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ABSTRACT

Possible variations in the secondary structure and the A =B
transition in DNA's of varying primary base sequence and composition have
been studied by the techniques of X-ray diffraction and molecular model
building. The DNA's studied are from both bacteria and from
eukaryotic cells. In addition a DNA of viral origin, from the bacter-
iophage @W-14, has been investigated.

A computerised model building study of the changes induced
in DNA secondary structure by the binding of intercalating drugs has
also been carried out.

A linked atom least squares routine has been extended and used
to refine the models presented. The routine enables standard values

for the parameters defining the covalent stereochemistry of the structure
to be retained. Methods of calculating the Fourier transforms of the
models produced are discussed, and this enables some comparisons to be

made between the observed diffraction data and those predicted by the

models.

Structures studied include the intercalation complexes involving

ethidium or daunomycin, general intercalation models for DNA and models

for the conformation of the putrescene groups in @W-14 DNA.
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CHAPTER I

INTRODUCTION

1.1 DNA Structure and Function

Since Watson and Crick (1953a, 1953b) proposed their model
for the double helical structure of DNA and a mechanism for 1its
replication, a number of conformations have been identified and their
structures elucidated in detail. Their theory of DNA replication
involved the proposal of a specific pairing scheme between bases in
each_stand of the duplex, in which édenine or guanine in one chain is
hydrogen bonded to a thymine or cytosine respectively in the other
chain. A1l DNA conformations whose structures have been elucidated
incorporate base pairs having Watson and Crick geometry. The importance
of the base pairing scheme with regard to DNA replication is that it
allows the DNA to act as its own template. Previous theories of DNA
replication (Pauling and Delbruck,1940; Fridrich-Freska, 1940;
Muller, 1947) had postulated the existence of complementary sequences

between proteins and nucleic acids. Under these schemes, protein

synthesis and DNA replication were considered as occurring concomitantly
in a series of processes involving the alternate synthesis of protein
and nucleic acid segments.

The scheme proposed by Watson and Crick is semiconservative
in that one of the parental strands is conserved in each of the
progeny. Meselson and Stahl (1958) showed that DNA replication was
in fact semiconservative and the scheme proposed by Watson and Crick
(1953b) for specific base pairing and for a replication mechanism

involving an internal template is now widely accepted.
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The Watson Crick base pairing scheme also solves, in a
very elegant manner, an apparent conflict in the properties required
of a genetic molecule. On the one hand it must allow great variation
in some aspect of its structure in order to code for all the genetic
information necessary to the development and function of a particular
organism; while, unless the process by which the information is read
is extremely comp]ex and variable, the molecule must in some ways be
extremely regular. Both the adenine: thymine (A-T) and the guanine
cytosine (G-C) base pairs proposed by Watson and Crick have very
similar overall geometry, which evokes the possibility that the
secondary structure adopted by the DNA duplex might be identical
whatever base sequence is present. This regularity of secondary
structure could allow a standard mechanism for reading the genetic
information to be used; while the genetic information can be coded
for in terms of the base sequence in each polynucleotide chain. The
genetic code must consist of at least one distinct "word" for each of
the naturally occurring amino acids which constitute proteins.
Since there are only four different kinds of base in DNA, 1t is not

possible for the genetic "words" to be composed of one base. A

greater number of words may be produced by taking sequences of more
than one base to code for an amino acid. The minimum number of
bases which can produce a sufficient variety of words is three, and
Crick et al. (1961) have shown that such base triplets (codons) are
the units in which genetic information is expressed.

Although the above scheme shows how DNA combines great
regularity with flexibility to allow its function as a carrier of

genetic information, it does not provide insight into methods by
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which the expression of genetic information may be controlled.
Such control is clearly exerted in differentiated cells of higher
organisms in which only a certain portion of the genome is expressed
in any particular type of cell. In higher organisms, DNA is present
as chromatin, a structure composed of DNA complexed with specific
proteins, particularly histones. It is probable that control of
gene expression is exerted by means of this bound protein. An example
of a protein attaching to DNA to control the expression of a series of
genes in a bacterial cell is provided by the repressor protein of the
lac operon system in E. Coli. At present it is unclear how the
inhibition produced by such a protein is.exerted at the molecular
level, or how the specific DNA sequence to which it attaches is
recognised.

It is of interest with regard to these problems to determine
the way in which small molecules attach to DNA and to elucidate the
changes, if any, induced in the DNA conformation at the site of

attachment. The validity of the dogma that DNA secondary structure

is invariant with base composition should also be reassessed, since

small variations in secondary structure along the length of a DNA
duplex corresponding to regions of differing base sequence might

well provide a structural basis for recognition sites for molecules

such as the lac repressor which control gene expression.

1.1.1 Diffraction Patterns from Fibres and their Analysis

It is difficult to prepare macroscopic crystals of DNA,

and the most ordered state easily obtainable is that of a fibre in
which the DNA is packed regularly in small domains (crystallites)
which have a random azimuthal orientation about the fibre axis.

The crystallites are packed with their ¢ axes (the axis of the DNA
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helix) aligned approximately parallel to the fibre axis. Since

the alignment 1s not perfect, the Bragg reflections from the
crystallites are drawn out into arcs and the spots tend to merge at
higher diffraction angles. Intensity data from diffraction patterns
can be measured most accurately when they consist of distinct Bragg
diffraction spots which do not overlap. Accurate diffraction
intensity data tend to be limited, therefore, even in the most ordered
case, in comparison with equivalent data from single crystals.

A number of techniques have been developed which maximise
the amount of information which can be derived from the limited data
available. The diffraction theory for helical molecules formulated
by Cochran et al. (1952), also Stokes (1952, unpublished), shows how
the helical parameters may be derived from a relatively superficial
examination of the diffraction data. By use of this i1nformation in
conjunction with knowledge of the stereochemical parameters (bond
lengths and bond angles) it is often possible to build a molecular
model which can then be refined. Such stereochemical i1nformation

is normally available from related small molecules whose structure

has been solved to atomic resolution by means of their single
crystal diffraction data. The inclusion of known stereochemical

information in this way compensates to some extent for the information
deficiency in the diffraction data. A number of computer routines
have been developed, in particular Arnott and Wonacott (1966), which
allow the derivation of atomic coordinates and the subsequent
refinement of the model to be performed analytically. This is
analogous to the least squares routines used in single crystal
structure refinements. A computerised model building routine has

been used in a number of studies described in this thesis. It will

be discussed in chapter 3.
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1.1.2 DNA Conformation in Fibres

The structures of a number of DNA conformations are now
known 1n detail; while gome others have been suggested without their
detailed structures having been elucidated. A list of the published
conformations for DNA are given in Table 1.1. A1l work on structure
determination was originally performed using natural DNA, though later
work also included investigation of the conformations adopted by a
number of synthetic DNA's of known base sequence. Early diffraction
studies established the fact that there were three distinct
conformations, the A, B and C forms, for natural DNA (Franklin and
Gosling, 1953; Marvin et al. 1958). The structure of the A form was
described in detail by Fuller et al. (1965): that of the B form by
Langridge et al. (1960); and that of the C form by Marvin et al. (1961).
Recently, more refined structures for the A and B forms have been
presented (Arnott and Hukins, 1972).

The transition between the three forms appears to be a
function of the type and concentration of countercation present, and
of the relative humidity. At low ionic strengths (<5% excess NaCl)
the A form was always observed at 92% relative humidity and
occasionally at 98% (Cooper and Hamilton, 1966); while fibfes
containing >9% excess NaCl gave B patterns at 75% relative humidity.
Fibres containing salt contents intermediate between these two gave
the A form at 75% relative humidity and the B form at 92% and above.

The A form is crystalline, giving Bragg diffraction spots over much of

the diffraction pattern; whereas the B form observed in fibres of

Na DNA is non-crystalline and gives diffuse diffraction intensity over

most of reciprocal space.

A crystalline form of B DNA may be observed in fibres of

the 1ithium salt of DNA: the A form is not observed. At high salt
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content (>3% excess LiCl) the B form is observed, whereas fibres
containing little or no excess salt give one of the semi-crystalline
forms of C DNA (Marvin et al. 1961).

It has become apparent that the A and B forms are members
of two different types of DNA conformation (hereafter called A and B
genus structures) which are characterised by the type of furanose ring
puckering present, and the disposition of the base pairs relative to
the helix axis. ' The base disposition can be fixed by the parameters
defined in figure 1.1. In B DNA the distance, D, of the base pairs
from the helix axis is small and negative (c.f. Fig. 1.1) while the
furanose ring pucker is C3' exo. The A form in contrast, has C3'
endo sugar pucker and the base pairs are moved nearly 58 forward

(D positive) from the helix axis and have a large positive value for

the tilt angle.

'Although the C form has a number of characteristics which

make it distinct from the B form, it is similar in having C-3 exo

furanose ring puckering and base pairs which have a negative value for

the distance, D, from the helix axis and for the tilt angle. On this
basis the C form is defined as being of the B genus of DNA structures.
It has become apparent that all double helicalnucleic acid conformations
can be classified as belonging to the A or B genus on the basis of the
values of these three parameters. In the case of the distance ‘and

tilt parameters for .the base pairs, it is the sign of their values

which are the important criteria. The magnitudes of these quantities
often vahy considerably between different confofmations of the same
genus. All structures reported for natural and synthetic double

helical RNA are of the A genus. The A, B and C forms remain the




only conformations for natural DNA which have been obtained
reproducibly and for which detailed molecular structures have been
published.

Hamilton et al. (1959) showed that the above conformations
could be obtained from natural DNA's from a wide variety of sources
and the 1dea became established that the secondary structure of DNA
was a function only of the environment. However, a number of
different conformations have been obtained for synthetic DNA's
having a simple repeating base sequence. Arnott et al. (1974a) have
proposed a structure for the D form, first discovered by Davies and
Baldwin (1963) in fibres of poly (dA-dT). poly (dA-dT), and have
shown that it may also be obtained from poly (dG-dC). poly (dG-dC)
so that the criteria for its formation appears to be an alternating
sequence of purine and pyrimidine bases. The structure is an eight
fold right handed helix and is of the B genus by the criteria
outlined above. Mitsuil et al. (1970) on the basis of the unusual
optical rotatory dispersion data given by the D form concluded that
it was a left handed helical structure and built a model to explain
the X-ray data. In order to accommodate the requirements of a left

handed helix, however, it was necessary to postulate an unusual

pucker for the furanose ring. The A form, a right handed helix,
has been observed in poly (dA-dT). poly (dA-dT) fibres Davies and
Baldwin (1963), but was found to revert spontaneously to the D form.
It appears unlikely for this reason that the D form could be a left
handed helix, and the alternative structure of Arnott et al. (1974a)

which is a right handed helix having standard stereochemistry is

more likely to be correct.
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Another structure of the B genus, the B' form, which is
very similar to the lithium B form of natural DNA, has been reported
by Arnott et al. (1974b) for the sodium salt of the synthetic
copolymer poly (dA). poly (dT). It occurs in two crystalline forms:
the a-B' form found at relative humidities above 77% and indexing
on a hexagonal unit cell; and the highly crystalline orthorhombic
g-B' form which 1s obtained at lower relative humidities. The
model for the B' conformation has been refined on the basis of data
obtained from the more highly crystalline orthorhombic form. The
conformation of the o form is thought to be identical on the basis
of a general comparison of the intensity data. The above authors
have also given the coordinate of a model of the triple stranded
DNA, poly (dT). poly (dA). poly (dT). This structure is of the A
genus, a fact which is surprising in view of the failure to obtain
the A conformation from the double helical form. This point wil]

be discussed in more detail in chapter 6.

In view of the different conformations adopted by these
DNA's of varying base sequence, it is interesting to speculate

whether, under certain conditions, different segments of natural
DNA might adopt different secondary structures. If this were the

case 1t might prove to be the molecular basis of at least some of
the control mechanisms in the processes involved in DNA replication
‘and transcription. Evidence for variations in the secondary
structure of DNA as a function of base composition and sequence has
been provided by the studies of Bram and his co-workers, of the
diffraction patterns obtained from fibres of natural DNA from
different organisms. The results of this work, which will be

discussed more fully in chapter 6, seem to suggest that there may
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a family of related structures of the B type for the sodium salt of
natural DNA, and that different members of the set are adopted by
DNA's of differing base composition and sequence. (Other workers have
predicted that the secondary structure of DNA is dependent on ifs

base composition (e.g. Pilet and Brahms, 1972; Pohl, 1976), so that
the conclusion reached by Bram, though different from1those of other
workers in ascribing new conformations to natural DNA's in fibres,

are not inconsistent with results obtained in other studies. However,
it should be pointed out that the diffraction patterns obtained by
Bram give diffuse intensity data often with very poorly defined layer
line structure so that it is difficult to measure the helix parameters

accurately or to analyse the conformations in detail.

1.2 Drug Binding to DNA
Since the basic structure of DNA has been elucidated, it

~is of considerable importance to determine ways in which

conformational changes, particularly those resulting from the
interaction with other molecules, can affect DNA replication and
transcription. A number of drug molecules, some having therapeutic
uses, interact with DNA in a variety of ways, Potentially the most
important of the methods of binding is by intercalation (Lerman, 1961).
In this mode of binding the drug molecule is inserted between two
adjacent base pairs which thereby have to move apart in order

to accommodate the drug chromophore. The separation of the base

pairs is probably accompanied by a change in the turn angle per residue
at the intercalation site. Fibre diffraction patterns of DNA/drug
intercalation complexes exhibit a decrease in the layer line
separation, indicating an increase in the helical pitch. A strong
meridional reflection at 3.4R is observed in the patterns which

indicates that the DNA is in a B like conformation in which the
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bases are not significantly tilted, and that the base separation

at the intercalation site is 6.8R. It is now generally accepted
that the figure for the base separation is correct: the point of
controversy is the sign, magnitude and extent (in terms of number

of base pairs effected) of the change in the turn per residue around
the intercalation site, and most studies on intercalation complexes
are concerned with attempts to determine the value of this parameter.
Estimates of the unwinding angle produced by various intercalating
drugs are listed in Table 1.2. Individual estimates of the unwind-
ing angle for particular drugs and their possible biological
significance are discussed in detail in chapter 5: only the methods
by which such determinations are made will be discussed here.

The most important technique for measuring the unwinding
angle is that of binding the drug to closed circular DNA. Any
topologically closed DNA system will exhibit supercoiling of the DNA
duplex as a means of re1iev1ng the strain imposed upon the system.

Such strain arises because the number of turns (a) made by the DNA
around the duplex axis when it is in a closed system and constrained
to 1ie in a plane is different from the number of turns (g) made
when the DNA is "free" (i.e. in an open ended state).” The number

of turns of the superhelix (t) is given by (Bauer and Vinograd, 1968):
T = a =R

If the drug ethidium is bound to a closed DNA system
(e.g. PX-174 replicating phase) at different phosphate to drug, P/D,
ratios and the sedimentation coefficient of the complex determined
in each case, a minimum is found in the plot of sedimentation
coefficient against P/D (Bauer and Vinograd, 1968; Waring, 1970;
Crawford and Waring, 1968).



- 13 -

The initial fall in sedimentation coefficient is
interpretted as being due to the removal of the super coiling due
to the change in winding angle caused by ethidium. At the minimum
points all supercoiling is believed to have been removed and the
value-of S rises again as the P/D is lowered since the drug now
introduces supercoiling of the opposite sense.

In order to calculate the magnitude of the unwinding angle

the following equation was used.(Bauer and Vinograd, 1968).

NOv
T F T, + I

where t = number of super helical turns

when v drug molecules are bound per nucleotide

i

T number of super helical turns when no drug is bound

0
N = number of nucleotides in the DNA circle

@ = angle of untwist per bound drug

If measurements are made at the equivalence points (i.e. when S = a

minimum), then 1 = 0 so,

2N,
9 = Nv

T, cannot be eliminated directly and so it is impossible to determine

the sign or the absolute magnitude of @ by this method. In order
for progress to be made it is hecessary to assume a value for the
unwinding produced by one intercalating drug and to calculate the
equivalent values for the others relative to it. Normally, the
value of 12° unwinding for ethidium intercalation (Fuller and Waring,

1964) is taken as the standard (Waring, 1970).
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Table 1.2

Estimates of Unwinding Angles for Intercalating Drugs

EP I P

Ethidium 12° (1) Molecular model building of X-ray
| fibre diffraction

Ethidium 29° (1) 2 | Single crystal X-ray diffraction

Bromide solution of cocrystal of 5-iodour-
idylyc (3'-5') adenosine and ethidium
bromide

Ethidium 24°-36° 3 Binding of ethidium to closed circular
DNA with known sense to the supercoiling

Actinomycin 44° (4) 4 Molecular model building

Daunomycin 12° (1) 5 Molecular model building/X-ray fibre
diffraction

Daunomycin 5,207 6 Binding to ¢X-174 RF closed circular
DNA

Proflavine 8.4° 7 6

Mycanthone 6.8° F 6

Nogalamycin 8.1° " 6

Propidinium | 12.0° 7 6

Actinomycin 11.4° ¥ 6

Dimidium 11.5° 7 7

M & B 2421 8.3° * 7

Phenidium 8.6° 7 7

M&B 3492 | 11.8°° 7

M&B 4594 | 8.1°° 7

RD160] 5,12 7 7

M&B 3016 | 10.6°° 7

M & B 3427 7.7° ¢ 7
M & B 1765 4.6° (max)¥ | 7
8

Echinomycin 21 .9° *S

18.0 (4) Computer molecular model building:

DNA conformation only - no particular
drug.
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* Figure 1n parenthesis indicates number of base pairs over which

the unwinding 1s spread.

¥ These figures are obtained assuming an unwinding angle of 12 degrees
for ethidium.
> A bifunctional intercalating agent: value given corresponds to the

total unwinding/drug molecule bound.
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In an attempt to overcome this difficulty, Pulleybank
and Morgans (1975) devised a modified form of the above technique
in which a closed circular DNA system was produced which had a known
sign (-ve) for its supercoiling and in which the number of supercoils
could be estimated. Ethidium produced a minimum in the titration
curve (S against P/D) showing that it unwinds the helix. On the
basis of their estimate of the number of superhelical turns, the
above authors derived a value of between 240 and 3690 for the unwinding
due to ethidium: a value considerably larger than that first predicted
by Fuller and Waring (1964) on the basis of molecular model building.
A number of other specific models have been proposed by
other workers for intercalation complexes involving various inter-
calating drugs including ethidium (e.g. Jain and Sobell, 1972;
Sobell and Jain, 1972; Pigram et al. 1972; Tsai et al. 1975; Alden
and Arnott, 1975). The study of Alden and Arnott involves a
computer model building study of an intercalation site involving a
base separation of 6.8R in the absence of any particular drug. It
is the only published work in which a computerised linked atom

routine has been applied to a study of intercalation complexes.

1.3 The Need for Further Work

The detailed structures for a number of conformations
observed in fibres of natural and synthetic DNA have now been
elucidated. The biological significance of these different forms
is still unclear, however. In particular, the relevance to the
secondary structure of natural DNA of conformations observed“only in
synthetic DNA's with a simple repeating base sequence has not been

decided. The work of Bram, suggesting that the nature of the B
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conformation observed in fibres of the sodium salt of natural DNA's
might be a function of the base composition and sequence, leads to
the possibility that short sections of the duplex of natural DNA
might adopt a conformation similar or identical to those only

associated so far with synthetic forms. Variation in DNA secondary

structure as a function of base composition and sequence has
implications for control of gene expression in cells. Since the work
of Bram has not been repeated by any other workers, while the

analysis given is not sufficiently rigorous to permit a detailed
evaluation of the significance of the results, there is a need for
Bram's work to be repeated and any resultant new conformations
‘analysed in detail.

;n addition to information about DNA conformation in the
native state, it 1s of interest to determine ways in which DNA
secondary structure can be modified by interaction with other organic
molecules. One mechanism by which certain molecules may bind to
DNA and significantly alter its conformation is that of intercalation:
a mechanism that is now widely recognised as being the mode of
attachment of a number of drugs which bind to DNA. Although the
general nature of the modifications brought about by an intercalating
drug are known, few well defined models have been produced for the
DNA conformation at the intercalation site in a full DNA duplex.

The elucidation of the conformational changes induced by intercalating
drugs is of more than academic interest since many of them have a
therapeutic use which may be related to their ability to bind to DNA.
Moreover, knowledge of the way in which these drugs modify DNA
secondary structure may throw light upon the manner in which

proteins attach to DNA and exert their biological effect. It is

difficult to obtain sufficient information from fibre diffraction

data from intercalation complexes to build a model since the pattern
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obtained are of a relatively poor quality and it is in any case
difficult to calculate the diffraction pattern for the disordered
helical structure.

' There is a need, therefore, to examine methods of calculating
the diffraction pattern for such complexes and to obtain additional
information relating to the possible conformation at the intercalation
site. Such information is provided by the results of Sobell and his
co-workers in solving the single crystal structure of actinomycin D
bound to deoxyguanosine (Jain and Sobell, 1972) and of ethidium to a
double helical dinucleotide fragment (Tsai et al. 1975). This has
allowed the direct visualisation of an intercalative process in these
cases. It seems reasonable to use information derived from the
results of these studies as a basis for the construction of models
for drug intercalation into a full double helica] DNA structure.

The work relating to intercalation complexes involves a
model building study using a computerised linked atom least squares
refinement routine described in chapter 4; combined with Fourier

transform calculations for certain of the models built.
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CHAPTER 11
MATERIALS AND METHODS

2.1 DNA Purification

A11 DNA, except that from the bacteriophage PW-14 was
obtained commercially from either the Sigma Chemical Company, B.D.H.
Biochemicals or Miles Laboratories Incorporated. PW-14 DNA was
obtained from Dr. R.A.J. Warren of the Department of Microbiology,
University of British Columbia, Vancouver, Canada.

Since the DNA's had been obtained from a variety of sources
and included natural as well as synthetic forms, it is desirable to
subject all samples to a standard purification procedure to extract
protein and excess inorganic salts. Massie and Zimm (1965) have
reported that phenol i1s an effective reagent to remove proteins from
samples of DNA, and a phenol extraction stage was included in the
purification procedure. Analar grade phenol was used in the
extraction and was distilled just before use to remove oxidation
products. The distillate is allowed to drip into 0-1M NaCl solution
and the resultant brine/phenol mixture shaken thoroughly and allowed

to stand until the phenolic (lower) layer separate out from the

mixture.

A solution of DNA is prepared (concentration approximately

Img/ml) in 0-002M NacCl. It is useful to use a low salt concentration
since the DNA dissolves more slowly if the ionic strength is high;
whereas if the salt concentration is too low the DNA is denatured.

The salt concentrationspecified above was found to be an effective
compromise. Before adding to the phenol, the salt concentration in
the DNA solution was raised to 0-1M by addition of the appropriate

volume of 2-0M NaCl solution.
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The DNA solution is added to the same volume of the phenolic

layer removed from the phenol/brine mixture and shaken gently for 20

minutes. The mixture is then centrifuged at 3,000 r.p.m. for 15
minutes after which the upper (aqueous) layer is removed and centrifuged
a second time.

The solutions from the centrifuge tubes are pooled and the
DNA precipitated by the addition of two and a half times the original
solution volume of 95% ethanol. If the salt concentration of the
original DNA solution is increased to 0-1M as described, the ethanol
precipitation gives a good (approx. 85%) yield. It is important to

raise the salt concentration before the phenol extraction stage:

raising the salt concentration after this stage results in a poor (less

than 5%) yield.
The precipitated DNA is wound on to a glass rod and washed
in 80% ethanol for 30 minutes and then in acetone for 15 minutes.

It is dried over phosphorus pentoxide for 12 hours and is then ready

to be dissolved in the appropriate buffer solution for use. The

final vajue of the ratio O'Df260/0'0‘280 obtained after the

purification procedure was around 1-9 for all samples.

Leng et al. (1974) have indicated that phenol may interact
with DNA and denature it, particularly if the DNA has a high A-T
content. No evidence of denaturation of the DNA under the conditions
used was apparent in the diffraction photographs. Some DNA samples
gave spectra with a value of around 1-9 for the O.D.zso/O.D.280 ratio
before purification, and solutions were prepared from these when the
phenol extraction stage was omitted. The behaviour and quality of the

fibres from such solutions was not measurably different from those of

fibres from material which had undergone the phenol extraction.
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2.2 Preparation of DNA For Fibre Pulling

Purified DNA was dissolved in a tris-sodium chloride buffer,
pH 7.6. Since it was desired that the major ionic component of the
solution, other than the DNA, should be the sodium chloride, the
concentration of tris was kept low (0-002M) and the sodium chloride
concentration varied from 0-005M to 0-1M. Although the tris concen-
tration was low 1t was found to be adequate to maintain the pH within
+0-2 and so to retain it near to physiological levels.

In special cases, unbuffered solutions were used and sometimes
had more extreme pH values. The characteristics of particu1af
solutions are discussed in the appropriate chapters.

Solutions of the DNA were prepared in the appropriate buffer
at a DNA concentration of approximately Img/ml. The DNA may take up
to seven days to fully dissolve depending upon the salt concentration
in the solution. Gels were prepared by sedimentation of the DNA in an
M.S.E. 50 preparative ultracentrifuge. The solutions were normally
centrifuged at 40,000 r.p.m. for 12 hours, in a 10 x 10m1 angle rotor
giving an average sedimentary force of 105,0009. These conditions

result in the sedimentation of over 95% of the DNA as measured by

comparison of the ultraviolet absorption spectrum of a supernatant
with that of the original solution. Gels could also be obtained by
centrifugation in the same rotor for 5-6 hours at 50,000 r.p.m.
The author has obtained gels which are more workable using the former
conditions and hence they are preferable except in special circumstances
where it is essential to produce gels quickly.

The supernatant is removed from the gels by gentle pouring.
It is important that all the supernatant is drained from the gel and

the tube walls. If this is not done the gel eventually redissolves
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and is no longer of a suitable consistency for fibre pulling.
Gels which are well dried can be used even for several weeks of

storage provided that the tubes are sealed and are kept at 4°¢.

2.3 Preparation of Fibres

Fibres were made in a frame similar to that used by Fuller
et al. (1967) and shown in figure 2:1. Two glass rods of diameter
150-200u are mounted in plasticine inside the frame as shown, and
their end separation can be adjusted by rotating the knurled wheel
oufside the frame. A drop of gel, containing approximately 0.1mg
of DNA, is placed between the ends of the glass rods and allowed to
dry to form a fibre.

The precise method adopted for the drying process depended
partially upon the DNA used but more particularly on the consistency
of the gels. There is an optimum gel consistency which, if achieved,
normally gave good crystalline fibres when allowed to dry uncovered
at room temperature. To slow the rate of drying, the frame could be
covered with a glass plate and occasionally a small pot containing a
saturated solution of sodium tartrate was placed in the cell.
Alternatively a flow of air of controlled humidity could be passed
through the cell. This facility was used in certain cases as
described in later chapters since it has been reported (Fuller et al.
1967; Bond et al. 1976) that such a procedure leads to fibres of
greater crystallinity if the relative humidity is greater than 80%.

The distance between the ends of the glass rods is increased
as the fibre_dries. If this is not done the molecules will not be
well oriented 1f the fibre is thick; while a thin fibre may buckle.

Since, however, the fibre may be damaged by overstretching, the
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strategy adopted was to allow the gel to dry with only the minimum
of stretching.

If the gel is too gelatinous and is not allowed to dry
slowly, then it dries more quick]y'on-its outer surface forming a skin
which is too dry to be stretched. Any attempt to elongate the fibre
in this state results in rupturing of the surface skin and eventually,
of the central part of the fibre which may not be sufficiently dry to

withstand the strain of stretching.

2.4 The Taking of X-Ray Fibre Diffraction Photographs

A1l diffraction photographs were taken using nickel filtered
copper K a radiation (A = 1-54183) generated either by a Hilger and
Watts micro-focus generator or by an Elliott G x 6 rotating anode
generator. Sets were operated at 35KV and at a tube current which
gave near maximum power allowable for the particular generator.
Typical tube currents were 3-OmA and 10-OmA for the Hilger and Watts

generators using low and high power tubes respectively, and 60mA on

the Elliott rotating anode machine using the 200u line focus.

Cameras used were either Searle X-ray diffraction cameras
employing Elliott toroidal optics (Elliott, 1965) or Frank's optics
(Frank, 1958); or one of a set of pinhole cameras made in the workshop

of the Department of Physics, University of Keele, which were similar
in design to those described by Langridge et al. (1960a).

The Searle cameras were operated using toroidal optics for
the majority of fibres. Frank's optics were used, however, for

particularly thin fibres (60u), but gave longer exposure times than

the E11liott optics for fibres of diameter around 100u.
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Alignment of the fibres in the pinhole cameras was effected
by passing light though the pinhole system and viewing i1t by means of
a low power microscope the_axis of which is collinear with that of the
pinhole system. With this arrangement it is possible to position the
fibre on the axis of the pinhole system, and hence in the path of the
eventual X-ray beam without significant parallax error.

The fully assembled camera is aligned on the X-ray generator
by placing the camera in front of the X-ray window. When the camera
is aligned, the X-ray beam will pass through the pinhole system and
through a 200p hole in the back of the camera over which is placed the
detector tube of a Geiger counter. The position of the camera is
adjusted until a maximal reading is obtained with the Geiger counter.
A brass stop i1s inserted over the exit hole during use to prevent the

emergence of the X-ray beam from the camera.

The Searle cameras were aligned in the manner described in

the relevant manuals.

In order to eliminate air scatter the cameras were flushed
out with helium gas which gives a very low intensity of scattered
radiation due to the small number of electrons in the helium atom.
The relative humidity inside the camera must be controlled since
nucleic acid secondary structure is a sensitive function of the
relative humidity. This is effected by passing the helium through a
saturated solution of an appropriate salt. The following salts were

used giving the indicated relative humidity values at 20°C (0'Brien,

1947):-

SALT R.H. (%
Calcium chloride 33
Potassium carbonate 44
Sodium bromide 57

Sodium nitrite 66
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SALT R.H. (%
Sodium chlorate 75
Potassium chloride 86
Sodium tartrate 92
Potassium chlorate 98

2.5 Measurement of Diffraction Patterns

In order to obtain the reciprocal space coordinates of
specified points on the diffraction pattern, it is necessary to
obtain an accurate value for the specimen to film distance and to
correct for distortions due to the film geometry. To determine the
specimen to film distance which result from radiation diffracted
through a known scattering angle. The calibration was performed
by spraying vaterite powder (a crystalline form of calcium carbonate)
onto the fibre and using one of the resultant diffraction rings as the
locus of reference points.

The X and Y coordinates of specified points on the diffraction
pattern, and of a number (typically eight) of points on the vaterite
calibration ring are measured using a two dimensional travelling

microscope. A programme has been written by Dr. W.J. Pigram to find

the best value (in the least squares sense) for the specimen to film '
distance and for the coordinates of the film centre. The programme
uses these values to derive the reciprocal space coordinates, corrected
for the film geometry, of the measured points on the diffraction

pattern.

The intensity data was obtained from the pattern by means of

a Joyce-Loebl recording microdensitometer. Wilkins (1961) has
described a method, given in Marvin et al. (1961), of obtaining the

integrated intensity of a Bragg diffraction spot, and the intensity

]

per A along a diffraction streak. This method has been used in all

measurements of intensity data reported in this thesis.
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2.6 Computer Programmes
All large computer programmes were written in Algol 60

language and were usually run initially on the Elliott 4130 machine
at the Computer Centre of the University of Keele, but were later
transcribed to run on the more powerful C.D.C. 7600 machine at the
University of Manchester Regional Computer Centre.

Although programmes written in the Fortran language are
more rapid in compilation and running, Algol was preferred because of
its facility of dyanmic array bounds. For most of the programmes,
storage space and not time is at a premium and hence it is useful to
have a language which allows the amount of storage space used to be
related to the size of the data set in any particular run.

Individual programmes written are described in the

appropriate sections of this thesis.

2.7 Model Building

Since 1t is not possible to solve the phase problem directly
for diffraction patterns from nucleic acid fibres, the method of
analysis used 1s to build a good trial model from general considerations
and then to refine i1t by a detailed comparison of the observed and
calculated intensity data. Moreover, even if the phase problem could

be solved, the quality and quantity of the intensity data obtained from
fibres, unlike those from a good single crystal, are inadequate to
describe the structure accurately to atomic resolution. The model
building technique allows information about the known stereochemical
features of the structure to be incorporated into the analysis and

thus exciudes from the set of possible solutions any coordinate set
involving impossible geometrical relationships between bonded atoms.

Moreover, it 1s possible to check distances of separation between

pairs of non-bonded atoms so that energetically unfavourable short
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contacts may be avoided. This inclusion of stereochemical
information allows better use to be made of the limited diffraction
data obtainable. Standard values for bond lengths and bond angles
are derived from studies on related small molecules whose structures
have been solved to atomic resolutions using single crystal X-ray
diffraction techniques.

Preliminary structures were always built using wire models,
in which bond lengths and bond angles are represented accurately
(scale 4cm to 1A), prior to refinement. Coordinates are obtained
from the wire model from which a set of torsion (dihedral) angles is
calculated and used to define a starting model for a linked atom least
squares computer refinement routine.

The model building programme is that described by Pigram
(1968) with modifications made by the author. It will be described
in chapter 4.of this thesis.



CHAPTER III

Fourier Transform Calculations

3.1 Introduction

It is not feasible to solve the phase problem for fibre
diffraction data, and, hence, the method of analysis used is to
build a model of the structure and then to refine it so as to
minimise the discrepancy between the experimental diffraction
intensity data and that predicted by the model. This method of
approach can only be used effectively if it is possible to obtain
sufficient information about the structure to build a starting
model which 1s good enough to be refined. In most problems
subjected to X-ray crystallographic analysis, such information is
not available until the structure has been solved, so that molecular
model building is of limited importance in these cases. However,
for helical polymers, the work of Cochran, Crick and Vand (1952)
(discussed in section 3.2) has shown that some structural information
may be obtained from a fairly superficial analysis of the diffraction
data. Hence, molecular model building has been of paramount
importance in the analysis of nucleic acid secondary structure.
In the case of diffraction patterns from crystalline fibres,
computerised refinement routines have been developed (Arnott and
Wonacott, 1966) which perform the refinement analytically, and it
is now possible to obtain a starting model and to refine it in most
cases provided that it gives well defined crystalline data.
Computerised refinement routines will be discussed in more detail

in Chapter 4.
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It 1s, therefore, necessary to be able to calculate the
predicted scattering intensity from a model, and to be able to
measure the experimentally obtained intensity data as accurately as
possible. For the case of crystalline fibres discussed above, the
problems involved have been overcome to a sufficient degree to allow
the diffraction data to be used effectively in structural analyses
in most cases.

The problems are more acute for fibres in which the molecules
are not regularly packed in crystallites. Such fibres give
diffraction patterns consisting of continuous intensity streaks along
each layer line, which essentially represent the diffraction from a
single molecule. In principle such data allows more information to
be obtained from the diffraction pattern along each layer line since,
unlike the case of crystalline fibres, the intensity is not merely
sampled at discrete points. However, any fibre containing a given
number of the same molecular unit must give the same intensity of
scattering integrated over the whole of reciprocal space. Hence,
the sampling of the molecular transform observed in crystalline fibres
implies a concentration of intensity into the sampled region, and,
hence, the diffraction intensities from Bragg diffraction spots are
greater i1n comparison with the background than are data from diffuse
diffraction streaks, and it is difficult to measure such data
accurately.

Moreover, although more information is theoretically
obtainable along lines parallel to the equator, in non crystalline
fibres, there is some information loss in that only two dimensional
information is available. The individual molecules will have a

random azimuthal orientation about the fibre axis in such specimens




and hence, the resultant diffraction intensity is cylindrically
averaged about the meridian and the maximum amount of information
obtainable lies in a plane representing a central section through
the cylinder. Hence, unlike crystalline fibres from which genuine
three dimensional information may be obtained, in non-crystalline
fibre specimens it is not possible to derive any information about
the variation in intensity of the molecular scattering as a function
of the azimuthal angle about the meridian in reciprocal space.
Fraser et al. (1975) have developed a method of processing
the data from non-crystalline fibre specimens so as to obtain
maximum accuracy in the measurement of scattering intensity. The
method involves scanning the diffraction pattern so as to produce a
two dimensional quasi-continuous map of a central section of the
specimen transform in the space represented by the surface of the
recording film, Methods of correcting for distortions due to film
shape for a number of camera geometfies in common use are discussed;
so that after applying a number of classical (e.g. Lorentz) corrections
to the intensity data, an undistorted map of the specimen transform,

I, would be identical to the cylindrically averaged intensity

transform of a single molecule, Im. In the above work, methods of
deriving Im from Is have been derived for a number of different
cases of non-crystalline diffraction patterns. The problem of
allowing for effects due to molecular misalignment has also been
discussed for certain cases by Holmes and Barrington-Leigh (1974).
Provided that the structure of each molecular unit is

regular, then it is possible to calculate the predicted values of Im
for any given molecular model, so that it may be compared with the

experimental data. In many of the specimens studied in this

laboratory, the disorder may be present in the individual molecules
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themselves and not merely in their packing. The diffraction theory
for helical molecules as derived by Cochran et al. (1952) involves
the concept of helix pitch and, hence, presumes the existence of long
range order in the structure. It is not possible, in general, to
ascribe a meaningful value to the pitch of disordered helices and,
hence, the diffraction theory formulation of Cochran et al, (1952)

is not suitable, in its present form, for calculating the Fourier
transform of such structures.

Hence, 1f use is to be made of the diffraction data from
such fibre specimens in the structural analysis of their molecular
components, 1t 1s necessary to derive a method of calculating the
molecular transform of disordered structures. The work of Fraser
et al. (1975) has made such a method even more desirable since 1t
opens up the possibility of measuring more accurately diffuse
intensity data obtained from such structures.

Intercalation complexes between DNA and various drugs
provide examples of specimens in which molecular as well as packing
disorder is present. The molecular disorder arises in this case
because changes in the DNA conformation are induced at the site of
attachment of the drug. Since the sites at which drug is bound
will not, in general, be regularly spaced along the helix, the DNA
duplex is perturbed at random points along its length and its
regularity 1is dest}oyed.

Such molecular disorder may occur in B genus structures

of the sodium salt of DNA. This point will be discussed more fully

in Chapter 6.
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3.2 Fourier Transform Calculations for Regular Structures

It is possible to calculate the Fourier transform of any

group of atoms using a general formula of the type:-

F(s) = jgl fj exp Zwi(rd.i) 3.1
where: fj = the scattering factor for the jth atom
ry = @ real space vector at the end of which 1s situated
the jth atom
s = a reciprocal space vector

There are problems attached to the use of this type of
formula, however, and in practice it is rarely used explicitly in
any type of X-ray diffraction analysis.

For studies of diffraction data given by single crystals

the classical structure factor formula is used.

N

F(h,kK,l = ¥ f-. exp 2ni(hx. + .+ : 3.2
(h,k,1) jZ] j €xp 2mi(hx; + ky; + 1z;)

In equation 3.2 the summation is taken over the atoms in
the unit cell only; and not over all atoms inthe object as in
equation 3.1. Moreover, the calculation for F is only made for
points in reciprocal space at which it will be non-zero. These
reductions in computation are achievéd by utilising the symmetry
properties of an infinite three dimensional lattice. Equation 3.2
is the most efficient method of performing the calculation of the
Fourier transform for crystals in which the contents of the unit
cell do not, themselves, have symmetry properties which may be
exploited. If the unit ce11 contents possess some element of

symmetry, then further reductions in the computation may be achieved

and methods of calculation formulated in which the general features
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of the diffraction data may be interpreted more meaningfully. The
helical conformation adopted by many long chain polymer molecules are
examples of molecular structures possessing symmetry elements, and
Cochran, Crick and Vand (1952) (also Stokes, unpublished) have
produced a formulation of diffraction theory applicable to helical

structures in which their special symmetry is exploited.

It was shown that the Fourier transform of a right handed,

infinitely long, helical molecule is given by:-

.Q' ] . -
F(g,¥,%/cC) E § fj Jn(anrj) exp 1[5(w Qj + T/2)

+ Zn-iéi:] 3.3
where J = a Bessel function of the first kind of order n.
rj’¢j’zj = the real space cylindrical polar coordinate of the jth
atom.
£,Ps¥/C = reciprocal space cylindrical polar coordinates.
2 = an integer +ve, -ve oOr zero
c = the helix pitch (c axis repeat)

For a crystalline fibre with M molecules in the unit cell, the structure

factors can be obtained from:-

N M
F'{h,k,2) = E jZ] Z f. Jn(anrj) exp i[ﬁ(¢-¢j+ /2)

p=1

+ 2n-31i}exp2ni(hxm + kym'+ zzm)exp 1(-ﬂ¢qm)

- 3.4

where X3 ym, zm represent the fractional unit cell coordinates of

the mth molecule in the unit cell; and boy 15 the azimuthal

orientation of the mth molecule.
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It has been previously stated that for non-crystalline
fibres, the specimen transform is representative of the cylindrically
averaged intensity transform for the molecular unit. This can be

calculated from:-

where Fm represents the nth Bessel function component of equation

3.3.
This gives, disregarding constants:-
= .8.’. * .8‘. '
I<¢>(E’2) g Gn(;,n,c) Gn (g,n,c) 3.6
where
G(n-&)=§fd(2 r.) exp i(2n 22 3.7
ngs ’C = i Yn 'ITE;J P1(1r—-é——-n¢j)' .

The function Gn of equation 3,7 is often calculated since it

is often useful to examine the phase of each Bessel function
component. However, only I of equation 3.6 has any physical
meaning in relation to actual experimental data. It should be

noted that Gn can be used to obtain the structure factors of

equation 3.4:

M
F'(h,k,2) = z z [Gn(g,n,"/n) exp-—in(tp-rboj + -g-)] X
| eponj(hxj + kyj + lzj) ' 3.8

An important difference between equation 3.4 and 3.7 1is
that, because of the cylindrical averaging it is only meaningful

to add the intensities of each Bessel function component to Gﬁ to obtain
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the total intensity on each layer 1ine. Hence interference between
different Bessel function components is not allowed. In crystalline
fibres the cylindrical averaging arises because each crystallite has
a randomazimuthal orientation. Individual molecules within each
crystal]ite, however, have a fixed relative orientation and hence,
Bessel function components of Gn are summed in amplitude and phase
in equation 3.5 allowing interference effects between differént orders
to become apparent. This difference can be significant if the
intensity transform of equation 3.7 is compared to the intensity data
from Bragg diffraction spots in regions of reciprocal space where the
contribution of more than one Bessel function component i1s significant.
For all the above equations, the orders of Bessellfunctions

which occur on each layer line can be derived by the following

selection rule.

n = Z 3.9
where,

n = Bessel function order

N = the number of units in a repeat

K = the number of turns in a repeat

m = an integer

Hence, a knowledge of the helical parameters, N and K,
enables one to predict the Bessel function composition of each
layer line. It should be noted that if the helix is integral (K = 1),

then when m = 0; n = & so that a 2th order Bessel function occurs on

the 2th layer Tine. A plot of Bessel functions of order 0 to 4 is
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given in figure 3.1. The important points to note are that the
first maxima of the functions occur at increasing values of the
argument as n increases; while only a Bessel function of zero order
has a non-zero value when the argument is zero. It is possible to
draw a straight line which passes approximately through the position
of successive Bessel function peaks, and it is this arrangement which
when repeated in the four quadrants of a diffraction pattern, produces
the "helix cross" which is characteristic of diffraction from a helix.
This arrangement is particularly well seen in sodium BDNA (Plate 3.1),
though because of disorder in the packing only the first and second
layer lines are easily visible. In general, for a structure
consisting of a single primitive helix, the intensity of the first
maxima on the lower layer lines decreases as £ increases. This is
due to the decreasing value of the maxima of Bessel functions of
higher order. If the structure consists of a double helix in which
one helix is related to the other by a translation along their common
axis of half a pitch length, then the diffraction pattern consists of
the product of the transform of a single helix and the transform of
two points of spacing ¢/2, where ¢ is the helix pitch. The'transform
of the point function will be zero along 1ines in reciprocal space
represented by ¢ = 2/2c, where % is an integer. Hence, only the

even numbered layer 1ines will be non-zero in this case. BDNA is a

double helical structure, but in this case the helices are not

separated by exactly half a pitch length and so the first layer line

i$ non-zero but is, nevertheless, visibly less intense than the

second.
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Plate 3.1 Sodium BDNA
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For BDNA (N = 105 K = 1), a zero order Bessel function will
occur on the 10th layer line whenm = 1. Hence, meridional intensity
would be expected to be observed on the 10th layer line; while

consideration of layer lines around the 10th in terms of the selection

1 shows that the distribution of Bessel functions around

rule with m

the centre of the diffraction pattern will be repeated around the 10th
layer line (and around 2 = -10 due to the diffraction pattern
symmetry). The meridional intensity on the 10th layer line is
visible in plate 3.1, though all detail of surrounding layer lines has
been lost due to packing disorders.

An important point to note is that the diffraction from a
helical polymer can be considered as the product the Fourier transform
of an array of points spaced along a helix, and the transform of the
group of atoms representing the repeat unit. Hence, the features of
the diffraction pattern predicted from consideration of the selection
rule may be masked in certain cases by the nature of the transform of

the repeat unit. This is the case in ADNA pattern in which the helix

cross around the central area is much less pronounced than in BDNA
patterns; while the expected meridional intensity on the 11th layer
line is scarcely visible.

The Bessel function argument in Fourier-Bessel transforms
for helical structure 1s given by 2nzr so that a given value of the
argument will correspond to a larger value of ¢ if r is decreased.
Hence, there is a reciprocal relationship between the position of
Bessel function peaks and the radius of the helix:; while the layer
1ine separation is determined by the helix pitch. For this reason,
the angle, 6 1llustrated in figure 3.2, between the helix and its

axis 1s given approximately by the angle between the central

intensity peaks and the equator of the diffraction pattern.



3.3 Types of Disorder in Helical Structures

W—M

Two different types of disorder can be distinguished in

otherwise regular helical structures: substitution disorder in which
the 1atti¢e is regular but in which all repeat units are not identical;
and displacement disorder in which the lattice sites, themselves, are
displaced from their regular position in some way. Methods of

calculating the Fourier transform of structures exhibiting these types

of disorder will now be discussed.

3.3.1 Substitution Disorder

Methods of treatment of this problem have already been
formulated and have now been reproduced in many texts (e.g. Arnott, 1973).
Since the resultant equations will be of significance in this chapter,
their derivation will be presented here.

The Fourier transform of any structure which is composed of
identical units distributed in a known way in space can be obtained

by an equation of the form:
F(s) N
f(s) =—— 1. exp2nir.s 3.10
j=1
where_gj is a vector representing the displacement from the origin
of the jth unit, and F(s) is the Fourier transform of the repeat unit.
In order to calculate f(s), knowing F(s), it 1s necessary to
perform the summation represented in3.10over all N positions. The
maximum value of the summation, obtained when all components are 1in
phase, is N; so that division by N as in 3.10 reduces the value of
f(s) to the scattering power of one repeat unit. If N is infinite,
or effectively so, it is necessary to find a function representing the

infinite sum 1f the calculation for f(s) is to be performed. In the

case of a crystal, F(s) represents the transform of the unit cell

contents; while the infinite sum of 3.10 for the regular array




produces a Dirac function,
The scattered intensity corresponding to f(s) can be

obtained from the relationship:
I(s) = f(s).f*(s)

F(s).F*(s) l)\:l %
= ' exp2ni(r, - r.).s 3.11
T B
In the case of an array exhibiting substitution disorder, there will

be more than one possibility for the nature of the repeat unit at

each lattice site and, hence, for the F(s) of 3.10. Therefore,
we have:-
1 N
f(s) = = ) F.(s) exp2ni r..s 3.12
— N J='| J - -] —

where Fj(s) represents the transform of the jth repeat unit.

For the intensity we have:-

N
I(s) = E]z 3 321 F(8)Fi*(s) expani(r, - r;)  3.13

K

Let us define a mean unit cell as being one whose transform

fulfils the following conditions (3.14 and 3.15):

Fav(f_) = FJ(.S_’) - Aj(ﬁ) 3.14
and
N
) A = 0 3.15
j=1
also,
Fav(8) = F3(s) - a¥(s) 3.16
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Substituting into 3.13 and multiplying out gives:-

N N
_ 1 *
I(s) = 7 kZ] jE] Fay(8)-F2 (s) + FX (s)a(s) +F, (s)a 5(8)
+ Ak(i)-A*j(_g)il -explmi (_r:k - r_J)i 3.17

If the summation is taken over pairs of repeat units having
identical values for_gk gL then the second and third terms in
brackets 1n equation 3.17 vanish because of the condition specified

in 3.15. Unless k = j the fourth term also vanishes and so 3.17

reduces to:-

Fav(S)-F3,(s) NN

> ) exp2mi(r, -

I(s) =
N k=1 j=1

r.)s

N
+I%-j§1 Aj(g).a*j(g) 3.18

Comparison with 3.11 shows that the first term in

equation 3.18 is the transform of a regular array having the mean unit

cell situated at every lattice point. If the array is Spatially
regular and infinite in extent, the exponential part of this term
sums to give a Dirac function which is non-zero only at special
points. Hence, for such a lattice this term consists of a series
of sharp Bragg reflections. The second term contains no exponential
term and 1s generaly non-zero giving rise to a diffuse background of

intensity over the whole of reciprocal space. In many cases, the

contribution of this second term is small and the calculation is

then performed using only the first term of equation 3.18
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Fav’ the transform of the mean unit cell is formed as:-

Fou(8) = _z] W. F.(s) | .. 3.19

where wj is a weighting factor corresponding to the proportion of

the jth repeat unit in the structure, and M is the number of possible

repeat units. The summation is performed in amplitude and phase and

the weighting factors are normalised so that their sum is unity.

The diffuse scattering term of 3.18 is then given by:-

M
_I ‘l {FJ(E) -"I'Z'l w‘i F-l(i)] X

M _
[Fg(_g_) —151 wi Fi*(_g)] } 3.20

The summation of 3.20 is not, in its present form, amenable to

'§ ]
— A..A*, = —

Hi1Z

computation since N will normally be infinite. However, 1t

can be written in the form:-

Here the suhmation is taken over the M canonical forms
contributing to Fay'

It should be noted that the terms which vanish from
equation 3.18 only do so if it is assumed that there is no
statistical correlation between unit cells; and that there is also
no correlation between the nature of the vector separating two

lattice sites and the nature of the repeat unit occurring at

either of them. If any such correlation does exist, then further
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terms from equation 3,17 will be non-vanishing, The final form of
the expression for the diffuse scattering depends upon the nature

of the correlation effects, and will be discussed for one particular

case in section 3.4.

3.3.2 Displacement Disorder

Two types of displacement disorder may be distinguished,

and these will be discussed separately.

(i) Disorder of the First Kind

In displacement disorder of the first kind, the lattice
points are displaced from their ideal position in such a way that
the position of one lattice site does not affect the position of its
nearest neighbour. Hence, the mean displacement from the “true"
position does not increase with increasing distance from the origin.

An example of this type of disorder is that produced by
thermal motion of atoms and which is corrected for by using the
Debye temperature factor. In fact thermal motion probably does not
represent true disorder of the first kind, since the position of any
atom will not be independent of the position of its neighbours,
however, in the Debye theory it is assumed that second order effects
are negligible.

Some idea of the general method of treatment of this type
of disorder may be obtained if it is noted that, essentially, it is
only a special case of substitution disorder in which each of the

possible unit cells differ only in the phase, and not in the amplitude

of their scattering.
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(11) Disorder of The Second Kind

In disorder of the second kind the lattice sites are
displaced as before but the displacement is partially or totally
carried over to lattice sites further out from the origin. Hence,
the displacement of any lattice site is not independent of the
positions occupied by i1ts neighbours, but is a linear sum of its own
displacement from an ideal position and that of all other lattice
sites which 1ie between it and the origin.

Interference effects due to intermolecular separation
decrease, usually very rapidly, with increasing diffraction angle
in diffraction patterns from structures exhibiting disorder of the
second kind. This can be seen most clearly in diffraction patterns
from liquids, all of which possess this disorder to a high degree.
At low angles intermolecular interfergnce effects are observable in
the form of a diffuse but distinct diffraction ring, but at higher
angles interference effects disappear completely and the liquid
scattering at these angles is indistinguishable from that of an
ideal gas. '

The "molecular disorders" discussed in section 3.2
relating to intercalative drug binding and the variation of B genus

DNA structures, provide examples of this type of disorder in nucleic

acid fibre specimens.

3.4 Calculation of the Fourier Transform of Helical Polymers
Exhibiting Disorder of The Second Kind

To treat thié problem we begin by considering an infinite
series of points lying on the surface of a cylinder of radius R.

The nth Bessel function component of the transform of such a series
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of points is given by (see appendix),
N

6(gsnsz) = Jp(2mer) ]

f. ' . = NG 3.22
A exp 1(2n2 n¢J)

J

where fj represents the scattering from one point and will bé of
uniform value in reciprocal space. The Bessel function term has
been removed from the SUMmation since all points are at constant
radius, r.

Consider an array of points on the cylinder possessing
disorder of the second kind such that each point has a nearest
neighbour in one of s possible positions: the probability of finding
a nearest neighbour at the jth position being Pj. In a lattice of
N points, the contribution to the scattered intensity of each point
and its nearest neighbour can be obtained by taking each point in turn
as origin; calculating the contribution to the transform of the
origin point and 1ts right and left hand nearest neighbours in each

case; and, finally, summing the contributions from all origjn points

to get the total result.
We have, therefore:-

S
I547(&»n) = Nf 4 sz] NJ. exp 1'(2m;zj - n¢J.)

z
+
] ]

Nj exp -1'(2-m;zj - n¢j) 3.23
where Nj is the number of times a first neighbour is found at the jth
position. Since 3.23 was derived by considering all points in turn
as origin, and including nearest neighbour vectors in each case, it

gives the intensity of the scattering from each point and its nearest
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neighbours. In accord with this it may be noted that the right-
hand side of equation 3.23 is real since the first summation,
representing the contribution from right-hand nearest neighbours, 1is
the complex conjugate of the transform of left-hand nearest neighbours
given by the second summation of 3.23. The two exponential terms
could be combined, therefore, but are kept separate for the present.
The function of 3.23 can in fact be considered as the inverse of a
Patterson function and is analogous to the packing factor of
Fuller et al. (1967). As in equation 3.22, the right-hand side of
equation 3.23 should be multiplied by a Bessel function term.
However, since for the moment we are interested only in the variation
of I as a function of ¢ and n, this term has been ignored and will
be reintroduced later.

If we consider all points as having unit scattering power,
and divide by N, the number of units in the lattice,we have:-

g .
In41(zon) = 1 +j§] Pj exp i(2n;zj - n¢j)

S
P. ' . = No. 3.24
+j£] 3 exp 1(21:;2J n¢J)

The above equation can be used even when N become infinite.

In order to obtain the contribution of second neighbours
we proceed in an analogous way to before. Let us consider the
right hand neighbours only, and assume that all first neighbours

are at position 1; then for the contribution of second nearest

neighbours we have:-
I,(z,n) = exp i(chz] - néy) E(x) 3.25

S
where E(x) =) P. exp i(2nzz - n¢,)
j=1 J ]
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The first neighbour could be at any one of the s possible

positions, however, and for the total contribution from right hand

second neighbours we have:-

i
"
o
<
1
-
D
>
o
-
o~
N
=]
v
N

Iz(@;n) 1 - Ne.) 3.26

|
"

(x) 3.27

It can be shown by a similar analysis that the
contribution from the distribution of jth neighbours can be given

by E¥(x). Therefore, the intensity transform of the whole array

1S given by:-

I (zsn) =1 +_§] [Ej()() + Ej(")()] 3.28
J'.:

This sums to:-~

I,(zsn)

R ERE e 3.29
~E (X -E(-x) _

Combining complex conjugate terms from left and right

hand neighbours gives:-

- 2
[ (z.n) =1 + —ePcos (x) - 2P 3.30

1 - 2P cos(y) + P

where P = |E(x)| and P cos(x) = Re E(x)

The above theory is similar to that derived by Zernicke
and Prins (1927) for the scattering of X-rays by liquids which also
exhibit disorder of the second kind, and a similar equation is also
derived by Vainstein (1966) in a general treatment disorder of the

second kind.

We can now use this result for a disordered set of points

to calculate the transform for a disordered molecular array. The
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point function whose transform we have Just calculated could be
derived by taking each lattice point in turn to be the origin;
adding together the different lattice so obtained and normalising

to the value of one lattice. This process (neglecting a normalisation

factor) is the P self-convolution of the inifinite lattice.

According to the convolution theorem, a P self-convolution in real
space corresponds to the multiplication of the transform of the
function by its complex conjugate in reciprical space. This in

turn corresponds to the intensity transform of the function. Hence,

the function I(2,n) of 3.30 can only be used to obtain the intensity

transform of a molecular array,
This is obtained as:-

1(8,2) = Y G(E,n,z) G*(£,n,z) I_(z,n) 3.31
n

where G(§,n,z) is obtained from 3.5.

For a regular helix: 1i.e. one in which there is only one
possibility for the nearest neighbour position, an analogous procedure

to the one outlined above would yield:-

_ cos(2nZ; - n¢) - 1
() = 1+ SPE 332

The above expression is non-zero only when the cos term
is equal to unity. At such points the expression becomes

indeterminate, and the value which should be given to the function

will be discussed later in this section. For the moment it 1is
sufficient to accept the fact that it has a positive value when the

cos term is unity. If the rotation between units, ¢, is some

rational fraction of 2n we can write:~

-2%5 » Where k and N are integers.

©
1
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For the cos term to equal unity its argument must equa]l

some multiple, m, of 2.

Therefore,
dnzr - 21rNkn = 2em
zZt - '%?‘ = m
_mN + km
C = ZN

This equation is satisfied when r = f%-, where % is any integer.

Hence, & = mN + kn, the selection rule of Cochran et al.,
(1952). A regular infinite lattice is identical with its self-
convolution and hence 3.32 can be considered as the transform of the
un-convoluted lattice and can be used to obtain the transform of an
array in amplitude and phase.

Since no concept of helical pitch has been introduced,
the present method of analysis can be used to treat the case of the

irrational helix. The analysis gives the following selection rule:-

m + uh

2 = 5

where u is an irrational number equal to ¢/2rn. A different method
of treating the irrational case has been presented by RAMACHANDRAN
(1960).

When there is more than one possibility for nearest
neighbour positions the situation is much less simple and is not
reducable to an exact selection rule of any form. However, it is
possible to make certain predictions about the general nature of the
intensity data from such arrays. ' In particular it is possible to
predict the positions at which maximal intensity will be observed.

Equation 3.30 will have a maximum when the term in parenthesis is at
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a maximum, This condition will qQccur when the real part of the
transform of the first neighbour distribution given by,

N
2 Pj cos(2nz,L - n¢j) = P cos(x)
J=1
is maximal.

Differentiating and equating to zero give:-
-~ P sin (x) = 0 3.33(a)

For a maximum the above equation must be satisfied while the secand

derivative given by

~ P cos (x)

must be negative.
These conditions are approximately satisfied when the

following condition 1is attained.

Pj(anjG - n¢j) = 2mm 3.33(b)

N
g

j=1

The assumption is made that the value of all the N
arguments are near in value to a mutliple of 27 when condition 3.28
js satisfied. At this point only arguments associated with small
values of Pj (and hence make a correspondingly small contribution to

the transform) can be significantly different from a multiple of 2w.

Rearranging 3.33(b) gives:-

N N
2Ny P.Z. + P.¢. = 3.34
“;jzl i3 an] J¢J 21
N N
But_{] szj and_X] Pj¢j are the weighted averages of the z and ¢
J= J=

coordinates respectively.

Hence we can write,




..5]-
From here one proceeds as before to obtain:-

r = mNav + KaVN 3'35

where Nav and Kav are analogous to the N and K of equation 3.9
but refer to a helix having a rotation and translation zero
residue of bay and Zav respectively. The helix pitch will
similarly be averaged and this will be the value measured from
diffraction photographs. This type of averaging has been assumed
by a number of authors (e.g. Neville and Davies, 1973; Pigram, 1972;
Fuller, 1966), when using pitch values obtained from diffraction
patterns of intercalation complexes.

It should be emphasised that, unlike quation 3,9, equation
3.39 only specifies the approximate condition for a maximum and that
equation 3.30 will not generally be zero at other points in reciprocal
space. The condition specified in3,33¥)becomes a worse solution to
as either &, N or m increases and the maxima in 3.30 become smaller
and tend to merge with the background for larger values of the
scattering angle. A limitation on this is that the function I  of
3.30 may be periodic in simple cases.

Consider a case in which there are on1y'two possibilities
for nearest neighbour positions, then for the real part of the

nearest neighbour transform we have:-

P, cos(2nz,z - ng,) + P, cos(znzzg - Néy) 3.36

= P1 cos(2wz]; - n¢]) + P2 cos(2n(21+Az) -n¢2) 3.37
where Az = Z, - Z,

2
Suppose thatzl- = m, where m is an integer, then if
Z

g m . .
; = 7 where £ is any integer +ve, -ve or zero, we have:
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Py cos(2me ~ n¢,) + P, cos(2 (m + 1)g - no,) 3.38
which gives

P] cos(-n¢]) + P, cos(—n¢2) 3.39

Thus for any Bessel function order, n, the function 3,30
will be periodic in the & direction over a reciprocal distance of

M. Ifn-=0 then the argument of 3.30 will be zero and the

Z

c;ndition specified in 3.33(a) will be satisfied regardless of the
values of Py and P,, and will result in a Bragg reflection in which
all units scatter in phase. This is significant for drug/DNA
intercalation complexes since the values of P] and P2 are determined
by the P/D ratio., The position of peaks in the intensity transform
which result from the condition specified above will be invariant
with P/D and, hence, may be used to determine the value of z (in
this case Az = the increase in nucleotide separation brought about
by the intercalating drug). An example of such an intensity peak
is the 3.4A meridional reflection observed in all intercalation

complexes. The position of the peak does not vary with the limits
of experimental error, and shows that the value of Az is 3.48.
Equation 3.33 may also be periodic with regard to Bessel
function order and in principle it should be possible to identify
a peak on the equator the position of which is not a function of
the P/D, from which the degree of untwisting at the intercalation
site could be determined. Unfortunately, such a peak would
correspond to a Bessel function of very high order (n = 30 in the
case of a 12 degree untwist angle with respect to BDNA).  Such

peaks occur far out in reciprocal space and are not easily recorded.
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The physical explanation of the periodicity is illustrated
in figures 3.3, in which the transform of the first neighbour

distribution is illustrated in vector form for the case where s,
the number of possible first neighbour positions equals two. The
amplitude of the vectors are given by the probabilities, P] and P2,
of the occurence of a first neighbour at each of the possible positions.
The sum of the vectors gives another vector Fepresenting the ampliitude
and phase of the first neighbour transform. In figure 3.3(a) the
situation where the reciprocal space parameters, g and n, equal zero
is 1llustrated. The phase of both vectors is clearly zero and the
resultant vector is of unit modulus. At certain values of the
reciprocal space parameters, denoted by z' and n', the situation
illustrated in 3.3(b) will pertain and a maximum will occur in the
value of I . Let us suppose that at some other value of these

parameters, denoted by c* and n*, both vectors are equal to some

multiple of a 2v, then the vectors will be identical to those
observed when ¢ and n are zero and the position illustrated in 3.3(a)
will be regained. As the reciprocal space parameters increase still
further, the vectors will behave in an identical manner to that
observed in the region around the origin, and when ¢ = z* + ¢' and
n=n*+n' the situation illustrated in figure 3(b) will be regained.
If there are more than two possibilities for nearest neighbours,

then an analogous argument can be used to show that the same
conditions might apply. However, as s increases, the regions of
reciprocal space at which all the vectors will equal some multiple

of 2n will be more widely spaced: and in the 1im%t, if the first
neighbour distribution were a continuous function as it is in
liquids, then the condition would never be attained for finite

values of the reciprocal space parameters. In general, the g



Fig.3-3@
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distance over which I will be periodic is given by-il, where M = -EL :

“1 “1
Z' be1ng the lowest common multiple of all possible z values for

nearest neighbours.

In diffraction patterns from intercalation complexes, therefore,
the layer 1line structure observed around the centre of the pattern and
which would be lost due to the intra-molecular disorder even if the
molecules were regularly packed should, in theory, be observed around the
meridionals. However, this will not be observed in practice sihce any
layer 1line structure in the pattern other than that around the centre,
will be destroyed by disorder in the molecular packing.

Values for the function I_(z,n) have been calculated for a

specified case of disorder of the second kind and are presented in figure

3.4. The periodicity of the function over a d1stance-£1-and the
| 1
infinitely high peaks at =-;L for the n = 0 component, are observable.

If 1t 1s desired to calculate the value of I_(z,n) at all
points in reciprocal space, then the infinitely high, sharp peaks must
be normalised and scaled (in terms of intensity per unit length) relative

to the continuous diffraction streaks. This can be done if we note that

the integral of the term 1n parenthesis in equation 3.30 over the repeat

périod, EM_ » in the § direction is zero. Integration confirms this

]
result, though it is intuitively obvious if it is remembered that this

term consists of a sum of cosine functions whose integrals over the

period-ll-are zero:

F3 Pav
pav I Im(;jn) dC = 7 3-40
4 ]
=0
where .. is the average density of points.

Equation 3.40 gives the value of the average diffracted
intensity per unit length to which the calculated data must be

nomalised. Hence, the "infinite" peaks in G_ take the value of
0 M
av

7 ., while the diffuse diffraction takes the value:-

I'(gsn) = 1 _(z:sn) Poy A2 3.41
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where Az 1s the interval along the r direction at which values of

I (gsn) are calculated. The procedure adopted here appears somewhat
artificial at first but must be used if any progress is to be made
since it converts the calculated data to values of intensity per
unit length, and only in this way can data from Bragg type reflections
and diffuse scattering streaks be compared. The values of I'(z,n)
calculated from 3.41 are dependent upon the interval, Az, at which
they are calculated. Although decreasing the value of Ag decreases
the values of I' _(t,n), the function is sampled at a correspondingly
larger number of points and the intensity calculated in a given region
of reciprocal space will be the same whatever value is chosen for Az,
except for changes due to the improved sampling of the function
profile for smaller Ac.

Since Pay? the average point density, appears in both
equation 3.40 and 3.41, 1t constitutes a common scaling factor and
may be omitted in practice.

It is not necessarily vital to perform this scaling at all
since, provided it can be measured accurately, the diffuse scattering
provides the most information, particularly in the present case in
which the Bragg reflections are far apart in reciprocal space. In
this case it is not necessary to perform the scaling procedure since
it does not alter the position, shape or relative heights of peaks

in the diffuse scattering.

Examination of the graphs presented in figure 3.4 show

that I_ is only fluctuating significantly as a function of  for

Bessel functions of low order. These occur near the centre of the
pattern and hence the affect of I_ on the total transform is

dominant only in this region. Hence, information about the nearest

neighbour positions can only be obtained from studies of the layer

lines. At higher angles, the transform of the repeat unit will be

fluctuating more rapidly than I_ and, hence, variation in the
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diffracted intensity in this region will be dominated by the form of

the repeat unit transform.

This 1s analogous to the case of liquid scattering in which
information about the intermolecular separation function can only be
obtained from the low angle scattering intensity.

It is possible that a different unit cell is associated with

each of the nearest neighbour positions. In this case the first

neighbour transform is given by:-

S

G](c,n) = jzl Iij exp 1(2m;zj - n¢j) 3.42

where Ij = the intensity transform of the jth unit cell.
Consider a case where s = 2; then the first neighbour

distribution 1s given by:-
IlP] exp i(ngz] - n¢]) +12P2 exp i(2w;22 - n¢2) 3.43

while for the transform of the second neighbour distribution we

have:-

2 .
I]P] exp 1(2n;z] - n¢]) + (I] + 12) P]P2 exp 1(2-m;z1 - n¢])

exp 1(21:;22 - "?z) +12P22 exp 1'(2m;z2 - n¢2)
3.44

Hence, in this case:-
By(can) # G (z.n) 3.45

This is an example of substitution disorder and can be
treated using the method of approach outlined earlier. The function

Imi;,n) of equation 3.30 is equivalent to the double summation

N N
(kz1jzl exp Z“i(tk - ,rjlg) of equation 3.18 and hence the first term

of this equation can be calculated. Some care is required in

calculating the contribution from the diffuse scattering, however.
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It has been mentioned in the derivation of equation 3.18 that terms
involving A will only vanish if they are unaffected by any I
correlation between unit cells or their vector separation. In the
case under discussion at present, such correlation does exist and,
hence, a number of terms from equation 3.18 need to be included in
the calculation of the diffuse component.

The nature of the correlation in this case is best
illustrated with reference to an example. Consider the one
dimensional infinite lattice illustrated below, which consists of

two types of repeat unit denoted by A and B.

The presence of unit B results in larger distance of
separation between itself and the next repeat unit on the right hand
side, and, hence, the lattice possesses both substitution disorder
and displacement disorder of the second kind. We define the
transform of the mean unit cell, Fav’ to be NAFA + NBFB’ where FA and
Fg are the transforms of unit A and unit B respectively. Wp and Wg
are weighting factors describing the respective probabilities of the
occurrence of unit A and unit B at each lattice site. If the
function I_ is derived, the value of the non-diffuse scattering can
be calculated. If we consider any pair of lattice points of the
array, then the right hand lattice point of the pair will have the
distribution W,A + NBB for the probability of finding each repeat

unit at the site. The left hand member of the pair will determine

the vector separation of the two units, however, so that the nature
of the separation vector and of the type of repeat unit at the left
hand lattice site are directly correlated. Consideration of

equation 3.18 in the light of this correlation shows that the final
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equation for the scattering intensity should be:-

M oo
[,(s) = I,,(s) . I (s) + 2Re| } Wias(s) ) exp(nx;s)
T j=1 n=1
n
\ X .
here 1. =F. F. ™
where laov = Tav Tav
and IL = the intensity transform of the lattice.

In order to 1llustrate the working of the method in practice,
it will be applied to two different examples of disorder of the second
kind in nucleic acid structures: the case of a DNA duplex in which

different nucleotides have a different conformation; and an example

of an intercalation complex.

(a) A Disordered Helix

This case is not merely of academic interest, since the
possibility exists that such disorder may be present in certain B
type diffraction patterns obtained from Na DNA, discussed in chapter
6. Suppose that there are 5 possible conformations for the
nucleotide repeated in the disordered helix, not necessarily occurring
with the same frequency. Let us further suppose, for the moment,

that there is no statistical correlation between repeat units; even

between nearest neighbours.

The first stage in the calculation is to obtain values for
the function I_ of equation 3.30 for a given set of values for ¢ and
for a given range of Bessel function orders. This can then be
multiplied by the transform of the average unit cell which must be
calculated for the same Bessel function orders énd for the same values

of z. The transform of the average unit cell is obtained as a sum

over all atoms in the s repeat units: the scattering factors for



- 59 -

atoms in the jth unit being multiplied by wj, the probability of
finding the jth repeat unit at a lattice site. The product Fav Fav*

I_ is then formed separately for each Bessel function component to give

the value of the non-diffuse term.

Since each different nucleotide conformation will result in
different characteristic values for the translation and rotation
between units, then a correlation exists between the separation vectors
and the repeat units, of the type discussed in the previous section.
Hence, the total transform should be calculated in accord with
equation 3.45.

If, in addition, there is a correlation between the
appearance of one particular repeat unit at a lattice site and
the probability of the appearance of any repeat unit at adjacent
lattice sites, the procedure adopted needs to be modified. Consider
one particular case in which each different repeat unit does not
occur individually but in groups of N nucleotides along the length
of the helix. It is possible to treat his case by further
modification of the nature of the terms included in the equation for

IL. However, a better method of approach is to modify the nature of

Fay BY considering each group of N nucleotides as one repeat unit.
If this procedure is carried for all s different nucleotide conform-
ations, then a new set of different possible repeat units are
generated. If it is supposed that there is no statistical correlation
between these new repeat units (N nucleotides in length) then the
transform can be caiculated as before, using new rotational and

translational parameters appropriate to the enlarged repeat units.

The transform for each of the repeat units, consisting of N identical

nucleotides can be calculated as described in section 3.4
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(b) An Intercalation Complex

Consider the intercalation complex illustrated diagrammatically
in figure §-1, for drug intercalation into BDNA. We assume for the
moment that the unwinding is restricted to the intercalation site,
and that the separation between base pairs is 6.88. It is further
assumed that the only conformational change induced in the nucleotide
repeat 1s in the phosphate group. There are two different possible
repeat units at each lattice point, therefore, One of these is the
normal B-DNA nucleotide, which induces a translation and rotation
per residue of 3.4R and 36° respectively; while the other consists
of the drug and the modified nucleotide (modified phosphate) inducing
a translation and rotation per residue of 6.8% and 24°. The transform

can now be calculated in a manner entirely analogous to that

described above, using equation 3.46,

The assumptions made above are probablyunrealistic for any
actual 1intercalation complex since changes in the sugar orientation
about the glyocosidic bond will amost certainly occur; while other
changes might well be introduced. These changes might lead to
"excluded site" effects so that the drug distribution would be

modified from that of the present example.

These changes can be accounted for by enlarging the size
of the repeat unit which includes the drug. If the drug medifies a
number of nucleotide pairs adjacent to the site of ihterca]ation,
then the whole of the modified region should be included, along with
the drug,as being one repeat unit. The values of the translation
and rotation parameters associated with this unit should not be those

quoted above, but should be new values appropriate to the enlarged

unit.
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3.5 A Particular method of Calculating the Molecular Transform for

Intercalation Complexes

The method of calculation presented in 3.3, is applicable

to the treatment of intercalation complexes, but another method of
approach can be used by making the following approximation.

Consider an intercalation complex with P/D = 10, giving an
average of one drug per five base pairs. The approximation to be
made is that it is possible to choose an origin such that every
concurrent sequence of five base pairs contains one (no more and
no less) bound drug molecule, although the site of attachment within

the seqUence of five nucleotides is random. The helix would then be

made up of a repeating sequence of units consisting of five nucleotide
pairs and one drug molecule. These repeat units would have the same
translation length and turn angle but would be non-identical and

hence cause substitution disorder in the structure. Little
discussion of the general method of treatment is presented since it

is identical in principle to other cases of substitution disorder
already discussed. Some points concerned with the mechanics of the
calculation will, however, be presented here.

It is probably adequate, certainly for the preliminary
examination of diffraction data, to use only the first term of
equation 3,18, Singe-this represents a reqular helix having the average
repeat unit at each lattice point, it can be calculated using
equation 3.7 derived from the diffraction theory of Cochran, Crick
and vand (1952). For a more detailed analysis of the data, the
diffuse scattering should also be calculated and added to that from
the non-diffuse component to obtain the final value of the calculated

intensity. Since the helix possesses pure substitution disorder,

and it can be assumed that there is no statistical correlation between
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repeat units, the diffuse component may be calculated by equation
3.21,

The average repeat unit generally contains a large number
of atoms; a fact which makes both the data preparation and the
computation extremely tedious if all atoms are explicitly included
in the summation, It is possible to reduce considerably the work
involved by the following method.

Consider a sequence of five bases situated regularly on a
smooth helix. The sequence can be considered as the convolution of
one base and a point function describing the spatial distribution of
the base unit. By the convolution theorem, it is possible to
obtain the transform of the sequence as the product of the transform
of the base and that of the point function., If the structure is
‘statistical’ in that more than one position may be occupied by each
base, then the function describing the spatial distribution is
modified to include all possible points at which each base could be
situated: each point'being given a weighting factor equal to the
probability of binding a base at that particular site.

In practice it may be that different groups of atoms in
the intercalation unit have different distribution functions. The
transform for each group, muitiplied by their appropriate
distribution function transform, must then be calculated separately
and their sum formed in amplitude and phase to obtain the final
result.

Transform calculations for particular models of inter-
calation complexes have been performed and are presented in
chapter 5.  This particular method of calculation is preferable
to the more general method in the cases discussed in this thesis

since comparison between the observed and calculated data is only
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made for the peak intensity on the equator and the first two layer
lines, When a preliminary comparison of this type is being made,
the method presented here, which is less tedious in terms of data

preparation and faster in computation, is preferable.

As a test of the theory presented in this chapter, the
transform of a series of points of unit scattering power on a
cylinder of radius r were calculated by the method given in this
section. The points were such as to be related to their nearest
neighbours by either a translation of 3.4% and a rotation of 36°;
or of 6.8% and 24° respectively. Since the points are of uniform,
unit scattering power, the function calculated is similar to I_ of
equation 3.30. The predicted properties of I_ that it should have
intensity peaks at points representative of the average helix; and

that it should be periodic over a distance corresponding to 3.4R are

observed.
3.6 Computer Programmes

(a) Helical Transform Programmes

Programmes to calculate the cylindrically averaged
molecular transform of equation 3.7, and the structure factors from
equation 3.4 have been written by Professor W. Fuller. These
programmes have been transcribed by the author, with some
modifications, to run on the Elliott 4130 machine at the Computer
Centre, University of Keele, and later on the more powerful CDC
7600 machine at the University of Manchester Regional Computer
Centre. Since these programmes have been described previously, they
will not be discussed in detail here.

The molecular transform programme has been extended to
calculate, also the intensity transform of equation 3.6. In

addition, a number of modifications have been made to facilitate
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the calculations of the transform of intercalation complexes by the
method described in section 3.5. In particular, the facility to
calculate the distribution function and to multiply this by the
transform of an atomic group has been incorporated into the programme.
The transform of the atomic group is formed in the normal way, by
calculating the contribution from each atom in the group on selected
layer lines and Bessel function orders: both being determined by

the selection rule of equation 3.9. Contributions from all atoms
are added in amplitude and phase to give the total transform for

the group. At this stage, the transform of the disposition function
is calculated for the same combinations of layer 1line number and
Bessel function order and multiplied by the transform of the atomic

group. The procedure is repeated until all atomic groups have been
included: the contribution from each group being summed in

amplitude and phase to give the total transform.
If a dyad axis exists in the structure (i.e. it is possible
to choose a coordinate reference frame such that for every atom with

coordinates R, ¢, z, there is another with coordinate R, -¢, -z) then

for the molecular transform we have,

N/,
G(gan,7c) JZ Fydnl2mers) |:exp 1(2“(;“ - Nés)
-2mLZ.
+exp i(—— +ne;)
N/2 2TRZ.
22 f .J (ngr ) cos c-——Al - N9, ) 3.47
3=

Hence, the transform of such a structure is real and can be obtained
by including only one of the two sets of dyad related atoms.

As can be seen from the above equation it is necessary to double

the value of the transform so obtained if the result is required on
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an absolute scale. The programme written by Professor W. Fuller
has the facility to exploit dyad axis symmetry to reduce the computation
by calculating only the real part of the transform for structures
possessing a dyad axis. In models of intercalation complexes it is
often the case that some groups of atoms have dyad related neighbours,
while others'do not. The programme has been modified, therefore,
to allow calculations of the imaginary part of the transform for some
groups in the structure but not for others, thus permitting the use
of the dyad simplification in cases where the whole structure does not
possess a dyad axis.,

Other less important facilities were included in the
programme. The ¢ and z coordinates of selected atoms can be
modified if desired. This takes the form of values, §¢ and sz,

which are read by the programme and added to the ¢ and z data for

each atom to form the new coordinates. This is useful in special
cases where i1t 1s necessary to modify atomic coordinates so that the
dyad axis of the repeat unit lies along the 1ine (R, 0, 0), which it
must do if the dyad symmetry is to be utilised to reduce the
computation in the manner discussed above, It is also possible to
modify the weighting factors for selected atoms by reading in a value
by which these factors are multiplied. This is important when
changing the P/D ratio in the calculation of drug/nucleic acid

complexes.

(b) Diffuse Scattering Programme

A programme was written to calculate the diffuse scattering

component of a structure possessing substitution disorder. In

order to perform the calculation it is necessary, in principle to

calculate the transform of the average unit cell using equation 3.21 for
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a chosen range of Bessel function orders at specified points in
reciprocal space. The transforms for each of the possible
cannonical forms must then be calculated at the same points in
reciprocal space and for the same Bessel function orders. A of

equation 3.17 for the jth cannonical form is given by:-

An,j(gin,C) = Gn,j(g’n’C) - Gn av(gin!;) 3'48

The subtraction in 3.48 is performed in amplitude and

phase to give Aj. Intensity data are then calculated from:-

N max
(Z.C) = W.A_ . (g,%, * L, .
IJ(Eﬁc) % o 30,3 (; L.n) A N (£,2,N) 3.49
and the total intensity by a summation over all the M cannonical

forms.
M
Itot(i,;) = jZ] Ij(e,c) 3.50

In the particular case of intercalation complexes, the
R coordinate remains unchanged for equivalent atoms in different unit
cells. It is possible, therefore, to reduce the computation in an
analogous way to that used for the non-diffuse component, by
multiplying the transform of an atomic group by the transform of its
disposition function. The transform of each atomic group having a
different disposition function is calculated and stored in the
machine along with the transform of the average unit cell obtained
by the procedure used in the molecular transform programme. The
transform for each cannonical unit cell is obtained in an analogous
manner by reading ih the appropriate disposition function for each

atomic group in the particular unit cell under consideration: use

being made of the stored transform values for each molecular unit.
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Values for each Aj are obtained from 3.49 and the diffuse intensity

calculated as described.

This method of calculation uses a large amount of computer
store because of the requirement for the separate storage of the
transform for each atomic group. Occasionally problems were
encountered because of the large size of the programme and it was
necessary to restrict the number of points at which the calculation
was performed'and/or the number of Bessel function components included.
The problem posed by the size of the programme when this method of
approach is used was considered to be outweighed. by the reduCtion in
computation achieved and by the very large reduction in the work
involved in data preparation. The programme has been written so as
to calculate the value of the additional term of equation 3.46 where
necessary. The nature of this term, I'(g,n,z), in cy’indrical polar

coordinates is:-

m -
I'(gsn,z) = 2Re| ) W.A:(g,n,z) ¥ exp i(2ngz; - nd.)| 3.5
'='| J J k='| J J

The infinite summation of exponential function in equation
3.50 will give a delta function at points in reciprocal space and
Bessel function orders specified by the selection rule of 3.9.

Hence, the value of I' can be calculated from:-

In,j(E,n,a) =Nj Re{%n’j(ﬁ,n,z) - Gnav(g,n,gi] 3.52
and
M  NMAX
I'(E,n.z) = z z Iﬂ .(E,n,g) 3.53
j=1 NMIN "°J

where the transforms for Gn and Gav have been calculated only for

sJ
the & values and Bessel function orders specified by the selection

rule. The helical parameters associated with each of the M cannonical
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forms are different so that the values of the reciprocal space

parameters for which equation 3.46 has been calculated will vary for
each of the M cannonical forms.

To perform the calculation, the programme first derives the
values for each I . term using stored values of Gn . and Gn , and

NsJ ’J
av
then performs thg summation of 3.52 to obtain the final value,

(c) Programme to Calculate the Transform of Structures Possessing

Disorder of the Second Kind

A programme has been written to perform the calculation

of the transform for helical structures possessing disorder of the

second kind.  The programme is very similar to the helical transform
programme for regular structures and routines from this programme
were used. An important difference between the two programmes,
however, i1s that the programme for regular helices calculate the
transform only at points in the ¢ direction specified by %/c, where

¢ is the helix pitch, and for Bessel function orders determined

from 3.4; while the transform for disordered structures must, in

theory, be calculated at all points along; and for all Bessel

function orders. In practice a range of Bessel function orders
and ¢ values for which the transform is to be calculated are
specified.

A routine is included in the programme to calculate the
value of I_(z,n), and this is multiplied by the intensity transform of
the repeat unit calculated from equation 3.22 for each point in
reciprocal space and for each Bessel function order. Bessel
function component intensities are then added to obtain the final

value of the intensity along the ¢ direction at each ¢ value. The

values are scaled to give intensities per unit length in the manner
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described.

The programme will be used to calculate the transforms

of disordered helices presented in chapter 6.

3.7 Programme Testing

The helical transform programmes were tested using sets
of test data from which results were available from other similar
programmes. Other programmes were tested using simple data sets

from which the transform values could be checked by hand calculation

or by inspection.



- 70 -

APPENDIX 3:1

Equation 3.22 requires some proof. It is analogous to
equation 3.7 except that since the structures involved do not possess
helical symmetry, in equation 3.22 we have no selection rule for n
and the transform in the ¢ direction is not confined to a set of
planes. Since equation 3.3, from which 3.7 was derived, is itself
derived (Cochran et. al., 1952) by utilizing the symmetry properties
of a helix, it is not obvious that equation 3.22 is valid.

The transform of an infinitely long, non radially symmetrical,

hollow cylinder is given by:-

® 20
F(E,¥,z) = J j I:epon'i cos(w-?):l X l}(w,z)eponi(;z)_J 3.54

-0 0

Integration with respect to ¢y can be performed using the normal

formula for integration by parts:-

Iunvu dx = u Jvdx - j-g-:—: [Jvdx]dx 3.55

where, u = p(y,2) expeni(zz)
v = exp2xi cos(y-¥)

X =y

Using the identity'for Bessel functions of the first kind:-

2n
[ exp[iu cos ¢ + 1 n%]d¢ = Znian(u) 3.56
0

with 2“5? = U and -(ﬂ+¢) = (¢-q)

Vainstein (1966) has shown that the integral 1vdx of equation 3.55

becomes
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Q0

L J (2ngr) exp i n (v +-%) 3,57

N==00

This is not a function of ¢y and hence, the second term of 3.55

vanishes so that the final form of the equation is:-

o~ 8

F(E,¥,2) = J (2ngr) exp i n (¥ +-%) X

n

;p(¢,2) exp 2wi(gz)dz 3.58

o0

In the general case the integration of equation 3.58 is
difficult to perform. However, if o(v,2) consists of an infinite series

of points we can replace the integral by a summation and accommodate

the dependence of p upon ¢ by the factor exp i(-n¢).

) Pj Jn (2nEr) exp i n (¥ - ¢j +'§0

n==-co

N

F(E,¥52) = _2
J=1

exp 2ni(g,2) 3.59

Equation 3.22 can be derived from this by the same method

as was used to pass from equation 3.3 to 3.7.
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CHAPTER IV

MOLECULAR MODEL BUILDING

4.1 Introduction

The quantity and quality of diffraction intensity data
from fibres are limited in comparison with those obtained from good
single crystals. Even in the most ordered case in fibres
(e.g. A-DNA) in which the molecules are regularly packed in small
domains (crystallites), distinct Bragg reflections are only obtained
in a region of reciprocal space corresponding to approximately 3R
or less since there is some misalignment of the individual crystallites
which results in the spots being drawn out into arcs which merge at
higher diffraction angles. Many fibres possessvery little order so

that Bragg reflections are almost entirely absent from their
diffraction patterns which consist, therefore, largely of diffuse
diffraction streaks whose intensity is difficult to measure
accurately. Moreover, in fibres of this latter type, the azimuthal
orientation of the individual molecules about the fibre axis is
random and the diffraction intensity obtained from such specimens
do not yield three dimensional information in their diffraction
patterns: the maximum information available being contained in a
plane representing a central section through the cylindrically
averaged intensity transform.

Molecular model building allows best use to be made of the
limited diffraction data available by incorporating known stereo-
chemical features of the molecular structure into the analysis.

The validity of the method depends on the correctness of the

assumption that the values of the stereochemical parameters (bond

lengths and bond angles) may be obtained from values derived from
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single crystal X-ray diffraction determinations of the structure for
related small molecules.

Even knowledge of stereochemical parameters is normally
insufficient to build a starting model which is good enough to refine,
and some hint about the molecular conformations must be supplied
For helical molecules it is normally adequate to obtain values of
the translation and rotation parameters relating repeat units in the
helix. The diffraction theory for helical molecules of Cochran et
al. (1952) shows that such information may be obtained from a relatively
superficial analysis of the diffraction data. It is this fact which
has enabled the combination of the techniques of molecular model
building and of X-ray fibre diffraction to be so powerful for
elucidating the structure of helical polymers.

Once a reasonable starting model has been chosen, 1t 1is
possible to refine it by minimising the discrepancy between the
experimentally observed diffraction intensity and that calculated for
the model. In the case of highly crystalline fibres, a computer '
method for performing this refinement, using a least squares function
minimisation routine has been devé]oped (Arnott and Wonacott, 1966).
Many of the fibre speéimens studied in this laboratory give diffuse
intensity data.which is not amendable to processing in a refinement
routine such as the one mentioned above. In this case it is
better to perform the refinement so as to improve the stereochemistry
(i.e. to minimise the energy of the structure in terms of its non-
bonded interactions etc.), and to calculate the diffraction
intensity predicted by the refined model. A computer programme for

minimising the conformational energy of molecular structures will be

described in this chapter.
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4.2 Model Building Techniques

Molecular model building can be carried out using some

physical structure to represent the molecule, or by a computerised
routine in which the model consists of a set of atomic coordinates
derived by calculation from the stereochemical data. Computerised
model building and refinement procedures have been used to obtain
coordinates for all models presented in this thesis and so will be

discussed in some detail here. Hand model building has been used but

normally only to provide a starting model for the computer refinement.

4.2.1. Hand Model Building

If physical models are to be good representations of
molecular structures, it is necessary to use some type of building
unit in which bond lengths and bond angles are accurately represented.
Space filling models (e.g. Corey, Pauling, koulton (C.P.K.) models)

use units in which the van der Waal's radii of the atoms are also

represented.  Such models give a better visual representation of a

proposed structure than do skeletal models in which only atomic
centres are represented along with bond angles and bond lengths.

The main disadvantages of C.P.K. models are that it is not easy

to measure atomic coordinates accurately, although a method for
deriving them has been described (Haen et al. 1976), and that the

bond angles and bond lengths are fixed so that slight variations in
these parameters cannot be introduced. It is also difficult to
check a C.P.K. model to ensure that it corresponds to the intended
structure. All hand model building described in this thesis, unless
otherwise stated, is performed using skeletal models.

The advantage of hand model building is that it produces
a physical model of the structure from which it is often possible

to determine by inspection, changes which could be made to the model
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to improve its stereochemistry. This is particularly relevant

in the early stages of analysis when it may be necessary to make gross

changes in the model.

A disadvantage of the method is that it is not easy to assess
accurately the conformational enerqy of a given model in terms of the
van der Waals interactions between non-bonded atoms and hydrogen bond
energies. It is also difficult to predict accurately changes in the
mode | which would improve its stereochemistry or the agreement between
the diffraction intensity calculated from the model and that observed
in experiment, particularly in the later stages of analysis when the

changes to be made are relatively small.

4.2.2. ComEuterised Model Building

The primary requirement of any computerised model building
routine is a method of calculating the atomic coordinate given the
values of bond angles, bond lengths and a set of dihedral (torsion)
angles defining the molecular conformation. A method to accomplish
this has been suggested by Eyring (1932) for a polymer chain and
similar procedures have been used in a number of computer mode]l
building routines (e.g. Ramachandran et al. 1966; Arnott and
Wonacott, 1966). A procedure for deriving atomic coordinate
employing the Eyring transformation matrix will be described in
relation to the hypothetical molecule in figure 4.1.

Coordinates are generated for atom 1 in a cartesian
coordinate system (x,Y,z) having origin on atom 2; the x axis along
the bond between atom 2 and atom 1; the y axis perpendicular to the
x axis and in the planes of atoms 1, 2 and 3; and the z axis

positioned relative to them so as to form a right handed orthogonal

set. The coordinates of atom 1 in this coordinate system are




Fig. 417 AN IDEALISE‘D -
' -~ CHAIN MOLECULE
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evidently (L;s 0, 0) where L, s as defined in figure 4.1.
The coordinate System may now be shifted to have origin
on atom 3 and to be oriented relative to atoms 2,3 and 4 in an

analogous way to that described above. Atom 2 has coordinates
(L2, 0, 0) in this system; while the coordinates of atom 1 in the
system (X,y,z) can be transformed into equivaient coordinates in

the set (x',y',2') by the following matrix transformation.

¥y = B4 + L3 b
where:-
-)-(-'I = {X -| ’ _x_-[ = X*I 9 V2’3 = Lz
Yy Y 0
Z.] _Z-l 0
[ -cosel -sine] 0
‘52’3 = sinel sinr] -cose] COST] SinT]
-SinBT SinT] Cosel SinT] COSTT

The above process is continued until the coordinates of all
the atoms have been derived in a coordinate frame analogous to
(x,y,z) but having origin on the final chain atom. Hence, the fina]
coordinates of atoms 1 and 2 in the frame situated on atom 4 1in

figure 4.1 are given by:-

X5 = ﬁ3’4 X'y # _\1_3’4 , 4.2

j=1,2
In a linked atom modelling system, such as the one described here,

structure refinement is carried out in terms of changes in the dihedral
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angles and 1n certain refinement procedures the partial derivatives

of the coordinates of every atom with respect to each dihedral angle
are required. For atom 1 in figure 4.1, the partial derivatives with
respect to Ty are given by:-

X' oA
L. =l X4 4.3

BT] 311

The derivatives of the coordinates of all other atoms with
respect to T, are clearly zero. As the coordinate system is shifted
along the polymer chain, it is necessary to transform the derivatives
to be compatiblie with the new coordinate frame by multiplying by the
transformation matrix A so that in moving from coordinate frame
(x's y's 2') to frame (x", y", 2") located on atom 4 in figure 4.1,

we have

BT] - &334 3‘1']

aX" aX'1
4.4

The present method cannot derive the coordinate of atoms
which do not form the backbone of a single molecular chain.
Coordinate of atoms pendant to an atom of the chain may be calculated
when the coordinate system has its ofigin situated on the chain atom

to which they are pendant, by the following transformations.

where Xj, Yj, Zj are the cartesian coordinates of the jth atom;

Lj is the bond length between the jth pendant atom and the chain

atom; and xj, yj, zj are direction cosines defined in figure 4.2.
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Branched structures can also be accommodated into the
model1ling system. A hypothetical structure is illustrated in figure
4.3, which has a branch pendant to the second atom (atom 5 in figure
4.3) of its main chain. The branch chain is built first: 1ts
atomic coordinates being derived in a coordinate frame with X axis
along the bond between atom 4 and atom 5, and origin situated on atom
5. It_is necessary to transform the coordinates so that they are in
the coordinate frame adopted by the modelling system while building
the main chain and when the coordinate system has origin situated on
atom number 5. This can be done by the following matrix transformation
provided that the directioncosines Xgs Yq 2y analogous to those of

figure 4.2 for pendant atoms, are known for atom 4:-

X', = T.X

=J
j=2-+4
where T = (cos a sin a 0
-sin a...cos b cos a . cos b sin b
sin a. sin b -C0S a . sin b cos b
~ o
a = CoS (x4)
NS B N
b = tan [—-ﬂ} 1fy4 1S -ve.
-1 24 0
or b = tan - — | + 180" if y, is +ve.
.Y4 4

As described above, the coordinate of pendant or branch
atoms are in a coordinate frame situated on atom 5. The coordinate

of such atoms, and their derivatives, may be transformed in the same

way as the chain atoms, as the coordinate system moves along the

main chain.
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In addition to deriving and refining the atomic coordinates

for the structure as described above, it may be desirable to be

able to position one group of atoms relative to another by

translations along and rotations about the coordinate axes. Atomic

coordinates (x,y,z) can be modifed in this way to the new coordinate

set (x',y',Z') by the following transformation:-

X' = RX + T 4.5
where,
X' = |X ,_X_Ex,l=_tx
' t
y y y
|
J W
1 O 0 cose‘y 0 -snne.y [ cosé, ~-sine, 0
0 coso, -$1n6, 0 1 0 sinez coso, 0
0 sinex cose, l S1ney 0 cosey 0 0 1
ex,y,z = Eulerian angles describing rotations about the X,
Y and Z axes respectively.
tx,y,z = Translations along the x,y, and z axes respectively.
The derivatives with respect to the Eulerian angles are
given by:-
X' R X
30 - 36 4.6
Also,

Q2
E
|
<
il
Qo
B
—
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and_
—aL - '—B'E— = -§—x-— = —35-—- = _3_)_(_ = EX— = (
atx atx at.y aty atz atz

It 1s also necessary to modify the derivatives of the
torsion angles to be compatible with the new coordinate frame.
This is accomp]ished by multiplying the derivatives by R.
Hence,

aX'

X oX -
- = R—a? 4.7

9T —

For computational purposes, the Eulerian angles and
translational parameters are treated in an analogous manner to the

torsion angles, and any facilities in the programme applying to the

latter may also be applied to the positional parameters.

4.3 Computer Programmes

The computer programme used in the refinement of molecular
models in this thesis is essentially that written by Dr. W.J. Pigram

and has been previously described (Pigram, 1968). The author

has franscribed the programme to run on the Elliott 4130 machine
at the University of Keele Computer Centre and subsequently to run
on the more powerful C.D.C. 7600 machine at the University of
Manchester Regional Computer Centre. Several modifications have
been made to the programme and will be discussed in later sections

of this chapter. A flow diagram for the current version of the

programme is presented in figure 4.4.

The molecular conformation is refined primarily so as to
minimise the energy of the van der Waals contacts between pairs of
non-bonded atoms. In addition, the refinement routine may be

constrained to attain or preserve certain desired stereochemical



DATA INPUT

l

CALCULATION OF
ATOMIC COORDINATES

AND DERIVATIVES

l

IS PART OF THE YES POSITION RELEVANT
MOLECULE TO BE POSITIONSD @ —— ) STRUCTUREACCOQEIN$A¥E o

CURRENT PARAMETER VALUES
lFNO

DOES PART OF STRUCTURE YES CALCULATE COOR
POSSESS A DYAD AXIS ™ LVAD RELATED ATOMS

g

FORM CONSTRAINT
EQUATIONS

l

LEAST SQUARES
SOLUTION

1

TEST CHANGE IN ENERGY
OF MODEL FROM PREVIOUS

CYCLE l

OUTPUT COORDINATES
OF MODEL

l

STOP

Fig. 4.4 Flow Diagram of The Mode]
Building Programme



- 8] -

features of the molecular structure. Atomic coordinates for the
stafting model are derived by the 1inked atom procedure described

in the previous section. Interatomic distances between non-bonded
atom pairs are then checked and if any is found to be smaller than

a given multiple of the sum of the van der Waals radii for the
constituent atoms, then details of the interaction are stored in the
machine. In fact a maximum number, N, of non-bonded contacts may
be included. The value of N is specified at run time: a sort
routine being used to select the N worst contacts in the structure.
At a later stage the energy of each of the contacts is calculated by

means of a Lennard-Jones function:-

B A
E-'-—Tz"—s 4.8

where A and B are parameters for any given pair of elements; while
r is the distance of separation. This type of energy function has

been used in previous computerised refinement routines (Scott and

Scheraga, 1966).
Since the constants A and B are related, it is possible to
eliminate one of them. If r_ is the separation at which the energy

is a minimum, then differentiating 4.8 and substituting for r gives:-

112%3 + -957 = 0 4.9
ro ry

from which we have

Ar
B = —2
2
Substituting for B in 4.6 gives:
6
-A o
e - L 4.10

r \ 2r




Values of the constant A for different atomic pairs as
used by Scott and Scheraga (1966) are given in table 4.1. All
values for interactions not involving hydrogen are very similar.
Contacts involving a hydrogen atom have values of A reduced
approximately to one third of that for contacts not involving
hydrogen. The value of A for a H-H contact is reduced to
approximately one ninth of the value for a contact not involving
hydrogen. It was considered to be a sufficient approximation to take
A to be 366 (to give E in K cal/mole) and to multiply this value by

one third for each hydrogen atom involved in the interaction.

The minimum energy when r = rs 1s given by:-
_ =A
o

Hence, the value of the discrepancy between the desired

and calculated energy (the constraint value) is given by:-
¢ = k- Em'in 4.12

The refinement routine requires also the partial

derivatives of the constraint with respect to each variable dihedral

angle. These derivatives may be obtained by differentiation of

BEmi‘ n

o1
angles) and using the partial derivatives of the atomic coordinates

4.12 in terms of the equation for E (

= 0, for all dihedral

with respect to the dihedral angles calculated as described
previously. The van der Waals constraint equations are set up
automatically during any run. In addition a number of other

constraints may be applied to the modelling system to retain

desirable or essential features of the molecular structure.
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TABLE 4.1

Values for the constant, A, of the Lennard-Jones potential as used by

Scott and Scheraga (1966) to give energy values in K cal/mole

46.7

' Atom Pair A To (R)
c-C 370 3.2
C-N 366 3.1
c-0 367 3.0
C-H 128 2.8 ‘
N-N 363 3.0
N-0 365 2.9
N-H 125 2.7
0-0 367 2.8
0-H 124 2.6
H-H 2.4
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Moreover, some control over the manner in which the dihedral angles
are manipulated, and which interatomic distances are included in

the list of van der Waals interactions, is possible. These
facilities have been described previously (Pigram, 1968) and so will
not be discussed in detail here, though mention will be made of them
since they are used in the refinement of some of the models discussed

later in this thesis.

It is possible to specify that any particular dihedral
angles shall not be varied during the refinement. In this case,
derivatives for the constraints with respect to these "fixed"
dihedral angles are not calculated and no information relating to
them is included in the refinement routine. The facility also exists
to specify that a certain dihedral angle, 1., shall take the value

i
of another specified dihedral angle, Ty at the end of each refinement

cycle.

Each atom in the structure is associated with a 1ist of
numbers representing atoms with which it is not to be considered in

the search for interatomic short contacté. This facility may be
used for special reasons in certain cases, but in particular is
necessary to ensure that: (a) contacts between covalently bonded
atom pairs are not considered; and (b) that atom pairs which are
covalently bonded to a common atom are also excluded, since the
distance between them will not be a function of any of the dihedral
angles. It 1s also possible to exclude a specified atom entirely

from consideration in the search for short contacts. This is

accomplished by inserting a negative index into the list of

excluded atoms.

A number of geometrical constraints may be applied to the
modelling system. It is possible to constrain two atoms to have a

desired difference, 8x, 8y and 6z in their x,y and z coordinates
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respectively. This routine is often used to ensure that the
chain joins up correctly to certain parts of the structure. In

this case 6x = 8y = 62 = 0, and one of the atoms of the pair is

excluded from consideration in the search for short contacts by means
of the facility described above. Any combination of the three
constraints involved may be gxcluded so that the pair of atoms may

be constrained to lie in the same plane or along the same line.

It may be desirable in certain cases to constrain two atoms
to be separated by a given distance without any other specific
relationship between their coordinates. A specific use for this
facility, which exists in the programme, is to ensure the correct
distance of separation for atom pairs involved in a hydrogen bonding
interaction.

Since many of the structures built by the programme will be
helical polymers, it is occasionally useful to constrain one atom to
be the helix repeat of another. Hence, a routine has been included
in the programme to constrain two specified atoms to have the same
radial polar coordinate (R) and specified differences, 6¢ and 8z, in
their ¢ and z coordinates respectively.

It is also possible to place constraints on the value of
any specified dihedral angle (Ti)- Its value is constrained to have
a desired value, ¢, which may take one of three forms.

(i) It is possible to constrain T3 to be equal to another

specified dihedral angle, 1., in the model. 1In this case ¢ takes

1

the value of T

The facility to ensure that one dihedral angle takes the
value of another torsion angle in the structure already exists by

use of the facility already outlined. However, the present routine

is useful in that it allows two dihedral angles to be elastically

bound to the same value.
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The routine has also been written to allow T to be
constrained to be equal to Ty + 9T; where 31 is some specified
difference between the two torsion angles.

(ii) It may be desired to constrain T to adopt one of

three preferred values 84> 6,5 Or 6 ¢ then takes the value of

3"
either 615 6, Or 64 according to which of these three angles is closest
in value to Ts - If there are only two (or one) preferred orientation,
then two of the values (or all three) for $1s ¢, O ¢4 Can be made

the same.

(ii1) It is also possible to constrain T to 1ie in a
specified range whose limits are defined by 0, and 6,
If Ts 1s outside these limits then ¢ takes the value of 09
or 6, which is closer to Tsd otherwise ¢ is allocated the value of Ts o
The distance constraint allows the correct distance to be

maintained between the atoms involved in a hydrogen bonding
interaction. A further two routines relevant to the maintenance

of correct hydrogen bond geometry were incorporated into the

programme.

(a) H-Bond 1

In the hydrogen bonding interaction:-

where Z is the acceptor atom, Y the donor atom and X an atom
covalently bonded to Y, the angle between atoms Y, H and Z, as well
as the distance H ...... Z, 1s important for the strength of the
interaction. Generally, the interaction is strongest when the
angle Y, H, Z is near to zero. Hence, it is desirable to be able

to constrain the angle between three atoms to be a desired value,
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and a routine to permit this has been written.

The constraint equation is:-

C = cos']

where di K and dj  are the interatomic distances and ¢ is the desired

value of the angle.

The derivative of the constraint with respect to each

variable parameter may be obtained from an equation of the form:-

4.14

where a represents the term in parentheses in equation 4,13. The
differential of amay be obtained by using the derivatives of the
coordinates calculated as described in section 4,2.2,

Provided that the appropriate value is given for &, the

constraint may be applied betWeen atoms Y, H and Z or between X, Y
and Z. The combination of this constraint with that relating the
distance between atom pairs provide the best method of maintaining
hydrogen bond geometry in many cases, since the constraint values are
a direct measure of the geometrical parameters involved. However,
the disadvantage of the method is that it is not possible to measure
the energy of the interaction on the same scale as the van der Waal's
interactions. Moreover, the potentials represented in the distance
and H-bond 1 constraints are probably not good representations of the
energy potential involved in hydrogen bond interactions, and it is

desirable to choose a function specifically designed to parallel

the hydrogen bond interaction.



(b) H-Band 2

De Santis et al. (1965) have used a Stockmayer (1941) type
function to represent the hydrogen bonding interaction in a study of
the conformations of protein and polypeptides. Scott and Scheraga
(1966) in a similar stuqy, have used a function due to Lipincott and
Schroeder (1955). A function of the latter type is reported to be
more accurate (Ramachandran and Sasisekharan, 1966) than the
Stockmayer relation, though relevant parameter values are available
for a smaller number of H-bonding systems.

One form of the Lipincott and Schroeder function is:-

E(d) = D Zl - exp[—n(r' = ro)z/Zr]}
-D* {l - exp[—n*(d—r—ro*)2/2(d-r)]}

+ B exp(-ud) - A/4m 4.15

where for the hydrogen bonding interaction

D is the energy of the X-H bond; D* of the H .... Y bond; r the
length of the X-H bond, and ro its optimum value: d and ro*
represent the actual and optimum distance of separation between H
and Y; while n and n* are parameters related to the ionisation
potential.

Equation 4.15 does not give E as a function of the angles

01 and 6,. Moulton and Kromhout (1956) have introduced this angular

dependence by multiplying the first exponential term of 4.15 by

cosze] and the second by coszez.
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The final two terms of equation 4.15 represent the van der

Waals 1nteraction between H and Y in terms of a Buckingham energy

function. Since a Lennard-Jones function has been used in the
present programme to calculate the energy of such interactions, the
Buckingham exponential term, B exp(-ud), representing the repulsive
component of the van der Waals interaction has been replaced by

the equivalent Lennard-Jones term. Moreover, since bond lengths are
not varied during the refinement, the length of the X-H bond is
considered as being equal to its optimum value. The value of m,

the parameter determining the power dependence of the attractive term
of the van der Waals 1interaction is taken to be 6. These latter

two conditions have been imposed by Scott and Scheraga (1966). Hence,

the final form of the equation is:-

E(d,e],ez) =D sinze] - D* l-exp[}n*(d-r-ro*)z/Z(d-ri} 05292
6
x
--‘”‘61-r°6 4.16
d 2d

This function may be employed in two different ways. It
may be used as part of a genuine constraint equation whose value ‘
provides data for the refinement routine; or, alternatively, the
hydrogen bond geometry may be maintained using the distance and
H-bond 1 constraints, with equation 4.16 being used to calculate the
energy of the hydrogen bonding interaction at the end of each cycle
of refinement. In the latter case, 4.16 is not being used as part
of a constraint equation at all since its value is not used in the
refinement, and no derivatives of the equation are required.

[f the first mode of use is to be employed, then the

constraint equations must be set up, which are:-

C1 ® B4 " Enin
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Cz - Ee] ) Emin
C3 ) Eez ) Emin
. . - _ 1200
where Emin is the minimum value of E(d,e],ez) when d = rz, 6, 180
and 6, = 900. E., E. and E give the values of E obtained when
2 d 0 92

d, e] and 9, respectively take their actual values observed in the

structure, while the other two parameters take the value for E_. .

min
The constraint equations are, in full, therefore:-
r *0
A 0 A
C, = — - 1|+ 4.17
C, = D sine 4.18
Vi R .

.
it

_N¥% - —n% 2 * 2
3 D {2 expl:n r /2(r0 r){gcos~e, 4.19

The derivatives are given by:-

6
EE]_.:.-EE‘E'..:&EC' 3d _ _gA o ] 1 3d 4.20
T a1t od 3t ' dIZ ;6 d ot T
Since we have:-
= -X - -
d = JXXNE+ (L Y)Z + (Z-2,)2 4.2]

then we can obtain-%%-by differentiating 4.21 and making use of the

coordinate derivative with respect to the variable parameters. It

should be noted that C] and 1ts derivative are merely the equivalent

equations from the van der Waals constraint routine.
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For the derivative of C, we have:-

. .

s— = 2D sine; cose, 4.22
while

303 . ) .

cmmar—p—ia pue= - -* - 1

3 2D* exp|-n*r /2(r0 r)| cose, siné, 4.23

The facility to use equation 4.16 in the above way, as
“the basis of a genuine set of constraint equations has been written
into the programme and is currently being tested on sets of test
data. It has not been used in the building of any models described
in this thesis. In addition, the facility to use 4.16 directly as
a measure of the energy of the hydrogen bonding interaction without
including it in the constraint equations has been incorporated. The
atom pair H,Y should be excluded from consideration in the original
search for non-bonded short contacts since the energy of the van der
Waale interaction between the atoms is accounted for in equation
4.16.

If the energy of a hydrogen bonding interaction is to be

on the same scale as those of the non-bonded contacts, then the

weighting factors for both of these constraints should be equal.

4.3.1 The Refinement Procedure

The programme employs a least squares refinement procedure

which minimises a function of the form:-

W.(.P. - P )2 = % W ap . 4.24
J'o J J j=1 J '
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where on_ = the value of some quantity pertaining to the actual
L structure
Pj = the desired value of the parameter
Nj = a weighting factor

The function of 4.24 is minimised by making suitable
changes (shifts) in the values of the dihedral angles (and/or the
positional parameters where appropriate): the sign and magnitude of
the shifts being determined by an interactive method involving a
Taylor series expansion in M space about the current approximation
to the required minimum. A similar routine has previously employed
in a programme for the refinement of polymer moleculs (Arnott and

Wonacott, 1966).
The expansion of ¢ in terms of a particular variable

parameter, T is given by:-

%
Q - wl‘ API -
j=1 9 J

where the series has been terminated after the term involving first

| 122
>
&
Qs
>
O
-t

4.25

derivatives.

. C 3%
A minimum value of ¢ is given when the N values ——— = 0,

dAT
m
where N is the number of variable parameters. Hence, the condition

for a minimum is obtained by differentiating the N equations of the

form 4.25 and equating to zero to give N further equations:-

M N oAP . oAP .
-22 N AP. - 2 At. 3 ! TJ- - 0 4-26
j=1 9 J =1 bV 975 'q

These can be simply transcribed into matrix form:-



giving
s = (D.0")"' p.C
where,
D = My 3AP,  ..oi.elllll M, 34Py,
3T1 BT]
/N] BAP] ............ /NM BAPM
BTN BTN
C = /N]AP] . S = AT]
/NMAPM ATN

The procedure outlined above does not necessarily find

a set of values for the variable parameters which make all values
of AP zero. Instead the routine searches for a parameter set giving
values of the constraints (AP) which define a minimum in ¢: account
being taken of the relative importance of each constraint in terms of
the weighting factors. Hence, each of the M quantities, Pj of equation
4.24, can be considered as being elastically bound to its desired

value. Certain constraints specify geometrical features of the
' molecular structure which must be satisfied exactly if the resultant
model is to be at all valid. It is possible to ensure this by

ascribing very large values to the appropriate weighting factors.
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A method of ensuring that the required condition is always satisfied,
has been used in the routine of Arnott and Wonacott (1966).

Equation 4.241s expanded to become:-
¢ AP s ) 4.27
= . AV . + ALAP. .
where_kj = a Lagrange multiplier of undetermined value.
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