high zircon contents. However, a lack of garnet grains made it 

impossible to calculate the GZi for the samples Cha B9, RdC C2 and RdC C6a. On the 

contrary, sandstones from La Joya Formation show greater GZi values (0–36.4) resulting 

from higher garnet contents and lower zircon abundances. The samples Cha B6 and Cha B7 

show GZi values >30 resulting from high garnet contents and the lowest zircon abundances 

among the samples from La Joya Formation. The samples Cha B11 and RdC C8 do not 

contain garnet grains; hence, their GZi is zero. The ZTR index is high in samples from the 

Zacatecas Formation, low in samples from the Nazas Formation, and variable for samples 

from the La Joya Formation (Fig. 9). There is no correlation between ZTR and whole-rock 

SiO2 content.

5.4. Detrital zircon U–Pb ages

The method of U–Pb geochronology was applied to determine provenance areas and the 

maximum depositional age of the samples. Zircon cores and rims were analyzed (Fig. 10). 

Dickinson and Gehrels (2009) suggested that the maximum depositional age can be inferred 

from the youngest age population including the youngest zircon age cluster. The geologic 

time scale of Gradstein et al. (2012) was used as stratigraphic reference for data interpretation. 

Length-to-width values (L/W) were calculated to identify possible correlations between grain 

shape (aspect ratio) and U–Pb age. However, no correlation between L/W values and U–Pb 

ages have been recognised. 

A total number of 323 U–Pb zircon ages have been obtained from 319 zircon grains, 

of which 252 zircon ages are 95–105 % concordant. Table 3 reveals a summary of weighted 

average ages of the youngest zircon age populations as well as the youngest grain ages. Figure 

11 illustrates histograms and kernel density estimation curves for all samples. Sedimentary 

rocks of the Zacatecas Formation are characterized by Late Triassic ages (weighted average 

ages: 215. ± 6 Ma to 205 ± 10 Ma) in the youngest age group. Taking the weighted average 

ages and the youngest grain ages into account, the samples Cha B9 and RdC C4 reveal Norian 
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ages, which are also consistent with the youngest grain ages provided by these samples (Table 

3). Sample RdC C6a shows an earliest Jurassic age (around the Sinemurian–Hettangian 

boundary). Sample RdC C8 from the Nazas Formation illustrates an Early Jurassic age 

(Pliensbachian-Toarcian boundary, accord to Walker et al. (2018). Samples from the La Joya 

Formation reveal Early to Middle Jurassic ages (weighted average age: 165.2 ± 3.6 Ma to 

187.7 ± 3.1 Ma). The weighted average ages of samples Cha B8 and Cha B6 reveal Middle 

Jurassic ages including the stages Callovian (Cha B6) and Aalenian (Cha B8). These 

observations are consistent with the youngest grain ages provided by these samples. Overall, 

the zircon data contain seven age populations that occur at ~1780–1300 Ma, 1290–900 Ma, 

~720–450 Ma, ~445–310 Ma, ~300–240 Ma, ~240–200 Ma, ~200–150 Ma 

(Fig. 11). The results for the U–Pb geochronology for the analyzed samples are summarised 

in Tables S7–S13 (see Supplementary data).

Zacatecas Formation, sample RdC C4: In total, 83 zircons were analyzed, with 66 

zircons providing concordant ages. The results reveal three major age populations at ~330–

210 Ma, ~1275–900 Ma and ~1350–1225 Ma. Significant peaks within the youngest age 

population occur at ~225–200 Ma, ~300–240 Ma, whereas two minor peaks appear at ~350–

300 Ma. The very youngest zircons reveal a cluster at ~250–210 Ma including a major peak at 

~220– 215 Ma. The second oldest population provides Neoproterozoic to Mesoproterozoic 

ages with several peaks. However, the most prominent peaks occur at ~965–940 Ma and 

~1100–1075 Ma. The most conspicuous peak of the oldest age population (Mesoproterozoic) 

appears at ~1285–1260 Ma. Furthermore, eight minor age populations occur at 392 ± 13 Ma, 

~450±25 Ma, 585 ± 19 Ma, 719 ± 17 Ma, 1399 ± 26 Ma, 1448.5 ± 9.9 Ma, 1525 ± 22 Ma, 

1782.1 ± 9.7 Ma. The majority of the analyzed zircons illustrate concentric zoning. Cores can 

be recognised only in a few zircon grains. With the exception of zircon C4_2, the Th/U values 

are higher than 0.1 ppm. The calculated length-to-width values (L/W) range from 0.88–4.31.

Zacatecas Formation, sample RdC C6a: In total, 94 zircons were analyzed, with 78 

zircons providing concordant ages. The results reveal four major age populations at ~220–199 

Ma, ~328–220, ~725–400 Ma, and ~1275–950 Ma. A Significant peak within the youngest 

age population occurs at ~265–240 Ma. The very youngest zircons reveal a cluster at ~250–

190 Ma including a major peak at ~250–245 Ma. The youngest grain in this sample provides 

an age of 199.1 ± 8.5 Ma (Table 3). Thus, this grain illustrates an age around the Hettangian–

Sinemurian boundary. However, referring to Tables S10 (see Supplementary data); only two 

zircon grains illustrate Early Jurassic ages. The remaining zircon clusters offer Triassic and 

older ages. The second oldest population provides a wide range of ages, from Early Devonian 

Walker
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to Neoproterozoic ages including conspicuous peaks at ~475–425 Ma. The oldest age 

population offers Neoproterozoic to Mesoproterozoic ages and the most conspicuous peaks 

yield ages at ~1025–1000 Ma and ~1065–1040 Ma. Furthermore, three minor age populations 

occur at 1518 ± 14 Ma, 1576 ± 14 Ma and 1665 ± 11 Ma. Most of the measured zircons show 

concentric zoning, whereas the occurrence of cores is lacking in most cases. The Th/U values 

are higher than 0.1 ppm. The calculated length-to-width values (L/W) range from 0.83–4.09.

Zacatecas Formation, sample Cha B9: In total, 59 zircons were analyzed, with 52 

zircons providing concordant ages. The results reveal four age populations at ~325–210 Ma, 

600–420 Ma, ~1300–920 Ma and ~1520–1320 Ma. However, one zircon grain yields an age 

of 1668 ± 13 Ma. The youngest age population includes several significant peaks between 

~300 and ~225 Ma, with the most prominent peak at ~250–245 Ma. The oldest age population 

has a wide range and represents Neoproterozoic to Paleoproterozoic ages including several 

peaks. The most conspicuous peaks occur at ~985–960 Ma, ~1050–1052 Ma, and ~1250–

1225 Ma. One zircon grain was used to determine the age of the core (spot B9_43: 1076 ± 20 

Ma) and the rim (spot B9_42: 968 ± 20 Ma). Most of the analyzed zircons reveal concentric 

zoning. Furthermore, cores can be recognised in a few zircon grains. The Th/U values are 

mostly higher than 0.1 ppm. The calculated length-to-width values (L/W) range from 0.57–

3.47. 

Nazas Formation, sample RdC C8: A total number of 45 zircons were analyzed, with 

33 zircons providing concordant ages. The results reveal five age populations at ~195–180 

Ma, ~280–200 Ma, ~565–440 Ma, ~1255–960 Ma and ~1400–1260. Significant peaks within 

the youngest age population occur at ~200–175 Ma and ~270–145 Ma. The very youngest 

zircons reveal a cluster at ~210–180 Ma including a major peak at ~185–190 Ma. The 

youngest grain in this sample provides an age of 182.8 ± 8.7 Ma (Table 3). Thus, the youngest 

grain illustrates an Early Jurassic (Pliensbachian) age. The oldest age population offers 

Neoproterozoic to Mesoproterozoic ages, and the most conspicuous peaks occur at ~975–950 

Ma, ~1180–1155 Ma, ~1260 –1235 Ma and ~1325–1300 Ma. Three zircon grains were used 

to determine the age of the core and the rim (spot C8_1 c: 188 ± 5.6 Ma, spot C8_2 r: 187.3 ± 

5.4 Ma; spot C8_17 c: 1535 ± 19 Ma, spot C8_18 r: 443 ± 14 Ma; spot C8_20 c: 992 ± 21 

Ma, spot C8_21 r: 561 ± 15 Ma). The majority of the analyzed zircons provide concentric 

zoning as well as cores. The Th/U values are mostly higher than 0.1 ppm. The calculated 

length-to-width values (L/W) range from 1.13–4.02.

La Joya Formation, sample Cha B8: Unfortunately, zircons were very scarce in this 

sample. Hence, a total number of only 7 zircons were analyzed, with 4 zircons providing 
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concordant ages. The results reveal only two age populations at ~180–155 Ma and 1042 ± 45 

Ma. The youngest age population illustrates a distinct peak at ~175–170 Ma, which is 

consistent with the youngest grain (171 ± 6.2 Ma) within this sample (Table 3). Concentric 

zoning and cores appear in a very few cases. The Th/U values are mostly higher than 0.1 ppm. 

The calculated length-to-width values (L/W) range from 0.75–2.6. 

La Joya Formation, sample Cha B6: Unfortunately, zircons were very scarce in this 

sample. Hence, a total number of only 7 zircons were analyzed, with 5 zircons providing 

concordant ages. The results reveal 4 age populations at ~175–150 Ma, 435.7 ± 8.8 Ma, 579 ± 

17 Ma and 1188 ± 22 Ma. The youngest age population illustrates a distinct peak at ~170–165 

Ma, which is consistent with the youngest grain (165.2 ± 4.9 Ma) within this sample (Table 

3). The majority of the zircons illustrate concentric zoning, whereas cores are scarce. The 

Th/U values are higher than 0.1 ppm. The calculated length-to-width values (L/W) range from 

1.2–3.62.

La Joya Formation, sample LaB A3: In total, 24 zircons were analyzed, with 17 

zircons providing concordant ages. The results reveal only one significant age population at 

~240–145 Ma. This population includes an accumulation of ages at ~175–145 Ma and three 

minor age populations at 183.4 ± 4.4 Ma, 205.2 ± 6.8 Ma and 240 ± 8 Ma. In addition, 3 

minor age populations at 902 ± 24 Ma, 1000.7 ± 9.2 Ma and 1322 ± 39 Ma represent 

Neoproterozoic to Mesoproterozoic zircon ages. Figure 12 reveals a Concordia diagram 

including the samples taken for the mean age calculation. Taking the histograms, the 

concordia diagram as well as the calculated mean age of the youngest zircon age population 

into account, sample LaB A3 provides a Late Jurassic (Oxfordian to Kimmeridgian) age. The 

majority of the analyzed zircons show concentric zoning. The Th/U values are higher than 0.1 

ppm. The calculated length-to-width values (L/W) range from 0.82–3.27. 

Figure 11 shows the occurrence of a wide range of zircon populations in samples from the 

Zacatecas Formation, compared to those belonging to the Nazas Formation and mainly to La 

Joya Formation, which has only a few minor peaks with a main population, coincident or 

very close to the maximum age of the deposit. The above, supports the criteria for tectonic 

discrimination proposed by Cawood et al. (2012), who point out a direct relation of the 

detrital zircons population and the proportion of detrital zircons aged close to the age of 

deposition, where a greater proportion of ages close to the maximum age of the deposit are 

indicative of convergent plate margins (La Joya and Nazas formations, as deposits in a 

possible arc and back-arc), and sediments in collisional, extensional and intra-cratonic 

settings, characterized by a greater proportion of different and older ages that reflect the 
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history of the basement (Zacatacas Formation as deposits in an ancient extensional or 

passive margin).

6. Discussion

6.1. Petrographic analysis

In total, 27 thin sections including 3 volcanic rocks and 24 sediments were analyzed (Table 

1). The volcanic rocks contain large amounts of plagioclase laths indicating derivation from a 

felsic to intermediate source. The rocks are identified as rhyolite (Cha B1) and dacite (RdC 

C9). These observations are consistent with results obtained from volcanic rock samples 

assigned to the Nazas arc (Barboza-Gudiño et al., 2008). The sample Cha B1 can be described 

as volcanic breccia possibly derived from a pyroclastic flow. The occurrence of a volcanic 

breccia in the realm of Charcas might be indicative of volcanic activity and sedimentation 

processes at the same time. A volcanic breccia from Aramberri (Nuevo Leon) described by 

Barboza-Gudiño et al. (2008) can be compared with the volcanic breccia analyzed in this 

study (Cha B1). Both samples are composed of subangular (Cha B1) to angular grains 

(sample analyzed by Barboza-Gudiño et al., 2008) and provide a rhyolitic composition. 

Comparing the thin sections of samples LaB A2 and RdC C9 (identified as dacite), especially 

under crossed polars, similarities are recognisable. Both samples contain large amounts of 

plagioclase leading and texturally and mineralogically LaBA2 and RdCC9 look similar so the 

former might also be a dacite. However, sample LaB A2 was not analyzed by XRF. Hence, 

this assumption needs to be confirmed by geochemical analysis. Furthermore, samples RdC 

C9 and LaB A2 reveal structures of weak deformation, which are possibly caused by the Late 

Cretaceous to the Paleocene (80–55 Ma) Laramide Orogeny (English and Johnston, 2004). 

All studied sediments samples are quartz rich with variable amounts of feldspar and volcanic 

fragments (Fig. 6). With a few exceptions, samples from the Nazas and La Joya formations 

are characterized by feldspar (plagioclase dominates over K-feldspar) and volcanic fragments 

whereas samples from the Zacatecas Formation only show minor amouts of feldspar and lack 

very scarce volcanic fragments (Table 2). This observation may be useful in future studies 

since assigning of rock samples based on field observations to Triassic or Jurassic geological 

formations is anything but straightforward and needs to be confirmed by further 

investigations. The volcanic fragments contain large amounts of plagioclase laths. Probably, 

these plagioclase laths are comparable to those within the volcanic rocks indicating derivation 
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from the Nazas arc. The lack of volcanic fragments in some of the La Joya Formation 

sediments accompanied by low feldspar contents (Cha B4, Cha B5, RdC C10) suggest 

sediment supply from the Zacatecas Formation.  

With a few exceptions, sediments from the La Joya Formation illustrate significantly higher 

feldspar abundances than those from the Zacatecas Formation (plagioclase dominates over K-

feldspar). This might either be indicative for higher weathering rates in the source area of the 

Zacatecas Formation or for stronger weathering conditions after the depositional processes.

The sediments without volcanic fragments plot on the transition between the quartzarenite, 

subarkose and sublitharenite fields. 

6.2. Geochemistry

Whole-rock geochemical data were obtained by XRF analysis. The volcanic rocks are 

intermediate to acidic in composition and are classified, employing trace elements data 

according to Winchester and Floyd (1977), as rhyolite (sample Cha B1) and dacite (sample 

RdC C9).

The studied sediments were most likely derived from a felsic to intermediate source. 

Depletions in Cr and Ni preclude input from mafic/ultramafic rocks (ophiolitic source). Th/Sc 

vs. Zr/Sc reveals low sediment recycling. However, zircon grains are significantly enriched in 

samples from the Zacatecas Formation (according to heavy mineral analysis) indicating 

stronger sediment recycling rates.

6.3. Heavy mineral analysis

In the analized samples, generally, translucent heavy minerals are more abundant in sediments 

without volcanic fragments and scarce in the volcanic or volcaniclastic rocks. Although 

abundances of translucent minerals, including the majority of the heavy minerals (Pxn Amp, 

Ep, Spn, Grt, Chl, Tur, Rt, Ant) are scarce in all samples (Fig. 8). The most abundant heavy 

minerals occurring in the samples are zircon and apatite. The sediments without volcanic 

fragments illustrate higher zircon abundances compared to the sediments with volcanic 

fragments; whereas apatite is more abundant in sediments with volcanic fragments, with the 

exception of intermediary to mafic volcanic rocks, which show uncommon chlorite and in 

some cases epidote.
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Hence, provenance discrimination based on these heavy minerals is impossible. The most 

important parameters influencing heavy mineral assemblages are hydraulic sorting and 

diagenesis (Morton and Hallsworth 1994). The hydraulic behaviour of a single grain depends 

on grain density, grain shape and grain size (Morton and Hallsworth, 1994, 1999). Morton 

and Hallsworth (1994) documented that heavy minerals with different habits have different 

hydraulic properties. Therefore, for provenance analysis, the best results are obtained from 

minerals with similar habits. Processes occurring during diagenesis and burial (e.g., 

dissolution) are often accompanied by losing unstable heavy minerals (Morton and 

Hallsworth, 2007). The main factor causing dissolution of heavy minerals during diagenesis 

and burial is the pore fluid temperature (Morton and Hallsworth, 2007). Referring to Morton 

and Hallsworth (1994, 1999, 2007), an increase in burial depths is accompanied by an 

increase in pore fluid temperature. The combination of increasing temperatures and the 

change of the pore fluid composition is responsible for dissolution processes of unstable 

heavy minerals. According to Morton and Hallsworth (2007), the relatively low abundances 

of the unstable heavy minerals might be caused by burial and dissolution. On the basis of 

several case studies, Morton and Hallsworth (2007) compiled the relative stability of detrital 

heavy minerals in deep burial conditions. Pyroxene (CPx, OPx) and amphibole grains are 

highly unstable in the subsurface. Epidote grains are more stable than amphibole grains but 

are also unstable in the subsurface. Sphene is more stable than amphibole and epidote grains, 

but is also unstable in the subsurface (Morton and Hallsworth, 2007). Garnet is a common 

mineral in metamorphic rocks and considered to be more stable under deep burial conditions 

than the previously discussed heavy minerals. However, dissolution processes of garnet under 

deep burial conditions were recognised by Morton (1984). Furthermore, the occurrence of 

acidic groundwater during weathering can lead to dissolution of garnet (Morton and 

Hallsworth, 2007) and apatite (Morton, 2012). Hence, the low abundances of garnet in the 

studied samples can likely be attributed to a lack of garnet-bearing rocks in the source area(s) 

but not to weathering caused by acidic groundwater since apatite is still present. La Joya 

Formation sediments illustrate greater GZi values than Zacatecas Formation sediments caused 

by higher zircon abundances in the latter (Fig. 9). However, the GZi value may not reflect the 

original composition of the source area because garnet grains possibly disappeared during 

burial and weathering. Tourmaline is a common mineral in magmatic rocks, hydrothermal 

mineral deposits as well as in metamorphic rocks and is very stable during weathering and 

transport. Morton and Hallsworth (2007) documented that dissolution of tourmaline appears 

at depths exceeding 4 km and is most likely caused by a combination of depth and unusual 
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fluid composition. Tourmaline is very rare in all samples. Rutile grains often occur in 

metamorphic rocks (Meinhold, 2010) and according to Turner and Morton (2007), there is no 

evidence for dissolution processes during diagenesis. Generally, the scarcity of metamorphic 

minerals in the heavy mineral spectrum might either be indicative for a lack of metamorphic 

source rocks or for dissolution processes after deposition of the sediment. The lack of 

metamorphic input can also be inferred from the calculated Th/U values of the detrital zircon 

grains. Including all analyzed detrital zircon samples, the calculated Th/U values are 

predominantly higher than 0.1 indicating magmatic rather than metamorphic input (Rubatto, 

2002; Meinhold et al., 2008). The most abundant heavy minerals occurring in the samples are 

zircon and apatite. Zircon is a common mineral in felsic and intermediate igneous rocks and is 

considered to be stable in sandstones and in general during burial (Hubert 1962, Morton and 

Hallsworth 2007). Remarkably, Zacatecas Formation sediments illustrate higher zircon 

abundances compared to La Joya Formation sediments (Fig. 8). Taking the stability during 

burial and weathering into account, higher zircon abundances might be indicative for higher 

sediment recycling rates in the source area(s). Hubert (1962) argued that the ZTR (zircon, 

tourmaline, rutile) index reflects the mineralogical maturity of sandstones. With regard to the 

Zacatecas Formation sediments, high zircon abundances, low tourmaline and low rutile 

abundances result in high ZTR indices (Fig. 9). In contrast, lower zircon abundances, low 

tourmaline and rutile contents lead to low ZTR values including the sediments with volcanic 

fragments (La Joya Formation). According to Hubert (1962), zircon, tourmaline and rutile are 

concentrated with quartz and chert. High ZTR indices in the Zacetacas Formation sediments 

are consistent with high total quartz abundances. This observation probably marks a change in 

provenance, inasmuch as the source area(s) for the Zacatecas Formation sediments can be 

characterized by a greater maturity. Apatite grains are considered very stable during transport 

and burial. However, apatite is highly sensitive to surficial weathering (Morton, 1986, 2012). 

The decrease of apatite from the southeast (La Ballena) towards the northeast (Real de 

Catorce) might be indicative of stronger weathering conditions in the vicinity of Real de 

Catorce. Another likely approach to explain the scarcity of apatite in Real de Catorce is a 

different source area compared to La Ballena and Charcas.

6.4. Detrital zircon U–Pb ages

The results obtained from the U–Pb geochronology provide a wide range of ages. Age 

populations occur at ~1780–1300 Ma, ~1290–900 Ma, ~720–450 Ma, ~445–310 Ma, ~300–
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240 Ma, ~240–200 Ma, ~200–150 Ma (Fig. 11). The oldest age population within the samples 

(~1780–1300 Ma) illustrates Palaeoproterozoic–Middle Mesoproterozoic ages. This age 

population makes up 10 % of 252 concordant zircon ages. With the exception of sample RdC 

C8 (Nazas Formation), the occurrence of this age population is restricted to the Zacatecas 

Formation. Based on zircon cores providing Palaeoproterozoic–Mesoproterozoic ages, 

Ortega-Flores et al. (2014) suggested that zircons of these ages were possibly derived from 

the Huiznopala gneiss. The Huiznopala, Novillo and Guichicovi gneisses together with the 

Oaxacan complex make up the Oaxaquia microcontinent of Mexico (Keppie et al., 2003), 

which is a vestige of the Grenvillian belt (~1250–900 Ma) (e.g., Weber et al., 2012). Weber et 

al. (2012) assume that the Palaoeproterozoic–Mesoproterozoic provinces of Amazonia were 

likely attached to the Oaxaquia microcontinent during its development. A further probable 

approach to explain the oldest zircon population proposes that sedimentary detritus directly 

derived from the Rio Negro-Juruena (~1800–1550 Ma) province of western Amazonia 

(Ortega-Flores et al., 2014). 

The second oldest age population illustrates ages ranging from ~1290–900 Ma 

(Middle Mesoproterozoic–Early Neoproterozoic) and represents the most abundant age 

population (39 % of 252 concordant zircon ages). This population is present in all samples but 

shows greater abundances in the Zacatecas Formation. The detrital input responsible for these 

ages probably originated from basement rocks with Grenvillian affinity present in the 

Oaxaquia microcontinent.

Late Neoproterozoic–Ordovician ages are represented by the ~720–450 Ma age 

population and occur in all analyzed samples. This age population makes up 9 % of 252 

concordant zircon ages and is indicative for the Pan-African orogeny (Rino et al., 2008) and 

Early Palaeozoic tectono-magmatic events. The Maya (Yucatan–Chiapas), Chortis, Oaxaquia, 

Coahulia and Florida blocks were accreted to Gondwana during its final assembly and are 

considered as possible source areas (Dickinson and Lawton, 2001, Murphy et al., 2004). 

A further age population provides ages ranging from ~445–310 Ma (Late Ordovician–

Pennsylvanian) and makes up 6 % of 252 concordant zircon ages. The nearest possible source 

areas are the Acatlán Complex and the Maya (Yucatan–Chiapas) block where Early 

Palaeozoic igneous rocks are present (Steiner and Walker, 1996; Nance et al., 2009; Martens 

et al., 2010). Recycling from pre-Permian low-grade metasedimentary rocks containing early 

Palaeozoic zircon grains is also possible. Low-grade metasedimentary rocks with Early 

Palaeozoic detrital zircons are known, for example, from the Acatlán Complex (Nance et al., 

2009). It is noteworthy that the occurrence of the ~445–310 Ma age population is restricted to 



25

the Zacatecas Formation. Despite low abundances of this population within the sediments 

without volcanic fragments, it suggests the existence of a source area that delivered detritus 

exclusively for the Zacatecas Formation.

Permian–Triassic ages are presented by an age population ranging from ~300–240 Ma and 

make up 18 % of 252 concordant zircon ages. Referring to Ortega-Flores et al. (2014), the 

detrital zircons yielding these ages derived from a continental magmatic arc located on the 

western margin of Pangaea. The magmatic activity of this arc occurred from 300–235 Ma 

(Torres et al., 1999, Dickinson and Lawton, 2001Stern and Dickinson, 2010, Barboza-Gudiño 

et al., 2010). With the exception of sample RdC C8 (Nazas Formation), this age population is 

only present in the Zacatecas Formation. Ortega-Flores et al. (2014) described Triassic 

sandstones of the El Chilar Complex of the Tolimán area (west of the Sierra Madre terrene) 

without volcanic fragments and great abundances of Permian–Triassic zircons. This 

observation is consistent with the samples from the Zacatecas Formation analyzed in this 

study because they contain high abundances of Permian–Triassic zircons and have no 

volcanic fragments.

The second youngest population within the samples is represented by ~240–200 Ma-

old zircon grains, which make up 7 % of 252 concordant zircon ages. This age population 

may represent an event related to the breakup of Pangaea and initial rifting that formed the 

Gulf of Mexico (Steiner and Walker, 1996). The ages might be related to the initial stage of 

the Nazas magmatic arc (~232–150 Ma: Stern and Dickinson, 2010). The nearest Late 

Triassic igneous rocks are exposed to the east of the study area, in the Sierra Madre Oriental 

fold and thrust belt, e.g., ~220 Ma-old Acatita intrusives (Molina-Garza, 2005). However, it is 

uncertain if these rocks were already exposed on the surface in latest Triassic and Jurassic 

times to supply detrital material for the studied sediments. Notably, the occurrence of this 

population is mainly restricted to the Zacatecas Formation. However, sample RdC C8 from 

the Nazas Formation also contains this population. In total, zircon grains providing these ages 

are scarce but suggest a source area that primarily delivered sedimentary detritus of this age to 

the Zacatecas Formation and from this in to the Nazas Formation.

The youngest recognised age population ranges from ~200–150 Ma (Early Jurassic–

Late Jurassic). This age population makes up 11 % of 252 concordant zircon ages. Referring 

to recent literature (Barboza-Gudiño et al., 2008; Dickinson and Lawton, 2001; Lawton et al., 

2010; Lawton and Molina Garza, 2014), the Nazas magmatic Arc is considered to be the most 

probable source area. 
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Taking the results of the U–Pb geochronology into account, the Zacatecas Formation 

and Nazas Formation sediments can be distinguished from the La Joya Formation sediments 

either due to the maximum depositional ages or on the basis of source area characteristics. 

The maximum depositional ages provided by the Zacatecas Formation samples range from 

Norian (Cha B9, RdC C4) to the Hettangian–Sinemurian boundary (RdC C6a). The dominant 

provenance areas of the Zacatecas Formation were most likely the Amazonian craton (~1780–

1300 Ma), the Oaxaquia microcontinent (~1290–900 Ma) and Maya (Yucatan–Chiapas), 

blocks (~720–450 Ma) as well as the Permian–Triassic magmatic arc (~300–240 Ma). The 

Acatlán Complex and the Maya (Yucatan–Chiapas) block are likely source areas for ~445–

310 Ma-old zircon grains. The source of the ~240–200 Ma-old detrital zircons is uncertain. It 

is notable, that the population ranging from ~445–310 Ma exclusively occurs in the Zacatecas 

Formation indicating that this source might have shut down in the Late Triassic. The 

population ranging from ~240–200 Ma is predominantly present in the Zacatecas Formation. 

However, the occurrence of this population in sample RdC C8 leads to the assumption that 

this source was active until at least the Pliensbachian. In addition to the discussed source 

areas of the samples Cha B9 and RdC C4, the sample RdC C6a contains two zircon grains 

providing Early Jurassic ages. Hence, the Zacatecas Formation contains either Upper Triassic 

or Lower Jurassic deposits. It is speculated that some of these deposits belong to the Lower 

Jurassic La Boca Formation. However, La Boca Formation is only present in the Sierra Madre 

Oriental (Fig. 3). Assigning these sediments to the La Boca Formation might either indicate 

the presence of La Boca Formation in the study areas (Mesa Central) or the presence of an 

alternative Lower Jurassic sediment source. 

Sample LaB A3 provides an Oxfordian maximum depositional age for La Joya Formation. 

The Nazas arc evolved in an extensional regime with less erosion than the Andean-type 

Permian–Triassic arc (Stern and Dickinson, 2010). Most likely, the role of the Nazas arc as 

sediment source decreased with time. Hence, sample LaB A3 could be representative for a 

post-Nazas arc phase and received detritus from an unknown Late Jurassic source. However, 

since volcanic material is absent, sample LaB A3 could have received plutonic material from 

the Nazas arc because this sample has a high feldspar content and a similar heavy mineral 

assemblage as the samples with volcanic fragments. If the stratigraphic assignment of this 

sample to La Joya Formation is correct, it means that La Joya Formation is much younger 

than previously thought or, that in the locality La Ballena, the clastic sedimentation continues 

until the Oxfordian, as it happens in north-central Mexico with La Gloria Formation or as it 

has been previously described in some localities north of Charcas (Escalante-Martinez, 2006) 



27

or in the Galeana area in Nuevo León (Pérez-Aguilar, 2018). The above is consistent with the 

significantly younger age suggested by  Lawton and Amato (2017)  for the Minas Viejas 

Formation wich overlying La Joya in the Sierra Madre Oriental.

The other La Joya Formation sediments provide maximum depositional ages from the Early 

Jurassic (RdC C8; Pliensbachian) to the Middle Jurassic (Cha B8; Aalenian, Cha B6; 

Callovian). The detritus of the samples Cha B6 and Cha B8 is dominated by material most 

likely derived from the Oaxaquia microcontinent (~1290–900 Ma), Maya (Yucatan–Chiapas), 

Chortis, Oaxaquia, Coahuila and Florida blocks (~720–450 Ma). Zircon ages ranging from 

~200–150 Ma are indicative of detritus from the Nazas arc, which explains the volcanic 

fragments. However, characteristic ages for the Pan-African orogeny represented by the Maya 

(Yucatan–Chiapas), Chortis, Oaxaquia, Coahuila and Florida blocks are lacking in sample 

Cha B8. Additionally, the sample RdC C8 contains Permian–Triassic ages (~300–240 Ma) 

and Palaeoproterozoic–Middle Mesoproterozoic ages, indicative of detritus from the 

Amazonian craton (~1780–1300 Ma). Notably, Permian–Triassic ages are present within the 

Nazas Formation sediments (sample RdC C8) indicating exposure of this source until the 

Pliensbachian. Admittedly, the zircon abundances of the La Joya Formation samples are 

poorer compared to those of the Zacatecas and Nazas formations. According to Stern and 

Dickinson (2010), the Nazas arc is composed of volcanic rocks, which usually have lower 

zircon abundances than plutonic rocks (Permian–Triassic arc). 

7. Conclusions

The main goal of this study was to identify similarities and differences among the Triassic 

and Jurassic siliciclastic sediments in the areas of La Ballena, Charcas and Real de Catorce in 

central Mexico. By means of a multi-method provenance analysis. The most important 

findings of this study are as followed: 

 Sediment of Zacatecas, Nazas and La Joya formations is quartz rich with variable

abundances of feldspar. Volcanic fragments are only present in the Nazas and La Joya 

formations.

 The sediments are characterized by low sediment recycling in the source area(s). Low Cr

and Ni values exclude input from a mafic/ultramafic source. 

 The most comoon translucent heavy minerals occurring in the samples are apatite and

zircon. Apatite grains decrease from the southwest (La Ballena) towards the northeast (Real 
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de Catorce) either indicating stronger weathering conditions at Real de Catorce or a source 

area that delivered detritus exclusively to the the Real de Catorce locality. 

 Zacatecas Formation sediments predominantly yielded Late Triassic or Early Jurassic

maximum depositional ages (Norian–Hettangian/Sinemurian boundary), whereas La Joya 

Formation sediments yielded Early Jurassic–Middle Jurassic (Pliensbachian–Callovian) 

or Late Jurassic (Oxfordian) maximum depositional ages. 

 Zacatecas and Nazas formation sediments received detritus possibly from the Amazonian

craton (~1780–1300 Ma), the Oaxaquia microcontinent (~1290–900 Ma), the Maya 

(Yucatan–Chiapas), Chortis, Oaxaquia, Coahulia and Florida blocks (~720–450 Ma) and the 

Permian–Triassic magmatic arc (~300–240 Ma). The Acatlán Complex and the Maya 

(Yucatan–Chiapas) block were likely source areas for ~445–310 Ma-old zircon grains.

 Detrital zircon U–Pb ages in the Zacatecas Formation illustrate maximum depositional ages

ranging from Norian (Late Triassic) to the Hettangian/Sinemurian boundary (Early 

Jurassic). The source of the ~240–200 Ma-old detrital zircons likely consisted of magmatic 

rocks related to the early disassambly of western Pangaea. 

 La Joya Formation sediments received minor detritus from the Oaxaquia microcontinent

(~1290–900 Ma), and the Maya (Yucatan–Chiapas), Chortis, Oaxaquia, Coahuila and Florida 

blocks (~720–450 Ma). Volcanic lithics were likely derived from the Nazas volcanic arc, as 

suggested by the presence of ~200–150 Ma-old detrital zircon grains.
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Appendix 1. Sample preparation and analytical methods
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Thin section preparation followed standard techniques. For the purpose of different 

analysis, the samples were crushed with a hammer into fragments of approximately 0.5 cm. A 

part of the crushed material was further used to produce powder for the mounts for X-ray 

fluorescence (XRF) analysis. A planetary ball mill (Fritsch) was employed in order to receive 

the required grain size of <63 µm. The remaining crushed material was used to prepare the 

samples for the heavy mineral separation. A disc mill (Fritsch) was utilised to crush the 

sample material (~0.5 cm) into rock fragments <500 µm. Afterwards, the sample material was 

sieved (dry sieving) in order to obtain the desired grain fraction of 63–125 µm. The sample 

preparation including the planetary ball mill as well as the disc mill was conducted in the 

laboratories of the Department of Sedimentology and Environmental Geology of the 

University of Göttingen. 

For whole-rock geochemical analysis, XRF sample mounts (40 mm in diameter) 

composed of 5.6 g Spectromelt, 2.8 g sample material (<63 µm) and 0.64 g lithium fluoride 

(LiF) were produced. An Autofluxer facility (Breitländer GmbH) was utilised to produce the 

XRF mounts by heating the sample powder up to 1250 °C. Shaking motions during the 

heating were necessary for homogenisation during the melting process. After heating, the melt 

was transferred into crucibles, composed of platinum, to cool for four minutes. The whole-

rock geochemical analysis was carried out using a Panalytical AXIOSadvanced device. The 

sample preparation, production of the XRF mounts and the XRF analysis were conducted at 

the Department of Geochemistry of the University of Göttingen. 

The Loss on Ignition (LOI) is a common technique to determine the abundances of carbon in 

samples. Analysis followed standard precedures by controlled heating (ignitation at 1000 °C) 

of dried samples. 

Before operating the heavy mineral separation, the required grain fraction (63–125 

µm) was treated with acetic acid (CH3COOH) to remove carbonate from sample material. To 

separate the heavy minerals from the light minerals a heavy liquid (sodium polytungstate) 

with a density of approximately 2.87–2.88 g cm–3 was used. The heavy minerals were 

distributed on an object slide and covered with a special resin with a light refraction of 1.662 

(Cargille MeltmountTM). A thin glass plate was used to cover the mixture of heavy minerals 

and resin. Finally, the object slide containing the heavy minerals and the resin was heated up 

to 70° C to ensure a sufficient embedding of the heavy minerals in the resin. The heavy 

mineral separation and production of the heavy mineral mounts was carried out in the heavy 

mineral laboratory of the Department of Sedimentology and Environmental Geology of the 

University of Göttingen.
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For detrital zircon U-Pb geochronology, zircon grains were separated from the 

remaining heavy mineral concentrates using a Frantz magnetic separator to remove the 

magnetic minerals. From the nonmagnetic fraction, the zircon grains were picked by hand 

under a binocular microscope (Olympus SZX7) and placed on double-side adhesive tape and 

embedded in epoxy resin. The next step included the grinding and polishing of the mount to 

ensure smooth surfaces of the zircons and to remove scratches on the mount surface. 

Therefore, a Metaserv 2000 Grinder/Polisher (Buehler) machine was used. The whole process 

was carried out in the heavy mineral laboratory of the Department of Sedimentology and 

Environmental Geology of the University of Göttingen. Finally, the mount was scanned by 

cathodoluminescence (CL) employing a JEOL JXA 8900 RL (JEOL/Japan) electron 

microprobe in the Department of Geochemistry of the University of Göttingen. CL imaging 

allows visualisation of the internal structure of the zircon grains chosen for U–Pb 

geochronology. 

Seven samples were used for detrital zircon U–Pb geochronology (Tables S7 to S13. 

One sample from La Ballena (LaB A3), three samples from Charcas (Cha B6, Cha B8, Cha 

B9) and three samples from Real de Catorce (RdC C4, RdC C6a, RdC C8) were analyzed. 

The samples were chosen with the intention to represent each profile from the bottom to the 

top. The U–Pb geochronology was performed at the Geological Survey of Denmark and 

Greenland (GEUS) in Copenhagen employing a New Wave 213 nm Nd: YAG laser ablation 

(LA) system coupled to a Thermo-Fisher Scientific Element 2 SF-ICPMS (Meinhold and 

Frei, 2008; Frei and Gerdes, 2009). To remove surface lead contamination, the zircon mount 

was cleaned in an ultrasonic bath before placing it into the sample cell. The laser run with a 

repetition rate of 10 Hz and a laser fluency on the sample of 10 J cm–2. During the 

measurement, two different standards including the GJ1 zircon as well as the Plešovice 

standard zircon were utilised. All data were acquired with single-spot analysis. With the 

exception of sample LaB A3 (20 µm) a laser beam size of 25 µm was employed. The total 

time for each measurement was 80 seconds (30 seconds background, 30 seconds signal 

(ablation), 20 seconds washout). The instrument was tuned to achieve large and stable signals 

for the 206Pb and 238U peaks, low background count rates and low oxide production rates (<0.8 

%). During the measurement the following isotopes were measured: 202Hg, 204(Pb + Hg), 
206Pb, 207Pb, 208Pb, 232Th and 238U. The final data reduction was carried out through the 

software Iolite (Paton et al., 2011) using the integrated DRS routine VizualAge (Petrus and 

Kamber, 2012). 
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The common Pb corrected data were plotted in histograms, concordia diagrams (only 

LaB A3) and probability density curves to clarify the occurring age populations. Isoplot 

(Ludwig, 2003) and DensityPlotter v2.2 (Vermeesch, 2012) were employed to compile the 

illustrations. The resulting 206Pb/238U ages were used to illustrate zircon ages ≤800 Ma. The 
206Pb/207Pb ages were used to depict older zircon ages. Analysis within a 95–105 % 

concordance level, are considered to be concordant. Furthermore, analysis illustrating a 

discordance >10 % were rejected from the data set and not used for the interpretation. The 

geological time scale provided by the Gradstein et al. (2012) was used as reference. 

Uncertainties in ages are quoted at the 2-sigma (95 % confidence) level. Meinhold et al. 

(2010) who presented U–Pb dates on zircon grains previously dated by SHRIMP-II have 

tested the accuracy and reproducibility of the applied LA-ICPMS method. Furthermore, chips 

of the TEMORA 1 zircon standard were treated as unknown during the LA-ICPMS analytical 

session by Meinhold et al. (2010).

Appendix 2. Petrography

Sample LaB A3 is a moderate sorted, medium-grained to coarse-grained sandstone that 

provides grain sizes ranging from 0.29 to 0.71 mm. However, a very few grains can be 

characterized as fine-grained. The majority of the grains provide subrounded to subangular 

grain shapes. Furthermore, grain contacts are obvious and fine cement between the grains is 

detectable. Overall, 320 grains were counted and the main components are quartz (46.56 %), 

feldspar (30 %) and lithic fragments (23.44 %). Remarkably, very high feldspar and chert 

(Lm) contents in comparison to the remaining samples without volcanic fragments can be 

recognised. However, most of the feldspar grains are highly affected by alteration, which 

might be a possible explanation for the fine-grained cement occurring between the grains. 

Sample LaB A3 reveals the third highest Na2O concentration among all samples. This 

observation is consistent with the high feldspar content. The QFL analysis yields a magmatic 

arc as a possible provenance.

Sample Cha B2 is a very fine-grained siltstone that provides grain sizes <0.008 mm. 

However, this sample illustrates graded bedding. 

Sample Cha B3 is a medium-grained to coarse-grained siltstone that provides grain 

sizes ranging from 0.017 to 0.04 mm and shows signs of weathering. Besides clay minerals 

and quartz, this sample contains calcite. About 7.6 wt% CaO and an elevated LOI are in 

consistency with the calcite abundance. 
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Sample Cha B4 is a well-sorted, fine-grained sandstone that provides grain sizes 

ranging from 0.17 to 0.25 mm. The majority of the grains are subrounded to subangular. 

Overall, 314 grains were counted and the main components are quartz (92.36 %), feldspar 

(3.5 %) and lithic fragments (4.14 %). In this sample, it is difficult to distinguish between 

cement and matrix because in a very few cases grain contacts are obvious. However, fine-

grained material can be recognised between the grains. High abundances of calcite are 

consistent with elevated values for CaO and LOI. Calcite predominately occurs as cement or 

matrix. However, single calcite grains were also recognised. The QFL analysis yields a 

recycled orogen as a possible source area. 

Sample Cha B5 is a coarse-grained siltstone to fine-grained sandstone that provides 

grain sizes ranging from 0.05 to 0.12 mm. The grains are predominantly subangular to 

angular. The major components are quartz (93.67 %), feldspar (2.71 %) and lithic fragments 

(3.61 %). Both, plagioclase and K-feldspar grains were recognised. However, the most 

frequent variety occurring in this sample is K-feldspar. Observed high abundances of calcite 

are consistent with elevated values for CaO and LOI. Grain contacts are obvious but calcite 

often occurs as cement. Furthermore, the thin section provides areas where calcite illustrates 

greater abundances compared to other areas in this sample. The QFL analysis yields a 

recycled orogen as a possible provenance area for this sample. 

Sample Cha B9 is a moderate sorted, fine-grained to medium-grained sandstone that 

provides grain sizes ranging from 0.17 to 0.34 mm. The grains are mostly subrounded to 

angular. Grain contacts and very fine cement between the grains are recognisable. In a very 

few cases muscovite occurs in this sample. Remarkably, Cha B9 does not contain calcite. 

Overall, 309 grains were counted. The major components are quartz (95.05 %), feldspar (3.51 

%) and lithic fragments (1.55 %). The QFL analysis yields a continental block as a possible 

source area. However, this sample plots very close to the field of a recycled orogen. 

Sample RdC C1 is a very fine-grained siltstone highly affected by alteration. Further 

differentiation is not possible. 

Sample RdC C2 is a poorly-sorted, medium-grained to very coarse-grained sandstone 

that provides grain sizes ranging from 0.3 to 1.5 mm. The majority of the grains are 

subangular to angular. Fine-grained cement between the grains and a couple of muscovite 

grains are recognisable. Overall, 429 grains were counted. The major components are quartz 

(89.98 %), feldspar (1.63 %) and lithic fragments (8.39 %). In contrast to the remaining 

samples without volcanic fragments sample RdC C2 predominately consists of polycrystalline 
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quartz. Furthermore, sample RdC C2 reveals the second highest chert content (Lm) (Table 2). 

The QFL analysis yields a recycled orogen as a possible source area. 

Sample RdC C3 is a well-sorted, medium-grained sandstone that provides grain sizes 

ranging from 0.3 to 0.49 mm. The grains are mostly subangular. The sample can be 

characterized due to a minor occurrence of quartz, feldspar and lithic fragments. One of the 

main components is calcite, which is consistent with a high CaO content (7.93 wt%) and an 

elevated LOI. Remarkably, a large amount of dolomite is consistent with the highest MgO 

concentration (6.31 wt%) among all analyzed samples.

Sample RdC C4 is a moderately sorted, very fine-grained to medium-grained 

sandstone that illustrates stratification. The thin section can be divided into three areas. The 

first area is dominated by subrounded to subangular grains that provide grain sizes ranging 

from 0.07 to 0.15 mm. Grain contacts and fine cement between the grains are obvious. A very 

few muscovite grains were recognised in the cement. The second area is composed of fine-

grained to medium-grained, subrounded to subangular grains with grain sizes ranging from 

0.24 to 0.29 mm. The fine cement between the grains does not contain muscovite. The third 

area mostly consists of angular grains, which are medium-grained. Grain sizes range from 

0.27 to 0.39 mm. The abundance of fine cement decreases resulting in an increase of grain 

contacts. Furthermore, this area is composed of less chert and polycrystalline quartz compared 

to the finer areas. Overall, 400 grains were counted and the major components are quartz 

(94.5 %), feldspar (1.25 %) and lithic fragments (4.25 %). The QFL analysis yields a recycled 

orogen as a possible provenance area.

Sample RdC C6 is a coarse-grained siltstone with grain sizes ranging from 0.03 to 0.5 

mm. The grains are predominantly subrounded to subangular. The major component is a fine-

grained matrix including monocrystalline quartz, polycrystalline quartz and feldspar in minor 

abundances. However, due to the thin section observations, this sample could also be 

characterized as a wacke with a major portion of matrix and a minor portion of rock building 

fragments. 

Sample RdC C6a is a poorly sorted, fine-grained to coarse-grained quartzite with grain 

sizes ranging from 0.08 to 0.5 mm. The components mostly provide angular grain shapes. 

Quartz cement occurs between the grains. Overall, 400 grains were counted and the major 

components are quartz (95 %) and lithic fragments (5 %). The QFL analysis yields a recycled 

orogen as a possible source area. 

Sample RdC C10 is a well-sorted, very fine-grained to fine-grained sandstone that 

provides grain sizes ranging from 0.07 to 0.2 mm. The grains are mostly subrounded to 
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angular. Fine cement between the grains, most likely composed of clay, can be recognised. 

Overall, 465 grains were counted and the major components are quartz (93.12 %), feldspar 

(2.37 %) and lithic fragments (4.52 %). The QFL analysis yields a recycled orogen as a 

possible provenance area.

Sample RdC C14 is a coarse-grained siltstone with grain sizes ranging from 0.04 to 

0.65 mm. The grains are predominately subangular to angluar. The major component is a 

fine-grained matrix including monocrystalline quartz as well as polycrystalline quartz in 

minor abundances. However, due to the thin section observations, this sample could also be 

characterized as a wacke with a major portion of matrix and a minor portion of rock building 

fragments.

Sample LaB A1 is a well-sorted, very coarse-grained sandstone to conglomeratic rock 

that provides grain sizes ranging from 1.5 to 3 mm. The majority of the grains are 

subrounded. However, the polycrystalline quartz grains even illustrate well rounded grain 

shapes. Furthermore, only very small parts of this thin section provide cement between the 

grains. The main part can be characterized due to a lack of matrix or cement. Overall, 311 

grains were counted including quartz (55.95 %), feldspar (9.65 %) and lithic fragments (34.4 

%). The volcanic fragments include well developed plagioclase laths without a preferred 

orientation. They make up 56.1 % of the lithic fragments, whereas chert contributes 43.9 %. 

The QFL analysis yields a recycled orogen as a possible source area.

Sample Cha B6 is a moderate sorted, fine-grained to medium-grained sandstone that 

provides grain sizes ranging from 0.24 to 0.49 mm. The grains are subrounded to angular. The 

majority of the polycrystalline quartz grains provide rounded grains. Grain contacts are 

obvious but calcite occurs only irregular between the grains. Fine-grained cement only 

appears in certain parts of the thin section. Overall, 345 grains were counted and the major 

components are quartz (38.26 %), feldspar (32.75 %) and lithic fragments (28.99 %). The 

high feldspar content is consistent with a Na2O concentration of 3.85 wt%. Remarkably, 

sample Cha B6 illustrates the highest feldspar and the lowest quartz content within the 

samples with volcanic fragments. Volcanic fragments imply plagioclase laths without a 

preferred orientation. Due to a lack of chert (Lm), volcanic fragments make up 100 % of the 

lithic fragments. The plagioclase laths are predominately small. The QFL analysis yields a 

magmatic arc as a possible provenance area.

Sample Cha B7 is a polymictic conglomeratic rock that provides grain sizes in the 

array of very fine pebbles (2.8 to 3.4 mm). The majority of the grains are rounded to 

subangular. However, the monocrystalline quartz grains also provide well rounded grain 
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shapes and illustrate different grain sizes. The grains are embedded in a fine matrix or cement 

most likely composed of clay minerals. Distinguishing between matrix and cement is difficult 

in this sample. Overall, 344 grains were counted and the major components are quartz (82.58 

%), feldspar (9.88 %) as well as lithic fragments (7.56 %). The majority of the feldspar grains 

are extremely affected by alteration. Due to low abundances of volcanic fragments and chert, 

the appearance of lithic fragments is scarce in this sample. Volcanic fragments imply small 

plagioclase laths and make up 80.8 % of lithic fragments, whereas chert contributes only 19.2 

%. Nevertheless, the quartz content is the highest within the samples with volcanic fragments. 

The QFL analysis yields a recycled orogen as a possible source area. However, the sample 

plots very close to the field representing a continental block provenance.

Sample Cha B8 is a moderate sorted, fine-grained to medium-grained sandstone that 

provides grain sizes ranging from 0.17 to 0.39 mm. The grains are predominately rounded to 

subangular. Slight amounts of clay minerals make up the cement between the grains. Overall, 

354 grains were counted and the major components are quartz (79.94 %), feldspar (5.93 %) 

and lithic fragments (14.12 %). The sample can be characterized due to a high content of 

quartz and the lowest feldspar content within the samples with volcanic fragments. The 

feldspar grains are mainly plagioclase. The volcanic fragments contain very small plagioclase 

laths. Volcanic fragments make up 86 % of the lithic fragments, whereas chert contributes 14 

%. The QFL analysis yields a recycled orogen as a possible provenance area. 

Sample Cha B10 is a poorly sorted, fine-grained to coarse-grained sandstone that 

provides grain sizes ranging from 0.15 to 0.6 mm. The grains are mostly rounded to 

subangular. Especially, the monocrystalline quartz reveals rounded grains. Grain contacts 

occur in great amounts and fine cement can be recognised between the grains. Furthermore, 

minor abundances of calcite reside between the grains. The cement is most likely composed 

of clay minerals. Overall, 453 grains were counted. The sample consists of quartz (58.5 %), 

feldspar (19.65 %) and lithic fragments (21.85 %). The sample is characterized by the second 

highest feldspar content among all samples with volcanic fragments, which is consistent with 

a Na2O concentration of 4.33 wt%. The volcanic fragments make up 88.8 % of the lithic 

fragments, whereas chert contributes only 11.2 %. The plagioclases within the volcanic 

fragments occur as well developed laths. Feldspar grains are mainly represented by 

plagioclase. The QFL analysis yields a recycled orogen as a possible source area. 

Sample Cha B11 is a moderate sorted, fine-grained to medium-grained sandstone that 

provides grain sizes ranging from 0.16 to 0.43 mm. The grains are predominately subrounded 

to subangular. Unlike to the majority of the analyzed samples, this sample does not provide 
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calcite between the grains. Cement only occurs in certain areas of the thin section and makes 

up a minor portion. Overall, 387 grains were counted and the major components are quartz 

(59.43 %), feldspar (19.38 %) and lithic fragments (21.19 %). The high feldspar content is 

consistent with a Na2O concentration of 4.29 wt%. The volcanic fragments illustrate well 

developed plagioclase laths and constitute 87.8 % of the lithic fragments, whereas chert 

contributes only 12.2 %. The feldspar content can be characterized by approximately similar 

abundances of plagioclase and K-feldspar. The QFL analysis yields a recycled orogen as a 

possible provenance area. Samples Cha B10 and Cha B11 provide very similar abundances of 

the mineral components. However, sample Cha B11 is more fine-grained and provides greater 

amounts of poorly rounded grains than sample Cha B10. 

Sample RdC C8 is well-sorted, fine-grained sandstone that provides grains sizes 

ranging from 0.15 to 0.17 mm. During the fieldwork, this sample was identified as pyroclastic 

deposit. However, according to the thin section analysis, this sample is likely of sedimentary 

origin. Interestingly, sample RdC C8 is extremely affected by weathering, inasmuch as the 

volcanic fragments are completely altered. Due to the high degree of weathering, this sample 

was not considered for mineral counting.

Sample RdC C11 is a polymictic conglomeratic rock that provides grains sizes ranging 

from 0.24 to 2.8 mm. The grains are rounded to subangular. Furthermore, they are embedded 

in a fine-grained cement. The volcanic fragments within this sample contain well developed 

plagioclase laths without preferred orientation. Overall, 396 grains were counted and the 

major components are quartz (75.26 %), feldspar (8.08 %) and lithic fragments (16.67 %). 

The volcanic fragments make up 69.7 % of the lithic fragments, whereas chert contributes 

30.3 %. The QFL analysis yields a recycled orogen as a possible source area. 

Sample RdC C12 is a poorly sorted, very fine-grained to medium-grained sandstone 

that provides grain sizes ranging from 0.08 to 0.26 mm. The majority of the grains illustrate 

subangular to angular grain shapes. The grains are embedded in fine cement. However, 

cement occurs in slight abundances because strong grain contacts are recognisable. 

Remarkably, chert is lacking in this sample, so that volcanic fragments make up 100 % of the 

lithic fragments. The volcanic fragments contain very small plagioclase laths without 

preferred orientation. K-feldspar is the dominant feldspar phase. Small abundances of chlorite 

(~2–3 %) appear in this sample. Overall, 330 grains were counted and the major components 

are quartz (82.42 %), feldspar (9.7 %) and lithic fragments (7.88 %). The QFL analysis yields 

a recycled orogen as a possible source area. 
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Sample RdC C13 is a well sorted, very fine-grained to fine-grained sandstone that 

provides grain sizes ranging from 0.11 to 0.21 mm. The grains are predominantly subrounded 

to angular. In contrast to the previous sample, chlorite is lacking and clay cement occurs in 

high abundances between the grains. The sample is highly affected by weathering and the 

dark yellow to brown areas might be remnants of volcanic fragments. However, the majority 

of the volcanic fragments within this sample are not affected by weathering. The plagioclase 

laths within the volcanic fragments are small. Overall, 387 grains were counted. The sample 

is composed of quartz (69.21 %), feldspar (10.48 %) and lithic fragments (20.32 %). Similar 

to the previous sample chert is lacking and volcanic fragments make up 100 % of the lithic 

fragments. The QFL analysis yields a recycled orogen as a possible source area.
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Figure captions

Figure 1. Map after Lawton and Molina-Garza (2014) illustrating the inferred trend of the 

Jurassic continental-margin arc through Mexico. The location of the geologic map shown in 

Figure 2 is indicated by the square. Abbreviations: AZ—Arizona; CHI—Chihuahua; COA

—Coahuila; DUR—Durango; NL—Nuevo León; NM—New Mexico; SLP—San Luis 

Potosí; SON—Sonora; TMP—Tamaulipas; TX—Texas; ZAC—Zacatecas. 

Figure 2. Detail of central and northeastern Mexico showing the location of the studied 

sections (La Ballena, Charcas and Real de Catorce) in the Mesa Central region (after 

Barboza-Gudiño et al., 2010).

Figure 3. Illustration of different stratigraphic units in the Sierra Madre Oriental and the 

Mesa Central region provided by different authors (modified from Barboza-Gudiño et al., 

2010). The ages of stratigraphic boundaries are according to Gradstein et al. (2012). 

Figure 4. Schematic lithostratigraphic columns for the three studied sections in the Mesa 

Central region in central Mexico, according to field mapping by the authors. 

Figure 5. Thin section photomicrographs under plane-polarised light (left side) and under 

crossed polars (right side), respectively, of a selection of sandstone samples analyzed in this 

study. (a, b) Sample Cha B10, La Joya Formation. (c, d) Sample Cha B11, La Joya 

Formation. (e, f) Sample RdC C2, Zacatecas Formation. (g, h) Sample RdC C6a, Zacatecas 

Formation. The scale bar represents 1000 μm in all images. Qm – Monocrystalline quartz; Qp 

– Polycrystalline quartz; Kfs – K-feldspar; Pl – Plagioclase; Lv – Volcanic lithoclasts.

Figure 6. QFL diagram for sandstone classification (after Dott, 1964) and QFL diagram for 

interpretation of the provenance of sediments (after Weltje, 2006). Q – Total quartz 

(Qm+Qp); F – Total feldspar; L – Total lithic fragments.
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Figure 7. Discrimination diagrams for revealing sediment recycling and provenance. For 

comparision, the volcanic rocks are also shown. (a) Diagram after McLennan et al. (1993). 

(b) Diagram after Floyd and Leveridge (1987). (c) Cr vs. Ni diagram. Values of Cr (>150 

ppm) and Ni (>100 ppm) and a high correlation coefficient between Cr and Ni are diagnostic 

of ultramafic rocks in the source area (Garver et al., 1996; Meinhold et al., 2009). Upper 

continental crust (UCC) according to Rudnick and Gao (2003).

Figure 8. Relative abundance of detrital heavy minerals in the 63–125 μm fraction of the 

sandstone and volcanic rock samples from the Mesa Central region in central Mexico, 

expressed as frequency in %. Samples are ordered according to stratigraphy. Pxn – Pyroxene; 

Amp – Amphibole; Ep – Epidote; Spn – Sphene; Grt – Garnet; Chl – Chlorite; Tur – 

Tourmaline; Rt – Rutile; Ant – Anatase; Zrn – Zircon; Ap – Apatite.

Figure 9. Variation of heavy mineral index values and the ZTR values in sandstone and 

volcanic rocks samples from the Mesa Central region of central Mexico. Samples are ordered 

according to stratigraphy. ATi, RuZi and GZi were calculated following Morton and 

Hallsworth (1994, 1999). The whole-rock SiO2 content is shown for comparison.

Figure 10. Cathodoluminescence images of representative zircon grains from samples 

analyzed in this study with location of the LA-ICP-MS analysis spot and corresponding 
206Pb/238U age (±2-sigma) in Ma. The source formation for samples La BA3 and Cha B8 is La 

Joya Formation, for sample RdC C8 the Nazas Formation and for sample RdC C4 the 

Zacatecas Formation.

Figure 11.  Kernel density estimation (KDE) and histograms for detrital zircons from lower 

Mesozoic sandstone samples of the Mesa Central region of central Mexico. Zircon 

populations of the four main potential source areas are shown with shaded bars. The open 

circles represent the age for each grain zircon. Only grains with 95 to 105% concordance are 

shown.

Figure 12. Conventional (Wetherill) concordia diagram showing detrital zircon U–Pb ages of 

the youngest age population in sample LaB A3. Note that zircon grain A3_19 (206Pb/238U age 

= 149.9 ± 3.5 Ma) is not shown and was excluded from the concordia age calculation using 

the Isoplot Excel macro of Ludwig (2003).
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Figure 13. Palaeogeographic map for the Middle Jurassic showing sediment transport paths 

from Oaxaquia (pink arrows), Pan-African rocks (green), Paleozoic of the Acatlan complex 

(orange), Permian-Triassic arc (red), Nazas arc (purple) and precambrian rocks of South 

America (lilac) towards central Mexico (modified from Ortega-Flores et al., 2014). 

Tables

Table 1. Sample list and summary of the applied methods. Samples are ordered according to 

sampling locality. Note that the volcanic rocks are classified by whole-rock geochemistry 

using XRF. Sample Lab A2 was not analyzed by XRF.

Table 2. Petrographic data of thin sections. Samples are ordered according to stratigraphy.

Table 3. Illustration of the weighted average age of the youngest zircon age population and 

the youngest grain ages. The full set of isotopic data is in Tables S7–S13 (see Supplementary 

data).

Supplementary data

Tables S4–S13

Supplemental data are available online at xxxxx.

Table S4. Whole-rock geochemical data using XRF supplemented by LOI. Total iron is given as FeOt. Samples 

are ordered according to stratigraphy.

Table S5. Relative abundance of opaque and non-opaque heavy minerals in the 63–125 μm fraction of the 

sandstones and two volcanic rock samples from the Mesa Central region in central Mexico, expressed as 

frequency in %. Samples are ordered according to stratigraphy.

Table S6. Relative abundance of non-opaque heavy minerals in the 63–125 μm fraction of the sandstones and 

two volcanic rock samples from the Mesa Central region in central Mexico, expressed as frequency in %. 

Samples are ordered according to stratigraphy. The provenance-senitive ratio parameters were calculated 

following Morton and Hallsworth (1994, 1999). The ZTR index is acoording to Hubert (1962). 

Tables S7–13: Summary of U–Pb zircon results.






























