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ABSTRACT

Context. AI Phe is a double-lined, detached eclipsing binary, in which a K-type sub-giant star totally eclipses its main-sequence
companion every 24.6 days. This configuration makes AI Phe ideal for testing stellar evolutionary models. Difficulties in obtaining a
complete lightcurve mean the precision of existing radii measurements could be improved.
Aims. Our aim is to improve the precision of the radius measurements for the stars in AI Phe using high-precision photometry from
the Wide Angle Search for Planets (WASP), and use these improved radius measurements together with estimates of the masses,
temperatures and composition of the stars to place constraints on the mixing length, helium abundance and age of the system.
Methods. A best-fit ebop model is used to obtain lightcurve parameters, with their standard errors calculated using a prayer-bead
algorithm. These were combined with previously published spectroscopic orbit results, to obtain masses and radii. A Bayesian method
is used to estimate the age of the system for model grids with different mixing lengths and helium abundances.
Results. The radii are found to be R1 = 1.835 ± 0.014 R�, R2 = 2.912 ± 0.014 R� and the masses M1 = 1.1973 ± 0.0037 M�,
M2 = 1.2473 ± 0.0039 M�. From the best-fit stellar models we infer a mixing length of 1.78, a helium abundance of YAI = 0.26+0.02

−0.01
and an age of 4.39 ± 0.32 Gyr. Times of primary minimum show the period of AI Phe is not constant. Currently, there are insufficient
data to determine the cause of this variation.
Conclusions. Improved precision in the masses and radii have improved the age estimate, and allowed the mixing length and helium
abundance to be constrained. The eccentricity is now the largest source of uncertainty in calculating the masses. Further work is
needed to characterise the orbit of AI Phe. Obtaining more binaries with parameters measured to a similar level of precision would
allow us to test for relationships between helium abundance and mixing length.
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1. Introduction

Stellar evolutionary models are used in a variety of areas of
astrophysics, from predicting the properties of stars in galaxy
formation models (Schaerer 2013), to characterising planetary
host stars (Boyajian et al. 2015; Cabrera et al. 2015). However,
there are an increasing number of cases where the models have
failed to reproduce the observed parameters of low-mass stars
within binary systems. For example, observations of IM Vir
(a G7+K7-type binary) found the radii of the primary and sec-
ondary components were larger than those predicted by the mod-
els by 3.7% and 7.5%, respectively (Morales et al. 2009), while
the temperatures of the primary and secondary were found to be
100 K and 150 K (respectively) cooler than model predictions.
Vos et al. (2012) showed the secondary of EF Aqr (a G0-type
system) is 9% larger and 400 K cooler than model predictions.
A similar situation was found for V530 Ori (a G1+M1-type bi-
nary), for which models predicted a radius 3.7% smaller than
observations and a temperature that was 4.8% hotter than ob-
servations (Torres et al. 2014). The problems with the models
are not unique to stars within binary systems. A study of 183
low-mass K7-M7 single stars by Mann et al. (2015) using an in-
ferred stellar mass, found that models over-predicted the effec-
tive temperature (Teff) by 2.2% and under-predict radii by 4.6%.
In some cases, magnetic fields have been used to explain the

discrepancies, e.g. V530 Ori (Torres et al. 2014), but it remains
unclear whether magnetic fields provide the solution in all cases
(Mann et al. 2015). For low-mass stars, explanations for the dis-
crepancies are discussed by Torres (2013), where they conclude
that systems with well-determined masses, radii, temperatures
and metallicities, will be important in trying to understand this
problem.

AI Phoenicis (AI Phe, HD 6980) is one of a number of
important eclipsing binary systems within astrophysics. Many
other subgiant systems exhibit flares or spots that are associated
with the strong magnetic activity of RS CVn systems. However,
due its long period and slow rotation, AI Phe does not display
any of these photometric complications (Andersen et al. 1988).
This makes it possible to obtain high-precision masses and radii
for the system, and treat the components as independent stars for
modelling purposes. Its specific combination of a main-sequence
star and a sub-giant star make it ideal for testing stellar evolu-
tionary models. This was demonstrated by Torres et al. (2010)
using two different codes to model the system (Yonsei-Yale and
an experimental version of the Victoria models). They aimed
to reproduce the radii and effective temperatures at an age that
was consistent for both components, and found the mean age
of the system is different by 0.9 Gyr between the two models.
This is a non-negligible uncertainty when determining the ages
of nearby solar-type stars. Spada et al. (2013) also used AI Phe to
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test their evolutionary code by attempting to produce tracks for
each component that give consistent ages for both components.
They found an age of 4.44 Gyr for the hotter component and
4.54 Gyr for the cooler component, with agreement at the 2%
level. The treatment of convective-core overshooting, mixing-
length and helium abundance can be significant sources of uncer-
tainty within the models (Lebreton et al. 2014). With high pre-
cision masses and radii for a binary such as AI Phe, the age of
the system can be tightly constrained, as the number of plausible
evolutionary tracks is greatly reduced. It therefore provides an
excellent opportunity to get a better understanding of overshoot-
ing, the helium abundance and mixing length parameter.

AI Phe was first noted as an eclipsing binary by Strohmeier
(1972). Photometric analysis to obtain the first accurate es-
timate of the orbital period was carried out by Reipurth
(1978). Imbert (1979) carried out the first spectroscopic anal-
ysis of the orbit. Hrivnak & Milone (1984) used the spectro-
scopic orbit data of Imbert (1979), together with new pho-
tometric observations in UBVRI, to obtain masses and radii
for AI Phe. Vandenberg & Hrivnak (1985) compared the ob-
served parameters of AI Phe to theoretical isochrones to cal-
culate the helium abundance, Y , and age, τ, of the system
(Y = 0.38 ± 0.05 and τ = 3.6 ± 0.7 Gyr). Andersen et al. (1988)
used new radial velocity (RV) measurements, the UBVRI pho-
tometric data of Hrivnak & Milone (1984) and new uvby pho-
tometry to obtain masses to ±0.3% and radii to ±1.5%. At the
time, these were most accurately determined masses for any de-
tached, double-lined eclipsing binary system (Andersen 1991).
Milone et al. (1992) remodelled the data of Andersen et al.
(1988) and Hrivnak & Milone (1984), using Wilson-Devinney
code with updated model atmospheres. Their work reduced
the uncertainties on the radii, although their value for the
secondary component was 2σ lower than the value found
by Andersen et al. (1988). Karami & Mohebi (2007) reanal-
ysed the RV data of Andersen et al. (1988) using a nonlinear
regression method, which allowed semi-amplitude velocity, ec-
centricity and longitude of periastron to be fitted simultane-
ously. However, Hełminiak et al. (2009) suggested that the er-
rors quoted by Karami & Mohebi were underestimated due to
several uncertainties not being included in their error analysis.
Hełminiak et al. (2009) used new spectra to obtain RV mea-
surements with a root mean squared (RMS) residuals from the
spectroscopic orbit fit of 62 and 24 m s−1 for the primary and
secondary components, respectively. They also used photomet-
ric data from All-Sky Automated Survey (ASAS, Pojmanski
2002) to obtain masses and radii for the components, but noted
that they only had access to one lightcurve for their work, and
suggested the derived parameters of AI Phe could be improved
further with high-precision photometry.

The SuperWASP cameras monitor thousands of stars every
night looking for planetary transits, as part of the Wide Angle
Search for Planets (WASP, Pollacco et al. 2006). WASP also pro-
vides an excellent opportunity to find and study eclipsing binary
systems using photometry with better than 1% accuracy. This
paper focuses on the analysis WASP photometry to derive high
precision lightcurve parameters for AI Phe. These are then com-
bined with the RV measurements of Hełminiak et al. (2009) to
obtain radii to a precision of better than 1%. Section 2 provides a
description of the photometric data used for the work. Section 3
describes the data processing, lightcurve modelling, and error
analysis. Section 4 contains a summary of the final masses and
radii, while Sect. 5 uses the new masses and radii as constraints
to determine the age of the system using models different mixing

lengths and helium abundance. Finally, Sects. 6 and 7 contain a
discussion of the results and conclusion, respectively.

2. Data

2.1. Observations

Located at the Observatorio del Roque de los Muchachos,
La Palma and at Sutherland Observatory, South Africa, the two
WASP instruments are both formed from eight wide-field cam-
eras each with a 2048 × 2048 pixel CCD. For AI Phe (1SWASP
J010934.19-461556.0), over 170 000 photometric measurements
were present in the WASP archive, taken between June 2006 and
January 2014 by the instrument in South Africa. During this pe-
riod, WASP-South has used two different types of lenses, the
original 200-mm, f /1.8 lenses (Pollacco et al. 2006) and, from
July 2012, 85-mm, f /1.2 lenses (Smith & WASP Consortium
2014). The reduction procedure is identical for both lens types,
and uses a dedicated pipeline (Pollacco et al. 2006) that has been
optimised in each case. The data are then processed by a detrend-
ing algorithm, which was developed from the SysRem algorithm
of Tamuz et al. (2005) and is described by Collier Cameron et al.
(2006).

Use of the 85-mm lenses allows WASP-South to focus on
brighter stars (V . 9). A larger reduction aperture is used in
comparison to the 200-mm lenses (4 pixels from 3.5) and the
limits on image and star rejection were also modified. This
results in a shift of the photometry range to 6 <∼ V <∼ 11
for the 85-mm lenses from 9 <∼ V <∼ 13 for the 200-mm
lenses. The 200-mm lenses use broad-band filters with a range
of 400−700 nm, while the 85-mm use SDSS r′ filters. Observa-
tions from the two different types of lens have been analysed
separately.

2.2. Initial processing

The WASP data can suffer from large amounts of scatter, due to
clouds, etc. This section describes the methods used to remove
unreliable observations in the two sets of data.

For the 200-mm data, a decision was made to only use data
from cameras 225 and 226 during the analysis. These two cam-
eras contribute more than 80% of the observations made with
the 200-mm cameras. The data from the other cameras con-
tained large amounts of scatter, perhaps related to the fact that
the 200-mm lenses are very close to their saturation limit for
AI Phe. They also only contributed a handful of observations to
the eclipses, and would not help determine the radii of AI Phe.

As part of the WASP reduction pipeline, each photometric
measurement gets assigned a weighting factor, σxs, (denoted
σt(i) in Collier Cameron et al. 2006), to characterise the scat-
ter present from external noise sources. This σxs value is set
to zero if the pipeline deems the value to be missing or bad
(Collier Cameron et al. 2006), so data with σxs = 0 were not
included in any analysis. In some cases, the error in the mea-
sured flux was exceptionally high in comparison with the other
measurements. It is likely that this is due to clouds being present
at the time of exposure, as σxs is also higher for these data. If
the error in a particular flux measurement was five or more times
greater than the median error of all data from the same camera,
then it was excluded from our analysis.

The flux measurement we have used for our analysis, f , is
calculated from an aperture with a radius of 3.5 pixels or 4 pixels
(for the 200-mm and 85-mm lenses, respectively) centred on
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Table 1. Number of observations removed during initial processing.

Reason 200-mm 85-mm

Removed cameras 3662 0
σxs = 0 2152 16 925
ferr > 5*median 1381 18 519
Offset 37 868

Remaining 12 618 114 162

Notes. The last row states the number of data remaining.

AI Phe, with the detrending correction of Collier Cameron et al.
(2006) applied, and ferr is the associated error in this value. The
magnitude of each measurement was calculated from f using
the median flux of the data set as the zero point. The error in
magnitude, merr, associated with each observation, was calcu-
lated using

merr = f

√(
ferr

f

)2

+ σxs
2. (1)

One final check was used to look for sections of data that were
significantly offset from the remaining data. The phase-folded
data was split into 800 phase bins. The median magnitude and
associated error in the median were then calculated for each bin.
This formed a model from which we could estimate the expected
magnitude of an observation given its phase. The entire data set
was also split into blocks based on the night the observation was
taken and the camera used. For each data block, the magnitude
of each observation within that block was compared to its ex-
pected magnitude by matching it to a phase bin. If more than
80% of the observations from a particular data block were offset
by more than ten times the errors associated with the appropri-
ate phase-bins, then all data from that night/camera combination
were excluded from the analysis.

Overall, from the initial 170 324 observations stored in the
WASP archive, 126 780 remained for use during the analysis,
12 618 from the 200-mm lenses and 114 162 from the 85-mm
lenses. Table 1 provides a summary of the number of points re-
moved during this initial processing stage for each type of lens.

3. Analysis

3.1. Ephemeris

From an initial analysis of the data using the ephemeris given in
Hrivnak & Milone (1984), we found that the primary eclipse in
the 85-mm data was offset in phase by 0.00102 ± 0.00002. This
meant that the primary eclipse occurred more than 30 min later
than predicted.

Table 2 details the times of primary minima, tpri, currently
available for AI Phe. Two of the times have been previously
published. The remaining five have been obtained by fitting data
from WASP and All-Sky Automated Survey (ASAS, Pojmanski
2002) using jktebop (Southworth et al. 2004). The 200-mm
WASP data were split into three blocks – the range of Helio-
centric Julian Date used in each block is given in Table 2. Only
one block was used from the 85-mm data. Figure 1 shows the
difference between observed tpri and the calculated time based
on the linear ephemeris of Hrivnak & Milone (1984). Based on
this plot, a linear ephemeris cannot be used to describe the long-
term periodicity of AI Phe. There are an insufficient number of

Table 2. Available times of primary minimum for AI Phe.

tpri (HJDUTC) Error Source

2 443 410.6885 0.0004 Reipurth (1978)
2 444 861.6357 0.0005 Hrivnak & Milone (1984)
2 453 247.6306 0.0027 ASAS data
2 454 354.2869 0.0016 200 mm, 3890−4439
2 455 436.35626 0.00013 200 mm, 5370−5526
2 455 805.24418 0.00014 200 mm, 5739−5911
2 456 149.53828 0.00012 85 mm, 6111−6661

Notes. For the 200-mm and 85-mm data, the days (in HJD−2 450 000)
used to determine tpri are included in the source column.
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Fig. 1. Comparison between observed and computed times of min-
ima for the primary eclipse of AI Phe, using the ephemeris from
Hrivnak & Milone (1984).

minima to obtain a reliable quadratic ephemeris. Therefore, for
this work, the following linear ephemeris has been fitted to only
times of minima for the WASP data:

HJD Pri. Min. = 2 455 085.24370(21) + 24.592483(17) E. (2)

For the shorter timescale covered by the WASP data, a lin-
ear ephemeris is a suitable approximation. The new period
is consistent with the value determined spectroscopically by
Hełminiak et al. (2009), however, there is an 8.4-sigma dif-
ference between this new period and the value quoted in
Hrivnak & Milone (1984). The zero-point of the ephemeris from
Hełminiak et al. (2009) was not included in Fig. 1 and Table 2,
because they use a different definition of this quantity. With the
new ephemeris the phase-offset for the 85-mm data is reduced to
0.00005 ± 0.00002.

In all the observations of AI Phe over the last 40 years or
so, the secondary eclipse has not been observed in its entirety in
one night, so it has not been possible to investigate the timings
of the secondary eclipse. This investigation would have given an
insight into the possible cause of the apparently quadratic nature
of the ephemeris. If the deviations in calculated timings are com-
mon to both the primary and secondary minima, it may suggest
a third body is involved, or if the deviations have opposite signs
then it may suggest apsidal motion is involved.

Figure 2 shows the phase-folded lightcurves for both the
85-mm and 200-mm data using the ephemeris in Eq. (2), hav-
ing been processed using the method described in Sect. 2.2.
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Fig. 2. Top: 85-mm WASP-South phase-folded lightcurve for AI Phe.
Bottom: phase-folded WASP-South 200-mm data from cameras 225
and 226.

Fig. 3. 2MASS image (combined J, H and Ks bands) of AI Phe showing
the close proximity of the contaminating star (Image: Aladin Sky Atlas,
Bonnarel et al. 2000).

3.2. A Contaminating companion

An image of AI Phe from the Two Micron All Sky Survey
(2MASS, Skrutskie et al. 2006) shows there is another star ap-
proximately 11′′ to the east of AI Phe, as shown in Fig. 3. The
close proximity of the star means it resides within the aperture
used for the WASP photometry of AI Phe and so contributes to
the measured flux. As such, it has been necessary to include third
light as a parameter that is fitted during the lightcurve analysis.

Although seen in the 2MASS images, this survey does not
present any photometric measurements for this companion star.
Near-infrared photometry for this star was taken from the Deep
Near-Infrared Survey (DENIS, Epchtein et al. 1997), with I =
13.50 ± 0.02 mag, J = 12.95 ± 0.07 mag and K = 12.60 ±
0.14 mag. The I − J, J − K, and I − K colours for the com-
panion were compared to the Dartmouth stellar evolution mod-
els (Dotter et al. 2008), and by assuming a main-sequence star

with [Fe/H] = 0.0 and an age 2 Gyr, its mass was estimated as
0.91± 0.06 M�. This was used to obtain expected absolute mag-
nitudes from the Dartmouth model, which were in turn used to
calculate the distance modulus in each band, resulting in an esti-
mated distance of 590 ± 9pc to the companion. Comparing this
value with the distance to AI Phe of 162 ± 6 pc (Andersen et al.
1988), we conclude that the visual companion is not physically
associated with the system.

3.3. Model

This work uses the ebop lightcurve analysis code
(Nelson & Davis 1972; Popper & Etzel 1981). The subrou-
tine light from this code, which calculates the lightcurves at
specified orbital phases for a given set of model parameters,
was converted to double-precision floating point arithmetic and
modifications were made to enable it to be called directly from
the programming language, Python. The ebop lightcurve is
then combined with the least-squares Levenberg-Marquardt,
Python module, MPFIT (Markwardt 2009) to find the best-fit
parameters, i.e. the parameters that minimise the χ2 value
between the model and data.

The following seven parameters were allowed to vary during
the fitting process: surface brightness ratio at the centre of the
stellar discs, J; sum of the radii, rsum = r1 + r2; ratio of the radii,
k = r2/r1; inclination, i; e cosω, e sinω; third-light, l3. In addi-
tion to these fitted parameters, the fractional radii, r1 and r2 are
automatically calculated from rsum and k, while the eccentric-
ity e and longitude of periastron ω are calculated from e cosω
and e sinω.

The mass ratio, q = M2/M1, was fixed at 1.0418, taken from
Hełminiak et al. (2009). This is slightly larger than the value
1.034 quoted by Andersen et al. (1988), but modifying the mass
ratio by such a small amount had no effect on the best-fit pa-
rameters. The gravity darkening exponents also have little im-
pact on the shape of the lightcurve in the case of AI Phe as the
system is well-detached. Using values taken from the table by
Claret & Bloemen (2011), the gravity darkening exponent for
the primary, yp, and secondary, ys, were fixed at 0.26 and 0.50
respectively. The same values were used for both the 85-mm and
200-mm data.

The linear limb-darkening coefficients were also held fixed.
Attempts were made to include these as free parameters, but we
found that they are not usefully constrained by the data. Instead,
the limb darkening coefficients were estimated by interpolation
in the table of Claret & Bloemen (2011) by using values for ef-
fective temperature, surface gravity and metallicity for the two
components from Andersen et al. (1988). For the 85-mm data we
adopted the primary limb darkening coefficient, up = 0.54±0.03
and us = 0.67 ± 0.03 for the secondary. For the 200-mm data
we used up = 0.52 ± 0.05 and us = 0.67 ± 0.05 using the Ke-
pler pass-band to approximate the response of the WASP broad-
band filter. To account for the uncertainties in the limb darken-
ing coefficients, each coefficient was varied by its error and a
new model fitted. For each parameter, the average absolute dif-
ference between these models and the best fit model has been
added in quadrature to the uncertainties from the best-fit param-
eters. Table 3 details the typical contribution to the uncertainty
of each parameter, for both the 200-mm and 85-mm data. These
were calculated from the mean contributions for each best-fit de-
tailed in Sects. 3.6 and 3.7.
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Table 3. Typical uncertainty contribution to each parameter from uncer-
tainty limb darkening coefficients.

Parameter 200-mm 85-mm

J 0.0066 0.0051
rsum 0.00015 0.00010
k 0.006 0.004
i (◦) 0.062 0.008
e cosω 0.00002 0.00002
e sinω 0.0013 0.0011
l3 0.004 0.003

r1 0.00018 0.00010
r2 0.000013 0.00009
e 0.0012 0.0010
ω (◦) 0.12 0.13

3.4. Parameter-Space Exploration with emcee

One of the greatest risks when using a least squares minimisa-
tion method is that the solution that is found is a local minimum,
rather than the overall global minimum of the problem. If lo-
cal minima are present it is important that these are considered
when the uncertainties for the final parameters are calculated.
Markov chain Monte Carlo (MCMC), in the form of the Python
module, emcee, (Goodman & Weare 2010) was used to check
for these local minima, within the parameter-space of the same
seven parameters used in the model fitting (J, rsum, k, i, e cosω,
e sinω and l3). emcee uses the affine-invariant ensemble sam-
pling (stretch-move) algorithm developed by Goodman & Weare
(2010), where a group of walkers explore the parameter space.
This group of walkers can be split allowing the process to be run
in parallel and the affine-invariant transformations mean the al-
gorithm can cope with skewed probability distributions. The po-
sitions of the walkers within a particular sub-group are updated
using the positions of walkers in the other subgroups.

The probability that a model produced by the parameters
from the walkers, corresponds to the best-fit model is evaluated
using the log likelihood function

lnL(y;Θ) = −
1
2

N∑
n=1

(mn − yn(Θ)
merr,n

)2

− ln
(

2π
m2

err,n

) (3)

where y is a vector of length N containing the magnitudes gener-
ated for a model, Θ is a vector containing the varying parameters
(J, rsum, k, i, e cosω, e sinω and l3), m is the observed magnitude
and merr is the standard error on the magnitude. Priors were ap-
plied, but these are only used to prevent the parameter exploring
areas that are unphysical, eg. rsum or J being less than zero.

The process ran using 150 walkers for 2500 steps, of which
the first 200 were discarded to allow for an adequate burn-in
stage. For each of the walkers, a starting point for each parameter
was chosen by choosing a number at random from a normal dis-
tribution (with a mean of zero and variance of 0.01) and adding it
to the best-fit parameter. While this method would initially cre-
ate a ball of walkers close to the solution found by the model,
the burn-in stage allows the walker to spread out from this ball.
Each parameter was subsequently checked, by plotting the walk-
ers’ positions against step number, to ensure the burn-in stage
was completed within these first 200 steps. To ensure the was
no bias from the walkers’ starting positions, a test was run that
allowed the walkers to start further from the model solution, up
to three times the parameters’ uncertainties as determined from

the covariance matrix of the best-fitting model. The burn-in stage
for this test was much longer, but also failed to reveal any other
local minima, so we concluded the original starting points were
adequate.

Figure 4 shows example distributions for the 85-mm data.
The contours plotted over the top of the distributions indicate the
density of points with the darker regions showing higher densi-
ties towards the centre of each plot. The grey lines across each
of the distributions show where the best-fit values lie. Gener-
ally the resulting distributions are symmetric, as shown by the
histograms for each parameter. However, there are correlations
between some of the parameters, as seen by the tilted ellipsoid
shaped regions. Many of these correlations link the third-light
parameter to the other parameters, more specifically there are
strong correlations between l3 and J, k and i. The correlation
with k highlights the importance for the inclusion of the third-
light parameter in the model, because without it, the resulting
relative radii would be subject to a systematic error.

3.5. Prayer-bead error analysis

It is inappropriate to use the covariance matrix from the least-
squares fit to estimate the standard errors on the model parame-
ters. This is because the assumption of uncorrelated noise with
a Gaussian distribution is not satisfied for WASP photometry. It
is not clear that the distribution of points from the MCMC chain
gives an accurate impression of the posterior probability distri-
bution of the parameters, for the same reason. Therefore, it is
not appropriate to use the likelihood calculated using Eq. (3) ei-
ther. As such, the standard errors on the best-fit parameters have
been calculated using a prayer-bead (residual permutation) as
described by Southworth (2008) and based on an algorithm de-
veloped by Jenkins et al. (2002). The residuals between the data
and the best-fit model are shifted by a number of steps to create
a synthetic data set. A new model is then fitted to this synthetic
data, and the process is repeated across the entirety of the orig-
inal data set. The uncertainties are the standard deviation of the
fitted parameters from all the synthetic data models. Ideally, the
number of shifts would be N − 1, where N is the number of ob-
servations used in generating the best-fit model. However, due to
the large number of points involved in the WASP lightcurves, the
number of shifts used was restricted to 500 spread evenly across
the data. To ensure the best-fit solution was not affected by the
choice of initial parameters, the initial parameters were taken at
random from positions within the MCMC analysis.

3.6. Detrending Investigations

As mentioned in Sect. 2.1, WASP photometry is processed us-
ing the detrending algorithm described in Collier Cameron et al.
(2006). The algorithm is used to remove four trends of system-
atic errors which are common to all stars in a particular field and
is given by the equation

m̃i, j = mi, j −

M∑
k=1

(k)c j
(k)ai (4)

where mi, j and m̃i, j are the observed and corrected magnitude,
respectively, for star j at time i. M is the total number of trends,
ai are basis functions detailing the patterns of systematic errors
and c j describes to what extent each basis function affects a par-
ticular star. The algorithm is applied separately to each unique
combination of camera and season, and aids the process locating
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Fig. 4. Density distribution of parameter space explored using MCMC. The best-fit parameters as determined by the model are marked by the
grey crosses on the density distributions, and the grey line on the histograms. The contours on each of the distributions indicate the density of the
points, with the darker, denser regions towards the centre of each plot. The distribution for r1 and r2 has been calculated from k and rsum. Data
shown is for the 85-mm original data, without priors.

planetary transits by flattening lightcurves over the time scale of
a typical transit length (2.5 h). The work in this paper aims to
determine the radii of AI Phe to the highest accuracy possible
using the WASP photometry, and so the effects of the detrending
process on the resulting parameters have been investigated.

Reversing the detrending entirely would re-introduce all the
systematic errors the algorithm was designed to remove, making
comparisons between the resulting parameters more difficult. In-
stead, effective detrending coefficients, c′, have been calculated.
These coefficients take into consideration the variability of an

eclipsing binary, by including a lightcurve model, L, when they
are calculated. For AI Phe, the situation can be described using

m̃i = mi −

M∑
k=1

(k)c′(k)ai + Li (5)

where mi and m̃i are the observed and corrected magnitude (re-
spectively) for AI Phe, and (k)ai are the same detrending ba-
sis functions as before. The effective detrending coefficients for
each of the basis functions were calculated using singular value
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Table 4. Best-fit parameters for AI Phe from 85-mm and 200-mm data, with and without the detrending applied.

Parameter 85-mm 200-mm
Original Detrended Difference Original Detrended Difference

J 0.4361(78) 0.4336(67) 0.0025 0.367(15) 0.391(17) −0.024
rsum 0.09926(41) 0.09902(32) 0.00024 0.1007(11) 0.1003(9) 0.0004
k 1.582(18) 1.578(14) 0.004 1.512(51) 1.558(50) −0.046
i (◦) 88.531(60) 88.549(48) −0.018 88.76(19) 88.62(18) 0.14
e cosω −0.06545(10) −0.06559(7) 0.00014 −0.06455(31) −0.06457(25) 0.00002
e sinω 0.1659(40) 0.1636(33) 0.0023 0.194(11) 0.192(9) 0.002
l3 0.056(17) 0.059(13) −0.003 0.145(39) 0.098(42) 0.047

r1 0.03844(46) 0.03841(37) 0.00003 0.0399(14) 0.0392(13) 0.0007
r2 0.06082(38) 0.06061(29) 0.00021 0.0607(11) 0.0611(10) −0.0004
e 0.1784(43) 0.1763(35) 0.0021 0.205(12) 0.203(10) 0.002
ω (◦) 111.52(45) 111.83(39) −0.31 108.39(98) 108.59(80) −0.20

Notes. Standard errors on the final two digits of each parameter value are given in the parentheses and include the contribution from the uncertain-
ties in the limb darkening coefficients used.

decomposition (SVD). Effects from the altered detrending coef-
ficients were removed from the observed data, then using ebop
and MPFIT, best-fit parameters were obtained. A best-fit model
generated using the method in Sect. 3.3, was used for L ini-
tially. However, to ensure the choice of initial model did not bias
the results, the values of c′ were calculated for multiple models.
This was done as an iterative process, which continued until all
parameters change by less than 0.005% with each new model.
Once the final set of best-fit parameters was determined, MCMC
and prayer-bead analysis were used to calculate their associated
uncertainties.

Table 4 contains the best-fit parameters for both the 85-mm
and 200-mm, with the difference between the original data and
detrended data included for comparison. With the exceptions of
J and l3 for the 200-mm data and e cosω for the 85-mm, all
the best-fit parameters for the detrended data lie within the un-
certainties of the parameters from the original data. Therefore,
in general, the detrending algorithm applied during the WASP
pipeline does not affect the overall best-fit parameters. The large
difference present for J and l3 for the 200-mm data is due to the
quality of the data present in the primary eclipse. The eclipse is
covered by the two cameras on one night, and there is an offset
between the data from the two cameras. This maybe be due to the
differences in the transmission profile of the filters used in dif-
ferent cameras. In the detrended case, the model shifts enough to
favour the data from camera 226, which forms a deeper eclipse.
This results in the larger value of J and, because the surface
brightness is strongly correlated with l3, there is the correspond-
ing decrease in l3. Figures 5 and 6 show the best-fit model plot-
ted against the detrended data for the 85-mm and 200-mm data,
respectively. The fit residuals are also shown in these figures.

As the sets of parameters from the original and detrended
data are generally consistent, but the uncertainties associated
with the detrended parameters are smaller, it is the detrended
parameters that will be used from now on.

3.7. Constraining e cosω and e sinω

In Table 4, between the 85-mm and 200-mm parameters, there
are differences of 2.7σ and 4σ for e and ω, respectively. The val-
ues also differ from the values quoted by Hełminiak et al. (2009)
and Andersen et al. (1988), e: 0.187(4) and 0.188(2) respec-
tively; ω: 110.1(9)◦ and 109.9(6)◦, respectively. To investigate
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Fig. 5. Upper panels: detrended best-fit model for AI Phe (grey line)
plotted over the 85-mm WASP-South photometry for the primary (left)
and secondary (right) eclipses. Lower panels: residuals between the
plotted model and the data, with the grey line marking zero.
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Fig. 6. Upper panels: detrended best-fit model for AI Phe (grey line)
plotted over the 200-mm WASP-South photometry for the primary (left)
and secondary (right) eclipses. Lower panels: residuals between the
plotted model and the data, with the grey line marking zero.

further, e cosω and e sinω were fixed at −0.06424 and 0.17561,
respectively. These values were calculated from the spectro-
scopic e and ω of Hełminiak et al. (2009) and were chosen over
Andersen et al. (1988), as the Hełminiak et al. values were ob-
tained more recently. If the orbit has been varying (see Sect. 3.1),
the most recent values should be nearest to those applicable to
the time span covered by the WASP data.
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Table 5. Best-fit parameters for AI Phe from detrended 85-mm and 200-mm data, with the priors, e cosω = −0.064 ± 0.004 and e sinω =
0.176 ± 0.003.

Parameter 85-mm 200-mm
Detrend Difference Detrend Difference

with priors to no priors with priors to no priors

J 0.4346(68) −0.0010 0.388(15) 0.003
rsum 0.09909(31) −0.00007 0.0997(7) 0.006
k 1.582(15) −0.004 1.546(47) 0.012
i (◦) 88.535(48) 0.014 88.68(17) −0.06
e cosω −0.06558(7) 0.00001 −0.06468(21) 0.00011
e sinω 0.1654(28) −0.0018 0.185(5) 0.007
l3 0.057(13) 0.002 0.107(39) 0.009

r1 0.03838(37) 0.00003 0.0392(12) 0.0000
r2 0.06071(29) −0.00010 0.0606(8) 0.0005
e 0.1780(30) 0.0017 0.196(6) 0.007
ω (◦) 111.63(32) 0.20 109.28(46) −0.69

Notes. The difference from the best-fit parameters without priors is included for comparison. Standard errors on the final two digits of each
parameter value are given in the parentheses and include the contribution from the uncertainties in the limb darkening coefficients used.

However, fixing e cosω and e sinω produced models that
were poor fits to the data. This was the case for both the 85-mm
and the 200-mm data, but was more significant in for the 85-mm.
For the 85-mm data, there was a phase offset of 0.001 between
the observed data and resulting model of the secondary eclipse.

As an alternative to fixing e cosω and e sinω, the values cal-
culated from Hełminiak et al. (2009) with their standard errors
were used as Gaussian priors during the model fitting. Table 5
contains the best-fit parameters for the detrended 85-mm and
200-mm data, with inclusion of the priors. Again, the uncertain-
ties have been calculated through MCMC and prayer-bead anal-
ysis, and the error contribution from the uncertainties in the limb
darkening value has also been included. For the 85-mm data, the
inclusion of the priors has altered the best-fit parameters by less
than their uncertainties. e and ω have been altered more signifi-
cantly for the 200-mm data, bringing their values closer to those
of the 85-mm data. However, the values for both are still incon-
sistent with each other.

The exact cause of the differing e and ω values remains
unclear. Previous observations of AI Phe have yielded a range
of values for e and ω. For example, Hrivnak & Milone (1984)
found e = 0.1726 ± 0.0006 and ω = (111.8 ± 0.1)◦ giving
e cosω = −0.06410 ± 0.00007 and e sinω = 0.1603 ± 0.0007,
while the same UBVRI lightcurve analysed by Andersen et al.
(1988) yielded mean values of e cosω = −0.064 and e sinω =
0.183. No clear trend is present when all available value of ω
were plotted against time, as might be expected if these differ-
ences are due to apsidal motion. The parameter e sinω is very
sensitive to the shape of the secondary eclipse. Without observ-
ing the base of the secondary eclipse in one night, defining the
exact shape of the eclipse and therefore determining the value of
e sinω can be difficult. Values of e and ω determined from spec-
troscopic orbits will not suffer these problems and should there-
fore be more accurate. It seems there is still work to be done in
order to completely understand the behaviour of AI Phe’s orbit.

Despite the inconsistency of e and ω, the addition of the pri-
ors has had very little impact on r1 and r2. They have remained
consistent with each other, with a small reduction in the uncer-
tainties of the 200-mm data. The radii are determined by the
contact points, which are well defined by the primary eclipse,
and the ratio of the eclipses k, but only as k0.25. Therefore, r1 and

r2 are robustly measured despite problems with the secondary
eclipse and small changes in the 200-mm eclipse depth. A num-
ber of the other parameters have also shown small reductions in
their uncertainties, and therefore the best-fit parameters obtained
with the priors have been used in further analysis.

3.8. Overall best-fit parameters

Table 6 summarises the results from the lightcurve analysis,
and includes the sets of best-fit parameters from the detrended
85-mm and 200-mm data, obtained with priors. For compar-
ison, the results of Andersen et al. (1988) are also included
in the table. As the two WASP data sets and the results of
Andersen et al. (1988) are all independent, they have been com-
bined to produce an overall weighted mean. Uncertainties from
each of the parameters were used to calculate internal and exter-
nal standard errors on these mean values (i.e. based on the error
bars and scatter, respectively), with the larger of the two being
quoted alongside the weighted means. For r1 and r2 the results
were internally consistent. The mean surface brightness ratio and
third-light are not included because the different filters were used
to obtain the 200-mm and 85-mm data.

4. Absolute parameters

As mentioned in Sec. 1, Hełminiak et al. (2009) obtained high
precision radial velocity measurements for AI Phe and com-
bined these with ASAS photometric measurements to derive the
masses and radii of the two components of AI Phe. The val-
ues they used for the semi-amplitude velocities K1 and K2 are
51.36(3) km s−1 and 49.11(2) km s−1 respectively.

The WASP photometry provides more complete lightcurves
for AI Phe than the ASAS data, and therefore it has been possible
to obtain the lightcurve parameters to a higher precision. Using
the weighted means for r1, r2, e and i from the Table 6 and the
semi-amplitude velocities from Hełminiak et al. (2009), masses
and radii of the stars within AI Phe have been calculated and
are shown in Table 7. jktabsdim1 was used for this, as were

1 http://www.astro.keele.ac.uk/jkt/codes/jktabsdim.
html
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Table 6. AI Phe lightcurve parameters summary from this study, and comparative results from Andersen et al. (1988).

Parameter 85-mm 200-mm Andersen et al. (1988) Weighted mean

Surface brightness ratio, J 0.4346(68) 0.388(15) – –
Sum of radii, rsum 0.09909(31) 0.0997(7) 0.0993(10)∗ 0.09919(27)
Ratio of radii, k 1.582(15) 1.546(47) 1.613(10) 1.602(12)
Inclination, i (◦) 88.535(48) 88.68(17) 88.45(5) 88.502(39)
e cosω −0.06558(7) −0.06468(21) −0.0634(3) −0.06534(40)
e sinω 0.1654(28) 0.185(5) 0.178(10) 0.1710(61)
Third-light l3 0.057(13) 0.107(39) – –

Fractional radius, r1 0.03838(37) 0.0392(12) 0.0380(5) 0.03829(29)
Fractional radius, r2 0.06071(29) 0.0606(8) 0.0613(10) 0.06076(28)
Eccentricity, e 0.1780(30) 0.196(6) 0.189(10) 0.1821(51)
Periastron Longitude, ω (◦) 111.63(32) 109.28(46) 109.6(1.0) 110.73(78)

Notes. (∗) Calculated from the values given by Andersen et al. (1988) for rA and rB.

Table 7. Absolute parameters for AI Phe parameters calculated using
lightcurve parameters from this work and spectroscopic values from
Hełminiak et al. (2009), with comparisons to previous work.

Parameter This work Hełminak Andersen
et al. (2009) et al. (1988)

P (days) 24.592483 24.59241 24.592325
Error in P (17) (8) (8)
K1 (km s−1) 51.16(3) 50.90(8)
K2 (km s−1) 49.11(2) 49.24(7)
q 1.0417(7) 1.0418(8) 1.034(2)
M1 sin3 i (M�) 1.1961(37) 1.1922(30)∗ 1.194(4)
M2 sin3 i (M�) 1.2460(39) 1.2421(32)∗ 1.234(5)
e 0.1821(51) 0.187(4) 0.188(2)
ω(◦) 110.73(78) 110.1(9) 109.9(6)
i (◦) 88.502(39) 84.4(5) 88.45(5)

M1 (M�) 1.1973(37) 1.2095(44)∗ 1.1954(41)
M2 (M�) 1.2473(39) 1.2600(46)∗ 1.2357(45)
R1 (R�) 1.835(14) 1.82(5) 1.816(24)
R2 (R�) 2.912(14) 2.81(7) 2.930(48)

Notes. (∗) These errors have been recalculated using jktabsdim as the
quoted errors have been under-estimated.

the constants as suggested by Torres et al. (2010). Table 7 also
contains results from Andersen et al. (1988) and Hełminiak et al.
(2009) for comparison. Note that the uncertainties of M1,2 sin3 i
and the masses quoted by Hełminiak et al. have been recalcu-
lated using jktabsdim. Their uncertainties have been under-
estimated somewhat as their quoted uncertainties could not be
reproduced with jktabsdim, despite using all values quoted
in their paper. With the uncertainties in K1 and K2 being so
small, the uncertainty in the eccentricity has become the largest
source of error in the masses. Overall, the values obtained in this
work for M1,2 sin3 i do have larger uncertainties than those of
Hełminiak et al., which is due to the greater uncertainty in the
eccentricity, but with the improved accuracy of the inclination,
the uncertainties in the masses has been reduced to 0.31% for
both M1 and M2. While M1 is consistent with the value found
by Andersen et al. (1988), there is almost a 3σ difference in M2.
This stems from different M2 sin3 i, and so it is also seen in the
values from Hełminiak et al.

There has also been a significant reduction in the uncertain-
ties associated with the radii. R1 is known to a precision of 0.76%
while R2 is known to a precision of 0.48%, a reduction from
1.3% and 1.6% respectively (Andersen et al. 1988). Although
not a concern for the radii presented here, below 0.1% precision,
uncertainties in the constant used for the solar radius, and the
definition of a star’s radius needs to be considered (Torres et al.
2010).

The biggest contribution to the uncertainties of the masses is
now the eccentricity. Further reduction in the uncertainties of the
masses would require the orbit of AI Phe to be better understood,
and an understanding of the variability shown in e and ω.

5. Implication for models

The increase in precision associated with the masses and radii
of AI Phe will provide tighter constraints on the models that
can provide an estimate of the age of the system. As such, a
MCMC method has been used to estimate the age of AI Phe for
a number of grids of models, with varying mixing length, αml
and helium abundance, Y . The grids of models have been pro-
duced with the garstec stellar evolution code (Weiss & Schlattl
2008) and methods used to calculate the grids are described by
Maxted et al. (2015b) and Serenelli et al. (2013). The MCMC
method is very similar to the method described by Maxted et al.
(2015b), however there are a number of differences, which are
described in more detail in Sects. 5.1 and 5.2. Most notably,
the code will attempt to fit the two stars of AI Phe to the same
isochrone instead of fitting each star individually. The priors
have also been modified slightly in order to accommodate the
new observed values for both stars.
garstec uses the Kippenhahn & Weigert (1990) mixing

length theory for convection, where αml = 1.78 produces the
observed properties of the Sun assuming the composition given
by Grevesse & Sauval (1998), an initial solar helium abundance
Y� = 0.26626, and initial solar metallicity Z� = 0.01826. The
initial solar composition corresponds to an initial iron abun-
dance of [Fe/H]i = +0.06, due the effects of microscopic dif-
fusion. OPAL radiative opacities of Iglesias & Rogers (1996)
are used and are complemented by molecular opacities from
Ferguson et al. (2005) at low temperatures.

Convective mixing is treated as a diffusive process, where the
diffusion coefficient at each point is given by Dc = 1

3αmlHPvc.
αmlHP is the local mixing length, and vc is the convective ve-
locity determined from mixing length theory. Overshooting is
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included by extending the mixing region beyond the formal
Schwarzschild boundary with an exponentially decaying diffu-
sion coefficient, given as D = D0 exp (−2z/( f hp)). D0 is the dif-
fusion coefficient inside the convective border, f = 0.020 is a
free parameter defining the scale of overshooting and

hp = HP ×min

1, (∆RCZ

HP

)2 · (6)

∆RCZ is the thickness of the convective core, and HP is the pres-
sure scale height. The definition of hp ensures that for small
convective regions, (particularly small convective cores where
∆RCZ < HP) the overshooting region is geometrically limited to
a fraction of the size of the convective region (Magic et al. 2010).
If RCZ > HP the geometric limit does not play a role and the
overshooting region amounts to ∼0.25HP, for convective cores
in the main sequence. For stars in the range 1.2−1.3 M�, when a
convective core develops towards the end of the main sequence,
the geometric cut effectively limits the size of the overshooting
region to ∼0.05HP.

Atomic diffusion of all atomic species is included by solving
the multi-component flow equations of Burgers (1969), accord-
ing to the method of Thoul et al. (1994). Extra macroscopic mix-
ing below the convective envelope is also included. It follows the
parametrisation given in VandenBerg et al. (2012) and depends
on the extension of the convective envelope. Radiative acceler-
ations and stellar winds are not included in model calculations
for main-sequence stars. These effects become more relevant as
stellar mass is increased and limit the efficiency of atomic dif-
fusion which, if acting alone, would yield metal abundances in
the stellar surface much lower than observed. For this reason,
the efficiency of atomic diffusion is smoothly decreased in mod-
els from 1.25−1.35 M� and completely switched off for higher
masses.

The model grids used cover six different mixing lengths,
(1.22, 1.36, 1.50, 1.78, 2.04 and 2.32) with the helium abundance
YAI fixed. An additional ten model grids have helium abundances
that change by ∆Y from an initial value in increments of 0.01,
whilst the mixing length is fixed. ∆Y covers a range from −0.05
to 0.05. The initial value, Y0 = 0.261 ± 0.007 was calculated
using

Y0 = YBBN + ZAI
dY
dZ

(7)

where YBBN = 0.2485 is the primordial helium abundance at
the time of the big-bang nucleosynthesis (Steigman 2010), and
ZAI = 0.012 ± 0.007 is the initial metal content of AI Phe. Diffu-
sion has been considered with the chosen ZAI, however, the effect
is almost negligible, making ZAI nearly identical to the surface
Z (Andersen et al. 1988). dY/dZ is an assumed helium-to-metal
enrichment calculated as dY/dZ = (Y� − YBBN)/Z� = 0.984 us-
ing Z� = 0.01826 and Y� = 0.26626 (Maxted et al. 2015b). The
value of dY/dZ is very uncertain. Here, we have used a so-
lar calibrated value, however dY/dZ can change depending on
where in the Galaxy you look and values in the literature can
range from 0.5 to 5 (Lebreton et al. 2014; Gennaro et al. 2010).
Lebreton et al. (2014) showed that increasing dY/dZ from 2 to 5,
decreases the turn off age of the star. The mass range 0.6 M� to
2.0 M� is covered by the model grids, in steps of 0.02 M�, while
the initial metallicity, [Fe/H]i covers −0.75 to −0.05 in steps of
0.1 dex and −0.05 to +0.55 in steps of 0.05 dex.

5.1. Input data

For the MCMC analysis, a vector of parameters
d = (T1, ρ1, ρ2, Tratio, Msum, q, [Fe/H]s) can be used to de-

fine the observed quantities for AI Phe. These parameters
have been chosen because each quantity is determined by an
independent feature of the data used in the analysis, with little
or no dependence on the other parameters. Tratio is the ratio of
the effective temperatures given by T2/T1, T1 and T2 are the
effective temperatures of the two stars, ρ1 and ρ2 are the average
stellar densities of the two stars, Msum is the sum of their masses,
q is the mass ratio given by M2/M1 and [Fe/H]s is the observed
surface metal abundance.

The mass ratio and sum of the masses were chosen over di-
rectly using the individual masses M1 and M2, as the individual
masses have stronger correlations. The densities of the two stars
(ρ1 = 0.1935 ± 0.0044 ρ� and ρ2 = 0.0505 ± 0.0007 ρ�) were
calculated using

ρn =
3π

GP2(1 + Qn)

(
a

Rn

)3

(8)

where R is the radius for star n = 1, 2, a is the semi-major axis
of the orbit, P is the orbital period, G is Newton’s gravitational
constant (Maxted et al. 2015b). Qn is a function of the mass ra-
tio, where Q1 = q and Q2 = 1/q. Equation (8) allows the density
to be calculated directly from values of r1 and r2 derived from the
lightcurve analysis using Kepler’s law, and independently from
the mass estimates from the spectroscopic orbit. T1 was taken to
be 6310 ± 150 K (Vandenberg & Hrivnak 1985).

The ratio of the stars’ effective temperatures can be deter-
mined directly from the surface brightness ratio derived from
the lightcurve analysis. The surface brightness ratio is related
to the ratio of the eclipse depths in a totally-eclipsing binary,
with very little dependence on the other parameters of the
lightcurve. An approximate value of Teff is needed for one of
the stars in the binary, but this value has only a small effect
on the derived Tratio. Our method uses Kurucz (1993) model
atmospheres and the profiles for numerous passbands, (Bessell
1990; Crawford & Barnes 1970; Doi et al. 2010) and is similar
to the method described by Maxted et al. (2015a). For each of
the bands, Johnson BVRI, Strömgen y and SDSS r′, a relation-
ship was established between effective temperature and surface
brightness for log g = 4.0 and log g = 3.6. Interpolation between
the values from the models for log g = 4.0 and log g = 3.5 was
used in the case of log g = 3.6 as no model was available. Taking
T1 = 6310 ± 150 K we used these relationships to find a value
for T2 that gave the measured average surface brightness ratio
for each band. The average surface brightness ratios were cal-
culated from the central surface brightness ratios for the BVRI
and y passbands from Andersen et al. (1988) and the 85-mm
central surface brightness ratio was used for SDSS r′ passband.
Andersen et al. (1988) did not define their surface brightness ra-
tios as average or central values. We have assumed the values are
central surface brightness ratios because their lightcurve model
uses the same methods as ebop and should therefore produce the
same ratios as ebop. Following the example of Andersen et al.
(1988), limb darkening coefficients for the BVRI were taken from
Hrivnak & Milone (1984) and limb darkening coefficients for y
from Wade & Rucinski (1985). The values of Tratio derived us-
ing this method for the different passbands were found to be
consistent with each other. The weighted mean and standard
error are Tratio = 0.83 ± 0.01, where the standard error esti-
mate accounts for the uncertainties on both J and T1. There
are surface brightness ratios available for the Johnson U and
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Strömgen uvb passbands in the Andersen et al. (1988) paper,
however this method is less reliable in the bluer passbands as
line-blanketing is more prevalent. These bands were therefore
excluded from the determination of Tratio. Another consideration
is the metallicity used by the models. The Kurucz (1993) model
atmospheres consider solar metallicity, instead of the measured
value of AI Phe (−0.14 ± 0.1, Andersen et al. 1988). However,
Maxted et al. (2015a) found that changing the metallicity by
±0.1 dex changes the resulting T2 by less than 10 K, or ≈ 0.002
in Tratio. As such, the resulting error is within the uncertainties
of Tratio.

5.2. Bayesian age estimates

The model parameters used to predict the observed data can be
represented as m =

(
τsys,M1,M2, [Fe/H]i

)
, where τsys, M1, M2

and [Fe/H]i are the age, mass of star 1, mass of star 2, and initial
metal abundance of the system, respectively. Due to diffusion
and mixing processes occurring in the star during its evolution,
the initial metal abundance, [Fe/H]i differs from the observed
surface metal abundance, [Fe/H]s.

The probability distribution function p(m|d) ∝ L(d|m)p(m)
was determined using a MCMC method. L(d|m) = exp(−χ2/2)
is used to estimate the likelihood of observing the data d for a
given model m, where

χ2 =

[∑
n=1,2

(ρn−ρn,obs)2

σ2
ρn

]
+

(T1−T1,obs)2

σ2
T1

+
(Tratio−Tratio,obs)2

σ2
Tratio

(9)

+
(Msum−Msum,obs)2

σ2
Msum

+
(q−qobs)2

σ2
q

+
([Fe/H]s−[Fe/H]s,obs)2

σ2
[Fe/H]s

·

Observed quantities are denoted with “obs” subscript
and their standard errors are given by the appropri-
ately marked σ. The probability distribution function
p(m) = p(τsys)p(M1)p(M2)p([Fe/H]i) is the product of the
individual priors on each of the model parameters. The assumed
prior on [Fe/H]i normally has little effect because this parameter
is well constrained by the observed value of [Fe/H]s so a
‘flat’ prior on [Fe/H]i is used, i.e., a uniform distribution over
the model grid range. Although there is a prior on the age
to keep it within the limits of 0 – 17.5 Gyr, the age does not
venture close to these limits as the other priors provide much
tighter constraints on the age of the system. The code also
offers the option to set a prior on the surface [Fe/H] for cases
where there is no observed value of surface metallicity. As the
[Fe/H]s is tightly constrained from observation, a flat prior of
−0.75 < [Fe/H] < 0.55 was used.

The Markov chain setup uses the same approach described
by Maxted et al. (2015b), in that a Markov chain of points mi
is created with the probability distribution p(m|d) using a jump
probability distribution f (∆m). The generation of each trial point
m′ = mi +∆m is dictated by the probability distribution, with the
point being rejected if any of the model parameters are outside
of the ranges set by the priors. If L(m′|d) > L(mi|d), the point
is always included, and when L(m′|d) < L(mi|d) the point is in-
cluded with probability L(m′|d)/L(mi|d) (Metropolis-Hastings
algorithm). mi+1 = m′ if the trial point is accepted, or mi+1 = mi
otherwise (Metropolis et al. 1953; Hastings 1970).

In comparison to Maxted et al. (2015b), a different approach
is used to find a starting point. Their approach takes the point
with the lowest χ2 when a sample of points are randomly gener-
ated across the model grid. In our case, because the parameter-
space is so well constrained, the starting point needed to be
guided towards the parameter-space. The measured masses and

Fig. 7. Age distributions of AI Phe obtained for six different values of
mixing length, whilst helium abundance is held fixed at zero. Based on
Markov chains of 1 000 000 steps.

metallicity are fixed and used to generate an evolutionary track
for each star in the system. From there, each point along the
tracks is searched to find the point with the lowest χ2, using
2000 steps in age. This is done separately for the main-sequence
and post main-sequence stages, with the best-fit point from this
process is used as an initial starting point.

For each parameter a step size is found such that
| ln(L(m0|d) − ln(L(m( j)

0 |d)| ≈ 0.5, where m( j)
0 denotes a set

of model parameters that differs from m0 only in the value of
one parameter, j. From there, a burn-in stage of 10 000 steps
is used to improve the initial set of parameters and to deter-
mine correlations between parameters by calculating a covari-
ance matrix. The eigenvectors and eigenvalues of this matrix
are used to determine a set of uncorrelated, transformed param-
eters, q = (q1, q2, q3, q4), where each of the transformed pa-
rameters has unit variance (Tegmark et al. 2004). To estimate
the probability distribution p(m|d), a second Markov chain of
1 000 000 steps is produced, using a Gaussian distribution for
f (∆q) with unit standard deviation for each of the transformed
parameters and the most likely model parameters as a starting
point. With the tight constraints given by the priors, some of the
model grids have a severely restricted parameter-space and so re-
quired a large number of steps to ensure the space was explored.
All chains were visually inspected and checked via a running
mean to ensure suitable mixing.

5.3. Model comparisons

Using the Bayesian method described in Sects. 5.1 and 5.2 an
age distribution has been produced for a number of model grids,
with different mixing lengths αml and helium abundance Y . In
total, distributions were produced for six mixing lengths (1.22,
1.36, 1.50, 1.78, 2.04 and 2.32) with ∆Y held fixed at zero (see
Fig. 7) and an additional ten distributions were produced for
helium abundances, where ∆Y ranged from −0.05 to 0.05 in
increments of 0.01, with the mixing length held fixed at 1.78
(Fig. 8). Table 8 contains the parameters from the model with
the lowest χ2 for each model grid, alongside the mean τmean and
standard deviation στmean of the age distributions produced by the
1 000 000-step chain. In some cases the age distributions pro-
duced bimodal distributions which do not fit a Gaussian profile,
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Table 8. Age and parameters from the best fitting model from a 1 000 000-step Bayesian age fitting method, for model grids with different mixing
lengths and helium abundances.

αml ∆Y τbest τmean στmean M1 M2 [Fe/H]i T1 T2 ρ1 ρ2 χ2

(Gyr) (Gyr) (Gyr) (M�) (M�) (K) (K) (ρ�) (ρ�)

1.22 0.00 3.47 3.58∗ 0.14 1.1963 1.2467 −0.44 6567 5685 0.1873 0.0499 32.8
1.36 0.00 3.60 3.59 0.06 1.1948 1.2456 −0.39 6484 5459 0.1807 0.0504 21.7
1.50 0.00 5.03 5.03 0.25 1.1956 1.2460 0.03 5934 4804 0.1862 0.0507 16.4
1.78 0.00 4.39 4.34 0.20 1.1974 1.2472 −0.14 6257 5100 0.1937 0.0506 2.4
2.04 0.00 4.02 4.03 0.15 1.1988 1.2481 −0.25 6476 5223 0.2001 0.0504 6.5
2.32 0.00 3.77 3.79 0.10 1.2002 1.2491 −0.34 6658 5514 0.2053 0.0503 20.0

1.78 −0.05 4.95 4.92 0.12 1.2025 1.2506 −0.40 6373 5208 0.2137 0.0502 41.0
1.78 −0.04 4.71 4.70 0.11 1.2010 1.2494 −0.39 6394 5219 0.2094 0.0503 28.5
1.78 −0.03 4.52 4.56 0.17 1.1997 1.2484 −0.36 6397 5208 0.2062 0.0504 20.0
1.78 −0.02 4.63 4.63 0.18 1.1997 1.2489 −0.23 6292 5129 0.2023 0.0505 9.1
1.78 −0.01 4.47 4.45 0.20 1.1983 1.2478 −0.20 6288 5124 0.1977 0.0505 4.1
1.78 0.00 4.39 4.34 0.20 1.1974 1.2472 −0.14 6257 5100 0.1937 0.0506 2.4
1.78 0.01 4.34 4.31 0.17 1.1970 1.2469 −0.07 6221 5071 0.1918 0.0506 3.2
1.78 0.02 4.27 4.26 0.17 1.1967 1.2468 −0.01 6194 5048 0.1905 0.0506 5.2
1.78 0.03 4.17 4.16 0.14 1.1964 1.2466 0.05 6178 5032 0.1892 0.0506 8.2
1.78 0.04 4.06 4.04 0.14 1.1962 1.2465 0.10 6165 5019 0.1884 0.0507 11.7
1.78 0.05 3.91 3.90 0.13 1.1963 1.2467 0.15 6165 5015 0.1876 0.0507 15.5

Notes. The mean and standard deviation of the resulting age distribution for each model grid is also shown. (∗) There is a noticeable difference
between the mean and best-fit ages for this model grid, as this model grid produced a bimodal distribution and as such the age distribution does
not match a Gaussian profile (see Fig. 7).

Fig. 8. Age distributions of AI Phe obtained for different values of
helium abundance whilst fixing the mixing length at 1.78. Based on
Markov chains of 1 000 000 steps.

meaning there is a noticeable difference between the best-fit age
τbest and τmean. The first section of the table contains the model
grids where αml is varied, and the second section contains model
grids where the helium abundance, YAI, is varied by ∆Y from the
initial value Y0.

The χ2 values in Table 8 show that some of the model grids
fit in the parameter-space much better than others. In terms of
the mixing lengths, values of 2.04 and 1.78 are favoured, with
1.78 producing the lowest χ2. Using the 16th, 50th and 84th per-
centiles, a mixing length of 1.78 gives an age of 4.35+0.23

−0.19 Gyr.
As the mixing length in the model grid is increased, the best-
fit model tends to increase the mass of the two stars. Compar-
ing evolutionary tracks for star 2 (the sub-giant) at a fixed age,
mass and metallicity but with increasing mixing length, results
in larger densities, as the stars are more compact (Lebreton et al.
2014). However, with the tight observational constraints on ρ2,
the models attempt to improve the overall χ2 by increasing M2
and by decreasing the metallicity. Increasing M2 results in a star
with a larger radius with the same density, but also reduces the
age of the sub-giant and therefore the system. The effect on the
age can be seen in the mean and best-fit ages as αml is changed
from 1.50 to 2.32. Decreasing the metallicity allows the system
to evolve to the same evolutionary stage faster.

The αml = 1.22 model grid does not follow the mass trend
mentioned above, because the mass distribution is bi-modal, cor-
responding to two different evolutionary stages. The most dom-
inant part of the distribution places the secondary very early in
the contraction phase before the ascent to the red-giant branch,
with a larger effective temperature. The less prominent part of
the distribution, places the secondary further into the contraction
phase. A similar explanation can be used to explain the sudden
change in best-fit age between αml = 1.36 and αml = 1.50. For
the αml = 1.36 model, the secondary component sits firmly in the
contraction phase, whereas for αml > 1.50, the secondary sits at
the base of the red-giant branch.

Increasing the helium abundance used in the model grid has
decreased the best-fit age of the system, with the models prefer-
ring to use smaller masses and cooler effective temperatures for
both stars. The best-fit values for ρ2 show very little variation
with helium abundance, changing by less than 1%. Meanwhile,
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ρ1 shows a much larger variation of 14%. The small uncertainty
in M2 tightly constraints the age of the sub-giant, allowing little
variation in ρ2. This is not the case with the main-sequence star.
In order to find a model for the main-sequence star that fits the
age determined by the sub-giant, parameters such as its effec-
tive temperature and density need to be varied significantly from
their observed value for some values of the helium abundance.
This is reflected in their much larger χ2 values.

Looking at the χ2 for the model grid with varying ∆Y in
Table 8, the preferred models have a helium abundance that is
closer to the initial value, effectively excluding values where
∆Y 6 −0.03 and ∆Y > 0.04. The preferred model is where
∆Y = 0.0, meaning YAI = 0.261. Using ∆χ2 = 1 to define a
68.3% confidence interval on ∆Y , based on the projection into
the αml-∆Y parameter space (Press et al. 1992), the models for
∆Y = −0.01 and ∆Y = 0.02 fall just outside this interval. A
∆χ2 = 2.71 defines a 90% confidence interval and covers the
models −0.02 < ∆Y < 0.03. We find YAI = 0.26+0.02

−0.01 for a fixed
mixing length of 1.78, giving an age of 4.39 ± 0.32 Gyr using
τbest from the best-fit model. The uncertainty is estimated by di-
rectly adding στmean from ∆Y = 0 (0.20 Gyr) and a systematic
uncertainty of 0.12 Gyr (from not knowing YAI). For compari-
son, Torres et al. (2010) found an age of 4.1 Gyr using exper-
imental Victoria models (VandenBerg et al. 2006) and 5.0 Gyr
from Yonsei-Yale models (Demarque et al. 2004), although no
uncertainties are given. Spada et al. (2013) found the age of two
components of AI Phe separately using an updated version of
the Yale Rotational stellar Evolution Code (YREC). They find
an age of 4.44 ± 0.08 Gyr for the hotter component, and an age
of 4.54 ± 0.02 Gyr for the cooler component meaning our value
is consistent with their ages.

Comparisons between mixing lengths are quite difficult be-
cause of the different approaches to used to calibrate the pa-
rameter, and how the mixing length is included in the models.
Andersen et al. (1988) used a fixed mixing length of 1.50, which
was calibrated by the producing a 1.0 M� star with 1.0 R� and
the solar age of 4.7 Gyr. They used interpolation between a solar
model and a model with a Z of 0.01 to find the age and helium
abundance of AI Phe. Spada et al. (2013) used a similar solar
calibration method but found the mixing-length was α = 1.875,
and Torres et al. (2010) noted that at the time the Victoria mod-
els (VandenBerg et al. 2006) that had not been fully calibrated.
Therefore, we note that our best-fit mixing length is the same as
the solar value for our set of models. This is consistent with what
was found by Andersen et al. (1988).

Figures 9 and 10 show the theoretical tracks for the two com-
ponents of AI Phe which result in the best-fit age for the model
grid with αml = 1.78 and ∆Y = 0.0. In Fig. 10, we have plotted
the observed densities calculated in this work and the effective
temperatures from Milone et al. (1992).

6. Discussion

While the ephemeris in Eq. (2) is suitable for the WASP photom-
etry presented here, it is not suitable for describing the orbit on a
long-term basis. It has been shown that the period of AI Phe does
not follow a linear ephemeris, with currently available times of
primary minimum suggesting it may be more quadratic in na-
ture. The exact cause is not currently known and further work
will be needed to determine its nature. Insufficient coverage of
the secondary eclipse has prevented us testing how the timings of
the secondary eclipse has been affected by these period changes.
If the deviations in timings are common to both the primary and
secondary minima, it may suggest a third body is involved, or
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Fig. 9. Theoretical tracks for the two components of AI Phe consistent
with the best-fit age for the model grid with αml = 1.78 and ∆Y =
0.0. 1σ, 2σ and 3σ confidence contours from the Bayesian analysis are
shown.
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Fig. 10. Observed density and effective temperature (Milone et al.
1992) for the two components of AI Phe, for the theoretical tracks con-
sistent with the best-fit age for the model grid with αml = 1.78 and
∆Y = 0.0. The uncertainty in the densities are smaller than the markers.

if the deviations are in opposite directions then it may suggest
apsidal motion is the cause. Looking for possible trends in the
variation in the eccentricity and longitude of periastron with cur-
rently available measurements, proved inconclusive. As the ec-
centricity is now the largest uncertainty in the determination of
the masses, understanding the orbit of AI Phe will be essential if
the precision of the masses are to be improved further.

The WASP detrending functions have little impact on the de-
termined fractional radii and therefore the radii. Neither did the
slight inconsistencies in the determined value of e and ω. In the
first case, parameters determined from the 200-mm data have a
greater sensitivity to the detrending functions in comparison to
the 85-mm data. It is thought to be related to slight variations
in the transmission profile of the two filters used, resulting in
small differences in the surface brightness and third-light of the
200-mm data. In the second case, the well-defined contact points
of the primary eclipse, and the small, fourth-root dependence on
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k allow the robust measurements of r1 and r2 despite the issues
measuring the secondary eclipse.

In the models used for estimating the age of AI Phe, we
have assumed that the mixing length and the helium abundance
is the same for both of the stars. As the stars are binary com-
ponents of the same age, they will have formed together from
similar material and so using the same initial helium abundance
for both stars is valid. As for the mixing length, investigations
by Trampedach et al. (2013) found that as stars ascend the gi-
ant branch, αml remains constant along the track. However, their
calibrations of αml for different Teff and log g using radiation
hydrodynamics simulations suggest that the cooler component
of AI Phe should have a slightly larger mixing length, due to
a difference of 0.4 in log g between the two components and a
temperature difference of ≈1200 K. This would mean a slightly
smaller radius and larger Teff for the star (Spada et al. 2013). The
age of the system is largely constrained by the prior on the mass
of M2, so a small change in the radius and effective temperature
would have little impact on the estimated age.

The models presented here have not explored any potential
correlations between the mixing length and helium abundance,
due to nature of the model grids. This means a better solution,
other than the best-fit solutions in Table 8, could exist elsewhere
in the αml-∆Y plane if both αml and ∆Y where varied simultane-
ously. Once we have obtained accurate parameters for four other
binary systems, identified using WASP photometry, exploring
the αml-∆Y plane is something we intend to do.

Another consideration not explored here is the impact of
the convective overshooting on the determined mixing length
parameter and helium abundance. The components of AI Phe
would provide an important test for convective overshooting as
they sit on the mass boundary where stars start to develop con-
vective cores (Lebreton et al. 2014). For a star near the end of
the main-sequence star, Valle et al. (2016) found that an un-
certainty of ±1 in the helium-to-metal enrichment ratio, could
change the overshooting parameter by ±0.03, while a variation in
αml = 0.24 could change the overshooting parameter from −0.03
to +0.07. However, they used a different implementation of the
overshooting region to the description used in this paper, making
it difficult to translate the effects to AI Phe. The effects of con-
vective overshooting is something that should be explored, and
tighter constraints on the helium abundance and mixing length
should help pin down this parameter.

7. Conclusion

Using WASP photometry, the radii of components in
AI Phe were found to be R1 = 1.835 ± 0.014 R� and
R2 = 2.912 ± 0.014 R� with the uncertainties in the mea-
surements reduced to 0.76% for R1 and 0.48% for R2. The
masses were found to be M1 = 1.1973 ± 0.0037 M� and
M2 = 1, .2473 ± 0.0039 M�, with their uncertainties reduced to
0.31% for both components. The eccentricity is now the largest
source of uncertainty in the masses.

Reducing the uncertainties on the masses and radii of the
two stars in AI Phe, has meant that it has been possible to obtain
the age of system, 4.39 ± 0.32 Gyr, with greater precision than
had been achieved by Andersen et al. (1988). From the different
model grids that were tested, a mixing-length of 1.78 and a initial
helium abundance of YAI = 0.26+0.02

−0.01 gave the best-fit with the
priors set by observations.

Overall, with the new masses and radii obtained with
the WASP photometry and spectroscopic orbit data of
Hełminiak et al. (2009), it has been shown that it is possible to

constrain the mixing length and helium abundance of AI Phe.
It is still possible to improve the results further by improving
the eccentricity measurement and by exploring models with si-
multaneous variations in mixing length and helium abundance.
However, additional data and new models would be required for
this. In order to compare these results in terms of mixing length
and helium abundance to other binary systems, it will be neces-
sary to obtain absolute parameters for other binary systems to a
similar level of precision as obtained here.
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