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ABSTRACT

This thesis describes the effects of crowding during the final third of 

pregnancy upon development of the offspring in mice, and examines the role of 

the pituitary-adrenocortical axis as the physiological mechanism of mediation.

In an attempt to confine the effects of. the various experimental manipulations 

to the prenatal period, and eliminate postnatal variables affecting development, 

all litters were fostered at birth to control mice. Offspring in litters from 

crowded mice showed increased perinatal mortality rates and reduced birth weight. 

Later in development, female offspring from crowded mice show retarded onset of 

puberty, which is not due to delayed postnatal body weight gain, and in adulthood 

these animals show disruption of the oestrous cycle typified by shortening of the 

pro-oestrus stage. Adult male offspring from crowded mice show impaired copulation 

and reductions in aggression compared with offspring from control mice.

Testosterone propionate therapy in adulthood improved copulation in these animals, 

but the aggressive responses of fighting male offspring from crowded mice were 

still deficient compared with those of control offspring even after testosterone 

propionate treatment. The causes of the syndrome evident in offspring from 

crowded mice is discussed, and hypoprolactinaemia has been postulated as a general 

underlying cause of pathology.

Crowding did not severely reduce maternal food intake or shorten the length 

of pregnancy, but was found to increase plasma corticosterone concentrations 

during pregnancy. The hypothesis that the effects of crowding during pregnancy 

upon offspring development are mediated by the maternal pituitary-adrenocortical 

system was tested. Hormones known to be secreted from this system (e.g. ACTH, 

corticosterone, progesterone and androstenedione) were administered singly to 

pregnant mice in an attempt to reproduce the effects of crowding durinci pregnancy 

upon offspring development. Evidence that the maternal adrenal is required for 

producing the effects of crowding was inconclusive.
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CHAPTER 1

INTRODUCTION

The pathology of stress continues to attract intense research 

interest although it is nearly 50 years since Selye's (1936) seminal 

study. In the general field of stress research, two distinct 

areas of study have evolved. The first concerns the advancement 

of knowledge of the mechanisms producing stress pathology in adult 

animals. The second and more recent area of study concerns the 

"pathological" effects of stress during early, and even prenatal 

life, on the development of the embryo, foetus or young animal.

This thesis is a contribution to the second area of study and 

investigates the consequences of environmental stress during 

pregnancy upon development of the offspring, and on the 

identification of factors which may mediate the described effects 

of "prenatal stress".

In the context of this study, the terms "stress" and "stressor" 

are used as originally defined by Selye (1936, 1950). Stress is 

the descriptive term applied to the physiological response to 

adverse environmental conditions. The stressed animal typically 

shows changes in the activity of endocrine glands and particularly 

in the activity of the hypothalamo-pituitary-adrenocortical system. 

Stressors are the agents which activate the physiological stress 

response and are usually nocuous agents, or adverse environmental 

conditions that cause disturbance, irritation or pain. Stressful 

conditions may occur in natural circumstances, for example during 

resource shortages, intraspecies and other conflicts or in over

crowded conditions. In the laboratory, crowding, restraint, 

intense illumination, temperature extremes, avoidance conditioning,
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noise and food restriction have been employed as stressors.

More recent definitions and concepts of stress, re-affirm the 

importance of the hypothalamo-pituitary-adrenocortical axis in 

the endocrine response to stressors (e.g. Mason, 1968; Allen, Allen, 

Greer and Jacobs, 1973; Brain, 1975; Smelik and Vermes, 1980; 

Nichols, 1980) and further discussion of the endocrinology of 

stress is given in Chapter 2.

Selye's (1936, 1950) studies were important because they 

showed a relationship between environmental conditions, an internal 

physiological response and stress-related pathology. The 

endocrine response to environmental conditions was considered to 

be a mechanism of phenotypic adaptation. Selye recognised a 

general adaptation syndrome characterised by changes in the activity 

of the adrenal gland. In conditions of chronic stress the adrenal 

cortex can increase and sustain steroid output for as long as 

metabolic resources will allow, until adrenocortical exhaustion 

results. Certain pathological conditions are correlated with 

adrenocortical activity, and in some cases stress-related pathology 

is thought to be mediated by the action of adrenocortical products. 

Pathological conditions reported to be associated with chronic 

environmental or social stress in studies on various mammalian 

species include loss of body weight, gastric erosions, arterio

sclerosis, inhibition of reproductive development and function 

(Evans, 1959; Christian and Davis, 1964; Christian, Lloyd and 

Davis, 1965; Burchfield, Woods and Elich, 1980) and there is even 

a report of stress causing death by renal failure (Holst, 1972).

A problem exists in explaining the effects of stress during 

pregnancy upon the development of the offspring. Many 

environmental stressors to which the maternal organism is exposed



cannot directly contact the foetus, although electric shock, 

temperature extremes or undernutrition may directly influence 

foetal development. However, development of the foetus may be 

influenced by the action of hormones released by the maternal 

organism during the stress response. Ward (1972) and Dahlof,

Hard and Larsson (1977) have suggested that the effects upon 

development and behaviour detected in offspring from rats crowded 

or restrained during pregnancy are mediated by exposure to 

adrenocortical products of maternal origin. There is only limited 

support for this hypothesis, and this endocrine mechanism has only 

been applied to account for certain effects of stress during 

pregnancy, such as impaired copulation in male offspring. There 

are in fact many reported effects of stress during pregnancy upon 

offspring development and behaviour and these will now be briefly 

reviewed. They are summarised in tabulated form in literature 

summary 1.

The first studies to report that exposure of the maternal 

organism to stressful conditions during pregnancy could influence 

the offspring were performed by Thompson (1957) and Kaplan and 

Thompson (1957) who showed that offspring from rats that were 

avoidance conditioned during pregnancy, were less active compared 

with offspring from undisturbed controls. This study has been 

repeated in both rats and mice using the stressors of crowding, 

handling, avoidance conditioning, electric shock and forced 

swimming (Morra, 1965» Ader and Belfer, 1962» Thompson, Watson and 

Charlesworth, 1962; Thompson and Quinby, 1962; Hutchings and Gibbon, 

1962, Keeley, 1962; Ader and Conklin, 1963; Defries, 1964; Hockman, 

1961; Defries, Weir and Hegmann, 1967; Ader and Plaut, 1968; Smith, 

Joffe and Heseltine, 1975; Chapman, Masterpasqua and Lore, 1976;



4

Joffe, 1977; Rohner and Werboff, 1979). In contrast, Ader and 

Plaut (1968) and Lieberman (1963) have reported increased activity 

levels in the offspring of rodents stressed during pregnancy.

This apparent contradiction of the effects of stress during pregnancy 

upon activity and performance of the offspring may simply be due 

to differences in animals' initial arousal states, which is well 

known to affect performance (Yerkes and Dodson, 1908). Archer 

and Blackman (1971) and Joffe (1978) have reviewed the effects of 

stress during pregnancy upon activity, arousal and emotional 

responses.

More recent studies of the effects of stress during pregnancy 

upon the offspring have concentrated on sexually dimorphic patterns 

of behaviour, and in particular, sexual behaviour in male offspring. 

Ward (1972) reported that male offspring from rats restrained 

during the final third of pregnancy showed impaired masculine 

sexual responses and augmented feminine sexual responses. This 

finding has since been confirmed (Herrenkohl and Whitney, 1976; 

Chapman, Masterpasqua and Lore, 1976; Dahlof, Hard and Larsson,

1977; Chapman and Stern, 1978; Dunlap, Zadina and Gougis, 1978; 

Meisel, Dohanich and Ward, 1979; Rhees and Fleming, 1981).

Similarly, the stressors of avoidance conditioning (Masterpasqua, 

Chapman and Lore, 1976) crowding (Chapman, Masterpasqua and Lore, 

1976; Dahlof, Hard and Larsson, 1977) and malnutrition (Rhees and 

Fleming, 1981) of the pregnant rat have been shown to either impair 

masculine patterns of sexual behaviour, or augment feminine patterns 

of sexual behaviour in the male offspring. There has been only 

limited study of the mouse, and evidence that stress during 

pregnancy affects male offspring sexual behaviour is conflicting. 

Allen and Haggett (1977) report that male offspring from mice

\
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chronically crowded during pregnancy show impaired copulatory 

responses, as evidenced by lengthened ejaculatory latencies. In 

contrast, Politch and Herrenkohl (1984a) found no impairment of 

the sexual responses of male offspring from mice restrained during 

pregnancy.

With reference to the abnormalities in the sexual responses 

of male offspring from rodents stressed during pregnancy, the 

terms "démasculinisation" and "féminisation" have been used to 

describe respectively the reductions in masculine behavioural 

responses, and the increments in feminine behavioural responses.

In the male, a démasculinisation is the loss of male characteristics 

and a féminisation is the appearance of female characteristics.

One effect of stress during pregnancy upon aspects of sexual 

behaviour in male offspring, which is difficult to classify as 

either a démasculinisation or féminisation, is the increased 

incidence of homosexual responses reported by Gotz and Dorner (1980) 

in male offspring from rats restrained during pregnancy. With 

reference to the female offspring from rodents stressed during 

pregnancy, the term "deféminisation" has been used to describe the 

loss of female characteristics in these animals. The effects 

of stress during pregnancy upon the behavioural responses of 

female offspring will now be reviewed.

There has been limited study of the effects of stress during 

pregnancy upon sexually dimorphic patterns of behaviour in female 

offspring. Allen and Haggett (1977) reported that female offspring 

from mice crowded during pregnancy were less sexually receptive 

than offspring from non-crowded mice. In contrast, Beckhardt and 

Ward (1983) found no apparent losses of sexual receptivity in 

female offspring from rats restrained during pregnancy. However,
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A-

such females are less likely to show maternal aggression (Politch 

and Herrenkohl, 1979) and this finding, together with that of 

Allen and Haggett (1977) does indicate that stress during pregnancy 

defeminises female offspring behaviour patterns.

In addition to the reported effects of stress during 

pregnancy upon the behavioural responses of male and female 

offspring, other consequences upon the endocrinology and physiology 

of these animals have been reported. These physiological 

consequences of prenatal stress may be the cause of the effects 

upon behaviour and this is reviewed later in this and in other 

chapters. Schnurer (1963) first studied the maternal and foetal 

endocrine pathology resulting from stress during pregnancy and 

reported atrophy of the foetal adrenals, thyroid, thymi and 

testis. Unfortunately, Schnurer injected formaldehyde into the 

pregnant rat and although this may have activated the stress response, 

this substance may have also been directly teratogenic. Similarly, 

severe undemutrition during pregnancy has been shown to produce 

severe foetal adrenal, testis, thyroid and thymus atrophy and mild 

ovarian underdevelopment in rats (Barry, 1920) but it is unclear 

what contribution was made to this result by maternal stress, as 

undernutrition was not recognised as a stressor. Clearer evidence 

of endocrine pathology in both male and female offspring from 

rodents stressed during pregnancy has since been obtained using 

the stressor of restraint. Dahlof, Hard and Larsson (1978) report 

reduced adrenal and testis weight in foetal male offspring from 

rats restrained during pregnancy. That stress during pregnancy 

influences the development of both the pituitary-gonadal and 

pituitary-adrenal systems of male offspring has since been confirmed. 

Male foetuses from restrained rats show an acceleration of the



normal prenatal testosterone surge (Ward and Weisz, 1980) and such 

animals when born have decreased plasma testosterone concentrations 

(Dorner, 1980) compared with those from control rats. In adult

hood, male offspring from rats restrained during pregnancy also 

show lower stress secretions (induced by ether exposure) of 

prolactin and corticosterone (Politch, Herrenkohl and Gala, 1978). 

Similar endocrine pathology has been reported in female offspring: 

adult female offspring from rats restrained during pregnancy show 

lengthened oestrous cycles (Herrenkohl and Politch, 1978) decreased 

fertility and fecundity (Herrenkohl, 1979) and reductions in 

prolactin levels after themselves becoming mothers (Herrenkohl and 

Gala, 1979). Additionally, female offspring from mice restrained 

during pregnancy are slower to achieve sexual maturation as evidenced 

by delayed vaginal opening (Politch and Herrenkohl, 1984a) and this 

result can be taken to indicate an underlying endocrine abnormality.

Closely related to the effects of stress during pregnancy upon 

the endocrinology of the offspring are the effects upon offspring 

brain biochemistry. The neurochemical effects of prenatal stress 

can be divided into two categories: those influencing nucleic acid 

concentrations in brain tissue and those affecting neurotransmitter 

concentrations. Petropoulos, Lau and Liao (1972) report reduced 

brain protein and decreased concentrations of nucleic acids in 

the hypothalamus, cerebellum and cerebral cortex of juvenile 

offspring from rats handled in pregnancy. Similarly, under

nourishment of rats during pregnancy has been shown to reduce 

nucleic acid concentrations in the brain stem of neonatal offspring 

(Hammer and van Marthens, 1981). It should be noted that these 

reports supply evidence that stressful conditions during pregnancy 

can damage the structure, as well as the neurochemical integrity.
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of the brain of the offspring. A reduction of brain DNA is 

indicative of reduced brain cell number. In addition to the 

studies previously mentioned there are reports suggesting that 

offspring from rodents stressed during pregnancy show other 

neurochemical abnormalities. Moyer, Herrenkohl and Jacobwitz 

(1978) found decreased noradrenaline in the nucleus preopticus 

medialis and median eminence of adult male offspring from rats 

restrained during pregnancy, and increased noradrenaline concen

trations in the entorhinal cortex, decreased dopamine concentrations 

in the nucleus paraventricularis, and increased dopamine concen

trations in the arcuate nucleus of their female litter mates in 

adulthood. Similarly, Rohner and Werboff (1979) report reduced 

dopamine concentrations in the corpus striatum (but found no 

differences in the hypothalamus) of offspring from mice subjected to 

the stress of avoidance conditioning during pregnancy. Sobrian 

(1977) found no differences in brain concentrations of serotonin, 

noradrenaline or 5-hydroxyindoleacetic acid in neonatal or juvenile 

offspring from rats subjected to electric shocks during pregnancy.

The final major category of the effects of stress during 

pregnancy upon the offspring is concerned with general development 

and morphology. Included in the general development category are 

neurological development, somatic development and sexual maturation 

(which is partially controlled by body weight) and the morphological 

effects include such phenomena as cleft palate, hydrocephaly and 

abnormalities to the form of the genitalia. These latter con

sequences of stress are such as to be considered as teratogenic in 

the normally accepted sense.

Neurological and neuromuscular development, as assessed by the 

development of reflexes, has been examined in the offspring from



rodents stressed during pregnancy. Sobrian (1977) reported accelerated 

development of spontaneous motor activity in juvenile offspring from 

rats subjected to electric shock during pregnancy. This treatment 

did not affect development of the auditory startle or freefall 

righting reflex, eye opening (a correlate of brain maturation) or 

incisor eruption. In contrast, offspring from rats restrained 

during pregnancy show retarded development of the auditory startle 

reflex (Barlow, Knight and Sullivan, 1978) but again, eye opening 

and limb grasping was not affected. However, more chronic stressing 

procedures have been shown to retard a variety of correlates of 

neurological development, at least in the mouse. Chevins (1981) has 

shown that neonatal and juvenile offspring in litters from mice 

chronically crowded during pregnancy, exhibit impaired development 

of the limb grasp, body righting and auditory startle reflexes.

As most reflexes depend for their operation upon muscular, as well as 

neural development, it remains difficult to separate the effects of 

prenatal stress upon body and muscular development, from those 

influencing the nervous system alone. The auditory startle reflex 

can be envisaged to most closely relate to brain maturation, but 

even this may depend on somatic factors as the external auditory 

meatus opens postnatally, at least in rats (A. Palmer, Huntingdon 

Research Centre, personal communication). Stress during pregnancy 

is, in fact, associated with decreased offspring somatic development. 

Neonatal and juvenile offspring from rats subjected to restraint 

(Herrenkohl and Whitney, 1976; Barlow, Knight and Sullivan, 1978;

Politch and Herrenkohl, 1979) handling (Werboff, Anderson and 

Haggett, 1968) or electric shock (Sobrian, 1977) or from mice 

subjected to crowding (Chevins, 1981) during pregnancy, show 

decreased body weights compared with control offspring. Examination



of the female offspring from stressed rodents later in postnatal 

development have revealed other influences upon general development. 

Politch and Herrenkohl (1984a) report that female offspring frcm 

mice restrained during pregnancy show delayed vaginal opening, 

but again it is unknown as to what extent somatic under-development 

may influence this phenomenon.

The teratogenic activity of stress is suggested by the 

influences upon survival of embryos and foetuses. Restraint 

stress during early pregnancy in rats, reduces the number of con- 

ceptuses that implant, and during late pregnancy increases the 

incidence of abortions (Euker and Riegle, 1973). Similarly, 

avoidance conditioning of rats during pregnancy reduces the number 

of offspring born and surviving up to postnatal day 25 (Hockman,

1961; Morra, 1965) and restraining rats prior to pregnancy, reduces 

litter size and the proportion of male foetuses born (Lane and 

Hyde, 1973). It is worth noting that in mice, exposure to stressful 

conditions increases cannibalism of litters (Rohner and Werboff,

1979) and this, together with effects upon lactation, may be 

implicated in reducing postnatal survival of prenatally stressed 

rodents.

Other teratogenic effects of stress include: hydrocephaly in 

rats induced by restraint during pregnancy (Euker and Riegle, 1973) 

and cleft palate in mice also induced by restraint during pregnancy 

(Barlow, McElhatton, Morrison and Sullivan, 1974). Additionally,

crowding mice (Allen and Haggett, 1977) and crowding or restraining 

rats (Dahlof, Hard and Larsson, 1978; Chapman and Stern, 1978) 

during pregnancy has been shown to produce morphological abnormalities 

in the genital system of the male foetus and neonate: these animals 

show decreased ano-genital distances and this is another example of
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a démasculinisation as defined earlier in this chapter.

It is apparent then that the effects of stress during 

pregnancy upon the offspring have been the subject of many studies. 

It is also clear from the literature that the effects of stress 

during pregnancy can be grouped according to the type of effect. 

These classes of effect of stress during pregnancy upon the 

offspring are: exploratory and fear-mediated behaviour; sexual, 

behaviour, reproductive endocrinology and development; growth and 

somatic, neurological and morphological development. With this 

framework, it is possible to examine other consequences of stress 

during pregnancy upon the offspring, and this was one purpose 

of this thesis. For example, if sexual behaviour is affected in 

offspring from rodents stressed during pregnancy, it is logical 

to suppose that other similarly controlled behaviour may also 

be influenced. One such behaviour is intermale aggression, and 

the effects of stress during pregnancy upon the expression of this 

behaviour in male offspring, has not been previously examined.

It is also apparent from the existing literature that most studies 

have employed the rat as the experimental animal, and used both 

severe and artificial stressors. The purpose of this thesis was 

to systematically and thoroughly study the effects of stress during 

pregnancy, using the mouse as the experimental animal, and to use 

a more natural stressor. Chronic crowding with male mice was 

chosen as the stressful condition and this was modified from 

Keeley (1962). Another purpose of this study was to test the 

hypothesis that the effects of stress during pregnancy upon the 

offspring, are mediated by maternal adrenocortical products.

This hypothesis has been developed from Ward (1972) and Dahlof,

Hard and Larsson (1977). It is necessary to point out that
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adrenocorticotrophic hormone (ACTH) is thought not to cross the 

placenta as an intact molecule in physiological concentrations, at 

least in rats and rabbits (Milkovic and Milkovic, 1961; Genazanni, 

Fraoli, Fioretti and Felber, 1975). However, corticosterone can 

cross the placenta (Zarrow, Philpott and Denenberg, 1970) as can 

most steroids (Johnson and Everitt, 1980) and the suggestion that 

corticosterone or other adrenal products are involved in producing 

the effects of stress during pregnancy upon the offspring, is 

consistent with this hypothesis.

Stress during pregnancy can also exert delayed effects upon 

offspring development. For example, poor lactation or maternal 

care due to prior stress could affect postnatal development of 

offspring. The use of fostering procedures in this study allows 

some control over these factors and also allows the identification 

of the foetal life stage as the major period of risk.

In considering the underlying causes of the various 

abnormalities in the offspring, it is not easy to link a maternal 

mechanism of mediation with physiological mechanisms in the offspring, 

which ultimately produce all the described effects of stress during 

pregnancy. What physiological change in the mother, and con

sequently in the offspring, as a result of maternal stress, generates 

these developmental and behavioural effects? Increased pituitary- 

adrenocortical output is the primary endocrine stress response, 

and details of this, the placental passage of hormones and maternal 

factors influencing foetal endocrine development are given in 

chapter 2. Theoretical evidence exists to suggest that gluco

corticoids are involved in the production of the "teratogenic" 

effects of stress, and this mechanism will now be reviewed with 

respect to the 3 major categories of effects upon the offspring.



13

The fear mediated and "emotional" types of behaviour shown to 

be affected in offspring from rodents stressed during pregnancy, 

are thought by some authors to be influenced by hormones of the 

pituitary-adrenocortical system (e.g. Ader and Grota, 1973).

Maternal stress during pregnancy may influence these behaviour 

patterns in the offspring by direct action of maternal cortico

sterone on the foetal brain, or by a peripheral effect on the 

offspring's adrenals. Offspring from rats stressed during pregnancy 

show adrenal underdevelopment (Dahlof, Hard and Larsson, 1977) and 

decreased amplitude of the corticosterone stress response 

(Politch, Herrenkohl and Gala, 1978) and these effects on the 

pituitary-adrenal system may also cause the effects of prenatal 

stress on aspects of behaviour and development controlled by this 

system. Corticosterone is known to have a catabolic action on 

protein (Chapter 2) and this may well cause most of the other 

effects of stress during pregnancy upon the offspring. Catabolism 

of protein in the foetus, at a time when body, brain and other 

organ systems are most rapidly growing, and in some cases still 

developing, can be expected to have serious consequences. This 

model can certainly be envisaged to cause the somatic under

development evident in offspring from rodents stressed during 

pregnancy, and may also be involved in producing the described 

effects upon offspring morphological development. Further, it has 

been shown that offspring from rodents stressed during pregnancy 

show retarded neurological development. Glucocorticoids are known 

to differentially influence the development of organs (Beato and 

Doenecke, 1980). In rodents, the brain of the male foetus is 

masculinised by the interaction of testosterone-derived steroids 

upon receptors during a critical period. If the normally occurring



prenatal testosterone surge is early or late with respect to brain 

development, then masculinisation could be diminished. Ward and 

Weisz (1980) report that male foetuses from rats stressed during 

pregnancy show an acceleration of this prenatal testosterone surge, 

and suggest that mistimed development of the pituitary-gonadal 

system from that of the brain, may cause the démasculinisation of 

the sexual responses of these animals in adulthood. A general 

effect of stress during pregnancy upon the process of sexual 

differentiation of the offspring can also be seen to influence 

other aspects of reproduction. Less specific effects on the brain 

may have repercussions on the control of endocrine systems. The 

adrenocortical rhythm is probably brain-derived and alteration to 

this may be a cause of the retardation of puberty in female offspring. 

However, as puberty is dependent on body weight as well as endocrine 

factors, body underdevelopment may actually explain Politch and 

Herrenkohl's (1984a) results.

The mechanisms of the production of the effects of stress during 

pregnancy upon the offspring outlined above, are central to this 

thesis and are detailed in other chapters. The working hypothesis 

of this thesis is that the effects of stress during pregnancy upon 

offspring development are mediated by maternal pituitary-adreno

cortical products. The strategy used to test the working hypothesis 

was that ACTH, corticosterone (or other adrenal steroids) if involved 

in producing the effects of stress during pregnancy upon the 

offspring, should have similar effects when administered during 

pregnancy. ACTH, corticosterone, progesterone and androstenedione 

were administered to pregnant mice to examine whether they reproduced 

the effects of crowding. A further test of the hypothesis of 

adrenal involvement is that adrenalectomy should abolish the effects
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of crowding during pregnancy upon offspring development. Further 

details of this strategy together with the teratogenic effects of 

hormones are given in Chapter 2. A simpler sequence of mediation, 

namely that crowded animals may feed less or give birth earlier, 

was also examined. This hypothesis suggested itself part way through 

this project and stimulated the experiments reported in Chapter 4.

Finally, the organ systems of a mammal interact in complex 

ways both during development and in adult life, involving both 

hierarchical organisation and feedback loops. For example, higher 

brain centres influence the hypothalamus which in turn controls the 

pituitary, and through it peripheral endocrine glands and target 

tissues; steroid hormones feedback to the pituitary and hypothalamus, 

and may themselves directly influence behaviour through their action 

on receptors in other hypothalamic areas. Given this complexity, 

it would be naive to expect to uncover simple causal chains to explain 

the mechanism of action of stress during pregnancy, upon offspring 

development and behaviour.
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LITERATURE SUMMARY 1

Summary of pathology reported in offspring from 
rodents exposed to stressors during pregnancy

Pathology in offspring Stressor during
pregnancy

Reference

a) Neurobehavioural
i) Impaired masculine Restraint

sexual responses "
in males "
(démasculinisation) Avoidance

conditioning'*' 
Chronic crowding

II

Malnutrition^

Ward, 1972.
Dunlap et al., 1978 
Rhees & Fleming, 1981
Masterpasqua et al., 1976
Chapman et al., 1976^ 
Allen & Haggett, 1977* 
Harvey & Chevins, 1984* 
Rhees & Fleming, 1981

Masculine sexual Restraint Rhees et al., 1983
responses not 
improved by 
naloxone therapy

Masculine sexual 
responses 
improved by 
androgen therapy
a) perinatal

(effective)
b) adulthood

(effective)
c) adulthood

(uneffective)

Restraint 

Chronic crowding 

Restraint

Dorner et al., 1983 

Harvey & Chevins, 1984* 

Ward, 1977

ii) Augmented feminine Chronic crowding 
sexual responses Restraint
in males "
(féminisation) "

Malnutrition

Dahlöf et al., 1977 
Chapman et al., 1976 
Dahlöf et al., 1977 
Herrenkohl & Whitney, 1976 
Rhees & Fleming, 1981 
Meisel et al., 1979 
Ward, 1972
Chapman & Stern, 1978 
Politch & Herrenkohl, 1984a* 
Whitney & Herrenkohl, 1977 
Rhees & Fleming, 1981

iii) Homosexual
responses in males

Restraint 
Social fear^

Gotz & Dorner, 1981 
Dorner et al., 1980 
Dorner et al., 1983

iv) Impaired sexual 
responses in 
females
(defeminisation)

Chronic crowding Allen & Haggett, 1977*
Restraint Beckhardt & Ward, 1983^



Pathology in offspring Stressor during 
pregnancy

Reference

v) Reduced maternal 
aggression 
(deféminisation)

vi) Increased
infanticide in 
males and females

vii) Decreased arousal, 
exploration, 
activity and 
fear mediated 
responses

Restraint

Handling

Light'’

Chronic crowding
II

II

Water submersion-II
HandlingII
Avoidance

conditioning-'-II
II

Avoidance
conditioningII

II

Electric shock3

Politch & Herrenkohl, 1979

Miley et al., 1981, 1982, 
1983

Vom Saal, 1983*

Keeley, 1962*
Lieberman, 1963*
Chapman et al., 1976 
Defries, 1964*
Defries et al., 1967* 
Ader & Conklin, 1963 
Ader S Plaut, 1968
Thompson, 1957
Kaplan & Thompson, 1957 
Hockman, 1965
Rohner & Werboff, 1979*
Morra, 1965
Thompson & Quinby, 1964 
Thompson et al., 1962 
Ader & Belfer, 1962 
Hutchings & Gibbon, 1962 

1976I I Masterpasqua et al.,
I I Joffe, 1977
I I Smith et al., 1975

b) Endocrine
i) Adrenal atrophy Restraint/cold3 Dahlöf et al., 1978

Formaldehyde 3 Schnürer, 1963
Inanition3 Barry, 1920

ii) Thyroid and Formaldehyde3 Schnürer, 1963
thymi atrophy Inanition3 Barry, 1920

iii) Testis atrophy Restraint/cold3 Dahlof et al., 1978
Formaldehyde3 Schnürer, 1963
Inanition3 Barry, 1920

iv) Altered stress Handling Ader & Plaut, 1968
secretions of Restraint Politch et al., 1978
corticosterone

v) Altered secretion Restraint Stahl et al., 1978
patterns of " Dorner, 1980
testosterone " Ward & Weisz, 1980
in males
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Pathology in offspring Stressor during Reference
pregnancy

vi) Altered secretion Restraint Politch et al., 1978
of prolactin II Herrenkohl & Gala, 1979
a) stress secretions 

(males)
II

b) basal secretions 
(females)

ll II

vii) Lengthened Restraint Herrenkohl & Politch, 1978
oestrous cycles " Politch & Herrenkohl, 1984a*

viii) Reduced fertility II Herrenkohl, 1979

c) Neurochemical and Neurological
i) Decreased brain 

protein
Handling Petropoulos et al., 1972

ii) Altered neuro- Restraint Moyer et al., 1978
transmitter 
concentrations in

Electric shock3 
Avoidance

Sobrian, 19772

brain regions conditioning Rohner & Werboff, 1979*

iii) Decreased nucleic Undernutrition3 Hammer & van Marthens, 1981
acid concentrations 
in brain regions

Handling Petropoulos et al., 1972

iv) Retarded reflex Restraint Barlow et al., 1978
development Chronic crowding Chevins, 1981*

V ) Accelerated motor 
development

Electric shock3 Sobrian, 1977

Vi) Accentuated taste Novel
neophobia environment Pfister et al., 1981

d) Morphological and Developmental
i) Hydrocephaly Restraint Euker & Riegle, 1973

ii) Cleft palate Restraint Barlow et al., 1974*

iii) Decreased ano- Chronic crowding Allen & Haggett, 1977*
genital distance II Dahlof et al., 1978
in males Restraint

II
Dahlof et al., 1978 
Chapman & Stern, 1978

iv) Altered litter 
sex ratio 
(increased 
females)

Restraint Lane & Hyde, 1973
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Pathology in offspring Stressor during
pregnancy

Reference

v) Decreased litter 
size and 
survival

vi) Delayed ear pinna 
unfolding

vii) Decreased body 
weight

viii) Gastric erosion

Restraint
If

Avoidance
conditioning

Handling

Euker & Riegle, 1973 
Lane & Hyde, 1973
Morra, 1965
Hockman, 1961

Restraint Barlow et al., 1978

Restraint

Handling 
Chronic crowding 
Electric shock^

Barlow et al., 1978 
Herrenkohl & Whitney, 1976 
Werboff et al., 1968 
Chevins, 1981*
Sobrian, 1977

Handling Ader & Plaut, 1968

ix) Delayed vaginal 
opening

Restraint
II Politch & Herrenkohl, 1984a* 

Barlow et al., 1978^

Footnote: 1 Premating procedure
2 Limited or no effects
3 Effects may be mediated directly
4 Study in humans
5 Effects modified by prenatal stress
* Study in mice (all other studies employed rats)



CHAPTER 2

ENDOCRINOLOGY OF THE STRESS RESPONSE, HORMONAL PROFILE DURING 

PREGNANCY AND FOETAL ENDOCRINE DEVELOPMENT

The abnormalities evident in the offspring from rodents exposed 

to stressors during pregnancy have been reviewed in Chapter 1, and 

a hypothesis of their causation outlined. This chapter is 

addressed to the details of this model. To this end, the 

endocrinology of the stress response, the metabolic action of 

hormones, the hormonal profile during pregnancy and foetal endocrine 

development are examined. Particular attention is paid to crowding 

as a stressor and the physiology of the rat and mouse, because of 

their relevance to this study.

Rodents existing in dense populations or crowded conditions 

show marked changes in endocrine activity. In mice, grouping or 

crowding can disrupt the oestrous cycle in females (Bronson and 

Chapman, 1968; Nichols, 1980) and decrease testosterone secretion 

and reproductive organ growth in males (Jean-Faucher, Berger,

De Turckheim, Veyessiere and Jean, 1981). In both rats and mice, 

crowded conditions activate the hypothalamo-pituitary-adrenocortical 

axis as evidenced by increased adrenocorticotrophic hormone (ACTH) 

secretion, increased adrenocortical output and adrenal hypertrophy 

(e.g. Christian, Lloyd and Davis, 1965; Nichols, 1980). In vitro,

adrenal glands from rats crowded for three weeks to a floor area 
2of 30 cm /animal show elevated rates of adrenal mitochondrial

hydroxylation of deoxycorticosterone, resulting in increased

corticosterone synthesis and secretion, compared with hydroxylation
2rates of adrenals from rats housed at a density of 110 cm /animal 

(McCarthy, Green and Sohal, 1976) . Crowding is therefore a genuine



stressor and is capable of increasing adrenocortical output after 

chronic exposure. Some stressors (e.g. cold) fail to elicit a 

long term endocrine stress response due to adaptive conditioning 

of the animal (Burchfield, Woods and Elich, 1980).

Other experimental procedures commonly employed in studies of 

stress have been shown to increase adrenocortical output. Handling 

male rats results in increased plasma corticosterone concentrations, 

particularly during the "peak" phase of the 24 hour rhythm (Brown 

and Martin, 1974). Restraining female rats also results in 

increased plasma corticosterone concentrations (Smith and Gala,

1977). Both handling and restraint of rats increases prolactin 

(PRL) secretion (Brown and Martin, 1974; Smith and Gala, 1977). 

Undemutrition is also a stressor in rats and is reported to increase 

adrenocortical output (Adlard and Smart, 1972) and decrease thyroid 

stimulating hormone secretion (TSH; Hugues, Reinberg, Jordan, 

Selbaoun, Modigliani and Burger, 1982). Stressors including 

undernutrition have in fact been shown to alter the secretions of 

many other hormones including growth hormone (GH), vasopressin and 

adrenal-medullary hormones, pituitary-thyroid, pituitary-ovarian 

and pituitary-gonadal secretions in many mammalian species (Mason, 

1968a, b, c; Bronson and Chapman, 1968; Rose, 1969; Brown and 

Martin, 1974; Terry, Willoughby, Brazeau and Martin, 1976; Tveit 

and Almlid, 1980; Makara, Palkovits and Sventogothai, 1980; 

Jean-Faucher, Berger, De Turckheim, Veyessiere and Jean, 1982). 

Whether these are primary stress responses, or a result of the 

effects of pituitary-adrenocortical hormones is unclear.

During pregnancy, the pituitary-adrenocortical axis shows 

reduced stress responsiveness: in mice, isolation results in an 

increase in adrenal weight in virgin females but the same procedure
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does not influence adrenal weight in pregnant mice (Brain and Nowell, 

1970a). This difference in pituitary-adrenal sensitivity was 

attributed to increased output of ovarian androgens during pregnancy 

at the expense of oestrogens. Oestrogens are known to stimulate 

ACTH secretion (Barrett, 1960) but are not required for the stress 

response. Pregnancy is also known to reduce sensitivity of the 

hypothalamo-pituitary-adrenal system to stress in guinea pigs 

(Hoet, Pagni, Ekka and Saba, 1965). However, it is possible that 

isolation is not perceived as a stressor by pregnant rodents in 

laboratory conditions because it relates to natural circumstances. 

Despite the phenomenon of reduced pituitary-adrenal sensitivity in 

pregnancy, stressors which are employed in studies reporting the 

effects of stress during pregnancy upon the offspring (see Chapter 

1) have been empirically shown to increase adrenocortical output.

Rats handled on day 16* of pregnancy show elevated plasma 

corticosterone concentrations, rising from 375 ng/ml to 550 ng/ml 

during the peak phase of the 24 hour rhythm, and rising from 

120 ng/ml to 320 ng/ml during the trough phase of the 24 hour 

rhythm (Grota and Ader, 1970). In mice, restraint and food 

deprivation on days 14-15 of pregnancy results in an increase in 

plasma corticosterone concentrations from 790 ng/ml to 7000 ng/ml, 

and undisturbed mice had a plasma corticosterone concentration of 

1200 ng/ml on day 15 of pregnancy (Barlow, McElhatton, Morrison and 

Sullivan, 1974). Premating avoidance conditioning does not 

influence corticosterone secretion during pregnancy in rats 

(Joffe, Mullick, Ley and Rawson, 1978).

The stress response primarily involves changes in the secretions 

from the hypothalamo-pituitary-adrenocortical axis, and control 

of this system will now be reviewed in detail. The hypothalamus

♦Where day of pregnancy is given, conception has been designated 
as day 0.
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synthesises and secretes corticotrophin releasing factor (CRF) which 

has recently been sequenced as a 41 residue peptide (Vale, Speiss, 

Rivier and Rivier, 1981). CRF links the central nervous system 

with the pituitary-adrenal system, and its secretion is necessarily 

influenced by the input from different neural pathways (Redgate, 

Fahringer and Szechtman, 1973; Allen, Allen, Greer and Jacobs,

1973). CRF induces the secretion of ACTH from the anterior lobe 

the pituitary gland (e.g. Hodges, 1970; Knigge, Joseph and Nocton,

1981). Stress-induced secretion of CRF and ACTH is rapid and 

detectable increases in ACTH secretion have been reported within 

60-120 seconds following exposure to ether or laparotomy in rats 

(Hodges, 1970; Vernikos-Danellis and Heybach, 1980). Degeneration 

of tryptaminergic, noradrenergic and dopaminergic neurones by 

intracerebroventricular administration of 5,6-hydroxytryptamine 

6-hydroxydopamine and desmethylimipramine respectively, has shown 

that intact tryptaminergic and noradrenergic but not dopaminergic 

pathways are required for stress-induced ACTH secretion in the rat 

(Amar, Mandal and Sanyal, 1982).

ACTH stimulates certain cells of the adrenal cortex to secrete 

steroids. The adrenal gland in mammals consists of two tissues 

arranged in two distinct zones, an inner medulla surrounded by an 

outer cortex. The medulla is derived from neural tissue and 

secretes adrenaline and noradrenaline. These compounds are 

involved in tissue metabolism, glycogenolysis, mobilisation of fatty 

acids and the activity of smooth muscle. The adrenal cortex is 

mesodermal in origin and is composed of three types of cells which 

are located in three layers: an outer zona glomerulosa, an intermediate 

zona fasiculata and an inner zona reticularis. The zona 

glomerulosa secretes aldosterone, a compound involved in mineral
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balance, and is not strongly influenced by ACTH. Under the 

influence of ACTH the zona fasiculata cells secrete glucocorticoids 

and the zona reticularis cells secrete androgenic steroids. In 

rats and mice, the dominant glucocorticoid is corticosterone.

The primary action of ACTH in rodents is to stimulate 

corticosterone release from zona fasiculata cells. ACTH also 

stimulates the secretion of adrenal androgens (Baird, Uno and 

Melby, 1969; Vinson, Bell and Whitehouse, 1976; Kime, Vinson, Major 

and Kilpatrick, 1980) adrenal oestrogens (Baird, Uno and Melby,

1969) and adrenal progestogens (Fajer, Holzbauer and Newport, 1971; 

Piva, Gagliano, Motta and Martini, 1973; Ogle and Kitay, 1977) 

and exerts a trophic effect, stimulating adrenal cellular growth and 

proliferation (e.g. Estivarez, Iturriza, McLean, Hope and Lowry, 

1982). Additionally, ACTH via its action upon glucocorticoids is 

involved in the control of parturition (e.g. Liggins, 1979) and 

directly influences behaviour (e.g. Brain, Nowell and Wouters,

1971; Brain and Evans, 1972; Brain and Poole, 1974; Brain and Evans, 

1977; Brain, 1978; DeWied, 1976, 1980; Bohus and DeWied, 1980).

Adrenal steroid secretion is independently influenced by 

hormones other than ACTH, but whether these hormones play any major 

physiological role in controlling adrenal output is unknown.

Adrenal progesterone secretion is stimulated by PRL, luteinizing 

hormone (LH) and GH but is inhibited by follicle stimulating 

hormone (FSH) in rats (Piva, Gagliano, Motta and Martini, 1973).

LH, FSH, PRL, PRL-synergistically with oestrogen, and alpha 

melanocyte stimulating hormone (aMSH) have been shown to stimulate 

corticosterone secretion in rats (Sugihara, Miyabara, Yun, Ohta 

and Yonemitsu, 1982; Vinson, Bell and Whitehouse, 1976; Vasquez

and Kitay, 1978; Ogle and Kitay, 1979) and aMSH, Blipotrophic



hormone and human chorionic gonadotrophin stimulate 

dehydroepiandrosterone sulphate synthesis in human foetal adrenals 

(Brown, Ginz, Milne and Oakey, 1982). Foetal endocrine develop

ment and function is further discussed later.

Reciprocally, adrenal steroids are known to influence ACTH 

secretion. Oestrogen may stimulate ACTH secretion (Barrett, 1960) 

and alter adrenal sensitivity to ACTH and hence feedback control 

of ACTH during pregnancy (Brain and Nowell, 1970a). Progesterone 

suppresses corticosterone secretion but the site of inhibition 

is unclear (Rodier and Kitay, 1974; Phillips and Poolsanguan, 1978). 

Corticosterone is well known to suppress ACTH secretion (Dallman 

and Jones, 1963; Motta, Piva and Martini, 1970; Smelick, 1963, 1970). 

Corticosterone operates the negative feedback loop controlling 

pituitary ACTH release and adrenocortical output. Corticosterone 

has identified target sites of inhibition of ACTH, the ventral 

hypothalamus, regulating ACTH release by direct inhibition of CRF 

(Smelik and Vermes, 1980) and ACTH secreting cells in the pituitary.

The most important products liberated from the hypothalamo- 

pituitary-adrenocortical axis in the stress response are the gluco

corticoids, and these compounds exert well established effects upon 

metabolism. Glucocorticoids mobilize fatty acids, inhibit glucose 

uptake into adipose cells, inhibit amino acid uptake into muscle, 

inhibit synthesis of collagen and mucopolysacharides, induce liver 

amino transferase activity allowing glucose synthesis from amino 

acids (gluconeogenesis), induce liver glycogen deposition, suppress 

lymphoid function and resistance to infection, and are involved in 

mineral balance (e.g. Shulster, Burstein and Cooke, 1976; Gower,

1979; Beato and Doenecke, 1980) . Glucocorticoids (both natural 

and synthetic) are also known to decrease muscle mass, muscle
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protein synthesis and muscle nucleic acid concentrations (Seene 

and Viru, 1982), suppress liver nucleic acid synthesis (Henderson, 

Fischel and Doenecke, 1971) reduce body weight and alter nucleic 

acid ratios in neural tissue (Howard, 1965) and decrease thymidine 

incorporation into non-lymphoid tissues (Loeb and Yeung, 1973).

It is apparent that the induction of the stress response, 

altering hormone secretion from the pituitary-adrenocortical system 

and other endocrine axes, will produce major deviations from the 

normal hormonal-profile during pregnancy. To appreciate this, it 

is necessary to outline the maternal hormonal profile during 

pregnancy.* The following hormone concentrations in the mouse 

have been extracted from the literature.

In the mouse, luteinizing hormone (LH) levels in plasma are 

variable throughout pregnancy, but three distinct peaks have been 

measured: prior to implantation, mid-pregnancy (40 ng/ml) and at 

parturition (Murr, Bradford and Geschwind, 1974). In the mouse 

follicle stimulating hormone (FSH) and PRL have also been studied 

(Murr, Bradford and Geschwind, 1974). Plasma FSH levels fluctuate 

throughout pregnancy (500-900 ng/ml) achieving maximal levels at 

day O (conception) and at parturition. PRL secretion follows the 

opposite pattern to FSH, with levels minimal at day 0, peaking at 

day 8 of pregnancy (400 ng/ml) and declining sharply at parturition.

In the rat, plasma PRL concentrations remain uniformly low 

until parturition (Amenomori, Chen and Meites, 1970; Morishige,

Pepe and Rothchild, 1973; Klindt, Robertson and Friesen, 1981). 

Gonadotrophin secretion throughout pregnancy has also been studied 

in the rabbit (McNeilley and Friesen, 1978), and rhesus monkey

‘Pregnancy lengths differ between the various species mentioned. 
For information related to this see Shepard (1976).
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(Weiss, Butler, Hotchkiss, Dierschke and Knobil, 1976) and many 

other species (Rosenblatt and Siegel, 1981).

Secretion of sex steroids during pregnancy has been studied 

in many species. In the mouse, plasma oestradiol-176 levels are 

variable throughout pregnancy, but a single peak (60 ng/ml) is 

distinguishable prior to parturition (McCormack and Greenwald, 1974; 

Barkley, Geschwind and Bradford, 1979). A similar pattern of 

oestradiol secretion throughout pregnancy has been shown in the rat 

(Shaikh, 1971; Taya and Greenwald, 1981), whilst in the rabbit 

oestrogens remain consistently low (Lau, Saksena and Salmonsen,

1982). Oestrogens are important during pregnancy for stimulating 

uterine progesterone receptors (Laure and Pasqualini, 1981) and are 

implicated in control of the birth process (Turnbull, Flint, Jeremy, 

Patten, Keirse and Anderson, 1974; Downing, Porter and Lincoln,

1981). The placenta is a substantial source of oestrogens 

(Tulchinsky, 1973; Evans and Wagner, 1981; Larsson, Wagner and 

Sachs, 1981; Walsh and McCarthy, 1981).

Progesterone is responsible in many species for maintenance of 

pregnancy, and a relatively high stable output of this steroid 

typically occurs during pregnancy. In the mouse there is an 

additional peak of plasma progesterone on day 15 of pregnancy 

(110 ng/ml) prior to a steady decline until parturition (McCormack 

and Greenwald, 1974; Barkely, Geschwind and Bradford, 1979). A 

similar pattern has been reported in rats (Morishige, Pepe and 

Rothchild, 1973; Pepe and Rothchild, 1973, 1974; Ogle and Kitay, 

1977) and between days 5 and 12 of pregnancy adrenal progesterone 

secretion is curtailed at the expense of corticosterone output 

(Ogle and Kitay, 1977). The ovary seems to be the major source of 

progesterone in the pregnant rat (Sanyal, 1978).



Plasma testosterone levels change during pregnancy in the

mouse. Maximal output of testosterone occurs in two peaks between 

days 8-13 (140 ng/ml) and days 14-17 (Barkley, Geschwind and 

Bradford, 1979). Similar testosterone secretion patterns have been 

reported in the rat (Taya and Greenwald, 1981) and rabbit (Lau,

Saksena and Salmonsen, 1982). The importance of these androgen 

surges during pregnancy is not understood, however the late 

pregnancy surge may be of foetal origin.

Activity of the pituitary-adrenocortical axis during pregnancy 

has not been fully studied and ACTH levels can only be inferred 

from corticosterone output. Plasma corticosterone titres rise 

almost ten-fold throughout pregnancy in mice, achieving 1500-2000 ng/ml 

by day 18 (e.g. Barlow, Morrison and Sullivan, 1974; Barlow,

Morrison, McElhatton and Sullivan, 1974; Solomon, Gift and Pratt,

1979). This increase is less pronounced in the rat (Ogle and Kitay,

1977). The pregnant rat shows a 24 hour rhythm of corticosterone

(Cohen, 1976).

A substantial source of the corticosterone in maternal 

circulation may be of foetal origin. In the mouse, foetal plasma 

corticosterone levels are higher than maternal levels on day 14 of 

gestation (Michaud and Burton, 1977). Similarly, increased foetal, 

compared with maternal corticosterone concentrations, have been 

reported in the rat (Dupouy, Coffigny and Magre, 1975). In mice 

and rats, the foetal adrenals are capable of maintaining cortico

sterone levels in maternal circulation if maternal corticosterone 

secretion capability is inhibited late in pregnancy (e.g. Milkovic, 

Paunovic, Kniewald and Milkovic, 1973; Barlow, Morrison and 

Sullivan, 1974; Milkovic, Klepac and Milkovic, 1976). Further

maternal-foetal endocrine interaction is reviewed later.
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Placental transfer of hormones occurs largely via the physical 

process of diffusion, where molecular size is a major limiting 

factor. Large molecules such as protein and peptide hormones 

cannot diffuse across the placental barrier intact, at least in 

physiological concentrations. Smaller molecules or fragments 

may cross the placenta along concentration gradients. ACTH has 

been shown not to cross the placental barrier as an intact molecule, 

in physiological concentrations in the rat (Jones, Lloyd and Wyatt,

1976; Milkovic and Milkovic, 1961) and rabbit (Genazzani, Fraioli,

Fioretti and Felber, 1975), however ACTH fragments may enter the 

foetus when maternal concentrations are very high. Similarly, 

Triiodothyronine and Tetraiodothyronine will cross the placenta to 

the foetus when maternal binding capacity is surpassed and con

centrations in maternal circulation are elevated (Jost, 1979).

Radiolabel studies have shown that virtually all unbound 

steroids readily traverse the placental barrier from mother to 

foetus and vice versa (Johnson and Everitt, 1980) . In rats, 

corticosterone (Zarrow, Philpott and Denenberg, 1970)

11-deoxycorticosterone, 18-hydroxy-ll-deoxycorticosterone,

HB-hydroxyprogesterone, 20a-hydroxyprogesterone (Milkovic, Klepac

and Milkovic, 1976) , testosterone and other androgens (Vreeburg, Wautersen, Gams

and Van der Werff ten Bosch, 1981) and oestrogens (e.g. Stumpf

and Sar, 1978; Kuhn and Bollen, 1982) have been shown to cross the

placenta. Similar transplacental steroid transfer has been shown

in humans (e.g. Migeon, Prystowsky, Grumbach and Byron, 1956).

All steroids, precursors and metabolites probably cross the placenta, 

with the exception of aldosterone which has been empirically shown 

not to transfer between maternal and foetal circulations (Milkovic,

Klepac and Milkovic, 1976).



As previously mentioned, foetal endocrine development is 

influenced by hormones of maternal origin. Development of the 

foetal hypothalamo-pituitary-adrenocortical axis is particularly 

susceptible to modification by maternal adrenocortical hormones. 

Elevation of ACTH or corticosterone levels in maternal circulation, 

inhibits the development of the foetal adrenal: a phenomenon produced 

by suppression of foetal pituitary ACTH secretion by the action of 

maternal corticosterone (Jones, Lloyd and Wyatt, 1953; Migeon, 

Prystowsky, Grumbach and Byron, 1956; Skebelskaya, 1968; Milkovic, 

Milkovic, Senear and Paunovic, 1970; Milkovic, Milkovic and Paunovic, 

1973; Milkovic, Joffe and Levine, 1976) . Activation of the maternal 

pituitary-adrenocortical axis during pregnancy by stressors also 

inhibits foetal adrenal development (see Chapter 1). Removal of 

maternal corticosterone during pregnancy has the opposite effect and 

results in hypersecretion of foetal ACTH and foetal adrenal 

hypertrophy (Edward-Davis and Plotz, 1954; Angervall, 1962; Milkovic, 

Milkovic, Senear and Paunovic, 1970; Milkovic, Milkovic and Paunovic, 

1973; Milkovic, Paunovic, Kniewald and Milkovic, 1973; Milkovic,

Joffe and Levine, 1976). Angervall (1962) also reports foetal 

thyroid hyperplasia following maternal adrenalectomy during 

pregnancy. The development of the foetal pituitary and adrenal 

glands are thus inextricably linked to maternal pituitary-adrenocortical 

output. The development of other endocrine glands in the foetus 

may also be influenced by maternal pituitary-adrenocortical 

activity. For example, foetal ACTH regulates the development of 

insulin secreting pancreatic 6 cells (Jack and Milner, 1975), such 

that suppression of the foetal pituitary by maternal corticosterone 

also inhibits foetal pancreatic development. Of interest here, 

is that stress during pregnancy produces somatic underdevelopment



in the offspring (see Chapter 1), an effect probably mediated by 

exposure of the foetus to maternal corticosterone, resulting in 

reduced thyroid and pancreas output and catabolism of body protein.

The endocrine control of growth and development is further discussed 

in Chapters 5 and 6.

The state of development of foetal endocrine axes is typically 

assessed by detecting the synthesis and secretion of hormones 

during different days of gestation. The foetal rat pituitary is 

capable of synthesising ACTH by day 17 of gestation (e.g. Skebelskaya, 

1968; Milkovic, Milkovic, Senear and Paunovic, 1970; Milkovic,

Milkovic and Paunovic, 1973; Jenkin, McMillen and Thorburn, 1979). 

Complete hypothalamic control of the pituitary-adrenocortical axis 

has been reported to occur by day 19 of gestation (Bugnon, Fellman, 

Gouget and Cardot, 1982) with both the hypothalamus and pituitary 

as sites of negative feedback inhibition of corticosterone (Dupouy, 

1974). In humans, the foetal pituitary is capable of synthesising 

and secreting ACTH, PRL, aMSH and 6 endorphin (Brubaker, Baird, 

Bennett, Brown and Solomon, 1982; Furuhashi, Takahashi, Fukaya,

Kono, Shinkawa, Tachibana and Suzuki, 1982; Puolakka, Kauppila,

Tuimala and Pakarinen, 1982). The adrenals of foetal mice (Barlow, 

Morrison and Sullivan, 1974), rats (e.g. Dupouy, Coffigny and Magre, 

1975; Milkovic, Klepac and Milkovic, 1976), pigs (Lohse and First, 

1981), sheep (Durand, Cathiard, Locatelli, Dazord and Saez, 1981; 

Challis, Manchester, Mitchell and Patrick, 1982), rhesus monkeys 

(MacNulty, Novy and Walsh, 1981) and humans (e.g. Brown, Ginz,

Milne and Oakey, 1981; Tiniacos, 1982) are functional, and produce 

a variety of steroids when challenged with ACTH or other hormones.

In the lamb foetus, sensitivity to ACTH increases as the adrenal 

matures (Rose, Meis, Urban and Greiss, 1982).
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Pituitary-gonadal activity is initiated during intrauterine 

life. Luteinizing hormone releasing hormone (LHRH, GnRH) can be 

detected in the hypothalamus of the rat foetus on day 17 of 

gestation (Nemeskeri and Kurcz, 1981) and in the guinea pig foetus 

on day 28 of gestation (Schwanzel-Fukuda, Robinson and Silverman,

1981). LH can be detected immunoreactively in rat foetus pituitaries 

by day 18 of gestation (Jenkin, McMillen and Thorburn, 1979). The 

rat foetus exhibits sexually-differentiated patterns of LHRH and 

LH release (Gogan, Slama, Bizzini-Koutznetzova, Dray and Kordon,

1981) and both foetal rats (Daikoku, Adachi, Kowano and Wakabayashi, 

1981) and foetal mice (Pointis and Mahoudeau, 1976) respond to 

LHRH challenge by LH secretion during the final days of gestation.

In the rabbit foetus, LH secretion from the pituitary occurs from 

day 20 onwards which is relatively earlier than in rats and mice 

(Veyessiere, Berger, Jean-Faucher, De Turckheim and Jean, 1982a) 

and in humans from week 11 of gestation (e.g. Jenkin, McMillen and 

Thorburn, 1979).

FSH synthesis is initiated later in development of the foetus 

than LH. In the rat foetus, FSH can be detected immunoreactively 

on day 20 of gestation (e.g. Jenkin, McMillen and Thorburn, 1979) .

In rabbits FSH is present in foetal pituitary by day 25 and is 

secreted into circulation by day 27 of gestation (Younglai, Pan and 

Bhavani, 1981; Veyessiere, Berger, Jean-Faucher, De Turckheim and 

Jean, 1982a). PRL synthesis and release is also initiated 

prenatally (e.g. Fang and Kim, 1975; Yaginuma, 1981).

The secretion of gonadotrophins in the foetus, as in the 

adult, stimulates sex steroid production from the gonads. Testicular 

and ovarian steroid biosynthesis in the gonads of foetal rabbits is 

initiated on day 18 of gestation, and sex steroids can be detected



in glandular tissue from days 18 or 19 (George and Wilson, 1979; 

Veyessiere, Berger, Jean-Faucher, De Turckheim and Jean, 1975; 

Veyessiere, Berger, Jean-Faucher, De Turckheim and Jean, 1982b).

In the rat, testosterone can be detected by immunoassay in the 

plasma of male foetuses on day 18 of gestation (Ward and Weisz,

1980; Weisz and Ward, 1980). Feedback regulation of testosterone 

is functional by day 20 of gestation in the rat (Naessany and Picon, 

1982). Androgen and oestrogen receptors are present in foetal 

rat brain (hypothalamus, amygdala and preoptic area) from day 15 

and day 21 of gestation respectively (Maclusky, Lieberburg and 

McEwen, 1979; Vito and Fox, 1981). The appearance of androgen and 

oestrogen receptors in neural tissue is an essential pre-requisite 

for sexual differentiation of the brain. This process is reviewed 

in detail later. Androgens in foetal circulation also differentiate 

the genitals (Bloch, 1979; Ratzan and Weldon, 1979; Neumann, 1979).

Other hormones known to be produced by the foetus include: 

insulin, thyroid hormones, aMSH, vasopressin, somatostatin, 

prostaglandins, oxytocin, glipotropin and gendorphin (from studies 

on mice, rats, rabbits, sheep, monkeys and humans - Jack and Milner, 

1975; McIntosh, Pictet, Kaplan and Grumbach, 1977; Karaplis and 

Powell, 1981; Nemeskeri and Kurcz, 1981; Stark, Daniele, Husain, 

Milliez, Morishima, James and van der Wiele, 1981; Burford and 

Robinson, 1982; Leisti, Miller and Johnson, 1982; Furuhashi, 

Takahashi, Fukaya, Kono, Shinkawa, Tachibana and Suzuki, 1982).

In humans, the foetus is capable of de novo cholesterol synthesis 

(Carr, Ohashi and Simpson, 1982) from which the foeto-placental 

unit can manufacture most steroids (Cekan, 1972) .

Sexual differentiation of the brain is dependent upon the

interaction of sex steroids and receptors in neural tissue. The
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male foetal brain is masculinised by the aromatised products of 

androgens. According to the aromatisation hypothesis, androgens 

e.g. testosterone and androstenedione are enzymically converted by 

aromatase to oestradiol and oestrone respectivelÿ, which interact 

with brain receptors to masculinise neural and neuroendocrine 

systems (e.g. Naftolin, Ryan and Petro, 1972; Naftolin and Ryan,

1975; Westley and Salaman, 1976; Martini, 1978; Dohler and Hancke, 

1978; Dorner, 1980; Goy and McEwen, 1980; Gogan, Slama, 

Bizzini-Koutznetzova, Dray and Kordon, 1981; Bardin and Catterall, 

1981; Maclusky and Naftolin, 1981; McEwen, 1981a, b). Exposure 

of male and female rodents perinatally to androgens masculinises 

their adult behaviour patterns, and disruption of oestrogen 

biosynthesis perinatally disrupts masculine behaviour in males in 

adulthood (see literature summary 2).

In the male rat foetus, testicular testosterone is released in 

a surge during day 18 of gestation and the correct timing of this 

surge is important for masculinisation of adult brain (and 

therefore behaviour - Ward and Weisz, 1980). This testosterone 

surge may exert its effects upon sexual differentiation of the normal 

male rat by masculinising hypothalamic gonadotrophin regulating 

structures, resulting in masculine (non-cyclic) patterns of LH 

secretion (Gogan, Slama, Bizzini-Koutznezova, Dray and Kordon, 1981). 

LHRH secreting structures are identified as specific sites of 

masculinisation, influencing sexually differentiated patterns of 

gonadotrophin secretion (empirical study on guinea pigs with 

reference to rats and mice - Schwanzel-Fukuda, Robinson and 

Silverman, 1981). As aromatase and steroid receptors are both 

present in foetal rat brain prior to the testosterone surge 

(both enzyme and receptors detected from day 15 of gestation
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onwards - Reddy, Naftolin and Ryan, 1974; Maclusky, Lieberburg and 

McEwen, 1979; Vito and Fox, 1981) one limiting factor to neural 

and neuroendocrine differentiation in this species would seem to be 

the amplitude and timing of the androgen surge, which persists into 

the early postnatal period (Pang, Caggiula, Gay, Goodman and Pang, 

1979). A second general limiting factor to sexual differentiation 

of the brain is the relative concentration of both enzyme and 

receptors. There are sex differences in sex steroid receptor 

concentrations in rat brain at least postnatally (Rainbow, Parsons 

and McEwen, 1982). If this difference is present prenatally, 

masculinisation will be accordingly affected. It is not known 

whether sex differences in steroid receptor concentrations are 

present prior to hormone action; it is a possibility that sex 

differences in receptor concentrations only develop after exposure 

to specific hormones, as steroid receptor concentrations are 

regulated by specific steroid concentrations (e.g. Kolata, 1977). 

Additionally, brain and somatic masculinisation is also limited by 

alpha-foetoprotein (aFP) , which avidly binds to oestrogens preventing 

their interaction with receptors (e.g. Attaradi and Ruoslahti,

1976). In foetal rat brain, maximal concentrations of aFP occurs 

on day 18 of gestation (coincidental with the male foetal 

testosterone surge), and distribution of relative concentrations 

are olfactory lobe > cerebrum > cerebellum > remaining portion of 

brain (Massarat, Kaul and Sahib, 1981). aFP, although present in 

neural tissue and intraneuronally, is manufactured elsewhere, in 

foetal liver, yolk sac and gastrointestinal tract, and molecules 

with different properties are synthesised e.g. oestrophilic <*FP 

and non-oestrophilic cifp (Massarat, Kaul and Sahib, 1981; Schachter 

and Toran-Allerand, 1982) . Oestrophilic aFP is thought to protect



36

the female foetus from the masculinising properties of oestradiol.

In the light of recent evidence, the concept that sexual 

differentiation of the brain is completed by the masculinising 

action of androgen derived oestrogens upon neural structures, must 

be reconsidered. Vom Saal, Grant, McMullen and Laves (1983) have 

shown that male foetuses exposed to high concentrations of oestradiol, 

show increased sexual vigour but reduced aggression in adulthood, 

compared with litter mates exposed to lower concentrations of 

oestradiol prenatally. These findings suggest that the 

aromatisation hypothesis at best only applies to the differentiation 

of some neural systems controlling some aspects of behaviour. 

Aggression, like copulation, requires the action of testosterone 

for its expression in adulthood. However, Vom Saal's study shows 

that masculinisation of the neural structures controlling aggression 

is blocked by oestradiol. The aromatisation hypothesis as it is 

understood only applies to the masculinisation of neural systems 

influencing sexual behaviour. Further to this, oestradiol which 

was previously thought to masculinise all sensitive neural structures, 

may actually act as an anti-androgen in some areas of the brain.

The discussion turns now to how the aberrations in development and 

behaviour evident in offspring from rodents exposed to stressors 

during pregnancy may be caused. It has been shown that the hormonal 

profile during pregnancy is complex: as well as maternal hormones 

maintaining pregnancy and initiating lactation, they are also known 

to influence endocrine development. There is thus the potential 

for disruption of foetal endocrine development by alteration of the 

maternal hormonal profile during pregnancy. Induction of the 

stress response during pregnancy can be intuitively seen to affect 

the foetus. Corticosterone, the major compound released in the
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stress response in rats and mice readily crosses the placenta.

In the mouse, the foetus is protected from the potent metabolic 

action of corticosterone by placental conversion of this compound 

to 11-dehydrocorticosterone (Michaud and Burton, 1977). In 

conditions of extreme stress, where the pregnant rodent can secrete 

corticosterone up to ten fold above normal secretion rates 

(e.g. Barlow, McElhatton, Morrison and Sullivan, 1974) it is unlikely 

that the foetus can be protected from the metabolic action of this 

hormone.

The theoretical effects of foetal glucocorticoid exposure 

(based upon the known metabolic activity of these compounds) are 

inhibited body and organ development. The development of brain 

structures in the mouse and other altricial mammalian species, is 

incomplete until postnatal life (Rodier, 1980) these structures are 

therefore potentially vulnerable to disruption by perinatal exposure 

to glucocorticoids, which are recognised to present a neurological 

hazard (Weichsel, 1977). Similarly, foetal adrenal development has 

been shown to be inhibited following corticosterone exposure and 

this is due to a different mechanism, that of suppression of foetal 

ACTH secretion (e.g. Milkovic, Milkovic, Senear and Paunovic, 1970). 

Some of the hypothetical and known effects of foetal corticosterone 

exposure are similar to those evident in offspring from rodents 

exposed to stressful conditions during pregnancy e.g. decreased 

body growth, adrenal atrophy. The implication of this is that 

stress-induced activation of the maternal pituitary-adrenocortical 

axis may mediate the effects of stress during pregnancy upon 

offspring body and adrenal development. This hypothesis has been 

suggested as the mediating mechanism causing the adrenal and 

testis atrophy and disturbances in masculine copulatory behaviour



in offspring from rats restrained or crowded during pregnancy 

(Ward, 1972; Dahlflf, Hard and Larsson, 1977). However, the 

literature has failed to identify teratogenic adrenocortical 

products: Ward suggested androstenedione as the maternal adreno

cortical product responsible for altering sexual behaviour in the 

adult male offspring from rats restrained during pregnancy.

However, androstenedione has now been shown not to be the maternal 

adrenal product responsible for producing the deficits in 

copulatory behaviour typical of prenatally stressed male rats:

Gilroy and Ward (1978) found no deficits in the copulatory responses 

of male offspring from rats treated with androstenedione during 

pregnancy.

The rationale employed in this thesis to test the hypothesis 

that the reported consequences of stress during pregnancy are 

mediated by maternal pituitary-adrenocortical products, was to 

administer hormones known to be produced by this system to pregnant 

mice. If this hypothesis is correct, then administration of 

ACTH or adrenal steroids to pregnant mice will have similar effects 

upon offspring development to those produced by stress. Additionally, 

if the maternal adrenal is required for the production of the 

effects of stress during pregnancy upon the offspring, maternal 

adrenalectomy should prevent the harmful effects of stress, and 

this possibility was also examined.

There is already a large literature reporting the teratogenic 

effects of hormones and this has been summarised in tabulated form 

in literature summary 2. Few studies are relevant to this thesis 

because they do not describe effects reported to result from stress 

during pregnancy, or because they have used synthetic compounds 

in excessively large doses. However, some progress has been made



in examining the role of the maternal pituitary-adrenocortical 

axis in the production of the abnormal copulatory responses reported 

in male offspring from rodents exposed to stressors during 

pregnancy. Chapman and Stern (1978) administered ACTH to pregnant 

rats and found that the male offspring showed augmented feminine 

sexual responses, but did not show impaired masculine sexual 

responses. Thus activation of the maternal adrenocortical axis 

during pregnancy was shown to "feminise" but not to "demasculinise" 

sexual behaviour in males. This result was surprising because 

ACTH administration to mice during pregnancy, has been shown by 

Simon and Gandelman (1977) to impair the expression of another 

sexually differentiated pattern of behaviour, that of aggression 

in male offspring. For this reason this study re-examined the 

effects of ACTH administration to pregnant mice upon male offspring 

masculine sexual responses. Since this study was commenced,

ACTH administration during pregnancy has also been shown to 

demasculinise the sexual behaviour of male offspring in both rats 

and mice (Rhees and Fleming, 1981; Stylianopoulou, 1983; Politch 

and Herrenkohl, 1984b). Additionally, some work has attempted to 

identify specific maternal adrenocortical steroids, secreted in 

conditions of stress or ACTH challenge, as mediating agents of 

the reported effects upon male offspring sexual behaviour.

Perinatal progesterone exposure impairs masculine sexual responses 

in male rats (Hull, Franz, Snyder and Nishita, 1980) whilst 

perinatal androstenedione actually increases copulatory vigour in 

male rats (Gilroy and Ward, 1978). Corticosterone acetate 

administration during pregnancy impairs copulation in male offspring 

in mice (Politch and Herrenkohl, 1984b).

In reporting previously unknown effects of exposure to stressors



during pregnancy, upon offspring development e.g. puberty (assessed 

by determining both the day of vaginal opening and first oestrus 

and body weights at these events - Chapter 7) and intermale aggression 

(Chapter 8) this study examines the hypothesis that these effects are 

mediated by maternal pituitary-adrenocortical activation and exposure 

of the foetus to hormones of this axis. Additionally, this thesis 

examines the effects of maternal stress or pituitary-adrenocortical 

manipulation during pregnancy, upon foetal and neonatal somatic 

development and survival (Chapter 5) and neurological development 

(Chapter 6). As administration of hormones may influence food 

intake or pregnancy length, which may in turn affect foetal develop

ment, these factors are examined in Chapter 4.



LITERATURE SUMMARY 2

Summary of pathology reported in offspring from
rodents subjected to endocrine manipulation and administration

of hormones and related compounds during pregnancy

Hormone treatment or Pathology in Reference
endocrine manipulation offspring
a) ACTH
20 i.u./day (2-6) Delayed implan- Chatterjee & Harper, 1970
12 i.u./day (1-3) tation, inhibited Yang et al., 1969
4 i .u ./day (1-8,1-18, 

8-18)
implantation dis
rupted pregnancy. Kittinger et al., 1980

5 mg/day (14-18)1 Foetal death and Robson & Sharaf, 1952
5 mg/day (11-17)2 resorbtion, still Robson & Sharaf, 1952
12 i.u./clay (1-3) births and reduced Yang et al., 1969
4 i.u./day (1-8,1-18 

8-18)
, litter size Kittinger et al., 1980

2-4 mg/day (1-11) Decreased foetal Velardo, 1957
4 i.u./day (1-8, 

1-18,8-18)
and neonatal body 
development Kittinger et al., 1980

4 i.u./day (peri
natal)5 » 3 Monder et al., 1981

4 i.u./day (peri
natal) 2 ’3

Delayed eye 
opening Monder et al., 1981

4 i.u./day (peri
natal) 2'3

Delayed vaginal 
opening Monder et al., 1981

1 i.u. and 8 i.u./ 
day (12-17)2 Harvey & Chevins, 1981

ACTH tumour (1) Adrenal atrophy Milkovic et al., 1970,
1973 and 1976

5 i.u./day (14-20) Testis atrophy, 
reduced foetal 
androstenedione 
secretion

Wilke et al., 1982

1 i.u. and 8 i.u./ 
day (12-17)2

Decreased
aggression in males Simon & Gandelman, 1977

20 i.u./day (14-21) Impaired Rhees & Fleming, 1981
8 i.u./day (14-21) masculine sexual Stylianopoulou, 1983
1 i.u. and 8 i.u./ 

day (12-17)2
responses in males Harvey & Chevins, 1984

4 i.u./day (14-21)2 Politch S Herrenkohl, 19841

1 i.u. and 8 i.u./ 
day (12-17)2

Copulation improved 
by androgen therapy 
in adulthood

Harvey & Chevins, 1984
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Hormone treatment or Pathology in
endocrine manipulation offspring

Reference

1 i.u. and 8 i.u./ 
day (14-21)

augmented feminine 
sexual responses Chapman & Stern, 1978

8 i.u./day (14-21) in males Stylianopoulou, 1983

8 i.u./day (14-21) Increased ano- Chapman & Stern, 1978
1 i.u. and 8 i.u./ 

day (14-21)
genital distance in 
females and 
decreased ano
genital distance in 
males

Stylianopoulou, 1983

12 i.u./day (10-20) Decreased protein 
and nucleic acids 
in cerebellum, hypo
thalamus and 
cerebral cortex

Petropoulos et al., 1972

0.16 i.u.-
1.60 i.u./hr. (21)

Depletion of foetal 
adrenal absorbic 
acid and cholesterol

Jones et al., 1953

b) Glucocorticoids
i) Dexamethasone

1 mg and lOO mg/ 
Kg (peri)4

Body and brain 
weights reduced, 
impaired learning

Dekosky et al., 1982

10 pg/ml in water 
(15-22)

Decreased nucleic 
acids in placenta, 
foetal kidney, heart, 
lung, liver, brain, 
pituitary, testis 
and adrenal

Klepac, 1982

0.2 mg/Kg/day 
(19-20)

Inhibitory effect 
on organ growth, 
decreases survival

Frank & Roberts, 1979

ii) Cortisone acetate
3 mg/day (4-21) Adrenal atrophy, 

increased mortality 
reduced birth 
weights

Edward-Davis & Plotz, 1954

10-20 mg/day 
(13-19)1

Foetal death and 
reabsorption Robson & Sharaf, 1952

iii) Cortisone
2.5 mg/day (1-18)2 Cleft palate, 

shortened head,
Spina bifida, reduced 
birth weight and 
increased mortality

Fraser & Fainstat, 1951
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Hormone treatment or Pathology in Reference
endocrine manipulation offspring

10-15 mg/hr (21) Increased foetal Jones et al., 1953 
cholesterol

iv) Hydrocortisone
2.5 umole/day 

(8,10,12,14)2
Reduced activity ,Lieberman, 1963

4 mg/day (19) Foetal pituitary Skebelskaya, 1968 
ACTH depletion and 
adrenal atrophy

v) Prednisolone
100-400 mg/day 

(12-18) 2
Reduced birth weight, Gandelman & Rosenthal, 1981 
reduced weaning weight, Gandelman & Guerriero, 1982 
retarded eye and ear 
opening, retarded 
reflex development

vi) Corticosterone
0.6 mg/day from day 

2 postnatally
Reduced brain weight Howard, 1965 
and altered nucleic 
acid ratios in brain

vii) Corticosterone acetate
500 ug/day 

(14-21)2
Impaired masculine Politch & Herrenkohl, 1984b
sexual responses in
males

c) Hypophysectomy 

Surgery day (14)'*'

d) Adrenalectomy

Abortion unless Robson & Sharaf, 1952 
steroid therapy given

Surgery day (4,6, 
14,16)

Abortions and Edward-Davis & Plotz, 1954 
still-births

(14)
(12,13)

(19)

Adrenal hypertrophy Milkovic et al., 1973, 1976
Angervall, 1962 
Skebelskaya, 1968 
Havlena & Werboff, 1963

(12,13) Thyroid and adrenal Angervall, 1962 
hyperplasia

pre-pregnancy Increased adrenal Thoman et al., 1970 
output

(12,13)
pre-pregnancy

Reduced birth weights Angervall, 1962 
and litter size Thoman et al., 1970

Angervall, 1962 
Thoman et al., 1970
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Hormone treatment or Pathology in
endocrine manipulation offspring

Reference

(1) Implantation
unaffected

White et al., 1980

(7)

(5)

Abolishes
deleterious effects 
of ACTH treatment 
during pregnancy 
upon foetus

Velardo, 1957 

Yang et al., 1969

e) Proqestogens

i) Medroxyproges
terone

Embryolethal Eibs et al., 1982

ii) Progesterone High titres in 
mummified foetuses

Kephart et al., 1981

Risk of hypospadias 
in pregnancies main
tained with 
progesterone^

Mau, 1981

1.5 mg/Kg/day 
(8-21)

Decreased brain 
nucleic acids and 
reduced body weight

Coyle et al., 1976

2 mg/day (23) Lengthened preg
nancy, inhibited 
maternal lactation , 
increased offspring 
mortality and reduced 
body weights

Herrenkohl, 1974

2.5 mg/day (20-22) Reduced plasma 
corticosterone

Roudier et al., 1982

3.3 mg/Kg/day 
(7-22)

Stimulates brain 
monoamine oxidase 
activity and 
reduced birth weight

Snyder et al., 1979

50 mg/Kg (6-10)6 Reduced placental and 
foetal growth

Knoll-Kohler et al.,

3.3 mg/Kg (8-18) 
4-12 mg implant 

(6-21)

Impaired learning 
and copulation in males

Snyder & Hull, 1980 
Hull et al., 1980

5
Lower sex drive
and assessed aggression
in males

Kester et al., 1981 
Ehrardt et al., 1981 
Meyer-Bahlburg et al,

Progesterone defends 
foetus from action 
of oestradiol and 
testosterone

Dorfman, 1967

1982

, 1982



Hormone treatment or 
endocrine manipulation

Pathology in 
offspring Reference

f) Oestrogens

i) Diethylstilbestrol 
5

----  Masculinises males Kester et al., 1981

200 mg/Kg/day 
(7-18)

No effect on course 
of pregnancy or 
foetal body weight 
but caused hyper- 
prolactinaemia and 
mammary carcinomas

Huseby & Thurlow, 1982

ii) Oestriol Correlated with 
birth weight, 
anencephaly and 
adrenal hyperplasia

Hardy et al., 1981

iii) Oestradiol
Antibodies against 

oestradiol
Trophic effect on 
foetal and placental 
growth

Csapo et al., 1974

2.5 yg/day 
(10-15)2

Inhibits foetal and 
placental growth Miller, 1978

3 yg/day (1-
parturition)'

Depresses both 
maternal and foetal 
body weight

Czaja, 1983

5 yg/day (18-20) Advances parturition Downing et al., 1981

IO yg/day (14-21) Inhibits foetal 
growth and suppresses 
foetal thyroid 
activity

Kuhn et al., 1981, 1982

10 yg-50 yg/day 
(12-18)2

Aggression in males 
unaffected Gandelman et al., 1982

5 mg/day (14)2 cryptorchid males Jean et al., 1975

g) Ovariectomy

Surgery day (15) Increased foetal 
mortality

Legrande et al., 1979

(13) Increased foetal and 
placental growth

Crosskerry et al., 1981

h) Androgens

i) Norethindrone
50 yg-100 yg/day Increased ano-genital

(1 4-1 8 ) 2 distance in females Gandelman et al., 1981



Hormone treatment or 
endocrine manipulation

Pathology in 
offspring

«Reference

ii) Testosterone

1 mg/day (13-18)2 
1-2 ug/day (12,14,16)2

Increased aggression 
in females

Gandelman et al., 1980 
Mann fi Svare, 1983

iii) Testosterone Propionate

2 mg/day (12-15)® Increased ano-
1.5 mg/day (12-16)2 genital distance in

females

2 mg/day (12-15)8 Irregular oestrous 
cycles

5 mg/day (28-38) and Increased masculine 
1 mg/day (38-58)" sexual responses in

males and decreased 
feminine sexual 
responses in females

1 mg/day (16,19)2 Abnormal vaginas and 
feminine sexual 
responses in females

Landauer et al., 1981 
vom Saal, 1979

Landauer et al., 1981

Goldfoot et al., 1975

Huffman & Hendricks, 1981

iv) Androstenedione

1 mg/day (14-21) No effects upon Gilroy & Ward, 1978
masculine sexual 
responses in males

v) Androgen based progestins 
5

---- Increased violence Reinisch, 1981
in males

vi) In utero proximity

Females located 
between two males

Increased ano-genital 
distance2
Increased aggression2 
Lengthened oestrous2 

cycles
Androgen induced 

sterility 
Impaired active 

avoidance2

vom Saal & Bronson, 1978 
Clemens et al., 1978 
vom Saal & Bronson, 1978
vom Saal & Bronson, 1980 

Tobet et al., 1982 

Hauser & Gandelman, 1983

Males located between 
two females

Increased infanticide 
Increased masculine 
sexual responses and 
aggression

vom Saal, 1983
vom Saal et al., 1983
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Hormone treatment or Pathology in
endocrine manipulation offspring

i) Androgen and aromatisation inhibitors 

i) 1,4,6-Androstratriene-3,17-dione

1 mg/day (10-22) Reduced masculine 
sexual responses in 
males

1 mg/day (10-22) 
5 mg/day (10-21)

Increased feminine 
sexual responses in 
males

ii) Fiutamide

5 mg/day (14,15,16, 
17,18)

Reduced masculine 
sexual responses, 
reduced testosterone, 
reduced seminal 
vesicle and prostate 
weights and elevated 
LH and FSH in males

iii) Cyproterone acetate

500 mg/Kg/day 
(2-18)2

10 mg/day (9-21)

Embryolethal and 
inhibits blastocyst 
development

Males show shorter 
(feminine type) 
avoidance acquisition

j) Neurotransmitters and related compounds

i) Noradrenaline

0.25 ymole/day
(8.10.12.14)

ii) Adrenaline

0.25 ymole/day
(8.10.12.14)

Decreased activity

Increased activity

iii) 5-Hydroxytryptamine

5-20 mg/Kg/day 
(1-5,6,10-11)

Implantation sites 
deprived of epithelium, 
increased resorbtions, 
increased ophthalmic 
and cardiovascular 
malformations

Reference

Gladue & Clemens, 1980

Clemens & Gladue, 1978 
Whalen & Olsen, 1981

Marschall et al., 1981

Eibs et al., 1982

Scouten et al., 1975

Lieberman, 1963

Lieberman, 1963

Aliverti et al., 1982
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Hormone treatment or 
endocrine manipulation

Pathology in 
offspring

Reference

iv) Naloxone

20-60 yg/dav 
(peri)2,

v) Haloperidol

1 mg/Kg/day 
(16-23)

vi) 6-Hydroxydopamine

40 yg/day (16)

Heat hyperalgesia

Delayed vaginal 
opening

Destruction of para- 
and pre-vertebral 
ganglia

Monder et al., 1979, 1981

Bhanot & Wilkinson, 1982

Aloe et al., 1981

vii) Nerve growth factor

40 yg antibodies Reduced body weight,
against nerve growth reduced size of ganglia,
factor (16) general neuro

endocrine damage and 
unresponsiveness to 
noxious stimuli

Aloe et al., 1981

k) Thyroid manipulation

i) Thiouracil 0.25% Reduced thyroid and
in food (1-22) adrenocortical output
continued exposure 
until postnatal 
day 35

l) Growth hormone

Meserve & Leathern, 1981

0.1 mg-3 mg/day Increased foetal- 
placental growth, 
increased brain cell 
number

Ganalska-Malinowska et al., 
1981

Crosskerry & Smith, 1979

Footnote: Parentheses indicate days of pregnancy during which the
treatment was administered. All studies used rats unless 
otherwise stated.
1 Study in rabbits
2 Study in mice
3 Administered 5 days prior to birth and up to postnatal day 5
4 Administered from birth to postnatal day 4
5 Study in humans
6 Confounded by administration of protein free diet and 

50 yg/day oestrone
7 Study on guinea pigs
8 Study on hamsters with administration of 200 yg testosterone 

propionate on postnatal day 1
Study on guinea pigs with similar results after administration 
of androstanediol propionate and Dihydrotestosterone propionate

9
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CHAPTER 3

MATERIALS AND METHODS 

ANIMALS AND HUSBANDRY

Females used were virgin 'TO' strain outbred albino mice, 

obtained from A. Tuck and Son Ltd., Battlesbridge, Essex 2-5 weeks 

prior to mating, or were virgin stock females. Prior to mating, 

females were housed in groups of 10 in large plastic cages 

(42 x 25 x 11 cm), allowed ad libitum supply of food (Labsure 

animal diet, Christopher Hill Ltd., Dorset) and water, and maintained 

on a reverse lighting regime (red lights on 1200-2200 hrs). Several 

animal rooms were used, in which lighting regimes were synchronised. 

Temperature variation within and between rooms was in the range 

18-23°C. All animal cages contained sawdust bedding which was 

changed weekly or when necessary.

At 10-12 weeks of age, females were placed individually into 

small plastic cages (30 x 13 x 11 cm) which had wire mesh floors, 

with a sexually experienced 'TO' male. The females were observed 

daily up to a period of 7 days, for the appearance of a vaginal 

plug. The finding of a vaginal plug was deemed to indicate day 0 

of pregnancy. Males were then removed and females were left singly 

housed in small cages with sawdust bedding until day 12 of pregnancy 

when treatments were administered. Births occurred between days 

17-19 of pregnancy. Routinely, females were inspected twice daily 

for birth of litters. On discovery of a litter, individual pups 

were weighed on an electronic balance (Mettler PL1200). The 

number of still born pups were recorded. Litters were culled to 

8 pups at random and fostered to an untreated female that had given

birth within the previous 24 hours. Foster mothers were
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primiparous females assigned to this group at random. Litters 

were then left undisturbed until weaning on postnatal day 21, birth 

day being designated as day O. Postnatal deaths were recorded.

At weaning, offspring were weighed again and housed in groups of 

8-10 (except females used in experiments examining the onset of 

puberty, see Chapter 7) according to sex and treatment such that 

there were representatives from each litter in each group.

TREATMENTS DURING PREGNANCY

All treatments were administered during days 12-17 inclusive 

of pregnancy. Untreated controls from the same batch of mice 

were always provided.

(i) CHRONIC CROWDING. The crowding procedure was modified from 

the methodologies of Keeley (1962) and Dahlof, Hard and Larsson 

(1977). Pregnant females were assigned at random to 1 of 2 

treatment groups - chronic crowding or control. Females assigned 

to the crowding group were removed from individual housing on day 

12 of pregnancy (between 0900 and 1200 hours) and placed in a large 

cage containing male mice. Crowding cages contained 25-28 adult 

male mice and 2-5 pregnant females, in each case so that the total 

housing density was 30 animals per cage (35 cm^ floor space/animal). 

Persistent aggression was observed between males, and females were 

repeatedly pursued and mounted. Several males were moved daily 

between cages to ensure social instability and continued fighting 

within crowded groups. Pregnant females were removed from crowding 

cages on day 17 of pregnancy and individually housed in small 

cages containing clean sawdust. Females assigned to the control 

group remained individually housed (390 cm^ floor space/animal) and 

were undisturbed throughout pregnancy.



51

ii) HORMONE ADMINISTRATION. Injections were given subcutaneously, 

sometimes with the use of a restraint tube, daily (on days 12-17 

inclusive of pregnancy) between 1500 and 1600 hours, at a time 

when endogenous corticosterone levels in plasma of non-pregnant 

female mice are known to be falling (Nichols and Chevins, 1981a).

All animals receiving injections remained individually housed.

a) ACTH ADMINISTRATION. Dosages of ACTH used were based on those 

employed by Simon and Gandelman (1977). Special care was taken 

in the use of ACTH: all glassware and saline was sterilized by 

autoclaving at 117°C to prevent microbial digestion of the peptide, 

and ACTH (obtained in 1000 i.u. pellets) was made into aliquots 

(100 i.u.s ACTH in 0.2 ml saline) and immediately frozen at -20°C 

until use.

Pregnant females were assigned at random to 1 of 4 treatment 

groups: low dose ACTH, high dose ACTH, saline gelatine vehicle- 

injection control and untreated control. The low dose ACTH group 

received daily injections of 1 i.u. ACTH in 0.4 ml vehicle; the high 

dose ACTH group received daily injections of 8 i.u. ACTH in 0.4 ml 

of vehicle, and the saline gelatine vehicle group received daily 

injections of 0.4 ml vehicle only. The vehicle was 40 mg ml  ̂

gelatine in 0.9% saline. Solutions were stored at 0-4°C, and 

gently warmed until liquid in a current of warm air prior to 

injection.

b) PROGESTERONE ADMINISTRATION. Dosages of progesterone used were 

based on those employed by Hull, Franz, Snyder and Nishita (1980). 

Pregnant females were assigned at random to 1 of 4 treatment groups: 

low dose progesterone, high dose progesterone, olive oil vehicle- 

injection control, and untreated control. The low dose progesterone 

group received daily injections of 250 yg progesterone in 0.1 ml
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vehicle; the high dose progesterone group received daily injections 

of 500 yg progesterone in 0.1 ml vehicle and the olive oil vehicle- 

injection control group received daily injections of 0.1 ml olive 

oil only.

c) ANDROSTENEDIONE AND CORTICOSTERONE ADMINISTRATION. The dose of 

androstenedione used was based on Gilroy and Ward (1978). There 

has been no previous study of the effects of corticosterone 

administration during pregnancy upon offspring development, but 

related compounds are known to have teratogenic effects (e.g. 

Skebelskaya, 1968). Two different corticosterone treatment regimes 

were used: acute administration via daily injections and chronic 

administration via surgically implanted osmotically driven minipumps.

In the androstenedione and acute corticosterone administration 

experiments, pregnant females were assigned at random to 1 of 4 

treatment groups: androstenedione, corticosterone, peanut oil vehicle- 

injection control and untreated control. The androstenedione group 

received daily injections of 100 yg androstenedione in 0.1 ml vehicle; 

the corticosterone group received daily injections of 100 yg 

corticosterone in 0.1 ml vehicle, and the peanut oil vehicle-injection

control group received daily injections of 0.1 ml peanut oil only.
i

In experiments investigating the effects of chronic corticosterone 

administration, pregnant females were assigned at random to 1 of 3 

treatment groups: chronic corticosterone, propylene glycol vehicle- 

surgery control and untreated (unoperated) control. The minipumps 

(Alzet) were small capsules with an inner reservoir into which the 

test solution was injected. An outer jacket surrounds the reservoir 

and this contains a substance that creates an osmotic potential with 

body fluid. The outer case is water permeable, and as water flows 

into the outer jacket the inner reservoir is progressively collapsed.
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Propylene glycol was used as the solvent because it readily dissolves 

corticosterone, is compatible with the materials of the minipump and 

is relatively non-teratogenic according to Shepard (1976). The 

delivery rate of the minipump was 1 ul hr--*-. The dosage of 

corticosterone in vehicle was 10 yg ul-1. The procedure for 

minipump implantation was as follows: minipumps were filled with the 

test solutions by syringe, flow moderators were fitted and minipumps 

were placed overnight in 5 ml volume specimen tubes containing sterile 

saline to establish a steady delivery rate. Surgery was performed 

under ether anaesthesia. Pregnant mice were removed from home 

cages on day 12 of pregnancy (between 0900 and 1200 hours) and 

anaesthetised. Fur was shaved from an area of the animals back and 

the shaved area was swabbed with an alcohol solution. A mid

dorsal incision was made into the skin with scalpel and scissors. 

Connective tissue was cleared and a subcutaneous channel opened in 

an antero—posterior direction. The minipump was inserted into this 

channel with flow moderator nearest the animal's head. The channel 

was irrigated with sterile saline and the incision closed with 3 

or 4 wound clips.

iii) BILATERAL ADRENALECTOMY■ On day 9 of pregnancy females were 

assigned at random to 1 of 4 treatment groups : adrenalectomy

crowding; adrenalectomy-individual housing; Sham surgery-crowding; 

and Sham surgery-control. The procedure for removal of the maternal 

adrenals was identical to that for implantation of minipumps except 

that secondary incisions were made with irridectomy scissors into 

the body cavity. The kidney was located, and by gentle pressure 

exerted on the underside of the animal, the kidney was partially or 

wholly exteriorised. The adrenal fat capsule was clamped with 

2 pairs of small curved forceps, and the capsule with adrenal was
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teased clear of the kidney. This method of extériorisation of 

the kidney allows success in total removal of the adrenal with 

decreased incidence of rupture of this gland. The kidney was 

re-placed inside the body cavity with use of sterile swabs dampened 

with sterile saline. Care was taken not to disturb the uterus 

unnecessarily. The body cavity was closed with monofilament fibre 

sutures using 2 or 3 stitches. The procedure was repeated for 

the remaining adrenal gland. The primary incision was closed with 

3 or 4 wound clips and cicatrine antibiotic spray was applied to the 

wound surface. Adrenalectomised animals received 0.9% saline 

drinking solution instead of water. Sham adrenalectomised females 

received primary and secondary incisions and kidneys were 

exteriorised. Post-operatively animals were placed into home 

cages which were warmed on a hotplate until recovery from the 

anaesthetic.

All animals were left undisturbed until day 12 of pregnancy 

when females assigned to the crowding stress condition were rehoused 

according to the procedure previously outlined. Crowding cages 

containing adrenalectomised females were supplied with both water 

and saline drinking solutions. Adrenalectomised and Sham-operated 

females assigned to the control housing condition remained 

individually housed throughout the final third of pregnancy.

Crowded females were rehoused individually on day 17 of pregnancy 

to ensure undisturbed births.

SUMMARY : Pregnant females were assigned at random to treatment 

groups. Treatments were given during the final third of pregnancy. 

With the exception of crowded females, all other animals remained 

individually housed during pregnancy. Litters were weighed and



culled to 8. Some litters were assessed for sex ratio and body 

length. All litters were fostered to untreated undisturbed dams 

that had recently given birth. At weaning offspring were usually 

group housed in large cages, such that a representative animal 

from each litter was contained in each group. More detailed 

specific methods are presented in Chapters 4, 5, 6, 7 and 8.

DATA PRESENTATION AND STATISTICAL ANALYSES

Parametric statistical techniques were applied to data that 

met criteria for their use - derived from a random sample, app

roximating a normal distribution, equal variance within groups, 

interval or ratio scales. Parametric tests used were one-way 

analysis of variance (1WAN0VA) and t-tests. Non-parametric 

statistical techniques were applied to data that did not meet all 

the above criteria: data treated by non-parametric techniques 

was usually either of a nominal or ordinal scale or not assumed to 

be normally distributed. Non-parametric tests used were 

Kurskal-Wallis analysis of variance (KWANOVA) and Mann-Whitney U 

test (MWU). Proportional data was analysed with use of Fisher's 

Exact Probability test. Means with standard errors were calculated 

for data approximating a normal distribution. Medians with 95% 

confidence limits were calculated for data assumed to be non- 

normally distributed. Usually, parametric procedures compare 

means whilst non-parametric procedures compare medians. Non- 

parametric techniques can be applied to most data without assumptions. 

Useful statistical references were Siegel (1956), Campbell (1979), 

Parker (1976) and Murdock and Barnes (1970).

The following abbreviations have been used in graphical 

presentation of results: undisturbed control (CON), chronically
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crowded with aggressive males (CROWDING), saline-gelatine vehicle 

injected (GEL VEHICLE, GEL), low dose ACTH injected (1 i.u. ACTH, 

LACTH), high dose ACTH injected (8 i.u. ACTH, HACTH), propylene 

glycol vehicle minipump implanted (PROP . GLY, VEH), chronic 

corticosterone minipump implanted (CH.CORT), olive oil vehicle 

injected (OL.OIL), low dose progesterone injected (LPROG), high 

dose progesterone injected (HPROG), peanut oil vehicle injected 

(PE.OIL), acute corticosterone-injected (AC.CORT), Sham adrenalectomy 

individually housed controls (SHAM.CON), Sham adrenalectomy 

chronically crowded (SHAM.CROWD), adrenalectomised individually 

housed controls (AD X. CON), adrenalectomised chronically crowded 

(ADX . CROWD) .
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MATERIALS

ACTH (procine, 65 i.u. mg-1 obtained in 1000 i.u. vials) 

Androstenedione (A^-androstene-3,17-dione) corticosterone 

(A* -pregnen-11 ,21-diol-3,20-dione) progesterone

(A4-pregnene-3,20-dione) gelatine (swine skin, 175 bloom) and peanut 

oil were all supplied by Sigma.

Sodium chloride (analar, for saline) olive oil, propylene glycol 

(Propane-1,2-diol) diethyl ether, and Hibitane (Chlorohexidine 

gluconate solution) were all supplied by BDH.

A Whites torsion balance (range 0.01-5.00 mg) was used to measure 

quantities of steroid hormone.

1 ml syringes and needles (25G x |) were supplied by Becton- 

Dickinson and Gillette surgical.

Osmotic minipump drug delivery system model 2001 were supplied by 

Alzet.

Betadine (iodine antiseptic) was obtained from Napp laboratories. 

Cicatrine (antibiotic) was obtained from Wellcome laboratories.

Fur clippers were obtained from Clukes.

Swann-Morton scalpel and blades (size 3 and 4) springbow straight 

scissors, dissecting scissors, small curved forceps, treves rat 

tooth forceps, Michel 5" inserting forceps, 7" clip forceps (Childe) 

and 8 mm wound clips were all supplied by Arnold R. Horwell.

Sutures (20 mm round body, half circle needle with sterile mono

filament fibre) were supplied by St. Thanas' Hospital.
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CHAPTER 4

EFFECTS UPON MATERNAL FOOD INTAKE AND POSTPARTAL BODY WEIGHT,

THE LENGTH OF PREGNANCY AND PLASMA CORTICOSTERONE CONCENTRATIONS

INTRODUCTION

The central hypothesis of this thesis was that adrenal steroids 

of maternal origin, driven by ACTH, cause the developmental changes 

in the offspring of rodents stressed during pregnancy. However, 

this "hormonal hypothesis" is not the only possibility, and other 

causal mechanisms may be involved in producing the described 

developmental changes in the offspring from stressed rodents.

Two alternative hypotheses have been identified here as possible 

factors influencing the development of offspring from mice crowded 

during pregnancy: stress may inhibit feeding (or indeed in the case 

of crowding, the physical presence of many animals may interrupt 

feeding thereby reducing food intake) or may induce premature birth 

of offspring. The effects of stress during pregnancy upon offspring 

body development (lowered birth weight is a well reported phenomenon, 

see Chapter 1) may be due to undernutrition or premature birth, 

rather than a maternal endocrine change. Additionally, it has 

been suggested that some laboratory stressing procedures e.g. 

electric shock or temperature extremes, may be directly injurious 

to the foetus, irrespective of any maternal physiological response 

(Chapman and Stern, 1978). Clearly, these alternative mediating 

factors must be examined to assess the limitations of the results 

of this and related studies. The hypotheses of mediation of the 

effects of stressing procedures administered during pregnancy will 

now be reviewed.

Ward (1972) and Dahlof, Hard and Larsson (1977) suggested that
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the abnormalities in sexual behaviour and atrophy of adrenal and 

testis evident in male offspring from rats restrained or crowded 

during pregnancy, are a result of exposure of the offspring to 

maternal adrenocortical products during the perinatal period.

As neither study employed fostering techniques, the prenatal period 

could not be exclusively identified as the period of risk. The 

hormone exposure hypothesis is supported by results from studies 

of the endocrine response of rodents to restraint and crowding. 

Restraint has been shown to increase plasma corticosterone con

centrations in the pregnant rat (Barlow, McElhatton, Morrison and 

Sullivan, 1974) and crowding increases 116-hydroxylation in 

adrenals in vitro (a measure of corticosteroid secretion) in non
pregnant rats (McCarthy, Green and Sohal, 1976). There is limited 

evidence to date of the effects of crowding upon the endocrine 

system of pregnant rodents. Despite the effects of such stressors 

on pituitary-adrenocortical activity, the reported consequences of 

such procedures applied during pregnancy upon the offspring, may 

not be mediated by an endocrine mechanism. Crowding and restraint 

procedures may physically disrupt patterns of feeding. In a recent 

study of growing male rats, crowding depressed food and water 

consumption and weight gain, but whether this was due to physical 

inhibition of feeding or to endocrine or psychological influences 

on feeding is unclear (Armario, Ortiz and Balasch, 1984). In fact, 

hormones are known to influence feeding and body weight, and as 

such the effects of stress during pregnancy may be due to hormonal 

alteration of maternal food intake, rather than the action of hormones 

on the foetus. In rodents, oestrogens decrease both food intake 

and body weight (e.g. Kuchar, Mozes, Boda and Koppel, 1982; Donohoe 

and Stevens, 1981; Sandberg, David and Stewart, 1982; Czaja, 1983) 

whilst androgens exert the reverse effect (Nunez and Grundman, 1982;
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Kuchar, Mozes, Boda and Koppel, 1982; Slusser and Wade, 1981).

The reported consequences of undemutrition during pregnancy 

upon the offspring are strikingly similar to those resulting from 

stress. Barry (1920) severely undernourished pregnant rats and 

reported still births, reduced birth weights and underdevelopment 

of adrenals, testis, thyroids and thymi as the most important of 

the consequences. Barry reported that the foetal brain was spared 

the harmful reduction of growth and development observed in other 

organs following maternal undernutrition, and this finding is now 

known to be due to the foetal brain receiving a more favourable 

distribution of nutrients compared with other organs (Zamenhof and 

van Marthens, 1982). Rhees and Fleming (1981) however, report 

impaired sexual responses in the male offspring from rats under

nourished during pregnancy, and this may indicate an effect on the 

brain, or alternatively represent a further expression of the 

effects of undernutrition on foetal testis development. The loss 

of certain dietary constituents seem to be responsible for causing 

the effects of undernutrition during pregnancy upon the offspring. 

Notably, protein is important for normal foetal development: protein 

restriction during pregnancy results in loss of maternal body weight, 

reduction of placental and foetal growth and increased offspring 

mortality rates during postnatal life (Beck, Dollet, Max and Debry, 

1982; Knoll-Kohler, Klan, Wehner and Handke, 1982) whereas 

restriction of fats during pregnancy does not influence the course 

of pregnancy or foetal development (Dresser, Russell and Ludwick, 

1982).

The strategy employed in this study to examine whether the 

effects of crowding or pituitary-adrenocortical manipulation during 

pregnancy may influence offspring development by exerting an effect
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on the nutritional status of the mother, was simply to investigate 

food intake in pregnant mice during the period of treatment.

Quantity of food consumed by pregnant mice daily during the final 

third of pregnancy was recorded. After giving birth to litters, 

maternal body weight was recorded, both because this gives a further 

indication of maternal nutritional status and because maternal 

weight gain during pregnancy in itself is important for offspring 

development, at least in humans (Tavris and Read, 1982). A sub

stantial reduction in food intake by pregnant mice following any 

treatment during pregnancy, would suggest that undernutrition may 

be involved in producing the effects of such treatment upon offspring 

development. It is interesting to note that undernutrition is 

itself stressful, resulting in pituitary-adrenocortical hyperfunction 

and thyroid hypofunction in a variety of species (Adlard and Smart, 

1972; Smart and Adlard, 1974; Tveit and Almlid, 1980; Oei, Sample, 

Taylor, Nordschow, Lemons, Jansen and Schreiner, 1982; Hugues, 

Reinberg, Jordan, Sebaoun, Modigliani and Burger, 1982) and the 

implication of this in interpreting results from studies of the 

consequences of undernutrition during pregnancy upon offspring 

development is clear.

In addition to the possibility of stressing procedures causing 

maternal undernutrition, they may also alter the length of pregnancy. 

Offspring that are b o m  prematurely can be expected to be generally 

underdeveloped in comparison to offspring born at full term. Other 

than a mechanical component associated with foetal size, parturition 

is under hormonal control (Findlay, 1975) and as such, conditions 

which alter the maternal hormonal profile during pregnancy may well 

influence pregnancy length and the birth process. Progesterone, 

derived largely from the corpora lutea in species with short
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pregnancies, and also from the placenta, maintains pregnancy in 

most mammalian species by preventing myometrial contractions and 

expulsion of uterine contents (Heap and Flint, 1979). Falling 

progesterone levels allow the onset of parturition, although the 

action of many hormones are required for the completion of the 

birth process and these will not be reviewed in detail here.

Most relevant to this study is the involvement of pituitary- 

adrenal hormones in controlling parturition. Adrenal oestrogens 

and glucocorticoids, derived largely from the foetus, are 

instrumental in triggering parturition (e.g. Liggins, 1979).

These compounds increase maternal circulatory levels of prosta

glandin F2 alpha (PGF2a). This in turn induces myometrial con

tractions, ripening and dilation of the cervix (e.g. Challis, 1979) 

and stimulates secretion of relaxin (Gordon and Sherwood, 1983). 

Relaxin is secreted from the ovary and causes relaxation of ligaments 

of the pubic symphysis to allow passage of foetuses through the 

birth canal. LH may also stimulate relaxin secretion (Gordon and 

Sherwood, 1982) and as there is evidence to suggest that ACTH and 

glucocorticoids inhibit LH secretion (Barb, Kraeling, Rampacek,

Fonda and Kiser, 1982) so stress or pituitary-adrenocortical 

manipulation can be theoretically seen to both advance the 

initiation of parturition (c.f. Liggins) and yet to block completion 

of normal birth. In order to establish whether crowding or other 

endocrine manipulations during pregnancy altered the timing of 

births, pregnancy lengths were recorded. If abortions and still 

births can be considered to reflect abnormalities of pregnancy or 

the birth process, this additional interpretation can be placed on 

the results presented in Chapter 5.

Finally, if crowding during pregnancy mediates its effects
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upon offspring development via maternal pituitary-adrenocortical 

hyperfunction, this should be reflected in maternal plasma 

corticosterone concentrations. Since ACTH does not normally cross 

the placenta (see Chapter 2) and is likely to mediate its teratogenic 

effects via adrenocortical secretions, the effectiveness of the 

dosages of ACTH used here, in increasing maternal plasma cortico

sterone concentrations, was examined. Similarly, in order to choose 

effective doses of corticosterone to administer in the minipump 

experiments, pilot studies examining maternal plasma corticosterone 

concentrations following hourly injections of varying doses of this 

hormone were performed, and are reported here, together with actual 

concentrations of corticosterone in maternal circulation during the 

chronic administration regime.

METHODS

Animal husbandry and all treatments during pregnancy followed 

the procedures outlined in Chapter 3. The effects of crowding and

endocrine manipulation upon food intake was studied as follows.

In the crowding condition from day 12 of pregnancy onward, a weighed 

quantity of food pellets were placed into food hoppers. Twenty 

four hours later (at 1100-1200 hours) the remaining food was weighed 

and amount eaten in 24 hrs was calculated. Food pellets were 

weighed on a Mettler PL1200 electronic balance. This procedure 

was repeated until day 17 of pregnancy when females were removed.

The quantities of food eaten relate to a group of 30 animals, with 

a small proportion of this group being pregnant females. Upon 

removal of females, continued measurement of food intake in the 

remaining group of males was made for a further 48 hrs, and mean 

daily food intake of the group of males calculated. This value of



64

food intake (crowded males) was subtracted from values of food intake 

previously obtained (crowded males + females) to give estimated food 

consumption by the pregnant females. The overall mean quantity of 

food eàten/animal/day was calculated for pregnant mice in each 

crowding cage - females in same cage had same value of food consumed 

and the unit of variance was number of cages.

Food intake in other treatment groups could be more accurately 

measured, because pregnant females were individually housed. A 

weighed quantity of food pellets were placed in food hoppers.

Remaining food was weighed every 24 hrs and quantity of food eaten 

per day was calculated. The mean quantity of food eaten/animal/day 

(from days 12-17 of pregnancy) formed the basis of statistical 

analysis. Daily food intake was found not to vary between days 

12-17 of pregnancy. As an additional measure of maternal nutritional 

status, maternal postpartal body weight, was recorded. Within 13 

hrs of birth of a litter, females were sacrificed and weighed.

Maternal plasma corticosterone concentrations were measured, 

following crowding, ACTH or corticosterone administration. Pregnant 

females were anaesthetised with diethyl ether and approximately 

300 yl of blood was collected, from the retro-orbital sinus as used 

by Nichols (1980). The sample was heparinised, centrifuged to 

separate cellular components from plasma and stored at -20°C. Plasma 

corticosterone concentrations were determined by radioimmuno assay 

which has been fully described elsewhere (Nichols, 1980; Nichols 

and Chevins, 1981a, b, c). Mr. M. Bentley did the radioimmunoassays 

reported in this chapter. Results from the corticosterone assay 

are presented in nanogrammes per millilitre (ng/ml).

The following procedure was observed when blood sampling.

Females to be blood sampled were undisturbed for 1-4 hours prior to



blood sampling. Blood sampling was performed in adjacent rooms 

to where animals were housed. The animal roam was entered no more 

than 3 times in a sampling session and no female was sampled more 

than once in 24 hours.

In study of the adrenocortical response to crowding blood was 

taken at 10.00 hours on the day of crowding (day 12 of pregnancy) 

and subsequently at 11.00 hours, 14.00 hours and 18.00 hours, 

further blood samples were taken at 10.00 hours on day 13 and 14.

Data from a separate experiment in which blood samples were taken 

at 17.00 hours on day 15 of pregnancy are also included in results.

In the studies of circulatory corticosterone concentrations following 

injections of ACTH (1 i.u. or 8 i.u. in 0.4 ml saline-gelatine 

vehicle) or corticosterone (10 yg or 100 yg in 0.1 ml propylene 

glycol) blood was taken on day 15 of pregnancy, 4 hours after a 

single injection of ACTH (at 19.00 hours) and 1 hour after the last 

of 3 hourly injections of corticosterone (at 19.00 hours). In a 

study of circulatory corticosterone concentrations following 

implantation of minipumps delivering corticosterone (10 yg/hr) or 

propylene glycol vehicle only (10 yl/hr) blood was taken on day 15 

of pregnancy at 19.00 hours.

Pregnancy length was determined as the number of days between 

the appearance of a vaginal plug, and the birth of a litter. The 

appearance of a vaginal plug was deemed to indicate day O of 

pregnancy. Birth of litters was recorded with an accuracy of 0.5 

days. As pregnant females were assigned at random to treatment 

groups, a random distribution of early and late conceptions can be

assumed.
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EXPERIMENT 4:1. The effects of chronic crowding during pregnancy 

upon maternal food intake and postpartal body weight. Two 

crowding cages were used in the study of food intake and each of 

these contained 3 or 4 pregnant mice.

RESULTS. The effects of chronic crowding during late pregnancy 

upon maternal food intake and postpartal body weight are shown in 

table 4:1. Chronic crowding did not decrease food intake. No 

significant effect of chronic crowding on maternal postpartal 

body weight was detected.
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Table 4:1 The effects of chronic crowding during the final third 
of pregnancy upon maternal food intake and postpartal body weight. 
Data presented are as means —  S.E.M.

Treatment
during
late

pregnancy

Daily
food

intake
(g)

Postpartal
body

weight
(g )

Undisturbed 11.88 39.38
controls + 0.64 + 0.90

(6) (14)

Chronically 12.39 38.63
crowded + 2.76 + 0.76

(7) (16)
t-•test N.S.

( ) indicate number of animals. In the crowding condition the 
overall mean quantity of food consumed by the males was 8.09 g.
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EXPERIMENT 4:2. The effects of ACTH administration during pregnancy 

upon maternal food intake and postpartal body weight.

RESULTS. The effects of ACTH administration during late pregnancy 

upon maternal food intake and postpartal body weight are shown 

in table 4:2. No significant effects of ACTH administration upon 

maternal food intake or postpartal body weight were detected.
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Table 4:2 The effects of ACTH administration during the final third 
of pregnancy upon maternal food intake and postpartal body weight. 
Data presented are as means + S.E.M.

Treatment
during
late

pregnancy

Daily
food

intake
(g)

Postpartal
body

weight
(g)

Undisturbed
controls

11.32  
+ 0 .5 7  

(9)

4 0 .2 8  
+ 0 . 8 7  

(1 2 )

Saline-gel
vehicle

1 0 .7 9  
+ 0 .1 4  

(9)

3 9 .6 8  
+ 0 . 4 5  

( I D

Low dose 
ACTH

1 0 .4 9  
+ 0 .5 2  

(9)

3 7 .8 0  
+ 0 . 6 9  

(1 1 )

High dose 
ACTH

10.32  
+ 0 .3 8  

(11)

3 9 .3 5  
+ 0 . 7 0  

(1 2 )

KWANOVA N.S. 1WANOVA N.S.

( ) indicate number of animals
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EXPERIMENT 4:3. The effects of chronic corticosterone 

administration during pregnancy upon postpartal body weight.

RESULTS. The effects of chronic corticosterone administration 

during late pregnancy upon maternal postpartal body weight are 

shown in table 4:3. No significant effects of chronic 

corticosterone administration upon maternal postpartal body weight

were detected.
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Table 4:3 The effects of chronic corticosterone administration 
during the final third of pregnancy upon maternal postpartal body 
weight. Data presented are as means —  S.E.M.

Treatment
during
late

pregnancy

Postpartal
body

weight
(g )

Undisturbed
controls

38.39 
+ 1.01 

(9)

Propylene glycol 
vehicle

37.34 
+ 0.90 

(10)

Chronic
corticosterone

36.86 
+ 0.62 

(11)

1WAN0VA N.S.

( ) indicate number of animals
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EXPERIMENT 4:4. The effects of progesterone administration during 

pregnancy upon maternal food intake and postpartal body weight.

RESULTS. The effects of acute progesterone administration during 

late pregnancy upon maternal food intake and postpartal body weight 

are shown in table 4:4. No significant effects of progesterone 

administration upon maternal food intake or postpartal body weight

were detected.
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Table 4:4 The effects of acute progesterone administration during 
the final third of pregnancy upon maternal food intake and postpartal 
body weight. Data presented are as means —  S.E.M.

Treatment
during
late

pregnancy

Daily
food

intake
(g )

Postpartal
body

weight
(g )

Undisturbed
controls

1 0 . 5 7  
+ 0 . 4 8  

( 7 )

3 7 . 7 5  
+ 1 . 0 4  

( 1 3 )

Olive oil 
vehicle

1 0 . 3 4  
+ 0 . 4 9  

( 7 )

3 7 . 8 9  
+ 0 . 9 0  

( 1 2 )

Low dose 
progesterone

1 1 . 5 5  
+ 0 . 6 0  

( 7 )

3 9 . 2 0  
+ 0 . 8 3  

( I D

High dose 
progesterone

1 1 . 7 9  
+ 0 . 4 4  

( 8 )

3 7 . 4 8  
+ 1 . 1 2  

( 1 6 )

KWANOVA N.S. 1WAN0VA N.S.

( ) indicate number of animals
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EXPERIMENT 4:5. The effects of androstenedione or corticosterone 

administration during pregnancy upon maternal food intake and post

partal body weight.

RESULTS. The effects of acute corticosterone or androstenedione 

administration during late pregnancy upon maternal food intake and 

postpartal body weight are shown in table 4:5. No significant 

effects of either treatment upon maternal food intake or postpartal 

body weight were detected.



Table 4:5 The effects of acute corticosterone or acute androstenedione 
administration during the final third of pregnancy upon maternal food 
intake and postpartal body weight. Data presented are as means i- S.E.M.

Treatment
during
late

pregnancy

Daily
food

intake
(g )

Postpartal
body

weight
(g )

Undisturbed
control

11.81 
+ 0.39 
(8)

41.14 
+ 0.63 

(8)

Peanut oil 
vehicle

11.15 
+ 0.70 
(8)

41.02 
+ 1.23 

(7)

Androstenedione 10.70 
+ 0.18 
(7)

39.91 
+ 1.30 

(6)

Corticoste rone 11.36 
+ 0.61 
(8)

40.24 
+ 0.78 

(8)

KWANOVA N.S. 1WAN0VA N.S.

( ) indicate number of animals
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EXPERIMENT 4:6. The effects of adrenalectomy during pregnancy 

upon maternal food intake and postpartal body weight.

RESULTS. The effects of adrenalectomy during pregnancy upon

maternal food intake, and the effects of adrenalectomy and crowding 

during pregnancy upon maternal postpartal body weight are shown 

in table 4:6. No significant effects of adrenalectomy upon 

maternal food intake or postpartal body weight were found.
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Table 4:6 The effects of adrenalectomy and crowding during the 
final third of pregnancy upon maternal food intake and postpartal 
body weight. Data presented are as means S.E.M.

Treatment
during
late

pregnancy

Daily
food

intake
(g )

Postpartal
body

weight
(g)

Sham-surgery 
control

11.06 
+ 0.59 
(6)

37.77 
+ 1.80 
(5)

Sham-surgery
crowded

1
38.78 

+ 1.34 
(5)

Adrenalectomy
controls

12.97 
+ 0.96 
(5)

42.32 
+ 1.62 
(5)

Adrenalectomy
crowded

1
38.79 

+ 1.54
(4)

MWU N.S. 1WAN0VA N.S.

1 Food intake was not measured in these groups 
( ) indicate number of animals
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DISCUSSION

The purpose of these experiments was to examine whether crowding 

the various hormone administration regimes or adrenalectomy 

influenced maternal food intake. Direct measurement of food 

intake revealed that no treatment severely depressed feeding.

That food consumption was not severely depressed by any treatment 

is further suggested by no differences being found in maternal 

postpartal body weights^ However, some results must be regarded 

with caution especially the adrenalectomy experiments because of 

low numbers of test animals. Data on food intake in crowded 

pregnant mice could only be obtained by calculation indirectly and 

was not statistically analysed. It is probable that this data is 

inaccurate, especially because of the problem of separating food 

consumed by pregnant females alone from that eaten by the males.

It is noted that removing the pregnant females from crowding cages 

may well have changed eating patterns in the group of males. In 

a recent study of growing male rats, animals in high density housing 

conditions ate and drank less, and showed reduced weight gain 

compared with rats in a low density housing condition (Armario,

Ortiz and Balasch, 1984) . Even if in this study a reduction of 

food intake by pregnant crowded mice went undetected, a moderate 

(approximately 10%) depression of food intake following stress or 

endocrine manipulation is unlikely to affect foetal development, 

particularly as severe starvation procedures often have no detectable 

effects on aspects of offspring development and behaviour (personal 

communication from Dr. J.L. Smart, Dept. Child Health and Development 

Manchester). In addition to no treatment having any detectable 

effect upon food intake, no treatment was found to significantly 

reduce maternal postpartal body weights. Although there was a
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variability in maternal postpartal body weight between experiments, 

it should be noted that this is probably due to differences in 

initial starting weights between experiments, but that experimental 

and control animals are matched within experiments. No evidence 

has been found of undemutrition associated with stress or pituitary- 

adrenocortical manipulation during pregnancy, and as such attention 

can be returned to the endocrine hypothesis, or hypothesis of 

premature births reported in the following section, as causing the 

reported abnormalities in offspring from mice crowded or hormone 

treated during pregnancy.
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I
STUDY OF THE LENGTH OF PREGNANCY. The effects of chronic crowding, 

honnone administration or adrenalectomy during pregnancy upon the 

length of pregnancy.

RESULTS. The effects of crowding, honnone administration and

adrenalectomy upon the mean length of pregnancy are shown in Fig. 1.

There were no differences in mean pregnancy lengths between crowded 

and control mice (P > 0.1 t-test). One way analysis of variance 

revealed that there were no significant differences between the 

following experimental groups: control, saline-gelatine vehicle, 

low dose ACTH treated and high dose ACTH treated mice (P = 0.78) 

control, propylene glycol vehicle and chronic corticosterone treated 

mice (P = 0.12) control, peanut oil vehicle, androstenedione treated 

or corticosterone treated mice (P = 0.33) and Sham-surgery control, 

Sham-surgery crowded, adrenalectomised control and adrenalectomised 

crowded mice (P = 0.07). However, one way analysis of variance 

revealed a significant difference in mean pregnancy lengths between 

the following experimental groups: control, olive oil vehicle, low 

dose progesterone treated and high dose progesterone treated mice 

(P = 0.004). Further analysis revealed that only the high dose 

progesterone treatment significantly delayed parturition (see Fig. 1) .

The effects of crowding, hormone administration and 

adrenalectomy upon the day of parturition are shown in table 4:7. 

Proportional analysis revealed that more mice treated with the high dose of 

ACTH gave birth earlier than day 18 of pregnancy compared with 

control mice. However, as the same result was observed in the 

saline-gelatine vehicle group, ACTH has no more effect in inducing 

early parturition than the injection of vehicle. Proportional 

analysis also showed that more chronic corticosterone treated mice 

had pregnancy lengths shorter than 18 days, compared with controls.
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Table 4:7 The effects of pituitary-adrenocortical manipulation
(stress, hormone administration and adrenalectomy) during the final
third of pregnancy, upon the day of parturition. Data presented
are as numbers of mice

Number of mice Number of mice
Treatment during with pregnancies with pregnancies
late pregnancy of less than of 19 days

18 days duration or more duration

Undisturbed control (52)a 5 12
Saline-gelatine vehicle (19) 5^ 2
Low dose ACTH (14) 3 2
High dose ACTH (24) 6b 1
Chronic crowding (18) 2 2 i]
Propylene glycol vehicle (15) 2 5 a

Chronic corticosterone (17) 6C 4

Olive oil vehicle (20) 3 5
Low dose progesterone (20) 3 8
High dose progesterone (22) 0 15e

Peanut oil vehicle (7) 1 2 i-
Androstenedione (6) 0 4d -t
Corticosterone (7) 1 2 -

Sham-surgery control (6) 0 3
Sham-surgery crowding (5) 0 1
Adrenalectomy control (5) 0 5f »
Adrenalectomy crowding (4) 0 3

( )a Indicates number of mice*
b P = 0.06 compared with control, c significant difference compared 
with control P = 0.017, d significant difference compared with control 
P = 0.038, e significant difference compared with control (P = 0.0002) 
and olive oil vehicle (P = 0.005), f significant difference compared 
with Sham-surgery crowding P = 0.024 (Fisher exact probability)
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Additionally, more high dose progesterone treated mice showed 

pregnancy lengths longer than 19 days, compared with both control 

and olive oil vehicle treated mice, and this effect was also found 

in androstenedione treated mice compared with controls, and 

adrenalectomised control mice compared with Sham-surgery crowded 

mice.
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DISCUSSION

The purpose of these experiments was to examine whether 

crowding, the various hormone administration regimes or adrenalectomy- 

inf luenced the timing of parturition. Measurement of the length 

of pregnancy, revealed that only the chronic corticosterone treat

ment was associated with early parturition, whilst treatment with 

the higher of two doses of progesterone delayed births. This 

result is consistent with the known effects of these hormones in 

controlling parturition: in the rat the process of parturition is 

initiated by changing ratios of corticosterone and progesterone 

(Martin, Cake, Hartmann and Cook, 1977). In conditions of crowding 

or after ACTH treatment, corticosterone secretion is elevated (see 

next section) but it is also probable that other adrenal steroids 

e.g. progesterone will be secreted, and this may account for the 

absence of any effect of these treatments upon the length of 

pregnancy. An additional important factor in explanation of why 

crowded animals did not show early birth is that undisturbed isolation 

is required in many species prior to birth of offspring (Findlay,

1975). The known action of adrenal glucocorticoids and oestrogens 

in triggering births (Liggins, 1979) may have been antagonised by 

environmental conditions. The finding that more saline-gelatine 

vehicle treated mice had shorter pregnancies than control mice could 

be a random effect: the stress of injection can be ignored as the 

cause of this result as none of the other vehicle groups showed 

early parturition. The low number of animals in the androstenedione

and adrenalectomy groups, make comment on the validity of results 

difficult.

This study was designed to examine whether variation in length 

of time foetuses were retained in the uterus could be a factor 

mediating the effects of stress or hormone administration during
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pregnancy upon offspring development. Premature birth of foetuses 

could produce underdevelopment and affect maturation of the brain, 

which occurs throughout the perinatal period in mice (Rodier, 1981). 

There is little evidence to suggest that premature births 

mediate the effects upon offspring development of crowding during 

pregnancy. The same applies for most of the endocrine manipulations 

during pregnancy with the exception of chronic corticosterone 

administration, where premature births may at least aggravate the 

effects of this compound upon offspring development.
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EXPERIMENT 4:7. The effects of chronic crowding during pregnancy 

upon maternal plasma corticosterone concentrations: verification 

that crowding activates the stress response.

RESULTS. The effects of crowding during pregnancy upon maternal 

plasma corticosterone concentrations are shown in Fig. 2. Crowding 

increased plasma corticosterone concentrations. Corticosterone 

concentrations were elevated, throughout the first 24 hrs of 

crowding, and plasma corticosterone concentrations were significantly 

higher in crowded animals 4 hrs after crowding, compared with 

plasma corticosterone concentrations of individually housed, 

undisturbed mice (see Fig. 2). Crowding did not influence plasma 

corticosterone concentrations later in pregnancy. Plasma 

corticosterone concentrations increased in both crowding and

control groups, as pregnancy progressed.
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EXPERIMENT 4:8. The effects of ACTH or corticosterone administration 

during pregnancy upon maternal plasma corticosterone concentrations: 

verification of the effectiveness of hormone doses.

RESULTS. Plasma corticosterone concentrations in pregnant mice

(7 p.m. on day 15 of pregnancy) following ACTH or corticosterone 

injections are shown in table 4:8. Both doses of ACTH and both 

doses of corticosterone effectively elevated maternal mean plasma 

corticosterone concentrations. Analysis of results showed that 

handling, injection procedure and saline-gelatine vehicle did not 

significantly influence plasma corticosterone concentrations 

compared with controls (MWU P = 0.46).

Mice injected with 10 yg of corticosterone (3 injections at 

hourly intervals before blood sampling) showed elevated mean plasma 

corticosterone concentrations, but results just failed to achieve 

statistical significance compared with controls (MWU P = 0.15).

However, mice injected with 100 yg corticosterone (3 injections 

at hourly intervals before blood sampling) showed significantly 

elevated plasma corticosterone concentrations compared with 

controls but not mice injected with 10 yg corticosterone (MWU P < 0.24).
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Table 4:8 Plasma corticosterone concentrations in pregnant mice 
following ACTH or corticosterone Injections. Data presented are 
as means —  S.E.M.

Treatment during 
late pregnancy

Plasma
corticosterone
concentration

(ng/ml)

Undisturbed 1739 +_ 366 (6)
control

Saline-gel 1451 +_ 331 (5)
vehicle injected

1 i.u. ACTH 6647 + 1247 (4)**
injected

8 i.u. ACTH 10143 + 964 (5)**
injected

10 yg corticosterone 4334 1172 (6)
injected

lOO yg corticosterone 5713 +_ 464 (6) *
injected

( ) indicate number of animals
* significant difference compared with control mice P < 0.001 (MWU) 
** significant difference compared with control and saline-gelatine 

vehicle injected mice, P < 0.005 - P < 0.002 (MWU)
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EXPERIMENT 4:9. The effects upon maternal plasma corticosterone 

concentrations of implantation of osmotically driven minipumps 

delivering corticosterone solution: verification of the effective

ness of minipumps.

RESULTS. Plasma corticosterone concentrations in pregnant mice 

(7 p.m. on day 15 of pregnancy) following implantation of 

osmotically driven minipumps delivering a solution of corticosterone 

(10 yg/ul/hr) are shown in table 4:9. The minipump delivery 

system was effective. Mice implanted with minipumps delivering 

the corticosterone solution showed significantly elevated mean 

plasma corticosterone concentrations, compared with control mice 

and mice implanted with minipumps delivering vehicle only.

Although mice implanted with minipumps delivering vehicle only 

showed elevated mean plasma corticosterone concentrations compared 

with control mice, differences were not significantly different 

(MWU P > 0.10). This result suggests that stress resulting from 

initial surgery or carrying the minipumps, is not long term or 

severe.
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Table 4:9 Plasma corticosterone concentrations in pregnant mice 
following implantation of osmotically driven minipumps delivering a 
corticosterone solution. Data presented are as means — S.E.M.

Treatment
during
late

pregnancy

Plasma
corticosterone
concentration

(ng/ml)

Undisturbed 1322 +_ 220 (7)
control

Surgery-propylene glycol 1649 +_ 147 (14)
vehicle control

Chronic 3117 417 (15)*
corticosterone

KWANOVA P = 0.0004

( ) indicates number of animals
* significant difference compared with control (P < 0.01) and 

surgery-vehicle control (P < 0.001) mice (MWU)



90

DISCUSSION

The procedure used throughout this study to induce a stress 

response, chronic crowding with male mice, does result in elevated 

plasma corticosterone concentrations in pregnant mice. This 

result indicates that this stressor is effective and the finding 

that crowding does activate the pituitary-adrenal system is in 

agreement with previous studies (e.g. McCarthy, Green and Sohal,

1976). However, McCarthy, Green and Sohal (1976) report that in 

rats, crowding has a prolonged effect on adrenal steroid synthesis 

and secretion. In this study, plasma corticosterone concentrations 

in pregnant mice were only elevated transiently, during the first 

24 hours of crowding. There are several possible explanations 

for this finding. The crowded female mice may habituate to the 

crowded conditions: conditioned suppression of the adrenocortical 

stress response following chronic stressor exposure, has been 

reported in rats (Burchfield, Woods and Elich, 1980). It is 

known that the pituitary-adrenocortical axis of pregnant rodents 

is less stress responsive (Hoet, Pagni, Ekka and Saba, 1965;

Brain and Nowell, 1970). However, it is probable that stress 

peaks of corticosterone, in response to bouts of fighting or pursuit 

within the crowding cages, went undetected in the infrequent 

sampling regime. Corticosterone concentrations of non-stressed 

pregnant mice in this study, agree well with those obtained 

throughout pregnancy in previous studies on mice (Barlow, Morrison 

and Sullivan, 1974).

It was also demonstrated that both doses of ACTH effectively 

elevated maternal plasma corticosterone concentrations. Whilst 

the higher dose of corticosterone injected into mice effectively 

raised plasma corticosterone concentrations, the lower dose was



actually chosen for use in the minipumps. The higher dose of 

corticosterone was judged to be excessive in a chronic 

administration regime, and the lower dose is shown to be adequate 

in raising plasma corticosterone concentrations when released from 

minipumps.

Although crowding and the ACTH and corticosterone treatment 

regimes were found to effectively elevate maternal plasma corticos

terone concentrations, which supports the working hypothesis of 

this thesis, no information could be obtained on the effects of 

these treatments on the circulatory levels of other hormones, and 

consequently, only limited use was made of the radioimmunoassay 

technique. Caution must be exercised in interpreting all the 

assay results as corticosterone recovery was relatively low 

(84% at best) compared with the original assay design (96%

Nichols, 1980).
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GENERAL DISCUSSION

The hypothesis that the reported effects of stress during 

pregnancy upon behavioural development in offspring are mediated 

by activation of the maternal pituitary-adrenal axis (Ward, 1972; 

Dahlöf, Hard and Larrson, 1977) has been adopted as the working 

hypothesis of this study. However, it has been noted that there 

are alternative hypotheses. Laboratory procedures designed to 

induce the stress response may affect offspring development by 

suppressing food intake, shortening pregnancy length or by directly 

acting on the foetus.

In this study, crowding with males was used as the stressing 

procedure. It has been shown that crowding does not detectably 

decrease food intake in pregnant mice or shorten the length of 

pregnancy. It has been shown that crowding, like other laboratory 

stressors fe.g. restraint in rats: Barlow, McElhatton, Morrison 

and Sullivan, 1974) does activate the maternal pituitary-adrenal 

system, although only transiently. The transient nature of the 

elevation of corticosterone in crowded, pregnant mice may be useful 

in identifying periods of risk to foetal development. Although 

no information was obtained to indicate levels of other adrenal 

steroids following crowding during pregnancy, corticosterone is 

the primary product of the stress response in the mouse 

(e.g. Nichols, 1980) and is therefore the prime candidate mediating 

the effects of stress during pregnancy upon offspring development.

In the context of results from this chapter, the working hypothesis, 

of an endocrine mechanism mediating the effects of stress during 

pregnancy, remains valid. The rationale of experiments in this 

study has been explained in chapters 1 and 2, and it has also been 

shown that the endocrine manipulations used to test the working
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hypothesis, do not severely affect maternal food intake or (with 

the exception of chronic corticosterone) shorten the length of 

pregnancy. It remains a possibility that the reported effects 

of stress during pregnancy upon offspring development are not 

solely due to in utero steroid exposure, but are aggravated by 
mild undernourishment and advancing of time of birth.

tI■
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CHAPTER 5

EFFECTS UPON SOMATIC DEVELOPMENT AND MORTALITY RATES IN

NEONATAL OFFSPRING

INTRODUCTION

Embryonic and foetal growth and somatic development are dependent 

upon many factors. Maternal nutritional status can influence 

foetal somatic development: severe undernutrition or malnutrition 

during pregnancy has been shown to reduce foetal body and organ 

weights in rats (Barry, 1920; Crosskerry, Smart and Charnock, 1981) 

both via inhibition of placental growth (Knoll-Kohler, Klan, Wehner 

and Handke, 1982) and directly by reduction of foetal nutrition. 

Successful implantation prior to placental development adequate 

placental function, and sufficient maternal body weight, are also 

necessary for normal intrauterine body growth and development (Howie, 

1982; Tanner, 1978; van Assche and Robertson, 1983).

Normal foetal-placental growth is regulated by hormonal rather 

than nutritional or physical factors (Crosskerry and Dobbing, 1978). 

The hormonal mechanisms controlling prenatal growth are complex, 

and products from both maternal and foetal endocrine systems 

regulate this process. Maternal oestradiol is reported to limit 

maternal-foetal weight gain in guinea pigs (Czaja, 1983).

Oestradiol is an identified inhibitor of placental growth (Csapo,

Dray and Erdos, 1974; Miller, 1978). Administration of oestradiol 

to pregnant rodents also suppresses foetal thyroid output, insulin 

and PRL secretion (Kuhn and Bollen, 1981; Kuhn, Bollen and Darras, 

1982) and these hormones are required for normal foetal growth and 

body development. Thus maternal oestrogens may naturally act to 

limit foetal growth, as may glucocorticoids, the action of which are
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reviewed later.

The foetus secretes a variety of hormones that stimulate growth 

and somatic development. Amongst these are PRL and insulin, and 

foetal endocrine factors controlling somatic development will now 

be reviewed. Dwarfism in mice is associated with lack of PRL- 

containing cells in pituitary (Barkley, Bartke, Gross and Sinha,

1982). Insulin deficiency results in reduced foetal growth in many 

species (Jost, 1979). Insulin probably has a direct effect upon 

somatic development, via its action upon glucose metabolism, whereas 

PRL may influence body development indirectly. PRL stimulates 

testosterone secretion in rats (Baranao, Legnani, Chiauzzi, Bertini, 

Suescun, Calvo, Charreau and Calandra, 1981; Waeber, Reymond, Reymond 

and Lemarchand-Beraud, 1983) and in humans (Slonim, Glick, Island 

and Kasselberg, 1982) and testosterone is correlated with foetal 

body length at least in human males (Reyes, Boroditsky, Winter and 

Faiman, 1974). Additionally, growth hormone (GH) is a major 

stimulant of postnatal body growth (Kaplan, 1982) and it is probable 

that this polypeptide, released from the foetal pituitary, also 

controls intrauterine growth rate. Certainly, administration of 

GH to pregnant rodents increases offspring body and brain weight 

(Ganalska-Malinowska and Romer, 1981; Crosskerry and Smith, 1979).

The relative contribution of both maternal and foetal secretions of 

PRL, insulin and GH to foetal growth has yet to be determined, and it 

is likely that complex interactions exist between many hormones 

contributing to somatic development of the foetus.

However, it is apparent that the maternal hormonal profile 

during pregnancy is important for normal foetal somatic development. 

Stressors administered during pregnancy have been shown to reduce 

offspring body weight in both rats and mice (Barlow, Knight and
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Sullivan, 1978; Herrenkohl and Whitney, 1976; Werboff, Anderson and 

Haggett, 1968; Chevins, 1981). These results are caused presumably 

by induction of a maternal stress response, however the precise 

mechanism mediating these effects are unclear. As stress is 

associated with increased adrenocortical and decreased GH output 

(Terry, Willoughby, Brazeau and Martin, 1976; Brown and Martin, 1974; 

see Chapter 2) as well as influencing many other hormones, the 

reductions in body weight in offspring from rodents stressed during 

pregnancy may be due to altered secretion of any of these hormones. 

Further, there are several ways by which intrauterine development 

can be affected. The stressor may influence foetal somatic develop

ment by affecting litter size. There is an inverse relationship 

between litter size and foetal weight in rodents; surgical removal 

of foetuses increases the weight of remaining foetuses (Crosskerry and 

Dobbing, 1978) and litter sizes are reported to be larger from rats 

handled in pregnancy where the individual weight of offspring was 

decreased (Werboff, Anderson and Haggett, 1968). Maternal nutritional 

status and length of time foetuses are retained vn utevo are 

additional factors known to influence perinatal somatic development. 

Maternal endocrine status is particularly important for foetal somatic 

development, and evidence exists to suggest that the action of 

stressors during pregnancy upon offspring body development, may be 

mediated by activation of the maternal pituitary-adrenocortical axis. 

Administration of ACTH during pregnancy has been shown to limit foetal 

body weight gain in rodents (Velardo, 1957; Kittinger, Guittiemez- 

Cemosek, Cernosek and Pasley, 1980; Monder, Yasukawa and Christian, 

1980). ACTH probably exerts its effects through maternal gluco

corticoids, since administration of artificial or synthetic 

glucocorticoids during pregnancy also reduces offspring body weight
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(Fraser and Fainstat, 1951; Gandelman and Rosenthal, 1981; Gandelman 

and Guerriero, 1982; Edward-Davis and Plotz, 1954). The effects of 

corticosterone administered during pregnancy upon offspring somatic 

development has not been studied, however neonatal corticosterone 

treatment does retard body development (Howard, 1965) .

The effects of stress during pregnancy upon offspring somatic 

development are further assessed in this chapter. The effects of 

chronic crowding during pregnancy upon parameters of offspring 

somatic development and offspring mortality rates were studied.

The hypothesis that the effects of chronic crowding during pregnancy, 

upon offspring somatic development, can be reproduced by exposure of 

the foetus to maternal adrenocortical products was tested. The 

effects of maternal pituitary-adrenocortical manipulation during 

pregnancy upon offspring somatic development was also examined.

Body weight at birth (day 0) was used as the primary index of body 

development, although day 0 body length was also studied to assess 

in utevo growth. Litter size and litter sex ratios were recorded 

as these are factors which may influence foetal somatic development, 

and also to assess mortality rates of either sex of foetus. The 

number of abortions, small litters, litters with prenatal deaths 

and litters with postnatal deaths was recorded and body weight at 

weaning (day 21) was also measured.

METHODS

Animal husbandry and treatments followed the procedure outlined 

in Chapter 3. At birth individual pups were weighed on an 

electronic balance (Mettler PL1200) to an accuracy of 0.01 g, and 

a mean pup body weight for each litter was calculated. At birth 

snout- rump lengths were measured with calipers (Camlab Scientific
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Instruments) to an accuracy of 0.05 mm and a mean pup body length 

for each litter was calculated. The percentage of male pups within 

each litter and number of litters with stillbirths was recorded. 

Litters with less than 8 pups were classified as abnormally small. 

Other litters were culled to 8 pups and fostered as described in 

Chapter 3. On day 21 individual offspring were weighed and again 

a mean body weight for each litter was calculated. The number of 

litters with postnatal offspring deaths was recorded.

All results are thus based on the litter as the unit of variance 

to avoid spurious results due to litter effects (Abbey and Howard, 

1973). Data from the various treatments were pooled wherever 

possible, for clarity of results, presentation. No significant 

differences in birth weights or letter mortalities were found in 

control mice in the various experiments. Methods of 

data presentation and analysis are explained in Chapter 3.
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STUDY 5:1. The effects of chronic crowding during pregnancy upon

parameters of litter development.

STUDY 5:2. 

mortality

The effects of chronic crowding during pregnancy upon 

rates within litters.

RESULTS. The effects of chronic crowding from days 12-17 of 

pregnancy upon litter development, and foetal somatic development 

are shown in Table 5:1. Litters from crowded mice showed significant 

reductions in the numbers of pups, compared with litters from 

control mice. There was no difference between litters from crowded 

or control mice in the sex ratio of pups. The body length of 

offspring from litters of crowded mice was marginally reduced 

compared with offspring from litters of control mice, but differences 

did not achieve statistical significance. Offspring in litters 

from crowded mice showed significantly reduced birth weights compared 

with offspring in litters from control mice. This difference 

was not evident on postnatal day 21. Plate I shows the relative 

somatic underdevelopment of neonates from crowded mice, compared 

with offspring from control mice.

The effects of chronic crowding during pregnancy upon offspring 

mortality rates are shown in Table 5:2. There was a significant 

increase in the incidence of abortions, small litters and stillbirths 

and increased total mortality rate, associated with crowding.

Litters from crowded mice also showed an increased incidence of 

postnatal deaths compared with litters from control mice, but results 

failed to achieve statistical significance. An overall analysis of 

maternal reproductive abnormalities and offspring mortality rates

associated with crowding during pregnancy is shown in Fig. 3.
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Table 5:1 The effects of chronic crowding during the final third 
of pregnancy upon litter development. Data given are as means 
+ S.E.M.

Treatment
during
late

pregnancy

Litter
size
(no.)

Litter
sex

ratio
(%males)

Day 0 
body 
length 
(mm)

Day 0 
body 

weight
(g)

Day 21 
body 
weight

(g )

Undisturbed 11.27 54.43 31.71 1.58 11.13
controls +0.21 +2.36 +0.31 +0.01 +0.17
N (litters) (115) (31) (21) (117) (95)

Chronically 9.62* 53.18 30.96 1.45* 11.31
crowded +0.60 +2.95 +0.21 +0.03 +1.11
N (litters) (26) (14) (7) (26) (27)

significant difference compared with control P < 0.0005 (t-test)
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PLATE I The effects of chronic crowding or ACTH treatment during 

pregnancy upon body development. Female pups are shown. Pups 

were sacrificed at birth (day 0) by cranial rupture and had been 

frozen at -20°C. Scale bar is in centimetre divisions, A = control, 

B = saline-gelatine vehicle, C = low dose ACTH, D = high dose ACTH,

E = chronic crowding
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STUDY 5:3. The effects of ACTH administration during pregnancy 

upon parameters of litter development.

STUDY 5:4. The effects of ACTH administration during pregnancy 

upon mortality rates within litters.

results. The effects of ACTH administered from days 12-17 inclusive 

of pregnancy, upon litter development and foetal somatic development 

are shown in Table 5:3. Neither dose of ACTH significantly 

influenced litter size or litter sex ratio. Offspring in litters 

from ACTH treated mice showed reduced day 0 body lengths compared 

with offspring in litters from control and vehicle injected mice, 

but results failed to achieve statistical significance. However 

ACTH treatment during pregnancy did significantly reduce body weight 

at both birth and day 21. Plate I shows the relative somatic 

underdevelopment of neonates from ACTH treated mice compared with 

offspring from control and vehicle injected mice.

The effects of ACTH administration during pregnancy upon 

offspring mortality rates are shown in Table 5:4. There were no 

significant differences in the incidence of abortions, small litters 

or stillbirths. However, litters from high dose ACTH treated mice 

showed significantly increased postnatal and total mortality rates 

compared with litters from both control and vehicle injected mice. 

The low dose ACTH treatment was ineffective in producing litter 

mortalities. An overall analysis of maternal reproductive 

abnormalities and offspring mortality rates associated with ACTH 

administration during pregnancy is shown in Fig. 3.
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Table 5:3 The effects of ACTH administration during the final third 
of pregnancy upon litter development. Data given are as means jl S.E.M.

Treatment
during
late

pregnancy

Litter
size
(no)

Litter 
sex 

ratio 
(% males)

Day 0 
body 
length 
(mm)

Day 0 
body 

weight
(g )

Day 21 
body 
weight

(g)

Undisturbed 11.27 54.43 31.71 1.58 11.13
Controls +0.21 +2.36 +0.31 +0.01 +0.17
N (litters) (115) (31) (21) (117) (95)

Saline-gel 11.05 49.43 31.62 1.58 10.18
vehicle +0.28 +4.69 +0.25 +0.02 +0.26
N (litters) (40) (13) (6) (39) (32)

Low dose 10.76 54.82 31.22 1.52** 9.31**
ACTH +0.33 +5.06 +0.66 +0.02 +0.37
N (litters) (47) (10) (4) (43) (28)

High dose 11.23 54.88 30.48 1.44** 9.77*
ACTH +0.39 +2.54 +0.27 +0.02 +0.32
N (litters) (43) (14) (6) (42) (29)

1WAN0VA NS NS NS P < 0.0001 P < 0 . 0 0 0 1

‘significant difference compared with control P < 0.001 (t-test)
“ significant difference compared with control and saline-gel vehicle
P < 0.05 - P < 0.0005 (t-test)
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STUDY 5:5- The effects of chronic corticosterone administration 

during pregnancy upon parameters of litter development.

STUDY 5:6. The effects of chronic corticosterone administration 

during pregnancy upon mortality rates within litters.

RESULTS. The effects of chronic corticosterone administration from 

day 12 of pregnancy until parturition, upon litter development and 

foetal development are shown in Table 5:5. Litter size was not 

influenced by corticosterone administration. Litter sex ratio and 

day 0 body length were not studied in this experiment. Offspring 

from litters of corticosterone-treated mice showed reduced birth 

weight compared with offspring from litters of both control and 

propylene glycol vehicle treated mice. This difference was not 

evident on postnatal day 21: offspring from litters of both propylene 

glycol vehicle treated and corticosterone treated mice showed 

significantly increased mean day 21 body weights compared with 

control litters.

The effects of chronic corticosterone administration upon 

offspring mortality rates are shown in Table 5:6. There were no 

significant differences in the incidence of abortions or small litters 

from corticosterone treated mice compared with control or vehicle- 

treated mice. However litters from corticosterone treated mice 

showed significantly increased incidence of stillbirths and postnatal 

deaths compared with litters from both control and vehicle treated 

mice. An overall analysis of maternal reproductive abnormalities 

and offspring mortality rates associated with chronic corticosterone 

administration during pregnancy is shown in Fig. 3.



The effects of chronic corticosterone administration durm%
the final third of pregnancy upon litter development^ 
are as means ±  S.E.M.

Data given

Treatment
during
late

pregnancy

Litter
size
(no)

Day O 
body 

weight
(g )

Day 21 
body 
weight

(g )

Undisturbed 
controls 
N (litters)

11.27
+0.21
(115)

1.58
+0.01
(117)

11.13
+0.17
(95)

Propylene glycol 
vehicle 
N (litters)

10.44
+0.41
(16)

1.61
+0.03

(15)

12.37*
+0.44
Il4)

Chronic
corticoste rone 
N (litters)

11.60
+0.58
(20)

1.45**
+0.04

(19)

11.99*
+0.33
(17)

1WAN0VA NS P < 0.0001 P < 0.009

‘significant difference 
“ significant difference

compared with 
compared with

control P < 0.05 (t-test) 
control and propylene glycol

vehicle P < 0.005 (t-test)
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STUDY 5:7. The effects of progesterone administration during 

pregnancy upon parameters of litter development.

STUDY 5:8. The effects of progesterone administration during 

pregnancy upon mortality rates within litters.

RESULTS. The effects of acute progesterone administered from days 

12-17 inclusive of pregnancy upon litter development and foetal 

somatic development, are shown in Table 5:7. Neither dose of 

progesterone significantly influenced litter size, litter sex ratio, 

day 0 body length, birth weight or day 21 body weight.

The effects of progesterone administration during pregnancy 

upon offspring mortality rates are shown in Table 5:8. There were 

no significant differences in the incidence of abortions, small 

litters or postnatal deaths, in litters from mice treated with either 

dose of progesterone, compared with those from control or vehicle 

injected mice. Litters from low dose progesterone treated mice 

showed a significantly increased incidence of stillbirths, compared 

with litters from control mice, and litters from high dose 

progesterone treated mice showed a significantly increased incidence 

of stillbirths compared with those from both control and vehicle 

injected mice. An overall analysis of maternal reproductive 

abnormalities and offspring mortality rates associated with 

progesterone administration during pregnancy is shown in Fig. 3.
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Table 5:7 The effects of acute progesterone administration during 
the final third of pregnancy upon litter development. Data given 
are as means jl S.E.M.

Treatment
during
late

pregnancy

Litter
size
(no)

Litter 
sex 

ratio 
(% males)

Day 0 
body 
length 
(mm)

Day 0 
body 
weight

(g )

Day 21 
body 
weight

(g )

Undisturbed 
controls 
N (litters)

11.27
+0.21
(115)

54.43
+2.36
(31)

31.71
+0.31
(21)

1.58
+0.01
(117)

11.13
+0.17
(95)

Olive oil 
vehicle 
N (litters)

11.55
+0.55
(20)

54.14
+5.44
(7)

31.67
+0.38
(7)

1.55
+0.04
(18)

10.51
+0.34
(13)

Low dose 
progesterone 
N (litters)

12.16
+0.58
(19)

59.71
+4.91
(7)

31.15
+0.35
(7)

1.59
+0.04
(19)

10.51
+0.38
(11)

High dose 
progesterone 
N (litters)

11.45
+0.40
(22)

52.42
+2.58
(7)

31.57
+0.26
(7)

1.63
+0.03
(22)

11.21
+0.64
(13)

1WAN0VA NS NS NS NS NS





STUDY 5 : 9 . The effects of androstenedione or corticosterone

^ m inistration during pregnancy upon parameters of litter development.

STUDY 5:10. The effects of androstenedione or corticosterone 

administration during pregnancy upon mortality rates within litters.

RESULTS. The effects of acute androstenedione or acute corticosterone 

administered from days 12-17 inclusive of pregnancy upon litter 

development and foetal somatic development are shown in Table 5:9. 

Neither androstenedione nor corticosterone significantly influenced 

mean litter size, litter sex ratio, day 0 body length or birth 

weight. There were significant differences between treatments in 

mean day 21 body weights; offspring from litters of androstenedione 

treated mice showed significantly increased day 21 body weights 

compared with offspring from litters of vehicle-injected mice and 

offspring from litters of corticosterone treated mice showed sig

nificantly reduced day 21 body weights compared with offspring from 

litters of control mice. However, results are complicated by the 

finding that offspring from litters of peanut oil injected mice 

showed reduced day 21 body weights compared with offspring from 

litters of control mice.

The effects of androstenedione and corticosterone administration 

during pregnancy upon offspring mortality rates are shown in 

Table 5:10. There were no significant differences in the incidence 

of abortions, small litters, prenatal deaths or postnatal deaths in 

litters from androstenedione or corticosterone treated mice compared 

with litters from either control or vehicle injected mice. Litters 

from vehicle injected mice showed significantly increased total 

mortality rate compared with control litters.
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Table 5:9 The effects of acute androstenedione and acute corticosterone
administration during the final third of pregnancy upon litter develop-
ment. Data qiven are as means i  S.E.M.

Treatment Litter Day 0 Day 0 Day 21
during Litter sex body body body
late size ratio length weight weight

pregnancy (no) (% males) (mm) (g ) (g )

Undisturbed 11.27 54.43 31.71 1.58 11.13
controls +0.21 +2.36 +0.31 +0.01 +0.17
N (litters) (115) (31) (21) (117) (95)

Peanut oil 11.13 49.74 31.33 1.60 9.33*
vehicle +0.40 +5.39 +0.29 +0.06 +0.46
N (litters) (8) (8) (8) (8) (7)

Androstenedione 11.50 52.30 31.79 1.64 11.23“
N (litters) +0.76 +7.66 +0.50 +0.05 +0.46

(6) (6) (6) (6) (6)

Corticosterone 12.37 53.50 30.59 1.49 9.04*
N (litters) +0.38 +4.46 +0.27 +0.05 +0.82

(8) (8) (6) (8) (8)

1WAN0VA NS NS NS NS P 0.001

‘significant difference compared with control P < 0.005 (t-test) 
“ significant difference compared with peanut oil vehicle P< 0.025 

(t-test)
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STUDY 5:11. The effects of adrenalectomy coupled with chronic 

crowding during pregnancy upon parameters of litter development.

STUDY 5:12. The effects of adrenalectomy coupled with chronic 

crowding during pregnancy upon mortality rates within litters.

RESULTS. The effects of adrenalectomy on day 9 of pregnancy with 

and without chronic crowding from days 12-17 of pregnancy upon litter 

development and foetal somatic development are shown in Table 5:11. 

Neither adrenalectomy nor crowding regimes significantly influenced 

litter size, litter sex ratio, day O body length or mean birth weight. 

There were significant differences between treatments in mean day 21 

body weights; offspring from litters of adrenalectomised control mice 

showed significantly lower day 21 body weights compared with offspring 

from litters of Sham-surgery crowded mice.

The effects of adrenalectomy and chronic crowding during pregnancy 

upon offspring mortality rates are shown in Table 5:12. Neither 

adrenalectomy nor crowding regimes significantly influenced the 

incidence of abortions, small litters, prenatal deaths, postnatal 

deaths or the total mortality rate •
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Table s.n  Thp effects of adrenalectomy during the final _third of 
pregnancy upon litter development. Data given are as means _  S.EJj

Treatment
during
late

pregnancy

Litter
size
(no)

Litter 
sex 

ratio 
(% males)

Day 0 
body 
length 
(mm)

Day 0 
body 

weight
(g )

Day 21 
body 
weight

(g )

Sham surgery 
control 
N (litters)

11.83
+0.31
(6 )

47.86
+2.34
(6)

30.90
+0.50
(6)

1.51
+0.10
(6)

10.53
+0.48
(4)

Sham surgery 
crowded 
N (litters)

12.80 
+0 «58 
(5)

60.30
+6.11
(5)

30.21
+0.25
(5)

1.42
+0.06
(5)

11.20
+0.50
(5)

Adrenalectomy 
control 
N (litters)

11.60 
+0.68 
T5)

52.00 
+ 3.40 
(5)

29.96
+0.37
(5)

1.49
+0.06
(5)

8.89*
+0.75
(5)

Adrenalectomy 
crowded 
N (litters)

12.25
+0.85
(4)

48.48
+5.34
(4)

30.56
+0.20
(4)

1.44
+0.04
(4)

10.89
+0.62
(3)

1WAN0VA NS NS NS NS P = 0.06

‘significant difference compared with Sham surgery crowded P < 0.025 
(t-test)
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DISCUSSION

Crowding during pregnancy adversely influences somatic develop

ment of the offspring. Offspring in litters from crowded mice showed 

reduced birth weights compared with offspring in litters from 

individually housed control mice, and this finding agrees with the 

results of previous studies reporting somatic underdevelopment in 

offspring from rodents stressed during pregnancy (Barlow, Knight and 

Sullivan, 1978; Herrenkohl and Whitney, 1976; Werboff, Andersson and 

Haggett, 1968; Chevins, 1981) but contrasts those of Allen and 

Haggett (1977), who report that crowding during pregnancy does not 

influence any parameter of somatic development in mice. The 

complimentary study of body length at birth showed that this parameter 

of somatic development was not altered in offspring from crowded mice. 

Body length was measured to ascertain whether stress during pregnancy 

retards foetal growth, and although no evidence was obtained to 

affirm this, further study of this parameter of development is 

required because of the difficulty of accurately measuring body 

length. Brook (1983) has reported that intrauterine growth 

retardation results in proportional reductions of body growth and 

weight gain in postnatal life. In this study, no deficits in body 

weight were detected at day 21 in litters from crowded mice. This 

finding contrasts with the results of Christian and Lemunyan (1958) 

who reported that crowding mice during pregnancy reduced offspring 

body weight postnatally. However, Christian and Lemunyan (1958) 

showed that this was largely due to inhibited lactation; an effect 

of stress controlled for in this study by fostering all litters at 

birth.

Crowded mice gave birth to numerically analler litters. This result



119

reflects an effect of crowding on either the ability to support a 

pregnancy, or the viability of foetuses, or both. Werboff, Anderson 

and Haggett (1968) handled mice during pregnancy and reported 

increased litter sizes and foetal viability as a consequence. The 

results of Werboff, Anderson and Haggett's (1968) study not only 

disagree with those reported here, but also with other studies of the 

effects of stress during pregnancy in rodents which show the opposite 

effect (Hockman, 1961; Euker and Riegle, 1973; Lane and Hyde, 1973;

Morra, 1965). Further, Euker and Riegle (1973) found that the 

frequency of foetal deaths in litters from rats restrained from days 

12-20 of pregnancy conforms to an "all or none" pattern; either the 

whole litter is lost (abortion) or the whole litter survives during 

intrauterine life. The consequences of crowding during pregnancy 

reported here agree with Euker and Riegle's (1973) results, to the 

extent that an increased incidence of abortions was detected. However, 

as evidence was also obtained that crowding during pregnancy reduces 

litter size, suggesting that partial litter loss does occur following 

stress during pregnancy, the results reported here extend from Euker 

and Riegle's (1973) reported "all or none" pattern of foetal 

mortalities. Failure of implantation cannot account for the reduction 

of litter size following crowding, because stress was induced only 

after the period of conceptus implantation. The finding that more 

crowded litters contained stillborn pups than control litters agrees 

with the observations of Christian and Lemunyan (1958) and suggests 

that partial litter loss is a consequence of stress during pregnancy 

and also that the individual foetus is vulnerable to selective 

mortality. As an approximate inverse relationship exists between 

the numerical size of a litter, and the body weight of foetuses, 

reduced litter size strengthens the significance of the birth weight

data.
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No evidence was obtained to suggest that crowding during pregnancy 

alters litter sex ratio or postnatal mortality rates. Altered 

litter sex ratio and increased postnatal mortality rates are 

previously reported consequences of stress during pregnancy: Lane 

and Hyde (1973) have shown that restraint during pregnancy in the rat 

reduces the proportion of male pups born, and Morra (1965) found 

decreased postnatal survival rats in offspring from rats avoidance 

conditioned and exposed to heat during pregnancy. Differences in 

results from these studies with those reported here can be explained 

by differences in experimental procedure and species used.

Both doses of ACTH administered to pregnant mice were found to 

reduce offspring birth weights and body weights on postnatal day 21. 

Although there were no differences between the ACTH treatment and 

control groups in litter size, incidence of abortions, small litters 

or stillbirths, the high dose of ACTH administered during pregnancy 

did increase offspring postnatal and total mortality rates. These 

results agree quite well with those from other studies which show 

that in various rodent species, ACTH administration during pregnancy 

inhibits implantation, disrupts pregnancy, increases foetal deaths, 

resorbtion rates and stillbirths, and reduces litter sizes and 

offspring birth weights (Robson and Sharaf, 1952; Yang, Yang and Lin, 

1969; Velardo, 1957; Chatterjee and Harper, 1970; Kittinger, 

Guittiemez-Cemosek, Cemosek and Pasley, 1980). However, the 

results of ACTH administration during pregnancy upon offspring somatic 

development and mortality rates extend from these previous reports, 

and from the effects of crowding during pregnancy, in that the 

observed deleterious consequences of such treatment persist into 

postnatal life. The difference in the effects of crowding from the 

effects of ACTH administration during pregnancy can be explained by
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the ACTH treatment regime only crudely mimicking the hormonal milieau 

of a stressed mouse. Crowding pregnant mice has already been shown 

to produce an unexpected pattern of adrenocortical activity (Chapter 

4) and there probably exist many differences in the endocrine response 

of pregnant mice to the various experimental treatments, accounting 

for the variability of the developmental consequences of these treat

ments as reported in this, and other chapters. Despite this, the 

general effects of ACTH administration during pregnancy upon offspring 

somatic development and perinatal mortality rates do reproduce the 

general effects of crowding during pregnancy, upon these parameters 

of development in the offspring. This supports the central 

hypothesis of this thesis, suggesting that the effects of stress 

during pregnancy upon offspring somatic development are mediated by 

activation of the maternal pituitary-adrenocortical system.

Several lines of evidence suggest that the teratogenic effects 

of ACTH are not direct, but in turn mediated by adrenocortical 

products. ACTH does not cross the placenta as an intact molecule 

(Chapter 2). Velardo (1957) and Yang, Yang and Lin (1969) have 

shown that the harmful effects of ACTH administration during 

pregnancy, upon foetal somatic development can be prevented if the 

maternal adrenals are removed. Further, administration of synthetic 

or artificial glucocorticoids during pregnancy, has been shown to 

produce effects upon offspring somatic development and survival 

similar to those resulting from ACTH treatment (Fraser and Fainstat, 

1951; Edward-Davis and Plotz, 1954; Robson and Sharaf, 1952;

Gandelman and Rosenthal, 1981). Although these studies supply 

evidence that synthetic or artificial glucocorticoids have 

teratogenic effects, there has been no previous study in any species 

of the consequences for offspring somatic development and survival
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of corticosterone administration during pregnancy.

In this study, corticosterone was administered to pregnant mice 

in one of two treatment regimes: chronically, by implantation of an 

osmotically driven drug delivery system and acutely by daily 

injections. Offspring in litters from mice treated chronically with 

corticosterone, like those from crowded or ACTH-treated mice, showed 

reduced birth weights. This treatment also increased both the 

incidence of stillbirths and postnatal deaths, a result extending 

from both the effects of crowding and ACTH administration during 

pregnancy upon offspring perinatal mortality rates. Chronic 

corticosterone administration during pregnancy did not affect litter 

size, or the incidence of small litters or abortions. Propylene 

glycol, used in the chronic corticosterone experiments as a vehicle 

because of its properties as a solvent, compatible with the minipumps, 

and its lack of teratogenic activity as listed in Shepard (1976) had 

some effect upon later postnatal development which cannot be 

explained. This action of propylene glycol was detected in other 

experiments (see Chapter 7). Acute corticosterone administration 

during pregnancy also affected offspring somatic development.

Offspring in litters from mice treated acutely with corticosterone 

during pregnancy showed reduced body weights on postnatal day 21 

compared with controls. However, no significant differences were 

detected in birth weights or perinatal mortality rates between 

corticosterone injected mice and controls, and this is attribute 

to the limited number of experimental animals used in this study.

That chronic corticosterone (and to a limited extent acute corticos

terone) administration during pregnancy, reproduced the effee 

crowding or ACTH administration during pregnancy upon offspring 

somatic development and perinatal mortality rates, supports

working hypothesis.
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Other endocrine manipulations, administered during pregnancy to 

test the central hypothesis, also had some effects upon offspring 

somatic development or survival, and these will now be discussed. 

Progesterone administration during pregnancy did not influence any 

parameter of somatic development in the offspring. This finding 

contrasts with the results of Coyle, Anker and Cragg (1976) and 

Herrenkohl (1974) who report reduced postnatal body weight in rats 

following prenatal and perinatal progesterone exposure respectively. 

Herrenkohl (1974) suggested that this result is partially due to 

inhibition of lactation and consequent undernutrition of offspring, 

as litters were raised by natural mothers. In the study of mortality 

rates, progesterone administration during pregnancy was found to 

increase the incidence of stillbirths and this may have been caused 

by post-maturity of foetuses since progesterone lengthened 

pregnancies (Chapter 4). A delay in parturition may also have 

masked any effects of progesterone administration during pregnancy 

in retarding foetal body development. On the basis of these results, 

progesterone cannot be considered as the adrenal product causing the 

underdevelopment of the body detected in offspring from mice crowded 

or treated with ACTH during pregnancy. However, progesterone may 

be the maternal adrenal product causing the increased perinatal 

mortality rates detected in offspring from crowded or ACTH-treated 

mice.
Androstenedione administration during pregnancy neither influenced 

parameters of somatic development, nor mortality rates in offspring.

On the basis of these results, androstenedione would seem not to be 

the maternal adrenal product producing the effects of crowding during 

pregnancy upon offspring somatic development and survival. Only 

limited confidence can be placed in the results of the androstenedione
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experiments reported here, because of the limited number of animals 

used, and it is possible that further study may reveal a teratogenic 

effect of this compound.

The central hypothesis does not exclude the possibility that 

the described syndrome evident in offspring from mice crowded or 

treated with ACTH during pregnancy, is caused by foetal exposure to 

several adrenal products. Oestrogens which can be secreted from 

the adrenal in conditions of stress, are known to inhibit foetal 

growth and development (Csapo, Dray and Erdos, 1974; Kuhn and Bollen, 

1981; Kuhn, Bollen and Darras, 1982; Miller, 1978). It is therefore 

possible that oestrogens, which were not tested in this study, may 

be involved in the production of some of the harmful effects of 

crowding during pregnancy upon somatic development of the offspring.

The importance of the intact maternal adrenal gland for 

producing the effects of crowding during pregnancy upon offspring 

somatic development, was not clearly established. An experiment 

was conducted to investigate whether adrenalectomy could prevent 

the previously described effects of crowding during pregnancy.

The results were not wholly consistent with this prediction of the 

general working hypothesis. There were no differences between 

experimental groups in offspring birth weights or mortality rate 

Whilst this result supports the working hypothesis, in that no 

harmful effects of crowding were detected after adrenalectomy, it is 

also suspicious in that crowding following Sham surgery had no 

detectable influence upon offspring somatic development. One 

possible reason why the previously described deleterious effects of 

crowding during pregnancy, upon offspring somatic development and 

survival, were not detected in the adrenalectomy experiment, is that 

very few experimental animals were used in this study. A v ry 9
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mortality rate amongst adrenalectomised mice reduced the number of 

animals in experimental groups. This experiment was conducted late 

into this project and it was not possible to repeat this experiment 

to obtain additional data. The results of this study were further 

complicated by the finding that adrenalectomy during pregnancy 

adversely affected offspring development: offspring in litters from 

adrenalectomised individually housed mice showed reduced postnatal 

day 21 body weights compared with offspring in litters from Sham- 

operated crowded mice. This result agrees with previous reports of 

the deleterious effects of adrenalectomy during pregnancy upon 

general development of the offspring (Angervall, 1962; Thoman,

Sproul, Seeler and Levine, 1970) and may have been caused by foetal 

adrenal hypertrophy and hypersecretion of foetal corticosterone.

It remains debatable whether adrenalectomy during pregnancy generates 

any results useful in identifying teratogenic hormones, since this 

procedure alters the circulatory levels of ACTH, mineralocorticoids, 

glucocorticoids, progestagens, androgens and oestrogens. Metyrapone 

administration was not used as this compound does not inhibit the

synthesis of all glucocorticoids.

Although there are limitations to this study, the results show 

that corticosterone, especially the chronic administration regime, 

most closely reproduces the general consequences of both crowding 

and ACTH-treatment during pregnancy, upon offspring body development 

and perinatal survival. It is now necessary to examine how crowding, 

administration of ACTH or corticosterone during pregnancy influences 

foetal somatic development. Corticosterone was found to result in 

premature birth of litters (Chapter 4) and as such some of the 

effects of this compound upon development may be due to this.

Probably, however, corticosterone has a direct effect on the foetus.
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over and above this phenomenon and these possible direct actions will 

now be discussed.
Corticosterone in circulation is normally bound to corticosteroid 

binding globulin (CBG). The concentration of plasma corticosterone 

occurring in response to stressful conditions under the influence of 

ACTH, or the dosage of ACTH or corticosterone administered in the 

experiments reported here, is likely to surpass the binding capacity 

of CBG, resulting in a substantial fraction of corticosterone in 

maternal circulation which is not bound to CBG, biochemically active 

and capable of crossing the placenta (see Chapter 2). In the normal 

mouse pregnancy, the foetus is protected from the actions of 

corticosterone (which have been reviewed in Chapter 2) by the 

placental conversion of a physiologically significant proportion of 

this potent compound to the less potent 1 1 -dehydrocorticosterone 

(Michaud and Burton, 1977). The capacity of this system is unknown 

and could probably be surpassed in conditions of elevated corticos

terone secretion. In humans, the placenta similarly converts 

cortisol to the less potent cortisone (Giannopoulos, Jackson and 

Tulchinsky, 1982).
The consequences of in utero corticosterone exposure upon 

somatic development as reported in this study, are similar to those 

produced when this compound is administered postnatally. 

Administration of corticosterone to neonatal rats is reported to 

reduce weight gain and retard body growth, largely through the 

metabolic activity of this compound (Howard, 1965). Glucocorticoids 

including corticosterone are also known to decrease muscle mass at 

least in rats (Seene and Viru, 1982). The catabolic action of 

glucocorticoids on body protein is not the only mechanism by which 

somatic development can be retarded following early life exposure

:

__
__
__
__
__

_—
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to these compounds. Klepac (1982) chronically administered dexa- 

methasone to rats during the final third of pregnancy and found 

decreased nucleic acid concentrations and protein in placenta, foetal 

adrenals, testes, pituitary, brain, liver, kidney, heart and lung.

The loss of nucleic acids and protein in placenta would limit the 

growth and function of this organ, which in turn would limit foetal 

nutrition, growth and development. Similarly, the loss of nucleic 

acids and protein in endocrine glands and other organs would also 

limit development throughout the animal's life span. Inhibited 

development and function of kidney, liver, heart and lung following 

prenatal glucocorticoid exposure, could well contribute to inducing 

the mortalities during perinatal life, shown in this study to occur 

with increased frequency in litters from mice crowded, or treated 

with ACTH or corticosterone during late pregnancy.

As well as early life glucocorticoid exposure reducing 

structural proteins in endocrine glands (c.f. Klepac, 1982) such 

treatment may also affect their later function. Somatic develop

ment is well recognised to be controlled by hormonal factors 

(e.g. Kaplan, 1982) therefore a change in an animals' endocrine 

development can be expected to change body development. Most 

relevant to this discussion are the interactions of corticosterone 

with other endocrine systems. Corticosterone is known to suppress 

secretion of thyrotropin (Pamenter and Hedge, 1980) insulin 

(Billaudel and Sutter, 1982; Jack and Milner, 1975) and PRL (Gala, 

Kothari and Haisenleder, 1981; Bratusch-Marrain, Vierhapper and 

Waldhausl, 1982). Exposure of the foetus to corticosterone may not 

only suppress the secretion of these hormones during prenatal life, 

but the secretion of these hormones during postnatal life may also 

be affected. Adequate secretions of insulin, thyroid hormones
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(Jost, 1979) and PRL (Barkley, Bartke, Gross and Sinha, 1982; Sinha 

and van der Laan, 1982) are necessary for normal body growth and 

somatic development during perinatal life, presumably because of 

their direct actions, or in the case of PRL indirect actions via 

androgens, upon cellular metabolism. The relative contribution of 

the direct metabolic or indirect endocrinological mechanisms, to 

the retardation of somatic development evident in offspring from 

mice crowded, treated with ACTH or corticosterone during pregnancy 

has yet to be determined.

in conclusion, the harmful effects of stress during pregnancy 

upon somatic development and survival of the offspring has been 

previously reported (Chevins, 1981; Barlow, Knight and Sullivan, 1978; 

Herrenkohl and Whitney, 1976; Werboff, Anderson and Haggett, 1968; 

Hockman, 1961; Euker and Riegle, 1973; Lane and Hyde, 1973; Morra,

1965). However, results from studies investigating the effects of 

crowding during pregnancy upon offspring somatic development in the 

mouse have been inconsistent: whilst some studies report a general 

deleterious effect of crowding during pregnancy upon somatic develop

ment of the neonatal offspring (Chevins, 1981; Werboff, Anderson and 

Haggett, 1968) other studies have detected no adverse effect of such 

treatment upon the neonatal offspring (e.g. Allan and Haggett, 1977; 

Christian and Lemunyan, 1958). This study shows that crowding 

during pregnancy retards foetal somatic development and that this is 

not due to alteration of other parameters of litter development such 

as litter size or litter sex ratio. Also shown is that these results 

can be reproduced at least to some extent by manipulation of the 

maternal pituitary-adrenal system during pregnancy. Both 

administration of ACTH and corticosterone during pregnancy resulted 

in reduced birth weights and increased mortality rates in the offspring
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Corticosterone has therefore been identified as the teratogenic 

adrenal product most probably producing the effects of stress during 

pregnancy upon offspring somatic development. However, as 

progesterone administration during pregnancy increased offspring 

mortality rates, this steroid may also be involved in producing this 

phenomenon in offspring from stressed mothers. Of more general 

interest is that adrenal steroids have been shown to influence foetal 

growth and somatic development, and this is not well documented in 

reviews of factors which influence foetal body development (e.g. Tanner 

1978; van Assche and Robertson, 1983).
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CHAPTER 6

effects of a c t h a nd c o rt icosterone a d m i n i s t ra t i o n during

PREGNANCY UPON REFLEX AND NEUROMUSCULAR DEVELOPMENT IN

NEONATAL OFFSPRING

introduction

The factors contributing to normal foetal body development 

outlined in Chapter 5, necessarily influence the development of 

constituent foetal organ systems. The development of the whole 

foetal organism is dependent upon adequate placental function, 

nutritional factors and a favourable maternal-foetal endocrine 

status; however individual organ systems are variably influenced by 

these factors and mature perinatally at differential rates. For 

example, undemutrition during pregnancy reduces foetal body weight 

and the weight of thymus, adrenals, testes and thyroid, whereas 

body length, ovaries and brain are unaffected in rats (Barry, 1920). 

This disparity of the consequences of foetal undernutrition upon 

the development of different organ systems may be resolved by the 

differences in critical periods of growth rates in organ ontogeny. 

Both rats and mice are altricial rodent species and maturation of 

the central nervous system is incomplete until late into postnatal 

life.
Hormones are also known to differentially influence organ 

development. Glucocorticoids in particular exert well recognised 

influences in regulating organ growth; these compounds accelerate 

maturation of the foetal lung and neural retina (Beato and Doenecke

1980) but are reported to inhibit perinatal somatic development 

(see Chapter 5) detrimentally affect motor function, and suppress 

brain growth and central nervous system development (e.g. Weichsel,
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1977; Devenport and Devenport, 1983a, b; Klepac, 1982). Manipulation 

of maternal and consequently foetal glucocorticoid profiles, may 

therefore be expected to affect foetal neurological development, 

particularly as these compounds are inextricably linked to general 

maturational processes.

The induction of a stress response during pregnancy and its 

consequences for offspring neurological development have been 

investigated: crowding mice (Chevins, 1981) and restraining rats 

(Barlow, Knight and Sullivan, 1978) during late pregnancy delays 

neurological development of neonatal and juvenile offspring. Chevins' 

study chronically crowded mice to a floor area of approximately 

32.4 cm^/mouse during the final third of pregnancy, and offspring 

reflex ontogeny (development of limb grasp and righting reflexes etc) 

was assessed. Pups from stressed females displayed retardation of 

reflex ontogeny compared with offspring from individually housed mice. 

This study employed fostering procedures and assessed pregnancy length 

and results seem to be due to the experimental manipulation during 

pregnancy, rather than other confounding factors. Barlow, Knight 

and Sullivan (1978) neither assessed the course of pregnancy nor 

fostered litters, and their results could be due to prematurity of 

births, or postnatal influences upon development, such as poor 

mothering or inhibited lactation. However the causation of the 

retardation of neurological development has yet to be identified.

This study was undertaken to examine the hypothesis that the 

retardation of neurological development evident in offspring from 

rodents stressed during pregnancy, is mediated by foetal exposure to 

maternal pituitary-adrenocortical secretions. The potential 

neurological hazard of perinatal glucocorticoid administration has 

been recognised (Howard, 1965; Takahashi, Goto, Sudo and Suzuki,
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1982; Dekosky, Nonneman and Scheff, 1982; Weichsel, 1977) stress- 

induced glucocorticoid secretions may therefore have similar actions. 

Conclusions regarding the consequences of perinatal glucocorticoid 

exposure are limited in most studies by the use of postnatal 

administration regimes, and large doses of potent synthetic compounds 

(Weischel, 1977). More recent studies have concerned impaired 

neurological development following prenatal exposure to prednisolone 

(Gandelman and Rosenthal, 1981; Gandelman and Guerriero, 1982) but 

to date there is no evidence to suggest that in utero exposure to 

elevated concentrations of natural glucocorticoids may be detrimental 

to neurological development.

This chapter describes the effects of manipulation of the 

maternal pituitary-adrenocortical system, during late pregnancy upon 

offspring neuromuscular and neurological development. The effects 

of ACTH or corticosterone administration during pregnancy, upon 

the development of reflexes in neonatal offspring and upon aspects 

of somatic development in juvenile offspring was studied. The 

hypothesis that the effects of restraint (Barlow, Morrison and 

Sullivan, 1978) or chronic crowding (Chevins, 1981) upon offspring 

neuromuscular and neurological development, can be reproduced by 

exposure of the foetus to maternal adrenocortical products was tested. 

The effects of corticosterone administration during pregnancy was 

studied in particular, because of the known harmful effects of 

glucocorticoids upon neurological development and somatic development 

as shown in Chapter 5. The righting reflex, forelimb and hindlimb 

grasp reflexes, negative geotaxis reflex and auditory sta 

response were studied as indices of neuromuscular and neurological 

development. The day of unfolding of ear pinnae and day of eye 

opening were also recorded.



133

m e th o d s

Animal husbandry and treatment of pregnant mice with hormones 

followed the procedure outlined in Chapter 2. Litters were culled 

to 8 pups and fostered, and reflex ontogeny studied from the day of 

birth (day 0). Some of the reflexes described by Fox (1965) were 

monitored. As different reflexes appear during different periods 

of development, the assessment of specific reflexes was made during 

different periods. Reflexes studied from days 0-8 postnatally were 

the body righting response, the forelimb grasp reflex and the 

negative geotaxis response. The hindlimb grasp reflex was assessed 

from day 2-8 postnatally, during which time the litter was observed 

for unfolding of ear pinnae. Assessment of the auditory startle 

response was made from day 12 of postnatal life. From postnatal 

day 12 the litter was also observed for evidence of eye opening.

PROCEDURE

On each day of testing, a random sample of 4 pups from each 

litter was assessed for development of reflexes. The whole litter 

(i.e. all 8 pups) were observed for ear unfolding and eye opening. 

The pups were briefly removed from the home cage and placed on an 

insulating layer of cotton wool prior to examination.

The righting reflex was examined by placing the neonate on its 

dorsal surface, and timing the period taken for the pup to turn 

rest on its ventral surface. A cut off time of 10 seconds was used 

This procedure was repeated 3 times. In the case of this 

the time taken to complete the response is inversely related to 

neuromuscular development. The value used for analysis 

total time for all pups tested in a litter (i.e. 4 pups x 3 tria

The negative geotaxis response was assessed by placing the pup
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on a 25° slope, with its head pointing down the gradient. The time 

was taken, up to a maximum of 20 seconds, for the pup to turn 180° 

by crawling, to face up the slope. As in the case of the righting 

reflex, the time taken to complete the response is inversely related 

to neuromuscular development.

The limb grasp reflexes were assessed by holding the pup by 

the loose skin around the neck, and placing a 38 x 0.8 mm needle 

against the ventrum of the paw. The degree of paw flexion was 

recorded using a points system adapted from Fox (1965). A score of 

0 was given for no flexion, a score of 1 for an unsustained muscular 

flinch, a score of 2 for maintained flexion approximating 45°, a 

score of 3 for maintained flexion approximating 90°, and a score of 

4 for a maximal grasp of the needle. In the case of the hindlimb 

grasp, the reflex appears later in development, and the maximal grasp 

is somewhat less than in the forelimb, but the same scoring system 

was used. The degree of limb flexion is directly related to 

neurological development. The value used for analysis is the mean 

pup flexion score per litter sample (total flexion score divided by

number of pups tested from litter).

The day of unfolding of ear pinnae and day of eye opening was 

determined for each litter by examining all pups in the litter, and 

recording the first day on which all pups showed both pinnae detached 

or both eyes open. Thus one value was obtained for each litter, 

and this was the basis of analysis. Similarly, the first day on 

which the pups in a litter sample showed the auditory startle response 

was recorded. One of a sample of 4 pups was placed in a cage 

containing clean sawdust. After approximately 10 seconds, a 

distinctly audible sound was generated from a sprung steel clip 

located 5 cm above the animal's head. Any flinch-startle response
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was noted.
As in Chapter 5, all results are based on the litter as the 

unit of variance to avoid spurious results due to litter effects 

(Abbey and Howard, 1973). Methods of data presentation and analysis 

are explained in Chapter 3. The experiments reported in this 

chapter were conducted "blind" and at no stage was it known which 

litters belonged to which treatment group.
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pvperiMENT 6:1. The effects of ACTH administration during pregnancy 

upon early neurological and neuromuscular development of neonatal 

offspring. Litters were derived from 6 undisturbed control mice,

6 saline-gelatine vehicle treated mice, 8 low dose ACTH treated 

mice and 6 high dose ACTH treated mice. On postnatal day 3, one 

high dose ACTH treated litter suffered mortalities and was excluded

from the experiment.

RESULTS. The effects of ACTH administered in two doses from days 

12-17 inclusive of pregnancy, upon development of the forelimb grasp, 

hindlimb grasp, body righting and negative geotaxis reflexes in 

neonatal offspring are shown in Figs. 4 and 5 and tables 6:1 and 6:2

respectively.

FORELIMB GRASP REFLEX. Kruskal-Wallis analysis of variance revealed 

significant differences in flexion scores between treatment groups 

on postnatal days 0-4 inclusive (Fig. 4). Further analysis of results 

using Mann-Whitney U test showed that offspring from litters of low 

dose ACTH-treated mice achieved lower flexion scores, compared with 

offspring from litters of control mice on postnatal days 0 (P - 0.054) 

and 1 (P = 0.030) and compared with offspring from litters of saline 

gelatine vehicle injected mice on postnatal day 1 (P = 0.0001). 

Similarly, offspring from litters of high dose ACTH treated mice 

showed lower flexion scores compared with offspring from litters of 

control mice, on postnatal days 0-4 inclusive (P - 0.047 P 

and compared with offspring from litters of vehicle injected mice, 

on postnatal days 1, 3 and 4 (P = 0.032 - P = 0.004). Offspring

from vehicle injected mice showed lower flexion scores compared with 

offspring from control mice, on postnatal days 0 (P 0.021)

2 (P = 0.013) .
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HTNDLIMB grasp r e f l e x . Kruskal-Wallis analysis of variance revealed

significant differences in flexion scores between treatment groups on 

postnatal days 3, 6 and 8 (Fig. 5). Further analysis of results 

usi„g Mann-Whitney U test revealed that offspring from litters of 

low dose ACTH treated mice displayed lower flexion scores compared 

with offspring from litters of control mice on postnatal days 6 

(P = 0.021) and 8 (P = 0.015) and compared with offspring from litters 

of vehicle injected mice on postnatal days 3 (P = 0.021) and 8 

(P = 0.001) . Similarly, offspring from litters of high dose ACTH 

treated mice showed lower flexion scores compared with offspring from 

litters of control mice on postnatal day 6 (P = 0.021) and compared 

with offspring from litters of vehicle injected mice on postnatal days

3 (p = 0.004) and 6 (P = 0.047).

■nr. h i m  BEFIEX. Significant differences sere fonnd between 

experimental grenp. in emulative time taken to deplete the body 

righting reflex on postnatal days 5-8 inclusive (table 6.1). 

this period, offspring fro. low dose SCOT treated I c e  only, .bowed 

.lower ti.es in depleting the body righting reflex ««pared with 

offspring in litter, fro. either octroi or vehicle inl.cted tee. 

However, analysis of the proportion of pups within the litter sample 

that failed to deplete the body righting reflex within the criterion 

time in 58» or «.re trials, revealed that offspring fro. Utter, of 

high dose ACTH treated mice also showed impairment of 

righting reflex. On postnatal day 2, 50» of control litters, 33*

of vehicle treated Utters, 75» of low dose ACTH treated litter, and
a. J e • a-4-0vc «showed 58% or more failures 100% of high dose ACTH treated litters,

in completing the righting reflex. The increased propor

high dose ACT, litter, failing to complete the reflex, -a. significant



o

2  öc 
tï a. .

K  <  S
W  Œ  h  
5 O Z
Z  LU
e  c û  (/)

3aODS N 0 IX3 1d

AG
E 

IN
 D

AY
S 

• 
KW

AN
OV

A 
P <

0-
05





139

compared with vehicle treated litters (P = 0.03, Fishers Exact

Probability) .

MOTIVE geotaxis REFLEX. There were no consistent effects of 

ACTH administration during pregnancy upon the time taken by pups 

in litters to complete the negative geotaxis reflex; results have 

not been presented. However, analysis of the proportion of animals 

within the litter sample that failed to complete this reflex within 

the criterion time, showed that more control litters had at least 1 

pup from the sample of 4 failing to complete the reflex on postnatal 

day 4 compared with both vehicle treated litters and high dose ACTH

treated litters (table 6:2).
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Postnatal age in days

Day 2 Day 3 Day 4

Treatment
during
late

pregnancy

Number of litters 
in which > 0% 
of the sample 

successfully completed 
the reflex

Number of litters 
in which > 50% 
of the sample 

failed to complete 
the reflex

Number of litters 
in which > 0% 
of the sample 

failed to complete 
the reflex

Undisturbed
controls

6 *

Saline-gelatine
vehicle

Low dose 
ACTH

High dose 6 0 1
ACTH
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EXPERIMENT 6:2. The effects of ACTH administration during pregnancy 

upon late somatic-neurological development in juvenile offspring.

Litters were derived from 6 undisturbed control mice, 7 saline-gelatine 

vehicle treated mice, 6 low dose ACTH treated mice and 6 high dose 

ACTH treated mice.

RESULTS. The effects of ACTH administered in two doses from days 

12-17 inclusive of pregnancy, upon ear pinnae unfolding, eye opening 

and development of the auditory startle response are shown in Fig. 6.

EAR PINNAE UNFOLDING AND EYE OPENING. One way analysis of variance 

revealed that there were no significant differences between treatment 

groups in the mean day of unfolding of ear pinnae (P = 0.28).

However, there were significant differences between treatment groups 

in the mean day of eye opening (P = 0.029). Further analysis of 

results revealed that offspring in litters from both low dose and 

high dose ACTH treated mice, showed delayed eye opening compared with 

offspring in litters from either control or saline-gelatine vehicle 

treated mice (statistical comparisons shown on Fig. 6).

AUDITORY STARTt.e REFLEX. One way analysis of variance revealed that 

there were no significant differences between treatment groups in 

the mean day of appearance of the auditory startle response (P - 0.19). 

However, proportional analysis of results revealed that by postnatal 

day 15, 33% of control litters, 57% of vehicle treated litters, 33% 

of low dose ACTH treated litters and 0% of high dose ACTH treated 

litters, achieved a criterion of the whole litter sample displaying 

the auditory startle response. The difference in the proportion of 

litters from high dose ACTH treated mice displaying the auditory 

startle response was significant, compared with litters from vehicle 

treated mice, (P = 0.049 Fishers Exact Probability).
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Ex p e r i m e n t  6:3. The effects of chronic corticosterone administration 

during pregnancy upon neurological, neuromuscular and somatic develop

ment of neonatal and juvenile offspring. Litters were derived from 

5 undisturbed control mice, 7 propylene glycol vehicle treated mice 

and 7 corticosterone treated mice.

results. The effects of chronic corticosterone administered from 

day 12 of pregnancy to parturition, upon development of the forelimb 

grasp, hindlimb grasp, body righting and negative geotaxis reflexes 

in neonatal offspring, are shown in Figs. 7 and 8 and tables 6:3 

and 6:4 respectively. The effects of this treatment upon ear pinnae 

unfolding, eye opening and development of the auditory startle reflex 

are shown in Fig. 9.

FORELIMB GRASP REFLEX. Kruskal-Wallis analysis of variance revealed 

significant differences in flexion scores between treatment groups 

on postnatal day 1 (Fig. 7). Further analysis of results using 

Mann-Whitney U test showed that offspring from litters of corticosterone 

treated mice displayed lower flexion scores, compared with offspring 

from litters of control mice (P = 0.015) and compared with offspring 

from litters of propylene glycol vehicle-treated mice (P - 0.019).

HINDLIMB GRASP REFLEX. Kruskal-Wallis analysis of variance revealed 

that there were no significant differences in flexion scores between 

treatment groups (Fig. 8).

BODY RIGHTING REFLEX. No significant differences were found between 

experimental groups in cumulative time taken to complete the body 

righting reflex (table 6:3). However, analysis of the proportion 

of pups within the litter sample that failed to complete the body 

righting reflex within the criterion time in 50% or more trials.
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revealed that offspring from litters of corticosterone-treated mice 

showed impairment of the body righting reflex. On postnatal day 0,

60% of control litters, 29% of vehicle-treated litters and 86% of 

corticosterone-treated litters, showed 50% or more failures in 

completing the righting reflex. The increased proportion of 

corticosterone litters failing to complete the reflex, was significant 

compared with vehicle-treated litters (P = 0.05, Fishers Exact 

Probability).

NEGATIVE GEOTAXIS REFLEX. There were no consistent effects of 

chronic corticosterone administration during pregnancy upon the time 

taken by pups in litters to complete the negative geotaxis reflex; 

results have not been presented. However, analysis of the proportion 

of pups within the litter sample that failed to complete this reflex 

within the criterion time, showed that more corticosterone-treated 

litters had at least 1 pup from the sample of 4 failing to complete 

the reflex on postnatal days 0-2 inclusive, compared with either 

control litters or vehicle-treated litters (table 6:4).

EAR PINNAE UNFOLDING AND EYE OPENING. One way analysis of variance 

failed to reveal any significant differences between treatment groups 

in the mean day of unfolding of ear pinnae (P = 0.19) or of eye 

opening (P = 0.80). Results are shown in Fig. 9. However, 

proportional analysis of results revealed that by postnatal day 13,

50% of control litters, 33% of propylene glycol vehicle-treated 

litters and 0% of corticosterone-treated litters had more than 25% 

of the pups showing evidence of eye opening. The difference 

the proportion of litters from corticosterone-treated mice showing 

eye opening, compared with litters from control mice, was significant

(P = 0.045, Fishers Exact Probability).
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Postnatal age in days

Day 0 Day 1 Day 2

Treatment
during
late

pregnancy

Number of litters 
in which > 0 % 
of the sample 

successfully completed 
the reflex

Number of litters 
in which > 50% 
of the sample 

failed to complete 
the reflex

Number of litters 
in which > 0 % 
of the sample 

failed to complete 
the reflex

Undisturbed
controls

4 0 2

Propylene glycol 
vehicle

3 3 4

Chronic
corticosterone 0 “ 7 *** 7*

‘significant difference compared with control P = 0.045 (Fisher Exact

“ significant’difference compared with propylene glycol vehicle 
P = 0.035 (Fisher Exact Probability) „1vrol

‘“ significant difference compared with control andpropy g
vehicle P = 0.035 - P = 0.0013 (Fisher Exact Probability)





m intTORY STARTLE REFLEX. One way analysis of variance failed to 

reveal any significant differences between treatment groups in the 

aean day of appearance of the auditory startle response (P = 0 . 2 9 ) .  

However, proportional analysis of results revealed that by day 1 2 ,

80% of control litters, 6 6 % of vehicle-treated litters and 14% of 

corticosterone-treated litters, achieved a criterion of 50% of the 

litter sample displaying the auditory startle response. The 

difference in the proportion of litters from corticosterone treated 

mice displaying the auditory startle response, was significant 

compared with litters from control mice (P = 0 .0 4 5 ,  Fishers Exact

Probability).
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DISCUSSION

Chevins (1981) reported that offspring in litters from mice 

chronically crowded during late pregnancy showed impaired development 

of reflexes. These animals were slower to complete the body 

righting reflex, showed reduced limb flexion and retarded development 

of the auditory startle response. Similar results have been 

reported in pups from rats restrained during pregnancy (Barlow,

Knight and Sullivan, 1978). Taken together, these results suggest 

that stress during pregnancy deleteriously affects offspring 

neurological and neuromuscular development. One explanation of 

the results from these studies is that the described effects may be 

mediated by hyperactivity of the maternal pituitary-adrenocortical 

axis during pregnancy. In this study this hypothesis was tested 

and the consequences of ACTH or corticosterone administration during 

pregnancy, for offspring reflex ontogeny, were examined. It was 

found that ACTH effectively reproduced the effects of stress during 

pregnancy. ACTH treated litters showed reduced limb flexion, 

retarded development of the body righting and auditory startle 

reflexes and delayed eye opening. Whilst the high dose ACTH 

administration regime was found to be most effective in 

aspects of neurological and neuromuscular development overall, 

reversals in effectiveness of ACTH between reflexes and occasions 

where ACTH treated litters showed apparently accelerated development 

of reflexes, were detected. These results can be considered as 

random effects, possibly resulting from the mode of testing, and do

not detract from the majority of results.

There wee difficulty a.ecci.t.d with the .aperients r e n t e d  

1» this chapter CdC.rhih, the collected of qualitative d.t. » <  

the statistical analysis of results: large variance wrthin and betwe
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Utters was encountered, and this may account for the failure of some 

results to achieve significance. Employing the litter as the unit of 

variance was a necessary procedure which controlled within litter 

variance, and this technique of results analysis, largely ignored in 

the existing literature, is recognised as essential to any study of 

early development (Abbey and Howard, 1 973 ) . The subjective nature 

of some of the measurements was also a source of inaccuracy. For 

this reason all the experiments in this chapter were performed 

"blind" so that at no stage was it known as to which treatment 

group any litter belonged (D. Bosworth applied numerically coded

labels to all cages) .
Several lines of evidence suggest that the harmful effects of 

ACTH are not direct, but in turn mediated by adrenocortical products. 

ACTH does not cross the placenta (Chapter 2 ) . The deleterious 

effects of ACTH administration during pregnancy upon somatic devel p 

ment can be prevented if the maternal adrenals are removed 

(e.g. Velardo, 1957; see discussion in Chapter 5 ) .  Additionally, 

administration of synthetic glucocorticoids (e.g. prednisolone) 

during pregnancy produced effects similar to those described here 

resulting from ACTH, impairing both somatic development and refle 

ontogeny in neonatal offspring (Gandelman and Rosenthal, 1981; 

Gandelman and Guerriero, 1 9 8 2 ) .  These reports supply evidence 

that foetal glucocorticoid exposure delays later neurological and 

neuromuscular development. The possibility that the similarity of 

the effects of stress and ACTH administration during pregnancy, are 

a result of foetal exposure to an endogenous glucocorticoid, 

examined by assessing whether corticosterone administration during 

pregnancy could reproduce the described effects of stress and ACTH 

upon offspring reflex ontogeny. Corticosterone, being the
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glucocorticoid in mice, is the most obvious teratogenic compound, as 

„either androgen nor progestogen administration during pregnancy were found 

here to deleteriously influence general body development of offspring

(Chapter 5).
Offspring in litters from mice treated chronically with 

corticosterone during pregnancy showed retarded reflex ontogeny.

These animals showed reduced forelimb flexion, delayed development 

of the body righting, negative geotaxis and auditory startle 

reflexes and also showed later eye opening. Corticosterone 

therefore reproduces the effects of stress and ACTH administration 

during pregnancy, upon offspring neurological and neuromuscular 

development. This finding is consistent with the working hypothesis, 

that the effects of stress during pregnancy are mediated by activation 

of the maternal pituitary-adrenocortical axis, and exposure of the 

offspring in utero to products of this system.

It has been previously stated in Chapters 2 and 5 that 

corticosterone can cross the placenta in rodent, «arrow. Philpott 

and Denenberg. 1970) but that a -echanis. erists to prevent excessive 

exposure of the foetal rodent to corticosterone : the placenta conv 

this compound to the 1... potent 1 1 -dehydrocortioo.teron. O K * « *  

and Burton, 1977). It is likely that in conditions of stress or 

after ACTH or corticosterone treatment, relatively large qu 

of corticosterone enter foetal circulation. The reader is reminded 

that the effects of perinatal glucocorticoid exposure upon g 

body development, and the metabolic and endocrine effects of 

corticosterone exposure upon the developing animal have already been 

discussed in Chapter 5, but they relate strongly to these present 

results. corticosterone exerts a catabolic effect on protein and is 

reported to decrease muscle mass (Seene and Viru, 1982).
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suppresses the secretion of PRL, thyrotropin and insulin (e.g. Gala, 

Kothari and Haisenleder, 1981; Pamenter and Hedge, 1980; Billaudel 

and Sutter, 1982) which are all required for normal body development 

(e.g. Jost, 1979). Consequently, disruption of the metabolic 

mechanisms controlling body (and organ) growth, and catabolism of 

protein during a critical time of maximal growth and development of 

body, brain and other organ systems, will have general deleterious 

effects upon development.
As the neurological tests employed in this study require for 

their operation an undefinable degree of body development and strength, 

the effects of ACTH and corticosterone administration during 

pregnancy upon offspring reflex ontogeny, may be partially a result 

of their effects upon the body. For example, the body righting 

and negative geotaxis reflexes require both strength and neuromuscular 

co-ordination for their operation, as well as development of neural 

apparatus. The limb grasp reflexes require less strength but still 

demand a degree of neuromuscular development, whilst the auditory 

startle response requires sensory development and opening of the 

external auditory meatus (A.K. Palmer, Huntingdon Research Centre, 

personal communication) but also tests alertness. It is difficult 

to conclusively separate the effects of foetal corticosterone exposure 

upon somatic development, from those upon neurological development, 

but there is evidence that glucocorticoids specifically affect neural 

tissue in the developing rodent. Klepac (1982) reports altered 

nucleic acid ratios in rat brain following prenatal dexamethasone 

treatment. Howard (1965) and Takahashi, Goto, Sudo and Suzuki (1982) 

report altered nucleic acid ratios and decreased protein content of 

rodent brain following postnatal administration of corticoster 

Glucocorticoids inhibit brain growth (Devenport and Devenport,
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and retard biochemical maturation of the brain (Cotterell, Balasz 

and Johnson, 1972) but are also known to accelerate maturation of 

the retina (Beato and Doenecke, 1980). Foetal exposure to 

corticosterone at a time when brain growth and development is maximal, 

but incomplete in the mouse (Rodier, 1980) may well impair later 

functional development or desynchronise the development of different 

neural systems with other organs, resulting in the effects upon 

reflex ontogeny reported here.

Although there have been previous studies investigating the 

effects of glucocorticoid manipulation (stress or synthetic hormone 

treatment) during pregnancy upon offspring reflex ontogeny (Barlow, 

Knight and Sullivan, 1978; Gandelman and Rosenthal, 1981) such 

studies have not examined the possibility that results may be 

mediated by other factors. The results reported here seem not to 

be caused by undemutrition or premature birth. Neither are 

postnatal factors upon development instrumental in producing these 

results, since all litters were fostered to untreated mothers at 

birth, thereby controlling certain variables in maternal care and 

postnatal nutrition.
in conclusion, the deleterious effect of ACTH administration 

during pregnancy (Velardo, 1957; Yang, Yang and Lin, 1969; Robson 

and Sharaf, 1952) and perinatally (Monder, Yasukawa and Christian,

1981) upon offspring development have been previously reported, 

but this is the first study of the effects of ACTH administration 

during pregnancy upon offspring neurological development. The 

experiments in this study were designed to test the hypothesis that 

the retarded neurological development of offspring from rodents 

exposed to stressors during pregnancy, can be replicated by maternal 

Pituitary-adrenocortical activation, and that ACTH or corticosterone
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administered exclusively during pregnancy may also retard offspring 

neurological development. Further, whilst the potential neurological 

hazard of perinatal glucocorticoid exposure has been recognised 

(Weichsel, 1977) there is little Knowledge of the possible consequences 

of glucocorticoid exposure exclusively during the prenatal period, 

other than from studies using synthetic compounds in high doses 

(Gandelman and Rosenthal, 1981; Gandelman and Guerriero, 1982).

The results from this study strongly suggest that exposure of the 

foetus to elevated concentrations of naturally occurring gluco

corticoids (corticosterone) presents a neurological hazard, and that 

compounds from the maternal pituitary-adrenal system may naturally 

regulate development of foetal body and brain.
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CHAPTER 7

INTRODUCTION

Most studies that have investigated the effects of stress during 

pregnancy upon reproductive function and correlates of sexual 

differentiation, have examined the male offspring and used the rat 

as the experimental animal (see Chapter 8 ) . The results from such 

studies, reporting both behavioural and endocrine abnormalities, 

suggest that stress during pregnancy detrimentally affects the process 

of sexual differentiation of the brain in male offspring, 

have been fewer studies of the effects of stress during pregnancy 

upon reproductive development and function in female offspring, and

these will now be reviewed.
In the mouse, offspring from crowded during pregnsncy

show lower levels of sexual receptivity, compared with offspring 

fre, individually housed animals < » 1 .»  and ».„ott, 1 9 7 7 1. The more 

acute stress of restraint during pregnancy delay, vaginal opening and 

lengthen, th. vaginal o.strous cyole, but increase, behavioural 

receptivity of female offspring in mice (Politch and H.rr.nhohl, 1 » «  

However, in the rat restraint during pregnancy impairs behav 

receptivity (Dahlof, Hard and Larsson, 1977) lengthens th g 

cestrous cycle (H.rr.nXohl and Politch, 1979) increase, spontaneous 

abortions and other reproductive deficiencies (Herr.nhohl, 1 97 9 ) and 

reduce, post-part, 1 prolactin secretion in adult female 

(Herrenkohl and Gala, 1 9 7 9 .. »then studies report that restraining 

rats during pregnancy dee. not influence the timing of vaginal

and Sullivan, 1978) or affect behaviouralopening (Barlow, Knight
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receptivity (Beckhardt and Ward, 1983) of female offspring.

It is apparent from the above that there are contradictions in 

the literature concerning the effects of stress during pregnancy upon 

female offspring reproductive development. This can be explained 

by different studies employing different methods, species and strains 

of animal. The need for a more thorough and consistent study of 

the effects of stress during pregnancy upon female offspring, is 

further supported by the incomplete nature of some results. For 

example, Politch and Herrenkohl (1984a) have reported that offspring 

from restrained mice show delayed vaginal opening compared with 

offspring from non-stressed mice and whilst this result suggests that 

puberty is retarded in these animals, it is not known whether this is 

because of a delay in body weight gain, which is an important factor 

influencing sexual development (Meijs-Roeloffs and Moll, 1978) or 

due to endocrine abnormalities. Vaginal opening is only one 

criterion of puberty and more thorough studies include determination 

of first oestrus and body weights at these developmental events. 

Additionally, the validity of combining stages of the oestrous cycle, 

according to the methods of Herrenkohl and Politch (1978) who combined 

oestrus and metoestrus phases, is open to question.

That there is little empirical evidence that the pathology in 

offspring of stressed rodents is mediated by maternal pituitary- 

adrenocortical activity, has been previously outlined (Chapters 1 and 

2). Manipulation of the maternal pituitary-adrenal system during 

pregnancy can affect development of the foetal adrenal (Jones, Lloyd 

and Wyatt, 1953; Milkovic, Milkovic and Paunovic, 1973; Milkovic, 

Milkovic, Senear and Paunovic, 1970) but evidence suggesting that 

such treatment influences reproductive development of female offspring 

Monder, Yasukawa and Christian (1981) have reportedis limited.
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th„  p„ inat,l ACTH treatment delays vaginal opening, but this study

1, .iso subjeot to the criticises previously outlined.

this study is • »»re defiled investigation of the consequences 

of .tress during pregnancy for sexual development of fe~l. offspring- 

*  onset of puberty in experimental animal. »«• examined by deter

mining the day of vaginal opening and first oestrus and r.cordrng 

tody .eight, at these development stages. The effects of crowding 

stress during pregnancy upon the oe.trou. cycle of adult offspring 

„ 4  the ability to mate and maintain pregnancy ... «1 . 0  examined.

The hypothesis that any deleterious effects of crowding during 

pregnancy upon reproductive development and function in female 

Offspring, are mediated by maternal pituitary-adrenocortical 

activation, ... empirically tested according to the rational, of the 

„„oral »thin, hypothesis (see Chapter. 1 and 2,. An attempt .as

, i-Varm effects of crowding by administration of a made to reproduce the effects ui

series of hormones.

METHODS

Animal hnsbandry and treatment, followed the procedure outlined 

in Chapter 3. At weaning (postnatal day 21) females 

experiments investigating the onset of puberty were housed in large 

cages, in group, of 3-6, according to tr.atm.nt. Offspring *

single litter were usually group housed, although when »ece.s.ry

females fro. several Utter, of similar •”* « »  “ “  

were used In order to stendardi., numbers- Car. »•• taken to 

standardise housing density a, this is a fetor Know, to influence 

s.xn.1 maturation and th. oe.trous cycle in f i e  rodent, « * * * - “  

and «cintosi,, 1980, Bronson and Chapman, 1968, «cKinney. 1912, 

.......... a . ..... . 1 9 .1b). similarly, - l e -  «  ><»»» -
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„.strous cole (McKinney, 1971, »«hols end Ch.vins. 1981b, end 

therefore e r e  ... «Ken to .void con«»i».tion of cages =on«i»i»9 

„„ye, by „ 1 .  bedding. Bedding ... regularly ch.»,.d (7-10 d.y

intervals) .
Prom postnatal d.y 25 female- ..re observed daily bet.ee„ 1000- 

1200 hrs for vaginal opening. The second -nco.ssive day of vaginal 

„„„in, ... set a. . criterion for genuine and permanent vaginal 

patency. Female .eight at vaginal opening (and first oestrus, ...

recorded. Fro. the day of vaginal opening .»ears -ere taken daily

h, vaginal lavage, dried and stained .ith Oie.sa <BDH, 1,20 in ..ter 

for approximately 30 minute.). Vaginal .ere s«,.d accord«,

to Bin,el and Soh.ar« <1969,. Folio.«, experiments to determine 

puberty, female mice .ere r.-hou.ed in groups of 8-10 by treatment, 

each cage c o n « « « ,  a random ...pie of female» fro- different litters.

M  8 - 9  of age, « . . «  offspring used in experiment, inves

tigating the adult oestrous cycle « r e  housed individually «  small 

cages. One experiment (experiment 7,5, also investigated the 

oestrous cycle of female offspring housed in group, of 5 in large 

cages. These female, »ere left undisturbed for 7-10 day. after .« o h  

vagin. 1  smear, ».re taken daily b.t.e.n 1 0 0 0 - 1 2 0 0  hr, for 2 1 days.

Piste. II—V s h e  the typical . P ie.««, of cycle stage, observed «

this study.
A study was made of the onset and maintenance of pregnancy m  

female offspring from crowded mice (experiment 7:3). At vagina! 

pro-oestrus, females were housed in small cages with sexually experienced 

males. For 20 minutes sexual behaviour was observed. The length of 

time to mating (appearance of vaginal plug) pregnancy length, Utter 

size and litter weights were recorded.
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PLATE I I .  Vaginal pro-oestrus. Presence of nucleated v a g in a l  epithelial 

cells (x 312)

PLATE III. Vaginal oestrus. Cornification of vaginal

epithelial cells (x 312)
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PLATE IV. Vaginal metoestrus. Large number of leucocytes and 

remnants of cornified cells (x 312).

PLATE V. Vaginal dioestrus. Presence of decreasing numbers 

of leucocytes and other cellular debris (x 312)







159

XPERIMENT 7:1. The effects of chronic crowding during pregnancy 

of puberty in female offspring. Offspring were

derived from 9 control mice and 9 crowded mice.

RESULTS. The effects of chronic crowding during late pregnancy 

ypoi^the onset of puberty in female offspring are shown in tables 

7:1 and 7:2. Female offspring from crowded mice showed a significant 

delay of vaginal opening and first oestrus, and were heavier at these 

developmental stages, compared with offspring from control mice. 

Further analysis using proportional data revealed that significantly 

fewer female offspring from crowded mice showed vaginal opening or 

,l„t oestrus on postnatal d a y . 28 and 31 respectively, compared »1th 

offspring from control mice.
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Treatment
during
late

pregnancy

Day of
vaginal
opening

Weight at 
vaginal 
opening

Day of 
first 

oestrus

Weight at 
first 

oestrus

Undisturbed 
controls 
n = 31

30.64
+0.39

20.67
+0.30

31.16
+0.47

2 1 . 0 1
+0.33

Chronically 
crowded 
n = 38

31.87*
+0.34

21.82**
+0.19

32.34*
+0.37

22.23**
+0.18

♦significant 
**significant

difference
difference

compared with 
compared with

control P 
control P

< 0.025 (t-test)
< 0 . 0 0 1  (t-test)



Treatment
during
late

pregnancy
Day
28

Day
29

Day
30

Day
31

Day Day 
32 33

Vaginal opening
Undisturbed 
controls 
n = 31

11 14 21 24 27

Chronically 
crowded 
n = 38

o** 12 13** 24 29

First oestrus
Undisturbed 
controls 
n = 31

13 18 22 26

Chronically 
crowded 
n = 38

O* 12 13* 20 25

‘significant difference compared with control P < 
“ significant difference compared with control 
Exact Probability tests.

Fisher
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2- The effects of chronic crowding during pregnancy
cycle of adult female offspring. Offspring were

derived from 8 control mice and 8 crowded mice.

RESULTS. The effects of chronic crowding during late pregnancy,

oestrous cycle of adult female offspring are shown in table 

7:3. Statistical differences were found between experimental and 

control groups in the mean number of days on which pro-oestrus stages 

were recorded. Females from mice crowded during pregnancy showed 

decreased incidence of pro-oestrus stages over the 21 day observation 

period, compared with offspring from control mice. There were no 

differences between treatment groups in the mean nunfcer of days of 

oestrus, metoestrus or dioestrus, or in the length of cycles. 

Proportional analysis revealed that 86% of offspring from crowded 

mice showed cycles without an apparent pro-oestrus stage,

46% of offspring from control mice (P =0.025 Fisher

Probability).
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Number of days of 21 day test period 
in each cycle stage -----

Treatment
during
late

pregnancy

Days of 
pro-oestrus

Days of 
oestrus

Days of 
metoestrus

Days of 
dioestrus

Cycle
length
(Days)

Undisturbed 
controls 
n = 15

3.60
+0.32

6.40
+0.34

6.73
+0.33

4.27
+0.27

5.11
+0.18

Chronically 
stressed 
n = 15

2.60*
+0.27

6.80
+0.34

7.07
+0.37

4.47
+0.39

4.20
+0.21

♦significant difference with control P < 0.025 (t-test)
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s g s s i & I i 3 . The effects of chronic crowding during pregnancy

of pregnancy, length of pregnancy and size and weight 

o£ Utters born to adult female offspring. Offspring were derived 

from 8 control mice and 8 crowded mice.

RESULTS. The effects of chronic crowding during late pregnancy upon 

fertility of adult female offspring are shown in table 7:4.

Following housing with sexually experienced males, fewer crowded mice 

(54%) were mounted compared with controls in a 20 min test pair g 

(92% . P = 0.04, Fisher Exact Probability). There were no significant 

differences between crowded or control offspring in the mean time 

taken to mate, as monitored by appearance of vaginal plugs, 

were no significant differences in the mean length of pregnancy 

between crowded or control offspring, but proportionally more 

offspring from crowded mice (80%) had pregnancies of less than 18 

days compared with offspring from control mice (27% - P - 0.05, Fis 

Pratt Probability). Tb.r. »or, no -!«.»*■»■ in tb, .in. or 

of litters born to offspring from crowded or control mice.
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Treatment
during
late

pregnancy

Appearance 
of vaginal 

plug 
(days)

Length
of

pregnancy
(days)

Litter
size
(no)

Day 0 
body
weight

(g)

Undisturbed 
controls 
n = 12

1.08
+0.34

18.55
+0.13

12.00
+0.48

1.64
+0.03

Chronically 
stressed 
n = 9

1.61
+0.48

17.81
+0.42

11.22
+0.49

1.59
+0.03
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7 . 4 .  -  * “  — — a“ l M  t ” 9" “ Ci

the o n se t ° f  P"b e r t y  l n  f ' ” l e  ° ,£ 5 P r l ” 5 ' 0 f t 6 p “ " 9 ” ”

aeti , . d  f r o .  1 c o n tr o l  » i c . ,  6  l i n e - g e l a t i n .  v e h i o l . - t t e n f O  . r e ,

5 1OT lot, ACTH-treated »ice and 7 hi* do,. ACTH-«„t,d Ice.

S M S . B,, effects of .cote ACTH .dnlnl.tr,tlon during 1 . »

nancy open th e  o n s e t  o f  P o t e r t y In  « « ^  «  —

„  t e n u .  7:5 end 7 , 6 .  F e „ l =  o f f s p r in g  f r o .  - 1 «  t r e a t e d  w ith

either dose of ACTH during pregnancy shooed significantly 

«,» d,S of vaginal opening «»pared . 1 «  offspring «—  control and 

vehicle-injected »ice. There ».re no significant difference, 

between erp.ri»ent.l groups in the n u n  day of first oestrus

analysis of data revealed that significantly fewer

t o .  ACTH-treated n ic e  showed v a g in a l  o p ening  on p o s tn a ta l  d ay .

31-15 in c lu s iv e ,  o r  f i r s t  o e s t r u s  on p o s tn a ta l  d a y . 1 1 - «

„»pared with offspring fro» control and vehicle-injected »ice.
. ctrilaved vaginal opening

However, fewer offspring from control mice d
. . ,.vs 31 and 32 compared with offspring

and first oestrus on postnatal Y

from vehicle-injected mice.
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7 C The RCTH adminisui^u^. 
Table 7:5. m e  e-------- -- 4.^ ^n<=^+ nf Duberty intisra S L Ü ii" " " ^  . r - t T n a : — female

offspring.

Treatment
during
late

pregnancy

Data given a

Day of
vaginal
opening

Weight at 
vaginal 
opening

Day of 
first 

oestrus

Weight at 
first 

oestrus

Undisturbed 
controls 
n = 24

36.08
+0.87

20.70
+0.38

38.29
+1 . 0 0

21.78
+0.28

Saline-gel 
vehicle 
n = 22

35.00
+1.04

21.25
+0.34

36.59
+1.14

21.81
+0.33

Low dose 
ACTH 
n = 19

High dose 
ACTH 
n = 2 1

1WANOVA

38.37ab 
+0.85

38.10
+1.02

P = 0.045

20.03
+0.31

21.13
+0.39

N.S.

39.74
+0.85

38.81
+0.95

N.S.

20.78
+0.22

21.49
+0.39

N.S.

1 P < 0.05 (t-test)
a significant difference compared with contr < o;ol (t-test)
b significant difference compared with vehi
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Treatment
during
late

pregnancy
Day
31

Day
32

Day
33

Day
34

Day
35

Day
36

Day
39

Vaqinal opening
Undisturbed
controls
n = 24

2 3 7 11 14 15 19

Saline-gel 
vehicle 
n = 22

8a 8a 10 12 14 14 17

Low dose 
ACTH 
n = 19

Ob O13 2b 2ab 4ab 7 12

High dose 
ACTH 
n = 21

2b 2b 3b 4ab 7b 10 13

First oestrus
Undisturbed 
controls 
n = 24

2 2 5 6 9 10 11

Saline-gel 
vehicle 
n = 22

7a 7a 8 9 9 10 16a

Low dose 
ACTH 
n = 19

O13 d° 2b 2b 3 4 7b

High dose 
ACTH 2b 2b 2b 2b 4 8 12

n = 21

i ix> — O 04-P = 0*003) control (P = ‘ _ 0 01)a significant difference compared with con . 0 .04-P = o
b significant difference compared with vehrc 
Fisher exact probability tests.
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— e The effects of ACTH administration during pregnancy pypr.ftTMENT /'• ?_«
upon the oestrous cycle of adult female offspring. Offspring were 

derived from 12 control mice, 6 saline-gelatine vehicle-treated mice,

9 l0w dose ACTH-treated mice and 8 high dose ACTH treated mice.

RESULTS. The effects of acute ACTH administration during late

pregnancy upon the oestrous cycle of individually housed and group

housed female offspring, are shown in tables 7:7a and 7:7b respectively.

Statistical differences were found between experimental groups when

offspring were housed individually in the mean number of days of

pro-oestrus stages. Females from low dose ACTH-treated mice showed

decreased incidence of pro-oestrus stages, over the 21 day

observation period compared with offspring from both contro

vehicle-injected mice. There were no differences between treatment

groups in the mean nunfcer of days of oestrus, metoestrus or dioestrus
. _  cvcles proportional analysis revealed thator in the mean length of cycles. r

12% of control offspring, 25% of off.pring fro» .•Hn.-g.l 

injected „ice, 87, of off.pring fro. 1»» «H-tre.t.d -ice .nd
.r ■ v, joop ACTH—treated mice, showed cycles37% of offspring from high dose ACiH

4- Significant differences were
without an apparent pro-oestrus s g

/to _ n oo4) and vehicle
found between control and low dose ACTH groups (P - O.

,p _ o 019) in the proportion of females and low dose ACTH groups (p - o.oiyj

showing cycles without a pro-oestrus stag

.tatistical difference, -ere fonnd b « —  group.

in ft, „ „ „  of dag, of oestrus, W e n  — —  *“ * *“ ■** “

group. of 5. Female, fro. vehicle injected « « ,  low dose hCTH

treated «Lee and high done SCTH-treated mice, all .how.d mere.

incidence of oestru. compared with » « „ r i n g  control

There were no significant difference, b—  -between
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ma either dose of 1» <*• “ “  — of ^
” „  «  significant difference between experi-ntal groep. in the 

number of days of pro-oe.true. -et.eetru, or dio.etrue or in 
length.. Proportional an.ly.i. of data revealed that 30» of 

control offspring. 70» of offspring fro. saline-,.1 vehicle-injected 
nice, 90% of offspring from low dose ACTH-treated mice

oestrus stage. The differs«, between the control group and low 

dose ACTH group was significant (P - 0.009).
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given are as means 1  S.E.M.

Treatment
during
late

pregnancy

Undisturbed 
controls 
n = 8

Saline-gel 
vehicle 
n = 8

3.50
+0.46

Number of days in 21 day test period 
in each cycle stage _____

Days of 
pro-oestrus

Days of 
oestrus

6.63
+0.73

6.13
0.40

Days of 
metoestrus

5.13
+0.35

6.00
+0.57

Days of 
dioestrus

5.63
+0.42

5.38
+0.68

Low dose 
ACTH 
n = 8

High dose 
ACTH 
n = 8

1WAN0VA

2 .00*
+0.33

3.38
+0.32

p = 0.01

6.75
+0.52

N.S.

4.38
+0.68

5.38
+0.32

N.S.

6.38
+0.26

p = 0.08

, nnnfrol P < 0.005 and vehicle P
»significant difference compared with 
(t-tests)

Cycle
length
(Days)

5.60
+0.38

5.04
+0.25

6.38
+0.86

5.33
+0.26

N.S.

< 0.01
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_. offpcts of ACTH administration during the final third 

as 1  °-E—

Treatment
during
late

pregnancy

Number of days of 21 day test period 
in each cycle stage

Days of 
pro-oe s trus

Days of 
oestrus

Days of 
metoestrus

Days of 
dioestrus

Undisturbed 
controls 
n = 10

2.80
+0.39

2.80
+0.36

3.80
+0.26

11.60
+0.70

Saline-gel
1.90

+0.31
3.90* 3.30 11.90

vehicle 
n = 10 +0.35 +0.52 +0.83

Low dose 
ACTH 
n = 10

1.80
+0.42

4.60***
+0.31

4.30
+0.50

10.20
+0.93

High dose 
ACTH 
n = 10

2.30
+0.37

3.70**
+0.34

4.20
+0.33

10.70
+0.63

1WAN0VA N.S. p = 0.006 N.S. N.S.

a 1 female failed to show a distinct c y e l e ^ ^  (t_te8tf 2 tailed) 
* significant difference with con p < 0 .05 (t-test)
** significant difference with con < 0 .o o l  (t-test)
*** significant difference with con

Cycle
length
(Days)

5.58a 
+0.54

6.98
+0.97

6.68
+0.61

6.73
+0.66

N.S.
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s S S t J l S L . « .  effects of chronic corticosterone adMnistr.tion

«P»» *■» °»“ * °f P”*>“ ty l" '*“ le °” SP'l M '
„«sptln, were «rived fro. 9 control -ice, 7 propylene ,lycol

«„lei. treated .ice end 10 corticosterone-treated -ice.

The effect, of chronic corticosterone ad.ini.tr.tion dnrin, 

!,« pregnancy upon the onset of puberty in fe.al. offspring are 

Shssn in tables 7:8 and 7,9. Fe-1. offspring fro. M e ,  treated

M  corticosterone during pregnancy shooed significantly delayed 

„„Inal opening co^ared with offspring f ~  control and vehicl

e d  . i c  Signiffeeut differences ..re found bet.een tr.at.ent 

groups in « . »  body weight at vaginal opening and « a n  day of first 

oestrus. Proportional analysis of data revealed that

«  f.»l. offspring fro. corticosterone-treated M e .  ,ho«d vaginal

i- 1-7,1 davs 31-34 inclusive compared with offspring opening on postnatal day
«  control or vehicle-treated .ice. although signi—  « - 0

female offspring fro. corticosterone-treated M o .  showed first oestrus

, a ,1 33 and 31 compared with offspring fro. controlon postnatal days 31, 33 ana o** r
i rvFfsDrinq from vehicle-treated mice 

mice, significantly fewer female offspring
. ■ 4-vi offspring from control mice. Both

showed first oestrus compared with
, , vehicle administration

chronic corticosterone and propylene g y 

retarded first oestrus.during pregnancy



Treatment
during
late

pregnancy

Day of
vaginal
opening

Weight at 
vaginal 
opening

Day of 
first 
oestrus

Weight at 
first 

oestrus

Undisturbed 
controls 
n = 37

31.13
+0.35

21.25
+0.23

31.70
+0.41

21.48
+0.22

Propylene 
glycol 

vehicle 
n = 31

32.00
+0.52

20.35°
+0.30

34.16a 
+0.64

21.13
+0.31

Chronic
corticosterone
n = 34

• 33.35ab 
+0.55

21.35b
+0.25

34.38a 
+0.56

21.64
+0.25

1WAN0VA p = 0.004 p = 0.018 p = 0.001 N.S.

a significant 
b significant 
c significant

difference
difference
difference

compared with 
compared with 
compared with

control P < 
vehicle P < 
control P <

0.001 (t-test) 
0.05 (t-test) 
0.025 (t-test)



showiiv 
7i? animals

Vaginal opening
Undisturbed 
controls 
n = 37

Propylene glycol 
vehicle 4
n = 31

Chronic
corticosterone 4
n = 34

First oestrus
Undisturbed 
controls 8
n = 37

Propylene glycol 
vehicle 8
n = 31

Chronic
corticosterone 4
n = 34

13 23

10 19

30 32

21 24

3a 17a 19a

12 20 25 30

33

26

31

16s

37

30

ab 22a^ 32

6a 13a 14*

9a 17 19* 22S

i in - n 04-P = 0.003) ith control (P - °*°, ^ _ o>002)

37

28

33

a significant difference ^ith vehicle (P = 0.04-P = 0
b significant difference compared 
Fisher Exact Probability tests.
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£ 7 .  « -  -  * » -

upon th. oestrous oycle o, adult f.»l. <>«■■*“ *• 

of(sptlTO .era derived « 0 » th. s... P « * “ »‘ 1 «  »sad *» « * ri“ t

7:6.

The effects 0 « chronic corticosterone ,Ministration during 

^ e ^ a n c y  upon tha o.strous cycl. of adult f,»al, offspring ar. 

shown in t^le 7:10. Statistical differences war. Sound hatw.an 

experimental groups in the mean number of days of oest

r, „ i „  fro. oorticost.ron.-tra,tad »do, showed incra.sed incidance

O, oastru. stages. over th. 11 day observation p.riod, co.p.rad with

. .„„ There were no differences between
offspring from control mice.
„..«rent ,roups in th. nurdeer o, day. of pro-o.strus. ^toastru.

dioastrus, in tha « a n  -  ««— • ~  ** “

ferules showing cycl.s without a pro.strus stage.



Number of days of 21 day test period 
in each cycle stage

Treatment
during
late

pregnancy

Days of 
pro-oestrus

Days of 
oestrus

Days of 
metoestrus

Undisturbed 
controls 
n = 10

3.70
+0.30

5.50
+0.34

6.10
+0.43

Propylene glycol
3.50

+0.22
6.30 5.60

vehicle 
n = 10

+0.50 +0.48

Chronic 3.30
+0.52

7.60* 4.70
corticosterone 
n = 10

+0.87 +0.40

1WAN0VA N.S. p = 0.06 N.S.

Days of 
dioestrus

5.70
+0.58

5.50
+0.62

5.40
+0.43

N.S.

* significant difference compared with control P < 0.025 (t-test)

Cycle
length
(Days)

4.76
+0.16

5.21
+0.13

5.03
+0.26

N.S.



178

S M B « »  ’ .S- « •  • « “ “  °f Progesterone administration during

^ 7 ^  <*« «■« ■>' put" ty in te“ 1” of,B?rln,■ of£,prlng
derived fro. 6 control mice. 6 olive oil vehicle-treated mice,

5 10. dose progesterone-treated mice and 6 high do.e proge.terone-

treated mice.

g g g B .  The effects of acute progesterone administration during

late pregnancy, upon the onset of puberty in female offspring are

sh0wn in tables 7:11 and 7:12. Female offspring from mice treated

with either dose of progesterone during pregnancy showed significantly

delayed mean day of vaginal opening. There were no significant

differences between experimental groups in the mean day of frrst

oestrus or in mean body weights at vaginal opening or first oestrus.

: ■ Of data revealed that significantly fewer femaleProportional analysis of aat
. Q . n ce showed vaginal opening on 

offspring from progesterone-tr

postnatal days 11-34 inclusive on first oestrus on postnatal day.

31-34 inclusive, compered «ltd offspring « «  en»«“1 “ d V*hlCle' 

injected mice. The higher dose of progesterone edmini.t.r.d durrn,

pregnancy was most effective in retarding puberty.



Treatment
during
late

pregnancy

Day of
vaginal
opening

Weight at 
vaginal 
opening

Day of 
first 

oestrus

Weight at 
first 

oestrus

Undisturbed
33.37
+0.76

21.50
+0.47

34.31 21.73
controls 
n = 16

+1.03 +0.48

Olive oil 21.71
+0.46

34.78 22.36
vehicle 
n = 23

33.69
+0.69 +0.87 +0.32

Low dose 21.94
+0.49

36.75 22.28
progesterone
n = 16

35.69*
+0.75 +1.12 +0.51

High dose 
progesterone 
n = 21

35.76*
+0.64

21.55
+0.36

36.19
+0.75

21.63
+0.38

1WAN0VA p = 0.05 N.S. N.S. N.S.

* significant difference compared with control P < 0.025 (t-t



showin2_S2HSi-2ES2y^2_222_ii£^—
of animals

Olive oil 
vehicle 
n = 23

Low dose
progesterone
n = 16

High dose 
progesterone
n = 21

, ab

Tab ->ab

10

Tab

12

.ab

21

14

20

First oestrus
Undisturbed 
controls 
n = 16

Olive oil 
vehicle 
n = 23

Low dose 
progesterone 
n = 16

High dose 
progesterone 
n = 21

2a 3»

11

4ab

14

20

13

18

. __ © o4“P = 0.007)
a significant difference compared with control ^  = Q > o 4 _ p  = 0 .029) 
b significant difference compared wrth 
Fisher Exact Probability tes
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7 : 8 .

ffiSlMS. » .  effects of . - t e  progesterone .«nistr.tlo» d.rrn, 

^ „ „ „ c y .  open the oestroos cyeie of « 1 «  «—

„  shown in t . h i .  7 . 1 3 .  S t a t i s t i c i  « ■ . » » ■  —  —

,m l ,s fro. hi,h hose progeeterone-treetec .ice =howeC

lnsi,„o, of estrone sta,... - r  the fi * 7

differences h.twe.n t r , . « n t  gronp. in the e »  — «  of « •  »

pro-estrus, ..testi., or _ s .  in the —  —  -

or in the proportion of — -  — "  ^  * Pr" =

stage.



Number of days of 21 day test period 
in each cycle stage

Treatment
during
late

pregnancy

Days of
pro—oestrus

Days of 
oestrus

Days of 
metoestrus

Days of 
dioestrus

Undisturbed 
controls 
n = 12

3.08
+0.26

6.00
+0.49

5.42
+0.58

6.50
+0.92

Olive oil 
vehicle 
n = 12

3.50
+0.40

5.00
+0.33

6.25
+0.64

6.25
+0.65

Low dose
progesterone 
n = 12

3.25
+0.35

5.66
+0.31

5.50
+0.29

6.58
+0.34

High dose 
progesterone 
n = 12

1WAN0VA

2.50
+0.36

N.S.

7.00* 5>5° 
+0.41 +0.34

p = 0.007 N -s -

6.00
+0.41

N.S.

* significant difference compared with vehicle P < 0.,0005 (t-test)

Cycle
length
(Days)

6.72
+0.57

6.13
+0.44

5.44
+0 . 1 0

5.71
+0.28

N.S.



183

.w f b t m EHT 7:10. effect. of andro.ten.dione or .cote

corti c o s  to rone ad^nistr.tion during pr«,n»cy upon the ons.t of

puberty in female - * * * « •  «“ * • * "  a" 1Vea “  ‘ ” n“ 01
„ice, 7 ponnut oil vehicle-treated mice, 6 andrò, te.edione-treated

sice end 8 corticosterone-trested mice.

B S S i . The effect, of « u t .  andrò,tenedione snd acute corticosterone 

administration during late pregnancy, upon the onset of puberty in 

female offspring • «  shown *» “ »le, 7 . »  a»d 7,15. « » l e  offspring

fro. androstenedione-treated mice showed significantly accelerated

vaginal opening and increased body »eight at vaginal opening, compared

rith offspring from peanut oil vehicle-injected mice. Female

offspring fro. andro.ten.dione-tr.ated mice also .homed accelerated

first oestrus compared with offspring f r «  control and vehicle-injected

differences between experimental groups in mice, but there were no differences
. . . . first oestrus Female offspring from androstenedione-body weights at first oestrus.

treated .ice showed evidence of vaginal abnor-Uti.s, during the 

peripubert.l period the,, animals characteristically .»owed vaginal 

hyperaemi. plat.. VI-IX,. Proportionately more fe.al.s fro-

androsten.dione-treated mice showed this abnor^lity co-p.r.d with 

offspring fro. control -ice <P - 0 .0 0 0 0 8 ,. peanut oil vehicle (P ' »•«>«»

or corticosterone (P = 0.0007) treated mice.
Female offspring fro. corticosterone-treated .ice -bowed delayed

vaginal opening and first oestrus and were heavier at vaginal open»,
. mice proportional analysis of

compared with offspring from con

data revealed that significantly fewer f— 1. « *
corticosterone-treated mice showed vaginal opening on postnatal day

_ . .A or first oestrus on postnatal days 33-34 
32-34 inclusive and day 39, or firs

_ -d-va nffsoring from control mice, inclusive and day 39 compared with offsp



Treatment 
during 
late

pregnancy

Undisturbed 
controls 
n = 36

Day of 
vaginal 
opening

33.53
+0.51

Weight at 
vaginal 
opening

20.66
+0.41

Day of 
first 

oestrus

36.03
+0.80

Weight at 
first 

oestrus

21.94
+0.35

Peanut oil 
vehicle 
n = 18

Acute
androstenedione
n = 24 

Acute
corticosterone 
n = 24

1WAN0VA

36.33* 
+0.66

33.54**
+0.54

38.00*a 
+1.19

p = 0.0001

21.49
+0.62

2 2 . 10*
+0.47

22.23*
+0.33

38.27
+1.11

34.42**
+0.84

39.66*a
+1.21

= 0.035 P = 0.002

22.19
+0.45

22.36
+0.54

22.83
+0.36

N.S.

* significant difference compared wi** vehicle P < 0.005 (t-test) 
•• significant aiff.f.nce ^ ' „ „ . d i o n a  P < 0 . 0 0 1
a significant difference compared warn

(t-test)



Treatment
during
late

pregnancy
Day Day Day Day

controls
n = 36

Peanut oil 
vehicle 
n = 18

Acute
androstenedione
n = 24 

Acute
corticosterone
n = 24

2»

4a

2a

13

6a

Day Day
34 39

3a 16

17b 23

8a 15a

First oestrus
Undisturbed 
controls 
n = 36

Peanut oil 
vehicle 
n = 18

Acute
androstenedione
n = 24 

Acute
corticosterone
n = 24

11 15 16 29

3a 12

12 21

5a 14s

b a s fs s tis s s «  —•

0 . 00002)

.0003)
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PKTE VIII ■ remale offspring « 0 .  •» androstenedione-tr.at.d 

There is distinct reddening of vaginal membranes 

(hyperaemia) as patency is approached.

PLATE XX. Female offspring from an androstenedione-treated mouse. 

Vaginal patency has been achieved and there is no evidence of

hyperaemia.





v i n



v i n



188

s£Biilsi;L_2in .  The effects of androstenedione or acute 

corticosterone administration during pregnancy upon the oestrous 

cycle o£ adult female offspring. Offspring were derived from the

same pregnant mice used in experiment 7:10.

The effects of acute androstenedione and acute corticosterone

administration doming 1» «  Pregnancy. » P »

f,„l. oH.pmin, at» »•'»“” -  7 'U - S“ tlSt1“ 1
found between experiment.! groups in the mean nu*.r of days of

pro-oestrus, oestrus and dio.stru. stages and in the length of cycles.

Female offspring fro. androst.nedione-treated 1 »  showed deor.ased

i„oid.no. of pro-oestrus and dioe.tru. and inore.s.d inordeno. of

oestrus, over the 11 day smearing period, compared with offspring

from control mice. Proportional analysis revealed that 43% of
offspring androstenedione-treated mice compared with 0% of offspring 

from control, peanut oil vehicle-injected or corticosterone-treate

mice, showed persistent oestrus lasting for 6 or more days
• • 36% of females from androstenedione-

(P = 0 001). Additionally, 3b

period compared with 0. of . f a r i n g  —  —  ^  ̂
. . (p = O.02). Similarly, proportionately

or corticosterone treated mice
# . ce treated with androstenedione during pregnancy

more offspring from mice t
21% of control offspring,

showed cycles without a pro-oestrus stage:
, • , ;niected mice, 93% of

14% of offspring from peanut oil ve ic
2fi% of offspring from

offspring from androstenedione-treated mice and
. . .  -  cvcles without a pro-oestrus stage,

corticosterone treated mice s ow .
offspring from androstenedione-treated

The difference between offspring
• «cant (P - 0.0001). Offspring from

and control offspring was sigm i j4oestrus
corticosterone-treated mice showed increased ^ ^  ° f_

the 11 day n a m i n g  Pebl- —  wibh oiiap.stages, over



189



190

Number of days of 21 day test period 
in each cycle stage

Treatment
during
late

pregnancy

Days of 
pro-oestrus

Days of 
oestrus

Days of 
metoestrus

Days of 
dioestrus

Cycle
length
(Days)

Undisturbed 
controls 
n = 14

3.93
+0.29

5.57
+0.36

6.43
+0.27

5.07
+0.29

5.15
+0.17

Peanut oil 
vehicle 
n = 14

3.64 
+0 »25

5.36
+0.36

6.07
+0.49

5.85
+0.42

6.14
+0.85

Acute
androstenedione 
n = 14

1.78**
+0.50

11.57*** 
+ 1.06

5.14
+0.58

2.50***
+0.53

6.46a
+0.63

Acute
corticosterone 
n = 14

3.71
+0.19

5.07
+0.35

5.71
+0.29

6.42*
+0.44

4.95
+0.10

1WAN0VA P < 0.0001 P < 0.0001 N.S. p < 0.0001 N.S.

V * distinct cycle (excluded from cycle length a 5 females failed to show a distinct cy
analyses) ™ntrol P < 0.01 (t-test)

* significant difference compare w ntroi p < 0.001 (t-test)
** significant difference compare w:j- _ontrol P < 0.0005 (t-test)
*** significant difference compared wit
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experiment 7:12. The effects of adrenalectomy coupled with chronic

crowding during pregnancy upon the oestrous cycle of adult female

nffsDring were derived from 3 adrenalectomised crowded offspring. uri&pi-*-* y
„¿ce, 5 adrenalectomised control mice, 5 Sham-operated crowded mice 

and 4 Sham-operated control mice.

RESULTS. The effects of bilateral adrenalectomy on day 9 of pregnancy 

and chronic crowding during late pregnancy, upon the oestrous cycle 

of adult female offspring are shown in table 7:17. Statistical 

differences were found between experimental groups in the mean length 

of cycles. Offspring from Sham-operated crowded mice and offspring 

from adrenalectomised crowded mice showed shortened cycle lengths, compared 

with offspring from Sham-operated control mice and adrenalectomised 

control mice. There were no significant differences between 

experimental groups in the mean number of days of pro-oestrus, oestrus, 

metoestrus or dioestrus stages, but offspring from Sham-surgery crowded 

mice showed decreased incidence of pro-oestrus stages.
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Table 7:17
pregnancy upon

The effects of chronic crowding stress and adrenalectomy 
---------+-V.O npstrous cycle in adult female offspring..

— t— _ “ —liming pr-i---r ---  ~"7 , ,,
nàta given are as means _  S.E.M

Treatment
during
late

pregnancy

Number of days of 21 day test period 
in each cycle stage

Days of 
pro-oestrus

Days of 
oestrus

Days of 
metoestrus

Days of 
dioestrus

Cycle
length
(Days)

Sham-surgery 
controls 
n = 10

3.50
+0.17

4.80
+0.39

5.30
+0.54

7.30 
+0 • 62

5.75
+0.41

Sham-surgery c o n 5.18 7.91 4.85a
stressed 
n = 11

2.54
+0.53

5.2/
+0.74 +0.64 +0.91 +0.06

Adrenalectomy 5.45
+0.45

5.27 6.64 5.32
controls 
n = 11

3.45
+0.34 +0.38 +0.53 +0.30

Adrenalectomy 5.33
+0.55

4.78 7.22 4.46*
stressed 
n = 9

3.66
+0.37 +0.49 +1.27 +0.14

1WAN0VA N.S. N.S. N.S. N.S. p = 0.016

a 2 females failed to show a dis^in?̂ , m_surgery controls P < 0.01 
■ difference « « r e d  vrth
and adrenalectomy controls P
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The results of experiment 7:1 show that the stress of chronic

crowding during the final third of pregnancy delays the sexual

development (as assessed by monitoring vaginal opening and first

oestrus) of the female offspring. This was not due to delayed body

weight gain, as offspring from crowded mice were heavier at puberty

„.pared 1 t h  offspring from control 1 c  The finding that crowding

pregnancy retards the onset of poherty in female offspring.

empires «11 »1th > recent .tody reporting delayed vaginal opening

is female offspring born to mice that »«re restrained dorin,

pregnancy (Polltch and Herrentohl. 1981.) and 1 t h  other developmental

„ . s c e n e s  too»» to result fro. stress during pregnancy (see chapter 5)

The permanency of the effect, of cro»din, during pregnancy upon

fenal, offspring reproductive development and function, is demonstrated

*  the detection o, abnormal oe.trous cycles in adulthood «erp.rim.nt

7,2). Specifically, offspring fro. stressed mice sho. fever

occasions of pro-oestrus and »ore cycles »ithout a detectable pro-

oestrus stage. It is » a t  likely that this result reflect, a

shortening, rather than absence, of the pro-oestrus stag

the 24-hourly testing regime filed to detect this phase <* the cycle.

Even within the control group, some female- - »  « - 1 «  apparently

lacking in this short stage, which in rat. normally «  «  hours
notably erratic (Bingel

(Feder, 1981) . The mouse oestrous eye

and Schwartz, 1969) but can be compared with that

Although this study found no statistically significan
1» the freguency of other cycle stage, or 1» cycle length- between

<-he results are broadly in
offspring from crowded or control mice,

_ ■ e-mV, M978) in their study on 
line with those of Herrenkohl and Poll

i ii offspring from crowded mice 
tats. Additionally, although female P
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re not significantly slower to mate (as monitored by the appearance 

f vaginal plugs) and did not show abnormal pregnancies, compared

I t l,  offsp rin g t“ ®“ 1“ " *  7:31  th ' Y

in » 20 minute test period. This result suggests that these 

,„l.s are less attractive, or less behaviour,Uy receptive, and 

c0W»e. -ell with previous studies of the behavioural receptivity 

0( female offspring fro. crowded mice ( « 1 «  «»d H.ggett, 1977).

The »thing hypothesis of this thesis has been that products 

the maternal pituitary-adrenocortical system, released in 

conditions of stress, produce the effects of stress during pregnancy 

open parameter, of offspring development. Hormone, Known to he 

secreted by this system were administered to p r e s e t  mice to attempt 

to reproduce the effect, of stress. Similarity of the effects of , 

taon, treatment with those resulting from crowding, is tahen a. 

evidence to support the worhing hypothesis and to identify » « r b l .

teratogenic agents.
ACTH administration during pregnancy significantly delayed c„. 

p,»meter o, puberty, vaginal opening, but did not significantly

delay first oestrus in female offspring (erperiment 7,4).
• vavc at either of these times between 

were no differences in body weig
i and the possibility that

offspring from ACTH-treated or contro m
a in Offspring from ACTH-treated 

the delay in sexual maturation observed in offspr
mice, is due to delayed body weight gain cannot be excluded.

Offspring from »CTH-treated mice shew .«»rely reduced bedy weigh«

atweanin, compared with controls (Chapter S, a»d « 1 -  «  1 1 « »  to
-^.vvilitv to exclude general 

persist peripubertally. Despite t e in
• a.y,e retardation of sexual development

naturational factors as causing
ACTH-treated mice, it is clear tha

evident in female offspring from
• -.e effect upon offspring

this hormone has a general deleterio
de ve lopment.
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Yasukawa and Christian (1981) have shown that perinatal 

d m in istratio n  of ACTH retards vaginal opening and other developmental 

milestones, but their study failed to examine other correlates of

puberty.
The results from experiment 7:5 show that individually housed 

female offspring from mice treated with ACTH during pregnancy, show 

fewer occasions of pro-oestrous stages in the adult cycle. This 

result indicates that the effects of ACTH administration during 

pregnancy upon offspring sexual development persist into adulthood, 

is very similar to the effect produced by crowding and indicates an 

effect specifically on reproductive hormones. There were no detect

able differences in the oestrous cycles of offspring from ACTH-treated 

or control mice when housed in groups. In this housing condition, 

all cycles were lengthened regardless of treatment group.

It is not surprising that the results from the experiments of 

the effects of ACTH administration during pregnancy upo

reproductive development and function, do not reproduce those from the 

study of the consequences of crowding with complete fidelity, since 

the hormone dosage and administration regime can only crudely imitate
J . - . stressed animal. Despite this, thethe endocrine response of a stres

for reproductive development of ACTH 
similarity of the consequences fo P

those of crowding, generally
administration during pregnancy,

nnth crowding and ACTH administration
support the working hypothesis.

during pregnancy delay« vaginal opanin, and « 1 » ™ “  

oestrous cycle. Ida l i b *  endocrine causes -  « —
. are reviewed in

the control of puberty and reproductive cy

detail date, 1. tde intact « »  — . —  - *  — "  “

Placenta .cdapt.r 1, tK. .„act. -  « — • -
during pregnancy are probably due to foetal exposure to
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Ceroid and this possibility was examined.¿riven
Female offspring from mice treated chronically with corticosterone 

during late pregnancy (experiment 7:6) also showed significantly 

delayed vaginal opening, compared with offspring from control or 

vehicle treated mice. The results were confused by the finding that 

the control and vehicle groups showed differences in the timing of 

first oestrus. Additionally, the possibility that the retardation of 

vaginal opening is due to delayed weight gain once more cannot be 

excluded, as there were no differences between groups in body weights 

at this development stage. However, adult offspring from mice 

chronically treated with corticosterone during pregnancy did show 

significantly increased incidence of oestrus stages in their cycles 

(experiment 7:7). The increased incidence of oestrus was not an 

effect observed in the cycles of offspring from either crowded or

ACTH treated mice, but was reported by Herrenhohl and Politch (1978)
• rafe restrained during

in the oestrous cycles of offspring

pregnancy.

xaaitlonai .t„ay -  » ■ *  of se„»i o « * * * “ "* “ a ^

female o f f s p r i n g  f r o .  c o r t i c o s t e r o n e  « « « a  l o "  1» » * “

the e f f e c t s  o f  a c u te  c o r t i c o s t e r o n e  a d . i n i . t r , t i e »  « -  “ “ “

corticosterone „Ministration during prM n.»ay . 1 ~
• » treated in this way showed delayed 

of puberty. Offspring from mice t
t „  and were heavier at vaginal opening 

vaginal opening and first oestru ,
• caret 7 -1 0 ).  A lth o u g h

.«pared 1 t h  offspring fro. control . 1 «  <.*>«»«“  ^  ^

these results are in general more convincing

corticosterone tr.at.ent dnrin, P«gn.nay « P »  « “ >* °ff*Pt1"9
„„ „ those yieiaed fro. the « P » “ “  °f 

reproductive dev.lop.ent, tha „fortunately co.p-
tt. effects of chronic corticosterone tr.at.ent.

differed from controls
H eated  by t h e  f in d in g  t h a t  t h e  v e h i c l e  gro u p
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-th respect to vaginal opening. Finding completely inert vehicles 

in which to deliver hormones was a problem. Corticosterone is 

difficult to dissolve, and whilst this compound readily dissolves in 

propylene glycol (a  solvent compatible with minipumps) and forms a 

stable suspension in peanut oil, both of these compounds seem to have 

specific effects upon the onset of puberty in females. Consequently, 

that corticosterone is the agent responsible for the effects of 

crowding or ACTH administration during pregnancy upon sexual 

development of the female offspring is still open to debate.

The effects of acute corticosterone administration during 

pre^ncy upon th. 0 .5 trots cycle o, fe»le offspring <.rp.ri-st 7,11) 

found to b. different fro. th. effect. of ohronic corticosterone 

administration. ».the. th.n showing incre.s.d incidence of oestrus 

stages, female offspring fro. .ice acutely treated with corticosterone 

during pregnancy, showed increased incidence of dioestms stages, 

chared with offspring fro. control mice. If this effect f  « - — ■ 

then th. teratogenic effect of corticosterone upon th, oestrou. oyole

appears to  he v a r ia b le  w ith  dosage and o h ro n ic ity  o ,  the a d M n i . t r . t i o n

regime. Scut, corticosterone ad.ini.tr.tion during pregnancy did not
_ i c-Ffenrina in a similar manner to 

affect the oestrous cycles of female

either crowding or ACTH.
Both progesterone .nd andro.ten.dione were also tested 

responsible for producing th. effects of crowding during ’  —
Like corticosterone,

the onset of puberty and the oestrous eye

these compounds are secreted from the adrenal cortex under the 

influence of ACTH (Chapter 2) .
treated with progesterone (either dose)

Female offspring from mice 

slowed significantly delayed vagi™* opening
sice (experiment 7:8,. -though these ani.als also showed d.l.ye
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f-rst oestrus, the results failed to achieve statistical significance 

and there were no significant differences between treatment groups in 

body weight at either vaginal opening or first oestrus. Experiment 

7-9 investigated the oestrous cycles of these animals. Female 

offspring from mice treated with the higher dose of progesterone 

during pregnancy showed significantly increased incidence of oestrus 

compared with offspring from control mice, and this result was most 

similar to the effects of chronic corticosterone, rather than to 

crowding or ACTH administration during pregnancy.

The final steroid administered during pregnancy to reproduce the 

effects of crowding upon female offspring sexual development and 

function was androstenedione. The onset of puberty in female offspring 

from androstenedione treated mice was accelerated when compared with 

offspring from peanut oil-treated mice or unchanged when compared with 

control offspring (experiment 7:10). Whilst this result seems to 

exclude this compound as an agent responsible for producing the effects 

of crowding during pregnancy upon female offspring sexual maturation, 

caution must be exercised in interpreting results as differences were 

found between control and peanut oil groups. Although

puberty was not delayed in female offspring from androstenedione-treated

mice, other reproductive abnormalities were detect
• _ fVip v a .c rin c il iti©inbr3.nss

proportion of these animals showed hyperae
i „  ,,r_T50 This condition

throughout the peripubertal period (see p a

». not observed in any other tre,t.e„t ,ro„p. additionally, 

fro . mice treated with .„drosten.dion. dorin, P,.<.n.noy *ho»d sever, 

abnormalities of the oe.tron. cycler these . « i - »  s*»*"5 a*“ “ “ a 

incidence o, pro-o.stms and dioe.tr» ««9...
. 7.111 These results

oestrus stages and lengthened cycles (expenm

extend from the effects of stress during pregnancy as found
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,.2, but « » »  compared » 1 0 1  the result, of H.rrenXohl and Politch 

{19781 1» addition to those observed in this study, they ere similar 

„  the „ „ « . 1  consequences of stress during pregnancy. Although no 

„„ions studies have examined reproductive development and function 

„  fenal, offspring from rodent, treated during late pregnancy with 

„«ostenedione (o r  corticosterone or progesterone) comparisons can 

„  drawn with other studies reporting the consequence, of prenatal 

androgenisation of females. Female mouse foetuses exposed to

testosterone fro. .dj.c.n, male. (»» = - 1  *"d 19801 “ d

o ffs p r in g  offspring from  hamsters treated with testosterone

derin, pregnancy (handau.r, Attas and bin, 1981) show lengthened 

„.stress cycles in adulthood and increased ano-genital distances

(see also Chapter 2) .
As a further examination of the hypothesis that maternal adrenal 

products are responsible for producing the effects of stress during 

pregnancy upon female offspring reproductive development and function,

■ - 7.12) was conducted to study whether maternal
an experiment (experiment 7.1

, of crowding. Whilst the
adrenalectomy prevents the observe e

a „c, stressed mice showed no 
offspring from adrenalectomised

le (,nd in fact showed significantly
abnormalities of the oestrous eye
shortened cycle lengths) neither did offspring from Sham su g Y 

stressed mice. That offspring frc. adrenalectomi«* ,nd stressed 

showed no abnormalities of the oestr.us cycle supports the

central hypothesis but the result, from this experiment sh
1. fai lure to detect any effects of 

regarded with caution because of t e
stress alone. A high mortality rate was experienced in^the^ ^

adrenalectomised group, which reduced the numbe
ses Additionally, it is possible that 

used for experimental purposes.
1 0  day period to birth of

fragments of adrenal regenerated over
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litters Together these factors make results suspect, and further

• necessary to establish whether adrenalectomy during pregnancy
work is

has any effect on reproduction in female offspring, or whether the 

maternal adrenal gland is required for the effects of crowding stress 

upon female offspring sexual development and function. Overall, 

the results from the experiments reported in this chapter give no 

indisputable evidence in support of, or against the working hypothesis. 

However, it is still necessary to examine the mechanisms controlling 

puberty and the oestrous cycle, and how the various treatments during 

pregnancy may cause disruption of these processes.

There are 3 known major influences upon the onset of puberty in 

female rodents: body weight during the peripubertal period,

hypothalamo-pituitary-ovarian function and hypothalamo-pituitary-

adrenal function. Correlational studies reveal that a critical 

body weight needs to be attained prior to appearance of the secondary 

sexual correlates of puberty (vaginal opening and first oestrus) in

rats (Meijs-Roelofs and Moll, 1978). This seems also to be the case
„ ... lqRO\ m  order to exclude somatic

for humans (Johnson and Eventt, 19
_ i _ „i... ■; nciTGctsscl body

factors from causing the retardation o p
offspring from crowded mice show 

at puberty should be shown. Female oír p y

increased body «eight at puberty, *■ “ 11 "
slower body «eight gain can therefor, be .«eluded .. causing the 

observed retardation of sexual development. ao».v.r, this «as not 

the case in experiments in «hieh hormone, «ere administered and **». 

corticosterone and progesterone treatment during pr.,n»ey « ,  delay

sexual development by delaying body weight g a m  m s t
v. i o «  AS previously mentioned, 

addition to more specific mechanis
„„it, crudely imitate the

administration of hormones individually can
■ and the compounds used may

endocrine response of a stressed animal,
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u  exert general effects on body development (Chapter 5). However, 

endocrine cause seems to be indicated in producing retarded sexual

maturation in female offspring born to crowded mice.

o «  secondary •*” »! correlate, oi puberty, v.gin.l epithelial 

p r o lif e r a t io n , and cell coraifio.tioa are dependent upon the action 

of oestrogens »62, » » » * * .  »79, Feder, 1981,. * delay

the onset of puberty ulti.at.ly eugges« disruption of oe.trog.n 

secretion, either in t e n -  of ti.in, or guantity of hor„n. ..cretion,

*e seer.tics of oestrogen, fro. »turing ovarian follicle, i- “ d"

*. influence of Follicle Sti.ul.ting Hornone <FS„,. FSH concentration, 

rise in pituitary and Pi»-» -  tat. appro,chin, puberty under the

influence of gonadotrophin releasing » » « .  «»8H or LHRH; ch.pp.l,
tt Tilders and Schoemaker,

Ulloa-Aguirre and Ramaley, 1983; Hompes, Vermes,
. v ovarian development in peripubertal rodents1982) FSH stimulates ovarian ae

(Meijs-Boelofs, Os.an and Kra.er, 1982, *

»Iff-malto and ».»chan, 1976, and »  . . » « » 1  «■* ”“ “ 1
,.1Q „ « I  It is therefore

onset of puberty in rodents (Ramaley,
- „  mice crowded during pregnancy

a possibility that female offspring
9- Krause of some alteration to the 

show retarded sexual development

normal pattern of FSH secretion.

FSH secretion i. i « U  P » » « *  «  <P!<1’ V<>0,t' p

Cl„n. and »eites. 1969, and -  *• —  —  "  ** lh‘
inhibitory dopaminergic systems contro 

of the onset of puberty. Inhibitory
, pRL concentrations vary inversely 

the secretion of PRL: dopamine and
„ „ staqes of the cycle (Advis, Simkins,

at the pro-oestrus and oestrus 9
the ratf p rl activates the peripubertal

Chen and Meites, 1978). In . .„ iniHcular activity TQRll and influences follicui* 
ovary (Andrews and Ojeda, 198

schoot, Besten and Lankhorst,
and development (Uilenbroek, van

_ n _ r3+-c rise steadily 
1982). PRL levels in the plasma of ema



uberty (Becu and Libertun, 1982) . Direct confirmation of the role 

of pel in controlling puberty has come from studies investigating the 

consequences for sexual development of manipulating this hormone. 

Administration of PRL to immature female rats accelerates puberty 

(Lung and Docke, 1981; Wuttke and Gelato, 1976) whilst suppression 

of pRL (but not of FSH or LH) by administration of bromoergocriptine 

to immature rat., delays puberty (Advis, Smith-Shit. and Od.da, 1981).

m  probably exerts 1 «  effect. on puberty by Influencing FSH and 

conaeguently oe.trogen eecretlen, and thee, co.po.nd. in turn 

regulate tb. .ecretion of PPL through a negative f.edb.ok loop 

(D'agata, hliffi. »augeri. Mongioi, Vioari. Gulizi. and Polo...

Although in rat. PPL acoel.rate. puberty, and PPL re.ov.l retard, 

puberty, there i. the eugge.tion of a reverse effect in the »ou.e,

»le pheromones accelerate puberty in female-

PAL secretion (K.v.rn. and De 1. «1™, 1938) . Neverthele.., alteration

, cpt secretion may account for the delays of of normal patterns of PRL secreti y
. ^ i _ «ffcnrina from mice stressedsexual maturation evident in female offspn g

during pregnancy. The possible causes of the delay

naturation and disruption of the oe.trou, cycle 1. dl.cus.ed later.

the third „.got factor controilin, puberty is the adrenal

adrenal is an important "timer" initiating the onset of puberty

Borski and La.ton, 1973, Maof.rl.nd and «an». 1979, M. i j - P ~ l ° f=
1979 1982) and corticosterone is particularly

and Moll, 1978; Ramaley, 1979, 19b/)

important for this process (Meijs-Roelofs  and Moll, 1978 ). 

steroids are known to influence gonadotrophin secretion (e.g. Mann,

Jackson and Blank, 1982, Mann, P«o«itz and B.rr.olougb, 1975, «•"»
j vr-eeburg, 1982) . More 

and Barraclough, 1973; Weber, Ooms and
and related compounds can suppress specifically, corticosterone and re

, . „ i q q2. Bratusch-Marrain,
secretion (Gala, Kothari and Haisenle e ,
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k _ or waldhausl and Nowotny, 1982). Thus adrenal influences Viernappex- r
pon reproduction are likely to be mediated via gonadotrophins.

The endocrine control of the oestrous cycle is complex and has 

previously been introduced in discussing the mechanism controlling 

puberty. Feder (1981) reviews the literature regarding oestrous 

cycles in rodents and mammals. However, it is necessary to point 

out that in addition to gonadotrophins and sex steroids, the adrenal 

my also be involved in controlling the oestrous cycle, since 

fluctuations in corticosterone concentrations in plasma have been 

detected throughout the oestrous cycles of mice (Nichols 

1981a) and other rodents.
Having discussed the factors controlling puberty and the oestrous 

cycle, it is now necessary to examine how the various treatments 

mediate their effects. The model proposed in this study 

effects of maternal stress are mediated through ACTH and adrenal 

steroids and there is some support for this hypothesis. The q 

remaining to be answered are what are the ultimate endocrine cause 

the described effects upon reproductive development and function, in

offspring from crowded mice.
The delay in the onset of puberty, and the shortening 

Pro-oestrus stage of the oestrous cycle observed in offspring from 

crowded mice suggests that these animals have some disruption of
^fmnhins. Neuroendocrine

oestrogen secretion and consequently gona
, life m  both rats

development is initiated during intra uter

»a nice gonadotrophin r.gul.tin, «motor.» d.v.lop and are 

functional during prenatal life and the foetus

and PRL (Daikoku, Adachi, Kowano and Wakabayashi, 1981,- denkin,

Will.» and Thorborn, 1979, Point!» and Mahoud.ao. 1976) th.r. «

-  tha potential «or d i . r o p t io n  o «  the ™ . » t  -  -  ~
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* fnrs exerting an influence during critical periods. In fact,by factors
Bhanot and Wilkinson (1982) have shown that prenatal haloperidol 

exposure retards the onset of puberty in female rats by increasing 

aopmnetgic inhibition of T O  seeretion during pontnat.1 life. T h e m  

several lines of evid.no. to suggest that offspring fro. stressed 

«d,„t, are TOL-defi . K » t . Firstly, femle offspring « 0»  rat.

«strained during pregnancy have increased d e p o n e  concentrations 

„  the arcuate nucleus ("oyer, Herrenkohl and dacoboitz, 1918). This 

Structure is concerned with the control of gonadotrophins including 

TO (firinur. and Findlay. 1914). Secondly, such fenales in adult- 

Mod exhibit reduced post-p.rtal circulatory PFL concentration.

{HerrenKohl and Gala. 1919. -list m l .  offspring fro. restrained rats 

she. decreased secretion of both PTO and corticosterone in response to 

ether ad^nistr.tion (Folitcb and „errenhohl. 1918.. The hypothesis 

that hypoprolactinaemi. m y  be a cause of the delay in puberty and 

shortening of the pro-oe.tru, stage is attractive because a, ..11 -  

explaining the observed result, through a reduction of oestrogen.

{via FSH, i t  also f i t .  the general - r h i n g  » V P » « “ ’ “  ‘th * 1 ‘ “ en° -

cortical product, fro. the eotber ».di.te the effect, of croudin,
. • p r l  secretion is inhibited

during pregnancy upon the offspring) in that
. . , Kothari a n d  Haisenleder, 1982). Exposureby corticosterone (Gala, Kothar

to increased concentrations of corticosterone during prenatal life 

(following crowding, or ACTH or corticosterone treatment du

. .. ,-.v alter PRL secretion later in lifpregnancy) may specifically ai
, H ip cause of the retardation of 

A second possible explanation of
«cfcrrina from crowded

Puberty and disruption of the oestrous cycle in
i Offspring from

mice concerns adrenal function in these an 1Q7fti
Hard and Larsson, 19/»)

restrained rats show adrenal atrophy (Dahlof,
„ orticosterone (Politch, Herrenkohl

and decreased stress secretions o
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1978). A s the adrenal is important in
and Gala»
„proNttive develop-« -  * — • . I t » -  —  «“  “

lff«rt.d »  disrupt these processes. Offspring fro. rod.«s treated

1 *  „ »  Miltovic. Milkovie. Senear and P.u.ovio, 1970, or

corticosterone and related gloeooortiooids fd.ard-Oavi. and

„Ots, 1954, SK.helsk.ya, 1968, Klep.c, 1982, also s h e  adrenal atrophy.

,,d therefore the adrenal underdevelop.«« shoe, in off—  « -  

.„eased rodent, is prottly due to .eternal pituit.ry-.drenocortrc.l

activity, and foetal erpo.ur, to corticosterone. The „tent to „hrch
, =1=0 ACTH or corticosterone

the effects of crowding during pregnancy (and
, ma1e offspring sexual maturation and function are treatment) upon female oftspri g

, ■ n PRL secretion or adrenal output is unknown,due to alterations in PRL secret
„  of the effects upon puberty an 

Another possible endocrine cause of the
ovarian development. Prenatal gluco

the oestrous cycle concerns
has been shown to alter nucleic

corticoid (dexamethasone) exposur
. ■? rvfi npnee the endocrine

acid ratios in ovary (Klepac, 1982) and this may

capability of this gland. Alteration of the ovary's sex steroid 

output may therefore also be implicated in producing the retardation 

of puberty and disruption of the oestrous cycle in offspring from mice

crowded or treated with ACTH or corticosterone during pregn
de of the endocrine status of offspring from 

Little study has been made of tne

stressed rodents. A * « *  * »  *“ *' ”“ W  “  “
„»in, gonadotrophin, ... steroids and pituitary-adrenal hormone

• , aii stages of development and
concentrations in these animals

reproductive condition.

k more „„era! hypothesis ha. he.« »’ “

Weisz (1980) to account for the alterations in sexual d
i offspring from rats restrained 

and reproductive behaviour in n\a e
te applied to the r e s « «  «  this

during pregnancy, but which can
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„orns the desynchronisation of brain development from
study# concerns
endocrine development. Ward and Weisz (1980) showed an acceleration 

o£ the foetal testosterone surge in offspring from stressed rats.

L  a general consequence of prenatal stress is to desynchronise 

neuroendocrine development (particularly of systems controlling sexual 

differentiation and reproduction) then this phenomenon may be a cause 

of the abnormalities detected in sexual maturation and function in 

female offspring from crowded mice. At present it is not Known what 

factors desynchronise brain development from the development of other

syscs, huh it !• Known th.t cfcwdi», <«.evin„, »pv»Hs».d, 

sOT or corticosterone admini.U.tion during pr«nanoy <Ch.pt.r 6) 

retards develop-nt of the centr.i nervous «

of reflexes in offspring.
Even though no single hormone ed.inistr.Uon regi- ‘« P 1« * 1* 

„tch.d the effects of crowding during pregn.ncV upon the onset of 

puberty or the oestrous cycle of offspring, and therefore cannot be

considered as sole maternal agent mediating the effects

,e„ treatments did have effect, upon the offspring which have yet to

t. discussed. Both progesterone and androsten.dione treatment during

pregnancy had an effect either on puh.rty or the o.strou. cycle of the
of stress there are several mechanisms

offspring, and as in the case

by which these effects may have been
„ inhibit FSH and LH secretion in rats 

Progesterone is known to
wut«. and Gelato ( 1 9 ™  « » «

(Weber, Ooms and Vreeburg, 19bZ) .
„ an retard puberty (vaginal opening) by 

that progesterone treatment ca
,.on progesterone treatment prenatally

suppressing PRL secretion.
^  this study has also been

result of administration during pregnancy
d this may be due to an effect on

shown to retard vaginal opening, an
other neuroendocrine regulating

PRL secretion or more generally on



207

systems which have previously been stated to be vulnerable to alteration 

during foetal development. Progesterone administration during 

pregnancy is also known to decrease brain nucleic acid concentrations 

and brain growth (Coyle, Anker and Cragg, 1976; Snyder, Hull and Roth,
X979, and this action may cause a desynchronisation of brain from 

endocrine development or damage to developing neuroendocrine structures, 

the possible effects of which have previously been discussed.

Additionally, there is evidence that offspring from rats treated with 

progesterone during pregnancy show decreased plasma corticosterone 

concentrations in early life (Roudier, Portha and Picon, 1982) and 

this phenomenon may also be implicated in causing the delay in puberty 

and disruption of the oestrous cycle, evident in offspring from mice 

treated with progesterone during pregnancy as reported her

The final steroid administered during pregnancy to attempt to 

reproduce the effects of crowding during pregnancy, upon the onset 

of puberty and the oestrous cycle of female offspring, was andro- 

stenedione. In contrast to the effects of all other treatments,

offspring from androstenedione-treated mice showed at least
, jt can be deduced that andro-

timing for the onset of puberty.
• . i_ offsets of strsss

stenedione is not the maternal agent mediating

during pregnancy upon the onset of puberty in female of

Additionally, these animals showed severe abnormalities of the oestrous

cycle, and most striking was the predominance of oestrus stages in

the cycle. These results suggest that offspring from androstenedione-
.,-h is further supported by

treated mice hypersecrete oestrogens,

th, finding that then. » 1 ~ 1 .  W e n « . » .

*  „ y androstenedione

oyoi. of f—
i  r e s p o n s e s  o f n\aie

during pregnancy is known to masculinise the
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ffspring (Gilroy and Ward, 1978) and prenatal androgen exposure 

masculinises female rodents and lengthens their oestrous cycles

Landauer, Attas and Liu, 1981; Vom Saal and Bronson, 1980).(e.g.
The process of sexual differentiation is well understood and has been 

reviewed in Chapter 2. Essentially, androgens are aromatised to 

oestrogens in neural tissue and it is these latter compounds that 

masculinise the brain: testosterone being converted to oestradiol and 

androstenedione being converted to oestrone (Naftolin and Ryan, 1975).

The effects of androstenedione administration during pregnancy upon 

the oestrous cycles of female offspring may be caused by exposure of 

the foetal brain to oestrone, and interaction of this compound with 

developing oestrogenic receptors which are present in the foetal 

rodent hypothalamus (Maclusky, Lieberburg and McEwen,

Masculinisation of this structure could well result in altered 

hypothalamo-pituitary-ovarian output, which would be detected in 

oestrous cycles. A more peripheral effect of androgens is that they 

interfere with ovarian oestradiol secretion (Bagnell, Mills, Costoff 

and Mahesh, 1982) and therefore the abnormal oestrous cycles of female

offspring from androstenedione treated mice may be caused by altered
• Tlis severity of the

ovarian oestrogen biosynthesis and secre 1 0

effects of androstenedione treatment during pregnancy upon the oestrous 

cycle of the female offspring must also exclude this compound as the 

mediating agent producing the effects of crowding. However it stall 

remains a possibility that a more natural dose may have yielded more

meaningful results.
, study that the evidence in

It is apparent from the results o
.. effects of stress during pregnancy 

support of the hypothesis that the e
- is inconclusive.

are mediated by maternal pituitary-adrenal pro
.a during pregnancy produced elements 

Although all the hormone treatments
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oI lhe syndrome described in female offspring fro. crooded mice, no 

l  treatment completely reproduced the effects of orcding. «.is 

m  M  , „flection of the inadequacy of the hormone treatment regimes 

J c h  neither match closely the endocrine response to crowding, nor 

««rely interfere with reproductive development of female offspring. 

Certainly. » single teratogenic steroid has not been identified.

fact, it is probable that female offspring fro. crowded mice are 

exposed to abnormal concentration, of - n y  different steroid, in 

„terc and together these steroids alter reproductive development.

„  this is so then it will be very difficult to artificially reproduce 

the hormonal factor, which cause the prenatal stress syndrome. 

Alternatively, oestrogen, secreted fro. the maternal adrenal in 

condition, of stress may mediate the effect, of crowding. The 

consequences of oestrogen treatment during pregnancy for 

offspring sexual development was not studied here, 

nust be considered prime candidates for future work because 

importance in brain catecholamine metabolism (Breur, Schneider,

a J V, 1Q1B) sexual differentiation, and their
Wandscheer and Ladosky, 19 )

. • Further# oestradiol
influence in control of gonadotrophin secretio .

administration during pregnancy in rats is known to cau ypo

prolactinaemia in the offspring CK^n and Bollen, 1931, Kuhn, Bollen

and Darras, 1982) and it is likely that sexual development may also

be influenced. Finally, although this study was unable to supply

firm evidence as to whether pituitary-adrenal products mediate the

effects of crowding during pregnancy upon parameters of
‘ rr i t  has shown that females are 

development in female offspring#

p .t t ic u la r iy  s u s c .p t ih i .  b »  prenatal h e ™ » . !

development end function. -  this contrasts "

males examined in the following chap
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fHAPTER 8

effectsupon sexually differentiated behaviour in male offspring

introduction

w h ils t  the e f f e c t s  o f  s t r e s s  d u rin g  pregnancy upon m ale o f f s p r in g  

sexual behav iou r a re  w e l l  known in  the r a t  (D ah lttf, Hard and L arsson , 

1 9 7 7, Dunlap, Z ad in a  and G ou g is , 1978; Gotz and D o m er, 1980; 

Masterpasqua, Chapman and L o re , 1976; M e ise l, Dohanich and Ward,

1979; Ward, 1972) the involvement of the maternal and foetal pituitary- 

adrenal axes remains uncertain (Chapman and Stem, 1978). Male 

offspring from rats crowded (DahlSf, Hard and Larsson, 1977) or 

restrained (Chapman and Stern, 1978; DahlSf, Hard and Larsson, 1978; 

Herrenkohl and Whitney, 1976; Meisel, Dohanich and Ward, 1979; Ward, 

1972) during the final third of pregnancy show augmented feminine 

sexual responses . Male offspring from rats restrained during

pregnancy (Dunlap, Zadina and Gougis, 1978; GStz and DSmer, 1980;

Ward, 1972) o r  avo idance co n d it io n ed  b e fo re  m ating (M asterpasqua, 

Chapman and L o r e ,  1976) show im paired  m asculine copu la to ry  responses.

Similarly, Chapman and Stem (1978) and DahlSf, Hard and 

Larsson (1978) report that male offspring from rats restrame 

crowded during pregnancy show morphological abnormalities of the 

genitalia: these animals show decreased ano-genital distances and this 

is attributed to interrupted androgenisation of the genital system.

In fa c t , r e s t r a in t  d u rin g  pregnancy i s  known to  a c c e le ra te  the 

foetal m ale ' s te s to s te ro n e  surge (Ward and W eisz , I960) and reduce  

Plasma te s to s te ro n e  co n ce n tra t io n s  in  the neonata l male o f f s p r in g  

in ra ts  (D a rn e r , 1980). A d d it io n a l ly ,  r e s t r a in in g  ra t s  during  

pregnancy has been shown to  reduce s tre s s -in d u c e d  se c re t io n  o f  

Prolactin  and c o r t ic o s te ro n e  (P o l i t c h ,  Herrenkohl an
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catecholam ine n eu ro tran sm itte r  concen tration s in  d is c re te
and alter
brain regions (Moyer, Herrenkohl and Jacobwitz, 1978). Together, 

these results show that stress during pregnancy alters endocrine 

function, and particularly the control of the hypothalamo-pituitary- 

gonadal system during the perinatal period, which is a critical 

period for sexual differentiation of the brain (see Chapter 2).

It has been suggested that this behavioural "démasculinisation” 

and "féminisation" of male offspring from rats stressed during 

pregnancy, is mediated by stress-induced activation of the maternal 

pituitary adrenocortical axis (Ward, 1972; DahlSf, Hard and Larsson,

1977). Manipulation of the maternal pituitary-adrenal system during 

pregnancy can affect development of the foetal adrenal (dones, Lloyd 

and Wyatt, 1953; Milkovic, Milkovic and Paunovic, 1973; Milkovic,

Milkovic, Senear and Paun ov ic , 1970) bu t u n t i l  re c e n t ly , there  

been l i t t l e  ev iden ce  th a t  m aterna l p itu it a ry -a d r e n a l  m anipulation  

during pregnancy can in f lu e n c e  m ascu line sexu a l behaviour o f  the 

adult male o f f s p r in g .  Chapman and S te m  (1978) o r ig in a l ly  examined 

this p o s s ib i l i t y  by  in je c t in g  pregnant r a t s  d a i ly  w ith  one o f  two 

doses o f  ACTH, and o b se rv in g  the sexu a l responses o f  the ad u lt  male

offspring. They reported that although the m
• • sexual responses, such subjects did not

offspring showed augmented féminin
masculine sexual responses, except for

display severe  decrem ents to
• f-prvals However, more recently increased post-ejaculatory intervals.

• -¡lar doses of ACTH to Chapman and 
Stylianopoulou (1983) using sim

Stem, and Phees and F lem ing (1981) u s in g  much h igher

a,™, « * .  ..v.» i” « ”  “ “ al " ‘PO” “  °

adult male o f f s p r in g  in  r a t s .

The studies mentioned so far have all used the rat as
. no Hear evidence that stress during

i T_ the mouse , there is no clear experimental animal. In tne
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regnancy impairs the sexual responses of male offspring,

Male offspring from mice crowded during pregnancy show lengthened 

e ja c u la to ry  latencies (Allen and Haggett, 1977) but Politch and 

Herrenkohl (1984a) report that male offspring from mice restrained 

during pregnancy show no impairment of masculine copulatory responses, 

even though these animals were behaviourally feminised. Some study 

has been made of whether manipulation of the maternal pituitary- 

adrenal system, by administration of ACTH or corticosterone, can 

reproduce the effects of stress during pregnancy, upon male offspring 

behaviour patterns. Politch and Herrenkohl (1984b) have shown that 

ACTH or corticosterone acetate administration during pregnancy 

decreases copulatory activity of male offspring in mice, and this

„  similar to th. offset* of stress. 0“ ae1" “

(19,7) report that male offspring f r »  KTH-tre.t.d -io. are 1«.. 

likely to display aggression, and this result represents th 

disruption of a second testosterone-dependent sexually di.orphio

pettern o, behaviour. There ha. f e n  no study of th. effect, of 

stress during pregnancy upon » 1 «  offspring aggression in any specie..
riPi-ailed investigation of the consequencesThis study is a more detailed mve* y
, the expression of testosterone-

of stress during pregnancy for
* ,1» nffsDrinq. Masculine sexual

dependent behavioural responses o m
behaviour in experimental animals, elicited by a sexually exp 

female primed with oestradiol and progesterone, was examined.

Aggressive behaviour (both attack and threat responses) of 
experimental animals, directed to anosmic standard opponent males, 

was also examined. The hypothesis that any deleterious effects of 

crowding during pregnancy, upon masculine sexual and agg
! nituitary-adrenocortical activation,

responses are mediated by materna p
, r the aeneral working hypothesis the rationale of the generawas tested according to
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^  1 and 2) . Similarity of the effects of hormone(see Chapret»
treatment during pr.gn.noy upon ».1. offspring b.h.viour, with those 

resulting fro» crowding, is evidence to support the working hypothesis.

METHODS

Animal husbandry and treatments followed the procedure outlined

i. Chapter 3. At weaning (postnatal day 21) »ale. «=«d 1»

«„ioural experiments were re-housed, 8-10 animals per large cage 

«cording to treatment, in such a wa, that at least on. represen

tative fro. each litter was contained in each group. At 1 0 - 1 2  

weeks of a,.. » 1 * .  fro» one such group c „ e  were rehoused individually 

in small cages, for use In behavioural experiments. Subject, «ere 

am. random representative, of each individual litter.

T„ t s  of m ale  .«»*1 »ch.viour were commenced 24 hour, after

individual housing. An experienced female was placed into a g 

neutral cage containing clean sawdust and covered with clear perspex, 

and after 10 minute, hsd.itu.tlon a test -ale «as introduced. All 

female, used were 18-24 week, of had produced on. Utter. -

had been mad, sexually receptive with Injections of 35 h,

S-Oestradiol -3-b.nzo.te (Sigma) 48 hour, before use, and 10O ug 

progesterone ,Sigma 6-8 hours before use). The steroid vehicle «as 

olive oil (sigma). The injection guantity was 0.1 »1. -  injection.
This method of hormonally

were administered intramuscuiarxy.

priming female, was based on Bosig * 4  Dewsbury (1936) and is

designed to ensure standardised receptivity of female.-
. . en the experimental male and the

The resulting interaction between
receptive ,...1. « „  originally observed for a period of SO minute,

but in later experiment, this P-ricd was extended to 100 minute,.
recorded: mount latency, numberThe following measures were
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tromission latency, number of intromissions and number of animals

, After 60 minutes duration of behavioural interactionejaculating •
only latencies and number of animals ejaculating were recorded.

It was possible to observe 4 interacting pairs at once, in which 

case care was taken to study experimental males from the different 

treatment groups. All behavioural assessment took place in red 

Ught between 1500 and 2100 hours. After testing, males were 

returned to individual housing. If any treatment was found to 

tapar copulation, »ale. ".re tested again (9-13 days later) 

following a series of at least 5 dally subcutaneous Injections of 

testosterone propionate. The result, section gives details of 

the duration of such treatment, the dose 500 ug testosterone

propionate (Sigma. 1» °-l »1 »“  S“ ' Pr°“ a“ '‘
of behavioural assessment «.re employed (op. olt.) . The rational, 

of this procedure to examine whether deficits in masculine

copul,tory response, "«re caused by lowered levels of testosterone 

and whether testosterone therapy could restore seru.l behaviour.

Test, of male aggressive behaviour were commenced after a

period of isolation of the experimental males in small cages.
_ dPtails of the duration of isolation.)(The results section gives detail

after only 24 hours of isolationMale mouse aggression increases
r. a iqsn A standard opponent

(O'Donnell, Blanchard and Blanchar ,
was placed into a large neutral cage containing clean sawdust and 

covered in clear perspex, »«ter 5 minutes habituation, a test

«1. was introduced. Standard opponents were group housed »l e a
. - rendered anosmic by nasal perfusion

aged approximately 11 weeks and
standard opponents were treated with 4% zinc sulphate solution. Standard p p

. v.0g y nep Anosmic • 4-vara i davs prior to their use. twice with this solution in the 1 y  v

„ ._rhilds and Parmigiani'■ inrain , B6nton t v̂ nmales rarely attack other mice (
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1981) The standard °PPonents had approximately 50 yl of male mouse 

urine applied to rump and base of tail (Hamilton microlitre syringe 

and brush were used). This urine was pooled from approximately 5 

isolated and sexually experienced mice, and collected during the 

24 hour period prior to use. Urine was stored in 5 ml, air tight 

specimen tubes and refrigerated at 4°C until use. Application of 

urine was developed in this study because of the variability of 

aggression between experiments and to increase the proportion of 

males that fight. Application of urine immediately prior to 

aggression tests dramatically increases the probability and intensity 

of aggression directed to these animals - probably due to the 

presence of an aggression-facilitating pheromone in the urine of 

male mice (Ingersoll, Bobotas, Ching-Tse and Lukton, 1982). An 

alternative procedure employed in later experiments to facilitate 

aggression was to isolate experimental animals earlier in life, 

which decreases the probability of prior experience of aggression 

during group housing and may be a more effective isolation procedure 

(Dr. P.F. Brain, Dept. Zoology, University of Swansea, personal

communication) .
. twice only, and where they

Standard opponents were used on

were used twice these were not in consecutive tests, nor in

presentations to test males of the same experimental treatment.
.. hias through order effects in second Care was also taken to avoid bias U

use of standard opponents.
Th, resulting interaction net.ee» the e.peri«»«! » 1 »  * «

standard opponent ... observed for 5 -mutes vi. r-ote closed 

circuit T.v. monitor, » 1  video taped for later detailed «»!»■“ • 

Behavioural tests .ere conducted under red light between 1500 and 

2100 hours. Th. following ...sure. » « «  “
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attack, number of discrete biting attacks, number of bites and 

cumulative attack time. A composite aggression score (+1 point 

£or each sniff, bite and tail rattle) was also calculated. Sniffs 

were scored when targeted to the genital area of the standard 

opponent and tail rattles recorded as each distinct bout of tail 

rattling. These measures of aggression are based on those employed 

by Brain and Poole (1974) , Brain, Nowell and Wouters (1971), Brain 

{1972), Brain and Nowell (1970b). Also recorded were rough grooms 

and upright threats as defined by Simon and Gandelman (1981).

If any treatment was found to impair aggression a second 

experiment was conducted on identically treated animals that had 

not been previously used in tests of aggression. During isolation 

males received daily injections of testosterone propionate (500 ug 

in 0.1 ml olive oil, subcutaneously) . The rationale of this 

procedure was to examine whether deficits in aggression were caused 

by lowered levels of testosterone and whether testosterone therapy

could restore this behaviour.
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EXPERIMENT 8:1. The effects of chronic crowding during pregnancy 

upon copulatory behaviour of adult male offspring and the influence 

of testosterone therapy in adulthood. Offspring were derived from 

8 control mice and 9 crowded mice. After an initial behavioural 

test males remained in individual housing for a further 9 days, 

during the last 5 days of which each male received a daily injection

of testosterone propionate.

RESULTS. The effects of chronic crowding from days 12-17 of 

pregnancy upon the masculine sexual responses of male offspring are 

shown in table 8:1. Male offspring from crowded mice showed 

lengthened mount and intromission latencies, and lower nunfcers of 

intromissions compared with male offspring from control mice. 

Additionally, fewer male offspring from crowded mice achieved 

ejaculation in the test period (Fisher exact probability, P = 0.04). 

Testosterone propionate treatment prior to a repeat test abolished 

all significant differences in sexual behaviour between males from 

crowded and control mice, and significantly reduced mount latency 

of males from crowded mice compared with their initial levels.



**
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. o The effects of chronic crowding during pregnancy 
EXPERlWENTjli- The erre
upon aggressive behaviour of adult male offspring. Offspring were 

¿Hived from 8 control mice and 8 crowded mice, and at approximately 

10 weeks of age were individually housed, remaining in isolation for 

16 days prior to behavioural testing.

8:3. Th. effects of chronic creed!», during

«  of adult .»1« off.prl», - d  the » « - >

of «stost.ro». therapy 1» — • « —  a" 1''e3
9 control »ice a»d 9 crowded »Ice, and at approximately 10 we 

,,e were individually housed, re.ainln, 1» isolation for 21 days, 

during the last S days of which, each »ale received a daily i ^ t i o »

of testosterone propionate.

■ S M S . The effects of chronic crowding fro. day. 12-17 of

pregnancy upon the .„res.ive ■* “ l* < * * * ”  ^  “

proportion of - 1 - 1 .  that display .,9 0 . - «  < « — * “

she» in tahle. 8,2 - d  8,3 respectively - 1 .  £“
, i sfonries and lower numbers

crowded mice showed lengthened attac
taii rattles, rough grooms and upright

of attacks, bites , sniffs,
threats .«pared with offspring control » 1 «  Ctahle 8,2).

_ » achieved lower composite
They also spent less time attacking

• ,llv fewer male offspring from crowded 
aggression scores. Addition * .
ice displayed attach., rough grooms or upright threat. <t.h , . •

in experiment 8,3 there were no signified difference» »  the

— . of „.1, offspring fro. crowded or centre! . 1 «  displaying

aggression .tahle 8,3, or the . „ » • » » -  —  -

,«0. 8,4, following testosterone propionate « — « P ™ »

testing. However. —  « -  —  313
general though statistically non-sig»ific*« reduction, m
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frequency of aggressive responses. Further analysis of these results, 

based only on animals that displayed aggression, revealed deficits 

in ag g re ssio n  remaining even after testosterone propionate treatment 

(table 8:5). Fighting male offspring from crowded mice showed 

lengthened attack latencies and lower numbers of attacks, bites,

^  „ « u s  and rough greca cepar.d »i«h offspring fro. control 

.1«. They .1.0 spent less «  attacking and achieved leer 

composite aggression scores.
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Table 8:3
nf pregnancy upon m e  —  ------------------ «■

hreat behaviour and the influence of testosterone 
T ^ T ^ I ^ T p r i o r  to behavioural assessment. Data given^re_as
numbers of animals

The effects of chronic crowding stress during the final 
upon the proportion of male offspring displaying

propionate

Treatment
during
late

pregnancy

Number of 
males 

displaying 
attacks

Number of 
males 

displaying 
tail rattles

Number of 
males

displaying 
rough grooms

Number of 
males 

displaying 
upright threats

EXPERIMENT 2
Undisturbed 
controls 
n = 15

12 13 12 13

Chronically 
stressed 
n = 15

&*

EXPERIMENT 3
Undisturbed 
control + TP 
n = 10

Chronically 
stressed + TP 
n = 10

*

**
significant difference with control P = 0.047 Exact
significant difference with control 
Probability test)
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XPERIMENT 8:4. The effects of ACTH administration during pregnancy 

upon copulatory behaviour of adult male offspring and the influence 

o£ testosterone therapy in adulthood. Offspring were derived from 

5 control mice, 4 saline-gelatine vehicle treated mice, 5 low dose- 

ACTH-treated mice and 5 high dose ACTH-treated mice. After an 

initial behavioural test males remained in individual housing for a 

further 13 days, during the last 6 days of which each male received 

a daily injection of testosterone propionate.

RESULTS. The effects of ACTH administration from days 12-17 of

pregnancy upon the masculine sexual responses of male offspring 

are shown in table 8:6. Male offspring from high dose ACTH-treated 

mice showed lengthened intromission latency and lower numbers of

« , „ «  and intromissions compared «it* »>1. •>«■*'«' “ "“ °1

„it,. The lower dose of ACTH had no detect*,!. teh.viour.I inflienoe

erc.pt . marginally significant reduction on the mr*.r of » “ *1* 

ejaculating compared with untreated controls (Fisher exact 

probability P - 0.06,. Hal. offspring f »  sadin.-gel.tin. vehicle 

injected mice did not show significant* different behavioural 

response, compared with . 1 .  offspring fro. undisturbed control ice. 

Testosterone propionate treatment prior to a repeat test drd not 

i,rov. the s.ru.1 response, of male offspring « «  high dose „ e n 

treated mice, the n*eber of .cunt. -  intromissions remained below

control levels.
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EXPERIMENT 8:5. The effects of ACTH administration during pregnancy 

^ T i ^ r e s s  1 »  behaviour of adult » 1 .  offepriug. Off.prin, «.re 

derived f r »  5 control -ice. 4 saline-gelatine vehicle treated 1 « .

5 l w  dose ACTK-treated « «  and 5 high dose hCTH-tr.ated .ice.
„  approximately 7 weeh. of - . 1 «  » . «  individually housed and

,„l».d in isolation for 78 day. prior to behavioural testing.

MS0LTS. The effects of SCTH ad»inistraticn fro. days 12-17 of

pregnancy, upon the aggressive responses of « 1 .  offspring » d  the

proportion of » 1 1 .  that display aggression are shown in table.
! Male offspring from ACTH-treated mice8-7 and 8:8 respectively. Male otrspriny

5l„,d no significant decre.ents in aggressive behaviour, compared 

with .ale offspring f r »  control or vehicle injected mi». There 

«ere no differences in the proportion of males from ACTH-treated 

mice showing aggression, compared with males from control or vehicle-

injected mice.
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, . lB o.o The effectsof acute ACTH administration during the final

Saline-gel 
vehicle 
n = 9
Low dose 
ACTH 
n = 9
High dose 
ACTH 
n = 9
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EXPERIMENT 8:6. T h e  effects of chronic corticosterone administration 

during pregnancy upon copulatory behaviour of adult male offspring. 

Offspring were derived from 9 control mice, 7 propylene glycol 

vehicle-treated mice and 10 corticosterone-treated mice.

RESULTS. The effects of chronic corticosterone administration from 

day 12 of pregnancy to parturition, upon the masculine sexual 

responses of male offspring are shown in table 8:9. Male offspring 

from mice treated chronically with corticosterone showed no significant 

decrements in sexual behaviour, compared with male offspring from 

control or propylene glycol-treated mice.
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0 . 7 The effects of chronic corticosterone administration
^pTP.RlMENl

dirui, p„gn«i>cy »pen aggressive behaviour of adult »ale offering. 

Offapring »are derived fro. the =a»e pregnant -ice need in erperi.ent 

6 but vere not used in testa of copulatory behaviour. St 

, 'p r o r i .a t e l y  9 - e h s  of a,e - l . e  were individually boused and 

remained in isolation for 17 day. prior to behavioural testing.

gs M J 5 . The effects of chronic corticosterone ad.inistr.tion fro. 

w  12 of pregnancy to parturition, upon the aggressive response, 

o, »1. offspring and the proportion of ani-l. that display 

aggression, are shown in »bias 9:10 » 0  9.11 respectively. »•!. 

offspring fro. -ice treated chronically with corticosterone showed 

,0 significant decr.-ent. in aggressive behaviour, co.p.r.d with 

„ 1, offspring fro. control or propyl.». glycol-treated -1“ ' 

mere were no difference, in the proportion of » ■ «  ** »

corticosterone-treated .ice showing > — ™ *  —
glycol vehicle-treated mice.

from control or propylene





animals

Treatment
during
late

pregnancy

Number of 
males

displaying 
attacks

Undisturbed 
controls 
n = 10
Propylene glycol 
vehicle 
n = 11

Number of 
males 

displaying 
tail rattles

Number of 
males 

displaying 
ro u g h  groom s

Number of 
males

displaying 
upright threats

Chronic
corticosterone 
n = 11
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EXPERIMENT 8:8. The effects of progesterone administration during 

pregnancy upon copulatory behaviour of adult male offspring.

O ffspring w ere d e r iv e d  from  6 c o n t r o l  m ic e , 6 o l i v e  o i l  v e h i c le -  

tre a te d  m ic e , 5 low d o s e  p r o g e s t e r o n e - t r e a t e d  m ice  and 6 h ig h  do se 

p r o g e s te r o n e - t r e a te d  m ic e . The t e s t  p e r io d  w as 100 m in u te s .

gsuLTS. The effects of acute progesterone administration from days 

12.17 of pregnancy, upon the masculine sexual responses of male off- 

!prin, are she» 1» table 8,12. ».1. offspring
,1th progesterone showed no significant decrements 1» sex».! 

behaviour, »»pared »1th - l e  offspring fr«. control or olive oil-

treated mice.
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EXPERIMENT 8:9. The effects of progesterone administration during 

pregnancy upon aggressive behaviour of adult male offspring.

Offspring were derived from the same pregnant mice used in experiment 

6 and had been used in tests of copulatory behaviour. At approximately 

10 weeks of age males were individually housed and remained in 

isolation for 21 days prior to behavioural testing.

„B O M S . The effects of acute progesterone administration from 

days 12-17 of pregnancy, upon the aggressive responses of male 

offspring and the proportion of animals that display aggression, are 

shown in tables 8:13 and 8:14 respectively. ^ere were significant 

differences between experimental groups in measures of aggression.

„ale offspring from olive oil-treated mice showed lengthened attack 

latencies, reduced numbers of attacks, bites and tail rattles and 

spent less time attacking compared with male offspring from control 

mice. Male offspring from progesterone-treated mice show reduced 

number of sniffs of the opponent compared with offspring from olive

oil-treated mice. Proportionately fewer male offspring
. «.,,■! rattles or rough grooms

oil-treated mice displayed attacks, tail

compared with male offspring from control mice.
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„ 0 . 1 4 The effects of acute progesterone administration dunn£
upon th. proportion ol ..1° E î & ï ^  the final t m r a  qj- ---Li Data given are as numbersuic ---  --- a-- ----- -— : :---. _displaying attack and threat behaviour^ 

of animals

Olive oil 
vehicle 
n = 10

3* 1*

Low dose 
progesterone 
n = 10

High dose 2 7
progesterone 7
n = 10

* significant difference compared with control P = O.C32-P = 0.027 
Fisher Exact Probability test
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P̂ ppptment 8 = 10- The effects of androstenedione or corticosterone 

administration during pregnancy upon copulatory behaviour of adult 

Bale offspring. Offspring were derived from 8 control mice, 7 peanut

oil vehicle-treated mice, 6 androstenedione-treated mice and 8 

corticsterone-treated mice. The test period was 100 minutes.

rcanas. The effects of acute androstenedione and acute corticosterone 

administration from days 12-17 of pregnancy, upon the masculine 

sexual responses of male offspring are shown in table 8:15. Male 

offspring from mice treated with either androstenedione or 

corticosterone showed no significant decrements in sexual behaviour, 

compared with male offspring from control or olive oil-treated mice.
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pyppnTHEHT 8,11, Th. effects of andro.ten.dione or corticosterone 

pregnancy upon aggressive behaviour of adult 

offspring* Offspring «ere derived fro. the > » .  pregnant . 1 «  

need in experiment 10, and had been used in test, of copul.tory 

behaviour. At approximately 8 ».eh. of age, .ales »ere individually 

housed and remained in isolation for 26 day. prior to behavioural

testing.

K S M S . The effect, of acute andro.t.nedion. and acute 

corticosterone administration fro. day. 1 2 -1 7  of pregnancy upon 

bh, aggressive responses o, „ 1 .  offspring and the proportion of 

animals that d i s p l a y  aggression, are sho»n in tales 8:16  and 8 .1 7  

respectively. There ».re significant difference, betue.n — —

of aggression between experimental groups. «ale offspring fro.
, • crored lower on the composite aggressionandrostenedione-treated mice

a -i „ff^rinq from control, peanut oil and score compared with male offspn g
. , mice proportionately fewer male offspringcorticosterone-treated mice. v

, . „ cnlaved attacks compared withfrom androstenedione-treated mic P

male offspring from peanut oil-treated mice.
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EXPERIMENT 8:12. The effects of adrenalectomy coupled with chronic 

pregnancy upon copulatory behaviour of adult male 

offspring. Offspring were derived from 3 adrenalectomised crowded 

fflice, 5 adrenalectomised control mice, 5 Sham-operated crowded mice 

and 4 Sham- ope rated control mice. The test period was 100 minutes.

H S M T S . The effects of bilateral adrenalectomy on day 9 of 

pregnancy and chronic crowding from days 12-17 of pregnancy, upon 

the masculine sexual responses of male offspring are shown in table 

8:18. Male offspring from mice adrenalectomised or stressed during 

pregnancy showed no significant decrements in sexual behaviour, 

compared with male offspring from Sham-operated control or stressed

mice.
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nTSCUSSION

The results of experiments 8:1 and 8:2 show that the stress of 

chronic crowding during the final third of pregnancy is detrimental 

to the differentiation of some sexually dimorphic patterns of 

behaviour in the male offspring. The finding that crowding during 

pregnancy impairs the copulatory responses of male offspring in 

nice, compares well with previous studies employing more artificial 

stressing procedures in the rat (DahlSf, Hard and Larsson, 1977:

Dunlap, zadina and Gougis, 1978; Herrenkohl and Whitney, 1976; 

„asterpasgua, Chapman and Lore, 1976; Meisel, Dohanich and Ward,

1 9 7 9; ward, 1972) . There are only two other re^rts of the effects
ncr sexual behaviour in

of stress during pregnancy upon male offsprr g

th, » « . :  »11.« » a  »*39«« 113” ' " 3 ° “  i,,Ct“ ='a I“ « « ' * “ 14'"11'

1» „ 1 «  o « . P « » 9  « 0 »  crowded «1», -  * - « *  -  

Herrenkohl (1984a) report no deficits in masculine sexual

«  e e ^ n t e d  f.ini»« ” ‘traln‘a
Bice. In addition ,crowdin, dnrin, p r e ^ c y  ... . 1 ~  “

• of aqqression in male offspring. This result 
impair the expression of agg

_ ¿luring pregnancy to anotherextends the known effects of stress d u n  g P
. • „ npct of behaviour, which _ Cent Qpxuallv dimorphic aspecttestosterone-dependent sexuaiiy

,. , That both copulation and aggression
has not been previously studied.

c crowded during pregnancy,
are impaired in male offspring

. differentiation of behaviour of the male 
suggests that the sexual d

■ , ,t rid, II *  P » « 1 "rodent, is genuinely at risk
or stressful, during the final stages of 

conditions are adverse or

foetal development.

„  d e r i d e d  -d — u » "  -  — -  < t W h  1,Ck 

of masculinisation would P « * * * »  >» * “ “ riPt” n '

... c a p e ,  „  reflect. el«er a « . « « «  -  -  *“  ^
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regions controlling the expression of these behavioural responses, 

failure of development of the pituitary-gonadal system. As 

the latter is ultimately under hypothalamic control, a developmental 

defect in the central nervous system is implicated in any case, and 

question «solve» itself to - et h e r  the lesion i= Seated «

» neurobehavioural site, . neuroendocrine site or both. »  « t e W t

„ d o  to distinguish between these possibilities , testosterone 

propionate -as ad.inist.red to ..1. offspring f r .  both control 

» d  crowded .ice prior to a repeat era.in.tion of copul.tory 

behaviour (experiment 8:1) . The rationale behind this techniqu 

„a, that if the d » . , e  -•» P ™ e l ,  endocrine, testosterone r e p l . c e n t
a restitution of normal patterns of masculine

therapy should result in
v one therapy abolished all significant differences behaviour. Testosterone therapy

in „ting behaviour between .ale offspring « -  —  -  

„i»is. - d  although the .«,1« Prior —  -  «-ale- 1» * «

first behavioural test ..V —  “ “
_  that the lesion caused in male offspring 

result strongly suggests
, . Stahl, Gotz, Poppe, Amendt

from stressed mice is mainly endocrine.
(1980) have, in fact, already demon- 

and Domer (1978) and Corner (1980) h
.__ whose mothers

*»ficiency in male newborn rat strated testosterone deficiency
_ nerinatal androgen

were restraint-stressed during pregnancy, and peri
these animals

therapy can restore .
(Dorner, Gfitz and Docke, 1983). Whether the

_  into adulthood and occur in the
circulatory testosterone pers - tQ be

. stressed during pregnancy, 
male offspring from mice

determined. _
„„ „foots Of testosterone th e ra p y  « ? »

In contrast, the effe (experiment
of male offspring from crowded mic 

aggressive responses of m
• of results indicated that 

First analysis of 8:3) were less clear. Fir



testosterone therapy could reinstate aggression, as no differences 

in the proportion of male offspring from crowded or control mice 

fighting, and no differences in the latencies of the nurfcer of

„.pouent aggressive “ “  ■h°"” ty 9r° ® 6 ’ *Pt,“ °nt'
when th. 1- °"ly “  tb°“  " 1“ 1'

display aggression. differences In the of .„nession

offspring fro. crowded snd control -ice » .
,[t„  testosterone tr.at.ent. On. int.rpr.tation of this r.snlt 

is that only a proportion of the male offspring from crowded mrce 

sh0w an androgen deficiency, and more permanent effects upon male 

offspring aggression may he due to damage to train areas controlling

this behaviour.
Th. effect, of stress during pregnancy upon ~ l e  offspring 

masculine behaviour, particularly s.ru.l t.h.viour, ha. b e «

suggested to be ..dieted by -  bb* ^
to products fro. the ..ternal pituitary— rtic.l -  <— ■

1977). There has been little 
1972; Dahlof, Hard and Larsson, 1977).

• V. of^pgis Additionally, it was 
previous investigation of this hyp

, the perinatal period any
not clear in previous studies w

• offspring behaviour exerted an influence; i 
factors influencing offspring u

_  ,iaed to control certain post-
this study fostering procedures we othesis

and S t e m  (1978) tested this hypothesis 
natal influences. Chapman and S t e m

by ad.iuist.riug -  -  -  —

« 1 .  offspring revealed uo 1 * » « - «  “  “ “ “h“ ' ‘
, ... th. effects of »CT» ad.iui.tr.ticu

responses. In experim latory responses
i offspring masculine copulatory 

during pregnancy upon ma ^  report by
was studied, and results suggest that contrary

(1978) this treatment does impair male offsp 
Chapman and Stem (1978) tnis

• i-here have beenresult was obtained,copulation. Since this
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independent confirmations that male offspring from both rats (Rhees 

and Fleming, 1981; Stylianopoulou, 1983) and mice (Politch and 

Herrenkohl, 1984b) treated with ACTH during pregnancy, show 

deficiencies in masculine sexual responses. However, as with the 

case of stress, no study has investigated whether these behavioural 

deficiencies are a result of impaired testosterone secretion. In 

experiment 8:4, the effects of testosterone therapy was also studied, 

and results show that testosterone treatment did not completely 

restore sexual responses of offspring from ACTH-treated mice to 

control levels. It must be concluded that the ACTH administration 

regime produced effects that extend beyond those of crowding, and 

that male offspring from ACTH-treated mice have some permanent 

damage to brain areas influencing copulatory behaviour. In contrast 

to the decrements detected in copulation, aggression was not affected 

in male offspring from ACTH-treated mice (experiment 8:5). However, 

Simon and Gandelman (1977) reported that proportionately fewer male 

offspring from ACTH-treated mice attacked male opponents. Altho g 

doses of ACTH used in this study were identical to those of Simon 

and Gandelman (1977) other differences in methodology and strain of 

mouse could account for differences in results. Problems were 

encountered in this study in inducing mice to fight, and great 

variability in proportions of males fighting between experiments

was encountered. Application of male mouse urine to standard
. duration of attacks againstopponents did increase the number and durat

, • n f e may also have improved
these animals, but isolation earlier

. variability between experiments. Isolation aggression and decreased v a n a b  Y
. vvi-i-s study because of housing 

earlier in life could not be used i

and resource shortages.
, i-Viai- ACTH administrationThere is overall strong evidence that ACTH
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during pregnancy reproduces the effects of stress during pregnancy, 

upon male offspring copulation and aggression, and thus there is 

support for the working hypothesis that the maternal adrenal is 

required for the production of the described effects. As stated 

elsewhere, the intact ACTH molecule does not cross the placental 

barrier (Chapter 2) and as such the effects of crowding or ACTH 

administration during pregnancy upon male offspring masculine 

behaviour patterns are probably mediated by adrenal products. 

Unfortunately, in this study no steroid administration regime 

influenced any aspect of offspring behaviour. Corticosterone was 

administered to pregnant mice in both chronic and acute regimes and 

neither influenced male offspring copulation (experiments 8:6 and 

8:10) or aggression (experiments 8:7 and 8:11). That corticosterone 

treatment during pregnancy does not affect male offspring copulation, 

contrasts with the report of Herrenkohl and Politch (1984b) who 

showed that administration of corticosterone acetate to pregnant 

mice depresses masculine sexual responses of male offspring. 

Similarly, in this study, no deficits in copulation (experiment 8:8) 

or aggression (experiment 8:9) were detected in male offspring from 

progesterone-treated mice. This result contrasts with one previous 

report that male offspring from rats treated with progesterone 

during pregnancy, show deficits in sexual behaviour and aggression 

(Hull, Franz, Snyder and Nishita, 1980). The differences in the 

results between previous studies and those reported here may be 

explained by methodological and other differences (e.g. species or 

strain differences, hormone and dosage differences). However, 

agreement with previous reports on the effects of androstenedione 

administration during pregnancy was obtained in this study 

treatment did not impair male offspring copulation (experiment 8:10)
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or aggression (experiment 8:11) and the former result agrees with 

that of Gilroy and Ward (1978) using the rat. Collectively, there 

is strong evidence that androstenedione is not the maternal adrenal 

steroid responsible for producing the effects of stress or ACTH 

treatment during pregnancy, upon male offspring masculine behaviour. 

Further study is required prior to conclusions that corticosterone or 

progesterone mediate the effects of stress or ACTH treatment during 

pregnancy. On the basin of the re.nl« from thin .tody, the 

hypothesis that the effects of crowding or ACTH treatment dating 

pregnancy, upon male offspring behaviour, are ultimately mediated by 

corticosterone, progesterone or androst.n.dione must be rejected.

It is difficult to comment on the study of the effects of 

adrenalectomy coupled with crowding during pregnancy, upon male 

Offspring copulation ierperim.nt 8.121'few pregnant mice 
.ere used. Although offspring fro. adren.l.ctcmi.ed

stressed .ice showed pattern, of copulation which did not differ 

from those of either adr.n.l.ctomis.d or Bha.-eper.ted controls, 

which is consistent with the worhin, hypothesis, offspring fro. Sh„- 

operated stressed mice did not show deficit, in copulation compared

with control* as predicted fro. the results of experiment Sol.
. . i-n ascertain whether adrenal-

More effective experiments are requi
w effects of crowding during pregnancy

ectomy can abolish the harmf
upon ..1, offspring sexual behaviour, -  «deed -ether the . . « « . 1  

adrenal and its product, are involved in producing the d.scrrb.d 

effects of these treatments.
a a- -in rhaDter 7, administration ofAs has been pointed out in Chapter

rinses of single hormones can only crudely 
essentially arbitrary dose

. r>f a stressed animal, and it is not 
imitate the hormonal milieu of

„ . reaimes did not ronroduce
surprising
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the effects of crowding or ACTH treatment during pregnancy with 

complete fidelity. It is a strong possibility that several steroids 

are responsible for producing the effects of crowding during pregnancy 

upon male offspring behaviour. Alternatively, an unidentified 

adrenal product may mediate the effects of crowding: in this study 

the effects of oestrogen administration during pregnancy were not 

studied. Recent evidence suggests that oestrogen (oestradiol 17-B) 

acts as an anti-androgen, which with or without testosterone, 

influences the sexual differentiation of brain and behaviour 

„ „  saal. Grant. McMullen and Laves. »83».

from the adrenal (see Chapter 2! and their involve«« in ..di.tin, 

the effects of crowding upon » 1 .  offspring behaviour, is a possibility 

that remains to be studied. It is interesting to note that 

oestradiol ad.ini.tr,tion during pregnancy result, in hypoprol.ctina^a 

in the offspring (Muhn. Bollen and 1M2)
secretion has been reported in offspring fro. rat. re.trarnt stressed

during pregnancy (Politch. Herr.nXohl and » ™ >  ‘ Th'

endocrine ab»or,,liti.s and possible cause, of the behavioural 

deficits of Offspring fro. stressed rodents will no. be discussed.

T„. organising influence of androgen, for the -

„.online behaviour ..... — ^  •“ “‘1
differentiation is »ell h„o»n .see Chapter 2,. testosterone is

inatal Period and in adulthood for the normal 
required during the perm P

There is evidence that offspring
expression of masculine behaviour.

, nituitary-gonadal activity. War
from stressed rats show abnormal pituita y g

. „  acCeleration of the normal testosterone
and Weisz (1980) report an accel
surge in -ale foetuses of restrained rats. Additionally, neo 

Offspring fro. rat. restrained during pregnancy show reduced pl.-a 

testosterone concentration, «.pared »1th offspri», « -  0 0 0 -—
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rats (Stahl, Gotz, Poppe, Amendt and Dorner, 1978; Dorner, 1980).

Thus the abnormal patterns of sexual behaviour in offspring from 

stressed rats may be caused by altered testosterone secretion early 

in life. in fact, Ward and Weisz (1980) postulate that stress 

during pregnancy mistimes the development of endocrine systems from 

the brain, and it is this phenomenon that results in the decrements 

of masculine sexual behaviour in male offspring, at least in rats. 

Whether this is the only cause of the deficits in masculine behaviour 

in offspring from rodents stressed during pregnancy is open to 

question: reduced testosterone secretion in adulthood may also be 

a cause, and this possibility was experimentally examined in this 

thesis. To date there is no direct evidence that male offspring 

from rodents stressed during pregnancy show reduced secretion of 

testosterone in adulthood. However, adult male offspring from 

«strained rats are «ported to show reduced « « . t i o „  of prol.ct» 

lPMJ and corticosterone in condition, of -trees “

» d  Gala, 1,78,. »  U  . P ^ a r y  to„on. tt.t i, - » » X  «

corticosterone and otter glucocorticoids <e.„ 8*1».
anri thus PRL deficiency in Haisenleder, 1981; see Chapter 7) and th

prenatally .tres.ed »ale off-Pring may ** doe to *. — -  “

corticosterone from the maternal adrenal. Foetal exposure to
known to impair develop-

naturally occurring glucocorticoids is al
a , Milkovic, Milkovic, Senear and

ment of the foetal adrenal (e.g.
. ir decreased stress-induced

Paunovic, 1970). More important y,
secretion of a hormone is indicative of a defect in the secretory 

mechanism of the hormone, then reduced PPL and corticosterone secre i

„,y 0. involved in t„e can., of —

..1, offsprin, from rodents stressed during prW a»cy.

known to induce testicular testosterone Oio.yntnesis in t ie  rat
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(Baranao, Legnani, Chiauzzi, Bertini, Suescun, Calvo, Charreau and 

Calandra, 1981; Waeber, Reymond, Reymond and Lemarchand-Beraud, 1983) 

and in humans (Slonim, Click, Island and Kasselberg, 1982). 

Hypoprolactinaemia early in life or in adulthood could therefore 

result in some loss of testosterone biosynthesis and secretion, 

and consequently the normal expression of testosterone-dependent 

behaviour patterns would be at risk. It can be stated in the absence 

of other evidence, that hypoprolactinaemia may be the cause of the 

deficiencies in masculine behaviour reported here in male offspring 

from crowded mice. Hypoprolactinaemia is one hypothesis suggested 

to account for the results obtained in other chapters, but adrenal 

underdevelopment has also been suggested as a cause of observed 

results. Adrenal underdevelopment, known in offspring from crowded 

or restrained rats (Dahlof, Hard and Larsson, 1978) may also cause 

the deficits in masculine sexual behaviour reported in these animals: 

corticosterone secretion is correlated with copulatory activity in 

male rats and this might suggest some causal relationship between 

this hormone and sexual responses (Bronson and Desjardins, 1982;

Szechtman, Lambrou, Gaggiula and Redgate, 1974). Whether the
, =pvually-dimorphic aspects of

deficits in testosterone dependen

behaviour reported »ere * »  «  tht°“,hOUl 11£°
i, open to debate. * —  « .  «  «—  —  -  “  —  

the endoorin. status of prenatal» stressed P » « 1“ 1“ 1''
in th. mo«,.. both early I» development and In ednlthood. 

already been suggested that a deficit in behaviour may be 
abnormal d e v e l o p  of th. brain re,ion cone.rn.d -1th oonttolUn,

thl. behaviour and this may —  «  ~

t.sto.terone therapy restoring .«.«■•*» ln “ 1*
» permanent effect on the brain is —  « ■ —  *»crowded mice.
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the ineffectiveness of testosterone therapy in inducing a restitution 

of copulation in male offspring from ACTH treated mice. Whether this 

apparent effect on the brain is due to actual damage or a result of 

incomplete androgen masculinisation of neural and neuroendocrine 

structures (perhaps resulting in a permanent insensitivity to androgen 

or impaired control of the pituitary-gonadal system) is unknown, and 

this is worthy of future study. It is clear however, that crowding 

and other stressful procedures, if applied to the pregnant rodent, 

threaten to disrupt the sexual differentiation and development of 

male offspring. Finally, as with the results in Chapter 7. this 

study was unable to supply firm evidence as to whether adrenal 

products mediate the effects of crowding, and further study is 

necessary prior to excluding an extra-adrenal mechanism of mediation, 

producing the described effects of stress during pregnancy.
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CHAPTER 9

gENERAL DISCUSSION

Living in high population densities is well known to influence 

the endocrine activity of rodents: crowding is reported to depress 

pituitary-gonadal activity in male mice (Bronson, 1973; Jean-Faucher, 

Berger, De Turckheim, Veyessiere and Jean, 1981) and to suppress 

reproductive cycle, in female -ice (McKinney, 1972, »ichols, I960). 

Further, it h,s been suggested that the phenomena o£ regulation of 

reproductive development and efficiency, by environmental condition, 

ena population den.ity, is Modulated by the hypoth.lamo-pituit.ry- 

adrenocortical axis (e.g. Christian, Lloyd and Davis, 1964, Chr 

1 9 7 1) » d  this is .» application of Selye'e (1936, I960, concept of 

.tree.. » 1 .  thesis. ether ~rK, -»9 9 « «  that environmental
. ■ affects the development and reproductivestress induced by crowding, affects

, also of future generations,
potential not o n l y  of the present, but al

a  d-Hai- adverse environmental conditions Whilst it can be understood that adverse

can influence the development, Phy.iolo,y » d  behaviour of — 1» 

directly, a problem a r i s e ,  in explain!», the chan,., 1» these —

parameters, observed in the offspring of — .1= —  »  — ' 

mental stress exclusively during pr«gn»cy, in that the offspring
... f-Vin external environment, and • /i-i rort- contact with thG are never in direct

• emQ the outcome of develop- 
a  Tn all organisms, t:netherefore not stressed. In ai y

meat is -  interaction bet.e.n
. » . i s ,  - t h e  environment" include, the body chemistry of the -  -

. m is supported in Utevo. Changes
while the developing foetal organ

hp transmitted to
in the body chemistry of the maternal organism can

, , steroid hormones
the foetus. Further, certain compounds such as

readily pass from
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p l a c e n t a  ( s e e  C h a p t e r  2 )  . T h i s  m e a n s  t h a t  c h a n g e s  i n  t h e  e n d o c r i n e

l . t » s  o f  t h e  m o t h e r  » i l l  w i t h  . 1 1  p r o b a b i l i t y ,  p r o d u c e  o h » , . ,  o f

h o rm o n a l s t a t u .  i n  t h e  u n b o r n  o f f s p r i n g .

A s y n d r o m e  h a .  been d e s c r i b e d  i n  t h e  o f f s p r i n g  o f  m i c e  s u b j e c t e d

t „  a .  s t r e s s  o f  c h r o n i c  c r o w d i n g  d u r i n g  l a t e  p r e g n a n c y ,  » h i c h  

. « e n d .  t h e  p r e v i o u s l y  h n o w n  c o n s e q u e n c e ,  o f  s t r e s s  d u r i n g  p r e g n a n c y .

s y n d r o m e  c o m p r i s e s  i n c r e a s e d  p e r i n a t a l  m o r t a l i t y  a n d  lo w  b i r t h  

» e ig h t  . C h a p t e r  5 )  r e t a r d e d  -  o f  p u b e r t y  a n d  d i s r u p t e d  r . p r o d -  

u c t i v .  c y c l e s  i n  f e m a l e s  . C h a p t e r  7 )  » d  d e c r e m e n t ,  i n  c o p u l a t i o n  

„ d  a g g r e s s i o n  i n  m a l e .  . C h a p t e r  8 ,  .  T h e  w o r h i n ,  h y p o t h e s i s ,  t h a t  

t h i s  s y n d r o m e  i s  m e d i a t e d  b y  m a t e r n a l  p i t u i t a r y - a d r e n o c o r t i c a l  

p r o d u c t ,  w a s  « . t e d ,  h C T „ .  c o r t i c o s t e r o n e ,  p r o g e s t e r o n e  -  

S t e n e d i o n .  » . r e  a d m i n i s t e r e d  s i n g l y  t o  p r e g n a n t  m i c e ,  t o  » » « m e  

» „ e t h e r  t h e s e  h o r m o n e s  r e p r o d u c e d  c l o s e l y  t h e  e f f e c t ,  o f  o r o . d r n g .

t h a t  t h e  i n h i b i t i o n  o f  s o m a t i c
E v id e n c e  w a s  o b t a i n e d  t o  s u g g

. . o f f s p r i n g  f r o m  c r o w d e d  m i c e  w a s  p r o b a b l y  d u e  t o
d e v e lo p m e n t  i n  o f f s p r i n g

t i c a l  a c t i v a t i o n  d u r i n g  p r e g n a n c y ,  i n  t h a t  A C T H
p i t u i t a r y - a d r e n o c o r t i c a l  a c t

,  . i , -  o f f s e t s  o f  c r o w d in g  
e f f e c t i v e l y  r e p r o d u c e d  t h e  e  

and  c o r t i c o s t e r o n e  m o s t  e f f e c t i v e l y
. r \  T n  a d d i t i o n r  b o t n

upo n  t h i s  p a r a m e t e r  o f  d e v e lo p m e n t  ( C h a p t e r  .

ACTH a n d  corticosterone a d m i n i s t r a t i o n  d u r i n g  p r . g n . n c y  r e t a r d .

■ „ rrhaDter 6) and this was a  
neuromuscular development of offspring (Chapte

nf stress during pregnancy (Chevins, 
previously reported consequence o

t h a t  s e x u a l  d i f f e r e n t i a t i o n  o f  o f f s p r i n g

1 9 8 1 ) .  However, evidence
.  „  _  c o n s e q u e n c e  o f  e x p o s u r e  t o

fro m  c r o w d e d  m i c e  w a s  d i s r u p t e  t r a t i o n
„ n  s t e r o i d  a d m i n i s t r a t i o n

a d r e n o c o r t i c a l  p r o d u c t s  w a s  ^  u p o n  r e p r o d u c t i v e

regime e f f e c t i v e l y  r e p r o d u c e d  e

,  , r v a a o t e r  7 )  o r  m a s c u l i n e

d e v e lo p m e n t  a n d  f u n c t i o n  i n  —  ^  ^  a d i n i n i s t r a t i o n

b e h a v i o u r  i n  m a l e s  (Chapter
• m i l a r  e f f e c t s  t o  c r o w d in g  u p o n  t h e  

d i d  p r o d u c e  s i m i l a
d u r in g  p r e g n a n c y
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reproductive development and function of females, and copulation in

, ^ 3.3 finding, coupled with independent reports of the effects
males.
Of KTH administration during pregnancy (sea Chapter 2 literature 

suamary) supply evidence that the kn~n consequence, of stress during 

pregnancy (see Chapter 1 literature su»,ry. are prchably mediated 

by activation of the maternal pituitary-adrenal system. A 

schematic representation of the syndromes observed in this study 

y„ the Offspring of m i «  crowded or treated with hormone, during

pregnancy, is given in Table 9:1.
In order to adequately construct and examine the working

hypothesis, other factors which could possibly mediate the effect.

o, crowding during pregnancy upon offspring development were
. , -rn chapter 4 , the possibility that the

identified and investigated.
crowding or hormone administration regimes used in this study,

affected maternal food intake or altered the length of pregnancy.

investigated. -o evidence was found that any “

depressed food intake or (with perhaps the exception of chronic
corticosterone) shortened pregnancy lengths. These factor, can

therefore he excluded from any hypothesis of mediation, although it

i, recognised that they may in c o i t i o n  aggravate the °
. . this study. Additional care was taken the treatments employed in this stuay

: or at least minimise, postnatal
throughout this study to contro ,

At birth, all litters were
influences upon offspring developmen .

and fostered to an untreated dam. This 
culled to a standard size an

rrols for abnormal patterns of maternal 
procedure partially cont .

„ ,11 result from the various, i.ffnn which might resubehaviour and poor lactation es
• d exposure of offspring to hormones 

treatments, and prevents continued exposu
, ,hers It is important to realise that 

in the milk of natural mother . therefore
• in Part stimulated by the pup, and 

maternal behaviour is in P



Table 9:1. Schematic representation of developmental syndromeŝ 
7„-i^ent'in offspring from mice crowded, treated with hCT^,
corticosterone, progesterone or androstenedione during late 
pregnancy.
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Treatment during pregnancy

1

Alteration 
to offspring
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Copulation (male)
0 o 0

Aggression (male)

KEY: + = Effect present: enhanced or ™ ^ 6Ctl°nal
- = Effect present; retarded 
0 = No detectable effect 
* = Agreement with other repor 
2 = Disagreement with other repo
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ig stiU possible that the effects of crowding or hormone 

manipulation during pregnancy upon offspring development, may be 

influenced to some extent by altered maternal behaviour of the foster 

mother, due to some as yet unidentified property of the treated 

litter. However, it can be stated with confidence that any effects 

of crowding or hormone treatment during pregnancy upon offspring 

development, is effective mainly during intra-uterine life.

Assuming that the maternal adrenal cortex does play a major 

role in producing the syndrome evident in offspring from crowded 

mice (and offspring from ACTH-treated mice) what adrenal products 

are responsible? It has already been suggested in Chapters 7 and 

8 that one possible reason for why no single steroid closely 

mimicked the teratogenic effects of stress, was that the dosage 

administration regimes were crude and did not match the hormonal 

milieu of a stressed rodent with complete fidelity. It remains a 

possibility that more complex administration regimes may give firmer 

evidence to identify teratogenic hormones. There is no basis for 

the supposition that all the harmful effects of crowding during 

pregnancy are mediated by the same adrenocortical product or caused

in the same way. The interaction of several adrenal steroids may
. . n disruDt the process of sexual differentiationbe required, for example, to disrupt une p

(see Chapters 7 and 8) . Alternatively, a single and as yet 

unidentified adrenocortical product may be responsible for producing 

the entire syndrome evident in offspring from crowde 

strong candidate for such an agent is adrenal oestrogen, and a 

worthwhile area for future work is to examine the teratogenic activity

of oestradiol and related compounds.
A possibility that cannot be excluded, is that the effects of

c« « alng p ^ n a n c y  » P »  * ~  ” ai*“ 4 *
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extra-adrenocortical hormones. Lieberman (1963) reported that 

offspring from rats crowded or treated with adrenaline during 

pregnancy showed increased activity levels, whilst offspring from 

rats treated with hydrocortisone or noradrenaline during pregnancy 

showed decreased activity levels. This result indicates that some 

„»pen.nt, of th. prenatal stress syndrom. • «  r.prod»o.d. and 

therefor« W  1» mediated »y, adr.no-.edull.ry hormones. dlt.rh.tiv.ly, 

the prenatal «tress syndrome may be ..dieted by ertr.-.dr.n.l 

„.tors, for example by Placntal P— ** »' ^
„„.phalins and opioid peptid.e. The ne.roendoorinology of neuro- 

peptid. synthesis is now beco-in, »nd.rstood to th. extent th.t it 

is bnosn thst . single pr.onr.or peptide U  co„on to th. bio-

synthetio pathways of hCTH and th. endorphin. * » » “ ■ » " »  •
endorphin is b n . ™  to be s.or.t.d .long with « T H  dnrin, conditions

o, stress. decently. Badger -  » —  <1983’ “
naloxone (an endorphin »t.goni.t and f.oilit.tor of gonadotroph»

release) fails to induce copulation in male offspring

stressed by restraint during P M » « “». <=°PUl*tl°n “
, rati This result can be

offspring b o m  to non-stressed con r
fhP reduced copulation in male offspring

interpreted in two ways;
• nr-pcmancy is caused by an abnormality from rats stressed during pregnancy

.r hv an abnormality of
in gonadotrophin regulating structures,

= The latter interpretation
endorphin-naloxone receptor systems-

at that endorphin .ay be implicated in 
.ay intuitively suggest OEKJ„ this par-.t.r
mediating th. effects of stress during P M » “

Monder, Yasukawa and Christian 
of offspring development. However, Mond

_ . offspring from ACTH treated mice s(1980) reported that female offspr g

„ delays in other developmental milestones,
retarded vaginal opening an

, bv disturbances in naloxone-sensitive
and that this is caused by disrui
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receptors, since naloxone can prevent these hereto,enic effects of
Hence ACTH administration during pregnancy is sheen to be

capable of affecting o p io id  receptor syste.s and this -ay influence

„IS Offspring sexual behaviour in Rh.es, Badger and F l i n g . ’ (»S3)

stuay. A worthwhile are. of future study is to ex-ine these

alternative, extr.-pituit.ry-.dr.nocortical hypotheses of „edi.tion

cf the t e r a t o g e n i c  effects of stress, as »ell a. ™ r e  fully — *>*»*

tte "prenatal stress" syndic, and causes of each c o^n.nt effect.
in addition to « .  fully documenting a syndrome of abnor».l

dev.lop.ent in offspring f r »  rodents stressed during
hvDothesis that the maternal pituitary-adrenal and testing the hypothesis

. n o n  of these developmental effects, this system mediates the production of these a
■ • = This study has shown that naturallystudy has wider implications. This stu y

occurring hocones regal», aspect, of foetal develop..», P»trcul.r y 
body growth and endocrine development. 1» Chapter. 6. 7 and 8 the 
effects of the various treat»«« upon par-eter. of d.v,lop».nt

, „  c o n t r o l l e d  by n e u r o e n d o c r i n e  or n e u r a lthat are partially c o n t r o l

probable that other more specific aspects 
reported. It seems P

, and neuroendocrine systems are
of development controlled by brain

„ (.u,» are maturing during
also affected, particularly those sys em

_f insult. In the mouse'
critical period, coinciding with the t » e

not fully developed until after birth
many neural systems are

.ot,v;-l for damage to these
(Rodier, 1980) and there is the po thesis• llv the experiments reported in this thesis
structures. Additionally, the P

• effects of stress and various 
have investigated the teratogenic .

„ not been previously studied; Shepard (1976) 
hormones which have not „inrtina

tc aqents and their effects, including
catalogues known teratogen 9 d

ffects are largely upon morphology and 
hormones, but their known effect

. _ development. For the
there is little study of other aspe
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purposes of this study a "teratogenic effect" is not only the gross 

morphological malformation, but also the more subtle "pathology" of 

altered body, endocrine, brain or behavioural development resulting 

from insult during foetal life, which may only b e  detectable in

postncit^l lif©.
Hypoprolactinaemia has been suggested as a possible single common 

pathway underlying the cause of the syndrome detected in offspring 

from crowded mice, although other endocrine causes have been 

postulated. Reduced perinatal secretion of insulin and thyrotrophin 

and the metabolic action of corticosterone, may be a cause of the 

retarded development of body (Chapter 5) and brain (Chapter 6) and 

adrenal underdevelopment may be implicated in the cause of 

consequences of stress during pregnancy upon offspring sexual develop

ment and behaviour (Chapters 7 and 8) . An important general 

hypothesis of the causes of the syndrome, and one which is particuarly

relevant to sexual differentiation of behaviour (Chapter 8) is that
act to desynchronise brain from endocrine stress during pregnancy may act to ae y

„  other organ a y . « »  development. This 1. »  « » a c t i v e  hypothesis 

as it agree, veil *ith on. cnrr.nt theory of explanation of a l » . t  

.1 1 teratogenic effects, it has teen suggested that all .orphologic.l 

defects resulting fro. i n . » »  during .«hryonic-foet.l life are a 

result of mistimed restorative grovth of different cell population.

is n 7-8) Further, it would seem that the 
(MRC News, 1982, No. 16 p. 78).

ft = fpratoqen is less important than
biochemical or toxic action o
previously thought, the major principles of teratogen.«» • «  » .  

period of development at xhich the » . » »  »

and dose of the agent . 1  the g e n e t »  destitution of the concept».

Krauer. hr.u.r and Hytten, M  "

explaining vhy many substances = » » »  t “ t ‘ 1
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asdevelopment (see Shepard, 1976) and why such alien substances 

formaldehyde, when administered during pregnancy, can have effects upon 

the offspring strikingly similar to those produced by environmental 

stress (see Schnurer, 1963) . m  fact, it is worthy of note that 

because teratological studies often involve administration of alien 

substances, which may well be noxious or activate the stress response, 

the biochemical effect of the test substance may in some cases 

cause less damage than the inevitable exposure to stress hormones.

In chapter 4, an attempt was made to study confounding factors 

(foetal undemutrition, prematurity at birth) that may influence the 

effects of stress, it remains a possibility that certain treatments

applied early in life in particular undemutrition, influence
. . -fress specifically to undemutritiondevelopment indirectly via stres . P

w  . « I V  u * .  »  p o - n u v  —  — 1 — **

_ _  197 i) Of more direct relevance
been recognised (Adlard and Smart, 197

- -i r,i-Practinq systems in mammalian 
to this thesis, the complexity of in

n o t  o n ly  —  «  a i f f i o n l t  t o  —

experiments to elucidate mechanisms mediating the
. difficult the identification of under 

crowding, but will also make difftcul
i ■ of the developmental defects detected in the offspri g.lying causes of the aevej. f

- this study to the human condition must be 
The relevance of this s y

. , the differences in gestation perio
discussed with reservatio
foetal development and general ontogeny, pharmacology ^

pharmokinetics, physiology, and behaviour even between

. u  if not impossible.

-  —  —  -  “ “ ■ d i f f l  „  -  — *

.,—able to humans and 
1 = are often not applicable c using laboratory animals
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a««»..!» of such problems c m  be fomd elsuoherc (e.g. Lewis, 1983, 

m m t , » « '  “ a Hytteu, 1984). »evorth.le.s, It 1» o..f«l to

„OM that foetal expo,«« to hotoone. has si.Uar co„..,ue«ce. for 

l a n e  a, rodent, (probably bee,«., of .roilariti., In general endo- 

crinology) - m  h u » * „  hCTH ad^ni.tr.tlon during pregnancy remit,

„  foeMl adrenal atrophy (Mlg.on, Pry.tow.by, dru^.oh and Byron,

1,5 6) and thi. 1 , identical to the effect on rodent, (e.g. MrlMvrc. 

Hilkovic, senoar m d  BaunoviC »70,. Similarly .tree, during

pregnancy ha, been clai-d a, a cau.e of — «  in h„an „1.,
, . ,h„ „ .  Kreil, Manx, Sieler, Kittner and »oiler, 1980.

(DBmer, Geier, Ahrens, K e n ,
Domer, Schenk, Schmiedel and Ahrens, 1983). These latter studres

„ere correlational (more homosexual men were b o m  in the years
» rather than experimental, and so canno 

spanning the second world war)
„ hut they do agree quite well with the 

provide "proof of cause , but they
stressed by restraint during

finding that male offspring rom r «
tation of homosexual behaviour (Gotz and Domer,

pregnancy, show augmen
bh. vmtiy »»re powerful po.tn.t.l .nviron»ent^ 

1980). However, the vast y
. he seen as a more plausible cause

and cultural influences on man mus
on m  humans, in utero exposure to 

of this surprising phenomenon.
• fluence parameters of aggression in later 

steroids is reported to influ to
d Ehrhardt, 1982) and perinata exp 

Ufe (Meyer-Bahlberg and a neurological hazard
glucocorticoids is well recognise hortnone

•a, 1983) and these consequences of hormone
(Weichsel, 1977, Sidhu, ^  ^  is some basis for

exposure also occur in roden s. ^  ^  studies, such that

employing laboratory animals in cautiously extrapolated
conclusions for the human condition can

r e S U ltS ‘
To speculate further ^  ^  ^  demonstrated in

here, to medically related researc
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Chapter 5 that there is a high incidence of perinatal mortality in 

litters from mice crowded or treated with ACTH, corticosterone or 

progesterone during late pregnancy. An awareness of the role of 

the maternal pituitary-adrenal system in foetal development (which 

is generally lacking in the literature to date e.g. Van Assche and 

Robertson, 1981) may prove valuable for a further understanding of 

the causes of "small for dates" foetuses and sudden infant death 

syndrome (cot deaths) which are not well understood. The causes 

of sudden infant deaths remains an enigma to medical science.

Current research is centred on respiratory patterns of infants and 

some success has been achieved in developing animal models reproducing 

airway sensory deprivation induced obstructive apnoea, which is a 

common post-mortem finding (although not a direct cause of death) of 

victims of sudden infant death syndrome (e.g. Abu-osba, Mathew and 

Thach, 1981). It is interesting to note that glucocorticoids accelerate 

lung maturation (Beato and Doenecke, 1981) and are used clinically, 

because of this property, to treat premature and "small for dates 

babies (Sidhu, 1983). It has previously been noted that glucocorti

coids also retard neurological development. It - y  prove valuable
j ai-ternot to identify factors 

to change the framework of study, and atte p
... life rather than exclusively 

which are manifest during prena '
. ... It Can be speculated that sudden infant death

during postnatal life. It c
= tVioi oav in humans to the perinatal

syndrome may be an analogous p
=t-rpssed, or treated with t utters from mice stressed,mortalities reported in litte

, frhaDter 5) and may be caused
ACTH or corticosterone during pregnane

a other organ development, due to 
by mistiming of brain from lung and mV, ■? c
prenatal exposure to glucocorticoids or other hormone .

. „ . .  initial studies could
postulation would be worthy of investiga

, correlate hormonal abnormalities during 
w e ll involve attempts to correla
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pregnancy (or extremes in natural physiological variation) with the 

development and mortality rates of babies, thereby identifying 

additional factors in the epidemiology of this syndrome.

Finally, a more obvious conclusion from the results of this 

study is that stress and pituitary-adrenocortical activation during 

pregnancy, may be a mechanism adding to phenotypic variation within 

natural animal populations. It is already Known that intrauterine 

position contributes to phenotypic variation of rodents without 

genetic variation (Vom Saal and Bronson, 1978, 1980). The stress 

induced in this study by crowding, can be related to natural cir- 

.»stances core so than that result!», fro. restrain« of rapidly 

growing populations, where resources shortages and intra P

conflicts W  further add to the a n i » »  » • « “ »  <*' “ *
to, the adveree conditions. Therefore, rather than the eyndro.e

descried her. in offspring fro. crowded . 1 «  hein, considered purely

„  "pathological", it » ,  —  -
and euen adaptation to the environ..« in *ich the P-rental generation
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2 3 ,  4 1 5 - 4 1 9 .



292
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B e h a v .  3 2 ,  1 3 5 - 1 3 7 .

2 9 6 .  P o l i t c h ,  J . A . ,  H e r r e n k o h l ,  L . R . ,  a n d  G a l a ,  R . R .  ( 1 9 7 8 ) .  E f f e c t s  
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E f f e c t s  

A . ,  a n d

3 0 4 .  R e i n i s c h ,  J . M .  ( 1 9 8 1 ) .  P r e n a t a l  e x p o s u r e  t o  s y n t h e t i c
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2 8 4 .  O g l e ,  T . F . ,  a n d  K i t a y ,  J . I .  ( 1 9 7 7 ) .  O v a r i a n  a n d  a d r e n a l  
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p i t u i t a r y  i n  r e s p o n s e  t o  a  g o n a d o t r o p h i n  r e l e a s i n g  f a c t o r  ( L R F ) .  
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2 9 3 .  P o l i t c h ,  J . A . ,  a n d  H e r r e n k o h l ,  L . R .  ( 1 9 7 9 ) .  P r e n a t a l  s t r e s s  
r e d u c e s  m a t e r n a l  a g g r e s s i o n  b y  m i c e  o f f s p r i n g .  P h y s i o l .  B e h a v .  

2 3 ,  4 1 5 - 4 1 9 .
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P h y s i o l .  B e h a v .  3 2 ,  9 5 - 1 0 0 .

2 9 5 .  P o l i t c h ,  J . A . ,  a n d  H e r r e n k o h l ,  L . R .  ( 1 9 8 4 b ) .  P r e n a t a l  A CTH  a n d  

c o r t i c o s t e r o n e :  e f f e c t s  o n  r e p r o d u c t i o n  i n  m a l e  m i c e .  P h y s i o l .  

B e h a v .  3 2 ,  1 3 5 - 1 3 7 .

2 9 6 .  P o l i t c h ,  J . A . ,  H e r r e n k o h l ,  L . R . ,  a n d  G a l a ,  R . R .  ( 1 9 7 8 ) .  E f f e c t s  
o f  e t h e r  s t r e s s  o n  p r o l a c t i n  a n d  c o r t i c o s t e r o n e  l e v e l s  i n  

p r e n a t a l l y  s t r e s s e d  m a l e  r a t s  a s  a d u l t s .  P h y s i o l .  B e h a v .  2 0 ,  

9 1 - 9 3 .

2 9 7 .  P u o l a k k a ,  J . ,  K a u p p i l a ,  A . ,  T u i m a l a ,  R . ,  a n d  P a k a r i n e n ,  A .  
( 1 9 8 2 ) .  F e t a l  a d r e n o c o r t i c o t r o p h i c  h o rm o n e  a n d  p r o l a c t i n  a t  

d e l i v e r y .  C J b s t e t s .  G y n e c o l .  6 0 ,  7 1 - 7 3 .

2 9 8 .  R a i n b o w ,  T . C . ,  P a r s o n s ,  B . ,  a n d  M c E w e n , B . S .  ( 1 9 8 2 ) .  S e x  

d i f f e r e n c e s  i n  r a t  b r a i n  o e s t r o g e n  a n d  p r o g e s t i n  r e c e p t o r s .  

N a t u r e  ( L o n d o n )  3 0 0 ,  6 4 8 - 6 4 9 .

2 9 9 .  R a m a l e y ,  J . A .  ( 1 9 7 9 ) .  D e v e lo p m e n t  o f  g o n a d o t r o p i n  r e g u l a t i o n  i n  

t h e  p r e p u b e r t a l  m a m m a l. B i o l .  R e p r o d .  2 0 ,  1—3 1 .

3 0 0 .  R a m a l e y ,  J . A .  ( 1 9 8 2 ) .  T h e  n e u r o e n d o c r i n o l o g y  o f  p u b e r t y .  I n  
H o r m o n e s ,  d e v e lo p m e n t  a n d  a g e i n g ,  e d .  V e r n a d a k i s ,  A . ,  a n d  

T i m i r a s ,  P . S .  S p e c t u r m .  N ew  Y o r k .  p p .  3 0 5 - 3 2 9 .

3 0 1 .  R a t z a n ,  S . K . ,  a n d  W e ld o n ,  V . V .  ( 1 9 7 9 ) .  E x p o s u r e  t o  e n d o g e n o u s  
a n d  e x o g e n o u s  s e x  h o r m o n e s  d u r i n g  p r e g n a n c y .  I n  T h e  i n f l u e n c e  

o f  m a t e r n a l  h o r m o n e s  o n  t h e  f e t u s  a n d  n e w b o r n .  P e d i a t .  A d o l e s c .  

E n d o c r i n .  5 ,  1 7 4 - 1 9 0 .

3 0 2 .  R e d d y ,  V . V . R . ,  N a f t o l i n ,  F . ,  a n d  R y a n ,  K . J .  ( 1 9 7 4 ) .  C o n v e r s i o n  

o f  a n d r o s t e n e d i o n e  t o  e s t r o n e  b y  n e u r a l  t i s s u e s  f r o m  f e t a l  a n d  

n e o n a t a l  r a t s .  E n d o c r i n o l o g y  9 4 ,  1 1 7 - 1 2 1 .

3 0 3 .  R e d g a t e ,  E . S . ,  F a h r i n e r ,  E . E . ,  a n d  S z e c h t m a n ,  H . ( 1 9 7 3 ) .  E f f e c t s  

o f  t h e  n e r v o u s  s y s t e m  o n  p i t u i t a r y —a d r e n a l  a c t i v i t y .  I n  
B r a i n - p i t u i t a r y - a d r e n a l  i n t e r r e l a t i o n s h i p s ,  e d .  B r o d i s h ,  A . ,  a n d  

R e d g a t e ,  E . S .  K a r g e r .  B a s e l .  p p .  1 5 2 - 1 7 5 .
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2 1 1 ,  1 1 7 1 - 1 1 7 3 .
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3 0 7 .  R h e e s ,  R . W . ,  a n d  F l e m i n g ,  D . E .  ( 1 9 8 1 ) .  E f f e c t s  o f  m a l n u t r i t i o n ,  
m a t e r n a l  s t r e s s  o r  A C T H  i n j e c t i o n s  d u r i n g  p r e g n a n c y  o n  s e x u a l  

b e h a v i o r  o f  m a l e  o f f s p r i n g .  P h y s i o l .  B e h a v .  2 7 ,  8 7 9 - 8 8 2 .
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R o d i e r ,  P .M .  ( 1 9 8 0 ) .  C h r o n o l o g y  o f  n e u r o n  d e v e lo p m e n t s  a n i m a l  

s t u d i e s  a n d  t h e i r  c l i n i c a l  i m p l i c a t i o n s .  D e v e l o p .  M e d . C h i l d .  

N e u r o l .  2 2 ,  5 2 5 - 5 4 5 .

R o d i e r ,  W . ,  a n d  K i t a y ,  J . I .  ( 1 9 7 4 ) .  T h e  i n f l u e n c e  o f  
p r o g e s t e r o n e  o n  a d r e n o c o r t i c a l  f u n c t i o n  i n  t h e  r a t .  P r o c .  S o c .  

E x p .  B i o l .  M e d . 1 4 6 ,  3 7 6 - 3 8 0 .

R o h n e r ,  E . C . ,  a n d  W e r b o f f ,  J .  ( 1 9 7 9 ) .  T h e  e f f e c t s  o f  
p r e p a r t u r i e n t  a v o i d a n c e  c o n d i t i o n i n g  o n  p o s t n a t a l  c a r e t a k e r  

b e h a v i o r  a n d  o f f s p r i n g  c a t e c h o l a m i n e  l e v e l s  a n d  b e h a v i o r  i n  

C 5 7 B L / 6 J  m i c e .  D e v .  P s y c h o b i o l .  1 2 ,  3 9 - 4 8 .

3 1 2 .  R o s e ,  J . C . ,  M e i s ,  P . J . ,  U r b a n ,  R . B . ,  a n d  G r e i s s ,  F . C .  ( 1 9 8 2 ) .  I n  
v i v o  e v i d e n c e  f o r  i n c r e a s e d  a d r e n a l  s e n s i t i v i t y  t o  
a d r e n o c o r t i c o t r o p h i n  ( 1 —2 4 )  i n  t h e  la m b  f e t u s  l a t e  i n  g e s t a t i o n .  

E n d o c r i n o l o g y  1 1 1 ,  8 0 - 8 5 .

3 1 3 .  R o s e ,  R .M .  ( 1 9 6 9 ) .  A n d r o g e n  r e s p o n s e s  t o  s t r e s s .  P s y c h o s o m .  M e d .  

3 1 ,  4 0 5 - 4 1 7 .

3 1 4 .  R o s e n b l a t t ,  J . S . ,  a n d  S i e g e l ,  H . I .  ( 1 9 8 1 ) .  F a c t o r s  g o v e r n i n g  
t h e  o n s e t  a n d  m a i n t e n a n c e  o f  m a t e r n a l  b e h a v i o r  a m o n g  n o n - p r i m a t e  

m am m a ls  -  t h e  r o l e  o f  h o r m o n a l  a n d  n o n - h o r m o n a l  f a c t o r s .  I n  

P a r e n t a l  c a r e  i n  m a m m a ls , e d .  G u b e r n i c k ,  D . J . ,  a n d  K l o p f e r ,  P . H .  

P le n u m .  N ew  Y o r k .  p p .  1 3 - 7 6 .

3 1 5 .  R o u d i e r ,  m . ,  P o r t h a ,  B . ,  a n d  P i c o n ,  L .  ( 1 9 8 2 ) .  P la s m a  
c o r t i c o s t e r o n e  d u r i n g  p e r i n a t a l  p e r i o d  i n  p o s t  m a t u r e  r a t s .

B i o l .  N e o n a t e .  4 1 ,  1 4 3 - 1 4 7 .

3 1 6 .  S a n d b e r g ,  D . ,  D a v i d ,  S . ,  a n d  S t e w a r t ,  J .  ( 1 9 8 2 ) .  E f f e c t s  o f  
e s t r a d i o l  b e n z o a t e  o n  t h e  p a t t e r n  o f  e a t i n g  a n d  e t h a n o l  

c o n s u m p t i o n .  P h y s i o l .  B e h a v .  2 9 ,  6 1 —6 6 .

3 1 7 .

3 1 8 .

3 1 9 .

3 2 0 .

3 2 1 .

S a n y a 1 ,  M .K .  ( 1 9 7 8 ) .  S e c r e t i o n  o f  p r o g e s t e r o n e  d u r i n g  g e s t a t i o n  

i n  r a t .  J .  E n d o c r i n o l .  7 9 ,  1 7 9 - 1 9 0 .

S c h ä c h t e r ,  B . S . ,  and Tora n - A l l e r a n d ,  C . D .  ( 1 9 8 2 ) .  I n t r a n e u r o n a l  

o - f e t o p r o t e i n  a n d  a lb u m in  a r e  n o t  s y n t h e s i z e d  l o c a l l y  i n  

d e v e l o p i n g  b r a i n .  D e v .  B r a i n .  R e s .  5 ,  9 3 —9 8 .

S c h n ü r e r ,  L - B .  ( 1 9 6 3 ) .  M a t e r n a l  a n d  f o e t a l  r e s p o n s e s  t o  c h r o n i c  

s t r e s s  i n  p r e g n a n c y .  A c t a .  E n d o c r i n o l .  43, Supple. 80,
5 - 9 6 .

S c h w ä n z e 1 - F u k u d a ,  M . ,  R o b i n s o n ,  J . A . ,  a n d  S i l v e r m a n ,  A . J .
( 1 9 8 1 ) .  T h e  f e t a l  d e v e lo p m e n t  o f  t h e  l u t e i n i z i n g  h o rm o n e  

r e l e a s i n g  h o rm o n e  (L H R H ) n e u r o n a l  s y s t e m s  o f  t h e  g u i n e a  p i g  

b r a i n .  B r a i n .  R e s .  B u l l .  7 ,  2 9 3 - 3 1 5 .

S c o u t e n ,  C . W . ,  G r o t e l v e s c h e n ,  L . K . ,  a n d  B e a t y ,  W .W . ( 1 9 7 5 ) .  
A n d r o g e n s  a n d  t h e  a r o m a t i z a t i o n  o f  s e x  d i f f e r e n c e s  i n  a c t i v e  

a v o i d a n c e  b e h a v i o r  i n  t h e  r a t .  J .  C o m p . P h y s i o l .  P s y c h o l .  8 8 ,  

2 6 4 - 2 7 0 .
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