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ABSTRACT

This thesis is introduced with a brief review of the structure and 

function of nucleic acids in biological systems. DNA and its synthetic 

analogues have been shown to be capable of adopting a wide range of 

molecular conformations which differ in pitch, turn angle and handedness. 

The nature of this 'polymorphism' is found to depend critically on base 

sequence, hydration, and ionic strength, and as such, may be of great 

help in visualising the structural basis for processes such as 

transcription, replication and chromatin condensation.

The technique of x-ray scattering from oriented fibres of DNA/RNA 

has been instrumental in the determination of the structures of different 

nucleic acids and in characterising the transitions that occur between 

their allomorphs. Chapter Two describes the experimental methods that have 

been used to obtain diffraction data. Chapter Three outlines the physical 

theory underlying the interpretation of this data.

In Chapter Four the C' form, a close relative of C-DNA,is analysed.

The preferred model is a right-handed nine fold double helix having 

furanose rings that are puckered C3-exo.
o I

The B' conformation, recently heralded as a 'heteronomous' molecule , 

has been observed in poly d(A-T).poly d(A-T) and is analysed in Chapter 

Five.

In Chapter Six, right and left-handed models for the B—D conformation 

of poly d(A-T).poly d(A-T) are compared.

The effect of proflavine, an acridine drug, on the transitions which 

normally occur in a variety of polynucleotides is examined in Chapter Seven.

Chapter Eight describes a number of preliminary experiments in which 

the intense x-ray beam provided by the SERC Daresbury Synchrotron Radiation 

Source (SRS) has been used to undertake the first real-time studies of 

transitions within DNA fibres.



Chapter Nine concludes with a short summary of the state of nucleic 

acid crystallography to date and of the methods which are likely to be most 

productive in the near future.
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CHAPTER ONE

INTRODUCTION

!• 1 THE BIOLOGICAL STRUCTURE AND FUNCTION OF NUCLEIC ACIDS

1.1.1 Nucleic Acids

Nucleic acids are nucleotide polymers. The repeating nucleo­

tide unit consists of a base, either a purine or a pyrimidine, a pentose 

sugar and a phosphate. Nucleic acids fall broadly into two groups: 

deoxyribonucleic acids (DNA) in which the sugar residue is deoxyribose, 

and ribosynucleic acids (RNA) in which the sugar is ribose.

1*1*2 The DNA Molecule

The double helical DNA molecule is a stable 'helical-ladder' 

like structure consisting of two polynucleotide chains held together by 

hydrogen bonds between paired bases. The DNA molecule is seen as having 

either a right or a left-handed twist, usually forming a double-helix which 

is characterised by a pitch of -v 28A - 43A. However, it can be single, double, 

triple or fouretranded (Chandrasekaran and Leslie, 1976b; Amott and Bond, 

1973a,b; Arnott et al., 1974; Arnott et al., 1976a). The diameter of the 

molecule is typically in the region of 20A. Each turn of the helix has 

anything from eight to twelve base-pairs strutting the spirals (see Figure 

1.1).

DNA contains, in the main, four different types of base, two of 

which are classed as pyrimidines and two as purines. The two purines are 

adenine (A) and guanine (G) and the two pyrimidines are cytosine (C) and 

thymine (T). In terms of the double helical model for DNA, the symmetry of
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Diagramatic representation of the double-helical structure
of B-DNA

FIGURE 1.1
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the moleCule and the nature of the hydrogen bonding between the bases 

means that each base pair consists of a purine and a pyrimidine.

In the polynucleotide chain itself, adjacent sugars are 

linked through their 3' and 5' carbons by a phosphodiester linkage. If 

the sugars in one strand are linked 3'-5', the complementary strand is 

related by diad axes perpendicular to the helix axis so that the chains 

of double helical DNA can be termed 'anti-parallel'.

1-1«3 Three Different Types of RNA

RNA differs from DNA in a number of important aspects: whereas 

in DNA there are two hydrogens attached to the 2' carbon of the sugar 

residue, in RNA the carbon carries a hydrogen and hydroxyl group. A second 

important difference is that throughout the RNA molecule the base uracil 

(U) is found in place of the thymine associated with DNA.

In most cells, RNA is generally believed to be less stable and 

not as 'long-lived' as DNA. The relative stability of DNA, and in 

particular of the base sequences, is perhaps to be expected given that 

accurate mitosis and protein production occur throughout the lifetime of 

most organisms.

The conformations of RNA show greater variability than those 

of DNA, and a number of widely different models have been suggested - double 

helices, a single helix folded back and in regions complementary to itself.

The three principal forms of RNA found in cells are (a) messenger RNA (m-RNA) , 

(b) ribosomal RNA (r-RNA), and (c) transfer RNA (t-RNA):

(a) Messenger RNA is mostly single—stranded and serves to convey coded 

information from the DNA in the nucleus to the cytoplasm where proteins 

are then, synthesised. It is known that m—RNA is complementary to one strand 

of a section of a DNA molecule.

0>) Ribosomal RNA forms the bulk of cellular RNA, especially in cells that 

are undergoing rapid protein synthesis. In contrast to m-RNA, r-RNA seems



-  4 -

to have a relatively non-specific base sequence and in the case of E Coli 

5S RNA is % 60% double-helical (Erdmann, 1979). it is also more stable 

than m-RNA. Complexed with protein, r-RNA forms the cellular ribosomes, 

which are the sites of protein synthesis in the cytoplasm. It is thought 

that the intranuclear nucleolus (which is rich in r-RNA) is the site of 

r-RNA synthesis.

Transfer-RNA molecules are relatively small, consisting of about 70-90 

nucleotides and having molecular weights of around 25000. Their function 

in the cell is to collect free amino acids in the cytoplasm and selectively 

attach them to the end of a growing polypeptide. Their ultimate role is 

thus to accurately translate the base sequence carried by m—RNA, via a 

coding system' into a corresponding sequence of amino acids, hence eventually 

constructing a cellular protein. Transfer RNA contains bases not found in 

other nucleic acids (e.g. methylated pyrimidines) and it is possible that 

the sequences are deliberately (excuse the anthropomorphism) made non- 

complementary in places. The clover leaf model of Holley (1968) was based 

on sequence studies of different yeast t-RNA's and is shown in Figure 1.2. 

Single crystals of yeast t-RNA have been grown and x-ray diffraction data 

obtained therefrom have confirmed the clover leaf model and furthermore 

elucidated the tertiary structure of yeast phenylalanine t-RNA (Kim et al., 

1974; Robertus et al., 1974; Ladner et al., 1975).

As stated previously, t-RNA functions to collect amino acids 

from the cytoplasm and 'tack' them together in a sequence determined by the 

message encoded in the template m-RNA. To this end there is a region, the 

'anti—codon*, of the t—RNA molecule which is capable of complementary 

bonding to a suitable part of the m-RNA (known as the 'codon'). A non­

specific terminal triplet (cytosine-cytosine-adenine-OH) forms a point of 

attachment of the amino acid (Rich and Raj Bhandary, 1976).

1.1.4 Nucleic Acid Synthesis and Replication

Nucleic acids are synthesised by an energy consuming cellular
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FIGURE 1.2 The complete nucleotide sequence of alanine t-RNA 
showing the unusual bases and codon/anticodon position 

(from Watson, 1976)



process involving the polymerisation of nucleotides. Adenosine triphosphate 

(ATP) causes phosphorylation of the nucleotides and this provides enough 

energy for the formation of the polymerising phosphodiester linkage.

After fertilization, one cell (the zygote) is ultimately 

responsible for the subsequent morphogenesis of the whole organism. The 

zygote undergoes successive mitotic divisions until all the tissues and 

organs pertaining to a given individual are formed. Each cell in the 

individual (with the exception of meiotically divided sex cells) has an 

identical genetic complement, and it is thus clear that DNA molecules must 

duplicate themselves with a very high degree of accuracy. The proposal 

by Watson and Crick (1953) that DNA was double-helical immediately suggested 

(barring a few topological problems) a mechanism for replication : if the 

molecule were to unwind, breaking at the interbase hydrogen bonds, each 

strand could then serve as a template for the construction of an identical 

DNA duplex (see Figure 1.3). Further evidence for this hypothesis was 

provided by Meselson and Stahl (1958) who performed a biochemical assay

using a heavy nitrogen isotope to show that such replication did indeed 
occur.

1,1,5 Ike Cistron, the Genetic Code, Transcription. Translation and 
Polypeptides

In adherence with the -one gene, one enzyme' hypothesis, one 

gene, or perhaps more definitively, one *cistron', codes for the production 

of one polypeptide chain in the cytoplasm. A cistron is therefore a section 

of a DNA molecule having a specific base sequence, and which serves as a 

template for the production of m-KNA, which, in turn, then determines a 

sequence of amino acids. m-KNA thus transcribed leaves the nucleus through 

nuclear pores', and becomes attached to ribosomes (which mostly lie on the 

internal aspect of the endoplasmic reticulum).

The base sequence determines the amino acid sequence of a
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FIGURE 1.3 The Watson-Crick scheme for DNA replication
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polypeptide by means of a 'triplet code' in which three consecutive bases 

code for a particular amino acid (e.g. UUU codes for phenylalanine). The 

basis of this genetic code was partially predicted on theoretical grounds, 

before the 'alphabet' had been determined. The number of amino acids 

(twenty) compared with the number of nucleotides (four) implied that a 

triplet code was necessary: only a combination of three nucleotides could 

yield more than twenty different amino acid codewords. By this hypothesis,

the total possible number of different trinucleotides is sixty-four (see 
Table 1.1).

SECOND LETTER

UUU~| 
UUC J Phe

u u a !  t
uugJ Leu

ucu
ucc

UCA
UCG

Ser

UAU~1 
UAC J
UAA
UAG ]

Tyr

Ter

UGU
UGC

UGA
UGG

Cys

Ter
Trp

U
C

A
G

cuu
cue
CUA
CUG

Leu
CCU
CCC
CCA
CCG

Pro
CAUl
CACJ Hls 
CAA-1 
CAG J Gin

CGU'
CGC
CGA
CGG

Arg
U
C
A
G

AUU " H e ACU -1
AUC _ ACC
AUA- ACA
AUG J Met ACG _

GUU~ GCU ~
GUC Val GCC
GUA GCA
GUG GCG

Thr
AAU-I
AAC J Asn
AAA -| _
AAG.J L* 8

AGU ~| 
AGC J 
AGA“| 
AGG J

Ser

Arg

Ala
G A U 1  AGAcJ AsP
GAA-i 
GAG J Glu

GGU
GGC
GGA
GGG

Gly

U
c
A
G

U
c
A
G

TABLE 1■1 The Genetic Code

The fact that the figure of sixty—four is way in excess of the

necessary twenty, indicates that either (a) the code is degenerate and that 

several codons are used to produce the same amino acid, or (b) there exist 

a number of 'nonsense* codons — codewords which do not correspond to any

THIRD LETTER



amino acid and are not used in the n*ssage. The two different possibilities 

(a) and (b), are significant in terms of the structure of m-RNA: a degenerate 

code would allow more flexibility since different primary structures could 

still carry the same information. The determination of the genetic code, 

and the analysis of nucleotide sequences has now clearly established the 

degeneracy of the code, and the expected flexibility in the m-RNA structure 

has also become apparent. There are three 'nonsense' codons, and it is 

believed that all of them serve as termination signals in protein synthesis.

Another feature of the genetic code is that the nucleotide 

sequence can be interpreted in any of three different reading frames, each 

giving totally different amino acid sequences. The genetic code is not 

'punctuated'. It has been established experimentally (Barrell et al. (1976); 

Smith et al. (1977); Shaw et al (1978)) in a study of the bacteriophage 

0X 174 that the same nucleic acid sequence can comprise two different 

messages, and can direct the synthesis of two different polypeptide chains

which are encoded in the same sequence but in different reading frames.

See Figure 1.4.

A U G C  g c g c u u c g a u a a a a a u g a  

(1) | met | arg | ala | ser | ile | lys | met |

(2> I cys I ala | leu | arg | | |

^  I ala I arg I phe | asp | lys | asn |

*-4 Decoding of a message in three different reading frames

^  thus apparent that for faithful decoding it is vital that 

the correct reading frame is recognised. It is thought possible that two 

codons can define initiation sites: AUG and GUG (which is less frequent). 

However, it is noteworthy that both these triplets can code for amino acids 

at internal positions (AUG for methionine, GUG for valine) and, as such,
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comprise the only ambiguities in the genetic code.

An m-RNA molecules, once adsorbed into a ribosome, is considered 

to be an active site of protein synthesis. One m-RNA molecule does not, 

however, act as a protein template indefinitely, and may only function 

in the construction of about ten to twenty proteins before stopping.

The mechanism by which t-RNA collects amino acids from the 

cytoplasm and adds them, in sequence, to the polypeptide chain, is aided 

by GTP which is required to form the peptide bond between the 'enzyme 

activiated1 amino acid and the polypeptide chain. The t-RNA/amino acid 

complex is then slotted into position at the ribosome when the codon of the 

m-RNA strand is complementary to the anticodon of t-RNA. A peptide bond 

is formed between the amino acid and the polypeptide chain. Upon 

completion the chain folds up into a globular form having a characteristic 

secondary and tertiary configuration. To some extent the tertiary structure 

of a protein is inevitably give certain primary and secondary constraints, 

but it is possible that certain 'folding enzymes' may be present to ensure 

correct tertiary structure,

A very simplified summary of nucleic acid pathways in protein 

synthesis is shown in Figure 1,5.

!• 1-6 Nucleoprotein and Chromatin

As previously mentioned, the nature of nucleic acid structure 

makes an enormous amount of conformational variability. It is possible that 

the extensive polymorphism of DNA is involved id the dramatic behaviour of 

chromatin during the life of the mitotic cell. The DNA of eukaryote cells 

in vivo exists in complex with various histone and nonThistone proteins.

The nucleo protein so formed, is, in the living cell, capable of great 

morphological variability throughout the cycle of the cell: this is clearly 

realised when one considers the extent of condensation that occurs within 

the eukaryote nucleus. The precise structure and functioning of chromatin 

(particularly in terms of replication, transcription and condensation) has
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has established that the first level of organisation in the ’contraction’ o 

DNA is the 'nucleosome structure'. The structure consists of a core 

particle of one hundred and forty base pairs of DNA wound around an octomer 

core of histones comprising two each of the histones called H2A, H2B, H3 

and H4. These core particles are joined by lengths of ’linker’ DNA.

Another protein, HI, is thought to be associated with the linker region

(Butler et al., 1969; Kornberg and Thomas, 1974; Olins and Olins, 1974).
See Figure 1.6.

histone octamer makinq up 
core particle'

Fig 16: Schematic diagram illustrating the nucleosome 
structure of chromatin

Although the chemistry of chromatin contraction is not fully under­

stood, various models have been put forward (Finch and Klug, 1976; Bak et 

al., 1977) suggesting that the nucleosome threads coil into a helix having 

a pitch of -v 110A and an outer diameter of 300A. This helix then further 

supercoils into a chromatid which is a hollow cylinder of -v 4000A diameter. 

There is, as yet, no further detail at the molecular level for the 

construction of higher ordered structures.

It is interesting that the chromosomes themselves are capable of

reversible condensation and that different stages of condensation can
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be identified by the presence of a number of different liquid crystal phases 

ranging from isotropic liquid to mesophase. Chambers (1924) has noted that 

when the nuclear membrane of the living grasshopper spermotocyte is pricked 

during prophase, chromosomal filaments appear which gradually thicken until 

they look like those of a normal metaphase stage. This observation implies 

that certain 'concentrations' in the nucleus must be modified by injury to 

the nuclear membrane, and probably by cytoplasmic contents rushing into the 

nucleus. It is remarkable that the natural condensation of chromosomes is 

preceeded by the disappearance of the nuclear envelope.

The implications of the above observations are, as yet, 

difficult to estimate. Bearing in mind that chromosomes are condensed 

phases of DNA - protein complexes and other chemical species, it is likely 

that certain aspects of polymer crystallography (at both high and low 

resolution) ought to yield information on the 'modus operandi' of the DNA 

molecule itself and the methods by which it manages to pack into different 

regular liquid crystal phases. The effect of ions and other groups on the 

structure of chromatin is of great interest here, as is their effect on the 

conformation of 'naked' DNA's.

1-2 THE STUDY OF NUCLEOTIDE POLYMERS

A great number of different methods have been employed in 

attempts to clarify the structure of nucleic acids, various nucleoprotein 

complexes, and chromatin. This thesis is primarily devoted to the study 

of various types of polynucleotide and polynucleotide-drug complex. Whilst 

it might seem that the most realistic method of studying DNA is in the 

examination of the liquid state, a lot more information is yielded by the 

study of polymer fibres. However, the extent to which the semi-crystalline 

or crystalline state may produce artefactual information is obviously very 

important and fibre studies must therefore be undertaken with some caution.
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Single crystal X-ray studies allow structure determination to atomic 

resolution, but must be treated with even greater reservation than fibre 

studies, since the single crystal examinations so far have been confined 

to short nucleotide repeats and 'end-effects’ are likely to be large.

1*2.1 Solution Studies

Studies of different types of DNA solutions have provided a 

wealth of information which has added to and corroborated evidence 

obtained elsewhere. Optical rotary dispersion (ORD) was used to show the 

existence of structural transitions (as a function of salt concentration) 

in DNA solutions (Cheng, 1965; Tunis and Hearst, 1968) and later investiga­

tions on the effects of various neutral electrolytes on their circular 

dichroic (CD) spectral properties have supported this conclusion. Tunis- 

Schneider and Maestre (1970) have identified the CD spectra appropriate 

for the A, B and C forms of DNA, and in 1972 Erfurth et al. published results 

which showed that the different forms could be distinguished by an examina­

tion of several Raman bands that arise from the vibration of the sugar 

phosphate backbone of nucleic acid polymers. Wide angle X-ray scattering 

has also been applied to investigate molecular structure in fairly concen­

trated solutions. Bram (1976a)has studied the secondary structure of DNA 

in solution and in nucleohistone by this method and concluded that DNA in 

such conditions adopts a * B* type structure.

Later work has revealed the very interesting behaviour of 

poly (dG-dC).poly (dG-dC) as a function of salt concentration (Pohl and 

Jovin, 1972). This behaviour has since been correlated with the structure 

of the oligomer d(CpGpCpGpCpG) as described by Wang et al. (1979) after 

Laser-Raman spectroscopic studies indicated that the high salt form of 

the aqueous polymer has the same structure as left-handed Z-DNA in the 

crystalline oligomer (Thamann et al., 1981).
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It is well recognised in this field that although correspondence 

between solution data and solid state data is of great importance, 

conformations are likely to differ structurally in the solution, fibre, 

and single crystal states (Bram, 19 76b; Hanlon et al., 1975). The details 

of such differences are of great interest.

1-2.2 Fibre Diffraction Studies

As a result of the presence of various types of disorder in 

polymer fibres (these will be discussed in section 3.5), the data obtained 

from fibre diffraction provides a resolution (*v 3A) which does not enable 

the unambiguous determination of atomic positions. Whilst resolution is 

low, certain features of the helical conformation can readily be ascertained 

(e.g. pitch of helix, number of residues per turn) if the specimen is 

reasonable ordered. It is a combination of these parameters, the observed 

diffraction and a relatively sound knowledge of the overall stereochemistry 

of the molecule that enables a structural refinement to give an acceptable 

'best fit' with the observed data. Structure determination by this method 

is still, however, by no means totally definitive and for a given diffraction 

pattern, models having both helical senses can often be generated to give 

equally acceptable agreement with the observed diffraction. This is rather 

a harrowing predicament, since in recent years, the handedness of the DNA 

helix has emerged as a rather crucial problem, especially in the light of 

certain dynamic transitions that are found to occur in fibres and in solution 

as a function of ionic strength and hydration.

1-2.3 Single Crystal X-ray Studies

The highest level of solid state order is a single crystal.

The structure of such crystals can usually be solved to atomic resolution but 

the main difficulty with respect to nucleic acid polymer research is the 

fact that the oligomers used have to be relatively short to enable the 

acquisition of high quality crystalline data. This restraint is a significant
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one since, as mentioned in Section 1.2.1, the shorter the polymer, the 

greater the risk of 'end-effects' distorting the true conformational nature 

of the helix and producing misleading information that cannot be sensibly 

correlated with fibre and solution studies.

The most interesting oligomers that have been studied to date

are those containing G-C base pairs. The oligomer d(CpGpCpGpCpG) (or d(CG)^)

has been found to crystallise into a novel left-handed 'Z' form (Wang et

al., 1979) having Watson-Crick base-pairs and alternating C2-endo and

C3-endo sugar puckers. Further work on this oligomer by Wang et al. (1981)

has outlined the presence of two Z helices, nominated Ẑ. and Z^. Another

structure that has been solved from a single crystal examination of d(CG)2

has been called Z'-DNA (Drew, Dickerson, Itakura, 1978). The Z'form is

very similar to the Z helices described by Wang et al. (1979) and Wang et al.

(1981). Crawford et al. (1980) have also studied crystals of d(CG)2 and

have published similar Z structures. Crawford et al. (1980) maintain that

the small differences that exist between the Z molecules thus far solved

can be attributed to the different ions present in each of the crystals. It

therefore seems likely, as suggested by Neidle and Berman (1983), that the

and Z forms are just three of a whole range of Z structures that

can be obtained, and that there is what could be called 'restricted'

polymorphism in single crystals. Fibre studies have since (Arnott et al.,

1980) elucidated the structure of high salt poly d(G-C).poly d(G-C) and have

interestingly enough shown that a model having the overall features of Z-DNA

accounts well for the diffraction obtained from such fibres. The idealised

and continuous 6^ helix has been called S-DNA. Other studies have been

undertaken which verify the presence of a B type helix in the duodecamer

d(CGCGAATTCGCG) (Wang et al. 1980; Dickerson and Drew, 1981a)* The

structure has 10.1 residues per turn, Watson-Crick base pairs, and an average
o

axial rise per base pair of 3.4A. As might be expected, all the conformational 

parameters vary slightly from one residue to the next.
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The value of single crystal work is clear: it has been 

correlated with previous fibre and solution studies and has opened up 

new areas of immense interest. The importance of left-handed DNA is 

apparent, especially in relation to transitions and change of helix 

sense. Single crystal work has also emphasised the significance of 

sequence dependent local molecular variation.

1.3 THE STEREOCHEMICAL DESCRIPTION OF POLYNUCLEOTIDE HELICES

A schematic outline of the double helical chain is shown in 

Figure 1.7 and it is immediately evident that there are six torsion 

angles capable of variation (5 along the backbone and one about the 

glycosidic bond that links base and sugar). The resolution enabled by 

fibre diffraction justifies assuming standard and constant covalent bond 

lengths and angles.

The torsion angles shown in Figure 1.7 are broadly classified 

(Arnott and Hukins, 1972a, b) so that the 'cis' position is defined as zero, 

and a positive torsion angle occurs when, looking along the bond length, 

the nearest atom is reached by an anticlockwise rotation. The backbone 

torsion angles are said to be 'gauche+l (g+) if 0 < t < 120°, 'gauche” '

(g ) if -120° < t < 0°, and 'trans' (t) if 120° < x < 240° (see Figure 1.8). 

The glycosidic torsion angle, x> which characterises the link between 

sugar and base is defined by the atoms C2', Cl', N and C4 if the base is a 

purine, and by C2', Cl', N and C2 if the base is a pyrimidine. Two classes 

of this conformation angle are commonly observed - anti when x % 90°, and syn 

and x ^ 300°.
Another feature relating to the flexibility of the chain is the 

fact that the sugar residues are not necessarily flat. The furanose rings 

of nucleic acids are either g-D-ribose or 8-D-erythropentose (deoxyribose). 

Although early molecular model building studies (Crick and Watson, 1954) 

assumed a planar sugar ring, Spencer (1959) asserted that in all likelihood





19 -

FIGURE 1.8 The convention used in evaluating and describing torsion angles

steric interference between hydrogens of neighbouring carbons would cause 

a puckering of the rings. A variety of furanose puckering arrangements 

have been described by Sundralingam and Jensen (1965), and are defined by 

the offsets of the C2 and C3 atoms from a plane formed by the Cl, 05 and 

C4 atoms. Puckering conformations are then classified in terms of which of 

the two atoms, C2 and C3, is most heavily offset from the defined plane, 

and on which side of the plane this offset occurs. If it is on the same 

side as the C5 atom, the pucker is denoted 'endo', and if it is on the 

opposite side the pucker is correspondingly called *exo'. Figure 1.9 

shows a projection (edge on the plane C1-05-C4) of four different puckering 

arrangements.

Although the overall structure of a nucleotide is unambiguously 

described by coordinates, it is often found convenient and instructive to 

depict a molecule in terms of its various torsion angles, the sugar pucker(s), 

and base position. A summary of these parameters for each structure cf 

relevance to this work is given in the appendix. The base atoms are assumed 

to lie in one plane, and base position is established by expressing the 

magnitude of the distance D(the base displacement from the helix axis), 

a twist angle, and a tilt angle. The two types of base pair commonly
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f°Und in DNA are shown ^  Figure 1.9(a) and (b) and Figure 1.9(c) shows 
the way in which base position is described.

1,4 A SUMMARY OF THE DIFFERENT MORPHOLOGICAL STRAINS OF DNA AND RNA AS 
OBSERVED IN X-RAY DIFFRACTION

Early diffraction experiments on fibres made from a variety of 

natural DNA's established the existence of three distinct, though related, 

structures (the A, B and C conformations). Since then, a large variety of 

synthetic polynucleotides (having known base sequence) have become 

available and the observed diffraction from such materials has forced the 

classification of nucleic acid helices to be broadened and extended.

Leslie et al. (1980) have surveyed the polymorphism that has been 

observed in a wide range of polynucleotides. Minor variations in structure 

from one type of polynucleotide to the next have necessitated the classifica­

tion of nucleic acid polymer conformations into families.

1.4.1 The 'A' Set of Structures

The A family is of particular interest because it is found to 

be the only conformation adopted by RNA, and, as suggested by Arnott (1968) 

may be the structure used by DNA during the process of transcription.

The A-form of DNA gives a crystalline diffraction pattern (see 

Plate 1.1) and was first obtained from the sodium salt at low relative 

humidities and low excess salt (Franklin and Gosling, 1953). A-DNA patterns 

have been obtained from salts of many different ions, and with the exception 

of lithium, there appears to be no salt in which DNA is prevented from 

occuring in the A-form.

The first detailed analysis of A—DNA was undertaken by Fuller 

et al. (1965). In this work the helix was asserted to have a right-handed 

helical sense with 11^ symmetry and a pitch of 28 .2 k . The sugar rings 

have C3-endo puckering, and the bases have a tilt of 20°, a twist of -8°
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PLATE 1.1 X-ray Diffraction Photograph of A-DNA from Calf Thymus 
(from Fuller et al., 1965)
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and a base displacement distance, D, of 4.25A.

The Fuller model has since been modified twice to incorporate 

standard stereochemistry (Arnott and Hukins, 1972b; Arnott et al., 1980), 

and the overall features of the refined models are shown in the Appendix,

It has been suggested that the A conformation of DNA could be 

a structural peculiarity associated with the crystallisation of DNA into 

a monoclinic lattice. This idea has been rejected by Leslie et al., (1980) 

who maintain that the A structure is preserved even in fibres which 

crystallise with different types of lattice.

A-RNA is essentially similar to A-DNA (see Appendix), having
• o . . . oa pitch of 30.9A, a positive base displacement of 4A from the axis, a

tilt of 16° and a twist of -7°. The analyses of the diffraction patterns

obtained from a number of different types of RNA shows that the molecules

can pack into two different hexagonal lattices, termed a and 8 (Langridge

and Gomatos (1963), Tomita and Rich (1964), Arnott et al. (1966)).

Another form of RNA is A'-RNA (diffraction pattern is shown in

Plate 1.2b as compared with A-RNA in Plate 1.2a). The diffraction from

this conformation was observed by Arnott et al. (1968) in fibres of

poly Cl).poly (C) and poly (A).poly (U). The helical structure shows 12^
o

symmetry and the pitch of 36.2A is slightly higher than that of A-RNA, 

but otherwise the conformation angles of A'-RNA are similar to those of 

A-RNA and A-DNA (see Appendix) . A third RNA structure has been 

nominated A"-RNA and was observed by Arnott et al . (1968) in low salt 

fibres made from poly (A-U), poly (G-C) and poly (I-C).

The fact that m-RNA is associated with the process of transcrip­

tion from the 'master code' of DNA makes the examination of DNA-RNA hybrids 

of special interest. Milman et al. (1967) undertook such a study and 

concluded (without detailed elucidation of the structure) that the hybrid 

was in basis similar to A-DNA. O'Brien and MacEwan (1970) discovered that
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the hybrid poly rl.poly dC is similar to A'-RNA.

Another form of RNA (A*-RNA) has been presented by 

Chandrasekaran et al. (1980) and Arnott (1980) from fibres of poly dl. 

poly rC. The A*-RNA structure is novel in that the torsion angles fall 

into a different class (see Appendix), The conformation has 10^ 

symmetry and the sugar rings have C3'-endo puckering. In other respects, 

such as base displacement and orientation the structure is similar to 

that of A-DNA.

1.4.2 The 'B' Set of Structures

The B-conformation of DNA is also a widely occuring structure, 

and is found to prevail when relative humidity is high or ionic concentration 

is high. It is of special interest because the structure has been found 

to exist in cells and in nucleosome structures (Wilkins and Randall (1953); 

Finch et al. (1981); Bently, Finch, Lewitt-Bently (1981)). The B-forms 

first obtained were those from the sodium and lithium salts. Sodium DNA 

was found to give a semi-crystalline diffraction pattern (Plate 1.3) 

whereas the lithium salt gave a highly crystalline pattern (Plate 1.4).

Whilst the semi-crystalline pattern does not yield as much information as 

the crystalline one, it is generally accepted that the molecular conformation 

is the same in both cases.

The initial analysis of DNA was based on a semi-crystalline 

pattern similar to Plate 1.3, and led Watson and Crick (1953) to their now 

well established double—helical model for DNA. The Watson—Crick model for 

B-DNA was, however, far from an exact solution and was refined by Langridge 

et al. (1960a, b) using the more extensive data obtained from crystalline 

patterns (see Hate 1.4).

A further refinement of B-DNA was published by Arnott and Hukins 

(1972b, 1973) in which the Langridge model was adjusted to incorporate 

standard covalent stereochemistry.
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PLATE 1.4 The crystalline B-form obtained from Li DNA 
(Courtesy of Prof. M.H.F. Wilkins, FRS).
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PLATE 1.4 The crystalline B—form obtained from Li DNA 
’ (Courtesy of Prof. M.H.F. Wilkins, FRS) .
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The overall features of the molecular conformation are a helix

pitch of 34A, a lC^ mononucleotide helical repeat, and C3-exo puckering
o

of the sugar rings. The bases are displaced so that D = -0.16A, having 

a twist of -2.1° and a tilt of -6°.

There have been a number of different models in which the 

details of the above conformation have been altered. Arnott and Hukins 

(1973) have tried using a C2'-endo puckering instead of C3'-exo, but found 

it hard to judge which gave the better fit on the basis of diffraction data 

alone. With the acquisition of better data, however, Arnott and 

Chandrasekaran (unpublished) came to the conclusion that the C2 -endo 

model was preferable.

From the crystalline Li B-DNA patterns, the molecules are found 

to pack into an orthorhombic lattice having a space group P2^2^2^ where 

the molecular diad of the base points along the b direction. There are 

two molecules per unit cell, and the one in the centre of the cell is 

displaced by 0.33 c along the Z axis. It is noteworthy (Dover, 1977) that 

the ratio of a/b is equal to tan 36° and that this gives equivalent inter­

helical contacts throughout the lattice.

The semi-crystalline Na B-DNA patterns indicate hexagonal packing 

and although the molecular conformation is thought to be the same as that 

for the orthorhombic patterns, lack of clarity in the sodium patterns make 

this difficult to assert. Work on poly d(G-C).poly d(G-C) and on poly d(A-C) 

poly d(G-T) hy Leslie et al. (1980) does, however, tend to support this

idea.
Another member of the B family is observed in fibres made from 

Na poly(dA).poly(dT) and is called B'-DNA (Arnott and Seising, 1974).

B ’-DNA observed in poly(dA).poly(dT) was assumed (Arnott and Seising, 1974) 

to be capable of packing into two different lattices: one hexagonal 

Cc-B'-DNA) and one orthorhombic (B-B'-DNA). The o-B' form has also been 

obtained from poly d(A-T) .poly d(A-T) and the two diffraction patterns (one
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from d(A-T)) are compared in Plate 5.2.

A structure that has been designated B" has been discovered by 

Mahendras ingam (1984) in fibres made from the potassium salt of 

poly d(G-C).poly d(G-C). This molecule has a pitch of ^ 34&, ten residues 

per helix turn and possibly a dinucleotide asymmetric unit. The diffraction 

pattern obtained from BM—DNA is shown in Plate 1.5.

A summary of the lattice and conformational parameters associated 

with each of the various forms discussed above is given in the Appendix.

1.4.3 The 'C' Set of Structures

The C conformation was first described by Marvin et al. (1958,

1961) for fibres of Li DNA at relative humidities of ^ 66% or below. The

molecule was found to pack either into a hexagonal or an orthorhombic

lattice (depending on the amount of chloride present as LiCi,) and produced

a fibre diffraction pattern similar to the one shown in Plate 1.6. Marvin

analysed the C patterns in terms of a clockwise helix having 283 symmetry 
o

and a pitch of ^ 31A.
The importance of the C conformation has recently become apparent 

with the realisation that it is not just a structural distortion of the 

B conformation associated with the lithium ion, but a 'low salt' structure 

that can be routinely obtained in the presence of a variety of counterions 

(Zimmerman and Pheiffer, 1980; Rhodes et al., 1982). In the study of 

native and synthetic DNAs it has become evident that the conformation of 

C-DNA shows great variability, having a pitch which can be anything from 2SA 

to 32A and containing between 8 and 9.6 residues per helix turn. (Zimmerman 

and Pheiffer, 1980). The features associated with a variety of different 

C patterns (and a variety of proposed models) are given in the Appendix.

Arnott and Seising (1975) have revised the Marvin C model so that 

it more closely resembles the structure of B-DNA, although in the light of 

the agreement between their calculated and Marvin's observed data, the
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PLATE 1.5 The B" conformation of K Poly
d(G-C).poly d(G-C) (from Mahendrasingam, 1984)
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reasons for doing this are not clear. The data obtained from the Marvin 

patterns is not very extensive and bearing in mind the complex packing 

arrangements found in C-DNA lattices, it is thought wise not to assume too 

much about the relationship between B-DNA and C-DNA.

C'-DNA has been observed for the lithium salt of poly d(G-G-T). 

poly d(A-C-C) (Leslie et al., 1980) and has been found to be an integral 

nine-fold helix having a pitch of ^ 29%. A conformation fairly similar 

to this has been observed by Rhodes (1982) and by Mahendrasingam (1984) 

and is analysed in Chapter Four (see Plates 4.2, 4.3, 4.4).

Leslie et al. have also observed a paracrystalline conformation 

from Na poly d(A-G).poly d(C-T) which they call C". This has 92 symmetry, 

a pitch of 29.1A and crystallises into a hexagonal lattice.

1.4.4 D-DNA

In 1963, Davies and Baldwin (1963) reported a unique fibre 

diagram from samples of poly d(A-T).poly d(A-T). The conformation had 

a pitch of v 24.5A. A pattern of this type is shown in Plate 1.7.

Mitsui et al. (1970) reported a similar diagram from fibres of poly d(I-C). 

poly d(I-C) and such a pattern is shown in Plate 1.8. Mitsui et al. proposed 

that the structure was left-handed, having 8^ symmetry, 05-endo puckering

and bases displaced 2A behind the helix axis.

Amott et al. (1974), however, disagreed with the Mitsui analysis 

and basing their structure determination on data obtained from poly d(A-T). 

poly d(A-T) , suggested a molecular conformation having 81 symmetry. The D 

form from poly d(A-T).poly d(A-T) packs into a tetragonal lattice and is 

named a-D-DNA, whereas the D form from poly d(A-T-T).poly d(A-A-T) adopts 

a hexagonal lattice (see Plate 6.5) and is called B-D-DNA (Seising, Arnott 

and Ratliff, 1975). Although the overall intensity distribution is similar 

in both a and 6 patterns, there are some features which can only be 

attributed to differences in molecular conformation.
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PLATE 1.8 The a-D conformation seen in a fibre of poly d(I-C) 
--------- poly d(I-C) (from Mahendrasingam, 1984).
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PLATE 1.8 The o-D conformation seen in a fibre of poly d(I-C) 
---------  poly d(I-C) ( f r o m  Mahendrasingam, 198*0 •
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Since the right-handed models of Arnott et al. (1974, 1975), a 

variety of other structures have been proposed for D-DNA: a left-handed 

model having 7, symmetry and Hoogsteen base pairs (Donohue and Trueblood, 

I960) was proposed by Drew and Dickerson (1982) but has since been 

rejected. A report by Ramaswamy et al. (1982) claims that equally 

satisfactory models can be generated for both helix senses, and that the 

data does not permit discrimination between the two.

Work undertaken in this laboratory (Mahendrasingam, unpublished; 

Forsyth, Chapter Six of this work) tends to favour the idea that the D 

helix is left-handed. The details of these studies are given in Chapter

Six.
Two other variants of the D-type have recently been obtained 

from poly d(A-T).poly d(A-T). The F conformation is shown in Plate 1.9 

and has been obtained from the lithium salt of this polymer (Mahendrasingam, 

1984; Arnott, personal communication) and from the sodium salt 

(Mahendrasingam, unpublished). Another D conformation (referred to here 

as y-D) has been obtained from a fibre of Li poly d(A-T).poly d(A-T) made 

by Dr. A. Mahendrasingam when the salt concentration is significantly 

lower than the level required to produce the F form. A y-D pattern 

recorded at the Daresbury SRS by the author and his colleagues is shown 

in Plate 1.10. The intensities diffracted from these fibres indicate 

that the molecular structure is the same as the a-D form but the lattice, 

which is still approximately tetragonal is distorted so that either 

a* # h *  or y* +  90°. This results in a splitting of reflections throughout 

the pattern which would normally overlap and consequently in the acquisition 

of a great deal more data relating to molecular transform of the D helix.

1.4.5 E-DNA
At low relative humidities the synthetic polynucleotide

x i r-n takes up an unusual conformation denoted E-DNAan-T-Tl .doIv d(A-C-C) taxes up
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o
(Leslie et al. 1980). This molecule has a pitch of 48.7A and has 32symmetry 

where the asymmetric unit has five nucleotides (see Plate 1.11). A 

starting model put forward by Chandrasekaran et al. (1980) suggests that 

E-DNA has all its conformation angles in the trans range.

1.4.6 Z-DNA and S-DNA

The analysis hy Wang et al. (1979) of single crystal

diffraction data from the oligomer d(CpGpCpGpCpG) has sparked off intense

interest in the possible polymer conformations of poly d(G-C).poly d(G-C).

Wang et al. solved the structure of a d(CG)^ oligomer to a resolution 
oof 0.9A and showed that the molecule consisted of a left-handed double 

helix (pitch of 44.6A) having Watson-Crick base pairs. Because of the zig­

zag nature of the backbone chain, the structure has been called 'Z-DNA', 

and is novel in a number of respects other than the sense of the chain: 

firstly the cytosine containing nucleotides have an anti base-sugar 

orientation and a C2'-endo sugar pucker, whereas the guanine containing 

nucleotides have a syn orientation and the sugars have a C3’-endo pucker; 

secondly, the base stacking is unusual in that bases are 'sheared' with 

respect to each other in a fashion again distinctive of a dinucleotide repeat.

As a result of this, the diad axis lies in between the base planes. Because 

of the fact that the bases are pulled away from the helix axis by approximately 

3A, there is only one deep groove (corresponding to the minor groove of 

B-DNA) along the double helical chain.

Since the work of Wang et al. (1979) several other single 

crystal studies of G-C oligomers have been undertaken. All of them indicate 

a similar type of conformation (there are variations which possibly occur 

as a result of the presence of different ions - these will be discussed in Chapter

Six).
Fibre diffraction data from the polymer poly d(G-C).poly d(G-C) 

indicates the occurence of the A and B conformations (depending on the ionic





40

PLATE 1.11 The 'E' conformation of 
(from Chandrasekaran et

poly d(I-I-T).poly d(A 
al., 1980)



and water content) and also a unique conformation called S-DNA (Leslie 

et al., 1980; Arnott et al., 1980). The fibre diagram associated with 

S-DNA (see Plate 1.12) was first obtained by Arnott et al. (1980) from 

the sodium salt and showed a high degree of disorder. The overall 

features of this data are well explained by a model having the basic 

features of Z-DNA. The stereochemical complexity of transitions which 

occur within fibres of poly d(G-C).poly d(G-C) is immediately evident.

The S-conformation has also been reported to occur in fibres 

of poly d(A-C).polyd(G-T) (Arnott et a l ., 1980), but it has not (as yet) 

been observed from fibres of poly d(A-T).poly d(A-T). It is thus 

conceivable that the S-form may only occur in the presence of G-C base 

pairs.

1.5 THE PROJECTS UNDERTAKEN IN THIS WORK

Recent experimental work now suggests not only the presence of 

left-handed DNA in intact cells, but also the possibility of dynamic 

transitions involving a complete change of helical sense as a function of 

ionic and hydration conditions. In this study emphasis has been placed on 

the significance of left-handed structures and also on the importance of 

new experimental facilities which may enable the various mechanisms of 

transition to be detailed.

In the light of recently acquired high quality x-ray data for 

C’-DNA this work starts off with a definitive structural analysis of the 

C'-conformation, in particular focussing on the assumption that the C family 

as a whole is $ minor variant of the B-form.

In Chapter Five the a-B' conformation of poly d(A-T).poly d(A-T) 

is analysed and compared with the 'heteronomous' model of Arnott et al. 

(1983) which has been proposed for both the o and 8 forms of B'-DNA.

The structure of 8-D-DNA is examined in Chapter Six, and special 

attention is given to the correspondence that appears to exist between the
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PLATE 1.12 The 'S’ conformation as obtained from fibres of KF 
poly d(G-C).poly d(G-C) (photograph recorded on the 
SAS station at Daresbury).
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PLATE 1.12 The 'S' conformation as obtained from fibres of KF 
poly d(G-C).poly d(G-C) (photograph recorded on the 
SAS station at Dareshury).
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transitional sequences found in poly d(A-T).poly d(A-T) and those of 

poly d(G-C).poly d(G-C).

Chapter Seven qualitatively examines the effect of a 

bacteriostatic and mutagenic acridine drug, proflavine, on the sequence 

of transitions normally observed in fibres of poly d(A-T).poly d(A-T), 

fibres of poly d(G~C).poly d(G~C), and also fibres made from Micrococcus 

Lysodeikticus DNA. Whilst proflavine has been extensively studied, the 

emphasis has largely been structural whereas here the effect of the drug 

on the nature of fibre transitions is examined.

A number of 'time resolved' experiments are described in 

Chapter Eight. These were undertaken at the SERC Daresbury synchrotron 

radiation source (SRS) in England and were novel experiments using 

recently developed equipment. The ultimate aim of such projects is to 

detail the stereochemistry of fihre transitions and are of particular 

significance in the study of changes between conformatinens which are 

thought to have different helical twists.

Chapter Nine concludes the thesis with a brief overview of the 

results obtained and a few suggestions for the most profitable directions 

in which to indulge further effort.



CHAPTER TWO

MATERIALS AND EXPERIMENTAL METHODS

2.1 THE MATERIAL

All DNA material was obtained from the Sigma Chemical Company, 

Boehringer, or from J. Brahms at the University of Paris. The material 

was classified as 'highly polymerised' and previous experiments had 

indicated that it was on the whole of adequate purity for the purposes of 

x-ray fibre diffraction.

2.2 PREPARATION OF FIBRES

The DNA obtained from the sources above was known to be stabilised 

either by sodium or potassium cations. In order to perform quantitative 

studies relating to differing concentrations of excess ion, it was necessary 

to first eliminate as much as possible of the original ion and replace it 

with a certain concentration of the ion under investigation. A known amount 

of the supplied polymer (v 2 mg) was dissolved and dialysed against a 

concentrated solution (v 1 M) containing the new ion. Subsequent dialysis 

against rather less concentrated solutions (-v 2-10 mM) was used to attain 

the desired level. DNA was precipitated from the salt solution by cold 

ethanol, wound onto a glass rod, dried, and stored for use. Another method 

of varying ionic strength within DNA samples rather more controllably was 

by centrifugation from solutions of known concentration. This method was 

frequently used in conjunction with the dialysis technique described above.

In general, centrifugation was performed on an MSE pegasus ultracentrifuge 

for a period of 12 hours at 60,000 rpm, and the supernatant so obtained was kept
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for later studies on exact ionic concentration (flame emission spectroscopy)• 

The sedimented gel was either stored or used directly in fibre preparation.

The precipitation of DNA by ethanol from a solution is a very difficult 

process to control and for a good yield of the original DNA, high salt 

strengths are required. This makes the acquisition of low salt samples, 

difficult at the best of times, rather hazardous when the material in 

question is expensive and available only in small quantities. On the whole, 

the centrifugation method was used in such situations.

Fibres were drawn from concentrated gels by making use of a fibre 

pulling system as shown in Figure 2.1. Care here was required to obtain 

highly oriented fibres. The glass rods were made to an approximate diameter 

of 100 p (larger diameter rods tended to draw too much of the gel onto the 

rod itself, and so waste some of the material). Particularly important for 

the acquisition of highly oriented specimens was the ’pulling' of fibres 

as they dried down. As suggested by Langridge et al. (1960), 'it is almost 

certain that parallelism of the molecules in a fibre is produced by shearing 

in the material during fibre drawing', and it was deemed very important (for 

clear diffraction spots, as will be discussed later) that the 'pulling' 

process was undertaken cautiously. During the process of drying, fibres 

were observed using an Olympus binocular microscope, and an Olympus BH 

polarising microscope.

The best exposures were obtained from fibres having diameters in 

the range of 100 p -»• 400 p, although thinner fibres were used (necessitating 

considerably longer exposures on conventional x-ray sets).

2.3 THE ACQUISITION OF DIFFRACTION DATA FROM FIBRES

Data was obtained using both conventional x-ray sources here in 

this laboratory, and the synchrotron radiation source (SRS) at Daresbury, 

Warrington, England, which is further described in Chapter Eight.
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2.3.1 Conventional X-ray Sets

Two different types of X-ray set were used, each using nickel 

filtered copper K-a x-radiation having a wavelength of 1.5418A. The first 

was a Hilger and Watts semi-micro focus unit based on the design of Ehrenberg 

and Spear (1951). This provided a focal spot having (roughly) a vertical 

half-width of 0.075 mm and a horizontal width of 0.1 mm. The direct voltage 

applied across the tube was usually in the region of 36 KV to 40 KV; higher 

voltages were found to produce an unacceptable level of white radiation. The 

level of white radiation was also increased by deposition on the anode, which 

ensued from 'cracking' of diffusion pump oil. The anode was cleaned 

regularly. Filaments carried between 3 and 10 mA and generally lasted about 

a week, but filament life was increased as vacuum conditions were improved.

Other generators used were Elliott GX6 and GX20 rotating anode 

machines. These sets were operated at 35 KV and at a tube current of <v, 60 mA. 

(see Plate 2.1).

Two types of x-ray camera were used. Small pinhole cameras (very 

similar in design to those described by Langridge et al. (1960a)) were, in 

general, used on the Hilger and Watts generators. The larger GX6 and GX 20 

machines were usually used in conjunction with Searle cameras. Searle cameras 

were arranged with either Elliott toroidal optics (Elliott, 1965) or Frank's 

optics (Franks, 1958) depending on the thickness of fibre in use and the 

desired exposure time.

2.3.2 Synchrotron Radiation Source (SRS)

Data was also obtained at the SERC Daresbury SRS. The use of this 

system eliminated many of the problems associated with the use of conventional 

sets. The flux was ^ 80 times greater and consequently exposure times were 

very much shorter (3—15 minutes), hence enabling time—resolved studies to 

be undertaken. The radiation was highly monochromatic and diffraction patterns 

were very clear. Radiation damage to samples was not as severe as that
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PLATE 2.1 An Elliott GX20 rotating anode generator with a 
Searle camera in position
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-^kÀTE 2.1 An Elliott GX20 rotating anode generator wi 
Searle camera in position
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encountered using conventional sources. The camera that was used for these 

studies at Daresbury was designed by Dr. W.J. Pigram and built in the Physics 

Department Workshop at the University of Keele. Further detail relating to 

the experimental set-up at Daresbury is given, along with an account of 

studies completed there, in Chapter 8.

2*3-3 Variation of the Water Content in Fibres

X-ray cameras were always filled with helium to avoid air scatter. 

The relative humidity of the fibre environment was varied to adjust the 

water content of fibres being studied. This was achieved by bubbling the 

helium through appropriate saturated salt solutions. The salt solutions used 

and the relative humidities that they provided are given below:

Relative Humidity (%)
Calcium Chloride 33
Potassium Carhonate 44
Potassium Bromide 58
Sodium Nitrite 66
Sodium Chlorate 75
Potassium Chloride 84
Sodium Tartrate 92
Sodium Sulphite 95
Potassium Chlorate 98

In later experiments at the SRS where closer control

humidity was needed, a small water bath was installed inside the camera to 

acquire high humidities as required. A Vaisala HMP 31VT probe was used to 

measure the ambient relative humidity and temperature of the fibre environment 

Details of this time resolved work is given in Chapter 8.

2.4 MEASUREMENT OF DIFFRACTION PATTERNS

Fibres were calibrated by dusting with calcite powder. This gave 

a diffraction ring on the patterns corresponding to a spacing of 3.03A. The
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flat film' coordinates of diffraction spots were measured with a travelling 

microscope; these were then converted to recriprocal space coordinates.

The geometry of this conversion is described by Buerger (1942).

Intensities were assumed to be proportional to the trace area 

associated with a radial scan across a diffraction spot. Such scans were 

made using a Joyce-Loebl 3CS microdensitometer and also a software package 

called GUCKMAL (written by J.E. Ladner in Heidleburg and since modified by 

M. Elder, P. Machin and C. Nave at Daresbury Laboratory) in conjunction 

with diffraction data digitised on the rotating drum scanning densitometer 

at Daresbury. The C 1 pattern shown in Plate 4.3 was scanned with a 

raster size of 50 y so that the entire pattern was made up of 900 x 900 

records. Thepicture in Plate 2.2a shows the pattern displayed on the 

Sigma 'Args' graphics terminal at Daresbury by means of 255 grey levels 

which can be altered to highlight different regions of a pattern. A 

comparison of the digitised picture with a number of layer line traces 

made using 'GUCKMAL' suffices to illustrate some of the problems involved 

in computing intensities from fibre diagrams. Although this pattern is 

reasonably crystalline, thereare regions in which it is highly desirable 

to correlate discrete diffraction with continuous transform. The 

crystalline data itself (depending on the symmetry of the lattice) may be 

difficult to interpret where sampling seems in adjacent areas of reciprocal 

space (layer lines 1, 2, 3 in Plate 2.2). A further problem occurs in the 

correction of intensity data for a background profile of diffuse scatter.

Measured spot traces were corrected in the manner of Franklin and 

Gosling (1953b). The expression used for this correct was:

I = A_ p Ç cos 0 --- -2--- ---- 2.0
1 + cos2 (20)

where Aĵ  = radial trace area.
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The C' pattern of Plate 4.3 is shown here as 
displayed on an 'Args' terminal of the Daresbury 
VAX.

PLATE 2.2





- 51

PLATE 2.2 The C' pattern of Plate 4.3 is shown here 
d i s p l a y e d  on an 'Arjps ' t e r m i n a l  o f  t h e  Dar 
VAX.

as
osbury
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P - distance in reciprocal space from origin to reciprocal

lattice point in question. This factor corrects for the 

broadening of spots into arcs.

5 - reciprocal space ordinate. This factor in equation 2.1

applies the Lorentz correction.

6 = Bragg angle

cos 6 = factor necessary to correct observed intensities for

absorption within a fibre

and
2__________

21 + cos (20)
the polarisation factor

2.5 MOLECULAR MODELBUILDING

Molecular modelbuilding was undertaken to generate models having 

satisfactory stereochemistry and good agreement with observed diffraction. 

Preliminary structures were constructed from wire models having a scale of 

4 cm : 1A but these were later refined so as to incorporate standard covalent 

bond lengths and angles by means of a modelbuilding program originally written 

by Pigram (1968) and modified by Goodwin (1977) and Greenall (1982) . The 

major feature of this routine is in its constraint of a branched chain to 

specified helical symmetry and acceptable Van der Waals distances. Options 

exist which can apply other constraints (such as phosphate position) at 

run time. A flow chart of the modelbuilding program is shown in Figure 2.2.

It currently runs on the CDC 7600 machine at the University of Manchester 

Regional Computer Centre (UMRCC).

During refinement, different models were varied so as to optimise 

agreement indices relating observed and calculated spot intensities or 

amplitudes:

R = lFol - lFJ 2 . 1

>. F . 'i o 11
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PRINT OUTPUT MODEL

FIGURE 2.2 A flow chart of the modelbuilding program
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R'

where F . and F .01 ci
pertaining to the 

itensities.

2.6 COMPUTER PROGRAMS

A structure factor program was written by the author and computes 

the values of pertaining to equations 3.32 and 2.1. The methods used 

in this program are well documented and further detail will not be given 

here.

Another program was written to calculate and plot (using a GINO 

package of subroutines) the transform and squared transform of a helical 

molecule. This program has been used throughout the thesis to plot continuous 

squared transform calculations. It will also superimpose lines on the 

transform which indicate points of sampling by the lattice in question.

During the course of the work undertaken in Chapter Four, it also 

became necessary to write a program which would compute the variation of 

different classes of packing factor with molecular position (see 

Section 5.3).

A linked atom least squares program (LALS) which successively refines 

molecular models against diffraction data has been supplied by R. Chandrasekaran 

at the University of Purude, Indiana, and is currently being adapted for use 

on the Cyber 205 vector processing supercomputer that has just been installed 

at UMRCC. This program will also run on the CDC 7600 and the GEC computers 

at Keele. Other programs were written for use on the LSI 11/23 and ITT 2020 

microcomputers in this laboratory.

li'1,, - 

1 1 .
2.2

are the observed and calculated structure amplitudes 
. thi rerlection and I . and I . are the corresponding oi ci



CHAPTER THREE

DIFFRACTION OF X-RADIATION AND FIBRE CRYSTALLOGRAPHY

3.1 THE NATURE AND APPLICATION OF X-RAYS

X-rays are transverse waves in which the oscillation in the 

electric field vector is perpendicular to the direction of propagation 

of the wave: hard x-rays are characterised by wavelengths in the region of 

1A and as such can be used to determine atomic positions within a molecule. 

Although the atoms of a molecule will diffract x-rays, there is no analog 

of a lens to enable recombination of the scattered x-radiation hence 

forming an image. However, in certain circumstances this can be performed 

mathematically.

3.2 SCATTERING OF X-RAYS BE AN OBSTACLE

Diffraction of x-rays result from the interaction of the electric

field component E of the radiation with the atomic electrons of the obstacle.

The electric field oscillation of the incident wave causes a time dependent

fluctuation of the electronic wave functions and the corresponding variation

in current density is seen as the source of the scattered radiation. The

component of this radiation which has the same frequency as the incident

waves then gives rise to coherent scattering. Other frequency components

scattered from the crystal will give rise to incoherent scattering, which

appears as a continuous background which to a first order is independent

of crystal orientation. If the incident wave vector is then the wave

vector of the elastically scattered radiation may be expressed as K, where- -d

K. lïdl
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waves then gives rise to coherent scattering. Other frequency components 
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appears as a continuous background which to a first order is independent 

of crystal orientation. If the incident wave vector is K. then the wave 

vector of the elastically scattered radiation may be expressed as Kj where
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and differs from in direction, but not magnitude.

If the scattering power of the object is describedby some 

function f(r), then the diffracted radiation will be the Fourier transform 

of f(r). Consider the general case of diffraction resultant from scattering 

at two points and of an obstacle (see Figure 3.1).

principle the obstacle is reconstructed from the inverse transform:-

7*
phase difference = Atf, = r.AK

FIGURE 3.1 The geometry of the diffraction event.

The observed diffraction is given by:-

3.1
all r

and is thus described by a function in 'K-space' or 'Fourier space'. In
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f(r) 1 • | F(AK)
all AK

exp (-iAK.r) d(AK) 3.2

However, in real experiments the observed quantity is the intensity and 

the phase of the scattered radiation (the argument of the exponential 

function) is unknown.

A fully crystalline specimen is made up of a three dimensional 

lattice extending regularly over the entire sample. Each lattice point 

has an identical structure associated with it (the motif) and in the case 

of macromolecules this structure is very complicated. The scattering from 

such a crystal may be represented as the structure of the motif convoluted 

with a three dimensional set of 6 functions (of unit scattering power) which 

represent the real lattice. By the Fourier convolution theorem the 

diffracted amplitude is then the product of the transform of the electron 

density within one unit cell with the transform of the set of 6 functions 

representing the lattice which extends throughout the crystal: 

i.e.

T { f (r ) } = T i p ( r ) } .  T { L ( r ) } 3 . 3

where L(r) represents the lattice function and T denotes the Fourier trans­

form operation.

The motif described by p(r) is an irregular assembly of atoms and 

so its Fourier transform is continuous. The lattice function L(r) can be 

written:

L(r) = l  6 (r - fpa + qb + rcl) 3.4
all pqr L -1

where a, Ij, c are the crystallographic unit vectors, and p, q, r are integers 

(assuming a primitive lattice). The Fourier transform of L(r)is

l  5(AK.a - 2hir) 6(AK.b - 2kff) 6(AK.£ - 2 U )
all hk£

T{L(r)} 3.5
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which in the case of an infinite lattice is non-zero only when

AK . a = 2hir 3.6a

AK • b = 2kit 3.6b

AK . c = 2i,ir 3.6c

Equations 3.6 are called the Laue equations and represent three sets of 

planes whose intersections specify the reciprocal lattice. Hence the 

amplitude diffracted from the crystal will be non—zero only when there 

exists a scattering vector:

AK = 2tt (ha* + kb* + £c*) 3.7

satisfying the simultaneous equations 3.6. This is true when

a*, a = 1 a*.b = 0 a*. c = 0

b*. a = 0 b*.b = 1 b*.c = 0 3.8

c* .a = 0 c*.b = 0 c*.c = 1

where a*, b*, c* are the unit vectors of the reciprocal lattice which are 

related to the unit vectors of the real lattice by

a*
b x c

a. (bxc)
be sin a

b* =
a.(bxc)

ca sin 6

and

c*
a x b

a. (bxc)
ab sin y

sin a = ________ VÌ____________
a* b* c* sin 8* sin y*

V*

3.9

3.10a

sin 6
a* b* c* sin a* sin y*

3.10b
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sin y V*
a* b* c* sin a* sin 0* 3.10c

where a, 0, y define the angles between the primitive vectors of the real

Fourier transform associated with the motif is sampled at discrete reciprocal

The amplitude and phase of the reflections observed from a crystalline 

lattice of molecules is given by the structure factor equation:-

The electron density function p(r) is in principle a continuous one, but 

it can be replaced by an 'atomic scattering factor', f^, pertaining to a 

atom, j# Equation 3.11 then becomes!—

F(h,k,Jl) = £ f. exp 2iri (hx. + ky. + i z . )  q i
all j J J j y

where the summation extends over all the atoms in the unit cell.

A complete wave mechanical treatment of the scattering process 

shows that the coherently scattered radiation from an atom can be found from 

first principles by assuming that the electronic charge is distributed about 

and not located at, a point. The wave function, \p (r) of an atomic electron 
is related to the charge distribution by

lattice, and a*, 0*, y* define the angles between those of the reciprocal 

lattice, as shown in Figure 3.2. It is now evident that the continuous

lattice points.

F(hki) = V 3.11

and conversely the electron density can be obtained from:

3.12

P 3.14

and if it is assumed that the charge distribution is spherically symmetric
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c

Reciprocal
vectors

FIGURE 3.2

c*

The relationship between the base vectors of 
the real and reciprocal lattices.
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then the electron density distribution can he described by:-

2p(r)r sin ip dr dll' d<|> 3.15

(see Figure 3.3). The total amplitude of coherently scattered radiation 

is :

fir r 2 itr p rZirI J P (r)r exp AKr cos i|* sin ip dr di|i d<{) 3.16
r=0 ip=0 <p=0

where as shown in Figure 3.3, the coordinate system is arranged so that 

AK coincides with the axis from which ip is measured. Equation 3.16 can be 

simplified since for every point (r, ip, <J>) there is another (r, n-\p, <f>+ir) 
and hence

r2ir 9
v 4»  -  r  r p(r)r cos(2TrrAKcosi|/) sin \|i dr di|/ d<|> 3.17

r=0 \p=0 tp=0

.  f  p
r=0

/ I / \ 2 sinAKr ,
4 tt p (r )  r  ---------  dr 3.18

AKr

however,

r -
fj(0) = 4it I p(r) r dr 

r=0
3.19

which shows that at zero scattering angle the scattering factor is equal to

the number of atomic electrons. As p(r) increases f. falls off in the manner
J

depicted by Figure 3.4.

3.3 DIFFRACTION FROM HELICAL MOLECULES

An infinite smooth helix, hro(r,0,z) as shown in Figure 3.4, can be 

regarded mathematically as the convolution of a single turn of the helix 

h^(r,6,z) with a point lattice L(x,y,z) having the periodicity of one pitch 

length along the z-axis
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FIGURE 3.4 A long smooth helix being infinitessimally thin and having 
constant radius and scattering power.
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FIGURE 3.4 The atomic scattering factor, f . for the carbon atom. Thec
corresponding coherent and incoherently scattered intensities 
are also shown. The quantity S is related to AK by S = AK/2tt.

hjr.e.z) = h^(r,6,z) * L(x,y,z)

so the scattered amplitude will be given by:- 

TOiJ = T(hx) . T(L)

The point lattice L(x,y,z) can be expressed as:-

n=o>
L(x,y,z) = <5(x) 6(y) £ 6(z-nP)

n=-°°

and its Fourier transform is

T (L(x,y,7.)) = l  4 (k z - ¿El)

3.20

3.21

3.22

3.23
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so diffraction from an infinite smooth helix is confined to layer planes 

separated by AKz where

AK =
Z P

as shown in Figure 3.5.

The Fourier transform of such a continuous helix is given (in 

cylindrical polar coordinates) by:-

cylindrical polar coordinate system applying to both real and reciprocal 

space are defined in Figure 3.6. The Bessel function orders that contribute 

to the summation in the above equation are determined by the helical 

selection rule:-

where N is the number of repeat units in K turns of the helix and m is an 

integer.

functions for which m = 0 in equation 3.26 (Cochran, Crick and Vand, 1952), 

which means that is the only Bessel function contributing to the fth layer 

plane. Such diffraction is schematically represented in Figure 3.7, and 

is seen to have cylindrical symmetry about the meridian. It also has 

mirror symmetry about the equator. The pattern has a highly characteristic 

'cross' appearance due to the fact that the argument of the first peak of 

each function increases with increasing order. The cylindrically averaged 

intensity for a given layer line takes the form:-

3.25

where the helix has radius rQ, pitch P and where z =0 when 9 = 0Q. The

l  -  Nm
n 3.26

K

The diffraction from a continuous helix contains only those Bessel

(2irÇr) 3.27

A d i s c o n t i n u o u s  helix, hd(r,6,z), as d e p i c t e d  in F i g u r e  3.8, c a n  b e
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FIGURE 3.5 The Fourier transform of the function L(x,y,z) is a set of 
equally spaced planes in reciprocal space
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c*

FIGURE 3.6 (a) Real space coordinate system used to describe helix

(b) Reciprocal space coordinate system



FIGURE 3.
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(b)

7 (a) the characteristic 'cross' diffraction from a continuous
helix

(b) diffraction from a smooth helix has cylindrical symmetry 
about the Kz axis in reciprocal space.
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expressed as the product of a smooth helix function h (r,6,z) with a 

point lattice £(x,y,z) having a regular spacing along the helix axis, 

i.e.

hd(r,8,z) = hro(r,e,z) .Jl(x,y,z)

and hence by the convolution theorem,

T h d(r,e,z)J = T[h.(r.e.z)] * T^x.y.z)] 

£l(x,y,z)J i

3.28

3.29

The function T 2mir,involves a function of the form 6( K -- 2il) andz P
represents an array of 6 functions along the K axis spaced at intervals

2ttof /p. In the case of a discontinuous helix, m is permitted to take a

continuum of values, and further 'cross' shapes are manifest in the

diffraction pattern of such a structure, with their centres alligned along
2ttthe Kz axis and separated by / (see Figure 3.9). Instead of only one 

Bessel function contributing to each layer line as in the case of a continuous 

helix, an infinite number contribute (subject to the helical selection rule). 

However, in practice, only the low order Bessel functions are significant. 

The Fourier transform of a helical array of points is found to

be :

TÎhd(r,0,z) = \  f . rQ exp{2Tri£z0/c} £ exp 
— ft. J n

in (ÿ + ¡ 2 -  eQ) Jn<2irÇr0)
3.30

The Fourier transform of a helical polymer consisting of identical monomeric 

units all constrained to helical symmetry is

l f^r.exp
j

2iri£.z I  exp in (if/ + j  ~ 0j) Jn(2^r.) 3.31

in which the summation over n allows only those values permitted by the 

helical selection rule (equation 3.26) and the summation over j is taken 

over all atoms in the monomer.

In the case of a fully crystalline array of such molecules, the 

structure factors are given by

F(h,k,Jt) = I l  l  f. Jn (2rr .Ç) exp 
P n j

2 -n lz . 
____ 1i{n(ij) + ■=■ - 6.) }+ ---2 J c



FIGURE 3.2. Diffraction from a helical array of points
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exp i{2ir(hx + ky + «.z ) - nd> } P P P p 3.32

where (x^, 3^» Zp> '(’p) are (respectively) the fractional coordinates and 

azimuthal orientations of the p ^ molecule in the unit cell.

3-4 THE CORRECTION TO CALCULATED MOLECULAR TRANSFORM FOR THE EFFECTS OF WATER

It has been estimated (Hodgson, 1969) that about 1/ of the contents

of a nucleic acid crystallite is water. This figure will, of course, depend

on the exact state of hydration of the sample in question. Water tends

to interact with DNA in that it forms hydrogen bonds to accessible sites

on bases and to sugar or phosphate oxygen atoms. It has been observed in

many studies previously and will be seen in some pertaining to this work

that such interaction is capable of influencing the conformation of nucleic

acids in fibres. The water, which is commonly regarded as a 'sea' in which

DNA molecules are immersed will tend to surround the hydrophilic regions

(phosphates) of DNA more closely than the hydrophobic (sugar) regions. In

terms of the diffraction observed from fibres of DNA and RNA, it will tend

to have a subtractive effect on the molecular transform, especially in

regions of the diffraction pattern that correspond to spacings greater than 
o
7A (Bragg and Perutz, 1952).

The effect of scattering by the solvent can be incorporated into

calculated diffraction by assuming that the region occupied by water is

composed of an electron gas having an average density (pw) characteristic
— o —3of the solvent (in the case of water, p = 0.33 e A ). The 'water 

weighting' correction of Langridge et al. (1960b) is calculated on the 

basis of Babinets principle and is applied to the individual atomic scattering 

factors rather than to the total molecular transform. The corrected 

scattering factor is given by:-

f'(sin 0) = f(sin 0) - V.a i()(sin 0) 3.33J w

where f' and f are respectively the corrected and uncorrected scattering
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factors, Vj is the volume displaced by the j*"'1 atom in the molecule, and 

where if is the Fourier transform of the region from which solvent has been 

displaced. If the atoms of the molecule are assumed to be hard spheres 

of radius r^ then if (sin 0) is given by:

<f(sin 0) = —  (sin a - a cos a)a 3.34

where
2tt sin 0 r

a = ---------- i  3.35
X

However, a number of different approaches have been developed towards the 

evaluation of <f (Langridge et al., 1960b; Fuller, 1961; Fraser, MacRae and 

Suzuki, 1978; Campbel1-Smith and Arnott, 1978) and all of these methods 

show significant variation in the molecular transform calculated therewith. 

This problem has recently been reviewed by Greenall (1982) who concludes 

that the best approach to the correct of molecular transform for the effects 

of water is to use the original scheme of Langridge et al. (1960b).

3.5 DISORDER AND DIFFRACTION FROM FIBRES

An 'oriented' and 'crystalline' fibre consists of many long chain 

molecules which pack so that their long axes are roughly parallel to the 

fibre axis. The fibre is made up of 'crystallites' (small compared to the 

length of the molecules) which are interspersed by amorphous regions. A 

representation of this sort of system is given in Figure 3,10, Diffraction 

patterns recorded from such fibres (good examples are the DNA conformations 

pertaining to Plates 1.1, 1.4 and 1.6) are similar to single crystal 

rotation photographs since the individual crystallites all have random 

azimuthal orientation. The geometry of this sort of diffraction is 

outlined in Figure 3.11. The reciprocal lattice points are drawn out 

to form 'rings' confined to layer planes, and it is evident that diffraction 

data will have cylindircal symmetry about the meridian. Furthermore, these 

rings are broadened into 'belts' because of the average angular displacement
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Figure 3.10 Representation of helices arranged in crystallites
(a) perfect crystallites disoriented about the fibre axis
(b) disordered crystallites (from Vainshtein, 1966)

of crystallites from the fibre axis. This means that diffraction peaks 

as specified by the Laue equations 3.6 become arcs, the exact shape of which 

will depend on the nature of the geometrical intersection of these layer 

rings with the Ewald sphere. The shape of the diffraction spots will also 

be affected by the average size of the crystallites constituting the fibre.

A variety of different forms of disorder may prevail in fibres. 

Samples, even if highly crystalline, may be disoriented, in which case 

diffraction diagrams are characterised by long arcs which in the limit become 

circles. Such behaviour is thought to be indicative of low molecular weight 

material (Leslie et al., 1980). Other effects which are noticeable in DNA 

fibres are 'shift', 'rotation' and 'screw' disorders. These all tend to 

disrupt the three dimensional lattice whilst preserving the c-axis ordering 

of the fibre (i.e. in the limit diffraction is discrete only for £=0). Pure 

'shift' disorder causes diffuseness of the i  J 0 reflections: this effect 
becomes more pronounced as l  increases, and eventually gives continuous 
diffraction over whole layer lines. The effect of shift is shown in
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FIGURE 3.11 The reciprocal lattice ’rings' associated with a fibre 
containing randomly oriented crystallites (from 
Vainshtein, 1966).
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Figure 3.12.

If the packing is close as in the case of C-DNA (Marvin, 1961), 

then the ridges of one molecule may intercalate with the grooves of nearest 

neighbours. Rotational disorder of molecules in such an array may then have 

two effects: firstly, it can disrupt the crystallinity of the lattice, and 

secondly, it can also introduce shift disorder of the type mentioned above. 

In the most general case both occur.

'Screw' disorder may also disrupt the three dimensional coherence 

of the fibre: However, if the molecules have a random displacement by a
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FJGURE 3.12 Shift distortion causing diffuse diffraction for l  *  0.
Layer lines eventually become continuous for | i  | > l '  
(from Vainshtein, 1966)

fixed amount, the fibre diagram may show spots on some layer lines and 

continuous streaks on others (Marvin, 1961; chapter four of this work).
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The most disordered system is one in which the fibre is made up 

of an amorphous assembly of chain molecules. Such fibres usually show 

a few diffuse reflections on the meridian (relating to intra-molecular 

interference) and on the equator (relating to intermolecular interference).

3.6 THE APPROACH TOWARDS THE SOLUTION OF NUCLEIC ACID STRUCTURE FROM FIBRE
DIFFRACTION DATA

As has become apparent from the theoretical considerations outlined 

in section 3.2 and 3.3, it is necessary to know both the amplitude and 

phase of diffracted x-radiation in order to directly solve a molecular 

structure. Since in any diffraction experiment the observed quantity is 

the intensity, it is evident that the amplitude of F(hki.) in equation 

3.32 (in the case of crystalline diffraction) can be determined but the 

phase is lost. This problem, known as the 'phase problem' is one to which 

many aspects of crystallography are directed. A number of methods are 

used to deal with the phase problem, amongst which are isomorphous replace­

ment methods, heavy atom techniques and anomalous dispersion methods. It 

has been suggested by Marvin et al. (1966) that the phosphorous atoms of 

nucleic acids could be treated as heavy atoms and used to determine phases,

but unfortunately the Fourier d if fe rence  reso lu tion  o f  such a method is 

. . olimited to ^ 3A for reasons outlined in section 3.4.

In the absence of any definitive methods to enable phase determina­

tion, the strategy that is adopted towards structure analysis in the case 

of fibre diffraction is a trial and error one that involves a prior 

knowledge of the likely overall stereochemistry of the molecule. Models 

are usually adjusted by considering the variation in position of the three 

main scattering groups (phosphate, sugar and base) until good agreement is 

obtained firstly on the equator, secondly on the inner part of the lower 

layer lines and lastly in the regions of the pattern for which p is largest. 

Molecular models are compared in terms of their overall agreement with the
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observed diffraction by computing agreement indices R and R' as described 

in Chapter 2 and equations 2.1, 2.2.

Simplifying assumptions that are made during the course of such 

computation are firstly that the atoms are all constrained to the symmetry 

of a perfect helix, and secondly, that the effect of stabilizing counter­

ions is negligible. The first assumption is reasonable within the available 

resolution of these fibre diagrams, and so is the second given that the 

ions in question are sufficiently light. However, ions such as caesium and 

rubidium are likely to have a profound effect on the observed diffraction. 

This effect can, of course, be put to good use in that a comparison of 

intensities observed from light and heavy atom salts of DNA may be used 

to determine the likely position of ions about the helix (Bartenev et al.,

1983).



CHAPTER FOUR

THE CONFORMATION OF C'-DNA

4.1 INTRODUCTION

The C conformation was first described by Marvin et al., (1958,

1961). It was observed in X-ray fibre diffraction photographs as a semi- 

crystalline form of the lithium salt, when the prevailing humidity of the 

fibre environment was between 44% and 57%. Marvin et al. also reported 

that the appearance of the C-form depended on the amount of LiCl which had 

been precipitated with the DNA. For fibres containing less than 1% by 

weight of chloride, the hexagonal form was observed at RH's of 66%, or 

less. For fibres which contained between 1% and 6% by weight of chloride, 

an orthorhombic semi-crystalline C form was observed at 44% relative 

humidity (the same fibre was found to give a fully crystalline B form at 

66% RH).

For many years the C form was generally regarded as being 

characteristic of Li DNA, and at best a poorly favoured form of Na DNA.

The molecular conformation of C-DNA was seen as a distorted B-form and as 

a structural peculiarity associated with the Li+ counterion, which has 

limited biological significance. However, infrared linear dichroism studies 

by Brahms et al. (1973) showed that a C-like conformation could occur in 

oriented films of Na DNA which contained very low amounts of NaCl. Arnott 

and Seising (1975) and Leslie et al. (1980) reported, on the basis of 

X-ray fibre diffraction studies, that the C form of Na DNA is stable at salt 

concentrations and also at relative humidities which are intermediate between 

those that favour the A conformation and those that favour the B conformation.
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Zimmerman and Pbeiffer (1980) observed X-ray diffraction photographs of 

the C type from fibres of Na DNA immersed in t-butanol/water mixtures.

Rhodes et al. (1982) have recently shown that the C form can be routinely 

observed for a wide variety of naturally occuring DNA's, and also the 

synthetic polynucleotide poly d(A-C).poly d(G-T) if both the salt content 

of the fibre and the relative humidity of the fibre are sufficiently low. 

Mahendrasingam et al. (1983, 1984) have subsequently reported that the 

C form is observed under comparable conditions for Na poly d(A-T).poly d(A-T) 

and for the sodium salt of poly d(G-C).poly d(G-C). Such observations now 

establish the C form as a major conformational possibility for the DNA 

double helix in biological environments.

The X-ray diffraction patterns that have so far been obtained 

indicate that there is a marked amount of variation associated with the 

structure of C-DNA (see Appendix). Leslie et al. (1980) have surveyed 

the observation of the C form in native and synthetic DNA double helices.

They emphasise that the C form should be regarded as a family of closely 

related structures. The semi-crystalline forms from the lithium salt of

naturally occuring DNA's are non-integral with approximately 9—  nucleotide
3

pairs per continuous helix pitch of 3lX and are classified as 28^ helices

and designated C. Fully crystalline C forms observed from Li poly

(dG-dG-dT).poly (dA-dC-dC) and in less well defined patterns from

Li poly (dA-dG-dC).poly (dG-dC-dT) were found to be integral with nine

residues per helix pitch of 29.5A and are classified as 9^ helices and

designated C'. Na poly (dA-dG).poly (dC-dT) was observed to adopt a 9^
• . . °helix with a pitch of 58.2A in which the repeating unit was a dinucleotide! 

this form was designated C".

Arnott and Seising (1975) reported a reappraisal of the model of the 

C conformation proposed by Marvin et al. (1961), focussing in particular 

on the conformational differences between this C model and that assumed for
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the B form of DNA. They generated models of the C type which more closely 

resembled the B conformation and compared the diffracted intensity 

calculated for models with 283 and ^  helical symmetry with that observed 

by Marvin et al. Arnott and Seising claimed that the diffracted intensities 

calculated from their ^  helix are almost indistinguishable from those of 

the model described by Marvin et al. and further stated that they regarded 

their 28^ model as the preferred model for the C set of structures.

In this study, a critical comparison of the data observed (both 

by Marvin et al., and in this laboratory) with various calculated data is 

undertaken. A careful examination of the crystalline x-ray diffraction 

patterns obtained in a variety of different conditions has been used to 

assess the complex packing arrangements that C'-DNA has been found to adopt. 

Three types of model have been considered and compared in terms of their 

agreement with the observed diffraction: firstly, the original Marvin 

28^ model and a similar structure distorted to meet the requirements of 

9^ helical symmetry; secondly, the models proposed by Arnott et al; and 

thirdly, a new model which differs significantly from either of the two 

above.

A.2 EXPERIMENTAL

Poly (dA-dC).poly (dG-dT) was synthesised for this study by 

Dr. J. Brahms at the University of Paris. Fibres were prepared by Drs. 

N.J. Rhodes and A. Mahendrasingam. In the final stages of purification 

the material was precipitated with ethanol from 0.1M LiCl and carefully 

washed in order to remove as much excess salt as possible. Fibres were 

drawn using standard techniques (Chapter Two of this work; Fuller et al., 

1967) and x-ray patterns were recorded at relative humidities of the fibre 

environment ranging from 33% to 98%. Photographs were taken using both 

conventional Cu K-a x-ray sources (see section 2.3.1), and the rather more
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rapid synchrotron radiation source (SRS) at Dareshury Laboratory.

For the purposes of this analysis, intensities were determined 

from data produced by a Joyce-Loebl microdensitometer. A number of the 

C patterns were also digitised using the rotating drum scanning 

densitometer at Daresbury Laboratory (see section 2.4), but at the time 

of analysis the software required to reduce this data was not fully 

operative and has yet to be used for intensity determination.

Molecular model building was undertaken in the manner of section 

2.5, initially using scaled wire models and finally using a modelbuilding 

program to refine structures in terms of standard stereochemistry.

4.3 THE OBSERVATION OF X-RAY DIFFRACTION PATTERNS

A preliminary visual observation of the C form data obtained over 

a wide range of relative humidities (between 33% and 98%) revealed well 

defined patterns throughout the humidity range over which they were studied 

(see Plate 4.1). The highest degree of crystallinity was usually in the 

range 57% - 75% relative humidity (see Plate 4.2). Changes were observed 

in the detailed intensity distribution of the C patterns as a function of 

relative humidity, and it was thought that whilst some of these changes 

were typical of sampling effects due to variation of the lattice parameters 

as function of water content of the fibre, others (such as the variation 

in relative intensity of the eighth and ninth layer lines) indicated a 

change in the molecular conformation as a function of relative humidity.

Reduction of the relative humidity of the environment of a fibre 

which had assumed the semi-crystalline B form resulted in a transition 

(typically at 92% RH) to a C form which gave a pattern similar to the 

original crystalline form except that some crystallinity was lost and there 

were streaks rather than Bragg reflections on lower layer lines of odd order 

(see plate 4.1(g)). C patterns of this general form continued to be
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PLA TE 4 .1:X-ray d iffrac tion photographs obtained from a fibre o f  
U  poly(dA-dC).poly(dG-dTJ a t various relative humidities.
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PLATE 4 .1:X-ray d iffrac tion photographs obtained from a fibre o f 
Li poly(dA-dC).poly(dG-dT) a t various relative humidities.
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The most crystalline diffraction pattern from the set shown 
in Plate 4.1 (RH = 66%) (pattern recorded by N.J. Rhodes, 1983).

PLATE 4.2
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PLATE 4.2 The most crystalline diffraction pattern from the set shown 
in Plate 4.1 (RH = 66%) (pattern recorded by N.J. Rhodes, 1983).
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observed as the RH was reduced to 33%. If a fibre which had undergone 

the above mentioned sequence of transitions was rewet to form a gel, a 

new fibre could be pulled which was then fully crystalline. All of the 

C patterns showed uneven intensity distributions on (particularly) the 

first, second, third, fifth and sixth layer lines. A careful inspection 

of these layer lines as seen in Plates 4.2 and 4.4 shows rather dramatic 

differences between adjacent regions of reciprocal space which to a first 

approximation should produce similar diffracted intensities. Good 

examples are provided by a comparison of the 21, 30 and 22 reflections on 

the first layer line (see Plate 4.3). These packing effects are considered 

in detail in Sections 4.5 and 4.7.

4.4 THE LATTICE GEOMETRY AND ITS VARIATION WITH RELATIVE HUMIDITY 

The patterns measured were all found to index onto hexagonal 

lattices (see Plate 4.3 and Tables 4.1, 4.2), the parameters of which 

varied depending on the prevailing relative humidity. The variation of 

lattice parameters with relative humidity for the sample associated with 

Plate 4.1 is shown in Figure 4.1. It seems likely that the increase of 

these lattice parameters with humidity is due to an increasing amount of 

water in the lattice as the RH of the fibre environment is increased. The 

parameters are, in general, similar to those reported by Leslie et al.

(1980) for the C' form of Li poly (dG^dG-dT).poly (dA-dC~dC) (see Plate 4.5).
. . . 0They are, however, quite distinct from the hexagonal lattice with a = 22,1A

and c = 58.2& which these authors observed from the C" form of Na poly

(dA-dG).poly (dC-dT). Leslie et al . have suggested that the assumption

of 9^ and 9  ̂helices reflected the repetition of respectively a trinucleotide

and a dinculeotide sequence. However, it has been observed in this work that

Li poly (dA-dC).poly (dG-dT) has a unit cell characteristic of the 9̂  helix,

and this suggests that the situation may well be more complicated than

presumed by L es l ie  et a l . Although the d i f f r a c t io n  pattern shown in P la te
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The pattern shown in Plate 4.2 is here schematically indexed 
on a hexagonal grid having a=34A and c= 29.2A. The observed 
and calculated p values are given in Table 4.1

PLATE 4.3



PLATE 4.3 The pattern shown in Plate 4.2 is here schematically indexed 
on a hexagonal grid having a=34A and c= 29 .2k . The observed 
and calculated p values are given in Table 4.1
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TABLE 4.1 
in plates

REFLECTION pobs pcalc
(HKL) r 1 r 1
(110) 0.0586 0.0579

(300) 0.0998 0.1003

(220) 0.1162 0.1158

(101) 0.0472 0.0477

(201) 0.0746 0.0750

(211) 0.0942 0.0948

(301) 0.1056 0.1059

(311) 0.1235 0.1252

(102) 0.0758 0.0758

(202) 0.0950 0.0953

(212) 0.1119 0.1116

(203) 0.1202 0.1219

(213) 0.1333 0.1350

(323) 0.1795 0.1778

(423) 0.2035 0.2042

(315) 0.2083 0.2084

(415) 0.2288 0.2288

(316) 0.2374 0.2369

(217) 0.2542 0.2538

(108) 0.2740 0.2740

(208) 0.2798 0.2800

(218) 0.2880 0.2859

(009) 0.3103 0.3059

The observed and calculated p values for the pattern shown
o o

A.2, 4.3. The lattice is hexagonal with a=b=34A and c=29.9A.
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PLATE 4.4 Another C' pattern from a fibre having a slightly lower salt 
content. A comparison of Plates 4.4 and 4.3 (especially with 
reference to l = 1, 3, 5, 6) shows that this small difference 
in salt content has caused significant variation in molecular 
packing. The observed and calculated p values for this 
pattern are given in Table 4.2. This picture was taken at the 
Daresbury SRS.
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PLATE 4■4 Another C' pattern from a fibre having a slightly lower salt 
content. A comparison of Plates 4.4 and 4,3 (especially with 
reference to 1 = 1, 3, 5, 6) shows that this small difference 
in salt content has caused significant variation in molecular 
packing. The observed and calculated p values for this 
pattern are given in Table 4.2. This picture was taken at the 
Daresbury SRS.
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REFLECTION

(HKL)
Pobsr 1 pcalc

A"1

(110) 0.06AA 0.06A0

(300) 0.1101 0.1109

(220) 0.127A 0.1280

(A10) 0.1683 0.169A

(101) 0.0506 0.0507

(211) 0.10A0 0.1038

(301) 0.1162 0.1162

(221) 0.1326 0.1327

(102) 0.078A 0.0786

(202) 0.1015 0.101A

(212) 0.1200 0.1199

(322) 0.1760 0.1755

(103) 0.1106 0.1105

(113) 0.1223 0.1222

(203) 0.1279 0.1277

(213) 0.1A27 0.1A28

(323) 0.1937 0.1918

(A23) 0.2238 0.2216

(21A) 0.1706 0.1697

(305) 0.2069 0.2059

(315) 0.2181 0.2187

(316) 0.2A93 0.2A72

(A06) 0.2569 0.2553

(108) 0.2785 0.2800

(208) 0.2880 0.2873

(218) 0.2957 0.29A3

(009) 0.3110 0.3123

TABLE A. 2 The observed and calculated p values for the pattern shown in 
Plate A.A. The lattice is hexagonal with a=b=31.2A and c=2o.8A.



PLATE 4,5 The C' conformation from Li poly (dGT-dG-’-dT) .poly d(dA^dC’-dC) as 
observed by Leslie et al. (1980), Jhe lattice here is hexagonal 
such that a = b = 33.2 and c = 29.5A.



PLATE 4,5 The C' conformation from Li poly (dG-dG-^dT).poly d(dA-dC^dC) as 
observed by Leslie et al. (1980). Jjjhe lattice here is hexagonal 
such that a = b = 33.2 and c = 29.5A.
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4.2 is clearly distinct from the C" form described by Leslie et al., it 

does possess features which are characteristic of a 9  ̂helix. There are 

weak meridional reflections half way between i. = 4 and 5 and also between 

i  = 5 and 6 which can be attributed to either small differences between 
successive residues along the double helix or to ions or water ordered to 

a periodicity of twice the translation per nucleotide. However, these 

additional reflections are weak and in the structural analysis described 

in this chapter, the pattern shown in Plate 4.2 was regarded as approximating 

to the C' type.

Leslie et al. did not report the determination of diffracted 

intensities for the C type patterns they observed. However, from a visual 

comparison there are distinct differences between the C' pattern from 

Li poly (dG-dG-dT).poly (dA-dC-dC) (see Plate 4.5) and that in Plate 4.2.

For example, in addition to the extra meridional reflections (Plate 4.2) 

discussed above, the relative intensities of the (211), (301) and (221) 

reflections are quite different in the two patterns. Also the relative 

intensity of the 5th and 6th layer lines is reversed in the two patterns.

4.5 THREE MOLECULES IN THE UNIT CELL

The observation of sharp Bragg reflections on the higher layer lines 

in the diffraction pattern of Plates 4.2, 4.5 indicate that these fibres 

should be regarded as fully crystalline. The crystallinity is comparable 

to that in the C' diffraction pattern reported by Leslie et al. (1980) from 

Na poly (dG-dG-dT).poly (dA-dC-dC) although both patterns are significantly 

less crystalline than the best patterns reported for the crystalline B-form 

of naturally occuring DNAs (Langridge et al. 1960a). Although the C 

patterns of Li DNA analysed by Marvin et al. (1961) were all semi-crystalline, 

their approach to the characterisation of the molecular packing can be used 

as a basis for analysing the pattern in Plate 4.2.
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From Cochran et al. (1952) the structure factor F(h,k,£) of an 

array of helical molecules is given by equation 3.22, which is repeated 

here:

FCh,k,£) = £ J £ f .JnC2irr.£)exp i{i|> + — - <)>.) + 2ttJIZ./c}
p n j  ̂ n J 2 J  J

exp i{2ir (hx + ky + I z  ) - nd> } 
P P P P

.th

3.22

where r ̂ , c)> , ẑ  are the coordinates of the j atom in the helical repeat,

and x , y , z and <j> are coordinates and orientation of the p*"'1 molecule P P P P
in the unit cell. (R, ip, l / c )  are the cylindrical polar reciprocal space
coordinates of the lattice point (h,k,i,). J (2irr.C) is an n ^  ordern J
cylindrical Bessel function where for a helix with N residues per turn n 

thtakes values on the l  layer plane given by:-

n = l  - raN (m = 0, ±1, ±1, ±2 etc.) 3.26

Following the analysis by Fuller et al. (1967) of an analogous structure 

of double-helical RNA, the intensity of the reflection (h,k,£) can be 

expressed as:-

I(h,k,£) = Gn P(h,k,£) 4.1

where

Gn = y f. J (2x5r.) exp i ----—  nd>. 4.2
j 3 n J

2  . . . .  and Gn is the intensity scattered by a single molecule in the direction

defined by (h,k,£), and P(h,k,Jl) is a packing factor whose magnitude depends

on the arrangement of the molecules in the unit cell. For three molecules

in the unit cell

P(h,k, £) = 3 + 2 {cos|̂ 2ir (hfx^-x^ + k(y1~y2)) + f(01-02) - n ^ - ^ J  

+ cos 2̂ttOi(x 2-x3) + k(y2~y3)) + £(02~e3) - n(<j>2~<}>3)j

+ cos ^ 2 ir (h (x 3 - x 1) + k ( y 3~ y 3) )  + ¿ ( 0 . ^ - 0 ^  -  n(<J>3—d > ^ ^  4 *3

where 0. 2ttZ3 etc.
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The pattern in Plate 4.2 is hexagonal and therefore in a fibre diagram

there are 12 (6 if h = k or either h or k is zero) overlapping reflections.

The packing factor is derived by dividing the observed intensity of a 
. . 2diffraction spot by Gn . P(h,k,£) is therefore the sum of the packing

factors for all the systematically overlapping reflections.

From Table 4.1 it can be seen that on Jl=0 reflections are only

observed for h-k = 3q where q is any integer including zero. Since for

this region of the diffraction pattern m = 0 is the only significant 
. 2component in the term Gn (see Equation 4.2)thenn = l  = 0 for these

reflections. From Equation 4.3 it can be seen that the systematic absences

on £ = 0 can be accounted for if the fractional unit cell coordinates for
the three molecules are (- — , - — , 0), (0, — , Z ), (i, 0, Z ) so that they3 3 3 1 3 Z
are arranged as indicated in Figure 4.2. From Figure 4.2 it can be seen 

that each molecule has six nearest neighbours at a distance of a// 3. If 

the central molecule is at height 0 in the cell, three of these neighbours 

are at height Z^ and three are at height Z^. If we assume as in the models 

proposed for C-DNA by Marvin et al. (1961) and Arnott and Seising (1975), 

that the strands of the DNA duplex are related by two-fold axes perpendicular 

to the helix axis through each nucleotide-pair then the interatomic contacts 

between the molecule at height 0 and those at height Z^ will be identical 

to those between it and those at height Z  ̂if Z^ = Such maximisation

of equivalence in intermolecular contacts is a common feature in crystalline 

fibres of nucleic acids (e.g. Arnott et al., 1967; Dover, 1977) and can 

be regarded as a reasonable assumption in the analysis of this structure.

Such an assumption can, of course, be relaxed if it is found to be unable 

to account for the observed packing effects.

If reflections only occurred on S.= l and 2 when (h-k) = 3q and on 

£=3 when (h-k) = 3q, then by equation 4.3 packing factors which accounted 

for these systematic absences would be obtained if Z^ = + —  and ~ ~ ~
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or if Z. -----and Z = — . These two alternatives correspond to the three
1 3 2 3

molecules passing through each cell being arranged according to a 3^ axis 

or a 32 axis. In fact although some reflections on £=1 and 2 for which 

(h-k) = 3q and on £=3 for which (h-k) = 3q are weak, they are not all 

absent. These weak reflections occur in regions of the diffraction pattern 

where the molecular transform can be expected to be strong, e.g. the 

regions associated with the 301, 112, 203 and 213 reflections. Marvin et 

al. (1961) calculated the packing factors on £=0 to 3 for various values 

of Z^ and showed that their data was best accounted for if Z^ = 0.16 =

In Figure 4.3 the variation of the packing factor for the various classes 

of relfections is plotted as Z^ varies from 0.00 to 0.50. From this 

variation it can be seen that the relative intensities of the spots of 

£=1 to 3 are best accounted for if Z^ is close to 0.25. The effect of 

varying Z^ significantly from 0.25 can be investigated in terms of its 

effect on the relative intensity of neighbouring spots since the molecular 

transform can be assumed to a first approximation not to differ significantly 

at these two points. The following comparisons are of particular help in 

determining Z^:

i) The (211) is clearly very strong whereas (301) is barely observed.

As Z^ is decreased below 0.25,P(301) increases rapidly and P(211) 

decreases rapidly.

ii) The (102), (202), (212) reflections are clearly very strong whereas 

the (112) and (302) are barely observed. In the region of Z^ = 0.25 

P(112) and P(302) are generally small and do not therefore place a 

strong constraint on Z^ although they do require 0.12 < Z^ < 0.38. 

Similarly P(102), P(202) and P(212) are close to a maximum over a 

broad range about Z^ = 0.25 and restrict Z^ so that 0.12 < Z^ < 0.38.

iii) The (203) and (213) are strong, whilst the (113) and (303) are weak.



The packing factors are found to exist in several different families. 
The curves shown in figure 4.3 show P(hkJl) for:

(a) the 101, 201, 211, 311, 321 reflections (green)

(b) the 111, 221, 301, 331 reflections (green)

(c) the 102, 202, 212, 312, 322 reflections (black)

(d) the 112, 222, 302, 332 reflections (red)

(e) the 103, 203, 213, 313, 323 reflections (blue)

(f) the 113, 223, 303, 333 reflections (red)

MOLECULAR DISPLACEMENT (Z1 equals Z2) EXPRESSED AS 
A FRACTION OF THE UNIT CELL PARAMETER C

FIG 4.3 Illustration showing variation of different c l a s s e s  
of packing factor with molecular displacement.



The packing factors are found to exist in several different families. 
The curves shown in figure 4.3 show P(hk£) for:

(a) the 101, 201, 211, 311, 321 reflections (green)

(b) the 111, 221, 301, 331 reflections (green)

(c) the 102, 202, 212, 312, 322 reflections (black)

(d) the 112, 222, 302, 332 reflections (red)

(e) the 103, 203, 213, 313, 323 reflections (blue)

(f) the 113, 223, 303, 333 reflections (red)

MOLECULAR DISPLACEMENT (Z1 equals Z2) EXPRESSED AS 
A FRACTION OF THE UNIT CELL PARAMETER C

FIG 4 .3  I l l u s t r a t i o n  s h o w i n g  v a r i a t i o n  of  d i f f e r e n t  c l a s s e s  
of  p a c k i n g  f a c t o r  w i t h  m o l e c u l a r  d i s p l a c e m e n t .
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The packing factors at = 0.25 reflect these relationships but 

if Z^ increases above 0.25 P(113) and P(303) increase rapidly and 

P(203) and P(213) decrease rapidly.

The presence in the pattern shown in Plate 4.1(g) of streaks on 

i= l and 3 and Bragg reflections on 1=2 indicates that the molecules in 
the unit cell are randomly displaced with a screw disorder of C/2 and 

tt from the relative positions determined above. This screw disorder was 

found to occur whenever a sample had undergone a sequence of transitions 

to the B form and back, and could only be eliminated by rewetting the 

fibre (see Section 4.3).

4.6 THE MOLECULAR CONFORMATION OF C'-DNA

Initially, the observed molecular transform was derived using 

equation4.3 by dividing the observed spot intensities by the packing 

factors calculated assuming that the parameter Z^ defining the relative 

height of adjacent molecules in the unit cell was 0.25 as determined in 

the previous section. This transform is compared in Figure 4.4 with that 

determined by Marvin et al. for a non integral C form. The data from 

this study and that of Marvin et al. are very similar on layer lines 0 to 

4. However, there are differences on higher layer lines. As well as the 

additional meridional diffraction between £=4 and 5 and between 1=5 and 6 
the diffraction of 1=5 is marginally stronger than on 1=6 whereas in the 
patterns studied by Marvin et al. 1=6 is slightly higher. As was noted 

earlier, the relative intensity of layer lines 8 and 9 in the patterns 

described here vary with the relative humidity of the environment. The 

observed data described above is reasonably accurate in terms of a low 

resolution molecular model. However, for dealing with reflections on higher 

layer lines, the use of packing factors in which ’m' is assumed to be zero 

is not satisfactory. In the final stages of analysis the observed data was

i
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FIG 4.4  C om pa rison  o f  the o b se rve d  tra n s fo rm  from  M arvin e t  a l.(1 9 6 1 j 
(c o n tin u o u s  linesJ w ith  th a t  o b ta in e d  du ring  th is  work. The 
d o ts  show n su p e rim p o s e d  on the  c o n tin u o u s  d a ta  in d ic a te  
th e  s p o t  in te n s it ie s  o b ta in e d  fro m  th e  p a tte rn  show n in  
p la te  4 .2  and c o r re c te d  as p e r s e c t io n  4 .5  and  f ig  4 .3.
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compared with calculated structure factors and an agreement index was 

computed.

The agreement between the data determined here and that in Marvin 

et al. on the lower layer lines suggested that the Marvin model was a 

good starting point for the derivation of a satisfactory C ’ model. The 

Marvin model was thus distorted from a helix having 28^ symmetry to one 

having 9^ symmetry. Such a distortion is in fact quite small since it

involves a change of rotation per residue from 38.6° to 40° and a change in
. o o . . .translation per residue from 3.23A to 3.32A. Therefore, the original Marvin

model was distorted, modifying the coordinates of all the atoms in the

helical repeat so that r was unchanged but <f> was multiplied by 40/38.6 and

Z by 3.23/3.32.

The diffraction calculated from this model is shown in Figure 4.5 

and Table 4.3. The agreement index of 41% is rather high but it was hoped 

that this would be reduced during computer refinement. Attempts were then 

made to adjust the stereochemistry of this model using the modelbuilding 

program described in section 2.5. These attempts failed to produce a model 

that satisfied the molecular constraints necessary for good agreement between 

observed and calculated diffraction. This was mainly a result of the 

stereochemical crudity of the wire models used by Marvin et al. during 

their analysis of the C structure. The intramolecular stereochemistry of 

the Marvin C model contains many bond lengths and angles which could not 

now be thought of as standard. Permissible variation in bond lengths and 

angles are in the region of +0.03A and +0.3$ respectively. The author has 

made attempts to refine the Marvin model to incorporate standard stereo­

chemistry but none of these converged to a satisfactory final model.

A number of 'B-type' models of the sort described by Arnott and 

Seising (1975) were generated but none produced satisfactory agreement 

between observed and calculated diffraction. The cylindrically averaged
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Z S I

FIGURE 4.5 The cylindrically averaged squared transform of the 'distorted' 
Marvin structure (MARDIS). Points of sampling are indicated 
by the superimposed lattice, which is hexagonal and has 
a = b = 34A, c = 29.9A.
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Reflection
(HKL)

F0BS FCALC

(110) 3250 3702

(300) 2667 698

(220) 1951 1879

(101) 1325 1255

(201) 1528 964

(211) 4250 3223

(301) 2644 1197

(311) 3163 2666

(102) 2400 3024

(202) 4004 4887

(212) 3620 3952

(203) 2458 3432

(213) 3421 4524

(323) 2728 4041

(423) 2649 2673

(315) 2353 4334

(415) 5839 594

(335) 3528 334

(316) 4178 6140

(217) 1929 710

Residual, R = 42%

TABLE 4.3 The observed structure factors alon? with
those calculated from the 'distorted larvin' model
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TABLE 4.4 Coordinates relating to the 'distorted' Marvin model for C'-DNA.
' Here the original model of Marvin et al. (1961) has been distorted

to meet the requirements of 9i symmetry. See section 4.6. The 
torsion angles pertaining to this model are given in the Appendix.

PHOSPHATE

ATOM R(A) 9(0)
o

Z (A) X(A) Y (A)

P 8.98 111.4 2.87 -3.28 8.36

01 7.90 114.4 3.81 -3.26 7.19
02 9.12 117.7 1.79 -4.24 8.07
03 10.25 109.2 3.61 -3.37 9.68
04

____________
8.52 102.0 2.22 -1.77 8.33

DE0XYRIB0SE Cl 5.48 91.2 0.86 -0.11 5.40
C2 6.81 91.8 0.07 -0.21 6.81
C3 7.77 85.1 0.89 0.66 7.74
C4 7.29 86.3 2.30 0.47 7.27
C5 8.19 94.2 3.05 -0.60 8.17
05 5.91 89.8 2.19 0.02 5.91

PURINE

(ADENINE)

(GUANINE)

N1 1.60 163.4 0.12 -1.53 0.46
C2 1.12 107.0 0.27 -0.33 1.07
N3 2.35 91.7 0.43 -0.07 2.35

C4 3.34 110.0 0.44 -1.14 3.14
C5 3.58 133.3 0.28 -2.46 2.61

C6 2.90 155.6 0.12 -2.64 1.19
N7 4.93 132.4 0.32 -3.32 3.64

C8 5.38 118.8 0.50 -2.59 4.71

N9 4.67 105.5 0.57 -1.25 4.50

N6 3.86 170.7 -0.03 -3.81 0.62

06 3.86 170.7 -0.03 -3.81 0.62

N2 0.83 178.2 0.27 -0.83 0.03

PYRIMIDINE

(THYMINE)

(CYTOSINE)

N1 2.98 131.5 0.28 -1.97 2.23

C2 3.30 106.7 0.46 -0.95 3.16

02 2.79 84.6 0.51 0.26 2.78

N3 4.67 105.5 0.58 -1.25 4.50

C4 5.54 117.2 0.53 -2.53 4.93

C5 5.34 132.2 0.35 -3.59 3.96

C6 4.17 141.6 0.22 -3.27 . . 2.59

6.74 138.8 0.29 -5.07 4.44
04 4.51 158.5 0.06 -4.20 1.65

N4 4.51 158.5 0.06 -4.20 1.65
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squared transform of the Best such model is shown in Figure 4.6. A 

comparison of Figures 4.4 and 4.6 shows numerous flaws in the x-ray fit, 

most notably on layer lines 1, 3 and 5.

A new structure was then developed (initially using wire models) 

after a careful consideration of the way in which the different scattering 

components could be varied to give best fit firstly on the equator and 

later on higher layer lines. The various components contributing to the 

molecular transform of the 'distorted' Marvin model are shown for the 

inner region of the pattern in which an m=0 approximation is adequate 

(Figure 4.7). The most significant components of this transform are those

due to the bases and to the phosphate. It was estimated that a shift in
. . . othe radial position of the phosphorous atoms such that r . 'i 8A andphos

a corresponding displacement of the bases further from the helix axis 

would maintain a satisfactory equatorial fit whilst taking some of the 

strain out of the sugar-phosphate backbone. Subsequent modification to 

the relative ’height' of the phosphorous atom in the chain was then applied 

to optimise the fit on layer lines one to three. In the final stages of 

analysis very small variations in the positioning of the different groups 

were made to vary the diffraction calculated for regions of the pattern 

where crystalline data was not available. In these instances agreement 

between observed and calculated data was largely qualitative in nature.

The molecular transform calculated from the components of the final model 

are shown in Figure 4.8, and the cylindrically averaged squared transform 

(calculated for all components from m=-2 to m=3) in Figure 4.10. For the 

inner part of the pattern (up to 1=4) , a comparison of the observed and 
calculated data yields a crystallographic residual of 17%. The coordinates 

of this model are given in Table 4.5 and Figure 4.9 provides a graphical 

comparison of the author's model and the distorted Marvin helix.
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FIGURE 4.6 The cylindrically averaged squared transform of the 'Arnott 
type' model. The superimposed grid indicates the points at 
which the observed lattice (see Table 4.1) samples the 
transform.
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FIGURE 4.6 The cylindrically averaged squared transform of the 'Arnott 
type’ model. The superimposed grid indicates the points at 
which the observed lattice (see Table 4.1) samples the 
transform.
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FIGURES 4.7 (top) and 4.8 (bottom) The scattering components calculated from 
the m-0 moleculartransform of the distorted Marvin model and the author's 
new model (respectively)
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FIGURE 4.9 The cylindrically averaged squared transform calculated from 
the author's model for C'-DNA. The superimposed lattice is 
again that associated with the pattern shown in Plate 4.2.
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PHOSPHATE

ATOM R(A) <K°)
o

Z(A)
o

X(A) 0
Y (A)

P 8.10 110.4 4.16 -2.82 7.59
01 7.74 120.6 3.47 -3.94 6.67
02 7.41 109.0 5.45 -2.41 7.00
03 9.57 110.2 4.21 -3.30 8.99
04 . 7.64 102.3 3.11 -1.62 7.46

DEOXYRIBOSE Cl 5.39 97.3 0.30 -0.69 5.35
C2 6.92 98.4 0.23 -1.01 6.85
C3 7.44 89.1 1.06 0.11 7.44
C4 6.39 87.1 2.15 0.32 6.38
C5 6.52 95.0 3.36 -0.57 6.50
05 5.11 89.5 1.48 0.05 5.11

PURINE

ADENINE

GUANINE

N1 2.48 170.0 -0.02 -2.42 0.52
C2 1.60 138.4 -0.09 -1.20 1.06
N3 2.45 109.8 -0.01 -0.83 2.30
C4 3.64 121.9 0.19 -1.90 3.11
C5 4.22 139.6 0.29 -3.21 2.73
C6 3.72 158.8 0.18 -3.47 1.35
N7 5.54 136.3 0.49 -4.01 3.83
C8 5.80 123.5 0.51 -3.20 4.83
N9 4.86 112.9 0.33 -1.89 4.47

N6 4.78 169.9 0.26 -4.71 0.84

06 4.78 169.9 0.26 -4.71 0.84
N2 0.30 132.0 0.31 -0.25 0.10

l|

PYRIMIDINE

THYMINE

CYTOSINE

N1 4.88 112.8 0.34 -1.88 4.50
C2 3.57 118.3 0.17 -1.69 3.14
02 2.73 102.4 0.01 -0.59 2.67
N3 3.68 140.0 0.21 -2.82 2.37
C4 4.98 145.6 0.40 -4.11 2.81
C5 6.00 135.1 0.56 -4.25 4.24

C6 5.93 121.9 0.52 -3.13 5.03

Me
04

7.37
5.47

140.0
158.2

0.76
0.42

-5.65
-5.08

4.74
2.03

N4 5.47 158.2 0.42 -5.08 2.03

TABLE 4.5 Coordinates of the author's model for C'-DNA. The helix
has symmetry, a translation of 3.22A per base pair and a rotation 
per residue of 40°. The torsion angles relating to this model are 
given in the Appendix.
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FIGURE 4.10 Two projections of (a) the 'distorted' Marvin model and
(t) the modified model produced by the author during this 
study.
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4.7 MOLECULAR ORIENTATION WITHIN THE UNIT CELL

A preliminary analysis of the packing effects manifest in Plate 

4.2 has been described in Section 4.5, in which the C helices were regarded 

as being ’ smooth' so that any molecular displacement along the Z axis was 

indistinguishable from an equivalent molecular rotation. Packing factors 

were calculated from equation 4.3 and applied to the intensity data relating 

to the central 'm=0' part of the pattern. This simplified 'low resolution' 

approach was used to determine the relative 'heights' of the three 'smooth' 

molecules in the unit cell, but for reasons just mentioned could not 

distinguish between molecular rotation and molecular displacement along the 

Z axis.

However, the few crystalline data that are available in regions 

for which the m=l component of the pattern is significant can be used in 

conjunction with the packing factor analysis to obtain the most likely 

molecular orientation of the three helices within this unit cell. For 

a satisfactory m=0 fit to the pattern, it is required that Z1 = -Z^ = 0.25, 

or strictly speaking, that

< w - 11 vO O O 4.4

<93 - V -  c+3 - * 1 ) s 90° 4.5

As noted in Section 4.5, it is reasonable to presume that each of 

the three molecules in this unit cell will have equivalent intermolecular 

contacts. This can only occur if the molecules are packed as shown in 

Figure 4.12 so that each of the molecules have an equal angular displacement 

from the sides of an equilateral triangle formed by the group of three.

It is thus evident that

-  *2 =  - 120°

*2 ~  =  - 120°  4 -6

3 1 240°
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R ( % )

FIGURE 4.11 Graph showing variation of crystallographic residual 
as a function of molecular orientation within the 
hexagonal unit cell (see also Figure 4.12)

no matter how the helices are otherwise positioned. If 0^ is assumed to 

be 0 then 0^ is calculated to be 30° and 0^ to be 330° and the molecules 

can be rotated freely subject to the constraints imposed by equations

4.6 without disrupting the m=0 x-ray fit.

The structure factors and crystallographic residual were thus 

calculated as a function of molecular orientation and this variation is 

depicted graphically in Figure 4.11.

The plot shown in Figure 4.11 is however ambiguous in that R has 

a minimum at 15° and at 55°. This situation arises because of the lattice 

symmetry. It is noteworthy firstly that R does not vary dramatically with 

orientation and secondly that the molecular rotations implied by this 

analysis do not pertain to the space group having the highest possible 

symmetry (i.e. P321 or P3221 where the molecular diads would lie along the 

unit cell edges) .
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FIGURE 4.12 A view of the C' helices in the hexagonal cell (as seen 
down the c-axis)

The calculated structure factors associated with a molecular
1

orientation angle of 15 are compared with the observed in Table 4.6.

The agreement index R (see Equation 2.1) for this data is 28%.

4.8 CONCLUSION

Diffraction data ohtained from the lithium salt of poly d(A-C). 

poly d(G-T) has been analysed in terms of a regular 91 duplex. The models 

of Arnott and Seising (1975) do not give satisfactory agreement between 

observed and calculated data. A structure very similar to the original 

Marvin model but distorted to meet the requirements of 9^ helical symmetry 

provides good overall fit to the observed data but has considerable stereo­

chemical problems. The author's model was developed from the Marvin 

structure and refined to minimise an agreement index which relates observed 

and calculated structure amplitudes. This agreement index of 28% is good 

considering that the pattern of Plate 4.2 is not crystalline to the extent



112 -

Reflection
(HKL)

FOBS FCALC

CUO) 3250 4221

(300) 2667 3305

(220) 1951 1557

(101) 1325 1140

(201) 1528 1117

(211) 4250 4336

(301) 2644 1624

(311) 3163 3198

(102) 2400 1852

(202) 4004 3757

(212) 3620 4372

(203) 2458 3002

(213) 3421 5151

(323) 2728 3852

(423) 2649 3861

(315) 2353 2464

(415) 5839 2079

(335) 3528 1741

(316) 4178 4357

(217) 1929 1092

Residual, R = 27.7%

•*
1
j
1

i

TABLE 4.6 The observed structure factors along with those calculated 
from the new model. The torsion angles for this model are 
given in Appendix, The relative orientation of the three 
molecules in the unit cell is as described in Section 4.7.



113 -

of lithium B patterns (Langridge et al., 1960a, b). The model has C3 exo 

sugar puckering, bases which are displaced away from the helix axis by 

lX further than their position in the Marvin model, and a chain whose 

conformation angles (Appendix) are similar to those of the Marvin models.

The dihedral angle 'a' (see Figure 1.7) has changed from 'v -148° (t) in 

the Marvin double helix to -40° (g ) in the author’s model. This change 

was necessary to maintain the phosphorous atom in roughly the position 

required to satisfy observed lower layer line diffraction given a modified 

base position. The variation of intensity on S, = 8 and 9 as a function 

of humidity is seen as resulting from slight changes in tilt affecting 

the m = 1 region of the transform without greatly altering the predominantly 

m = 0 region of the pattern.

As mentioned in 4.4, the meridional reflections that can be 

observed between the 4t*1 and 5 ^  layer lines of Plates 4.7, 4.3 and 4.4 

are thought to be due to either small differences between successive 

residues which hence strictly speaking constitutes a dinucleotide repeat, 

or to the presence of ions or water ordered to a periodicity of twice the 

translation per nucleotide. Similar observations have also been noted 

by Leslie et al. (1980) for the paracrystalline C" form of Na poly d(A-G). 

poly d(C-T) which these authors classify as a 9  ̂molecule. It is interesting 

that evidence of such a periodicity is not found in the C ’ pattern of 

Li poly d(G-G-T).poly d(A-C-C) (Plate 4.5) presented by the same authors.

Two further variants of the preferred C model are currently being 

investigated:!irstly, a model having 92 symmetry and a dinucleotide repeat; 

and secondly a 28^ model is also being refined against the crystalline 

and continuous data obtained from native DNA’s. The scaling of crystalline 

intensities with continuous transform has been described theoretically by

Wilkins (unpublished).
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The structure of C-DNA is also of interest because of the 

nature of its transition to the A and B forms. A preliminary investigation 

of these transitions is described in Chapter Eight and further experiments 

are scheduled at the SRS.

ii



CHAPTER FIVE

THE STRUCTURE OF ct-B ' -POLY d(A-T) .POLY d(A-T)

5.1 INTRODUCTION

The B conformation of DNA, as noted in Chapter 1, was the first 

DNA structure to be observed by means of X-ray diffraction (Astbury,

1947) and it was data recorded from this conformation that led Watson and 

Crick (1953) to the first satisfactory molecular model for double helical 

DNA. Evidence obtained since (Wilkins and Randall, 1953; Finch et al., 

1981; Bentley, Finch and Lewitt-Bentley, 1981) has suggested that this 

conformation prevails widely in the nucleosome structure and in intact 

cells. Since the first observation of the crystalline and semi-crystalline 

B forms (see section 1.4.2), a great variety of synthetic polynucleotides 

have become available (Leslie et al., 1980) and experimental work has 

shown that a family of B structures exist. In addition to the classic 

crystalline and semi-crystalline B forms of native DNA, a number of other 

crystalline B patterns have been obtained from the lithium and sodium 

salts of poly d(A-T).poly d(A-T) and from the lithium salt of poly d(G-C). 

poly d(G-C) (Arnott et al., 1980; Mahendrasingam, 1984). These patterns 

are all slightly different and show that the B helix is capable of some 

variation.

Native DNA's having high proportions of either (A-T) (as in C l. 
perfringens DNA) or (G-C) (as in M.lysodeickticus) base pairs are known to 

exhibit distinctive structure features. Plate 5.1 shows diffraction 

patterns obtained from six different types of DNA. On the top row 

((a) -*■ (c)) a selection of native B forms are shown, whilst on the
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bottom row ((d) -+■ (f)) a corresponding selection of 'synthetic' B patterns 

are given . It can be noted from an inspection of Plate 5.1 that the B 

forms pertaining to samples having high A-T contents have strong 

diffraction on layer lines 1, 2 and 3. In contrast, those from 'high 

G-C' fibres have strong diffraction on 1=2 but weak on Jl=l and 1=3. B 

forms recorded from calf thymus DNA (which has a roughly equal proportion 

of A-T and G-C base pairs) show intermediate behaviour in this respect, 

as does B-DNA observed from poly d(A-C).poly d(G-T). It is thought 

likely that the above observations relate to a change in the value of 

(6-<(>) from % 70° in the case of helices having high (A-T) content to 

something nearer 90° in the case of samples having high G-C content.

A number of different models are now being constructed in this laboratory 

to investigate such a variation.

A novel form of B-DNA has been obtained from fibres of high salt 

K poly d(G-C).poly d(G-C) and has been called B"-DNA (Mahendrasingam et al., 

1983 - see Plate 1.5). This molecule is thought to have a dinucleotide 

repeat and 5^ symmetry. A B form has been obtained from poly (dA-IU). 

poly (dA-IU) by Mahendrasingam (unpublished) and appears to have similar 

symmetry.

A further variant of the B form has been observed in fibres of Na

poly dA.poly dT (Arnott et al., 1974) and is called B'-DNA. The 3' form

has heen observed in two different lattices: the a (hexagonal) and the B

(orthorhombic) forms. The a form can also be obtained from Li poly dA.

poly dT and from the sodium salt of poly d(A-T).poly d(A-T) fibres (see

Plate 5.2) (Rhodes and Mahendrasingam, unpublished). In their original

study of the homopolymer, Arnott et al. found that at relative humidities

of below 77% fibres gave a B' diffraction pattern that could be indexed
o o o

on an orthorhombic grid such that a = 17.8A, b = 20.0A and c - 32.4A.

Above 85% relative humidity, these workers obtained a diffraction pattern
o an(j

which indexed on a hexagonal lattice having a = b = 22.8A an
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PLATE 5.2 'Split' photographs showing a comparison of the diffraction 
obtained from a-B'-poly dA.poly dT (left) and that from 
a-B'-poly d(A-T).poly d(A-T) (right) fibres
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PLATE 5.2 'Split' photographs showing a comparison of the diffraction 
obtained from a-B'-poly dA.poly dT (left) and that from 
a-B'-poly d(A-T).poly d(A-T) (right) fibres
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c 32.9A. Arnott et al. assumed (on the basis of similar pitch and 

overall intensity distribution) that the two patterns resulted from the 

same molecular structure packing into different lattices. A structure 

analysis by these authors of the a-B' pattern yielded a molecular model 

(similar to the classic B structure) whose calculated diffraction was in 

good agreement with that observed. However, in a recent publication,

Arnott et al. (1983) retracted this model in favour of a unique structure 

which instead of having conventional diad symmetry had two morphologically 

distinct chains, one made up with 'A-type' steroechemistry and the other 

with 'B—type' stereochemistry. Their main reasons for favouring this 

model were:

(a) it gave acceptably good fit to the x-ray data

(b) the structure evolved spontaneously during the course of an 'unbiased ' 

linked-atom least squares refinement procedure'

(c) it relieved some fairly chronic intermolecular contact problems 

when it came to packing into the orthorhombic unit cell of the 

6 form.

Rhodes and Mahendrasingam (unpublished) have undertaken work relating 

to both these polymers and have found that whilst the lithium salts of both 

poly d(A-T).poly d(A-T) and poly dA.poly dT give the a-B' conformation, 

it does not appear to adopt the g-B' form. It is instructive here to 

summarise the appearance of the B' forms throughout the different polymer salts 

that have thus far been examined:

Salt a-B' B-B

Sodium poly dA.poly dT / ✓
Lithium poly dA.poly dT / X
Sodium poly d(A-T).poly d(A-T) / X
Lithium poly d(A-T).poly d(A-T) / X

TABLE 5.1 A Summary of the conformations observed in two salts of the 
polymers poly dA.poly dT and poly d(A-T). poly d(A-T)
(/ = observed; X = unobserved as yet)
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There are two points of interest that emerge from an inspection of this 

table. Firstly, the g-B' conformation has not been observed in any salt 

of the alternating copolymer poly d(A-T).poly d(A-T) . This observation 

is sharply contrasted by the fact that the a-B' form occurs in both 

copolymer and homopolymer, regardless of whether the counterion is lithium 

or sodium. As has been noted earlier, the a-B' diffraction patterns 

obtained from the two different polymers are virtually indistinguishable 

(see Plate 5.2), and it would seem reasonable to assume that the fibre 

structures are very similar as well. It is hard to envisage the alternating 

copolymer as a heteronomous molecule - the chemical repeat is such that one 

would expect a diad in between every second base pair (or some multiple 

thereof), and each chain should therefore be identical. If, on such a 

basis, the a-B' form of poly d(A-T).poly d(A-T) is not heteronomous, then 

the a-B' molecule in poly dA.poly dT cannot be either, since its fibre 

diagram is identical.

Assuming that a-B'-DNA is regular and not heteronomous, then 

where does this leave the concept of 'heteronomy' in B'-DNA? If, for 

a moment, we abandon Arnott's assumption that a and g are ’isomolecular', 

then (refer to Table 5.1) it still remains possible that the _g form is 

heteronomous since it occurs only in the homopolymer (see Table 5.1). This 

idea is lent some support by the fact that the 1983 analysis of B'-DNA in 

terms of a heteronomous model was based on data observed from a crystalline 

g form, although the authors implied that the derived structure satisfied 

observed diffraction from both a and g.
The second point to note from Table 5.1 is that the lithium salt of 

the homopolymer does not appear to adopt the g form. This is interesting 

because to date no lithium salt of DNA has been found to adopt the A form 

and it is possible that the lithium ion directly suppresses this conformation. 

Whilst the A form itself is not specifically of interest here, the heteronomous
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molecule proposed by Arnott et al. does contain 'A' stereochemistry in one 

chain and could possibly be expected to exhibit some of the features of 

A-DNA (such as being suppressed by the lithium ion).

The above observations tend to implicate the g-B' conformation as 

the heteronomous structure rather than both the a and g forms as presumed 

by Arnott and coworkers. The a-B' form occurs in situations which would 

not favour such a chain and, indeed, in which the g-D' conformation does 

not occur.

The fibre diagram from ot-B'-poly d(A-T).poly d(A-T) is now analysed 

in the remainder of this chapter in an effort to quantitatively compare 

regular and heteronomous models for a-B'-DNA.

5.2 Experimental

Poly d(A-T).poly d(A-T) was supplied by Dr. J. Brahms and 

Mr. J. Vergne at the University of Paris. This material had been
-4

precipated from a 0.1 M sodium chloride solution, dialysed against a 10 M 

sodium chloride solution and then freeze dried. Although no flame emission 

spectroscopy (FES) studies were performed on this material, it has been 

estimated (Rhodes, 1983; Mahendrasingam, 1984) that such fibres of sodium 

poly d(A-T) .poly d(A-T) contain ^ 0.6-0.7 Na+ and Cit ion pairs per DNA 

phosphate. Fibres were made by Professor V , Fuller and Dr. N.J. Rhodes 
using methods described in Chapter Two. X-ray diffraction photographs were 

recorded using a GX6 rotating anode generator and a Searle camera with 

Elliott toroidal optics. Pictures were also recorded at the Daresbury SRS. 

Diffraction pictures were measured up using a travelling microscope and 

intensities were calculated from traces produced by a JoycevLoebl micro­

densitometer ,

The overall distribution of intensity throughout the pattern 

shown in Plate 5.3 is very similar to that of the crystalline and semi-

Plate 1.3 and 1.4, and this suggested thatcrystalline B forms as seen in
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the B-DNA model of Arnott and Hukins (1973) might provide a reasonable

starting model. There are, however, noticeable differences between the

pattern of Plate 5.3 and diffraction from other B forms pertaining to A/T

rich polymers. The a-B' pattern although still semi-crystalline is very

much more crystalline than any of the classic semi-crystalline photographs

seen in Plate 5.1. It does not, however, compare in crystallinity to the

lithium pattern (Plate 1.4) analysed by Langridge et al. (1960). The B'

pattern also differs to some extent in molecular transform. On the

equator, the (110) and (200) reflections occur in a region where nothing

is observed in other B-DNA patterns and where the transform calculated

from the B-DNA model is weak. On the first layer line of this pattern
. . °-lthere are also differences in the region for which £ » 0.10 A . Weak 

reflections occur here where the transform from the B model predicts them 

to be unobservable. On the second and third layer lines, the diffraction 

observed from the a-B' form compares well with other B forms and with the 

diffraction calculated from the B-DNA model. Layer lines four to ten are 

all more clearly resolved on the a-B' pattern than on semi-crystalline B 

patterns and it appears that the intensity distribution in this region of 

the pattern is very similar to that of other A/T rich B forms.

These preliminary observations were used during the development 

of various a—B' models. Such models were generated using the modelbuilding 

program as described in Chapter Two and adapted to provide satisfactory 

stereochemistry and best fit with the observed diffraction (see equations 

2.1, 2.2).

5.3 Results and Discussion

The data used in this analysis was obtained from a conventional 

Cu K-a x-ray source, but diffraction patterns were also recorded at the 

Daresbury SRS.

W

t
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The original a-B' pattern obtained from this sodium poly d(A-T) .
o

poly d(A-T) salt was indexed on a hexagonal grid with a = b = 24.4 A and 

c = 32.8 A. The observed and calculated p values are given in Table 5.2.

The intensities calculated from radial densitometer traces across diffraction 

spots are also shown and compared with those obtained by Arnott et al.

(1974) for Na poly dA.poly dT. This comparison shows two main regions where 

there are discrepancies between Arnott's observed data and this: firstly, 

on the second layer line the (102), (112) and (202) reflections of the 

poly d(A-T).poly d(A-T) pattern appear to be significantly stronger than 

their counterparts in poly dA.poly dT; secondly, on the fourth layer line 

diffraction appears to be much weaker in the copolymer than in the homo­

polymer. In other respects the intensity distribution is similar in both 

patterns.

A number of molecular models were generated; in the first 

instance these were adjusted to give best agreement with the measured 

data, and in the second to give qualitative agreement with non—crystalline 

data in other regions of the pattern. The best model had bases sitting 

right on the helix axis so that the distance 'D' (see Figure 1.10(c)) was 

0.0 A. The bases were twisted by 1° and tilted by -6 . The other torsion 

angles fit into the class (tg_g"tg+) as is characterised by the first B' 

model of Arnott et al. (1974). The residual R (see equation 2.1) relating 

the observed data and that calculated from this model is 19.5%. The 

cylindrically averaged squared transform of the model is shown in 

Figure 5.1(a). The problems of the equatorial transform have been solved: 

the shift in base position relative to the other scattering groups has 

resulted in a swelling of the first subsidiary maximum (£ = 0.08 l  ) and 

the final model can thus account for the two reflections observed in this 

region, (see observed and calculated structure factors in Table 5.3). 

Qualitatively, agreement between the observed and calculated transform
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Reflection

(HKL)
p0BS
(A"1)

PCALC
(A_1)

F0BS
(this work)

F0BS
(Arnott et 
al., 1974)

(100) 0.04?© 0.0473 3660 3390

(110) 0.0823 0.0819 1610 1296

(200) 0.0950 0.0946 1428 1321

(210) 0.1254 0.1251 3925 2139

(300) 0.1416 0.1419 1926

(220) 0.1418 0.1420 2233 1395

(310) 0.1710 0.1705 3291 2483

(400) 0.1886 0.1892 3279

(101) 0.0550 0.0563 3933 3850

(111) 0.0880 0.0875 442

(201) 0.1000 0.0994 1308

(211) 0.1288 0.1289 860

(102) 0.0755 0.0772 3913 2905

(112) 0.1022 0.1021 3710 2125

(202) 0.1130 0.1126 2962 1684

(212) 0.1390 0.1393 1267 1850

(302) 0.1542 0.1545 1424 2036

(222) 0.1748 0.1749 1635 1977

(312) 0.1808 0.1812 3180 2855

(103) 0.1031 0.1030 2752 3223

(113) 0.1232 0.1228 4717 5614

(203) 0.1326 0.1316 4013 5110

(114) 0.1480 0.1469 1291 3073

(204) 0.1550 0.1544 1839 3821

0 °Hexagonal lattice : a = b = 2U.Uk, c = 32.8A
TABLE 5.2 The observed and calculated p values along with the observed 
structure factors and those of Arnott et al. (1974) for the hompolyraer
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1--------------

REFLECTION
FOBS FCALC

(AUTHOR'S MODEL)
FCALC
(HETERONOMOUS

MODEL)

(100) 3660 5087 5187
(110) 1610 1549 1803

(200) 1428 613 732

(210) 3925 3724 3460

(300) 1926 2273 2228

(220) 2233 1344 1460

(310) 3291 2744 2323

(400) 3279 3179 2045

(101) 3933 3888 3854

(111) 442 287 529

(201) 1308 805 621

(211) 860 1240 2881

(102) 3913 3577 4425

(112) 3710 2788 2975

(202) 2962 1466 2204

(212) 1267 661 2908

(302) 1424 700 1043

(222) 1635 1950 1047

(312) 3180 3055 1743

(103) 2752 2631 2784

(113) 4717 5453 5110

(203) 4013 4895 4259

(114) 1291 1351 1518

(204) 1839 1811 1604

Residual, R for Author's Model = 19.5% 
Residual for Heteronomous Model = 27%

TABLE 5.3 Observed structure factors compared with those calculated from 
Author's model and Heteronomous model.
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on higher layer lines is good.

The presentation of the data in Figure 5.1 and Table 5.3 affords

a comparison between this 'regular' model for a-B'-DNA and the'heteronomous'

one proposed by Arnott et al. (1983). Although the x-ray fit in the region

for which crystalline data was obtained is good, there are other regions in

which diffuse scatter in the observed data does not tally with the molecular

transform calculated from the heternomous model. There are two ridges that

are marked on Plate 5.3 as 'A' and 'B'. These ridges are well explained in

the regular model but not in the heteronomous (see Figures 5.1(a) and (b))

Ridge 'A' is too weak on the equator and second layer lines and too strong

on the first. Ridge B is too strong on the seventh layer line. Another

problem with the heteronomous model is the intensity distribution on the

fifth layer line, which is stronger than it should be, as is that from
_ o-ii, = 8 in the region of % ~ 0.05 A .

The coordinates of the final model are given in Table 5.4. The 

torsion angles and associated parameters are given in Appendix. The 

a-B' molecule is very similar to the B' structure proposed by Arnott et 

al. (1974), differing only in base position and orientation. Whereas 

the Arnott model has tilt, twist and base displacement of —7.9 , —1.0 and 

-0.1 A, the authors model has -6.0 , 1.0 and 0.0 X.

The hexagonal cell side of 24.4A is large enough to accommodate 

molecular packing such that there are no unacceptable short contacts between 

adjacent helices.
This analysis thus tends to suggest that the a—B conformation 

is a regular molecule very much like B-DNA structure. The torsion angles 

and other conformation parameters are all very similar to those of the 

model of Arnott and Hukins (1972b) although they differ substantially from 

those of later models (e.g. Arnott and Hukins, 1973; Arnott et al., 1980). 

There is not enough evidence to suggest a heteronomous model for a-B' DNA.
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PHOSPHATE

DEOXYRIBOSE

THYMINE

ADENINE

ATOM R(A) K°) Z (A) XCA) O
Y (A)

P 8,74 91.5 2.28 -0.225 8.74
01 8.74 94.3 3.82 -0.65 9.71

02 9.93 86.5 2.01 0.611 9.^2

03 8.71 99.5 1.44 -1.43 8.59

04 7.44 84.9 2.18 0.67 7.41

Cl 5.84 64.2 0.60 2.55 5.25

C2 7.07 70.3 0.01 2.38 6.66

C3 8.16 66.6 0.95 3.23 7.49

C4 7.44 66.2 2.30 3.01 6.80

C5 7.47 76.1 3.08 1.79 7.25

05 6.09 62.1 1.97 2.85 5.38

NI 4,60 73.3 0.49 -1.52 4.35

C2 3.40 63.8 0.35 -0.58 3.35

02 3.63 44.2 0.31 0.62 3.58

N3 2.33 81.4 0.25 -1.07 2.07

C4 2.94 108.6 0.28 -2.40 1.70

04 2.80 133.3 0.19 -2.75 0.52

C5 4.35 104.0 0.43 -3.33 2.79

Me 5.37 116.8 0.46 -4.78 2.46

C6 4.98 89.1 0.52 -2.87 4.07

NI 0.86 33.3 0.07 0.72 0.47

C2 2.19 26.7 0.14 1.96 0.98

N3 3.23 43.2 0.28 2.35 2.21

C4 3.31 67.1 0.35 1.29 3.05

C5 2.71 90.8 0.29 -0.04 2.71
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ATOM TUA) <K°>
o

Z(A) X(£)
o

YCA)

C6 1.37 103.6 0.14 -0.32 1.33

N6 1.80 151,34 0.67 -1.58 0.86

N7 3.92 102.1 0.39 -0.82 3.83

C8 4.81 89,9 0.51 0.01 .4.81

N9 4.60 73.3 0.49 1.32 4.41

TABLE 5.4 The coordinates of the final a-B' model.
The dyad related residue can be generated by negating Y and 
Z whilst coordinates of successive nucleotides may be 
obtained by applying a right handed screw operation involving 
a rotation of 36° about the Z axis and a translation of 3.28A 
along it. The torsion angles associated with this model are 
given in Appendix 1.
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There is, however, every reason to believe that the heteronomous model holds 

good as an explanation for the B“B' diffraction data from Na poly dA.poly dT, 

and as such the model is of considerable value in assessing the nature of 

sequence dependent local variation. The structure of B-B'-DNA (be it 

heteronomous or not) could also be of significance in endeavours to 

establish the way in which the lithium ion exerts its effect in DNA.

It would be interesting to determine whether the possibility 

of a heteronomous duplex exists in the homopolymer poly dG.poly dC.

Extensive studies on this polymer have so far not been published although 

one report by Arnott and Seising (1974b) suggests that no novel conformations 

are obtained from the sodium salt of this polynucleotide.
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FIGURE 5.1 (a) The a-B' form of DNA as seen in sections looking
perpendicUlar and parallel to the helix axis.

(b) The heteronomous structure proposed by Arnott et al. (1983)



CHAPTER SIX

THE STRUCTURE AND SIGNIFICANCE OF g-D-POLY d(A-T).POLY d(A-T)

6.1 INTRODUCTION

In this study, the evidence for the existence of left-handed helices 

in polynucleotide duplexes is reviewed, and a comparison of the activity of 

poly d(A-T).poly d(A-T) and poly d(G-C).poly d(G-C) has prompted a 

reassessment of thecurrent assumption that D-DNA is a right-handed double 

helix. An analysis of the x-ray diffraction obtained from the g-D form of 

poly d(A-T).poly d(A-T) has been undertaken in an effort to determine 

whether a right or a left-handed model is to be preferred.

6.1.1 Studies relating to left-handed helices

Within the last few years the field of nucleic acid research has 

been dramatically influenced by the realisation that particular sequences 

of DNA may adopt a left-handed helix sense. Studies on the short 

oligomers d(CpGpCpGpCpG) and d(CpGpCpG) have revealed the very unique 

ZI, ZII and Z' structures (Wang et al., 1979; Wang et al., 1980; Crawford, 

et al., 1980; Drew et al., 1980), and a corresponding examination of the 

synthetic polynucleotide poly d(G-C).poly d(G—C) by Arnott et al. (1980) 

has provided sufficient evidence to throw into contention the whole question 

of DNA handedness.

Further interest has been evoked by circular dichroism (CD) and 

31P-NMR studies on synthetic oligomers of (dC-dG) inserted within DNA 

restriction fragments (Klysik et al., 1981). These have illustrated not 

only the presence of left-handed fragments of (dC-dG) and the ability of
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these fragments to change helix sense (as a function of salt concentration), 

but also that the nozel Z helix can exist in very close proximity to 

supposedly 'B-like' helical segments. These authors note a 'junction' 

between Z and B helices is possible, and such a region appears to be 

approximately 11 base pairs in extent. They also assert that the presence 

of the (dC-dG) segment in the recombinant plasmid is sufficient to have a 

profound influence on the supercoiling properties of the DNA. The possible 

biological significance of all this is manifold and of great intrigue - 

for example, a segment of left-handed DNA in viral or cellular DNA which is 

principally composed of right handed conformations could provide a 

difference in continuity which was sufficiently dramatic as to be an 

easily recognisable locus for binding of specific proteins or lingands 

(Sage and Leng, 1980) .

The B form has for some time been acclaimed as a conformation 

which prevails extensively throughout chromatin and the intact cell 

(see sections 1.4.2 and 5.1). However, work undertaken by Milman et al. 

(1967), O'Brien and MacEwan (1970), Chandrasekaran et al. (1980) and 

Arnott et al., (1980) has implicated the A conformation (see section 1.4.1) 

as the one favoured by DNA/RNA hybrids and as such that the A form may be 

involved in the process of transcription. Z-DNA has also been found 

to exist in the cell. Z-DNA, in contrast to B-DNA, is strongly immunogenic 

and antibodies have been produced which react against it (Lafer et al.,

1981; Malfoy et al., 1981; Pohl et al., 1982; Moller et al., 1982): 

this fact has enabled immunohistochemical studies to be undertaken. The 

presence of Z-DNA has been established in two dipteran species (Nordheim 

et al., 1982; Lemeunier et al., 1982), in some plant nuclei, and more 

recently in a variety of different types of rat tissue (Morgenegg et al., 

1983).

The evidence thus far obtained now firmly establishes the
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significance of the Z conformation in vivo. The left-handed form is 

easily induced in the solid and liquid states of poly d(G-C).poly d(G-C) 

(Pohl and Jovin, 1972; Pohl et al., 1972; Pohl et al., 1973; Pohl, 1976; 

Arnott et al., 1980; Zimmerman, 1982; Neidle, 1983; Mahendrasingam et al., 

1983) but it appears more difficult to induce the Z conformation in 

poly d(A-C) .poly d(G-T) and to date it has not been observed at all in 

poly d(A-T).poly d(A-T).

The transition from what is assumed to be the 'B ’ form to the 

Z form can occur as a result of changing solvent composition, or by 

modification with certain large substituents or by the torsional strain 

associated with supercoiling (Pohl et al., 1973; Zimmerman, 1982; Neidle, 

1983). The implication of supercoiling in these studies is significant 

and is of special concern when it is realised that large stretches of 

poly d(A-C).poly d(G-T) and of poly d(G-C).poly d(G-C) have frequently 

been observed as periodic elements in the composition of mammalian DNA.

It is conceivable that these regions play a part in the packaging of 

DNA into its final nucleoprotein structure as seen in the intact cell. 

Another possible role of Z-DNA in the nucleus is that relating to specific 

Z-DNA binding proteins. Morgenegg et al., (1983) claims to have detected 

such proteins in the nuclei or rat cells and bovine brain cells.

Nordheim et al. (1982) has observed Z-DNA binding proteins in Drosphila 

nuclei.

6.1.2 Can S-DNA and D-DNA be regarded as analogues?

At about the time that this work started, it became apparent 

(from studies undertaken by Dr. A. Mahendrasingam in this laboratory) 

that there were certain features relating to the scheme of transitions as 

seen in two synthetic alternating purine/pyrimidine polynucleotides (namely 

poly d(A-T).poly d(A-T) and poly d(G-C).poly d(G-C)) that merited some

attention.
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The sequence of transitions observed in fibres of KF 

poly d(G-C).poly d(G-C) is summarised in Figure 6.1 and Plate 6.1 shows 

the diffraction photographs corresponding to the various conformations.

At relative humidities of up to 75%, a B" diffraction pattern is 

observed. This then changes to an A pattern which prevails to 92% RH.

The fibre then undergoes a transition to the form. A semi-crystalline

B form is obtained after prolonged exposure of the fibre to 98% RH. The

75% 92% 98% Relative Humidity

B
(slow drop)

(fast drop)

FIGURE 6,1 The sequence of transitions observed in 
fibres of KF poly d(G-C).poly d(G-C).

reverse sequence, as can be seen from Figure 6.1, is somewhat more 

complicated; a gradual reduction of the Rh from 98% results firstly in 

the reacquisition of the form, and then in the appearance of what is 

clearly an S form but which differs from SI];-DNA in lattice parameters and 

in molecular conformation. The structure is called S^-DNA (see Figure 

6.1). The S-conformationsobtained during this procedure were found to be 

very stable, and the lower humidity A and B" conformations could not be 

recovered by subsequent reduction of the RH. If, however, in the initial 

stages of reversing the sequence, the humidity was suddenly changed from
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(e)
mixture o f  A and S forms

PLATE 6.1:
X-ray

(f)
mixture of S and B forms 

d(G*C). poly d(G-C)f ib r e  diffraction patterns of poly 
at various re la tive  humidities
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(e)
mixture of A and S forms

(f )
mixture of S and B forms

PLATE 6.1:
X-ray f ib re  diffraction patterns of poly d(G-C).  poly d(G-C) 

at various re la tive  humidities
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98% to 33%, the S form was not observed at all, and a transition occurred 

from the semi-crystalline B form to the A conformation and later to the 

B" form. This study (Mahendrasingam et al., 1983) is believed to be the 

first account of experiments in which structural transitions are seen to 

depend on the rate at which the RH of the fibre environment is changed.

The overall sequence of transitions found to occur in Na 

poly d(A-T) .poly d(A-T) can he summarised as shown in Figure 6.2. Plate

6.2 shows the diffraction patterns corresponding to the different structures. 

The sodium salt of this alternating polynucleotide is found to start off 

(at low humidity) in a semi-crystalline C form which changes to a 

classical A form at 75% RH. An a-D conformation is observed at 92% RH,

75% 92% 98%

A— D— B
Relative Humidity

FIGURE 6.2 The sequence of transitions observed in the 
sodium salt of poly d(A-T).poly d(A-T).

after a period of annealing at this humidity. A semi—crystalline B form 

is induced at 98% RH. The reverse sequence, as indicated in Figure 6.2 is 

not identical to the forward sequence: the D form can be recovered from 

the semi-crystalline B but it seems that the A and C conformations can by_ 

no means (even by rewetting of the fibre) be recovered from fibres which 

have undergone the forward sequence into the D conformation. The D form 

thus emerges as a particularly stable conformation which is interconvertible 

with a high humidity B but not with the lower humidity A and C forms. Another 

interesting feature of the behaviour of poly d(A-T).poly d(A-T) is found
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pi A T C  f i  O' The vario u s  conform ations seen  to  occur in a  single fib re  
of KF poly d (A -T ) .p o ly  d (A -T )  as  a function of re lative  
humidity.
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in the polymorphism of its potassium salt. This has been observed to 

undergo a sequence of transitions that is schematically represented

95% 98% Relative Humidity

q  — D -  — p  — D v - — B

so that poly d(A-T).poly d(A-T) is evidently capable of adopting two 

distinct D conformations.

The fact that the C and A forms of the sodium salt cannot be 

retrieved upon rewetting is puzzling - the conformation present in the 

rewet gel is evidently not the same as that in the original. The 

assumption that DNA usually adopts a 'B-like' conformation in solution 

has been based on many studies that relate to various native DNA's 

(Bram, 1971, a,b,c; 1972; Griffith, 1978, Levitt, 1978; Hogan et al.,

1978), but recent work has shown not only the presence of left-handed 

DNA in some crystalline oligomers and in solution, but also evidence of 

its existence in the cell (see Section 6.1.1 and associated references).

It is tempting to suggest that the rewet gel may contain left-handed 

molecules in contrast to the original which is presumed to contain right- 

handed helices. However, this idea is obscured by the observation that 

such a gel produces a fibre which is composed of D molecules: these are 

supposedly right handed (Arnott et al., 1974). It is almost totally 

inconceivable that left-handed molecules prevailing in solutions should 

crystallise into an array of right-handed helices in a fibre. However, if 

D-DNA was itself left-handed then the behaviour of poly d(A-T).poly d(A-T) 

as outlined in Figure 6.2 would almost make sense. In terms of this 

hypothesis, one final question then remains: what is the nature of the high 

humidity B form which should in principle be very similar to the gel state 

which ensues upon rewetting?



- 141 -

Whilst all these observations and ideas relating to the structure 

and transitions of poly d(G-C).poly d(G-C) and those of poly d(A-T) . 

poly d(A-T) are of great interest in themselves, there is a further 

interesting point Id  be made from a comparison of the two sequences as 

outlined in Figures 6.1 and 6.2. It can be noted that apart from the 

details of the reverse sequence, the two polynucleotides show similar 

behaviour: the S and the D conformations emerge (by comparison) as 

analogues and have many features in common. Both S and D are difficult to 

acquire from conformations assumed to be right-handed, and when they are 

finally obtained, both are very stable. Another fairly striking similarity 

is the fact that both S and D have distinguishably different variants 

although in D these are observed in the presence of a different cation 

(potassium) . The diffraction patterns obtained from the Ŝ. and structures

are compared in Plate 6.3, and those obtained from the a-D and 8-D conforma­

tions in Plate 6.4. It is possible that the Sj and S.^ structures may 

correspond to the Ẑ. and Z^j structures of Wang et al., (1981). The

and S  ̂molecules are both observed in hexagonal lattices, but the pitch 

of (45.3A) is 7% larger than that of Ŝ . (42.8A) . The a-D and g-D 

structures pack into different lattices (the former tetragonal with 

a = b = 17.OA, c = 24.1A and the latter hexagonal with a = b = 21.2A and 

c = 25.4A) and there is again a 7% difference between the pitches of the 

two conformations.

Whilst the observations expressed in this section suggest that 

the D and S forms could be thought of as analogues, there is no definitive 

evidence to prove that these alternating purine/pyrimidine duplexes have any 

more in common than the features of their chemical behaviour that have already 

been outlined. However, the experiments do provide enough stimulus to 

consider the possibility (given that S-DNA is thought to be left-handed) of

D-DNA being left-handed.
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PLATE 6.3 Photographs comparing the SjQeft) and (right) diffraction
diagrams as ohseryed from a fitire of KF poly dCG’-C) .poly d(G-C)



WM
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PLATE 6.4 Photographs comparing the or-D (left) and g’-D (right) diffraction 
patterns taken from a fibre of KP poly diA^T).poly d(A-̂ T)
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6.1.3 Models that have been suggested for D-DNA

The first D conformation to be observed was the a form in 

the sodium salt of poly d(A-T) .poly d(A-T) (Davies and Baldwin, 1963).

These authors observed that many different conformations (A, D, A/D 

mixtures, B) could be obtained from one fibre and that transitions could 

occur between these forms as a function of KH. A report by Arnott etal.

(1974) suggested that the D form was observed in conditions of minimal 

retained salt. In the same article, Arnott et al. emphasised the 

similarity between the patterns obtained from Na poly d(A-T).poly d(A-T) 

and those obtained by Mitsui et al. (1970) from Na poly d(I-C).poly d(I-C). 

They also asserted that they had obtained similar diffraction data from 

poly d(G-C).poly d(G-C). Mitsui et al. (1970) proposed a left-handed 

double helical model with Watson-Crick base pairing as a structure compatible 

with the observed data. The model had 8? symmetry and a helix pitch of 

25.01A. The authors claimed that all attempted right-handed models were 

inferior both in terms of agreement with the x-ray data and overall stereo­

chemistry. Arnott et al. C1974) rejected this model and used a least- 

squares linked-atom refinement procedure (LALS) to generate right-handed 

models having 81 symmetry and resembling the B form. The conformational 

parameters of such B and D models are supplied in the Appendix. This D model 

was proposed to explain diffraction from all the alternating purine/ 

pyrimidine polynucleotides mentioned above.

Gupta et al. (1980) and Ramaswamy et al. (1982) have surveyed 

a variety of right and left-handed models for ot-D-DNA and conclude that on 

the basis of fibre diffraction data alone, it is not possible to express 

strong preference for either the best left or the best right-handed models 

that have so far been generated. Drew and Dickerson (1982) have published 

a left-handed model for the a-D data which has 7& symmetry and Hoogsteen 

base pairs, and which they claimed to provide better agreement than any



models hitherto published. However, in a recent publication, Mahendrasingam 

et al. (1983) gave an account of a systematic study of Na poly d(A-T). 

poly d(A-T) in which they make it clear that the diffraction observed 

on the seventh layer line is due to the 107 and 117 reflections rather 

than the 007 (see Plate 1.5) and that, as such, there must be eight 

residues per helix pitch rather than the seven supposed by Drew and 

Dickerson.
Mahendrasingam et al. (unpublished) have also generated 8^ 

models which are in better agreement with the observed diffraction than 

the currently accepted right-handed model of Arnott et al. (1972). These 

authors emphasise the need to exercise caution in asserting the handedness 

of this molecule and also suggest that the structure is likely to have a 

more complex asymmetric unit than the mononucleotide repeat that has 

thus far been assumed. A molecular model for D-DNA having a dinucleotide 

repeat is currently being developed in this laboratory.

The first report of the B-D conformation came from Arnott et al. 

(1975) in relation to a study of the sodium salt of poly d(A-T-T). 

poly d(A-A-T). These workers found that the B~D form occured in fibres 

when the humidity was between 85% and 0% on the return half of a humidity 

cycle. Above 85% they observed a semi-crystalline B conformation. The 

authors gave no indication of what happened in the first half of the 

humidity run. Arnott et al. (1975) claimed that a-D-DNA and B-D-DNA 

were isomolecular and differed only in lattice packing. They generated 

another 'B-like' model to fit the B“D data (see Appendix for model 

parameters).
The remainder of this chapter is now used to describe the results 

and conclusions drawn from an analysis of a B-D diffraction pattern obtained 

from KF poly d(A-T).poly d(A-T) by Dr. A. Mahendrasingam in this 

laboratory. The best right and left-handed models for B-D-DNA are
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compared with those for a-D-DNA, and finally a comparison is drawn between 

the left-handed D models and the left-handed S models in a bid to pursue 

the question of analogy between the two.

6.2 THE STRUCTURE OF g-D-POLY d(A-T).POLY d(A-T)

6.2.1 Experimental

The poly d(A-T).poly d(A-T) was purchased from Boehringer, 

and the material was prepared by precipitation from 0.1 M KF solution.

X-ray d if f r a c t io n  photographs were recorded using an E l l io t t  GX6 ro ta tin g  

anode generator in  conjunction w ith a S earle  camera and E l l io t t  to ro id a l 

op tics . The la t t ic e  was measured using a t ra v e llin g  microscope and 

in te n s it ie s  were ca lcu lated  from traces produced by a Joyce-Loebl 

m icrodensitometer.

A variety of left- and right-handed models were generated: 

initially measurements were taken from scaled models, but these were 

later refined to include precise covalent stereochemistry using a model­

building program as described in Chapter 2. These models were varied so 

as to minimise agreement indices R and R' as per equations 2.1 and 2.2

6.2.2 Results
The full 3-D-DNA pattern obtained from KE poly d(A-T).poly d(A-T)

is shown in Plate 6.5. The lattice was found to be hexagonal with

a = b = 21.2A, c = 25.4&. These figures were obtained by incorporating the 
reciprocal space measurements of all clear Bragg reflections and refining

the lattice parameters to give best fit with this data. The observed 

and calculated p values are given in Table 6.1 along with the observed 

relative intensities and the corresponding structure amplitudes.

6.2.2.1 Best Right Handed (RH) Models

A number of right handed models were generated such that base

displacement, base orientation and conformation angles were varied to
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PLATE 6.5 A B-D diffraction Pattern obtained from a fibre of 
KF Poly d(A-T).poly d(A-T).
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PLATE 6. 5 A B-D diffraction Pattern obtained from a fibre of 
~ KF Poly d(A—T).poly d(A-T).
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REFLECTION
(HKL) p obs 

(A'1)
pcalc
(A-1)

obs obs 
(Arbitrary 
units)

100 0.0543 0.0547 4473 3861

101 0.0675 0.0674 3073 3200

111 0.1021 0.1026 394 1147

201 0.1169 0.1162 1036 1858

211 0.1500 0.1500 297 996

102 0.0955 0.0959 426 1192

112 0.1229 0.1232 2544 2912

202 0.1343 0.1347 1814 2459

103 0.1311 0.1302 1754 2418

113 0.1507 0.1514 4343 3805

203 0.1603 0.1610 2432 2847

114 0.1840 0.1838 2915 3117

204 0.1920 0.1917 3523 3427

o
Lattice hexagonal with a = b = 21.2A

c - 25.4^

TABLE 6.1 The observed and calculated p values, observed intensities and 
observed structure amplitudes measured from the pattern shown 
in Plate 6.5.
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optimise agreement with the observed diffraction. The best agreement 

index was obtained from the Arnott model itself, which has a structure 

reminiscent of B-DNA but in which the helices are very much more tightly 

wound about base pairs displaced 1.8A from the helix axis. Although the 

bases alternate between A and T down a given chain, the model maintains 

a regular phosphodiester backbone characteristic of a mononucleotide 

repeat. Figure 6.3 shows the cylindrically averaged squared transform of 

this model. The observed and calculated structure factors are shown in 

Table 6.2. The overall stereochemistry is satisfactory in all respects 

other than a rather short intrahelical contact of 2.4$. between the 

deoxyribose C  ̂and phosphate 0^.

Whilst the residual, R, of 28% for this model is reasonably 

low, there are some problems with the x—ray fit in regions corresponding 

to the (102), (112), (202) and (212) reflections. This is a defect that 

was acknowledged by Arnott et al. (1975) who claimed that the fit could 

be drastically improved in this region by making trivial changes to the 

furanose ring geometry. A variety of changes to the ring puckering were 

attempted hy the author, but it was found that the overall fit could not 

be improved without severely deleterious stereochemical effects.

6.2.2.2 Best Left-Handed (LH) Models

Much the same approach towards molecular modelbuilding was 

applied to the construction of left-handed D models, starting from general 

deductions relating to an overview of the intensity distribution as a whole, 

followed by gradual refinement to improve the x-ray fit thereafter. The 

first LH models had 5'3' polynucleotide backbones: no model having 

satisfactory overall stereochemistry provided adequate agreement with the 

x-ray diffraction data.

Follow ing the work o f Mahendr as ingam (1984) , Greenall (1982) 

and that o f  Hopkins (1981), models were then developed such that the chain
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i S I

FIGURE 6,3 Cylindrically averaged squared transform of the Arnott D model 
(Arnott et al., 1974) shown here with a superimposed index grid 
such that a = B = 21.2A, c = 25.4A.
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REFLECTION
(HKL)

F t. ohs
(ARBITRARY UNITS)

F , calc
(ARBITRARY UNITS)

Cioo) 3861 3678

(101) 3201 2710

(111) 1147 1515

(201) 1858 2362

(211) 996 1985

(102) 1192 2539

(112) 2912 1852

(202) 2459 1226

(103) 2418 2431

(113) 3805 4446

(203) 2847 3796

(114) 3117 2306

(204) 3427 2698

R = 28%

TABLE 6.2 The structure factors calculated from the Arnott D model
---------  (Arnott et al., 1974) compared with those observed from the

¡3-D pattern shown in Plate 6.5
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direction was 3'5' (referred to by Greenall as 6 stacking) instead of 

5'3' (referred to as a stacking). Several very good models were produced, 

the best of which had bases displaced so that D = 0.2^, tilted about 

the diad by 8¿° and twisted by 10°. The residual of 16.2% compares very 

favourably with all the other right and left-handed models thus far 

mentioned. Figure 6.4 shows the cylindrically averaged squared trans­

form of the model, and the observed and calculated structure factors are 

shown in Table 6.3. The discrepancy between F ^  and Fcalc for the (211) 

reflection is noticeably large, but an inspection of Plate 6.5 indicates 

clearly that this reflection should (if such a scheme were used) be 

given a very low 'weighting' and as such, the discrepancy is not serious. 

The coordinates of the model are given in Table 6.4 (see Appendix for 

torsion angles). The overall stereochemistry of this model is 

satisfactory, with no intrahelical or interhelical contacts shorter than 

2.65A. Figure 6.5 shows representations of the best EH and LH models 

in different perspectives.

6.3 DISCUSSION AND CONCLUSION

The behaviour of poly d(A-T).poly d(A-T) has been reviewed and 

compared with that of poly d(G-C).poly d(G-C). Although both polymers 

show comparable behaviour in a number of respects, that of poly d(A T). 

poly d(A-T) is outstanding in the total irreversibility of one section 

of its polymorphism (see section 6.1.2). It has become apparent very 

recently that results from scanning microcalorimetry studies of 

poly d(A-T).poly d(A-T) in solution provide a very interesting corollary 

with this behaviour. Hinz and co-workers (private communication) have 

noted that there is an exceptionally high heat of enthalpy (AH) associated 

with the first transitions observed (presumably as a function of alcohol

content in the solution - the details of this work have not yet been
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FIGURE 6.4 Cylindrically averaged squared transform of author's best LH 
model. The superimposed index grid is hexagonal such that 
a = b = 21.2A, c = 25.4A.
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REFLECTION
(HKL)

F _ obs
(ARBITRARY UNITS)

^calc
(ARBITRARY UNITS)

(100) 3861 3694

(101) 3201 2873

(111) 1147 1822

(201) 1858 1652

(211) 996 2073

(102) 1192 1785

(112) 2912 2240

(202) 2459 2056

(103) 2418 2640

(113) 3805 3720

(203) 2847 2633

(114) 3117 3698

(204) 3427 3261

Residual, R, = 16.2%

TABLE 6.3 The observed and calculated structure factors for the best 
LH model
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PHOSPHATE

DEOXYRIBOSE

ADENINE

THYMINE

TABLE 6

ATOM
o

R(A) f(°)
oZ(A) 0

X(A)
o

Y (A)

P 8.95 42.0 0.35 6.66 5.99
01 8.63 52.1 0.15' 5.30 6.82
02 8.98 37.6 -0.95 7.11 5.47
03 10.23 41.8 1.09 7.63 6.81
04 7.80 37.8 1.27 6.16 4.78

Cl 5.96 63.1 0.56 2.70 5.32
C2 6.29 52.5 -0.38 3.83 4.99
C3 7.70 55.7 -0.81 4.33 6.36
C4 7.86 66.8 -0.74 3.10 7.23
C5 7.62 71.9 -2.05 2.37 7.25
05 7.01 71.3 0.26 2.24 5.64

N1 1.10 27.1 -0.02 0.98 0.50
C2 2.44 25.9 -0.11 2.20 1.07
N3 3.44 41.9 0.05 2.56 2.30
C4 3.42 64.1 0.35 1.50 3.10
C5 2.69 85.9 0.48 0.19 2.68
C6 1.31 92.8 0.28 -0.06 1.31
N7 3.80 99.1 0.79 -0.60 3.75
C8 4.77 87.6 0.84 0.20 4.76
N9 4.68 71.3 0.62 1.50 4.43
N6 1.51 148.8 0.37 -1.29 0.78

4 Coordinates of the best LH model for 8—D-DNA. The associated 
torsion angles may be found in the Appendix. The diad related 
residue can be acquired by negating Y and Z. Successive 
nucleotides on one chain can be generated by applying a left 
handed screw operation of 45° and a translation of 3.18A.
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obtained). Transitions involving a similar value of AH are never recorded 

thereafter in much the same way that the C and A forms of this polymer 

are never recovered once the D form is established. Whatever resemblance 

D-DNA bears to the classical right-handed C and A forms, it is thus 

separated from them by some sort of energy of activation: the question 

of helix chirality again springs to mind.

It is pertinent at this point to introduce the problem of the 

dynamics and stereochemistry of transitions involving right-handed a 
stacked helices and left-handed 6 stacked molecules. Wang et al., (1979) 

visualised the B ■+ Z transition as involving a 'flipping' of bases 

through approximately 180° along with changes in the positioning of the 

base pairs relative to the helix axis and compatible modification in 

chain conformation angles. A similar scheme is readily visualised for 

transitions involving D-DNA, but as yet it is puzzling that D-DNA is 

more readily interconvertible with B than A. One (albeit tentative) 

explanation would be that the high humidity B form is also left-handed: 

the diffraction data obtained from this B are sufficiently semi-crystalline 

and ill defined to allow for such a possibility without necessarily 

destroying the concept of classical right-handed B-DNA in other polymers. 

Whether or not a similar argument could be applied to the polymorphism of 

the poly d(G-C).poly d(G-C) double helix is, at this stage, conjecture.

The fibre data and associated analyses conducted here leave 

little doubt that the left handed model for 6-D-DNA is superior in terms 

of its agreement with the observed diffraction. Further support to the 

concept of left-handed D models is provided by a previous analysis of the 

a-D conformation (Mahendrasingam, 1984). The Mahendrasingam model is very 

similar conformationally to the LH model described in this work (see 

Appendix). Whilst the 8-D data only provides 13 measurable reflections, 

the a-D pattern analysed by Mahendrasingam contains 39 reflections and the
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residual of 29% is thus very respectable.

The emphasis throughout this study has been on the handedness 

of D-DNA as a whole and 8-D-DNA in particular. Whilst the analysis of 

6-D-DNA in this work and of cx-D-DNA in that of Mahendrasingam (1984) 

supports a left-handed model for D structures, and as such, adds weight 

to the hypothesis extended in section 6.2, it is difficult to suggest 

a basis for analogy between S and D structures at a molecular level. A 

comparison of the two D models with the two S models (Hahendrasingam,

1984) reveals little bar handedness to show any direct structural analogy. 

The D models have an axial translation per dinucleotide of * 6.2^ whilst 

the S has * 7.4A. The rotation per dinucleotide in D-DNA is 90° whilst 

in S-DNA it is 60°. Both S-DNA and D-DNA have a novel 6 chain sense and 

although S-DNA has distinctive dinucleotide base stacking as compared with 

the mono-nucleotide of both LH D models, it is possible that future D 

models having a dinucleotide repeat may show similar features. In D-DNA 

the bases are displaced from the helix axis by distance of 0.2^ where 

in the S form they are arranged so that D -3.0A. The phosphorous atom 

lies % 9A distant from the helix axis in both D forms, whilst in S-DNA 

successive phosphorous atoms lie <v 6A and v 7°A radially away from the 
axis. The tilt and twist parameters (see Appendix) are totally different 

in the D and S forms. Figure 6.6. shows projections of the S , a-D 
and S D helices as seen in two different perspectives.

If the D forms of poly d(A-T).poly d(A-T) are left-handed, then 

it is possible that as in the case of S-DNA in G-C rich regions (see section 

6.1), there may be a specific role for D-DNA in A-T rich regions of 

chromatin. Further work on the D conformation is currently being undertaken 

in this laboratory by the author and his colleagues. Dinucleotide models 

for both a and B forms are being refined. Recent experimental work at the 

Daresbury SRS has produced a D pattern the quality of which is unsurpassed
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by any nucleic acid fibre diagram (see Plate 1.10) and which will,

without a doubt, enable the handedness of the conformation to be

irrefutably determined. The pattern has crystalline reflections out 
o

to less than 2A and should even permit some of the water in the structure 

to be resolved.

The evidence for the left-handed helices in the alternating 

co-polymers poly d(G-C) and poly d(A-T) is now strong enough to speculate 

on existence of left-handed structures in the polynucleotide poly d(A-C). 

poly d(G-T). As mentioned in the introduction, there is some evidence 

that S-DNA occurs in this duplex, although the quality of the data 

is poor and it seems equally possible that the conformation is actually 

D or something distinct from either S or D. The main problem with this 

investigation is in the acquisition of high quality material: that which 

was used to obtain the lithium C' patterns described and analysed in 

Chapter Four was obtained from Dr. J. Brahms at the University of Paris, 

but unfortunately, supplies appear to be limited. The corresponding 

polymer as obtained from the Sigma Chemical Company is not of sufficient 

quality for this sort of work, and although that supplied by PL Chemicals 

Limited has not previously merited detailed study, their material will 

shortly be sampled again.



CHAPTER SEVEN

THE EFFECT OF PROFLAVINE ON THE TRANSITIONS OF 

THREE DIFFERENT POLYNUCLEOTIDES

7.1 INTRODUCTION

The acridines dyes are cationic planar aromatic compounds and 

have attracted much attention because of their ability to bind to nucleic 

acids and to act as frame shift mutagens. The structures of these 

molecules are of further interest in that they resemble a number of 

powerful carcinogens. Many acridine drugs are bacteriostatic and this 

has found extensive clinical application. Proflavine and acriflavine 

are still used in the treatment of minor wounds. The ability of the 

acridines to stain nucleic acids has been, and still is, exploited by 

cytogists. Whilst many of the properties and applications of these molecules 

have been well known for some years, it was only the advent of the double 

helical model for DNA that provided a molecular basis for the interpretation 

of such phenomena.

One of the first studies of proflavine/DNA interaction was that of 

Peacocke and Skerratt (1956) who used spectrophotometric and equilibrium 

dialysis methods to investigate the binding processes involved. The 

spectrophotometric method has been particularly productive. These authors 

suggested the existence of two binding methods and hinted strongly that 

proflavine intercalation was one of them.

These results were put on a firm foundation when the work of Lerman 

(1961, 1963) and Luzzati et al. (1961) suggested a theory of interaction 

in which local unwinding of the sugar phosphate backbone accommodated 

for the intercalation of proflavine between bases
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of the double helix (see Figure 7.1). This model was based on in vitro 

studies of proflavine and acridine orange in which binding to nucleic 

acids was noted to cause observable changes in their physical properties - 

most notably an increase in viscosity (due to lengthening and stiffening 

of the molecules) and also a decrease in sedimentation coefficient. The 

amino group reactivity of proflavine was found to diminish upon binding 

and this further supported the intercalation model. This theory has 

greatly contributed to the understanding of the binding behaviour of many 

drugs and of their biological properties. Intercalation models have since 

been constructed to explain the binding to DNA of other molecules such as 

the trypanocidal drug ethidium bromide (Fuller and Waring, 1963) and the 

anthrocycline antibiotic daunomycin (Pigram, Fuller and Hamilton, 1973).

More direct evidence for intercalation has been supplied by the autoradiography 

studies of Cairns (1962) in which it was observed that the length of T2 

phage DNA molecules increased from ^ 50 pm to % 72 pm so that v 44% of 

the potential spaces between base pairs were occupied. Temperature jump 

relaxation studies have detailed the kinetics of proflavine/nucleic acid 

binding and have shown that the initial reaction is the one external to the 

helix and that this is followed by intercalation (Li and Crothers, 1969),

The intercalation model is also supported by the x-ray diffraction work of 

Neville and Davis (1966) , The work of Blake and Peacocke (1968) confirmed 

the involvement of two binding methods r- one (the stronger) which was found 

to occur at relatively low drug levels in which the phosphate to drug ratio 

(P/D) was n, 5 and another weaker interaction which was observed right up 

to the electroneutrality limit at which P/D = 1. Both binding methods 

were found to diminish with ionic strength, but the second (weaker) 

interaction more so than the first. This implied that the second method 

of binding had a greater electrostatic component than the first.

Acridines also self-aggregate extensively around nucleic acids 

(Bradley and Wolf, 1959) and it has been shown that many of them dimerise
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FIGURE 7 The intercalation model of Lerman. The left-hand side 
shows native DNA, the base pairs being represented as 
discs. The right-hand side represents drug molecules 
intercalated between base pairs (from Uaring, 1968).
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in solution and in the solid state. Studies on T2 bacteriophage DNA 

tend to corroborate this idea. The DNA of this virus has a much weaker 

external binding with proflavine and this is presumed to be a result 

of the fact that T2 DNA is glucosylated and hence prevents the stacking 

of proflavine that normally occurs in the major grooves of other DNA 

(Li and Crothers, 1969).

The influence of base content in the binding of acridines is 

still not conclusively established. Fluorescence quenching analysis of 

acriflavine bound to different DNA's has shown that the binding constant 

appears to increase with increasing A“T base content (Tubbs et al., 1964). 

Viscometric and temperature jump relaxation work by Ramstein et al.

(1972) also tends to confirm this. These authors showed that the 

increase in length of the DNA molecule upon intercalation was greater 

for A-T rich DNA's (e.g. Clostridium perfringens DNA having v 70% A-T) 

than it was for G-C rich DNA's (e.g. Micrococcus lysodeikticus DNA 

having 72% G-C). Kinetic analysis work (Li and Crothers, 1969) suggested 

that the external binding of proflavine to DNA is more prevalent in G-C 

rich regions than it is in A-T ones.

Neidle et al. (1977) have undertaken a single crystal study of 

a proflavine-cytidylyl-3'-5'-guanosine complex, and have detailed the 

intercalation and external binding in these crystals at atomic resolution 

(see Figure 7.2). Berman et al. (1979) verify this model and note that the 

intercalation of proflavine between bases seems to involve minimal unwinding. 

These workers maintain that only two torsion angles (6 and x - see Figure

1.7) need change appreciably to allow inter-base separation to be extended
_ o ofrom 3.4A to 6.8A.

A variety of different models have been suggested to explain the 

frame shift mutagenic activity of the acridines. It was originally 

suggested by Lerman (1964) that intercalation occurred on one strand only 

during replication. However, this model has been largely abandoned on the



(a)

™ -URJ; Two views of the proflavine-cytidylyl-3'-5 '-guanosine compl 
viewed (a) perpendicular to the helix axis and (b) down the helix axis 
(from Neidle and Berman, 1983).
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basis that there is no correlation between mutagenic activity and 

replication (Drake, 1964). The approach of Stersinger et a l . (1966) has 

been more successful. By this model, acridine molecules stabilize 

'looped-out1 regions of DNA which occur in the first instance as a result 

of a strand break (a strand break could occur by misrepair or during 

replication). Peacocke (1969) has suggested that the acridines cause 

miscopying of DNA by intercalation into either the old or new strand 

causing respectively insertion or deletion of a base pair, and claimed 

that his modified model of intercalation (Pritchard, et al., 1966) 

provided a molecular basis for such action. Crick and Brenner (1967) 

have produced genetic evidence to show that acridine induced nutations 

do indeed correspond to insertion or deletion. Another model for 

mutagenesis is due to Streiber and Duane (1974) and suggests that only 

a G-C pair can initiate a frameshift, this premise then governing the 

occurrence of additions and deletions.

7.2 THIS WORK

Proflavine is thus an acridine that has been extensively studied 

in relation to native DNA by means of a variety of different techniques. 

Furthermore, its implication as a frame shift mutagen provides a unique 

approach to the problem of relating molecular structure to molecular 

function. This project aimed to survey the effect of the dye on the 

transitions of KF poly d(G-C).poly d(G-C) and those of KF poly d(A-T). 

poly d(A-T). Both these polymers are normally found to undergo a fairly 

dramatic sequence of transitions as a function of relative humidity and are 

here examined in the presence of proflavine. The activity of a Micrococcus 

lysodeikticus DNA/proflavine fibre is also examined. The emphasis through­

out the study is largley qualitative, and relates more to the effect of 

provflavine on the scheme of transitions rather than direct structural effects.
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The work was undertaken mainly to establish the possibilities that exist 

for future definitive investigations.

No ultraviolet absorption studies have been undertaken to establish 

phosphate/drug ratios, and when quoted, P/D values reflect crude calculations 

and are supplied only as guidelines. The rarity and expense of high 

quality poly d(G-C).poly d(G-C) has justified the reuse of material from 

previous studies and this has inevitably had an effect on the quality of 

diffraction data obtained from such samples. Proflavine was supplied in 

the form of proflavine hemisulphate. Diffraction patterns were recorded 

at each of the humidities 33%, 44%, 58%, 66%, 75%, 84%, 92%, 98% for every 

sample except where stated. No underfilms were used: this has resulted in 

some loss of data, and is described where appropriate but does not affect 

the conclusions reached concerning the effect of proflavine in the 

transitions. Fibres of DNA/drug complexes usually produce diffraction 

patterns that have considerably less detail than those of the polymer by 

itself, and the pictures shown here bear ample testimony to this. The 

molecular disorder that is evident in such patterns can be attributed 

either to effects of Random1 intercalation or to significant external 

binding, or both (Neville and Davies, 1966) .

7-3 FIBRES MADE FROM M.LYS0DE1KT1CUS DNA/PROFLAVINE 

7.3.1 Experimental

Micrococcus lysodeikticus DNA (originally stabilized with the 

sodium ion) was purchased from Boehringer. 2 mg of this DNA were allowed 

to dissolve in 2 ml of water over a period of 24 hours. 2 ml of 5 mM 

proflavine hemisulphate solution were then added. The resulting mixture 

was shaken thoroughly and left to stand overnight, after which it was 

centrifuged at 60,000 rpm for 12 hours. A fibre was then drawn from the 

concentrated gel using methods described in Chapter 2.
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7-3 -2 Results and Discussion

Fibres made from the sodium salt of native DNA's are

ordinarily found to undergo a sequence of transitions as represented 
below:

75%RH 98%RH
C ^ -= ± A ^ = ± -B

The incorporation of proflavine into this material resulted in an expected 

decrease in the internal ordering of the fibre, and made quantitative 

(and even qualitative.') assessment of the effect of the drug quite 

difficult. The most representative data of the set are displayed in 

Plate 7.1. Plate 7.1(a) was recorded at 33% RH and shows what should 

normally be at this humidity be a C pattern. However, the absence of 

detail in this picture demands further clarification. The layer lines 

are very badly defined and the pitch cannot be determined without making 

unwarranted assumptions about the symmetry of the molecule. The transla­

tion per residue is, however, clear and is calculated to be 3.33 A. The 

position of what should be the (110) reflection of a hexagonal lattice can 

also be measured and turns out to be such that ^  + 0.064 T 1 implying

that the hexagonal cell side is % 31.2A. The ratio of p . /p is
merid'M110

this value is very close to that measured from C patterns and totally 

distinct from such a ratio in hexagonal or orthorhombic B patterns. On the 

basis of the features mentioned above and of the position of this conforma­

tion in the humidity run, it thus seems safe to assume that this structure 

imilar to C DNA. It is not possible to determine the extent or nature 

of any bonding that may be occurring between this molecule and proflavine.

An increase of relative humidity results in the emergence of 

some of the features normally associated with A-DNA (see Plate 7.1(b) for 

the most clearly defined pattern). The pitch, as determined from the first 

two layer lines, is 28.1A. However, the pattern lacks the characteristic 

higher layer line definition of A-DNA (see Plate 1.1). The badly defined
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meridional occurs in a region corresponding to a spacing of % 3.2A and 

not the -v 2.6A expected for a normal A form. Although the higher layer­

line diffraction could, in fact, correspond to that from B-DNA, it has 

no corrollary on lower layerlines (especially the equator), as would be 

expected if some sort of mixture was occurring. It is possible that the 

pattern of Plate 7.1(h) represents an unusual distortion of the A helix 

induced by effects exterior to the molecule. Another possibility is that 

it represents a C/A mixture or intermediate (see 8.4.1).

A semicrystalline B form (as in Plate 7.1(c)) is observed at 

98% RH: this helix has a pitch of approximately 41A (as determined from the 

second layer line) and a rise per residue of % 3.4A. This extended pitch 

suggests that intercalation has occurred so that there are two base pairs 

for every one turn of the helix. The intermolecular separation is difficult 

to measure from this pattern since an underfilm was not used during the 

exposure, but it is approximately 23A. Wycoff (1955) has suggested that 

acridine dyes may bind in the large groove of DNA and maintains that this 

could cause a lateral shrinkage of the lattice : this behaviour has also

been noted by Neville and Davies (1966). There is no evidence of such a 

shrinkage in this example, although the high water content of the fibre 

may prevent it anyway.

The results of this study illustrate a number of points that 

could be of value in relation to more definitive future studies. Firstly, 

it seems that proflavine, without actually intercalating, affects the 

acquisition of the A form. This presumably occurs by electrostatic effects 

outside the helix, and it is tempting to compare this observation with the 

effect of the lithium ion, which is suspected of preventing the occurrence 

of A-DNA altogether. This study has suggested that the C ^ A ^ B  

transitions of DNA are significantly perturbed by the presence of proflavine.

The A -*• B section of this polymorphism which is thought to be significant
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in replication processes (Arnott, Fuller, Hodgson and Prutton, 1968) 

is of special interest in the context of different models for frame- 

shift mutagenesis (see section 7.1).

7,4 FIBRES MADE FROM KF POLY d(G-C) .POLY d(G-C)/PROFLAVINK

7.4.1 Experimental

The poly d(G-C).poly d(G-C) was obtained in gel form from 

Dr. J. Brahms at the University of Paris. It was originally prepared 

by precipitation from 0.1 M KF. Fibres drawn from this material by 

Dr. A. Mahendrasingam indicated that it was of exceptionally high quality 

T^6 B^ — -A transitional sequence (as mentioned in 6.1.2) was

investigated in the first instance and (as a result of the scarcity of 

the material) fibres that had been used to maximum advantage for that 

purpose were then re-used for proflavine studies. In this work, the 

existing fibre was rewet with 10 pi of ImM proflavine hemisulphate. The 

low concentration (1 mM) was chosen so as to avoid local precipitation 

effects. The low volume (10 pi) was used out of practical necessity.

The phosphate to drug raio (P/D) was estimated as being 50. The 

fibre was re-drawn as described in Chapter Two.

7.4.2 Results and Discussion

A fibre of KF poly d(G-C).poly d(G-C) prepared in the right 

conditions of ionic strength (see Mahendrasingam, 1984) will give the 

sequence of transitions as outlined in Figure 6.1 and repeated here: 

B " ^ = i A  S ----  ̂R

Fibres having slightly higher levels of KF are found to omit the A form 

so that the sequence is then:

B V.'
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Fibre diffraction data recorded from the fibre used in this study is 

summarised in Plate 7.2. Three distinguishably different conformations 

are observed, corresponding to the B", S and B forms respectively. No 

A pattern was recorded at any stage in the sequence. Measurements from 

these photographs indicate that the B" molecule has a pitch of 33A, a 

separation per residue of % 3.3A and that adjacent molecules are 

separated by v ISA. The S form appears to have a pitch of 43A, a 

translation per residue of % 3.4A and an intermolecular separation of

' 22-4A- The high humidity B form has a pitch of % 33.5&, a translation 

per residue of % 3.3A and its molecules are separated by % 19A. Within 

the range of experimental error, all these parameters are the same as 

those normally expected from the B", S and B conformations. It is 

pertinent to note here that the P/D ratio is such that intercalation effects 

could only be expected to produce (at the most) a pitch increase of v 0.2A. 

The diffraction data recorded here does not enable resolution of such a 

small change. It thus seems that the addition of a small amount of pro­

flavine to this fibre has had a similar effect to that observed upon a 

slight increase in the amount of KF, and as such implies an external and 

electrostatic mode of interaction.

This study of poly d(G-C).poly d(G-C) in relation to proflavine 

was restrained by the scarcity of the material, and is clearly deficient 

in that it does not investigate drug interaction at lower P/D ratios. It 

is possible that the P/D ratio can be decreased without eliminating the 

S form or causing an unacceptable level of disorder in the fibre. Any 

evidence of interaction of acridines with S-DNA will be of great interest 

firstly from a structural point of view and secondly in that it may 

further illuminate the functional role of this conformation in vivo (see 
section 6.1.1).
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7-5 FIBRES OF KF POLY d(A-T).POLY d(A-T)/PROFLAVINE

7.5.1 Experimental

The poly d(A-T).poly d(A-T) used here was purchased from 

Boehringer and was known to be stabilized by sodium chloride. About 

0.9 mg of this material was mixed with -v 4 mi of a 10 mM solution of 

potassium fluoride and allowed to dissolve overnight. The solution was 

then centrifuged for 12 hours at 60,000 rpm and the sedimented gel used 

to prepare a fibre. This fihre was found to undergo the sequence of 

transitions that has been mentioned in 6.1.2, i.e.
95% RH 98% rh

ot-D — r * 6-D ---  B

as a function of relative humidity. It was desired to investigate the 

effect of proflavine on this sequence and therefore the remaining gel 

(which was estimated to contain ^ 0.7 mg of DNA) was redissolved in 2 ml 

of water (overnight) and then 0.5 ml of 1 mM proflavine hemisulphate was 

added. The rest of the tube was topped up in preparation for centrifuga­

tion and the effective concentration of the proflavine was calculated to 

be % 0.1 mM. The solution was centrifuged as described above and a fibre 

was drawn which was thought to have a P/D ratio of % 35. Diffraction 

patterns were recorded as described in Chapter Two and 7.2.

The gel remaining from above was again redissolved but this time 

with a greatly increased proflavine concentration (4 ml of 2.5 mM proflavine 

added to -v 0.5 mg of DNA). The mixture was allowed to dissolve overnight 

and then centrifuged as described previously. The P/D ratio here was 

estimated to be -v 2. Diffraction patterns were again recorded.

7.5.2 Results and Discussion

The first fibre produced a set of diffraction patterns as 

summarised in Plate 7.3 and showed no sign at all of being perturbed by 

the presence of proflavine in these concentrations. Plate 7.3(a) shows an
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a-D pattern, 7.3(b) a mixture of a-D/g-D diffraction, and 7.3(c) a 

semi-crystalline B form. It is believed that a good g-D pattern could 

have been obtained from this fibre but the humidity conditions necessary 

for its stabilization are delicate and were not obtained here. Plate 

7.3(a) shows the a-D pattern to have a pitch of 23 .2 k and an inter- 
molecular separation of 17.4&. The higher layer line meridional

corresponded to a base separation of 2.9A. All these values compare well
. o owith other a-D forms having a = 17.2A, c = 24.OA (Mitsui et al., 1970;

Arnott et al., 1974; Mahendrasingam, 1983). Plate 7.3(b) shows the

a-D/g-D mixture obtained at 75% RH: all the parameters associated with

the lattices evident on this pattern are standard (see 6.1.2 and table

6.1) and there are no detectable signs of drug interaction. At 98% RH,

a semi-cyrstalline B pattern was obtained: this was found to have a
. . . . . . . .  . ocharacteristic B intensity distribution with a pitch of 34.1A, an inter-

. 0 . 0 molecular separation of 23.4A and a residue separation of •v 3.4A.

The second fibre, believed to have a P/D ratio of v 2

produced diffraction patterns two of which are shown in Plate 7.4. The

immediately noticeable features are the almost total loss of crystallinity

and a considerable loss of orientation. Plate 7.4(a) shows what should

correspond to the D pattern of Plate 7.3(a). As far as can be discerned,
. o

this conformation has a pitch of % 25A, an intermolecular separation of

v 18& and a rise per residue of v 3.5A, There are some features of this

pattern that are possibly more distinctive of the F pattern mentioned in

Chapter 1 and displayed in Plate 1.8, although the quality of the

data makes this very little more than speculation. The B pattern (Plate

7.4(b)) that was obtained at 98% RH was again poorly defined but appeared

to have a helix pitch of v 34A, an intermolecular separation of v 23X
oand a residue separation of ^ 3.4A. In addition, there are features (see 

regions marked 'A' and 'B' on Plate 7.4(b)) that pertain to the previous
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D form of plate 7.4Ca) but which persist even after long periods at this 

high humidity. Given the high drug content of this fibre it is also 

unusual for no intercalation to have occurred.

7.6 FURTHER STUDIES

The studies described here were preliminary experiments to assess 

the value of a more extensive systematic investigation into the effect of 

acridines in general, and proflavine in particular, on a selection of 

polynucleotides. To date, no detail has been provided on the interaction 

of acridines with D and S-DNA and whilst this work has not provided such 

detail, it does provide a basis for further experiments in more controlled 

conditions. The results from poly d(G-C)-poly d(G-C) are interesting but 

inconclusive since the drug content of the fibre was too low to produce 

detectable effects on the observed diffraction other than possibly inhibiting 

transitions. It is believed that the quality of the diffraction outlined 

in 7.4.2 and shown in Plate 7.2 can be improved by using fresh material.

A systematic examination of the polymorphism of this polynucleotide as 

a function of proflavine content could further elucidate the biological 

significance of (G-C) rich regions of DNA. The results obtained from poly 

d(A-T).poly d(A-T) also warrant further study. The fact that the B form of 

this polymer did not allow intercalation with proflavine at such high drug 

levels is puzzling since it has been asserted that proflavine binds 

preferentially to A-T rich regions (Tubbset al., 1964).

There is a large amount of information available on the molecular 

conformation of nucleic acids and this is a unique situation in the study 

of drug receptors. Because most of the definitive fibre diffraction data 

on acridine/nucleic acid complexes has been recorded from random sequence 

DNA, molecular models have therefore tended to represent an ’average' 

polynucleotide chain in which subtle differences in conformation are not
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detected. The availability of synthetic polynucleotides such as the two 

described here has illustrated that sequence effects may well promote 

differences in structural behaviour and it is likely that these differences 

will be of significance to the way in which acridine complexes are formed.



CHAPTER EIGHT

DYNAMIC TRANSITIONS WITHIN FIBRES AND TIME RESOLVED 

X-RAY MEASUREMENTS

8.1 INTRODUCTION

Work outlined elsewhere (see sections 1.4.1, 1.4.2, 6.1) has 

indicated that some of the conformations identified in single crystal, 

fibre and solution scattering studies of DNA are observed in nucleosome 

structures and in the intact cell. It is possible that the extensive 

polymorphism of nucleic acids is implicated in the remarkable structural 

behaviour of chromatin throughout the cycle of the mitotic (and meiotic) 

cell. The dynamics of DNA in the fibrous and liquid states is thus of 

crucial interest to our understanding of the biomolecular operation of 

genetic material in vivo. Whilst x-ray fibre diffraction has isolated the 

physical conditions necessary to observe certain discrete conformations, 

little is known about the transitions that occur between these structures 

and the role that water and ions must play therein. Such transitions in 

fibres are likely to depend not just on effects prevailing at the molecular 

and crystallite levels of organisation (see section 3.5) but also on 

features relating to the fibre and its surroundings as a whole. It is of 

obvious interest to investigate the stereochemical pathways associated with 

transitions known to occur in random- and repetitive-sequence DNA's, 

especially those that may involve a change in helix sense.

It has not hitherto been possible to observe transitions directly 

by x-ray diffraction since the use of low intensity conventional x-ray 

sources and relatively slow films has required long exposure times. However,
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the recent availability of very high intensity synchrotron and storage 

ring sources, fast data acquisition systems and electronic x-ray detectors 

has reduced to the order of seconds the exposure times needed to identify 

the DNA conformation within a fibre. Since these samples are made up of 

many crystallites each containing an array of molecules (see section 3.5). 

and since the fibre as a whole will require time to 'conduct' water 

through its cross section, it is clear that diffraction changes observed 

as a function of time should be interpreted with some caution: for 

example, the stereochemistry of a transition could occur either as a result 

of the whole molecular population changing cooperatively in a particular 

way, or as a result of changes in the number of molecules (or even 

crystallites) undergoing rapid 'flips' from one molecular structure,

(say A-DNA) to the next (say B-DNA). Hence it is quite feasible that 

many different effects are manifest in the diffraction data so obtained, 

and it is thus of great important that the independent physical variable 

associated with a given transition (usually relative humidity) is very 

carefully controlled. The implications of such time-resolved studies 

are of intense interest: carefully recorded data can be used firstly to 

assess the dynamics of various transitions and secondly to detail plausible 

molecular models which can be generated to satisfy 'intermediate' diffraction 

data.

The study that is described in this chapter reports the preliminary 

results from the first real-time studies on the conformational changes 

within DNA fibres as a function of time, using both film and a two-dimensional 

x-ray detector.

8.2 THE SYNCHROTRON RADIATION SOURCE (SRS) AT SERC DARESBURY LABORATORY,
WARRINGTON, ENGLAND

The overall layout of the SRS is shown in Figure 8.1, together with 

its operational characteristics. The experimental apparatus was situated



FIGURE 8.1 Plan of the Daresbury Synchrotron Radiation Source and
summary of operational parameters (from Lea and Munro, 1980)
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at the small angle 

was beam ports 7.2 

chromatic and well 

Figure 8.2.

scattering (SAS) station which, on different occasions, 

and 7.3. The optical system whereby highly mono- 

focussed x-radiation is produced is shown in

21m

FIGURE 8.2 Schematic diagram showing the vertically focussing mirror (11 m
from the source) and the Ge or Si crystal monochromator (21 m from 
the source) which performs 10:1 focussing in the horizontal 
direction and yields highly monochromatic (AX/X = 10-3) radiation. 
(From Greenhough and Helliwell, 1983) .

8.3 EXPERIMENTAL

8.3.1 The Material

Calf thymus DNA was obtained from the Sigma Chemical Company.

The poly d(A-T).poly d(A-T) and poly d(G-C).poly d(G-C) were purchased 

from Boehringer. Gels were prepared by centrifugation from solutions 

having known ionic strength. All fibres used here were prepared by 

Dr. A. Mahendrasingara using methods that are well documented (Fuller et al.,
J

1967; Chapter Two of this work) and in conditions cited where appropriate.
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8.3.2 The Diffraction Camera

The x-ray camera was designed by Dr. W.J. Pigram and built 

in the Physics Department at the University of Keele. A photograph is 

shown in Plate 8.1. It is constructed with pinhole collimation and has 

a melinex near window, on which the backstop is mounted. This system 

enables the use of either film (single cartridge/rotating carousel) or 

the area detector (see section 8.3.3), or both simultaneously. The camera 

and associated equipment is available to other users on the SAS beamline.

The design at the moment will have to be modified to accommodate a smaller 

specimen to detector distance when used with the MWPC. The camera itself 

was filled with helium to avoid air scatter and the relative humidity of 

the fibre environment was adjusted by passing this helium through 

appropriate saturated salt solutions (see 2.3.3). A small water bath in 

the camera with an immersion heater was used to attain high humidities as 

required. The temperature and relative humdiity in the region of the fibre 

were measured from a Vaisala HMP 31UT probe positioned in the service collar 

of the camera. Such measurements were not taken as accurate on an absolute 

scale since the effects of the helium inside the camera on the operation 

of this device was uncertain.

8.3.3 The Two Dimensional X-ray Detector

The multi-wire proportional chamber was built in the Rutherford 

Appleton Laboratory by Bateman et al. (1982) and has a spatial resolution of 

approximately 0.3 mm x 1.0 mm. Although worse than film it is adequately 

matched to the beam size and diffraction broadening due to fibrous samples. 

Digital data from the detector is stored in a fast histogramming memory 

which at present may be sliced into 32 sections each containing 256 x 512 

pixels. The section to which data is mapped may be changed as the experiment 

progresses thus allowing 32 "time-slices" to be collected. A recognisable
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PLATE 8.1 Photograph showing the MWPC and diffraction camera in position 
on beam port 7.3 at the Daresbury SRS.
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PLATE

I

8.1 Photograph showing the MWPC and diffraction camera in position 
on beam port 7.3 at the Daresbury SRS.



PLATE 8.1 Photograph showing 
on beam port 7.3 at

the MWPC and diffraction 
the Daresbury SRS.

came ra i n position
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image could he collected in about 10 seconds but in general each frame was 

60 seconds long. The data may be displayed as it is collected on a 

continuously refreshing t.v. screen and thus recorded on videotape. Plate

8.1 shows the MWPC positioned behind the camera on beam port 7.2. The 

video monitor for the device is shown in Plate 8.2, along with the 

LSI 11/22 microcomputer.

It is important to emphasise that the diffraction data described 

here was for the most part recorded before the MWPC was cleaned at the 

Rutherford Laboratory. The spatial resolution of the chambers was hence 

significantly lower than specified. The correction for the response of the 

MWPC has not been incorporated into the results shown in this work, nor has 

any image processing been applied to the data. It was accepted at the 

outset that the results obtained would at first only supply an idea of 

the MWPC's potential and of some of the problems related to its efficient 

use rather than any definitive data. Recorded data is displayed so that 

the scale of the 'x-axis' is twice that of the 'y-axis'. This results in 

some geometrical distortion of the image as observed on the monitor, but 

is not a problem inherent in the stored data itself. One of the problems 

that was encountered very quickly during these experiments was that of 

dealing with old data while new data was accumulating. When full, the 

16 M byte Winchester disc had to be offloaded down a transfer line to the 

VAX 760 and this incapacitated further data storage for a period of three 

hours. As a result of this, although some of the data displayed was 

recorded on videotape it was not collected in digital form on magnetic tape. 

The camera design as of present means that the specimen-to-detector distance 

is necessarily larger than desired and photographs do not show complete 

diffraction patterns. However, the detector was on occasions rearranged so that 

data from one complete quadrant of a fibre diagram was collected.

A full account of the detector, associated electronics and software



PL
AT
E 

8.
2 

Th
e 

vi
de
o 

mo
ni

to
r 

fo
r 

th
e 

MW
PC

 a
bo
ut
 w

hi
ch

 i
s 

se
en
 v

ar
io
us
 

it
em
s 

of
 h

ar
dw

ar
e 

co
nn
ec
te
d 

to
 a

n 
LS
I 

11
/2
3 

mi
cr

oc
om

pu
te

r 
wh
ic

h 
dr
iv
es
 

th
e 

de
vi
ce
.



187

PL
AT
E 

8.
2 

Th
e 

vi
de
o 

mo
ni

to
r 

fo
r 

th
e 

MW
PC

 a
bo
ut
 w

hi
ch

 i
s 

se
en
 v

ar
io
us
 

it
em
s 

of
 h
ar
dw
ar

e 
co
nn
ec
te
d 

to
 a

n 
LS
I 

11
/2
3 

mi
cr

oc
om

pu
te

r 
wh

ic
h 

dr
iv
es
 

th
e 

de
vi
ce
.



PL
AT
E 

8.
2 

Th
e 

vi
de
o 

mo
ni
to

r 
fo
r 

th
e 

MW
PC
 a

bo
ut
 w

hi
ch
 i

s 
se
en
 v

ar
io
us
 

it
em
s 

of
 h

ar
dw
ar
e 

co
nn
ec
te
d 

to
 a

n 
LS
I 

11
/2
3 

mi
cr

oc
om

pu
te

r 
wh
ic
h 

dr
iv
es
 

th
e 

de
vi
ce
.



188

will be given elsewhere (Greenall et al., in preparation).

8.4 TRANSITIONS IN POLY d(A-T).POLY d(A-T)

8.4.1 The Sodium Salt

The conditions in which the sodium salt of poly d(A-T) .poly d(A-T) 

undergoes the reversible sequence C^rA^ rC are now reasonably well 

established (Mahendrasingam et al., 1983).

Two separate experiments were performed to assess the dynamics 

of these transitions in fibres. In the first instance the whole sequence 

was observed both on film and on the area detector. This data has since 

been used to develop a preliminary model of the C ; ^ A  part of the sequence.

In the second experiment, the Ar^-R transitions were examined on the MWPC.

In each case the experiments proceeded by gradual changes in the relative 

humidity of the fibre environment (see 2.3.3 for details). In the case 

of diffraction recorded on film, exposures were completed every ten minutes. 

The area detector was used as described in 8.3.3.

8.4.1.1 The Complete C^=*A^±:B sequence

The whole sequence as observed on detector and film is shown in 

Plates 8.3 and 8.4 respectively. It is evident that whilst the C:i=i'A 

transition occurs over a fairly wide range of EH and shows evidence of 

structures that could be regarded as 'intermediates', the same cannot be 

said of the A^=iB transition. The Â zi-B part of the sequence occurs over 

a very small range of RH and at no stage shows evidence of anything other 

than 'mixtures' of the initial and final conformation. (See Plate 8.3(h). 

Some preliminary measurements on the data relating to the C^c±A transitions 

have been made and are outlined in the following section.
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PLATE 8 .3  A  s e le c t io n  o f  p a t te rn s  o b s e rv e d  fro m  a f ib r e  o f  p o ly  d (A -T ).p o ly  d(A -T ).
The C to  A  tra n s it io n  Is  e v id e n t, a n d  th e re a f te r  th e  A  to  B  tra n s it io n  c a n  be

seen. The d iffrac tion  photographs were reco rded  a t the Daresbury SRS.



PL
AT
E 

8.
4 

Ph
ot

og
ra
ph
s 

fr
om
 t

he
 v

id
eo
 d

is
pl
ay
 o

f 
th
e 

ar
ea
 d

et
ec

to
r 

sh
ow
in
g 

th
e 

C 
■+ 

A 
-*■ 

B 
tr
an
si
ti
on
s 

in
 t

he
 s

od
iu

m 
sa
lt
 o

f 
po
ly
 d

(A
-T
) 
.p
ol
y 

d(
A-
T)
 

(S
ee
 s

ec
ti
on
 8

.4
.1
)



PL
AT
E 

8.
4 

Ph
ot

og
ra
ph
s 

fr
om
 t

he
 v

id
eo
 d

is
pl
ay
 o

f 
th
e 

ar
ea
 d

et
ec

to
r 

sh
ow
in
g 

th
e 

C 
A 
-> 

B 
tr
an
si
ti
on
s 

in
 t

he
 s

od
iu

m 
sa
lt
 o

f 
po
ly
 d

(A
-T
) 
.p
ol
y 

d(
A-
T)
 

(S
ee
 s

ec
ti
on
 8

.4
.1
)



- 191 -

8.4.1.2 The Transition

The data shown in Plates 8.3, 8.4 indicate that the transition 

from C -*■ A involves a relatively smooth variation of pitch from % 29/30i( 

to ^ 28%. The change of pitch is plotted as a function of time in Figure 

8.3. It is appreciated that this graphical profile is obviously one that 

should he expressed as a function of relative humidity and as such the time 

variation should not be taken too literally. Layer line traces (made using 

a Joyce-Loebl microdensitometer) were recorded for the equator and the 

first two layer lines of each of four patterns and are shown in Figure 8.4

Whilst the change in pitch was an expected feature of this 

transition, the results seen in Figure 8.3 do show that there is significant 

decrease in pitch well before the A form becomes established. This accords 

well with the general belief that the C-conformation is capable of some 

variation (Leslie et al., 1980). What is not clear is whether or not this 

flexibility plays any part in transitions from the C to other forms.

Table 8.1 shows the observed p values from the initial C pattern

recorded. Calculated p values are also shown for an orthorhombic lattice 
. . „ o o ohaving a = 20.0A; b = 14.8A; c = 28.7A. The pattern is indexed on the 

basis of the first, second and third layer line reflections. The 

equatorial reflection does not index onto the orthorhombic lattice which 

is quite different in dimensions from the one reported by Marvin et al.

(1961) for lithium C-DNA. It is thought possible that this reflection is 

actually due to diffraction from B-DNA; it remains throughout the sequence 

even when the A-form materialises into its fully crystalline monoclinic 

lattice (whose 100 reflection should be systematically absent) and can be 

clearly seen in Plate 8.3(g). Plate 8.3(g) also shows evidence of meridional 

diffraction from B-DNA. In other respects diffraction on the equator shows 

a change from that characterised by C-DNA to the more 'hollow cylinder' type 

of diffraction exhibited by A-DNA. This change appears to be closely
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31

30 • •

P U C K A )

29

28-

-C -F O R M - -A -F O R M  ■

Wiii,SrE|' "" "» “ “ «> 'So

FIGURE 8.3 Change of helix pitch plotted as a function of time 
during the C -*■ A transition.
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accompanied by the shift in hase tilt from % -6° to ■v 20°, as is evident 

from an examination of the higher layer line structure of the patterns 

seen in Plates 8.3(a) -*■ (g). On the first layer line, Figure 8.4 and plate

8.3 show the change in the region of ( = 0.05A_1 which initially contains 

the (101) reflection of the C form, hut which eventually comes to contain 

the (111), (021), and (111) reflections of A-DNA. There is also a parallel 

swelling in the region for which ? = 0.1A_1 where the (131), (201), (131), 

(201), (041) and (221) reflections of the A form occur. The second layer 

line shows an increase in the magnitude of both the first and second 

maxima. The observation of these effects is enhanced by greatly increased 

crystallinity

The results obtained during this experiment show that the humidity 

of the fibre environment was inadequately controlled and that the transition 

was probalby induced too quickly. Although the change from C to A can be 

established quickly, it is doubtful that useful information relating to 

intermediate structures can be obtained in this way.

Despite the fact that the humidity control during this experiment 

was a little cumbersome, the results have enabled a preliminary model for 

the C — ?A transition to be developed. It is thought that the first part 

of the change involves the shifting and tilting of the bases. Thereafter, 

observations from the first, second and third layer lines indicate a change 

in the value of (6-if>) from -v 60° in C-DNA to ^ 117° in A-DNA. Developments 

in humidity control and measurement are now in progress and it is hoped that 

high quality data will soon be recorded which will enable this transition 

to be accurately detailed.

8.4.1.3 The A^z±B transition

An investigation of the A^p±B transition was undertaken 

at a later stage. This transition occurs over a very narrow range of relative
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humidity (> 99.0% ->- % 99.5% as measured in hélium with the Vaisala probe

and details of any molecular change are thus difficult to establish. As

can be seen from Plates 8.5(a) - (e), the first sign of change from A to

B is the appearance of the (100) reflection from B-DNA. This reflection

increases in intensity as the transition proceeds and is accompanied by

loss of the crystallinity normally associated with the A-DNA lattice (see

Plates 8.5(e) - (g)). Plate 8.5(h) shows an A/B mixture of the sort

previously seen in plate 8.3(h). Plates 8.5(i)-(m) show the remainder of 
. . o , .the transition: the 3.4A meridional from B-DNA emerges and the higher 

layer line definition of A-DNA disappears. The reverse sequence is seen 

in Plates 8.5(n)-(r) and shows a very similar behaviour as the B form 

reverts to the A. The higher layer line structure of A-DNA reappears 

followed by the lower layer line definition and overall crystallinity.

The last part of the B pattern to disappear is the (100) reflection.

8.4.2 The Lithium Salt

It is well known that the lithium salts of many DNA's are 

characterised by polymorphism in which the crystalline A form has not been 

observed, but in which crystalline B conformations are frequently adopted 

(see 1.4.2). The lithium salt of poly d(A-T).poly d(A-T) can be made to

undergo the Cj^crystalline B ~--- ^spthi crystal 1 inp B sequence as a function

of relative humidity. The exact conditions of ion concentration in the 

fibre that are required to obtain this sequence are not well described 

although Mahendrasingam (private communication) has estimated that such 

samples contain ^ 0.6 Li+ and CÎ. ion pairs per DNA P0^ . The fibre used in 

this study was prepared by centrifugation from a 5 mM lithium fluoride solution, 

containing 1.2 mg of poly d(A-T).poly d(A-T). The fibre was initially 

humidified at 33% RH and this was gradually increased to 'v 100% RH. The 

reverse sequence was also observed. This work was done before the detector
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chamber had heen cleaned and the diffraction data shown here illustrates 

the MWPC operating well below specification. At low relative humidity, 

a C conformation was clearly identified (see Plate 8.6(a)). As the relative 

humidity was increased, a crystalline B form was observed (Plate 8.6(b)) 

and finally at ^ 100% RH, a semicrystalline B form was seen (Plate 8.6(c)).

An attempt was made to reduce the humidity so as to recover the crystalline 

B in more detail, but shortage of beam time made for a clumsy return to the 

low humidity C.

8.4.3 The Rubidium Salt

The polymorphism of fihres made from Rb poly d(A-T).poly d(A-T) 

is distinct from that of either the sodium or the lithium salt of this 

polynucleotide. Neither the C nor the A conformations are obtained, but 

instead a very crystalline D form prevails up to v 95% whereupon it under­

goes a transition to semi-crystalline B-DNA. The sequence is not totally 

reversible in that the structure recovered upon reduction of relative 

humidity is not fully crystalline - instead a poorly defined D pattern 

is ohserved.
Owing to shortage of beam time the transition from D to B was 

not observed on the MWPC. However, a few timeslices of the crystalline D 

form at lower humidities were stored on magnetic tape and suffice to 

illustrate the chamber working at its best. Hate 8.7 shows a pattern of 

the rubidium D form as photographed from the Sigma 'Args' terminal of the 

VAX 760 computer at Daresbury.
Although incidental to the issue of transitions the acquisition 

of a high quality D pattern from a heavy atom salt of poly d(A-T) comes at 

a time when concern over the handedness of D-DNA is greatest (Mahendrasingam 

et al., 1983; Mahendrasingam, 1984; Fuller et al., 1984; Forsyth, unpublished) 

It is hoped that a comparison of this D data with similar quality patterns





Polymorphism of lithium poly d(A-T).poly d(A-T) as viewed 
on the video monitor of the MWPC. (a) C-DNA ('v 33% RH) ,
(b) Crystalline B-DNA (A< 75% RH) ; (c) Semicrystalline B-DNA
(<v 98% RH)

PLATE 8.6
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Polymorphism o f  lithium poly d(A-T) poly d(A T) as viewed 
on the video monitor o f  the MWPC. (a ) C-DNA (-v 33% RH);
(h) C rysta ll in e  B-DNA (n, 75% RH) ; (c )  Semicrystalline B-DNA
(n, 98% RH)

PLATE 8.6
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The D conformation of Rb poly d(A-T).poly d(A-T) as 
photographed from the Sigma 'Args' graphics terminal in 
the data acquisition room at Daresbury. This can be 
compared with the pattern shown in Plate 1.7.
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PLATE 8.7 The D conformation of Rb poly d(A-T).poly d(A-T) as
photographed from the Sigma 'Args' graphics terminal in 
the data acquisition room at Daresbury. This can be 
compared with the pattern shown in Plate 1.7.
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obtained from the sodium salt (Mahendrasingam et al., 1983; Mahendrasingam 

1984) will enable the rubidium ions about the D helix to be located and 

as such to further detail the structural role that ions play in the 

transitions of DNA molecules. Work of this sort has already been described 

(Skuratovskii et al., 1979; Bartenev et al., 1983) in which attempts have 

been made to locate the positions of the caesium ions around B-DNA. The 

D data from the MWPC and the data analysis software that is currently being 

developed by the Daresbury Laboratory computing staff will greatly facillitate 

this analysis.

Whilst it is very likely that the accurate analysis proposed above 

will be based on data from high resolution x-ray film, this particular 

experiment has been used to assess the resolution capacity of the area 

detector, and in particular its performance in discerning variation in 

diffraction as a function of time.

8.5 TRANSITIONS IN POLY d(G~C).POLY d(G~C)

8.5.1 The Lithium Salt

Fibres can be drawn from the lithium salt of poly d(G-C).poly 

d(G-C) such that they exhibit polymorphism involving the C and B 

conformations (Mahendrasingam, 1983). The fibre used in this study was 

the same one that was used by Mahendrasingam during his work on this salt.

It was originally perpared by centrifugation from a 5 mM solution of lithium 

fluoride and was estimated to contain ^ 0.6 Li and F ion pairs per DNA 

nucleotide. The X-ray fibre diagrams obtained by Mahendrasingam are shown 

in Plate 8.8. A semi-crystalline C form occurs up to relative humidities 

of % 75%. At 85% RH, a very crystalline B form is obtained but the crystallinity 

is lost at about 95% RH and the pattern then obtained is almost identical 

to the other semi-crystalline B forms obtained from poly d(G-C).poly d(G-C)

salts (see Plate 5.1(f)) •
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PLATE 8.8 Fibre diagrams obtained from the lithium salt of poly d(G-C) . 
poly d(G-C): (a) C-DNA; (b) Crystalline B-DNA;
(c) Semicrystalline B-DNA (from Mahendrasingam, 1984)
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(c) S e mi c r y s t a l l i n e  B-DNA

PLATE 8.8 Fibre diagrams obtained from the lithium salt of poly d(G-C) . 
poly d(G-C): (a) C-DNA; (b) Crystalline B-DNA;
(c) Semicrystalline B-DNA (from Mahendrasingam, 1984)
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The relative humidity of the fibre environment was gradually 

increased from v 66% to 'v 95%. The observed sequence was found to differ 

from that described by Mahendrasingam in that no crystalline B conformation 

was observed at intermediate relative humidities. The humidity ’run’ was 

repeated but at no stage was there any sign of the conformation corresponding 

to Plate 8.8(h). A few selected time frames photographed from the MWPC 

videotape are shown in Plate 8.9. It thus seems that either some change has 

occurred within this fibre during the period separating the two experiments, 

or that the acquisition of this crystalline form requires long periods of 

annealing at intermediate humidities.

One feature that is very apparent from cursory inspections of 

Plates 8.8, 8.9 is the similarity between the semi-crystalline C and B forms 

of this polymer. The two patterns are distinguishably different on t = 1 

in the region for which £ :0.1o£ 1 but on the whole are very similar in 

other regions which there is definitive diffraction. The small changes involved 

in the sequence from C-DNA to this 'G-C rich' (see 5.1 ) B form provide an 

ideal starting point for molecular modelbuilding studies of this transition.

Such studies are now in progress.

8.6 TRANSITIONS IN CALF THYMUS DNA 

8.6.1 The Lithium Salt

The transitions found to occur in the lithium salt of calf 

thymus DNA are well described (Marvin, 1960; Marvin, 1961) . Fibres that 

have 0.5 Li ions per nucleotide are found to adopt a C conformation at 

low humidities. This C conformation can pack into either an orthorhombic 

lattice (at lower humidities ^ 44%) or a hexagonal lattice (^ 66%). At 

higher relative humidities (^ 98%) a semicrystalline B form is obtained.

A fibre of lithium calf thymus DNA was examined with the area
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detector over a period of two hours. The diffraction obtained from this 

sample at various relative humidities is shown in Plate 8.10. All the 

C patterns seen here appear to be hexagonal and it seems that the starting 

humidity in this run was too high to observe the orthorhombic form. The 

first sign of a change to the semi-crystalline B form occurs at ^ 88% RH 
and a well characterised pattern is observed at 99.4% RH.

In section 8.4.1 the C^z^A and the A^±B transitions were 

compared. Whereas the C— >A transition showed evidence of intermediate 
structures, the A— >B only showed 'mixtures' of A and B. The experiment 

outlined in this section (and also the one describing Li d(G-C) in the 

previous section)examines the C^=iB transitions, and tends to suggest a 

relatively smooth transition from C-*  B. As the RH of the fibre environment 

was increased, there were changes in crystallinity and molecular transform: 

these were most noticeable on the first layer line but could also be seen 

on the second and third layer lines.

The C^z^B transitions are of particular interest to the author 

since there is some disagreement between the C models of Arnott et al., and 

those proposed by Marvin et al., (1958) and the author in chapter Four of 

this work. Although the C and B forms are more closely related than any 

other two conformations found to exist in DNA, the analysis of Chapter Four 

suggests that these conformations are markedly different. The data obtained 

here provide an opportunity to generate a model for this transition. Such 

a model would presumably involve a gradual change in base position so that
o O .D' (see Figure 1.10c) moved from v 3A in the C form to v 0.2A in B-DNA, 

coupled with a corresponding alteration in chain dihedral angles.

8.7 CONCLUSION

These studies have clealy emphasised a number of points. The use 

of the SRS has undoubtedly enabled a closer examination of transitions 

within fibres than has hitherto been available. In addition to providing
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9 9 4 %( B - D NA )

PLATE 8.10 The C -*■ B transition in the lithium salt of calf thymus DNA
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Q Q  DNA)

PLATE 8.10 The C -*■ B transition in the lithium salt of calf thymus DNA
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an added insight into already well known molecular structures, this sort 

of work furnishes invaluable detail relating to the conformational flexibility 

of DNA. It has also produced evidence that indicates the existence of 

'intermediates'. The MKPC has here been used to assess the details of 

particular transitions and to determine the conditions (and their stability) 

which are likely to be necessary to describe the stereochemical pathways 

for these different transitions. In section 8.6, the C A transition is 

seen to occur relatively slowly with evidence of intermediate structures.

By contrast, the A -*■ B transition seems to occur over a narrow range of 

relative humidity and therefore reaffirms the need for very well controlled 

conditions of humidity in the environment. The MWPC has thus 

illustrated that the dynamics of these fibre transitions necessitate the 

implementation of a humidity system that is both stable and 'tunable . The 

speed and ease with which different transitions are induced varies 

enormously and in all likelihood depends on many different factors operating 

at different levels of organisation.

The results of future studies will depend on the effectiveness of 

the experimental strategy used. The relative humidity of the fibre 

environment must be closely controlled and accurately measured. The 

large amount of two dimensional time resolved data needs to be reduced 

and processed efficiently. The problem of data transfer from the 

experimental workstation to the VAX computer is being investigated. The 

existing diffraction camera is being modified to accommodate for a somewhat 

shorter specimen to detector distance.

\



CHAPTER NINE

CONCLUSION

The fibre studies described here and elsewhere exemplify the 

conformational flexibility of a large variety of native and synthetic 

polynucleotides (see section 1.4). The structures of the classical A 

and B forms of DNA are well established and have not been examined in 

this work, but in Chapter Four the C' form has been analysed and is 

exposed as a robust and distinctive molecular structure which differs 

significantly from B-DNA (in contrast to the assertions of Arnott et al.). 

It is believed that C-DNA is capable of a 'smooth' and 'time resolvable' 

interconversion with the A and B fibre structures (see sections 8.4.1.2 

and 8.6 respectively) and there is scope for molecular modelling of 

these transitions.

Work on random sequence DNA (all the nucleotides of which can be 

expected to have a very similar structure) and on highly repetitive 

sequence polymers (in which consecutive nucleotides have different 

characteristic configurations) has illustrated the problems associated 

with assessing nucleic acid interaction with water and various types of 

ion. Although it is almost inevitable that experiments of this type tend 

to monitor the effects induced by one independent variable (such as 

relative humidity), it is very important to emphasise that no one condition 

should be considered in isolation. There are numerous examples that 

illustrate this point: the effect of hydrating a fibre depends not only 

on polynucleotide sequence but on the ionic strength within the sample; 

the effect of drugs on DNA depends on both ionic conditions and hydration
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(see Chapter Seven), and there is every reason to believe that the 

behaviour of other groups (such as amino acids, histone proteins etc.) 

will, in part, be influenced in a similar fashion.

The stereochemical basis for the interaction of such groups with 

nucleic acids will depend on the exact nature of the exposed hydrophilic 

and hydrophobic regions of the molecule, along with the availability of 

hydrogen bond donor and acceptor groups. In so far as conformational 

change affects these molecular properties it is obviously very important 

to establish the conditions necessary for the acquisition of all known 

nucleic acid conformations. The question of chirality in DNA is of 

significance since the existence of right“ and left~handed helices in vivo 

would appear to suggest distinguishably different functional roles for 

the double helix in biological environments. The D and S forms analysed 

and discussed in this work (Chapter Six) are of special relevance here.

That the S form is left-handed is widely asserted but, as yet, not 

irrefutably confirmed. The D form, by way of contrast, is generally 

thought of as being a right-handed helix: the x-ray fit obtained in section

6.2 and that of Mahendrasingam (1983) are thus both of direct interest to 

sequence related studies of DNA.

Molecular modelling has, over the years, developed in strides and 

bounds since the days in which the first wire models were constructed to 

explain diffraction from the A, B and C forms of native DNA. Computerised 

techniques now make the exploration of many different models fairly routine 

Although the best molecular models (in terms of agreement with diffraction 

data and overall stereochemistry) which have so far been produced are left- 

and right-handed double helices having Watson-Crick base pairs, there are 

a number of other models that merit serious attention. Some incorporate 

different base-pairing schemes (e.g. Hoogsteen, 1959) whilst others are 

not double helical but triple and even four stranded molecules. A model
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due to Rodley et al. (1976) involves short stretches of left- and right- 

handed DNA so that the whole molecule is side-by-side (SBS) in nature.

The main advantage of this model as compared to others is that it over­

comes the topological problem of strand separation that is inherent in 

the Watson-Crick scheme for DNA replication. Whilst these models do not 

provide the sort of agreement between observed and calculated diffraction 

(e.g. Greenall et al., 1979) that is afforded by the best double helical 

models, they are still of considerable stereochemical interest and cannot 

be discounted as possibilities for DNA in certain cytological situations. 

Examples of rather less dramatic departures from the conventional double 

helical models are the ’heteronomous', 'wrinkled' and 'pleiomeric' 

structures proposed by Arnott and his colleagues who suggest that DNA 

'surfaces' may signal what base sequences lie beneath them. The 'heteronomous 

model for B'-DNA has been examined in Chapter Five. Although the F form 

(recognised as similar to the D form - see section 1.4.4) has not been 

closely scrutinised in this thesis, Arnott et al. assert that this molecule 

is 'pleiomeric' in nature, has 43 screw symmetry and a hexanucleotide 

repeat. Whilst refreshingly exotic in concept, this right-handed 'pleiomeric’ 

molecule does not tally with the arguments and modelling described in 

Chapter Six.
It is likely that the experimental approach presently being adopted 

towards ascertaining the molecular structure and function of DNA will 

eventually provide enough information to secure a comprehensive knowledge 

of the way in which various chemical groups bind to and influence the 

behaviour of DNA. Such knowledge will not only provide greater detail 

relating to chromatin, sequence recognition, transcription and translation 

but will also provide a rational basis for the structured design of drugs 

which may specifically interfere with the operation of nucleic acids

(see Chapter Seven).
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The scope for future work is extensive. In addition to refining 

the existing techniques associated with conventional structure analysis 

and time resolved fihre studies, there also exists possibility of studying 

DNA transitions in solutions as a function of ionic concentration. It 

is very difficult to alter the ionic concentration within a fibre without 

disrupting the three dimensional order of the system; this sort of 

experiment can only be performed with solutions. Whilst x-ray scattering 

from concentrated solutions does not offer as much definitive information 

as is obtained from fibres, it does mean that measurements relate to 

DNA in what could he regarded as a more realistic environment. The 

application of the TV detector on the Wiggler at Daresbury Laboratory 

will mean that time resolved measurements on both fibres and solutions 

should enable a comprehensive picture of transitions in DNA to be 

established.

There also exist a number of experimental techniques that can be 

applied to the study of DNA and which have not, to date, been fully 

pursued. As propounded earlier, the exact position of ions and water in 

relation to the double helix is of great interest to workers in this 

field. The possibility of analysing diffraction data from heavy atom 

salts of DNA is one that has been investigated by Bartenev et al. (1983). 

Bartenev et al. maintain that cationic stabilization of Cs B-DNA occurs 

by the distribution of caesium ions equally between the large and small 

grooves of DNA so that there is a ratio of 1:1 between Cs and PC>4 groups. 

Such a method can equally well be applied to the C and A forms of heavy 

metal salts of DNA. Recently, Mahendrasingam (unpublished) has obtained 

the D conformation from caesium and rubidium salts of poly d(A-T).poly d(A-T). 

This data affords a unique opportunity to further investigate the D helix 

(see Chapter Six) amidst current concern over its handedness.
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At the SRS it should also be possible to utilize soft x-rays in
o

the region of the phosphorous absorption edge (5.787A) to calculate 

anomalous difference intensities and hence locate the phosphorous atoms 

in nucleic acid structures.

The availability of such innovative methods provides added impetus 

to the science of nucleic acid crystallography, and stands to produce a 

wealth of structural information. The interactive data analysis techniques 

that are currently being developed for fibre diffraction have been 

mentioned in passing (Chapters Two and Four) and will greatly facilitate 

structure determination.



APPENDIX

TABLE A.1

AN ANTHOLOGY OF MOLECULAR AND CRYSTAL PARAMETERS 

FOR CONFORMATIONS OF RELEVANCE TO THIS WORK

Torsion angles in this tahle are calculated in the manner of 

section 1.3 of this work.

The angle C defines the sugar pucker and is C3 -endo if 

X, t 80°, C2'-endo if C ^ 147°, and C3'-exo if 4 ^ 156 (see Arnott and

Hukins, 1972).
X  is sometimes expressed in terms of the atoms 05', Cl , N9, C8 

(angles marked with an or alternatively in terms of 05'. Cl', N9,

C4 (angles marked '**').

Y is the angle between the perpendicular to a base plane and the

helix axis.
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