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In this study, we use a focussed laser beam to control the electronic 

activity of N- and H-atoms in a dilute nitride Ga(AsN)/GaAs quantum well 

(QW). We find that the laser can be used to dissociate N-H complexes in 

hydrogenated Ga(AsN) thus enabling us to control the photoluminescence 

emission energy of the QW with submicron spatial resolution. The mechanism 

responsible for the dissociation results from the combination of thermal heating 

and photoexcitation phenomena.  

The H-distribution profile across the laser annealed region is probed by 

secondary electron imaging in a field-emission scanning electron microscope. 

The spatial distribution of H inside the annealed region is characterized by an 

inverted Gaussian with a minimum corresponding to a lower H-content.  

Our laser writing approach yields sub-micron resolution in the spatial 

manipulation of the electronic properties and can provide an alternative method 

to masking techniques for H-defect engineering and in-plane patterning of the 

band gap energy of interest for new nanotechnologies.   
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C 

    
Electron rest mass m0 9.10938  10-31 kg 

 
Permittivity in 
vacuum 

 
0 

 
8.85419  10-12 

 
 
 
Fm-1 
 
 

Plank constant ℎ 6.62617  10-34 
 
Js 
 

Reduced Plank 
constant (h/2) 

ℏ 1.05458  10-34 
 
Js 
 

    
Speed of light in 
vacuum 

c 2.99792  108 ms-1 
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Chapter 1 

 

Introduction 

The incorporation of a small concentration (~1%) of N-atoms onto the 

anion sublattice of a III-V crystal induces a large reduction of the band gap 

energy [1-2] and an unusual response to external perturbations, such as 

hydrostatic pressure [1]. On the other hand, H-atoms are highly mobile and 

reactive elements that passivate both deep and shallow crystal defects and 

impurities in semiconductors [3-4]. In particular, the incorporation of hydrogen 

in III-N-Vs acts to neutralize the electronic activity of nitrogen through the 

formation of N-H complexes, thus reversing the effect of the N-atoms on the 

band structure of the host crystal [5-7]. Recently, thermal annealing [8-10] and 

masking techniques [7, 11] were used to dissociate N-H complexes, thus 

enabling the control of the band gap energy of Ga(AsN) with sub-micron 

spatial resolution. 

This dissertation presents a novel technique and physical mechanism that 

enable a similar control. We control the electronic activity of N- and H-atoms 

in a Ga(AsN)/GaAs quantum well (QW) using a focussed laser beam. Our laser 

writing technique and micro-photoluminescence (PL) studies provide real-

time in-situ characterisation and control of the N-H complex dissociation and 

of the band gap energy of Ga(AsN). This technique yields sub-micron 

resolution in the spatial manipulation of the electronic properties and could 

provide an alternative route to masking methods for H-defect engineering and 
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in-plane patterning of the band gap energy [7, 11] for nanophotonics [12] and 

photovoltaics [13]. 

This dissertation is structured as follows. Chapter 2 discusses the effect 

of N- and H-atoms on the electronic properties of GaAs and includes a detailed 

description of N-induced compositional fluctuations, N-pairs and clusters, and 

N-H complexes in GaAs. 

Chapter 3 provides a brief overview of the sample growth, the 

hydrogenation technique, and experimental apparatus. 

Chapter 4 introduces the laser writing and thermal annealing studies. 

Light emitting sub-micron spots are produced by laser writing with different 

exposure conditions (time and/or power) and the thermal stability of these 

spots are investigated. Activation energies for the N-H complex dissociation by 

both laser and thermal annealing are determined.  

Chapter 5 presents the compositional and topographical studies of the 

laser annealed regions. The H-distribution profile across a laser annealed line is 

probed using secondary electron (SE) imaging in scanning electron microscopy 

(SEM). This profile is modelled using Fick’s equation for H diffusion in one 

dimension.  

Chapter 6 describes the low temperature and temperature dependent PL 

studies of an hydrogenated Ga(AsN) quantum well (QW). Energy levels of N-

pairs are identified. An unusual S-shaped temperature dependence of the QW 

peak energy is also described.  
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Chapter 7 concludes this dissertation by providing a summary of the 

main findings and a proposal for future studies.  

This dissertation contains two appendixes. Appendix A describes the 

derivation of the dependence of the electron effective mass of GaAs1-xNx on the 

N-content, x. Appendix B describes the electronic bound states of a 

Ga(AsN)/GaAs QW using the band anticrossing (BAC) model and a QW 

square potential model.  
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Chapter 2 

 

Effect of N- and H-Atoms on the Electronic Properties of GaAs                                                                                                                            

The controlled incorporation of impurities in a semiconductor crystal 

during or after the synthesis is routinely used to tailor electronic properties and 

has played a key role in the discovery of physical phenomena and their 

exploitation in device applications. Among various elements, nitrogen and 

hydrogen in III-V compounds have revealed intriguing effects of fundamental 

interest and technological importance. In this chapter we discuss the unique 

effect of nitrogen (N) and hydrogen (H) atoms on the electronic properties of 

GaAs. 

 

2.1 Nitrogen incorporation in GaAs 

During the last decade, III-V-N alloys such as InyGa1-yAs1-xNx, GaP1-xNx 

and GaAs1-xNx have received considerable attention due to their unique 

electronic properties and useful applications in optoelectronic devices [14]. In 

these alloys, the group V anions are partially substituted by a low concentration 

of highly electronegative N atoms [15] (see Figure 2.1a). In general, a smaller 

lattice constant increases the band gap; however, nitrogen causes a giant band 

gap bowing and tends to stretch and compress the neighbouring bonds [16], see 

Figure 2.1b. Moreover, a small amount (~ 1%) of N in III-Vs produces a 

considerable decrease in the electron mobility [17], an increase of the electron 

effective mass [18] and an unusual response to external perturbations, such as 
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hydrostatic pressure [1]. Many of these effects can be explained by a two-level 

band anticrossing (BAC) model in which the extended conduction band (CB) 

states of GaAs admix and hybridize with the localized N-level above the CB 

edge [1]. This model is described in the following section. 

 

Figure 2.1: (a) Unit cell of GaAs in which an As-atom is replaced by a N-atom to form 

Ga(AsN). (b) Dependence of the band gap energy on the lattice constant for III-V 

semiconductors. The solid and dashed lines are, respectively, the ternary compounds’ direct 

and indirect band gaps. The horizontal lines represent fiber-optical communication 

wavelengths (1.55 and 1.3 µm). Picture (b) reproduced from Ref [16]. 

 

2.1.1 Band anticrossing model of the dilute nitride Ga(AsN) alloy 

The unexpected red shift of the photoluminescence (PL) of the dilute 

Ga(AsN) alloy, instead of a blue shift, was firstly reported by M. Weyers et al. 

[19]. This discovery has opened an important question about the physical 

mechanism responsible for this unusual behaviour. S. Wei and A. Zunger [20] 

have explained the origin of this red shift and corresponding band gap 

reduction in terms of an optical bowing parameter which is largely dependent 

on the N-content. On the other hand, the two-level BAC model has explained 

the behaviour of many highly mismatched alloys (HMAs) and was originally 
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developed by W. Shan et al. [1] to describe the dependence of the band gap on 

composition and pressure for the InyGa1-yAs1-xNx alloy. The BAC model has 

predicted many interesting effects, such as an enhancement of the donor 

binding energy [21] and electron effective mass [17] due to N incorporation, 

which have been experimentally proved. 

 

Figure 2.2: Solid lines: calculated dispersion relationships for E± subbands of GaAs0.99 N0.01 

using the BAC model. Dashed lines: unperturbed energies of the N level (EN) and the GaAs 

conduction band. Picture reproduced from Ref [18]. 

 

The two-level BAC model is the solution of the degenerate perturbation 

theory applied to a system of localized and extended states, see Figure 2.2. 

Following W. Walukiewicz et al. [22], the interaction between these two types 

of states leads to the following eigenvalue problem  

ฬ
𝐸(𝑘) − 𝐸ெ(𝑘) 𝑉ெே

𝑉ெே 𝐸(𝑘) − 𝐸ே
ฬ = 0 ,                                                                          (2.1) 



Chapter 2: Effect of N- and H- Atoms on the Electronic Properties of GaAs        7 

where EM (k) and EN are, respectively, the energies of the GaAs CB host matrix 

and of the N level measured with respect to the top of the valence band (VB),  

VMN = ⟨𝑘|V|N⟩ is the matrix element describing the interaction between the 

localized N states and extended CB states, and V is the potential generated by a 

single N-atom on a substitutional site. The two possible solutions of this 

problem can be written as 

𝐸±(𝑘) =
ଵ

ଶ
ቊ൫𝐸ே + 𝐸ெ(𝑘)൯ ± ටቂ൫𝐸ே −  𝐸ெ(𝑘)൯

ଶ
+ 4𝑉ெே

ଶቃቋ.                    (2.2) 

If we assume that VMN is independent of k near the CB edge, then VMN can be 

written as  

𝑉ெே = 𝐶ெே𝑥
ଵ

ଶൗ  ,                                                                                           (2.3) 

where CMN is a constant dependent on the host matrix and x is the mole fraction 

of substitutional N. Therefore Eq. 2.2 can be also rewritten as 

𝐸±(𝑘) =
ଵ

ଶ
ቊ(𝐸ே +  𝐸ெ(𝑘)) ± ටൣ(𝐸ே − 𝐸ெ(𝑘))ଶ + 4𝐶ெே

ଶ𝑥൧ቋ.                  (2.4) 

 

Figure 2.3: Dependence of the band gap energy of GaAs1-xNx on x reported by different 

groups. The solid line is the best fit to the data with CMN = 2.7 eV. Picture reproduced from 

Ref. [15].  
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Figure 2.2 shows the energy dispersion E(k) relation for the 𝐸± 

subbands. Figure 2.3 illustrates the dependence of the band gap energy of 

GaAs1-xNx on x reported by different research groups, and the fit to the data by 

the BAC model with a coupling constant CMN = 2.7 eV [15] and a N-level EN = 

1.65 eV [1, 21-24].  

 

2.1.2 Electron effective mass in Ga(AsN) 

 

The incorporation of N in GaAs not only changes the band gap energy, 

but also it modifies the curvature of the energy-wave vector E(k) dispersion of 

the conduction band, thus changing the electron effective mass m*. The second 

derivative effective mass, m*, can be written as 

𝑚∗(𝑘) =  
ℏమ

ௗమா(௞)
ௗ௞మൗ

.                                                                                      (2.5) 

Using Eq. 2.5 and the k-dependence of the 𝐸ି(𝑘) subband in Eq. 2.4, we find 

that for Ga(AsN) the effective mass at k = 0 can be expressed as 

𝑚∗ =
ଶ௠బ

∗

቎ଵ ି 
൫ಶಿష ಶಾ(ೖ)൯

ට൫ಶಿష ಶಾ(ೖ)൯
మ

శ ర ಴ಾಿ
మ ೣ

቏

,                                                                     (2.6) 

where 𝑚଴
∗  is the electron effective mass in GaAs. For the derivation of Eq. 2.6, 

see Appendix A.  

Figure 2.4 shows the dependence of m* on x. In this Figure the value of 

m* is normalized to the value of the electron mass in vacuum (m0). 
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2.1.3 GaAs1-xNx/GaAs quantum wells 

 

In this section we describe the electronic bound states of a 

Ga(AsN)/GaAs QW using the BAC model and a QW square potential model. 

The height of the QW is V0 = Eg(GaAs) - Eg(GaAs1-xNx) where Eg is the band 

gap energy. The potential profile along the growth direction z is given by 

V(z)= ൝
V0            |z|>

a

2

     0            |z|<
a

2
   

,                                                                         (2.7) 

where a is the width of the QW centred at z = 0. 

The wave functions inside the well have even/odd symmetry and can be written 

as 𝜓(z) = 𝐶൛ୡ୭ୱ ௞୸
ୱ୧୬ ௞୸

, where 𝜀 =
ħమ௞మ

ଶ௠ೢ
∗  and 𝑚௪

∗  is the electron effective mass 

inside the well. 

Figure 2.4: Dependence of the electron effective mass on x in GaAs1-xNx calculated using the 

BAC model at T = 300 K (EN = 1.65 eV, EM (k = 0) = 1.424 eV [25], CMN = 2.7 eV and 𝑚଴
∗ =

0.067 𝑚଴).        
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Figure 2.5: Schematic diagram of a finite square Ga(AsN)/GaAs QW. 

 

Outside the well, 𝜓(z) = 𝐷 exp(±𝐾z), 𝜀 = V଴ −
ħమ௄మ

ଶ௠್
∗  and 𝑚௕

∗  is the electron 

effective mass outside the well. Hence the energy of the transition between the 

first QW electron subband ε1 and the top of the valence band is 

EQW = E
g
+ ε1,                                                                                                 (2.8) 

where Eg is the band gap energy of Ga(AsN). The value of EQW is affected by 

the Coulomb interaction between electrons and holes and is decreased by a 

small amount due to the exciton binding energy. In the discussions that follow 

we will neglect this small correction (< 5 meV) to the value of EQW. 

Figure 2.6 shows the dependence on x of Eg and EQW for a QW of width 

a = 6 nm. For the derivation of Eq. 2.8 and the values of EQW in Figure 2.6, see 

Appendix B. We note that the ground state electron energy ε1 is inversely 

proportional to the electron effective mass in GaAs1-xNx. However, despite the 

electron mass increases with x, ε1 does not decrease. This is due to the 

dominant increase of the QW potential height V0 with increasing x, thus 

leading to a larger value of ε1. 

V(z)

V0

0 a/2- a/2
z

GaAsGaAs Ga(AsN)
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Figure 2.6: Dependence on x of the band gap energy of GaAs1-xNx (Eg) and of the inter band 

transition energy of a Ga(AsN)/GaAs QW with a = 6 nm (T = 300 K). 

 

2.1.4 Compositional fluctuations in semiconductor alloys 

Compositional fluctuations in an alloy lead to a spatially varying 

potential and potential minima that can localize excitons. In turn this can lead 

to a statistical distribution of excitonic emission lines and a broadening of the 

optical spectra [26]. According to a simple model of exciton thermalization in a 

disordered potential, the photoluminescence (PL) peak position is red-shifted 

compared to the absorption peak by an amount (Stokes shift) given by      

−𝜎ா
ଶ/𝑘஻𝑇, where 𝜎ா is the standard deviation of the absorption line [26-27]. 

On the other hand the temperature dependence of the band gap energy is 

described by the Varshni law 

Eg(T) = Eg(0 K) - 
αT2

T+β
,                                                                              (2.9) 

where Eg(0 K) is the band gap at T = 0 K, and 𝛼 and 𝛽 are fitting parameters 
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[28]. Hence taking into account the Stokes shift, we can describe the T- 

dependence of the PL energy as 

Eg(T) = Eg(0 K)- 
αT2

T+β
-

ఙಶ
మ

kBT
.                                                                          (2.10) 

 

Figure 2.7: (a) PL spectra of a GaAsSbN/GaAs QW (sample E7), the dotted line is a guide to 

the eye. (b) Dependence of the PL peak energy on temperature for a GaAsSb/GaAs QW 

(sample R) and a GaAsSbN/GaAs QW (sample E7). The dotted lines are the Varshni fits. 

Pictures reproduced from Ref. [29]. 

 

According to Eq. 2.10, the values of Eg can exhibit a non-monotonic 

dependence on T and can either decrease or increase with increasing T. A more 

complicated scenario can occur if excitons cannot thermalize. At low 

temperatures, for kBT small compared to the height of the fluctuating potential 

barriers, the excitons remain trapped in local energy minima and cannot 

thermalize. Eq. 2.10 no longer describes the T-dependence of the PL energy. In 

this case, the peak position remains fixed or show a non-monotonic and 

complicated T-dependence [26] as shown in Figure 2.7a for a GaAsSbN QW 

(sample E7) [29]. The QW PL peak position shows a red-blue-red shift. In 

contrast, the QW PL peak energy of GaAsSb (sample R) is well described by 

the Varshni law. 
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Alloy compositional fluctuations can also cause anisotropic PL line 

shapes with a low energy PL tail due to recombination of excitons on localized 

states at low temperatures [30]. Theoretical studies report that the density of 

states associated with this tail, g(hυ), can be written as 

g(hυ) = g0exp ቄ-[(hυ - hυexc)/ε0]
3

2ൗ ቅ,                                                            (2.11) 

where g0 is a constant, hυexc is the recombination energy of the free exciton 

(FE), and 𝜀଴ is a characteristic energy [30-32]. The PL line shape, I(hυ), is then 

given by 

I(hυ)= β n0 g(hυ) τ(hυ) τR
-1 exp[Γ(hυ)],                                                      (2.12) 

where 𝛽 is the coefficient that describes the capture of the FE into the localized 

states, Γ(hυ) is a function of the localized energy hυ, and τ(hυ) is the lifetime 

of the localized exciton given by 

τ-1(hυ) = τR
-1{1+ exp[δ (hυm - hυ)]}.                                                              (2.13) 

Here τR is the radiative lifetime and 𝛿 and hυm are phenomenological 

parameters [30-32]. The PL spectra (open circle) for an InGaAsN QW at T = 

10 K is shown in Figure 2.8. The solid line is the fit to the data using Eq. 2.13.  

 

Figure 2.8: Low temperature PL spectrum of an In0.38Ga0.62As0.978N0.022/GaAs QW (open 

circle). The solid line is a fit to the data, as discussed in the text. ℎ𝜐௘௫௖  is the free exciton 

energy. Picture reproduced from Ref [32]. 
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2.1.5 Nitrogen pairs and clusters in GaAs 

In III-V-N alloys, the BAC model describes well the variation of the 

subband energies, E+ and E-, with the nitrogen content, x. However, it omits 

many interesting effects of the N on the band structure. A series of nitrogen 

related energy states can be found close to E- and E+ [33] due to the formation 

of N pairs and clusters [33]. Pair of N-atoms can replace an As-atom in GaAs 

to form isoelectronic traps, whose binding energy varies with increasing the 

distance between the N-atoms [34]. Interestingly, the pair induced states in the 

band gap vary non-monotonically with the separation between the N-atoms 

[33].  

 

Figure 2.9: (a) Calculated N-cluster state energies and CB for a Ga500As487N13 supercell (i) 

before and (ii) after inclusion of the interaction of the N-levels with the CB states of GaAs.   

(b) Supercell band dispersion derived from the TB (dotted lines) and LCINS models (solid 

lines). Picture reproduced from Ref [2]. 

 

A. Lindsay and E. P. O’Reilly [2] determined the energy levels of N 

related states in Ga(AsN) using the tight-binding (TB) method and described 

the CB by using the linear combination of isolated nitrogen resonant states 
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(LCINS) model. In this model, the hybridization and admixing of the CB states 

and the sequence of localized N-related states in the CB leads to a complex 

band structure. Figure 2.9a shows the energy of the N and CB edge states for a 

Ga500As487N13 supercell without (i) and with (ii) the inclusion of the coupling 

between the two set of states. The dotted lines in Figure 2.9b show the band 

dispersion calculated using the TB method. The solid lines show the CB 

dispersions calculated using the LCINS model. Both models, TB and LICNS, 

produce similar results and reveal non-parabolic dispersion and strongly 

admixed states [2].  

 

2.2 Hydrogen in Ga(AsN) 

The unavoidable presence of hydrogen during the sample growth and/or 

device processing steps, has stimulated a great interest in the effects of H in 

semiconductor compounds [35]. H-atoms are highly mobile and reactive 

elements that passivate both deep and shallow crystal defects and impurities in 

semiconductors [3-4]. In particular, the incorporation of H in III-N-Vs acts to 

neutralize the electronic activity of N through the formation of N-H complexes, 

thus reversing the effect of the N-atoms on the band structure of the host 

crystal [5-7]. Moreover, H turns the tensile strain of Ga(AsN) into compressive 

and induces an expansion of the lattice constant, which can become larger than 

that of GaAs [36-37]. This section reviews the recent literature on N-H 

complexes.  
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Figure 2.10: Models of possible N-H complexes in Ga(AsN). Single H at the (a) bond centre 

site next to N (BCN), and (b) antibonding site (ABN). Dihydrogen complexes (c) -H2*(N) and 

(d) -H2*(N). Picture reproduced from Ref [39]. 

 

Theoretical studies based on the local density functional approximation 

(LDA) in Ga(AsN) supercells have indicated a variety of possible N-H 

complexes in GaAs [38-40], as shown in Figure 2.10. In all configurations the 

N-H bond length is equal to 1.05 Å [39], and N and Ga atoms are moved 

outward from their basal plane [38-39]. In the configurations BCN
+ and ABN

+, 

the H is bonded to a N-atom at the bond centre and antibonding site, 

respectively, [38-39] with a separation between the H and Ga atoms of 2.41 Å 

[39]. The positive sign indicates the charge state of the monohydride 

configuration. In the configuration -H2*(N), an H-atom (H(1)) is bonded to 

the N-atom at the antibonding site and the second H-atom (H(2)) is bonded to 

the Ga-atom at the bond centre site. The Ga-H bond length is equal to 1.54 Å. 

No chemical bond is established between the N and H(2) atoms [39]. The same 
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applies to the -H2*(N) configuration, except that the Ga-H bond length is 

equal to 1.60 Å [39].  

The formation of mono and dihydrogen complexes depends on the 

position of the Fermi level in the alloy [38-40]. A p-type doping tends to 

favour the monohydrogen complexes, whereas n-type doping favours 

dihydrogen complexes [38, 40]. Also, low H-concentrations favour 

monohydrogen complexes and high concentration of H are likely to form 

dihydrogen complexes [38, 40]. Interestingly, monohydrogen complexes do 

not passivate the effect of N, but dihydrogen complexes do [38-40]. 

Monoatomic H is expected to behave as a donor in the undoped dilute 

Ga(AsN) alloy [39]. In contrast, dihydrogens should passivate the electronic 

activity of N thus recovering the electronic properties of GaAs [38-40].  

Infrared absorption spectroscopy studies have suggested a model of 

trigonal H-N-H complex with two H atoms bonded with a N atom (see figure 

2.11a). Theoretical calculations in Ref [40-42] have shown that this complex is 

unstable and easily transforms into the -H2*(N) complex. However, infrared 

absorption studies have demonstrate the existence of two weakly coupled N-H 

stretching modes and no modes related to the Ga-H bond [41-42]. This 

controversy was resolved in a latest theoretical study suggesting a different 

model for H-N-H complexes with C1h symmetry [42], as shown in Figure 

(2.11b). Also, recent measurements of x-ray absorption and theory proposed a 

H-N-H complex with a C2v or asymmetric C2v configuration [42-43] (see 

Figure 2.11c and d). Both studies have not provided any evidence for the 

H2*(N) configurations [42]. 
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Figure 2.11: Configuration of the H-N-H complex: (a) trigonal, (b) with C1h symmetry, (c) with 

C2v asymmetry and (d) with C2v symmetry. Pictures reproduced from Ref [40, 42-43]. 

 

As shown in Figure 2.11a, in the trigonal H-N-H complex, two hydrogen 

atoms are bonded to the same N atom [42]. The H-N-H complex with, 

respectively, C1h symmetry, C2v asymmetry and C2v symmetry are shown in 

Figures 2.11b-d. In these three configurations the H breaks two Ga-N bonds 

and form N-H bonds. This also induces a dangling bond on each broken bond 

with Ga [42-43]. Recent experiments and theories have shown that the H-N-H 

complexes with C1h symmetry and C2v asymmetry can fully neutralize the 

electronic activity of the N atoms [9, 43-44]. Measurements of high resolution 

x-ray diffraction also suggested a third H atom is weakly trapped close to the 

H-N-H complex thus leading to compressive strain in Ga(AsN) [9, 44]. 

Thermal annealing at 250 C removes this third H atom from the complex and 
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recovers the tensile strain, without changing the N-passivation effect [8-9]. At 

temperature around 330 C, the H-N-H complex dissociates and N becomes 

electrically active [8-9]. These effects will be discussed later in the context of 

our laser writing experiments in hydrogenated Ga(AsN). 
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Chapter 3 

 

Samples and Experimental Setup 

This chapter describes the samples, experimental equipments and 

techniques used to obtain the results presented in this dissertation. This chapter 

is organized as follow. Section 3.1 describes the sample structure and growth 

conditions. Sections 3.2 - 3.4 illustrate the experimental equipments used for 

PL measurements. Section 3.5 describes the experimental setup for laser 

annealing. Finally, sections 3.6 and 3.7 present the experimental setup for 

compositional and topographical studies.  

 

3.1 Sample growth and hydrogenation 

In this study, we use a Ga(AsN)/GaAs QW sample. This was grown by 

Molecular Beam Epitaxy (MBE) on a (001)-oriented GaAs substrate. This 

structure has the following layer composition, in order of growth: an undoped 

GaAs buffer layer grown at 600 C, a 6 nm Ga(AsN) (N = 0.9%) QW and a 30 

nm undoped GaAs cap layer both grown at 500 C. The N-content was 

determined by high resolution x-ray diffraction (HRXRD) measurements and 

further supported by PL studies showing that the Ga(AsN) QW PL emission is 

red-shifted by 0.13 eV relative to the GaAs PL emission at T = 300 K.  

The as-grown sample was hydrogenated by ion beam irradiation using a 

Kaufman source. The hydrogenation was performed at 300 C with an ion-

beam energy of 100 eV and H-doses of 4x1016, 6x1016 and 8x1016 ions/cm2. 
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We refer to these hydrogenated samples as H1, H2 and H3, respectively, and 

the non-hydrogenated sample as V. Also, an additional sample (H0) was 

considered. This was grown by MBE and has the same structure as sample V 

except for an additional Al0.7Ga0.3As layer grown above the GaAs buffer layer 

and for the N content (1%) in the QW. This sample was hydrogenated with a H 

dose of 2x1016 ions/cm2. The H dose for each sample is indicated in Table 3.1. 

 

Table 3.1: H dose in samples V, H1, H2, H3, and H0. 

Sample H dose (ions/cm2) 

V 0 

H1 4x1016 

H2 6x1016 

H3 8x1016 

H0 2x1016 

 

 

Figure 3.1a shows the detailed schematic diagram of a Kauffmann 

source. In the ionization chamber, the heated cathode filament provides an 

electron beam to ionize the H-plasma, which is magnetically confined. The H+ 

ion beam is accelerated through the grid accelerator and impinges on the 

sample, which is mounted on the sample holder in the main chamber. The 

heating lamp behind the sample holder provides a constant temperature to the 

sample. This allows us to control the hydrogen diffusion depth profile. Figure 

3.1b shows the Ga(AsN) QW structure and H diffusion along the growth 

direction z. The H tends to accumulate on the surface, but for sufficiently high 

temperatures, it can also diffuse into the bulk. 
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Figure 3.1: Schematic diagram of a Kaufmann source (a) and H-diffusion in a Ga(AsN)/GaAs 

QW (b). 

 

3.2 Room temperature micro-photoluminescence 

The room temperature µPL measurements were carried out using a 

LabRAM HR-UV spectrometer equipped with a confocal microscope. This 

system provides high optical resolution down to  = 10-2 nm. The schematic 

diagram of the system is shown in Figure 3.2. The system has four main parts, 

which are described below. 

Optical Microscope: imaging is carried out via a standard optical microscope. 

This has 3 objectives that provide 10, 50 and 100 magnification. The focal 

length (f) and numerical aperture (NA) of each objective are f = 18, 3.6, 1.8 mm 

and NA = 0.25, 0.55, 0.9, respectively.  
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Spectrometer: the µPL signal is dispersed by a grating and detected by an 

(InGa)As or a Si-CCD array photodiode. The (InGa)As detector covers the  

range 800 nm to 1600 nm and the Si-CCD detector covers the near UV to the 

visible range (350 nm to 800 nm). Two gratings (150 and 1200 g/mm) can be 

selected for measurements in different  range and spectral resolution. 

Optics: mirrors, beam splitter and filters are used to direct the laser beam from 

a He-Ne laser to the sample and for collecting light from the sample to the 

detectors. 

XY/Z motorized stage: the stage can be moved point by point with a spatial 

resolution of 0.1µm along the X, Y and Z direction for area (X and Y) 

mapping, and line (X or Y) and depth (Z) profiling of the µPL. Mapping of the 

µPL along X and Y can also be carried out by scanning the laser over the fixed 

stage. This can be done by a motorized mirror.  

 

Figure 3.2: Schematic diagram of the LabRAM HR-UV Spectrometer. Diagram reproduced 

from Ref [45]. 
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Figure 3.3: Schematic diagram of a confocal microscope. Picture reproduced from Ref [46].  

  

The schematic diagram of a confocal microscope is shown in Figure 3.3. 

The laser beam is focused by an objective to a small, nearly diffraction-limited 

spot on the sample surface. Also, the same objective collects the photo-excited 

light from the sample and sends it to a detector which has an adjustable pinhole 

aperture. The emitted light from the spot passes through the pinhole, while the 

light from outside the spot or off the focal plane is blocked by the pinhole. The 

advantage of this confocality is a considerable reduction of the depth of focus. 

This allows us to separate the signal from each layer of a layered sample, thus 

improving the image resolution.  
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For µPL maps, we can use two modes of scanning over the sample 

surface, XYZ motorized and XYZ scanable. In the XYZ motorized mode, the 

stage moves point by point with respect to the laser beam. In the second mode, 

the stage is fixed and the laser beam moves on the sample by a motorized 

mirror. We used the first mode for room temperature PL and the second mode 

for low temperature PL studies, in which the stage is replaced by a cryostat 

(see Figure 3.5).  

 

Figure 3.4: Experimental setup for µPL measurements at T = 300 K. Picture shows the 

microscope, stage, sample and the focused laser beam. 

 

Figure 3.4 shows the experimental setup for PL measurement. The      

He-Ne laser beam was focused onto the sample by a 100 objective, thus 

providing a laser spot with diameter d < 1µm. The size of the spot is 

determined by the numerical aperture (NA) of the objective  
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NA = n sinθ,                                                                                                    (3.1) 

where n is the refractive index of the medium between the lens and the focal 

plane, and 𝜃 is the half angle between the marginal converging rays of the light 

cone. Using the Rayleigh criterion, the diameter of the spot can be written as  

dR =1.22 × 
λ

NA
.                                                                                             (3.2) 

For  = 633 nm and NA = 0.9, we find that dR = 0.86 µm. This corresponds to 

the spatial resolution of our confocal microscope. The resolution can be limited 

by the size of the pinhole. The aperture should be small enough to ensure high 

spatial resolution and possibly large enough to let sufficient light into the 

detector.  

 

3.3 Low temperature micro-photoluminescence  

For low temperature (T = 5 K) µPL studies, we used the LabRAM HR-

UV spectroscope and a Helium flow cryostat (see Figure 3.5). The sample is 

mounted close to the inner surface of the optical window. The sample holder is 

a screw mounting arrangement and thermally isolated and tightly fixed on the 

vacuum housing for low drift. The distance of the sample from the surface can 

be adjusted from 0 to 3 mm. An external pressure regulator draws a continuous 

Helium flux from the Helium Dewar to the cryostat through a GFS 600 transfer 

tube. A temperature meter and heater are connected to the cryostat and permit 

to measure and control the temperature of the cryostat and of the sample.  
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Figure 3.5: Schematic diagram of a Helium flow cryostat (model: Helitran LT-3 OM) for low 

temperature µPL measurements. Picture reproduced from Ref [47]. 

 

3.4 Temperature dependent photoluminescence  

The temperature dependent PL measurements (T = 4.2–290 K) were 

carried out using a TRIAX 550 spectrometer and an Optistat cryostat. The 

TRIAX 550 spectrograph has an asymmetric optical path for high quality 

imaging (see Figure 3.6). In our system, the turret has two gratings (600 and 

1200 g/mm) and allows the TRIAX to maintain on-axis grating rotation during 
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the scanning. A high speed drive and precise motorized slits fully automate the 

adjustments on the TRIAX. The spectrograph is equipped with a Si-CCD and 

an (InGa)As photodiode array for measurements in the visible or the IR 

wavelength rage. For our studies of the temperature dependent PL emission, 

we used a Si-CCD detector and a 600 g/mm grating.  

 

Figure 3.6: Schematic diagram of the TRIAX SERIES 550 spectrograph – top view. Picture 

reproduced from Ref [48].  

 

 

Figure 3.7: Schematic diagram of an Optistat cryostat (a) side view and (b) top view. Picture 

reproduced from Ref [49]. 
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We used an Optistat cryostat to control the sample temperature, see 

Figure 3.7. The sample is mounted on a removable sample holder and placed 

inside the optical window block. The cryostat has four optical windows, and 

the sample holder can be rotated towards each window. The outer vacuum 

chamber (OVC) is at room temperature. The sample space and the radiation 

shields are thermally isolated from the OCV. The Helium Dewar is connected 

with the cryostat via a GFS 600 transfer tube, which allows us to cool down the 

sample down to 4.2 K. 

The experimental setup for PL measurements is shown in Figure 3.8. The 

He-Ne laser beam ( = 633 nm, P ~ 50 W/cm2) is focused onto the sample by a 

lens with a focal length of 5 cm, thus providing a laser spot with diameter of ~ 

100 µm. The emitted light from the sample is collected by the same lens and 

then focused by a second lens into the entrance slit of the TRIAX 550 

spectrometer. The interferential filter at 633 nm cuts all other wavelengths 

except the laser line at  = 633 nm. A temperature meter and heater are 

connected to the cryostat and permit to measure and control the temperature of 

the sample space from 4.2 K to 300 K. 

 

Figure 3.8: Experimental setup for temperature dependent PL studies. 
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3.5 Laser annealing 

For the laser annealing experiments, the laser beam was focused onto the 

sample thus providing a laser spot with diameter of ~ 1µm. Two different 

lasers were used, an Ar laser ( = 515 nm) and a He-Ne laser ( = 633 nm). We 

produced annealed spots by using various laser powers (3–120 mW) and 

exposure times (ta up to 3 minutes). Figure 3.9 shows the experimental setup 

for the annealing with the Ar-laser. Here we used a 100 objective and a beam 

splitter was used to reflect the beam on a screen thus facilitating the 

visualization of the focussing conditions. We also used a µPL system equipped 

with a confocal microscope for in-situ He-Ne laser annealing and µPL 

measurements (see Figure 3.4). 

 
 

Figure 3.9: Experimental setup for laser annealing with an Ar laser.  
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3.6 Scanning Electron Microscopy (SEM) 

 

We used an FEI Quanta 200 3D FIB-SEM to probe the hydrogen 

distribution profile across the laser annealed region. The schematic diagram of 

the SEM is shown in Figure 3.10. The tungsten filament is heated by an applied 

voltage thus causing thermionic electron emission. The emitted electron beam 

is accelerated towards the anode, narrowed by a condenser lens, and focused as 

a very fine point on the sample by the objective lens. The focused electron 

beam induces emission of secondary electrons from the sample, which are 

collected by the electron detector for imaging and analysis. Also, photons 

emitted by the interaction of the focused electron beam with the sample are 

detected by the energy dispersive x-ray detector.  

 

Figure 3.10: Schematic diagram of a Scanning Electron Microscopy. Picture reproduced from 

Ref [50]. 
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Our SEM system has a spatial resolution of 3.5 nm and 15 nm for an 

accelerating voltage V = 30 kV and 2 kV, respectively. The spatial resolution 

also depends on the electron spot size, which can be controlled by the 

condenser lens, objective lens, position of the filament in the cathode, bias 

voltage and accelerating voltage. The sample topography at several points is 

imaged by moving the electron beam with respect to the sample. The sample 

can be moved with respect to the detector along the x-axis (side by side) and 

along the y-axis (forward and backward). It can also be tilted and rotated in the 

plane. 

 

3.7 Atomic Force Microscopy (AFM) 

 

We used a MFP-3D AFM system to probe the surface topographical map 

of our samples. The AFM has a sub-angstrom resolution in the Z direction 

(depth) and nanometer resolution in the XY plane. The AFM consists of a low 

spring constant cantilever with a sharp tip, an IR-laser and a deflection sensor, 

which is a four-quadrant-photodiode. A schematic diagram of an AFM is 

shown in Figure 3.11. The sharp tip of the cantilever is very close to the sample 

surface and during the scanning it reacts in response to the short range 

repulsive force (~ 10 nN) between the tip and the sample surface. A focused 

laser beam on the backside of the cantilever is reflected onto a split photodiode, 

which measures the deflection or oscillation amplitude. Detected changes in 

the cantilever deflection or oscillation are corrected to a constant value by 

triggering the cantilever in the Z direction through a feedback controlled piezo. 

The feedback voltage correlates to a voltage-distance calibration factor, thus 

determining the height at a given XY coordinate. The AFM image displays the 
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surface in all three dimensions without the limit of optical diffraction present in 

the optical microscopes. 

 

Figure 3.11: Schematic diagram of an Atomic Force Microscopy. Picture reproduced from  

Ref [51]. 
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Chapter 4 

 

Laser and Thermal Annealing of Ga(AsN) 

This chapter describes how a focussed laser beam can be used to control 

the electronic activity of N- and H-atoms in a Ga(AsN)/GaAs quantum well 

(QW). Our laser writing technique and micro-photoluminescence (µPL) studies 

provide real-time in-situ characterisation and control of the N-H complex 

dissociation and of the band gap energy of Ga(AsN). Also, we use a 

conventional thermal annealing technique to probe the thermal stability of the 

laser annealed spots. 

 

4.1 Photoluminescence studies 
 

The PL studies presented in this section were done using an optical 

confocal microscope equipped with a nanofocusing system and a spectrometer 

with a 150g/mm grating equipped with a liquid-nitrogen cooled (InGa)As array 

photodetector. The laser beam ( = 633 nm) was focused to a diameter d < 

1m using a 100 objective and the µPL spectra were measured at several 

points by moving the sample with respect to the laser beam.  

The incorporation of hydrogen in the Ga(AsN) QW leads to the 

formation of several complexes including the in-line dihydrogen-nitrogen 

complex (H2
*-N), H-N-H complexes with C2v asymmetric or C1h symmetry, 

and higher order clusters. Complexes with C2v asymmetric or C1h symmetry are 

the most abundant species [5-7]. They act to neutralize the electronic activity 
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of nitrogen and its effect on the band gap energy of GaAs, thus causing a blue 

shift of the QW PL emission [5-7]. This effect is shown in Figure 4.1 for our 

three hydrogenated samples (H1: 4x1016 H ions/cm2, H2: 6x1016 H ions/cm2 

and H3: 8x1016 H ions/cm2), which are compared to the Virgin ‘V’ (non-

hydrogenated) sample. One can notice that the blue shift increases with 

increasing the hydrogen dose and that in samples H1 and H2 the amount of 

diffused hydrogen in the Ga(AsN) QW is not sufficient to neutralise all the N-

atoms. However, in sample H3 the Ga(AsN) QW peak is fully quenched by H. 

 

Figure 4.1: µPL spectra of samples V, H1, H2 and H3 at T = 300 K (P = 1.8 mW,                    

 = 633 nm).  

 

The concentration of electrically active N-atoms in the Ga(AsN) QW of 

each sample was determined from the peak energy of the QW PL emission, 

EQW, as shown in Figure 4.2. We model the band gap energy of Ga(AsN) by a 

two-level band-anticrossing model with an interaction parameter CMN = 2.7 eV 

and a N-level located at 0.23 eV above the conduction band minimum of GaAs 

[2]. Also, we solve the Schrödinger equation for a finite square well potential 
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barrier taking into account the dependence of the electron effective mass on the 

N-content. As shown in Figure 4.2 the electrically active N content in samples 

V, H1, H2, and H3 is equal to 0.85%, 0.32%, 0.29% and 0%, respectively. The 

high resolution x-ray diffraction (HRXRD) measurements indicate that the 

nominal concentration of N content in the V-sample is equal to 0.9%. 

 

 

 

 

 

 

 

 

 

 

 

 

4.2 Laser annealing: preliminary studies 
 

In this section we show how the neutralization of the electronic activity 

of N by H can be reversed locally using a focussed laser beam, which acts to 

dissociate the N-H complexes. For the laser annealing experiments, we used a 

focused laser beam (d~1µm) of wavelength  = 515 nm, power Pa in the range 

10-120 mW, and exposure time ta = 15 s. A series of light emitting regions 

were produced at various laser powers at room temperature (T = 300 K). The 

Figure 4.2: Dependence of the peak energy of the QW PL emission (EQW) on N-content as 

derived from the QW square potential model.  
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PL intensity maps were measured at low power (P = 1.8 mW) using an He-Ne 

laser and by integrating the local PL intensity in the spectral range of the QW 

emission (~1.3 eV), as shown in Figure 4.3 for sample H2. Here one can note 

that laser powers Pa > 40 mW produce larger spots. Some of these reveal a 

darker area in their centre. Note that the spot produced with Pa = 10 mW 

cannot be revealed in this map due to the higher intensity emission from the 

spots created at higher Pa. 

 

Figure 4.3: Series of spots created by an Ar laser on the H2 sample. The µPL map was 

obtained by plotting the PL intensity integrated around the energy range of the QW emission  

(T = 300 K). 

 

Figure 4.4 shows the PL spectra of all hydrogenated samples measured 

at low power (P = 1.8 mW) using an He-Ne laser after sample exposure to a 

focussed laser beam (d~1µm) of wavelength  = 515 nm and power Pa = 20 

and 30 mW for a time ta = 15s. It can be seen that the effect of the laser 

exposure is to restore the QW emission observed in the Virgin ‘V’-sample. 

Note that the PL intensity tends to decrease for laser exposures at large powers, 

i.e. Pa ≥ 40 mW. These powers lead to a significant heating and a damage of 

the sample surface [52] due to As-desorption at high temperatures (> 600 C°) 

[53]. This effect manifests through the appearance of a dark area in the centre 

of the spots, see Figure 4.3.  
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The QW PL intensity distribution inside the spots with Pa ≤ 30 mW has 

an approximately Gaussian form with a full width at half maximum that 

corresponds closely to the size of the laser spot diameter (~ 1 m).  

 

Figure 4.4: µPL spectra of (a) sample H1 (b) H2 and (c) H3 at T = 300 K before and after 

exposure to a focussed laser beam with power Pa = 20 and 30 mW (ta = 15 s and  = 515 nm). 

All spectra are normalized to the PL intensity of the GaAs PL peak. 

 

4.3 Laser annealing and photodissociation of the N-H complex 

 

The laser annealing technique introduced in section 4.2 can be used to 

produce arrays of light emitting regions or shaped emitting areas with sub-

micron precision, see Figure 4.5a. As shown in Figure 4.5b, the photon energy 

of the light emitting regions can be controlled precisely by the laser exposure 

conditions. In Figure 4.5b, we plot the dependence of the peak energy, hv, of 

the QW PL emission for sample H2 as a function of the exposure time ta at 

various powers Pa of an He-Ne laser ( = 633 nm). It can be seen that the QW 

PL peak energy shifts to lower energies with increasing ta until it saturates, 

more quickly at larger powers. 
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Figure 4.5: (a) Left: µPL intensity maps of sample H2 at T = 300 K following a laser exposure 

with laser power Pa = 7 mW, exposure times ta = 150, 120 and 50 s and  = 633 nm. Right: H-

shaped emitting area written by laser (Pa = 15 mW, ta = 10 s,  = 633 nm) and mapped using a 

laser power of 0.1 mW at T = 300 K. (b) Dependence of the peak energy, EQW, of the Ga(AsN) 

QW PL emission on ta at T = 300 K ( = 633 nm). Continuous lines are guides to the eye. The 

horizontal line corresponds to the value of EQW in the V-sample. 

 

 

The exposure of the sample to the laser beam can induce a local heating, 

which we probe by acquiring the PL spectra during in-situ laser exposure 

experiments with a focussed laser beam ( = 633 nm). As shown in Figure 

4.6a, the high energy tail of the GaAs PL emission in sample H2 exhibits an 

exponential tail described by exp(-hv/kBTe), where Te is the effective 

temperature of the photogenerated carriers. As shown in Figure 4.6b, the value 

of Te increases with increasing Pa and/or exposure time ta. In particular, Te 
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increases very quickly during the first few seconds (ta < 5 s) and increases 

slowly for ta > 5 s. 

 
Figure 4.6: (a) PL spectrum of sample H2 measured at various laser powers at T = 300 K ( = 

633 nm). (b) Dependence of the carrier (Te) temperature on the laser power Pa and exposure 

time ta. The solid lines are guides to the eye.  

 

The increase in carrier temperature Te with increasing laser power Pa is 

accompanied by an increase of the lattice temperature TL, which we estimate by 

modelling the thermal shift of the QW PL peak by the Varshni’s law [28], i.e. 

∆E = - 
 αT2

T+β
                                                                                                      (4.1) 

where α = 5.5 x 10-4 eV/K and β = 255 K [25]. Figure 4.7a illustrates the PL 

spectra during and after the laser exposure and the shift of the QW PL peak. 

 

As shown in Figure 4.7b the carrier and lattice temperatures reach values 

of up to TL ~ Te ~ 190 oC at Pa ~ 15 mW and  = 633 nm. The measured 

increase of the lattice temperature is in qualitative agreement with that 

calculated numerically (see Eq. 4.2) [54] by using the temperature dependent 

thermal conductivity and absorption coefficient of GaAs at  = 633 nm [55]. 
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According to the model of Ref. 54, the lattice temperature at the centre of the 

laser spot is given by  

TL=
P

2πK(T)
N(α(T, λ), d),                                                                        (4.2) 

where P is the laser power, K(T) is the thermal conductivity, 𝑁(𝛼(𝑇, 𝜆), 𝑑) is 

the geometrical coefficient. This depends on the absorption coefficient, 𝛼, and 

the laser spot diameter, d.  

 

Figure 4.7: (a) µPL spectrum of sample H2 measured during and after exposure to an He-Ne 

laser (Pa = 7 mW, ta = 120 s). (b) Dependence of the carrier (Te) and lattice temperature (TL) on 

the laser power (ta = 120 s,  = 633 nm). The continuous solid line is the calculated 

dependence of TL on the laser power Pa at  = 633 nm.  

 

Our analysis shows that the laser powers required to trigger the 

neutralization of the effect of hydrogen on the PL emission energy of the 

Ga(AsN) QW corresponds to temperatures TL ~ Te ~ 100 oC (Pa ~ 3 mW), 

which are significantly lower than those (250-300oC) reported before using 
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2 mW do not introduce any permanent change in the electronic properties of 

the hydrogenated QW. On the other hand, laser annealing at powers ≥ 40 mW 

leads to an abrupt increase of the lattice temperature. This thermal runaway 

effect is caused by the low thermal conductivity of GaAs at high temperatures. 

 

We evaluate the activation energy for the dissociation of the N-H 

complexes from the temperature dependence of the increase, N, in the 

concentration of electrically active N-atoms in the Ga(AsN) QW following the 

laser exposure. An increase in the value of N is correlated to a corresponding 

decrease, H, in the concentration of N-H complexes in the QW. We estimate 

N from our model of the QW emission energy (EQW) and the measured value 

of EQW. 

 

 

 

 

 

 

 

 

 

 

 

 

The values of N determined under different laser exposure conditions 

and their dependence on the lattice and carrier temperatures are plotted in 

Figure 4.8: Dependence of N on 1/kBTL and 1/kBTe. The continuous lines are fit to the data 

by the exponential curve exp(-Ea/kBT), where Ea is the activation energy. 
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Figure 4.8. The thermally activated behaviour of N, i.e. N ~ exp(-Ea/kBT), is 

characterized by an activation energy Ea equal to 0.43 eV and 0.86 eV, for T 

equal to TL and Te, respectively. These energies and the corresponding 

temperatures are significantly smaller than those obtained for the thermal 

dissociation of N-H related complexes involving one (Ea = 1.77 eV) or two H-

atoms (Ea = 1.89 eV) using HRXRD measurements of the lattice parameter 

during in-situ annealing studies at T = 250-300oC [10]. Thus we conclude that 

our laser writing technique is photon-assisted. Various processes can be 

envisaged: the photogenerated electron-hole pairs recombine and release their 

energy to the complex; also, they can modify its charge state, thus reducing the 

activation energy for the complex dissociation [56]. Similar processes are 

frequently observed in photochemistry and can be responsible for the light 

enhanced H motion in amorphous Si [56] and the photo-induced reactivation of 

neutralized donors in Si-doped GaAs [57].  

 

 

4.4 Thermal annealing 

To assess the thermal stability of the nanoscale light emitting spots 

created by laser, we used a high temperature furnace and annealed our samples 

at temperatures ranging from Ta = 25C to 450 C for an annealing time ta = 1 

hr. Following the thermal annealing, we allowed our samples to cool down to 

room temperature and mapped the PL intensity at low power (P = 1.8 mW,   

 = 633 nm) by integrating the local PL intensity in the QW spectral range     

(~ 1.3 eV), as shown in Figure 4.9 for sample H1.  
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Figure 4.9: µPL intensity maps of sample H1 following a thermal annealing at various 

temperatures. 

 

For annealing temperature Ta up to 200 C, the laser annealed spots can 

be clearly resolved and are not influenced by the annealing. The QW PL 

intensity inside each spot has an approximately Gaussian form with a full width 
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at half maximum that does not depend on the annealing temperature. In 

contrast, for Ta > 200 C we observe a larger contribution of PL intensity from 

the regions surrounding each spot. At the highest Ta the spots cannot be clearly 

resolved (Ta  300 C) and a drop in PL from all regions is observed at Ta = 

450 C. 

 

Figure 4.10: µPL spectra at T = 300 K inside (a) and outside (b) a laser annealed spot (Pa = 20 

mW,  = 515 nm) following the annealing in a oven at a temperature Ta. 

 

Figure 4.10a shows the typical PL spectra of the laser annealed spots 

and their dependence on the annealing temperature Ta. It can be seen that an 

increase of Ta from T = 25 C to 200 C tends to blue shift the QW emission. 

This suggests that the annealing facilitates the formation of a larger number of 

N-H complexes due to diffusion of H from interstitial positions inside or 

outside the spot. This blue shift is followed by a monotonic red shift of the QW 

emission with increasing Ta > 200 C, thus indicating a thermally induced 

1.3 1.4 1.5

 T = 25 oC 

 100 oC

 200 oC

 250 oC

 300 oC

 350 oC

 400 oC

 450 oC
 V

 

 

PL
 I

n
te

n
si

ty
 (

ar
b
.u

n
it
s)

Energy (eV)

GaAs

QW

(a)

1.3 1.4 1.5

 T = 25 oC

 100 oC

 200 oC

 250 oC

 300 oC

 350 oC

 400 oC)

 450 oC
 V

 

 

Energy (eV)

GaAs(b)

QW



Chapter 4: Laser and Thermal Annealing of Ga(AsN)                                           46 
 

dissociation of the N-H complex. The QW PL emission quenches at Ta ~ 450 

C. This is likely to be caused by the damage of the surface, which is very close 

(~ 30 nm) to the QW layer. The dissociation of the N-H at high Ta is confirmed 

by the analysis of the PL spectra acquired outside the spots. It can be seen in 

Figure 4.10b that increasing Ta recovers the QW emission as observed in the 

control (non-hydrogenated) V-sample.  

 

Figure 4.11: Simple model for N-H complex dissociation: laser annealing (a) and thermal 

annealing at Ta ~ 200 C (b) and Ta > 200 C (c). 
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We illustrate in Figure 4.11 the mechanisms leading to the 

dissociation/formation of the N-H complex. Laser annealing (Pa ≥ 3 mW) 

dissociates the N-H complex in the Ga(AsN) QW. The H-atoms move to 

nearest interstitial positions without forming bonds with the N, thus the band 

gap energy of Ga(AsN) can be restored. Thermal annealing at low Ta (< 200 

C) can facilitate the diffusion of H from interstitial positions inside or outside 

the spot to reform the N-H complex. At Ta > 200 C, the N-H complex tends to 

thermally dissociates and H diffuse out of the Ga(AsN) QW. 

We estimate the activation energy for N-H complex dissociation by 

thermal annealing from the temperature dependence of the increase, N, in the 

concentration of electrically active N-atoms in the Ga(AsN) QW following the 

annealing. This increase N is equal to the decrease, H, in the concentration 

of N-H complexes in the QW. We estimate N from the energy position of the 

QW emission and the band anticrossing model (Figure 4.2). The values of H 

and their dependence on temperature are plotted in Figure 4.12. At high Ta     

(> 300 C), the thermally activated behaviour of H, i.e. H ~ exp(Ea/kBT), is 

characterized by an activation energy Ea  1.6 eV. More data are required to 

obtain accurate estimates of Ea. However, we note that this energy and the 

activation temperature Ta ~ 200 C are comparable to those obtained for the 

dissociation of the H-N-H complex (Ea = 1.77eV and 1.89 eV) using HRXRD 

measurements of the lattice parameter during in situ annealing studies at Ta = 

250-300 oC [10].  

 

 



Chapter 4: Laser and Thermal Annealing of Ga(AsN)                                           48 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12: Dependence of H on 1/kBT. The continuous line is a fit to the data by the 

exponential curve exp(Ea/kBT), where Ea is the activation energy. 
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Chapter 5 

 

Compositional and Topographical Studies 

This chapter describes how the secondary electron (SE) emission in 

scanning electron microscopy (SEM) can be used to study the surface 

topography and to map the H-distribution spatial profile across a laser annealed 

region in an hydrogenated Ga(AsN) QW. The H-distribution profile is well 

described by a simple model for H-diffusion based on the solution of the Fick’s 

equation. Also, we use atomic force microscopy (AFM) to probe in detail the 

surface morphology of the laser annealed regions. 

 

5.1 Scanning Electron Microscopy studies 

 

SE imaging by SEM is commonly used to study sample topography with 

nanometer spatial resolution [58]. In-plane band gap modulations caused by 

compositional variations can be also detected with higher resolution than in 

µPL or cathodoluminescence (CL) [59]. Our experimental set-up for SE 

imaging uses a focused electron beam and a gaseous secondary (Everhart-

Thornley) detector. The electron beam was focused to a small spot of diameter 

d ~ 185 nm using an accelerating voltage V = 2 kV. Images of the sample 

topography were acquired at several points by scanning the electron beam on 

the sample surface. 

First we produced an array of laser annealed spots in sample H2 (6x1016 

H ions/cm2). We used a focused laser beam (d ~ 1µm) of wavelength  = 515 
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nm, powers Pa = 20–120 mW and an exposure time ta = 15 s. Figure 5.1 shows 

the image of the annealed spots taken by (a) an optical microscope, (b) the QW 

µPL and (c-d) SEM. We note that the optical microscope could not resolve the 

laser annealed spots at powers Pa = 20 and 30 mW. However, µPL and SEM 

allowed us to resolve all spots and reveal interesting features, as discussed 

below.  

First, for powers Pa  40 mW, the SEM and µPL maps reveal the 

formation of crater-shaped spots. These powers correspond to power densities 

larger than 107 W/cm2 and lead to a significant heating and damage of the 

sample surface due to As-desorption [53]. The diameter D of the craters can be 

determined accurately by SEM, which has a higher spatial resolution (~ 0.1 

µm) compared to that in µPL (~1 µm). We find the D increases from ~ 0.1 µm 

to 3.4 µm with increasing Pa from 40 mW to 120 mW.  

 

Figure 5.1: Image of the array of laser annealed spots ( = 515 nm, Pa = 20–120 mW, ta = 15s) 

in sample H2 by optical microscopy (a), µPL (b) and SEM (c) & (d). 

 



Chapter 5: Compositional and Topographical Studies                                           51 
 

The SEM images of the annealed regions at Pa  40 mW also reveal the 

existence of brighter areas. These can be resolved more clearly in Figure 5.1d. 

We explain these regions as follows. The laser annealing dissociates the N-H 

complexes in the hydrogenated Ga(AsN) QW and facilitates H-diffusion. This 

causes a SE contrast variation due to the band gap energy and refractive index 

modulation in the QW plane [59-60]. When the scanning electron beam hits the 

sample, low energy SEs are generated due to the electron excitation from the 

valence band to the conduction band [59]. The SEs can reach the surface 

(depending on the escape depth) and overcome the surface potential barrier if 

they have enough kinetic energy [59]. The presence of impurities induces a 

fluctuating potential on the surface [59, 61-62]. The incorporation of H in 

Ga(AsN) tends to passivate the impurities as well as the electronic activity of N 

[3-4] and thus acts to change the surface potential fluctuation leading to a 

change in the escape rate of SEs [59, 61-62]. This can explain the contrast 

difference between H-free and H-incorporated Ga(AsN) in the SEM images, 

which is further discussed in section 5.2.  

 

5.2 Probing the H-distribution spatial profile 

 

In this section we discuss how SEM can be used to map the H-

distribution profile across the laser annealed regions. We used sample H0 

(2x1016 H ions/cm2) and a focused laser beam (d ~ 1µm,  = 515 nm, Pa = 20 

mW) to draw a line of length l = 40 µm in between two laser annealed craters 

annealed at higher powers (Pa = 80 mW). Figure 5.2 shows the SE image (V = 

1 kV and I = 110 pA) of the laser annealed line and craters with spatial 



Chapter 5: Compositional and Topographical Studies                                           52 
 

resolution of dR = 0.2 µm. The contrast variation between the laser annealed 

and the non-annealed regions can be clearly revealed.  

 

Figure 5.2: Image of a laser annealed line and craters by SEM (V = 1 kV, I = 110 pA).  

 

 

Figure 5.3: Image of a laser annealed line (Pa = 20 mW) by (a) SEM and (b) AFM. 
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We used atomic force microscopy (AFM) to probe the surface 

morphology in more detail, see Figure 5.3. To resolve atomic-scale structures, 

we operated the AFM in the contact mode. In the contact mode, the cantilever 

tip is scanned over the sample surface in order to keep constant the short range 

repulsive force (~10 nN) between the surface and the AFM tip [63]. The AFM 

image reveals that the surface between the craters is not damaged. The white 

horizontal lines and spots may due to dust particle on the surface. The vertical 

lines may due instead to the cracks produced by surface polishing. 

We probed the hydrogen distribution across the laser annealed line using 

SEM. The contrast in SE imaging is due to ionized dopants rather than the total 

number of dopant atoms [64] and depends on material properties (band gap, 

ionization energy, doping type and content), sample surface effects 

(contaminants and oxides) and experimental conditions (working distance, 

detector, accelerating voltage and beam current) [62]. Hydrogen incorporation 

in semiconductors tends to passivate both deep and shallow crystal defects and 

dopant atoms [3-4]. In this experiment we assumed that the contrast in the 

SEM images corresponds to the H-content variation in the Ga(AsN) QW plane. 

Figure 5.4a shows the SEM image of a laser annealed line. The 

corresponding variation of the H-content along the x-direction is shown in 

Figure 5.4b. Inside the annealed region, the H profile corresponds to an 

inverted Gaussian with a minimum due to a low H-content. The outside region 

contains a higher H-content and it decreases along the x-direction far from the 

centre of the annealed line. This distribution indicates that the laser annealing 

acts to diffuse the H-atoms outward from the centre of the annealed area. Also 
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we note that the non-uniform distribution of H-content in the regions far from 

the annealed line may be due to a non-uniform background SE emission caused 

by surface contamination [62].  

Figure 5.4: (a) SEM image and (b) dependence of H-content on distance x across the laser 

annealed line shown in part (a). x = 0 corresponds to the position of the line. 
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5.3 Modelling H-diffusion  

In this section we model the H-distribution profile by using the Fick’s 

equation for H-diffusion in one dimension [65]. The concentration of H along x 

and at time t is given by 

𝐶(x, 𝑡) =
ௌ

√గ஽௧
 exp ቀ−

୶మ

ସ஽௧
ቁ ,                                                                          (5.1) 

where 𝐷(𝑇) = 𝐷଴ exp(−𝐸ௗ/𝑘஻𝑇) is the diffusion coefficient, T is the lattice 

temperature ( 500 K for Pa = 20 mW), t is the annealing time ( 1sec), S is the 

total amount of hydrogen atoms, Ed is the diffusion energy barrier (which we 

assume to be equal to the energy of the N-H complex dissociation Ea = 0.86 

eV), and x = 0 is the centre of the annealed spot.  

 

 

 

 

 

 

 

 

 

 

Figure 5.5: Model for H-distribution profile along x based on a numerical algorithm. 
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H profile has rectangular shape (black line). We slice this rectangle into a 

number of independent layers and write the Fick’s equation for each layer to 

obtain a set of Gaussian profiles (thin colour lines in Figure 5.5). Then the final 

hydrogen distribution is obtained by the summation of these profiles (red line 

in Figure 5.5). Accuracy of this method increases with increasing number of 

slices. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6: Temperature profile for a focused laser beam of maximum power Pa = 20 mW and 

diameter d = 1 µm according to the model of Ref. 54. 

 

We use this technique to model the H-diffusion. In this case we need to 

consider the non uniform temperature distribution caused by the focussed laser 

beam. We assume that the temperature profile is the same as that of the laser 

intensity Gaussian profile [54]. The temperature profile for a laser spot of 

diameter d ~ 1µm and maximum power Pa = 20 mW is shown in Figure 5.6. 
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Hence we use the numerical algorithm and the temperature profile to calculate 

the H-distribution along x. As shown in Figure 5.7 this model fits well the 

measured H-distribution profile across a laser annealed line. The H-

accumulation layers at a distance ~ 2m from x = 0 are caused by the slowing 

down of H atoms that diffuse from the hot centre to the colder regions outside 

the line [54]. Our model considers the H-diffusion along a given direction and 

does not include the out-diffusion of H along other spatial directions. This 

could account for the small discrepancy between the model and our 

experimental data in Figure 5.7. 

 

Figure 5.7: Measured and calculated profile of H-distribution across a laser annealed line     

(Pa = 20 mW). 
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5.4 Electron writing by SEM 

To study the effect of the electron beam on the electronic properties of 

our samples, we considered focused electron beams with different parameters, 

i.e. different values of the accelerating voltage (V), the beam current (I), and 

the working distance (z) (listed in Table 5.1). The SEM image of the annealed 

lines written by SEM in sample H2 were mapped at V = 2 kV as shown in 

Figure 5.8a. The lines produced at higher I and larger z are clearly resolved in 

this figure as darker lines. These lines are wider compared to the lines 

produced with the same V, but lower I and z. The dark contrast is associated 

with the effect of the electron beam on the hydrocarbons on the sample surface 

[66]. The SE emission is extremely sensitive to the surface conditions as these 

affect the kinetic energy of the SEs that can overcome the surface potential 

barrier [67]. We used plasma cleaning to remove the hydrocarbons from the 

sample surface. However, it is extremely difficult to prepare a perfectly clean 

sample as the hydrocarbons are also present in the vacuum system of the SEM 

[64, 67].  

Table 5.1: Electron writing parameters V, I and z in sample H2. 

Line no Spot size (nm) ta (s) V (kV) I (nA) z (µm) 

1 185 60 2 0.029 0.05 

2 185 60 2 6 11 

3 171 60 15 0.036 0.076 

4 171 60 15 7.6 15 

5 170 60 30 0.097 0.099 

6 171 60 30 9.7 20.59 
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Figure 5.8: Image of electron annealed lines and laser annealed spots by (a) SEM and (b) µPL. 

The µPL map was obtained by plotting the PL intensity integrated around the energy range of 

the Ga(AsN) QW emission. 

 

The PL intensity maps for the electron annealed lines were obtained at 

low laser power (P = 0.2 mW) by integrating the local PL intensity in the 

spectral range of the QW emission (~1.3 eV), as shown in Figure 5.8b. These 

maps can reveal only the lines produced at higher I and larger z. However, 

brighter emitting regions were not produced by any of these lines thus 

indicating that the electron beam does not modify the electronic properties of 

the Ga(AsN) QW. This has confirmed by the PL spectra of Figure 5.9 for the 

annealed line 2 (V = 2 kV, I = 6 nA), line 4 (V = 15 kV, I = 7.6 nA) and line 6 

(V = 30 kV, I = 9.7 nA) and the non-annealed region. Note that the energy of 

the QW PL emission (~ 1.37 eV) does not change with increasing electron 



Chapter 5: Compositional and Topographical Studies                                           60 
 

energy and/or beam current. Only the PL intensity decreases with increasing V 

and/or I.  

 

  

 

 

 

 

 

 

 

 

 

 

The H-incorporation in the Ga(AsN) QW leads to the formation of        

H-N-H complexes that neutralize the electronic activity of the N-atoms [42-

43]. The QW PL energy depends on the amount of electronically active N 

atoms. Since following the electron writing experiment we do not observe any 

energy shift in the QW PL emission, we conclude that the electron beam does 

not dissociate the N-H complexes.  

 

 

 

Figure 5.9: µPL spectra of the electron annealed lines in sample H2 at T = 300K (P = 0.2 mW 

and  = 633 nm).   
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Chapter 6 

 

Low Temperature Photoluminescence Studies 

This chapter describes the low temperature photoluminescence (PL) of 

samples V (non-hydrogenated), H1 (4x1016 H ions/cm2) and H2 (6x1016 H 

ions/cm2). The PL spectra reveal sharp lines, which we attribute to carrier 

recombination from N-related states. Also, we study the temperature 

dependence of the PL emission to investigate the influence of the hydrogen on 

the optical properties of the Ga(AsN) QW. This study reveals a non-monotonic 

temperature dependence of the QW peak energy. 

 

6.1 Low temperature micro-photoluminescence 

Our experimental arrangement for low temperature µPL measurements 

comprises a cryostat with an optical window, an optical confocal microscope 

equipped with a nanofocusing system, and a spectrometer with a 150 g/mm 

grating equipped with a liquid-nitrogen cooled (InGa)As array photodetector 

(described in Section 3.2 and 3.3). The temperature of the cryostat is controlled 

by a pressure regulator during a continuous flux of Helium (He). A temperature 

meter and heater are connected to the cryostat and permit to measure and 

control the temperature of the sample. The laser beam ( = 633 nm) was 

focused to a diameter d ~ 1m using a 50 objective and the µPL spectra were 

measured at several points by moving the sample with respect to the laser 

beam.  
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Photoluminescence provides a useful tool for the study of impurities, 

including N-related complexes in Ga(AsN), which manifest in the PL spectra 

through the appearance of sharp lines, each associated with a specific energy 

level within the forbidden energy gap [34].  

 

Figure 6.1: (a) µPL spectra of the V-sample at T = 5 K (P = 0.2 µW,  = 633 nm). Sharp lines 

in the µPL emission of the QW are shown in part (b).   
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Figure 6.1a shows the µPL spectrum of the V-sample at T = 5 K. This 

reveals the GaAs free exciton emission at 1.5144 eV, the Carbon ‘C’ related 

emission at 1.4929 eV [68] and two N-related transitions, NNA at 1.4559 eV 

and NNE at 1.4719 eV [34, 68]. The NNA and NNE lines are due to the 

recombination of excitons bound to N-complexes and their energy position is 

independent on the N concentration [69-70]. The C-acceptor related transition 

indicates that the sample is p-type due to the inevitable existence of C-atoms in 

the MBE chamber [70]. Also, we observed that the QW PL emission consists 

of several sharp lines. These are due to recombination of carriers localized in 

local minima of the disordered QW potential caused by alloy disorder [26]. In 

particular, the low energy tail of the QW PL emission can be accounted for by 

alloy compositional fluctuations [26, 30-32]. These tend to give rise to an 

exponential density of localized states thus resulting in broad and asymmetric 

PL line shapes as also reported in the literature [31-32]. 

We now examine the optical properties of the hydrogenated QW sample. 

In the PL spectrum of Figure 6.2a, one can identify the PL due to the GaAs free 

exciton at 1.5144 eV, the Carbon acceptor related transition at 1.4929 eV [68], 

and the QW band emission made of a number of sharp lines. Note that the QW 

PL band becomes narrower in the H2 sample compared to that of the V-

sample. The sharp lines measured in the V-sample quench and new sharp lines 

appear in H2 due to the hydrogenation. These data clearly shows that H acts to 

neutralize the electronic activity of N in the Ga(AsN) QW, thus blue shifting 

the QW PL emission. 
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Figure 6.2: (a) µPL spectra of the V and H2 samples at T = 5 K (P = 0.2 µW,  = 633 nm). 

Sharp lines in the µPL spectra of the H2 sample are shown in part (b).   
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Ga(AsN) QW. Here, we analyze the PL emission inside and outside the laser 

annealed spots at low temperature.  

 

Figure 6.3: µPL spectra of the V-sample and sample H2 inside and outside a laser annealed 

spot (Pa = 20 mW and  = 515 nm). Sharp PL lines for the laser annealed spot are shown in 

part (b).   
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outside the laser annealed spot and compare them with the PL spectra of the V-

sample. It can be seen that the laser annealing induces the appearance of a PL 

band at around 1.35 eV (band A), between the PL emission of the QW in the 

V-sample and that in the hydrogenated sample (band AH). Band A persists up 

to room temperature and is associated with carrier recombination from regions 

of the QW where the laser induces the dissociation of the N-H complex. The 

persistence of the QW emission at ~ 1.42 eV (band AH) in the annealed spot 

indicates the presence of H in some regions of the QW. From this result, we 

can conclude that the laser annealing tends to dissociates N-H complexes in the 

QW and that this dissociation is only partial. As shown in Figure 6.3b all PL 

emissions from the QW consist of sharp lines, thus indicating carrier 

recombination from localized states. 

 

Figure 6.4: µPL spectra of the laser annealed spots in sample H2 ( = 515 nm, ta = 15 s,         

Pa = 20 and 30 mW). 
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As shown in Figure 6.4, band A becomes wider with increasing the 

power of the laser annealing from 20 to 30 mW. It can be seen that new and 

more intense N-related sharp emission lines appears in the laser annealed spot 

at Pa = 30 mW. Also, for larger Pa band AH slightly red shifts towards band A.  

 

6.3 Temperature dependent photoluminescence studies 

In this section, we consider the temperature dependence of the QW PL 

emission. For this study, we used an experimental set up different from that 

described early for µPL experiments. In the µPL set up the sample is cooled 

down by direct contact with a cold metal surface in the cryostat. This cooling 

method is not always very effective, particularly for temperature dependent 

studies. Hence we use a set up in which the sample is mounted inside a cryostat 

and cooled by a continuous flux of helium surrounding the sample. A 

temperature meter and heater mounted close to the sample allowed us to 

control easily the sample temperature from 4.2 K to 300 K. An He-Ne laser 

beam ( = 633 nm) with a power density of about 50 W/cm2 was focused onto 

the sample by a lens with a focal length of 5 cm, thus providing a laser spot 

with diameter of ~ 100 µm. The emitted light from the sample was collected by 

the same lens and then focused by a second lens into the entrance slit of a 0.5m 

spectrometer equipped with a liquid–nitrogen cooled Si CCD photodetector 

(see Section 3.4). Figure 6.5 shows the PL spectra of sample H1 at various 

temperatures in the range 4.2 K – 290 K.  
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Figure 6.5: PL spectra of sample H1 at various temperatures. 

 

It can be seen that the intensity of the PL emission continuously 
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side of the QW emission at low T and tends to quench at T > 40 K. This lower 

energy band was attributed before to N-related localized transitions [71]. The 

N-related transition NNE tends to vanish at T > 20 K and the C-related 

transition quench at T > 60 K. 

The QW PL peak energy shows a non-monotonic (red-blue-red) shift 

with increasing temperature, see Figure 6.6a. In contrast, the energy position of 

the GaAs PL peak shows a monotonic red shift with increasing temperature 

(see Figure 6.6b).   
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Figure 6.6: Dependence of the PL peak energy on temperature for (a) the Ga(AsN) QW and       

(b) GaAs. Solid lines are fits to the data by Varshni law. 

 

The S-like shape of the QW PL peak energy versus temperature is 

attributed to the compositional alloy disorder and carrier thermal distribution 

effects. At low temperature, when excitons have not sufficient thermal energy 

to overcome potential energy barriers, they get trapped in local energy minima 

[26, 29]. This phenomenon called exciton freeze-out is illustrated in Figure 

6.7a. With increasing temperature the excitons gain enough energy to 

overcome potential barriers and diffuse to neighbouring lower energy states 

(see Figure 6.7b). This redistribution of carriers can explain the red shift of the 

QW emission in the temperature range 4.2 K to 80 K. When the excitons gain 

adequate thermal energy to be excited to higher energy states, the QW PL 

emission blue shifts (80 K< T < 160 K). At about 160 K, the excitons become 

delocalized and the energy of QW PL emission tends to decrease with 

increasing temperature due to the band gap reduction [29]. The later effect is 

described by the Varshni equation  

(a)

100 200

1.40

1.42

 Ga(AsN) QW
 Varshini fit

 

 

E
Q

W
 (

eV
)

T (K)

(b)

100 200

1.45

1.50

 GaAs
 Varshini fit

E
 (

eV
)

 

 

T (K)



Chapter 6: Low Temperature Photoluminescence Studies                                     70 
 

Eg(T) = Eg(0 K) - 
αT2

T+β
,                                                                            (2.10) 

where Eg(0 K) is the band gap at T = 0 K, and 𝛼 and 𝛽 are fitting parameters 

[28], see Table 6.1. The blue shift of the QW PL peak in our hydrogenated 

Ga(AsN) QW (~ 29 meV) is much larger than that reported for Ga(AsN)/GaAs 

(~ 10 meV) [72], and GaAsSbN/GaAs (~ 18 meV) [29] QWs. This might be 

caused by the larger disorder introduced by hydrogen.  

 

Figure 6.7: Schematic diagram of (a) exciton freeze-out and (b) thermal redistribution in a 

disordered potential. 

 

Table 6.1: Parameters of Varshni equation for the temperature dependence of the PL peak 

energy for the Ga(AsN) QW and GaAs. 

Solid Line  Eg(T = 0 K) (eV) 𝛼 (x 10-4 eV/K) 𝛽 (K) 
Varshni fit for Ga(AsN) QW 1.419 2.8 525 
Varshni fit for GaAs  1.515 8.5 531 
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Chapter 7 

 

Conclusion and Future Directions 

The aim of this dissertation was to study the effect of a focussed laser 

beam on the electronic activity of N- and H-atoms in GaAs. The incorporation 

of a small concentration (~1%) of N-atoms in GaAs leads to a large reduction 

of the band gap energy [16]. On the other hand, the incorporation of hydrogen 

in Ga(AsN) acts to neutralize the electronic activity of N through the formation 

of H-N-H complexes with C1h symmetry or C2v asymmetry, thus reversing the 

effect of the N-atoms on the band structure of the host crystal [9, 43-44]. In this 

study, we used a focussed laser beam to control the electronic activity of N- 

and H-atoms in a Ga(AsN)/GaAs quantum well (QW). Our laser writing 

technique and micro-photoluminescence (PL) studies provided real-time in-

situ characterisation and control of the N-H complex dissociation and of the 

band gap energy of Ga(AsN).  

We have shown that a focussed laser beam can be used to control 

spatially the PL emission energy of an hydrogenated Ga(AsN) quantum well. 

Also, our laser annealing studies have shown that the activation energy (Ea < 1 

eV) and temperature (Ta ~ 100 C) required for the N-H complex dissociation 

are significantly smaller than those obtained by HRXRD measurements of the 

lattice parameter during in-situ thermal annealing (Ea ~ 2 eV, Ta = 250-300 oC) 

[10]. Hence we have concluded that the N-H complex dissociation by laser 

arises from the combination of heating and photoexcitation phenomena. Our 
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laser writing technique provides an alternative method for H-defect 

engineering and for controlling the energy band gap and the confining potential 

of a QW of interest for future nanotechnologies. Additional studies are now 

required to model and probe the laser power and -dependence of the 

photodissociation of the N-H complex and to reveal clearly the role of thermal 

and photonic effects in the N-H dissociation.  

We assessed the thermal stability of the laser-induced nanoscale light 

emitting spots by thermal annealing at temperatures Ta = 100-450 C and 

annealing time ta = 1 hr. We have shown that the size of the spots remain 

constant up to Ta ~ 200 C. Also, the µPL measurements on the laser annealed 

spot after each thermal annealing allowed us to develop a simple model for the 

N-H complex dissociation. The laser annealing dissociates the N-H complexes 

and the H-atoms move to nearest interstitial positions inside or outside the spot 

without binding to the N-atoms. Thermal annealing at Ta ~ 200 C facilitates 

the formation of the N-H complexes due to diffusion of H from these 

interstitial positions. At Ta > 200 C, the N-H complex dissociates and the laser 

annealed spots disappear due to a uniform out-diffusion of H. We find that the 

activation energy and temperature for thermal dissociation of the N-H complex 

(Ea = 1.6 eV and Ta ~ 200 oC) is comparable to those obtained by HRXRD 

measurements of the lattice parameter during in-situ thermal annealing [10]. 

This result again confirmed that the thermal dissociation of the N-H complex 

requires a significantly larger activation energy and temperature than those 

obtained by laser. 
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To probe the H-distribution profile across the laser annealed region, we 

performed SEM studies. We have shown that the H-profile inside the annealed 

region corresponds to an inverted Gaussian with a minimum due to a low H-

concentration at the centre of the region. We have modelled the H-distribution 

profile using the Fick’s equation for H diffusion in one dimension. Our model 

fits well the measured H-distribution profile. Also, we have shown that 

electron writing does not dissociate the N-H complexes. Further studies are 

now required to image the precise position of the diffused H-atoms following 

the laser annealing. This could be possible by in-situ focused ion beam (FIB) 

sample slicing and imaging by the FIB-SEM system or by transmission 

electron microscopy (TEM) [73].  

We have indentified N-related states in hydrogenated and non-

hydrogenated samples from the sharp lines of the low temperature PL spectra. 

The QW PL emission consists of several sharp lines at low temperature (T ~ 5 

K) due to the recombination of exciton localized in local minima of the 

disordered QW potential caused by alloy disorder. In particular, the low energy 

tail can be accounted for by alloy compositional fluctuations. These tend to 

give rise to an exponential density of localized states thus resulting in broad 

and asymmetric PL line shapes. The temperature dependence of the QW PL 

peak energy also showed an S-shaped behaviour caused by carrier localization 

effects. 

In conclusion, laser writing of the electronic activity of H-atoms in GaAs 

and other III-Vs could open up interesting possibilities for low-cost and high-

speed nanofabrication techniques in nanophotonics. In particular, UV laser 
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writing and/or near-field laser irradiation [74] will help to gain further spatial 

control and resolution of the optical properties, which in our experiment is 

limited to ~ 0.8 m for laser wavelengths of  ~ 600 nm. These are exciting 

prospects for future studies of the electronic activity of H-atoms in III-Vs and 

its exploitation in optoelectronics. 
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Appendix A 

 

Electron Effective Mass in GaAs1-xNx 

The N-induced changes in the energy band gap of GaAs tend to modify 

the curvature of the energy–wave vector E(k) dispersion of the CB, thus 

changing the electron effective mass m*, which is defined as 

𝑚∗(𝑘) =
ħమ

ௗమா(௞)
ௗ௞మൗ

.                                                                                      (A.1) 

According to the BAC model, the k-dependence of the 𝐸ି(𝑘) subband is 

𝐸ି(𝑘) =
ଵ

ଶ
ቊ൫𝐸ே +  𝐸ெ(𝑘)൯ − ටቂ൫𝐸ே −  𝐸ெ(𝑘)൯

ଶ
+ 4𝐶ெே

ଶ𝑥ቃቋ,                (A.2) 

where EM (k) and EN are, respectively, the energies of the GaAs CB host matrix 

and the N level measured with respect to the top of the valence band (VB), CMN 

is a constant dependent on the host matrix, and x is the mole fraction of 

substitutional N. 

The first derivative with respect to k of E(k) is 

ௗாష(௞)

ௗ௞
=

ଵ

ଶ
 
ௗாಾ(௞)

ௗ௞
቎1 −

൫ாಿି ாಾ(௞)൯

ට൫ாಿି ாಾ(௞)൯
మ

ାସ஼ಾಿ
మ ௫

቏.                                            (A.3) 

The second derivative with respect to k of E(k) is  

ௗమாష(௞)
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൫ாಿି ாಾ(௞)൯

ට൫ாಿି ாಾ(௞)൯
మ

ାସ஼ಾಿ
మ ௫

ቍ.                         (A.4)  

At k = 0, 
ௗாష(௞)

ௗ௞
= 0 and 

ௗாಾ(௞)

ௗ௞
= 0. Thus we can write 
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ௗమாష(௞)

ௗ௞మ ቚ
௞ୀ଴

=
ௗమாಾ(௞)

ௗ௞మ ቚ
௞ୀ଴

቎1 −
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ට൫ாಿି ாಾ(௞)൯
మ
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௞ୀ଴

.                        (A.5) 

Equation A.5 can also be written as 

ħమ

௠∗
=

ଵ

ଶ
 

ħమ

௠బ
∗ ቎1 −

൫ாಿି ாಾ(௞)൯

ට൫ாಿି ாಾ(௞)൯
మ

ାସ஼ಾಿ
మ ௫

቏,                                                        (A.6) 

where 𝑚଴
∗  is the electron effective mass of GaAs at k = 0. Hence, the effective 

mass at k = 0 in Ga(AsN) can be written as 

𝑚∗ =
ଶ௠బ

∗

቎ଵି
ቀಶಿష ಶಾ(ೖ)ቁ

ටቀಶಿష ಶಾ(ೖ)ቁ
మ

శర಴ಾಿ
మ ೣ

቏

.                                                                      (A.7) 
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Appendix B 

 

GaAs1-xNx/GaAs Quantum Wells 

Here we describe the electronic bound states of a Ga(AsN)/GaAs QW 

using the BAC model and a QW square potential model. The height of the QW 

is V0= Eg(GaAs)- Eg(GaAs1-xNx) where Eg is the band gap energy. The 

potential profile along the z-direction is given by 

V(z) = ൝
V0            |z|>

a

2

     0             |z|<
a

2
   

,                                                                        (B.1) 

where a is the width of the QW. 

 

Figure B.1: Schematic diagram of a finite square Ga(AsN)/GaAs QW. 

 

The wave functions inside the well have even/odd symmetry and can be written 

as 𝜓(z) = 𝐶൛ୡ୭ୱ ௞୸
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, where 𝜀 =
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∗  and 𝑚௪

∗  is the electron effective mass 
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inside the well. Outside the well, the time-independent Schrödinger equation 

can be written as 

−
ħమ

ଶ௠್
∗

ௗమ

ௗ௭మ 𝜓(z) +  V଴𝜓(z) = 𝜀𝜓(z),                                                             (B.2) 

where 𝜀 < V଴ and 𝑚௕
∗  is the electron effective mass outside the well. The 

solutions of Eq. B.2 are 

𝜓(z) = 𝐷 exp(±𝐾z)                                                                                     (B.3) 

with  

 
ħమ௄మ

ଶ௠್
∗ = V଴ −  𝜀.                                                                                              (B.4) 

Using boundary conditions at z = 
a

2
 and the continuity of 𝜓(z), we obtain 

𝜓 ቀ
a

2
ቁ =C ቌ

cos
k a

2

sin
k a

2

ቍ =D exp ቀ-
1

2
K aቁ .                                                          (B.5) 

Similarly, the continuity of the first derivative of 𝜓 at z = 
a

2
 gives 

dψ

dz
ቚ

z=
a
2

=
Ck

௠ೢ
∗  ቌ

- sin
k a

2

cos
k a

2

ቍ = -
DK

௠್
∗  exp ቀ-

1

2
K aቁ .                                               (B.6) 

Dividing Eq. B.5 and Eq. B.6 to eliminate the normalization factors C and D, 

we derive 

k

௠ೢ
∗  ቌ

tan
k a

2

-cot
k a

2

ቍ =
K

௠್
∗                                                                                        (B.7) 

and 

ቌ
tan

k a

2

-cot
k a

2

ቍ =
௠ೢ

∗ K

௠್
∗ k

= 
௠ೢ

∗

௠್
∗ k

ට
2௠್

∗ (V0-ε)

ħ2   =ට
௠ೢ

∗

௠್
∗ ቀ

ଶ௠ೢ
∗ ௏బ

ħమ௞మ
− 1ቁ.                             (B.8) 

We define θ =
k a

2
 and 

θ0
2=

௠ೢ
∗ V0a

2

2ħ2 .                                                                                                 (B.9) 
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Thus we can write 

ቀ
tan 𝜃

−cot 𝜃
ቁ = ට

௠ೢ
∗

௠್
∗ ቀ

ఏబ
మ

ఏమ
− 1ቁ.                                                                       (B.10)  

The parameter 𝜃଴ determines the allowed values of 𝜃. Both sides of Eq. B.10 

are plotted against 𝜃 and the intersections give the solutions of 𝜃.  

The ground state energy 𝜀1  

𝜀1=
ħ2k2

2mw
* = 

2ħ2ఏభ
మ

mw
* a2 ,                                                                                         (B.11) 

corresponds to the first intersection point at 𝜃 =  𝜃ଵ.  

The energy of the optical transition between the first QW electron subband and 

the top of the valance band is 

EQW = E
g
+ 𝜀1,                                                                                       (B.13) 

where Eg is the band gap energy of GaAs1-xNx. Therefore, the modified BAC 

model for the QW is 

E±(k)=
1

2
ቊ(EN+ EM(k) + 𝜀1)±ටൣ(EN - EM(k) - 𝜀1)2+ 4CMN

2 x൧ቋ .  
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