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Abstract 

Light travel time considerations are applied to the development 

of the infra-red flux from a cloud of dust grains surrounding a 

variable cosmic source of heating radiation. The properties of 

individual grains are explored, and the equation of radiative transfer 

is solved for the case of a spherically symmetric thermal source 

observed at a large distance. Models of specific novae are developed 

from the standpoint of grains existing prior to nova outburst. The 

situation in which a variable primary source is surrounded by a disc 

of dust grains is explored, as is that in which an expanding central 

cavity is formed by grain evaporation. In both cases qualitative 

comparisons are made with observations of cosmic sources of variable 

thermal emission from dust grains. 



"Empodocles 
... says that the light from the Sun reaches the 

intervening space before it reaches the eye ... For when a thing is 

moved it is moved from one place to another and hence a certain time 

must elapse during which it is being moved ... But every period is 

divisible, therefore there was a time when the ray was not yet seen 

but was being transmitted through the medium" 

Aristotle, De Sensu, 6,446a 25-b2 
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CHAPTER 1 

Introduction 

1.1.1 General Summary 

Over the last two decades observational astronomy has benefitted 

from the broadening of the range of wavelengths accessible to obser- 

vation and among the 'new' wavelengths to be explored were those of 

the infra-red. Infra-red astronomy has since blossomed to become a 

major component of the whole astrophysical information-gathering 

machine. It is particularly well suited to the study, of thermal 

emission from cosmic dust grains and it has revealed that many astro- 

physical objects have dust associated with them by virtue, of their strong 

thermal infra-red emission. 

Many thermally emitting infra-red objects are intrinsically variable 

both at short wavelengths(from the central source) and hence also at 

long wavelengths (the dust shell). However it appears that, little 
, 

theoretical work has been previously undertaken into this situation. 

This work seeks to develop the theory of thermal emission from dust 

grains surrounding a variable high frequency source. 

The problem which seemed at first sight to be straighforward turns 

out to be complex. This is because emission at any given instant will 

be seen to be different for observers depending on their locations 

relative to the dust shell. Due to finite light travel times the 

observed emitting region will contain grains heated by various phases of 

the central source light curve. These phase effects will depend upon 

the relative positions of the central source, grains, and observer. 

It was soon realised that any detailed work would have to take into 

account the dependence of the absorption and scattering efficiencies of 

grains on their size, shape, composition, temperature etc., However in 

order to make the analysis at all feasible many reasonable assumptions 
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both about the grains themselves and the dust clouds in which they are 

situated had to be made. Generally therefore we deal with spherical 

graphite grains in clouds which are symmetrically positioned about the 

central object. 

Although, as has been stated above, many types of object may be of 

interest, this work concentrates on novae for which it is known that 

thermal emission from grains is associated with the sudden rise in 

luminosity of, the central object. 

Our models differ from those described by other authors in that 

the late development of a substantial thermal excess is attributed to 

emission from grains extant before the concurrent outburst. 

Application of the work described herein to other astrophysical 

objects has been briefly explored although the detail is not as great 

as for novae. However this work does include very general, models of 

sources similar to certain Seyfert galaxies and Mira variables. 

It is hoped that this work and subsequent research stemming directly 

or indirectly from it will aid our understanding of cosmic dust sources 

and processes involved in their variable thermal emission. 
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1.2.1 Detailed Summary 

Observational data on objects which possibly comprise a variable 

central'source of high frequency radiation surrounded by a distribution 

of dust grains are given in chapter 2. As with much of this work the 

main emphasis is on the observations made of classical novae with late 

developing thermal excesses. The three main examples of this type 

of nova with which we are concerned are Novae Serpentis 1970, Aquilae 

1975 and Vulpeculae 1976. Other classical novae, particularly Nova 

Cygni 1975, are described in less detail as are recurrent novae, Mira 

variables, Seyfert galaxies and a few other variable infra-red sources 

of interest. 

Chapter 3 describes the theoretical work which has previously been 

carried out in fields directly related to this work. The first 

sections of this chapter deal briefly with the scattering and absorption 

of radiation by dust grains and the processes of formation, growth and 

destruction of those grains. We then proceed to consider grain tem- 

perature and radiation transfer; the geometry of sources and phase 

relationships within sources and the theoretical background on classical 

novae. The work on grain formation processes which we describe will be 

of particular importance in relation to chapter 5. Finally we briefly 

detail the various methods of determining theoretically certain para- 

meters of the dust shells of thermal sources. 

In chapter 4 the basic theoretical background to the problem is 

explored. Later specific and detailed models are based upon this 

chapter, which begins with a discussion of the derivation of graphite 

grain temperatures. 

It will become apparent that the analysis of reaction time of 

grains to changes in the incident high frequency flux as described here 

is important when the observed source geometry is considered in sub- 

sequent sections. 
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Finally in chapter 4 the equation of transfer is solved analytically 

for one simple case and numerically for more general situations, the 

former serving as a check on the latter. This principle of checking 

numerical solutions against analytical solutions under limiting con- 

ditions is applied several times during this work. 

Using the numerical method of solution general models of various 

cosmic sources are then discussed. Results for light curves, spectra, 

surface brightness variations, observed temperatures, angular diameters 

and phase relationships are given. 

In chapter 5 the principles developed in chapter 4 are applied to 

classical novae which have late developing thermal infra-red excesses. 

After discussing previous theoretical work we incorporate the develop- 

ment of the emission from the central object into the models of emission 

from the dust shell. This results in relatively good fits of 

theoretical results to observations. The chapter is concluded with a 

section on predictions for possible observational verification. 

Up to chapter 6 the dust shell is generally assumed to consist of 

a sphere with an evacuated central cavity. Here a disc of grains, 

again with a central cavity, is assumed to surround a variable central 

source. Development of this model enables us to give a qualitative 

explanation of the infra-red behaviour of Nova Cygni 1975. 

Complications in accurately determining the behaviour of a thermal 

source whose grains are subject to evaporation are discussed in 

chapter 7. Here the evaporation rate of single isolated grains is 

studied and applied to the observed development of the central cavity. 

Again it is shown that observed cavity development as well as flux are 

dependent upon the relative positions of source and observer. A 

qualitative comparison with the infra-red behaviour of Nova Vulpeculae 
I 

1976 is attempted. 

Chapter 8 contains several suggestions for continuation and 
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furtherance of the work begun here. It also includes a general 

discussion and conclusion to the whole. 

The four appendices contain details of the numerical solution of 

the equation of transfer computer programme; the algebraic notation used 

throughout; some independent theoretical work on the determination of 

the value of the cosmological deceleration parameter, q0, and the 

author's published papers. 

I 

0 
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CHAPTER 2 

Observational Data 

2.1.1 General Introduction 

One aim of this work is to apply the general theoretical models 

derived largely'in chapter 4 to actual physical situations. As will 

be discussed in the following subsection there are several "astro- 

physical objects which fulfil the conditions of ultraviolet and infra- 

red variability outlined previously in chapter 1. ' 

The major parts of this chapter, chapter 5 and chapter 6 are 

devoted to a discussion of"novae in which there is evidence that the 

central eruptive object is associated at'some time in the outburst 

with a nearby distribution of dust grains. 
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2.1.2 Objects of Interest 

There appear to be many objects both galactic and extragalactic 

in which a variable high frequency source is surrounded by, or situated 

near to a dust grain distribution. Heating of the grains by photons 

from the primary then causes them to emit in the infra-red. If the 

primary object is variable the resulting infra-red flux may also be 

variable but the relative variabilities are dependent upon several 

parameters of both the primary source and the dust cloud. 

The galaxy contains several objects of interest. For example 

T Tauri stars very often-have variable ultraviolet and thermal infra- 

red excesses (see e. g. Harvel, 1974 and references therein). Carbon 

stars have long been known to possess infra-red excesses and they may 

be sites of extensive grain formation (Hoyle and Wickramasinghe, 1962). 

They are also intrinsically variable at all wavelengths. Observations 

of the obscured carbon star CRL 3099 by Gehrz et al. (1978) have shown 

extreme infra-red variability in this object. 

Mira variables appear to often have associated dust shells. Mira 

itself has been observed at wavelengths from 5 to 12.5 um by McCarthy 

et al. (1978) for example. Here the periodic variation at short wave- 

lengths by the central star is mirrored in a phase shifted variation 

at infra-red wavelengths which presumably originates in the circum- 

stellar dust shell. 

Observations'of late type Wolf-Rayet stars have shown any of them 

to be surrounded by extensive dust shells (e. g. Cohen et al., 1975). 

Williams et al. (1978) studied the Wolf-Rayet binary HD193793 and 

observed infra-red variability which led to the conclusion that exten- 

sive grain condensation had taken place. 

Other rarer and more difficult to classify objects have been 

observed. For example the variable HM Sge has been observed to brighten 

markedly from m ti +16 to m ti +12in less than 6 months (Ciatti et al. 
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1977). It has also shown the presence of an optically thin dust shell 

at a temperature of ti 1000°K according to Puetter et al. (1978). These 

observations together with those of Davidson et al. (l978), suggest that 

HM Sge is similar-to. the variable symbiotic, star V1016 Cyg and that like 

its counterpart it is also variable at infra-red-wavelengths. 

The class. of galactic objects with which we are most concerned in 

this work is novae.,. Both classical and recurrent novae are of course 

rapidly variable at short wavelengths during outburst. Observations 

in the infra-red-have shown that variability occurs for classical novae 

due to heating-of dust. grains near the nova system and. that certain, 

recurrent novae display a thermal infra-red excess between outbursts. 

(see sections 2.2 and 2.3, chapter 5 and references therein). 

Amongstcextragalactic objects the most interesting from our point 

of view are Seyfert galaxies. Their infra-red spectra contain 3 com- 

ponents which can be attributed to the emission of the stellar members 

of the galaxy; -a thermal component from heated dust and a non-thermal, 

power-law. spectral component (see for example, Neugebauer, 1978). 
., 

Seyfert galaxies are often variable at UB and V wavelengths in 

their nuclear regions and observation at infra-red wavelengths has also 

uncovered variability: on timescales of a month or more., The infra-red 

variability has been observed in some Seyferts to=be out of step with 

the shorter wavelength flux changes. (see for example, Penston". et al., 

1974). It now appears that in the case of the Seyfert galaxy NGC 1068 

at least, the nuclear infra-red flux can-be mainly attributed to thermal 

emission by dust grains (see Jones et al., 1977, and references therein). 

2.2.1 Classical Novae 

Novae are of great interest in this work for several reasons. 

For example they are intrinsically variable at all wavelengths. 

Variability typically over a range of 10 - 12 magnitudes in the V-band 
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from pre-nova to light maximum, and subsequent return to minimum light 

at the post-nova stage is often observed. 

Novae are also relatively common with an estimated occurrence rate 

of 26 +4 per year in M31 and probably a similar number in our own 

Galaxy therefore (Arp, 1956). Of these Galactic novae, only roughly 

10% are observeda- mainly because these objects belong to the disc 

population of the Galaxy and are therefore subject to heavy obscuration. 

The most important reasons for our interest in novae are that 

they often show evidence of dust association (see e. g. Malakpour, 1976) 

and in some cases there is a rapid rise in the infra-red flux some time 

after the visual light maximum (see e. g. Geisel et al., 1970; Vrba et al., 

1977; Nay and Hatfield, 1978 etc. ). 

Nova light curves vary considerably in individual detail if we 

plot them on the same extended time scale. If, however, we comp- 

ressed the scales to overlay the curves we would find that they are 

qualitatively similar. Figure (2.1) shows the essential features of 

the nova light curve (from McLaughlin, 1960). The dotted line allows 

for the alternative behaviour during the transition stage between 

absorption and emission line spectra. 

The spectral development of novae can also be generalised. The 

stages of this development coincide very often with changes in the 

V curve. Following McLaughlin (1960) the development of typical novae 

at essentially visual wavelengths can be categorised as in table (2.1). 

Knowledge of the spectral development of a nova is obviously 

essential if we are to determine conditions within the ejecta and if, 

as in the case of nova Aquilae 1975, we are unsure of the date of 

outburst. 

From studies of novae in M31, Arp (1956) recognised that the 

absolute magnitude at peak visual luminosity is related to the rate of 

decline from peak. His idea was developed by Payne-Gaposchkin (1957) 
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and presented in its generally accepted form by McLaughlin (1960) as 

Mv -ti - 11.75 + 2.5 log t3, 
v 

(2.1) 

where v is the absolute visual magnitude and t3, 
v 

is the time in days 

for the visual flux to drop by 3 magnitudes. 

2.2.2 Nova Serpentis 1970 

Nova Serpentis 1970 is possibly one of the most extensively studied 

nova events. It was also one of the first to be subjected to very 

detailed study at infra-red wavelengths. The data presented here are 

drawn from observations in the ultra-violet, visible, infra-red and 

radio wavebands over extended periods of time. 

The nova was discovered on 1970, February 13 (Hirose, 1970) and 

reached visual maximum on February 18.46. Subsequently the nova 

declined steadily in the V-band at a rate of approximately 0.048 mag/day 

(Borra and-Anderson, 1970) until, approximately April 17. Here the 

nova entered the transition region and faded almost exponentially. By 

1970 August however the visual luminosity had again increased to a 

fairly constant level around 6 magnitudes below maximum light. Figure 

(2.2) is a plot of the UBV data given by Borra and Anderson (1970) 

drawn from observations made between February and October 1970. 

It can clearly be seen from Figure (2.2) that Nova Serpentis 

became progressively bluer from the first observations until approximately 

day 60 (i. e. both B-V and U-B decrease). After day 60 however B-V 

begins to increase again. Confirmation of this fact comes from 

independent observations made by Burkhead et al. (1971). The cause of 

this anomalous increase is explained by Borra and Anderson (1970) as 

being the emergence of emission lines in the V-band, as is borne out 

by their spectral studies. 

As B-V increases, U-B continues to decrease to around day 100 

from outburst. Borra and Anderson (1970) see this as the result of a 
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1970 from Borra and Andersen (1970). 
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general fading of the continuum affecting B and V more than U. This 

suggests that the source is getting progressively bluer (i. e. hotter) 

with time (an observation consistent with those made at ultra-violet 

wavelengths by. Gallagher and Code, 1974). 

Spectra of Nova Serpentis 1970 were obtained by Anderson et al. 

(1971) and Grygar et, al. (1971). The former made observations during 

the early decline (February/March), just before transition (April 15.4), 

during the transition minimum (May 29.4) and in the nebular stage 

(August/September). 

The spectrum changed in accordance with that expected for a nova 

of Serpentis 1970's speed class and light curve.. The absorption 

spectrum of the early decline had given way by May 29.4 to an almost 

purely emission spectrum with an extremely weak underlying continuum. 

This latter observation clearly showed the dominance of the [FeII]' 

emission of the so-called, n-Carinae stage. By August 13.1 the spectrum 

was that of emission lines only with [0111] and helium lines being par- 

ticularly prominent. - 

The measured absorption line velocities of February/March 1970 

show that the material associated with the principal spectrum can be 

ascribed a radial velocity vp \-700 kms-1 whereas that associated with 

the diffuse enhanced spectrum-can be ascribed much higher velocities 

with a greater scatter-from vd. e'. 
"_-1250 to vd - 1942 kms-l.,., ý-' 

. e. d. e. 
Grygar et al. (1971) obtained four spectrograms of high dispersion 

in the transition. stage of Nova Serpentis 1970. They noted that the 

visual light curve slope change of April 16/17 marked the start of 

rapid changes, in the spectral appearance of the nova. 

The plates taken. on May 9, May 23 and June 13 showed spectra 

consistent with the-findings of-Anderson et al. (1971), namely. that 

the nova spectrum was dominated by emission lines and had a very weak 

continuum. - By June 13 the [01111 emission lines had become dominant 



with the blue shifted component much stronger than the red shifted (as 

was the case with many of the observed lines). 

The observed radial velocities of the emission lines were generally 

less than the earlier spectra of Anderson et al., with typical values 

of = 500 kms- 1. 

The results of the search for the pre-nova star are given by 

Burkhead and Seeds (1970). They identified it with an object having 

Galactic co-ordinates lii 82.4°, blj= +5.8° and magnitude Ica 16.1 

Following the generally held assumption that all pre-novae are hot, 

blue stars, Borra and Anderson (1970) conclude that Nova Serpentis 1970 

has a large colour excess (EB-V = 1). This again agrees with Gallagher 

and Code's (1974) conclusions and is a subject we will return to below. 

The ultra-violet photometry of Nova Serpentis 1970 was carried out 

by Gallagher and Code using the 0-A-0 2 satellite. Their observations 

covered the period from maximum visible light until approximately the 

sixtieth day, during which time measurements were made at a number of 

wavelengths from 1300 Ä to 4200 Ä (see Figure (2.3)). 

It can clearly be seen from Figure (2.3) that at short wavelengths 

the light curves are very different from those at the longer UBV wave- 

lengths. It appears that the shorter the wavelength the longer it 

takes the flux at that wavelength to reach a maximum value. Indeed, 

in the case of the 1550 Ä observations (the shortest reliable wavelength 

in the opinion of Gallagher and Code) there is a dramatic rise in flux 

around 40 to 50 days. This coupled with the small increase at around 

20 days makes this wavelength particularly interesting when compared 

with the infra-red behaviour of the object. 

The increasing delay in the time of maximum flux with decreasing 

wavelength can perhaps be best explained in terms of the gradual 

'uncovering' of the hot central object as the opacity of the ejected 

matter decreases with expansion (Gallagher and Code, 1974). The peak 
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of emission thus moves to shorter wavelengths with time (see chapter 3). 

A major difficulty encountered in ultra-violet observation is that 

of making reasonable allowance for interstellar (and circumstellar) 

extinction. Gallagher and Code (1974) found that the colour excess 

EB_V = 0.8. Code (1972) suggested that this rather large excess, if 

explained by the presence of a 'nearby' dust cloud, could also explain 

the infra-red emission which developed after about 45 days. 

Hutchings and Fisher (1973) detected the presence of local 

reddening in the transition phase of Nova Serpentis 1970 but any change 

in reddening during the period of their observations is only marginally 

supported. - Malakpour (1976) seemed to find a change in`reddening 

during this period from study of Balmer decrement. Again however 

the change-was small and his conclusion was that grains existed prior 

to the outburst and grew slightly when the ejecta of the current 

explosion encountered them. 

Zellner (1971) in his studies of the wavelength dependence of the 

polsarisation of the light from Nova Serpentis 1970 found that the 

polarisation associated with this object could be explained by the 

existence of a circumstellar cloud consisting of 0. lpmiron grains (this 

is acknowledged by Zellner as not being the only possibility however). 

The observations from which these conclusions were drawn were made 

during the early stages of the evolution of the nova and therefore 

provide evidence that'gräins existed near the nova-. long before-the 

infra-red rise. The absence of any great, increase in polarisation 

when the infra-red does begin to rise is explained in terms of grains 

growing to large sizes (ý lpm)with the pre-existing grains as con- 

densation nuclei. 

If EB_V a 0.8 is assumed then the corrected fluxes at ultra-violet 

wavelengths can be derived. Figure (2.4) shows the energy spectra 

given by Gallagher and Code (1974) for this assumed colour excess. It 
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can be seen from Figure (2.4) that the total integrated flux appears 

to remain almost constant for at least the first 50 days. However 

the peak of emission moves steadily blueward with time. This situation 

is of course altered if the assumed EB_V is changed. Indeed Friedjung 

(1977) suggests that the luminosity decreased slightly over the first 

30 days whilst the temperature rose from 5200°K to 9200°K; he notes 

however the sensitivity of these results to interstellar extinction. 

Infra-red observations of Nova Serpentis 1970 began on J. D. 2440651, 

19 days after outburst and were continued by Geisel et al. (1970) for 

approximately 90 days thereafter. Observations were also made at 68, 

69 and 70 days by Hyland and Neugebauer (1970). Data at 2.2,3.4,5, 

10 and 2211m(see Figure (2.5)) all show that a dramatic rise in infra- 

red luminosity occurred at about day 50. From that point on the 

infra-red luminosity continued to increase until at least day 111. A 

study of the spectra confirms that as time progresses the peak wavelength 

shifts further into the infra-red. If the spectra are taken as app- 

roximately black body in form then a temperature of ' 900°K can be 

ascribed to the source. 

From knowledge of the maximum energy flux (i. e. (AFmax) together 

with the black body temperature, TBB, the angular diameter of a black 

body, 0 BB, can be found using the relationship (Ney and Hatfield, 1978) 

eBB 
N=2x 

1014 (aFý)ntax T 
-2 

BB 
(2.2) 

Equation (2.2) was used by Geisel et al. (1970) in the calculation 

of the black body angular diameter of Nova Serpentis 1970 and a figure 

of 0.07" was arrived at. As we shall see below this is a gross under- 

estimate for an optically thin source and. is only approximately true 

even in-the optically thick case unless the individual grains are 

perfect black bodies forming an effectively 'solid' shell. 

Hyland and Neugebauer (1970) found the distance of Nova Serpentis 
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1970, to-be-D - 1.2 + 0.5ýkpc. This was achieved by using the relation- 

ship outlined by Payne-Gaposchkin (1957) of the. rate of decay of the 

visual light soon after maximum to absolute visual magnitude (Equation 

(2.1)) and assuming a colour excess (EB_V) of 0.4. 

Using this relationship again, but with a higher value of E 

Borra and Anderson found D- 550 pc. Hutchings and Fisher (1973) 

determined EB_V = 0.9 + 0.1 and from studies of interstellar line 

strengths, found-D to lie in, the range, 710 pc., to 840 pc. 

Radio observations of Nova Serpentis 1970 were made by Hjellming 

and Wade (1970). Details of subsequent observations can be found in 

Wade and Hjellming (1971). Over the 4 month period of study the radio 

flux from Nova Serpentis 1970 increased by a factor of 3 as an optically 

thick emitting region expanded from an equivalent disc diameter of 

0.24" at 3.7 cm in June to 0.4" in late October 1970. 

2.2.3 Nova Aquiläe 1975" 

At the time of discovery on JD. 2442570 Nova Aquiläe 1975'had a 

visual magnitude of + 11.5 (Wild, 1975). Figure (2.6) contains sub- 

sequent observations of the nova's steady-'decline at a rate of 0.095 

mag/day 
1 

and U-Band B-V data of Vrba et al. (1977). The behaviour 

of U-B and B-V is similar to that of Nova Serpentis 1970 at transition 

(see Figure (2.1)). The date of visual maximum remains uncertain. 

The paper by Vrba et al. (1977) contains a spectrum''taken by 

Herbig on July 19 1975. At that time, 43 days from discovery, the 

continuum was very weak between the extreme wavelengths on the plate of 

570OÄ and 680OR . The tracing displays very strong emission lines 

with nearly rectangular profiles and strong central reversals. The 

Doppler half-widths are approximately 1000 kms-1. It appears that this 

is the spectrum of a nova in the nebular stage (comparing the strengths 

of the Ha and NII lines around 65608 with detail given in McLaughlin, 
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1960 and summarised above in table (2.1)). Confirmation of this con- 

clusion comes from another spectrum taken 93 days after outburst by 

Pesch (1975). Sanduleak and Chen (1975) concluded that the spectrum 

was characteristic of a nova in the early nebular stage., 

The nebular stage generally occurs 4 to 11 magnitudes after 

maximum. Taking the steady decline rate of 0.095 mag day-' to have 

been continuous the nova should have reached approximately V- 14.6 

by day 43. This is around 3.2 magnitudes below the peak visual 

magnitude and, it would therefore seem unlikely that the first observation 

caught the nova at maximum visual luminosity. However, it is possible 

that the maximum occurred only a few days before. 

Vrba et al. (1977) observed the nova in the UBJHKL bands as well 

as theV from 10 to 25 days after discovery (see Figure (2.7)). As 

with Nova Serpentis 1970 there was a dramatic rise in the infra-red. flux. 

This apparently' occurred around 7 days from discovery (by extrapolation). 

This rise was initially linear in the HK and Lbands. 

Vrba et al. (1977) concluded that the infra-red rise was due to 

grain formation in the nova envelope with grains at a characteristic 

temperature of approximately 1000°K (following the work of Clayton and 

Hoyle, 1976 and. Clayton and Wickramasinghe, 1976). 

After correcting for thermal emission by grains and interstellar 

reddening, Vrba, et al. (1977) find the V-J colours are consistent with 

those of an underlying photosphere the spectral type of which changes 

from B8 to A6 during the 15 days of observation. This is in accordance 

with the general change in spectral type noted by Payne-Gaposchkin (1957) 

for novae immediately following the visual maximum. This also suggests, 

apparently, a spectral type B5 on the discovery date which in turn 

implies ejection velocities of 1000 kms-1, in agreement with the 

spectroscopic results of Herbig (Vrba et al., 1977). (Spectral 

classification from photometry should of course be approached with 
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caution when the object in question may be delivering much of the flux 

observed. through UBV filters in the form of line emission. ) They also 

note that the-dereddened U-B and B-V colours indicate that a very strong 

ultra-violet excess existed at the time of the infra-red rise. This 

is very significant from our point of view. 

From considerations of rate of decline and the interstellar absorp- 

tion in the direction of Nova Aquilae 1975 Vrba et al. (1977) concluded 

that the object is at a distance of 3.2 kpc ((M 
V) max 

~--7.1). There 

is-however a good deal of uncertainty in this figure due to the unknown 

nature of the immediately post-maximum light curve and the unevenly 

distributed interstellar absorption in this region. 

Support for the hypothesis that the discovery was not at-maximum 

comes from van Genderen and Uiterwaal (1979) who observed Nova Aquilae 

1975 at five wavelengths-including the-visible from JD 2442575 to 2442624. 

By construction of: two-colour diagrams they concluded that the reddening 

estimate of Vrba et al. (1977) was much too high. A figure of 

Av , 2.4 mag. was suggested. This coupled with the discovery magnitude 

of 11.5 and their calculated absolute magnitude Mv 7.3 (from 

equation (2.1)) gave a distance of ti 20 kpc. As the nova is at 

Galactic coordinates3iT -40°, 1 - 4°'this would place it outside the 

Galaxy. A lower value of magnitude at maximum would place the nova at 

a smaller distance. However even with the suggested peak-magnitude of 

V= 10.7 mag.. the nova would lie at a distance of > 13 kpc. We will 

return-to this further in Chapter=5. 

2.2.4 Nova Vulpeculae 1976 

Nova Vulpeculae 1976 was discovered by Alcock (1976) on, 1976 October 

21.7. An observation, by, Gorynya (1976) confirmed that it had not 

reached maximum on October 20.7. The nova was subsequently observed by 

A. A. V. S. O. and Ney and Hatfield (1978). The latter provide the most 



comprehensive record of the infra-red development of a nova to date 

(see Figure (2.8)). 

The observations reported in Ney and Hatfield (1978) cover the 

period from 3 to 230 days from discovery. During this time the visual 

light curve displayed behaviour characteristic of a slow nova of the 

DQ Herculis type. An initial 'plateau' region characterised by 

irregular fluctuation was followed after approximately 20 days by a 

fairly steady decline. This continued until around day 60 when'the 

visual light flux went into the rapid decline of the transition stage. 

This decline coincided with a rapid almost linear rise in the infra- 

red luminosity. The transition lasted until around day 110 when the 

nova's magnitude decreased'again toward a_second maximum approximately 

5 magnitudes below the initial peak. Subsequently it assumed a slow 

and gradual decline toward the quiescent post-nova stage. 

The spectral evolution of Nova Vulpeculae 1976 has been observed by 

Klare and Wolf (1978) and Cottrell and Smith (1978). 

The latter observed the nova on several occasions between October 

28th and November 20th 1976. They classified the object as a slow nova 

which at this time had the characteristic absorption and emission lines 

of a nova at maximum and early postmaximum stages (see Chapter 3). 

Ejection velocities were found to be ti 1000 kms-1 for the principal 

spectrum (sic. ) and " 550 kms-1 for the diffuse enhanced (sic. ). 

Klare and Wolf (1978) observed the nova from October 26th 1976 to 

October 13th 1977 during which time, the objectýunderwenvspectral 

changes characteristic of the principal, diffuse enhanced, Orion and 

nebular stages. 

Five days from discovery the principal absorption spectrum was 

observed with an expansion velocity ti 950 kms-l. Eighteen days from 

discovery the principal absorption had an apparent velocity of ti 665 kms-1 

whereas the bright lines of the diffuse enhanced stage now appearing 
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seemed to have a velocity of ti 1500 kms 1. (Note - the designations of 

Cottrell and-Smith, 1978, would appear to be the wrong way around. ) 

Spectra taken between days 33 and 51 show that Nova Vulpeculae 

had entered the Orion stage with the X4640 feature clearly present. 

Finally three spectrograms taken on October 13th 1977 (ti 1 year after- 

peak) showed-that the object was well into the nebular stage with a weak 

continuum underlying bright emission lines. 

The infra-red observations of Ney and Hatfield (1978) show that 

a small-infra-red excess existed at around 5lamaf ter about 10 days. 

This subsequently disappearedýto be followed<at around 60 days by the 

emergence of a much larger excess with characteristic temperatures and 

other time dependent features as shown in Figure (2.8). 

Ney and Hatfield (1978) concluded that the nova lies at a distance 

of 1.5 kpc, although as this is based on calculations of black body 

angular'diameter-expansion-it is unlikely to be particularly accurate 

(see Chapter 4). 

Unfortunately observations in the U, B and ultra-violet do not 

appear to have been published. - 

2.2.5 Other Classical Novae 

Nova Delphini 1967 (HR Del) was a very slow nova which maintained 

an approximately static visual luminosity for = 350 days from outburst. 

It then underwent a smooth, slow decline (v = 0.006 mag. day-1, 

Sanyal, 1974). 

Observations by Zellner (1971) and Zellner and Morrison (1971) of 

the polarisation of Nova Delphini 1967 indicated that dust existed 

near the nova at early times. 
. 

This is also supported by Malakpour 

(1973) whose measurement of the Balmer decrement of the nova led him to 

conclude that dust grains, formed from previous ejecta, existed around 

the nova prior to the 1967 outburst. Sanyal (1974) detected narrow 



emission lines during outburst which are ascribed to a pre-existing 

circumstellar gas shell. 

Infra-red observations in 1970 by Geisel et al. '(1970) revealed 

Nova Delphini to have-an infra-red excess 44 days after outburst. About 

1150'days later further measurements indicated thermal emission with'a 

temperature of ti 300°K and luminosity ti 30 L0 

Nova Aquilae 1970 was discovered on April 14th, 1970 and subsequent 

searches of patrol photographs placed its maximum at around April 9th. 

The nova declined, steadily at around 0.1 mag. day-' until " 30 days 

from peak when it went into transition (Ciatti and Rosino, 1974). 

Observations by Geisel et al. (1970) revealed that at ti 55 days Nova 

Aquilae 1970 was a bright infra-red source (N =-0.1) with a spectral 

distribution characteristic of a 900°K black body. 

Spectral scans of Nova Aquilae 1970 taken 3 days from discovery 

by Grenfell (1971) indicated that the nova may have had an infra-red 

excess at very early times. This conclusion is however sensitive to 

the assumed interstellar extinction and-is not too reliable. 

Nova Cephei 1971 was observed at infra-red wavelengths by Sato at al. 

(1971). Their observations 8 days from discovery ("a]1 days from peak) 

showed no infra-red excess at this stage. A slope change suggestive of 

the onset of transition occurred at N'30 days (Kohoutek and Klawittler, 

1973). Unfortunately no infra-red observations were made after this 

time. 

One of the most thoroughly observed 'fast' novae was Nova Cygni 

1975. This object did not appear as a pre-nova on Palomar Sky'Survey 

prints (Samus, 1975) and yet at peak visual luminosity reached an 

observed magnitude of v ti 2-(Papougek and Vetegnik, 1977). The sub- 

sequent decay rate of the visual light curve was 0.7 mag. day-' 

(Gallagher and Ney, 1977). Assumption of little reddening in the 

direction of the nova led Gallagher and Ney (1977) to derive a distance 



of ' 1.5 kpc. They also proposed that the lack of diffuse-enhanced and 

Orion absorption spectra during the early decline indicated that the 

nova explosion itself occurred in rather unusual circumstances. 

Infra-red observations of Nova Cygni 1975 were carried out over 

the first 50 days by Gallagher and Ney (1977). They observed a black- 

body distribution over the first 3 days but by day 4 the spectrum 

followed "f, = constant. This is characteristic of free-free emission 

from the expanding nebula. Up to day 50 no late developing infra-red 

excess was observed. 

Ennis et al. (1977) observed the nova at wavelengths from 1 to 

20 pm for a period 2 days before maximum light to approximately 1 year 

after. The characteristic change of spectral appearance from black 

body to free-free was again apparent during the first few days of obser- 

vation as the ejecta became optically thin. 

The temporal development of the infra-red flux from the nova 

indicates that the ejecta are in the form of a shell whose thickness 

increases with time. This would give rise to a t-2 decay in free-free 

flux initially, followed by a t-3 decline. The observations closely 

follow this predicted behaviour except at late times for 1.6,3.5 and 

10 pm when an excess flux to the theoretical free-free emission is evident. 

Subtraction of the observations from the t-3 curve reveals the 'excess' 

light curves of Figure (2.9). 

The development of an excess at 10 pm is undisputed. Those at 

1.6 and 3.5 um are less definite. However Szkody (1977) in obser- 

vations of the nova at 3 months, 11 months and 1 year after outburst 

found that an infra-red excess was evident at 3.5 um for the last two 

observations at least. When the free-free contribution was subtracted 

by the present author the Szbody observations were found to agree well 

with those derived from Ennis et al. (1977). 

Ennis et al. ascribed the 10 pm excess to the possible formation 
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of a small amount of dust by the nova. However Ferland and Shields 

. 
(1978) have explained this excess as being due to [NeII] line emission 

in the nebular phase of the nova. The Szkody observations were not 

discussed. 

Ultra-violet photometry of Nova Cygni 1975 by Wu and Kester (1977) 

100 days after outburst revealed rapid periodic variations at short 

wavelengths. These were thought to have arisen in the hot spot of the 

nova remnant which would therefore be 'uncovered' at this stage. They 

concluded that from visual peak to day 100 the total luminosity had 

declined from 5x 105 L0 to 3x 104 L0 with the characteristic rise in 

observed black body temperature with time to ' 65000°K. 

Recently Nova Cygni 1978 has shown an infra-red excess developing 

from about 25 days after outburst (Gehrz et al., 1978). The colour 

temperature of the excess emission changed from " 1400 K to ti 1000 K 

between days 25 and 45 whilst the total infra-red flux increased by a 

factor of at least 10 (Joseph, 1979). 

Prior to the 'dust emission' epoch observations in the infra-red 

by Phillips et al. (1979)-had shown that there was little evidence for 

an excess at 5 pm as previously observed in Novae Vulpeculae 1976 and 

Serpentis 1970. There was however a marked depression at 3.5 pm sugges- 

ting a broad absorption feature due possibly to (ice) grains or molecular 

band absorption. The apparently rapid development of this feature 

indicates that it is of circumstellar rather than interstellar origin. 

2.2.5, Summary 

The infra-red observations of Novae Serpentis 1970, Aquilae 1975 

and Vulpeculae 1976 are qualitatively similar. Several points are of 

particular note in this connection: - 

(i) Both Novae Vulpeculae 1976 and Serpentis 1970 showed an 

early infra-red excess at around 5M which faded at least 20 
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days before the larger rise in infra-red emission began. 

(ii) All three novae showed a lag between observed maximum visual 

light and the onset of rapid infra-red increase. 

(iii) The initial rise in infra-red luminosity was approximately 

linear with time for all 3 novae. 

(iv) Novae Vulpeculae 1976 and Serpentis 1970 showed an increase 

-"in'their infra-red luminosity at around 60 days which 

approximately coincided with the transition phase of the 

visual light curve. 

(v) In the case of Nova Serpentis 1970 the infra-red luminosity 

picked up as the peak of the ultra-violet emission spectrum 

shifted to around 2000 X. 

(vi) In all three novae the black body temperature appeared to 

start somewhere above 1000°K and subsequently fell towards 

approximately 800°K. 

(vii) The infra-red curves of Nova Vulpeculae 1976 showed that the 

decay after peak emission at each infra-red wavelength was 

approximately exponential. 

2.3.1 Recurrent Novae 

, 
It has. been proposed that all novae are recurrent in nature and 

that classical novae only appear to be 'one-off' events due to the 

length of time between outbursts (see e. g. Bath and Shaviv, 1978; 

Ford, 1978). 

Recurrent novae are usually thought of as being the short period 

counterparts of classical novae although there are other differences 

in spectral characteristics, binary components etc. as well. The time 

between outbursts for a recurrent nova is of the order of decades 

rather than the estimated 104 years or more for many classical novae 

(e. g. Ford, 1978). 
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The visual amplitude of outburst of a recurrent nova usually lies 

in the range of 4 to 9 magnitudes (slightly less than that of a classical 

nova) although the bolometric luminosity in the pre-nova stage is 

generally accepted to be greater than for classical novae. The peak 

bolometric luminosity of recurrent and classical novae is thus com- 

parable. 

Recurrent novae are known to exist as binary pairs containing a 

hot, dense star as the primary and a cooler, much more extended star as 

the secondary. It appears however that whereas the secondary in 

recurrent novae is a -late type giant the secondary in classical novae 

is usually thought to be a low mass, late-type main-sequence star (see 

e. g. Bath and Shaviv, 1978). 

Table (2.2) taken from Warner (1976) shows the dates of outburst 

for 6 recurrents together with visual magnitudes at maximum and minimum. 

The last column, headed t2. is the time in days for the object to 

decline in V by 2 magnitudes from peak. VY Aqur, TCr$ RS Oph and U Sco 

are objects with very rapid decline rates whereas T Pyx and V1017 Sgr 

are rather slow. 

Table (2.3) taken from Faulkner (1974), shows the comparison 

between classical, recurrent and the much shorter period dwarf novae. 

Recurrent novae are obviously similar to classical novae in terms of 

mass ejection. 

We now proceed to consider the recurrent nova RS Oph in some detail. 

This object has been widely studied during and between outbursts and 

it is suspected to already possess an extensive circumstellar shell. 

2.3.2 RS Oph 

Table (2.2) details the 4 outbursts of this nova observed over the 

last 80 years. Of these, those of 1958 and 1967 have been particularly 

well observed. 



Table 2.2 

Recurrent Novae (taken from Warner, 1976) 

Outburst dates m (peak) m (min) Am t2 

VY Aqr 1907 8.0 16.6* 8.6 6 
1962 9.0 7.6 5 

TCrB 1866 2.0 10.5 8.5 5 
1946 2.0 8.5 5 

RS Oph 1898 4.3 12.3 8.0 4 
1933 4.3 8.0 4 
1958 5.0 7.3 6 
1967 4.9 7.4 7 

T Pyx 1890 7.9 14.5 6.6 100 
1902 7.3 7.2 100 
1920 6.6 7.9 100 
1944 7.1 7.4 100 
1966 7.7 6.8 80 

V1017 Sgr 1901 10.8 14.4 3.6 200 
1919 7.2 7.2 90 
1973 10.2 4.2 200 

U Sco 1863 9.1 >17.6* >8.5 2 
'1906 8.8 >8.8 2 
1936 8.8 >8.8 1 

*m 
P9 

(min) 



Table 2.3 

Energy Requirements of Nova Models (taken from Faulkner, 1974) 

Classical Novae 

Outburst Ränge (mag. ) 

Outburst 
Energy, E(ergs) 

rv10-12 

> 1045 

Time (300 - 1000?? ) 
Interval, T(years) (great uncertainty) 

Mass Ejected, 
Mej (grams) 

Mej /T (M. yr 
1) 

E. (0.007 c2T) (M0 yr 
1) 

ti 1028 - 1029 

?? 

M* 
burnt ej 

(nuclear explanation) 
? 7 

Recurrent Novae Dwarf Novae 

N68 

ti 10 43 
- 10 45 

25 - 50 

ti 1028 

ti 10-7 

ti 1Ö-10 

ti 10-3 

ti 2-5 

ti 1038 - 10 39 

ti 0.05 -1 

ti 10-97? (one 
example) 

ti 10-12 - 10-11 

*Mburnt s E/(0.007 c2), the amount of hydrogen burnt on the nuclear 

explanation to produce the outburst energy, E. 
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Pottasch (1967) gave a detailed interpretation of the spectral 

development of the nova. From considerations of the observed mag- 

nitude and the implied absolute magnitude using equation (2.1) he 

concluded that the distance of the object is 5800 pc. This value is 

an upper limit as no account of reddening appears to have been made in 

the calculation. According to Svolopoulos (1966) EB_V =+0.82. 

Assuming v= 3EB_V, we arrive at a dereddened distance of approximately 

1800 Pc. 

From the study of spectra of the 1958 outburst Pottasch deduced 

that the ejecta were decelerated appreciably by pre-existing circum- 

stellar matter. The presence of this matter was also indicated by 

the apparent increase of momentum of the expanding envelope which 

Pottasch ascribes to the 'sweeping up' of the pre-existing matter by 

the ejected shell. Further evidence for the existence of this shell is 

given by apparently stationary emission and absorption lines super- 

imposed on the nova spectrum. From these and other considerations 

Pottasch deduced that RS Oph has an extensive circumstellar shell 

0.7 M0) with heavier elements overabundant. 

Svolopoulos (1966) studied the 1958 outburst in the U, V, B, G, 

R and I bands between 1 and 10 days after visual maximum (see Figure 

(2.10)). These observations led Svolopoulos to conclude that RS Oph 

is heavily reddened. However the object lies well out of the galactic 

plane (tII 19°. 8, bIi e+ 100.38) and it is difficult to explain this 

in terms of interstellar absorption. The greater part of the absor- 

ption would therefore seem to be circumstellar. 

Figure (2.1()) shows that fluxes shortward of 5000 X decrease whilst 

those longward of 5000 X appear to increase with time. Note also that 

the U-B index decreases (i. e. the object becomes bluer at those wave- 

lengths) during the same period. 

Svolopoulos (1966) concluded that RS Oph is surrounded by a 
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circumstellar shell which existed prior to the outburst and is the 

result either of mass lost in previous outbursts or by continuous ejection 

from the central object between them. 

Observations made during the 1967 outburst tend to confirm the 

conclusions reached after the 1958 outburst. Wallenstein (1968) again 

observed the almost stationary absorption and emission lines seen both 

during and between outbursts. He also speculated that they could 

be due to absorption and emission in a pre-existing circumstellar 

envelope. 

Feast and Glass (1974) carried out photometry in the JHK and L 

bands. The J-I1, H-K diagram drawn from their data suggests that the 

object is heavily reddened with v=5.5 (+ ti 1). 

Szkody (1977) made infra-red measurements of RS Oph between out- 

bursts. She concluded that this object closely resembles symbiotic 

stars (the spectra of which appear to be a composite of a hot and a cool 

component) with a high degree of reddening. It is uncertain whether 

the infra-red emission she detected arises in the cool component or the 

circumstellar shell. Observation during outburst at infra-red wave- 

lengths would clarify the matter. 

2.4.1 Conclusion 

In this chapter we have described the observational evidence for 

variability in thermal sources which arises possibly because of changes 

in the high frequency flux output of a centrally positioned object. 

The emphasis on novae has been deliberate as we'shall apply principles 

developed in the following chapter to specific classical novae already 

described above. 
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CHAPTER 3 

Review of Theoretical Background, 

3.1.1 Introduction 

The evidence for the existence of small (,, 1 Um) dust grains in 

astrophysical environments is very strong (see e. g. Wickramasinghe, 

1967; Burbidge & Stein, 1970 and references therein). Much work has 

been put into determining the properties of these grains on the micro- 

scopic and macroscopic scales. 

This chapter commences with a discussion of the basic concepts used 

in the determination of grain properties. It then proceeds to discuss 

the origins of grains, their growth and possible destruction. Section 

(3.3) discusses the heating of grains by ultra-violet radiation both in 

the case when the grain is isolated and when it is embedded within an 

assembly of similar grains. Also considered in this chapter are the 

effects on grain heating and on subsequent emitted spectra of fluctuations 

in the primary high frequency source. 

Although the geometry of the emitting region has in the past been 

studied by various authors (for example, Couderc, 1939; Morrison & 

Sartori, 1969 etc. ) their results have not been applied to thermal 

emission from dust grains as far as we are aware. The work that has 

been carried out is described in section (3.4). 

Section (3.5) deals with the theoretical interpretations of some of 

the characteristics of classical novae which have been described in the 

previous chapter. The final section then describes how certain parameters 

of nova dust shells have been derived in the past. 
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3.2.1 Scattering, Absorption and Extinction by Dust Grains 

When radiation encounters a material object it may undergo scattering 

and/or absorption. This leads to a diminution of the incident radiation 

in particular directions (i. e. extinction). The exact nature of the 

subsequent changes in the radiation field about the object are dependent 

upon the frequency of the incident radiation; the grain size and geometry 

and the grain's intrinsic properties (these being dependent upon its 

composition). It is therefore clear that the exact treatment of this 

situation will be fairly complex. Here we restrict ourselves to a 

discussion of the theory of light scattering and absorption from small, 

spherical, homogeneous grains. 

The problem of solving Maxwell's equations for a beam of radiation 

of intensity. IX incident on a spherical surface was successfully tackled 

initially by Mie (1908). A detailed account of the solution was given 

by van de Hulst (1957). For the purposes of this work it will only 

be necessary for us to consider the more general results and their 

asymptotic forms. 

If we define the effective cross section for absorption by the grain 

as Cabs and that for scattering as Csca then 

ext 
s Csca +c 

abs 

Here Cext W Qext nag where Qext is the efficiency factor for 

extinction and a 
. 
is the grain radius; similar relationships hold for 

scattering and absorption. Thus 

next = Qsca + Qabs (3.1) 

In the case where the wavelength, A, of the incident radiation is 

much greater than the particle radius, the rigorous treatment of the Mie 

formulae as outlined by van de Hulst (1957) reduces the solutions to 
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4 (1-ffa m2 -1 next =-. x1. 
Im 

tm2 +2 

8r 27ra 4 1m2 
-12 Qsca .1a 

lý Re 
m2 +2 `/ 

for'conducting spheres and 

8 2na 4 
m2 12 Qext = Qsca °3a Re 
m2 +2 

(3.2a) 

(3.2b) 

(3.2c) 

for non-conducting dielectic particles (i. e. no absorption). In 

equations (3.2), m is the refractive index which contains an imaginary 

term for conductors (i. e. m=n- ik) and is wholly real for non- 

conductors (Im and Re indicate the taking of imaginery and real parts 

respectively). 

The incident radiation carries with it momentum in the direction 

of propagation of the beam. Thus the beam exerts a force on the grain, 

Pr, where 

Pr =ý na2 Q , pr 

QPr, the efficiency factor for radiation pressure, is given by 

Qpr m Qext - Qsca cos 

(3.3) 

where cos 0 is the fraction of the incident intensity scattered into 

the forward direction (0 being the angle between the forward direction 

and any scattering direction). For isotropic scattering therefore 

cos 0=0 and if all the incident radiation continues to travel in the 

forward direction after scattering, cos 0=1. 

If radiation of initial intensity IA(0) passes through a uniform 

medium containing Ng grains per unit volume then in distance D the 

emergent intensity I will be given by: - 
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Ix = Ix (0) e-6 X (3.4) 

where 6X = Ngira2Qext(A)D is referred to as the optical depth at wave- 

length A. 

For a star, the flux, fAdX between wavelengths A and A+ dA 

observed above the Earth's atomosphere results from integration of the 

intensity IA over the solid angle, 0, subtended by the star. The 

extinction in magnitudes AA is thus given by 

AA 2.5 log f (0) - 1.086N 
gIra2Qext(A)D A 

where fA(0) is the flux that would be observed in the absence of 

extinction. We can see that if Qext is wavelength dependent then so 

also is Ax. 

The first evidence indicating the presence of solid particles 

permeating the interstellar medium came with the advent of UBV photometry. 

Stebbins et-al. (1939) made UBV measurements of 1332B type stars and 

concluded that Ax varies approximately as 1-1 in the UBV range. Table 

(3.1) gives the wavelength dependence that would be expected for free 

electrons, atoms (or molecules), small non-conductors and relatively 

large solid particles. None of these gives the a-1 dependence dis- 

covered by Stebbins'et'al. (1939). 

With the introduction of wider range photometry, including the 

infra-red and ultra-violet regions of the spectrum, a more complex 

extinction curve emerged. Figure (3.1) taken from Greenberg (1978) 

shows schematically in curve (1) the average extinction curve derived 

from observation of a great number of objects. This curve is made up 

of 3 recognisably distinct portions. These are labelled (2) to (4) in 

the figure. 

It can be seen that in the UBV bands the extinction follows the 

roughly X-1 dependence already mentioned. This part of the curve is 

thought to be due to relatively large particles with a ti 0.1 um (curve 



Table 3.1 

Wavelength dependence of Extinction for 
Possible interstellar medium components 

(UBV wavelengths)- 

Type of Particle 

Free electrons 

Atoms (or molecules) 

Non-conductors. Small 

c. f. wavelength 

Solid particles. Large 
c. f. wavelength 

Extinction Law 

A0 (Thomson Scattering) 

X-4 (Rayleigh Scattering) 

X-4 (Rayleigh Scattering) 

a0 (Geometrical Scattering) 
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Figure (3.1) Schematic extinction curve as given by 
Greenberg'(1978). The mean extinction 
curve (1) is arbitrarily divided into . 
portions to which the major contributions 
are made by classically-sized particles (2) 
and very small particles (3) and (4). 

ýýýyý ---------- 

t 

Figure (3.2) Schematic representation of the fluc- 
tuation of grain temperature due to 
single photon heating of small grains. 
The mean grain temperature is denoted 
by the horizontal dashed line (after 
Greenberg, 1976). 



(2)). The well known feature at ti 220OR is generally ascribed to 

absorption by small grains (a k 0.02 um) which contribute little to the 

visual extinction. Various grain compositions have been suggested to 

give rise to this feature, for example graphite (Gilra, 1971) and 

silicate (Huffman & Stapp, 1973). According to Greenberg (1978) the 

rise in extinction shortward of a-1 N6 um 
1 is probably due to even 

smaller grains (a ti 0.008 pm). The total extinction is therefore due 

to the mixing of these various-sized grains. 

The extinction curve is of course the result of both absorption 

by the grains"and scattering from them. There is now little doubt 

that the 22008 'bump' is largely an absorption feature (see for example 

Nandy et al., °1978). That is, the grains have on the whole a low 

albedo at this'wavelength (albedö ° Qsca/Qext)' It appears however that 

in the far'ultra-violet the albedo of the grains increases and their 

absorptivity drops even though the extinction curve rises steeply 

(see Witt, 1973). This is a rather contentious point at present 

however. 

3.2.2 Formation, Growth and Destruction of Grains 

.. 
The earliest theories of the origin of the solid particles res- 

ponsible for the extinction in the UBV waveband involved the condensation 

of iron or ice grains within interstellar clouds (see for example 

Lindblad, 1935). It was felt that ice particularly could explain the 

high reflectivities of certain reflection nebulae. 

Hoyle and Wickramasinghe (1962) proposed that graphite grains with 

m2 =2- 2i (1.2 x 1015)X/c 

could well account for the extinction between X-1 r 0.6 um 
1 

and 

a-1 3 um 
1. 

They considered their work to be valid for particle sizes 

up to a'8x lÖ 6 
cm for this wavelength range. This is of course 
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still within the present accepted range of grain size responsible for 

extinction in this waveband. 

Because graphite surfaces have a low accommodation coefficient 

with carbon atoms it was difficult to visualise how any substantial 

grain formation could occur in interstellar space except in the densest 

clouds. Hoyle and Wickramasinghe therefore proposed that graphite 

'flakes' could form in the outer layers of cool (2000 0< T* < 2700°) 

carbon stars (class N). In these stars the overabundance of carbon 

over oxygen means that there should be a surplus of carbon atoms 

available to form carbon molecules, but which would normally react to 

form CO. Condensation of the graphite grains then occurs when the 

effective temperature of the photosphere drops towards 2000°K during 

pulsation. (Details of the nucleation process may be found in 

Wickramasinghe, 1967). 

The rate of crystal growth of a spherical particle radius a was 

given by Wickramasinghe (1967) as 

das ' Pc me 
dt acs 

{ 
2irkT 

) 
(3.5) 

where p- is the partial pressure of free carbon; ac is the sticking 

coefficient; me is the mass of a carbon atom; T is the gas temperature and 

s is the bulk density of graphite. The basic process for the formation 

of platelets is similar except that the grain thickness is always roughly 

the same as the dimensions of the condensation nucleus (ti 5x 10-7 cm) 

and growth is essentially 2-dimensional. Donn et al. (1968) determined 

the rate of growth of a graphite platelet of initial radius a0 from the 

equation 

Im t a= 2a0 exp wC -a 0 

where J- pc (2a 
cmckT)-' 

is the impinging molecular flux; nc is the atomic 

volume of carbon (ti 10-23 cm3); w. is the plate thickness (assumed constant) 
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and t is the time measured from, initial nucleation. Tabulation of 

PC(T) can be found in Wickramasinghe (1967). 

Obviously, as the grains grow they will be subject to radiation 

pressure tending to push them out into space. The magnitude of this 

force at the stellar surface is approximately given by 

2 asT* 
pr = na 4ext 

Q 
(3.5) 

where as is Stefan's constant and T* is the effective temperature of 

the stellar photosphere. Strictly we should use the efficiency factor 

for radiation pressure Qpr here, but for metals and semiconductors 

Qsca = 0. We can see from equation (3.2a) that Qext is both wavelength 

and size dependent. Wickramasinghe (1967) assumed the value of 

Qext - 0.3 for a mean particle size a=5x 10-6 cm at A rl. 2 um as 

appropriate for N-type stars. (Note that on the large scale, for a 

random distribution of plate orientations we may use the spherical 

particle Mie theory to determine gross optical properties. ) 

There are of course the competing forces of gravitational attraction, 

G, and drag due to motion through the stellar atmosphere, Dr. For the 

situation under consideration Pr »G and the terminal grain velocity is 

determined by drag where 

Dr s 6Tranu 

where u is the relative grain-gas velocity, 

kT ) 
nC aINH( r IIH 

(3.7a) 

mH is the atomic mass of hydrogen and NH the hydrogen number density. 

Again this is for spherical grains but for platelets Wickramasinghe 

considered that the force will be approximately the same. 

If the relative_'gräin-gas velocity is far greater than the thermal 

velocity of gas atoms and molecules then the drag force can be app- 

roximated by (Wickramasinghe, 1972) 
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Dr = 7r a2 NHra. I u2 (3.7b) 

Once D=P acceleration ceases and u remains constant. As the 
rr 

grain moves out the gas density NH decreases exponentially as will the 

drag force, Dr. Computation of the timescales involved in this process 

by Hoyle and Wickramasinghe (1962) showed that escape is possible for 

Carbon stars with a pulsational period 't, 100 days. Before reaching 

interstellar space a grain must satisfy another condition however. 

Having escaped from the stellar atmosphere no further appreciable 

growth takes place. The radiation field of the star will then be the 

only major process in changing the grain size. This is achieved by 

means of evaporation from the grain surface. The rate of decrease of 

radius due to evaporation is given by 

da -PgatiT) mC 
dt sC 2rrkT) 

(3.8) 

where psat(T) is the saturated vapour pressure of carbon over an 

infinite flat surface. Strictly an exponential term should also appear 

in equation (3.8) but its value is around unity for all but the smallest 

of grains (see Lefhvre, 1979). The sticking coefficient, a 
c, 

is taken 

as unity here.. 

As psat(T) falls steeply with temperature the grain needs only to 

move a short distance (" 2 stellar radii) from the star to decrease ä to 

a negligible figure. Calculations of ejection rate and initial radius 

by Hoyle and Wickramasinghe (1962) have shown that a grain of radius 

a ti 5x 10 
6 

cm will survive pretty well intact on the outward journey 

attaining a velocity of escape of N 1000 kms-1. Interaction with the 

interstellar medium will effectively stop the grain in '' 3 pc for 

NH = 10 cm -3 and % 300 pc for NH r 0.1 cm -3 (Wickramasinghe, 1972). 

Gilman (1972,1973) has shown that circumstellar gas drag will 

effectively reduce the initial ejection velocity of grains to a terminal 

velocity, tk < 100 kms 1 for stars such as aOrionis. This object is 



- 35 - 

considered to have a circumstellar envelope at the bottom end of the 

density scale for observed cool stars. Other stars of the same type 

would therefore have a lower value of uT. 

More recent work has shown that"grains may well form in the 

atmospheres of"much more common M-type stars (e. g. Salpeter, 1974). 

These grains would be composed of silicates, iron or, more controver- 

sially, silicon carbide. 

There is a great deal of observational evidence for the existence 

of dust grains more particularly near cool giant stars (see e. g. Salpeter, 

1977 and references therein). In the case of silicates (and possibly 

silicon carbide) the evidence is not only in the form of an infra-red 

excess but also a characteristic absorption feature at around 10 Um 

which is also apparent in the interstellar extinction curve. 

It has been suggested however that in some cases interstellar and 

circumstellar grains may be widely different in their properties 

(see e. g. Forrest et al., 1975). If this is so then exposure to the 

interstellar environment over long periods of time must have a modifying 

effect on the grains. 

3.3.1 Grain Temperature 

0 

The temperature of an individual dust grain is obviously dependent 

on the equilibrium relationship between heating by short wavelength 

radiation and the subsequent re-radiation of energy at longer wavelengths. 

This balance between incident and re-radiated energy is expressed for 

spherical grains by 

2 
va r°° L (v) Q (v, a) dv - 4Tra2 f rt B (v s, Tg Qabs (v, a) dv 
4ýrr2 0 ab s0 

(3.9) 

In this equation r is the primary source-grain distance; L(v) dv is 

the energy flux from the primary source between frequencies v and v+ dv 



and B(v, Tg) is the Planck function defined by the grain temperature Tg 

and the frequency of re-radiation, v. In order to solve equation (3.9) 

for To we may follow the assumptions made by Rees et al. (1969). 
L31 

Firstly Qabs (v, a) is assumed constant in the ultra-violet region 

where most of the flux in high temperature sources emerges. Thus we 

have 

fo L(v) Qabs (v 
, a) dv :L Q* (a) (3.10) 

0 

where L is the bolometric luminosity of the primary source and Q* (a) 
ab s 

is the absorption coefficient of small graphite grains in the ultra- 

violet spectral region (from now on all variables carrying a super- 

scripted asterisk, *, refer to the ultra-violet values of those variables). 

Rees et al. further assumed that for small graphite particles the 
- 

absorption efficiency in the infra-red Qabs' is proportional to V-. 

This can be derived by considering the limit (2rta/a) «1 in the Mie 

theory for ideal spherical metallic or dielectric grains (Wickramasinghe, 

1967): - 

gabs " (12ira/cv) 
. v2 (3.11) 

where o is the conductivity of the grain material. They ignored any 

grain size dependence however. For grains of other compositions, or 

having impurities, Qabs u Va is a more general form of solution. With 

these approximations incorporated in equation (3.9) grain temperature 

Tg then takes the form 

-d* 
Ta+4 = 

Coe 

g r2 

where C0 is a constant for a given source. 

Rees et al. (1969) concluded that the infra-red emission observed 

in many Seyfert galaxies is consistent with thermal radiation from dust 

grains. They further concluded that the variability observed in the 

infra-red is due to variable heating. By assuming that the limit on 
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variability is set by the light travel time across the shell being less 

than the period of variation of the central object they derived a 

minimum timescale of variability tmin where 

t X2.5 
min 

and at a given wavelength 

t. a L' 
min 

so that a less luminous central source can give rise to more rapid 

'variation of the infra-red flux from the dust shell. 

The question has arisen however of how correct it is to assume that 

small grains heated by ultra-violet photons can be ascribed a steady- 

state temperature. Greenberg (1976) has found that for grains of radius 

a; 0.005 um absorption by single ultra-violet photons will heat the 

grains as shown schematically in figure (3.2); larger grains will however 

approximate more nearly to the steady state temperature. 

In'the same paper Greenberg found that the time for diffusion of 

the incident photon's energy across the grain, tdiff' ' 2a/vs where vs 

is the speed of sound in the grain material. For'graphite grains with 

a ti 10-5 cm, tdiff 'i 10-10 s and is therefore negligible (see Chapter 4). 

Burbidge and Stein (1970) considered the cooling time, tcool, of a 

grain to be a measure of its reaction time to changes in the incident 

high frequency radiation field. If U is the internal energy of the 

grain and 0 the rate of energy loss by re-radiation for a black body, 

then 

tti 
U' U 

cool ý 4, ff a Q4 g 

where the energy content 

2 kTg (N0 /A) (4/37ra3 s) 

k is Boltzman's constant, N0 is Avogadro's number and A is the atomic 
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weight of a grain atom. 

i. e. 

Thus 

tcool 
2o T 3A 

59 

3 
tcool a a/Tg 

(3.12a) 

(3.12b) 

For 0.1 um graphite (or silicate) grains therefore, tcool ý' 10 3 
sec 

at " 1000° K. 

3.3.2 Radiation Transfer within Dust Clouds 

In the case of a spherically symmetric dust shell surrounding a 

source of high frequency radiation, such as is shown in figure (3.3), 

taken from Rowan-Robinson (1974) , the observed surface brightness at 

a point on the surface is found by integrating the equation of radiation 

transfer along a line of sight. 

If the cloud contains grains whose number density is radially 

dependent ( N(r))`and whose, presence gives rise to an extinction of 

radiation passing through the volume elements containing them, the 

solution of the transfer equation will be of the form 

CV (e 
2) = r02R tose 2B (V, T9 (r) ). exp f0N (r) ira2 Qext (v, a) dq l ý. 

N(r) na2 Qabs (v, a) dq. (3.13a) 

In equation (3.13a) q is as defined in figure (3.3) and r is a 

function of q. 

The observed flux from the cloud, fV, is defined as 

fv =fn EV(A2) di2 

The observed flux in this case is then given by 

kNos a 

(3.13b) 

fv ° 
2ý2 f ö/2Ev(02) 

sin02 cos02 d02 (3.13c) 



Observer 
COQ 

Figure"(3.3) The'geometry of a central source at C 
surroundedby a spherical shell of-dust 
grains radius R. (after Rowan-Robinson, 
1974).. See text for further 
clarification. 



- 39 - 

Equation (3.13c) was solved by Larson (1969) and a modified solution 

was used by Rowan-Robinson (1974) to investigate infra-red emission from 

the Orion nebula. This latter work resulted in Rowan-Robinson ascribing 

the emission to very large (a N O. Olcm) grains. 

3.4.1 The Geometry of Variable Sources 

Observations of Nova Persei 1901 revealed an expansion in the 

luminous 'halo' about'-the nova which appeared to be greater than the 

speed of light in vacuo (Stratton, 1928). Coudere (1939) suggested 

that the observed expansion was not that of material ejected by the nova 

but was in fact due-to reflection from material. which might have arisen 

from previous outbursts surrounding, or near, the nova. The geometry 

of the situation alone would then lead to super-light expansion being 

observed. 

One case considered by Couderc and taken here as a general illus- 

tration from which some of the geometrical considerations of later 

chapters arise is that of a 'slab' of matter lying between the nova and 

the observer (see figure 3.4). 

In figure (3.4), if the origin of time is taken to be the instant 

when a distant observer at 0 first sees the nova then the reflection 

(or re-emission) from matter at M or P is observed at time t later. At 

time t reflection from Q will also be observed. It can be seen that 

if NM = ct then NQ = ct/2 for both reflections to be seen at the same 

observer time. 

Further, we can see that NM +Z=ax+ 
=z 

where x and z are 

the coordinates of V in figure (3.4). 

i. e. ya x2 
- 

ct 
2ct 2 (3.14) 

which is the equation of a parabola with semi latus rectum ct and with 

the nova at the focus. 



Figure (3.4) The geometry of a source of high 
frequency radiation at N with a 'slab' 
of material lying between it and the 
observer. (after Couderc, 1939). 
The significance of points U, P, Q, 
M, V and distances a, b, d is given in 
the text. 
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If the plane containing the points VU is at right angles to the 

z-axis then the reflection (or emission) will appear to originate in 

22 
a circle of radius d where d= (2ctb + ct) . The velocity of expan- 

sion of this circle is therefore given by 

= (cb + c2t)(2bct + c2t2)-I (3.15) 

The velocity vd ac for all b, t >. 0. This general model was used 

reasonably successfully by Couderc (1930) to explain the observations 

of Nova Persei 1901. 

Morrison and Sartori (1969) utilised the ideas given by Couderc to 

explain the observed changes in the spectra and light curves of type I 

and II supernovae. They imagined the supernova to be at the centre of 

a volume of gas surrounding the original star. The explosion of the 

supernova was then considered to provide what is effectively a 6-function 

pulse of ultra-violet photons which excite the atoms and molecules of 

the surrounding gas. Because of the nature of the situation, the 

effects which are then observed at a distance persist for a long period 

of time relative to the length of the original pulse. The effect is 

therefore labelled 'optical reverberation' by the authors. 

There are of-course other astrophysical situations in which the 

'optical reverberation' mechanism might well apply. These include 

compact extragalactic radio sources in which there appears to be a 

faster than light separation of source components if the red-shifts 

observed are cosmological (see e. g. Blandford, et al., 1977). 

3.4.2 Phase and Amplitude Relationships for Fluctuating Sources 

Terrell (1967) considered the situation in which a surface which 

is fluctuating sinusoidally and in phase as seen by a centrally placed 

observer is observed externally at a large distance. 

In the source reference frame the intensity of radiation at any 
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point is given by: - 

II+If sin wt 

where I; IfýO 

(3.16a) 

(3.16b) 

If the observer is now at 0 external to the surface at a very large 

distance the fluctuation at point A (see figure 3.3) will follow that 

in equation (3.16a), but at point B the fluctuation will appear to be 

shifted in phase, i. e. 

I=I+ If sin(w ý, t - At ) 

where At - R(1 - cos92) /c. 

For a sphere opaque to its own radiation we find the total 

observed luminosity by integrating over the surface, i. e. 

(3.16c) 

L- fir/2 [I 
+ If sin(w(t -c (1 - cosA2)))] 2ýrtR2 sin62 cos92 d92 

0 

_ irR2 
[I 

+ If F(X) sin(0 t- 0)1 (3.17) 

where X=W R/c and @ is the phase difference between centrally and 

externally observed fluxes. F(X) is therefore the fraction of the 

true fluctuation observable at a distance. Terrell found that 

F(X) =2 (2 + x2 -2 cosx - 2x sinx)1 (3.18a) 
X 

tan 0- (X - sinx)/(1 - cosX) (3.18b) 

For large values of X, F(X) = 2/X and 0= r/2. Thus we may set 

a limit on source radius, R, by using these results. 

From equations (3.16b) and (3.17) the fractional change in 

luminosity, LL, can be seen to be limited by 

AL/L < 2F(X) (3.19) 

Therefore if we substitute the asymptotic form of F(X) in (3.19) 

we have the result 

R` 
2cP L 
n ÄL (3.20) 
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where P is the period of fluctuation. 

Since IdL/dtl <r tiL/P for sinusoidal fluctuations we have 

R, 2cL( IdLd, )_]. 
(3.21) 

Equation (3.21) applies for non-sinusoidal fluctuations as well 

(Terrell, 1967). 

3.5.1 Classical Novae - Theoretical Background 

Chapter 2 has already outlined the main observational data on 

classical novae. This section seeks to describe the current theories 

employed to explain some of the nova phenomena. 

It has been known for some time that most (if not'all) classical 

novae belong to semi-detached binary systems (Kraf t, '1963) which have 

as'their components a relatively cool main sequence star and a compact 

hotter star. For at least some of the lifetime of the binary system 

the cool component loses mass, through the inner Lagrangian point of 

the pair, to the primary hotter star. At some point in this process 

enough mass'has been deposited on the surface of the primary for the 

temperature of the material to reach ignition point. Because the resul- 

tant material is degenerate, temperature is not very sensitive to 

pressure changes. Thus energy generation is not limited by the sub- 

sequent, expansion of the surface material until degeneracy is lifted. 

The result is a'thermonuclear runaway which produces a large amount of 

energy in a relatively short space of time. This is thought to be why 

a classical nova shows the'characteristic steep rise in luminosity at 

the onset of activity and why certain'elements appear to be overabundant 

with respect to solar values (see Sparks et al., 1977 and references 

therein). 

As söon'as the'thermonuclear runaway starts, the surface layers of 

accreted matter are blown'off and reach velocities far greater than that 

required'for escape from the system. At maximum light a typical nova 
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will show a continuum which approximates to a black body at ti 7000°K 

arising in the ejecta. The dimensions of the ejected shell giving rise 

to emission at this stage are ti 1013 cm compared with the binary 

separation of ti 10111 cm. The central system is thus hidden from view 

by an optically thick wind (see Bath, 1978aand references therein). 

The typical ejection velocity of the shell is � 1000 laps-1. 

It appears that the mass outflow is driven by the central object 

and that the outflow rate decreases with time. The results of this 

mass loss rate decrease are that, at short wavelengths, the photospheric 

radius appears to decrease as the optical depth decreases; also as more 

short wavelength radiation penetrates the shell the temperature of the 

nova appears to increase. This temperature increase is accompanied by 

a progressive photoionization of atoms and ions with increasing 

ionization potentials and an associated fall in the strength of the 

optical continuum (Bath, 1978b). The effective temperature for the 

photosphere when in radiative equilibrium, T*, is given for post maximum 

times by (Bath & Shaviv, 1976) 

TL 87r V* 
ar 47ros 3KA / 

(3.22a) 

where v is the ejection velocity and M the mass loss rate. K, the 

opacity, is itself temperature dependent and equation (3.22a) must 

strictly be solved iteratively (Bath, 1978b). However one can see 

from equation (3.22a) that for a constant luminosity and velocity of 

ejection the effective temperature will increase only as the mass loss 

rate decreases. Figure (3.5) taken from Bath (1978b) shows how this 

mass loss rate change will affect the flux observed through aB filter. 

A fall in loss rate beyond ti 1022 gs 
1 

produces a much more rapid 

decline in the B magnitude. 

The increase in the effective photospheric temperature can be 

related to the decline in magnitudes Am of the observed flux from peak 
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Figure (3.5) The variation of the absolute B magnitude 
with nova mass loss rate A for a source 
with a constant luminosity of 1.05 x 1037 
erg s-l (from Bath, 1978b). A constant 
outflow velocity of 103kms-1 has been 
assumed. The stages at which various 
emission lines of oxygen and nitrogen 
might be expected to appear as a result 
of photoionization are also indicated.. 



by the relation (Bath & Shaviv, 1976) 

00.05134 hc 3 
em ti- 2.5 log 

T3 

ýýc 
(3.22b) 

where Xc is the assumed cut-off wavelength of the blue filter (ti 3500 X). 

This relationship is only valid for cases where Xc lies on the Rayleigh- 

Jeans tail of the Planck spectrum (i. e. T* Z4x 104K); the exact 

relationship is derived by integration of the full form of the Planck 

function. 

The transition stage observed in many novae as a rapid decline in 

UBV magnitudes may be associated with the point in the mass ejection 

process where the ejecta become optically thin and the innermost photo- 

sphere of the. binary system itself is uncovered (e. g. Warner, 1976 p. 123). 

The rapid rise in temperature therefore expected at transition is well 

known (see McLaughlin, 1960, p. 633). 

Bosnia (1975) has shown, by consideration of the state of ionisation 

of the shell, that the secondary maximum after transition probably arises 

as a result of a reionization of the ejecta by Lyman-a photons able to 

penetrate to the outermost reaches. He provides a complete semi 

quantitative explanation of the transition stage of Nova DQ Her 1934 

in this way. 

By the time the nebular stage of the nova is reached (see Chapter 2) 

the emission line profiles indicate that the ejecta are not isotropically 

distributed about the nova (Hutchings, 1972). The most likely form of 

the ejecta at this stage consists of polar blobs and a disc in the plane 

of the binary orbit. Figure (3.6), adapted from Boyarchuk and 

Gershberg (1977) shows the configuration of ejecta associated with Nova 

Cygni 1975. 

It is now widely accepted that novae are generally recurrent 

phenomena with classical novae perhaps being rather long period versions 

of the known recurrent novae (see e. g. Ford, 1978). Thus they may 



Figure (3.6) The polar blob - equatorial ring model 
of the ejecta of Nova'Cygni 1975. (after 
Boyarchuk and Gershberg, 1977). In-this 
case the inclination to the line of sight 
of the ring i' 60°. The nova binary 
itself is at N. 
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ptovide a good deal of the interstellar mass density in the form of gas 

or condensed grains (see e. g. Clayton & Wickramasinghe, 1976). 

3.5.2. Classical Novae - Grain Formation 

The almost classic observations of Nova Serpentis 1970 in the infra- 

red (Geisel et al., 1970; Hyland & Neugebauer, 1970) showed that around 

the time of transition in the visual light curve of the nova, the infra- 

red flux increased by almost two orders of magnitude. The resulting 

spectra were characteristically thermal and resembled those of a cooling 

black body with temperature ti 900°K. Subsequent observations of other 

novae have shown that this behaviour is apparently common in moderate 

speed objects (see Chapter 2). From calculations of black body emission 

Geisel et al. derived a grain mass at ti 100 days after discovery of the 

order of 10-6 MG as being responsible for the infra-red flux. 

Clayton and Hoyle (1976) assumed that grain formation within the 

ejecta of the current outburst gives rise to the development of an infra- 

red excess. The basis of their argument was that the overabundance of 

carbon in nova ejecta leads to a rapid condensation of graphite grains. 

The site of formation of grains was taken to be the fast moving 

shell responsible for the observed diffuse-enhanced spectrum (v ti 2000 

kms-1). The total mass of this shell was taken to be ti 3x 10-4 Me 

and the luminosity of the central star was assumed to decrease from 

N 105LO to ti 2x 104 L® in the first 50 days. 

Carbon grains were assumed to form initially at distance r= r0 

from the central star. With a condensation temperature of ti 2000°K 

and L ti 105 Lp , ro ti 1.8 x 1014 cm. At v--'r. 2000 kms-1 this is 

reached after v 11 days. If complete condensation occurred at r=r 
0 

the optical depth would be so great to the infra-red flux that it would 

be trapped within the shell and raise the grain temperatures again so 

that they would evaporate. However as r increases beyond r0 the optical 
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depth can increase beyond unity without evaporation provided s(r0/r)2 

remains constant (d is the optical depth to infra-red radiation). If 

the luminosity of the central star decreases as well, then d can increase 

2 
even more rapidly than (r/r0). The optical luminosity then falls as 

eö according to the authors. 

Figure (3.7), taken from Clayton and Hoyle (1976) shows that the 

growth of grains is thought to be associated with the decrease in visual 

light around the time of transition. The infra-red energy is stored 

by the optically thick shell as the visual curve drops. If growth 

ceases at r= rc the opacity will then decrease as rc4/ro2r2 and the 

visual light curve will increase again. The visual attenuation is 

thus governed by 

r '2 
ex -- r<r<r in oc 0 

1.11 

rý4 
exp -r 2r2 , rc <r 

to 

(3.23) 

and the minimum of the transition will occur at r= rl. Calculations 

relevant to Nova Serpentis 1970 showed that if-r0/v.,. 19 days, rl/v ti 

48 days (i. e. grain growth complete at tti 48 days). 

If we refer to figure (3.7) we can see that as the opacity drops, 

the infra-red radiation that was trapped is now released as the visual 

curve also rises. Clayton and Hoyle also expect the grain temperatures 

to drop rapidly, as observed by Geisel et al. (1970). 

From the model the grain size at r= r1 appears to-have been large 

('x, 5 )im) and the total grain mass N 10-5 M0. This large mass of grains, 

if typical of novae, is thought to contribute a significant amount of 

anomalous isotope enriched grains to the interstellar environment. 

The basic concept of grain formation on short timescales in novae 

has been developed further by Clayton and Wickramasinghe (1976). Again 

the parameters and results of the model were compared with Nova Serpentis 
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Figure (3.7) Schematic representation of the effects 
of rapid grain growth on the visual 
light curve of a nova (from Clayton and 
Hoyle, 1976). Note the storage and 
release mechanism associated with 
transition. 



1970. 

Clayton and Wickramasinghe assumed that the bulk of the ejected 

mass is in the form of carbon and that once the temperature appropriate 

for small (a = a0 =3x 10-7 cm) grains falls below the condensation 

temperature of graphite, grain growth will begin. For carbon densities 

of 107 cm 
3N Nc <3x 109 cm 

3 
the condensation temperature Tc will be 

f%O 

1900°K N Tc < 2100°K, i. e. Tc = 2000°K. 

The point in the ejection at which this occurs (r = r0, t= t0) 

is determined by the luminosity of the central object and the optical 

properties of the grains. For small particles (a < 10-4cm) the Planck 

mean of the absorption efficiency Qabs' «1 (Gilman, 1974) and is 

approximated by 

1.65 
gabs (a, Tg) = 3.22a 

T 
lý 

(3.24) 

for graphite (Clayton & Wickramasinghe, 1976). 

If Trad is the temperature of a perfect black body at distance r 

from the central object, then the grain temperature, Tg, is given by 

T9a (T* 1.65 T 
rad 

4 1/5.65 
(3.25) 

where T* is the central star temperature, hence T9 > Trad" Thus for 

T9 - Tc - 2000°K, Trad n 1030°K and r0 is given by 

- 
]' [ 14 L. T* 

0.825 

r0 = 7.73 x 10 ---- cm (3.26a) 
5 x10 

ZL Lb00900jg 
0 

which gives the time of condensation, to, as 

_1 T 0.825 

to 89.47 L. 
[7- * days (3.26b) 

5x1 8cros 1 

[iOO00°K 

Clayton and Wickramasinghe (1976) assumed that grain nucleation 

occurs instantaneously at tat0 and that after that no new grains 

are formed. The total grain number, NTOTAL , thus remains constant and 
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the grain radius at time t will be given by 

(3.27a) 

-20 T -0.206 4 -1 
- 

where A' = 5.05 x 10 [j4] cm s and (Nc)0 is the carbon 

atom number density at time t= t0. 

Taking the maximum eventual size of the grains, ,, =0.8A' (N do t0, 

_ 
-0.206 

aý = 1.571 x 10 6 [45 

da s 

CN)0-T*cm 
(3.27b) 

y L107cm3J L104°Kj 
The initial growth of the grains will be rapid (see equation 3.27a) 

and will decrease as the shell expands resulting in a drop in Nc. 

As grains increase in radius the temperature given by equation 

(3,25) ceases to be valid. Clayton and Wickramasinghe (1976) then cal- 

culated'Tg', using'energy balance equations similar to those outlined 

earlier in this chapter except of course that both a and r are time 

dependent here. During rapid grain growth the temperature falls quickly 

due to an increase in radiating efficiency. When growth effectively 

ceases, there is a change in the slope of the temperature curve and the 

temperature then falls more slowly due to expansion alone. The authors 

found that the curve of the temperature against time graph for 

a,, "2x 10-4 cm most resembles the observed temperature behaviour of 

Nova Serpentis 1970 if t0 = 45 days. These large grains will emit 

radiation whose spectrum will closely resemble a black body at temperature 

Tg. The situation is complicated if the condensed shell is opaque to 

infra-red, as discussed by Clayton and Hoyle (1976) however. The infra- 

red luminosity, L1R, is thus given by equation (3.28) where Fabs is 

the radiation absorbed by a dust grai[NTOT n: - 

L1R = min AL Fabs' L (3.28) 

The resulting infra-red curves for T* = 10000°K and T* = 15000°K 

are shown in figure (3.8). For an optically thin nebula the maximum 

t -S/4 
a= a0 + 0.8A' (NC) 

0 t0 1- 
to 



Figure (3.8a) The development of the infra-red 
luminosity, LIR, of a nova on the 
rapid grain growth model (from Clayton 
and Wickramasinghe, 1976). The 
central source effective temperature 
T* - 10000°K. 
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Figure (3.8b) As (3.8a) except T* a 15000°K. Note 

change of slope for 0.03 Nm grains. 



infra-red emission occurs at a time tmax = 2.33 to. The flux then 

falls slowly as t-2. The arrowed discontinuity in the slope of the 

0.03 pm curve of figure (3.8b) is due to the cessation of increase in 

the absorption efficiency of the grains ([Qabs] =-1). Clayton and 
max 

Wickramasinghe note that this slope change appears in the light curves 

of Nova Serpentis 1970 at approximately t- 70 days. 

After studying the effects of making the shell of grains optically 

thick, Clayton and Wickramasinghe (1976) considered how the parameters 

in the equations noted here can be chosen to give a qualitatively correct 

model for Nova Serpentis 1970. They set to a 45 days which with 
40 

L= 5x 105 LD and T* 0 104'K gives w2x 10$ cros-l. For LC1.9 x 

104 Le (T* = 10 
40 

K), v =. 1.226 x 108 cros-1. If Tg < 9000K after 90 

days then ao =2x 10-4 cm. The time of predicted peak in the infra- 

red then closely matches that observed. The atomic carbon number 

90 density at t-0, (N 
C) 

1.27 x 10 cm 
3 for T* = 104 K and 1.17 x 

109 cm73 for T* = 1.5 x 1040K. 

The weak early infra-red excess at I=5 pm was ascribed to the 

stretching of molecular carbon bonds. These carbon molecules were 

thought to subsequently act as nucleation centres for grain growth. 

(Note - Ferland et al., 1979, have subsequently shown that excesses at 

this wavelength in both Nova Vulpeculae 1976 and Nova Serpentis 1970 

are likely to be due to CO formation within the nova ejecta. ) 

Finally the authors concluded that ti 3x 10-5 MD of grains were 

formed which would, if typical of novae, provide a substantial part of 

the interstellar grain density. 

Yamamoto and Nishida (1977) carried out detailed calculations based 

on the assumption that the abundance of elements in nova ejecta is 

similar to the solar abundance. If this is in fact the case then the 

C/0 abundance ratio is less than unity (as it is even with the heavy 

element enhancement of the theoretical models of Starrfield et al., 



1974). Thus it is considered that carbon atoms will almost all be 

depleted preferentially into CO molecules and therefore cannot condense 

to form graphite grains (see also Ferland et al., 1979). Yamamoto and 

Nishida then proceeded to consider the formation of grains from other 

elements. 

Assuming spherically symmetric expansion of an ejecta envelope 

with uniform gas temperature, T, and atom number density, N(T), the 

radius of. the ejected shell, Rgas(T) and N(T) can be found for a par- 

ticular T from equations (3.29a) and . 
(3.29b), 

2IL Rga$(T) = 4.3 x 1014 11ToK 
15x104LJ 5x 104 LD 

cm (3.29a) 

N(T) = 3.5 x 109 1100K 

6 AM (). 3 5x104Lp 3/2 

cm -2 13xb04M0JLJL L 

(3.29b) 

where L is the nova luminosity; AM is the total mass lost through 

ejection and G is a geometrical factor of the shell. 

Consideration of condensation temperatures of A1203, Mý2SiO4, 

MgSiO3, Si02 and Fe showed that they condense out in this order. 

However Al is about an order of magnitude less abundant than Si; 

A1203 grains were thus ignored. Magnesium silicate in the form of 

fosterite (Mg2Si04) or enstatite (MgSiO3) is thought to be 
.a 

likely 

first condensate. 

Having investigated the nucleation process in non-steady-state 

conditions Yamamoto and Nishida proceed to derive the maximum grain size, 

amax, produced once the available condensate is exhausted. This is 

given by 

aýx = 87 . 
CO ý 

3Si / 106 sec 
TÖ 

A0 
5x 105 cm--s v 1100 K 

(3.29c) 

where c0 is the monomer concentration at the time of onset of condensation, 
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t0. (Rgas) 
0 

and T0 are the ejected shell radius and gas temperature 

respectively. 

The main conclusions of the study were: - 

(1) The major constraint on whether a nova is a grain producer or not 

is the ejected mass. For solar abundance and-v = 1000 kms-1, OM > 

10-4 M0 for condensation to öccur. 

(2) Grains will grow from condensation to a max 
in about 10 days. 

(3) The grains that are formed will have a fairly flat grain size dis- 

tribution from a few ä to several hundred However the maximum size 

of grains will only be hundreds of Angstroms unlike the grains of 

Clayton and Hoyle (1976) and Clayton and Wickramasinghe (1976) which 
4 

are much larger (N 10 cm). 

(4) A 10 um feature would be expected in novae corresponding to silicate 

absorption. 

(5) Graphite grains will only form if C/0 is far greater than unity. 

According to Yamamoto and. Nishida there is little direct evidence that 

this is so. 

Gallagher (1977) based his grain formation model of novae with 

infra-red excesses on the assumption that Nova Serpentis 1970 was typical 

of all dust forming novae. Like Clayton and Hoyle (1976), he contended 

that the transition region provides evidence of substantial formation of 

dust grains which cause obscuration of the pseudophotosphere beneath. 

The major difference between novae which form dust and those that do not 

was concluded to be the luminosity of the central system. 

Assuming that the condensation temperature for all novae Tc is the 

same (v 1300°K) as seemingly observed in Nova Serpentis 1970 (Ceisel 

et al., 1970) Gallagher derived the following relationship between the 

time taken for dust to form, t0, and the luminosity of a presumed 

constant luminosity phase, LCL 
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to a 
3Y0 

YT 
,c 

days (3.30a) 

(velocity v in kms-1). Therefore assuming all novae form the same 

type of grains the time of expected grain formation for individual novae 

can be determined. 

It was proposed however that if most of the ejects are ionised then 

grain formation will be inhibited. The time taken for all the ejecta 

to ionise is given by 

ti 2.2 x 106/v(LCL/Lg)1/3 days (3.30b) 

For grains to form therefore ti > to, i. e. LCL <4x 104 Le . 

Thus fast and very fast novae would not form grains on this model. 

-Gallagher noted that the expected dust formation in Nova Delphini 

1967 at 45 days did not occur. This he put down to the low mass loss 

rate perhaps decreasing the density of condensates below levels where 

appreciable condensation might occur. 

3.6.1 Theoretically derived dust shell parameters 

It has proved very difficult to derive dust shell parameters from 

observation. However Malakpour (1977) concluded from studies of 

Balmer decrements in novae that substantial amounts of grains exist 

around the pre-nova prior to outburst. He accounted for the change 

in observed Balmer decrement by assuming that the ejecta encounter 

these'grains causing them to grow. The radius, R, of the envelope 

giving rise to these observations lies in the range 5x 1014cm <R< 

5x 1015cm. The dust particles themselves have a radius of ti 10'5 cm 

and the properties of interstellar dust. ' The evidence for a pre- 

existing dust shell was found to be particularly strong for Nova 

Delphini 1967 (Malakpour, 1973). He proposed that condensation of 

grains generally occurs slowly at large distances from the nova. As 

the radiation pressure from the previous outburst decreases these grains 



fall toward the system but cannot approach closer than ti 3x 1015 cm 

because of radiation pressure from the quiescent nova system. 

The lack of substantial infra-red emission from Nova Cygni 1975 was 

seen as indicating a lack of circumstellar matter prior to the outburst. 

Evidence for this view is the lack of thermal X-rays which according to 

Brecher et al. (1977) are due to collisional heating of the pre-existing 

circumstellar envelope by the ejecta. 

The problem of deriving the actual dimensions of the dust shell has 

been tackled by Ney and Hatfield (1978), amongst others, by the use of 

black body considerations. Basically, if the grains are taken to be 

black bodies forming a spherical shell that is opaque to its own radiation 

the flux, `f,, observed will be given by 

2hc2 1n ýBB2 
fý -ý 

-e-h7hc akT -14 

The mass of grains in the shell can be estimated from consideration 

0 

Wein's law gives 1max T=0.29 cm°K and if this is substituted into 

equation (3.31a) then the angular diameter in seconds of arc can be found 

from the expression 

OýBý =2x 1011 (ýFý)ýx TBB2 

(3.31a) 

(3.31b) 

where Oß is the 'black body angular diameter' in seconds of are and 

T$B is the black body temperature of the shell. 

of total infra-red luminosity and total grain number, NTOTAL' i. e. 

L1R a 4IIa- vsTgT NTOTAL Qabs 

if T_ is constant throughout the shell (Vrba et al., 1977). 
6 

(3.32a) 

Substituting for gabs from equation (3.24) into equation (3.32) 

we have 

3ý4 

M 
4.62 s L1R 

ý--- g Cs Tg5.65 
(3.32b) 
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Obviously this derived grain mass is liable to be only an approximation 

if the shell is extensive and Tg is thus radially dependent. For the 

nova models of Chapter 5 for example the total grain mass calculated by 

this method is somewhat less than we require. 

3.7.1 Conclusion 

As we have seen in this chapter, previous authors have dealt 

thoroughly with grain properties and the possible origins of both inter- 

stellar and circumstellar grains. They have also carried out detailed 

studies of the mechanisms behind variable sources such as novae. It 

appears however that the variability of thermal radiation resulting 

from changes in a source of ultra-violet radiation has not been treated 

as rigorously as it might have been. We therefore proceed to investigate 

such situations in more detail in the following chapters. 



CHAPTER 4 

Extension of Theoretical Background 

4.1.1 Introduction 

In this chapter the basic theory of infra-red emission from dust 

surrounding variable cosmic sources of higher frequency radiation is 

explored beyond the scope of previous work as described in chapter 3 

by including light travel time arguments. At the end of this chapter 

the theory is applied more specifically and very general results are 

briefly discussed for nova and Seyfert-like models. It is left until 

chapter 5 before observations of individual astrophysical objects are 

compared in detail with theoretical'models. 
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4.2.1 Grain Temperature 

The temperature of an isolated spherical grain exposed to 

irradiation by ultra-violet photons is derived from the energy balance 

considered previously in equation (3.8). Following Rees et al. (1969) 

we assume that the absorption efficiency has a power law dependence on 

frequency in the infra-red and that Qabs is effectively constant. 

However equation (3.10) reveals that Qabs is dependent on grain 

radius, a, and the conductivity of the grain material, a. Greenberg 

(1968) has found that a is in fact temperature dependent. We may 

therefore express the absorption efficiency, Qabs' in the form: - 

( 
+ýl 

(a Qabs (v' a, Tgý a 
`'ý' /1 VO 

) (4.1) 

where Q0, T0, p and v0 are constants. Reference to experimental data 

(Goldsmith et al., 1961) reveals that p appears to vary between different 

graphite types but a value of p= -0.5 would not be unreasonable 

for naturally'occurring graphite. 

Incorporating equations (3.9) and (4.1) in equation (3.8) and 

rearranging we find: - 

* rr P LQabs a 2h v3+a 
Q0 Tg 

_a 
16rr2 

fp 

c2 

) 

exp 
bv ( 
kTg)-1 

. dv (4.2) 

n 
where Q0 = Q0 vo -a To p. Using the substitution xa by/kTg in equation 

(4.2) and referring to the standard solution in Gradshteyn and Ryzhik 

(1965, p. 325) the grain temperature is given by 

a+4+p 
(L 1(c2l Qäbs rh a+4 {4F(a+4) 1 Tg 

aý`ý ý ia+4) (4.3) 0 

where r and ý are the gamma and Reimann zeta functions respectively. 
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(We may note that if p-0 is assumed and a is adjusted to com- 

pensate, then no significant error in Tg will result. ) 

This expression for the temperature of individual grains can now 

be compared with the findings of previous workers. Using results 

similar to Gilman's (1974) for the computed Planck mean absorption 

efficiencies for small graphite grains, Qabs' Clayton and Wickramasinghe 

(1976) derived the following temperature relationship: - 

Tg aI L-1 
115.65 

(4.4) 

From equation (4.3) it can be seen that if we were to use the 

value of a for small pure graphite grains (i. e. a- 2) together with 

Goldsmith et al's (1961) data (p =-0.5) we would have an index of 

1/5,5 
compared with Clayton and Wickramasinghe's value of 1/5.65. 

It is well known that for perfect black body radiators the wavelength 

of peak emission, Amax, is related to the temperature of the black body, 

T, by Wein's Law, i. e.: - 

AT-0.29 cm°K 
Max 

Obviously, if the grains are not perfect black bodies then Wein's 

Law cannot be accurately used to determine the wavelength of peak 

emission for a given grain temperature, Tg. Assuming that Qabs °` v 

)Lmax is defined by an expression of the form: - 

5a°1 ez+ + 
(4.5) 

a 

where z- he/. (Xmax k Tg) . 

From equation (4.5) it can be seen that as a increases from the 

black body value of aa0 the peak emission in wavelength units shifts 

to shorter wavelengths even though the grain temperature remains 

constant. Thus for example, instead of the maximum emission being 
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at a wavelength of " 3pm for a black body grain of Tg a 1000 °K it will 

lie at ti gum for a grain with a=2. 

4.2.2 Grain Temperatures within Dust Shells 

The temperature of a grain embedded within a cloud of similar 

grains is obviously different from that described in the previous section 

where it is assumed to be in isolation (equation 4.3). 

At this stage it will be assumed that the cloud contains identical 

grains which are also assumed to be spherical as in section (4.2.1). 

This is of course a very much idealised case as a 'real cloud is likely 

to contain grains of several different compositions and geometries and 

because of grain growth, sputtering and evaporation there is also likely 

to be a 4istribution of grain sizes across the cloud. 

If we consult figure (4.1) where the large-scale geometry of the 

situation is displayed we can see that the grains are distributed within 

a spherical shell such that their distance from the central source at 

C is given by r, where R1 rFR. 

The lower bound on grain position (the evacuated cavity, radius R1) 

could be due to grain evaporation by radiation from the central source; 

sputtering of the lattice atoms of the grains by. incident protons 

ejected from the central source; radiation pressure on the grains 

effectively 'sweeping' them out or any combination of the three. 

Assuming that the grain number density N is radially dependent, 

continuous, isotropic and power-law in form then we can express it as 

R\ß 
N(r) = N1 

(1g 
1 Rl 4r 

's R 

N(r) -0 otherwise 

where N1 is the number density at the inner radius R1. Thus a value 

of ßa2 here would perhaps stem from continuous grain outflow whereas 

a value of ß0 denotes a uniform grain number density. 

From equation (4.6) we can now find the mass of grains contained 

(4.6) 
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in the shell from the expression: - 

Mg = 3wa3 s fR N(r) . 4'ýr2. dr 
R1 

Substituting for N(r) from equation (4.6) we have 

M a. -. .. Q 3�a ý'"1"1 JD 

` L\1 
(4.7) 

A grain at a distance r from the central source is shielded to 

some degree by grains lying interior to it in the radial direction. In 

the case of conducting spheres where the radiation is both scattered 

and absorbed the optical depth at frequency v (av) contains the extinc- 

tion coefficient Qext' Thus, if the heating effect of scattered 

radiation is ignored we have 

next a nag Qext 1R Nir7 dr" (4.8) 
1 

Substituting equation (4.6) into equation (4.8) the optical depth 

can be found for any given value of ß. 

rýß de (4.9) i. e. dext a 7ra2 Qext N1Rlß fr 
R1 

A complication arises however because the extinction is so far 

assumed to be due to absorption and scattering. However the scattered 

radiation need not necessarily be lost to the system (i. e. it can go 

towards heating other grains). Thus the extinction will effectively 

be decreased. 

If the asymmetry` factor for scattering is g(O) (where 0 is the 

J_ r(2-ß%. dr 
ý6 

r2a3 s NýRi ßR 

angle between incident and scattered radiation) then in the lowest order 

approximation 6 
ext should be replaced by (Greenberg, 1979) 



- 60 - 

*** 7r 
dext ý' ö 

ext -ö scatt 
1o.. 9 ((ö) sin 0 d¢ 

In what follows we make the assumption that the scattering is 

isotropic (i. e. g(O) =g= 1) and therefore the optical depth ö* we 

consider is given by 

ext 
6scatt i. e. 6° dabs 

Therefore within the cloud it is more accurate to use the 

expression 

rrR1 
Ivdv = (Iv)0 exp 7ra2 Qabs N1R1ß J r7ß dr dv (4.10) 

for the intensity of radiation between frequencies v and v. + dv impinging 

upon a given grain. 

We can now include the extinction in our temperature expression 

given previously in equation (4.3): - 

T a+4 = g 

2Q a+4 (_L 
2)h -"--ý kr (a+4) ý (a+4) 

4ýrr Qaý 

ý 

0 

.e xp -ira2 Qabs Nlrlß r'-ß" dr' 
fRi r 

xi 
(4.11) 

where a,. in the exponent of temperature includes the conductivity term 

p as outlined above. 

Figure (4.2) shows the distribution of grain temperatures about 

a constant source of ultFa-violet radiation. 

If Le is the total ultra-violet flux which reaches grains at 

the outer edge of the cloud, then L(l -e is the total infrared 

flux produced interior to it. Assuming the cloud is optically thin to 

infra-red radiation and that Rabs and Qabs are roughly constant over the 

wavelength ranges of interest with Qabs 10 Qabs as in the case of many 



200 

Tg (K', 100 
0 

C 

Figure (4.2) Distribution of grain temperatures within a 
spherical dust shell about a non-variable source 
at C of high frequency radiation with L-5x 1038 
ergs-1; shell parameters R -'100 R1 -5x 1017cm, 
Mg = 3.3 x 10-6Mp, ß-2 containing dust grains 
with a=2, a- 10-5cm. Each solid curve gives 
the observed temperature along the corresponding 
line of sight (broken line) in the dust shell. 
Temperature scale is as indicated. 
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conductors, then for the two fields to contribute equally to grain 

heating 

_** eö Qabs a (1 - e_s Qabs 

1i. 
e. e-S ý 11 

Thus 6 *. ti 2.4 for the ultra=violet radiation field to dominate the 

heating of the grain. At first-sight it may appear surprising that 

as more ultra-violet radiation is absorbed the effect of the infra-red 

field increases. It must be stressed that the above-relationship 

applies to grains which, because of ultra-violet absorption interior to 

them in the cloud, may receive little high frequency radiation themselves. 

However, unless the grain distribution is such that grains are. 

concentrated toward the-outer edge of the shell (ß < 0) then the-outer- 

most grains will contribute comparatively little to the infra-red flux 

in any case and therefore the ultra-violet optical depth could be 

increased beyond the above limit without infra red heating becoming 

important overall. 

4.2.3 The Timescales of Reaction of Grain Temperature to incident 

Radiation 

In this subsection we consider the effective timescales of reaction 

of grain temperature to changes in the incident radiation field. 

The reaction time will obviously have great bearing on the validity 

of subsequent theory in which it is implicitly assumed to be negligible 

in comparison to the fluctuation timescales of certain sources. 

The most important parameters are a) the time taken for radiation 

incident on one face of a grain to diffuse through the grain so that 

all parts can be ascribed the same temperature at any given instant and 

b) the cooling time of the grain, tcool' which is taken to be the time 



for a grain to reach equilibrium after a change in the incident 

radiation field. 

We saw in Chapter 3 that for 0.1 pm grains Greenberg (1976) cal- 

culated that the diffusion time of absorbed energy through the grain is 

ti 10-10 S. For smaller grains this would of course be even less and is 

in any case negligible. 

The grain cooling time has been estimated by*Burbidge and Stein 

(1970) (see Chapter 3). Their estimate is based on the ratio of the 

internal grain'energy, U, to the rate of energy loss by radiation, 0. 

Using classical thermodynamics and assuming that the grains are perfect 

black body radiators their expression gives a cooling time, tcool, 'v 1s 

for 0.1 pm graphite or silicate grains at Tg ti 100 °K. 

We note however that real grains are unlikely to behave as black 

bodies and that at low temperatures the classical form of the specific 

heat will not be valid. 

If we consider the right hand side of equation (3.9) above we have 

U 4na2 
c((2h__3+a 

7r1(Q"p Tgp a) 
" aJ dv 

0 c2 (ehv/kTý -1) 

i. e. 

heat at constant volume, cv, and as Tg ; 0, 

C; 
V 5 

where RC is the gas constant in erg OK 71 mole-' and 4D is the Debye 

Üa 8n2h 
Qö a3 T a+4+p hl a+4 r(a+4) ý(a+4) 

c g 

[] (4.12) 

The internal energy of the grain is proportional to the specific 

12, ff 
4 Rc Tg3 

temperature. Thus 



4Tra3 
s 

127r 4 RC Tg4 

503 

Combining equations (4.12) and (4.13) we have 

(4.13) 

3R2 

tN 
IUI 

ti 
2 s7r cc 

[h] a+4 
0-3 Tg 

(a+p) (4.14) 
cool 5 r(a+4) z; (a+4) h Qý k 

i. e. tcool (Tg «ý)äý _3 Tg 
(a+P) 

(4.15) 

Therefore we can see from equation (4.15) that at very low tem- 

peratures the cooling time is independent of grain size as long as the 

grains are small and Qabs - va is still valid. 

If, for example, we have graphite grains at 100 °K (a -2p- 0) 

then tCool 4' 300s assuming 6 ti 1000°K (We note that graphite does not 

have a unique Debye temperature but that this varies with direction 

through the lattice. However ®ti 1000°K may not be unreasonable for 

any given direction - Greenberg, 1979). 

As in subsequent models no grains have Tg ti 100°K and the fluctuation 

times of the sources considered are » 300s we assume that reaction to 

changes in the radiation field is effectively instantaneous. 

4.3.1 Geometrical Considerations 

In figure (4.1) the observer is considered to be very distant from 

the spherical shell of dust grains surrounding the primary source at C. 

The radiation from different parts of the source can then be considered 

to reach the observer along lines which are effectively parallel 

(PD, GP, AL). 

Section (4.2.3) illustrated the fact that grains of the sizes and 



compositions with which we are concerned will react to changes in the 

incident radiation virtually instantaneously (even if their temperature 

is below the Debye temperature of the grain material) for the types of 

primary sources we are to consider. The development of the re-emitting 

region can then be deduced in much the same way as in previous work 

(see e. g. Conderc, 1939 and section 3.4.1) for a central source that 

instantaneously starts to radiate. 

If time is measured from the instant when the observer first sees 

the central object and if the observer is at a distance d (» R) from 

0, the time t taken for the re-emission from point G to be seen will 

be: - 

ta1 j(CG + GF + d) - (CO + d) l 
c 

Irl - rl cos el 

Thus r1 1- cos Q1 (4.16) 

which is the equation of a paraboloid with semi-latus rectum ct having 

the primary source at the focus. 

Strictly, if d is finite, then PD, CO etc. are not parallel and 

the paraboloid becomes an ellipsoid. However d is considered to be 

very large compared to the dimensions of the shell and equation (4.16) 

is therefore assumed to be strictly valid. 

We may also note that equation (4.16) should contain an angular 

term for the transverse direction in three dimensions. However due to 

the symmetry about the QCO axis we may disregard this in the subsequent 

analysis. 

In general terms the origin of time can be taken at any point on 

the light curve of the central object. The paraboloid of emission is 

then due to the propogation of this point on the curve through the shell 
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as seen by the observer a time t later. 

In the case where the central object suddenly turns on, we can see 

that the infra-red emitting region in reality takes the form of an 

expanding paraboloid but appears to the observer as an expanding disc. 

Consulting figure (4.1) again we can derive the observed velocity of 

expansion of the disc at any instant using light travel time arguments. 

Taking the origin of time to be when the observer sees a given 

fluctuation of the central object, then at a time t later re-emission 

will appear to arise along the parabola PQN of figure (4.1) as the path 

lengths - from central source to observer via the re-emitting grains 

must be the same. i. e. 

2CQ+COaCP+PD 

and CE s CO - EO 

where CQ = ct/2, CP CO e R. 

Thus PD - ct 

and therefore ' y, 
2 

s R2 

where yP is the y co-ordinate of the point P. Hence 

_ 
dyp aý ýd dt ý dt 

[(2Rct - c2t2) ý_(Rc - c2t)(2Rct - c2t2) (4.17) 

where Yd is the apparent transverse velocity of expansion with respect 

to the central source. 

In order to generalise the measurement of time it will be useful 

to use units independent of shell size. We therefore redefine time 

in terms of t, where T- ct/R. Equation (4.17) becomes: - 

(2TTZ) 
(4.18) 

Therefore the observed expansion and subsequent contraction will 

be at sub-light velocity with respect to the central source for a time 



1-1/�2< r. <<1+1/�2 

and outside these limits the expansion will be super light. (Note - 

there is of course no real material motion involved so there is no 

violation of causality implied here. ) 

From equation (4.18) it can be seen that at time T=1 the expansion 

ceases and contraction (if visible) will begin. 

We now consider the more general case of a central. source which 

varies over a period of time such that different points within the 

emission region are observed to experience a different phase of the 

central source variation. 

At any given instant the observer will see a grain at H in figure 

(4.1) reacting to a central source fluctuation that occurred time At 

previously. At can be expressed as 

At --E (1-cos6) (4.19) 

from considerations similar to those above. I 

If for example the central source varies as L(t) = L0 f(t), 

equation (4.19) enables us to determine the central source luminosity 

the observer sees the grain receiving at any observer time t, i. e. 

L(A, r, t) = Lý f ft 
-ý (1 - cos e) 

or in terms of our generalised time units 

L(0, r, T) L0 I 
R(T -R . 

11 (1 - cos 0) (4.20) 

Equations(4.20) and (4.11) enable us to derive the temperature of 

any grain within the shell if we have observed the central source for a 

sufficient time (At) prior to the time t of observation. Thus the 

temperature of a grain within a circumstellar dust cloud where the 

central source is varying as L(t) a LO f(t) is given by 
, 



L fýR (T -r (1 - cos 0))] 2Q a+4 
T a+4 0cR )(c ( 

ab s) h 

.g2/ \2h -rr- /k 4 vr QO a 

r 1-1 
(4.21) 

I1-* 
14r(a + 4) ý (a + 4) 1 exp (- 6 ") 

(Note - as discussed above the expressions used for grain tem- 

perature exclude the case where grains may be situated in a dense cloud 

such that the ultra-violet optical depth is large and the infra-red 

component of the radiation field is dominant in heating the grain). 

To illustrate the effect of observing grain temperatures about a 

fluctuating source from a large distance external to the dust shell, 

figures (4.3a) to (4.3d) have been included. The parabolic distribution 

of maxima and minima is self evident in figure (4.3a) which shows the 

temperature variation about a sinusoidally varying central source. 

Notice how this effect 'bunches' the fluctuations toward the rear end 

of the shell. Figures (4.3b) to (4.3d) show the temperature variation 

about a source with a nova-like light curve. 

i. e. 

L=0T<0 

L=LOeýt T ^0 
(4.22) 

Strictly this would seem to violate the condition that the fluctuation 

time is far greater than the time it takes for the grain to react 

(tcool). However, if tcool « rise time at t-0« w-1 then we are 

still justified in using these light curves for grain heating to a high 

degree of accuracy. 

Before considering the derivation of the observed infra-red flux 

it is interesting to consider the way in which the emitting volume 

appears to change. This will of course be different for a centrally 

placed observer than for one at a large distance external to the shell. 
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Figure (4.3a) Distribution of grain temperatures about 
a Seyfert-like central source as observed 
by a distant observer situated to the 
right of the figure. Parameters are as 
in figure (4.2) except L ss LO + Ll 

sin wt 
where w- 10-6 s-1, L1 - 0.3 LO °3x 1043 
ergs 1. R- 1OR1 =5x 101ßc¢` and 
Mg-3x10-4 M0 . 



Figure (4.3b) Distribution of grain temperatures 
about a nova-like central source with 
a light curve as define i by equation 
(4.22) with wa 10-6 s at time 

.ta0.5. All other parameters as in 
figure (4.2). 
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Figure (4.3c) Distribution of grain temperatures about 
a nova-like central source with all 
parameters as in figure (4.3b) except 
a=1. 
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Figure (4.3d) Distribution of grain temperatures about 
a nova-like central source with all 
parameters as in figure (4.3b) except 
as0.5. 

a. 



Obviously, for a centrally placed observer the emitting volume 
/ \3 

will increase as1 
Zt) (i. e. Volume « t3). 

For an external observer at a large distance the situation is more 

complex. Figure (4.1) illustrates the 2 regions of integration which 

are the truncated spheroid enclosed by OPEN and the paraboloid enclosed 

by NEPQ. The volume Vs of the truncated spheroid is given by 

R 

VS(t) _ý y2 . dx 
R t-na A 

-- ---- -o 

and that of the paraboloid Vp, by 

Vp (t) = lrct J 
R cos 00 

-et 
2 

(ct + 2x) . dx 

where by substituting in equation (4.16) we can see that cos A0 =1-T. 

Replacing t by its generalised form T and solving we arrive at the 

expression for the externally observed emitting volume VOe(T): - 

2 
VOe(T) = VS(T) + Vp(T) = nR3 tý1 - 12 

] (4.23) 

this is compared with the centrally observed emitting volume Voc(T) 

in figure (4.4) where 

Voc (T) -6 R3 T3 (4.24) 

Both equation (4.23) and equation (4.24) give a volume of 
4/ 

3 iR3 

at ta2 as this is the point in time when the shell is filled by the 

radiation of the central source (note - the origin of time for internal 

and external observers is not the same here. However it is with the 
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qualitative difference in the evolution of the emitting volume that 

we are primarily concerned). 

If we assume that the grains radiate as black bodies and that the 

distribution is uniform (ß = 0) then, if the cloud is also optically 

thin, the infra-red flux should be approximately proportional to the 

emitting volume for a step function central source light curve. 

Loer aT (1 - T2/ 12) 

where Loe is the externally observed infra-red flux. 

LOe RT rl 
^ T2/12 ý 

.. 
Loe 1 T2 /4 

For t«1 therefore, 

Loe 
R»c 

Lae 

i. e. 

(4.25) 

which is to be expected at early times where the observed expansion 

velocity of the emission surface is super-luminal (c. f. Terrell, 1967 

summarised in section 3.4.2). 

4.4.1 The Equation of Transfer 

We now consider the derivation of the observed infra-red flux 

from the dust shell for a step function:.. central source light curve. This 

involves solving the equation of radiation transfer along lines of 

sight within the shell. Figure (4.1) shows one such integration line, 

IHG. This line is an example of those lines of sight with a transverse 

displacement, r', from the central source greater than Rl(rt -R sin A2). 

Grains exist along IHG with distance from I given by the variable 

q; distance IG is designated q0. Angle 02 is determined by the trans- 

Thus 

verse displacement of the line and Al is a function of 02 and T. (For 

lines with displacements < Rl the extreme values of 0 will of course be 



different. We will consider this below. ) 

In order to determine the surface brightness Z from an element of 

area about the point I we integrate along IG for the reradiating grains 

lying along this line, i. e. 

J 
E(e2) = 

q0 

^ 
B(vs Tgig)). N(g). ira2 Qabs exp 

q 

j-J N(ql) ra2 
0L 

Qabs ' dqv 
J, 

dq 

We can express dq in terms of dr and do :- 

q= dAC r2 
(Lr) d 

and as r=R sin 02 dr 
_R sin 0 cos and 

6 
d9 2 

sin 0 

thus dq =R sin e2 
. d8 

sin2 e 

(4.26) 

(4.27) 

Substituting equations (4.6) and (4.27) into equation (4.26) we are 

left with 

e 
Ev 2) a1 B(v, Tg(r)). N1R1ß [R sin e2 ]1-ß (sin e)ß-2 , ra2 

e2 
rQabs' 

exp 
1-, 

fe N1R1ß [R sin A2 ]1-0 (sin 9')0-2 ira2 Qabs. dA' 

A2 

do ý; 

where the central cavity may be accommodated by the conditions of 

equation (4.6) when appropriate. 

Substituting for B(v, Tg(r)) 



E(62) - 
2hý s 

N1R1B (R sin 62)1-ßwa2 Q 
61 

gabs 
1 

(sin 6) ß-2 
C6 

2 

where 

and 

hv 
exp k Tgi9) -1 exp N1R1a (R sin 92)1-ßna2 Qabs 

e 
(sin e')-2 ß 1 e2 

. de' . de (4.28) 

* 
T a+4(e) 

= 
L(0q e2. T) sin20 c2 Q 

abs 
)(,, ) a+4 

g 47r R2sin20 2h "ak 
2 QO 0 

f4r(cz 
+ 4) Z(a + 4) 

-1 
. exp nag Q*abs N1R1ß (R sin 0 2)1-ß 

RsinA2 

Js inO R1 
(sin A)ß-2 cos A. dO 

nA% L(9,92, T) - L0 f Ii T- 
sisl 

11- Cos 
\ 

-1 

. 
The flux density, fV, from an object subtending solid angle 

a and surface brightness EV is given by 
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Defining OCP - 60, and with 

then 

fa 21rr2' dr' 
E (6 

vDv 2) 

(80 2 
fý 
faJ Eý(e2)" 2ý2 

. sin92 cos92 . d92 (4.29). 
0D 

Equation (4.29) is true for T<1. If T, 1, the upper integ- 

ration limit, eo, is replaced by r/2. 

Substitution in equation (4,29) from equation (4.28) gives the 

time dependent flux, fV(T) as 

f efv 
(T) = Al (sine2)Z-ß cose2 . ae2 

0 

r [exp [B1 

exp 
(Cf9 

1 \ 
Rl 

exp 

where 

Qabs 
1 Qabs 

2 

(sin8)ß-Z 

I el 
(sine) ß-2 

02 

COSH " 

(sing' )ß-2. dg' . 

4nR3-ß hv3 2 
Al sýý N1R1 na 4abs 

and 

-1ý 
L(r, 9, T) c2 

* a+4 Qabs 
I32h Qo ar (a+4) C (a+4) 

ao) [ 
-2 

siýe ] 
a+4 

r r 

1-11 -1 

- 

dO (4.30) 

'ýa2 Qäbs N1R1ß (R sin82)1-ß 
c 1° a+4 
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With lines of integration for r' <R1 crossing the central 

evacuated cavity the solution of equation (4.30) by analytical and 

numerical methods is somewhat complicated. However, we now proceed 

to consider the derivation of fv(T) from the shell (under certain 

limiting conditions) by analytical means. 

I 
4.4.2 Analytical Solution of the Equation of Transfer 

In section (4.4.1) we derived the general form of the integrands 

for a spherical dust distribution. Before attempting to solve equation 

(4.30) analytically we must express 01 in terms of 92. It can be seen 

from figure (4: 1) that 

Rsin92=ct 1-cos9 1 

thus 

8 sin_l 
2T sin92 

1 
T2 + sin 8 

(4.31) 

(4.32) 

where as before 01 is E with G lying on the expanding parabola. 

Figures (4.5a), (b) and (c) show the regions of integration in 

real space for the expanding parabola in a spherical shell. The three 

cases for the ratio *a R1IR are required because, for example, in 

figure (4.5a) the'parabola leaves the central cavity (t - 24i) before 

it reaches the limb of the shell (T = 1) whereas in figure (4.5c) it 

leaves the inner cavity after T-1. Also in figure (4.5b) the 

parabola leaves the cavity (t - 24i). before the intersection of the 

parabola with the shell is at a'vertical displacement less than 

R1(T -1+ 
ý2). Each separate figure in (4.5) shows the different 

regions of integration required to obtain the infra-red flux at any 

given time t for any cavity to shell radius ratio Table (4.1) 

gives the limits on 0 and 02 for figures (4.5a), A-E; from these, 

sine, ' 
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Figure (4.5a) The development of the emitting region 
of, a distantly observed dust shell in 
section for Rl < R/2. Broken lines 
give limits on the position of the 
emission parabola within the times, T. 
given for each sub-figure A-E. 
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Figure (4.5c) As figure (4.5a) except 4 /SR < R1 < R. 



limits for figures (4.5b) and (c) follow. 

The functions f1 and gl in table (4.1) refer to the inner cavity 

and the intersection of the parabola and inner cavity respectively. 

These are defined more explicitly below: 

We now consider the solution of equation (4.30) for the spherical 

shell. This requires certain assumptions to be made. 

If we consider that the source is optically thin to both ultra- 

violet and infra-red radiation and that the central source has a step 

function light curve (i. e. equation (4.22) with w- 0) then the 

integrands simplify considerably. The basic equation now has the 

general form 

e2-g1(T) 
fv (T) = A1 (sine2)2-ß cose2 . de2 

e2=g(T) 

s-f' (e2, T) 

(sinO)ß-2 

. ae (4.33) 
r/ sin92 2/a+4 

exp tH( 
sine 

)- 

62=f (e2, T) 

where the generalised--integration limits g and g' are functions of T; 

the generalised integration limits f and f' are functions of T and 02 

and H- Blr 
2 /a+4. 

The precise forms of these functions will depend 

on the relative values of * and T. 

Figures (4.6a) to (4.6e) show the regions of integration transformed 

to the (0,02) plane for the five time intervals of figure (4.5a). A 

larger cavity giving a larger value of t would of course reduce the 

area of integration as well as altering limits on 0 and 02 with time 



(see figure (4.5)). 

f (A 
2) sin_1 

sin92 
1=ý 

and gl(T) - sin 
1( [. 

r(2P 
T) ]I) 

If we define 

then in figure (4.6a) for example 

1 

9 

81(T) 

J 
f1(82) 

X =_ 
fv(T) (sin62)2-ß cos62 . da2 (sins)0-2 " 

A A1 0 2=0 
- e°82 

-1 
sin62 

)2la+4 exp ýH c sine J- 
1. de + 

8p 

(sine 2)2-0 cose2 . de2 (sine)0-2. 

e2ag1(T) e-e2 

-1 
sinA2 

2/ 
a+4 

[exp 

H 
sine 

) 
-1 d6 (4.34) 

By reversing the order of integration of equation (4.34) we 

re-define X as: - 



" (sing2)`-ý Cos02 . dg2 
(sing)ß-2. d8 

exp 
rg sin 2 2/a+4 I 

g=0 g2=fl' (A) L sing 

k'(T) e 1 (sine2)2'ß cose2 . de2 

+ (sine)ß-2. d8 /sine2) a+4 (4.35) 
exp 

["sinOJ 

e=eo 0 2=f1' (e) 

where f1'(O) - sin 
11[ 

sinO] , O1' sin 1IT sins/(1-cosh) 
J 

- T2) 
ý 

ký (T) = sin-1L 2-r (2T* 

If we take the first term of equation (4.35) and call it Xl 

(i. e. Xs X1 + X2)"then make the substitution 

sin92 
2/a+4 

xsin e 

we arrive at the expression 

en 

9 

xl H (y+l) 
sin0 xx xy-1 

. dx 
10 

Hý e1 

where H' -H 
2/a+4 

and i-( a24 ) (3 
- ß) - 1. 

en 
.6 9_a f /__-n N 

___n jn 
. sinv2) cosn2 . ant 

The integrand in x is in fact a standard form (Gradshteyn and 

Ryzhik, 1965, p. 1076) which reduces the above equation to the form 
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Figure (4.6b) As figure (4.6a) except that this 
relates to stage B of figure (4.5a). 
At point C, 02 v sin lý 
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At point D, 02 an- 00. 
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e 
co 1_ / 

X1 =I a24 
1H 

(Y+1) 
sine I 

0 n=0_ 

Bn 

n! 

where B are the Bernoulli numbers and n 

Hnn+y 
Y) Cl-*n11 

ný _ý a+4 
) (n+y) 

Thus 

. ae 

Bn ,1 
R1 .1 a24 n xTý) T C1 n (4.36a) 

n=0 n. 

Similarly for X2, substituting in the exponential and integrating 

leaves us with 

g °a+4 
Bn 

. 
Hn-1 I n'-1 nt (4.36b) 2 

(r ý 
(n+'Y) Tý nT=f Tino 

n. 1J 

Combining equations (4.36a) and (4.36b) and simplifying we arrive 

at the solution 

f(T) ' All a24, T-ýBn 
(nn+-y1 

) 
(_) 

(1 - 
(nf -1) ) (4.37a) ý 

n-0, n 

Surprisingly, when, the integrations are performed for all cavity 

ratios where T .< 24 equation (4.37a) is obtained. From this equation 

we can see that the infra-red flux rises linearly with time (c T) 

for t< 24 despite the complexity of the original conditions. 

When we consider the integrations for T> 24 the following result 

is found for all 4', namely 



a+4 c Bn An- n' 1 rt )nh_1) 2ýr 1(i. 
- f(T) A1 2n T. 

0 n: Lý'iJ n'1 2 -ý 

(4.37b) 

Obviously, when T? 2 the flux will take a constant value as the 

spherical shell is then filled with ultra-violet radiation from the 

central source, i. e. 

n-1 I 

ýiT=2) 
= A1(a+4) . 

no nB 
n (n+7) [1 

-v (4.37c) 

Apart from the approximations made earlier, these solutions also 

have other limitations. For example we can see that from the 

definition of n' and its r8le in the series. that if it ever equals 

zero or 1 the series must diverge. To avoid this we choose B<1 in 

the summation. The Bernoulli, series itself diverges for certain values 

of wavelength because the identity 

°C° Bnxn 
m1 

ex .. 1 n=0 n9 

is defined only for IxI < 2n (Abramowitz & Stegun, 1972, p. 804). Subs- 

tituting for H we find that the limiting wavelength, XB, for con- 

vergence is given by: - 

2 j-iýa+4 
[(4R2) 

( Q* 
ýB 

1r 
Ll 

/(4I' 
(a+4) Vý i) 

Qoa 

which is not, so far as"we are aware, due to any physical cause such 

as taking the'Rayleigh-Jeans limits of the Planck function. 

'According to equation (4.37a) the infra-red flux rises linearly 

with time at all wavelengths. This means that at early times the 



re-radiated spectrum is time independent (therefore so is the 'black 

body' temperature, TBB). Figures (4.7a) to (d) illustrate some of 

the effects that changing the values of variables will have. 

(4.7a) for example clearly shows that there is little spectral 

change, particularly at times T< 2ý. We may also note that in this 

case fV « V-1.8 approximately at long wavelengths; the Rayleigh-Jeans 

approximation for a perfect black body gives fv av2 in this region. 

A single temperature shell of realistic grain material would give 

fv « v2+a from what we saw previously in section(4.2.1). The resulting 

spectrum in' figure (4.7a) is of course for a shell in which a range of 

temperatures are encountered. Thus although the flux from the hottest 

grains dominates, the cooler grains contribute more long wavelength 

radiation than is the case for a perfect black body or a realistic 

grain shell at a single temperature. The spectrum is therefore less 

steep at long wavelengths. 

The steepening of the spectrum with increasing a is shown clearly 

in figure (4.7b) where different a values give different spectra - 

all other parameters remaining constant. The a-0 spectrum illus- 

trates the fact that we do not see a black body spectrum in an optically 

thin, extended source, although we might arrive at a pseudo-black body 

spectrum by choosing a, ß, R, R1 and the optical depth appropriately. 

Using the parameters of figure (4.7b) but varying ß little change 

of spectral shape was found. This is due to the fact that in this 

case the shell is geometrically thin (* ti 1) and thus the number of 

high temperature grains will be little affected. 

Figure (4.7c) shows the light curves for different values of R1, 

all else remaining constant. One can clearly see that as ý increases 

so does the extent of the linear rise. The peak luminosity is however 

diminished as there are fewer emitting grains at high temperatures. 

Figure (4.7d) illustrates the fact that the flux at any given 
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instant for a particular wavelength can be increased by decreasing a 

(as we would expect from equation (4.3)). 

We now proceed to consider general illustrative models of more 

realistic situations. 

4.4.3 Numerical Solution of the Equation of Transfer - General Models 

The computations for the infra-red fluxes derived in section (4.4.2) 

were basically straight forward and required only small amounts of 

computer time. Here however we deal with more realistic cases where 

the full form of equation (4.30) is used between limits detailed in 

figures (4.6a), (b) and (c) and table (4.1). This required a much 

longer programme which solved the equations numerically. Reference 

should be made therefore to Appendix Al where a detailed description of 

the functioning of the programme is given. 

Before the numerical integration method was used with more detailed 

and realistic models it was run alongside the analytical solution 

described in the previous section with a step function light curve; an 

optically thin dust shell and all the other conditions required by that 

analysis. This was carried out for a large number of values of To 

R, A etc. The result was that, with 50 integration steps in 02 and 100 

in 6, the two programmes did not differ by more than + 1% which was 

considered satisfactory agreement. We now proceeded using the numerical 

integration method as a much more versatile tool having checked first 

for example that the infra-red flux now increased as the shell becomes 

slightly more opaque to ultra-violet radiation. 

To explore the effects of a more realistic set of parameters the 

first model chosen was that of a typical nova with what were considered 

fairly reasonable dust shell parameters. Figure (4.8a) for example 

results from choosing the parameters 
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R= 5x 1017cm R1 s 1O15cm 

a=ß=2 D=1 kpc 

a= 1Ö-5cm Mg = 3.3 x 10-6 MG 

Q 
abs 

2 

The light curve responsible for grain heating was given a peak 

bolometric luminosity of 5x 1038 ergs/sec and an exponential decay 

with an e-folding time of approximately 10 days. This was taken from 

the visible light curve of a moderately slow nova. There is reason to 

suspect that this is in fact not the curve to be considered as. respon- 

sible for grain heating but the true curve is probably somewhat similar 

(see Chapters 2,3 and 5). 

The grains are presumed to exist before the nova outburst, either 

due to condensation from mass lost in previous outbursts or from ejecta 

from the system between outbursts. As in the analytic solution we 

normalise the absorption efficiency such that Qabs s 0.135 at v-1.36 x 

1014Hz for the10'5cmgrains considered here. With these parameters 

and a dust mass of 3.3 x 10-6M0 the shell is optically thin both to, 

ultra-violet and infra-red radiation. 

Figure (4.8a) clearly shows that there is a rapid rise to maximum 

(this would be less rapid for a larger value of RI of course) and a 

much more gentle decline after the peak for all wavelengths. The 

position of the peak changes however and occurs later for longer wave- 

lengths. We may also note that the decline from maximum is roughly 

exponential with a steeper decline for shorter wavelengths. This 

causes the light curves to cross so that one wavelength predominates 

at a given time. This in turn gives rise to a 'cooling' effect as is 

shown in figure (4.8c). The black body temperatures were derived from 

spectra such as those in figure (4.8b). This rapid fall in temperature 

towards a constant value is similar to the behaviour of the novae which 

have been studied in some detail in the infra-red and described in Chapter 

2. 
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Figure (4.8d) shows the variation in the theoretically calculated 

black body and real angular diameters of the emitting region with time 

(9BB and 0 respectively). It can be seen here that the real and 

theoretical values differ by a factor of k2x 103 and thus ABB is not 

a reliable indicator of source dimensions. 

If figures (4.8a) (b), (c) and (d) are compared with the obser- 

vations of Nova Vulpeculae 1976 (Ney & Hatfield, 1978) then the 

qualitative resemblance at times after the visible light has undergone 

! transition' are quite striking. This in fact led us to apply our 

model more specifically to individual novae (see Chapter 5). 

The effects of changing a and ß are illustrated in figure (4.9) 

where the flux at 10 pm is plotted against time. It can clearly be 

seen that as a decreases so the peak flux increases. This behaviour 

was encountered in section (4.4.1). We may also note that the lower 

the value of a, the steeper the decline from peak and the earlier that 

peak occurs. This is because Tg ar 
2/a+4 

and therefore the smaller a 

is the greater the temperature gradient across the shell which con- 

centrates the highest temperature grains into a smaller volume. 

Decreasing ß decreases the flux drastically because there are fewer 

high temperature grains (N1R1a decreases) and the greater number of low 

temperature grains cannot compensate for this. However the fact that a 

lower value of ß gives more grains at large distances (for a given grain 

mass, Mg) means that the peak emission occurs later and the light curves 

are somewhat shallower, particularly at long wavelengths. 

We will now consider the variation of surface brightness with time 

across the disk as seen by a distant observer for the case of a nova- 

like central source. 

4.4.4 The Variation of the Observed Surface Brightness 

Figures (4.10a) and (4.10b) illustrate the temporal variation of 
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surface brightness as observed by a distant observer across a diameter 

of the visible disc of grains. In both cases the observing wavelength 

is 5 pm and the dust shell and central source parameters are similar to 

those of the novae discussed in the following chapter. 

If we consult figure (4.10a) where the grain density falls away 

as r2 (ß = 2) we can see that the surface brightness at time T=0.13 

peaks at'a displacement from the centre r' = 1016cm (r' = DISP in 

Appendix Al). ' At later times it peaks more sharply at r' = R1. This 

is because the highest grain temperatures are to be found at early 

times (T < p) where the parabola of emission cuts the inner cavity. 

At later times the longest lines of sight through the source which con- 

tain high temperature grains lie_ at displacement R1. A distant 

observer thus sees an expanding disc or ring (depending on the resolution 

of the object against the background; see below). The expansion 

continues until T= ip for the brightest part of the observed disc, then 

ceases. 

The expansion of the brightest portion of the disc is related to 

R1 rather than R for the reasons given above. Thus superlight effects 

would be most easily observed for a time Tl ti 1- 1/�2 
where T1 - ct/R1. 

This conclusion is slightly different from that reached in Bode and 

Evans (1979a) where it was not at that time appreciated that the surface 

brightness at the inner cavity would so far exceed that near the outer 

shell boundary. 

The region of maximum surface brightness ceases expansion at 

Ti = 1. Thus if the time tc from outburst to cessation of expansion is 

known then RI can be found as R1 - ctc. Therefore, knowing the angular 

diameter of the source, the distance of the object (independent of inter- 

stellar extinction) could be found. 

Figure (4.10b) shows the variation of surface brightness across 

the observed face of a similar dust shell but where the grain density is 
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constant (ß = 0). The behaviour is obviously similar to that for the 

0- 2 case-particularly as far as the variation of the maximum surface 

brightness is concerned. We may also note that as in figure (4.10a) 

the surface brightness in the central region falls for T< 2* then 

increases again as the parabola of emission leaves the central cavity. 

As well as the flux from the source itself we would of course 

observe in any real situation that from any background there may be 

present. Any source observed through the dust shell will be seen to 

experience an extinction of its emitted flux dependent upon the displace- 

ment of the line of'sight from the centre of the observed disc. 

Therefore for a background surface brightness (EBG)O the contribution 

to the dust shell surface brightness will be given by 

BG 2)} E(e2) - (EBG)0 eXP 1- aBG(e 

where 6BG(02) is the optical depth across the shell at displacement 

R sin e2. We therefore have 

f1 (82) 

dBG(92) = 21ra2 N1R1 4abs (R sinA2)1-ß 
1 

(sin0)ß-2 d6 

I 
02 

(92 < sin-' p) (4.38a) 

7r /2 

6BG(e2) = 2na2 N1R1 gabs (R sine 2)1-ß (sine)ß-2 dA 

02 

(02 3 sin -1 0 (4.38b) 
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If we plot optical depth against displacement r' then we can see 

from figure (4.11) that for the dust shell of figures (4.10a) and 

(4.10b) the extinction peaks at displacement R1, with decreasing extinc- 

tion between R1 and the centre of the disc. This means that the 

surface brightness at R1 will be less clearly defined against the infra- 

red background. 

4.4.5 Sinusoidal Variability 

So far in-this work we have dealt with central sources whose light 

curves qualitatively resemble those of classical novae. We will now 

briefly investigate the effect on the resultant infra-red flux of placing 

a sinusoidally varying source of ultra-violet radiation at the centre of 

the dust shell. 

The central source has a light curve of the form 

L(t) = Lý + L1 sin(wt) (4.39) 

where L0. =µ5 x 1045 ergs , L1 =2x 1045 ergs-l, to Q 10-7 s-1 here. 

Thus a dust shell with R=1.89 x 1018 cm has a radial light travel time 

equivalent to the period of the central source. These parameters are 

similar to those for certain Seyfert galaxies. 

If we now consider figure (4.12a) where the relative amplitude of 

the flux is plotted against time we can see that varying the dimensions 

of the inner, radius has an effect both on the amplitude and phase of 

the infra-red flux with respect to those of the central source. 

Apparently the larger the cavity the larger the observed phase difference 

between the ultra-violet and infra-red fluxes on the whole. The most 

unexpected feature at first sight is that the actual period of the 

variation is not at all affected by cavity size change and in fact is 

an 'echo' of the variation of the central source. 

It is also interesting to note that the largest relative variation 

is for the largest cavity. In real terms however this is the smallest 
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variation. Not surprisingly, from what has been seen before, 

alteration of R has little effect compared with alteration of R1. 

Figure (4.12b) details the variation of phase and relative 

amplitude with changing d* (all else constant). As the shell becomes 

progressively more opaque one can see that the phase difference becomes 

less and the relative amplitude increases. The former effect is 

probably due to the effective shell producing the bulk of the 5 um flux 

decreasing in size whilst the latter is due to there being less mixing 

of emissions from grains at larger distances. 

If we consider equation (4.3) we can see this illustrated as the 

bulk of the flux at wavelength A will come from a region the dimensions 

of which are approximately given by 

rIN ti const. X 
(a+4)/2 

e 
d*/2 (4.40) 

thus as ö* increases, rIN will decrease and so will the phase difference. 

We now consider figure (4.12c) where relative flux is plotted 

against time for 2.2,5 and 10 um. Again it is at first sight surp- 

rising that the period of variation is not sensitive to shell size. 

The phase difference between the ultra-violet and infra-red flux curves 

is also similar for all three wavelengths. However the relative 

amplitude for the 5 and 2.2 um curves is far greater than for the 10 um. 

This is not unexpected as equation (4.40) suggests that larger wave- 

length contributions will come from regions more distant from the 

central source. This will tend to mix the fluctuations together so 

that the relative amplitude will diminish. 

4.5.1 Conclusion 

In this chapter previous theoretical work has been extended by the 

inclusion of finite light travel time considerations to the theory of 
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variable thermal infra-red sources. The application of the findings 

of the early sections of this chapter to actual cosmic sources has 

been qualitative thus far. However in the next chapter we will 

attempt to apply the results of this chapter to specific astrophysical 

objects. 



CHAPTER 5 

Models of the Infra-red Development of Specific Novae 

5.1.1 Introduction 

It had long been suspected that the visual light curve of novae 

was not representative of the development of emission at all wavelengths 

when observations were made of Nova Serpentis 1970 (see Chapters 2 and 

3). 
. 

This nova has since been called 'the Rosetta Stone of nova 

energetics' (Gallagher, 1977) as it was among the first to be observed 

in, detail from radio to ultra-violet wavelengths. The ultra-violet 

observations confirmed earlier suspicions that novae increase in 

observed.. effectivetemperature as the visible flux declines. 

The development of an increasing infra-red excess after " day 45 

was however unexpected (Geisel et al., 1970). This seems to be a 

common characteristic of moderate speed novae as it has also been 

observed in Novae Aquilae 1975, Vulpeculae 1976 and Cygni 1978 for 

example. 

In all cases the late developing infra-red spectrum has resembled 

a fairly featureless black body emission with characteristic temperature 

1300°K. This has led previous workers to associate it with thermal 

emission from dust grains (see for example Ney & Hatfield, 1978). 

The absence of any apparent emission features at A 'ý, 10 pm has tended 

to indicate that the grains are not silicates and most authors have 

considered them to be composed of graphite (Clayton & Wickramasinghe, 

1976). 

The question has arisen as to how these grains formed and how 

this formation process might account for the lag between optical and 

infra-red peak emission. Most authors have taken the view that grains 

form rapidly in the ejecta of the concurrent outburst and subsequently 



cool as-they grow and increase their distance from the central object 

(see section (3.5.2)). This mechanism has been seen as naturally 

accounting for the change of slope of the visual light curve (transition) 

which appears to coincide with the onset of infra-red rise. In this 

chapter we will examine the plausibility of rapid grain formation as 

the mechanism behind the infra-red emission of novae. 

As we have already seen in chapter 4 certain characteristics of 

the infra-red light curves of novae arise simply by placing centrally 

a source with alight curve as defined in equation (4,22) in a 

spherically symmetric dust shell. The main difference between this 

simple model and the observed infra-red behaviour of novae is the lag 

between visual flux maximum and infra-red rise. We will show that for 

small graphite grains this follows quite naturally as the central 

source effective temperature increases. The correlation between infra- 

red rise. and the onset of transition then results. 
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5.2.1, Rapid Grain Formation in Nova Ejecta - Introduction 

In this section we will consider in some detail the rapid grain 

formation models of the infra-red evolution of novae. Reference 

should be made to section (3.5.2) where a summary Of each of the papers 

considered is given. ' 

5.2.2 Discussion of Clayton and Hoyle (1976) 

The first detailed attempt to explain the correlation between 

visual and infra-red behaviour in Nova Serpentis 1970 made by Clayton 

and Hoyle (1976)0 utilise&a storage and release of energy by a shell 

of grains initially optically thick and then becoming optically thin 

to the central object flux. This would not only explain why the visual 

luminosity dropsbut also why the peak infra-red luminosity was, 

accordingýto Clayton and Hoyle, greater than the visual luminosity at 

that time.,,, 

Taking the-latter point first, it appears that it is generally 

accepted now that the infra-red luminosity peak was actually less than 

the luminosity of the underlying object (e. g. Clayton & Wickramasinghe, 

1976; Tylenda, 1978). Thus the shell of grains need not be very 

opaque (i. e. 6 1) and the storage and release mechanism is not 

required* 

The steady decline in the visual light curve is now thought to be 

due to the shift in the peak continuum flux from the central object to 

shorter wavelengths (see section (3.5.1) and references therein). 

As we have seen in chapter 2 the ultra-violet observations of Callagher 

and Code (1974) have supported this point of view. Indeed Clayton 

and Hoyle themselves state that unless the ultra-violet flux originates 

externally to the growing dust grains there can be no substantial dust 

formation 'prior to day 57. As we have seen in section (3.5.1) the 

shift in continuum flux to short wavelengths is generally thought to 
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be due to the gradual uncovering of the central object as the ejecta 

expand. -The change of slope at transition is part of this process 

(see below). 

-The assumption of Clayton and Hoyle that the grains that formed 

in'-the ejicta were graphite is based on the fact that carbon may well 

be over-abundant in'nova events (see for example, Starrfield et al., 

1974)'and that no, silicate emission feature emerged in the 10 Pm 

observations of the nova (Geisel et al., 1970). 

The work of Starrfield et al. (1974) has however tended to 

indicate'that although carbon is over abundant, so also is oxygen so 

that the'abundance ratio C/O is less than unity. In that case most of 

the carbon'would be taken up in CO molecules and therefore would not 

be free"to form grains (Yamamoto & Nishida, 1977). 

'Evidence that CO did indeed form in large quantities during the 

outbursts, of Nova Serpentis 1970 and Nova Vulpeculae 1976 before tran- 

sition is deduced by Ferland et al. (1979) from the excess at early 

times (< 30 days from outburst) in the 5 Um flux. This early excess 

has been attributed by Clayton and Hoyle (1976) to thermal emission 

from very early forming grains. However, by using the principal 

spectrum velocity in their model the time of onset of grain growth would 

be around 33 days which is rather late to-explain the early excess. 

It is now generally accepted that this apparently narrow emission at 

5 um is'actually a line feature (Ney & Hatfield, 1978; Ferland et al., 

1979). 

5.2.3 Discussion of Clayton and Wickramasinghe (1976) 

Clayton and Wickramasinghe (1976) have, as we have seen, developed 

the model of Clayton and Hoyle to accommodate the optically thin grain 

growth case. Like Clayton and Hoyle they assumed that graphite grains 

formed in the ejecta of Nova Serpentis 1970 from over-abundant carbon 
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atoms. For their model to fit the observations qualitatively they 

required that the ejecta consisted solely of carbon atoms so that, the 

depletion of atoms into grains did not affect the number density of 

atoms at-all (this is-not crucial however). With an ejected mass of 

3'xý 10-4 Me, 3x 10 -5 M0 of 2x 10-4 cm graphite grains were needed at 

day., 100, from discovery* This rapidly growing shell of grains is then 

thought, to cause the rapid decline of the transition stage which begins 

at v 58 days from discovery in Nova Serpentis 1970. 

If we suppose that'the increasing grain size of Clayton and 

Wickramasinghe's model does indeed cause the steep drop in visual 

luminosity of the transition then the optical depth to visual light must 

maximise at around day 90 (i. e. at the transition minimum). Assuming 

a difference of Iv 3.8 magnitudes during transition from an extrapolation 

of the pre-transition light curve gives the optical depth to visual 

light, 6vqý= 3.5. 'Thus the dust cloud would need to be optically 

thick even, at these comparatively long wavelengths. 

In order for the carbon gas density (N do at day 45 to be 1%, 10 9 
cm -3 

_1 -4 
with vej Iv 2000 kms and MjN3x 10 Met *0 0.99 where *0 is the 

ej 

value of * at t-t0. This would mean that the bulk of the ejection 

occurred within one day of outburst if the ejected shell maintained 

constant thickness. If we assume more realistically that *0C, 0.9 

(i. e. ejection lasted 1%, 5 days) then (N do 1%, 10 8 
cm73. With this latter 

value of ý0 and assuming that the shell moves outward with constant 

velocity, retaining constant thickness, we can use equations (3.27a) 

and (4.8) to find the change in optical depth with time at UBV wave- 

lengths as the grains grow and the shell expands. 

With the total number of grains remaining constant on this model 

(Clayton & Wickramasinghe give NTOTAL C 7.3 x 1038) we arrive at an 

expression for the change of optical depth with time, i. e. 



r2 -2 
6 (t) = 0.611.10a 

(6cm 4abs (X' a(t)) 
11 

day 
1 

(5.1) 

Using results from Mie theory computations (Evans, 1979) for the 

change of Qabs with a at UBV wavelengths together with the values 

(Clayton & Wickramasinghe, 1976) a0 z3x 10-7 cm and aco a2x 10-4 cm 

in equation (3.27a) for the increase of grain size with time, figure 

(5.1) was drawn. From this figure it can be seen that the optical 

depth does indeed maximise at ti 90 days although the maximum optical 

depth is "1 only (this is little affected if a larger value of *0 is 

taken). 

During the period of grain growth the colour excesses, EB_V and 

EU_B, change with time-as 1.086 (dB - 6V) and 1.086 (6U - 6B). On 

this model the nova would appear to redden slightly during the first 

day ((EB_V) 
max 

ti + 0.04, (EU_B)max ti + 0.02) but subsequently up to day 

75 would appear bluer than the underlying photospheric temperature would 

suggest ((EB_V) 
min 

N-0.05, (EU_B)min ti - 0.03). Surprisingly 

therefore the growth of grains would, on this model, have a virtually 

undetectable effect on the nova cölour during this time. The fact 

that little general reddening was seen by Hutchings and Fisher (1973) 

does not rule out the hypothesis that large grains (; t 1.5 x 10-5cm) 

formed relatively quickly. It does however tend to rule out smaller 

grains being present in sufficient numbers to cause the change of slope 

and give rise to. the infra-red excess from ti 45 days. This is because 

small grains would cause a substantial increase in reddening at this 

time. 

The work of Lef lyre (1979) on the formation of graphite and silicate 

grains in 'nova' and 'cool stellar' environments has however shown that 

to form the 2x 10-4 cm graphite grains required by Clayton and 

Wickramasinghe's-model (Nc) Z 10 11 
cm -3 is needed. This would require 

0 
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-4 -1 <, 10 if v 2000 kms In other words the total ejection 0N ej, 

would have occurred in ;ý 61 minutes. LefeVre also concluded that even 

under ideal conditions with ac=1 and no monomer depletion (or grain 

erosion by evaporation or sputtering) there will be effectively no grain 

8 -3 growth for (N 
c)0g, 

3.10 cm even if v ej 
is as low as 500 kms 

For graphite grains of a., 
O 

>, 1.5 x 10-5 cm, (N d0 ;t 10 10 
cm-3 and thus 

1- *0 eO 2x 10-3. It would therefore appear that the rapid formation 

of large graphite grains, even under ideal conditions, is somewhat 

difficult in nova ejecta (this point of view is also supported by 

Krelowski, 1978). 

If, however, only small grains are formed then we have to explain 

why during transition the U-B index decreased indicating the object was 

actually becoming bluer (Borra & Andersen, 1970) and why there was little 

indication of grain growth (up to day 57) from the observations of 

Gallagher and Code (1974). The latter of course could be explained by 

assuming that large scale growth did not occur until the onset of tran- 

siti6n which would also explain why the steep drop in visual flux occurs 

here (unfortunately Gallagher and Code's observations ceased before 

transition). We may also note that if small graphite grains are used 

in the model of Clayton and Wickramasinghe (1976) then the reasonably 

good fit to the temperature behaviour of the infra-red excess for large 

grains is lost. 

Finally we must note that from the work of Bath and Shaviv (1976) 

and the observations of Gallagher and Code (1974) the continuum teur- 

perature of the nova, T* 14000°K at 45 days and 19000°K at 57 days 

(see section (5.4.1)). Thus if we use the value T* = 15000°K with 

ve] - vp = 700 kms-1 in equation (3.26b) we find t0 ti 180 days by which 

time, according to both theory and observation, T* will have in any 

case increased as well (see section (3.5.1) and references therein) 

making this value of t0 an underestimate. 
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5.2.4 "Discussion of Gallagher (1977) 

Gallagher (1977) based his predictions of grain forming novae on 

the as I sumption that Nova Serpentis 1970 was typical of all grain 

forming'novae. Thus the'decision to choose Tc= 1300 0K in his model 

0 
was based'on this assumption although he calculates Tc 1m, 2000 K (as do 

Clayton & Wickramasinghe, 1976). If we assume this latter value of 

Tc the onset of dust formation, to, is decreased considerably and even 

Nova Cygni 1975 would be expected to produce dust, as would other novae 

without transition slope breaks. 

The main assumption of this paper is that the transition slope 

break marks the onset of large scale dust formation. However Gallagher 

himself points out that this is somewhat controversial. McLaughlin 

(1960) has for' example pointed out that the deep transition minimum 

of DQ Herculis was not, as originally thought, due to the formation of 

an obscuring cloud of I dust grains in front of the nova. A favoured 

explanation for transition is the point in the outburst where the 

central object is uncovered (see for example, Payne-Gaposchlin, 1957, 

p. 299; Warner, 1976ý p. 123; Bath, 1979 etc. ). Certainly the under- 

lying continuum flux appears to shift its peak to much shorter wave- 

lengths at this, time (see e. g. Nariai, 1974) and the spectrum generally 

changes'from stellar to nebular (McLaughlin, 1960, p. 609) with 

excitation increasing with time (see figure (3.5)). It is rather 

difficult to associate these transition phenomena with grain formation. 

Gallagher notes that Geisel (1970) has correlated the emergence 

of FeII and (FeIII] emission lines with infra-red excesses, however 

t his may be indicative of the product of the central source spectrum and 

the absorption efficiency profile at this particular part of the out- 

burst (see section (5.4.1)). The fact that slow and moderate speed 

novae possess a notable FeII emission and fast novae do not may, 

according to McLaughlin (1960) p. 609, be just a contrast effect. 
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There are other details of the theory which bear further scrutiny. 

For example Gallagher himself notes that in Nova Serpentis 1970 during 

the epoch when nucleation centres would have to form, the material 

giving rise to the principal spectrum was overtaken by that giving the 

diffuse enhanced and Orion spectra. As we have seen in chapter 2 the 

velocity difference exceeded 1000 kms 1. Gallagher notes that dis- 

ruption of, the large-scale nucleation process might result from these 

shocks. 

He also makes the point that grain formation will of course be 

inhibited by ionisation. Yet it is at the transition stage that much 

of the_ejecta become ionised. In other words just as grains are 

growing the material from which they would grow is becoming unavailable 

to them. The point to in this work would therefore not only mark the 

point of instantaneous formation of nucleation centres as in Clayton 

and Wickramasinghe (1976) but in fact almost instantaneous grain growth 

before the shell became completely ionised at time ti 0 130 days in 

Nova Serpentis 1970 using Gallagher's arguments and parameters). 

.. 
Finally, if we examine his success with the prediction of which 

novae appear to have detectable infra-red excesses and/or a slope break 

we find. that the fast nova EU Scuti has a slope break whereas it appears 

that Nova Cygni 1978 has none (Dunlop, 1979) and yet developed a large 

infra-red excess (Gehrz et al., 1978). It is still uncertain whether 

the. very fast nova Cygni 1975 developed a thermal infra-red excess 

(see Chapter 2). The slow nova HR Del (Nova Delphini 1967) has a pre- 

dicted dust formation time of 45 days but the slope break did not occur 

until " 350 days. As we have seen in chapter 2, Geisel et al. (1970) 

detected a small, ti 300°K, excess after 1150 days. 
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5.2.5 Discussion of Yamamoto and'Nishida, (1977) 

Yamamoto and Nishida have, as we have seen in chapter 3, concluded 

that carbon atoms will preferentially be taken up by oxygen to form 

carbon monoxide, not graphite grains, if C/0 < 1. The work of 

Ferland et al. (1979) on the 5 pm excesses of Novae Serpentis 1970 

and Vulpeculae 1976 seems to support this. Their conclusion is also 

supported by the spectra of Nova Serpentis 1970 which do not indicate 

that carbon was the main constituent of the ejecta as would be required 

by Clayton and Hoyle (1976). Yamamoto and Nishida therefore considered 

silicate grain formation more likely. 

This latter aspect of Yamamoto and Nishida's theory does not appear 

to fit the observations however. The growing grains are expected to 

reach maximum radius in ti 10 days. Thus if grain formation causes 

transition the transition minimum should occur < 10 days from slope 

break, which, in the case of Nova Serpentis 1970, it does not. The 

most conclusive observational evidence against the formation of 

silicate grains is the lack of any apparent spectral features at around 

10-12 um in Nova Serpentis 1970 or Nova Vulpeculae 1976 which are 

characteristic of this grain type. 

Again LeUvre found that high densities of Si0 molecules are 

required for grains to form in a nova environment. However, unlike 

graphite grains he concluded that the required densities were so high 

as to always preclude any rapid formation in that situation. 

5.3.1 Pre-existing grains'- Introduction 

If one is to conclude that large scale formation of grains'in each 

nova. outburst is not altogether a reasonable proposition the problem 

remains of providing sufficient grains from other processes to explain 

the undoubtedly thermal origin of the late developing infra-red 

excesses of certain novae. Obviously, if we say that grains are not 



formed in large enough numbers in the concurrent outburst they must 

have existed prior to that outburst. 

5.3.2 Observations Indicating Pre-existing Grains 

Evidence for the pre-existence of circumnova material has come 

from several areas of study. Spectral scans of HR Del revealed the 

presence of narrow emission lines of ionised metals, Sill and hydrogen 

with initial half widths ti 30 kms-1 increasing to 140 kms-1 during 

postmaximum; these lines would seem to arise from a pre-existing shell 

(Antipova, 1978). Similar narrow lines (HWHM = 30 kms 1) 
with blue 

shifts of -95 kms-1 have been seen in absorption in Nova Cygni 1978 

(Cassatella et al., 1979). The latter have been ascribed to MnII, 

FeII and MgI in a pre-existing circum-nova shell. 

As we have seen in chapter 2 there is strong evidence that grains 

existed prior to outburst in Novae Delphini 1967 and Serpentis 1970 

from the polarisation studies of Zellner (1971) and the Balmer decrement 

studies of Malakpour (1973 and 1977). Zellner detected little change 

in the polarisation during the time the infra-red excess developed and 

he concluded that the polarising grains were not responsible for the 

infra-red rise. Malakpour on the other hand suggested that these pre- 

existing grains were large nucleation centres (a A, 10-5 cm) on which 

condensation took place giving still larger grains and hence the infra- 

red excess. However Draine and Salpeter (1979) have found that the 

sputtering. yield of hydrogen on graphite maximises when the hydrogen 

atomic velocity "1 kms 
1 

and remains high thereafter. Thus the 

relatively dense fast-moving ejecta might be expected to destroy 

rather than enlarge more or less stationary grains at ti 5x 1014 cm. 
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5.3.3, Possible Grain Origins 

Assuming that it is unlikely that classical novae are 'accidentally' 

embedded within inter-stellar dust clouds of relatively high density 

we are left with several other alternatives for their origin. 

Malakpour (1978) has speculated that the grains he detected'prior 

to infra-red 'rise may have formed in'the ejecta of the last outburst 

over a long inter-outburst period. If novae are recurrent phenomena 

(Ford, 1978) then the amount of circum-nova grains would perhaps increase 

as the system gets older. Malakpour has found that the inter- 

outburst timescale of 103 to 107 years is, in the latter case, great 

enough to form 10 5 
cm graphite grains from the ejecta. f It'is 

suggested that these grains will not approach closer than ti 3x 1015 cm 

to the quiescent system (Malakpour, 1978). 

In the formation of the nova system some of the original material 

may have been left over at great distances from the central object. 

From this material grains could have slowly condensed. Objects where 

this is apparently the case do exist. Harvey et al. (1979) have 

found that there are several emission line stars, which are relatively 

young objects, possessing substantial far infra-red excesses. These 

excesses are thought to be due to extensive clouds of dust with cloud 

diameters ý 40 arc sec surrounding the central objects. The best fit 

to the observed fluxes arose by assuming a grain density profile with 

ß=1 (which is a value which will be relevant later). It is perhaps 

questionable however whether novae are relatively young. 

Direct observational evidence exists that cataclysmic binary 

stars lose mass (e. g. Robinson, 1973). This is thought to be due 

to instabilities in accretion increasing the accretion disc radius 

beyond that of the Roche lobe. In the case of the dwarf nova Z Cam 

the mass lost between outbursts is calculated to be, - 90% of that which 

actually reaches the white dwarf surface (i. e. Z 2.4 x 10-9 Mp yr-1 - 
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Robinson, 1973). 

Antipova (1978) ascribes the narrow'emission lines and deceleration 

of ejecta in, Nova Delphini 1967 to a shell of material lost by the 

cool component of the nova system during the quiescent stage. As it 

is well known that grains do form in the ejected circumstellar gas of 

numerous-systems, (seesfor example Salpeter, 1974) it is not unreason- 

able to suppose that this may be the case in a nova between outbursts. 

Indeed Coullin-Souffrin (1978) has shown that in several novae the 

CNO elemental abundances decrease with time in the post nova stage. 

Some of this depletion might perhaps be due to grain condensation. 

Grains may also form-within the atmosphere of the cool component 

and be ejected into circumstellar space by radiation pressure as they 

grow. This process depends on the atmospheric gas temperature being 

low enough at some point for condensation to proceed; ýthe availability 

of condensates and a high enough ratio of stellar luminosity to mass 

for escape to occur. The cool component, although possibly capable of 

forming grains within its atmosphere, would (following Salpeter, 1974) 

have difficulty ejecting them due to its relatively low luminosity 

Q L0) . 

5.3.4. Trapping of Outflowing Grains 

If grains form in the concurrent outburst as described by Clayton 

and Wickramasinghe (1976) then we expect them to be affected by 3 main 

forces: - 

i) Radiation Pressure, Pr 

ii) Gravitation, G 

iii) Gas Drag, Dr. 

If the radiation pressure function, PFN = Qpr L (where L is the 

nova luminosity and Qpr is the Planck mean of the efficiency factor 

for radiation pressure)-peaks at the time the grains are formed (at 
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which time L is at a maximum) then this must decay in some way over 

the inter-outburst period. It is usually thought that classical novae 

at the quiescent stage have L ti L0 (defining (PFN) 
1 for Qpr ti 1). 

Indeed Gallagher and Holm (1973) failed to detect Nova Serpentis 1970 

at X< 425OÄ 1.6 years after it was observed as a very bright ultra- 

violet source (Gallagher & Code, 1974). 

It will be shown in the following section that for small (10-6 cm) 

graphite grains the radiation pressure function will be similar-to the 

'heating function' HFN in its qualitative behaviour. 'If this is so 

then the exponential decay of HFN derived below may also apply to PFN. 

In the absence of contrary evidence we will assume this to be the case. 

Thus the radiation pressure force on a grain will be described by 

equation (5.2a) below where (PFN) 
0 

is the radiation pressure function at 

t- t0 (taken to be equivalent to L at this time), i. e. 

2 [PFN)0 

r 
a2 exp(- wt) + (PFN)11 (5.2a) 

4r c 

Gravitational force between the grain and nova system is of course 

given by 

Ga4 
7ra3sM* YG 

3 r2 
(5.2b) 

and gas drag (for the relative gas-grain velocity i» thermal velocity 

of gas atoms) by 

Dr = nag NH M. r2 (5.2c) 

if the circum-nova gas is assumed to be predominantly hydrogen 

(Wickramasinghe, 1972). If, as is most likely, the gas originates 

from, the central object then the gas density will be radially dependent, 

i. e. NH -, NH(r). 

For particles moving through what would undoubtedly be at least a 
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partially ionised gas there would also be drag induced by Coulombic 

interactions of grain and ions (Draine & Salpeter, 1979). We will 

however ignore this together with sputtering of grains and interaction 

of grains with the current ejecta. 

The equation of grain motion is then given by 

3ýrra3sr=Pr-G-Dr 
(5.3) 

The initial conditions derived for grain formation by Clayton and 

Wickramasinghe (1976) are assumed (i. e. f= 1000 kms r- r1 =5x 

1014 cm at t 0) and w=1.39 x 10-7 S-1 ((PFN)0 =3x 1038 ergs-l, 

(PFN) 1=4x 1033 ergs-'). This choice of w stems from the decay 

rate of the heating function (defined in the next section) as applied 

to'Nova Serpentis 1970. 

Antipova (1978) found that the law of conservation of momentum 

if applied to the deceleration of ejects in Nova Delphini 1967 implied 

a gas density of ti (0.5 - 1.0) x 106 cm 
3. This is an order of mag- 

nitude less than the densities found in the gas shells of Symbiotic 

stars but it gives an indication of the gas number density (NH)1 that 

might be found at the initial radius rl. The gas number density is 

then assumed to fall as r -2 (i. e. corresponding to constant gas outflow) 

although the gas itself is assumed static with respect to the out- 

flowing grains. 

Equation (5.3) was solved numerically using the NAG library routine 

D02AJF for various values of (NH)1 and a (though a was assumed constant 

for each case as grain growth was considered to be complete). 

From these results figure (5.2) was drawn for various com- 

binations of grain radius a and gas density at rl, (NH)1. It was 

found that for (NH)1 = 104 cm 
3 

even grains with a ti 10-6 cm would 

escape the system with terminal velocities ti 500 kms-1. However it can 

be seen from the figure that if (NH)1 - 10 cm grains with a ti 10 cm 
536 
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reach' Ia terminal velocity "'" 20 kms 1 
after Iv 1000 yrs. Again for 

a 'q 10 
5 

cm and above the grains escape rapidly. 

If the gas density at rl is assumed to be 106 cm 
3 

then although 

2 x,, 10-4 cm grains still have a high velocity after ti 1000 years 

(>`400 kms 1) both a= 10-5 and a= 10-6 cm grains are quickly reduced 

to velocities'less than the mean thermal velocity of the gas very 

rapidly. For 10 5 
cm grains this occurs in 1.2 yrs and for 10-6 cm 

grains in 2.2 yrs. Of course at these low velocities equation (5.2c) 

will not be strictly, valid but qualitatively the results are expected 

to be similar. 

.' If the gas density were 105 cm 
3 

at r1 .5x 1014 cm with 

r- 10 kms 1 
then the mass loss rate at the surface of the cool com- 

ponent, Mgas$ ti 10-7 - 10-6 M0 yr-1 if Vgas " 10 - 100 kms-1. This 

rate of mass loss is rather higher than Reimers (1975) deduced for a 

star similar to that generally accepted as a nova secondary. However 

it may not be unreasonable for a nova system where not only is a large 

amount of mass lost at outburst but also possibly. from the accretion 

disc between outbursts as well. 

Of course the circum-nova gas shell will neither be uniform or 

completely continuous. However the above results suggest that ambient 

gas can trap grains formed at outburst and will also act as a selector 

of grain size allowing progressively smaller grains to escape as lower 

gas densities are assumed. 

5.4.1 The Heating Function 

If grains do exist around the nova before outburst in sufficient 

quantity to give rise to the late developing infra-red flux then it is 

at first sight surprising that they do not emit most strongly at the 

time of visual maximum. However as we have seen in chapters 2 and 3 

the visible light curve is a misleading indicator of what is truly 
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happening to the bolometric luminosity of the nova. 

In figure (2.4) the observational results of Gallagher and Code 

(1974) clearly show that the continuum flux of Nova Serpentis 1970 

gradually shifted to shorter wavelengths with time whilst the bolometric 

luminosity remained constant. If a dust grain were of a size and 

composition such that its absorption efficiency peaks in the ultra- 

violet then its peak temperature would occur when the product of the 

luminosity of the central object, L(v), and the absorption efficiency, 

4abs(v' a), ', integrated over all frequencies, maximised. What we are 

thus concerned with is the temporal behaviour of what we will henceforth 

call the 'heating function', HFN. We will define this by the expression 

ý 
HFN =J1L (v) Qabs (v' a) dv (5.4) 

0 

For a moderate speed nova the bolometric luminosity is now 

generally taken to be constant. Therefore to compensate for the 

increase in the effective temperature of the pseudo-photosphere, T*, 

-2 
the photospheric radius, r*, must decrease as T*. From the work of 

Bath and Shaviv (1976) T* is related to the drop in visual magnitudes 

from visual maximum Am, i. e. from solution of the expression 

Am - -2.5 log 1- 
14 B(a, T*)dX 

(5.5) 
j0 B(X, T*)dX 

t. 

1 

For the later stages of novae T* is large enough for the emission 

through the filter (whose cut-off wavelength is taken to be Ac) to be 

in the Rayleigh-Jeans tail of the Planck spectrum, thus equation (3.22b) 

was derived by Bath and Shaviv (1976). However for Ac a 5000ä 

(V-filter) at temperatures below T* N 10000°K the full form of the 

Planck function was used in the solution of equation (5.5). 

Following Bath and Shaviv (1976) the bolometric luminosity of the 
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central source was taken to be the Eddington luminosity of a one solar 

mass object. 

The change in Am with time for Nova Serpentis 1970 was taken from 

the smoothed data of Grygar et al. (1971). This led to derived values 

of T* which agreed reasonably well with the observations of Gallagher 

and Code (1974) over the first 57 days of the outburst. The steepening 

of the light curve at transition obviously led to an increased rate of 

temperature rise at this time. 

In order for the heating function to peak at late times the 

absorption efficiency must peak at ultra-violet wavelengths. Thus if 

graphite grains are assumed to be present in the nova envelope they 

must be small (,,, 2x 10-6 cm) for absorption to predominate at 

AS 2500ä. Figure (5.3) shows the variation of absorption efficiency 

with wavelength for 10-6 cm graphite spheres calculated from values of 

n and k supplied by Isobe (1971) (Evans, 1979). The well known 220OR 

peak is accompanied by another higher peak at N 800R. (Note - no 

allowance is made for the temperature dependence of the conductivity 

as was outlined in chapter 4. ) 

This order of grain size has been utilised in fits of the inter- 

stellar extinction by many authors (see for example, Greenberg, 1978). 

It is seen by some as the core type upon which mantles of ice might 

grow (c. f. figure (3.1)). 

Evidence exists that infra-red emission arising from grains with 

absorption peaking in the ultra-violet does occur. For example 

Pottasch et al. (1977) found that the optical thickness of dust in 

some planetary nebulae at visible and near ultra-violet regions is very 

small and cannot account for the large infra-red flux emitted. The 

central stars of these planetary nebulae are usually luminous O-B 

types and recent studies have shown some to be binary in nature 

(Livio et al., 1979). Antipova (1978) has rather interestingly 



., 4 r4 

y 
ýý 

O' W 

üö 

,., ý d 44 

ý- ý 
ý 

"I-. - U 
. �. 4 4-1 
w" 
aý N 

ý ö 
"ý .ý aj 
ay 
o 
m 
. 12 . "4 

Pt w CO 
0w 
0 

0o 

O%0 
", 4 1 
41 O 
Cd V-4 

. r4 $+ 

Cd O 
y 44 
4r-4 

H' º< 

W 
F- 
.ý 
0., 

Cý 

II 

NN e-- 
ýA 

CS 

0-% 
M 

ý 

Gl 

00 
"rl 
W 

I 



- 106 - 

concluded that the slow Nova Delphini 1967 is quite possibly forming 

what will eventually appear as a planetary nebula due to its large mass 

loss rate. 

Assuming that 10-6 cm spherical graphite grains were present in 

Nova Serpentis 1970 and that the effective temperature of the pseudo- 

photosphere was described by solution of equation (5.5) then the 

heating function's temporal behaviour was determined. Initially 

Qabs(v , a) was fitted using three Lorentzians for a- 10-6 cm, and con- 

voluted with the luminosity function. However it was found more 

efficient to use results at small intervals of frequency from the Mie 

theory programme results and to perform numerical integration of the 

product of L (v) and Q 
abs 

(v, a) (Evans, 1979). The resulting 

temporal behaviour of the heating function for Nova Serpentis 1970 is 

shown in figure (5.4) with the V curve superimposed. 

There are several features worthy of note in this curve. For 

example the function is very small initially relative to the peak. 

However there is a gradual climb toward N day 58 when there is a slope 

break in the V curve and transition commences. Because of the steep 

rise in temperature of the central object at this time (see for example 

Nariai (1974) for verification) the heating function undergoes a sudden 

and rapid rise. (The real rate of rise must be greater as the drop 

in continuum flux is compensated to some extent by a rise in emission 

line flux (Bosma, 1975) during transition. ) The function peaks at 

ti 75 days with a decline rate equivalent to putting we1.39 x 1Ö 7 
s-l 

in equation (4.22) (dotted line in the figure illustrates this decay 

rate). As with the rise to peak, the value of w may be affected by 

the emission line contribution to the visual flux at transition. 

However the actual value of w will be close to this figure. 

We can now see why the transition can coincide with significant 

infra-red emission despite the fact that no new grains may be formed. 
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The"rise in the heating function from day 58 to day 75 is nearly an 

order of magnitude. Of course small spherical graphite grains may not 

be: the only alternative as far as ultra-violet absorption goes but 

in the present work we will confine ourselves to this type. 

It was stated in chapter 3 that for isotropic scattering QQ 
pr ext' 

Thus the radiation pressure function PFN for 10-6 cm graphite grains 

was found by-replacing Qabs by Qext in the above analysis. The 

resulting curve was extremely similar to the heating function except 

that it peaked atý" 2HFN. From this the qualitative behaviour of the 

function PFN for the grain outflow programmes of the previous section 

was derived. 

'Finally we may note that if both sides of equation (5.4) are divided 

by, the bolometric luminosity of the central object then we have 

HFN 
. 

Qabs(v, a) B(v, T*) dv 

a Q(a, T*) (5.6) L fo B(v, T*) dv 

In other words the heating function is proportional to the Planck 

mean of the absorption efficiency at temperature T* (Gilman, 1974) 

where the constant of proportionality is the bolometric luminosity of 

the nova (assumed to be constant with time). Thus figure (5.4) maps 

the change of the Planck mean with time for 10-6 cm graphite grains 

surrounding Nova Serpentis 1970. 

5.5.1 Models of Specific Novae - Introduction 

In order to accurately compare theoretical models of Novae 

Serpentis 1970, Aquilae 1975 and Vulpeculae 1976 with observation the 

observational results had to be accurately reduced from magnitudes 

given in the literature to flux units. 

In the case of Nova Serpentis 1970 the original results of Geisel 

et al., (1970) were found to be unavailable (Low, 1978). Thus the 
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results as". plotted in Geisel et al. were read off using a digitiser and 

stored on paper tape; a library routine then output them as fluxes. 

Comparing the digitised results with the published observations of 

Hyland and Neugebauer (1970) which appear in the figures of Geisel et al. 

it was found that-the digitised results were accurate to within 'k, + 2%. 

The magnitude data of Vrba et al. (1977) were reduced from the 

standard zero magnitude fluxes as given by Allen (1973) as verified by 

Vrba (1978). 

For Nova Vulpeculae 1976 the zero magnitude fluxes were found in 

Strecher-and Ney (1974) although the effective filter wavelengths 

varied-slightly from those given by Ney and Hatfield (1978). Here, as 

in-the other 2 novae, the observed and theoretically derived fluxes at 

each wavelength were compared directly in the programme for the nova to 

determine how good the model fit was to the data (see appendix Al). 

The models for each nova are relatively simple. For example no 

account is taken of any grain size distribution that might be expected 

due to gradual growth of grains in the circum-nova material or grain 

destruction by evaporation or sputtering. The dust cloud is also 

assumed to be spherical and centred on the nova. The heating function 

is approximated by a step function in Nova Aquilae 1975 and as defined 

by equation (4.22) in Novae Serpentis 1970 and Vulpeculae 1976. 

The-onset of rise of the heating function is taken to be the tran- 

sition slope break in the visual light curve. As the continuum flux 

falls line emission increases and therefore the transition slope is 

less steep than-continuum flux decline alone would suggest. The 

heating function peak would therefore occur sooner than estimated in 

the previous section. Thus the coincidence of the heating function 

peak and transition slope break would be more marked and the approximation 

of equation (4.22) more valid. In the case of Nova Aquilae 1975 the 

heating function peak was assumed to have occurred on the 9th day from- 
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Y` 

discovery for reasons outlined below. 

The general fitting procedure was as follows. Firstly the time 

from discovery to the transition slope break, At 
u, was determined as 

marking the onset of rise of the heating function, With a fixed value 

of the heating function peak and the maximum observed grain temperature, 

RI could roughly be determined. Then from the time of maximum flux 

at-the longest observed infra-red wavelength the minimum value of R 

was found. For Nova Serpentis 1970 approximately 100 programmes 

were run with different values of a and $ and slightly different values 

of R, Ri, w and (HFN)O before the fit given below was obtained. 

This excludes the final adjustment of D to place the object within 

accepted distance limits and of Mg to give the final model fit. 

5.5.2 'Nova Serpentis 1970 

The dust grains in Nova Serpentis 1970 are assumed to be graphite 

spheres of radius 10- 6 
cm. From Hie theory (Evans, 1979) the absorp- 

tion efficiency, Qabs' was determined at long wavelengths and plotted 

for different grain sizes in figure (5.5). The corresponding value 

of a was thus fitted by eye and found to be = 1.61. 

From figure (5.4) it can be seen that the peak of the heating 

function is = 1.8 x 1038 ergs-1. Nova Serpentis was modelled using 

(HFN)__L - 1.5 x 1038 ergs 
1. 

The decay rate from peak was fitted 
Ycan 

using wo1.39 x 10-7 s 
-'1 

as in the heating function (Ate - 57.5 days). 

The free parameters of the model were essentially ß, R, Rl, Mg and D, 

the latter two being more for final adjustment than detailed fitting. 

Figures (5.6a) and (5.6b) show the light curves and spectra 

obtained from a model with 0-0, R- 1OR1 -5x 1016 cm, Mg = 

6x 10 6M0 
and D-0.98 kpc. The dust shell inner radius is comparable 

with that derived by Malakpour (1978) for closest grain approach during 

the quiescent stage (though our grains are rather smaller) and the outer 



Figure (5.5) The long wavelength behaviour_of- Qabs for 
four grain sizes (labels above-graph lines 
are a in pm). Data from Mie theory cal- 
culations are fitted by lines with 
aa1.61. 



Figure (5.6a) Comparison of the light curves of Nova 
Serpentis 1970 obtained by Geisel et al. 
(1970) with the theoretical model fit 
(solid lines) where ß=0, R= 10R1 = 
5x 1016 cm, Mg -6x 10'6 Mp, D-0.98 
kpc btu - 57.5 days, (HFN) - 1.5 x 
i0 3 ers'1, w-1.39 x 10-9 s'1, 
a- 10-9 cm and a-1.61. Numbers at 
bottom right of each curve refer to 
observational wavelength in microns. 
The vertical dashed line is at 
ta Gtu (transition). 

a 
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radius is similar to the distance 10-6 cm grains formed in previous 

ejecta might have attained in " 1000 yrs ((NH) = 105 cm 
3). 

0 
The value of ß<2 follows if grains outflowing from the central 

object are slowed by circum-nova. gas, or if they have formed from 

materialýleft over in the nascency of the system (c. f. Harvey et al., 

1979) though'the latter must be considered the less likeli. The grain 

mass'is perhaps not unreasonable as previous workers have assumed values 

from 10- 6N (Geisel et al., 1970) to 3x 10-5 % (Clayton & 

Wickramasinghe, 1976). The object distance of 980 pc falls within the 

range usually quoted of 550 pc (Borra& Andersen, 1971) to 1.2 kpc 

(Hyland ý Neugebauer. ' 1970)'although slight adjustment of grain mass 

could be used to change this without affecting the results appreciably. 

The dust shell at this distance would have an angular diameter of 

7 arc sec. Although the beam size of the particular telescopic 

arrangement used is unknown to the present author it is expected from 

the beam size quoted in earlier work by Kleinmann and Low (1967) of 

c 20 arc sec that the shell could be within the beam by a comfortable 

margin. 

If we now proceed to compare the theoretical and observed results 

we can see that except for the 22 pm light curve the majority of points 

at t> 57.5 days are fitted by the theoretical curves. The poor fit 

of the 22 um points could be due to incorrect data reduction or obser- 

vational errors (note that Geisel et al., unlike Hyland & Neugebauer, 

do not include indications of error in their results). The rise in 

observed flux prior to transition may be due to the initial rise in 

heating function as shown in figure (5.4). 

Figure (5.6c) shows the computed TK_N colour temperatures from 

theoretical and observational results. A point worthy of note is that 

whilst the colour temperature falls from ti 1000°K to ti 800°K the infra- 

red flux is still rising in both the theoretical and observational 
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results.. This, from our point of view, is due to the increase in 

emission of lower temperature grains with time as the parabola traverses 

the shell. ° If the TK_L colour temperature were plotted on this graph 

the results would not agree with those of TK_N. This indicates that 

in neither the case of the observed nor theoretical results could a 

black body (such as the 900°K one shown in figure (5.6b)) be fitted 

to the, spectrum. 

5.5.3 Nova Aquilae 1975 

The main problem with Nova Aquilae 1975 is that diicovery and peak 

visual flux do not appear to have coincided. Spectrally the nova was 

known to be in its early nebular stage 43 days from discovery (see 

section 2.2.3). Figure (2.6) shows that the early observations of the 

nova by Wild (1975) if correct indicate that a slope break may have 

occurred around the time of the initial observations by Vrba et al. 

(1977). The U-B and_B-V behaviour also shown in figure (2.6) is 

extremely similar to that of Nova Serpentis 1970 at the onset of tran- 

sition. According to Vrba et al. there also existed a large ultra- 

violet (3500R) excess at the time of their observations, consistent with 

this indeed being the transition which, as in Nova Serpentis 1970, would 

thus produce a sudden rise in the heating function for small graphite 

spheres. 

If indeed the observations of Vrba et al. (1977) caught the nova 

at transition then the use of t 3, v 
in equation (2.1) would be incorrect 

as this applies to the immediate post-maximum phase only. Indeed the 

use of this erroneously small 
- 
value of t 3,, v would lead to a much smaller 

value of Mv and thus the object distance would be too large. This 

might resolve the paradox, revealed by van Genderen and Uiterwaal (1979) 

concerning the nova's distance. 

Assuming that transition occurred 9 days from discovery a step 
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heating function with (HFN)O =2x 10 38 
ergs-' was used in our model. 

Other parameters were the same as those for Nova Serpentis 1970 except 

that M9.1077 Me, D=2.15 kpc and $=1. Again both M9 and D were 

essentially free parameters even when the final model was decided upon. 

However an increase in D giving a necessary P. M92 increase to retain 

the observed flux levels would eventually affect the model's spectral 

fits'as the optical depth grew. Thus it would be more convenient to 

decrease rather than increase the distance and retain the spectral fits. 

The higher value of $ may seem rather arbitrary. However if dust 

grains are 'trapped' by gas drag 0 should increase if the amount of 

circum! -nova gas were decreased (i. e. terminal velocities increase) and 

as this happens more grains might be expected to escape the system 

between outbursts. Thus the higher value of a together with a lower 

total mass of trapped grains, as found in Nova Aquilae, should be expected 

on this model. 

With R= 1OR 1=5x 10 16 
cm again, but with D-2.15 kpc the dust 

cloud angular diameter is ý, 3 arc sec. Thus the quoted beam size of 

the telescopic arrangement 30 arc sec, Vrba et al., 1977) would easily 

have contained the source. 

If we now examine the observational and theoretical results con- 

tained in figures (5.7a) to (5.7c) we can see that the light curves and 

spectra fit reasonably well except at the earliest times (day 10) when 

the observed flux, particularly at 1.6 and 2.2 Um, is too high. This 

is in part due to the 'contamination' of the shorter wavelengths by the 

relatively strong flux of the central object at this time. However it 

must also be remembered that a true beating function would have finite 

rise time and thus the true origin of HFN would be somewhat before day 

9 with grains in the shell being heated and emitting before this. 

Figure (5.7c) shows that, with the exception of the observation at 
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Figure (5.7a) Comparison of the light curves of Nova Aquilae 
1975 as observed by Vrba et al. (1977) with 
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(see figure 5.6a). 
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day 10, the observed temperatures T K-L and the theoretically derived 

values, agree reasonably well, Again the total flux rises substantially 

whilst the temperature drops due to the increasing number of outlying, 

lower temperature grains. 

In this, model we have assumed an optically thin shell and a step 

function light curve. 
-, 

Thus the analysis of section (4.4,1) applies. 

Therefore the flux would be expected to rise linearly with time for all 

,r<. 2*, (see equation (4.37a)). This means that the infra-red flux rise 

should be linear from day 9 to ý, day 13, with a declining rate of 

increase to a maximum at n, day 49. The integrated infra-red flux 

results of Vrba et al. (1977) shown in their paper indicate that this 

may well have been so. 

5.5.4 Nova Vulpeculae 1976 

Unlike Nova Serpentis 1970 and Nova Aquilae 1975, Nova Vulpeculae 

1976 does not appear to have been extensively observed at short wave- 

lengths (i. e. U. B or ultra-violet) during and after transition. 

However from the decrease in visual flux with time and the obvious tran- 

sition slope break at %, 65 days a heating function similar to that of 

Nova Serpentis 1970 may be assumed for small graphite grains. For the 

purposes of the theoretical model a light curve described by equation 

(4.22) was again utilised with At 
U- 

63.5 days, w-2.2 x 10-7 s-1 and 

38 -1 (HFN) 0-2x 
10 ergs 

For consistency with previous models the dust grains were assumed 

to be graphite spheres of radius 10- 6 
cm (a - 1.61). It was found 

that slightly better fits to the data arose for a-1.0, and a marginally 

lower value of w, However it was considered that a consistent value 

of a between the three models in this chapter was at this stage 
4 

desirable. 

The shell parameters used in the model fit illustrated in figures 
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16 -6 (5.8a-c) -are R- 4R 2x 10 cm, 0=0 and M9- 10, MO. Again the 

value of <2 is consistent with a 'piling-up' of grains at large 

distances from the nova. The total grain mass is intermediate between 

that found for Nova Serpentis 1970 (M 
9-6x 

10-6 M. ) and Nova Aquilae 

', -7 1975, (M 
9_ 

10 M0) as was expected from the relative infra-red 

luminosities. The dust shell inner radius is the same as in the 

previous two models but the outer radius is somewhat less. From black- 

body angular diameter considerations Ney and Ilatfield (1978) determined 

the dust shell diameter to be q, 5x 10 14 
cm on day 70 for an-assumed 

distance of 1.5 kpc. -As we have seen in chapter 4 however the black 

body angular diameter of an optically thin source such as the dust shell 

of Nova Vulpeculae 1976 will be an underestimate of it's true dimension. 

The distance of the nova used in the model is 980 pc. This is 

rather less than that4found by Ney and Hatfield (1978) of 1.5 kpc but 

is not unreasonable considering the uncertainties of their model, 

In any case adjustment of D and M9 in our model . ýitbout changing the 

fits to the data would again be fairly straightforward. The angular 

diameter of the shell at this distance would be 3 arc sec, presumably 

contained wholly in the beam of the telescope. 

If we now compare the theoretical and observational-results as' 

shown in figures (5.8a-c) we can see that the fits are not as good as 

for the previous two novae. The light curves of figure (5.8a) show 

the exponential decay at t ;t 80 days for all wavelengths remarked on 

by Ney and Hatfield (1978) but the theoretical curves are too steep at 

short wavelengths and too shallow at long wavelengths. This behaviour 

leads to the-too rapid 'cooling' of the system as shown in figure 

(5.8c) of the T K-N colour temperature and indicated in the sample 

spectra of figure (5.8b). 

The temperature behaviour of the infra-red excess of the nova is 

difficult to explain from either rapid condensation or pre-existing 
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grain standpoints. Ney and Hatfield have ascribed the nearly isothermal 

nature of the shell to continuing formation of grains at . 9000K in the 

nova, wind.,,, As, the formation rate drops so therefore would the infra- 

red flux. The-main difficulty with this theory is that the grains 

which have already formed would still be emitting and as they continued 

to move out and (possibly) grow they would contribute more flux at 

progressively. longer wavelengths. This would therefore tend to broaden 

the thermal spectrum, of the nova with time. Sato et al. (1978) con- 

firmed the observed time dependence of the black body temperature but 

found no evidence of spectral broadening. 

From the point of view of the pre-existing. grain model the almost 

isothermal behaviour of the nova, dust shell is perhaps due to 

evaporation of grains. As the grains decrease in size so their tem- 

perature will increase (equation 4.3). However as the grains nearer to 

the nova completely evaporate so the cloud will become more transparent 

and hence the. total flux will decay. Eventually the central object 

flux must begin. to decline and at late times (possibly not covered by 

the observations) some re-condensation of grains might be expected. 

The qualitative effects of evaporation are explored more fully in 

chapter 7. 

The differences in behaviour between Novae Serpentis 1970 and 

Aquilae 1975 and Nova Vulpeculae 1976 indicate that the initial con- 

ditions of grain type, size and distribution may well have been 

different. In the case of Nova Vulpeculae 1976 the initial parameters 

of the dust shell may have perhaps resulted in the evaporation of grains 

being important. This in turn led to its behaviour being rather 

different from the other two novae studied. 
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5.6.1 Discussion and Predictions 

If our assumption that pre-existing grains give rise to the observed 

infra-red development of novae is correct then there should be several 

ways in which it coUld-be, verified. 

With a pre-existing dust shell similar to those above, observations 

should show that considerable emission only occurs when the effective 

temperature of-the central object is'high and the dust shell is 

sufficiently opaque at short wavelengths. Thus infra-red emission will 

be relatively low if 

(i) There is little pre-existing circum7nova dust 

(ii) The nova does not reach a sufficiently high temperature at high 

luminosity (-., 60,000 0K at the peak of the heating function for 

graphite spheres with a= 10-6 cm). 

A nova such a's Nova Cygni 1975 in which thermal X-rays from any 

pre-existing circum7-nova shell of gas were expected but not detected 

(Brecher et al., 1975) probably did not have appreciable circum-nova 

dust either. Indeed Malakpour'(1978) believes that this may have been 

the object's first outburst. Thus although the nova was highly 

luminous and'reached N'65000 0K by day 100 from outburst (Wu & Kester, 

1977) there was little"pre-existing dust to give rise to any appreciable 

infra-red flux. The rise at 10 Um could be due to line emission 

(Ferland & Shields, 1978) and the 3.4 pm excess detected by Szkody 

(1977) to the cool component of the system. An alternative qualitative 

explanation is given in the next chapter. 

A slow nova such as Nova Delphini 1967, although it may have a 

substantial dust shell, may not at any time reach high enough luminosity 

at high temperature to give a particularly high value of the heating 

function. Indeed Tylenda (1978) noted that the ultra-violet luminosity 

of this nova during the infra-red emission stage was almost two orders 
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of magnitude lower than for Nova Serpentis 1970. The grain tem- 

peratures appear to have been lower as well (Geisel et al,., 1970) 

indicating a lower value of the heating function. 

Moderate speed novae such as Serpentis 1970 and Vulpeculae 1976 

thus probably fulfil both conditions of high temperature during high 

luminosity and substantial pre-existing dust shells. 

The existence of a dust shell before transition might be evidenced 

by an excess at long infra-red wavelengths which rapidly grows and 

shifts to shorter wavelengths at transition. Between outbursts a nova 

is thought to consist of an O-B type system with approximately solar 

luminosity (Payne-Gaposchkin, 1957). This would give rise to the 

infra-red emission between outbursts shown in figure (5.9) for the dust 

shell deduced above for Nova Serpentis 1970. Those of Novae Aquilae 

1975 and Vulpeculae 1976 would probably be undetectable. 

The presence of a static shell of small graphite grains during 

outburst could be determined by observation of the 220OR region of the 

nova spectrum. For growing grains (whilst small) the relative depth 

of the absorption feature here'should increase. Of course static 

circumstellar grain absorption would not change though it might be 

difficult to distinguish this from interstellar absorption. Obser- 

vations using the IUE satellite at this. wavelength have been suggested 

by Wright (1979). 

In the case of the recurrent nova RS Oph the presence of an inter- 

eruption dust shell has been indicated by a near infra-red excess 

(Feast & Class, 1974). This-excess would be expected to increase at 

outburst but not as, much as in classical novae as recurrents are thought 

to be more luminous (particularly at short wavelengths) between out- 

bursts and their rise to maximum is not as great (Bath & Shaviv, 1978). 

We saw in the previous chapter that the surface brightness at the 

, intercept of the emission parabola with the inner cavity was the highest 
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until -r 1.1. After this the maximum stays at a displacement of R, 

from the nova. As explained in section (4.4.4), timing of the 

expansion of the brightest region of the observed disc gives R, and 

a measure of the maximum angular diameter of the source thus gives D. 

If the dust distribution were spherically distributed about the 

nova then the transverse velocity of expansion of the emitting disc 

should vary with time as given by equation (4.18). Superlight 

effects would then have lasted 1%, 1 to 2 days in Nova Serpentis 1970. 

Finally by studying the spectra and light curves of the central 

object and dust shell it may be possible to deduce the form of the 

heating function and hence the variation of Q 
abs with temperature. 

Thus the grain size and type might be derived especially if R1 is known. 

5.7.1 Conclusion 

We have shown in this chapter that the pre-existing dust grain model 

of novae can help to bring together many nova phenomena. The model fits 

to the observational data on Nova Serpentis 1970 and Aquilae 1975 are 

felt to be quite good, However those for Nova Vulpeculae 1976 are not 

as accurate. Obviously the simplicity of the model in not considering 

different grain types, non-spherical dust shells and grain destruction 

mechanisms could explain the inadequacies of the models. We now 

proceed to consider briefly an alternative geometrical situation. 
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Chapter 6 

Infra-red Emission from an Inclined Disc of Dust Grains 

6.1.1 Introduction 

In chapter 4 we developed the theoretical background to the 

situation in which a variable high frequency source is surrounded by 

a spherical shell of dust grains. Application of this model to novae 

produced reasonable fits to the data if the grains were assumed to be 

predominantly heated by the short wavelength f lux of the central source. 

In this chapter the central object is assumed to be surrounded by 

a thin disc of identical dust grains which is inclined to the observer's 

line of sight. In section (6.2.1) we examine the general geometry of 

the situation then proceed in section (6.3) to derive the observed 

infra-red flux from this type of source. Finally section (6.4) 

attempts to apply the results of the previous sections to Nova Cygni 

1975. 
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6.2.1 Geometry of the Inclined Disc 

In section (3.4.1) the basic theory of toptical reverberation' 

as described originally by Couderc (1939) was outlined. If instead of 
a continuous 'slab' of material placed some distance from the central 

source of radiation we consider a disc of dust grains with a central 

evacuated cavity surrounding a centrally positioned source then the 

geometrical situation is as shown in figure (6.1). Obviously a distant 

observer will not observe a disc of grains but an ellipse the eccen- 

tricity of which depends upon the inclination i of the disc to his line 

of sight. 

If at time t=0 -a'S function pulse of high frequency radiation is 

emitted from the central source at N, then re-emission of infra-red, 

radiation from the dust grains will occur only where the paraboloid of 

revolution, semi-latus rectum ct, cuts theý disc. (We may note however 

that strictly a 6-function pulse would violate the condition that grain 

cooling time be less than the fluctuation time of the central object. 

However it is used here for illustrative purposes only. ) It can be 

appreciated from figure (6.1) that whilst the expanding paraboloid of 

emission lies within the inner cavity, radius Rl, there will be no 

re-emission and for a S-function pulse re-emission will cease once the 

paraboloid has left the disc. We will consider these effects later 

with particular reference to Nova Cygni 1975. 

Figure (6.2) shows the situation in cross-section. The plane 

containing the disc is defined by 

ZQx cot 1 ý6 
ý 

1ý 

where (x, y, z) define a Cartesian co-ordinate system with z lying along 

the observer's line of sight. Also it can easily be shown that 

ct+zaa= x2+z2 
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which leads, in 3-dimensions, to the expression 

ct 
2+z 2ct 

Eliminating z between equations (6.1) and (6.2) we have 

(6.2) 

x2 + y2 = c2t2 + 2ct cot i. x (6.3) 

I Equation (6.3) is that of the projection of the edge of the 

emitting region bounded by the paraboloid onto the xy plane as seen by 

a distant observer. This is of course the equation of a circle with 

radius rc = ct cosec i displaced from N by an amount d- ct cot i. The 

expansion velocity vr of this 'circle of emission' is thus constant 

and vr >c for all i< 7r/2, The rate at which the centre of the circle 

of emission moves away from the central source will also be superlight, 

for i< ff/4- At i- ff12 the centres of the disc and circle of emission 

will of course lie at N at all times. 

If the central cavity radius is R1 and that of the outer radius is 

R then the disc projections at these limits onto the xy plane are 

concentric ellipses with equations 

Inner x2 cosec2 i+ y2 = R12 

Outer x2 cosec2 i+ y2 = R2 

(6.4a) 

(6.4b) 

The general equation for the projection of a point on the disc 

radial distance r from the central source is given by 

r= (x2 cosec2 i+ y2)i. (6.5) 

Whilst the circle of emission lies within the ellipse of (6.4a) 

there will be no observed infra-red re-emission. Thus the time from 

observation of the pulse from the central object until re-emission 

beginsv Atop is given by 

R 
to 0aC1 

1 -cos i (6.6) 
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6.3.1 The Development of the Infra-red Flux Observed by a Distant 

Observer with i= 900 

We now consider the development of the infra-red flux from the 

disc as viewed by a distant observer. In order to solve the equation 

of transfer analytically we choose to investigate the special case of a 

very thin disc (both optically and geometrically) inclined at 900 to 

the observer's line of sight. In addition the heating. function is 

assumed to be a step function (c. f. equation (4.22) with w- 0). 

The surface brightness. of the disc is given by 

E, 
v = B(v, T9 (r)) N(r) ffa2 Qabs 1ýz 

where Az is the disc thickness and we assume,, that N(r) -Nr 

From equation (4.7) T (r) - KO'r -2 /a+4 
, where KO' is a constant in this 

9 

case. 

The observed flux from the disc f, (t) is again given by 

fV(t) =J EV dS2 

where Q is the solid angle defined by the disc at the observer distance, 

i. e. 

rc 
t rl-ß 

a. dr fv Co 
exp 

h---v-r 
r2/a+4 -1 [ kK� ] exp 

r h--v 
- r2/a+g1 -1 

kK,. .J R1 V 

where for i- 90 °, rc = ct. C0 is a constant given by 

, 21r 2hv3 ßý Co 9) 'C 02 

) 
Qabs N1Rl rta Az 

(6.7) 

Using the substitution w4. r2 /1+4 equation (6-7) integrates 
0 

reasonably easily to give 



2(n+Y') 
ý (! 

4) n-1 R a+4 T 
2(a+4' ) 

f(t) a+4 0 
sn 

n+Y ý y20 
n°ý0 n! 

2(n+Yl) 
-ý a+4 (6.8) 

where ap- BnP T and * have thei r, former meanings and y' a+4 
2 

Again it is fairly obvious from equation (6.8) that there is no 

observed infra-red flux from the disc until a time T for i- 900. 

The solution given by equation (6.8) was not used to plot extensive 

spectra and light curves as there is a short wavelength cut-off in the 

convergence of the Bernoulli series (see section (4.4.2)). The prime 

importance of this solution is to serve as a check on numerically 

derived results described subsequently. 

6.3.2 Numerical Solution and More General Cases 

In section (6.3.1) we described the analytical solution of the 

transfer equation in a very special case. Here we proceed to solve the 

equation of transfer using numerical methods. These have enabled us 

to derive the observed infra-red flux from a disc at any value'of disc 

inclination, for'any wavelength and for a wider range of central source 

light curves, L(t), which are assumed to correspond to the grain heating 

function (see Chapter 5). We shall still assume that the disc is thin, 

both optically and geometrically, and that the grains are initially of 

a uniform size which does not alter with time. 

The numerical integrations were performed using a simple'Simpson's 

rule method. In this case however the double integration was performed 

over y and then x., 

If we define the observed flux as in previous sections, then in 

Cartesian coordinates 
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fv(t) JD EV dn = 
12 

JJ Ev dy dx. (6.9) 

nxy 

i. e. 

4 

(f (x2 cosec2i + y2)_ß/2 fý(t) C1 
J1 exp 

hv (x2 cosec2i + y2)/a+4 1 dy. dx 
xy 

[oq ,- 

where CIMCI cosec i/21r. 
10 

Figures (6.3a) and (6.3b) show the development of the emission 

region with time for all cases. In case (a) the emission circle leaves 

the top of the outer ellipse before leaving the inner cavity ellipse 

altogether. In case (b) the emission circle leaves the inner ellipse 

before cutting the outer one. The limiting condition will thus depend 

not only on the relative size of the cavity but also the disc 

inclination, i. e. 

1-cos i 
*LIMIT 1+ cos i 

The limits on x and y in each case were found for each region of the 

emission area (see figures (6.3a) and (6.3b)). For example the points 

at which the emission circle cuts the disc projections are given for 

x by: - 

Inner Xi('r) Rl(l-Tl) tan Yi(X(T)) (Ri 2-xi2cosec2 

Outer xO(T) R(1-T) tan i, YO(X(T)) (R2-x 0 
2coseC2 

(Note that due to the symmetry of the situation about the x axis, 

integration was performed over the lst and 4th quadrants and then the 

resultant flux doubled. ) 

Therefore in figure (6.3a) (ii), for example, the integration takes 



(i) 

(ii) 

(iii) 

r 

Figure (6.3a) Inclinid disc where as seen 
by a distant observer 

*R! 9evelop- 

ment of the 'circle of emission' with 
time, is shown (shaded portion of disc) 
broken lines are boundaries of emission 
regions. 



(i) 

. 
W-cos i) <T k< ý (1+cos i) 

(ii) 

*(1+cos i) 4T ic (1-cos i) 

(iii) 

Figure (6.3b) Inclined disc where *< hIMIT as 
seen by a distant observer. The 
development of the circle of emission 
is shown (shaded portion of disc) 
broken lines are boundaries of 
emission regions. 
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the form 

where 

J 
Rl s in i y(x) 

= 2C, F(x, y) dy dx 

x=xi (T ) yJ=yi (x) 

x0(T) yC(x, T) 

+1 .1 xRlsin i. y=o 

X=XD (T) y=0 

i 

fyo(x) JRsiu 

F (x, y) 

F(x, y) dy dx + 

F(x, y) dy dx (6.10) 

(x2 cosec2 i+ y2)-ß/2 

exp (x2 cosec2 i+ y2) 
/a+4 1 ý 

-1 
RhvK6 

yc(x, T) = R(T2 + 2T cot i x/R - x2/R2)i 

9 

By performing numerical integration of equations such as (6.10) for 

all cases and times illustrated in figures (6.3), the infra-red flux 

development of a disc at several inclinations for a step function 

central source light curve was determined. The results of these 

calculations are shown in figures (6.4a) - (6.4d) where the model 

parameters are 

R- 2R 1-2x 1017 cm 

i= 90° i. e. At0 v 381 days 

a=2x10-6 cm 

a=10=1 

L-5x 1038 erg s-1 (step function) 

The results are of course purely qualitative as the disc thickness 

is not defined. 
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-, The light curves of figure (6.4a) clearly show the lag between the 

observation of the initial step in the central source and the response 

in the infra-red. ýThere is also a clear levelling-out in the flux 

increase at-a time corresponding to T-1 (i - 90') where the emission 

parabola has completely filled the disc. 

From the spectra of figure (6.4b) we can see that the spectrum 

peaks between 7 and 8.5 Vm at any given time. As expected the peak 

shifts toward-larger wavelengths with time as more distant grains are 

heated by the central Object. -Initiallyg for the parameters used, 

Tg(R, ), - 3200K and if the grains were perfect black bodies we would 

expect 'Nmax ý' 9.3'pm. - However, solution of equation (4.9) with a 

gives "max = 7.5 Um for the'same temperature. It can be seen from the 

figure. that-at the earliest time, when emission arises mainly from grains 

near Rl, Xmax u 7.5 pm as expected. The coolest grains at distance R 

from, the central object are at a temperature T9 (R) - 2440K. Again 

with a-1 the peak in fX-would be expected to lie at X=x - 9.8 pm if 

all grains were at this temperature. Thus we would expect 7.5 pm ;6 

Amax < 9.8 lim at all times which appears to be the case. 

The numerically derived results were checked against the results 

achieved by analysis in section (6.3.1) for 10 Vm ZX$ 30 Um. With 

50 steps in x and y the numerical result differed by N 2% at 30 Um 

and ru-5% at 10 lim for all values Of T used in the plots of figure (6.4a). 

This was taken. to indicate that the numerical solution could now be used 

with, some confidence for more complex situations. 

Figure (6.4c) illustrates the effect on the infra-red curves 

of tilting the disc. The smaller the value of i the shorter is the 

interval between the initial step of the central source and the beginning 

of the rise in the'infra-red. The peak infra-red flux is reached at 

later times for smaller values of i. The combination of these two 

effects means that the light curves must cross at a value ý<T<1. 
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Figure (6.4c) at first sight appears to imply that at t n. 50 days the 

flux at 10 pm will be the same for any disc inclination. However on 

an expanded horizontal scale the times of crossing of light curves may 

be seen'to differ by several days. 

Figure (6.4d) shows the spectral development when i ='450. ' Note 

that although again 7.5 pm ý< Xmax < 9.8 11m (see above) the shift in 

peak is less marked and the spectra are somewhat flatter than in figure 

(6.4b). This is to be expected as at all times there would be a greater 

number of more distant grains involved in emission fhan for larger i 

values. 

In order, to incorporate more general central source light curves 

into the solution, phase relationships between the central source and a 

grain at position (x, y) on the disc were derived. Previously we 

deduced in section (4.3.1) that the phase difference, At, between the 

observed flux from the central source and that from a grain at polar 

co-ordinates (r, e) is given by 

, &t .r F (i - Cos (c. f. equation 4.19) 

Here r cos 0 -2 x cot i and. r -= 
(x2 cosec2 i+ y2)1, therefore 

At (cosec2 i+ Y2 cot (6.11) 
cf /X2) 

Incorporation of the phase relation given by equation (6.11) into 

the numerical solution of the transfer equation enabled the qualitative 

models of the next section to be set up. 

6.4.1 Possible Application of the Disc Model to the Infra-red 

Development of some Novae 

As a test of the flexibility of the numerical integration programmes 

the central source is now given a light curve of the form L- LO exp(-Ut) 

for all t>0. As in chapter 5 this was used. to simulate the possible 
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time dependence of the heating function of a nova. The resulting 

light curves of figure (6.5a) where i- 450 are qualitatively very 

similar to those observed in some novae such as Serpentis 1970, Aquilae 

1975 and Vulpeculae 1976 (see Chapter 2). The most obvious similarity 

is the lago Atot between the heating function peak (taken in this case 

to coincide with (MV) 
min 

) and the initial rise in the infra-red flux. 

Figure (6.5b) illustrates the spectral development in this case. 

As expected the flux builds up with time to a maximum and then falls 

away, The actual peak of emission shifts relatively rapidly to longer 

wavelengths giving the impression of a cooling 'black body'. Thus 

each wavelength dominates the emission at a specific time, which is of 

course later for longer wavelengths. Note that in figure (6.5b) we 

can also see the shallowing of the spectrum at later times. Here the 

most distant grains are brought within the emission circle at the same 

observer time as a few more of the nearer ones. 

We have already suggested in chapter 5 that rapid condensation of 

dust grains may not be responsible for the late infra-red development of 

some novae. In this case we would require the grains to have condensed 

from previous outburst ejecta over the time interval between outbursts. 

Here however we require the formation of a disc of grains at a considerable 

distance from the nova. 

It is well established that ejection of material from novae is not 

isotropic. The generally accepted model is that of ejecta in the form 

of an equatorial ring or disc and possibly polar blobs (e. g. Hutchings, 

1972; see also figure (3.6)). If the grains subsequently condensed in 

the ejected ring or disc a situation geometrically similar to the one 

envisaged here would arise. With the ring or disc inclined at an angle 

i to the line of sight the infra-red lag would arise purely from the 

geometry of the situation as described above. 

If we as'stine that the type of grain formed in nova ejecta is fairly 
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consistent between novae and that the emission at early times is 

dominated by that from the hottest grains situated at R, (see above) 

then with T9 (Rl) ix (L/R, 2 )1 1Q+4 
we can see that the grain temperature 

will not be too sensitive to L (which ranges over an order of mag- 

nitude between the novae considered here). Thus the wavelength of peak 

emission Xmax x const. R2 
/a+4 

at early times. If the disc of grains 

were inclined at the same angle i for all novae then there would be a 

correlation between the spectral peak at early times and the lag, Ato. 

In other words the longer the wavelength Xmax the larger the value of 

Ato. This relationship would also emerge for a large enough sample of 

novae where disc inclinations would average out. 

Table (6.1) contains the relevant data available on five novae. 

The values of Ato were found from extrapolation of early infra-red 

observations at long wavelengths, where the central source contribution 

would be relatively small. The data in the table suggest there may be 

a correlation between the initial peak wavelength and the lag. 

Closer examination however shows that there are several objections 

to this model for most infra-red novae. Firstly the clear correlation 

between transition and infra-red rise in Novae Serpentis 1970 and 

Vulpeculae 1976 is difficult to explain. Secondly even if iN 901 

the inner cavity radius in the case of Nova Vulpeculae for example would 

have to be -, 1.5 x 10 17 
cm; this, as we have seen, gives grain tem- 

peratures N 3000K for L-5x 1038 erg s-1 and a=1, a-2x 10-6 cm. 

This is far lower than the 9000K of the lisothermall stage of this nova 

(Ney & Hatfield, 1976). To increase the grain temperature to this value 

either the luminosity of the central object would have to be increased by 

" factor of -v 250 or the grain size reduced by the same amount. Even 

" combination of the two to achieve this increase would entail assuming 

rather unlikely values of a and L. It is in any case unlikely that 

i- 900 and for any value of i< 900 R, would need to be even larger. 



Table 6.1 

Nova Xmax Oim) Ato (days) 

Serpentis 1970 3.5 +1 56 + 10 

Aquilae 1975 3+18 

Cygni 1975 4.8 + 20 

Vulpeculae 1976 3.5 +1 60 + 10 

Cygni 1978 ;ý3.6 30 + 10 
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The third main objection to this model is that it assumes that grains 

and disc inclinations will be similar for this small sample of novae. 

Both of these assumptions will of course be erroneous. We would expect 

any correlation such as there may be in table (6.1) to be masked by the 

varying inclinations likely in this small sample. 

Finally if the infra-red luminosity is of the order of the central 

object's luminosity then the shell of grains needs not only to be opaque 

but also to cover most of the 'sky' as seen from the central object; 

obviously the thin disc will not do this. As we make the disc thicker, 

or make it torroidal Ato will decrease until for total 'sky' coverage 

Ato 0. - It appears that in the case of Nova Serpentis 1970 at least 

LIR LUV and thus the disc model could not apply here. 

6.4.1 Specific Application to Nova Cygni 1975 

Of the five novae of table (6.1) only one may be adequately des- 

cribed by this model and that is Nova Cygni 1975. This nova apparently 

had a late developing infra-red excess of relatively small proportions 

(see Chapter 2). Although it is still uncertain whether this excess 

was thermal or not in nature (Ferland & Shields, 1978) we will assume 

for the present that it was. 

If we refer to figure (2.8) we can see that the peak flux appears 

to have arisen at N, 10 pm. Extrapolating the 10 Um rise back in time 

it seems to have begun at N 100 days from outburst, thus R, ý2x 1017 cm. 

With a peak luminosity of -. 2x 1039 erg s-1 (Wu & Kester, 1977) and 

grains similar to those already discussed in this chapter (a -2x 10-6 

cm, a- 1) the grain temperature at R, would be < 3000K which with 

a-1 gives X>8.3 Vm. Therefore we have an apparently self- max 

consistent delay and grain temperature for this nova. 

The luminosity of the infra-red component LIR (if assumed to be 

thermal with. X,,. = 10 um) is A- 3x 1034 erg s-1. Thus the ratio of 
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LIR/LUV N 1.5 x 10-5 and either the dust shell is optically thin or, 

as we assume here, it only covers a small fraction of the central 

object's sky. 

As with many novae there is evidence that the outburst of Nova 

Cygni 1975 was not isotropic. Boyarchuk and Gershberg (1977) found 

that the ejecta of the 1975 outburst of this nova were distributed in 

an equatorial ring (inclination -. 600 to the line of sight of the 

observer) and two polar blobs (see figure (3.6)). As we have seen in 

chapters 2 and 5 Brecher et al. (1977) ascribed the lack of thermal 

X-rays from the nova to the absence of pre-outburst circum-nova, material. 

With condensed-grains (and presumably other ejecta) at the distance we 

require for R, the concurrent ejecta would not encounter this material 

for P. 30 years (assuming ejection velocities %, 2000 kms-1) and hence 

would not produce the expected X-ray flux at early times. 

Because of this lack of evidence of pre-existing circum-nova 

material it has been conjectured that this was the first outburst of 

Nova Cygni 1975. Obviously we must presume for our purposes that it 

was at least its second and that some grains had condensed from a previous 

outburst. This model might well fit in with that of chapter 5 if the 

inclination of the disc at each outburst were slightly different, As 

time went on the material from successive outbursts would lead to grain 

condensations in many directions from the central object thus leading 

to spherical symmetry; hence the models of the previous chapter would 

then apply. A correlation between speed class and amount of circum- 

nova material would be expected if a nova becomes 'slower' with age, 

6.5.1 Conclusion 

We have seen in this chapter that with a disc of dust grains 

surrounding a variable central source the relative position of the 

observer to the disc is crucial in determining the behaviour of the 
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observed re-radiated infra-red flux. For example by increasing or 

decreasing the inclination of the disc, i, not only the light curves 

but also the observed spectra are noticeably altered. 

The general model does not seem to adequately explain the infra- 

red development of most of the novae studied. It is believed that the 

heating function theory outlined in chapter 5 is more successful in 

fitting the observations except possibly in the case of Nova Cygni 1975 

where the disc model may apply. 

Again in this chapter we have assumed that the grains are static 

and not affected by evaporation. In the following chapter we will 

examine the effects of evaporation of grains on the dust distribution 

and on the subsequent infra-red flux. 
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Chapter 7 

Grain Evaporation 

7.1.1 Introduction 

The theoretical models we have employed so far in this work have 

all assumed that the dust distribution from which the infra-red flux 

arises is composed of static, identical dust grains which suffer no 

changes in composition or size as the central source flux varies. In 

a real situation these assumptions will not be strictly valid. This 

chapter therefore briefly explores the effect of one grain destruction 

mechanism (i. e. evaporation) on the observed grain distribution and 

infra-red flux. 

Section (7.2.1. ) describes the evaporation rates of isolated 

small graphite spheres exposed to differing amounts of incident 

radiation from a constant luminosity source. The value a1 is 

assumed throughout but the qualitative results are not sensitive to 

changes in a. This section includes an investigation of the inclusion 

of evaporation in the energy balance equation. 

In section (7.3.1) we discuss the evaporation of grains in an 

optically thin cloud from the point of view of centrally and externally 

placed observers. From here onwards the central source is assumed to 

have a step function light curve with a nova-like luminosity 

(L -5x 10 38 
ergs- 

1 The infra-red flux as observed by a distant 

observer is found for a spherical shell and expanding cavity with 

different grain density distributions in section (7.3.2). Comparison 

is then made qualitatively with the observed behaviour of Wova Vulpeculae 

1976 in the infra-red. 
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7.2.1 Grain Evaporation Rate 

For an isolated grain of radius a at temperature T9 the rate of 

decrease of grain radius with time, A, -is given by equation (3.8). 

Strictly the grain temperature should be derived from the energy balance 

between the absorbed incident flux, FA reradiated flux, F. and the 

rate of energy loss in vaporising the surface layers of the grain PVG 

Thus far we have neglected the latter for as we shall discover it only 

becomes important for grains at very high temperatures. 

We may express the energy balance, in the form 

FA = FE + PV (7.1) 

where F and F are given bythe terms on the left and right hand sides A, E 

of the equality in equation (3.9) respectively. The rate of change of 

grain energy by vaporisation is equivalent to -, fn 
9H 

where fn 
9 

is the rate 

of grain mass loss and H is the heat of vaporisation of Xhe 'grain 

material. Thus by expressing ia 
9 

in terms of A from equation (3.8) 

we can see that 

PV sm 41r a2H Psat(T 
'c 

9 r2T r -Tg (7.2) 

(assuming an accommodation coefficient ac 

For graphite grains the saturated vapour pressure of carbon with 

temperature is tabulated in Wickramasinghe (1967), p. 88. From these 

results the following relationship was derived 

p (T pe xp 
sat g0 

where po - 1.322 x 1014 dyne cmý-2 and To im 8.575, x lo 4oK, 

(7.3) 

In chapter 4 and'subsequent chapters grain temperature has been 

derived from the energy balance FA. FE" This-led to the derivation 
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of equation (4.3), which may be expressed as 

L. Q *1 /a+4 
T9 Ko 2 

abs 
[ra] 

where 

Kc2 
)a+4 

jr(a+4) 

; (a+4 
03 2yr h Qor k 

(7.4) 

We can see from equation (7.4) that T9 is grain size dependent due 

to the dependence of Q 
abs on a in the infra-red. We may also note that 

the product LQ 
abs is equivalent to the heating function HFN of chapter 

5, Qabs is thus effectively the Planck mean of absorption Q 
abs as 

defined by Gilman (1974), which is also grain size dependent. However 

it would appear from Gilman's (1974) work that for T* >> 3'*x 10 4oK (as 

-7 in the case of a nova beyond transition) Q 
abs Oý 1 for all a >, 10 cm in 

the case of graphite spheres. 

In order to compare the effects of inclusion and exclusion of 

energy loss through vaporisation in the energy balance equations on the 

subsequent value of T9, equation (7.1) was solved iteratively using 

Newton's method. A value of H- 170.4 k cal/g atom for graphite was 

taken from Ubbelohde and Lewis (1960) p. 53. This value of T9 was 

then compared with the solutions of equation (7.4) for L-5x 10 38 
ergs-'. 

and a-1, several values of 10-7 <a42x 10-6 cm and three values of 

the central source-grain distance, r. These r values are differentiated 

by curves (a), (b) and (c) in figure (7.1). in this figure T9 (2) is 

the grain temperature derived from the full treatment including 

vaporisation and T (1) is derived from equation (7.4) neglecting 
19 

vaporisation. 

It can be seen from figure (7.1) that the smaller the value of r 

the, greater is the discrepancy between T9 (1) and T9 (2). This is because 
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the higher-the'grain temperature, the greater is the effect of the 

increased energy-loss through vaporisation. This in turn lowers the 

temperature from that expected when vaporisation is neglected in the 

energy balance equation (7.1). For example at r=5x 10 14 
cm for 

5x 10-7 cm grains T,, (l) - 3587 0K whereas T_(2) = 3015 0 K. At 

r-2x 10Lý' cm for the same grain size, T9 (1) - 20610K and T9 (2) - 

20590K. It would appear that for grain. temperatures < 2500 0 K, which 

we have so far considered, equation (4.3) is a very good approximation 

for T 

If we now substitute equation (7.3) into equation (3.8) we arrive 

at an expression for the evaporation rate of an isolited grain of the 

form 

PO HO)l MC exp T 21r kT 

I 

(7.5). 

It will be appreciated that in the analysis that follows we are 

justified. in taking the grain temperature derived from equation (7.4) 

0 -8 -1 as being correct. as for T. >ý 2500 K* Aý6x 10 cms Thus for 

high temperatures where the difference between T9 (1) and T9 (2) is large 

evaporation is in any case very rapid. 

If we-now substitute equation (7.4) into equation (7.5) we have 

ä, =, - 
1 

al/2a+8 exp(- Alt al/ct+4 (7-5) AO 

where 

ýg 
15 

112a+8 
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and Q 
abs 

is taken to be equal to one. 

The evaporation time t 
evap 0fa grain from radius a=a0 to 

0 is thus given by 

evap =L 

ao 

exp 
1 

al/a+4 a-1/2a+8 da 4 
JA, 1 

(7.7) 

00 

Equation (7.7) is solvable by the method of integration by parts 

for half integer values of a. This served as a check on the numerical 

solutions used extensively later. 

For a given source the evaporation time of a grain will depend on 

several factors. If we assume (i) that the grains are graphite spheres 

(with a= 1); (ii) that they are situated in a medium which is optically 

thin to ultra-violet radiation; (iii) that the ambient gas density is 

low enough for recondensation to be ignored (i. e. we can use equation 

(7.7) as it stands); then the evaporation rate will depend on r, L and 

ap. 

Numerical integration of equation (7.7) for a source with 

L-5x 10 38 
ergs-' Cnova') and L= 10 44 

ergs-' (ISeyfert nucleust) 

for various values of a and r produced the results shown in'figure (7.2). 

The dotted line shows the distance at which a black body would have 

T BB 8' 2000 0K (this is often taken as the maximum temperature at which 

graphite grains can exist). 

We can see from figure (7.2) that a dust grain with a- 10-6 cm 

for example would not survive for sufficient time at any distance 

r S'2 x 10 15 
cm to radiate continuously over the timescales of 

*. loo 

days required in the nova models of chapter 5. 

When the integration was performed to determine the evaporation 

time down to half mass it was found that a figure such as (7.2) would 

not show up any difference in the resulting evaporation distances. 
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This suggested that the last part of evaporation is very rapid. We 

can see from the grain temperature equation (7.4) that as a decreases 

T increases thus increasing the evaporation rate, A. The effect is 
9 

that the grain retains effectively its initial radius then evaporation, 

once started, is very rapid. 

Equation (7.7) was solved, using NewtonIs method to give values of 

a for various valuei of t. This was repeated for several values of 

the initial grain radius, distance and a. As a general example of the 

results figure (7.3) shows those for ao = 10-5 cm, d=1.0 at three 

values of r for a constant nova-like luminosity, L=5x 10 38 
ergs -1 

9 

Obviously if the value of ao were smaller then complete evaporation 

would be more rapid. This fairly sudden disappearance of the grain 

once evaporation-to n. 0.7aO has taken place as illustrated in figure 

(7.3) enables us to use a useful approximation. If we consider 

a=a010"t 4'tevap 

aV evap 

then there is effectively no grain size distribution across any part of 

the shell except that present initially but truncated for a< the radius 

of evaporated grains for that r. We will assume however that all 

grains have the same initial radius. 

We now proceed to consider the effect of evaporation on the cavity 

as seen by a distant observer. 

7.3.1 Evolution of the Central Cavity 

We now consider the case where a dust cloud surrounds a source of 

high frequency radiation with a light curve as defined by equation 

(4.22) with W-0. 

Obviously to a centrally placed observer an evaporating cavity 

which is increasing in size due to an instantaneously increased central 

source luminosity would be spherical. The cavity expansion would 
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however not be observed to proceed with uniform velocity. The observer 

in*this case would see the front of increased luminosity expanding 

through the dust shell at velocity c/2. The flux density (as seen by 

a grain) associated with this luminosity would obviously decrease with 

distance and hence so would the grain temperature at the inner boundary 

of the emitting sphere. Thus the further from the central object the 

grains were placed the longer they would take to evaporate. 

The expansion of the cavity as seen by a centrally placed observer 

would at first appear to keep up with the expanding front of increased 

luminosity. However as the grains at greater distances took longer to 

evaporate so the cavity would lag behind allowing more grains to radiate. 

The situation becomes more complex when the observer is positioned 

externally to the dust shell. In this case light travel time arguments 

lead to an observed cavity which is initially highly non-spherical but 

as time goes on the expanding cavity approximates more to a sphere, as 

we shall see below. 

If we choose L-5x 10 38 
ergs-19 a0-2x 10-6 cm, and a-1 

for graphite spheres then from equation (7.7) the points (0) of figure 

(7.4) are derived. The solid curve in this figure is fitted to these 

points by the empirical expression 

1,910 (t 
evap) = 5.156 x 10-6 r 

0.4343 
_ 12.736 (7.8) 

Any change in the luminosity can be compensated for by adjusting 

r to keep (L/r2) constant. The error in the fit increases slightly 

towards larger values of r with an error of -- 6% at ra1.4 x 10 15 
CM0 

If we now consider point H in figure (4.1) then we can see from 

equation (4-19) that a grain here at position (r", G") is observed to 

have been heated for a time (t - t"), where t is measured from the 

observed onset of high luminosity of the central object and t" is given 

by 
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cose") f c 
(7.9) 

Thus if we observe the central source and dust shell at t= 100s 

for example along line CO grains taking less than 100s to evaporate 

will have done so. Along QC in figure (4.1) however grains will be 

seen to have been exposed for times ranging from 0 to 100 seconds. 

The short distance travelled by the parabola at this time results in 

grain temperatures being very high and thus evaporation times very 

short. The rear of the parabola and evacuated cavity thus tend to 

coincide to all intents and purposes at ear. ly times. However as the 

cavity increases in size and the initial grain temperatures decrease so 

t 
evap, 

increases and the cavity 'lags' behind the parabola. 

We set t 
evap 

(t - t") i. e. a grain at (r", 6") observed to have 

been exposed for a time (t - t") will have just evaporated. We then 

arrive at an expression which relates the observer's time to the co- 

ordinates (E) 
evap' 

r evap 
) of the inner surface of the evaporated cavity 

for the parameters given above for equation (7.8), i. e. 

1 (t - 
revap (1 - cose )) - 5.156 x 10-6 rO. 

4343 + 12.736 0910 c evap evap 

= (7.10) 

Equation (7.10) was solved at given times using Newton's method 

for r evap as a function of 0 
evap* The results were then plotted as 

figure (7.5). We can see from this figure that, as indicated above, 

the observed cavity is initially elongated toward the observer. The 

most distant parts from the observer follow the parabola of emission at 

these early times (t, < 10 5 
S). As time goes on however the cavity lags 

behind the parabola and it is essentially spherical for tt 105s 

although it will of course continue to grow at an ever-decreasing rate. 

We now proceed to consider in the next section the evolution of 

the externally observed infra-red flux from a dust distribution in which 

A 
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this type of cavity growth is occurring. 

7.3.2; Evolution of the Observed Infra-red Flux from a Dust Shell with 

an Expanding Evaporated Cavity 

Obviously even before the central source reaches maximum 

luminosity, in any realistic situation there is bound to be an 

evacuated cavity where no grains reside between nova outbursts. As 

we have seen in chapter 5 Malakpour (1978) for example found that small 

grains would not be expected to approach a quiescent nova closer than 

, %, 3x 10 15 
Cm* To illustrate the effect of evaporation on the observed 

infra-red flux we will assume that the initial cavity size is 1015cme 

The central object is taken to be nova-like with a step function light 

38 -1 -6 curve and L=5x 10 ergs . The dust shell is composed of 2x 10 cm 

graphite grains with a=1. The shell is taken to have an outer radius 

R= 10 16 
cm and is optically thin at all wavelengths. 

It can be seen from figure (7.5) that at time t -. 1 day the cavity 

would already be approximately spherical by the time the radius 

revap 0 1015 CM* At later times the cavity approximates even more 

closely to sphericity; the cavity is therefore assumed to be spherical 

at all times. The values of r evap were thus derived from equation 

(7.10) which for t >> 2r 
evap/c 

has the same form as equation (7.8) 

above. These were then read into a programme such as that described in 

Appendix Al as effectively time dependent values of the inner cavity 

radius previously called R,, The resulting light curves and spectra for 

grain distributions with 0-0 and 0-2 are shown in figures (7.6) and 

(7.7) respectively. 

In order to check the results of the programmes used to calculate 

the flux from the shell with an expanding cavity, programmes were run 

with the same paramei-er-s-exce'pt-that the-inner cavity radius was fixed 

(i. e. R, . 1015 cm cf. section (4.4-2) previously). The flux 
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, evolution thus derived is shown as dashed lines in figures (7.6a) and 

(7.7a). 

If we now refer to figure (7.6a) we can see that at short wave- 

lengths there is a noticeable difference in observed flux between the 

static and evolving cases. At I Um the flux falls away from a peak 

value at t P- 5 days in the case of an evaporating cavity even though 

the central object flux is steady. At longer wavelengths the major 

infra-red flux contribution for a0 grain distribution is from 

grains more distant from the central source than those likely to be 

evaporated in the timescale that interests us here. The difference 

between the static and'evolving cavity fluxes is so small as to not 

show up at 10 or 22 Pm in the figure. Figure (7.6b) shows the resulting 

spectra for the evolving cavity case with 0-0. The greatest changes 

as expected from figure (7.6a) occur at early times (i. e. ;S 10 days) 

where as we shall see later a rapid 'cooling' is taking place. 

Figure (7.7a) shows the flux evolution for a similar shell but with 

2. This of course tends to concentrate many grains into regions 

where they will be subject to evaporation within the timescale of 

observation. Thus even at long wavelengths there is a marked difference 

between the static and evolving shell fluxes: even at 10 pm the flux is 

failing with time. However the rate of decline at 1 Um is at all times 

greater than that at 10 Pm. 

Figure (7.7b) shows the spectral development of the flux from the 

same evolving shell. Direct comparison with figure (7.6b) reveals that 

at all times, the temperature derived from the wavelength of the peak 

flux would be greater for the shell with 0-2 than for the shell with 

0-0. This would be expected as there are more high temperature 

grains at higher values of 0. 

The development of the observed colour temperature T K-N 
for each 

shell is shown in figure (7.8). As expected the shell with a-0 
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consistently, yields a lower value-of T K-N' In both cases the tem- 

peratures are however much higher than observed from the dust shells of 

the novae studied so far in this work. The temporal behaviour of the 

temperature is however qualitatively very similar to that of Nova 

Vulpeculae 1976, particularly in the 0-0 case where an initial steep 

drop is followed by an 'isothermal' stage. 

7.4.1 Conclusion 

This chapter has briefly explored in an essentially qualitative 

way the effects of evaporation on the grain distribution and the sub- 

sequently evolved infra-red flux for nova-like sources. It has been 

shown that greater observed differences from a static shell occur for a 

grain distribution with a-2 rather than for - 0. For ý-2 the 

main contribution to the flux arises from centrally concentrated grains 

subject to evaporation within the timescales of interest. 

Comparing the results qualitatively with the observations of Nova 

Vulpeculae 1976 it has been found that the temporal development of the 

observed colour temperature resembles that of this nova. However there 

is only a very small decline in overall observed flux over the 100 days 

covered by the calculations even for the $-2 shell. This is unlike 

the nova where after -. 20 days from transition the decline in observed 

infra-red flux was much more rapid. 

It would appear that as far as the colour temperature behaviour 

of the dust shell of Nova Vulpeculae 1976 is concerned the evaporation 

model gives a much closer qualitative description of the observations 

than the static model. However we can see from figure (7.8) that even 

for $-0 the derived colour temperatures are higher than those observed 

(see chapters 2 and 5). It is perhaps unlikely therefore that graphite 

grains are responsible for the infra-red flux if we are correct it, using 

the evaporation model. A grain type with a higher rate of evaporation 
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at a given temperature would of course'generally yield consistently 

lower temperatures. 

We now proceed to consider in the final chapter how further 

refinements to the basic models outlined so far in this work may achieve 

better fits to the observations. We also suggest how the work may be 

developed in the'future. 
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CHAPTER 8 

-Discussion, 'Suggestions'for Further'Work and'Conclusions. 

8.1.1 Introduction 

It appears that the general field of infra-red variability of 

thermal cosmic sources is one in which little, detailed theoretical 

work has previously been attempted. It is perhaps not surprising 

therefore that there, are several sections of the work described herein 

which require further research or. suggest entirely novel avenues of 

exploration. 

After a general discussion of the results derivedýin the current 

work in section (8.2), this chapter continues with section (8.3) in 

which consideration of the ways research may be applied and extended 

in future is given. 

Finally in section (8.4) the conclusion to the thesis as a whole 

is presented. 



8.2.1 Discussion of Results 

In chapter 4 the basic models of infra-red variability from dust 

shells were developed. This entailed the investigation of the reaction 

times of graphite grains to changes in incident flux. It was deter- 

mined that, to all intents and purposes, the grains react instantaneously 

to those changes, certainly at the grain temperatures with which we 

were later concerned. The development of a general geometrical model 

for a distantly observed fluctuating source was then initiated and the 

idea of the 'parabola of emission' put forward for a central source 

with a step function light curve. The transverse velocity of expansion 

of the observed parabola was then shown to be superlight for a time 
1 

112 '* T41 "' 
11 

Y12 - 

In chapter 4 the equation of transfer was solved analytically for 

the special case of a central source with a step function light curve, 

an optically thin shell and calculated for a<2. This led to the 

rather surprising result that at all values of wavelength the flux 

from the shell rose linearly for T< 2ý. It then maximised at T-2. 

The numerical solution was then used for more general models including 

rather simple 'nova' models. The similarity between the results have 

and the observations of novae with late-developing infra-red excesses 

led to the formulation of more-specific models in chapter 5. 

First however this general model was utilised to make brief 

investigations of the variation of surface brightness due to re-emission 

across the face of the visible disc of the dust shell and an investigation 

was made of the optical depth through the shell to background radiation. 

The phase and amplitude relationships of central source and dust shell 

fluxes were also examined. 

Detailed application of the principles outlined in chapter 4 was 

made in chapter 5 to three specific novae. It was found that by 

employing small (N 10-6 cm) graphite grains in the circumnova cloud and 



an increasing, central source temperature the late developing infra- 

red excesses of Novae Serpentis 1970 and Aquilae 1975 could be 

accurately modelled. 
I 

That of Nova Vulpeculae 1976 was less satisfactorily 

explained in this chapter but. it prompted the investigations of grain 

evaporation considered later in chapter 7. The actual processes of 

grain cloud formation were also discussed at some length in chapter 5. 

Chapter'6 investigated the situation in which a disc of dust grains 

surrounds a variable central source. It was shown that to a distant 

observer the re-radiation from the disc will appear to emanate from 

within a"circle of--emission' (if the central source light curve is a 

step function) which expands with a velocity greater than the velocity 

of light for all i-< Ir/2. Theýevolved infra-red light curves and 

spectra, also depen&strongly on the angle of inclination of the disc to 

the observer. The model was qualitatively applied to Nova Cygni 1975 

whose late-developing thermal excess is somewhat controversial even now. 

Chapter 7 sunnarised the results of work on the evaporation of 

grains. The initial section gave the 8erivation of grain temperatures 

with the inclusion-of energy loss via evaporation of surface layers. 

However this was shown to make a negligible difference with grains at 

Tg ;6 20000K and the evaporation energy loss was subsequently ignored. 

Light travel time arguments were again employed to map the observed 

development of a central cavity. This gave the interesting result of 

an initially highly non-spherical cavity tending towards sphericity 

with time. When the equation of radiative transfer was solved 

numerically'for the dust shell with an expanding cavity of this type 

the infra-red, fluxes decayed at late times -even though the central object 

had a step function light curve. The colour temperature behaviour of 

the source vas, qualitatively similar to Nova Vulpeculae 1976. 

We now proceed to suggest how the work may be extended infuture. 
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8.3.1 Suggestiofis for'further'work -'Introduction 

In this section we will briefly consider how the research des- 

cribed in this thesis may be improved and extended by future work. 

The suggestions contained herein include proposals not only for 

theoretical studies but for observational and experimental work as well. 

8.3.2 Properties of Grains 

The basic assumption throughout this work has been that the grains 

with which we are concerned are perfect spheres whose optical properties 

are similar-to those of graphite. Some allowance for the uncertainties 

in experimentally and theoretically derived parameters for graphite has 

been made by introducing the variables a and p. It has long been 

recognised however that naturally occurring graphite is more likely to 

form platelets initially, and possibly cylinders or long 'whiskers' 

where time and ambient carbon gas density allow (Wickramasinghe, 1967, 

p. 59). It might therefore seem that any future work involving graphite 

grains should utilise the extinction properties of these non-spherical 

grains. Obviously where these grains are distributed about an object 

such as a nova some alignment of grains may occur due to electromagnetic 

or gas-streaming effects. The resulting polarisation of the central 

source flux would then indicate the presence of such grains. 

Of course it is known that other grain types do exist in the vicinity 

of many astrophysical obje. cts. The silicate spectral features at 

N 10 Um are well known as are those of water ice (see for example, Martin, 

1978, p. 199). Although neither of these grain types has been 

conclusively shown to exist near novae (and hence to give rise to the 

late infra-red excesses of certain classical novae) the possibility 

exists that a composite grain type may well be involved. For example 

graphite (or similar) grains may well between outbursts form ice mantles 

which 'insulate' the cores until the central source reaches high 
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luminosity at rO 170OX where the ice. absorption rises to a short wave- 

length plateau (Isobe, 1971). This composite core-mantle grain type 

is another important extension which will be required in more detailed 

future models. - 

, It appears that there exists little experimental data on the 

temperature dependence of Q 
abs 

(a point noted by Patashnick & Rupprecht, 

1977 with regard to ice grains). Our inclusion of the temperature 

dependence, p, in the absorption efficiency of graphite was an attempt 

to accommodate this to some extent, However it is difficult to ascribe 

a single conductivity function as this not only varies with the type 

of graphite considered but also with the orientation of the grain 

relative to the'direction of interest,, (Goldsmith et al., 1960). There 

appears to be a great deal of experimental and theoretical research 

required into the temperature dependence of the absorption efficiency 

therefore for all plausible grain types. Once these data were 

available the inclusion in the energy balance equations could have quite 

a marked effect. 

8.3.3 Non-Static Dust Shells 

It has been noted on several occasions in this work that the static 

dust shell models of chapter 5 and the static disc of dust grains 

outlined in chapter 6 will not be truly accurate representations of what 

is actually occurring. Chapter 7 has outlined the initial investigation 

of the effects of grain evolution (evaporation in this case) on the 

development of the source geometry and the subsequent infra-red flux. 

However even this model is somewhat idealised. 

In any real situation the cloud of dust grains will not initially 

contain a homogeneous grain size (or even grain type). In the case 

of a nova the grains already extant before the concurrent outburst 

will at first be subject to evaporation alone. However once the 
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ejecta reach the innermost grains they will be sputtered by the out- 

flowing gas ions of the ejected nova envelope. The sputtering rates 

of grain materials would therefore need to be known fairly accurately 

for different incident atomic types and energies'. Some data are already 

available on this (see for example, Draine, 1977); however it appears 

that more extensive work still has to be done to provide comprehensive 

information. 

Condensation, or re-condensation of grains during and between 

outbursts would of course be another process tending to make the static 

shell model less accurate. Application of the data on evaporation, 

sputtering and grain growth rates would hopefully be made to the 

development of N(a, t), the time dependent grain radius distribution. 

From considerations such as these it would be hoped to construct 

more realistic models of astrophysical objects and thus exact fits to 

observational data. Initially application to novae such as Nova 

Vulpeculae 1976 when grain destruction processes are indicated, might 

be envisaged. The situation would of course be complex as the heating 

function of each grain in the shell would be position dependent as 

would the size and composition of the grains (if the grains were 

initially composite core-mantle for example). As seen in chapter 7 

the observed evaporation rate, and hence the grain size distribution at 

any instant, would also depend on the position of the observer. For 

sputtering, the velocity of propagation of the ejecta in a nova is far 

less than the velocity of light and thus the sputtering front would be 

essentially spherical as externally observed. Also, of courset grains 

outside the ejecta would be unaffected by sputtering, though still 

subject to evaporation. 

In the realistic situation where the shell was not static studies 

of the 220OR feature might show variability even in a pre-existing - 

dust cloud associated with a nova. Detailed observational work in this 
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wavelength region should help to determine when a pre-existing cloud 

was'subject to destructive forces and when a condensing cloud of grains 

was being observed. 

8.3.4 Different Source Geometries 

Chapter 6 explored the situation of a variable central source 

surrounded by a thin disc of dust grains. This yielded several 

interesting results including the qualitative application of the model 

to the late infra-red development of Nova Cygni 1975. As we saw in 

section (3.5.1) it is unlikely that at each outburst ejecta are 

distributed isotropically about the nova. Indeed we have seen that 

it is generally thought that the ejecta form an equatorial ring with 

two polar blobs, after the outburst (see figure (3.6)). A disc thus 

approximates to the possible distribution of grains which may have 

condensed in the equatorial ring. However it would of course be more 

appropriate in future to explore the process of emission from torroidal 

grain shells and from isolated Iblobs'. 

Throughout this work we have assumed the variable high frequency 

source to be placed'centrallyýwithin the dust distribution. However 

it is likely-that the high frequency primary source will in some cases 

be adjacent to an irregular dust cloud (cf. Couderc, 1939) or be placed 

out of the plane of a disc, * or thin 'slabs', of dust grains for example. 

Further consideration will also have to be given to the instance where 

multiple shells of various geometries surround the central object. The 

complexity of the situation is potentially immense once grain size and 

number density distributions are also incorporated. 

8.3.5 The Phase Relationship of Central Source and Dust Shell Emitted 

Fluxes 

As was seen in section (4.4.5) the variability of a sinusoidally 
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varying centrally positioned primary source is mirrored by the variation 

in, infra-red flux from the dust shell. ' The phase difference between 

central source and dust shell fluxes was shown to be dependent upon 

optical depth through the cloud and (more importantly) the size of the 

shell. . It was also found that it is the inner radius, Rl, which has 

the major influence in determining the phase difference between the 

shell and central source fluxes. 

Future work would involve the completion of the preliminary 

investigations. Once completed satisfactorily then application of the 

results to Mira variables and other periodically varying objects with 

dust associations would be undertaken. It is felt by the present 

author that this would be an extremely important extension of this work 

resulting in the direct determination of Rl. The next section details 

some of the expected results that might be gleaned from such a study. 

8.3.6 Objects of Future Interest 

The majority_ of the work described in this thesis has been devoted 

to the subject of the late-developing infra-red excess of classical 

novae. ý However the potential applications of this work are much more 

wide-ranging. 

We saw in chapter 2 that recurrent novae have been shown to have 

dust shells which exist prior to the subsequent outburst. RS Oph is a 

prime example of this. In any future outbursts it would therefore be 

extremely important to monitor the infra-red development of these objects 

as they should, to some extent, behave in a similar fashion to classical 

novae. Dwarf novae may also be of interest in this respect; however 

the present author is not aware of evidence that any of these objects 

are associated with variable thermal infra-red emission from dust grains. 

Within the Galaxy there are several other types of object of 

interest. Long period variables with dust associations would be of 
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particular importance. The evidence for phase lags between central 

source and dust shell fluxes was outlined in section (2.1.2) for . 

certain Mira variables. By studying the phase difference I several 

values of X might be inferred (see section (4.4.5)). By also studying 

the central source luminosity and the thermal spectrum of the dust 

shell (i. e. to determine its effective temperature) the most likely 

value of the dust shell radius could be suggested. Angular diameter 

determinations would therefore give an extinction-independent distance 

to the object. Ciatti and Rosino (1974) have observed Mira variables 

at UBV and near infra-red wavelengths. However, as with novae etc., 

longer term, more extensive observations at a wider range of wavelengths 

would be essential to enable the construction of detailed models. 

As was mentioned earlier in sections (2.1.2) and (3.3.1) certain 

type II Seyfert galaxies show infra-red variability which may result 

from emission from dust grains near the variable central sources of 

these objects. There has been a good deal of controversy in recent 

years over the thermal nature of the infra-red emission of these objects. 

This usually arises because of the relatively short timescales of 

variation which have been thought in the past to be irreconcilable 

with the relatively cool (i. e. extensive) dust clouds required to produce 

the emission. However further work on the phase problem as outlined 

in the previous section may well yield cloud diameters which whilst 

large enough to give low observed temperatures will nevertheless be of 

the right order compared with the central source period to produce rapid 

fluctuations. 

There are of course other more iudividual objects (e. g. Hm Sge. 

CRL 3099 etc) as well as T Tauri stars and some Wolf Rayet stars to which 

future attention could usefully be given. It is hoped that individual 

models would be tailored for each source including suitable geometry 

and grain type. 
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In the long term the principles. behind this work (i. e. travel 

times from a-central source-to a, point of re-emission and the light 

travel time of that re-emission to a distant observer) could be applied 

to radio'sources where a flux of charged particles is emitted from a 

central object and they subsequently emit via the synchrotron mechanism. 

8.4.1 General Conclusions 

- Weýhave endeavoured in this-work to-considerably expand the- , 

theoretical bakground on variability in thermal infra-red'sources. ' To 

that end we havenot-only looked at the properties of individual grains 

but, we'have-appliedý-light, traveI time arguments to the large scale 

situation., The models we have developed have been applied with some 

success, to, certain classical novae-although our assumptions-concerning 

pre-existing, grains have tended-to go against many previously held 

beliefs. I -_ I-- -'. 

We have begun work along more specific lines not only as far as 

particular cosmic sources are concerned but also for different 

geometries (i. e. the disc) and non-static shells (i. e. evaporation). 

The scope for future development and application of the work completed 

here would appear to be immense and it is hoped that the good fortune 

which led the author through only a minimal number of the inevitable 

'blind alleys' will continue in the future. 
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APPENDIX Al 

The Main Programme for Specific Dust Shell Models 

A1.1.1 Introduction 

It is obvious from what has already been stated, partiCularly in 

chapter 4 of.. this_ work, that analytical solution of the equation of 

transfer in more realistic situations than the optically thin shell 

and step func`tioii'lighi'cu'rve case is unlikely; numerical methods were 

therefore utilised. This appendix describes in detail the form of 

the programme used to compute the observed infra-red flux from a dust 

shell in a more complex set of circumstances. Other programmes were 

of course developed in the course of this work, but on the whole they 

were either standard (as in the graph plotting routines) less complex 

(as in the Bernoulli number summation of the analytical solution) or 

similar to the one described herein (as in the case of the disc). 
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A1.2-1. FLOW CHART 

ENTER 

DEFINE FUNCTION FOR INTEGRAND IN 0, F(Y) 

READ IN DATA FROM FILE VUDATA" 

PRINT TITLE AND 
DATA 

READ IN SET CONSTANTS WITH-ALTERNATIVES 

DEPENDING ON VALUE OF a 

READ IRCONSTANTS FOR PARTICULAR 

MODEL - e. g. R, Rj, a etc. 

CALCULATE VALUES OF 0 DEPENDENT 

VARIABLES - e. g. N1 Rls 

PRINT VALUES OF a AND B DEPT. VRBLES. 

Aid 
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CALCULATE LIMITS ON T FOR VARIOUS SECTIONS 

READ IN TIMES OF OBSERVATIONS FROM 
ULTRA-VIOLET PEAK 

TIME LOOP BEGINS 

READ IN OBSERVATIONAL 
WAVELENGTHS 

READ IN ZERO MAGNITUDE 
FLUX VALUES FOR PARTICULAR 

PHOTOMETER 

WAVELENGTH LOOP BEGINS 

I 

CALCUIATE FREQUENCY, INFRA-RED 
TRANSMISSION, CONVERSION OF UNITS 

FROM 
LABEL 
8000 

N-STEPS IN 0 
M-STEPS IN DISPLACEMENT 

I 

INITIALISE DISPLACEIIENTs DISPI, AND 
CALCULATE VALUES OF AO (-E 00), DISPO, 
DDISP & DISPR DEPENDING ON T(B T) 

I 
SURFACE BRIGHTNESS LINE 

COUNTER, L, -0 

V 



rý 
40 

- 

CALCULATE 62 ýýD el 

AS APPROPRIATE TO 
DISP < DISPL 

INCREIIENT DISP 
Ld 

AND RETURN TO 40 

CALCULATE 02 AND el 

AS APPROPRIATE TO 
DISP >, DISPL, 

J( NO 

je YES 

INCREIIENT-DISP 

YES 

SIMPSON'S RULE INTGN. 
FOR SURFACE BRIGHTNESS 
ALONG DISP. 

SIMPSON's RULE INTEGRATION 
FOR OBSERVED LUMINOSITY 
IN FREQUENCY UNITS. 

CONVERSION TO WAVELENGTH 
UNITS. 

COMPARE CALCULATIONS WITH 
OBSERVATIONAL RESULTS 

8000 

WAVELENGTH LOOP ENDS 

PRINT CALCi C-f- OBSV-N-. 
f 

SIMPSON's RULE INTGN. 
FOR SURFACE BRIGHTNESS 
ALONG DISP FOR 2 
SECTIONS IN FRONT AND 
BEHIND INNER CAVITY 
W. R. T. DISTANT OBSERVER 
THIS INCLUDES CALCN. OF 
1/R TRANSMISSION THRU' 
FRONT SECTION FROM 
REAR. 

4 



I 

I 

9000 

TIME LOOP ENDS 

COMPLETION STATEMENT 

EXIT 
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A1.3.1 Programme Structure 

This sub-section describes the main functioning of the numerical 

integration programme with reference particularly to section (Al. 2.1) 

and chapter 4. A copy of the programme is shown in figure (Al. 1). 

We will now proceed to work through this figure (note that this is only 

one version of the programme specific to Nova Vulpeculae 1976, although 

the basic form is similar for other nova models). 

After declaring real and integer variables and setting up the arrays 

to be used, section (i) of the programme establishes the function, 

f(E)), to be integrated along lines of sight at displacements, DISP, 

ER sin E) 2) from the centre of the observed emission. F(Y) (-=. f(O)) 

is composed of various sub-functions, including the observed luminosity 

a grain receives at any instant at any point within the cloud, GLUM (Y); 

the transmissions of ultra-violet and infra-red radiation, TUV (Y) and 

TIR (Y) and the resulting temperature a grain is observed to possess, 

GTEMP (Y) In this case the functions are defined for B-2. 

Section (ii) of the programme reads in the observational data which 

are stored in magnitude form in the file ^,, VUDATA. The values are then 

printed out in the form of a table so that any faults at this most 

important point can easily be detected. 

We now proceed to read in the set constants including a and 

In the case of the Reimann Zeta and Gamma functions an alteration in a 

is accommodated by conditional statements. Section (iii) also contains 

the derivation of NlRlO (E NOROX) from total grain mass depending upon 

the val'ue'of 0. As in the rest of the programme integer values of 

0s3 can be accommodated. We define qabs IQUVABS) and the 

constant of proportionality, Kl, in the calculation Of qabs B 'QIRA S) 

later as well as the light curve parameters and the limits on T(E T) 

utilised in following sections. The absolute limit on T (2 ABSLIM) 

sometimes'imposed is also included. 
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After printing the values of a and 5, (iv) (a) calculates parameters 

such as the grain number density at R (=- RDENS); ultra-violet trans- 

mission (E TAUUV) and the temperature of the grains at the outer edge 

of the shell (TEITG, r= R). TEMR1 is the grain temperature at the 

inner-radius (r - Rl). These, and other important parameters are then 

- Section (iv) (b) in which again transmission through printed out. 

the shell at r-R (DISP = 0) is calculated necessarily comes after the 

definition of the'observational wavelengths etc. in section (v). 

,,, In section'(v) the days after the discovery of the object on which 

observations were made, are read in. Statement number 10 allows the 

value of At (- 63.5 here) to be read in. Also defined here are the u 
observational wavelengths plus others which enable spectra to be more 

accurately drawn and-the standard (zero magnitude) fluxes relative to 

the particular photometer used in the observations (Strecker a Ney, 

1974). 

The observational wavelength loop begins in (vi) (a) where the 

absorption efficiency, -in the infra-red is calculated. Section (vi) (b) 

includes the conversion factor to Wcm-2 Vm7l from ergs-' cm -2_11z-ý 

We now proceed in (vii) to define the parameter DISP and certain 

limiting values of this parameter. 

DISP is initially given a very small value compared with the shell 

size. Giving DISP an initial value of zero - as would strictly be 

correct- would lead to possible overflow later in the programme, The 

angle AO 0- 00, see Figure 4.1) defines the maximum displacement, DISPO' 

except when T >,, l when (DISP) 
max r-- R. Once the shell has been filled 

by the central source radiation 00 - 11 (statement 400). 

The upper limit on displacement is set as slightly less than the 

real Value (i. e. DISPR < DISPO) again to prevent possible overflow. 

These approximations have negligible effect on the final results however. 

The'incremental value of displacement (-: DDISP) is then defined. 
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DISPL is the displacement at which the paraboloid of emission cuts 

the inner cavity. For times T ;ý 2* (where *E RATIO) therefore, 

DISPL --: 0. ' 

The final part of section (vii) initialises the surface brightness 

integration counter, L. This labels a particular surface brightness 

to allow the'programme to use it in the computation of total observed 

flux. 

In order to follow the logic of sections (viii) and (ix) reference 

should be-made to figure (4.1). Section (viii) is divided into two 

parts a) and b), by'section (ix). (ix) performs the integrations 

required to derive'surface brightness at displacements DISPL < DISP < R1 

f or' -r %V. 

As', the Fortran'IV compiler does not possess the functions sin-lx- 

and'cos- 
1x 

the angle A2 (initially =0 in figure (4.1))is found in 2 

terms of tan -1 (function of DISP). The initial value of Al is equivalent 

le'N to the angle OCM of figure (4.1). If the displacement is greater than 

DISPL however, Al is set equal to el (as defined in Chapter 4., 

section 4,4.2)unless 61< eo in which case Al '-4 n- 02- Care was taken, 

by'use of conditional statements, to ensure that no errors emerged due 

to the fact-that the function ATAN always gives angles between 0 and 

11/2. 

If -r <ý or if DISPL j DISP ý RI for Tý 2ý we proceed into section 

(viii) (b). ' This is where the integration along lines of sight to 

give the surface brightness at the observed surface of the shell is 

performed within the above limits. 

First the increment in A (E-0) is calculated and then a summation is 

performed following'Simpson's rule, the values of A being substituted 

in F'(Y) above each time. SURFBW is thus the surface brightness 

corresponding to the line or right at displacement DINC +Lx DDISP. 

If DISP < DISPR the programme returns control to label 40 having 
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incremented the displacement and to increment L for the next loop. 

If. however T >, 2ý and DISPL < DISP < R1 as in figure (4.5a)C) for 

example then control passes into section (ix). Al is initially defined 

as 01 above (cfj, 62'k, of figure 4.1) unless the displacement is such 

that Al '-ýn - 02* A2 is re-defined as initially equivalent to angle 

nC 
of figure (4.1). Increments in A (=- 6) along line AB are calculated 

and-a Simpson's, rule integration performed. The resulting surface 

brightness is, labelled CONT1. This flux will of course be diminished 

by-extinction in its passage through the front portion of the shell 

(i. e. along line ML). The optical depth to infra-red radiation along 

a line such as ML-is defined in equation (4.38a). Here the dependence 

of the equation on the 0 value is taken into account. The final cont- 

ribution of the rear portion (AB) to the surface brightness from the 

surface element at L is given by CONT2 - CONT1* DIM (where DIM is the 

transmission of infra-red along ML). 

Angles Al and A2 are redefined as equivalent to 
6ý 

and 15ZCI res- 

pectively and control transferred back to label 57. The integration 

is now performed for the front portion (line ML) and the resulting 

surface brightness from the element at L is the sum of the new value of 

CONT1 and CONT2 as already found. Displacement is incremented and 

control returned to label 40 where the next loop in DISP and L begins. 

Having completed calculation of surface brightnesses across a radius 

of the observed disc for one wavelength at a given time, control passes 

to statement label 100 and thence into section W. Here the integrat ion 

is in terms of DISP for all the surface. Again Simpson's rule is used 

with the appropriate integral dependent upon the value of $. This iS 

where the value of SURFB(L) related to a particular value of DISP is 

utilised from those calculated above. 

Once the theoretical observed luminosity is calculated and con- 

verted to the alternative wavelength units it is compared with actual 
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observations in the function TEST(G). The remainder of the observational 

wavelengths are then run through the programme before the next value 

of T is assumed. This final section (xi) then prints the results out 

on the line printer and also places them into a disc file in such a 

way that they are acceptable to the SPSS package of routines on the 

UMRCC 1906A/7600. This enables 'scattergrams' of both the observational 

data and theoretical model to be output on the line printer at the 

same time as the numerical results are returned. Thus reasonably 

fast comparisons of the fit of the model to the observations can be 

made. Figure (Al. 2) shows a scattergram returned from computations 

based on Nova Vulpeculae 1976. 
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APPENDIX A2 

Glossary of Variables and Constants 

A2.1.1 Introduction 

This appendix contains an alphabetical listing of the main variables 

and constants used several times during this work together with a brief 

explanation of each. Greek and Roman letters are listed separately. 

Variables and terms in common usage have on the whole been omitted unless 

some confusion may arise by their omission. 
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A2_'. '2.1 The Greek Variables and Constants 

a 

ac 

0 

r 

YG 

ax 

6BG 

c 

oe eot 610 
02 

OBB 

0 
evap 

-ý 

Exponent of frequency relating frequency of emitted and 

incident radiation to the absorption efficiency of the 

grain material. 

Carbon atom sticking coefficient. 

Exponent of the dependence of grain number density on 

distance from a central object. 

The ganma function 

(3 

a+4 
2 

The Universal constant of gravitation. 

Optical depth at wavelength X. 

Optical depth to background radiation. 

The Reimann-Zeta function. 

Debye temperature of grain material 

Angles as defined in figure (4.1). 

Black body angular diameter. 

Angle defined as 0 above of a grain which has just 

been observed to evaporate., 

Wavelength. 

Limiting wavelength of the analytical solution of Oe 

equation of transfer. 
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xc Cut-off wavelength of a filter 

Xmax Wavelength of maximum luminous flux. 

V P. requency. 

P Exponent in the temperature dependence of grain 

material electrical conductivity. 

Ev, EI Surface brightness of an object at frequency v and 

wavelength X respectively. 

ýBG Background radiation surface brightness. 

a Electrical conductivity of grain material. 

as Stefanfs constant. 

T, Tj Time measured in units of light travel time across the 

external radius of the dust shell and the radius of 

the internal cavity respectively. 

0 Phase difference between fluctuations from the 

central source and dust shell as observed externally. 

toR 
c 

Ratio of cavity radius to external dust shell radius. 

Value of ý at time t- too 

n Solid angle subtended by a source. 

w Angular frequency. 
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A2.2-2 The Roman Variables and Constants 

a Grain radius. 

ao Initial grain radius prior to evaporation or further 

growth. 

a Maximum grain radius on grain growth model. 

B(v, T) Planck function at frequency V, temperature T. 

Bn nth Bernoulli number. 

Cv Specific heat at constant volume. 

D Distance from observer to central source. 

Dr Drag force. 

FX, F, Observed luminous flux at wavelength X and frequency 
V 

V respectively. 

G 

g 

H 

HFN 

i 

Gravitational force. 

Asymmetry factor for scattering. 

Latent heat of Vaporisation of grain material. 

The Heating Function defined by the product of the 

efficiency factor for absorption and the central source 

luminosity integrated over all wavelengths. 

Intensity of radiation at wavelength X. 

Inclination of a disc of dust grains to the line of 

sight of a distant observer. 

L Luminosity, 
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LCL 

LIRP LuV 

Mei 

119 

MV 

Uýc 1, MR 

Ulg 

MV 

N 

NC p NH 

NTOTAL 

Nj 

p 

PFN 

Pr 

Pv 

PC 

Psat 

Luminosity of the constant luminosity phase of a 

moderate speed nova, 

Infra-red and ultra-violet luminosities respectively. 

Total mass ejected by a nova. 

Total mass of dust grains in a dust shell. 

Absolute visual magnitude. 

Refractive index of grain material. 

Masses of carbon and hydrogen atoms respectively. 

Mass of an individual grain. 

Observed visual magnitude. 

Grain number density. 

Gas number densities of carbon and hydrogen atoms 

respectively. 

Total number of grains formed per outburst of a nova. 

Grain number density at the inner radius, Rl. 

Period of fluctuation of a source. 

Radiation pressure function. 

Radiation pressure force on a grain. 

Rate of energy loss through vaporisation. 

Partial pressure of free carbon. 

Saturated vapour pressure* 
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Qabso QscaP 

Qextv Qpr 

it 

Q 

B. 

Rl 

R 

Rgas 

r 

rv 

r 

revap 

ro 

6 

T 

TBB 

Efficiency factors for absorption, scattering, extinction 

and radiation pressure respectively. 

Constant of proportionality relating absorption 

efficiency of a grain to grain temperature* radius 

and the frequency of incident radiation. 

Planck mean of the efficiency factors. 

External radius of dust distribution. 

Cavity radius in dust distribution. 

The gas constant. 

Radius of the ejected shell of gas from a nova. 

Central source - grain distance. 

Displacement of a point in the dust shell from the 

central source as observed externally. 

Radius of circle of emission in the case of a disc of 

dust grains surrounding a variable central source. 

The observed radius vector of a grain which has just 

evaporated. 

The condensation distance of grains after ejection from 

a central source. 

Grain bulk denifty. 

Gas temperature. 

Black body temperature. 



Tc 

Tg 

Trad 

t 

tc 

cool 

tevap 

ti 

to 

t3, v 
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Condensation temperature of dust grains. 

Grain temperature. 

Temperature of a perfect black body if placed at 

distance r from a central source. 

Effective stellar surface temperature. 

Time as measured from a given origin. 

Time of cessation of expansion of the infra-red 

emitting region of a dust shell as externally observed. 

Cooling time of a grain. 

Evaporation-time of a grain. 

Time taken for complete ionisation of a nova gas shell. 

Time from outburst of a nova to the onset of dust 

formation. 

Time in days for the observed visual magnitude of a 

nova to fall by 3 magnitudes. 

Atu Time from peak visual luminosity of a nova to the 

transition slope break. 

Ato 

U 

Time interval between beating function maximum and the 

start of infra-red emission from a disc of dust grains 

surrounding a variable central source. 

Internal energy of a grain. 

u Relative grain-gas velocity. 



UT 

V 

Vd 

Vd. 

VP 

Vth 

Vr 
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Terminal velocity of a grain moving in a gas, 

Ejection velocitY of matter from a nova, 

Apparent transverse velocity of expansion of the 

emitting region of a dust shell relative to the 

central source. 

Velocity of the Diffuse-Enhanced spectrum of a nova. 

Velocity of the Principal spectrum of a nova. 

The mean thermal velocity of gas atoms or molecules. 

Velocity of expansion of the emission circle in the 

case of a disc of dust grains surrounding a variable 

central source. 
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APPENDIX A3 

The Visibility of Pregalactic Fluctuations and the 

Consequences for the Value of the Deceleration Parameter, qo_ 

A3.1.1 Generai Introduction 

The work described in this appendix was carried out during the 

tenure of the University of Keele Research Studentship at a time 
N 

when the paper summarising the basis of the main part of this thesis 

was under review (Bode and Evans, 1979a). This appendix is not 

however directly related to the preceeding chapters although it is 

concerned in part with the same extinction properties as those of 

the interstellar dust already considered. 

N. B. The notation used in this appendix is independent of that used 

earlier in this work. 
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A3.1.2 Introduction to Theory and Observation 

It is generally accepted that the cosmicmicrowave background 

radiation first observed by Penzias and Wilson (1965) is one of the 

strongest pieces of evidence in favour orf there having been a hot 

dense phase in the early history of the universe. At early times 

radiation and matter were in thermal equilibrium. Ilowever, as soon 

as 'the point in the expansion was reached when the equilibrium 

0 temperature fell below about 4000 K, the dilute hydrogen gas ceased 

to be'c'Ompletely ionised and opaque due to Thomson scattering from 

electrons. This 'era of recombination' occurred at a time tr corres- 

ponding to a red-shift Zr . given by 

L( -to I. 1 T (tr) 1+ Zr 

where T(t 
0) 

is the present temperature of the microwave background 

and T(t 
r) 

is the temperature at recombination. 

Observations of the cosmic background radiation have shown that 

the spectrum follows closely that of a black body with temperature 

T(t 
0)2.70K 

(Peebles, 1974). This leads to a value of Zr of about 

1500. 

Although it is not yet clear how inhomogeneities arose in the 

early universe before recombination, the fact that galaxies are 

observed now'is taken to indicate that the hot dense phase up to time 

t' was not homogeneous but contained density fluctuations presumably r 

of the order of a galactic mass. These density fluctuations would 

give rise to temperature fluctuations and therefore it is expected 

that the microwave background shouldq on a small enough scaleg appear 

anisotropic. Present theories indicate that these temperature 

anisotropies should give AT(t 
0 

)/T(t 
0 %, 10-4 _ 10-3 over angles given 

approximately by Weinberg, (1972) as 
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0 211c) pMqo2 1 /3 

-c 

[28irp 

where-H 0 
is the Hubble parameter value at time to (this being the 

constant, of proportionality between the cosmic scale factor R(to) and 

its rate of change i(t 
0) at time t0); M is the fluctuation mass; 

c is theývelocityýof: light; pC is the critical or closure density of 

the universe and-q 0 
'is the deceleration parameter defined in terms 

of the scale factor as - 

R(t-) 
qo = -R(t )- 'j, 

0 TY, -_ 
R (to) 

It can, be seen that even for small values of q, 0 is of the 

order of several seconds of are for m- loll M. (an average galactic 
-30 -3 -1 -1 mass), pc=5x 10 gem and 11 

0- 
50 km s Mpc 

Because, of the, great significance attached to observation of small- 

scale, anisotropy in the background radiation numerous attempts have 

been undertaken in recent years to detect any that might be present 

(Weinberg, 1972; Carpenter et al., 1973). Wo significant anisotropy 

appears to exist down to limits of at most AT/T 1v 3.2 x 10-4 over 

angles of less than 1" according to these observations. All this 

'applies if the universe is completely transparent to the cosmic back- 

ground, radiation. We now consider the effects of various obscuring 

materials beginning with intergalactic dust. 

A3.2.1 Obscuration by Dust 

It was suggested by AlfVen and Mendis (1977) that dust already 

existing in galaxies at any epoch might make the universe optically 

thick to. the background radiation. This would effectively smooth-out 

any fluctuations and render the observed background highly isotropic. 
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However'Pollaine (1978) has subsequently shown that a more detailed 

treatment, including evolutionary effects etc., indicates that galactic 

dust makes virtually no contribution to the opacity of the universe 

from the epoch of galaxy formation to the present. 

Although primarily concerned with galactic dust, Alfvan and 

Mendis refer to the possible existence of intergalactic dust. Numerous 

other authorsl'have, presented evidence from which they derive upper - 

limits to dust'density (Nickerson and *Partridge, 1971; McKee and Petrosian, 

1974) or. actual values for the density (Nandy et al., 1974; Schmidt, 

1974). -The question thus arises as to whether intergalactic dust 

could make the universe optically thick, effectively smearing out any 

fluctuations in the microwave background radiation. It will be shown 

that if dust between galaxies is responsible for making the universe 

optically thick then very severe constraints are placed upon the 

deceleration, parameter, q0. 

If intergalactic dust-does exist, the main questions which must 

be asked are 

(i) How did it get there? 

(ii) When was'it formed? 

(iii) What is its composition? 

(iv) What is its density? 

Chiao and Wickramasinghe (1972) have shown that the radiation 

pressure of starlight upon charged conducting grains in galaxies is 

suffiLent to expel sub-micron interstellar grains along magnetic 

field lines into intergalactic space. Estimates of the density of 

material in the form of grains ejected in this way in intergalactic 

space. agreie'well, with the ob-served limits quoted above. 

If this mechanism is the dominant one then grains will have 

existed only since galaxies contained dust producing stars. The time 

at which galaxies formed is given approximately by the time for the 
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matter density 6f-the!. universe to reach that presently in galaxies. 

This time we denote as tg. 

Field (1974) looksýat this problem in a slightly more detailed way 

by considering the original perturbations in a way similar to that for 

the whole universe. In other words the scale and mass of the 

perturbation determine whether it will expand forever with the universe 

or undergo expansion to a maximum and then contract (which is analogous 

with the universe as a whole for different values of q 0). 
From this 

he deduces that galaxies were formed at a time later than 3.5 x 10 7 

(Mll)' years, where M 11" M/10 11 M0. otherwise they would be more 

tightly bound than observed. The best estimate of t9 given by Field 

is 7x 10 7 
years. -This 

is slightly less than the value calculated by 

Partridge and Peebles (1967) of 1.5 x 10 
8 

years, 

The value of Z9, the observed redshift corresponding to time t9 

will of course depend on the cosmological model we use. 

If we assume zero cosmological constant and that the universe is 

on a large scale isotropic, homogeneous, and has negligible pressure 

(at the epochs of interest) then we may describe it using a Friedmann 

model. Equation (A3.1) below is the so-called Friedmann equation 

where this model universe is described in terms of the cosmic scale 

factor, R(t); the universal gravitation constant, G; the matter 

density, p(t) and the curvature index, k (Weinberg, 1972) 

j2(t) 
. 

87[Gp(t 
_ 

kc 2 

R2 (t) 3 R2 (t) 
(A3.1) 

If the energy density of the universe is dominated by nonrelativistic 

matter with negligible pressure p, then 

p(t) mp 
[R(t) -3 

for p << pc 
2 (A3.2) 

otR03 
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By taking equation (A3.2) and writing p0 and k/R 
02 

in terms of 

q0 and H0, where R0 is the present scale factor, equation (AM) can 

be expressed in the forM 

k2 2 [l RC (t) 
-H- 2qc) + 2q0 

Ro 20 (A3.3) 

Equation (A3.3) can be solved parametrically (Weinberg, 1972). 

In the case of qo >I 

sin 
t Hc) (2qo - 1)312 

q0 

Ro 2qo 
t) 

1+z 
q_ Cos 65 si ýL 

(A3.4a) 

(A3.4b) 

where 0 is the so-called development angle of the universe at 

time t. For any values of Ho, q0 and t9 we can therefore find the 

value of Z 

For 0<q0<I equation (A3.4) is valid with 0-i real)p 

i. e.: - 

ý.! -I- -. ._t 
Ho (1 - 

2qo)3/2 

ainn T-W- 

Ro 
+Z- 

2qo 1 
R(t) q0 (Cosh 

In the case of f lat space (qo m 1) Z is simply given by 

Ro 
I+Z 2_j 2/3 

R(t) - 
[-: 

T-H- 
0E 

(A3.5a) 

(A3.5b) 

(A3.6) 

Having obtained a value for Z9 from our chosen values of Ho ,q0 

and t90 we can then calculate the optical depth to the cosmic microwave 

background for intergalactic dust. At this stage however we must make 
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certain assumptions. 

It is assumed that no dust existed prior to the epoch of galaxy 

formation and that the major part of the dust we see now was formed 

at time t9 when rapid evolution of high mass stars with resultant 

ejection of condensibles in the form of heavier elements was taking 

place (Schmidt, 1974). If we further assume, following Chioa and 

Wickramasinghe (1972), that intergalactic dust originated as inter- 

stellar dust then it can be shown that virtually all this dust will 

survive from t9 until the present epoch (Margolis and Schramm, 1977). 

If T is the optical depth between a source emitting radiation of 

frequency'v at time t, and an observer receiving the radiation at time 

t0 at frequency vo, and if a(v) is the extinction cross-section and 

n(t) is the proper member density of scatters then 

(V 
0)- 

ito n(t) a(v) c dt (A3.7) 

(Nandy et al., 1974) 

By employing the assumptions made above, the number density per 

unit proper volume is given by 

n(t) - n(t 0) 
(1 + Z) 3 for Z<Z9 

n(t) -0 for Z>Z9 
(A3.8) 

Thus the optical depth can be expressed by using equations (AM) 

and (AM) since dt - dR/i(t) 

n -1 
T (V gý(to) c IV V 2q + 2q Va (v) dv 

0 vo Ho Vo 70 00 Vo 
(A3.9) 

where n (t ) is the present intergalactic grain number density. 90 
Assuming that the wavelength dependence for intergalactic dust 

is the same as that for interstellar dust, the extinction cross-section 

is given by (Nandy et al., 1974). 
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fT (I N= I A(; k) 
10) 1.086 Ln 

s 

where A(X) is the interstellar extinction law normalised with 

normalisation distance of I kpc and ns the average n=ber density 

of interstellar grains. 

If we write (A3.9) in terms of f- v/c and use (A3.10) we obtain 

(Nandy et al., 1974) 

(f )=c IF 11 fff, [I - 2q + 2q f A(f) df 
0 1.086 Lf00 fo llo 00f0 

(A3.11) 

where v-n9 (t 
0 

)/ns . 

The interstellar extinction is of the form A(f) - Aof for 

f <, 3.6 VM- 
1. This is useful as for an observing wavelength AO -1 cm, 

f will indeed be less than 3.6 Vm7l for every epoch after recombination. 

Thus (A3.11) becomes 

T(f )-- 
Aoc 

V ff f' [1 - 2q + 2q 1- 
0 1.086U2 0 Ho fo 0of0 

and this integrates to give 

-1 %- .4 
AO c, 

11 
fo [(l + 2q Z )l 13q2o (1 + ZS)2 

0 1.086L H0 15q3 00g 

+ 2q 
0 

(2qo - 1)(I +Z9)+2 (1 - 2q 
0)2 

1- 
l5q02 + loqo - 2] 

(A3.12) 

Here A0-0.55 and V= 10-7 (HO/75 kms- 1 
MpC-1 ) from a fit of 

quasar colour against red shift (Nandy et al., 1974). The value of 

intergalactic dust mass density at the present epoch would therefore 

be of the order of 1.5 x 10-33 gCM73 . This in itself would have no 

significant effect on q for q> -3 
00" 10 (for H0 ,< 100 kms-1 MpC; -l 

A plot of q0 against T9 (VO) is shown in figure (AM). This is 

for an observing wavelength of 1 cm, P-6.67 x 10-8 1, H0= 50 kms -1 Mvc -1 
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t9-7x 10 7, 
yr. , It can easily be seen that the universe is not 

optically-thick to the cosmic microwave background with values of 

q i:, o. o5. 

This limit is strengthened if (i) the dust density is less than 

Nandy. 2t al. suggest, giving fewer scatterers. 

(ii) much of the grain density now 

observed has been produced since galaxy formation, giving fewer scatterers 

at early times. - 
(iii) a higher value of H0 is 

assumed giving a light ray a shorter path length from any epoch corres- 

ponding. to a redshift Z to the present. 

(iv) galaxies formed much later than 

expected (i. e. Z9 is decreased). 

In other words, to compensate for the effects of any of these 

possibilities, qo' would have to be reduced so that a light ray would 

spend a longer time, in each epoch in order for T9 (V 
0) 

to remain large. 

The value of p used so far has been taken from Nandyt Morgan and 

Reddish (1974) and is above the upper limits quoted by McKee and 

retrosian (1974) of 1.5 x 10-34 Scm73 (1,0 - 50 kms-1 V9c-lj, qo = 1). 

The latter also assumed that the dust was similar to interstellar 

dust in their studies of quasar spectra. Obviously lower values of 

q0 would lead to lower limits on the density in the case discussed 

by McKee and Petrosian who were looking for absorption features. 

If the dust density were decreased then extremely low values of 

qo would be required to keep the universe optically thick. The 

lowest value. q 0 can take is now considered to be 1%, 6.5 x 10-4 from 

what we know to exist locally. In a study by Gott et al,. (1974) 

limits on q0 were found by consideration of a number of different 

methods. They determined the range of values q can take to be 
0 

0.025 <, q 0<0.045. 
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A3.2.2 - Obscuration by Thomson Scattering by Free Electrons 

Our reasoning thus far is based an the assumption that the small 

scale isotropy of the microwave background might be due to smoothing 

out by intergalactic dust grains. There are however other factors 

which might contribute to making the universe opaque to this radiation 

(see also table 3.1). 

(a) Pollaine (1978) has already discounted galaxian dust and it seems 

unlikely-that very much grain formation could occur in intergalactic 

space itself. 

(b) Atoms, molecules or nonconducting particles with radii far less 

than the wavelength of the radiation at any given epoch would of course 

follow a X-4 scattering (or extinction) law. Studies of Lyman-a in 

QSO spectra have however failed to detect any intergalactic neutral 

hydrogen to a redshift Z %< 2.9 (Field, 1972) and the mechanism suggested 

by Chiao and Wickramasinghe (1972) for the origin of dust is not 

efficient for very small non-conducting grains. 

(c) The possibility has been examined (Peebles, 1974) that intergalactic 

'asteroids' of solid hydrogen could exist and not be detected as the 

scatter would be wavelength independent. However as this is only 

considered as an example of a possible stable state and as no evidence 

exists even for interstellar asteroids we discount it. 

(d) The main alternative to dust is of course Thomson scattering by 

free electrons. This again is a wavelength independent process and 

therefore has no effect onthe shape of the spectrum of the background 

radiation. However there do exist methods to at least determine upper 

limits to the density of ionized hydrogen in intergalactic space. 

Previous authors have assumed that the number density of electrons 

at the present epoch ne (o) is dependent upon q0 (e. g. Weinberg, 1972; 

Sunyaev, 1977). This pre-supposes that most of the material content 

of the universe is intergalactic and also fully ionized. The value of 
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ne(o) is thus given by 
2 

Ho qo 
ne(o) = -41rGmH ,X 

(A3.13) 

where mH is the mass of the hydrogen atom and x(. t 1) allows for 

the fact that a certain percentage of the intergalactic medium will be 

non hydrogenic (e. g. if we have 75% hydrogen, 25% helium by weight, 

x=0.88, as we shall assume here). 

In the absence of any great 'missing mass' problem however it is 

more relevant to take ne (o) independent of q0 and to ascribe to it the 

-7 -3 upper limit of 3x 10 cm consistent with that derived by Arons and 

Wingert (1972) and Cousik and Lerche (1975). This is of course 

only reasonable until the value of ne (o) exceeds the maximum allowable 

from equation (A3.13); for qo < 0.06 we derive equation (A3.14a) from 

(A3.13): - 

(o) < 4.9 x 10-6 .q cm-3 

ne (o) <3x 10-7 cvý-3 

(q 
0<0.06) 

(A3.14a) 

(q 
0 

>, 0.06) (A3.14b) 

(assuming of course that n e(o) 
Enp (o), the local proton density). 

obviously before decoupling, the universe was optically thick to 

radiation but after recombination at an epoch corresponding to a 

redshift Zr= 1500 the electron density would have been very small and 

until some re-ionization process occurred the universe would effectively 

have been transparent. 

It has been suggested (Arons and Wingert, 1972) that re-ionization 

occurred af ter the f irst quasars f ormed at an epoch corresponding to a 

redshift of Z=8 (Sunyaev, 1971). However ýther work has associated 

re-ionization with the time at which bright, young galaxies appeared 

which was earlier than this (Tinsley# 1972; Sunyaevg 1977) and 

therefore at larger values of redshift Z. 

Sunyaev (1977) considers that theri was a time, tm, corresponding 
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to a redshift Zm from when all the intergalactic gas would have been 

ionized. This occurred when the number of ionizing photons emitted 

by bright young galaxies exceeded the number of recombinations in any 

unit volume per unit time, i. e. 

'N (Z) Lu. du 
> (at - cg )n f 

hv e vo 
(A3.15) 

where v0 is the frequency of radiation above which ionization can 

occur; N(Z) is the mean space density of sources at redshift Z; LV 

is the average source lumnosity per unit frequency at frequency v; 

(a 
t-aI) 

is the recombination coefficient to all levels except the 

first and ne (Z) is the, electron number density at redshift Z. 

Sunyaev (1977) also assumes a power law spectrum for the ultraviolet 

sources 

V- Lo 
v 

101 

Upon integration of equation (A3.15) above we find 

N (Z) 
Ln ha 0 

where N(Z) 0.03 (1 + Z) 3 Mpc-3 (assuming that the number of 

sources remains constant), Lv3x 10 29 
ergs-' Hz_l, (a 

t-a 1) 

2.5 x 10-13 T 4- 
1 

cm 
3 

S-1 and T4 T/10 
4oK (Sunyaev, 1977). 

We can therefore determine the red-shift 4M corresponding to the 

epoch of reionization from the expression 

No Lo 
.11 1+zmZ ha * -cat -a ne (0)2 

which gives (from Sunyaevv 1977) 

zm=5.38 x 10-3 Cn 
e(0)1-2 

/3 
(A3.16) 
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' ''Using a value of ne (o) =3x 10-7 cm73 in W. 16) ZM exceeds 

Z9 for q0ý, 0.01. This means that for higher values of qo the inter- 

galactic medium became completely ionized as soon as galaxies were 

formed (if their number density and luminosity were high enough)for 

this value of n e(o)' 
The-optical depth to Thomson scattering is obtained from equation 

(AM) above where r(vo) =rV the wavelength independent optical 

depth to Thomson scattering, a(v) -aT the Thomson cross-section 

(= 0.6652 x 10-24 cm, 
2 ), again wavelength independent, and n(t) -n e(t) 

the electron proper number density at any epoch. Having substituted 

in (AM) and integrated we arrive at an expression for the optical 

depth (see Weinberg, 1972): 

crT ne (0) c 
(1 + 2q Z )l 13q +qz, -11 +1- 3q 'T Ho 3q02 0u00u 

(A3.17) 

Here ne (o) is given by equation (A3.14), Zu -Z9 for ZM >Z9 and 

zu =Zm for Zm < Zg . Again Z9 is given by equations (A3.4). (A3.5) 

or (A3.6) above as applicable. 

A plot of TT against q0 is shown as curve B in figure (AM) 

where again H. = 50 kms- 1 Mpýland t. =7x 10 7 
yrs. It can be seen 

that the q0 independent ne (o) portion gives a decreasing extinction as 

qO increases. The reverse is true for the q0 dependent portion where 

extinction increases with increasing q0 toward a maximum value of 

TT%, 3.3 atqo 1, - 0.06. If the universe is optically thick to Thomson 

scattering by free electrons then it can be seen that 8.4 x 10-4 * 

qo., < 0.2. The upper limit on q0 is made even stronger if (i) Re-ionization 

occurred later than an epoch corresponding to a redshift ZU as defined 

above. 

(ii) Ionized 

hydrogen in intergalactic space has a number density of less than 
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3x 10 -7 CM -3 
0 

(iii) H is 
, 

greater than 50 kms-1 MpC-1 (it is certainly not much smaller (Gott 

et al., 1974)). 

Galaxy 

formation occurred later than t9 (i. e. Z9 is smaller). 

A3.3.1 Conclusion 

The lack of observation of small scale anisotropy in the cosmic 

microwave background radiation could of course be due to the fact that 

the fluctuations, if they exist, are so small as to be below the present 

limits of detection. However it would seem more likely that the lack 

of observation is due to 'washing out' by scatterers between us and the 

epoch of recombination. 

The two scattering media considered moit likely to be the cause 

of opacity are Thomson scattering by free e: ectrons and by interstellar- 

like intergalactic dust. The former would rnake the universe opaque 

to the cosmic background radiation only if 8.4 x 10-4.; 6 q0<0.2 and 

the density of electrons locallyt n e(o)' 
is not much less than the 

upper limit derived from observation (Arons and Wingert, 1972). The 

latter would provide obscuration for all q0<0.05 and it becomes 

more effective with decreasing values of qo. It seems likely therefore 

that the obscuration is due to dust and thus qo << 0.1 making the 

universe open by a large margin. 
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Swunmy. In this paper we consider the infrared emission by an 

assembly of identical static dust grains distributed with spherical 

symmetry about a centrally-located variable source of short 

wavelength radiation. We describe the distribution of grain 
temperatures as seen by a distant observer for several simple light 

curves and we conclude that the angular diameter derived on the 

assumption that the source radiates as a black body is not a 

reliable measure of the actual angular diameter of an optically 
thin dust source. General expressions are given for the flux density 

at infrared frequencies; explicit expressions are given for the case 
in which the central source has a step function light curve and the 
dust distribution is optically thin and the density of which has 

power-law dependence on distance from the central source. The 

possibility that superluminal effects might be observed at infrared 

wavelengths shortly after the outburst ofa nova is briefly discussc 

Key words: dust sources - variable sources - infrared sources - 
novae - SWert galaxies 

1. lotroductico 

A wide variety of"objects are known to emit strongly at Infrared 

frequencies and these include both galactic (e. S. novae) and extra- 
galactic (e. S. Seyfert nuclei) sourceL In many cases, particularly 
among the extragalactic sources, there is strong evidence that the 

radiating mechanism at all observing frequencies is nouthermal, 
while in others the evidence is equally strong that thermal emission 
by dust grains is responsible for the observed infrared flux (a. g. 
Ade et al., 1976). In addition it is known that the primary short 

wavelength (hYZ2 eV) fluxes associated with these thermal 
infrared sources are variable. As it is this primary radiation that is 

thermalized by dust grains it would be natural to expect correspon. 
ding variabi1ity at infrared frequencies also, provided ofcourse that 
the Light travel time across the relevant portion ofthe dust assembly 
is lea than the typical variation timescale of the primary source 
of radiation, measured in the rest frame of the source. 

Ile emission by dust grains surrounding non-variable sources 
has been very thoroughly investigated (e. g. Rowan-Robinson, 
1975), but this does not seem to be the case where variable sources 
are concerned. For example, Rees et &1. (1969) considered the 
dependence of the timescales of the infrared variability of Seyfert 

nuclei on wavelength and on the luminosity ofthe primary short 
wavelength source; while Burbidoe and Stein (1970) concluded 
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that variations in the primary source might give rim to corrcspon- 
ding variability in the infrared, down to timescales of a few seconds. 

We consider here the infrared emission from an assembly of 
dust grains surrounding a variable source of short wavelength 
radiation. the source being at rest relative to the observer. We do 

not, at present. compare our results with any particular source, 
although parameters typical of various classes of objects will be 

used to give numerical estimates of the effects that emerge from 
our analysia. We defer detailed comparisons with. and specific 
models for. particular sources until later. 

EL Grain Temperature 

The bulk Properties Of the grain material are obviously crucial In 
determining the nature not only of the re-radisted spectrum but 
also the 

* 
infrared variability. The optical properties of the grain 

material determine. among other things. the equilibrium grain 
temperature and the cooling time of a pain and we define in the 
usual way Q... Q.. and Q. 6. as the extinction, scattering and 
absorption efficiencies In the infirared. no same notation carry. 
lag in asterisk (0) refers to the values of these quantities at short 
wavelengths. Also we inay write where A Is 
the albedo of the grain material. 

For generality. we follow Rees et al. (1969) and write 
Q. b. -COO/Wor (U) 

where we is a suitable fiducial frequency. and Qs and cc are taken to 
be frequency independent. For example. it we assume spherical 
graina. of radius a -4 2/2 x. where A Is the wavelength ofthe Incident 
radiation. the asymptotic form ofthe Mis formulae for spherical. 
conducting grains gives Qa. as a function offrequency P (Wickta. 
masinghe, 1967)- 

Q., xs (12 leales) 0 (1 b) 

where a is the electrical conductivity of the grain material. 
Evidently for small Ideal grains whether dielectric or metallic - 
and long Infrared wavelengths, a 2. but for grains with Impurities 
etc, a weaker dependence on r ii Ukely (e. g. Rea et &1.. 1969). 

We note from Eq. (lb) that Qacalcr. consequently Q., is a 
function of temperature by virtue of the temperature dependence 
of the conductivity of the grtin materiM (Greenberg, 1%8), a 
factor that is generally ignored by most workers. We write 

120 - Q01 (TITO), 00 

where r. and p are constants and 120aca [cf Eq. (lb)]. For 
example, from data summarized by Goldsmith et &L (1961). 
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p %u - 0.5 for natural graphite and p %w 2 for iron, for temperatures 
in the range of interest. 

Also we note the possibility thit the conductivity of the grain 
material may not be isotropic. For example, the conductivity of 
graphite parallel to the cleavage plane is significantly higher than 
that perpendicular to the same plane. However, provided that the 
grains in our model, whatever their composition and structure. 
are randomly orientated. the effect of anisotropic conductivity On 
our numerical results will not be more than a factor oforder unity. 

As is well known (e. S. Wickrarnalunglie, 1967)ý the temperature 
of a grain, T., is determined by the equilibrium between the 
absorption of'short wavelength radiation (the effict ofthe infrared 

radiation field being negligible) and its subsequent re-radiation. 
We neglect the process described by Greenberg (1976). in which 
T, Ifuctuates erratically on the absorption of individual photons. 
This process is likely to be significant if the internal energy Of a 
grain is not much greater than the photon energy and may be 
igtiored if aZ 10 -' I& as will be the case hem 

In what follows, we neglect the motion of grains, although 
some motion is to be expected as a result of gravitation, radiation 
pressure etc. We also neglect the fact that the dust distribution is 
likely to be time dependent as grains evaporate and (perhaps) 

recondense as the luminosity of the central object as observed by 
the grains attains a threshold value that takes grain temperatures 
past their temperature of evaporation and recondensation. We 
further assume here that the dust distribution is gas-free and that 

scattering by the grains at all frequencies is isotropic. Then added 
complications are to be considered elsewhere. 

We define N(r) as the number density of grains at distance r 
from the primary source of radiation; for simplicity we assume 
that an grains have the same radius 

' 
and are identical in "cry 

respecL For a spherical dust distribution. "us A. having an 
empty concentric cavity of radius R, [L e. N(P) -0 for P<A and 
p>A; see Fig. I] the mass of grains is obviously 

Af,, -(l6jea's13) N(P) dr 

where j is the bulk density of the grain materill- Also at distl= 

r from the central source. the optical depth for short wavelength 
radiation is 

Al 
In the case of a non-variable central source, the equilibrium 

grain temperature is given in the usual way by the expression 
(valid for a dust distribution that is optically thin to its own 
radiation): 
T(L. /4zr3)exp(. t*)Ll, *.. (Y)xa2dym4a I Qm(v), 9(r, Týdv 
09 (2) 

for a grain distant r from the central source. In Eq. (2). L, is the 
luminosity of the primary source (assumed to radiate isotropically) 
and B(Y, Td is the Planck function. Neglecting &a usual the 
dependence of Q. *,. on frequency, and using Eqs. (I&) and (1c), 
we have 

T, w+ 0" - (L14 xr-1) exp (- iro) 

- (, 2/2h) (hlkr -- (r(a + 4) C (ag + 4)) (3a) 

where Lmf Ldy, h, k and c are the usual physical constants and 

r and C agamma 
and Rientann zeta functions respectively; also 

0 
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Qo'= Q070 ý. We note that our expression for T differs from that 
given by Rees et al. (1969) because then authors did not take into 
account the temperature dependence of a; obviously Eq. (3a) 
reduces to the form given by Rees et al. (1969) for p-0. 

We note that. to a very good approximation, the temperature 
dependence ofe may be allowed for by setting p-0 and making the 
appropriate adjustment in the value of a. We follow this procedure 
here and our numerical results in subsequent sections an given for 
several values of cL 

We now incorporate the time dependence of L. the magnitude 
and time dependence of which wiU clearly depend on the nature 
of the central object (e. g. nova, Seyfert nucleus). Although the 
essence of the models to be described is the finite and position- 
dependent light travel time from primary source to dust pain to 
observer, we shall for simplicity assume a point central source, 
across which light travel time may be neglectedL Also at this stage 
we make no distinction between source and observer time, which 
differ only by a constant when source and observer are relatively 
at rest. 

If the train temperature assumes the equilibrium value 
corresponding to the instantaneous value of L (as observed by the 
grain) with negligible delay, the temperature of a grain at time I in 
the grain reference frame is given by 
T'MCC[L (S-/c) {F(O) -, Cxp (-ToQ)) PUA 1/14+41 (3b) 

where P- P(Q (tý a (t)) Is a function of the optical efficiencits and 
of a as defined by Eq. (3&ý We include in Eq. (3b) the possible time 
dependence of the optical properties of the grain material (appro- 
priate, for example, in the case oteore-mande grains, from which 
the -a nde might evaporate in a time :$ the timescale o(Y"Lion 
of the primary source) and of N(r) and r, as already noted. 
However we assume lbr the present that changes in r. are caused 
entirely by the variations in the luminosity of the central source -, 
Le. we are neglecting grain motion. as well as changes In grain 
radius and composition. 

We note from Eq. (3a) that infrared radiation of wavelength A 
comes largely from a region with dimensions 

-const 148"" exp (-TO/2). 

Thus we would expect mom rapid variability at shorter than at 
longer wavelengths (see also Rees et &1. (1969)]. We note also that 
if the dust assembly is optically thin to primary radiation. the 
timescale of variability at wavelength A is ocAl"O, but is 
ccA16"w3 exp (- t*/2) if the distribution is optically thick; L a. 
we may expect to we more rapid variations at wavelength I In an 
optically thick source than in a source that is optically thin to 
short wavelength radiation. 

How valid is our assumption that the "a tempera" reacts 
to changes in L with negligible delay? To consider this two 
parameters of particular interest are (a) the time taken for the 
absorbed energy to dAm through the "a and (b) the grain 
cooling time t_, w oc JU101, when Uis the internal energy of a grain. 
Greenberg (1976) estimated that the former is ý10-10 a (r<)r 
aý0.11 pý and is therefore completely negligible. Burbidge and 
Stein (1970) estimated %w On the assumption that U is given In 
terms of the classical value 3Rr, - R, being the universal gas 
constant. These authors further assumed that the grains radiate as 
blackbodies and hence found that %, cca T-1.71us r... -Ia for 
graphite grains of radius 0.11& and having 7. - 100 IL 

This estimate ofr... may not be reliable because (a) grains in 
astrophysical environments are unlikely to have temperatures 
sufficiently high for the classical form of U to be valid and (b) 
grains do not radiate as blackbodies. To the case of IsotropicaBy 

I 
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Fig. 1. Geometry of spherically -symmetric dust distribution, 

centre Cý with concentric empty cavity. PLadius of dust assembly 
= CO w R; radius of cavity - CS - R, ; radius vector from C to 

, 
parabola - rt ; radius vector from C to grain arbitrary point A on 

G-P. OCP=89; BCO=01; eCO=O; X80=01. Short wave- 
length source at C 

su-actured matcrialsý for example, we find that T.., cc T-. 
independent ofa, if we take these factors into account. (We note 
that, for non zero p, the exponent of T in this expression for T... 
would have been -(a+p) rather than -(L] Although the energy 
content of grains is now smaller, their radiating efficiency is also 
dimini bed-widr the result that the cooling time estimates of 
Burbidge and Stein are about an order of magnitude too low. 

However, these timescales are sufficicntly short that we may 
assume that the grain temperature reacts instantaneously to 
changes in the luminosity ofthe primary short wavelength source. 
Ile only situations that would not comply with this assumption 
would be those in which changes in luminosity occur over time. 
scales (in the source rest frame, when appropriate) ;g Thus. 
for example, our analysis would not apply to emission by dust 

grains near a young pulsar - even if grains could exist in such an 
environment. The objects with which we shall be concerned may 
always be considered to have fluctuation timescales 

We now proceed to consider the observed distribution of grain 
temperatures within a source. 

UL The Distrilwdea of Grain Temperature 

In the reference frame of in infinitely distant observer, the 
distribution of grain temperatures, observed at any given instant 

of time, within an assembly of dust grains depends on (a) the 
location of individual grains in relation to the central source 
and (b) the fight curve of the latter. In the reference frame of the 

primary short wavelength source, the distribution of grain 
temperatures clearly has spherical symmetry, centrod on the 

primary source. However, this is not the situation experienced by a 
distant observer (see Fi& 1, which serves to define all geometrical 
factors for the spherically symmetric case). The dependence of 

grain temperature on time is given essentially by Eq. (3aý In the 

reference frame of the central source in which the luminosity 

varies as L W, the temperature - at time t, - of a grain located a 
distance r from the source is given by The corre. 
sponding result in the observer's frame gives the temperature of 

the grain G (see Fig. 1) as T, (t'-r(I -cos 0/4 
We consider a source the luminosity of which varies as 

L(t)-O (t: 5 0) 

-LO 0 a; 0) 
1 

ri - ctl(l -Co$ 011 (5) 

where 4 is a constant. Obviously such a light curve is unlikely 
to arise in many astrophysical situations. However we shall often 
use Eq. (4) for illustrativv purposes; also it is one of the few cases 
for which the equation of radiative transfer may be solved analy- 
tically. 

In the reference frame of the central source C the light pulse 
at i-0 spreads out with spherical symmetry and would be observed 
to have radius et/2 at time t by an observer at C. In the reference 
frame of an infinitely distant observer. the pulse has the form, at 
time t, ofa paraboloid ofrevolution having focus C and scmilatus 
rectum CI: 

Here rg and 0, are defined In Fig. 1 &na i is cow measured by the 
distant observer from the moment the putse is first observed. To 
illustrate the distribution of grain temperatures, as seen at time t 
by a distant observer, for a splicrically symmetric distribution of 
grains, we consider in addition to Eq. (4) light curves of the form 

Z (1) -0 (1; S 0) 
- Lo exp (- 0): ) (tzo) 

1 
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(6s) 

and 
1(t)-Zs+Lj sin wt (6b) 

where w, Le and L, Are constants, Lo>L, and 
Equation (6a) could. for example, give a reasonable description of 
the pretransition stage or a nova light curve. 

(We note here that, strictly, the discontinuity in L(1) at twO 
in Eqs. (4) and (6a) violates the condition spocified at the end of 
the Previous section-namely that fluctuation timescales be 

However, provided that T_, -4(rise time at 9-0)-tw", 
Eqs. (4) and (6a) an valid to a high degree of accuracy and at the 
same time. satisfy the condition on T... speciAcd in the previous 
section. ] 

Figure 2 shows the distribution of grain temperatures as wn 
at the times indicated by a distant observer for the light curves 
given in EqL (4ý (6&L and (6b), together with that for a non. 
variable primary source (in all cases the dust distribution Is 
opticallythin). Evidently the temperature distribution isextremely 
inbomotencous, even in the case of a i2on-variable source, and 
the distribution increases fim complexity even for the simple light 
curves considered thus far. 

We note here that, if it is assumed that the source under 
consideration radiates as a black body, Its angular diamerter 0 is 
sometimes estimated from 

0S. -const 40111 T8741; (7) o" 
heref, is the flux density in wavelength units and 7s@ the equivalent 
blackbody temperatum both quantities being estimated from 
spectral data (a. g. Gallagher and Ncy, 1976ý Clearly this ex. 
pression cannot be valid if the dust distribution is optically thin 
(cf. Fig. 2). In making the blackbody assumption it Is assumed 
that the observed radiation originates essentially at the surface 
of the dust source and clearly, if the source Is transparent to its 
own radiation 01,, must be less than 0. Indeed we shall see in 
Sect. V below that 0,, can be several orders of magnitude less than 
the actual angular diameter of an optically thin source. 

IV. Speews and Light Capes at laftred Waveleugtk 
(4) The time dependence of the flux density of the assembly of dust, 

gritins observed at iafinitY is given by solving the *quation at 
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Figs. 2so-Mistribution of grain temperatures in a spherical dust source as seen by a distant observer; Centre of dust distribution is 
located at tick mark in each cue. Location of observer as in Fig. 1. Cavity negligible in size unless spocificsjly included. In this and all 
subsequent figures, a-0.11&. Each curve gives the observed temperature along the corresponding broken Una, with temperature Wale 
as indicated. a Light curve given by Eq. (4) ý R- 500, R& -5 1017 cm; Lo -5 10" M a-'; Mg, - 3.3 10-'* Af* ; t- 0.5 B4c. b Light curve 
given by Eq. (6a); w- 0.1 mag d- 1; all other parameters as a. e Light curve given by Eq. (6b), A= 10 R, w51 (ps =; L, - 0.3 4-3 1063 
ag a- 1; M, - 3 10-4 Me ;w-0.1 mag d -1. d Constant luminosity source; Parameters as a. * as a. f as a. For a-d a=2. for sa-I 
for fa -0.5. P=2 in all cases 

- 191 - 

novae (e. g. Clayton and Wickramasinghs, 1976) and in view of 
the recurrent nature of novae (Ford. 1978) one might expect to 
And gmins already in existence near nova progenitors. either as a 
result of previous outbursts or, less likely. as a result of grain 
formation by the cooler component of the nova system We do not 
consider here the details of whetherornot grains exist in the vicinity 
of pre-nova systems but if they do. superluminal effects should be 
observable for& time -0.3 Alc(if the visibility of the nova against 
thA tý 1. t. t,.. -- ---. Lf- . -. 4 WV WVUAU WAPC; " ULIS 

v-c(I -t)(t(2-t)) upper linlili^t on th; 
*d`ur&tion*; f ýperlumlnal 

effects to be frequency 
which is superluminal if T<1 -2-'13. This kind of effect is not, of dcpendentý W11ile a large assembly of dust grains would tend to 
course, new (e. g. Couderc, 1939) and is referred to in the literature smear out any variation, it would on the other band prolong the 
as "optical reverberation" (e. S. Morrison and Sartorý 1%9) and effect discussed here and the duration of the effect would contain 
"light echo" (e. g. Lynden-Bell, 1977). It is frequently encountered information about the extent of the dust distribution. Also super. 
in radi6 astrophysics (e. s. Blandford ct al., 1977), although as far luminal effiecU would Cot OCCuf if grains formed only in the cjccta 
as we are aware, it has not been applied to infrared emission by of the concurrent outburst and so a search for superluminall effects 
dust grains. in the infrared could test whether grains are formed in concurrent 

We may note that superiuminal effects of this kind might be ejects or are already present In the vicinity of nova systems. (We 
observable at infrared wavelengths in novae, which climb rapidly note that this violation of causality is not a consequence of the 
to maximum fight (the form of the post-maximum fight curve has assumed Ughtcurve, which. because of the finite dimensions of the 
obviously no bearing on this discussionl provided that the nova central object, itself violates causality at t= 0). 
progenitor is surrounded by an assembly or dust gMiDS. It is. 11is apparent lack of caumifity can also be illustrated In the 
generally accepted that grains might form in the ejects of some following way. Notwithstanding the remarks made in Sect. III 

radiative transfer in the usual way; this we do shortly. However we 
considerfirst some geometrical aspects of an assembly ofdust grains 
surrounding a primary source having the light curve given by 
Eq. (4). As already noted, the pulse at 9-0 has. in the reference 
frame ofa distant observer, the form of& paraboloid ofrevolution 
aid for brevity, we measure time in units of Rje; we set etIR m T. 

While T<I the observer will we a disc the apparent radius of 

which increases at the rate 
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V 

-r 
Fig. I Variation of emitting volume V with time as observed at 
central source (lower curve) and by distant observer (upper curve) 
for spherical dust distribution with negligible cavity. Dust 
distribution has unit volume and central source has step function 
light curve 

concerning the distribution of grain temperatures in a dust source. 
we assume for illustrative purposes that all grains have the 
temperature and radiate as blackbodies. If the dust distribution is 
optically thin and uniform, we would naively expect the infrared 
luminosity to be Ljt(t)ocN(0ccV(t). where N' and V' are 
respectively the number of radiating grains and emitting volume 
observed at time t. In the reference frame of the source, we clearly 
have Ljx oc is, whereas in the reference frame of a distant observer, 
Lljtc; T(I -Tz/12ý Figure 3 compares the emitting volumes (Le. 
the infrared luminosities) as observed in each reference frame at 
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source is continuously variable, while the former refers to cases in 
which the primary source "switches on" spontaneously (e. g. 
novae). For each case we have 

Z. (02)-? exp (-rm. (0))JV(R sin 01/sin O)xa'O... 
03 

B(Yr, (O))Jt sin 02 cos=2 OdO (0; 5 T; S 1) (8a) 

Z. (Oj)- exp(-Tw(O))N(R sin 821sinO)xaQ... 

-B(v, T, (8)) A sin 02 cosec3 OdO (T a 2). (8b) 

In the EqL (8) 

e, - sin (2 1 sin Oz/(T2 + sW e2)1 

or 

01 =sin -I ((, RIR, ) sin 8s) 
depending on whether e3 > or < sin -I J(RJA) (2 r, - 4)112), 
where T, - etIR, . 

For I ;ST; S Z Z-. (02) is given by Eq. (11a) or 
(8b) according as 02 < or >x- Oo, where 00 Is given by Eq. (5) as 
Bo-cos-1 0 -tý We note that the time dependence of Z. is 
incorporated in the time dependence of T, cc 

In addition to the observed flux density from the source Itself, 
we also include the effects of background radiation, which am 
likely to be significant at infrared frequencies. If Ze is the surface 
brightness of the background. its contribution to the observed 
surface brightness of the source is given by 
zoo (02) - ZO exp (- too 03)), 

when 
a am 

v,, (02)-2xa'j2. b. N(Jt)Acos82- I (r2-R2sinl0, j)P2 *) (03 > li*'l 
I 

A"Os or 

A 
-2WQ. m 

(R) R cot 01 - N(R1) (R2g - A' sin2 eil -1 (A - R2 si212 03)ýll M dpl (03<gin" (RJR» 
IN 

28 er 

I 

t 

corresponding times, for an assembly of unit volume. We note 
that. when t -4 1 and the apparent rate Of increase Of "- is 

superluminal, we have A )o c(La/ LljtX in contrast to the umW 

result RZc(La/. La) (eg. Terrell. 1967). which applies to 

emission from the surface ofs, source which his no bulk relativistic 
motions and which applies to the present caw when TZ1. We note 
also that the result Jtb-e(LR/. Ljj also applies in the reference 
frame of the source, in which the observed velocity of expansion, 
while not superlumin&L is relativistic (v - e/2ý 

We now consider the Eux density of a spherical distribution of 
dust grains surrounding a variable source of short wavelength 
radiation. the luminosity of which varies with time as L=L (tý 
Ile distribution of grain temperatures as seen at a given instant of 
observer time has already been dimcussed in Sect. III. - 

The surface brightness of the son= is given by 

Z.. m 
(03) exp, (-, r., )N(r) za'Q., B(v, T) ds' 

0 

where 

and where j and sarc measured along a line of sight like A OB (see 
Fig. 1ý It is convenient to divide the expression for Zwý into 
two parts, depending on whether T lies in the ranges O; S T; S I or 
T92; the latter case obviously indude3 that in which the central 

for in isotropic dust distribution. 
Ile observed flux density In frequency units Is given by 

Zdj2 

2 %A3 r(0, ) sin 0, cos OdO, (0; 9 CS 1) 

2xR" I, Z(03) SW as Cos 03JO3 Y- 
0 

(T a 1) 

(9) 

in wWchZ-Z... +, rw, 0, ando, are defined by Fig. I and Q Is 
the solid angle subtended by the source, at distance D. 

Clearly there will be very few cases in which Eqs. (8) and (9) 
may be solved analytically. One such case is that of the light curve 
given by Eq. (4X for a grain distribution that is optkay thin to 
both infrarW and primary radiation and for which N(P) 
mjV, (r1Aj-0, whem N, and P us censtants. For this cau, we 
may write Eq. (3a) in the form whm T, 
is a constant. Equations (8) and (9) become (with ZI, @ =0) 

3(2+! t'B., 
( M )(1-Y. 

-I) A-X, V 1: -ZA- (jr3, y 
2). oxl(n+? ) M-I 

(OSt; 92y) (I OR) 
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Yj a Xw 

Fig. 4. Re-radiated spectra calculated using Eqs. (I Oa) and (I Ob) 
for dust shell having A-2.5 I(PI cm, y-0.64, a-2, fl-1, and 
M, m2.2 10' Me; central source has step function light curve 
with Lo-5 10" "S 3-'. Spectra am identified accordingto values 
of T. See text for 3ignificance of 1,. Vertical scale arbium 

mia 
Fqj. S. As Fig. 4, for T -I and several values of - Spectra Itc 
labelled in the form (a. p) and terminate at short wavelengths at 
the appropriate value of lit Oft text). VertiW scale afbitrarY 

'I ! (n+y) 
(KaYr1 {(--) ( _! (! 1')_} rn-i m2 T 

(2y: S t; S 2). (1 Ob) 

The following notation is used in Eqs. (I 0a) and (I Ob): 

Kt-(2xJeIZP) (2h/tJ)NyI'zi0Qw 
Kj-(hlkrl)y-li(, *") 
y =(3-p)(a+4)/2-l 
m =2(n-l)/(x+4)+3-P 
B. - Bernoulli number of order X 
y -, RIIJL 
The seTies in EqL (I Oa) and (I ob) converge if K2 r<2x, L a. for 
wavelengths exceeding 
Is = (c/2 it) {(I 6 xR2lLv) (120/eZ. ) w; e 

- (2A1c2)r(a+4)C(a+4))'4**"; 
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Ir 
Fig. 6. Infrared (1-301L) light curves calculated using Eq. (10a) 
and (I Ob) for source having the parameters of Fig. 4; curves are 
identified according to value ofy-R, IR. Light curves are linear 
for times earlier than those indicated by tick marks. Upper scale 
gives time in days after event is observed at short wavelengths. 
vertical scale arbitrary 

Fig. 7. As Fig. 6, for A- 10p and several values of a. Light curves 
are labelled in the form (a. A Vertical scs, 14 arbitrary 

this lower lindt on A arim because, In the derivation of Eqs. (I Oa) 
and (10b) we have used the Identity 

X 
e-j ... ni 
*hich Is dedned only for lxl<2x (we note that our result is mog 
equivalent to taking the Rayleigh-Jeans limit of the Planck 
fa=604 

According to Eq. (IOaX the flux density rises linearly with time 
for aH frequencies when ir; 92y, La. when 1; SU, le. During the 
early stages the form of the re-radiated spectrum is therefore 
independent of time and consequently so is the value of ra,,. The 
re-radisted spectrum Is shown in Fig. 4 for ymo. 64, a-2 and 
several values of e At long wavelengths. f, Is approximately 
proportional to A-3*3 and so the source cannot be approximated 
by a blackbody at any time. Figure 3 illustrates the effect of 
changing a on the re-radiated spectrum; we note tbat. fory-1, 
as is the case here. changing 0 has little efrect because the number 
of high temperature grains is m significantly affected. We note 
further that when a-0 we do not recover a black body spectrum 
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I 

FIg. L Infrared fight curves for dust assembly and nova as 
described in text; curves are identified by wavelength. inp- Broken 

curve is the approximate locus of time of maximum flux. Upper 

scale pves time in days after nova event is observed at short 
wavelengths. Vertical scale arbitrary 

Ir 
Fig. 9. As Fig. 8, for A- 10 p and several values of a and P. Light 

curves an labelled in the fann (a. A UpPer scale gives time in 

days after nova event is, observed at short wavelengths. Vertical 

scale arbitmry 

F1g. IO. Variation of blackbody temperature with time for dust 
assembly and nova as described in text. Upper scale gives time in 
days after nova event is observed at short wavelengths 
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Fig. lWariation of On& with time for dust assembly and nova as 
described in text. Solid curve and left vertical "a refer to 0,,; 
broken curve and right vertical scale refcr to #. Upper scale gives 
tim in days after nova event is observed at short wavelengths 

because the source under consideration is opticaUy thin; also 
Increasing a has the efect of steepening the spectrum bemuse 
K, cc A -4 (cf. Eq. (I 0a)]. 

The li ght curves for A- 30 IA. a-2 and several val ues of y am 
iUustmtcd In Fig. 6. Figure 7 Wustrates the effect of changing at on 
the form of the light curves at A -10 p. 

When 12; 2. Eq. (12a) gives the flux density of an opticaUy thin 
dust distribution having N(P)ocr-O surrounding a non-variable 
Owninosity LO) source as 

f. -Ktr3(«+4) Z. M., 2+- 
71 

V. Applkadom to Norse 

U12 wr -I (I _r). 

In order to Mustrata an application of the results derived above. 
we consider a dust shell having ihe following parameters: 
A-5 101, cm A, w10s cm 
* =0=2 D =lkpc 
* MO. 1 11 M, - 3.3 10"1 Me 

surrounding a nova the luminosity of which declines at the rate 
w=O. 1 mag. perday. Weassumethat the radiation responsible for 
heating the dust grains bas the same dependence on time as the 
visual light curve, although there Is no a priori reason why this 
should be so. 

The assumed rate of decay, together with the well-known 
relationship between w and Le (L S. McLau gUn. 1960) gives the 
peak luminosity of the nova as 4=31 CPO erg a-A [cf. Eq. (6a)). 
Also we take (? a = 0.135 at Y, = 1.36 1014 HI for 0.1 It Srains. The 
value fl-2 corresponds to Isotropic entission of grains (or of 
grain forming material) by the prenove system, with no braking 
etc, by the Interstellar medium. Ile dust distribution Is optically 
thin to both primary and Infrared radiation with the above values 
of R, P, fl, and M,. (We again take Z#, =0). We repeat here that 
we an not. at this stage. attempting to construct models for 
specific sources; the results to be described In this Section are for 
iflustmtive purposes only. 

The light curves obtained from Eq. (9) am shown In Fig. 3 for 
several infrared wavelengths. There are several noteworthy 

aa 

I 
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features in this figure, whicli we shall discuss at greater length 
elsewhere. For the present we merely note that the infrared light 
curves reach mazimum flux with a delay that increases with 
increasing wavelength; this behaviour is of course wed known to 
occur in some novae (e. g. Geisel et al., 1970). 

Figure 9 illustrates the eflect of changing a and 0 on the light 
curves at 1=10 p (when varying P, the number of grains was 
adjusted to maintain constant grain mass). We note that, for the 
case under consideration. decreasing P decreases the observed flux 
and delays the time of maximum flux; the latter effect also results 
from increasing a, which also causes a steepening of the light 
curves. 

Returning to Fig. 9, we note that the light curve for each 
wavelength predominates at one time only, this time increasing 
with increasing wavelength. This latter behaviour is, of course. 
a manifestation of the cooling of the graim also Mustrated in 
Fig. 10. in which the blackbody temperature Iss is defined as 
usual by the relationship ý.. 7s, - const (1. _ is the wavelength 
of maximum flux at any time). 

As noted in SecL U14 the blackbody temperature may be used 
(Gallagher and Neyý 1976) to evaluate 0,2, the angular diameter 
of an equivalent blackbody [cf. Eq. (7)]. The variation of #a,, with 
time for the case under consideration is illustrated in Figý 11, 
together with the time dependence of the actual angular diameter 
qS. We note that unless -r is close to zero, 0,, /0 - 10 'so that, as 
remarked earlier, 0111, is not a reliable guide to the angular 
diameter of an optically thin dust source. 

The reason for this discrepancy arises from the fact that. when 
the source is optically thin. the bulk of the observed radiaiion 
comes from the hottest grains - Le. those closest to the central 
source (for the case discussed hem for example, 01, slo-A11R) - 
and indeed we would expect #,, to be virtually independent of 0 
foran optically thin source. Foran optically thick dust distribution. 
the only grains contributing to the observed flux are those at P-P- 
Consequently the inferred blackbody temperature will be greatly 
reduced from its value in the optically thin can [cE Eq. (3a)] so 
we would expect to find that 088 - 40. Evidently an estimate of the 
opacity of the dust distribution is essential before it can be judged 

whether or not the quantity Oss is meaningfuL 

VL Coodading Reawks 
I 

The general theory developed here can he applied uo a wide 
variety of situations. Any astrophysical system that has among its 
constituent parts (a) a dust producing component and (b) a 
variable source of short wavelength radiation, should be described 
by the analysis given hem with appropriate modillcations, 
including the case in which one has a non-variable source the 
location of which relative to the dust distribution is variable. The 
general arguments would also apply, for example, to synchrotron 

radiation sources in which the radiating electrons are produced by 
pion production in material surrounding a v"ble source of 
relativistic protons, provided that the electrons "cool" in a 
suitably short time. 

However, for the time being, we restrict ourselves to consider. 
ation of dust sources and further papers will deal with the ap- 
plication of the results obtained here to various cosmic sources of 
infrared radiation. 
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Smanary. We consider the effect of Intergalactic dust and free 

electrons on the visibility of small-scale anisotropy in the cosmic 

microwave background and we show that failure to detect these 
fluctuations implies that the deceleration parameter qa is very 
much less than the value required to close the universe. We also 
show that, whether the intervening medium obscures fluctu- 

ations or not, Thomson scattering does not contribute signifi- 
candy to the opacity of the intergalactic medium. 

Key wordsý cosmology intergalacUc medium - cosmic 
microwave background 

L lmbvdwtfoo 

The cosmic microwave background Is generally, though not 
universaIly, accepted to be radiation emitted at the "surface of 
Ust scattering", observed at redshift z- zx - 1500 (eg. 
Weinberg, 1972). Apart from providing this evidence of a hot, 
den" phase of the universe, the microwave background can 
provide other information of cosmological interest. For ex- 
ample, density enhancements that an destined to condense into 

galaxies should show up as temperature fluctuations with 
AT/T- 10-3 and an angular scale -I' on an otherwise 
Isotropic background (e. g. Weinberg, 1972). 

We consider here the effect of intergalactic dust and free 

clemons on the visibility of these pregaJactic fluctuationg, We 
show that failure to detect them - and limits on ATIT are 
already quite restrictive (eg. Boynton. 1974) - may set aignifi. 
cant upper limits on the deceleration parameter qo, if we assume 
that they are obscured by an Intervening medium. 

M Transpmucy of the btergdoWe MoMms 

Vie fluctuations in the microwave background are obsmable 
only if the universe Is transparent out to redshift za and 
obviously if the Intergalactic medium is optically thick this 
potentially accessible evidence of plaxy formation will be 
logged out. The fact that pregalactic fluctuations have not been 
observed in the background suggests that they are being 
obscured by material lying "between" us and the surfue of 
last scattering. Plausible values of A 777 are estimated to lie In 
the range ý 10-16 -3 10-11 (e. & Weinberg. 1972). However, In 

send offprint reqtwjts to: A. Evans 

work summarized by Boynton (1974), upper limits on A77T 
are already at the lower end of this range and although there 
might still be room for observational and theoretical manoeuvro 
we proceed on the assumption that any fluctuations in the 
microwave background are indeed obscured by Intervening 
material. 

The possible material content and resultant transparency of 
the intergalactic medium have been discussed by several authors 
(see a. g. Weinberg (1972) and Peebles (1974) for reviews) and 
the various possibilities considered have been as follows: (a) 
Intergalactic -asteroids"; (b) atoms and molecules; (c) small 
dielectric particles; (d) "conventional" dust; (e) free electrons. 
. There appears to be no way at present of confirming or 
refuting the presence In the intergalactic medium of solid 
particles having dimensions *A, the wavelength of Incident 
radiation. Nevertheless, following other workers (e. g. Margolis 
and Schramm. 1977), we dismiss possibility (a). AJso (b) must 
be negligible at the epochs of interes4 which include those 
during which the Intergalactic gas has been completely relonized. 
We do not consider that small (-xA) dielectric grains (c) con. 
tribute to the opacity of the Intergalactic medium for reasons 
that will emerge below. In any case, we may note that even It 
(b) and (c) are present to any extent. their scattering efficiency 
(ccA-4) at the long wavelengths of Interest here Is extremely low. 
As Is well known, the only plausible candidates for rendering 
the Intergalactic medium optically thick are "conventional" 
(interstella-like) dust grains and free clectrona. 

If either dust or free electrons exist In the Intergalactic 
medium. the optical depth to red3hift z Is given by (for zero 
cosmological constant) 

C/He 
jn(X^AA(Zj)(1 

+ zj-1(1 + 2q. 4- 119de (1) 

where It Is assumed that the relevant material Is uniformly and 
isotropically distributed an a sufficiently large scale (Weinberg. 
1972ý In Eq. (1). n Is the proper number density of either dust 
grains or of free electrons as appropriate, a the extinction crow 
seWon and c. H9 (- 50 km/s/Mpc). jr and qq have their usual 
meanings. 

We consider the effect of Intergalactic dust and free electrons 
In turn. 

UL lnftrgal&Wc Dwt 

The possibility that there might exist detectable quantities of 
dust distributed between galaxies has been considered by several 
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authors (see Margolis and Schramm (1977) and references 
therein). A novel aspect of this possibility has recently been 
discussed by AlfWn and Mendis (19M who argued that the 
universe is transparent only out to z- 40, interstellar dust in 
galaxies rendering the universe optically thick to background 
radiation at this redshift. However, a more rigorous treatment 
(Pollaine, 1978) of this problem showed their conclusion to be 
erroneous. Although these authors were primarily concerned 
with dust in galaxies, AlfYin and Mendis (1977) briefly con- 
sidered uniformly distributed intergalactic dust, specifically the 
"whiskers" proposed-by Wickramasinghe et al. (1975) to 
provide a local origin for the background radiation. We con. 
sider here however the effect on the opacity of the intergalactic 
medium of intergalactic dust having extinction properties' 
similar to those of Interstellar dust. 

The existence of intergalactic dust has been proposed by 
Nandy et al. (1974) and Schmidt (1974) on the basis of the 
variation of quasar colours with redshift; we use here the 
formalism of Nandy et &L As pointed out by several authors 
(e. g. Gott et &L, 1974) it Is extremely unlikely that gntin forming 
material existed at any time in the intergalactic medium. How- 
ever. as shown by Chiao and Wickramasinghe (1972), spiral 
galaxies may eject significant quantities of their Interstellar dust 
into the intergalactic medium, this process being most efficient 
for graphite grains of radius - 0.1 pm. 7bese authors have also 
shown that this mechanism can give rise to a local Intergalactic 
dust density - 10-34 x cm-1, which Is of the same order as that 
suggested by Nandy et al. (1974) and Schmidt (1974). allowing 
for adjustment of the Ho values assumed and the uncertainties 
involved. We may also note that the process described by Chiao 
and Wickramasinghe is not particularly tfficient for small 
dielectric particles, so they would not be expected to be an 
important constituent of any intergalactic dust that originated 
in galaxies. 

If intergalactic dust is produced in this way there can 
certainly be no dust beyond redshift za, corresponding to the 
epoch of galaxy formation to (taken here to be 7xI U1 yr 
(Field, 1975), Independent of the value of Ho), where 

I+ za - A(1*)/, R(ta) (2) 

(cf. Alfv6n and Mendis, 1977; Pollaine, 1978); here R(t) Is the 
cosmic scale factor and to the epoch of observation. Obviously 
:q is a function not only of to but also of the deceleration 

parameter q4,. 
Once present In the intergalactic medium dust grains would 

be virtually Indestructible (Margolis and Schramm, 1977) and if 

grain number is conserved during the expansion the proper 
number density of grains n,, at redshift z Is given as usual by 

11-04) - fid(OXI + ZY, (z ;S 4) 

. WO (: > zQ) 

where x, (0) Is the local number density of Intergalactic dust 
grains. Us dependence of xj on z would &ýply If each galaxy 
capable of grain formation experienced during its early evolu- 
tion a phase of rapid and short-lived heavy element production. 
grain formation and ejection. no latter would be particularly 
effective if, at the relevant time, grain producing galaxies were 
more luminous than they presently appear to be (Cf. Schmidt, 
1974). Furthermore, we assume that the proper number density 
of grain Producing galaxies also increases as U+W and that 

the ejected grains partake In the expansion. If grain production, 
and ejection have been proceeding continuously since time to. 
a somewhat weaker dependence on z would be appropriate in 
Eq. (3). 

In the expression for nd we have neglected the possibility that 
grains may have formed before time 14P. for example from con- 
densible material produced in pregalactic stars (e. g. Schmidt, 
1974; Poffaine, 1978). However. an estimate of the likely 
abundance of heavy elements from such objects (Pollaine, 1978) 
shows that even if grain formation from heavy elements Is 100%. 
eWent the grain density at times corresponding to ir > zq was 
negligible by comparison with that In MOrS recent CPOChL 

In order to compute the optical depth for intergalactic dust 
we assume as usual (e. g. Nandy et &L. 1974; Schmid4 1974; 
Alfvda and Mendis, 1977; Pollaine, 1978) that at long wave. 
lengths. a cc A-1. Thus, using the normalization of Nandy et &L 
(1974) for the Intersabictic extinction law, we have 

. 44, e/He awd(O) fe 
T-086 7- -7. - BqJ 

-((I + 2qoz4, )1'2(3q1(I + 

+ 2qo(2q* - IXI + za) + 2(l - 2qon 

- 13d + l0q* - 2). (4) 
Here za zdqo) is given by Eq. (2). A- 41.4 being the 
observing wavelength In pm. 40 - 0.53. x. is the number 
density of Interstellar grains and L Is a normalization distance 
on I kpc. 17hroughout we take As I cm (d. Boynton, 1974ý 
Following Nandy et &L (1974). 

no 
which leads to a pain density of 10-04 g cm-0. This amount of 
grains (- 2 10-4 times the closure dewity) has negligible effect 
on the dynamics of the universe. It should be noted thak In 
arriving at this value for; &, Nandy et al. assumed q* w 1. but 
their choice of q# should not have a significant effect on their 
derived value of is. 

From Eq. (4). we may regard rd as a function of q4 (Includ. 
Ing. of course. the qrdependence of zcp, as given by Eq. (2)). 
The variation of rd with qo Is shown In Fig. I (curve A), In 
which we note that rl Increases with decreasing qO. for reasons 
discussed by Pollaine (197U The largest optical depth Is found 
in the -empty" Milne (q* - 0) universe. In which 

, r, (qo - 0) - 
Ae e/ffs p 

Le Moto)' 8-II T. _086 _r 3 
From Fig. I we see that for the amount of Intergalactic dust 
proposed by Nandy et &L (1974), and with conservation of 
grain number. the universe Is transparent to the background 
radiation only if qO > 0.03. Thus If dust grains are present In 
the Intergalactic medium to the extent proposed by Nandy at al. (1974) and SchmAdt (1974)ý any Buctuations In the microwave 
background would be visible only ifqo ýo 0.05. If Intergalactic 
dust is responsible for obscuring preplactic ductuations, then 
qG ;S0.05. 

'Mis upper limit on q@ applies If pregalactle ductu&tIons are 
hidden by Intergalactic dust, with local density 10-98 g cm-4 
and proper number density obeying Eq. (3). However, It Is quite 
likely that Eq. (4) ow-e3timates the optical depth r, for it 
number of reasons. 
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Firstly, the values assumed for Ho and to, while acceptable 
In themselves, may also be lower limits on these quantities (Gott 
et al., 1974; Field, 1975). If the product Hota were larger than 
we have assumedrd would be correspondingly smaller, because 
of Eq. (2). [We note that, since p cc ffft changing He has no 
effect on the factor outside the brackets in Eq. (4). ] 

Secondly, there is no evidence that intergalactic dust exists 
beyond z-2.2, the limiting redshift in the data of Nandy et &L 
(1974) and Schmidt (1974). It may therefore be too liberal an 
extrapolation to populate the intergalactic medium with dust 
grains to redshift zo (- 100 for qO - 0.01). For example, even if 
grain producing galaxies did form at time ta. grain production 
may not have commenced until some time later. 

Thirdly, if we do suppose that grain production and ejection 
have proceeded continuously since time to - and the mechanism 
of Chiao and Wickramasinghe (1972) suggests that the process 
is in ongoing one - the optical depth to intergalactic dust would 
be considerably less than that expected from Eq. (4) even if the 
local grain density were as high as 10-33 g cm-3, as suggested 
by Nandy et al. (1974) and Schmidt (1974). This is because there 
would be fewer grains at very large redshifts than Eq. (3) and 
the assumed value of ng(O) would imply, as already noted. 

For these reasons. curve A in Fig. I represents an upper 
limit on the opacity of intergalactic dust to the background 
radiation. Hence whatever the values of HO and to. and what- 
ever the distribution of intergalactic dust, qo 10.05 if dust Is 
responsible for obscuring pregalactic fuctuations. 

We now consider Thomson scattering by free electrons. 

IV. MKMWO SCRtttdng 

The possibility that embryonic plaxiis might be Obscured by 

intergalactic electrons has of course been discussed by several 
authors (see e. g. Weinberg (1972) and Sunyaev (1977) and 
references therein). However, previous workers have assumed 

If 

Fig. 1. Dependence of optical depth, 
at I cm observing wavelength. on 
deceleration parameter qq for Inter. 
galactic dust (curve A) and free 
electrons (curve B); we text for 
detailL Broken vertical line is known 
lower limit on q,, from the amount of 
matter observed In the form of 
sahWes 

that the local number density of electrons n. (O) Is given In terms 
of qO by the expression 

3Hjqo 
(5) 

where G Is the constant of gravitation. nos Is the mass of a 
hydrogen atom and x 05 1) allows for possible nonhydrogenic 
content of the Intergalactic medium (e. g. x-0.88 for a helium 
abundance of 25% by weight. as we &hill assume here). 
obviously this assumption presupposes that all dynamically 
significant matter Is locized and uniformly distributed between 
galaxieL However evidence available at present seems to 
Indicate that them Is in fact little matter between galaxies (e. g. 
Gott ct al., 1974) and to the usual assumption n. (O) cc qo Is not 
entirely justified. 

Although equation (5) provides an extreme upper limit on 
nAO). a more meaningful limit n. (O) <3 10-1' cm-0 has been 
suggested by the work of Gott and Gunn (1972). who considered 
the consequences of the infall of intergalactic gas into the Coma 
cluster. Their argument has been criticized by. amongst others, 
Field (1974). on the grounds that they assumed the Intergalactic 
gas to be cool. whereas X-ray evidence points to its being hot. 
However, as shown by Cowsik and Lerche (1975), the e&ct of 
hot Intergalactic gas on the rotation of galaxies also implies 
&(0) <3 10-IF cm-s. Also we may note that a similar upper 
limit on n. (O), based on photolonization of Intergalactic 
hydrogen by quasars. has been set by Arons and Wingert (1972). 

For qQ < 0.06, the upper limit R. (O) <3 10-9 cnri'l exceeds 
the maximum allowable by Eq. (5). Accordingly we assume for 
R. (O) the upper limit 

n. (O) < 4.9 10-4qQ ciri"I (q* -c 0.06) (6a) 

fi. (O) <3 10-1cm, 4 (q* > 0.06) (6b) 

where Eq. (6a) derives directly from Eq. (3). We use the Eqs. 
(6) for n. (O) to compute the opacity of the Intergalactic medium 
to Thomson scattering. 
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The optical depth to Thomson scattering is given 
equation (1) with a- or, the Thomson cross-section: 

". (q. ) - -E- .,.. (0) (1 + x'Xl + 2q*4-1'2de 
Ho 

I 

e NO) 

-((I + 20z-)`ýo + qoz. 1) +I- 3qo), 

by 

(7) 

where 

zo - Z. (2ý. < Z, 2) 
(&a) 

- Z,, (Z. > Z') (8b) 

and 
z. - 5.4 10-3(n. (O))-2'3. 

Equation (8a) gives the redshift at which complete reionization 
of the intergalactic gas by strong sources of ultraviolet radiation 
occurs. determined by the method of Sunyaev (1977); while Eq. 
(8b) expresses the fact that these sources did not exist before 
galaxy formation. Also we have assumed that the dependence 
of the proper number density of electrons on redshift obeys 
Eq. (3). 

The dependence of r, on qog computed by means of Eqs. (6), 
(7), and (8), is shown in Fig. I (curve B). Curve B is. like curve 
A. an upper limitý not only by -virtue of the upper limit on n. (O) 
but also in view of the remarks made In the previous section 
concerning the values of H9 and to. 

We note that. with the q(rindependent limit on n. (O), Eq. 
(6b), -P. increases with decreasing qO (cf. curve A); whereas when 
the limit on n. (O) is q(rdependent. as In Eq. (6a), r. decreases 
with decreasing q9. Consequently we have the upper limit 

, r. < 3.3 . 
(9) 

on the optical depth of the intergalactic medium to Thomson 
scattering. 

If we take curve B at face value, the intergalactic medium is 
optically thick to Thomson scattering for 

$A 10-4 < qo < 0.7- 
We note that the lower limit on qo Is of the same order as the 
extreme lower limit (qo > 6.5 10'4) derived by Gott et aL 
(1974) on the basis of the amount of matter observed In 
individual Supercluster galaxies; while the upper limit is of the 
same order as that derived in the previous section. We note, 
however, that in view of the upper limit (9), Thomson scattering 
is unlikely to be effective in obscuring embryonic galaxies and 
that if it is to contribute to the opacity of the intergalactic 
medium at all, the local number density of electrons cannot be 
sigrOcantly below the limits set by the Eqs. (6). 

V. Cenduding Remarks 

It we ascribe the failure to detect small SC21C fluctuations In the 
microwave background to the opacity of the Intervening 
medium, the only plausible agencies are intergalactic dust and 
Thomson scattering by free electrons. The former is capable of 

rendering the intergalactic medium opaque - and hence of 
hiding young galaxies -if qc, < 0.05; while the latter can do so- 
but not particularly effectively - if q9 < 0.2. In view of the fact 
that both curves in Fig. I are upper limits. failure to observe 
fluctuations in the microwave background would Imply q6 qc 
0.1 if we are correct in assuming that such failure is a result of 
the opacity of the intervening medium. [Obviously qQ cannot be 
arbitrarily small as the extreme lower limit qQ > 6.5 10-4 (Gott 
et &L, 1974) must be satisfied. ) Such a low value of qo would be 
contrary to that recently derived from the Hubble diagram 
(Kristian et al., 1979) and its uncertain evolutionary corrections, 
but would be In line with values obtained without reference to 
the Hubble diagram (e. g. Gott et al., 1974; Sandage and 
Tammann. 1975). 

If fluctuations in the microwave background are not 
observable as a result of Intervening materiaL then we may 
conclude that the universe must certainly be open (qQ < 0.5), 
and is probably so by a fairly comfortable margin. 
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