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(i) 

Abstract 

X-ray fibre diffraction techniques have been used to investigate the 

conformations available to the sodium and lithium salts of poly[d(A-C)]. 

poly[d(G-T)] and the sodium salt of poly[d(A-T)].poly[d(A-T)] as a function 

of added fibre salt content and relative humidity of the fibre environment. 

The A,B and C conformations were obtained for Na poly[d(A-C)]. 

poly[d(G-T)] and the sequence of transitions on increasing relative humidity 

or fibre salt content was C-A-B. 

Semi-crystalline C and B diffraction patterns were obtained from fibres 

of Li poly[d(A-C)].poly[d(G-T)]. The C conformation appeared stable over a 

wide range of humidity and added fibre salt content. Particularly well 

resolved C type diffraction patterns were obtained indicating an unusual 92 

helical symmetry. 

In conjunction with Mahendrasingam, 1983, the A, B, ~-Bt, C and D 

conformations were obtained for Na poly[d(A-T)].poly[d(A-T)] and a sequence 

of transitions between these conformations has been proposed. The C 

conformation has reproducibly been observed for both polynucleotide and 

+ 
random sequence DNA when Na is the associated cation. Thus the C 

conformation may be more biologically significant than previously supposed. 

A number of techniques were examinea to quantitatively determine the 

amount of salt associated with nucleic acids in solution and in x-ray fibre 

samples. 

The crystallization of steffimycin B in DNA fibres was examined by 

x-ray fibre diffraction methods and compared with other crystalline and 

non-crystalline drug/DNA studies. It was concluded that low solubility in 

aqueous solution and a relatively low binding affinity for DNA are possible 

indicators that a drug may crystallize in DNA fibres. However, fibre 

preparation techniques and environmental conditions pertaining at that time 

probably play an important role in this process. 

The interaction between bovine serum albumin and montmorillonite has 



(ii) 

been undertaken using x-ray diffraction techniques. Results are consistent 

with adsorption of the protein in the interlamellar regions of the 

montmorillonite. These results provide a basis for the investigation of 

surface interactions in more intricate biological systems. 
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Chapter 1. INTRODUCTION 

1.1 The occurrence of nucleic acids 

Nucleic acids can be divided into two main classes; deoxyribose 

nucleic acids (DNA's) and ribonucleic acids (RNA's). In eukaryotic cells 

DNA is usually found packaged with proteins to form chromatin. This 

nucleoprotein is the constituent of the chromosomes which are located in 

the nucleus of eukaryotes. In prokaryotic cells the DNA is virtually free 

of protein and exists in a less well defined region sometimes termed the 

nucleoid. DNA is also found in mitochondria, chloroplasts and perhaps other 

self-replicating organisms. 

The ribonucleic acids are distinguished according to their function, 

thus giving rise to messenger RNA (mRNA), ribosomal RNA (rRNA) and transfer 

RNA (tRNA) •. These types of RNA are generally assumed to be functionally 

localized in the cytoplasm of cells although they are all initially 

transcribed from the genetic material. 

1.2 The general structure of nucleic acids 

DNA consists of two antipara11e1 polynucleotide chains wound around 

each other in the form of a double helix. Each nucleotide consists of a 

deoxyribose sugar group which has a phosphate group covalently bonded at 

its CS' position and a nitrogenous base similarly bonded at its CI' site. 

The base is either purine (generally adenine or guanine) or pyrimidine 

(usually cytosine or thymine). Nuc1eotides are covalently bonded to one 

another by phosphoester linkages at their C3' positions. The bases project 

into the centre of the helix and hydrogen bonding occurs between each base 

on one chain and an associated base on the opposite chain. Moreover, 

adenine always bonds with thymine and guanine with cytosine so that one 

strand of DNA is always the complement of the other. H-bonding and base 

pair stacking interactions stabilize the double helical structure of DNA. 

The first model which described DNA in this manner was proposed by Watson 
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and Crick, 1953a,and Crick and Watson, 1954. 

RNA is usually a single stranded molecule although the chain can fold 

to enable the formation of double helical structures. The chemical make 

up of RNA is similar to that of DNA with the principal exception that the 

deoxyribose sugar residue of DNA is replaced by a ribose sugar in RNA. In 

addition the pyrimidine base uracil replaces that of thymine. 

1.3 The importance of nucleic acids 

The nucleic acids provide a means of carrying out some of the most 

essential functions in the cell or cells of a living organism. The linear 

sequence of bases in DNA acts as a store of inheritable information. The 

complementary nature of DNA allows it to self-replicate with a high degree 

of fidelity. This feature was first appreciated by Watson and Crick, 

1953a,b. However, DNA retains the ability to mutate to some extent whilst 

ensuring that successful mutants are reduplicated thereby providing a 

mechanism for adaptation of the species. In some viruses and bacteriophages 

DNA is absent and its genetic role is carried out by RNA. 

In higher organisms RNA is generally confined to translating the 

information content of DNA into proteins •. In this process rnRNA is 

synthesised on one of the DNA strands where it is endowed with the 

complementary nucleotide sequence of a portion of that DNA strand. The 

mRNA migrates to the cytoplasm where it combines with the ribosome and a 

modified initiation aminoacyl-tRNA molecule. A major constituent of the 

ribosome is also RNA in the form of rRNA. This complex formation is the 

initial process in protein synthesis. The initiation tRNA molecule 

occupies the P binding site of the ribosome leaving the R and A sites 

vacant. During peptide elongation a specific aminoacyl-tRNA molecule binds 

to the R site of the ribosome by virtue of a codon-anticodon recognition 

mechanism. In this process three adjacent nucleotides of rnRNA form at 

least two complementary base pairs with three nucleotides of the anticodon 
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site on the tR~A molecule. The aminoacyl-tRNA molecule is transferred to 

the A site of the ribosome where it accepts the amino acid of the initiator 

tRNA molecule or the nascent peptide chain. The P site tRNA is then released 

and the A site tRNA takes its place. Elongation of the peptide continues 

in this manner until a termination sequence on the mRNA ends protein 

production and releases the protein. Since each of the twenty commonly 

occurring amino acids only bind to one or more different tRNA molecules, 

the three nucleotides on the DNA molecule code for a specific amino acid in 

the protein. In this manner the nucleic acids exert their influence on the 

chemical, metabolic and morphological activities of the cell which are 

carried out by the proteins. 

1.4 The terminology of nucleic acid structure 

Nucleic acid structures can be described in terms of their atomic 

coordinates. Characteristic features of a given conformation include helix 

symmetry, pitch, rotation per residue and base pair tilt, twist and 

displacement with respect to the helix axis. Definitions of these terms 

as used in this thesis are those according to Arnott and Hukins, 1973. 

The puckering of the furanose rings are termed endo or exo according to 

whether a given atom is displaced from the mean plane of the sugar residue 

to the same side as the CS' atom or to the other side, Sundaralingam and 

Jensen, 1965. Thus the sugar conformation in A DNA is generally described 

as C3'-endo while that in B DNA is C2'-endo. Alternatively nucleic acid 

conformation can be described in terms of its torsion angles. Some of the 

more popular conventions used for these torsion angles are given in Table 

1.1 of Berman, 1982, while Table 1.1 of this work Shows the notation of 

Seeman et al., 1976, for the sugar phosphate backbone and that of 

Sundaralingam, 1969, applied to the sugar ring. Qualitative terms are used 

to describe a range of torsion angle. Trans (t) implies a torsion angle of 

o + + 0 - - 0 180 , gauche (g) an angle of +60 and gauche (g) an angle of -60. The 
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Nucleotide Backbone Symbol Sugar Conformation Symbol 

Angles Angles 

C4'-C3'-03'-P 0( C4'-Ol'-Cl'-C2' 1'0 

C3'-03'-P-OS' fJ 01'-Cl'-C2'-C3' 1:"1 

03'-P-OS'-CS' r Cl'-C2'-C3'-C4' 1'2 

P-OS'-CS'-C4' S C2'-C3'-C4'-Ol' 1'3 

OS'-CS'-C4'-C3' g C3' -C4' -01' -Cl' 't'4 

CS'-C4'-C3'-03' ~ 

01'-Cl'-N9-C8 X 

Table 1.1 

The conformational nomenclature used to describe the nucleotide backbone 

according to Seeman et al., 1976, and that used to describe the sugar 

conformation after Sundar1ingam, 1969. 
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conformation about the glycosyl bond is anti forx = 00 
- 750

, high anti 

o 0 0 0 for x = 75 - 110 and syn for x = 180 - 270. Thus the torsion angles 

of the phosphate backbone can be described in terms of a seven letter 

conformational code. Arnott, 1982, has divided polynucleotide structures 

with similar ~ values into families, while molecular species having the 

same code are all classified in the same genera. On this basis there are 

three families. These are the A family including the A DNA, A, A' and AU 

RNA conformations, the B family including the B, B', C, C', C" and D 

conformations and the A + B family including the Z and Z' conformations with 

alternating C3'-endo C2'-endo sugar puckering. 

1.5 The detailed secondary structure of the nucleic acids 

Nucleic acids and their synthetic analogues have been observed in a 

variety of different conformations. The general features of these 

conformations have been recorded below and details of the molecular models 

proposed for these structures can be found in the references given. 

a) The A conformation 

A detailed x-ray fibre diffraction study of DNA in the A conformation 

was carried out by Fuller et al., 1965. The model was refined by fitting 

the cylindrically averaged square of its calculated Fourier transform to the 

cylindrically averaged observed x-r'ay diffraction data using trial and 

error methods (TEFT). Their final model was an II-fold right handed double 

helix with Watson and Crick base pairing having a pitch of 2.8l5nm. The 

base pairs,were tilted by 20
0 

to the normal of the helix axis, had a twist 

of _80 and a displacement from the helix axis of 0.425nm. Arnott and 

Wonacott, 1966, developed linked atom least squares (LALS) procedures to 

minimize the differences between the observed and calculated structure 

factors of a polynucleotide conformation with constraints appropriate to 

the observed x-ray data. Using these techniques the A conformation was 

successively refined by Arnott and Wonacott, 1966, Arnott et al., 1969, and 
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Arnott and Hukins, 1972. However, the LALS results were essentially similar 

to those obtained by TEFT methods although the sugar conformation was 

subsequently defined as being C3 t -endo. Indeed the A conformation has been 

subjected to the least amount of stereochemical change in subsequent 

refinement procedures. 

A single crystal structure analysis of d(iodo-CpCpGpG) by Conner et 

al., 1982, revealed a fragment of right handed double helical DNA in the A 

conformation. Two tetramer helices were packed together in the crystal with 

local helix axes nearly coincident, simulating an eight base pair helix. 

The x-ray data so far obtained was used to define some parameters of an 

idealized helix based on this structure and free of distorted lattice 

interactions due to the presence of iodine atoms. These parameters included 

10.7 base pairs in a pitch of 2.46Inm. The base pairs were tilted at 190 

to the normal of the helix axis and exhibited a propeller twist of 190 while 

the sugar pucker of the nucleosides was C3 t -endo. The sense of the propeller 

twist in the A conformation of d(iodo-CpCpGpG) was opposite to that obtained 

from fibre diffraction data, Fuller et al., 1965, Arnott and Hukins, 1972. 

A right handed double helical A conformation was also observed in a 

preliminary investigation of the single crystal structure of d(GpGpTpApTpA~ 

pCpC) and its 5-bromouracil analogue, Shakked et al., 1981. The averaged 

features of the refined duplex were close to those of classical A DNA. 

There were 10.9 base pairs in a pitch of 2.94nm with a base pair tilt of 

180
• The double helix was bent symmetrically about the internal 2-fold 

axis ,of the base sequence by an estimated 150. This work established the 

A conformation for an A-T sequence in crystals grown from low salt solution. 

Single crystal x-ray analysis of the octamer d(GpGpCpCpGpGpCpC) 

revealed"a modified A conformation, Wang et al., 1982a. In this structure 

the two base pairs at either end of the sequence were in the A conformation 

while the four central base pairs were modified such that the conformations 

of alternate sugar residues were closer to those found in B DNA. The 
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octamer d(CpCpCpCpGpGpGpG) has given virtually identical diffraction patterns 

to the d(GpGpCpCpGpGpCpC) octamer and it seems likely that it adopts a 

similar modified A conformation, Wang et al., 1982a. 

b) The B conformation 

The B conformation of DNA was first described by the model of Watson 

and Crick, 1953a, and Crick and Watson, 1954. Their model was based on 

stereochemical principles and the constraints imposed by the x-ray fibre 

diffraction studies of Na DNA by Wilkins, Franklin and coworkers. Their 

model was a 10-fold right handed helix with a pitch of 3.4nm and base pairs 

arranged in a plane normal to the helix axis. Langridge et al., 1960a,b, 

gave a detailed analysis of the B conformation of DNA based on x-ray fibre 

diffraction studies of Li DNA fibres which give more crystalline B diffraction 

patterns than their sodium counterparts. Using TEFT methods the base pairs 

were brought nearer to the helix axis than in the model of Crick and Watson 

and changes were made in the sugar pucker and sugar phosphate chain 

conformation. Langridge et al.'s B model was a 10-fold helix with a pitch 

of 3.4nm, a base tilt of _20 and a base twist of 50. The base displac~ment 

from the helix axis was -0.06nm while the sugar conformation was 

approximately C2'-endo. This model has also been refined using LALS 

procedures, Arnott and Wonacott, 1966, Arnott et al., 1969, and Arnott and 

Hukins, 1972, 1973. In the final B model the pitch was 3.38nm, the base 

tilt was increased to -5.90 and the base twist decreased to -2.10
• The 

base displacement was changed to -0.014nm while the sugar conformation was 

altered to C3'-exo to remove undesirable stereochemical features. 

Wing et al., 1980, crystallized the dodecamer sequence d(CpGpCpGN 

pApApTpTpCpGpCpG). This sequence incorporates an EcoRI restriction nuclease 

site, GAATTC, with ends related to the CGCG structure which is associated 

with the Z conformation, Drewet al., 1980, Crawford et al., 1980. Despite 

the CGC end sequences and crystallization under conditions of high salt 

concentration which favour the Z conformation, this sequence adopted a right 
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handed B helix. The structure was similar to that obtained from x-ray 

diffraction analysis of Li DNA with two exceptions. The base pairs were 

found to have a large propeller twist which increased the overlap between 

one base and its neighbours up and down the same chain. In addition the 

o overall helix was bent by 19 over 11 base pairs, although it was concluded 

that this feature was the result of packing effects. The structure has 

been further refined by Drew et al., 1981. These authors describe a helix 

with an average of 9.8 base pairs per turn in a pitch of 3.25nm. The 

average propeller twist of the base pairs was 6.70 while individual 

deoxyribose ring conformations exhibited an approximate Gaussian distribution 

~ 0 0 around the Cl'-exo conformation with ~ average = 123 and a range of 79 to 

157°. A detailed examination of the influence of base sequence on this 

structure has been reported by Dickerson and Drew, 1981, while an 

investigation into the geometry of hydration for this molecule is given by 

Drew and Dickerson, 1981a. 

The B' conformation is a minor variant of the B conformation. It 

exists in ~ and ~ crystalline forms which were first observed for the 

synthetic polynucleotide Na poly(dA).poly(dT), Arnott and Selsing, 1974. 

The model proposed by these workers for this conformation was a 10-fold 

helix with a pitch of 3.29nm, a base tilt of -7.90 and a base twist of 

_1.00
• The sugar conformation was C3'-exo and the detailed geometry was 

very similar to that of B DNA. 

c) The C conformation 

In the presence of the lithium cation DNA has been shown to exist in 

the C conformation, which is closely related to the B conformation of DNA, 

Marvin et al., 1961. Li~C DNA gives semi-crystalline diffraction patterns 

with either orthorhombic or hexagonal packing arrangements according to the 

salt content of the specimens as discussed in chapter 4.1. Marvin et al., 

1961, proposed a non-integral helix for C DNA with 8.8 - 9.7 residues in a 

pitch ranging from 2.92 - 3.22nm. Using TEFT techniques Marvin et al.'s 
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preferred model had 283 helical symmetry with a pitch of 3.lnrn. The base 

pairs were tilted at an angle of _60 to the normal of the helix axis, had 

a twist of 50 and a displacement of -0.213nm. Arnott and Selsing, 1975, 

have used LALS procedures to refine the C DNA model of Marvin et al •. to a 

conformation more closely resembling that of B DNA. In particular the 

conformation angles ~, ft and S were more nearly in agreement with the Band 

related D structures while the base displacement was reduced to 0.07nm and 

a C3'-exo sugar conformation was assumed. The tilt was increased to _8
0 

to remove short contacts and the resultant calculated transform was 

described as not significantly different from the transform of Marvin et 

al.'s model. Zimmerman and Pheiffer, 1980, used x-ray diffraction techniques 

to examine the DNA conformations of fibres immersed in concentrated salt 

solutions and organic solvent/water mixtures. They determined a wider range 

of helical parameters for the C conformation as described in detail in 

chapter 4.1. 

The C' and C" conformations are two minor variants of the C 

conformation with 91 and 92 helical symmetry respectively, Leslie et al., 

1980. They have only been observed for synthetic polynucleotides and may 

well reflect the increased symmetry of these structures as described in 

Leslie et al., 1980, and chapter 4.4. 

d) The D conformation 

The D conformation was first observed for Na poly[d(A-T)].poly[d(A-T)] 

by Davies and Baldwin, 1963, who showed that this conformation exhibited a 

pitch of 2.45nrn and described the general intensity distribution but no 

further information was available. In a further investigation of the D 

conformation based on LALS analysis of x-ray diffraction data from Na 

poly[d(A-T)].poly[d(A-T)], Arnott et al., 1974, proposed an 8-fold right 

handed double helix with Watson and Crick base pairing. The model had a 

pitch of 2.424nrn while the sugar phosphate conformation angles were similar 

to those of the B DNA model of Arnott and Hukins, 1973. In particular the 
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sugar conformation was described as C3'-exo. The base pairs were tilted 

o at an angle of -16 to the normal of the helix axis and had a displacement 

of -0.18nm. This model was also used to explain the data obtained from 

Na poly[d(I-C)].poly[d(I-C)] fibres by Mitsui et al., 1970, and Na 

poly[d(G-C)].poly[d(G-C)] fibres by Arnott et al., 1974. More recently 

left handed models for the D conformation have been proposed by Gupta et al., 

1980, and Mahendrasingam, 1983. These are discussed in more detail in 

chapter 5. 

e) The E conformation 

Leslie et al., 1980, have described an E conformation for the 

synthetic polynucleotide Na poly[d(I-I-T)].poly[d(A-C-C)] which gave 

diffraction patterns indicating 32 helical symmetry and a pitch of 4.87nm 

implying a pentanucleotide asymmetric unit. This structure approximated 

to a mononucleotide repeating unit with a helical symmetry of 15 2, 

f) The S conformation 

Arnott et al., 1980, have obtained x-ray diffraction patterns from 

fibres of Na poly[d(G-C)].poly[d(G-C)] which they interpreted in terms of 

a left handed double helical S conformation. Models were constructed and 

refined using LALS procedures assuming that the guanosine and cytidine 

nucleosides have syn and anti conformations respectively as observed by 

Wang et al., 1979, for the single crystal structure of d(CpGpCpGpCpG) in 

the left handed Z conformation. The S conformation has a 65 helix symmetry 

with a dinucleotide repeating unit and a pitch of 4.35nm. The base pairs 

are tilted _50 to the normal of the helix axis, the angle between the 

o guanine and cytosine of a base pair is 14 and the base pair displacement 

from the helix axis is similar to that found in B DNA. Similar conformations 

4 
have been observed for Na poly[d(A-C)].poly[d(G-G)] and poly[d(A-s T)]. 

4 poly[d(A-s T)], Arnott et al., 1980. 

g) The conformations of ribonucleic acids 

RNA has an A conformation which is very similar to that of A DNA. 
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This conformation has been shown to exist in two crystalline forms 

designated a and ~ which have similar molecular configurations but different 

molecular packing, Arnott et al., 1966. Using TEFT methods an A RNA model 

has been refined by Arnott et al., 1967, giving an II-fold right handed 

double helix with a pitch of 3.00nm, a base tilt of 14°, a twist of 0
0 

and 

a displacement from the helix axis of 0.425nm. Subsequent refinements have 

been carried out by Arnott et al., 1969, 1973. 

For fibres of poly(rI).poly(rC) and poly(rA).poly(rU) containing 20r. 

excess salt a new molecular conformation was found termed A', Arnott et al., 

1968. This was a l2-fold helix with a pitch of 3.60nm. TEFT refinement 

procedures gave a model with a base pair tilt of 10°, a twist of _4
0 

and a 

displacement from the helix axis of 0.450nm. This model has again been 

refined by Arnott et al~, 1973. This conformation had previously been 

observed by Davies, 1960, for poly(rI).poly(rC) but its significance as a 

conformation for RNA structures was not apparent until the observation of 

the A--+A' transition in synthetic polyribonucleotides by Arnott et al., 

1968. 

A third type of RNA conformation termed A" has been characterized for 

ribosomal fragments of RNA, Fuller et al., 1967. This is a non-integral 

helix which has also been observed for poly(rG).poly(rC), Arnott et al., 

1968, where the number of residues per turn was given as 11.3 ±O.S. 

In general the A, A' and An conformations of native RNA and its 

synthetic analogues bear a marked similarity to one another and to the A 

conformation of DNA. The inability of RNA to adopt a B type conformation 

almost certainly occurs due to the presence of the hydroxyl group on the 

C2 ' position of the ribose sugar. This results in a steric hindrance of 

the ribose sugar adopting a C2'-endo conformation which is believed to be 

a fundamental feature of the B and related conformations. 

h) RNA/DNA hybrid 'structures 

Ribo-deoxyribonucleotide hybrid structures tend to adopt RNA type 
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rather than DNA type conformations, Milman et al., 1967, O'Brien and MacEwan, 

1970. 

This observation is emphasized by the single crystal study of r(GpCpG)~ 

d(pTpApTpApCpGpC) which has been carried out by Wang et al., 1982b. This 

molecule forms two DNA/RNA hybrid segments surrounding a central region of 

double helical DNA. All three parts of the molecule adopt a conformation 

which is close to that observed for the II-fold A RNA helix. There were 

10.9 residues in a pitch of 2.834nm. The base pair tilt was 200 to the 

normal of the helix axis. The base pairs had a propeller twist of l~o and 

the ribose and the deoxyribose sugars were all in the C3'-endo conformation. 

A notable exception from A type conformations in hybrid structures 

was that reported by Zimmerman and Pheiffer, 1981. Fibres of Na poly(rA). 

poly(dT) yielded conventional A' RNA like x-ray diffraction patterns-at 

79% rh while under highly solvated conditions gave patterns with striking 

similarities to those of B DNA. 

i) The side-by-side structure 

A novel DNA conformation which has been proposed by several workers 

is that of the side-by-side (SBS) structure. In all these models the two 

DNA strands are joined by complementary Watson and Crick base pairs and the 

anti-parallel polynucleotide strands alternate between short segments of 

right and left handed helix. This is an attractive proposal since it 

reduces the amount of intertwining of the DNA strands and alleviates the 

unwinding problem of the strands during DNA replication. The originalSBS 

structure was proposed by Rodley et al., 1976. Of the SBS structures it is 

the one which most closely resembles that of the B conformation of DNA and 

is the only one for which detailed coordinates have been published. Rodley 

et ale claim that their model can account for the B type DNA diffraction 

patterns. Greenall et al., 1979, have compared the full molecular transform 

of Rodley et al.'s SBS structure with the observed x-ray data from Li B DNA 

of Langridge et al., 1960b. They concluded that the agreement between the 
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observed x-ray data and that calculated for the SBS model was substantially 

worse than that of the best Watson and Crick type B DNA models proposed by 

Langridge et al., 1960b, and Arnott and Hukins, 1972. Moreover, while the 

B--A transition of the Watson and Crick B DNA models is easily explained 

in terms of a decrease in the rotation per nucleotide, a stereochemically 

plausible transition of the SBS model to account for the A diffraction 

pattern has not yet been proposed. 

j) The Z conformations 

A detailed model of the Z conformation was first proposed by Wang et 

al., 1979, on the basis of single crystal studies of d(CpGpCpGpCpG). The 

x-ray data revealed a left handed l2-fold helix with a pitch of 4.458nm. 

In this structure the cytosines retained their customary anti orientation 

about the glycosyl bond while the guanines adopted the more unusual syn 

conformation, thus giving rise to a dinucleotide repeating unit. The sugar 

pucker was also shown to be of an alternating nature, adopting a C2'-endo 

conformation in the deoxycytidines like that of B DNA, but a C3'-endo 

conformation in the deoxyguanosinesas found in A DNA. The tilt of the base 

pairs from the normal to the helix axis was given as 70
• 

A conformational change in crystals of d(CpGpCpG) on going from low 

to high salt was observed by Drew et al., 1978. Crawford et al., 1980, 

have shown that the low salt conformation in this tetramer is very similar 

to the Z conformation described by Wang et al., 1979. The high salt 

conformation has been termed Z' by Drew et al., 1980. They have shown that 

this is also a l2-fold left handed helix with a pitch of 4.566nm and a 

similar alternating anti/syn glycosyl conformation. The base pair tilt was 

increased slightly to 90 compared with Z DNA. However, while the 

deoxycytidine sugar pucker is C2'-endo that of the deoxyguanosine is Cl'­

exo rather than C)'-endo as in the Z conformation. The transition from the 

Z to the Z· conformation occurred on going from intermediate to high salt 

and arose from the substitution of a bound anion for water at the guanine 
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amino groups, Drew et al., 1980. 

Further studies on the low salt conformation of d(CpGpCpG), Crawford 

et al., 1980, and other crystals of the hexamer, d(CpGpCpGpCpG), Wang et al., 

1981, have revealed an additional conformational feature of Z DNA. Generally 

the phosphate groups are rotated into the minor groove giving a phosphodiester 

linkage which is g t. However, at some of the GpC sites in the tetramer 

and hexamer crystals the phosphate groups are rotated away from the minor 

groove giving a phosphodiester linkage which is g+t. These conformations 

have been termed Zl and Zll respectively. The Zll conformation is believed 

2+ to occur as a result of coordination of the phosphate group to Mg or to 

water. 

In an examination of the conformation and dynamics in the Z 

conformations Drew and Dickerson, 1981b, suggest that the Zl' Zll and Z' 

conformations do not represent distinct conformations but should be regarded 

as samplings of the full range of conformations available to the Z helix. 

1.6 The objectives of this research 

X-ray fibre diffraction analysis of synthetic polynucleotides with 

simple repeating sequences provides structural information which is not 

necessarily apparent from naturally occurring random sequence DNA. The 

ultimate objectives of such an analysis are the prediction of structural 

features of specific nucleic acid sequences in a range of conditions relating 

to the in vivo state, an understanding of the relationships between the 

structures and an appreciation of their biological significance without the 

need to examine every biologically relevant sequence. 

A primary concern of this thesis has been to determine the 

conformations exhibited by fibres of two synthetic polynucleotides, 

poly[d(A-C)].poly[d(G-T)] and poly[d(A-T)].poly[d(A-T)]. Also of importance 

are the conditions which induce transitions between these conformations and 

the sequence in which these conformational transitions occur. 
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Synthetic polynucleotides have not normally been available in sufficient 

quantities to allow the techniques described by Cooper and Hamilton, 1966, 

for DNA, to be used to systematically investigate the effects of fibre salt 

content on polynucleotide conformation. To overcome this problem samples 

were prepared containing as little excess salt as possible and x-ray fibre 

diffraction techniques were used to determine polynucleotide conformation 

as a function of added fibre salt content. Investigations of polynucleotide 

conformation as a function of the type of associated cation and relative 

humidity of the fibre environment have also been performed. 

Poly[d(A-C)].poly[d(G-T)] is of particular interest because it contains 

equimolar fractions of the four nucleotides commonly found in naturally 

occurring DNA's and thus its study might be expected to allow effects due 

to nucleotide sequence to be distinguished from those which occur as the 

result of nucleotide composition. Poly[d(A-T)].poly[d(A-T)] has a 

biologically interesting sequence in view of its similarity to that found 

in satellite DNA of crabs and as a result of its enhanced binding to the 

lac repressor of E. coli compared with random sequence DNA. 

An examination of the literature readily demonstrates the critical 

role of salt in the determination of nucleic acid conformation, Marvin et 

al., 1961, Cooper and Hamilton, 1966. In view of this fact chapter 6 

examines a number of experimental techniques which may quantitatively 

determine the amount of salt associated with nucleic acids in solution and 

in x-ray fibre samples. These techniques make use of flame emission and U.V. 

absorption spectroscopy and electropotential and amperometric titration 

methods. A routine is also described which measures the ability of 

different DNA's to retain specific cations in solution. This is a 

particularly important parameter with respect to modified viral DNA's where 

such information may be related to their structural variations and biological 

functions. 

In chapter 7 an investigation has been carried out into the formation 
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of crystallites of small molecules in fibres of DNA. In particular the 

crystallization of steffimycin B and some acridine derivatives which exhibit 

potential anticarcinogenic properties have been examined. The crystallization 

phenomenon is important since it may provide information with regard to DNA 

structure and the mechanism of interaction of these types of antibiotics 

with DNA. In addition it may be possible to make use of this crystallization 

process in drug treatment regimes. 

A further type of biological macromolecular interaction has been 

investigated, again using x-ray diffraction techniques, as described in 

chapter 8. This is the complex formation between the protein bovine serum 

albumin (BSA) and the clay montmorillonite. The investigation was carried 

out at the request of Sir John Randall of the University of Edinburgh in an 

attempt to determine whether BSA was adsorbed in the interlamellar regions 

of the montmorillonite and if so what was the orientation of the BSA 

molecules in the protein/clay complex. In the course of this investigation 

it was necessary to distinguish between the effects of interlamellar swelling 

due to water adsorption and the presence of sodium chloride as opposed to 

that produced by the albumin alone. In this respect certain general 

parallels are apparent when compared with DNA fibre samples which are also 

critically affected by water and sodium chloride content. The biological 

justification for these BSA/montmorillonite experiments lies in the useful 

resemblance of this system to protein/membrane systems. 
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Chapter 2. MATERIALS AND METHODS 

2.1 Materials 

Calf thymus DNA used in this work was obtained from either the Sigma 

Chemical Company or Miles Research Laboratories. Usually these commercial 

DNA's were subjected to a phenol purification process to extract protein 

contaminants as described in section 2.2. 

The sodium and lithium salts of poly[d(A-C)].polY[d(G-T)] and the 

sodium salt of poly[d(A-T)].poly[d(A-T)] were prepared by Mr. J. Vergne 

and Dr. G.J. Brahms at the Institute of Research in Molecular Biology, 

University of Paris VII, France. These polynucleotides were enzymatically 

synthesised using DNA polymerase 1 from either Escherichia coli or 

Micrococcus luteus. The polynucleotides were deproteinized by a chloroform 

isoamyl procedure, dialysed against the appropriate salt and precipitated 

twice by ethanol from O.1M salt solution. The purity of the samples was 

examined by U.V. absorption, high sensitivity differential thermal analysis, 

laser Raman spectroscopy and circular dichroism. 

DNA from the bacteriophage ~W-14 was isolated and purified by 

Professor R.A.J. Warren at the Department ·of Microbiology, University of 

British Columbia, Vancouver, Canada. The method is reported in Kropinski, 

Bose and Warren, 1973. 

Steffimycin B was a gift to Dr. W.J. Pigram from Dr. F. Reusser of 

the Upjohn Company, Kalamazoo, Michigan, U.S.A. The antibiotic had been 

isolated from Streptomyces algreteus and purified as described by Brodasky 

and Reusser, 1974. The samples supplied were used without further 

purification. 

Albumin/montmorillonite samples were prepared by Miss K.M. Mundell 

and Professor Sir John Randall of the Department of Zoology, University of 

Edinburgh, Scotland. The detailed preparation of these samples is given 

in chapter 8.2. 
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Analar grade laboratory reagents were in general use throughout the 

course of this work. 

2.2 Protein extraction from commercial DNA 

The following procedure was carried out in the cold room at 40 C to 

reduce the possibility of DNA denaturation. 

A 30-50mg DNA sample was placed in 3mM sodium chloride solution at 

-1 a DNA concentration ~l.Omg ml for a period of 48 hours to dissolve. The 

resultant solution was centrifuged in conical tubes at 3000rpm for 15 

minutes using an MSE bench centrifuge to remove dust particles and other 

macroscopic contaminants. The solution was then carefully decanted and 

added to an equal volume of freshly distilled phenol saturated with O.lM 

sodium chloride solution. The use of freshly distilled phenol is important 

since phenol oxidation results in peroxide formation which may cause strand 

breakage of the DNA. In phenol solutions stored for a relatively long 

period of time, peroxide formation is apparent from the brown tint of the 

solution. 

The DNA/phenol solutions were gently agitated for ~20 minutes and 

then centrifuged as before. Protein was usually apparent as a white 

precipitate at the interface of the aqueous and phenOlic phases of the 

solutions. The aqueous phases of the solutions were carefully removed 

from the centrifuge tubes using hooked Pasteur pipettes and added to an 

equal volume of propan-2-ol. The DNA immediately precipitated and was wound 

onto a glass rod. It was then washed in 80% ethanol to remove excess salt, 

in 957. ethanol to remove water and briefly in acetone to remove ethanol. 

The DNA was stored in this form for fibre preparation requiring solid 

material or immediately dissolved in 3mM sodium chloride solution for fibre 

preparation from gels obtained by high speed centrifugation. 

The pH of the DNA solutions was controlled as desired, by the use of 

l-lOmN Tris.HCl at pH 7.5 present in all solutions. 
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2.3 The determination of DNA concentration in solution 

The optical densities of DNA solutions at 258nm were measured in 

1.Ocm path length quartz cuvettes using a Cary l18C double beam U.V. 

visible absorption spectrophotometer. A value of 6600M-l cm-l was used for 

the extinction coefficient of aqueous DNA solutions at 258nm, as suggested 

by Blakeley, 1976. DNA concentrations were then calculated according to 

the Beer-Lambert law as shown in Equation 2.1. 

- Equation 2.1 

In this equation O.D. is the optical density of the solution at a specific 

wavelength, EA is the extinction coefficient at that wavelength, 1 is the 

optical path length of the solution and c is the concentration. 

The absorption of DNA solutions was plotted on a chart recorder from 

290-200nm. This allowed EA260/EA280 and EA260/EA230 ratios to be 

conveniently determined. Generally EA260/EA280 ~ 1. 9 and EA26o'E)..230;;;:: 2. 0 

imply a reasonable degree of DNA purity relative to protein contamination. 

All proteins absorb stron~yat 230nm while proteins containing a high 

proportion of aromatic residues also absorb strongly at 280nm. 

To obtain U.V. spectra, aliquots of DNA solution were first diluted 

to 4.0ml with lOmM salt or salt/buffer solution to give a DNA concentration 

-1 
of approximately 25ugml • An aliquot was placed in one of a matched pair 

of 1.Ocm path length quartz cuvettes while the other cuvette was filled 

with reference buffer. These two cuvettes were inserted in the spectro-

photometer sample holder and a third cuvette containing reference buffer 

was placed in the reference holder. The two reference buffers were zeroed 

at 258nm and the background absorption was recorded from 290-200nm. The 

position of the sample holder was then adjusted to place the cuvette 

containing DNA solution in the sample beam and the DNA absorption was 

recorded from 290-200nm above the background absorption. The operation of 

the spectrophotometer by this method allowed absorption due to DNA alone 
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to be recorded without switching off the sensitive electronics of the 

spectrophotometer when the cuvette compartment was opened. 

This system was also used to record U.V. and visible spectra of drug 

and drug/DNA solutions. Further details of these experiments are given in 

chapter 7. 

2.4 The preparation of fibre samples 

The fibre samples were produced using fibre stretching cells similar 

to those described by Fuller et aL, 1967. To prepare these cells a glass 

rod NIScm in length and NO.4cm diameter was heated in a bunsen flame to 

red heat, removed from the flame and immediately stretched to a thin rod 

NISOcm or more in length. This rod was cut into short sections of about 

Scm in length and N50u diameter which were stored in a petri dish to 

minimize dust contamination. When required one of these smaller glass 

rods was cut in half and the ends furthest from the break were inserted 

into small pieces of plasticine. The protruding ends of the glass rods 

were rounded in a bunsen flame. The glass rods were made in this manner 

since it was found easier to round the ends of the rods to a similar shape 

and size if they were of similar diameter beforehand. This is important 

since dissimilar rod ends tended to result in tapered or irregularly formed 

fibres. The diameter of these glass rods is also important and should be 

similar to that of the intended DNA fibre. If the diameter of the glass 

rods are too small they do not readily support a gel and are easy to break 

when mounting in the x-ray cameras. If the rods are too large a significant 

part of the gel may dry in an unoriented mass around the ends of the rods. 

After rounding, the rods were carefully aligned on a fibre stretching cell 

as shown in Plate 2.1. 

DNA fibres were prepared directly by the addition of N70-200ug of 

solid DNA to droplets of deionized water ~lOul volume suspended between 

the slightly separated glass rods of prepared fibre stretching cells. 
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Plate 2 . 1 A s tretching cel l for the preparation of DNA fibres after Fuller et 
a l . , 1967 . A DNA gel i s shown supported by gl ass rods aligned on 
the cell with the aid of plas ticine . 

Plate 2 . 2 A photomicrograph of a la poly[d(A-T)] . poly[d ( A-T)] f i bre between 
crossed polaroids with a c alcite compensator in the optical 
pathway . 
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The droplets were agitated to dissolve the DNA resulting in the formation 

of gels. Observation of these gels was conveniently achieved with the aid 

of a ~80 bifocal dissecting microscope. The fibre cells were manipulated 

to apply a degree of tension to the gels as they dried. The amount of 

tension required depended on the concentration and type of DNA or DNAI 

complex and on the environmental conditions pertaining at the time of fibre 

formation. Small pots containing saturated potassium chlorate solutions 

were sealed in the fibre cells of some specimens to produce fibre 

environments of 987. rh in the belief that slow fibre formation would result 

in improved crystallinity. Other fibre specimens were allowed to dry in 

o the cold room at N4 C for a similar reason. However most specimens were 

prepared under ambient' conditions. The amount of salt present in 

specimens prepared in this manner was dependent on the extent to which the 

DNA was washed after precipitation. 

In some cases it is inconvenient to produce fibres in the manner 

described above and DNA gels suitable for fibre preparation have been 

obtained by high speed centrifugation of DNA solutions. This method of 

preparation has several advantages. In the first instance a gel can be 

formed from a salt solution of known concentration. This does not imply 

that the salt concentration in the resultant gel is the same as that of 

the solution prior to centrifugation since a disproportionate amount of 

salt may be spun down with the DNA. However, Blakeley, 1976, has shown 

that if the amount of DNA in the centrifuge tube is kept constant, a 

variation of salt concentration in the initial solutions results in a 

similar change in magnitude of the salt content of the resultant gels and 

hence the fibres. Centrifugation also allows DNA to remain in solution 

until fibre formation and this is particularly important in the case of 

¢W-14 DNA since once precipitated this viral DNA is extremely difficult to 

redissolve. Finally centrifugation allows DNA solutions and drug solutions 

to be mixed in relatively large volumes at easily measured ratios 
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facilitating the homogeneous distribution of DNA/drug complexes within the 

fi bre sample s • 

DNA solutions for centrifugation were prepared by the addition of 

1.0-2.0ml of 3.0mM DNA, 3.0mMNaClsolutions to appropriate volumes and 

concentrations of salt and buffer solution to give final volumes of 10.Oml. 

The final salt concentration of such solutions was generally chosen to be 

10.OmM NaCI since Blakeley, 1976, has shown that fibres produced from gels 

centrifuged from such solutions give A and B diffraction patterns on 

changing the relative humidity of the fibre environment from 75% to 92%. 

In preparing DNA/drug solutions for centrifugation, 1.0-2.0ml of 3.0mM DNA, 

3.0mM NaCI was diluted to S.Oml by the addition of the desired salt and 

buffer solutions while aliquots of drug solutions were made up to similar 

volumes with the addition of appropriate salt and buffer solutions. The 

drug solutions were added to the DNA solutions to give solutions of constant 

DNA content and definitive phosphate to drug, P/D, ratios. Again the final 

salt content of such solutions was chosen to be 10.OmM NaCl. 

The DNA and DNA/drug solutions were transferred to 10.Oml polypropylene 

centrifuge tubes and spun down at 45,000 r.p.m. for 12 hours at 40 C in an 

M.S.E. superspeed SO TC centrifuge with a 10 x 10 ml fixed angle rotor. 

The top S.Oml of each supernatant was carefully removed with a Pasteur 

pipette for subsequent spectroscopic analysis and the remainders of the 

solutions were decanted. The gel like pellets were .sealed in the centrifuge 

tubes using parafilm and storred at 40 C until required. However it was 

found better to use the gels as soon as possible'since they are quite 

viscous and even a small amount of drying made the material difficult to 

handle. 

With the aid of an extruded ~asteur pipette drops of a given gel were 

placed between the rounded ends of glass rods aligned on a fibre stretching 

cell and fibre samples were then produced as described previously. 

The detailed preparation of synthetic polynucleotide fibres of known 
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added salt concentration is described in chapter 3.2. 

2.5 The birefringence of x-ray fibre samples 

The birefringence of fibre samples was measured before subjecting 

them to x-ray analysis. A fibre sample was first aligned between the 

analyser and polarizer of an Olympus BH AP2 polarizing microscope so that 

the extinction condition was preserved. The specimen table of the microscope 

was then rotated by 45
0 and a Carl Zeiss calcite rotary compensator was 

inserted into the optical path of the microscope between the analyser and 

the objective. The cross-hairs of the microscope eyepiece were aligned on 

a point on the fibre corresponding to the black zero zone of the background 

fringe pattern. The compensator was then rotated until the black zero 

fringe in the fibre appeared in the cross-hairs of the microscope eyepiece. 

The vernier of the compensator gave the angle of tilt through which the 

calcite plate of the compensator had passed and this angle was related to 

the optical retardation, e, in the fibre sample by tables supplied by the 

manufacturer. The sample thickness, t,was conveniently measured using the 

same microscope in conjunction with a graduated eyepiece and the 

birefringence of a fibre, ~n, was calculated according to the relationship 

shown in equation 2.2. 

~n =:= A9 
2rrt 

- Equation 2.2 

The appearance of interference fringes observed in a fibre sample 

during birefringence measurements is illustrated in Plate 2.2. The fibre 

was'of Na poly(d(A-T)].poly[d(A-T)] and the fringes are particularly well 

resolved. Typically the birefringence of DNA or polynucleotide fibres 

examined in this work was in the range of -0.02 to -0.12. A birefringence 

of high magnitude tends to indicate a high degree of orientation in fibre 

samples. However, while fibres producing well resolved diffraction patterns 

nearly always had a relatively high magnitude of birefringence N -0.07 the 
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converse was not necessarily true since birefringence measurements do not 

provide information with regard to the crystallinity within the fibre sample. 

In practise x-ray diffraction patterns of control DNA fibres were 

only recorded for those fibres of birefringence ~ /-0.061. However, for 

the synthetic polynucleotide samples, x-ray diffraction patterns were 

obtained from all samples since the quantity of material available was 

strictly limited. As a matter of routine birefringence measurements of 

these samples were recorded beforehand. In the case of DNA/drug samples 

it was found that the magnitude of the birefringence of these samples was 

too great to be measured using the system described above. 

2.6 The x-ray diffraction equipment 

Fibres suitable for x-ray analysis were first sprayed with powdered 

calcium carbonate which produces diffraction rings at known d-spacings on 

the fibre diffraction patterns. Two forms of calcium carbonate were used. 

Aragonite gives a principal reflection corresponding to a d-spacing of 

0.3396nm while calcite exhibites a principal d-spacing of 0.3035nm. The 

use of calcite was generally preferred since the aragonite spacing coincides 

with the 0010 reflection of B DNA. 

Nickel filtered CuKo:x-ray sources were provided by Hilger and Watts 

microfocus x-ray generators or a GEe-Elliott GX6 rotating anode x-ray 

generator. The Hilger and Watts machines were normally operated at 35kV 

and 2.5mA in conjunction with a 0.1 x O.lmm spot when viewed at ~6° to the 

target surface. The GX6 was operated at 35kV and 60mA with a 0.2 x O.lmm 

. d _'6 0 h f spot size when v~ewe at·- to t e target sur ace. 

Pinhole cameras similar to that described by Langridge et al., 1960a, 

with lOOum diameter gold collimators and a maximum specimen to film distance 

of 3.0cm were used in conjunction with the Hilger and Watts generators. 

Sample alignment in these cameras was carried out on an optical bench with 

visible light. Camera alignment was achieved by maximizing the intensity 
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of the undiffracted beam at the exit of the camera with a mini monitor 

radiation counter. Searle cameras incorporating toroidal or Franks optics 

were used on the rotating anode generator. In these cameras alignment was 

achieved by observing the image of the x-ray beam incident on a thallium 

activated caesium iodide screen. 

X-ray scattering by the sample environment was minimized by 

continually flushing the cameras with helium gas during x-ray exposure of 

the samples. Owing to the relatively large volume of the Searle cameras 

these cameras were flushed with helium for 30 minutes before commencing 

irradiation of the samples to ensure removal of most of the air. This 

procedure was not necessary for the pinhole cameras. The relative humidity 

of the fibre environment was maintained by the helium gas which was bubbled 

first through a gas bottle containing water to give saturated helium and 

then through a gas bottle containing an appropriate saturated salt solution. 

The helium then passed through an empty gas bottle which acted as an excess 

vapour trap before entering the cameras. All the gas bottles contained 

sintered glass filters. As a further precaution a pot of the required 

saturated salt was placed in the cameras before irradiating the samples. 

The salts used were potassium chlorate. sodium sulphate. sodium tartrate, 

potassium chloride. sodium chlorate. sodium nitrite, sodium bromide. 

potassium carbonate and calcium chloride which gave relative humidities of 

9870. 9570. 9270, 8670. 7570. 6670. 5770, 4470 and 337. respectively according to 

O'Brien, 1948. To obtain a relative humidity environment ~07o helium gas 

straight from the cylinder was passed through a bottle containing crystals 

of silica gel and thence to the camera. 

Initially x-ray film used in this work was either Ilford Industrial G 

or Kodirex. After the withdrawal of these films Kodak No Screen film was 

used as a replacement. The films were developed and fixed by chemicals 

supplied by Ilford or Kodak as appropriate. 
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2.7 Measurement of the x-ray diffraction patterns 

The positions of reflections on diffraction patterns were measured 

with a pye two dimensional travelling microscope which had a sensitivity 

of ±O.OOlmm. An estimate of the accuracy in determining the coordinates 

of reflections using this device was ±0.04mm. This corresponds to ±1/4 of 

the width of sharp reflections on well resolved diffraction patterns. The 

excessive loss of light from the optical system of this microscope rendered 

it tedious to use and when a Stoe film measuring device became available 

it was used for less accurate measurements. The sensitivity and probable 

accuracy of this instrument was ±O.lrnm. 

For particular accurate measurements IS" x 12" photographic plates 

were reproduced from the x-ray negatives and the radii of reflections were 

determined with a beam compass and steel rule as described in chapter 7.4b. 

Measurements of the albumin/montmorillonite and associated diffraction 

patterns were carried out as described in chapter 8.2. 

The intensities of reflections were measured using a Joyce Lobel 

microdensitometer 3CS. The densitometer was also used to determine the 

radii of reflections on some occasions. 

In cases where relative intensities were estimated by eye a scale of 

vs, s, m, wand vw was used corresponding to very strong, strong, medium, 

weak and very weak intensities. 

2.8 Interpretation of the x-ray diffraction patterns 

In determining the type of diffraction patterns obtained during this 

work and the lattice parameters associated with these patterns, three 

computer programs have been utilized. These programs were written by 

Dr. W.J. Pigram in Algol for an Elliott 4130 computer at Keele University 

and were transcribed by the author to run on the CDC 7600 computer of the 

Manchester Regional Computer Centre. 
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a) The program 'Film' 

The Film program uses x and y coordinates from points on a calibration 

ring of known d-spacing to determine the specimen to film distance and the 

coordinates of the centre of the film. With this data and the x and y 

coordinates of interesting reflections the corresponding ~,. 1;, (> and d-

spacing of these reflections are calculated. Surprisingly, the analysis 

of particularly well resolved diffraction patterns gave different 

coordinates for the centre of the film when determined by a least squares 

analysis of points on the calibration ring compared with coordinates 

calculated by averaging the x and y coordinates of appropriate pairs or 

quartets of sample reflections. This difference was NQ.2mm and was 

attributed to the non-homogeneous distribution of calcium carbonate on the 

fibre samples. When such discrepancies were apparent the specimen to film 

distance obtained from the calibration ring was used in conjunction with 

the average value for the coordinates of the film centre to obtain the 

required data. 

b) The program 'Hex' 

The Hex program uses ~-spacings of given reflections together with 

their assigned Miller indices to calculate the lattice parameters of an 

hexagonal unit cell. These parameters are then subjected to a cyclic 

2 
least squares refinement procedure ofL(~o - ~c) until the difference 

between Po - ~c in successive cycles is less than a specified value. Po 

and Pc are the observed and calculated reciprocal lattice spacings· 

respectively. 

For diffraction patterns from which xi-zeta plots had been constructed 

an estimate of the error in the calculated lattice parameters was obtained 

from the RMS deviation in ~o - ~c. The mean of the unambiguously identified 

Po values was calculated and the RMS deviation in Po - ~c was determined 

as a percentage of this value. This percentage error was applied to the 

lattice parameters. 
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c) The program 'Find E' 

This program uses the refined lattice parameters to calculate the 

radii of all possible reflections to a maximum specified value at a specific 

specimen to film distance. 

More specific details of experimental techniques used in this york 

are given in subsequent chapters. 



Chapter 3. 

30 

AN INVESTIGATION INTO THE CONFORMATIONAL FLEXIBILITY OF THE 

SODIUM SALT OF POLY[d(A-C)].POLY[d(G-T)] 

3.1 Introduction 

Poly[d(A-C)].poly[d(G-T)] is one of the two synthetic polynucleotides 

with a repeating dinucleotide sequence which contains all four of the 

nucleotides commonly found in naturally occurring DNA's. 

In the first report of an x-ray fibre diffraction study of 

poly[d(A-C)].poly[d(G-T)] by Langridge, 1969, it was stated that good x-ray 

diffraction patterns were obtained which were identical to those given by 

native DNA. However, apart from a brief discussion of the intensity of the 

11th layer line in the A pattern no details were given of the patterns 

obtained, nor of the conditions required for observing them. 

Arnott et al., 1980, reported that Na poly[d(A-C)].poly[d(G-T)] was 

one of the polynucleotides capable of adopting the S conformation. This 

conformation was achieved in some fibres after annealing them for prolonged 

periods. These fibres contained 3-6% retained sodium chloride necessary 

to reproduce the B conformation in typical DNA specimens. 

Leslie et al., 1980, obtained an A pattern from a fibre of 

Na poly[d(A-C)].poly[d(G-T)] at 66% rh which was indistinguishable from 

those obtained for other DNA's or polynucleot ides. From 66-927. rh they 

observed a fully crystalline B pattern for the sodium salt of this 

polynucleotide and point out that this is the first time that a fully 

crystalline B pattern has been observed for the sodium salt of a DNA or a 

polynucleotide. These patterns were defined in terms of an orthorhombic 

lattice with a 101 helical symmetry and a pitch of 3.46nm. The patterns 

suggested a larger unit cell than for the B form of calf thymus DNA. 

The experiments carried out during this work on Na poly[d(A-C)]. 

poly[d(G-T)] have established the conditions for the routine observation 

of the A,B and C conformations in fibres of the sodium salt of this 
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polynucleotide. While the A and B conformations are readily observed in 

fibres of naturally occurring Na DNA's, the C conformation is generally 

associated with Li DNA, Marvin et al., 1961. 

Evidence for the C conformation in Na DNA was first apparent when 

Brahms et al., 1973, interpreted infra-red spectra from Na DNA in terms 

of a C structure. Bram and Baudy, 1974, found that fibres of the sodium 

salt of calf thymus DNA dried at 370 C in the relative humidity range of 

30-66% on a fixed glass support usually gave C patterns. They reported 

a layer spacing of 3.1nm. The authors stated that the C conformation 

was metastable at 667. rh and usually decayed to the A conformation within 

a day. Furthermore, they found that an immediate transition from the C 

to the A conformation occurred if the fibre was released from its support 

at one end. 

Arnott and Selsing, 1975, have reported C diffraction patterns from 

fibres of Na DNA under conditions of low hydration and salt contents 

intermediate between those appropriate for the A and B conformations of 

Na DNA. 

Zimmerman and Pheiffer, 1980, have used x-ray diffraction techniques 

to assay for the C conformation in fibres of Li and Na DNA immersed in 

various organic solvents and concentrated salt solutions. DNA gels were 

centrifuged from solutions and used to make fibres as described by 

Zimmerman and Pheiffer, 1979. These fibres gave C diffraction patterns 

at 33% rh, A patterns at 79% rh and B patterns at 98% rho Of the solutions 

investigated only t-butanol at 95% or 98% v/v induced the C conformation in 

Na DNA fibres. 

Leslie et al., 1980, have observed the C conformation or the related 

C' or cot conformations for a number of synthetic polynucleotides when 

sodium is the cation. They concluded that the C conformation is stable in 

a fairly narrow range of fibre salt contents and relative humidities which 

are both intermediate between those that favour the A and B conformations. 
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The observation of the C conformation in Na poly(d(A-C)].poly(d(G-T)] 

fibres initiated a series of experiments carried out by Mahendrasingam, 

1983, in order to determine whether the C conformation was apparent in 

Na DNA fibres under similar environmental conditions. Mahendrasingam 

examined a wide variety of naturally occurring DNA's including calf thymus, 

Clostridium perfringens, herring sperm, pollock roe, salmon sperm, 

Escherichia coli, SP 15, T2 phage, Micrococus lysodeikticus and ~W-14 DNA. 

The fibres were prepared from gels centrifuged from DNA solutions of 10mM 

sodium chloride concentration. For fibres containing the lowest amounts 

of excess salt the C form was observed at relative humidities in the range 

of 32-75% for all those DNA's. The conformational sequence of transitions 

for those DNA's was C~A~B which was fully reversible, with the exception 

of fibres of T2 and SP 15 DNA. Fibres of these DNA's did not exhibit the 

A conformation, presumably as a result of steric hindrances imposed by the 

presence of large sugar residues. 

These experiments on the sodium salt of poly[d(A-C)].poly[d(G-T)] 

describe a method for quantitatively varying the amount of added salt in 

synthetic polynucleotide fibres. The added salt content of such fibres is 

expressed in terms of the number of added chloride ions per nucleotide 

phosphate and is denoted by the aCI-/Po~ ratio. The conditions for 

routinely observing the A,B and C conformations in fibres of 

Na p01y[d(A-C)]:po1y[d(G-T)] and the sequence of transitions between these 

conformations is established. These results are compared with those 

reported by other workers. Particular attention is drawn to the question 

of whether the C conformation is intermediate between the A and B 

conformations as suggested by Arnott and Selsing, 1975, and Leslie et al., 

1980, or whether A is the intermediate conformation as reported by Bram 

and Baudy, 1974, and Zimmerman and Pheiffer, 1980. 

An estimate has been made of the accuracy to which the aCl-/PO- ratio . 4 
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in a fibre can be determined. At the present time there is evidence of a 

non-homogeneous distribution of salt in fibre samples produced by these 

methods. An improvement in experimental technique is necessary before the 

aCI-/PO~ ratio reflects the CI-/PO~ ratio in localized regions of the 

fibre samples. 

Attention is drawn to the potential biological significance of the 

C conformation. 

3.2 Materials and methods 

The sodium salt of the synthetic polynucleotide poly[d(A-G)]. 

poly[d(G-T)] was prepared at Paris University VII by Dr. G.J. Brahms and 

Mr. J. Vergne as described in chapter 2.1. 

The final precipitation from each batch of synthesized polynucleotide 

was transferred to a glass microscope slide and allowed to dry· under 

ambient conditions. At this stage the precipitate weighed ~2.0mg. Small 

pieces of polynucleotide ~O.2mg were cut from the original samples and 

accurately weighed using a Perkin and Elmer electronic microbalance which 

gave a readout to ±O.lug. 

One of these pieces was allowed to dissolve in 4.0ml of O.OlM sodium 

chloride solution for a minimum period of 18 hours. The optical density 

of the solution at A258nm was then determined and the polynucleotide 

concentration of the solution was calculated assuming an extinction 

-1 -1 
coefficient EA'258 -= 6600M cm , Blakeley,1976. The expected 

polynucleotide concentration of the solution was det~rmined from the known 

mass of the sample using a value of 332.75 for the molecular weight of a 

Na nucleotide. The percentage difference of the two polynucleotide 

concentrations was attributed to the presence of water. This value was 

then used to correct the mass of subsequent pieces of polynucleotide from 

the same production batch when calculating the aCI-/Po~ ratio in fibres. 

Typically the samples were found to contain N70% by weight of polynucleotide. 
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Other pieces of polynucleotide from the same batch were used to make 

fibres for x-ray analysis. A drop of deionized water was placed on the 

rounded end of a thin glass rod and then shaken off. Sufficient water 

remained on the end of the rod so that on touching a piece of weighed 

polynucleotide with the rod, some of the polynucleotide dissolved and the 

sample became firmly attached to the rod. Taking care not to dislodge the 

sample the rod could be aligned on a fibre stretching cell with a second 

rod of similar size. Further deionized water was added to the sample to 

produce a gel from which a fibre could be drawn as described in chapter 2.4. 

A series of gels were formed in this manner and before drawing them out to 

form fibres, different amounts of standard sodium chloride solutions were 

added with the aid of a micropipette. It has since been found that Erfurth 

et al., 1975, used a similar method to prepare D~A fibres for x-ray 

diffraction and Raman spectroscopy. The concentration and quantity of the 

sodium chloride solutions were chosen such that the aCl-/Po~ ratio ranged 

from 0.0 to approximately 2.0. The error associated with the aCl-/Po~ 

ratio is 12 % and an account of this estimation appears in section 3.5. 

Since the preparation of Na poly[d(A-C)].poly[d(G-T)] was precipitated 

from solutions of the same ionic strength and washed in ethanol in the same 

manner, no significant variation was expected in the ionic content of the 

samples initially. It should be stressed that the Cl-/PO~ ratio used in 

this work represents the amount of salt added to a sample and does not 

take into account salt retained by the polynucleotide material upon 

precipitation from O.lM sodium chloride solution. Washing the material in 

ethanol reduces the excess salt retained by the sample so that the added 

salt concentration tends to reflect the total salt concentration, but 

clearly, a method for determining the total ionic content of these samples 

would be superior. 

Cooper and Hamilton, 1966, estimated the total salt content of DNA 

samples by chloride an.a1ysis using a micro-Car ius method. However, each assay 
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required ru5mg of sample and synthetic polynucleotides have not normally 

been available in sufficient quantities to allow the use of such a technique. 

Possible procedures for the determination of the total salt content of 

smaller samples (ru200ug) are discussed in chapter 6. 

X-ray diffraction patterns of fibres so prepared were taken using 

pinhole or Franks optics as described in chapter 2.6. 

Some fibres were found to exhibit irreversibility with regard to the 

variation of their x-ray pattern with the relative humidity of the fibre 

environment. Hence for each fibre, patterns were first recorded at a low 

relative humidity of 44% or 57% and then at increasing relative humidities 

of 66%, 75%, 86% and 92%. If a semi-crystalline B or disordered B 

diffraction pattern was obtained at 92% rh the relative humidity was not 

further increased since such a procedure can produce marked changes in the 

gross features of the fibre, for example, bending or even collapse to an 

unoriented mass. Typically, only the fibres containing aCI-/Po~ ~ 0.3 

were exposed to the higher humidities of 95% and 98%. Diffraction patterns 

were then taken at decreasing relative humidities of 95%, 92%, 86%, 75%, 

66%, 57%, 44%, 32% and 0% followed by a further cycle of humidity changes 

as appropriate. 

3.3 Results 

Fibres prepared from gels to which no sodium chloride had been added 

gave diffraction patterns exibiting two components as the relative humidity 

was increased from 57% to 92%. The predominant A component did not differ 

significantly from that observed for the sodium salt of naturally occurring 

DNA's although it was somewhat ill defined at the lower relative humidities. 

The prominent features of the minor component in these patterns were the 

first equatorial reflection and two strong meridional reflections in the 

region of O.33nm. These features are identified in Plates 3.1 and 3.2. 

The variation in the spacing and relative humidity of these reflections as 
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X-ray diffraction patterns of the sodium salt of 

poly[d(A-C)].poly[d(G-T)] fibres 

Fibre PYII 2, aCl-/PO- =0.0, rh = 66%. This is predominantly an A type 
diffraction pattern, ~ut there is a minor component characterized by three 
reflections which are indicated by the arrows. 

Plate 3.2 

Fibre PYII l/R, aCl-/PO- = 0.0, rh = 75%. After passing through a relative 
humidity cycle the fibr~ was reformed to retrieve the minor component. This 
pattern is similar to that of Plate 3.1, but the A component is more 
crystalline while the minor component is less intense. 



37 

a function of relative humidity is summarized in Table 3.1. It was not 

possible to identify with any certainty the family of conformations which 

were exhibited by the minor component as the relative humidity was 

increased. However, a comparison of the data in Table 3.1 with that of 

the known DNA and polynucleotide structures given in Table 3.2 suggested 

that the minor component was related to a highly wound C conformation at 

low relative humidities ~4%. At 92% rh the minor component of these 

diffraction patterns was reminiscent of a semi-crystalline B structure as 

shown in Plate 3.3. 

When the relative humidity was raised to 98% only semi-crystalline 

hexagonal B diffraction patterns were observed which were particularly 

well defined as shown in Plate 3.4. 

Decreasing the relative humidity resulted in the reappearance of the 

A conformation at 92% rh, but on further decreasing the relative humidity 

there was no evidence of the two meridional reflections or the equatorial 

reflection which previously characterized the minor component. Furthermore, 

the minor component was not observed in fibres whose relative humidity had 

been decreased prior to reaching 98%, before the occurrence of the A;=B 

transition. This irreversibility is illustrated by a comparison of Plate 

3.1 with Plate 3.5. Both diffraction patterns were obtained from the same 

fibre at the same relative humidity of 66% but in the case of Plate 3.5 

the fibre had previously been exposed to a maximum relative humidity of 

92%. The complete absence of any equatorial reflection before the 1 3 0 

reflection of the A conformation in Plate 3.5 is of interest since it is 

unusual to see an A pattern completely free of intensity contributions 

from the semi-crystalline B form in this.region. 

As the relative humidity was further decreased from 33% to 0% the A 

pattern became much less well defined as shown in Plate 3.6 indicating a 

progressive collapse of the structure. On increasing the relative humidity 

from· 0% to 66% the A structure was reformed and a further increase in 



Relative Spacing of Spacing of Spacing of Comparison of the Intensities 

Humidity Reflection l/nm Reflection 2/nm 
i 

Reflection 3/nm of Reflections 2 and 3 

44% 1.69 0.348 Absent Reflection 3 absent 

57% 1. 78 0.351 0.316 Reflection 2 stronger 

66% 1. 79 0.355 0.319 Reflection 2 stronger 

75% 1.86 0.352 0.320 Reflection 3 stronger 

86% 1,93 0.358 0.321 Reflection 3 much stronger 

92i. 2.01 Absent 0.328 Reflection 2 absent 

'------ ---- - ~--

~-
- - --- -- - --------- --

Table 3.1 The effects of relative humidity on the spacings and relative intensities of the reflections 
which characterize the minor component of Na poly[d(A-C)].poly[d(G-T)] patterns at aCl-/PO~ = 
0.0. The error associated with these spacings is N ±0.Q6nm. 



Conform- Cation Rh% Helix Unit Cell Dimensions/nm Crystal Axial Risel First hkl of First 
ational ' Symmetry - System Residue nm Equatorial Equatorial 
Type a b c Reflection/nm Reflection 

A Na 66-98 11, 2.22 4.06 2.82-2.87 M 0.256-0.261 1.16 130 
B Li,Na 43-98 10, 3.08-3.61 2.24-3.79 3.34-3.46 0 0.334-0.346 1.81-2.61 lio 
B·'( Na 98 9.951 - - 3.31 H 0.331 2.26 110 

(X-B' Na 66-92 101 2.28-2.33 2.28-2.33 3.21-3.29 H 0.324-0.329 2.28-2.33 100 
f3-b ' Na 31-70 101 1.77-1.78 1.99-2.00 3.20-3.24 0 0.320-0.324 1. 77-1. 78 100 

C Li 57-66 283 3.50 3.50 3.08 H 0.330 2.02 110 
C Li 44 28 i 3.22 2.02 3.11 0 0.333 1.71 110 

·c Li 66 9, - - - - - - -
C Na 81-92 28, - - - - - - -
c* Na 33 8, - - 2.60 - 0.336(0.325) 1.67 110 
C' Na 74-84 9, 3.32 3.32 2.95 H 0.328 2.32 110 
C" Na 66 9" 2.21 2.21 5.82 H 0.323 2.21 100 
D Na 75 81 1.70-1.75 1.70-1.75 2.43-2.50 T 0.304-0.313 1.70-1. 75 100 
D Na 66 81 1.98-2.04 1. 98-2.04 2.11-2.51 H 0.301-0.314 1.98-2.04 100 
D Na 66 83 2.04 2.04 7.38 H 0.308 2.04 100 
E Na 66 31 3.63 2.10 4.87 0 0.325 1.82 110 
S Na 43-66 6s 1.91 1.91 4.35 H 0.363 1.91 100 

-- ---- --

Table 3 0 2 This table shows the conditions of relative humidity and cation type found for the known D~A and polynucleotide 
conformations. Data is abstracted from Table 7 of Leslie et al., 1980, and is presented irrespective of D~A 
source or polynucleotide sequence. From the information given the helical pitch and first equatorial spacing 
have been calculated. Additional data for the C and the semi-crystalline B conformations of Na D~A has been 
taken from Zimmerman and Pheiffer, 1980, and is denoted by an asterisk. In these cases the observed values 
of pitch and first equatorial spacing are given. There seems to be a contradiction in this data for the C 
conformation and the supposed value for the axial rise per residue is given in brackets. 
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Plate 3.3 

Fibre PVII 2, aCl-~PO~ = 0.0, rh = 927.. Again this is an A type diffraction 
pattern, but the m1nor component is now characterized by two reflections 
which are indicated by the arrows and imply a B conformation. 

Plate 3.4 

Fibre PVII l/R, aCI-/PO~ = 0.0, rh = 98%. A well defined hexagonal semi­
crystalline B diffraction pattern. 



41 

Plate 3.5 

Fibre PVII 2, aC1-/PO- = 0.0, rh = 66% after being exposed to a maximum 
relative humidity of ~270. The ref1ections which previously characterized 
the minor component of this pattern as seen in Plate 3.1 are absent. 

Plate 3.6 

Fibre PVII 1, aCl-/PO~ = 0.0, rh = 33%. The A structure is begining to 
collapse at low relat1ve humidity. 
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humidity gave rise to the A-.B transition at 98% as expected, but again 

there was no evidence of an intensity distribution characteristic of the 

minor component. 

Despite the apparent irreversibility of the minor component it was 

reobtained if a fibre which had previously been subjected to a humidity 

cycle like that described above was rewetted to form a gel and drawn into 

a new fibre. This new fibre was found to exhibit exactly the same sequence 

of diffraction patterns as the original fibre begining with the two 

component pattern at low relative humidity as seen in Plate 3.2. 

Fibres prepared from gels to which sufficient sodium chloride had 

been added to give aCl-/PO~ ~0.3 gave poorly, defined diffraction patterns 

with some similarity to the C type intensity distribution at relative 

humidities from 44% to 57%. At higher humidities up to and including 

92% rh these fibres gave A type patterns. A transition to the B structure 

occurred when the relative humidity was raised to 98% and on lowering the 

humidity this transition was found to be reversible. 

Fibres prepared from gels which contained 0.4-0.8 aCl-/PO~ gave 

semi-crystalline patterns at relative humidities from 44% to 57% or 66% as 

shown in Plate 3.7. These patterns were very similar to that of the 

hexagonal semi-crystalline C form of the lithium salt of naturally 

occurring DNA's described by Marvin et al., 1961. The relatively large 

layer line spacing compared with that of B DNA, the strong intensity of 

the layer line immediately below the meridional reflection and the presence 

of diffracted intensity at ~ = 1.Onm-1 on the first layer line are all 

features indicative of the C conformation as observed by Marvin et al., 

1961. Analysis of·the best of these patterns (Plate 3.7) gave a layer 

line spacing of 2.81 ± 0.04nm, an axial repeat of 0.340 ± 0.008nm and 

hence 8.3 ± 0.3 residues per turn. While the number of residues per turn 
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Plate 3.7 

Fibre KE ~9/R, aCl-/PO~ = O.54~ rh = 57%. A semi-cry~tall~ne C diffraction 
pattern w~th a layer l~ne spac~ng of 2.8lnm and an ax~al r~se per residue 
of O.340nm. The diffraction rings at 0.282 and 0.324nm are due to sodium 
chloride. 

Plate 3.8 

Fibre PVII 6, aCl-/PO~ = 0.6, rh = 66%. 
replaces the lower humidity C pattern. 
due to sodium chloride. 

An A type diffraction pattern 
Again the diffraction rings are 
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found for this pattern lies outside the value of 8.8-9.7 residues per turn 

of the C conformations of Marvin et al., 1961, it lies within the extended 

range of 8.0-9.7 residues per turn found by Zimmerman and Pheiffer, 1980. 

Such fibres gave crystalline A patterns at 667. or 757. rh as shown in 

Plate 3.8 and semi-crystalline hexagonal B patterns at 927. rh as in Plate 

3.9. These A and B diffraction patterns were generally indistinguishable 

from those observed for the naturally occurring DNA's, although the 

crystallinity exhibited by these patterns was not as good as that of 

similar patterns of Na poly[d(A-C)].poly[d(G-T)] fibres to which no excess 

sodium chloride had been added. 

Upon reduction of the relative humidity of the fibre environment to 

75% the B--A transition was apparent, but A patterns persisted even when 

the relative humidity had been reduced to 44%. Further reduction of the 

relative humidity to 07. again resulted in the formation of a disordered 

structure. As the relative humidity was increased the A structure reformed 

at about 667. rh but further cycling of the relative humidity failed to 

induce the fibres to revert to a C conformation. This irreversibility of 

the C structure exactly paralleled that of the structure represented by 

the minor component in fibres containing no added sodium chloride. 

The C conformation was reobtained if a fibre which had gone through 

a relative humidity cycle like that described above was rewetted and drawn 

into a new fibre. As in the case of fibres where the aCl-/Po~ = 0.0, such 

new fibres behaved in exactly the same manner as the original fibres. 

For one fibre of aCl-/Po~ = 0.6 a further distinct type of diffraction 

pattern was occassiona11y obtained as shown in Plate 3.10. Such patterns 

were obtained at relative humidities associated with the transition between 

the A and B structures>:",75i. rho The arms of the distinctive cross of 

intensity distribution are steeper in Plate 3.10 compared with Plate 3.9. 

This indicates a reduction in pitch compared with the 3.40nm pitch 

associated with the B conformation and it is therefore tempting to identify 



45 

Plate 3 . 9 

Fibre PVII 6 , aCl -/PO~ = 0 . 6 , rh = 92% . A semi- crystalline B diffraction 
pattern . The sodium chloride diffraction rings as sociated with patterns 
of this fibre a t lower rh ' s are no longer present . 

Plate 3 . 10 

Fibre PVII 6, aCl -/PO~ = 0 . 6 , rh = 75% . A peculiar semi- crystalline 
diffraction pa ttern Wlth a reduced pitch compared with that of the B 
conforma tion . 
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this structure as an intermediate in the A~B transition. 

An obvious feature of the C type patterns as in Plate 3.7 was the 

presence of diffraction rings at O.282nm and O.324nm which are characteristic 

of crystalline sodium chloride. The intensity of these rings was found to 

decrease with increasing relative humidity of the fibre environment. At 

92% rh these rings were completely absent as shown in Plate 3.9. These 

observations can be attributed to the presence of sodium chloride in these 

fibres in the form of small crystallites at low relative humidities, but 

which gradually dissolve as the humidity is increased. A decrease in 

relative humidity resulted in the reappearance of the sodium chloride 

diffraction rings which was consistent with this explanation. 

Fibres prepared from gels containing 0.9-2.0 aCl-/PO~ tended to show 

surface irregularities which became more marked with increasing salt content. 

This effect was attributed to the presence of large crystals of sodium chloride 

on or near the surface of the fibres. Essentially such fibres showed no 

crystallinity in the packing of the polynucleotide molecules although there 

was some orientation in those fibres at the lower end of this range of 

aCl-/PO~ ratio. At low relative humidities the patterns of all these fibres 

were dominated by diffraction from sodium chloride crystals. As the 

relative humidity was increased the sodium chloride diffraction became 

weaker and eventually disappeared N92% rh giving non oriented poorly 

crystalline patterns with an intensity distribution similar to that of 

B DNA. Diffraction patterns were also recorded for these fibres as a 

function of decreasing relative humidity from 92% to 0%. The sodium 

chloride diffraction began to return N75% rh and at 57% rh the process was 

complete. 

3.4 Discussion 

These results show that the A, Band C conformations found for the 

naturally occurring DNA's are all available to the sodium salt of 
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poly[d(A-G)].poly[d(G-T)]. The conditions of relative humidity and salt 

content for observing the A and B conformations of this Na polynucleotide 

are similar to those for naturally occurring Na DNA's as reported by Cooper 

and Hamilton, 1966. Similar conditions for the observation of the C 

conformation of Na DNA have not been published previous to Mahendrasingam, 

1983, and Rhodes et al., 1982. 

Early studies of the C conformation of Na DNA by Bram and Baudy, 1974, 

and Arnott and Selsing, 1975, have suggested that it is at best a poorly 

favoured conformation. However, these results show that the C conformation 

is reproducibly observed under specific conditions. Even so, the degree 

of crystallinity apparent from Na poly[d(A-G)].poly[d(G-T)] patterns (for 

example Plate 3.7) and from Na DNA patterns published to date (Bram and 

Baudy, 1974, Arnott and Selsing, 1975, Zimmerman and Pheiffer, 1980, Leslie 

et al., 1980, Mahendrasingam, 1983, and Rhodes et al., 1982) is much poorer 

than that observed for C patterns from Li DNA (Marvin et al., 1961) and 

Li po1y[d(A-G)].po1y[d(G-T)] (chapter 4). No satisfactory explanation has 

so far been reported of the marked differences in the effect of the lithium 

and sodium ions on the conformation of DNA and its synthetic analogues. 

It was not found necessary to keep fibres under tension as suggested 

by Bram and Baudy, 1974, in order to observe the C conformation and the 

effect of tension on fibres of Na poly[d(A-G)].poly[d(G-T)] was not 

examined. 

This work emphasizes that low relative humidity, typically N44-66i., 

is a necessary criterion for the observation of the C conformation of 

Na poly[d(A-C)].poly[d(G-T)]. This is in agreement with studies on the 

sodium salt of native DNA's by Bram and Baudy, 1974, Arnott and Selsingj 

1975, Zimmerman and Pheiffer, 1980, Mahendrasingam, 1983, and Rhodes et al., 

1982. In addition, the C conformation of Na DNA has also been found for 

fibres immersed in high concentrations of t-butanol ~957. or 987. v/v which 

also indicates that the C conformation is associated with low hydration, 
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Zimmerman and Pheiffer, 1980. These results are in contrast with the study 

on the polymorphism of a number of polynucleotides by Leslie et al., 1980. 

They concluded that generally for polynucleotides containing guanine the C 

form in fibres is stable in a fairly narrow range of fibre salt contents 

and relative humidities intermediate between the A and B forms. This is 

rather a surprising conclusion since of the nineteen Na polynucleotides 

studied only poly[d(A-G-C)].poly[d(G-C-T)] was observed in all three 

conformations. The humidities recorded for the C, A and B conformations 

were 74-847., 927. and 957. respectively. This is in accordance with the work 

reported here for Na poly[d(A-C)].polY[d(G-T)]. 

A sodium chloride concentration of between 0.4 and 0.8 aCl-/Po~ was 

found necessary in order to obtain well defined C type patterns of 

poly[d(A-C)].poly[d(G-T)]. This is in agreement with the rather qualitative 

observations of Arnott and Selsing, 1975, for Na DNA and Leslie et al., 

1980, for various polynucleotides, that the C conformation is stable at 

salt concentrations intermediate between those of A and B. However, in 

the former case there was no indication as to how this conclusion was 

arrived at, while in the latter case the samples were obtained by 

precipitation and quantitative information on the amount of salt in the 

fibres is obscure. Bram and Baudy, 1974, and Zimmerman and Pheiffer, 1980, 

did not examine the effects of salt concentrations on their samples. In 

the analysis by Mahendrasingam, 1983, on naturally occurring DNA's the C 

conformation emerged as characteristic of fibres containing a minimum amount 

of retained salt. 

These results demonstrate that the sequence of conformational 

transitions for Na poly[d(A-C)].poly[d(G-T)] is C-+A~B. Although this may 

have been inferred from the results of Bram and Baudy, 1974, and Zimmerman 

and Pheiffer, 1980, the C conformation is more closely related to the B 

than to the A conformation, Marvin et al., 1961, Arnott and Selsing, 1975. 

Thus the sequence transition A~C~B for Na DNA suggested by Leslie et al., 
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1980, seemed more likely. This is clearly not the case for Na poly[d(A-C)]. 

po1y[d(G-T)] and this result is supported by the work of Mahendrasingam, 

1983, and Rhodes et al., 1982, on Na DNA's. 

As well as the relative humidity of the fibre environment and the 

aC1-/PO~ ratios, the conformation of Na poly[d(A-C)].poly[d(G-T)] has also 

been shown to depend on the range of relative humidity to which a fibre 

has previously been exposed. Thus neither the C conformation from fibres 

containing 0.4-0.8 aC1-/Po~, nor the structure characterised by the minor 

component from fibres containing no added salt, could be retrieved by 

changes in the relative humidity once the relative humidity had been raised 

above a critical limit. A possible explanation for this irreversibility 

for the C conformation and the structure represented by the minor component 

is the crystallisation of excess salt in a separate phase as gels dry during 

fibre preparation. This would leave the salt content in the polynucleotide 

phase low enough to favour the low salt conformation at low relative 

humidity. As the relative humidity is gradually increased the salt crystals 

in the fibres dissolve leading to a more uniform salt distribution. 

Subsequent reduction in the relative humidity may not result in the 

crystallisation of the salt as a separate phase because the sodium chloride 

ions aggregate less readily in the wet fibre than in the gel. Consequently 

the concentration of excess salt in the vicinity of the polynucleotide may 

be above the level at which the low salt conformation is favoured. 

This effect of irreversibility does not seem to be related to 

perculiar conditions pertaining at the time of fibre preparation since the 

C conformation and that characterised by the minor component were 

recoverable upon the production of new fibres from the originals. 

In contrast to this irreversible C-'A transition for fibres of Na 

poly[d(A-C)].po1y[d(G-T)], only reversible C~A transitions have been 

observed for Na DNA's by Mahendrasingam, 1983, Rhodes et al., 1982. A 

similar discrepancy has emerged between C-+A transitions in Na poly[d(A-T)]. 
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poly[d(A-T)] fibres prepared by the author compared with those prepared by 

Mahendrasingam, 1983, and this has been attributed to different methods of 

sample preparation as described in chapter 5.4. In view of these results 

it is likely that the difference between C - A transitions in Na 

poly[d(A-C)].poly(d(G-T)] fibres and Na DNA fibres occurs as a result of 

differences in sample preparation rather than any manifestation of the 

structural differences between Na poly[d(A-C)].poly(d(G-T)] and Na DNA. 

In view of this suggestion the aCl-/Po~ ratio required to stabilize the C 

conformation of Na poly(d(A-C)].poly[d(G-T)] may be much lower than the 

value of 0.4-0.8 aCI-/PO~ initially suggested by these results. Thus it 

maybe less than that required to stabilize the A conformation and compatible 

with the results for the C conformations of Na DNA's. 

A comparison of the C patterns obtained for Na poly(d(A-C)]. 

poly[d(G-T)], Plate 3.7, with those so far obtained for natural Na DNA's 

shows much better definition in the higher layer lines near the meridian. 

This may be due to a more regular conformation for the synthetic 

polynucleotide than is possible for native DNA. 

Although in this study the conditions of relative humidity and salt 

content of fibres has been systematically varied in order to obtain the 

types of conformations available to the sodium salt of poly(d(A-C)]. 

poly[d(G-T)], not all the conformations reported by other workers have been 

found here. In the case of the S conformation of polY(d(A-C)].polY[d(G-T)], 

Arnott et al., 1980, Leslie et al., 1980, this is not surprising since 

although fibres were prepared with 3-67. retained salt necessary to reproduce 

the B conformation in typical;DNA specimens, the S conformation was only 

observed after prolonged annealing of some of these fibres. However, the 

inability to obtain a fully crystalline B pattern for Na poly[d(A-C)]. 

poly(d(G-T)] as reported by Leslie et al., 1980, is rather more difficult 

to explain. 

This work has attempted to express some of the conditions pertaining 
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to polynucleotide conformation in a quantitative manner. However, just as 

Cooper and Hamilton, 1966, concluded that there were factors other than 

relative humidity and salt content which affected the A~B transition and 

which they were unable to identify, these results also indicate that there 

are significant factors which generally influence DNA and polynucleotide 

conformation in fibres other than the traditional parameters of retained 

salt and relative humidity. Particular regard for factors influencing salt 

crystallization in terms of crystal growth and nucleation rate may prove 

to be worth investigation in the future. 

In particular these results suggest that the C conformation is 

routinelY observed when sodium is the associated cation in poly[d(A-C)]. 

poly[d(G-T)] fibres. This work is supported by the observation of the C 

conformation for the Na salts of a wide variety of naturally occuring DNA's 

by Mahendrasingam, 1983, Rhodes et al., 1982. Under physiological conditions 

DNA is most likely to be associated with the sodium cation. The routine 

observation of the C conformation in Na DNA's suggests that this conformation 

may be of greater biological significance than has so far been assumed. 

3.5 An estimation of the error in the determination of the aCl-/Po~ ratio 

There are three errors which are thought to significantly contribute 

to the aCl-/PO~ ratio error. These are the error in calculating the content 

of the polynucleotide samples, the weighing error and the error associated 

with pipetting aliquots of standard sodium chloride solutions. 

The error in calculating the water content of the polynucleotide 

samples was determined experimentally using Sigma calf thymus Na DNA, since 

poly[d(A-C)].polY[d(G-T)] was too precious to use for analysis in this 

fashion. The water content of twelve Na DNA samples was estimated in the 

same manner as the Na poly[d(A-C)].polY[d(G-T)] samples and the results are 

recorded in Table 3.3. For a given DNA sample this table shows the mass 

of the sample, the expected concentration of the sample in 4.0ml of O.OlM 



52 

Sample Weight Expected Measured Percentage 

Number ug Concentration Concentration Ratio 
-5 x10 M x10-5M 

1 113.5 8.53 6.14 71.98 

2 48.9 3.67 2.61 71.12 

3 172.9 12.99 9.54 73.44 

4 118.8 8.93 6.36 71.22 

5 138.5 10.41 7.65 73.49 

6 146.2 10.98 8.03 73.13 

7 148.2 11.13 8.33 74.84 

8 136.4 8.20* 5.74 70.00 

9 122.4 7.36* 5.36 72.83 

10 97.7 7.34 5.39 73.43 

11 119.5 7.18* 5.46 76.04 

12 124.0 9.32 6.99 75.00 

Table 3.3 Data relating to the determination of the water content and 
associated error in weighed Na DNA samples. Samples dissolved 
in S.Oml of O.OlM NaCl solution are denoted by *. The mean 
value of the expected/measured percentage ratio is 73.04 ±3.04 
or ±4.16%. 

Tare Weight/rng 1.0 2.0 3.0 5.0 10.0 

Measured Va1ue/rng 0.98 1.93 3.07 4.94 10.05 

Percentage Difference -2.0 -3.5 +2.3 -1.2 +0.5 

Table 3.4 Data relating the measured masses of the tare weights to their 
stipulated values. The average percentage difference between 
the stipulated and measured weights is -0.87.. 
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sodium chloride solution, the concentration of the dissolved sample 

determined from the optical density of the solution and the ratio of these 

two concentrations. From these results the Na DNA samples were shown to 

have a percentage DNA content of 73.0 ±3.0. This gave a percentage error 

of ±4.27. in the determination of DNA content. This analysis does not take 

into account any systematic errors associated with weighing the sample, 

determining the absorbance of the dissolved samples or in assuming a value 

-1 -1 of 6600M em for the extinction coefficient of DNA at X258nm• In the 

latter ease an indication of this error may be obtained from reference to 

the various published values. Thus Peacocke and Walker, 1962, give an 

-1 -1 
average value of EX258 = 6640M cm , while Rusconi, 1966, give EA258 = 

-1 -1 H th 1 E 6600M-l cm-l used· h 6530M cm. ence e va ue A258 = ~n t ese results 

may represent an error of ±1.17.. For simplicity these errors have been 

added to produce an overall error in the water content of ±5~3i.. It is 

thought that other systematic errors in the water content are negligible 

compared with the above value. 

In considering the error in determining the mass of the polynucleotide 

samples the recommended procedure for using the microbalance was to 

calibrate it with the aid of a lSOmg class M standard weight. According to 

the operating manual the design of the balance is such as to give an 

accuracy of±O.l% on all scale ranges after such calibration. It was not 

possible to confirm this statement since no other standard weights were 

available at the time. The smallest tare weights were weighed on the 

balance and the results are recorded in Table 3.4. The difference of the 

measured masses of the individual weights compared with the stipulated 

values is larger than the average difference of -0.87.. Thus, the discrepancy 

between the stipulated and measured masses is thought to more nearly reflect 

variations in the masses of the tare weights rather than any systematic 

weighing error incurred as aresult of incorrect calibration of the micro­

balance. This suggests that on the O-lOmg scale the balance is accurate 
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to at least ±0.87.. 

In considering the pipetting errors, the volume of standard sodium 

chloride solutions added to gels to obtain specific aCl-/Po~ ratios varied 

from 1.0-10.Oul. The 10.Oul Oxford pipette was used to transfer 5.0ul 

aliquots of water to the pan of the electronic microbalance in order to 

determine the reproducibility of the delivery of the pipette. An analysis 

of twenty-four deliveries gave an average weight of 4.71 ±0.08mg or ±1.707. 

per S.Oul aliquot. Taking into account the density of water at ambient 

temperature, S.Oul of water should weigh 4.990mg. The 5.67. discrepancy in 

the measured and calculated masses of the aliquots is significantly greater 

than the 1.707. reproducibility of the pipette and is attributed to spluttering 

and capillary action. Both of these effects cause a small part of the 

delivery to be retained within the pipette tip. The average time taken to 

weigh an aliquot was 20 ±2s and the rate of evaporation was 2.25ugs-l • 

Thus the determination of the mass of an aliquot was not significantly 

affected by the rate of evaporation of water. A reduction in the pipetting 

error may be obtained by using a micropipette of constant bore. Although 

this type of pipette is less convenient to use than the auto pipette, 

capillary and spluttering effects might be expected to be less. 

Alternatively, the aCl-/PO~ ratios could be decreased by N67. to account for 

the low delivery of the auto pipette. However, in this work no such 

corrections were made and the pipetting error is taken as ±S.67.. 

The addition of these errors results in an overall estimation of the 

error in the aCI-/PO~ ratio of ±12k. 

This error does not take into account any inhomogeneity in the 

distribution of the added salt within the fibre samples. Such effects may 

well give higher or lower Cl-/PO~ ratios in localized regions of the fibres 

in excess of the estimated error value. It is necessary to improve methods 

of fibre preparation in order to minimize these effects. 
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AN I~STIGATION INTO THE CONFORMATIONAL FLEXIBILITY OF THE 

LITHIUM SALT OF POLY[d(A-C)].POLY[d(G-T)] 

4.1 Introduction 

A variety of diffraction patterns have been obtained from the lithium 

salt of calf thymus D~A. Langridge et al., 1960a, gave details of fully 

crystalline orthorhombic B patterns, semi-crystalline orthorhombic and 

hexagonal B patterns and semi-crystalline orthorhombic and hexagonal C 

patterns. Marvin et al., 1961, have analysed the type of diffraction 

pattern obtained from lithium calf thymus DNA as a function of relative 

humidity and salt concentration in the specimen. They obtained B 

diffraction patterns when 1 - 67. by weight of lithium chloride was 

precipitated with the DNA during preparation, but found that the optimum 

value of lithium chloride was between 2.57. and 47., while the optimum 

humidity was 667.. Specimens containing less than 17. lithium chloride gave 

only C or semi-crystalline B patterns while specimens containing much more 

than 67. lithium chloride either gave high humidity B patterns or were too 

deliquescent to use. Generally fibres which gave crystalline B patterns 

at 667. rh gave orthorhombic C patterns at ·low relative humidity while 

fibres of low chloride content gave hexagonal C patterns at 667. or lower 

relative humidity. All fibres gave semi-crystalline B patterns at 927. rho 

However, the relative humidity with which one type of pattern changed to 

another usually varied with the fibre. Hysteresis effects influenced the 

type of patterns obtained and these effects were not removed by 

equilibrating the specimens at constant relative humidity for several days. 

The lithium chloride concentrations· in the DNA samples used in fibre 

preparation were determined using a micro-Carius method which is briefly 

described in chapter 6.2. 

Davies and Baldwin, 1963, have shown that Li salts of poly[d(A-T)]. 

poly[d(A-T)] and the chemically modified poly[d(A-brU)].poly[d(A-brU)] can 
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exist in the semi-crystalline B form. 

Zimmerman and Pheiffer, 1980, have observed Band C conformations in 

fibres of lithium salmon sperm DNA. For fibres prepared from pellets 

centrifuged from lmM lithium chloride solutions a C--'B transition occurred 

between 797. and 987. rho Band C conformations were also apparent for Li DNA 

fibres immersed in aqueous methanol, aqueous ethanol and high concentration 

lithium chloride solutions while only the B conformation was observed for 

Li DNA fibres immersed in ethylene glycol. In all cases the C conformation 

was adopted in more dehydrating media than the B conformation. The range 

of helical parameters attributed to the C conformation has been further 

extended by the results of Zimmerman and Pheiffer. In particular, the 

range of residues per turn has increased from 8.8 - 9.7 to 7.9 - 9.6 while 

the range of pitch values has increased from 2.92 - 3.22 to 2.68 - 3.18 

compared with the data of Marvin et al., 1961. Zimmerman and Pheiffer 

suggest that a continuous smooth transition can occur between members of 

the C family. They point out that the number of residues per turn for the 

C family range from"almost that of the B form to that of the D form, Davies 

and Baldwin, 1963, Arnott et al., 1974, or the T form, Mokul'skii et al., 

1972, Mokul'skaya et al., 1975. 

Leslie et al., 1980, have obtained diffraction patterns from fibres 

of the lithium salt of various synthetic polynucleotides. As in the case 

of native DNA's only the Band C conformations were observed in the presence 

of the lithium cation. Thus Li poly[d(G-C)].poly[d(G-C)], Li poly[d(I-I-T)]. 

poly[d(A-C-C)], Li poly[d(A-C-T)].poly[d(A-C-T)] and Li poly[d(G-C-T)]. 

poly[d(A-C-C)] all exhibited the B conformation, while the latter two 

polynucleotides also gave the C conformation at lower relative humidities. 

In this work an investigation of the lithium salt of poly[d(A-C)]. 

poly[d(G-T)] has been carried out in a similar manner to that of the sodium 

salt of this polynucleotide reported in chapter 3. Conditions for the 
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observation of C and semi-crystalline B diffraction patterns in terms of 

relative humidity of the fibre environment and added fibre salt content 

are described. The results are compared with those obtained for other 

lithium polynucleotides and lithium native D~A's reported by other workers. 

Particularly well resolved C diffraction patterns have been obtained for 

Li poly[d(A-C)].poly[d(G-T)] which displays an unusual helical symmetry. 

Further analysis of these patterns may yield a more accurate model of the 

C conformation. 

4.2 Materials and methods 

The lithium salt of the synthetic polynucleotide poly[d(A-C)]. 

poly[d(G-T)] was prepared at Paris University VII by Dr. G.J. Brahms and 

Mr. J. Vergne as described in chapter 2.1. From this material a series of 

fibres was prepared containing 0.0, 0.24, 0.55, 0.82, 1.4 and 1.6 aCl-/Po~, 

in the same manner as described in chapter 3.2 for the sodium salt of this 

polynucleotide. The sample of aCl-/PO~ ratio = 1.6 was found too 

deliquescent to be used, having quickly absorbed water from the atmosphere 

with a resultant loss of shape. However, x-ray diffraction patterns were 

obtained for all the other samples at a series of ascending and descending 

relative humidities using pinhole and Franks optics. 

4.3 Results 

The fibre containing no added LiCl gave a C type diffraction pattern 

at 447. rh as shown in Plate 4.1. This pattern was characterized by strong 

intensity on the first layer line in the region of ~ = 1.0nm-
l 

and on the 

lm-l layer line, immediately below the meridional reflection as described 

by Marvin et al., 1961, for C patterns of Li DNA. In addition a pitch of 

2.77 ± 0.04nm was apparent which is lower than the value obtained by 

Marvin et al., 1961, but well within the extended range of 2.68 - 3.18nm 

for Li C DSA reported by Zimmerman and Pheiffer, 1980. This pattern was 

more crystalline than previously reported and in particular the intensity 
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X-ray diffraction patterns of the lithium salt of 

poly[d(A-C)l . poly[d(G -T)] fibres 

Fibre KE 14 , aCI-/PO~ = 0 . 0 , rh = 44% . A C type diffraction pattern as 
characterized by the strong intensity in the regions indicated by the 
arrows and a pitch of 2 . 77 ±0 . 04nm. 

Plate 4 . 2 

Fibre KE 14 , aC1-/PO~ = 0 . 0 , rh = 98% . A semi-crystalline B diffraction 
pattern with a pitch of 3 . 27 ±0 . 09nm . ote the absence of strong intensity 
compared with the arrowed regions in Plate 4 . 1 . 
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on the first layer line in the region of ~ = 1.0nm-1 could be resolved into 

three separate reflections. 

Diffraction patterns recorded for this fibre at increasing relative 

humidities of 577., 667., 757., 867. and 927. showed no distinct conformational 

changes. At 987. rh a semi-crystalline B diffraction pattern was obtained 

as shown in Plate 4.2. The pitch obtained from this pattern had increased 

to 3.27 ±0.09nm and the strong intensity on the first layer line and on 

the lm-l layer line which characterized the previous Cpatterns is no longer 

apparent. On reducing the relative humidity to 927. a C pattern was once 

more obtained and this conformation remained stable as the relative humidity 

was further reduced to 867. and 757.. 

Similar series of diffraction patterns were obtained for the fibres 

of aCl-/PO~ = 0.24, 0.55 and 0.82. The most crystalline and well oriented 

diffraction patterns were obtained from the fibre having an aCl-/Po~ ratio 

=0~55. Measurements of the set of diffraction patterns obtained from this 

fibre showed an increase in the d-spacing of the 110 reflection with 

increasing relative humidity. The reflections are described in terms of 

an hexagonal lattice as was later shown to be the case for the diffraction 

patterns which were subjected to a more detailed analysis. This increase 

is quite marked and corresponds to an increase in intermolecular spacing 

of 8.67. at 867. rh when the fibre is still clearly in the C conformation, 

as shown in Plate 4.3. The spacing of the 110 reflection, the corresponding 

intermolecular spacing and the percentage increase in the spacing as a 

function of relative humidity are recorded in Table 4.1. d-spacings of 

the intense 102, 202 and 212 reflections have also been measured and 

tended to increase with increasing rho However, the ratios between the 

~-values of these spacings as a function of relative humidity did not 

generally differ by more than ±2i. which was the accuracy of the measurements. 

This suggests that the changes observed in the d-spacings are not an 

indication of the change in molecular packing, but that an overall expansion 
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Plate 4 . 3 

Fibre KE 19 , aCl -/ PO - = 0 . 55 , rh = 86% . A C type diffraction pattern with 
increased I 1$ of 8 . 67: and increased 1 0 2 , 2 0 2 and 2 1 2 r,- spac ings by an 
average value of - 8 . 4% compared with t he same fibre recorded at 57% rh o 

Plate 4 . 4 

an 

Fibre KE 19, aCl -/ PO = 0 . 55 , rh = 86% after passing through a humidity 
cycle which reached a.maxim~ of 987. . A C type diffraction pattern as 
characterized by the 1ntens1ty on the I m-l layer line . However , the central 
reflections are much more diffuse compared with previous C patterns . 
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7.Rh d110 
IMS/run 7. Increase Average 7. Increase Pitch i. Increase 

S pac ing/ run in IMS in E, va lues of the /run in Pitch 

1 0 2, 2 0 2 and 2 1 2 

Reflections /nm -1 

.57 1. 75 2.02 0.05 0.0 2.92 0.0 

66 1.73 2.00 -1.4 -2.4 2.86 -2.1 

75 1.80 2.08 2.8 -3.6 2.91 -0.3 

86 1.90 2.20 8.6 -8.4 2.92 0.0 

92 2.01 2.32 14.7 -11.1 3.02 3.4 

98 2.20 2.54 25.4 - 3.06 4.8 

92 2.11 2.43 20.3 - 3.02 3.4 

86 1.99 2.30 13.7 -21.3 2.89 -1.0 

75 1.71 1.98 -2.2 -0.3 2.86 -2.1 

66 1.70 1.96 -3.0 2.7 2.85 -2.4 

57 1.67 1.93 -4.8 3.3 2.88 -1.4 

44 1.66 1.91 -5.5 4.7 2.89 -1.0 

Table 4.1 

Data from the diffraction patterns of the Li po1Y[d(A-C)].po1Y[d(G-T)] fibre 

of aC1-/PO~ = 0.55 showing changes of specific parameters as a function of 

relative humidity. The average percentage increase in the ~ values of the 

102, 202 and 212 reflections were not obtained at 987. and 927. rho Under 

these conditions the fibre gave semi-crystal1ine B diffraction patterns where 

the second layer line appeared as a continuous streak of intensity. 
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of the lattice is occurring. This effect is almost certainly due to the 

uptake of water molecules and was found to be reversible as the relative 

humidity was decreased. An average percentage increase in the t-values of 

the 102, 202 and 21 2 reflections is recorded in Table 4.1. Measurements 

from the first, second and third layer line spacings of these patterns were 

used to calculate the helical pitch as a function of relative humidity. 

No significant change in this value was observed up to 8670 rho At 9270 rh 

a large change in pitch occurred and at 987. rh a semi-crystalline B 

diffraction pattern was apparent as evidenced by the decrease in intensity 

of the lm-l layer line. As the relative humidity was decreased to 927. the 

diffraction pattern obtained still retained the overall appearance of a semi-

crystalline B pattern. At 867. rh the pitch decreased considerably but the 

reflections on this pattern, although indicative of the C conformation, were 

rather diffuse as shown in Plate 4.4. At relative humidities of 757. and lower 

the C patterns were once more obtained with very sharp central reflections. 

Pitch values and the percentage increase in these values are also recorded 

in Table 4.1. Upon reducing the relative humidity the pitch, percentage 

increase in ~ and the intermolecular spacing values obtained from the 

diffraction patterns of this fibre all indicate a contraction of the lattice 

to a point beyond that obtained for patterns recorded at ascending relative 

humidities. 

One effect of increasing the aCI-/Po~ ratio in these fibres was an 

initial improvement in the crystallinity apparent from the diffraction 

patterns. Beyond an aCl-/Po~ = 0.55 the fibre crystallinity was still good, 

but the orientation of the molecules within the fibre deteriorated. The 

diffraction spots on patterns from the fibre of aCI-/Po~ = 0.82 appeared as 

long drawn out arcs and this effect was even more marked for the fibre of 

aCl-/PO~ = 1.4 as shown in Plate 4.5. 

The transition from C patterns to semi-crystalline B patterns occurred 

at lower relative humidities as the aCI-/Po~ ratio increased. For the 
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Plate 4.5 

Fibre KE 18, aCl-/PO- = 1.4, rh = 447. after passing through a humidity 
cycle which reached ~6i.. This ~s probably a C type diffraction pattern as 
suggested by the strong intensity on the lm-l layer line. This pattern 
demonstra tes good cry~tal~inity, but poor molecular orientation observed 
in fibres of high aCl /P04 ratio. 
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fibres of aCl-/PO~ ratios of 0.82 and 1.4 this transition occurred at 927-

and 867. rh respectively. In some cases the C--B transition occurred at 

higher relative humidities than the corresponding B--C transition for a 

specific fibre. This effect was more pronounced in fibr.es of higher aCl-/Po~ 

ratio and probably reflects the deliquescent nature of lithium chloride. 

The conformations exhibited by these fibresasa function of relative humidity 

and aCl-/PO~ ratio is given in Table 4.2. The symbol c+ in this table is 

used to denote diffraction patterns which were still characteristic of the C 

conformation as defined by Marvin et al., 1961, but which exhibited an 

increase in the 102, 202 and 212 d-spacings of more than 37. compared 

with the initial patterns of a given fibre. The symbol m in this table has 

been used to describe patterns which show strong intensity on the lm-l layer 

line, but give rather diffuse central reflections as in Plate 4.4 compared 

with the sharp central reflections of the low humidity C patterns. 

For the fibre of aCl-/PO~ = 1.4, only the patterns obtained at low' 

relative humidities of 447. and 577. showed sharp central reflections. At 

higher relative humidities these patterns exhibited very diffuse intensity 

distributions and little information was obtained. However, these patterns 

were never dominated by diffraction from salt crystallites as were the 

Na pOly[d(A-C)].poly[d(G-T)] patterns. Before this feature became apparent 

Li poly[d(A-C)].poly[d(G-T)] fibres were found too deliquescent to be used. 

C or semi-crystalline B patterns for this fibre were assigned according to 

the presence or absence of strong intensity on the lm-l layer line. No 

attempt has' been made to determine any degree of lattice expansion or 

contraction as a function of relative humidity for this fibre. 

Two of the best resolved C diffraction patterns obtained to date for 

Li poly[d(A-C)].poly[d(G-T)] are shown in Plates 4.6 and 4.7. These were 

both obtained from the fibre of aCl-/PO~ = 0.55. Plate 4.6 was recorded at 

577. ascending relative humidity and Plate 4.7 at 447. descending relative 

humidity. An obvious difference between the two diffraction patterns is 
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7.Rh 
aCl-/PO~ 

0.00 0.24 0.55 0.82 1.40 

44 C C Crun C Crun 

57 C C C C+. -
66 C+ C C C+ Crun 

75 C+ C C C+ Cnm 

86 C+ - C+ m semi-B 

92 C+ C+ C+ semi-B -
98 semi-B semi-B semi-B - -
92 C+ m semi-B - -
86 C+ - m semi-B -
75 C+ c+ C m Cnm 

66 - - C C+ Cnm 

57 - - C C+ Crun 

44 - - C Cnm Cnm 

Table 4.2 

The occurrence of the C and semi-crystalline B conformations in Li 

poly[d(A-C)].poly[d(G-T)] fibres as a function of relative humidity and 

fibre salt content. The symbols m and + are described in the text. No 

attempt has been made to classify the C conformations of the fibres of 

aCI-/PO~ = 1.4 in this manner. run indicates that the pattern was not 

measured. 
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Plate 4 . 6 

Fibre KE 19 , aCl-/ PO~ = 0 . 55 , rh = 57% . The fibre is in the C 
conformation and the molecular packing is hexagonal . Only Bragg 
reflections are apparent in the central regions of the first and 
third layer lines . 
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Plate 4 . 7 

Fibre KE 19, aCl-/PO~ = 0 . 55 , rh = 44% after passing through a relative 
humidity cycle which reached a maximum of 98% . The fibre is in the C 
conformation and the molecular packing is hexagonal . Intensity streaks 
are visible on first , third and fifth layer lines . 
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the presence of intensity streaks on low numbered odd layer lines as seen 

in Plate 4.7 where only Bragg reflections are apparent in Plate 4.6. An 

examination of other diffraction patterns from this fibre showed that 

intensity streaks first appeared at 867. ascending relative humidity as shown 

in Plate 4.3 and were present on patterns obtained at 757., 667., 577. and 447. 

descending relative humidity. The intermediate patterns at 927., 987., 927. 

and 867. rh were either semi-crystalline B patterns or closely related to 

them. Intensity streaks similar to that observed in Plate 4.7 were not 

apparent in any of the C patterns from fibres of aCl-/Po~ ratio of 0.0 and 

0.82. For the fibres' of aCl-/PO~ = 0.24, some evidence of intensity' streaks 

on the first and third layer lines was observed at 577. and 667. rho However, 

the remaining C patterns in this series and those from the fibre of aCl-/PO~ 

= 1.4 were too diffuse or too weakly exposed to provide infomation on this 

phenomenon. Thus only in the patterns from the fibre of aCl-/PO~ = 0.55 

were such intensity streaks distinctive and there seems little correlation 

between the presence of these streaks and relative humidity or fibre salt 

content~ The streaking indicates a tendency for the molecules to be randomly 

translated by ±1/2 z in the z direction of the unit cell, Marvin et al., 

1961. The presence of faint Bragg reflections superimposed on these streaks 

in some cases indicates that this random z translation is not uniform 

throughout the fibre and that some regions have retained a higher crystalline 

order. 

The patterns shown in Plates 4.6 and 4.7 have be~n subjected to a more 

detailed examination. x and y coordinates from the diffraction spots of 

these patterns were measured with the aid of a two dimensional travelling 

microscope. ~, C, ~, and d values were calculated using the computer program 

'Film' and xi-zeta plots were constructed for each pattern. Assuming a 

helical symmetry of 91 , some reflections were found to occur exactly half 

way between layer lines and the helical symmetry is thus described as 9
2

• 

In 'the text, reflections which have so far been referred to by Miller 
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indices based on a 9
1 

helical symmetry are henceforth described according 

to a 9
2 

helical symmetry. xi-zeta plots for the patterns shown in Plates 

4.6 and 4.7, based on a 92_ helical synnnetry are given in Figures 4.1 and· 

4.2 respectively. Both patter~s were found to index on an hexagonal system 

although the higher layer lines of the pattern at 57% rh were not well 

resolved and could not be indexed unambiguously. ~-spacings of unambiguously 

identified spots were used in conjunction with their assigned indices to 

calculate lattice parameters. These were subjected to a cyclic least squares 

refinement:procedure using the computer program 'Hex'. The observed and 

calculated ~-spacings, together with their assigned Miller indices are given 

in Tables 4.3 and 4.4. The refined lattice parameters were a = 3.480 ± 

0.017nm and c = 5.840 ±O.028nm for the pattern at 57% rh and a = 3.216 ± 

0.004nm and c = 5.807 ±0.007nm for the pattern at 44% rho Approximate 

intensities of the observed reflections have been assigned by eye. Tbese 

assignments have been included in Figures 4.1 and 4.2 and Tables 4.3 and 4.4. 

Apart from the superior crystallinity of the pattern in Plate 4.7 and 

the presence of intensity streaks on what are now termed the second, sixth 

and tenth layer lines there is essentially little difference between it and 

the pattern in Plate 4.6. The xi-zeta plots in Figures 4.1 and 4.2 show 

good agreement on the zero and fourth layer lines. The difference in the 

refined lattice parameters is· probably due to the difference in relative 

humidity at which the patterns were recorded. However, it may also occur 

partly as the result of the random molecular translation by ±1/2 z which 

allows a smaller a lattice dimension to be assumed. A comparison of Plates 

4.3, 4.4 and 4.6 with 4.1 shows an additional reflection on the second 

- -1 
layer line of the latter pattern at ~ = 1.09nm • This reflection was 

apparent on patterns of the fibre of aCl-/Po~~ 0.0 from 44% to 75% ascending 

relative humidity and has not been observed on any of the patterns from the 

other fibres. Measurements suggest that the additional reflection is the 

302 reflection, while the two adjacent reflections index as the 202 
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Assigned h,k,l ~ Observed ~ Calculated Apparent Relative 

Value I run -1 I run -1 Intensity 

110 0.569 0.575 s 

300 0.998 0.995 w 

220 1.152 1.149 w 

101 0.368 0.373 vw 

102 0.474 0.477 m 

202 0.751 0.747 vw 

212 0.943 0.942 m 

312 1.242 1.244 w 

104 0.760 0.761 s 

114 0.883 - s 

204 0.952 0.954 s 

214 1.109 1.113 vw 

324 1.598 1.600 vw 

115 1.028 1.031 vw 

206 1.224 1.223 m 

216 1.350 1.351 m 

326 1.781 1.774 w 

009 or 109 1.550 - m 

1011 1.914 1.912 w 

1016 or 1116 2.776 - s 

- 2.863 - s 

- 2.881 - s 

1018 or 1118 3.117 - s 

Table 4.3 

Observed and calculated p-spacings together with their assigned Miller 
indices for the C pattern of Plate 4.6. Also indicated are the corresponding 
relative intensities. 
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Assigned h,k,l ~ Observed ~ Calculated Apparent Relative 

Value /run-1 /run -1 Intensity 

110 0.619 0.622 s 
300 1.075 1.077 m 
220 1.241 1.244 m 
410 1.647 1.645 w 

212 1.006 1.010 m 

104 0.776 0.777 vs 
204 0.994 0.995 vs 
214 1.171 1.173 s 
314 1.465 1.466 w 
404 1.581 - vw 
324 1.708 1.710 w 
434 2.296 2.290 w 
614 2.461 2.453 w 

534/704 2.596 2.606 vw 

006 1.027 1.033 vw 

007 * - vw 

108 1.422 1.424 m 
218 1.672 1.673 m 
318 1.888 1.890 w 
508 2.269 2.263 m 
518 2.430 2.428 m 

009 1.556 1.549 w 

2010 1.865 1.866 vw 
2110 1.970 1.967 w 

0011 or 1011 1.909 - vw 

0012 2.067 2.067 w 
3012 2.329 2.330 m 
2212 2.412 2.412 m 
4112 2.636 2.641' m 

2114 2.596 2.591 m 

1016 2.774 2.779 vs 
2016 2.849 2.847 vs 
2116 2.918 2.914 vs 

0018 3.098 3.100 s 
1118 3.161 3.162 s 

Table 4.4 

Observed and calculated p-spacings together with their ass'igned Miller 
indices for the C pattern of Plate 4.7. Also indicated are the 
corresponding relative intensities. The '*' denotes that the ~-spacing 
of this reflection was not measured. 
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and 222 reflections. At 92% ascending relative humidity and 92%,86% and 

757. descending relative humidities only two of the three reflections were 

observed. Strong reflections on the equator and fourth layer lines of these 

patterns indexed according to the xi-zeta plots in Figures 4.1 and 4.2. 

Why such changes should occur in some patterns of this fibre and not others, 

or why these changes were not apparent on patterns of other fibres remains 

unclear. 

The analysis of these diffraction patterns is being continued by Mr. T. 

Forsyth. It will be interesting to further examine the effects of chloride 

content and relative humidity on the lattice parameters of the C conformation. 

Mr. Forsyth is involved in intensity measurements of these patterns in 

order to provide more extensive experimental data for use in mod~l building 

studies of the C conformation than is currently available. 

4.4 Discussion 

C and semi-crystalline B diffraction patterns have been obtained from 

fibres of Li po1y[d(A-C)].poly[d(G-T)]. The observation of just these two 

conformations when Li is the associated cation is in keeping with results 

from native DNA's, Marvin et al., 1961, Zimmerman and Pheiffer, 1980, and 

synthetic polynucleotides, Davies and Baldwin, 1963, Leslie et al.,. 1980. 

The A conformation has never been observed for Li DNA's or Li po1ynucleotides 

and despite investigation into this apparent anomaly no satisfactory 

explanation has yet been reported. The A,B and C conformations have been 

observed for both native Na DNA's and synthetic Na polynucleotides. Additional 

conformations such as the D and S forms which have been exhibited by Na 

synthetic polynucleotides have not been observed for their Li counterparts. 

The relative humidity and aCI-/Po~ ratio with which the C and B 

conformations were observed in fibres of Li poly[d(A-C)].poly[d(G-T)] were 

similar to that found in fibres of Li calf thymus DNA by Marvin et al., 

1961. There was a tendency for semi-crystalline B patterns of Li 
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poly[d(A-C)].poly[d(G-T)] fibres to be observed at lower relative humidity 

as the aCI-/PO~ ratio increased. However, C patterns were obtained from 

fibres of Li poly[d(A-C)].poly[d(G-T)] at aCl-/Po~ ratios in excess of those 

reported by Marvin et al., 1961, for Li DNA. The most crystalline patterns 

were obtained from fibres of both Li DNA, Marvin et al., 1961 and Li 

poly[d(A-C)].poly[d(G-T)] at the same aCl-/Po~ ratio = 0.5. 

Fully crystalline B diffraction patterns obtained from Li DNA fibres, 

by Langridge et al., 1960a, were not apparent for the fibres of Li 

poly[d(A-C)].poly[d(G-T)] examined in this work. Marvin et al., 1961, has 

pointed out that while it is possible to obtain crystalline Li DNA patterns 

from fibres prepared by the addition of lithium chloride solutions to small 

quantities of chloride free DNA, better patterns were obtained from specimens 

in which lithium chloride was precipitated with the DNA during preparation. 

The first of these methods was adopted in the preparation of the Li 

poly[d(A-C)].poly[d(G-T)] fibres owing to the small quantity of this 

synthetic polynucleotide available. This method may have resulted in the 

failure co detect the fully crystalline B patterns for Li poly[d(A-C)]. 
-

poly[d(G-T)], but in view of the highly crystalline C patterns obtained from 

fibres of this polynucleotide as seen in Plate 4.6 and 4.7 this supposition 

seems unlikely. Therefore perhaps the absence of fully crystalline B 

patterns is related to the more regular structure of the synthetic 

polynucleotide which has a preferred helical symmetry compared with Li DNA. 

It is notable that for the five Li synthetic polynucleotides examined by 

Leslie et al., 1980, no fully crystalline B pattern has been reported. 

The size of the unit cell of Li'poly[d(A-C)].poly[d(G-T)] in the C 

conformation changes with relative humidity, but no change was observed in 

the packing of the molecules which remained.hexagonal. In contrast Li eDNA 

exhibits both hexagonal and orthorhombic packing. 

Little variation in pitch was observed in fibres of Li poly[d(A-C)]. 

poly[d(G-T)] in the C conformation as a function of relative humidity 
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and fibre salt content. The values obtained lie well within the range 

reported for the C conformation of Li DNA by Marvin et al., 1961, and 

Zimmerman and Pheiffer, 1980. The a lattice parameters obtained from the 

110 reflections of Li poly[d(A-G)].poly[d(G-T)] C patterns at low relative 

humidity are similar to those reported by Marvin et al., 1961,and Zimmerman 

and Pheiffer, 1980. The a parameters increase with increasing relative 

humidity to a value of 4.06nm which is well beyond the values obtained for Li 

C DNA. It is reminiscent of the a value of 4.60nm obtained for hexagonal 

semi-crystalline B DNA by Langridge et al., 1960~ while the a value obtained 

for Li poly[d(A-G)].poly[d(G-T)] of 4.32nm which is also supposedly hexagonal 

semi-crystalline B is more similar. Perhaps this observation lends some 

weight to the suggestion of Zimmerman and Pheiffer, 1980, that smooth 

transitions can occur not only between members of the C family, but also 

between members of the Band C families. 

Hysteresis effects in terms of the type of diffraction pattern obtained 

as a function of relative humidity have been described by Marvin et al., 

1961. In this work there was a distinct tendency for semi-crystalline B 

diffraction patterns to be observed at lower descending than ascending 

relative humidities. Despite Marvin et al:s stipulation that such effects 

were not removed by equilibrating at constant relative humidity for several 

days it still seems that the most likely explanation for such effects is the 

retention of water by the fibres after being subjected to a high humidity 

environment •. Water retention is probably enhanced by the presence of high 

concentrations of lithium chloride. Irreversible transitions like those 

found for fibres of Na poly[d(A-C)].poly[d(G-T)] and Na poly[d(A-T)]. 

poly[d(A-T)] described in chapters 3 and 5 respectively have not been 

observed for fibres of Li poly[d(A-C)].poly[d(G-T)]. These effects have 

been attributed to inhomogeneous salt distributions within the fibre samples. 

While such effects have not been apparent in Li poly[d(A-C)].poly[d(G-T)] 

samples it would be interesting to prepare some Li poly[d(A-C)].poly[d(G-T)] 
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samples according to the method of Mahendrasingam, 1983.which is described 

in chapter 5.2. However, it may be that owing to the greater solubility of 

lithium chloride as opposed to sodium chloride in aqueous solution it is 

easier to obtain homogeneous salt solutions in lithium chloride fibre 

samples. 

Hexagonal patterns of Li C DNA showed streaks on the first and third 

layer lines indicating a tendency for the molecules to be translated by 

±0.5 in the z direction, Marvin et al., 1961. While similar C patterns 

have been obtained for Li poly[d(A-C)].poly[d(G-T)] fibres not all the C 

patterns showed this type of disorder. No correlation of this phenomenon 

with the type of packing, relative humidity or chloride content was apparent. 

Minor variations in the C conformation have been denoted by C' or Cit 

by Leslie et al., 1980. C' has been assigned to C conformations of the 

synthetic po1ynuc1eotides of Li poly[d(A-G-T)].po1y[d(A-C-T)] and Li 

po1y[d(G-G-T)].po1y[d(A-C-C)] where the helical symmetry is 9
1 

and probably 

reflects the trinucleotide repeating base sequence of these structures. 

C .. has been assigned to the C conformation of Na poly[d(A-G)].poly[d(C-T)] 

which has a 9
2 

helical symmetry. This is in contrast to the helical symmetry 

of 28
3 

favoured by Marvin et ale, 1961, and Arnott and Se1sing, 1975, to 

describe the C conformation of native Li DNA. In this work at least some 

C patterns of Li po1y[d(A-C) ].po1y[d(G-T)] show 92 helical symmetry which 

reflects the dinucleotide repeating base sequence of this structure. 

However, whether this helical symmetry arises as a result of the difference 

in electron density of the purine and pyrimidine bases, or whether there is a 

difference in the sugar phosphate backbone conformation of neighbouring 

nucleotides, as proposed by Klug et al., 1979, for po1y[d(A-T)].poly[d(A-T)], 

has yet to be determined. In support of the latter suggestion, Leslie et 

al., 1980, state that the intensities of the additional layer lines on their 

Cn pattern of Na poly[d(A-G)]. poly[d(C-T)] is greater than can be accounted 

for simply by the chemical nature of the dinucleotide repeat. Intensity 
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measurements from the Li poly[d(A-C)].poly[d(G-T)] patterns should help to 

resolve this question. 

Plates 4.6 and 4.7 probably represent the most well resolved C patterns 

yet obtained from natural DNA's or synthetic polynucleotides. The analysis 

of the intensity distributions of these patterns should help to provide a 

more accurate model of the C conformation than is currently available. 

Perhaps a greater understanding of the flexibility of this conformation as 

a function of relative humidity and Cl-/PO~ ratios may be forthcoming. 

Further knowledge of the C conformation may be important in view of the 

potential biological significance of this conformation as implied by the 

results of chapter 3, Mahendrasingam, 1983, and Rhodes et al., 1982. 
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AN INVESTIGATION INTO THE CONFORMATIONAL FLEXIBILITY OF THE 

SODIUM SALT OF POLY[d(A-T)].POLY[d(A-T)] 

5.1 Introduction 

The synthetic polynucleotide poly[d(A-T)].poly[d(A-T)] provides a 

useful comparison with natural DNA's of high adenine and thymine content. 

Such polynucleotides have the advantage of sequence homogeneity and may 

provide structural information which is not readily available from the 

analysis of native random sequence DNA. The structure of poly[d(A-T)]. 

poly[d(A-T)] is of particular biological interest in that it closely 

approximates to a known satellite DNA found in the crabs of the genus Cancer, 

Sueoka and Cheng, 1962a,b. Another feature of poly[d(A-T)].poly[d(A-T)] is 

that it binds to the lac repressor of E.coli about 100 to 1000 times more 

strongly than calf thymus DNA, Riggs et al., 1972. 

In an x-ray fibre diffraction study Davies and Baldwin, 1963, found 

that fibres of the sodium salt of poly[d(A-T)].poly[d(A .. T)] gave diffraction 

patterns like those of the A form patterns of Na DNA. This conformation 

remained stable even at 987. rh, although they concluded that this behaviour 

was due to fibres of low salt content. One of their preparations of Na 

poly[d(A-T)].poly[d(A-T)] which gave A form fibres was later found to yield 

fibres in a new conformation which they designated the D form. Fibres 

exhibiting the D form were found to do so over a large range in relative 

humidity of 427., 667. and 927.. Some fibres of Na poly[d(A-T)].poly[d(A-T)] 

gave AID mixtures which after a time generally changed to the D form. The D 

form was also apparent in ammonium poly[d(A-T)].poly[d(A-T)] fibres although 

fibres of the sodium salt proved to be more crystalline. That poly[d(A-T)]. 

poly[d(A-T)] could exist in other conformations was demonstrated by the 

ammonium salt of this polynucleotide which exhibited a C form with the same 

screw disorder as that of C DNA but with a different lattice arrangement. 

This material could also be induced into the B form of semi-crystalline Na 
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DNA by dissolving in a 57. glycerol solution. The lithium salt of this 

polynucleotide and of a chemically substituted analogue poly[d(A-brU)]. 

poly[d(A-brU)] were shown to exist in a crystalline B conformation with 

dimensions identical to those of Li DNA. Thus, although the conformational 

diversity of poly[d(A-T)].poly[d(A-T)] had been established, Davies and 

Baldwin, 1963, obtained only the A and D conformations for the sodium salt of 

this synthetic polynucleotide. 

In structural studies of alternating purine and pyrimidine sequences 

Arnott et al., 1974, obtained fibres of Na poly[d(A-T)].poly[d(A-T)] in the 

D conformation under conditions of minimum retained salt which they stated 

would normally have yielded the A conformation in DNA fibres. The specimens 

were more crystalline than those of Davies and Baldwin, 1963, and it was 

shown that the molecules pack in a tetragonal lattice with unit cell 

dimensions a = 1.70 ±O.Olnm and c = 2.43 ±O.Olnm standard deviation. 

Similar patterns were obtained for poly[d(G-C)].poly[d(G-C)] fibres. and 

Arnott et al., 1974, suggested that the D conformation was not specific to 

a particular purine-pyrimidine sequence. These authors··also.stated that 

the addition of sodium chloride to a fibre in the D conformation induced a 

change to the B conformation. 

Leslie et al., 1980, obtained one fibre of Na poly[d(A-T)].poly[d(A-T)] 

which gave an A DNA diffraction pattern over a period of six months even at 

957. rho Thus they suggested that there were conditions under which the A 

conformation of Na poly[d(A-T)].poly[d(A-T)] was stable although they were 

unable to determine precisely what these conditions were. They also reported 

D~A~B transitions in one fibre. of impure Na poly[d(A-T)].poly[d(A-T)] as 

the relative humidity of the fibre environment was increased. However, no 

indication was given of the nature of the impurities in this fibre nor of 

the quality of the patterns which were obtained. Leslie et al., 1980, 

concluded that poly[d(A-T)].poly[d(A-T)] normally displayed the B or D 

conformations in fibres and that the A conformation of this synthetic 
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polynucleotide was a metastable state which usually changed to the D form 

after a few days. 

With regard to the molecular structure of the D conformation, Arnott 

et al., 1974, have used their diffraction data in conjunction with linked 

atom least square refinement methods to propose a right-handed eight fold 

double helical model with an axial rise per residue of 0.303rum. Sugar 

pucker and conformational angles were reminiscent of the B conformation of 

DNA. Arnott et al., 1974, also interpreted data on Na poly[d(I-C)]. 

poly[d(I-C)] from Mitsui et al., 1970, in terms of a D conformation very 

similar to that of Na poly[d(A-T)].poly[d(A-T)]. They dismissed the left 

handed double helical model with unusual furanose ring shapes proposed by 

Mitsui et al., 1970, as bizarre. 

In a survey of duplexes, Gupta et al., 1980, proposed left handed and 

right handed structures for the A, Band D conformations which were 

stereochemically satisfactory and in agreement with the observed x-ray 

intensity data. 

Mahendrasingam, 1983, has criticized these models and proposed a new 

left handed model for the D conformation. The calculated intensity data from 

this model is in better agreement with the experimental data of Arnott et al., 

1974, than that calculated for the previous D models. 

An important aspect of nucleic acid conformation is to what extent 

base sequence and base composition may affect nucleic acid secondary 

structure. Bram, 1971, Bram and Tougard, 1972 and Bram, 1973, suggested that 

the detailed secondary structure of DNA in the B conformation is dependent 

. on base sequence and composition. Their conclusion was based on the results 

of x-ray solution scattering and x-ray fibre diffraction experiments on a 

wide variety of DNA's of increasing A,T content. Their B type diffraction 

patterns from oriented DNA's displayed a progressive decrease in intensity 

of the second layer line with respect to the first and third layer lines as 

the percentage of A,T increased. 
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Pilet and Brahms, 1973, investigated the infra red spectra of oriented 

DNA films of various A,T content containing 3-47. sodium chloride as a 

function of relative humidity. Normally, these spectra indicated B~A~ 

disordered form transitions as the relative humidity was reduced. However, 

they found that it was much more difficult to obtain the A conformation in 

DNA samples of high A,T content. For crab satellite DNA which contains more 

than 957. A,T. they observed only the B -disordered form transition. They 

concluded that base composition was probably an important factor in the 

B-A transition. 

In an x-ray diffraction investigation of C.perfringensDNA(A,T = 687.) 

and c. johns~nii DNA (A,T = 657.) Selsing and. Arnott, 1976, observed only the 

'orthodox' A and B conformations for these DNA's. However, fibres of 

C. perfringensDNAwhich had not been purified were found to give patterns 

resembling semi-crystal1ine B DNA but with a low pitch of 0.329nm. They 

suggested that such patterns may be due to the presence of teichoic acid 

contaminant. They concluded that the conformations adopted by these DNA's 

were not significantly affected by there high A,T content. There results 

showed that DNA's of high A,T content could adopt the A conformation but 

they did not exclude the possibility of base composition affecting the ease 

with which the A~B transition occurs as suggested by Brahms et a1., 1973. 

In an x-ray fibre diffraction study of satellite DNA's from G. 

lateralis, D. viri1is and M. musculus, Se1sing et al., 1976, observed only 

the classical DNA duplex structures. In particular crab satellite DNA was 

found to exhibit a stable A conformation under appropriate conditions. 

Selsing and Arnott, 1976, stated that so far only po1y(dA).poly(dT), 

po1y[d(A-T) ].poly[d(A-T)], which they-jsuggest is metastable in the A 

conformation and changes to the D form in time, po1y[d(G-C)].poly[d(G-C)] 

and poly[d(A-T-T)].poly[d(A-A-T)] have not been found in the A conformation. 

Goodwin, 1977, examined x-ray diffraction patterns from fibres of M. 

lysodeikticus (A,T = 287.), calf thymus (A,T = 607.) and c~ perfringens. 
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(A,T = 697.) DNA's and poly[d(A-T)].poly[d(A-T)]. The fibres were prepared 

from gels centrifuged from solutions of 2mM Tris.HCI pH 7.6 and SmM, IOmH, 

20mM or SOmM NaCI. Goodwin did not find any distinct new conformations of 

DNA. The A~B transition was observed in all fibres except those of C. 

perfringensatthe highest concentration of retained salt. Generally the A 

conformation persisted at higher relative humidities for fibres of low 

retained salt as expected from the results of Cooper and Hamilton, 1966. 

For some fibres of calf thymus and C. perfringensDNAGoodwin obtained B 

patterns of low pitch and intermolecular spacing. In some of these c~ses 

the second layer line intensity was enhanced with respect to those of the 

first and third layer lines when compared with classical semi-crystalline B 

patterns. For the natural DNA's Goodwin did not observe any enhancement in 

intensity of the first and third layer lines of his B patterns as reported 

by Bram and Tougard, 1972, and Bram, 1973. He pointed out that such changes 

had only been observed in poorley oriented fibres. He suggested that such 

changeS may be caused by (dA)n.(dT)n regions in the fibres assuming a B' 

conformation, Arnott and Selsing, 1974, but that such an effect was unlikely 

to be apparent in patterns of well oriented fibres. Goodwin only prepared 

fibres of Na poly[d(A-T)].poly[d(A-T)] from a gel centrifuged from solutions 

containing 2rnM sodium chloride. One such fibre at 447. rh was found to give 

a semi-crystalline B like diffraction pattern with a low pitch of 3.lnm. At 

757. rh this fibre exhibited an A diffraction pattern which remained stable 

as the relative humidity was returned to 447.. As the relative humidity was 

again increased the A conformation persisted up to 927. rh and at 987. rh a 

semi-crystalline B conformation was observed. Goodwin reported that this 

latter pattern did show some increase in intensity of the first and third 

layer lines with respect to the second compared with the intensity 

distribution normally observed. No specific suggestions were put forward to 

explain this result. 

Leslie et al., 1980, found that B diffraction patterns from oriented 
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polycrystalline specimens of poly[d(I-I-T)].poly[d(A-C-C)], poly[d(A-C)]. 

poly[d(G-T)] and poly[d(G-C)].poly[d(G-C)] gave identical distributions of 

intensity over successive layer lines to that observed from fibres of calf 

thymus DNA, in spite of the wide variation in base composition. They found 

this was true even for the polynucleotide complexes poly[d(G-C)].poly[d(G-C)] 

and poly[d(A-C)].poly[d(G-T)] which crystallise in much larger unit cells. 

However, they did observe intensity variations analogous to those of Bram 

and Tougard, 1972, in B patterns which were oriented but not polycrystalline. 

Leslie et al., 1980, pointed out that although such less well ordered systems 

may have sequence or composition variants of the B conformation, it is also 

true that different semi-crystalline packing arrangements of isomorphous 

molecules would produce the observed modulations of intensity. 

An investigation has been initiated into the conformational flexibility 

of the sodium salt of the synthetic polynucleotide poly[d(A-T)].poly[d(A-T)] 

in a similar manner to that carried out for the sodium and lithium salts of 

poly[d(A-C)].poly[d(G-T)]. Only a single fibre has been examined in these 

experiments, but the x-ray diffraction patterns were particularly well 

defined and a number of interesting features have emerged. Investigations 

of Na poly[d(A-T)].poly[d(A-T)] structure have been further extended by 

Mahendrasingam, 1983, in terms of nucleic acid conformation as a function 

of excess fibre salt content and his results are summarised. The initial 

data collected from the single x-ray fibre sample was shown to be 

representative of Mahendrasingam's results. Conditions for the observation 

of the C, A, a-B', semi-crystalline Band D conformations are described and 

an equation is proposed to relate the transitions between these conformations. 

The biological significance of the Na poly[d(A-T)].poly[d(A-T)] 

conformations are considered with regard to satellite DNA and in the enhanced 

binding of the lac repressor of E. coli. The difficulties of determining 

the effects of base sequence and base composition on nucleic acid 



85 

conformation in relation to Na poly[d(A-T)].poly[d(A-T)] are also discussed. 

5.2 Materials and methods 

The sodium salt of poly[d(A-T)].poly[d(A-T)] was prepared at Paris 

University VII by Dr. G.). Brahms and Mr. J. Vergne as described in chapter 

2.1. A small portion of the final poly[d(A-T)].poly[d(A-T)] precipitate was 

dissolved in distilled water to form a gel as described in chapter 2.4. No 

sodium chloride solutions were added to the gel as it dried. The resultant 

fibre was particularly transparent, had a thiCkness of l45um and a 

birefringence of -0.056. The clarity of the interference fringes of this 

fibre during birefringence measurements is shown in the photomicrograph 

reproduced in Plate 2.2. From this one fibre a number of x-ray diffraction 

patterns have been recorded at various relative humidities using Franks 

optics. 

In continuing this work Mahendrasingam, 1983, used a different method 

of fibre preparation. Na poly[d(A-T)].poly[d(A-T)] prepared by Dr. G.J. 

Brahms and Mr. J. Vergne or purchased from Boehringer was dissolved at a 

polynucleotide concentration Nl.Omgml-l in deionized water or saline 

solutions ranging from lmM to 50mM NaCl. These solutions were centrifuged 

at 50,000 rpm for 12 hours in a 3 x 3 ml swinging bucket rotor using a 

superspeed 50 TC MSE centrifuge. An estimate of the excess sodium Chloride 

per phosphate in the resultant gels was obtained from the polynucleotide 

concentration in the solutions prior to centrifugation and the polynucleotide 

+ . 
concentration, Na concentrat~on and volume of the supernatants. The 

polynucleotide concentration was measured by U.V. absorption spectroscopy 

. and Na+ concentration was measured by flame emission spectroscopy. 

Owing to the small quantities of Na poly[d(A-T)].poly[d(A-T)] 

+ available, Na concentrations were determined from F.E.S. measurements on 

the supernatants of the polynucleotide solutions after centrifugation. 

Since poly[d(A-T)].pOly[d(A-T)] may retain a higher salt concentration in 
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the sedimented gel than is present in the supernatant after centrifugation, 

this Cl-/PO~ ratio is not necessarily the total Cl-/PO~ in the polynucleotide 

gel or resultant fibres. It is thus given the suffix c to distinguish it 

from the aCl-/PO~ ratios described in chapters 3 and 4 and the total Cl-/PO~ 

ratios described in chapter 6. Fibres were made from these gels as described 

in chapter 2.4 and x-ray diffraction patterns were recorded using pinhole 

and tor~idal optics. 

Once sufficient fibres had been made from a given gel itscCl-/PO-ratio 
4 

could be reduced by redissolving it in distilled water and reccntrifuging. 

Mahendrasingam has not yet estimated the error in determining cCl-/PO~ ratios 

using this method. He suggests that such errors arise largely from the 

inhomogeneous distribution of excess sodium chloride in the centrifuged 

gels. Nevertheless his work represents a more extensive analysis of the 

effects of sodium chloride on Na poly[d(A-T)].poly[d(A-T)] conformation 

than has so far been reported. 

5.3 Results 

Two component diffraction patterns were obtained from the Na 

poly[d(A-T)].poly[d(A-T)] fibre at 57%, 66% and 75% rh and an example is 

shown in Plate 5.1. These patterns were very similar to those obtained 

from fibres of Na poly[d(A-C)].poly[d(G-T)] to which no salt had been added. 

The predominant component in these patterns is characteristic of the A 

conformation of DNA. The quality of these types of patterns is rather poor, 

but the positions of six spots were measured from the pattern shown in 

Plate 5.1 using a Stoe film measuring device. Within the limits of 

experimental error the positions of these spots were found to agree with 

e-spacings obtained from the A conformation of calf thymus DNA, Fuller, 

1961. The minor component of these patterns is represented by the first 

equatorial reflection at 1.775 ±O.Olnm and an intense meridional reflection 

at 0.335 ±O.Olnm. Comparing these types of patterns with those obtained 
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Plates 5.1 - 5.9 X-ray diffraction patterns of the sodium salt of 

poly[d(A-T)].po1y[d(A-T)] fibres. 

--
Plate 5.1 

Fibre SP 16 at 66% rho A two component diffraction pattern which is 
predominantly in the A conformation but has in addition an equatorial 
reflection at 1.78nm and an intense meridional reflection at O.335nm. 
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from Na poly[d(A-C)].poly[d(G-T)] and with later patterns of Na poly[d(A-T)]. 

po1y[d(A-T)] by Mahendrasingam, 1983, it appears likely that this minor 

component is representative of the C conformation of Na poly[d(A-T)]. 

poly[d(A-T)]. 

At 927. rh the minor component of the previous diffraction patterns 

disappeared and a remarkably well characterised A pattern was obtained 

similar to that shown in Plate 5.2. As the relative humidity was decreased 

patterns were recorded at 757., 667. and 577. rho They showed an improvement 

in the molecular orientation within the fibre as evidenced by a decrease in 

the length of" arc of individual diffraction spots, but the A conformation 

remained stable. Thus the A/C--.A transition in this Na poly[d(A-T)]. 

poly[d(A-T)] fibre was irreversible with respect to relative humidity as 

was the case for fibres of Na poly[d(A-C)].poly[d(G-T)]. 

At 447. rh the diffraction pattern indicated a collapse of the A 

structure as shown in Plate 5.3. Similar patterns have been observed for 

fibres of Na DNA, Mahendrasingam, 1983, and Na poly[d(A-C)].poly[d(G-T)], 

plate 3.6, under conditions of low relative humidity and salt content. In 

particular Plate 5.3 shows diffraction spo~s only in the centre of the 

pattern while reflections at high ~-spacings are much less well resolved 

compared with the patterns at higher relative humidities. There is also an 

apparent reduction in the intensity of the seventh layer line of Plate 5.3. 

The first equatorial reflection of the higher humidity A-patterns is hardly 

visible and is not due to diffraction from the A lattice, but may arise 

from a small fraction of the material being in the B or C conformations. 

In Plate 5.3 the intensity of this reflection is greatly enhanced. This 

effect may be due in part to more parasitic scatter in the centre of Plate 

5.3, but the apparent increase in intensity of this reflection seems to be 

more than can be accounted for by this explanation. The d-spacing 

corresponding to this reflection was 1.98 ±O.05nm and did not change as the 

relative humidity of the fibre environment was reduced from 927. to 447.. 
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• 

Plate 5 . 2 

FibreSP16 at 75i. rh o The fibre is in the A conformation with good 
orientation and crystallinity . The concentric ring at O.3035nm on this 
and subsequent patterns is due to calcite. 
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Plate 5.3 

Fibre SP 16 at 447. rho Under these conditions the A lattice is begining 
to collapse. 
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This spacing is just beyond the range of 1.66-l.90nm found for the dllO 

spacings of the C conformation of Li poly[d(A-C)].poly[d(G-T)] fibres 

described in chapter 4. It may well indicate the presence of the C 

conformation in some regions of the fibre. 

The fibre was next subjected to a relative humidity of 927. and the 

completely crystalline A pattern was recovered. At 987. rh a second multi-

component diffraction pattern was obtained as shown in Plate 5.4. Again 

the predominant component contributing to this pattern is that of A. The 

minor component is most obviously represented by intensity streaks on 

layer lines one, two and three which are at a smaller reciprocal spacing 

than the layer lines of the A lattice. There are spots on the first and 

second of these layer lines at ~ = 0.054 ±0.006nm-l and ~ = 0.075 ±0.004nm-l 

respectively. There is an intense meridional reflection at 0.331 ±0.007nm 

and a weak reflection which is also apparently meri~ional at 3.25 ±0.13nm. 

In addition there are two equatorial reflections at 2.11 ±0.06nm and 2.46 ± 

0.19nm. All of these reflections are extraneous to those associated with 

the A lattice. The layer line streaks are often seen in conjunction with 

A DNA diffraction and are usually associated with a semi-crystalline B 

conformation. In this case the streak layer line spacing indicates a pitch 

of 3.25 ±0.13nm which together with the meridional reflection at 0.331 ± 

0.007nm is in accordance with a ten fold helix. However, the Bragg 

reflection on the first layer line of the minor component is not normally 

seen in semi-crystalline B DNA. A diffraction pattern from the fibre which 

was more completely in the phase represented by the minor component of 

Plate 5.4 was later obtained. It was shown to represent the modified B 

conformation, a-Be, which was first observed in Na'poly(dA).poly(dT) by 

Arnott and Selsing, 1974. However, this explanation does not account for 

the equatorial reflection at 2.46nm or the meridional intensity on the first 

layer line streak. The former reflection may be due to a partial semi-

crystalline B packing arrangement within the fibre. Thus the diffraction 
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Plate 5.4 

Fibre SP 16 at 987. rho A multicomponent diffraction pattern which is 
predominantly A. The streaks in the centre of the pattern, the intense 
meridional reflection at O.33nm and the first two equatorial reflections 
~re probably representative of the ~-B' and semi-crystalline B 
conformations. 
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pattern shown in Plate 5.4 represents a fibre exhibiting at least three 

different conformations. The meridional reflection at 3.25nm has been 

observed on several other diffraction patterns from this fibre as shown in 

Plates 5.5, 5.6, 5.7 and 5.8. It probably arises as a result of Na+ 

associated with the polynucleotide double helix whose z coordinates differ 

by exactly 6ne pitch length. 

In an attempt to induce the fibre to completely adopt the a-B' 

conformation it was sealed in a pinhole camera and humidified at 987. rh for 

~8 days. The fibre was then transferred to a Franks camera and humidified 

for a further 10 hours at 987. rh before commencing the exposure. An~-B' 

type pattern was obtained with no A component present, but the overall 

intensity of the pattern was weak. This procedure was repeated twice more 

in order to obtain a more clearly defined pattern. The first of these 

repeats again resulted in a weakly exposed a-B' pattern while the next 

pattern much more closely resembled the semi-crystalline B structure of Na 

calf thymus DNA as shown in Plate 5.5. 

An exposure was then recorded at 957. rh as shown in Plate 5.6. This 

represents the best ~-B' pattern of Na poly[d(A-T)].poly[d(A-T)] obtained 

to date. In order to confirm the assignment of ~-B' to this pattern x and 

y coordinates of the diffraction spots from the negative of Plate 5.6 were 

measured with the aid of a two dimensional travelling microscope. 4'~' ~ 

and d-spacings were calculated for each reflection using the computer 

program 'Film'. With this information a xi-zeta plot was constructed and 

the lattice was shown to index on a hexagonal system. A xi-zeta plot of 

the first three layer lines of Plate 5.6 is given in Figure_5.l. The~­

spacings of the unambiguously identified spots were used in conjunction 

with their assigned Miller indices to calculate lattice parameters. These 

were subjected to a cyclic least squares refinement procedure using the 

'H ' computer program ex. The observed and refined ~-spacings together with 

their assigned Miller indices are given in Table 5.1. The refined lattice 



94 

Plate 5 . 5 

Fibre SP 16 at 98% rh o This diffraction pattern is much more similar to 
that of semi-crystalline B calf thymus DNA than to the ~-B' pattern of 
Plate 5.6 . 
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Plate 5.6 

• • • 

Fibre SP 16 at 95% rh o An· ~-B ' diffraction pattern which closely 
resembles the ~-B' pattern of Na poly(dA).poly(dT) , Arnott and Selsing, 
1974. 
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Assigned ~ Observed ~ Calculated Apparent Intensity of 
h,k,l Value /run -1 /nm -1 

Relative <x-B' Conf. Arnott 

Intensity and Se1sing, 1974 

100 0.470 0.473 s 3.2 
110 0.818 0.819 w 1.2 
200 0.946 0.945 w 1.3 
210 1.252 1.251 m 2.0 
300 1.412 1.418 vw -
220 1.632 1.638 vw 1.3 
310 1. 711 1. 704 vw 2.4 
400 1.892 1.891 vw -
001 0.310 0.305 m -
101 0.561 0.562 s 3.7 
201 0.998 0.993 w -
211 1.290 1.287 vw. -

102 0.770 0.771 s 2.8 
112 1.021 1.021 s 2.0 
202 1.125 1.125 m 1.6 
212 1.391 1.391 vw 1.8 
302 1.546 1.543 vw 1.9 
222 1. 741 1.747 vw 1.9 
312 1.812 1.810 vw 2.7 

103 1.027 1.029 m 3.1 
113 1.224 1.227 s 5.4 
203 1.319 1.315 s 4.9 

114 - - - 1.5 
204 - - - 1.9 
214 - - - 2.4 

Table 5.1 

The observed and calculated ~-spacings together with their assigned Miller 
indices for the a-B' pattern of Na po1y[d(A-T)].po1y[d(A-T)] shown in 
Plate 5.6. Also given are the corresponding relative intensities of the 
reflections on a scale s, m, wand vw. These are compared with the observed 
relative intensities of the Q-B' conformation of Na po1y(dA).po1y(dT) 
obtained by densitometry by Arnott and Se1sing, 1974. These values have 
been truncated for convenience. 
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parameters were a = 2.457 ±0.009nm and c = 3.281 ±O.012nm. Measurements of 

the intense meridional reflection gave an axial rise per residue of 0.328 ± 

0.004nm thus confirming a ten fold helix. These parameters are in good 

agreement with the values of a = 2.279 ±0.006nm, c = 3.287 ±0.007nm and an 

axial rise per residue of O.324-0.329nm given for the ~-B' conformation of 

Na poly(dA).poly(dT) by Arnott and Selsing, 1974. Moreover, intensities 

have been assigned by eye to the reflections observed on the diffraction 

pattern reproduced in Plate 5.6. These assignments are in qualitative 

agreement with the densitometry data of Arnott and Se1sing, 1974, as shown 

in Table 5.1. Thus although quantitative intensity measurements have not 

yet been carried out it seems certain that Plate 5.6 represents an a-B' 

conformation of Na poly[d(A-T)].poly[d(A-T)] which is very similar to that 

observed by Arnott and Selsing, 1974, for Na poly(dA).poly(dT) and 

subsequently found for Na poly(dI).poly(dC) and Na poly[d(A-I)].poly[d(C-T)] 

by Leslie et al., 1980. 

On lowering the humidity of the fibre environment to 927. an A/~-B' 

diffraction pattern was once more obtained. However, in this case, the axes 

of the A and ~-B' lattices were no longer coincident as in Plate 5.4 but 

were offset at an angle of 6 ±lo as shown in Plate 5.7. This exposure was 

repeated and the direction of the fibre axis was inscribed on the negative. 

This result suggested that the lattice axis coincident with the fibre axis 

was that of the ~-B' lattice. In this second exposure the angle between 

o the two axes had decreased to 3.5 ±l. It is perhaps significant that in . 
the monoclinic unit cell of A DNA ~= 970

, although why this feature should 

apparently manifest itself in some A/~-B' diffraction patterns and not 

others remains unclear. Mahendrasingam, 1983, recorded two further 

diffraction patterns from this fibre at 927. rh which were A/~-B' mixtures, 

but no difference was apparent in the axes of the two components in either 

pattern. 

Mahendrasingam, 1983, has investigated the conformations available to 
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Plate 5 . 7 

Fibre SP 16 at 92% rho Another A/~-B ' diffraction pattern but in this 
case the axes of the two lattices are offset by 6 ±lo . 
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Na poly[d(A-T)].poly[d(A-T)] as a function of fibre salt content using the 

method described in section 5.2. He found that fibres containing cel-/Po~ 

ratios ;>1.0 gave patterns dominated by diffraction from salt crystallites. 

For fibres containing cel-/Po~ ratios ~0.6 A diffraction patterns were 

observed at low humidities ~32-757., while at higher humidities in the region 

of 75-927. diffraction patterns were A/~-B' or AlB mixtures. Prolonged 

exposure of these fibres to higher humidities of 927. or 957. resulted in a 

transition to the 0 conformation as shown in Plate 5.8. At 987. rh such 

fibres exhibited the semi-crystalline B conformation. Reduction of the 

relative humidity below 987. resulted in a reversion to the 0 conformation 

which then persisted even when the relative humidity was as low as 327.. 

Other fibres with concentrations of excess salt in this range assumed the 

D conformation over a period of a few months without being subjected to 

high humidities. 

For fibres containing cel-/Po~ ratios ~0.4 the sequence of transitions 

was similar to that described above except that at low humidities the 

patterns were Ale mixtures which changed to A patterns ~66-757. rho 

Transitions from A patterns to A/~-B' or AlB mixtures also occurred at 

rather higher relative humidities. 

Fibres containing cel-/Po~ ratios < 0.2 gave e patterns from 33-757. or 

927. rh as shown in Plate 5.9, above which they changed reversibly into the 

B form. Neither A nor 0 conformations were observed for these fibres. 

For the A, semi-crystalline Band e diffraction patterns lattice 

geometries and intensity distributions did not differ significantly from 

those observed for the natural Na DNA's. Orientation and crystallinity were 

generally very good although the C patterns were not so well defined as those 

of Na pOly[d(A-C)].poly[d(G-T)], for example Plate 3.7. In the case of the 
I 

o patterns the crystallinity was significantly: better than has previously been 

reported. In particular the meridional reflection on the eighth layer line 

could be clearly distinguished from neighbouring reflections while the 
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Plate 5.8 

A fibre at 95% rh in the D conformation, courtesy of Mahendrasingam, 1983. 
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Plate 5.9 

A fibre at 57% rh, cCl-/PO- NQ.2. This fibre is completely in the C 
conformation, courtesy of ~ahendrasingam, 1983. 
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crystallinity was so high that sharp reflections were observed at spacings 

as low as 0.2Snm. 

5.4 Dicussion 

X-ray diffraction patterns from the single fibre described in the 

first part of section 5.3 indicate that the C, A, a-B' and semi-crystalline 

B conformations are all available to Na poly[d(A-T)].poly[d(A-T)]. The 

observation of these conformations is supported by the results of 

Mahendrasingam, 1983, who has also observed a transition to the D conformation 

for this polynucleotide. These conformations have all been observed for 

the sodium cation and this serves to underline the complex diversity of 

nucleic acid structure when subjected to even very mild environmental 

changes. Thus Na poly[d(A-T)].poly[d(A-T)] is shown to exhibit the C and 

~-B' conformations in addition to those found by Davies and Baldwin, 1963, 

Arnott et al., 1974, and Leslie et al., 1980. 

The fibre in the first section of these results probably has an excess 

salt content:> 0.6 CC1-/PO~ when compared with Mahendrasingam's results. The 

diffraction patterns from this fibre together with the results of 

Mahendrasingam, 1983, have established a specific sequence of conformational 

transitions in Na poly[d(A-T)].poly[d(A-T)] fibres as a function of relative 

humidity, exce$scsalt content within the fibre and time. This sequence is 

shown in Equation 5.1. Which part of this sequence is observed depends on 

C~A:::()(-B':::semi-crystalline B-.D==semi-crystalline B 

~--------rh increasing ~Itime~rh increasing---1 

-Equation 5.1 

the excess salt content ,within a fibre sample. This overall sequence of 

transitions is able to explain. the A---D transitions observed by Davies and 

Baldwin, 1963, and the D---B transitions of Arnott et al., 1974. However, 

no evidence has been obtained for the D~A---B transitions as a function 

of increasing relative humidity reported by Leslie et al., 1980. 

For fibres containing cCl-/PO ~ -< 0.2 Mahendrasingam has observed a 
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departure from this general equation where transitions from the e to the B 

conformation occur directly. This is a particularly interesting observation 

and may provide a basis for explaining why fibres of Li DNA or Li 

polynucleotides do not exhibit the A conformation. Obviously the complete 

phase diagram of Na poly[d(A-T)].poly[d(A-T)] conformation as a function of 

cel-/Po~ ratio and relative humidity is more complicated than is represented 

by Equation 5.1. It is hoped that this equation may provide a basis for a 

more complete explanation of the conformational transitions which occur in 

this intriguing polynucleotide. 

The C conformation has again emerged as a conformation which is 

available to the sodium salt of a polynucleotide and this further supports 

the view that the e conformation may be of fundamental biological 

significance. The e type diffraction patterns are reminiscent of the low 

pitch B patterns with enhanced intensity on the second layer line as 

described by Goodwin, 1977, for some natural DNA's of high A,T content. 

The C conformation may also be representative of the disordered form of DNA 

described by Pilet and Brahms, 1973. . . 

The irreversible nature of the A/c~A transition at 927. rh for the 

single fibre of Na poly[d(A-T)].poly[d(A-T)] parallels the A/c--.A and 

C~A transitions found in Na poly[d(A-e)].poly[d(G-T)] fibres described in 

chapter 3. However, it contrasts with the reversible A/c~A and e~A 

transitions of native Na DNA and Na poly[d(A-T)].poly[d(A-T)] fibres reported 

by Mahendrasingam, 19~~ The reason for this discrepancy is probably due 

to the difference in sample preparation. Fibres which exhibited irreversible 

transitions were all prepared directly from solid polynucleotide. Initially 

this may have given rise to inhomogeneous distributions of salt within the 

fibres as discussed in chapter 3.4. Fibres exhibiting reversible transitions 

were all prepared by the centrifugation technique. Thus in retrospect the 

observation of the first Ale patterns like that in Plate 5.1 is probably 

fortuitous. Without such patterns further investigations of fibres with 
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lower salt content would not have been carried out. 

The A conformation of Na poly[d(A-T)].poly[d(A-T)] has been regarded 

as a metastable state by Arnott et al., 1974. In this work the A 

conformation of Na poly[d(A-T)].poly[d(A-T)] has been observed over a wide 

rarige of conditions for considerable periods of time. This is in agreement 

with the results of Davies and Baldwin, 1963, and Leslie et al., 1980. Thus 

the importance of the A conformation of Na poly[d(A-T)].poly[d(A-T)] should 

not be underestimated. Of specific interest with regard to the A 

conformation of Na poly[d(A-T)].poly[d(A-T)] is the particularly well 

resolved diffraction patterns which have been described as representative of 

a dehydrated A lattice. An example is shown in Plate 5.3. A more complete 

analysis including intensity measurements of these types of patterns is 

necessary. Such an analysis may yield information as to whether these 

patterns represent some intermediate state betwee~ that of the A and C 

conformations. If this is the case it may be possible to obtain some 

knowledge of the mechanism by which the A~C transition occurs. 

This work represents the first reported observation of the ~-B' 

conformation for Na poly[d(A-T)].poly[d(A-T)]. This observation is important 

to the question of the effects of sequen~e specificity on nucleic acid 

conformation. Leslie et al., 1980, suggested that the observation of the 

B' conformation for Na poly(dA).poly(dT), which was not apparent for the 

corresponding alternating co-polymer, was evidence of a base sequence effect. 

The present results render this suggestion questionable. 

The semi-crystalline B conformation of Na poly[d(A-T)].poly[d(A-T)] 

appears under conditions of highest humidity and excess fibre salt content 

with which it was possible to discern distinctive diffraction patterns. 

This is in agreement with the results of Arnott et al., 1974, and Leslie et 

al., 1980, and is generally the case for the sodium salts of natural DNA's 

and synthetic polynucleotides. 

With regard to the D form of Na poly[d(A-T)].poly[d(A-T)] the results 
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presented here are in agreement with the work of Davies and Baldwin, 1963, 

Arnott et al., 1974, and Leslie et-al., 1980, in suggesting that this 

conformation is particularly stable. Once the D form has been assumed in 

a given fibre it remains over a wide range of relative humidity and the A 

and C conformations have not been reobtained. The assumption of the D form 

has been facilitated by raising the relative humidity of the fibre 

environment to 927. or more when there are moderate amounts of excess salt 

in the fibre and also by leaving fibres for substantial periods of time 

(~months) at more moderate humidities. 

If the conventional right-handed models for the A conformation, Fuller 

et al., 1965, and the B conformation, Langridge et al., 1960b, Arnott and 

Hukins, 1972, 1973, are considered in association with the left-handed model 

of the D conformation proposed by Mahendrasingam, 1983, then the 

conformational changes involving the A---D or D;::B transitions are extremely 

complex since they involve a change in the handedness of the helix. A 

similar transition involving the reversal of the handedness of the helix 

occurs during the B--'S transition, Arnott et al., 1980, Leslie et al., 1980. 

This latter transition is further complicated by the accompanying change in 

the orientation of half of the nucleosides which change from the anti to 

the syn conformation. A series of changes which would account for the 

transition between a right-handed A or B conformation and a left-handed D 

conformation has been proposed by Mahendrasingam, 1983. The complexity of 

these conformational changes may be the reason why Na poly[d(A-T)]. 

poly[d(A-T)] apparently becomes locked in the D conformation. Such a stable 

conformation may well be exploited in biological processes which involve 

alternating A,T sequences in native DNA. 

Arnott et al., 1974, have suggested a specific area in which such a 

stable conformation may be exploited and this is concerned with satellite 

DNA. In section 5.1 attention was drawn to the close approximation of crab 

satellite DNA to Na poly[d(A-T)].polY[d(A-T)]. Satellite regions of DNA are 
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usually clustered near the centromere regions of the chromosome and Hearst 

et al., 1973, have suggested that these regions may be responsible for the 

maintenance of the structural integrity of the chromosome. the ability of 

such regions to maintain a conformation like that of the D conformation 

which is distinct and not normally available to random sequence DNA could 

be an important aspect of the role which satellite DNA plays in the function 

of the genome. The lack of preference of Na poly[d(A-T)J.poly[d(A-T)J to 

persist in the A conformation is in keeping with its importance in a 

structural rather than a transcriptional role. Although crab satellite DNA 

is not typical of other satellite DNA's it may be that these DNA's also have 

unusual molecular geometries and further structural investigations may be 

important in elucidating their function. 

A second area in which the conformational flexibility of Na 

poly[d(A-t)J.poly[d(A-T)J may be biologically exploited involves the enhanced 

binding of the lac repressor of E. coli to Na poly[d(A-T)].poly[d(A-T)]. 

In order to account for this phenomenon K1ug et al., 1979, have proposed an 

alternating B structure for this polynucleotide. Their model was inspired 

by the crystal structure of the tetranucleotide [d(A-T) J 2.[d(A-T) J 2 by 

Viswamitra et al., 1978. It involves a normal phosphodiester linkage between 

the adenine and thymine bases, but has an unusual linkage between the thymine 

and adenine bases specifically in the conformation of the 03'-P bond. 

Klug et al., 1979, quote evidence from the digestion of synthetic 

poly[d(A-T)].poly[d(A-T)J by pancreatic DNAase 1, nmr data from oligo­

nucleotides and fibre x-ray diffraction studies on Li poly[d(A-T)]. 

poly[d(A-T)] by Davies and Baldwin, 1963, to support their contention that 

the difference in the binding of lac repressor to poly[d(A-T)].poly[d(A-T)] 

is due to a difference in sugar phosphate backbone conformation rather than 

due directly to the base sequence. The question arises as to whether the 

a-B' conformation of Na poly[d(A-T)].poly[d(A-T)] is associated with the 

alternating B model proposed by Klug et al., 1979. The x-ray diffraction 
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pattern of the ~-B' conformation reproduced in Plate 5.6 shows enhancement 

in intensity on the higher ordered, even numbered layer lines as suggested 

by Klug et al., 1979, for the Li poly[d(A-T)].poly[d(A-T)] B patterns of 

Davies and Baldwin, 1963, in support of a dinucleotide repeating unit. 

However, the a-B' conformation is also observed for the corresponding 

homopolymer Na po1y(dA).po1y(dT) by Arnott and Selsing, 1974. In this case 

there is no reason to assume the existence of an alternating deoxyribose 

phosphate backbone. Thus there seems little 1ike1yhood that the B' 

conformation is a candidate for the alternating B model of Klug et al., 

1979. The semi-crystalline B patterns of Na po1y[d(A-T)].po1y[d(A-T)] 

provide a. relatively small amount of information and it is not possible to 

say whether they are representative of an alternating B structure. In order 

to investigate the alternating B structure further it is necessary to 

examine diffraction patterns from the lithium salt of poly[d(A-T)]. 

poly[d(A-T)]. In view of the highly resolved patterns which were obtained 

from Li poly[d(A-G)].poly[d(G-T)] it may well be possible to obtain Li 

poly[d(A-T)].poly[d(A-T)] patterns which are of superior quality to those 

of Davies and Baldwin, 1963. More detailed diffraction data may well 

strengthen the case for an alternating B conformation for poly[d(A-T)]. 

poly[d(A-T)] and provide a basis for a detailed refinement of the structure. 

Ideally it would be desirable to obtain fully crystalline B diffraction 

data from the sodium salt of poly[d(A-T)].poly[d(A-T)] as was obtained for 

Na poly[d(A-G)].poly[d(G-T)].by. Leslie et al., 1980. 

The effect of base sequence and base composition on nucleic acid 

secondary structure in terms of x-ray fibre diffraction has centred on the 

changes in the biologically relevant B conformation as a function of A,T 

content of the sample, Bram and Tougard, 1972. During the course of this 

investigation of Na poly[d(A-T)].poly[d(A-T)] no semi-crystalline B patterns 

have been observed with intensity distributions markedly different from 

those of calf thymus DNA reported by Langridge et al., 1960a. Selsing and 
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Arnott, 1976, Selsing et al., 1976, Goodwin, 1977, and Leslie et al., 1980, 

have examined semi-crystalline patterns from a wide range of synthetic and 

natural DNA's of various A,T content and are in agreement with these 

observations. However, both Goodwin, 1977, and Leslie et al., 1980, have 

examined oriented but non-crystalline B patterns of synthetic polynucleotides 

with an enhancement of intensity on the first and third layer lines as 

described by Bram and Tougard, 1972. Goodwin, 1977, has proposed that such 

intensity distributions in B patterns may arise due to (dA) .(dT) regions n n 

adopting a Bf conformation like that of poly(dA).poly(dT), Arnott and 

Selsing, 1974. The superposition of semi-crystalline B and ~-B' 

diffraction patterns would enhance intensity on the first and third layer 

lines with respect to that of the second. The observation in the course of 

this work of the ~-B' conformation for the alternating copolymer Na 

poly[d(A-T)].poly[d(A-T)]' allows Goodwin's suggestion to be extended, 

encompassing alternating [d(A-T)] .[d(A-T)] regions in synthetic 
n n 

polynucleotides and native DNA's. A possible explanation is therefore 

provided for the observation by Goodwin, 1977, of a Na poly[d(A-T)]. 

poly[d(A-T)] fibre at 987. rh giving a semi-crystalline B diffraction pattern 

with an intensity distribution similar to those obtained by Bram and Tougard, 

1972. If this is the explanation then perhaps the reason why differences in 

intensity distributions are only observed in oriented but non-crystalline 

samples is due to the diminishing influence of crystalline forces on nucleic 

acid conformation. The conformational angles and base stacking in the B' 

conformation are very similar to those in the B conformation. However, the 

B' conformation is distinctive enough for its lateral associations (as 

observed in the ~ and ~ crystalline forms) to be strikingly different from 

those-observed for the B conformation, Arnott and Se1sing, 1974. Thus, 

while it is tempting to agree with Leslie et al., 1980, that the intensity 

distribution in some semi-crystalline B patterns may arise as a result of 

differences in packing arrangements, it should be pointed out that the B' 
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conformation has so far only been observed for Na poly(dA).poly(dT), Arnott 

and Selsing, 1974, Na poly(dI).poly(dC) and Na poly[d(A-I)].poly[d(C-T)], 

Leslie et al., 1980, and Na poly[d(A-T)].poly[d(A-T)], this chapter. 

Leslie et al., 1980, have pointed out that in some respects I.C base pairs 

behave like A.T rather than G.C base pairs. Hence the B' conformation has 

so far only been observed in samples containing A.T or the related I.C base 

pairs. If this is the case then the observation of the B' conformation is 

due to a base composition effect. If Goodwin's explanation is correct then 

it is a base composition effect, albeit indirectly, which is responsible 

for the differences in the intensity distributions of A,T rich semi­

crystalline B DNA diffraction patterns. 

The complexity of the above argument illustrates the difficulty of 

determining the effects of base sequence and base composition on nucleic 

acid conformation. Leslie et al., 1980, provide a recent review of the 

conformations so far observed for many of the synthetic polynucleotides. 

However, the observation of two additional conformations for Na poly[d(A-T)]. 

poly[d(A-T)] during the course of this work suggests that research in this 

field is not complete even in terms of conformation as a function of relative 

humidity and excess salt content. In view of the suspected deficiencies in 

this data the assignment of base sequence and base composition effects 

remains somewhat speculative. In addition there is evidence that such 

parameters also influence the ease with which structural transitions occur, 

Pilet and Brahms, 1972, Brahms et al., 1973. It is difficult to accurately 

control the amount of excess salt content in fibre samples on which these 

transitions are critically dependent. Thus at the present time x-ray fibre 

diffraction provides little information on the ease with which structural 

transitions occur. Therefore, as well as a more complete investigation on the 

conformations available to the synthetic polynucleotides there is also a 

clear need for the accurate determination of the excess salt content of 

fibre samples together with a knowledge of the distribution of that salt. 
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These latter two points are further discussed in chapter 6. 
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EXPERIMENTAL TECHNIQUES TO DETERMINE THE AMOUNT OF SALT 

RETAINED BY NUCLEIC ACIDS 

6.1 Introduction 

It has long been established that the amount of salt present in DNA 

or polynucleotide fibres plays a major role in determining nucleic acid 

conformation. The work on polynucleotide conformation reported in chapters 

3 - 5 emphasises such an observation. It implies that a knowledge of the 

total salt content of nucleic acid solutions and samples for x-ray analysis 

would be an important aid in understanding nucleic acid conformation as a 

function of environmental conditions. This chapter discusses some of the 

techniques available to determine the amount of salt retained by nucleic 

acids. In particular it examines the method of Na+ concentration analysis 

using flame emission spectroscopy (F.E.S.)as described by Blakeley, 1976. 

Further experiments using a modification of this method are described. 

Differences in the ability of modified DNA's to retain salt are of great 

interest since such information may be related to their structural 

variations. In this respect the analysis of the salt content of ~W-14 

viral DNA solutions has been re-examined.' Finally, preliminary experiments 

have been performed to measure Cl concentrations of DNA solutions. Such 

techniques are potentially extremely sensitive and the implications for 

x-ray fibre analysis are considered. 

6.2 The micro-Carius method of chloride analysis 

A method for estimating the total salt content of DNA samples by 

chloride analysis using a micro-Carius method has already been established 

by Cooper and Hamilton, 1966. In this procedure 3-8mg of sample are placed 

in a pressure tube together with silver nitrate and halogen free 

concentrated nitric acid. The pressure tube is then sealed and heated to 

N3000 C for 5 hours in an electric furnace. When cool the tube is carefully 

opened and the quantity of precipitated silver chloride is determined by 
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gravimetric analysis. Simple calculation then yields the quantity of 

chloride present in the sample. However, this method uses quantities of 

material which have not normally been available for polynucleotides, nor 

is it a particularly convenient method to use. 

6.3 The quantitative increase of sodium chloride concentration in samples 

for x-ray analysis 

In the work on synthetic polynucleotides in this thesis a method has 

been developed whereby the salt content of x-ray fibre samples can be 

quantitatively increased by small increments, chapter 3. In this manner 

polynucleotide conformation has been examined as a function of the amount 

of added salt to x-ray samples, but the total salt content of such samples 

remains unknown. 

+ -6.4 The determination of Na /PO~ ratios in DNA solutions using F.E.S. 

a) A re-examination of Na+/po~ ratios determined by Blakeley, 1976. 

Blakeley, 1976, has developed a technique to investigate the salt 

content of DNA solutions using F.E.S. to measure Na+ concentrations. The 

DNA concentrations of the solutions were determined by U.V. spectroscopy 

and the results were expressed in terms of Na+/po~ ratios. Blakeley 

+ -measured Na /po4 ratios for commercial DNA solutions and for solutions of 

commercial DNA's which had been subjected to phenol purification. His 

results are reproduced in Table 6.1. 

Blakeley also examined the Na+/po~ ratios of DNA gels. In these 

cases the Na+/po~ ratios of the solutions of the DNA's to be used in the 

experiment were first determined. The solutions were then centrifuged, 

the supernatant poured off and the last traces removed by Pasteur pipette 

or by washing the gels briefly in 80% ethanol. The gels were redissolved 

+ 
in distilled water and the Na and P04 concentrations were determined by 

flame emission and U~V. spectroscopy res~ectively. Blakeley gave 

+ -the results of four of these runs and the Na /po4 ratios of the DNA 
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DNA Sample DNA Concentration + Na Concentration + -Na /P04 
mM mM 

B.D.H. 6.6 5.0 0.76 

Sigma V 5.9 4.5 0.76 

Miles VI 2.7 2.75 1.02 

Purified Calf Thymus 2.5 1.50 0.60 

Purified Calf Thymus 1.6 0.96 0.60 

Purified Calf Thymus 1.4 0.91 0.65 

. +-
Table 6.1 DNA Na /P04 data from Figure 3.3, Blakeley, 1976. 
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Figure 6.1 The variation of the extinction coefficient EA260nm of DNA 

with ionic strength. The data is Figure 3.2 of Blakeley, 

1976. 
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gels was seen to increase linearly with the salt concentration of the 

supernatant. 

In Blakeley's results for commercial and purified DNA solutions, 

+ -Na /P0
4 

ratios of less than 1.0 in all but one instance is rather 

surprising. The DNA solutions used in gel experiments and redissolved gels 

+ -centrifuged from 0.0 - 0.3M NaCl also gave Na /P04 ratios<: 1.0. In order to 

precipitate DNA from solution the negative charge of the DNA phosphate 

groups must be neutralized. Since the DNA was precipitated from solutions 

+ of relatively high Na concentration it might be expected that the phosphate 

1 · d 1 1 . . + groups are neutra 1ze on a : baS1S w1th Na • Hence taking into account 

the presence of excess sodium chloride which may be trapped in or complexed 

+ -with the precipitate, the Na /P04 ratio of such DNA should be at least 1.0. 

DNA precipitates washed in 80% ethanol might be expected to contain less 

sodium chloride and Blakeley's results (Table 6.1) tend to reflect this 

concept, but quantitatively it is thought unlikely that Na+/PO~ ratios of 

DNA's should decrease below 1.0. It is possible that ions other than Na+ 

+ neutralize the negative phosphate charge of DNA and perhaps at low Na 

concentrations this effect is more apparent. Blakeley, 1976, assayed his 

DNA solutions 
. 2+ 

for the presence of Ca which is the most likely contaminant 

of water, but he found [ca2+] < 10uM, which he regarded as negligible. 

Another alternative is that water in the form of H30+ may playa role in 

charge neutralization, but this is more difficult to demonstrate 

experimentally. 

Blakeley has successfully used his technique to predict the likely-

hood of an A or B type diffraction pattern from a DNA fibre at a specific 

relative humidity when formed from a gel centrifuged from a solution of a 

given salt concentration. His method is very convenient to use and only 

requires a small quantity of material. The procedure has thus been 

re-examined in an attempt to establish whether his results are quantitative 

+ -or whether low Na /P04 ratios are due to a systematic error in the 
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experiments. One factor which may influence these results is that DNA 

concentrations have apparently been measured from solutions formed by DNA 

dissolved in distilled water. Under conditions of low salt concentration 

DNA will denature. Subsequent measurements of P04 concentration by U.V. 

spectroscopy may lead to an ov~r estimation of DNA concentration and hence 

an under estimation of Na+/PO~ ratios. To compensate for this effect 

Blakeley, 1976, derived an empirical extinction coefficient for DNA 

solutions at low salt concentrations. A series of samples of the same DNA 

concentration but different sodium chloride concentrations were prepared 

by dialysing lOOml of 1.2mg ml-l DNA solution in O.02M NaCl against 

at 4oC. distilled water 3ml samples of the Na DNA solution were analysed 

+ 
with respect to time for Na content and apparent P04 content. The dialysate 

was changed after each sample was taken. The effect of osmosis was shown 

to be negligible. In this manner a modified extinction coefficient E. was 
~ 

derived as shown in Equation 6.1, where E. is the extinction coefficient 
~ 

at ionic strength i, and E is the extinction coefficient of native DNA at 

high ionic strength. 
+ -The variation of Ei with respect to the Na /P04 ratio 

E. = apparent DNA concentration x E· 
L DNA concentration 

- Equation 6.1 

in the DNA sample was plotted and is reproduced in Figure 6.1. From this 

diagram it can be seen that a theoretical DNA solution of Na+/PO~ = 0.0 

has been assigned an extinction coefficient ~7000M-lcm-l. This represents 

an increase of EA260nm of only 67. compared with the average value of EA260nm 

= 6600M-l cm-l for double stranded DNA. However, melting temperature studies 

show that the absorbances of Sigma calf thymus DNA solutions increase by 

an average of 367. upon melting. At room temperature the absorbances of 

such solutions are still ~277. higher than those of the original samples, 

Table 6.2. These results suggest that Blakeley's modified extinction 

coefficient is not sufficiently large to compensate for the increased 
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Weight of Volume of lmM DNA cone. Melting % Increase in 

DNA Sample Potassium Phosphate, XlO-5M 0 Temp C Absorption at 260nm 

lug O.lmM EDTA Buffer 

added Iml 
SOoC 300 C 

90 3.00 6.35 51 34.S 2S.0 

70 2.00 8.67 50 36.7 24.0 

205 6.84 7.02 51 36.2 29.8 

Table 6.2 

Data relating to the thermal analysis of Sigma DNA samples in phosphate 

EDTA buffer. The absorption of these solutions has increased on average 

by 27% after melting. 

Weight of DNA Volume of Distilled DNA conc. Melting % Increase in 

Sample lug Water added Iml xlO-5M 0 Temp C Absorption at 260nm 

80°C 300 C 

60 2.00 9.50,'; - 6.0 0.0 

110 3.67 5.42 50 30.7 13.3 

200 6.67 9.30* ... 5.7 0.0 

Table 6.3 

Data relating to the thermal analysis of 'Sigma DNA samples in distilled 

water. The change in absorption is much reduced compared with Table 6.2, 

indicating that the DNA samples are partially or completely denatured. 

* DNA concentrations may be in error by up to 40%. 
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absorbance of DNA solutions which may have denatured under conditions of 

low ionic strength. Sigma calf thymus DNA samples dissolved in distilled 

water at DNA concentrations suitable for U.V. spectroscopic analysis are 

partially or completely denatured according'to melting temperature studies, 

Table 6.3. 

b) A modified F.E.S. routine 

Using the experience gained from the experiments of Blakeley, 1976, 

a modified F.E.S. technique has been devised. Experiments were carried 

out using Sigma 1 DNA, batch number D1501. A bulk solution of this DNA 

was prepared by dissolving the DNA in standard 3rnM sodium chloride solution 

-1 at a phosphate concentration of N1mgml • The DNA was left for a minimum 

o 
period of 48 hours at 4 C to dissolve and U.V. spectroscopy was carried out 

on a1iquots of the solution diluted with 3mM sodium chloride to accurately 

determine the DNA concentration. The use of 3rnM sodium chloride solution 

gives a Na+/PO~ ",,1.0 at DNA concentrations of Imgm1-1 ., This is in addition 

to salt present in the 'solid DNA. Although this method reduces the 

+ sensitivity of the F.E. spectrometer to detect Na arising from the DNA, 

it reduces the risk of denaturing the DNA under normal conditions and allows 

Na+ and PO~ analysis of samples from the same bulk solution. 

+ . d U • 900 Na concentrat~ons were measure on a n~cam SP 1 F.E. spectrometer. 

The spectrometer was first zeroed on deionized water used to make up and 

dilute the bulk DNA solution. + Thus, any Na contamination present in the 

• b N + . water will not appear ~n su sequent a concentrat~on measurements. The 

spectrometer was then calibrated using standard sodium chloride solutions. 

For each set of samples to be analysed a calibration curve was obtained by 

plotting sodium chloride concentration against the numerical spectrometer 

output. DNA samples were prepared by diluting aliquots of the DNA solution 

with deionized water to give a series of samples of different DNA 

+ -concentrations. In this manner Na /P04 ratio as a function of DNA 

concentration was investigated. The DNA samples were fed through the 
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spectrometer and a comparison of the spectrometer output with the 

+ appropriate calibration curve gave the total Na concentration of the 

samples. For each sample the calculated Na+ concentration due to the 

presence of 3mM standard sodium chloride solution present in the bulk DNA 

+ solution was subtracted from the total Na concentration. The remaining 

Na+ concentration was attributed to the presence of DNA and was expressed 

+ -in terms of a Na /P04 ratio. 

After several exploratory experiments the following observations were 

made: 

i) Samples of less than 10ml in volume were found to have a 

relatively large variation in their Na+/Po~ ratios. This effect seemed to 

+ be independent of DNA or Na concentration. 

+ + -Samples of Na concentration;;;;a. 5mM tended to give lower Na IpO 4 ii) 

ratios than expected. This was attributed to the impedance of such salt 

solutions through the atomizer. 

iii) A wider dispersion of Na+ /PO~ ratios was obtained from samples 

made up in NIOml glass containers rather than glass test tubes. 

In a more critical examination of the effect of the container on 

Na+/PO~ ratios, Na+ concentrations of distilled water in various containers 

were measured using a flame photometer. The photometer was zeroed on 

distilled water from a large plastic beaker, calibrated with standard sodium 

. d • . luM N + • chloride solut~ons an was sens~t~ve to a concentratlons. Glass test 

tubes which had been washed and stored were filled with deionized water 

• + . and found to conta~n Na concentratlons of l2-40uM. After a period of N95 

hours the Na+ concentration had increased to 20-S2uM. Glass tubes which 

+ were thoroughly rinsed with deionized water immediately before use gave Na 

concentrations below luM. However, after N95 -hours the Na+ ion 

concentration had increased up to l2uM. Pyrex tubes treated in the same 

manner were found to contain Na+ concentrations of <:1-6uM which increased 

to 2-l0uM after N95 hours. 
+ No Na could be detected in deionized water 
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contained in plastic tubes even after prolonged exposure. From these 

results it seems that ordinary glass tubes may significantly affect the 

+ - + . determination of Na /P04 ratios at low Na concentratlons. This is a 

. + -
possible explanation of the marked variation of Na /P04 ratio in low volume 

samples and in samples which were made up in vessels which were not so 

frequently washed. The contribution from individual glass tubes varied 

considerably. Rinsing the tubes immediately prior to use greatly reduced 

+ the possibility of Na contamination, but the use of wet tubes might give 

rise to dilution inaccuracies. The increase in Na+ concentration of 

solutions remaining in glass tubes for a significant period of time can be 

attributed to the leaching of Na+ from the silicate. Pyrex tubes give rise 

+ ., d f to less Na contamlnat~on an no contamination was found to ensue rom the 

use of plastic tubes. In the latter case it is possible that Cl can be 

leached from certain plastics and there is the possibility of DNA adsorption 

to certain plastic surfaces. Hence the use of pyrex glass vessels may 

represent the best choice of container for Na+/po~ determination in these 

types of experiments. 

With the above observations in mind two sets of data were obtained 

+ -giving Na /P04 ratios for Sigma 1 DNA, batch No. D150l and the results are 

recorded in Table 6.4. + -In both cases the average Na /po4 ratios are 

+ -significantly greater than 1.0 and there is no obvious change in Na /P04 

ratios with respect to DNA concentration. Although the variation of Na+/po~ 

ratios in the individual sets of results is ±6% the difference between the 

two average Na+/PO~ ratios is 18%. This may be due to the use of more 

anhydrous sodium chloride when making up standard solutions for the second 

data set. It is tempting to conclude from these results that Sigma 1 calf 

+ thymus DNA contains between 1.4 and 1.7 Na per nucleotide. 

c) Conclusions 

These results show that F.E.S. is sensitive enough to m~asure Na+/PO~ 

values of commercial DNA's dissolved in 3mM NaCl solutions. Under these 



+ + x-y /roM + -Vol. of Bulk Vol. of Distilled Calculated Na conc. y due Total Na Na /P04 Average 
+ -DNA soln. /ml Water added /ml DNA conc. /roM to 3rrM NaCl in conc. x /roM Na /P04 

Bulk DNA soln. /roM 

5.0 5.0 1.61 1.50 4.18 2.68 1.66 

4.6 5.4 1.48 1.38 3.76 2.38 1.61 

4.2 5.8 1.35 1.26 3.60 2.34 1.73 1.70 

3.8 6.2 1.22 1.14 3.18 2.04 1.67 st 1 run 

3.4 6.6 1.09 1.02 2.95 1.93 1.77 

3.0 7.0 0.96 0.90 2.58 1.68 1.75 

2.6 7.4 0.835 0.78 1.88 1.10 1.32 

2.2 7.8 0.706 . 0.66 1.70 1.04 ·1.47 . 
1.8 8.2 0.578 0.54 1.37 0.83 1.44 

1.39 
1.4 8.6 0.449 0.42 1.01 0.59 1.31 nd . 2 run 
1.0 9.0 0.321 0.30 0.73 0.43 1.34 

1.0 9.0 0.321 0.30 0.74 0.44 1.37 

0.8 9.2 0.257 0.24 0.60 0.36 1.40 
-----

+ -Table 6.4 Data culminating in the determination of Na /P04 ratios of Sigma 1 calf thymus DNA. 
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conditions there is little risk of denaturing the DNA and it is no longer 

necessary to modify the" DNA extinction coefficient EA260nm with empirical 

+ -correction factors. Na /P04 ratios of 1.4 - 1.7 were found for Sigma 1 calf 

thymus DNA using this modified F.E.S. technique. The results do not show 

that Na+/PO~ ratios obtained by Blakeley, 1976,are incorrect. Further 

+ -experimentation using this alternative F.E.S. method may yield Na /P04~1.O 

for DNA's which, for example have been deproteinated or extensively washed 

in 80% ethanol to minimize excess salt. These experiments result in a 

technique which is an attempt to avoid possible errors to which Blakeley's 

particular method may be prone. They have the potential of yielding + -Na /P0
4 

within 5%. This gives studying + -
ratios to rise to the possibility of Na /P0

4 

ratios as a function of nucleic acid conformation, particularly with regard 

to the many conformations available to the synthetic polynucleotide structures 

in order to determine the exact environmental conditions under which such 

structures are favoured. 

6.5 A routine for measuring the ability of pW-14 DNA to retain Na+ 

a) Introduction ~W-14 DNA, a viral DNA 

~W-14 is a bacteriophage having as host the bacterium Pseudomonas 

acidovorans, Kropinski and Warren, 1970. ~W-14 DNA exhibits unusual 

physical properties due to the presence of modified thymine bases in which 

a molecule of putrescine is covalently bound to the methyl group of the 

thymine, Figure 6.2. Approximately 50% of the thymine bases 

are modified in this manner, Kropinski, Bose and Warren, 1973. X-ray 

diffraction patterns of the Na and Li salts of ~W-14 DNA indicate that the 

modified thymine bases do not cause significant changes .in the A and B 

conformations of DNA, Goodwin, 1977, Greenall, 1982. However, a difference 

in the induction of the A~B transition is observed in fibres of Na ~W-14 

DNA compared with fibres of Na calf thymus DNA prepared under the same 

conditions. Generally fibres from calf thymus DNA give B diffraction 
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Figure 6.2 The modified thymine base N-thyminy1putrescine found in 

~W-14 DNA. 

+ 
Na cone. DNA cone. after + -Na /P04 DNA cone. before 

/rcl1 Dialysis /rcl1 Dialysis /rcl1 

1.49 1.19 1.25 1.14 
ciW-14 DNA 

1.47 1.21 1.21 1.14 

Calf Thymus 1.84 1.06 1.74 1.12 

DNA 1.68 1.12 1.50 1.12 

Table 6.5 Effective Na+ and DNA concentrations of ~-14 and calf thymus 

DNA after dialysis against 1.2mM NaCl solution. 
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patterns at 927. and higher relative humidities whereas fibres from ~W-14 

DNA regularly give B patterns only at 98% relative humidity and occasionally 

at 957. relative humidity, Goodwin, 1977. 

The fibres used in Goodwin's analysis were prepared from gels 

centrifuged from DNA solutions containing 2mM Tris.HC1 pH 7.6 and O.OlM or 

O.OZM NaC1. In view of the influence of the ionic strength on the A~B 

transition, Cooper and Hamilton, 1966, Goodwin pointed out the interest in 

determining whether the amount of salt present in gels ·of ~W-14 DNA was 

lower than that found in equivalent gels of calf thymus DNA. He suggested 

that one possible effect of the positive charges of the putrescine group 

of the ~W-14 DNA is the neutralizing or partial shielding of some of the 

DNA phosphate groups resulting in a reduction of the Na+ concentration in 

sedimented ~W-14 DNA gels. 

+ • 
b) Na /P0

4 
ratios of pW-14 DNA gels using F.E.S., Goodwin, 1977 

Inomderto investigate the possible reduction of Na+ concentration 

in ~W-14 DNA gels, Goodwin used the F.E.S. technique of Blakeley, 1976, for 

measuring Na+/Po~ ratios in DNA gels. In this case Goodwin redissolved 

~W-14 and calf thymus DNA gels in distill~d water and allowed them to stand 

for N72 hours to completely dissolve. The DNA concent~ations were measured 

using u.v. spectroscopy and assuming an extinction coefficient of EA260 = 
6600M-1cm-1 • The Na+ concentration was measured in the same manner as 

described by Blakeley, 1976. + -Goodwin gave the Na /P04 ratios for the average 

of six runs as 0.42 and 0.88 for fW-14 DNA· and calf thymus DNA respectively 

when centrifuged from O.OIM NaCl solutions and 0.52 and 1.24 when centrifuged 

from O.OZM NaC1 solutions. 

Goodwin concluded that gels prepared from ~W-14 DNA contain less 

imbibed salt than equivalent calf thymus DNA gels. He stated that the 

+ -average difference between Na /P04 ratios in the two DNA'swasO.6 while the 

putrescine to phosphate ratio is only 0.125. On this basis he suggested 

that each putrescine molecule would have to neutralize approximately four 
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+ -phosphate groups in order to account for these differences in Na /P04 

ratios. An examination of the concentration of other metal ions in the 

dissolved gels showed that Li+, K+, Mg 2+, Ca2+ and Cs+ did not significant'ly 

contribute to the charge neutralization of the phosphate groups. Goodwin 

suggested that other charged species may be responsible .for the reduction 

of Na+ concentration in ~W-14 DNA gels, but this effect is likely to be 

due, at least in part, to the presence of putrescine groups. 

c) An alternative technique for measuring Na+/PO; ratios of ~W-14 DNA 
I 

Goodwin's treatment of ~W-14 DNA gels is subject to the same comments 

as recorded for Blakeley's results in section 6.4. In particular the gels 

were redissolved in distilled water. Hence the salt content of the resultant 

solutions may be so low as to cause the DNA to denature giving rise to an 

overestimate in the DNA concentrations. Another experimental difficulty 

in this procedure is the removal of excess supernatant from the DNA gels 

without removing part of the gel. Finally ~W-14 DNA is very difficult to 

redissolve once it is precipitated. With these constraints in mind a 

further experiment has been performed in order to determine whether less 

Na+ are associated with ~W~14 DNA compared with calf thymus DNA under 

+ -conditions wh~re the Na /P04 ratio is greater than 1.0. 

~W-14 DNA was extracted by Professor R.A.J. Warren according to 

Kropinski and Warren, 1970, and was available in solution in O.OIM Tris.HCl, 

0.15M NaCl, O.OIM EDTA, pH 7.4, (TNE). Strips of visking tubing of 1.Ocm 

diameter were boiled for 15 minutes in a conical flask containing sOOml of 

O.OlM NaCI and a small amount of EDTA. The latter is a divalent chelating 

• • C 2+ agent and strongly ~nteracts w~th a thus inhibiting the action of DNAase. 

It also forms complexes with divalent ions generally thus reducing the 

competition of contaminating ions for the DNA phosphate groups. The tubing 

was then boiled in deionized water for 30 minutes with two changes and stored 

in a fresh solution of deionized water until ready for use. One of the 

dialysis tubes was filled with lsml of 1.14mM ~W-14 DNA in TNE buffer and 
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a second tube was filled with ISml of 1.12mM calf thymus DNA in 0.9mM NaCl. 

The two DNA solutions were dialysed against S.Odm3 of 1.2mM NaCl for ~72 

hours at 40 C while stirring. The dialysate was changed twice during this 

time. The tubes were then cut open and their contents transferred to plastic 

containers. Using these DNA concentrations a dialysate of 1.2mM NaCl might 

be expected to provide a slight excess of Na+ per phosphate group. 

Standard sodium chloride solutions in the range 0.1 to 1.OmM NaCl 

+ were used to calibrate the F.E. spectrometer before Na concentrations of 

diluted aliquots of the DNA solutions were measured. DNA concentrations 

were measured before and after dialysis by U.V. spectroscopy. The results 

were corrected for dilution and are shown in Table 6.5. 

+ -The agreement between the two Na /P04 ratios for calf thymus DNA is 

rather poor, N147.. This is surprising since the Na+/PO~ ratios for ~W-14 

DNA differ by less than 47. while measurements on four aliquots of the 

. + dialysate g~ve Na concentrations of 1.22 ±0.02rnM or ±27. when taking into 

account dilution factors.· A comparison of the DNA concentrations of the 

F.E. s. samples with the DNA concentrations of the samples before dialysis 

shows variations of less than 57.. This suggests that the DNA has not been 

denatured and osmosis has not significantly affected the results during 

dialysis. Further it implies that the discrepancy between the calf thymus 

Na+/PO~ ratios is the result of an error incurred when determining the Na+ 

concentrations. Ideally a larger number of aliquots should have been 

examined. 

+ -Na /P0
4 

ratios ;>1.0 were obtained for all samples and in this respect 

the experiment was successful. + It is of interest to note that Na concen-

trations' are greater inside the dialysis bags than in the dialysate, despite 

exhaustive dialysis. This suggests ,that DNA is able to maintain a relatively 

high local Na+ conce~tration compared with that in the bulk solution. 

+ - + The Na /P04 ratios tend to indicate that ~W-14 retains less Na than 

calf thymus DNA when dialysed under the same condi'tions although these 
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results are not completely conclusive. + -This decrease in the Na /p04 ratio 

by ~0.25 to 0.5 implies that a putrescine group would have to neutralize 

+ between two and four phosphate groups of ~W-14 DNA to account for the Na 

concentration reduction. This is comparable with the neutralization of 

four phosphate groups obtained by Goodwin, 1977. However, at this time 

neither these results nor those of Goodwin, 197~ can be regarded in a truly 

quantitative manner. Nevertheless it is likely that such results indicate 

that there is some reduction in the ability of pW-14 to retain Na+ compared 

with calf thymus DNA under the same conditions. 

Differences in the retention of Na+ by ~W-14 and calf thymus DNA do 

not arise from differences in their extinction coefficients. The extinction 

coefficient EA260nm of ~W-14 DNA was determined by Kropinski, Bose and 

Warren, 1973, by assaying for inorganic phosphate in hydrochloric acid 

hydrolysates of DNA. They found EA260nm = 6800M-l cm-
l 

which is in the range 

of extinction coefficients of double stranded DNA's, Biswal et al., 1967. 

-1 -1 E = 6800M cm represents an increase in the extinction coefficient 
A260nm 

of ~W-14 DNA of 3% compared with 6600M-l cm-l used in these results and those 

of Goodwin, 1977. In view of the relatively large experimental error arising 

+ from the determination of Na concentrations such an error may be regarded 

as negligible. 

°d) Conclusions 

+ -A method has been devised to measure Na /P04 ratios for different 

DNA's under conditions which reflect the ability of a given DNA to retain 

+ + -Na. Measurements have been carried out under conditions where Na /P0
4 

ratios are greater than 1.0 and hence the potential problem of DNA 

denaturation is greatly reduced. 

These results and those of Goodwin, 1977, imply that there is a 

reduction in the ability of ~W-14 DNA to retain Na+ compared with calf thymus 

DNA. Such a reduction may be attributed to the presence of the modified 

thymine base of ~W-14. It is possible that this modified base is involved 
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in host controlled modification like glucosy1ated 5-HmCyt, Revel and Luria, 

1970. Alternatively it may facilitate DNA packing in the head of the 

bacteriophage where neutralization of DNA phosphate groups is important. 

Developments of this type of experiment should provide quantitative 

information on the ability of different DNA's to retain cations. Where 

differences in cation retention are due to the presence of modified bases 

such information may be important in understanding the function of these 

modifications. 

6.6 The electrode potential method of chloride analysis 

A more convenient method of routinely analysing the total chloride 

ion content of a solution is possible using a chloride meter. This is 

essentially a device which measures the electrode potential of a cell 

containing the chloride solution with reference to a standard electrode. 

An apparatus of this type was constructed to determine the effectiveness of 

such a device in measuring low concentrations of Cl in small volumes of 

DNA solutions. 

A silver wire anode was electrolytically plated to give a fine silver 

chloride coating and a calomel electrode was used as the reference electrode. 

The plated silver wire was wound around the calomel electrode in a helical 

fashion to conserve space. Electrical contact between the chloride solution 

and the calomel electrode was maintained via a salt bridge of 1.OM sodium 

sulphate solution. The sodium sulphate reservoir was contained in a U~tube, 

the height of which was found to be critical in maintaining the electrical 

stability of the apparatus. The electrode potential of the cell was measured 

using a stabilized millivoltmeter. 

Theoretically the electrode potential E~ of an electrode in a solution 

of its ions of concentration [c], is related to the standard electrode 

. ~ potent1a1 of hydrogen Em by equation 6.2 where R is the gas constant, F the 

Faraday constant, T the absolute temperature and z the valency of the ion 
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concerned. Thus a plot of electrode potential against the log of the ion 

, 

Em = E -&-+ RT log [c] 
m - e 

zF 
- Equation 6.2 

concentration should be linear. It is not necessary to determine the 

absolute value of electrode potential since a calibration curve for the 

apparatus can be obtained by plotting electrode potential as a function of 

standard chloride ion concentration within the cell. The electrode 

potential of the cell is then measured for a chloride ion solution of 

unknown concentration. A comparison of the electrode potential with the 

calibration curve will give the unknown chloride ion concentration. 

The apparatus was first tested using standard sodium chloride solutions 

and a plot of electrode potential against 10glO[Cl-] was found linear in 

the range 10-1 - 10-4M Cl-. In addition there was no significant differences 

in the electrode potential of Sml volume samples compared with SOml volume 

samples using this equipment. Eventually it was found that the height of 

the electrode in the solution was unimportant provided that the bottom of 

the electrode was below the m~niscus of the solution. It was thus possible 

-4 -to detect 10 M Cl concentrations in lml ·sample volumes giving a 

sensitivity of 3.5ppm. Cl concentrations lower than 10-4Mcould be 

detected by suitable calibration of the instrument, but the relationship 

between electrode potential and Cl- concentration was no longer linear. 

Thus the ability of the instrument to detect Cl- concentrations differing 

-4 -
by the same amo~t decreased below 10 M Cl concentration. Unfortunately, 

the apparatus was subject to considerable drift in electrode potential values 

of the same chloride sample with respect to time. Replating the silver wire 

electrode had little effect on this drift. Electrode potentials of chloride 

solutions examined after prolonged contact (up to 7 hours) with plastic 

containers did not show any obvious trend with respect to time and leaching 

of Cl- from such containers was not thought to be significan~. Eventually 
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the drift in electrode potential was partially attributed to contamination 

of the sample solution with sulphate ions from the sodium sulphate salt 

bridge. Optimizing the height of the sodium sulphate reservoir tended to 

reduce this instability, but it was not entirely removed. 

The apparatus was then used to measure CI concentrations in DNA 

solutions. Sigma 1 calf thymus DNA, batch No. D150l was dissolved in 

deionized water to give a DNA concentration of 3.6lrnM. The DNA concentration 

was calculated assuming 73% of the material was DNA as determined in chapter 

3.5. The instrument was calibrated with standard sodium chloride solutions 

before each run. Cl concentrations of aliquots of the bulk DNA solution 

diluted with deionized water were then determined. Table 6.6 presents the 

results from two successive runs on six DNA samples. The overall CI-/PO~ 

ratio for this DNA was found to be 0.18 ±0.014 or ±870. There is no obvious 

change in these Cl-/PO~ ratios with respect to DNA concentration. 

After the second Cl concentration determination the samples were 

+ . analysed for Na concentrat10n. The F.E. spectrometer was calibrated using 

-2 -5 
standard sodium chloride solutions in the range 10 - 5xlO M and a 

f 1 
+ .. 

calibration curve 0 og Na concentrat1on agalnst spectrometer output was 

obtained. Using this curve the Na+ concentrations of the samples were 

subsequently determined. The results are shown in Table 6.7. 

The volume of these samples was very low for ideal F.E.S. analysis, 

+ but initially Na and CI analysis on the same sample without dilution was 

+ - . 
deemed desirable. The first Na /P04 ratios in Table 6.7 are sequentially 

+ 
increasing. This effect is probably due to Na concentrations in these 

samples which are too high, thus impairing the efficiency of the spectrometer 

+ . 
atomizer. This causes the Na concentrat1on to be underestimated, but the 

effect decreases with decreasing Na+ concentration. + -The last four Na /P0
4 

ratios in Table 6.7 are almost constant and are taken to be correct. Using 

+ - -the data from Table 6.6 (Na - CI )/P04 ratios have also been calculated. 

+ - -The last· four determinations of the (Na - Cl )/P04 ratio in Table 6.7 are 



Va 1. DNA from Vol. Deionized Calculated 
1 st Run 2nd Run 

Bulk soln. Iml Water Im1 DNA conc. IrrM - conc. /rrM Cl-/PO~ - conc. /rrM Cl-/PO~ C1 Cl 

1.50 0.00 3.61 0.589 0.163 . 0.750 0.208 

1.25 0.25 3.01 0.490 0.163 0.589 0.196 

1.00 0.50 2.41 0.389 0.161 0.452 0.188 

0.75 0.75 1.81 0.288 0.159 0.347 0.192 

0.50 1.00 L20 0.214 0.178 0.219 0.183 

0.25 1.25 0.60 0.106 0.177 0.119 0.198 

Average 0.167 0.194 

Table 6.6 C1-/PO~ ratios for Sigma 1 calf thymus DNA. 



I 
+ + - (Na+ - Cl-)/PO~ I Vol. DNA from Vol. Deionized Calculated Na conc. /IrM Na /P04 

Bulk soln. Iml Water Iml DNA conc. /IrM 

1.50 0.00 3.61 3.55 0.98 0.78 

1.50 0.00 3.61 3.63 1.01 0.80 

1.25 0.25 3.01 3.47 1.15 . 0.96 

1.00 0.50 2.40 2.95 1.23 1.04 

0.75 0.75 . 1.80 , 2.29 1.27 1.08 I 

n 0.50 1.00 1.20 1. 51 1.26 1.08 

0.25 1.25 0.60 0.74 1.23 1.04 
--

Table 6.7 Chloride and sodium ion analysis of Sigma 1 calf thymus DNA. 
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1.0 ±87. which is within the limits of experimental error. This implies that 

+ -in this calf thymus DNA sample there are sufficient Na in excess of Cl to 

exactly neutralize the DNA phosphate groups. 

These experimental techniques clearly need further refinement. 

Nevertheless they show that Cl concentration can be measured to within one 

tenth of the phosphate concentration in DNA solutions. The accuracy is 

sufficient to make the determination of Cl-/PO~ ratios of much interest in 

the analysis of nucleic acid conformation as a function of ionic strength 

in samples for x-ray analysis. Furthermore, using this technique in 

+ conjunction with Na analysis it is possible to determine the relative 

+ concentration of Na interacting with the DNA as opposed to their presence 

as the result of sodium chloride in the DNA sample. It would be of interest 

to carry out a similar experiment using ~W-14 DNA to examine the effect of 

modified thymine bases to retain Cl- as well as Na+. It may be that not 

+ 
only is the retention of Na reduced by the positively charged N-thyminyl-

putrescine, as indicated in section 6.5, but also that the local Cl 

concentration around this DNA is increased. The relevance of such an 

analysis has already been discussed in the previous section. 

6.7 Chloride analysis by amperometric titration 

A number of commercial instruments are available which measure Cl 

concentration by the electrode potential method. Such devices may be 

expected to have improved electrical stability compared with the apparatus 

described above. They should also provide Cl- concentrations of greater 

Ir- -] -4 accuracy but cannot readily measure ~l belowlO M. A more accurate method 

of measuring low Cl concentration is by an amperometric titration. The 

most sensitive instrument of this type is the Buchler direct reading 

chloridometer. In this device current is passed through the sample via two 

silver generating electrodes. Silver ions are released from the anode and 

combine with chloride ions in the sample to produce silver chloride which is 
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insoluble. When all the chloride is precipitated the increasing concentration 

of free silver ions causes an increase in current which activates a relay 

and stops a timed readout. The rate of generation of silver ions is constant 

and therefore the quantity of chloride ion precipitated is proportional to 

the time elapsed. The apparatus can detect O.OlmEq/l of chloride ions in 

O.Olml of sample to an accuracy of 0.57. ie 0.035ug in O.Olml. 

This method is superior to the electrode potential method since the 

chloridometer output is completely linear with respect to Cl- concentration. 

In the electrode potential method the measured electrode potential is only 

linear with Cl- concentration at [Cl-] ~10-4M. 

This chloridometer not only offers accurate and fast CI analysis of 

DNA solutions, but it is sensitive enough to measure CI concentrations of 

solutions of individual fibre x-ray samples. A typical fibre sample of 

200ug DNA might be expected to contain N3.2ug of CI. If the fibre was 

dissolved in O.Sml of distilled water, the CI- concentration of the sample 

would be twice that at which the Buchler chloridometer is accurate to 0.57.. 

Such a CI assay would use very little sample and the remaining solution 

could be further diluted for Na+ analysis using F.E.S. DNA concentrations 

of such samples could be estimated by U.V. spectroscopy of other fibres 

dissolved in saline solutions to prevent DNA denaturation. 

This process is obviously a destructive technique and it is necessary 

to ensure that all x-ray data is collected beforeCI-analysis is possible. 

Nevertheless, such procedures offer the possibility of routine analysis of 

x-ray fibre samples rather than the analysis of bulk solutions from which 

such samples are prepared. In view of the varied x-ray diffraction results 

from fibres made from apparently the same bulk solution and exposed to 

supposedly similar environmental conditions, this type of microanalysis 

may prove of value in determining quantitatively the effects of ionic 

strength on DNA conformation. 
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6.8 Conclusions 

A number of experimental techniques relating to the determination of 

the amount of salt retained by nucleic acids have been discussed. + -Na /P04 

ratios of 1.4 - 1.7 have been obtained for Sigma 1 calf thymus DNA using a 

modified F.E.S. technique to measure Na+ concentrations of DNA solutions. 

Further experimentation is necessary to ascertain whether Na+/po~ ratios 

less than 1.0 can be attributed to DNA which has been precipitated from 

solutions of relatively high salt concentration. A technique has been 

+ -devised to measure Na /p04 ratios of different DNA's under conditions which 

reflect the ability of a given DNA to retain Na+. Results suggest that 

+ 
~W-14 DNA retains less Na than calf thymus DNA under similar conditions. 

Further experimentation is necessary in order to quantify these results. 

This in~ormation may be important in understanding the function of modified 

DNA's such as ~W-14. An instrument has been constructed to measure Cl 

concentrations in DNA solutions using an electrode potential method. Using 

this instrument Cl-/PO~ ratios of 0.18 have been obtained for Sigma 1 calf 

thymus DNA. Attributing Cl concentration to the presence of sodium chloride 

there was still sufficient Na+ present to completely neutralize the DNA 

phosphate groups. A particularly sensitive method of Cl- analysis by 

amperometric titration has been discussed. This is relevant to the 

determination of Cl concentrations in x-ray fibre samples. The development 

of these techniques should result in the quantitative determination of Na+ 

and Cl- concentrations present in the x-ray fibre samples. In view of the 

relevance of ionic strength on nucleic acid conformation the determination 

of such parameters may be important in understanding why a specific nucleic 

acid conformation is favoured under certain environmental conditions. F.E.S., 

electropotential and amperometric titration methods can easily be adapted to 

+ -measure cation and anion concentrations other than those of Na and Cl • 

Even with such quantitative micro-analytical techniques available the 

problem of determining the amount of salt directly associated with DNA is 
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not completely solved. This is apparent from an examination of x-ray 

diffraction patterns such as that of Plate 3.7. Here the diffraction ring 

at O.282nm is evidence of crystalline sodium chloride within the fibre 

sample. Thus the distribution of Na+ and CI in the fibres may be non-

homogeneous, at least under conditions of moderate/high salt concentrations 

and low relative humidity. Transmission electron microscopy, (T.E.M.), has 

been briefly examined in order to determine the size and distribution of 

these salt micro-crystals in these DNA fibres. However, there are many 

problems in the preparation of DNA samples for T.E.M. and this technique 

has so far proved unsuccessful. An alternative method for estimating the 

amount of crystalline salt present in fibres is the comparison of the 

intensity of the salt diffraction ring with the intensity of a reflection 

from a substance in the fibre of known concentration. Such orocedures 

remain to be investigated. 
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AN EXAMINATION OF THE FORMATION OF SMALL MOLECULE CRYSTALLITES 

IN DNA FIBRES 

7.1 Introduction 

Numerous small molecules possessing planar aromatic groups have been 

shown to interact with nucleic acids and many of these molecules are of 

medicinal interest. This subject has been extensively reviewed by Goldberg 

and Friedman, 1971, and Gale et al., 1981. One type of interaction between 

these small molecules and DNA is that of intercalation. This interaction 

involves the insertion of a planar drug chromophore in between two adjacent 

base pairs of DNA and may give rise to stable drug/DNA complexes with 

consequential disruptions in DNA replication and transcription processes. 

An intercalation model was first proposed by Lerman, 1961, in order to 

explain the x-ray diffraction patterns obtained from proflavine/DNA complexes. 

The proposal was subsequently supported by a number of physico-chemical 

experiments by Luzzati et al., 1961, Lerman, 1963, and Lerman, 1964a,b. 

A more detailed analysis of x-ray diffraction patterns in conjunction with 

optical transformations and spectrophotometric measurements from proflavine/ 

DNA and acridine orange/DNA complexes was carried out by Neville and Davies, 

1966. Their results were shown to be in qualitative agreement with the 

intercalation model of Lerman, 1961. X-ray fibre diffraction results in 

conjunction with molecular model building techniques have shown that a 

number of other small molecule/DNA complexes are consistent with an 

intercalation model. For example, Fuller and Waring, 1964, Pigram et al., 

1972, Bond et al., 1975, and Porumb, 1976, have produced intercalation 

modelS for ethidium bromide, daunomycin, PtTS and adriamycin respectively. 

Diffraction patterns from fibres of drug/DNA complexes are much less well 

resolved than the relatively well ordered fibres of DNA alone. Thus the 

structural information provided by x-ray fibre diffraction of drug/DNA 

complexes is rather limited. In particular, little information is available 
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with regard to the changes which intercalation must impose on the DNA 

sugar-phosphate backbone. Linked atom least squares molecular model 

building has been used to calculate plausible models for proflavine 

intercalation into both the A form (Alden and Arnott, 1977) and the B form 

of DNA (Alden and Arnott, 1975). However, the analysis of drug/DNA complexes 

has not yet provided data at atomic resolution. To some extent such 

information has been obtained from single crystal x-ray analyses of drug/ 

dinucleotide complexes. However, the direct relevance of such structures 

. to nucleic acid complexes is unclear at present, Neidle, 1982. The ability 

to synthesize and crystallise longer oligonucleotide sequences which has 

proved so successful in providing data of the Z and B conformations (Wang 

et al., 1979, and Wing et al., 1980) may well have an important role to play 

in elucidating the structure of drug/DNA complexes. Equally, synthetic 

polynucleotides,which are now more readily available in larger quantities, 

may be used to provide more detailed information with regard to the 

interaction of drugs with nucleic acids. A more exact knowledge of the 

structure and mechanism by which different drug molecules interact with 

nucleic acids is a desirable prerequisite in the search and design of 

chemotherapeutic drugs which are more specific in their mode of interaction 

and give rise to less harmful side effects. Equally important is the 

realization as to which of the millions of small molecule compounds now 

being synthesised are likely to be harmful to man and his environment and 

to the extent of this toxicity for a given molecular species. 

During fibre x-ray diffraction investigations of small molecule/DNA 

complexes crystallization of the small molecules within DNA fibres has 

occasionally been observed. This observation is interesting for' a number 

of reasons. Firstly, diffraction from the crystallites has been well 

resolved in some drug/DNA systems. A knowledge of the structure of the 

~mall molecules within the crystallites may provide useful information with 

respect to the DNA structure or that of the drug/DNA complex. Secondly, a 
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knowledge of the conditions under which these crystallites are formed may' 

well lend some insight into the mechanism of the small molecule/DNA 

interaction. A third point of interest is concerned with the use of small 

molecules in drug treatment regimes. Although molecules of this type have 

been used as anticarcinogens those which have so far been effective are 

extremely cytotoxic. Such drugs have been administered either orally or 

intravenously and a problem arises in conveying the selected drug to the 

infected area without destroying normal, healthy tissue; As an alternative 

means of administration, drug crystals could be implanted in a tumour site 

and thus provide a slow, continuous dose of antibiotic to an infected area. 

This is in preference to the massive indiscriminant dose incurred during 

oral or intravenous administration. 

The initial objective of this work was to determine the conditions 

for observing the crystallization of a particular small molecule, that of 

steffimycin Btin DNA fibres. Steffimycin B provides well resolved 

diffraction patterns of a crystalline small molecule within DNA fibres. 

Steffimycin B has not proved to be an effective antibacterial agent although 

it is highly inhibitory against gram positive bacteria in vitro and has 

shown potential antitumour activity in an in vitro screen, Brodasky and 

Reusser, 1914, Reusser, 1915. However steffimycin B is structurally related 

to the far more potent daunomycin and adriamycin anthracycline antibiotics. 

The most well resolved diffraction patterns of crystalline steffimycin B/ 

DNA fibres were obtained by Blakeley, 1976, and these patterns have been 

examined in detail. A series of five acridine derivatives have been briefly 

examined with respect to their ability to crystallize in DNA fibres. The 

structural features of compounds which have shown evidence of crystallization 

in drug/DNA fibres have been discussed. 
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7.2 Previous observations of the crystallization of small molecules in 

DNA fibres 

a) The steffimycins 

Some of the most well resolved diffraction patterns of the 

crystallization of small molecules in DNA fibres have been obtained from 

steffimycin B/DNA samples. Steffimycin was isolated from Streptomyces 

steffisburgensis by Bergy and Reusser, 1967, and Steffimycin B was isolated 

from Streptomyces elgreteus by Brodasky and Reusser, 1974. Both crystalline 

compounds are orange-yellow in colour. In acidic aqueous solutions these 

antibiotics exhibit a bright yellow colour, which turns purple upon addition 

of strong base. These compounds have been shown to inhibit various 

biological activities including DNA-directed RNA synthesis. This effect 

has been attributed to the binding of these antibiotics to adenine or thymine 

or both of these bases of the DNA template, Reusser, 1967, 1975. However, 

these antibiotics have been curiously ineffective in vivo. Brodaskyand 

Reusser, 1974, showed that steffimycin B differed from steffimycin as a 

result of the substitution of an oxymethyl group for an hydroxyl group on 

the sugar ring. A more detailed structural analysis of the steffimycins 

has been carried out by Kelly et al., 1977, on the basis of spectral 

analyses and chemical degradation studies. Their proposal for the 

steffimycin structures is depicted in Figure 7.1a. 

Blakeley, 1976,has examined the effects of the steffimycin antibiotics 

on DNA using U.V. and visible spectroscopy, x-ray fibre diffraction and 

model building techniques. He proposed that both these antibiotics interact 

with DNA by intercalation and that at plD ratios~18.2 external binding of 

the steffimycins to DNA also occurs. From a consideration of the 

interaction of the steffimycins with Na poly[d(A-T)].poly[d(A-T)], Blakeley 

concluded that both these antibiotics have a preference for A-T binding 

sites. 

Dall'Acqua et al., 1979, have also examined the interaction of the 
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steffimycin antibiotics with DNA's of various base compositions and with 

synthetic polynucleotides. On the basis of spectrophotometric and 

fluorimetric data, thermal transition studies and gel filtration analysis 

they concluded that the steffimycins formed stable complexes with DNA. 

Flow dichroism measurements were interpreted as direct evidence that the 

interaction of the steffimycins with DNA was by intercalation. Association 

constants and the frequency of the binding sites were obtained from the 

spectrophotometric and fluorimetric data according to the method of McGhee 

and von Hippel, 1974. These results suggested that an alternating A-T 

sequence in DNA represents the preferential receptor site for the steffimycins 

which is in agreement with Blakeley, 1976. The association constant of 

steffimycin B was found to be slightly higher than for steffimycin but both 

were an order of magnitude below that obtained for adriamycin/DNA complexes 

under similar conditions. The authors suggest that the reduced binding 

affinity of the steffimycins may partially explain the lack of in vivo 

activity of the steffimycins. 

The crystallization of steffimycin B within DNA fibres was discovered 

by Blakeley, 1976. Blakeley had prepared steffimycin/DNA and steffimycinBI 

DNA fibres from gels centrifuged from solutions in a similar manner to that 

described in chapter 2.4. Prior to centrifugation the solutions contained 

0.33 or 0.66rnM deproteinized calf thymus DNA, 10.5rnM NaCl and sufficient 

steffimycin B to give p/D ratios in the range of 4-60. Steffimycin B 

preparations contained N267. v/v methanol in order to ensure the solubility 

of this antibiotic which is only sparingly soluble in aqueous solution. 

X-ray diffraction patterns of these fibres were usually reminiscent 

of B DNA patterns with increased values of pitch and decreased intermolecular 

spacings according to the quantity of antibiotic present and consistent 

with present concepts of drug binding by intercalation. However, fibres of 

PID ratio~12 often exhibited O.7nm meridional reflections superimposed on 

non-modified B DNA diffraction patterns. The observation of such meridional 
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reflections tended to occur more frequently in patterns from steffimycin B/ 

DNA fibres than from steffimycin/DNA fibres. In the former case Blakeley 

obtained several patterns with a large number of crystalline drug 

reflections superimposed on an intensity distribution associated with that 

of B DNA similar to that shown in Plate 7.1. 

Blakeley recorded the positions of 34 crystalline drug reflections 

and showed that these reflections indexed on a hexagonal lattice with a = 
2.993 ±0.002nm and c = 0.770 ±O.OOlnm. Blakeleypointed out that the a 

lattice parameter of B DNA was 1.S times that of steffimycin B and it may 

be possible to superimpose the nucleic acid lattice over the drug lattice. 

However, Blakeley found it difficult to arrange steffimycin B and DNA 

molecules in the same unit cell without appreciable steric hindrances and 

concluded that the steffimycin B molecules crystallize in sites between the 

DNA microcrystals. 

Blakeley has suggested that under conditions of low relative humidity 

hydrophobic drug molecules leave intercalation sites giving rise to a 0.68nm 

or 0.70nm meridional reflection and that in some cases these drug molecules 

rearrange to form crystallites with a c dimension of 0.77nm. Blakeley has 

reported an increased tendency for steffimycin B molecules to leave DNA 

intercalation sites under hydrophobic conditions compared with steffimycin 

molecules. He suggested that this occurs as a result of the formation of 

only one hydrogen bond in the steffimycin B/DNA complex compared with two 

hydrogen bonds in the steffimycin!DNA complex. This conclusion was based 

on model building studies and may be in contrast to the work of Dall'Acqua 

et al., 1979, who obtained slightly higher association constants for 

steffimycin B than steffimycin DNA receptor sites. However, it should be 

remembered that while Blakeley's studies were carried out on fibres,.those 

of Dall'Acqua et ale were performed in solution. 

b) Proflavine 

Proflavine (3,6-diaminoacridine), Figure 7.lb,is a member of the 
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X-ray diffraction patterns from steffimycin B/ONA and 

acridine derivative/DNA fibres 

Crystalline steffimycin B/ONA fibre, P/D = 12.2, rh = 92%, courtesy of 
Blakeley, 1976. 

Plate 7.2 

Steffimycin B/ONA fibre, P/O N6.0, rh = 44%, from gel 1 showing a semi­
crystalline ~ diffraction pattern with an additional meridional reflection 
at O.72nm attributed to the presence of steffimycin B. 
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acridines which have long been used as antibacterial and antimalarial 

agents. Their biological activity is associated with the inhibition of RNA 

and DNA synthesis, Albert, 1973, Acheson, 1973, and believed to be as a 

result of intercalation, for example, Lerman, 1961, Neid1e et al., 1977. 

The acridines are widely used as histological stains for nucleic acid­

containing structures in cells while some acridines including proflavine 

are powerful mutagens, Brenner et a1., 1961. 

In examining x-ray diffraction patterns of proflavine/DNA fibres at 

p/D ~ 5.9 and 1007. rh, Neville and Davies, 1966, observed disordered B type 

diffraction patterns with meridional reflections NQ.68nm. These reflections 

were superimposed on diffuse scattering, were of weak intensity and not 

reproducibly observed. No explanation was given as to their origin. 

c) Miracil D 

Miracil D, Figure 7.1c, is clinically useful as anantischistosome 

drug that has also shown anticancer activity in a number of test systems, 

Hirschberg, 1975. It is also known to inhibit RNA synthesis by blocking 

the action of DNA dependent RNA polymerase, Hirschberg et al., 1968, 

Weinstein and Hirschberg, 1971.. Crystalline miraci1 DIDNA diffraction 

patterns have been obtained by Davies, 1973, which are of similar quality to 

the crystalline steffimycin B/DNA patterns of Blakeley, 1976. Model building 

studies showed that the intercalation of miracil D from the direction of the 

small groove of DNA was stereochemically feasible. However, the intensity 

distribution from crystalline miraci1 DIDNA diffraction patterns was very 

similar to that observed on patterns from thin needle shaped crystals of 

miracil D. In addition, no evidence of intercalation was apparent from 

diffraction patterns of miracil DIDNA fibres which did not exhibit 

crystalline miracil D reflections. Davies thus concluded that miraci1 D 

binds weakly to DNA along the outside of the sugar phosphate chain and 

crystallizes out separately from the DNA molecules under specific fibre 

conditions. The binding of miracil D to DNA was shown'to be critically 
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dependent on the ionic strength. Davies has suggested that the presence of 

a sulphur atom in the ring system of miracil D may reduce its binding 

affinity for DNA either as a result of charge effects or due to puckering 

of the ring system. about the sulphur atom. 

In contrast to the proposed non-intercalation of miracil D nmr 

evidence supports an intercalative mode of miracil D binding to poly(rA). 

poly(rU), Heller et al., 1974. In addition Hycanthone, Figure 7.lc, which 

is a derivative of miracil D, affects circular DNA in a manner consistent 

with that of other simple intercalating drugs, Waring, 1970. However, 

differences in the interpretation of the binding mode of this drug to DNA 

may have resulted from examination of drug/DNA interactions in solution as 

opposed to the solid state. Neidle, 1976, has determined the crystal 

structure of miracil D and shown that the ring system of the molecule is 

planar ±O.OOSnm. The hydrogen atom of the Nl nitrogen atom is in a 

favourable position to form an intramolecular hydrogen bond with the carbonyl 

oxygen atom. Alkyl substitution abolishes this hydrogen bond forcing a 

rotation of the Nl substituent out of the plane of the chromophore giving 

a substantial increase in the effective van der Waals thickness of the 

thioxanthone ring. This is consistent with the inhibition of biological 

activity and the decrease in the strength of miracil D binding to DNA upon 

alkyl substitution. During intercalation the"side chain of miracil D may 

well be stabilized by electrostatic interaction between terminal nitrogen 

and phosphate oxygens on the nucleic acid back bone, Weinstein and Hirschberg, 

1971. This suggestion is supported by model building studies, Neidle, 1976. 

d) Toluidine blue 

Toluidine blue, Figure 7.ld, is a phenothiazine derivative which has 

medicinal uses as a heparin inhibitor and as an antihaemorrhagic and 

antimenorrhagic agent. 

X-ray diffraction patterns of toluidine blue/DNA fibres showing 

crystalline drug reflections were again obtained by Davies, 1973, and were 
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similar to those of crystalline miracil D/DNA patterns. Davies has suggested 

that this compound is unable to intercalate with DNA since in addition to the 

sulphur atom in the ring system, intercalation is further inhibited by the 

presence of bulky methyl substituents. Thionine, Figure 7.ld, which does not 

have these methyl substituents gave typical intercalation type diffraction 

patterns and no evidence of crystallization in the DNA fibres was observed. 

7.3 Materials and methods 

In an attempt to reproduce the crystalline steffimycin B/DNA 

diffraction patterns of Blakeley, 1976, fibres were prepared from gels 

centrifuged from solutions as described in chapter 2.4. The contents of 

the solutions prior to centrifugation are shown in Table 7.1. The solution 

from which gel 3 was centrifuged gave a similar pH to that of solution 2 

despite the absence of Tris.HCl ph 7.4. Solutions from which gels 4, and 5 

were centrifuged were prepared in the absence of Tris.HCl pH 7.4 and although 

their pH was not measured it was probably N7.l in both cases. Similarly, 

the pH of the solution from which gel 6 was centrifuged was likely to be 

close to that of solution 2 N7.3-7.4. 

The P/D ratios of the gels were determined by absorption spectroscopy. 

U.V. absorption of solutions containing DNA but no drug showed that only 5% 

of the DNA remained in the supernatant after centrifugation. This quantity 

of DNA was considered to have a negligible effect on the visible absorption 

spectra of drug solutions Thus for the purpose of analysis the supernatants 

of drug/DNA solutions were deemed to contain only non-bound drug. The DNA 

phosphate concentration of a gel was calculated assuming 95% of the DNA in 

the solution prior to centrifugation was obtained in the sedimented gel. 

The drug concentration of the gel was calculated from the difference between 

the drug concentration in the solution prior to centrifugation and the 

concentration of the drug in the supernatant after centrifugation. One or 

more fibres were selected from each gel and diffraction patterns were 



Gel No. DNA conc.1 roM NaCl cone./roM Tris. HC11 roM pH Steffimycin B conc./roM Methanol eone.li. plD 

1 0.30 10.0 10.0 8.5 49 15.5 N6.0 

2 0.33 10.0 10.0 7.3 73 26.8 6.6 

3 0.31 10.0 - 7.1 68 25.0 8.6 

4 0.33 10.0 - - 44 23.6 10.9 

5 0.22 10.0 - - 37 20.0 8.4 

6 0.19 32.0 32.0 - 32 39.5 8.4 

Table 7.1 Contents of steffimycin a/DNA solutions prior to centrifugation. 
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recorded at various humidities using pinhole and toroidal optics. 

In addition to the properties of the acridines already discussed these 

compounds are important as potential antitumour agents. This is especially 

true of members of the acridinyl methane sulphonanilide (AMSA) series which 

are active against a number of experimental tumours in animals as well as 

in man, Cain and Atwell, 1974, Cain et al., 1974. Mr. C. Wong of the 

Department of Pharmacy, University of Aston, Birmingham has synthesised 

four derivatives of the m~AMSA compound in order to further investigate the 

enhanced biological activity of these acridines, Wong, 1979. The graphic 

formula of these acridine derivatives are give~ in Figure 7.2. The x-ray 

diffraction patterns of fibres of these compounds complexed with DNA has 

been examined. 

,These compounds'were kept frozen until ready for use since some of 

them decompose rapidly on exposure to light. Stock solutions of the acridine 

derivatives were prepared by dissolving 10.Omg of each compound in S.Oml 

of dimethyl sulphoxide, DMSO. DMSO is a powerful organic solvent and its 

use was necessary since the derivatives are only sparingly soluble in 

aqueous solution. Fibres were prepared from each of the acridine derivatives 

complexed with DNA from gels centrifuged from solution as described in 

chapter 2.4. Prior to centrifugation the concentrations of the solutions 

were 0.38mM deproteinized calf thymus DNA, lOmM NaCl, l.OmM Tris.HCl pH 7.4, 

62.5uM drug giving a plD = 6.0 and Nl7. vlv DMSO. A DNA control gel was also 

prepared from a solution of the same concentration of DNA, NaCl and Tris. 

HCl pH 7.4 but contained no acridine derivative or DMSO. Owing to the lack 

of information regarding the extinction coefficients of these acridine 

derivatives no attempt was made to calculate a more accurate plD ratio for 

the sedimented gels as previously described for steffimycin B/DNA gels. 

One or more fibres were selected from each gel and diffraction patterns were 

usually recorded at 757., 927., 987., 927., 757. and 577. rh using pinhole or 

toroidal optics. 
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7.4 Results 

a) X-ray diffraction patterns of steffimycin B/DNA fibres produced from 

gels 1 to 6. 

Fibres from gel 1 generally gave A diffraction patterns at 757. rh and 

semi-crystalline B patterns at 987. rho Superimposed on the B patterns was 

a reflection ~O.72nm as shown in Plate 7.2. On reducing the relative 

humidity, the B conformation remained stable in one fibre but changed to the 

A conformation at 757. rh in the other fibres. In all cases the meridional 

reflection at O.72nm remained. 

Fibres from gel 2 gave B or A/B diffraction patterns at 667. and 927. rh 

and showed some evidence of crystalline steffimycin B reflections although 

the degree of crystallinity was very poor compared with Blakeley's patterns. 

Fibres from gel 3 gave B diffraction patterns in the humidity range 

of 0-927. and one of the fibres exhibited crystallinesteffimycin B 

reflections similar to those observed from fibres of gel 2. 

Fibres from gels 4 and SaIl gave B diffraction patterns in the relative 

humidity range of 44-987. and no patterns were obtained exhibiting crystalline 

drug reflections. An example of the type of diffraction pattern obtained 

from these fibres is shown in Plate 7.3. 

Fibres from gel 6 all gave B type diffraction patterns at 927. and 987. 

rh with no evidence of crystalline steffimycin B reflections. The gel was 

inadvertently allowed to dry out and was then redissolved in glass distilled 

water. On producing a new fibre from this gel crystalline steffimycin B 

reflections were obtained similar to those observed in patterns from fibres 

of gels 2 and 3. An example of this type of diffraction pattern is shown 

in Plate 7.4. A variation in the relative humidity of the fibre environment 

produced no apparent changes in the crystalline reflections. 

As gels 2, 3, 4 and 6 dried out thin needle shaped crystals of 

steffimycin B were visible to the naked eye. 
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Plate 7.3 

Steffimycin B/DNA fibre, P/D = 8.4, rh = 92%, from gel 5 showing the typ 
of B diffraction pattern obtained in the absence of crystalline steffimycin B. 

Plate 7.4 

Steffimycin B/DNA fibre, P/D = 8.4, rh = 98%, from gel 6 showing some 
evidence of crystalline steffimycin B diffraction superimposed on that of 
B DNA diffraction. 



153 

b) Analysis of the best crystalline steffimycin B/DNA diffraction pattern 

Of the diffraction patterns so far recorded at the University of 

Keele, the steffimycin B/DNA patterns obtained by Blakeley, 1976, are the 

best examples of a small molecule crystallizing in a DNA fibre. Attempts 

to reproduce these patterns with a similar degree of crystallinity have not 

been successful. In order to see whether any further information could be 

obtained from Blakeley's patterns one of them was reexamined. x and y 

coordinates of the crystalline steffimycin B reflections were measured 

using the Pye microscope. C,~, ~ and d-spacings were calculated using the 

computer program 'Film' and a xi-zeta plot was constructed as shown in 

Figure 7.3. The patterns indexed on a hexagonal lattice as described by 

Blakeley, 1976. ~-spacing of unambiguously identified reflections were used 

in conjunction with their assigned Miller indices to calculate lattice 

parameters which were subjected to a cyclic least squares refinement using 

the computer program 'Hex'. Blakeley's x-ray negative was then reproduced 

onto a IS" x 12" photographic plate. An accurately ruled O.5mm grid on a 

glass plate was also reproduced onto a 15" x 12" plate which was carefully 

measured. Distortions due to misalignment of the enlarging equipment and 

non-linear shrinkage of the emulsion were shown to be negligible. The : 

refined lattice parameters from the computer program 'Hex' were used to 

calculate the radii for all possible reflections of the steffimycin B lattice 

out to lS.Ocm using the computer program 'Find E'. A specimen"to film 

distance was used in this program which took account of the enlargement 

factor involved in the production of the photographic plate. The radii of 

the steffimycin B reflections on the photographic plate of Blakeley's pattern 

were determined using a beam compass and steel rule. Particular attention 

was given to the regions of the plate where a reflection was predicted by 

the 'Find E' program, but where no reflection had previously been observed 

using the Pye microscope. The updated set of ~-spacings so obtained was 

again used in the computer program 'Hex' to give final lattice parameters 
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of a = 3.024 ±0.003nm and c = 0.7712 ±0.0007nm. The observed and calculated 

~-spacings together with their assigned Miller indices are recorded in 

Table 7.2. There is little difference in the spacings of the reflections 

recorded by Blakeley, 1976, compared with those in Table 7.2 and the final 

lattice parameters determined from the two data sets are not significantly 

different. 

In an attempt to examine further the structure of steffimycin B radial 

traces of the reflections on Blakeley's negative were recorded using the 

microdensitometer. However, several problems were encountered. Blakeley's 

patterns had been recorded on Kodirex film and the background intensity is 

very high. Therefore the error in determining the intensities of the 

reflections is large and may be as much as 507.. In addition, although the 

diffraction pattern was recorded on two x-ray films placed one behind the 

other several of the reflections gave intensities well in excess of 1.0 O.D. 

In this region of optical density the blackening of the film is no longer 

proportional to the intensity of the incident radiation. In order to obtain 

a more accurate and complete set of intensity measurements it is necessary 

to record the diffraction patterns on several x-ray films to get a large 

range of intensity measurements. It is also important to use an x-ray film 

which is not highly susceptible to extraneous radiation. In this respect 

although Ilford Industrial G is no longer marketed the Swedish film Cea 

seems to be superior to the current Kodak alternative, Kodak No Screen film. 

In view of the large variation in the size of the reflections which increase 

rapidly with diffraction angle it is necessary to determine intensity 

measurements from both radial and tangential traces, Marvin et al., 1961. 

Alternatively the intensity data from the diffraction patterns could be 

digitalized using an Optronics rotating drum densitometer. The SERC unit 

at Daresbury provide a service to this end. A number of corrections should 

be applied to the intensity measurements of these types of diffraction 

patterns and these have been concisely reviewed and updated by Fraser et al., 
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Assigned h,k,l ~ Observed ~ Calculated Apparent Relative 

Value 
-1 I run 

-1 Inm Intensity 

100 0.380 0.382 s 
110 0.660 0.661 vs 
210 1.011 1.010 s 
220 1.321 1.323 s 
310 1.379 1.377 w 
410 1. 749 1.750 w 
330 1.980 1.984 m 
510 2.126 2.126 vw 
600 2.295 2.291 vw 
520 2.388 2.384 w 
610 2.508 2.504 w 

530/700 2.676 2.673 w 
630 or 800 3.035 - vw 

101 1.351 1.352 s 
III 1.456 1.456 s 
201 1.507 1.505 w 
211 1.634 1.644 m 
221 1.852 1.852 w 
311 1.893 1.891 w 
401 2.001 2.004 vw 
321 2.112 2.110 w 
411 2.180 2.178 w 
431 2.657 2.660 w 
611 2.816 2.820 w 

531/701 2.961 2.971 w 
711 3.163 3.161 w 

102 2.628 2.621 w 
202 2.697 2.704 m 
212 2.782 2.783 s 
302 2.838 2.835 s 
312 2.936 2.936 s 
402 3.015 3.010 w 
322 3.083 . 3.082 m 
412 3.128 3.129 m 
422 3.286 3.288 w 

Table 7.2 

Observed and calculated ~-spacings together with their assigned Miller 
indices for the steffimycin B/DNA pattern shown in Plate 7.1. The 
corresponding relative intensities are also shown. 
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1976. 

In an effort to obtain a more complete set of intensity measurements 

Blakeley's fibres were re-x-rayed but they were found to be extremely brittle 

and better diffraction patterns were not forthcoming. Attempts to produce 

better diffraction patterns from new steffimycin B/oNA fibres met with 

little success as described in section 7.4a. 

Using the refined lattice parameters of crystalline steffimycin B 

obtained from the computer program 'Hex' the volume of the steffimycin B 

3 unit cell was found to be 6.l2nm. Assuming that the density of steffimycin 

B is similar to that of the related anthracycline daunomycin monohydrochloride. 

Neidle and Taylor, 1977, then the number of molecules per unit cell is given 

in Equation 7.1. 

N = ~ x Vol. unit cell x L - Equation 7.1 
M.Wt. 

-3 -21 3 23 = 1.36gcm x 6.12 x 10 cm x 6.023 x 10 
588g 

= 8.65 

where N is the number of molecules in the unit ~ell 

~ is the assumed density of steffimycin B 

Vol. unit cell is the volume of the steffimycin B unit cell 

M.Wt. is the molecular weight of steffimycin B 

L is Avogadro'S number 

The fraction of solvent in the unit cell of steffimycin B in a 

hydrated fibre is probably greater than that found in the crystal of 

daunomycin monohydrochloride. Thus it is likely that the value of density 

used in Equation 7.1 has been overestimated leading to an overestimation in 

N. Since the unit cell of steffimycin B is hexagonal the most likely value 

for N is 6. 

The steffimycin B molecule is asymmetric and thus of the hexagonal 

space groups those containing mirror, glide or inversion elements' cannot 
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describe the steffimycin B unit cell. The remaining hexagonal space groups 

are given in Table 7.3 together with the number of asymmetric units per unit 

cell and the number of asymmetric units in the c direction of the unit cell 

for each space group. The unit cell of steffimycin B has a c dimension of 

only 0.77nm and the thickness of the steffimycin B chromophore is 0.34nm. 

Thus it is unlikely that the number of steffimycin B molecules in the c 

direction of the unit cell is more than two. It is also unlikely that this 

number is less two owing to the tendency for the non-polar chromophores of 

these types of molecules to stack in aqueous environments. From Table 7.3 

it can be seen that only the P3, P3l2, P32l and P63 space groups fill the 

criteria of 6 molecules per unit cell and two asymmmetric units in the c 

direction of the unit cell. Mr. F. Bingham has attempted to arrange CPK 

models of steffimycin B according to the symmetries imposed by the most 

likely space groups. The easiest packing arrangements were obtained using 

P3l2 or P32l space group symmetry and Plate 7.5 shows steffimycin B CPK 

models arranged in a unit cell with the latter symmetry. The only systematic 

absences which may occur as a result of the general conditions of symmetry 

associated with the P3, P3l2, P32l and P63 space groups are that 1 = 2n for 

the 001 reflections of the P63 space group. On this basis it was not possible 

to distinguish which of the space groups best described the steffimycin B 

lattice. 

c) X-ray diffraction patterns of acridine derivative/DNA fibres 

All the diffraction patterns obtained from the acridine derivative/DNA 

fibres gave disordered or semi-crystalline B type diffraction patterns. A 

typical example of this type of pattern is provided by a fibre of the 4-azide 

derivative/DNA complex at 757. rh as shown in Plate 7.6. The diffraction 

patterns were not sufficiently well resolved to make accurate measurements 

of pitch and intermolecular spacing values and no evidence was obtained as 

to whether the compounds interact with DNA by intercalation. Fibres from 

m-AMSA and 5-nitro derivative/DNA complexes gave disordered or semi-
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Space No. of Asymmetric No. of Asymmetric Comments 
Group Units per Unit Cell Units in the a 

Direction 

p3 3 1 Possible if there is 
an asymmetric unit of 
2 molecules. 

P31 
3 3 

P3 2 
3 3 

R3 3 3 

P312 6 2 Possible 

P321 6 2 Possible 

P3112 6 6 

P3
1

21 6 6 

P3 212 6 6 

P3221 6 6 

R32 6 6 

P6 6 1 2 molecules per 
asymmetric unit leads 
to 12 molecules per 
unit cell. 

P61 
6 6 

P6S 
6 6 

P62 
6 3 

P64 
6 3· 

P63 
6 2 Possible 

P622 12 2 

P6122 12 12 

P6S22 12 12 

P6222 12 6 

P6422 12 6 

P6322 12 4 

Table 7.3 

The set of hexagonal space groups excluding those containing mirror and 
inversion elements, with information relating to their suitability in 
describing the steffimycin B lattice. 



160 

~ ...... . . . . . ""' . ' " 

f 

/ 
- \ 

/ 
Plate 7.5 

The arrangement of steffimycin B CPK molecules in a hexagonal unit cell 
using P32l symmetry. For the sake of clarity not all the steffimycin B 
molecules are shown . Cou~tesy of Bingham, 1977 . 

Plate 7 . 6 

4-azide acridine derivative/DNA fibre , P/D N6 .0, rh = 75%, Showing a 
disordered B type diffraction pattern. 
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crystalline B patterns on which were superimposed crystalline acridine 

derivative reflections as shown in Plates 7.7 and 7.8 respectively. In 

these patterns the acridine derivative reflections appear particularly 

extended and often circular indicating little orientation of the molecules 

within the DNA fibres. Owing to the lack of well resolved x-ray data no 

attempt has been made to compare this data with that obtained for steffimycin 

B, by Blakeley, 1976. 

Changing the relative humidity of the fibre environment had little 

apparent effect on the appearance of either the disordered semi-crystalline 

B patterns or the reflections associated with the crystalline acridine 

derivatives. 

Evidence of some interaction between the acridine derivatives and DNA 

was apparent from the diffraction patterns from the DNA control gel. Th0.se 

fibres gave A/B diffraction patterns at 75% rh, A/B or B patterns at 92% rh 

and B patterns at.98i. rho The absence of A diffraction patterns for the 

acridine derivative/DNA fibres at low humidity suggest that these derivatives 

stabilize DNA in the B conformation. The nature of this interaction is not 

clear at present. 

7.5 Discussion 

In attempting to determine the conditions for the crystallization of 

steffimycin B in DNA fibres well resolved x-ray diffraction patterns were 

not obtained. The inferences given below are based on patterns from poorly 

crystalline steffimycin B/DNA fibres and are somewhat tentative. 

Generally steffimycin B/DNA fibres exhibited the B conformation 

throughout the range of humidities investigated. The observation of 

fibres from gel 1 in the A conformation at low relative humidity suggest 

that at the higher pH of 8.5 steffimycin B/DNA complexes are less 

stable. It is interesting that fibres of this gel only exhibited the 

meridional reflection NO.72nm on assumption of the B conformation at 
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Plate 7.7 

m-AMSA/DNA fibre, P/D N6.0, rh = 75%, showing crystalline acridine derivative 
reflections superimposed on a disordered B type diffraction pat t ern. 

Plate 7.8 

5-nitro acridine derivative/DNA fibre, P/D N6.0, rh = 92%, showing 
crystalline acridine derivative reflections superimposed on a disordered 
B type diffraction pattern. 
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high humidity, while this reflection remained when the relative humidity of 

the fibre environment was lowered despite a change in DNA conformation to 

that of A in some fibres. The O.72nm reflection is similar to the O.68nm 

reflection observed on x-ray diffraction patterns from proflavine/DNA fibres, 

Neville and Davies, 1966. The O.72nm reflection may arise as the result of 

the stacking of steffimycin B molecules to form dimers. However, whether 

this occurs as a result of high humidity or is initiated by a change in DNA 

conformation remains unclear. Once formed the structure giving rise to the 

meridional reflection seems unaffected by changes in relative humidity or 

DNA conformation. 

Variation of P/D ratio in the range 6.6-10.9 produced no obvious trend 

in the appearance of crystalline steffimycin B reflections on steffimycin B/ 

DNA diffraction patterns. A comparison of diffraction patterns from fibres 

of gels 2 and 3 showed no evidence of any effects on steffimycin B 

crystallization due to the presence oflOmM Tris.HCl pH 7.4 in the steffimycin 

B/DNA solutions prior to centrifugation. 

The appearance of crystalline steffimycin B reflections in patterns 

from fibres of gel 6 may have occurred as the result of the increase of 

sodium chloride concentration in the solution from which the gel was 

centrifuged. This probably causes a decrease in steffimycin/DNA interaction 

due to increased competition from Na+ and Cl-. However, the concentrations 

of Tris.HCl and methanol were also increased in this solution prior to 

centrifugation and it has not been shown whether these factors have 

contributed to the crystallization of steffimycin B. 

Crystalline and non-crystalline steffimycin B/DNA diffraction patterns 

have been obtained from fibres prepared from the same gel and it seems 

likely that fibre preparation plays an important role in the crystallization 

of steffimycin B in DNA fibres. The conditions pertaining at the time of 

fibre preparation which may be important for the production of crystalline 

steffimycin B/DNA fibres include temperature and relative humidity at which 
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the fibre is formed and the extent to which the gel has dried out. In 

these experiments none of these effects could be associated with the 

production of even poorly crystalline steffimycin B/DNA fibres. The 

appearance of steffimycin B crystals in gels 2, 3, 4 and 6 as they dried 

out may be relevant to the lack of success in obtaining crystalline 

steffimycin B/DNA fibres. Blakeley, 1976, did not observe steffimycin B 

crystals in his gels or the fibres produced from them. This suggests that 

in Blakeley's gels the rate of nucleation has proceeded at a faster rate 

than crystal growth while the converse is true for the experiments described 

above. The conditions responsible for such effects have not been established. 

The analysis of Blakeley's diffraction pattern of crystalline 

steffimycin B/DNA gives some indication of the space groups which may describe 

crystalline steffimycin B in DNA fibres. However, the space group has not 

been unambiguously identified and it is unlikely that further information 

can be obtained from these patterns for reasons already discussed. Well 

defined x-ray diffraction patterns of crystalline steffimycin B/DNA fibres 

from which complete sets of intensity data can be obtained are necessary in 

order to proceed with this structure problem •. It is of particular interest 

as to whether steffimycin B crystallization is influenced by the presence of 

DNA since this may provide information with regard to the steffimycin B/DNA 

structure prior to crystallization and as to how this structure was formed. 

It is also important to determine the crystal structure and the conditions 

of its formation from the point of view of chemotherapeutic exploitation. 

The x-ray diffraction patterns of the acridine derivative/DNA fibres 

demonstrated the crystallization of the m-AMSA and 5-nitro compounds in DNA 

fibres. However, whether these compounds gave rise to crystalline 

reflections in DNA fibres as a result of their structural differences or 

differences in their physico-chemical properties, compared with the 

remaining three acridine derivatives examined has not been established. 

The appearance of crystalline reflections in these samples may have occurred 
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due to differences in sample preparation which were not apparent at that 

time. 

In examining the structure and properties of the compounds which are 

known to exhibit crystalline reflections in DNA fibres poor solubility in 

aqueous solvents seemed to be a common feature. Crystalline drug/DNA 

complexes were prepared from steffimycin B dissolved in methanol and acridine 

derivatives dissolved in DMSO, the solvents being necessary in order to 

obtain P/D ratios ~6.0. The situation is complicated by the potentiai role 

of the solvents in drug crystallization. 

Proflavine/DNA fibres indicative of intercalation were only obtained 

at relative humidities of 100%+ in which the fibres had first been exposed 

to a fine mist of water, Neville and Davies, 1966. Diffraction patterns 

of fibres under these conditions exhibited meridional reflections at 0.68nm 

and this again seemed to emphasize the association of the lack of solubility 

of the drug in aqueous solution with the appearance of crystalline drug 

reflections on drug/DNA diffraction patterns. However, miracil D and 

toluidine blue which are adequately soluble in water give well resolved 

crystalline small molecule/DNA diffraction patterns. The possibility that 

miraci1 D crystallizes in DNA fibres owing to its inability to intercalate in 

DNA', as suggested by Davies, 1973, is not in agreement with the work of Heller 

et al., 1974, and Waring, 1970. The proposed non-planar ring system of 

miracil D as a feature preventing intercalation also contrasts with the 

results of Neidle, 1976. However, drug/DNA interactions in the fibre and 

solution states may not be identical. 

Pigram, 1968, Pigram et al., 1972, and Porumb, 1976, have examined 

daunomycin and adriamycin/DNA fibres using x-ray diffraction techniques but 

have not obtained any evidence of crystallization of these antibiotics in 

DNA fibres. Daunomycin and adriamycin each have an amino substituent on 

their sugar residues which is able to form an additional hydrogen bond with 

the oxygen phosphate atoms of the DNA backbone, increasing the stability of 
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the antibiotic/DNA complex. Evidence of this increased stability is provided 

by measurements of the binding affinities for DNA of these compounds, 

Dall'Acqua et al., 1979. These antibiotic/DNA complexes have so far remained 

stable during changes in the environmental conditions of the fibres. In 

the case of the steffimycins, which exhibit a lower binding affinity for 

DNA, then it is probable that fibre conditions give rise to free energies 

of drug/drug interactions which are greate~ in magnitude than those of drug/ 

DNA interactions thus resulting in dimer or crystal formation. 

The results of Dall'Acqua et al., 1979, suggest that factors other 

than binding affinity for DNA affect the ability of a drug to crystallize 

in DNA fibres. Dall'Acqua etaT.,report a slightly higher binding affinity 

of steffimycin B for DNA receptor sites compared with steffimycin although 

the latter compound which was more extensively studied by Blakele~ 1976, 

failed to give well resolved crystalline drug/DNA diffraction patterns. 

However, again there is the danger of applying the results of solution 

experiments to the fibre state. 

Blakeley, 1976, has suggested that DNA affects the crystal structure 

of steffimycin B and that it is the orientation of the chromophore in 

contact with the DNA which seeds crystal formation. Blakeley has concluded 

that the formation of crystalline steffimycin B regions in the presence of 

oriented DNA is a stable arrangement and is initiated by hydrophobic 

conditions. 

In the course of this work little evidence was obtained to support 

or contradict Blakeley's proposed mechanism for the crystallization of 

steffimycin B in DNA fibres. No changes were apparent in the diffraction 

patterns of partially crystalline steffimycin B/DNA and acridine derivative/ 

DNA fibres as a result of changes in the relative humidity of the fibre 

environment. However, initially steffimycin B/DNA fibres prepared from 

gel 1 only gave diffraction patterns eXhibiting meridional reflections at 

O.72nm under hydrophilic conditions. A similar result was obtained for 
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proflavine/DNA fibres, Neville and Davies, 1966. It is possible that 

diffraction patterns exhibiting these reflections represent a drug structure 

which is not an intermediate stage in the complete crystallization of the 

drug compounds. 

It seems likely that a drug with low solubility in aqueous solution 

and a relatively low binding affinity for DNA are possible indicators that 

it will crystallize in DNA fibres. However, the conditions of gel and fibre 

preparation exert a strong influence on the ability of small molecules to 

crystallize in DNA fibres. 

Once the conditions for the crystallization of a specific small 

molecule in DNA fibres have been established it would be of interest to 

examine the crystallization phenomenon in Na po1y[d(A-T)J.p~ly[d(A-T)J 

fibres. The steffimycins have been shown to exhibit strong A,T specificity, 

Blakeley, 1976, and Da11'Acqua et al., 1979. Thus both intercalation and 

crystallization of these antibiotics in Na poly[d(A-T)].poly[d(A-T)] fibres 

may result in very regular structures giving well resolved x-ray diffraction 

patterns from which a greater degree of information may be obtained than 

has so far been possible using native random sequence DNA. It would also 

be of interest to determine whether any of the conformations known to be 

available to Na poly[d(A-T)].poly[d(A-T)], other than the B form, can occur 

in the presence of crystalline drug reflections. The absence of the A 

conformation in crystalline steffimycin B/DNA fibres provides some evidence 

for the interaction of steffimycin B with DNA. However, whether this is 

due to residual steffimycin B intercalating with DNA or whether it arises 

from crystalline steffimycin B/DNA interaction is noy known. It may well 

be possible to exploit the homogeneous sequence of synthetic polynucleotides 

to provide further information on the crystallization of small molecules 

in nucleic acid fibres. 
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AN X-RAY INVESTIGATION INTO THE COMPLEX FORMED BETWEEN BOVINE 

SERUM ALBUMIN AND MONTMORILLONITE 

8.1 Introduction 

A large variety of substances have been shown to participate in 

interlamellar adsorption when complexed with the clay mineral, 

montmorillonite. Mooney et al., 1952, Norrish, 1954, Fink, 1977, and Cebula 

et al., 1979, have investigated montmorillonite swelling in the presence 

of water and inorganic cations. Hendricks, 1941, and Greene-Kelly, 1955, 

have examined montmorillonite complexed with many different organic cations 

while Greenland, 1956, has analysed montmorillonite swelling as a result 

of sugar adsorption. An extensive review of the montmorillonite minerals 

and their interactions is given by MacEwan, 1961. Methods for analysing 

the x-ray data of these systems have been devised by Norrish, 1954, Height 

et al., 1960, 1962, and MacEwan, 1956. 

The interaction of proteins with montmorillonite has received 

relatively little attention. However, Ensminger and Gieseking, 1940, have 

examined the interaction of albumin with montmorillonite and observed that 

the d
001 

spacings of the complexes increased from 2.4nm to 4.8nm as the 

protein/clay ratio was increased from 0.5 to 4.0. They obtained similar 

results for gelatin/montmorillonite complexes, Ensminger and Gieseking, 

1941,showed that other protein/montmorillonite complexes had enhanced 

d-spacings and reduced base-exchange capacities compared with uncomplexed 

montmorillonite which was consistent with protein adsorption in the inter­

lamellar regions of montmorillonite. Talibudeen, 1955., has also found that 

a number of other protein/montmorillonite complexes gave large d
OOl 

spacings corresponding to interlamellar protein adsorption. 

The early work of Ensminger and Gieseking,1940, 1941, was carried 

out in order to determine interactions between organic matter and the clay 

fraction of the soil. This area of research is relevant to the question 
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of soil fertility. The adsorption by clays of a great variety of smaller 

molecules and ions is of importance to the oil and mining industries where 

the production of slurries of optimum constitution for transportation is 

of vital commercial interest. 

The experiments in this work were carried out to confirm the 

adsorption of albumin in the interlamellar regions of montmorillonite as 

reported in the earlier literature and to obtain some information with 

regard to the orientation of the complexed albumin. These experiments 

also provide an opportunity to optimise sample preparation. This work 

provides a basis for a much wider range of experiments. 

Lyklema and Norde, 1973, using adsorption techniques showed that 

human serum albumin is adsorbed onto the surface of polystyrene latex 

(PSL) beads. Diffraction methods give a more direct means of determining 

the structure of such complexes. The comparison of montmorillonite and 

PSL substrates with the" same adsorbate would be of great interest. In 

addition the interaction of different proteins with the same substrate may 

give useful information with regard to the different types of protein 

interaction on the same substrate. A more complete understanding of how 

these substrates behave under various environmental conditions may also 

yield a method for obtaining structural information of proteins. 

Protein/montmorillonite complexes bear a useful resemblance to 

protein/membrane systems. A specific example is in the interaction of 

protein with arterial walls. Similarl~ protein/PSL particles are 

reminiscent of spherical virus particles. The results gained from these 

types of partially synthetic systems may provide information with regard 

to the more complex native systems. 

The advantages of using neutron diffraction methods to investigate 

montmorillonite/water systems have been discussed by Cebula et aL, 1979. The 

main advantage of such techniques with regard to protein/montmorillonite 

or protein/PSL systems is that suitable variation of" the hydrogen to 
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deuterium ratio in the solvent allows the substrate or protein to be 

contrast matched out of the system. This allows the individual 

contributions from the solvent and protein to interlamellar swelling to 

be determined. 

It is envisaged that these albumin/montmorillonite experiments will form 

a basis for a wider range of experiments involving protein/montmorillonite 

and protein/PSL complexe~ using both x-ray and neutron diffraction 

techniques. 

8.2 Materials and methods 

a) Montmorillonite 

The name montmorillonite is currently used in three senses which 

must be clearly distinguished. In its most general sense montmorillonite 

is used to identify a group of hydrated silicates of different chemical 

composition giving essentially similar x-ray diffraction patterns. More 

specifically the name refers to a sub group of the hydrated silicates 

which contain mainly silica and alumina with usually a little magnesia and 

some replacement of alumina by ferric oxides. In particular montmorillonite 

is applied to a mineral of this sub group having the formula shown in 

Equation 8.1. 

- Equation 8.1 

others. 

It is in this latter sense that the name montmorillonite is used in 

this work. As a result of the amorphous nature of montmorillonite it has 

not been possible to deduce its precise structure from the available x-ray 

data. However, it is generally believed that the silicate sheet structure 

of montmorillonite closely resembles that of pyrophyllite and talc, 

although the silicate tetrahedra are thought to be irregularly 

superimposed while A13+ is replaced by Mg2+ in octahedral sites. The 
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resultant charge on the silicate sheets is balanced by interlamellar cations. 

A schematic diagram of the supposed structure is shown in Figure 8.1. 

b) Bovine serum albumin (BSA) 

Bovine serum albumin is a plasma protein which serves in the 

regulation of pH and osmotic pressure and in the transportation of metal 

ions, fatty acids, steroids, hormones and amino acids. It consists of a 

single polypeptide chain of 590 amino acids and has a molecular weight of 

69,000. BSA is thought to be approximately ellipsoidal in shape, but the 

estimated axial lengths of the molecule have varied according to the 

experimental method of investigation. Riddiford and Jennings, 1966, have 

reported values of 11.6nm and 2.7nm for the major and minor axes of the 

ellipsoid using low angle x-ray diffraction while Squire et al., 1968, 

have given values of 14.0nm and 4.0nm based on measurements of sedimentation 

coefficients and diffusion constants. Low, 1952, has described the shape 

of BSA in terms of a modified right prism of dimensions 14.8nm, 2.2nm and 

4.5nm, again using low angle x-ray diffraction. The differences in these 

values may result from the inclusion or exclusion of the volume of the 

water of hydration in the volume occupied by the dehydrated protein. 

c) Sample preparation 

Sodium montmorillonite was prepared from Wyoming bentonite according 

to the procedure used by Callaghan and Ottewill, 1974. The sodium counter 

ion was then removed by dialysis and an alkaline water suspension of the 

clay was thoroughly mixed with an alkaline water suspension of BSA at 

definitive ratios. Under these conditions a homogeneous mixture was easily 

obtained since the two substances are negatively charged. The pH of the 

resultant suspension was lowered by the addition of dilute acetic acid to 

a value of 3.5. This is below the isoelectric point of the BSA and thus 

leaves the protein with a net positive charge. Flocculation of the protein 

with the negatively charged mineral then takes place during continued 

mixing over a period of some 50 hours. From this stage the flocculate can 
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Figure 8.1 The structure of montmorillonite, reproduced from MacEwan, 1961. 
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be treated in various ways to provide specimens for x-ray analysis. 

In the first instance a portion of the flocculate was allowed to dry 

on one surface of a small pill box with mylar windows. The sample so 

formed was sealed under conditions of constant humidity. In this way four 

samples were prepared, the ratio of protein to clay being either 4:1 w/w 

or 1:1 w/w and the relative humidity either 90% or 30% as indicated in 

Table 8.1. Two other pill boxes were used as control samples. One of 

these contained montmorillonite alone and the other was used empty. 

Both surfaces of a pill box were cleaned with a small amount of 

ethanol on a tissue before irradiating. The cell was then attached to a 

normal Searle camera specimen holder with the aid of plasticine and 

aligned to give an approximate specimen to film distance of 4.7cm. In this 

manner an x-ray diffraction pattern of each sample was taken on a Franks 

camera. In order to calibrate these and subsequent patterns a pattern was 

also recorded of one half of a pill box whose window was covered with 

calcite. This is referred to as sample G in the following text. 

To collect data at lower angles of diffraction a second set of 

patterns was recorded with the camera set at a specimen to film distance 

of NlO.Ocm. In this and subsequent cases the x-radiation waS not nickel 

filtered in an attempt to shorten exposure time. 

Sample C was removed from its pill box and attached to a glass rod 

with the aid of bostic. This allowed the effects of radiation scattered 

from the mylar windows to be examined and also·permittedthe relative 

humidity of the sample environment to be varied in a similar manner to 

that described for DNA fibres in chapter 2.6. Diffraction patterns of 

samples D and F were also recorded for comparison purposes. In this and. 

the following experiments the Franks camera was realigned to give a specimen 

to film distance N7.6cm in an effort to optimize resolution with exposure 

time. 

Finally a second set of samples was prepared by making slide smears 
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Sample Identification BSA/Montmorillonite w/w Relative Hwnidity i. 

A 4:1 90 

B 4:1 30 

C 1:1 90 

D 1:1 30 

E All montmorillonite 90 

F Blank cell Ambient hwnidity 

Table 8.1 Preparation details of samples A - F 
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of the montmorillonite or montmorillonite complex suspensions on glass 

microscope slides and allowing them to dry to thin films N30u thick. A 

small flake was then cut from each film, mounted in a 2mm diameter quartz 

capillary tube and sealed with wax under specific environmental conditions. 

This technique was adopted in an attempt to improve orientation of 

these samples compared with the previous specimens. Moreover, such samples 

could be aligned with the x-ray beam parallel to the plane of the lamella 

in order to increase the intensity of the 00 I reflections. Such samples, 

like their counterparts in the pill boxes, have the advantage that they 

can be allowed to equilibrate with a specific environment for much longer 

periods than is practically possible·if enclosed simply by the x-ray camera. 

In addition to montmorillonite and BSA/montmorillonite samples, 

samples of montmorillonite complexed with other substances have also been 

examined to determine whether these results are in agreement with those 

reported in the existing literature. The detailed preparation of these 

samples is shown in Table 8.2. 

The capillary tubes are very fragile and in order to facilitate 

mounting in the x-ray camera, the thicker end of each tube was glued into 

the cleft of an L-shaped block of balsa wood. A further block was glued 

to the other side of the tube as shown in Figure 8.2. This complete jig 

could then be attached to the specimen holder of a Searle camera with the 

aid of double sided tape. 

An x-ray pattern of each sample was obtained with the lamellar 

perpendicular to the axis of the x-ray beam and several patterns were 

recorded with the lamellar parallel to the beam axis. 

The positions of the reflections on all the x-ray patterns obtained 

were measured either with a travelling microscope or more often with a 

compass and steel rule. This latter method was employed since it was 

found easier to determine boundaries of faint and weakly contrasting 

adjacent bands by observing the patterns at oblique angles, often in 
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Sample Number Method of Preparation 

1 Na montmorillonite. 

2 Na montmorillonite dialysed 

against H20 and dried. 

3 

4 

5 

6 

7 

8 

9 

10 

Na montmorillonite. 

Na montmorillonite. 

Na montmorillonite dissolved 

in 0.5M NaCl soln., dialysed 

against this soln. and dried. 

Albumin/H20 dialysed Na 

montmorillonite mixed in an 

alkaline medium at a ratio of 

1:1 w/w then slowly acidified 

and dried. 

As per 6 

Albumin/H20 dialysed Na 

montmorillonite mixed "at a 

ratio of 1:1 w/w and dried. 

As per 8 

Albumin/H20 dialysed Na 

montmorillonite mixed at a 

ratio of 2:1 w/w and dried 

Environment 

90% rh 

90% rh 

Immersed in glycerol 

Immersed in 95% 

pyrimidine 

Immersed in 0.5M 

NaCl soln. 

90% rh 

Immersed in acetic 

acid soln. pH 5 

90% rh 

Immersed in acetic 

acid soln. pH 5 

90% rh 

Table 8.2 Preparation details of samples 1 - 10 
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Figure 8.2 A diagram of the balsa-wood jig used for mounting capillary tubes 
I 

on to the Searle camera holder. 
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conjunction with a bright light source of variable intensity. A low power 

microscope stage proved ideal for this latter purpose. The reduction in 

light intensity in measuring the positions of reflections on these patterns 

using either the travelling microscope or the Stoe film measuring device 

could not be tolerated. The accuracy with which the positions of these 

reflections could be determined was ±0.2mm. The error in calculating the 

corresponding d-spacings in nm depends on the specimen to film distance 

employed. Table 8.3 shows the equivalent errors in d-spacing as a function 

of specimen to film distance for some relevant reflections. In cases 

where the reflections were particularly diffuse the error maybe somewhat 

larger than is shown in this table. 

8.3 Results 

In the following text diffraction patterns are referred to according 

to the letter or number of the sample from which a given pattern was 

obtained. 

a) X-ray diffraction patterns of samples A - G recorded at a specimen to 

film distance, D N4.7cm 

A d-spacing of 0.3035nm was assigned' to the most intense calcite 

reflection of pattern G and a value of 0.5403 ±0.004nm was obtained for 

the d-spacing of the principal mylar reflection. This value was used to 

calibrate patterns A - F and the results are shown in Table 8.4. Diffraction 

patterns of samples A - G were recorded using two negative films in each 

case. The d-spacings in Table 8.4 usually represent the average d-spacings 

obtained from measurements of the top and bottom films. The number 1 in 

brackets implies that the corresponding d-spacing was only observed on one 

of the two negatives. A range in the value of d-spacings is given in cases 

where the difference in d-spacings on the two negatives are thought to be 

too great to average. 

Mylar reflections on patterns A - E and pattern G were identified by 
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Error in d-Spacing at Specimen to Film Distance D/nm 

d-Spacing/run 

D = 4.7cm D = 7.6cm D = 10.Ocm 

0.336 . 0.002 0.002 0.001 

0.447 0.005 0.003 0.002 

1.00 0.027 0.017 0.013 

1.50 0.060 0.038 0.029 

2.00 0.112 0.067 0.052 

2.30 0.142 0.090 0.068 

3.00 0.254 0.154 0.117 

3.30 0.303 0.192 0.141 

4.00 0.454 0.280 0.208 

5.00 0.757 0.446 0.325 

6.00 1.04 0.517 0.469 

8.00 1.89 1.22 0.839 

Table 8.3 The error in d-spacings of some relevant reflections at various 
specimen to film distances assuming an error in determining the 
corresponding radius of a specific reflection of 0.2mm. 



Sample Cl C2 C3 C4 IO 13 14 15 16 Exposure Time 

in Hours 

A 0.334 0.425 0.446 1.01 1.70(1) 2.50(1) 3.51 5.6(1) 21.4 

B 0.337 0.428 0.452 0.99 3.84 5.7-6.9 8.6 

C . 0.336 0.428 0.454 1.03 2.32(1) 2.96 4.8(1) 32.3 

D 0.336 0.430 0.454 1.00 3.22 4.8-5.6 Unknown 

E 0.332 0.337 0.430 0.449 x = 1.45 - 1.65 
22.5 Y = 1. 90 - 2.46 

F [3.3-4~2J 5.3-6.2 20.6 
--- --- ------ ------_ .. -

Table 8.4 d-spacings /nm of reflections observed on patterns of samples A - F at a specimen to film distance of 

N4.7cm. See text for details. 

I 

I 

-
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comparison with pattern F of the empty mylar cell. Generally mylar 

reflections appeared as a series of broad bands of four fold rotational 

symmetry as shown in Plate 8.1. Mylar diffraction was observed at d-

spacings of 0.275, 0.314, 0.335, 0.359, 0.501 and 0.540nm and these 

reflections are referred to by the letters Ml - M6 respectively. For ease 

of documentation these reflections are not recorded in the following tables. 

Diffraction from montmorillonite intra-sheet structure on patterns 

A - D was identified by comparison with pattern E which is reproduced in 

Plate 8.2. These montmorillonite reflections usually appeared as discrete 

rings although the intensity profile of the rings was sharper on the high 

angle side of a given reflection. The d-spacings of these reflections are 

denoted by C
l 

- C4 in Table 8.4. 

In addition to mylar and montmorillonite intra-sheet reflections, 

patterns A - D exhibited.diffuse intensity extending from 0.86 - 1.20nm. 

The average value of this extent has been recorded in column 10 of Table 

8.4. The centres of patterns A - D showed adjacent broad bands whose 

intensities increased towards the centres of the patterns in a stepwise 

fashion. These features are illustrated in Plate 8.3. The d-spacings 

obtained from measurements of the maximum diameters of these' bands are 

denoted by ~3 - 16 in Table 8.4. The central strong intensity region of 

pattern E was elliptical in shape and the entries I and I in Table 8.4 x y 

refer to the extent of diffuse intensity along' the major and minor axes 

of the ellipse respectively. The square bracketed d-spacing of sample F 

/ in Table 8.4 refers to diffuse intensity, surrounding an intense central 

region. The diameter of the backstop in this camera arrangement 

corresponded to ad-spacing N9.0nm. 

b) X-ray diffraction patterns from samples A - F recorded at D NlO.Ocm 

A second set of diffraction patterns of samples A - F was recorded 

at an increased specimen to film distance in order to improve the 

resolution of the reflections in the central regions of these patterns. 
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Plate 8 . 1 
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X-ray diffraction patterns relating to BSA / 

montmorillonite samples 

Pattern F at D "a . Scm showing mylar reflections . The symbols on these and 
subsequent patterns are described in the text . 

Plate 8 . 2 

Pattern E at D N4 . 7cm showing mylar and montmorillonite reflect ions . 
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Plate 8.3 

c'-___ ---- 10 

IS 

W~..,.__--- 16 

Pattern B at D ~4.7cm showing mylar and BSA/montmorillonite reflections. 

Plate 8.4 

Pattern E at D ~lO.Ocm. The intersheet spacings at 1.12nm and 1.38nm are 
clearly resolved compared with Plate 8.2. 
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The d-spacings corresponding to these reflections are shown in Table B.S. 

The spacings were again calculated on the basis of assigning O.5403nm to 

the d-spacing of the principal mylar reflection. Although this is not an 

ideal reflection with which to calibrate the patterns because of its diffuse 

nature, the specimen to film distance was such as to exclude data 

collection at d-spacings of less than O.snm. The diffraction patterns of 

these samples were recorded on up to six negative films in each case. 

This allowed a greater variation of intensity for a given reflection to 

be recorded than when using two films. The number in brackets besides a 

specific d-spacing in Table 8.5 indicates the number of films on which that 

reflection was measured. The symbols used in this and subsequent tables 

are as described for Table 8.4 except where stated. 

Pattern F exhibited an intense central band which extended from the 

observable limit N20.0nm out to 6.0nm. The extent of this region decreased 

with decreasing intensity as indicated in Table 8.5. To check that this 

band was not due to camera misalignment a 200um diameter DNA fibre was 

exposed for a similar period of time using the same camera arrangement. 

Only diffuse scatter was present in the central region of the pattern. 

This suggested that the mylar windows of the sample containers limited the 

potential resolution of the system. 

In pattern E the elliptical region of the-pattern of this sample 

recorded at D ~4.7cm was resolved into an arced reflection at 1.38nm and a 

second almost circular reflection at 1.l2nm as shown in Plate 8.4. An 

elliptical central region was still apparent corresponding to d-spacings,of 

I , 12 and this was surrounded by a more diffuse region, II ' II ' as 
2x Y x y 

recorded in Table 8.5. 

In patterns A - D the broad'reflection centred Nl.Onm was still 

apparent, but it was too faint to measure accurately and it has not been 

recorded in Table 8.5. Patterns A - D showed no evidence of the arced 

montmorillonite reflections of pattern E. The central regions of patterns 



Sample IO II I3 I4 I5 I6 I7 18 EXp?sure Time I 
in Hours 

I 

A 2.21(1) 3.46(3) 5.9-7.6(5) 38.5 
I 

I 
B 2.36(2) 3.34(4) 5.2-7.7(6) 36.0 

I 

C 3.23(2) 5.5(2) 9.3-10.6(6) 34.3 

D 1. 78(1) 2.66(5) 5.0(6) 7.7-8.5(5) 75.2 

E 1.12(3) 1.38(4) ~ = 4.4-8.0(3) 
Y1 = 5.3-9.9(3) 

x2 = 6.1-10.2(4) 
Y2 = 6.8-14.6(5) 32.2 

F 6.1-8.8(5) 31.1 

Table 8.5 d-spacings /nm of reflections observed on patterns of samples A-F at a specimen to film distance N10.0cm. 
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A - D still appeared as broad bands which merged into neighbouring more 

intense bands closer to the centres of the patterns, as shown in Plate 8.5. 

Measurements were again taken to the outermost edge of a given band 

providing a minimum d-spacing for that reflection. Only in cases where 

the correct exposure was taken did a band appear ring like and then its 

intensity was usually very weak and difficult to measure. The d-spacings 

obtained for these bands were very similar to those of the patterns 

recorded at 4.7cm specimen to film distance. However patterns C and D 

clearly showedreflections N 5.5nmand NS.Onm respectively, which did not 

appear in patterns of those samples recorded at the smaller specimen to 

film distance. 

c) X-ray diffraction patterns from samples C, D and F recorded at D ~7.6cm 

A specimen to film distance of 7.6cm was chosen in order to optimise 

resolution with exposure time •. ltalso enabled montmorillonite .reflections 

at O.447nm to be recorded. The diameter of the backstop in this camera 

arrangement corresponded to a d-spacing of 14.0nm. Patterns were obtained 

of sample C which had been removed from its pill box and subjected to a 

camera environment of 927., 44% and 33% rho In each case the sample was 

allowed to equilibrate overnight at the appropriate humidity before 

commencing exposure. For comparison purposes patterns were also recorded 

of samples D and F using the same camera arrangement. The patterns were 

calibrated by assigning a value of O.447nm to the d-spacing of the C
4 

montmorillonite reflection as described in section 8.4 a). The d-spacings 

of the reflections observed on these patterns are shown in Table 8.6. 

The central reflections on some of these patterns did not always merge 

into adjacent reflections as seen in Plate 8.6. Where this is the case an 

average d-spacing has been calculated for that reflection rather than a 

minimum d-spacing. This is denoted by an asterisk in Table 8.6. If other 

negatives in the same film pack of the diffraction pattern did not show 

such a well resolved reflection then the range of minimum d-spacings for 
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Plate 8.5 

Pattern D at D NlO.Ocm showing the BSA/montmorillonite diffraction at high 
d-spacing. 

Plate 8.6 

Pattern C at D N7.6cm and rh = 9270. The central reflections are better 
resolved in this pattern, particularly the IS reflection at 3.3nm. 



Sample Rhi. C3 C5 C6 10 12 13 15 17 18 Exposure Time 

in Hours 

1.63(1) 
ofr * C 92 0.422(3) 0.468(3) 0.494(4) 1. 03(2) 2.13(3) 3.54 (3) 7.16 (1) 29.7 

2.9-3.1(4) 4.9-6.0(4) 

J. J. 

C 44 0.423(3) 0.468(1) 0.494(4) 1. 01(2) 1.51(1) 1. 95(2) 3.30"(4) 6.75"(2) 26.3 

2.6-2.9(5) 4.6-5.7(4) 

J. "l: 
C 33 0.423(3) 0.464(1) 0.495(4) 1.04(2) 1. 94(2) 3.29"(3) 6.24 (2) 25.7 

2.7-3.3(5) 4.9-5.7(4) 

.'. 
n 0.424(2) 0.495(4) 1.02(1) 1.89(1) 3.07

R

(1) 4.9-5.7(4) 8.0-9.8(3) 19.6 

2.8-3~2(4) 

F 3.5-4.0(3) 4.6-7.9(5) 35.6 

Table 8.6 d-spacings /nm of reflections observed on patterns of samples C, nand F at a specimen to film distance N7.6cm. 
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that reflection is also given. In these cases measurements of the negative 

which received the least amount of diffracted radiation tended to give a 

larger d-spacing. This feature is also apparent from the data in Tables 

8.4, 8.5 and 8.7. It arises because minimum d-spacings have been determined 

for the central reflections, but less intense bands appear less broad and 

measurements of the minimum d-spacings thus give rise to larger values, 

although the average d-spacing remains constant. The most accurate 

measurements of the central reflections are thus obtained when the 

reflections appear as discrete rings rather than adjacent bands. For this 

reason the data in Table 8.6 is probably the most accurate, despite the 

reduction in specimen to film distance compared with the data in Table 8.5. 

One feature apparent from the absence of mylar diffraction was the 

appearance of two other montmorillonite reflections Cs and C6 at 0.467nm 

and O.494nm. 

The 1
3

, IS and 17 reflections for sample C tended to decrease slightly 

with decreasing relative humidity, but no dramatic changes were apparent. 

Height et al., 1962, have suggested that a considerable time N6 weeks is 

necessary to obtain equilibrium conditions for these types of samples. 

The data in Table 8.6 is compatible with this suggestion. 

In general the 10 - 18 reflections of the patterns referred to in 

Table 8.6 are similar to those obtained previously and an interpretation 

of these results is given in section 8.4 a). 

d) X-ray diffraction patterns of samples 1 - 10 recorded at D N7.0cm 

The diffraction patterns of these samples were again calibrated by 

assigning a value of O.447nm to the C
4 

montmorillonite reflection. The 

d-spacings of the reflections observed in these patterns are shown in Table 

8.7. 

The diffraction pattern from sample 3 gave considerable diffuse 

scattering which was attributed to the glycerol in which the montmorillonite 

flake was immersed. To decrease this scattering the remaining samples of 



Sample C6 10 II 12 13 I IS 16 17 18 Exposure Time 
4 

in Hours 

1 0.494(3) 1.55(3) 1. 71(1) 4.9(1) , 6.4-9.6(3) 24.0 

1/1 0.495(2) 1.26(2) 1.52(2) 6.7-8.6(3) 21.8 

2 0.493(2) 1.29(2) 1.69(2) 7.5-8.2(2) unknown 

3 1. 75(3) 36.4 
J. 

4 0.494(4) 1.18(3) 2.36"(4) 2.60(3) 7.5(2) 42.6 

5 0.494(2) 1.55(3) 47.3 

6. 0.494(3) 1. 02(4) 1.55(2) 2.38(4) 3.9-5.6(3) 7.7-7.9(4) 32.5 

6/1 0.493(2) 1.03(3) 1. 21(2) 1.44(3) 2.14(3) 2.42(2) 4.1(2) 5.5(1) 73.5 

7 0.493(3) 1.02(1) 1.36(1) 1. 77(3) 2.53(4) 4.6-7.1(3) 40.0 

8 0.494(3) 1.05(4) 1.42(3) 1. 71(4) 2.68(3) 22.6 

9 0.495(2) 0.93(1) 1.52(1) 1. 95(2) 2.50(1) 2.89(2) 5.8(2) 7.6-8.6(2) 40.6 
J. J. 

10 1.01(1) 1.57(1) 3.29"(2) 6.3"(1) unknown 
5.0-9.3(4) 

-_ .. _-- ---_._-_ .. -- --_._- -~ -- _._---- -

Table 8.7 d-spacings /nm of the reflections observed on patterns of samples 1-10 recorded at a specimen to film 

distance N7.6cm. 
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this type were shaken vigorously just before x-raying to remove the bulk 

of the solution from a region of the montmorillonite flakes. The exposed 

portions of the flakes were aligned in the x-ray beam and overall scattering 

was reduced while the fibres remained sealed in an environment containing 

their bathing solutions. 

The symbol // in Table 8.7 indicates that that sample was aligned 

with the large face of the montmorillonite flake parallel rather than 

perpendicular to the axis of the x-ray beam. The type of BSA/montmorill­

onite diffraction pattern obtained when sample 6 was aligned in this manner 

is shown in Plate 8.7. Althou~h there is some evidence of orientation the 

central diffraction maxima did not exhibit a greater degree of resolution. 

For samples aligned in this manner the IO - I8 reflections in Table 8.7 

are representative of the minimum d-spacing and the radii of reflections 

perpendicular to the long axis of the intensity distributions·were not 

measured. The remaining notation in Table 8.7 is as described previously. 

8.4 Discussion 

a) Interpretation of the diffraction from samples A - G 

An examination of the data in Tables 8.4 - 8.6 suggests little 

variation in the diffraction patterns of samples A - D as a function of 

protein/clay ratio and relative humidity at which the samples were sealed. 

The intensity of the central reflections appear to increase rapidly 

with increasing d-spacing. Whether such a reflection was observed on a 

given negative seemed more dependent on exposure time than any differences 

in sample preparation. Too weak an exposure rendered a specific reflection 

invisible, while too strong an exposure caused it to be obscured by the 

adjacent strong intensity reflection at the higherd-spacing. 

There were no significant differences in the montmorillonite intra­

sheet spacings of the samples of the protein/clay complexes compared with 

those of the sample of clay alone. Thus there is no evidence of any 
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Plate 8 . 7 

Pattern 6// at D N7 . 0cm . The central r efl ections show some evidence of 
orientation but there is l ittle apparent increase in r esolut ion . 
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changes within the silicate sheets themselves as a result of the formation 

of the protein/clay complexes. Once this had been established it was 

possible to use the C4 montmorillonite reflection for a more accurate 

calibration of the patterns. 

Correlating the data in Tables 8.4 - 8.6 gives clay intra-sheet 

d-spacings a~ 1.38(vs), 1.12(vs), 0.495(w), 0.467(vw), 0.45l(s), 0.426(m), 

0.336(s) .and 0.332(w)nm, where vs, s, m, wand vw refer to the relative 

intensities of the reflections as assessed by eye. One of the 

montmorillonite structures listed in ASTM tables has d-spacings of 1.36, 

0.447, 0.334, 0.323 etc •••• nm which corresponds reasonably well with the 

strong intensity reflections observed for the clay samples at 1.38, 9.451 

and 0.336nm. The remainder of these d-spacings do not correspond with those 

of any of the other montmorillonite structures given in the ASTM tables and 

probably arise as a result of the presence of impurities in the clay samples. 

The reflections at 1.38 and 1.12nm in sample E are due to 

interlamellar distances. These reflections are no longer apparent in 

samples of the protein/clay complexes which instead show a broad reflection 

centred at NI.Onm and extending from 0.85 - 1.25nm. Norrish, 1954, has 

shown that water molecules are adsorbed between the silicate sheets of 

montmorillonite in monolayers and that structures of up to four 

interlamellar water layers are possible. He gives interlamellar spacings 

of 0.95, 1.24, 1.54 ,and 1.90nm for Na montmorillonite during water 

uptake. Upon further hydration of Na montmorillonite samples the water 

layers dissociate completely and the interlamellar spacings increase 

linearly with water content. Thus the data in columns 10 - 13 of Tables 

8.4 - 8.6 are indicative of water layers between the montmorillonite 

platelets. The difference in intensity distribution in this region of 

samples A - D compared with sample E suggests that the presence of the 

protein is causing a disruption in the water structure. In some samples 

more than one reflection is observed in this range and this may be due to 
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a mixed layer silicate structure arising from impurities within the 

montmorillonite samples or due to an inhomogeneous distribution of water 

content. 

Generally samples A - D gave reflections corresponding to d-spacings 

of 2.3 and 3.2nm while reflections at 5.5 and 5.0nm were apparent from 

patterns C and D at the highest specimen to film distance used. In 

considering the reflection at 2.3nm Norrish. 1954. has reported that H 

montmorillonite in the presence of acidic solutions undergoes an ageing 

process. Over a period of 24 hours H"montmorillonite releases A13+ ions 

from the silicate structure into the interlamellar region giving rise to 

a d-spacing of 2.2nm. Height et al •• 1962. nave observed a similar 

phenomenon for dilute H bentonite suspensions which age over a period of 

approximately four months. The conversion of the H clay to an Al clay may 

be responsible for the reflection at 2.2nm since the BSA/montmorillonite 

samples were prepared under acid conditions. 

The reflection at 3~~nm is attributed to the presence of albumin 

within the interlamellar regions of the montmorillonite. Taking into 

account the dimensions of the silicate sheets hydrated with a single layer 

of water molecules, a 3.3nm interlamellar spacing corresponds to a protein 

diameter N2.3nm. This is within the range reported in section 8.2 b). 

A value of 3.3nm was observed for the dO 0 1 spacings of albumin/Na 

montmorillonite complexes of ratio 1:1 w/w by Ensminger and Gieseking. 

1940. Talibudeen has also reported dO 0 1 spacings IV3.0nm for haemoglobin/ 

montmorillonite complexes. 

Samples C and D exhibit reflections IVS.Snm which may result from 

the presence of two layers of protein molecules within some interlamellar 

regions. If this is the case then clearly the protein molecules pack with 

their major axes parallel rather than perpendicular to the silicate sheets. 
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b) Interpretation of the diffration patterns of samples 1 - 10 

The d-spacings in columns IO - I3 in Table 8.7 are indicative of water 

layers between silicate sheets. A d-spacing of Nl.Onm for the.BSA/montmoril­

lonite samples compared with higher d-spacings in this region for the non­

protein containing samples suggests that the presence of the BSA is again 

causing a disruption in the water structure. As was the case for samples A - E 

there is evidence of an inhomogeneous distribution of water within the samples. 

Sample 1 of the Na montmorillonite at 907. rh gave a very similar 

diffraction pattern to that of sample 2 of H montmorillonite and in 

particular neither of these samples gave diffracted intensity in the region 

of 2.0nm - 4.0nm. The reduction in the d-spacings of the 10 - 14 

reflections of the Na montmorillonite sample lying parallel rather than 

perpendicular to the axis of the x-ray beam maybe due to evaporation when 

the tube was accidentlly broken before being resealed. 

Samples 3,4 and 5 were examined to determine whether the non­

protein/montmorillonite complex samples used in this work gave similar 

results to those previously reported in the literature. For sample 3 the 

reflection at 1.75nm is in good agreement with the dOOl spacings of 1.77nm 

for glycerol/Na montmorillonite complexes reported by MacEwan, 1956. 

Greenland, 1956, gave a dOOl spacing of 1.8lnm for this complex and 

interpreted this value in terms of two layers of glycerol molecules in 

each interlamellar region. 

Other information which may have been present on the diffraction 

pattern of this sample was obscured by diffuse intensity attributed to the 

glycerol. Pattern 4 gave a strong reflection at 2.36nm which is in good 

agreement with the dOOl spacing of 2.33nm for montmorillonite flakes 

saturated with pyrimidine as reported by Green-Kelly, 1955. The reflection 

at 2.6nm may arise as the result of the inclusion of a layer of water 

molecules between some interlamellar regions. The cause of the reflection 

at 7.5nm for this sample is not known. Norrish, 1954, showed that 
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montmorillonite flakes gave dO 0 1 spacings "'1.6nm in the presence of 4 -

1.8M NaGl solution and dO 0 1 spacings of 1.90nm in the presence of 1.8M -

0.3M NaGl solution. In more dilute solutions the dO 0 1 spacings increased 
1, 

linearly from 4.0nm with respect to [NaGl]-2. The diffraction pattern of 

sample 5 giving a dO 0 1 spacing of 1.55nm is not inconsistent with these 

results and the lower than expected dO 0 1 spacing may again arise as the 

result of evaporation when the capillary tube was accidently broken. 

Samples 6 and 7 which were prepared by acidification and samples 7 

and 9 which were immersed in an acetic acid solution all exhibited d-

spacings in the range 2.4 - 2.5nm. These reflections may be due to the 

ageing of H montmorillonite as described in section 8.4 a). Samples 8 and 

10 which were not treated with acid only gave one reflection in the 2.0 -

4.0nm range. Samples 7 - 10 indicated diffracted intensity in the region 

of 2.9nm which is similar to the 3.3nm reflections observed in samples A -

D and is believed to ~rise as a direct result of albumQn adsorption within 

the montmorillonite interlamellar spacings. Again these BSA/montmorillonite 

samples gave diffracted intensity at higher spacings indicating the 

possibility that more than oneprot~in layer was adsorbed in some inter­

lamellar regions. Sample 10 at a BSA/montmorillonite ratio of 2: 1 w/w gave 

particularly distinctive reflections at 3.3nm and 6.3nm. 

Aligning the specimens parallel rather than perpendicular to the axis 

of the x-ray beam demonstrated that some degree of orientation was present 

in the samples. However, such orientation was not sufficient to improve 

the resolution of the reflections and patterns were not generally recorded 

in this manner. 

There seemed little advantage in slowly acidifying the BSA/ 

montmorillonite samples during preparation, or immersing them in acetic 

acid solution and there remains the possibility that these processes 

promote ageing of the H-montmorillonite. 
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c) Future experiments 

The diffraction patterns from these samples are not well resolved 

and an improvement in molecular orientation is desirable. During sample 

preparation dialysing Na montmorillonite against water not only removes 

the interlamellar cations but it also leaves the edges of broken clay 

platelets with a net positive charge. These edges may act as alternative 

binding sites for the BSA molecules, of cause disorientation of the 

platelets as a result of edge/face binding., Neutralization of this positive 

charge by the addition of sodium chloride may prevent protein binding at 

these sites and reduce edge/face binding, giving rise to a more ordered 

structure, Fink, 1977. However, care in utilizing this procedure is 

necessary since weak sodium chloride solutions can give rise to large 

increases in interlamellar spacings. 

The poor resolution of the diffraction patterns may be due to the 

presence of mixed layer structures. If this is the case a more extensive 

method of sample purification may help to improve resolution. 

There is some evidence to suggest that the distribution of water and 

protein molecules within the samples are not homogene9us. Hence an 

improvement in resolution may also be obtained by allowing longer periods 

of time for the samples to attain equilibrium. 

More information from the diffraction patterns may be forthcoming if 

they are subjected to a more detailed analysis such as that described by 

MacEwan, 1956. However, it is unlikely that profitable results can be 

obtained from such analysis in vQew of the poor diffraction data available 

at the present time. 

Despite extensive room for improvement the results indicate that 

diffraction is present which is associated with the uptake of BSA in the 

interlamellar regions of the montmorillonite. There is also some evidence 

that the BSA is aligned with its major axis parallel to the montmorillonite 

sheets. Thus the use of neutron diffraction techniques to further examine 
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BSA/montmorillonite complexes seems justifiable. Neutron diffaction is 

essential since it enables phase contrasting techniques to distinguish 

between the individual contributions of the water and BSA molecules to the 

interlamellar expansion of the montmorillonite. 
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Chapter 9. CONCLUSIONS 

A method of fibre preparation has been developed which takes into 

account the small quantity of synthetic polynucleotide material available 

and allows the salt content of individual fibres to be quantitatively 

increased by small increments. In this manner synthetic polynucleotide 

conformations in fibre samples have been examined as a function of added 

salt per phosphate. 

This work has shown that the A, Band C conformations found for 

naturally occurring DNA's are all available to the sodium salt of 

poly[d(A-C)].poly[d(G-T)] •. The C conformation is stabilized in fibres by 

conditions of low relative humidity and the sequence of conformational 

changes with increasing relative humidity is C - A -B. This is in contrast 

to the A-C-B sequence suggested by Leslie et al., 1980. A comparison 

of these results with those subsequently obtained for naturally occurring 

Na DNA's and the synthetic polynucleotide Na poly[d(A-T)].poly[d(A-T)] 

suggests that the C conformation of Na poly[d(A-C)].poly[d(G-T)] is 

stabilized in fibres of low salt content. Such a comparison also implies 

that the same sequence of transitions is observed on increasing the sodium 

chloride content of these fibres as on increasing the relative humidity. 

This work has thus established that the C conformation of poly[d(A-C)]. 

poly[d(G-T)] can be reproducibly obtained in fibres where sodium is the 

associated cation. Since poly[d(A--C)].poly[d(G-T)] contains all of the four 

nucleotides commonly found in native DNA's it might be expected that the 

occurrence of the C conformation in these fibres is not an effect of base 

composition. This has been confirmed by a parallel study of the C 

conformation on a wide variety of naturally occurring Na DNA's, 

Mahendrasingam, 1983, Rhodes et al., 1982. The routine observation of the 

C conformation in DNA's and polynucleotides when the associated cation is 

sodium suggests that this conformation may be of greater biological 
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significance than has so far been assumed. 

Semi-crystalline C and B diffraction patterns have been obtained from 

Li poly[d(A-C)].poly[d(G-T)] fibres under similar conditions to those 

observed for naturally occurring Li DNA's, Marvin et al., 1961, Zimmerman 

and Pheiffer, 1980. Analysis of the most well resolved diffraction patterns 

have shown that the C form of Li poly[d(A-C)].poly[d(G-T)] crystallizes in 

a hexagonal lattice with a = 3.48 ±0.02nm and c = 5.84 ±0.03nm. Some of 

the diffraction patterns showed intensity streaks on low, odd numbered layer 

lines implying a random translation of the molecules in the unit cell by 

±1/2 z. In such cases a slightly smaller lattice was indicated with 

a = 3.216 ±0.004nm and c = 5.807 ±0.007nm. The a parameters tended to increase 

with increasing relative humidity although there was little variation in 

pitch under these conditions and the molecular packing appeared to remain 

hexagonal. 

The C conformation in'Li poly [d(A-C)].poly[d(G-T)] fibres has been 

observed over an extensive range of environmental conditions including those 

in which orthorhombic crystalline B patterns would be expected in fibres 

of naturally occurring Li DNA's. This suggests that the C conformation of 

Li poly[d(A-C)].poly[d(G-T)] is more stable than its random sequence 

counterpart. The observation of only hexagonal C patterns in Li poly[d(A-C)]. 

poly[d(G-T)] fibres as opposed to both hexagonal and orthorhombic C patterns 

in fibres of naturally occurring Li DNA's implies that molecular packing 

may be an important contribution to this stability. Such a stability may 

be due to the alternating dinucleotide sequence of Li poly[d(A-C)]. 

poly[d(G-T)] which appears to manifest itself in the 92 helical symmetry 

of this C conformation. 

The C diffraction patterns obtained from Li p6ly[d(A-C)].poly[d(G-T)] 

fibres observed here are the most crystalline and well resolved C patterns 

which have yet been reported. A more complete analysis of these patterns 
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is currently being undertaken (Rhodes et al., to be submitted) and should 

provide a more accurate model of the C conformation than is available at 

the present time. A greater understanding of this conformation is important 

in view of its potential biological significance. 

In conjunction with the results of Mahendrasingam, 1983, this work 

has shown that the A, B, ~-B', C and D conformations are all available to 

the sodium salt of ~oly[d(A-T)].poly[d(A-T)]. A sequence of transitions 

between these conformations has been proposed in Equation 5.1. 

The A conformation of Na poly[d(A-T)].poly[d(A-T)] has previously 

been regarded as a metastable state by Arnott et al., 1974. In contrast 

this work has shown that the A conformation of Na pOly[d(A-T)].poly[d(A-T)] 

has been observed over a wide range of conditions for considerable periods 

of time. 

The observation of the ~-B' conformation for Na poly[d(A-T)]. 

poly[d(A-T)] implies that this conformation is not a sequence dependant of 

Na poly(dA).poly(dT) as suggested by Leslie et al., 1980. It is possible 

to explain the modified intensity distributions of semi-crystalline B 

diffraction patterns from DNA fibres of high A,T content (Bram and Tougard, 

1972) in terms of mixtures of semi-crystalline B and ~-B' patterns. 

Again the C conformation has been reproducibly observed for a 

polynucleotide structure under conditions where the associated cation is 

sodium. This supports the contention of Mahendrasingam, 1983, and Rhodes 

et al., 1982, that the C conformation may be more biologically significant 

than has previously been supposed. 

Once the D conformation of Na poly[d(A-T)].poly[d(A-T)] had been 

assumed in a given fibre it remained stable over a wide range of relative 

humidity and transitions .to the A and C conformations were no longer possible. 

The stability of the D conformation may occur as a result of a transition 

from a right handed A·ariB helix to a left handed D helix, Mahendrasingam, 
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1983. Such a stable conformation may be exploited biologically in 

maintaining the structural integrity of the chromosome, Arnott et al., 1974. 

A transition from the C directly to the semi-crystalline B conformation 

in Na poly[d(A-T)].poly[d(A-T)] fibres of low salt content has been observed 

by Mahendrasingam, 1983. This departure from the transitional sequence 

given in Equation 5.1 is interesting in that it parallels the transition 

observed in fibres of Li DNA and Li po1ynuc1eotides. It may provide a 

basis for explaining why the A conformation has never been observed in these 

fibres when the associated cation is lithium. 

A knowledge of the detailed conformation of Na po1y[d(A-T)].po1y[d(A-T)] 

is important in explaining the enhanced binding affinity of this synthetic 

polynucleotide for the lac repressor of E.coli and whether this is due to 

the assumption of an alternating B conformation as proposed by Klug et al., 

1979. 

At the present time there are difficulties in establishing base 

sequence or base composition effects on nucleic acid conformation on the 

basis of the observation of a specific conformation for a particular 

synthetic polynucleotide. This is demonstrated by the observation of two 

Na poly[d(A-T)].po1y[d(A-T)] conformations which have not been previously 

reported. Thus there is a need for more extensive research into the 

conformations available to synthetic polynucleotides. 

This work has emphasised the importance of salt on nucleic acid 

conformation and underlined the need for accurately determining the salt 

content in x-ray fibre diffraction samples of polynucleotides. As a basis 

for determining the total salt content in such fibres a number of techniques 

have been investigated. 

+ -Na /P04 ratios of DNA in sodium chloride solutions have been measured 

by F.E.S. and U.V. absorption spectroscopy using a modification of the 

technique described by Blakeley, 1976. 
+. 

Excluding Na due to its presence 



203 

in standard sodium chloride solution, Na+/po~ ratios ~104-l07 were obtained 

from Sigma 1 calf thymus DNAo This method seeks to avoid denaturation of 

+ -the DNA which may have resulted in Blakeley obtaining Na /p04 ratios < 100 

for-some DNA's dissolved in distilled water. 

A routine has been developed to measure the ability of different DNA's 

. + to retaln Na under dialysis conditions. Measurements were carried out 

+ -under conditions of Na /p04 ratios:> 100 to reduce the risk of DNA 

denaturation. In comparing calf thymus and pW-14 DNA there is evidence to 

·1+ suggest that the latter DNA retalns ess Na ; a fact which may be attributed 

to the partial shielding or neutralization of the DNA phosphate groups by 

the putrescine residues. This may explain the apparent stability of the A 

conformation of this viral DNA in x-ray fibre samples compared with calf 

thymus DNA under similar conditions. The results obtained are not yet 

quantitative and further improvements are needed to achieve this end. 

Such data is important in relating the structural modifications of these 

DNA's to their chemical and biological functions. 

An electrode potential method for measuring the concentration of Cl 

in small volumes of DNA solutions has been successfully demonstrated. 

Sigma 1 calf thymus DNA was shown to contain CI-/PO~ ratios ~.18 and 

subsequent Na+ analysis suggested that this CI- concentration could all be 

accounted for by the presence of excess sodium chloride in the DNA. 

Arnperometric titration methods offer the possibility of measuring 

Cl concentrations in solutions of individual fibre samples. Thus the salt 

content of fibres could be routinely analysed, rather than determining the 

properties of the bulk solutions from which these samples are made. Such 

an analysis still does not allow the salt directly associated with the DNA 

to be determined in every case since the salt may partially crystallize 

within fibre samples. Nevertheless a more quantitative analysis of the 

total salt content in individual fibre samples may lead to a better 

understanding of the effects of salt on nucleic acid conformation. It will 
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also allow more reproducible sample preparation and a more direct comparison 

of the results obtained by workers in different laboratories using different 

preparative techniques. 

The conditions for the crystallization of steffimycin B in DNA fibres 

have been examined. However, diffraction patterns indicated only partial 

crystallization of this molecule and lacked the resolution of earlier 

patterns obtained by Blakeley, 1976. From these results it appeared that 

steffimycin Bcrystallization in DNA fibres was not significantly affected 

by variations in phosphate/drug ratios in the fibres, relative humidity of 

the fibre environment or by the presence of 10mM Tris.HCl pH 7.4 in the 

solutions from which the gels were centrifuged. There is some indication 

that higher salt concentrations N32mM NaCl in the solutions prior to 

centrifugation may promote crystallization. However, it is likely that 

fibre preparation and the environmental conditions pertaining at that time 

play an important role in the crystallization process. 

The analysis of Blakeley's diffraction pattern has confirmed that 

steffimycin B crystallizes in a hexagonal lattice with a = 3.024 ±0.003nm 

and c = 0.7712 ±0.0007nm. A comparison of' the unit cell dimensions with 

those of a molecule of steffimycin B has indicated possible space groups 

which may describe the steffimycin B lattice. A particular space group has 

not been unambiguously identified and further well defined crystalline 

steffimycin B/DNA diffraction patterns are needed to continue the analysis 

of this problem. 

m-AMSA and a S-nitro acridine derivative have been shown to exhibit 

partially crystalline drug/DNA diffraction patterns. Three azido acridine 

derivatives examined under the same conditions showed no crystalline drug 

diffraction patterns. It is not known whether this result is due to the 

structural differences between these compounds or due to unintentional 

differences during sample preparation. 
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A comparison has been made between these results and fibre x-ray 

diffraction studies of other crystalline and non-crystalline drug/D~A studies. 

This suggests that a drug which has low solubility in aqueous solution and 

a relativelY low binding affinity for DNA are possible indicators that it 

will crystallize in DNA fibres. 

The crystallization process of small molecules in DNA fibres is 

important with regard to the information on DNA structure which an 

understanding on this process may provide and the mechanism by which these 

types of molecules interact with DNA. It may also be possible to exploit 

this crystallization process in drug treatment regimes. Further information 

on this crystallization process may be provided from an analysis of small 

molecule interactions with synthetic polynucleotides. 

In investigating the complex formed between BSA and montmorillonite, 

x-ray diffraction results consistently indicate the presence of a repeating 

structure N3.3nm. This was attributed to albumin within the interlamellar 

regions of the montmorillonite and corresponded to a protein diameter N2.3nm. 

This value is in keeping with estimates of BSA dimensions, Low, 1952, and 

with earlier protein/montmorillonite adsorption experiments carried out by 

Ensminger and Gieseking, 1940, and Talibudeen, 1955. Reflections N5.5nm 

from some samples may occur due to the presence of two layers of protein 

molecules within some interlamellar regions which suggests that the BSA 

molecules pack with their major axes parallel to the silicate sheets. 

Protein adsorption appears to disrupt the arrangement of the lamellar and/ 

or the structured water molecules on the lamellar surfaces. This is apparent 

from the broad reflection at 1.Onm on BSA/montmorillonite diffraction 

patterns which was not visible on patterns of the montmorillonite alone. 

Non-protein samples complexed with the montmorillonite used in this work 

generally gave rise to interlamellar d-spacings consistent with those 

previously reported in the literature. Little improvement in the resolution 
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of diffraction patterns was apparent as a result of the various methods of 

sample preparation. Nevertheless the results obtained provide a basis for 

subsequent neutron diffraction experiments to clearly establish the 

individual contributions of water and BSA to the interlamellar expansion of 

montmorillonite. It is hoped that an understanding of the surface 

interactions in this partially synthetic complex will be useful in analysing 

surface interactions which occur in more intricate biological systems. 
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THE USE OF A JIG TO FACILITATE THE ALIGNMENT OF FRANKS 

OPTICS ON A SEARLE CAMERA 

Franks optics mounted in Searle x-ray diffraction cameras were used 

to obtain many of the x-ray photographs for this work. These cameras were 

operated in conjunction with a GEe-Elliott GX6 rotating anode x-ray 

generator in which the cathode was mounted in the horizontal position. 

With these constraints in mind a jig was developed to facilitate the 

determination of the film plane of the cameras which varies according to 

the maximum chosen specimen to film distance. 

To achieve optimum resolution and exposure time it is necessary to 

have the smallest total x-ray path length which is compatible with the 

required specimen to film distance. Thus it is necessary to vary the focal 

conditions of the camera according to the information required from the 

sample under investigation. The jig has been designed as an aid to 

obtaining the optimum focal conditions of the camera. A schematic diagram 

of the device is shown in Figure A.I while Plate A.I shows the device in use 

on a Franks camera. 

The jig consists of a milled central" brass block that is in three 

parts. A 'v' section has been milled from the inside surfaces of these 

parts so that when screwed together they house the arms of the jig. The 

latter are made of silver steel, are 0.3cm square in cross section and 

support brass rider blocks. The riders are made in a similar fashion to 

the central block. two running on the front arm of the jig and one on the 

rear arm. The lower arm of each rider is extended into a brass boss 

through which a hole is drilled to contain a silver steel pointer of 

appropriate height. The pointer is held in position by means of a screw 

and can be varied in ~lcm in height. A screw at the end of each arm of 

the jig prevents the riders from being accidently disengaged from the jig. 

A lug protrudes from the central block and is milled to the same 
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Figure A .1 A schematic diagram of the Franks optics alignment jig. 
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thickness and radius as the vertical support plate of the camera stand. 

A steel pin with one end tapped 3/5" at 26 tpi is inserted through a hole 

in the lug and central block. A cut out in this block allows a knurled 

brass knob to be attached to the pin from the top of the block. The knob 

is held in position by neans of a grub screw and the dimensions of the knob 

are such as to prevent it slipping through the hole in the central block. 

Thus with the jig in position above the camera stand, rotating the knob 

will screw the steel pin into the hole in the vertical support plate 

created by the removal of the gas inlet tube. 

The arms of the jig and the pointers are made of silver steel which 

is readily available in accurately ground quantities. The central block 

and riders are made of brass which is easy to machine and does not rust. 

All screws used in the jig are 4 BA allen cap screws. A steel pin lends 

strength to the attachment device. 

To set up the Franks camera the base plate is bolted to the work 

surface of the generator at the correct angle and the camera stand is 

aligned in the conventional manner. The mirror mounts are placed on the 

optical bench in the desired positions and the lower part of the front 

vacuum chamber cover is attached to the vertical support plate. Lead 

shielding is used to enclose the gap between the front vacuum chamber cover 

and the first mirror assembly, but at this stage the shielding around the 

mirror assemblies is not positioned. The chosen nose piece is attached to 

the front vacuum chamber cover and the camera assembly is slowly advanced 

along the base plate towards the anode housing of the generator until the 

nose piece engages with the x-ray window. The jig is gently screwed into 

position on the vertical support plate, but before tightening, a small 

block is placed against the vertical support plate and the protruding lug 

of the central jig so as to position the jig perpendicular ,to the support 

plate. 

A line is drawn on the anode 'housing, midway between the shutters 
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and at right angles to the anode axis. Rider 1 is moved along the front 

arm of the jig and its pointer is adjusted in height in order to lie on 

the line. The pointer thus represents the position of the x-ray source. 

Rider 2 is similarly adjusted so that its pointer coincides with the mid 

point of the two mirror assemblies. The distance between these pointers 

is determined and rider 3 is manipulated so that the distance between its 

pointer and that of rider 2 is the same as that between the pointers of 

riders 1 and 2. The distances between the pointers are most conveniently 

rendered equal with the aid of a beam compass. 

The microscope assembly is placed on the optical bench and focused 

on the fluorescent screen. The screen is removed from the field of view 

and the assembly is moved along the bench until the pointer of rider 3 

appears in focus. It may be necessary to adjust the height of the pointer 

during this process. A piece of masking tape is then attached to the top 

half of one of the rods of the optical bench immediately behind the rear 

of the base block of the microscope assembly. The jig can now be removed 

from the camera and replaced by the gas inlet tube. After placing lead 

shielding around the mirror assemblies the alignment of the camera is 

carried out in the conventional manner. 

Provided that the camera stand is not moved it is only necessary to 

place the microscope assembly on the optical bench and carefully move it 

to bring the rear end of the assembly block up against the masking tape in 

order to determine the film plane. The accuracy of this arrangement is 

probably Nlmm but its main advantage is the ease with which it can be 

carried out. This is a great asset when the maximum specimen to film 

distance is often changed, or when the camera on the water bridge side of 

the generator has to be periodically realigned after generator maintenance 

procedures. 

By attaching a second rider to the rear arm of the jig and adjusting 

the height of the pointers, the jig could easily be adapted for use in the 
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alignment of apertures and stops on the 'v' block of the Searle camera when 

using toroidal optics. 
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Appendix B. A BRACKET TO CONSTRUCT CPK MODELS IN THE B CONFORMATION OF DNA 

Molecular models allow visualization of the three dimensional 

structure of molecules enabling the space relationships between atoms of 

molecules to be examined. This is of great importance to research and 

teaching in the biophysical and biochemical sciences where biological 

structure and function at the molecular level so often depend on molecular 

conformation. 

CPK models, Koltun, 1965, are lightweight precision space filling 

models which are particularly useful for constructing macromolecules of 

biological interest. Photographs of CPK models corroborating experimental 

molecular structure are found throughout the scientific literature. In 

keeping with the design concepts of the CPK models a bracket has been 

developed which facilitates the assembly of up to two turns of DNA helix 

in the B conformation. The design of the bracket was based on an earlier 

version by Pigram, 1968, but provides a greater degree of support for the 

final model while use of a thinner central supporting rod allows a greater 

degree of accuracy to be maintained. 

The atomic coordinates of B DNA given by Arnott and Hukins, 1972, 

were used to calculate the average distance between NI purine and N3 

pyrimidine atoms in A.T and G.C base pairs. Using this distance the bracket 

was designed as an integral part of a base pair occupying the positions 

normally taken by the Ni purine and the associated hydrogen CPK atoms. 

The dimensions of the bracket were determined by the covalent and Van der 

Waals radii specifications of the CPK atoms and allowances were made for 

distances resulting from the use of the interatomic connector links. A plan 

orthographic projection of the bracket is given in Figure B.I while Plate 

B.l shows the brackets incorporated in two base pairs of DNA. 

A standard CPK connector link screwed into a recess in the base of 

the bracket was used to connect the bracket to the CPK N3 atom of the 
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Figure B.l A projection of the support bracket used to construct CPK models of D~A in the B conformation. 



Plate B. l The i ncorporation of the support bracke t s i nto two base pairs of CPK DNA 
viewed from t he direction of t he helix axis . 
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pyrimidine residue. Standard length CPK gluing connectors were cemented 

into the recesses in the head of the bracket using araldite. A CPK carbon 

aromatic 6 atom was araldited to each of these connectors and then the 

remainder of the base pair was constructed in the normal manner. 

A hole in the bracket at an angle of 840 to the plane of the base 

pair allowed the bracket to be mounted onto a central steel support rod of 

5/16" diameter. The angled hole in the bracket provided a base pair tilt 

of 60 to the helix axis. No attempt was made to incorporate into the 

bracket design the 2.1
0 

base pair twist of the Arnott and Hukins B DNA model 

which has a less pronounced effect on the DNA structure. If desired, this 

effect could be embodied into the bracket by drilling the hole for the 

central support rod to take account of this effect and by refacing the 

sides and base of the bracket and repositioning the holes for the connector 

links. 

An attachment screw in the bracket located into a dimple in the central 

support rod attaching the bracket and base pair to the rod in the correct 

. orientation. The dimples on the rod were machined such that they lie on a 

right-handed helix with an angle of 360 rotation per residue and a 

translation equivalent to O.338nm. The position of the attachment screw 

in the bracket was coincident with the dyad axis of the base pair so that 

inversion of the bracket allowed either purine or pyrimidine residues to be 

located in either strand of the resultant DNA model. 

The bracket was constructed from aluminium which is light, cheap and 

easy to machine. However, care had to be taken in tapping the hole for the 

attachment screw since it was easy to significantly deviate from the 

direction of the drill hole giving rise to large variations in the angle 

of rotation per residue. This problem was overcome by tapping the hole 

with the tap mounted in the chuck of a vertical drill and the bracket held 

in the appropriate position in a vice. 

A central supporting rod of steel was chosen in order that the 
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diameter of the rod could be small enough to be sufficiently contained by 

the brackets when the axis of the rod was coincident with the DNA helix 

axis, yet strong enough to bear the weight of two turns of CPK DNA helix. 

The central support rod was mounted in a heavy metal base plate to lend 

stability to the model. The base plate was contained in a veneered wooden 

box for cosmetic purposes. Additional support for the model was provided 

by a second rod of larger diameter attached to the base plate and connected 

to the top of the central support rod by a horizontal arm. This was 

particularly useful when moving the model to prevent undue flexing of the 

central support rod. It could easily be removed for, greater accessiibility 

to the DNA model during model building studies. 

In constructing a DNA model it was found easier to first assemble 

the base pairs around the brackets and then attach these to the central 

support rod in the desired orientations. Furanose rings were then attached 

to each base pair and the residues were finally linked by the phosphate 

groups. Plate B.2·shows a completed 1.5 turn CPK B DNA model incorporating 

these brackets. 

In addition to the standard CPK B DNA models a 2.0 turn intercalation 

CPK B DNA model was also constructed using these brackets. This model was 

again based on an earlier design by Pigram, 1968. In this model the central 

supporting rod was cut into two parts mid-way between the location of the 

tenth and eleventh base pairs. Correct alignment of the two halves of the 

model was maintained by a steel pin which located in holes in the halves 

of the central support rod. Additional support was again provided by a 

non-centred support rod of larger diameter attached to the top of the central 

support rod by a horizontal support arm. In this model the support arm 

could be tracked vertically in a key-way in the larger rod and held in any 

desired position by the clamping pin. Thus the top half of the DNA model 

could be separated from the lower half to expose an intercalation gap in 

the DNA helix. If desired, two intercalation gaps could be created in the 
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Plate B. 2 

A 1 . 5 turn CPK DNA model in the B conformation constructed 
using the support brackets . 
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model, separated by I, 2 or 3 nucleotide pairs, by suitable insertion of 

a segment of central support rod containing the appropriate number of 

residues. This model allowed trial drug/DNA intercalation arrangements to 

be constructed. Once a promising arrangement was discovered further model 

building could be carried out using computer techniques. However, CPK model 

building was particularly useful in carrying out preliminary studies where 

non-feasible models could be quickly eliminated. 

Brackets of similar design to that discussed could be used to construct 

DNA models in the related C or D conformations. Alternatively, individually 

designed brackets may be used in a DNA model to construct the side by side 

structure proposed by Rod1ey et a1., 1976, or the B conformation of the 

CGCGAATTCGCG structure of Wing et a1., 1980, which details the conformations 

of the individual base pairs in the dodecamer sequence. 

It should not be envisaged that the B DNA model represents a definitive 

rigid conformation of DNA. In solution DNA structure is undergoing continual 

conformational change and thus the B conformation probably represents an 

averaged structure. Even in the fibre state Zimmerman and Pheiffer, 1980, 

have suggested that continual smooth conformational transitions may occur 

between Band C conformations and this is supported by the results in 

chapter 4. In this respect the very rigidity of the B DNA model constructed 

using these brackets prevents manipulation of the model into conformations 

even closely resembling that of the B conformation •. The intercalation model 

is an exception which applies to a specific case. What this bracket design 

does provide is a unit which is compatible with the design concepts of the 

CPK model and which allows a DNA model to be readily assembled in a specific 

conformation without the need to measure values of rotation per residue, 

rise per residue, helix displacement and base pair tilt. It gives the model 

sufficient rigidity such that subsequent examinations of the model do not 

displace the conformational characteristics. The model readily enables the 

essential features of the three dimensional structure of DNA in the B 
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conformation to be visualized. It also provides an adequate basis for 

preliminary drug/DNA model building analysis. 
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