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ABSTRACT

The problem of inaccurate two to four wire conversion is 

considered, and a conprehensive survey of the transhybrid responses of 

1845 subscribers' lines is carried out.

Results on the optimum performance achieved by line matching 

techniques are presented, and a simulator which is capable of simulating 

actual transhybrid responses is described.

The theory of continuous analog recursive adaptive filters is 

developed, and use of a filtered error signal is shown to considerably 

simplify their implementation. A simple method of estimating the 

gradients of the error surface is proposed. A method of modelling the 

behaviour of the filters is described and used to investigate the effects 

of these simplifications.

Various filter structures are investigated in terms of suitability 

for use in an adaptive hybrid. The implementation of 3 types of analog 

adaptive filter is described, and the effects of circuit imperfections are 

investigated. Results are presented for the performance of the filters.

A 1st order filter, having a single pole and zero, is shown to provide 

adequate cancelled return loss against simulated lines. However, the 

dynamic performance of this filter is shown to be Inadequate unless it 

converges from a set of stored Initial conditions. It is concluded that 

implementation of an analog adaptive hybrid is impractical.

The effects of the process of A/D and D/A conversion on the 

complexity required of a digital adaptive filter are Investigated. It is 

shown that these effects can be simply compensated.

The implementation of an experimental digital recursive adaptive 

filter is described, and results are presented for the performance of 

filters of various orders against subscribers' lines. It 1s shown that a 

first order pole-zero filter gives adequate static and dynamic performance 

when using an adaptive step size algorithm. The implementation of the 

digital adaptive hybrid is discussed.
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CHAPTER 1 

INTRODUCTION

1.1 An Historical Introduction

The development of the all-digital local exchange has created 

a need for more accurate conversion between the 2 wire system used to 

connect the subscriber to the exchange, and the 4 wire system used 

within the remainder of the telephone network. To highlight this 

need it is instructive to consider some stages in the evolution of 

the present telephone network.

When the telephone receiver and transmitter were invented by 

A.G. Bell in 1876, the only methods of switching between electrical 

connections were mechanical. Transmission was limited to the use of 

wire, with no possibility of amplification. Thus all the likely 

components of a telephone system were suitable for bi-directional 

transmission, and almost all early telephone systems used only a 

single pair of wires to carry signals in both directions of 

transmission. The invention of the triode valve ih 1906 introduced 

the possibility of amplification on long-distance circuits, and 

because the valve could only transmit signals in one direction, 4 

wire transmission began to be introduced for long-distance telephony.

A 2 to 4 wire converter, often referred to as a hybrid, was used to 

split a bi-directional channel into separate transmit and receive 

channels. Initially these hybrids were used in repeaters for 2 wire 

submarine cables, but when modulation and demodulation techniques 

became possible, it was increasingly attractive to use full 4 wire 

circuits for all long-distance telephony.

The telephone network thus evolved with a mixture of 2 wire



-  2 -

and 4 wire circuits, with the 2 wire circuits predominating for local 

and short-distance communication. This remained the case until the 

development of electronic switching techniques in 1959, which 

initiated the spread of 4 wire switching into the local telephone 

network, kith the advent of the digital local exchange, using 

uni-directional electronic switching, the 2 to 4 wire conversion must

now take place at the interface to the subscriber's line in the local 

exchange.

1.2 The 2 to 4 Wire Converter

Early 2 to 4 wire converters used a balanced bridge circuit 

with two centre-tapped transformers, however for the purposes of this 

thesis, the 2 to 4 wire converter which will be considered is the 

active circuit shown in Figure 1.1. The balance impedance (Zb), the 

terminating impedances (Ztl and Ztb), and the input impedance of the 

subscriber's line (Zi) form a bridge type circuit. The signal at the 

4 wire receive input port is buffered by the amplifier A1 and applied 

to both arms of the bridge, while the 4 wire transmit output signal 

is formed from the difference of the signals at the mid-points of the 

arms. When the ratios:-

JLllll and ■ Z h (s ) .
Zt 1 (s)+Z1 (s ) Zb(s)+Ztb(s)

are equal, the bridge is said to be balanced, and none of the 4 wire 

receive input signal appears at the 4 wire transmit output. The 

signal applied to the subscriber's line is however a scaled version 

of the 4 wire receive input signal. Signals applied to the 2 wire 

port 'see' an input impedance equal to the terminating impedance Ztl, 

since the output impedance of amplifier Aj is considered to be zero. 

These signals appear at the 4 wire transmit output, scaled by the 

gain of the differencing amplifier A,.
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The transfer function between the 4 wire receive input and 

the 4 wire transmit output, known as the transhybrid transfer 

function, is given by:-

_ _ V _ 2Zt(s) Zb(s) —Z1 (s)

Zt(s)+Zb(s) Zi(s)+Zt(s) 1,1

assuming that Ztl(s) = Ztb(s) = Zt(s).

The condition of perfect balance, given by Zb(s) = Zi(s), is 

difficult to achieve in practice, since in general no two 

subscribers' lines have exactly the same input impedances. Thus 

where a single balance impedance is used for all lines, its value is 

the result of a compromise, and in general the transhybrid transfer 

function is non-zero.

The maximum magnitude of the transhybrid transfer function 

encountered in the network depends on the spread of values of the 

line input impedances which the hybrid is required to match. The 

drop in the position within the heirarchy of the telephone system at 

which the 2 to 4 wire conversion takes place, has resulted in larger 

spreads of line input impedances to be balanced. This results in 

difficulty in achieving the required value of transhybrid loss. The 

effects of this finite transhybrid loss are discussed in Section 1.4. 

The purpose of the terminating impedance Zt is discussed in the 

following section and the concept of sidetone is introduced.

1.3 Control of Sidetone

In the subscriber's telephone it is necessary to connect both 

a microphone and an earpiece to a 2 wire local line. A simple series 

connection of the two elements results in the subscriber's speech 

being heard locally in the earpiece. This effect is known as 

sidetone, and it can be controlled by using a hybrid in the
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telephone, as shown in the simplified diagram of Figure 1.2.

Voltages produced at the microphone cause currents to flow in 

opposite directions in windings W1 and W2. If Zb, the balance 

impedance, is equal to Zis, the input impedance of the line, as seen 

at the subscriber's end, then these currents are equal. If N1 = N2, 

then under these conditions no voltage is induced in winding W3, and 

no sidetone is heard in the earpiece. The level of sidetone produced 

in the earpiece thus depends on the input impedance of the line, 

which in turn depends on the terminating impedance used in the 2 to 4 

wire converter at the exchange. The level of sidetone can therefore 

be controlled by fixing the value of the terminating impedance used 

in the hybrid.

1.4 The Effects of Inperfect 2 to 4 Mire Conversion

Figure 1.3 shows a simplified connection between two 

subscribers using 4 wire transmission. It can be seen that the two 

hybrids are connected 'back to back', and that the transhybrid 

transfer functions form a closed loop with the transmission paths CD 

and EF. Since it is desirable that paths CD and EF have low loss, 

the stability of the loop is critically dependant on the transhybrid 

losses. A measure of the stability of the system is given by the 

minimum transhybrid loss over the bandwidth 300 Hz to 3.4 kHz, and is 

referred to as the stability return loss (SRL).

If both hybrids have low values of SRL, then the loop may 

oscillate or 'sing' at a frequency where the total loop phase shift 

is a multiple of 2w. Even when the losses are sufficient to prevent 

this oscillation, the quality of the connection can nonetheless be 

seriously degraded, and the connection may sound 'hollow'.

From Figure 1.3 it can also be seen that insufficient
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transhybrid loss at subscriber B ‘s end of the the connection results 

in subscriber A's speech being returned via the path DEFA. This 

effect is known as 'talker echo', and provided that the loop is 

stable and the net delay around the loop is small, it is masked by 

sidetone in A's earpiece. If in addition subscriber A's hybrid has 

insufficient loss, then subscriber B hears A's speech initially via 

CDB, and 'ater via CDEFCDB. This effect is known as 'listener echo', 

and it is masked by the original speech, if the loop delay is small. 

The average return loss due to a subscriber's line and hybrid over 

the frequency range 500 Hz to 2.5 kHz provides a measure of the level 

of both talker and listener echo, and is therefore known as the echo 

return loss (ERL).

Many studies of the effects of echo on the subjective quality 

of telephone connections have been undertaken. Early work in this 

field concentrated on the effects of long time delays because of the 

use of cables with low propogation velocities. The introduction of 

synchronous (or geo-stationary) satellites for comnunications 

re-awakened interest in this field. Riesz and Klemmer (1963), found 

that even round-trip delays as large as 1.2 S did not result in much 

dissatisfaction among inexperienced users when no echo was present.

It was found however, that users who had been exposed to a delay of

2.4 S later reported considerable dissatisfaction, even with circuits 

having a delay of 0.6 S.

Emling and Mitchell (1963), noted that large round-trip 

delays altered the normal pattern of conversation, increasing the 

tendancy for both speakers to talk simultaneously. It was also noted 

that responses to one piece of conversation were sometimes mistaken 

for interruptions to a later (and possibly different) subject, and 

that this could lead to considerable confusion. Emling and Mitchell 

also reported on the results of a previous study on the combined



effects of delay and echo. This study shrved that as the round- trip 

delay is increased, then higher values of ERL are necessary to 

achieve the same level of customer satisfaction. More recent work 

(CCITT, 1972) has verified these conclusions, although much higher 

values of ERL were found to be required to give only a small 

probability of objectionable echo occuring.

Bunker, Scida and Me. Cabe (1979), concluded that for 

round-trip delays of up to 4 mS, such as may be encountered in the 

local network, a minimum SRL of 4 dB is required at each hybrid.

Even with delays as low as 2 mS, and with 4 dB SRL however, only 50 % 

of subjects rated a test connection as 'good', with 90 % rating the 

connection as 'good' or 'fair'.

Cavanaugh, Hatch and Neigh (1980) reported that for 

connections with short time delays, a frequency weighted measure of 

the echo path loss provided better agreement with subjective testing 

of listener echo than that provided by the SRL or the ERL.

Techniques for controlling the objectionable effects of echo 

and instability are considered in the following sections.

1.5 Echo Control on Circuits with Small Proportion Delays

The network loss plan was originally developed in the United 

States to control echo on long-distance telephone circuits via loaded 

cable (Huntley, 1953). In this scheme sufficient loss was included 

in all long-distance circuits to render the effects of echo 

unnoticable. For each L dB loss introduced into the forward 

transmission paths, the echo level is reduced by 2L dB. Using this 

technique it was possible to achieve adequate performance on 99 % of 

calls for lines with propogation delays up to 45 mS. The plan was 

made obsolete by the introduction of low propogation delay
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transmission systems.

The recent introduction of PCM transmission has again 

required that loss be inserted in the 4 wire loop, since the system 

otherwise provides 0 dB insertion loss irrespective of transmission 

distance. This loss must be introduced in the analog part of the 4 

wire circuit, and this strategy has the effect of imposing stringent 

restrictions on the loss which can be ircurred on the subscriber's 

line without breaching loudness specifications.

The trade off between between loudness and echo control is 

particularly acute on circuits with long 2 wire lines, which may have 

considerable loss, and whose input impedances are difficult to match 

using simple balance impedances. In these cases a solution is to 

achieve better minimum SRL by using complex balance impedances rather 

than the normal balance resistor (Ames, 1981).

1.6 Echo Control on Circuits with Large Propogation Delays

Insertion of loss into the transmission path, and better 

balancing of the hybrid, are incapable of achieving the very high 

levels of ERL required for satisfactory comnunication via 4 wire 

circuits with large propogation delays. When synchronous satellites 

are used to provide inter-continental links, for example, the round 

trip propogation delay can be as large as 1 S. The additional return 

loss required 1s conventionally provided at international switching 

centres by means of echo suppression or echo cancellation.

1.6.1 Echo Suppression

The first attempts to control echo on links with large 

propogation delays made use of a simple voice switching technique to
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detect speech in one 4 wire path and open the other path. Figure 1.4 

shows two half echo suppressors connected at traffic-concentrated 

points between subscribers A and B. Because the suppressors are 

situated at traffic-concentrated points, so that they can be shared 

between many subscribers, there are small delays (01 and D2) in the 

paths between the suppressors and the nearest hybrids. These delays 

are known as end-delays.

When speech from subscriber B is present at point E, then 

switch Swl is opened and potential echo signals are prevented from 

returning to B. For proper control of the echo, switch Swl should 

remain open for a small 'hangover' period after speech has ceased at 

point E. This hangover period can result in the first few syllables 

of speech from subscriber A (the near-end speaker), being lost, if A 

begins to speak immediatly on hearing a pause in B's speech. To 

counteract this near-end speech or 'double talking' problem, modern 

echo suppressors use 'break-in' detectors to ensure that the forward 

transmission path is closed immediatly a subscriber speaks. This 

modification removes echo suppression during double talking however. 

The problems of echo suppression and the techniques used in the 

design of echo suppressors were well documented by Brady and Helder 

(1963).

The switching and chopping of speech resulting from the use 

of echo suppressors was found by Riesz and Klemmer (1963) to be more 

objectionable than the original echo in some cases. Emling and 

Mitchel (1963) also pointed out that where two or more full echo 

suppressors are used with delay between them, then both forward 

transmission paths can be simultaneously blocked under some 

circumstances (a phenomenon known as 'lock-out'). To avoid this 

possibility it is necessary to ensure that only one full echo 

suppressor is used on any possible connection.
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An alternative method of echo suppression was proposed by 

Mitchell and Berkley (1971). This method consisted of modelling the 

transhybrid loss over a number of frequency bands by variable 

attenuators, as shown in Figure 1.5. The 4 wire receive input to the 

hybrid was connected to the inputs of a set of filter banks and 

attenuators, and peak detectors estimated the peak amplitude of the 

echo signal in each frequency band. The peak detector outputs were 

used to control variable centre-clippers, which removed the echo 

components in each band from the 4 wire transmit output. It was 

reported that this technique operated successfully with ERL as low as 

6 dB, and without the need to disable the centre-clippers when 

near-end speech was present. This approach requires 3 band-pass 

filters to model the echo path over each band, and no mechanism was 

proposed for automatically adjusting the attenuators.

1.6.2 Echo Cancellation

The aforementioned problems with echo suppressors led to an 

interest in methods of echo reduction without switching or inserting 

loss. It was initially suggested by Kelly and Logan (see Becker and 

Rudin, 1966), that the echo path response be modelled by an analog 

transversal filter, and that the output of the filter be subtracted 

from the signal in the return path to achieve echo cancellation.

This scheme is shown in Figure 1.6. The output of the subtractor can 

then be used to control the tap weights of the filter in such a way 

as to cause the filter response to converge to an accurate model of 

the echo path response. This technique had been used by Lucky 

(1965), to cancel Intersymbol interference in data transmission, and 

the combination of the transversal filter and the tap weight control 

circuitry became known as an adaptive filter. The amount of echo
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cancellation achieved by the adaptive filter is known as the echo 

return loss enhancement (ERLE), and it is measured by:-

ERLE = 101ogj0(Pd/Pe)  ̂ -

where Pd and Pe are the powers of the 4 wire transmit output signal 

and the error signal respectively, over the bandwidth 500 Hz to 2.5 

kHz.

An early attempt at echo cancellation by Miura et al (1968), 

measured the impulse response of the echo path by injecting an 

impulse into the ‘go1 side, and observing the signal received from 

the return side. This procedure was carried out once on initiation 

of a call, and the resulting echo path model was held constant until 

the call was terminated. It was realised however, that in many cases 

the echo path is time varying. This can occur when carrier 

transmission is used with imperfectly synchronised local oscillators, 

resulting in slow periodic variations in the echo path response.

This effect is known as ‘phase-roll1. Time variation in the echo 

path response occurs more commonly when calls are transferred from 

one telephone to another. For these reasons it was necessary to 

develop echo cancellers which could continuously track variations in 

the echo path, and this effectively ruled out methods which depended 

on the injection of test signals. The echo canceller proposed by 

Kelly and Logan used only the 'go' and the 'return * signals to 

estimate the echo path response, and almost all echo cancellers 

developed after 1968 used this technique in one form or another. In 

the following sections the major developments in echo cancellers are 

briefly reviewed.

1) Becker and Rudin (1966)

Becker and Rudin developed an analog echo canceller based on 

a tapped delay line transversal filter, and the tap weights were 

adjusted so as to minimise the mean-square error between the filter
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output and the signal in the 'go* path. This was achieved by cross 

correlating the delayed input signal with the error signal, and using 

the result to add or subtract a fixed amount from the tap weigth 

setting. 20 db ERLE against simulated echo path responses was 

reported, and this performance was maintained during double talking.

2) Sondhi and Prestí (1966) and Sondhi (1967)

Sondhi proposed an analog echo canceller similar to that of 

Becker and Rudin, but using a non-linear function of the 

instantaneous error signal in controlling the tap weights. This 

system was shown to converge to an estimate of the echo path faster 

than that of Becker and Rudin, however the use of an instantaneous 

error criterion resulted in the filter tap weights diverging during 

double talking. To overcome this effect Sondhi proposed a simple 

near-end speech detector, similar to those used in echo suppressors, 

which disabled the tap weight adjustment circuitry during double
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achieve good tracking of echo paths with significant phase-roll. The 

method proposed to treat the input and error signal samples in 

blocks, and the coefficient adjustment algorithm was used iteratively 

to further refine the coefficient values over each data block. This 

scheme was implemented by Demytko and Mackechnie (1973), and a 

similar implementation was later reported by Oemytko and English 

(1977). The latter implementation also used non-linear functions in 

updating the filter coefficients, and it was found that these 

functions, together with the averaging inherent in the block 

treatment of the signal samples, rendered the use of a near-end 

speech detector unnecessary. Up to 25 dB cancellation of echo was 

reported, however this canceller inserted a not insignificant added 

delay into the echo path, due to the block treatment of the samples.

5) Hoge (1975)

The digital echo canceller proposed by Hoge used an optimised 

gradient gain or step size in updating the coefficients of an 

adaptive transversal filter. The optimised gradient gain gave the 

fastest possible convergence, and the optimum gain was shown to be 

proportional to the power of the signal in the 'go' path. A 

recursive algorithm was suggested for estimating the power in the 

near-end signal, and this estimate was used to reduce the gradient 

gain during double talking, without disabling adaption coirpletely.

It was reported that during simulated double talking, with equal 

speech powers from both speakers, this canceller was capable of 

providing 10 dB ERLE within 2 syllables of speech.

6) Nark and Yeung (1976)

This digital echo canceller used an adaptively quantised error 

signal, and the quantiser range-factor was used as the gradient gain 

in the coefficient adjustment algorithm. In this way the gradient 

gain was made proportional to the amplitude of the error signal. The
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adaptive quantiser included a variable dead-band, which reduced the 

sensitivity of the coefficient adjustment algorithm to noise.

7) Horna (1977)

Horna developed a digital echo canceller using 

pseudo-logarithmic coding to simplify multiplications. Two adaptive 

thresholds were used to control the coefficient updating algorithm, 

and the use of non-linear functions simplified the implementation of 

the canceller. A simple double talk detector was used to inhibit 

updating of the coefficients when near-end speech was present, and an 

adaptive centre-clipper was used to remove any residual echo.

8) Ochiai et al (1977)

To overcome the problems of double talking, Ochiai et al 

proposed the use of two digital transversal filters, one of whose 

coefficients were updated using an instantaneous error squared 

criterion with optimised gradient gain. The other filter was used to 

synthesise the echo path and provide the cancellation signal. The 

synthesising filter was updated from the adapting filter only under 

strict conditions. This strategy prevented divergence of the echo 

path model between the onset of near-end speech and its detection.

This echo canceller gave 25 dB cancellation against simulated echo 

paths, and it was possible to prevent updating of the echo path model 

for near-end speech levels as low as 20 dB below the far-end level.

9) Duttweiler (1978)

Duttweiler described the implementation of a digital echo 

canceller using an optimised gradient gain. The speed of the 

multiplier used in this canceller was such that a single 128- 

coefficient filter could be time-shared between 12 channels, thus 

significantly reducing the per-channel costs. The canceller used 

floating point arithmetic, with only single bit mantissae signals 

used in updating the coefficients. A simple near-end speech detector
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was used to disable adaption during double talking. An integrated 

circuit version of this canceller was reported by Duttweiler and 

Chan (198U).

1.7 Per-Line Echo Control:- The Adaptive 2 to 4 Hire Converter

The echo cancellers discussed in the previous section have 

been designed for use at points in the telephone network with the 

highest possible traffic concentration. Typically this involves 

siting the cancellers at international switching centres which are 

linked by channels with large propogation delays. This strategy 

allows the costs of large and sophisticated cancellers to be spread 

over very many telephone circuits. The disadvantage of this approach 

is that in general the echo canceller is required to model echo paths 

consisting of large end-delays.

The aim of this research is to investigate the possibilities 

of providing the cancellation of the unwanted echo signal at the 

local exchange. This has the advantage that the conplexity of the 

canceller can be considerably reduced, since it no longer has to 

model the end-delay. It is estimated that this step alone would 

reduce the complexity of the canceller by a factor of 3 or 4.

The main advantage of this approach however, is that the use 

of a canceller in the local exchange would allow the transmission 

performance of the 2 wire local exchange to be achieved by a 4 wire 

digital exchange. Thus the attenuation which is necessary for echo 

control in the digital exchange could be removed. This would allow 

the use of more lossy or longer subscribers' lines, while still 

achieving the same loudness levels in the network.

A further advantage of this approach is that if sufficient 

echo cancellation can be achieved, then it will be possible to use a



single purely resistive balance impedance for all subscribers' lines. 

In the following paragraphs the options for the provision of the 

required cancellation are outlined, and the advantages and 

disadvantages of each option are discussed.

1) Option 1: Figure 1.7 shows the echo canceller sited at a traffic- 

concentrated point in the local exchange, where it is assumed that 

the D/A and A/D conversion takes place via an intermediate sampling 

rate. Thus the band-limiting function is split between an analog 

filter and a digital filter for each transmission direction 

(Tattersall and Carey, 1979). The combination of analog and digital 

filter should have a sharp high frequency cut off to meet the 

required filtering specification (CCITT, recommendation G712), and it 

will therefore have a long impulse response. Furthermore, the 

digital filter must include a high-pass function, which also requires 

a long impulse response. In addition to the unknown transhybrid 

transfer function, the canceller must model the responses of all 4 

filters. Since the responses of the digital filters are known and 

time invariant, and they provide most of the band-limiting function, 

considerable savings in canceller complexity will result if they are 

modelled by a fixed digital filter, as shown in Figure 1.8. The 

responses of the analog filters are imprecisely known due to 

component tolerances, and they may be susceptible to ageing. Thus 

the adaptive filter must model the impulse responses of the analog 

filters, convolved with that of the 2 to 4 wire converter. Siting 

the echo canceller at this point in the exchange has the advantage 

that its cost can be shared over many subscribers' lines, and 

consequently its complexity can be reasonably high. However it will 

be seen that further simplifications are possible.

2) Option 2: If the echo canceller is sited as shown in Figure 1.9, 

then it must model the responses of the analog filters and the
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transhybrid response. In this case the canceller operates at the 

intermediate sampling frequency, and must be provided on a per-line 

basis. For this approach to be feasible the adaptive filter should 

be simple, and preferably suitable for integration with the D/A and 

A/D converters and digital filters (the codec) in a single integrated 

circuit. This combination of adaptive filter, codec and 2 to 4 wire 

converter can be referred to as a digital adaptive hybrid.

3) Option 3: The response which the adaptive filter must model is 

further simplified if-it is sited as shown in Figure 1.10. In this 

case the adaptive filter should be analog, since the overhead of 

separate A/D and D/A conversion would be impractical. The use of a 

sampled analog adaptive filter would probably require the use of 

analog anti-aliasing filters, whose responses would have to be 

compensated by the adaptive filter. Therefore the adaptive filter 

should be analog and continuous, i.e. unsampled. For this option to 

be feasible, the adaptive filter should be suitable for integration 

with the other analog components in a subscriber's line interface 

chip (SLIC).

1.8 The Structure of this Thesis

In this introductory chapter it has been seen that the 

transhybrid response determines the minimum complexity of the 

adaptive filter required to achieve good echo cancellation. Chapter 

2 therefore describes an investigation into the nature of the 

transhybrid responses of a sample of 1845 subscribers' lines.

Chapter 3 describes the design and implementation of a line 

and hybrid simulator based on the techniques of Chapter 2. The 

simulator is used in the remainder of this thesis to test the 

performance of the proposed adaptive 2 to 4 wire converters.
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The theory of continuous analog recursive adaptive filters is 

described in Chapter 4, and a method of analysis of the convergence 

of these filters is developed. Chapter 5 describes the 

implementation of two prototype analog recursive adaptive filters. 

Results are also presented for the performance of the filters against 

subscribers' lines. The implementation of an adaptive hybrid using 

these filters is discussed.

The problems of implementing a digital adaptive hybrid are 

described in Chapter 6, and the effects of the intermediate sampling 

rate and the analog filters on the complexity of the required 

adaptive filter are analysed. Chapter 7 describes the theory and 

implementation of an experimental digital recursive adaptive filter. 

The latter part of Chapter 7 reports results obtained for the 

performance of digital recursive adaptive filters of various 

complexities against subscribers' lines.

Overall conclusions from this study are given in Chapter 8.
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CHAPTER 2 

THE LINE SURVEY

In the previous chapter the problem of 2 to 4 wire conversion 

was seen to depend on accurately matching the hybrid balance 

impedance to the input impedance of the subscriber's line. Knowledge 

of the nature and range of input impedances of subscribers' lines is 

thus a pre-requisite for any attempt to design balance impedances.

In Section 1 of this chapter the input impedances of a sample of 1845 

subscribers' lines are studied, and the information gained is used in 

the design of balance impedances.

In Section 2 the previous impedance survey is broadened to 

examine the transhybrid frequency and impulse responses which result 

from various combinations of hybrid balance and terminating 

impedances. This information is used to estimate the best 

performance likely to be attained by the use of various hybrid 

balancing strategies.

In Chapter 1 it was shown that echo cancelling techniques can 

be used to improve the overall return loss across the hybrid. In 

particular, use of a transversal type echo canceller requires 

knowledge of the length of time for which the transhybrid impulse 

response has significant values. Thus in the latter part of Section 

2 the length of the transhybrid impulse responses are studied.

In the final section of this chapter the results described in 

the first two sections are used to estimate the number of distinct 

balance impedances necessary to achieve a given minimum stability 

return loss specification. This information is vital in determining 

the feasibility of any technique for automatic or manual selection of 

balance networks.



- 19 -

2.1 The Line Impedance Survey

In this subsection a computer-based analysis of the impedance 

seen at the exchange of a sample of 1845 subscribers' lines is 

described. Each line's input impedance is calculated from its load 

impedance by repeated use of the transmission line equations. The 

results of the analysis are presented in the form of scatter plots of 

input impedances at five frequencies in the band 200 Hz to 3.5 kHz. 

The effect of the characteristics of the various types of cable on 

the line input impedance is investigated. The mean line input 

impedance at each frequency is computed and the results used to 

design optimum balance impedances.

2.1.1 The Data Base

The data base for the line survey consists of information on 

the composition and lengths of 1845 typical subscribers' lines. An 

initial sample of data on 1796 lines was obtained, and this sample is 

biased to include a higher proportion of long lines than the national 

sample of 18000 lines from which it was derived. This data had been 

collected by British Telecom to carry out an exchange line costing 

survey. The maximum length of line in the 1796 line sample is 

approximately 8 km. It was felt that this maximum line length did 

not reflect the extreme line lengths which are encountered in local 

networks in rural areas, and for this reason data on a further 49 

very long lines were added to the survey data base, bringing the 

maximum line length to approximately 20 km. The additional data was 

added to the end of the file containing the initial 1796 line data, 

so that it is possible to examine the effects of removing the 

extremely long lines from the data base. The input impedance of each
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line can be expected to be strongly dependant on the length of the 

line, and as a preliminary to the line survey, the cumulative 

distribution of the lengths of the lines in the complete data base 

were calculated. This distribution is shown in Figure 2.1.

A typical subscriber's line, consisting of N cable sections of 

various lengths, is shown in Figure 2.2. The data for each line 

consists of a line number and information about the lengths and types 

of each cable section. The use of this data to calculate the line 

input impedance is described in the following sections.

2.1.2 The Line Load Impedance

To obtain realistic results from the survey, the impedance used 

in the calculation as a load at the subscriber's end of the line 

should be the input impedance of the subscriber's apparatus in the 

off-hook position. It is known however, that the input impedance of 

the most common subscriber's apparatus, the 706-type telephone, is 

highly variable. This is due to the use of a carbon-granule 

microphone, whose impedance, although mainly resistive, varies with 

the orientation of the handset. A conditioning procedure has been 

specified by CCITT (recommendation P75) to allow the measurement and 

comparison of telephone characteristics, but even using this 

technique it was found to be difficult to obtain repeatable results 

for the telephone impedance. Repeatable measurement of the telephone 

impedance requires that the microphone be replaced by an equivalent 

resistance. While this technique gives an estimate of the impedance 

presented by the telephone to the line, it does not represent the 

extremes of load impedance encountered in the network, where no 

standard conditioning is applied to the microphone before use. 

Moreover, when lines are shared between subscribers, or where an
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extension has been fitted, or where modems are in use, the load 

impedance can differ considerably from that of the telephone.

The problem of specifying the input impedance of the 

telephone is compounded by the use of a regulating network, 

containing a thermistor, to lower the sensitivity of the telephone on 

short lines. The input impedance of the telephone depends on the 

thermistor's resistance, which in turn depends on the line current.

Un longer lines the line current is such that the regulating network 

is inactive, and this is also the case where constant current line 

feed has been introduced.

For the purposes of this survey, it was decided to use the 

impedance of the average subscriber's telephone, at 32 mA line 

current, as the load impedance for the lines. This impedance has 

been tabulated at 14 frequencies in the audio band as a result of 

earlier investigations carried out by British Telecom.

2.1.3 Calculation of Line Input Impedances

Referring to Figure 2.2, the input impedance of the nth line 

section is given by the transmission line equation:-

ZTn - l ( “ ) +Z0n ( w) t a n h ( Y n ( « )1n )
Zin((j) = ZO ( id) ------------------------------- 2.1

ZOn(d))+Zin_1(u))tanh(yn(u)ln)

where

Zin(u) is the input impedance of the nth line section 

Zin_i(io) is the input impedance of the n-lth line section 

ZOp(to) is the characteristic impedance of the nth line section 

Yn(u) is the propogation coefficient of the nth line section 

ln is the length of the nth line section, and 

id is the angular frequency.

To calculate the imput impedance presented by the line to the
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exchange at frequency w, equation 2.1 is used in the following 

manner:-

Starting at the subscriber's end of the line, the length and 

type of the first line section is read from the data base. The 

decimal code for the section type (say type k) is used to look-up the 

line constants R, G, L and C for that type of cable. Z0k(o>) and 

Yk(u) are calculated using equations 2.2 and 2.3 below:-

The input impedance of the first section of line is then calculated 

using equation 2.1 with Ziq (oj) = Zl(co), the line load impedance. The 

procedure is repeated for each line section, the input impedance of 

one section becoming the load impedance of the next, until the input 

impedance of the final line section has been calculated.

2.1.4 Results of the Line Impedance Survey

Scatter plots of the 1845 line input impedances calculated 

using the average 706-type telephone as the load impedance, for 

frequencies of 200 Hz, 500 Hz, 1 kHz, 2 kHz and 3.5 kHz are shown in 

Figures 2.3 to 2.7 respectively. A number of general observations 

can be made on these results.

1) Each plot shows the line input impedances diverging from a point 

which represents the load impedance at that frequency. From equation 

2.1, as 1 approaches zero, tanh(y(w)l) approaches zero, and the line 

input impedance tends towards the load impedance. Thus points near 

the apex of the plots represent short lines.

2) In all of the plots it is evident that there are two average 

trends, which become more spiral in character as the frequency is

2.2

2.3
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increased. To investigate this effect further, the input impedances 

at 500 Hz of a single section of each type of cable in the data base 

were plotted. Each test line was loaded with 600 n, and the 

impedances were plotted for section lengths between 100 m and 10 km. 

The results of this experiment are shown in Figure 2.8, where each 

cable type is identified by its decimal code written beside the input 

impedance point corresponding to a section length of 10 km. From 

Figure 2.8 it can be seen that there are two broad classifications of 

cable, the input impedance of some types being approximately equal to 

the load impedance (types .12, .17, .25 and .7), while the input 

impedances of the remaining types describe spiral curves as the 

section length is increased. This result can be explained by 

considering the characteristic impedance of a transmission line with 

G = 0, from equation 2.2:-

Z0(u) = -v/l/C Vl-jR/ooL 2.4

If the line is very lossy, or working at a very low frequency, then 

R/wl > 1  and Z0 can be approximated by:-

Z0(oj) - v/R/ujC ('l+jojL/2R') 2.5

In Table 2.1 the line constants for all 17 types of cable in the data 

base are tabulated (all types have G = 0) and it can be seen that 

with the exception of type .7 (a lossless test cable), all the cables 

are lossy. If however R/ul >> 1, then equation 2.5 can be further 

simpli fied to:-

Z0(oi) - fJyjR/uC - </r/(jC /■451’ 2.6

Figure 2.8 thus shows that most of the cable types at lengths of 

10 km have input impedances close to a line representing impedances 

with angle -45*. and that the magnitude of the impedances along this 

line are approximately given by /R/uC. These values are also 

tabulated in Table 2.1. This result shows that for most of the cable 

types, the input impedances of the cables are approximately equal to
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the characteristic impedances, for lengths above 10 km. This result 

is supported by the following calculation of the minimum length of 

cable which can be considered electrically long:-

Zi = Z0 when tanh(yl) » 1, from equation 2.1, but:- 

eYl -e“Yl
tanh(yl) =■ 2.7

eYl+e-Yl

If the condition that tanh(yl) » 1 is taken to be:-

eYl > 10e‘Yl 2 .8

then the requirement that the cables be electrically long 1s:-

1 > I n U O ) , since y  = a + j8  2 .9

where f o r  lossy l i n e s : -

a » y<ufiC/2 2.io

The length lj, the approximate length for the cable to be 

electrically long at 500 Hz, is also tabulated in Table 2.1. From 

this table it is clear that 1̂  is the feature which distinguishes 

between the two broad classifications of cable evident in Figure 2.8.

This analysis shows that the two average trends in the line 

input impedance scatter plots are due to a predominance of two 

particular cable types in the makeup of the lines in the data base, 

and that the distance along either of the average curves is 

proportional to the length of the line. It is also evident from this 

analysis that there is considerable variation in the characteristic 

impedances of the various cable types, and the consequences of this 

result will be discussed in Section 2.2.6.

3) At 200 Hz (Figure 2.3), the effect of most of the subscribers' 

lines is to add a largely resistive component in series with the load 

impedance to form the input impedance. The concentration of points 

near the value of the load impedance indicates that most of the lines 

are electrically short at this frequency. Some lines however show 

significant change in the reactive component of the input impedance,
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compared withthat of the load.

4) At 500 Hz (Figure 2.4) the line input impedances have larger 

reactive components, and the spread of values is greater than at 

200 Hz. At high frequencies the line input impedances tend to 

concentrate near the ends of the spiral curves, showing that at these 

frequencies most of the lines are electrically long.

The difficulty of accurately matching the input impedances of 

the lines is illustrated by the observation that at the lower end of 

the speech band the best match is given by the load impedance, while 

at the upper end of the band the best match is the characteristic 

impedance. The best possible performance can therefore be obtained 

if the load impedance is constrained to an estimate of the average 

characteristic impedance of the lines in the data base, so that each 

line appears infinite in length and can be accurately matched by the 

average characteristic impedance. This is demonstrated by the use of 

the 3-element network of Figure 2.9. This network approximates the 

average line's characteristic impedance as a function of frequency, 

and the line input impedance scatter plots using this network as the 

load are shown in Figures 2.10 to 2.14. It can be seen from these 

figures that at the higher frequencies the scatter of the points is 

much reduced, however at the low frequencies there is still a large 

variation in line input impedance.

2.1.5 Design of Balance Impedances

In attempting to design balance networks, at least four 

possible objectives are identifiable:-

1) Maximise the SRL of the worst case line.

2) Maximise the ERL of the worst case line.

3) Maximise the SRL averaged over all lines.
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4) Maximise the ERL averaged over all lines.

Choice between options 1 or 2 and 3 or 4 is effectively a choice 

between maximising the minimum quality of service, and maximising the 

average quality of service. Best possible performance could be 

achieved by choosing option 4, subject to a restriction on the worst 

case SRL. To achieve any of these objectives it is necessary to 

calculate the transhybrid return loss for each line in the data base.

In this section balance impedances are designed to match the 

average input impedance of each line at five frequencies, averaged 

over all 1845 lines in the survey. Further averaging in frequency 

also takes place, since it is not necessarily desirable to match the 

5 average impedance points exactly, and it may not even be possible 

with a simple balance network. This approach is similar to option 4, 

and in Section 2.2 the average and worst case ERL and SRL achieved by 

the designed impedances are investigated.

1} Balance Impedance with the Telephone as the Load

The mean line input impedance at each of the five 

frequencies, where the load impedance is that due to the 706-type 

telephone, is shown in Figure 2.15. The locus of the impedance with 

varying frequency can be seen to approximate to a semicircle in the 

impedance plane. A semicircular impedance locus is synthesised by 

the 3-element network of the type shown in Figure 2.9. The 

semicircle is centered on the point (R1+R2/2, 0), and has radius 

R2/2. The position of the impedance on this locus is dependent on 

the product (DC2R2. and can be conveniently specified by the angle 0 

(Figure 2.15), where:-

0 * -tan-1( uC2R2) 2.11

Thus the procedure for obtaining the optimum balance 

impedance is as follows; the average line input impedance at each of 

the frequencies of interest is plotted on the impedance plane, and
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the semicircle which provides the best fit is chosen and plotted. 

This allows the values of and R2 to be deduced. Points on the 

semicircle providing the closest fit to the average impedance points 

at each frequency are chosen. Using the measured angles 9, the 

frequency u and the value of R2, the optimum value of C2 at each 

frequency is then calculated. The value of C2 used for the optimum 

balance impedance is the average of the C2 values for each frequency. 

Figure 2.15 shows the derivation of the balance impedance which best 

matches the average input impedance of the 1845 lines with the 

706-type telephone as the load. The average line input impedance 

points are denoted by and the points on the locus chosen to 

match these points are denoted by ‘x ‘. The average C2 value is 

0.12 yF, and the values of the optimum balance network thus are; R1 = 

275 P, R2 = 810 P, C2 = 0.12 pF.

2) Balance Impedance with an Optimised Load

In Section 2.1.4 it was shown that the scatter of input 

impedance points is reduced when the load impedance is an estimate of 

the mean line characteristic impedance. In theory the optimum 

balance impedance in this case is identical to the load impedance. 

Using the technique described above however, an optimum balance 

impedance given by; R1 = 320 P, R2 = 1075 P, C2 = 0.21 pF was chosen. 

This result is due to the large spread in line input impedances at 

low frequencies, even when the load is the three element network, as 

shown in Section 2.1.4 (Figure 2.10).

3) The Optimum Balance Resistor

The value of the single balance resistor which minimises the 

difference between the balance and input impedances over the speech 

band can be shown to be:-
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/lReCZ1 (to) Jdai
Rbopt * “*? 2.12

where wg-toi is the speech bandwidth and Z^u) is the input impedance 

of the line to be balanced. The above value of balance resistor does 

not necessarily maximise the value of the resulting transhybrid loss 

however, as can be seen by considering the case where Zi is purely 

reactive. The expression for the value of the balance resistor which 

maximises the transhybrid loss is considerably more complicated than 

equation 2.12, and for this reason the derivation of the optimum 

balance resistor for all lines is included in Section 2.2.6.

2.1.6 Circles of Constant Return Loss

In the previous section the design of balance networks using 

a graphical technique was discussed. This technique can be 

considerably refined by the use of circles of constant return loss.

A circle, or in general a contour, of constant return loss is a line 

joining those input impedance points in the complex impedance plane

which will give a certain value of return loss with a particular 2 to
I.

4 wire converter at a given frequency. Thus the equation for the 

contours of constant return loss for the 2 to 4 wire converter 

discussed in Section 2.2.2 can be found by solving the equation:-

for Zi(oi), the line input impedance, where A is the required return 

loss value, <u is the frequency at which the return loss is required 

and Zt(ui) and Zb(u) are the 2 to 4 wire converter terminating and 

balance impedances respectively. The solution to equation 2.13 is 

given by:-

2.13
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ReLZi (w) j-ReLZb(oj)] ° ]2+f*ImLZi (u)]-ImCZb(u)J ] 5 l2

4| Zb(a i )a2|
M - „ 2,2 2.14

where

a = A l z b l u l + Z t f m l l  
| 2 Z t ( u ) |

2.15

Equation 2.14 describes a circle of centre:-

with radius:-

2 |zb(g>) | a

in the impedance plane.

Figure 2.16 shows the 10 dB return loss circle superimposed on 

the scatter plot of line impedances at 200 Hz, when the load 

impedance is a three element network with values, Rj = 370 n, R2 =

identical to the load impedance. Values of Z1 lying inside the 

circle give values of return loss greater than 10 dB at this 

frequency, while points lying outside the circle give values of 

return loss less than 10 dB. It can be seen from Figure 2.16 that a 

significant number of lines lie outside the circle, and that the 

value of balance impedance chosen is such that the centre of the 

circle does not lie close to the mean input impedance of the lines at 

this frequency.

Circles of constant return loss are a useful aid in designing 

balance impedances, as they allow the performance of a proposed 

balance impedance to be gauged. The fact that this is possible only 

at single frequencies limits the application of constant return loss 

circles however, and in the next section an alternative method of

620 £2, Cg = 0.31 pF, and the balance and terminating impedances are
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gauging the effectiveness of balance networks is discussed.

2.2 The Transhybrid Response Survey

In Section 2.1 the design of optimum balance networks was 

discussed. Any optimum balance impedance is however a compromise 

between the wide range of input impedances to be matched. It is 

therefore essential to determine the minimum SRL and ERL which can be 

achieved by the use of a single optimum balance network, since this 

will determine the stability of the worst case line. In this section 

the line input impedance calculations are extended to calculate the 

the transhybrid frequency response due to any combination of load 

impedance, line characteristics and 2 to 4 wire converter. ERL 

and SRL are calculated and a fast Fourier transform technique is used 

to calculate the transhybrid impulse response from the frequency 

response. Cumulative distributions of ERL and SRL are presented, and 

these results are used to determine the best performance possible as 

a result of optimising the hybrid balance impedance and the input 

impedance of the telephone. Cumulative distributions of impulse 

response length are also presented and used to determine the 

feasibility of cancelling the unwanted hybrid output by means of a 

transversal echo canceller.

2.2.1 The Input Impedance of the Subscriber's Line

Calculation of the transhybrid impulse response requires that 

the transhybrid frequency response be specified at 129 equispaced 

points in the range 0 to 4 kHz, as explained in Section 2.2.5. The 

line input impedance must therefore be calculated at these 129 points 

also.



Data on the input impedance of the average subscriber's 

apparatus are available only at 15 points in the required range, and 

it is necessary to interpolate between these points to fully specify 

the load impedance. The fact that the initial 15 points are unevenly 

spaced from 0 to 4 kHz restricts the number of suitable curve fitting 

techniques. Of the two most common approaches, curve fitting with 

cubic splines is superior to fitting with a polynomial where the 

curve represented by the initial data has many peaks and troughs 

(Naglib, 1977). For this reason a least-squares cubic spline curve 

fitting technique was used. The results of the curve fitting are 

shown in Figures 2.17 and 2.18, where the original points are denoted 

by ' +

The line input impedance is calculated using equation 2.1 as 

described in Section 2.1.3, with the exception that the 

characteristic impedance and propogation coefficient for each line 

type are obtained directly from a precomputed table. In the next 

section the calculation of the transhybrid response, using the line 

input impedance, is described. It is assumed that the subscriber's 

line is provided with the required line current via a constant 

current source, which presents a high impedance to the line and whose 

effect can therefore be ignored. Ringing current is assumed to be 

applied to the line via a relay or other switch whose effect can also 

be ignored. The input impedance of the subscriber's line can 

therefore be assumed to be the impedance presented to the 2 wire port 

of the 2 to 4 wire converter.

2.2.2 The 2 to 4 Mire Converter

The 2 to 4 wire converter used 1n this survey is that of 

Figure 1.1, whose transhybrid response is:-
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Hftrt) = AlA2Zt ( in) Z b U l - Z i U )  2.16
Zt( u)+Zb(u) Zi ( w)+Zt( w)

assuming Ztl(oi) = Ztb(«>) = Zt(u). The gains A1 and A2 are calculated 

to give no insertion loss between either the 4 wire receive and 2 

wire ports, or between the 2 wire port and 4 wire transmit port, 

assuming that the line is correctly terminated, i.e. Zt(w) = Zi(to). 

Thus A2 = 1 and A1 = 2.

Choosing the values of A1 and A2 in this manner means that 

under certain circumstances there may be a net transhybrid gain 

however, assuming Zt(<u) = Zb(ai), then the worst case return loss is 

0 dB. This occurs when Zi(u) = <*>, or when Zi(w) = 0, i.e. when the 

subscriber's line is either ‘open circuit1 or 'short circuit'.

Having calculated the line input impedance as described 

earlier, the transhybrid response is calculated at the required 

frequencies using equation 2.16. The values of Zb(a>) and Zt(u>) used 

in the survey are specified by the values of the components of a 

3-element network of the form of Figure 2.9. Throughout the 

remainder of this thesis Zb(u) and Zt(w) will be specified by the 

values of the components Rl, R2 and C2.

2.2.3 ERL and SRL Distributions

The ERL and SRL, as defined 1n Section 1.4, are calculated 

using equations 2.17 and 2.18 below:- 

81
ERL * 1 I 101 og1Q [H(i Aa>) 12 2.17

65 1-17 1 1

SRL - Max{101og10|H(iiu)J2}, 11 < i < 110 2.18

The values of ERL and SRL for each line are calculated and stored.

As the most useful Indicator of the performance of any combination of 

load impedance and hybrid is the percentage of lines having return 

loss greater than a given value, the results for ERL and SRL are
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presented in the form of cumulative distributions. The mean and 

standard deviation of the ERL and SRL values are also calculated, as 

are the minimum values of ERL and SRL.

2- 2.4 Results of the Transhybrid Frequency Response Survey

The results of the transhybrid frequency response survey are 

presented in detail below, and for convenience they are also 

summarised at the end of this section.

1) Resistive Balance Impedance

Figures 2.19 to 2.21 show the variation in mean ERL, mean 

SRL, minimum ERL and minimum SRL with the value of the balance 

resistor in the hybrid, where the terminating impedance is the

3- element network; R1 = 370 0, R2 = 620 C2, C2 = 0.31 uF. In all 

cases the load impedance is the input impedance of the 706-type 

telephone. The value of the balance resistor which maximises both 

the minimum ERL and the minimum SRL is 620 0, while the value which 

maximises the mean ERL is 740 si. Choice of the optimum balance 

resistor thus involves a trade off of mean return loss in the local 

network in favour of increased minimum return loss. This trade off 

is most critical in the case of mean ERL, which is reduced by 1.7 dB 

to improve minimum ERL by 1 dB and minimum SRL by 0.5 dB. Since the 

'singing margin', or the overall stability of the worst line in the 

network is of paramount importance, it can be concluded that the 

optimum value of balance resistor is 620 a. This value is in close 

agreement with the present standard balance resistance of 600 fl.

2) Complex Balance Impedance

The effect on the cumulative return loss distributions of 

changing the balance impedance from 600 il (curve a) to the 3-element 

network R1 = 370 0, R2 ■ 620 n, C2 = 0.31 uF (curve b), is shown in
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Figure 2.22. It is evident that the use of the complex balance 

impedance considerably improves the lower values of ERL and SRL, 

while the higher values are decreased. Thus the standard deviations 

of the ERL and SRL distributions are reduced from 4.9 dB to 1.48 dB 

and from 3.09 dB to 0.97 dB respectively, while the mean ERL and SRL 

are increased from 11.3 dB to 14.27 dB and from 8.46 dB to 11.12 dB 

respectively. The minimum ERL and SRL are increased from 5.0 dB to

9.5 dB and from 3.0 dB to 6.0 dB. Examination of the results for 

individual longer lines in the survey reveals that it is these lines 

which show the improvement in return loss, while the shorter lines 

show the degradation in return loss. This effect occurs because 

600 Si matches the input impedance of the telephone quite well, and 

thus matches the input impedance of the short lines. The 3-element 

network provides a closer match to the input impedances of the longer 

1i nes.

The cumulative return loss distributions for the balance 

network; R1 = 275 £1, R2 = 810 £1, C2 = 0.12 uF (curve a), whose design 

was described in Section 2.1.5, are shown superimposed on the 

distributions for the previous complex balance impedance (curve b), 

in Figure 2.23. By considering the crossover points of the curves it 

can be seen that the use of this new balance impedance improves the 

ERL for 93% of the lines in the survey, and the SRL for 95% of the 

lines. The minimum SRL is unchanged, although the minimum ERL is 

decreased by 3.0 dB. In changing the values of the complex balance 

impedance, the mean ERL and SRL are increased from 14.27 dB to 

20.04 dB and from 11.12 dB to 15.52 dB respectively. The standard 

deviations of ERL and SRL however, are increased from 1.47 dB to 

5.91 dB and from 0.97 dB to 3.0 dB respectively. This result shows 

that significant improvements in mean return loss are possible by 

redesigning the present standard complex balance impedance, however
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these improvements are achieved at the cost of a 3 dB decrease in the 

minimum ERL.

3) Terminating Impedance

Figure 2.24 shows the effect of changing the terminating 

impedance from the three element network R1 = 370 0, R2 = 620 ii, C2 = 

0.31 uF (curve a), to a single resistor of 600 ¡2 (curve b), with the 

balance resistor in each case being 600 n. The differences in the 

return loss distributions are negligable for low values of return 

loss, although for most lines some improvement is obtained by using 

the complex terminating network. Altering the terminating impedance 

alters the level of sidetone produced in the subscriber's earpiece, 

as described in Section 1.3, and for this reason no further 

investigations into its effect on return loss were conducted.

4) Line Load Impedance

Figure 2.25 shows the effect of changing the load impedance 

used in the survey from the input impedance of the telephone (curve 

a), to that of the network; K1 = 370 0, R2 = 620 0, C2 * 0.31 uF 

(curve b), where the balance and terminating impedances are identical 

to the latter load impedance. It can be seen that the already high 

values of return loss are further improved, but that the minimum 

return loss is unchanged. Thus the mean ERL and SRL increase from 

14.27 dB to 18.3 dB and from 11.12 dB to 14.47 dB respectively. The 

standard deviations of ERL and SRL also increase in consequence. On 

investigation, the lines at the low SRL end of the distribution with 

Z1 = Zb 3 Zt, were generally found to be the longer lines. The lines 

whose SRL are lowest however, are those whose composition is in some 

way unusual. For example, the line with the lowest SRL consists of a 

single 4.7 km section of 0.63 type cable. This result reflects the 

wide spread of cable caracteriStic impedances discussed in Section

2.1.3.
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Using the balance impedance designed in Section 2.1.5 for the. 

case where the load impedance is that of the 3-element network, the 

return loss distributions are as shown in Figure 2.26. The mean ERL 

and SRL are 24 dB and 17.7 dB respectively, and the minimum SRL is 

8.U dB, while the minimum ERL is 9.0 dB. This result indicates the 

best possible performance which can be achieved using optimised load 

and balance impedances, although it could perhaps be slightly 

improved by adjusting the balance impedance to match more closely the 

lines with low SRL, at the expense of those with high SRL.

A summary of the above results is given in Table 2.2, which 

shows the values of minimum ERL, minimum SRL, mean ERL, mean SRL, and 

the standard deviations of the ERL and SRL, for various combinations 

of balance, terminating and load impedances.

2.2.5 Calculation of the Transhybrid Impulse Response

This section describes the calculation of transhybrid impulse 

responses using the inverse discrete Fourier transform (IDFT). The 

equation for the IDFT can be written as:-

N-l -o u ,u
h(nT) = H(jku) /N)e J¿1Tlcn/N n * 0....N-1 2.19

k=0

where the transhyorid frequency response is represented by N values 

¿a) rads/sec apart, between -a>s/2 and us/2, <ds being the sampling 

frequency. The equation gives N values of the transhybrid impulse 

response, spaced T seconds apart, where T = 2ir/ws. In Appendix A1 

the derivation of equation 2.19 is explained, and the the effect of 

non-rectangular window functions is discussed.

A well documented algorithm for the efficient computation of 

equation 2.19 is the inverse fast Fourier transform. In the case of 

the line survey a standard inverse fast Fourier transform routine is
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used, and the negative half of the complex frequency spectrum is 

equated to the complex conjugate of the positive half, to ensure a 

purely real set of impulse response samples. The frequency sampling 

interval is chosen to be:-

¿00 = 2it 4000/128 = 2it 31.25 rads/sec 2.20

Thus the transhybrid frequency response is represented by 129 samples 

over the range 0 to 4 kHz, and this allows calculation of impulse 

response samples at 0.125 mS intervals up to time T = 32 mS. Using 

the rectangular window function the resulting time resolution is 2 

sample periods or 0.25 mS, while if either the Hanning or the Hamming 

windows are used the resolution is 4 sample periods or 0.5 mS.

2.2.6 Measureaent of Transhybrid Impulse Response Length

The length of the transhybrid impulse response determines the 

number of taps required in an adaptive transversal filter to cancel 

the unwanted signal at the hybrid output. Theoretically, since the 

transhybrid impulse response is due to a continuous analog system 

whose response varies with frequency, the adaptive filter would 

require an infinite number of taps to achieve perfect cancellation.

A lesser number of taps is required if imperfect cancellation is 

acceptable. To examine the relationship between the degree of 

cancellation and the number of taps required, consider anexample in 

which the the transhybrid response is of the second order. The 

reponse can thus be written as:-

h(t) ■ e ^Cos(wgt), t > 0 2.21

The process of cancelling the impulse response can be visualised as 

removing its initial portion. Assume for example that the 

transversal filter can accurately model h(t) up to time tj, when the 

envelope of h(t) has decayed to A times its peak value, where A < 1.
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The residual impulse response then is: —

hc(t) = U(t-t1)e'atCos(u)0t) 2.22

and ignoring the delay due to the delayed unit step function U(t-tj), 

this can be written as:-

h‘c = Ae"atCos(to0(t-t1)) 2.23

Thus the amplitude of the transhybrid impulse response has been 

decreased by a factor of A. This relationship between attenuation and 

time to decay to some fraction of peak impulse response amplitude is 

due to the nature of the exponential function, and is approximately 

true for all impulse responses due to real, stable systems. 

Calculating the time taken for the envelope of each transhybrid 

impulse response to decay below various percentages of its peak value 

thus allows the number of taps necessary to achieve a given 

improvement in ERL to be estimated. For example, if a particular 

impulse response envelope decayed to 10% of its peak value in 1 mS, 

then an adaptive filter with an 8 kHz sampling rate would require 8 

taps to achieve 20 dB ERLE.

In the line survey the times taken for the transhybrid 

impulse responses to decay below 5%, 1% and 0.5% of their peak are 

calculated. These times are then analysed to form cumulative 

distributions of decay times. The results of the analysis of impulse 

response decay times for various combinations of line load impedance 

and hybrid terminating and balance impedances are presented in 

Section 2.2.7.

2.2.7 Results of the Transhybrid Impulse Response Survey

In Appendix A1 the use of non-rectangular frequency window 

functions in calculating the transhybrid impulse response is 

discussed. Results of testing the impulse response decay time



39

calculation are also presented in Appendix Al, and it is shown that 

the use of the Hamming window gives greater accuracy at the low 

impulse response amplitudes than the rectangular window function.

For this reason the Hamming window function is used in calculating 

transhybrid impulse responses. A copy of the Fortran program used to 

calculate transhybrid impulse responses is given in Appendix A2.

The distribution of the decay times to 5%, 1% and 0.5% of 

peak impulse response value for the 1845 lines, with complex 

terminating impedance and 600 n balance impedance is shown in Figure 

2.27, where the load impedance is the input impedance of the 706-type 

telephone. The distributions of times to 5% and 1% of peak are 

discontinuous, implying that the impulse responses have either very 

short time constants, or relatively long time constants, but that no 

lines have decay times to 5% or 1% of peak between approximately 1 mS 

and 3 mS. These discontinuities were found to be due to the nature 

of the telephone impedance used as the load impedance in the survey. 

In particular, when the peaks in both the real and the imaginary 

parts of the impedance at low frequency (Figures 2.17 and 2.18) were 

eliminated, the distributions became smooth, as shown in Figure 2.28. 

Similarly, as will be seen later, when the 3-element network is used 

as the load impedance, the distributions are also continuous. 

Measurements of the impedance of a telephone verified the existence 

of the low frequency peaks, and the use of an alternative 

interpolation technique on the original impedance data was found also 

to produce discontinuities. It would thus appear that the 

discontinuities evident in the impulse response decay distributions 

accurately reflect the nature of the transhybrid impulse response.

The longest decay time to 5% of peak of Figure 2.27 is 

approximately 12 mS, and thus to provide 26 dB ERLE for all lines, an 

adaptive transversal filter with a sampling frequency of 8 kHz would
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require approximately 96 taps. It is apparent from Figure 2.27 that 

considerably fewer taps would be adequate for most lines, since 85% 

of impulse responses decay to less than 5% of peak within 1 mS.

Figure 2.29 shows the corresponding impulse response decay 

time distributions when the balance impedance is changed from 600 O' 

to the 3-element network; R1 = 370 0, R2 = 620 O, C2 = 0.31 yF. In 

this case the decay times to 5% and 1% of peak are shortened, while 

the decay times to 0.5% of peak are lengthened. The longest time to 

5% of peak with the complex balance impedance is approximately 4 mS.

When the load impedance is identical to the balance and 

terminating impedances used in Figure 2.29 ( R1 = 370 O, R2 = 620 0, 

C2 = 0.31 uF), the decay time distributions are as shown in Figure 

2.30. The times to 5%, 1% and 0.5% are all shortened considerably, 

i.e. the impulse responses have become more impulse like, in this 

case the maximum time to decay to 5% of peak is 1.6 mS.

2.3 Multiple Balance Networks

The results of Section 2.2.4 show that using a single 

optimised balance network, the highest minimum SRL which can be 

achieved is 6 dB. A possible strategy for improving on this figure 

is to manually or automatically select a single balance network from 

one of a range of fixed balance networks. A factor of vital 

importance in determining the feasibility of this approach is the 

number of distinct balance impedances required to obtain a given 

minimum SRL in the network. This information can be obtained by 

combining the transhybrid response survey with the balance impedance 

design technique described in Section 2.1.5.

To find the the number of balance impedances required to

achieve X dB minimum SRL, the value of the single balance resistor
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(Rm) which maximises the number of lines having SRL greater than X dB 

is first found. This value can be found from cumulative 

distributions of SRL for various values of balance resistor close to 

the optimum single balance resistor. Using the value of Rm obtained 

in this manner, a subset of lines having SRL less than X dB when 

matched with Rm is formed, and Rm is chosen as the first balance 

impedance in a multiple balance network. A new balance impedance Zb^ 

is designed for this subset of lines, as described in Section 2.1.5 

and this impedance is chosen as the second balance impedance 

required. A further subset of lines having SRL less than X dB when 

matched with Zb2 is then selected from the previous subset, and the 

procedure is repeated until sufficient balance networks have been 

designed to achieve SRL greater than X dB for all lines, when matched 

with one or other of the balance networks.

When using this technique, care must be taken to ensure that 

groups of line impedances which lie in distinct areas of the 

impedance plane are not averaged, as this would produce a balance 

impedance wnich matches none of the groups well. Similarly, care 

must be taken to ensure that a balance impedance which eventually 

matches only a small number of lines is not designed on the basis of 

averaging the impedances of a much larger number of lines.

The result of the above procedure, carried out for a minimum 

SRL of 10 dB, is recorded in Table 2.3. To achieve this value of 

minimum SRL three distinct balance impedances are necessary, although 

two of the networks are required only for a small number of lines.

As the value of the minimum SRL is increased, the procedure 

for estimating the required number of balance impedances becomes 

difficult to use, as at each stage only small numbers of lines are 

brought within the specified value of minimum SRL, although many 

lines are used in averaging to obtain each balance impedance. The
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number of balance impedances necessary can be expected to increase 

sharply with the minimum SRL required however, and using the 

3-element balance impedance it may not even be possible to achieve 

very high values of minimum SRL.



Li ne 

type

R

(n/km)

L

(mH/km)

C

(uF/km)

R/toL V r/«jC h

( m)

.11 65 0.6 58.0 34.5 597 473

.12 32 2.5 4.7 4.1 1472 2368

.17 19 2.5 4.7 2.4 1134 2587

.21 42 0.6 90.0 22.3 385 472

.25 ' 9 2.5 5.1 1.1 749 5070

.21 290 0.6 52.0 154 1332 236

.32 435 0.6 50.0 231 1664 197

.40 273 0.6 50.0 144 1318 249

.41 120 0.6 49.0 64 883 379

.50 168 0.6 50.0 89 1034 317

.51 281 0.6 62.0 149 1201 220

.61 225 0.6 38.0 119 1373 314

.63 109 0.6 50.0 58 833 393

.81 111 0.6 64.0 59 743 345

.90 55 0.6 50.0 29 592 554

.70 0 50.0 18.0 0 0 oo

.75 169 0.0 47.0 00 1070 326

Table 2.1 Characteristics of the types of cable encountered

in the line survey, at 500 Hz



370ft 370ft

Z1 706-Type 706-Type 7 06-Type 706-Type 620ft 620ft

0.31yF 0.31yF

370ft 275 ft 370ft 320ft

Zb 600ft 620ft 810ft 600ft 620ft | 1075ft

•
0.3lyF 0 . 12yF 0.31uF 0.21yF

_ 370ft 370ft 370ft 370ft 370ft

It 620ft 620ft 620ft 600ft 620ft 620ft

0.31uF 0.31uF 0.31yF 0.31yF I 0.31yF

Mean ERL 11.3 14.3 20.0 11.2 18.3 23.9

Mean SRL 8.46 11.1 15.5 8.1 14.5 17.7

Minimum ERL 5.0 9.5 6.5 5.0 9.5 9.0

Minimum SRL 3.0 6.0 6.0 3.0 6.0 8.0

Std.Dev ERL 4.19 1.48 5.91 4.36 4.31 4.6

Std.Dev SRI. 3.09 0.97 3.0 3.05 3.6 2.45

„ M e  2.2 A summary of the results of the tr.nshybrid frequency 

response survey.
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Figure 2.3 Scatter P lo t  of Line Input Impedances a t  
200 Hz, w ith  the Telephone as the Load
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Figure 2.19; V a ria t io n  o f ERL with Rb

500 600 700
■

800
Rb(n)

F igure 2.21i V a ria tio n  of SRL with Rb



100

%  of
Lines

Figure 2 -2 2 :

Return Loss (dB)

tt. Ef fe ct Of C h « ! « . 2 * “ S S , " - “ “





F igu re  2 .24 ; The Effect of Changing the 
Impedance from 6000 to the

Terminating 
3-Element Network

the Load Impedance
Figure 2.25:  The Effect of Optimising







Figure 2.30: D is t r ib u t io n  of Impulse Response Decay Times 
w ith  3-Element Load and Balance Impedances



CHAPTER 3

THE LINE AND HYBRID SIMULATOR

In this chapter a computer controlled system capable of 

simulating the transhybrid response due to any combination of 

subscriber's apparatus, local line and fixed 2 to 4 wire converter is 

described. The simulator operates in real-time and when used with 

the data base described in Section 2.1.1, it enables testing of both 

analog and digital adaptive 2 tb 4 wire converters with realistic 

input signals. The system is considerably more flexible than 

previous techniques for modelling lines, and it provides the 

possibility of conducting automated trials of adaptive hybrids 

against statistically significant numbers of lines. The simulator 

can be used to test adaptive balance circuits by. simulating the 

response of one arm of the converter, as shown in Figure 3.1.

The simulator consists of an 128th order digital transversal 

filter whose coefficients are down-loaded from a computer, as shown 

in Figure 3.2. The coefficients are calculated as described in 

Section 2.2.5 and loaded into the simulator's coefficient store. The 

required transfer function can then be simulated without further 

intervention of the conputer. In the following sections the 

operation of the simulator is described and the design of ancillary 

filtering and condensation circuits is discussed. In Section 3.6 the 

accuracy of the simulator is measured against known frequency

responses.
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3.1 Loading Transhybrid Impulse Responses

The computer (LSI-11) is interfaced to the simulator using a 

DRV-11 interface card. This card allows 4 bi-directional 

input-output ports to be addressed by the computer as part of its 

memory, the addresses of the ports being selected by means of jump 

leads on the card. The 3 ports used to interface to the simulator 

are designated as follows:-

PORT 1 : Control Port : This port is used to control the operation of 

the simulator. By'writing the appropriate control words to the port 

the computer can switch the simulator between its 3 modes, as shown 

in Table 3.1. The reset mode is used to initialise all timing and 

control signals, usually following 'switch on'. In the halt mode the 

simulator is halted and the computer can access the coefficient 

store, via the other 2 ports, to load a new set of simulator 

coefficients. In the run mode the simulator operates independently 

of the computer and simulates the required response, as explained in 

Section 3.2.

PORT 2 : Data Port : This port is used to write coefficient values 

into the coefficient store when the simulator has been placed in the 

halt mode.

PORT 3 : Address Port : This port is used to address locations in the 

simulator's coefficient store during coefficient loading.

Thus, to load a new set of coefficient values into the 

coefficient store, the computer halts the simulator via the control 

port. The address of the first coefficient to be loaded is then 

output to the address port, and the coefficient value is output to 

the data port. The computer bus timing signals are used to strobe 

the coefficient into the store, and the address of the next 

coefficient to be loaded is output by the computer. Having loaded
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all 128 coefficients within the coefficient store, the control port 

is used to restart simulation with the new coefficient set.

Coefficient loading is controlled by an assembly language program 

(Macro-11) which can be called as a subroutine from a Fortran program 

which calculates the coefficient values. A listing of the load macro 

is given in Appendix A2.

3.2 Simulation of Transhybrid Responses

The 128th order digital transversal filter whose response 

simulates the transhybrid response, is of the recirculating shift 

register type (Rabiner and Gold, 1975). A digital filter evaluates 

the discrete convolution:- 

N-l
ynT = l *llTx(n-1)T 3,1

where ynj and xnT are the output and input samples at time t = nT 

respectively, hiT is the sample of the impulse response of the system 

at time t = iT, i.e. the ith filter coefficient, N is the number of 

samples used to represent the system's impulse response, and T is the 

time between samples.

To implement this discrete convolution, during one input 

sampling period, the recirculating shift register (RSR in Figure 3.2) 

recirculates all of the 128 most recent input samples, which appear 

sequentially on the RSR output. The RSR clock is also used to clock 

a counter, which sequences the coefficient store (RAM) through all of 

its locations. The synchronisation Is arranged so that the 

multiplier and accumulator (MAC) is presented with an input sample 

and the corresponding impulse response coefficient simultaneously. 

These are multiplied together and accumulated with the 127 other 

sample-coefficient products by the MAC (TRW, 1979). Thus the set of
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128 coefficients is convolved with the delayed input samples to form 

an output sample. Both the coefficients and the input samples are 

represented by 12-bit 2‘s complement numbers in parallel form, and 

the products are accumulated in a 27-bit register, allowing 3 bits 

'headroom' for the accumulation. Having performed the convolution 

given by equation 3.1, the output sample is rounded to 12 bits and 

clocked into an output register.

To facilitate testing of the simulator, a circuit was 

designed to inject an impulse into the input of the filter once in 

every 128 input sample periods. This allows the impulse response of 

the simulator to be displayed on an oscilloscope for verification.

In Figure 3.3 an example of the timing of the simulator and 

its associated A/D and D/A conversion circuits is given. For 

convenience the example is in terms of a 4th order transversal 

filter, and it can be seen that there is an overall delay of 2 sample 

periods through the simulator. A complete circuit diagram of the 

simulator is given in Appendix A3.

3.3 Simulator Sampling Rate and Filtering Requirements

The frequency response of a digital filter is periodic about 

the sampling frequency, and the presence of the so called image bands 

in the spectrum of the output signal would interfere with the 

operation of an adaptive filter which was attempting to cancel the 

output of the simulator. To attenuate the image bands it is 

necessary to filter the output of the simulator as shewn in Figure 

3.4. This filter is known as a reconstruction filter, since it 

serves to reconstruct the analog signal from its samples. For 

minimum distortion of the simulated response, the response of the 

reconstruction filter should be flat, with approximately linear
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phase, in the passband. This allows the phase response of the filter 

to be compensated for by the introduction of an appropriate delay in 

the adaptive filter path. Analog filters with the desired type of 

response do exist, notably Bessel and Gaussian filters (Zverev,

1967), but they have very poor attenuation characteristics. An 

alternative approach to the problem is to use 2 filters with 

identical responses, one at the simulator output and the other in the 

adaptive filter path, as shown in Figure 3.5. The net effect of this 

approach is that the input signal x(t) is filtered before being 

applied to either the adaptive filter or the simulator, and assuming 

that the filter has sufficient rejection of the image bands, the 

adaptive filter attempts to match the simulator's response in the 

passband only. By increasing the sampling frequency used in the 

simulator, the filtering requirements are relaxed, and the task of 

designing 2 filters with identical amplitude and phase responses in 

the passband is facilitated.

Assuming a simulator sampling rate of 16 kHz, and a passband 

of 3.6 kHz, then the lower band edge of the lowest frequency image 

band falls at 12.4 kHz. The sample and hold circuit at the simulator 

output has an effective transfer function of:-

Sh(o)) = Sin(ioT/2) 3.2
idT/2

where T is the sampling period. At 12.4 kHz this function 

contributes approximately 12 dB attenuation, and therefore for 30 dB 

net image band rejection, the filter should provide at least 18 dB 

attenuation at this frequency, i.e. a 3rd order Butterworth or 

Tchebichef filter is sufficient. Both types of filter have good 

attenuation characteristics, however, of the two types, Butterworth 

filters have lower group delay (and hence introduce less phase 

distortion), are maximally flat in the pasband, and are also less 

sensitive to conponent inaccuracies (Zverev, 1967). Since this last
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factor is important if two identical filters are to be designed, a 

third order Butterworth filter was chosen for image band rejection.

A third order Butterworth or Tchebichef filter can be 

implemented using an extension of the standard Sallen and Key second 

order section (Ambikairajah, 1981). This method was chosen for 

implementation of the reconstruction filters because it requires only 

a single operational amplifier for each filter.

The responses of the 2 filters are shown in Figure 3.6, and 

it can be seen that the responses have been matched to better than 

0.1 dB in the passband.

3.4 Compensation for the Fixed Delay of the Simulator

In Section 3.1 it was shown that the combination of simulator 

and A/D converter has a fixed delay of 2 sample periods. To 

conpensate for this delay it is necessary to introduce an equal delay 

into the adaptive filter path. The compensating delay must be 

introduced before the input to the adaptive filter, rather than at 

its output, to avoid introducing a delay into the parameter control 

path of the adaptive filter. The required delay is achieved by 

connecting 3 pairs of sample and holds in cascade, as shown in Figure 

3.7. The first pair of sample and holds hold a sample for 1 clock 

cycle, with effectively 1 clock cycle to acquire the sample, and the 

remaining pairs each delay the held sample by a further clock period. 

The advantage of this technique is that the acquisition period is 

invisible at the output of the delay. A conventional sample and 

hold, with visible acquisition time, would introduce unwanted 

distortion into the adaptive filter path.
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3.5 Compensation for the Effects of a Non-Rectangular Frequency 

Mindow

In Appendix A1 it is shown that to achieve sufficient 

accuracy in calculating impulse responses from frequency responses, 

it is necessary to use a non-rectangular window in the frequency 

domain. Use of other than a rectangular window distorts the 

simulated frequency and phase response however, and an analog circuit 

is used to compensate for this distortion in the LHS. Comparison of 

the the window functions:-

with fs = 16 kHz, shows that over the band of interest the Hamming 

window introduces less amplitude distortion than the Hanning window. 

The time domain responses of these windows have the same main-lobe 

widths (4/Fs), but the first side-lobe of the Hamming window is 

smaller in amplitude than that of the Hanning window. Although for 

the Hanning window the other side-lobes are smaller in amplitude than 

those of the Hamming window, the Hamming window was chosen because of 

its lower attenuation in the passband. For comparison the time 

responses of both window functions are shown in Figure 3.8.

The Hamming frequency window, with the first zero at 16 kHz, 

gives an attenuation of 3.8 dB at 3.4 kHz, and this droop can be 

compensated by an under-damped second order section. The 2nd order 

section introduces some phase distortion, however, and it is 

necessary to restrict the phase lag of the compensation circuit. The 

optimum 2nd order section was found to be specified by c = 0.1 and w0 

> 6 kHz, where the response of the section is given by:-

Table 3.2 shows the response of the compensation network compared

Wl(f) = 0.54+0.46Cos(2irf/fs) : Hamming 

W2(f) = 0.5(1.0+cos(2irf/fs)) : Hanning

3.3

3.4

3.5
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with that of the Hamming window, for a sampling frequency of 16 kHz. 

The maximum error between the responses over the passband is 0.6 dB 

at 3.4 kHz, while the maximum phase shift introduced by the section 

is 9.5' at 3.4 kHz. The effect of this phase shift is that if an 

adaptive filter models the simulated transhybrid response accurately, 

then the SRL enhancement (SRLE) is limited to 15.6 dB at 3.4 kHz. To 

achieve higher SRLE the adaptive filter must also model the phase 

distortion produced by the compensation circuit. If the SRLE is 

lower than 15.6 dB, then this indicates that the adaptive filter is 

unable to accurately match the simulated response. The compensation 

circuit will have a lesser effect on the ERLE, since this is an 

average figure obtained over lower frequencies, where the phase 

distortion is less.

The response of a Sallen and Key section, designed to realise 

the required transfer function, together with the reciprocal of the 

window droop, and the theoretical response of the Sallen and Key 

section, is shown in Figure 3.9. It can be seen that the actual 

compensation circuit has a resonant frequency which is slightly lower 

than the nominal design frequency. The resultant improvement in 

compensation is obtained at the expense of greater phase lag in the 

compensation circuit.

In Appendix A1 it is also shown that the Hamming window 

causes the initial samples of the calculated impulse response to be 

•smeared out', effectively into the final portion of the response.

The final calculated impulse response sample, using a Hamming window, 

thus represents energy of the true impulse response which has been 

smeared out by the main lobe of the Hamming time function, and should 

be included in the initial portion of the simulated impulse response 

for accurate simulation. This effect occurs because the frequency 

window represents an unrealisable system, i.e. it introduces



- 51

frequency-dependent attenuation, but no phase shift. The resulting 

calculated impulse response is also unrealisable, and should be 

shifted circularly one sample to the right to form a realisable 

impulse response. This procedure is equivalent to delaying the 

simulator output, and a further delay of 1 sample period is 

introduced into the delay compensation circuit of Section 3.4 to 

compensate for this effect.

3.6 Results of Testing the Line and Hybrid Simulator

As the line and hybrid simulator (LHS) is a programmable 

transversal filter, the performance of the hardware can be verified 

by designing an 128th order transversal filter to a given 

specification, implementing the filter on the LHS, and verifying its 

response. Using a standard filter design program (Me. Cl el 1 an et al, 

1972), a filter with the following specifications was designed:-

FiIter order = 128

Sampling frequency = 32 kHz

Cutoff frequency =3.4 kHz

Transition bandwidth 1= 600 Hz

Passband ripple = 0.01 dB

Stopband attenuation = 58 dB

The frequency response of this filter, implemented by loading the 

coefficients calculated by the filter design program into the LHS, at 

sampling rates of 8, 16 and 32 kHz, is shown in Figure 3.10. The 

impulse response of the filter, operating at 32 kHz, is shown in 

Figure 3.11.

To test the analog circuitry discussed earlier, a flat 

spectrum was windowed by the Hamming window and the inverse FFT 

taken. The resulting impulse response was shifted one place to the
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right and loaded into the coefficient store. An error signal was 

formed by subtracting the output of the simulator's reconstruction 

filter from the output of the cascade of delay compensation circuit 

and the other reconstruction filter, where both paths had the same 

input signal. Figure 3.12 shows a plot of the resulting cancellation 

of the output of the simulator, as a function of frequency. It can 

be seen from the figure that as the frequency increases the phase 

shift due to the window compensation circuit decreases the accuracy 

of the simulator, but 15 dB SRLE is still possible at 3.4 kHz, as 

calculated in the previous section. The value of ERLE obtained with 

an input signal of white noise, bandlimited to 500 Hz to 2.5 kHz was 

30.5 dB.

To complete the testing of the LHS, the transhybrid response 

due to a combination of load impedance, an artificial transmission 

line of various lengths, and a precision hybrid were measured. The 

line constants (R, L, G and C) of the artificial line were used to 

simulate the test lines on the LHS. The measured responses of the 

simulator, for the same test line lengths, are shown in Figure 3.13. 

Superimposed on Figure 3.13 are the equivalent test circuit responses 

at 500 Hz intervals, adjusted to allow for the effect of the sample 

and hold. Also superimposed on Figure 3.13 are the theoretical 

responses of the simulator, adjusted for the effect of the sample and 

hold. The error between the simulated responses and the desired 

responses is in part due to erors in calculating the frequency 

response to be simulated, i.e. due to errors between the calculated 

response and the desired response. These errors are due to 

inaccuracies in the information available to the simulator, e.g. 

line constants, hybrid characteristics, etc. The remaining error 

(between the calculated response and the actual response simulated) 

is simulation error. This error is worst when the response to be
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simulated is low in amplitude, the maximum error being approximately 

2 dB. The main source of simulation error is likely to be inaccurate 

compensation for the effects of the Hamming window.
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simulated is low in amplitude, the maximum error being approximately 
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compensation for the effects of the Hamming window.



Mode Control Word Status

Reset -32768 All Timing Signals Reset

Run 0 Simulates Transhybrid Response

Halt 16384 Coefficient Loading

Table 3.1 Modes of the Line and Hybrid Simulator

Frequency (Hz) Window Loss (dB) Comp. Gain (dB) Comp. Phase (*)

200 0.0 0.0 -0.4

1000 -0.3 0.2 -2.0

2000 -1.3 1.0 -4.3

3000 -2.9 2.4 -7.6

3400 -3.8 3.2 -9.5

Table 3.2 The Response of the Compensation Circuit Compared with

that of the Window
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CHAPTER 4

CONTINUOUS ANALOG ADAPTIVE FILTERS

In Chapter 1 it was shown that the use of an analog unsampled 

adaptive filter for adaptive 2 to 4 wire conversion has a number of 

advantages. In Section 4.1 of this chapter the techniques and 

concepts to be used in the analysis and design of these filters are 

developed and explained. In Section 4.2 various new adaptive filter 

structures are investigated in terms of suitability for use in 

adaptive 2 to 4 wire converters and ease of implementation and 

adaption. In Section 4.3 a method of analysing the convergence of 

analog adaptive filters is developed, and the convergence properties 

of the most promising filter structures and algorithms are 

considered.

4.1 Analog Adaptive Filter Concepts

An adaptive filter with N controlling parameters, used in an

adaptive 2 to 4 wire converter, is shown in Figure 4.1. The adaptive

filter produces an estimate y(t) of the desired signal d(t), and the

difference between these two signals forms an error signal e(t). For

best performance it is required that the adaptive filter find the

particular values for its N controlling parameters which minimises

some function F[e(t)] of the error signal. A most useful error
---- T

criterion is the mean-square error e(t)‘, because this criterion can 

be translated directly into an equivalent frequency-domain criterion 

using Parseval's theorem:-
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e(t)2 = / |E(<u)|2d(o 4.1
— oo

Another possible error criterion, more often used in digital adaptive 

filtering, is the mean error magnitude |e(t)|.

4.1.1 The Error Surface

As an aid in visualising the process of finding the optimum 

parameter values, it is useful to consider F[e(t)] as the error 

surface in N+l dimensions, which gives the value of the error 

criterion F[e(t)] as a function of the N filter parameters, for given 

input signals. The problem of finding the N parameters then becomes 

that of finding the minimum in this error surface.

The properties of the error surface are central to the 

successful implementation of an adaptive filter, and some filter 

structures can be expected to have error surfaces more suited to 

adaption than others. In particular any error surface may have many 

minima, the smallest valued minimum being known as the global 

minimum, while the other minima are known as local minima. Surfaces 

with multiple minima are unsuitable for use with gradient or 

“hill-climbing" methods of finding the minimum, as there can be no 

guarantee that the minimum found is the global minimum, and in this 

sense performance would not be optimal.

Thus the most important property of the error surface is the 

nunber of minima it posesses. To find the number and positions of 

the minima and maxima, collectively known as stationary points, the 

partial derivative of the error criterion with respect to each filter 

parameter is equated to zero, forming a set of simultaneous 

equations. The solutions to this set of equations are the positions 

of the stationary points of the surface.

To illustrate these ideas, consider a hypothetical adaptive
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filter consisting of a variable gain and a single real pole, whose 

position is variable, as shown in Figure 4.2. The transfer function 

of the filter is given by:-

a0
G(u) = --- —  4.2

1+j aibj

and the error surface is the value of the error criterion as a 

function of aQ and b p  for a given input signal. If the transhybrid 

response is H(<o), and the error criterion chosen is the total error 

power (mean-square error), then the error surface can be derived as 

fol lews: -

...—  00
F[e(t)]= e2(t) = / |E(a.)|2do. 4.3

•  00

For adaptive 2 to 4 wire conversion it is necessary only to minimise 

the average error power over the speech bandwidth (cô  to u^), and the 

limits of the integral can be set accordingly. Thus:-

F[e(t)] = 2/2 |E(o))l2do> 4.4
“1

For convenience the factor of 2 and the limits of integration are 

omitted in the remainder of this chapter. The error signal 1s:- 

E(w) = D( (d)-Y (ui) = XMlHW-ao/U+jcobj)} 

and

|E (ta>) I 2 = -JX( cj) | 2

|H(u) |2(l+w2b^2)+ag2-ag{H(-u)) (l-jub̂ )+H(io) (1+jub^)} 

l+^bj2

If H(u) is the response of a realisable system then:- 

Re[H(io)] = Re[H (- to) ] 

and

Im[H(w)] = -Im[H(-iii)]

thus:



- 57 -

„ „ |H(M)|2(l+u2b12)+an2-2an{Re[H(<ü)]-ü)blIm[H(w)]}
|E(U)|2 = | X(co) |2 ------------- ----------------------------------

and the value of the error criterion is given by equation 4.4.

Equations 4.4 and 4.5 give the mean square error surface for 

this adaptive filter structure. The value of aQ at the stationary 

point is given by the solution to the equation:-

This stationary point must correspond to a minimum, rather than a 

maximum, in the error surface, because F(a0) is quadratic and 

positive (equations 4.4 and 4.5), which excludes the possibility of 

the stationary point corresponding to a maximum of F(ag).

Equation 4.6 shows that for any given input signal, unknown 

system H(ta) and value of the parameter b^, there is a single value of 

the parameter ag which minimises the mean-square error, i.e. in the 

parameter ag the error surface has a single unique minimum.

For the parameter b^, setting 3F[e(t)]/3b^ = 0 gives:-

This equation cannot be solved in general for the value of b1 at the

is possible that there are two distinct values of b1 which minimise 

the error criterion, 1.e. multiple minima may exist. To further 

investigate the nature of the error surface, the equation of the

4.5

3F[e(t) ]/3a0 = 0

Differentiating inside the integral sign, since:-

(Hildebrand, 1962)

gives the solution for ag as:

/ {Re[H(1u)]-Mb1Im[H(o))]}|X(a>)|2/(l+m2b12) do» 

/ |X(u>)| 2/(l+o2b12) d(D
4.6

J a g u I X M l ^ I m C H i K l - b ^ u ^ - b ^  Re[H]-a0) }/(l+o>2b12)1 dw

= 0 4.7

O
stationary point, however, because of the presence of terms in b^ it
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error contours can be derived and plotted, as explained in the next 

section.

4.1.2 Error Contours

For the two parameter adaptive filter, the error surface 

exists in three dimensions, however if the locus in the 2-parameter 

plane a0 , which gives a constant value of error criterion F[e(t)]

= Ej is plotted, then this locus is known as the error contour for an 

error of E^. Error contours plotted for a number of distinct values 

of error criterion allow the shape and nature of the error surface to 

be accurately represented in 2 dimensions. Thus for the adaptive 

filter of Figure 4.2, the error contour for a mean-square error of 

is obtained by solving the equation:- 

a02/ |X(u>) |2/ (l+^bj2) dm

- 2a0/ |X(id) |2{Re[H(u) l-wbjImCHiu) j J / U + A j 2) dw

+ / |X(uj) |2 |H(u>)l2do> - Ej ■ 0 4.8

for values of a0, while b1 is varied over suitable range. The 

error contour exists only for values of bj which give purely real 

solutions for aQ in equation 4.8.

The shape of the error surface depends on the Input signal 

spectrum X(w), and if X(w) is non-stationary, i.e. X = X(w,t) then 

the error surface changes shape over time. Since in the case of an 

adaptive filter used in an adaptive 2 to 4 wire converter, X(w) is 

the spectrin of a speech signal, and speech can only be considered 

stationary over periods less than 10 mS (Rabiner and Schafer, 1978), 

the effects of non-stationarity cannot be ignored. In considering 

error surfaces however, X(io) is considered stationary and the effect 

of the movement of the surface is included in the analysis of the
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adaption algorithm. The possible stationary values of the input 

spectrum can be represented by the extremes:-

X((d) = ¿(id ± Go,-) ; sinusoidal input signal 

and

X(id) l i f <Dj <|l o|<ID2
; wideband input signal

= 0 otherwise

Since the sinusoidal input case does not necessarily require matching 

of the adaptive filter's response to that of the unknown system, it 

can be regarded as a problem of lesser magnitude than the wideband 

input case. Thus in the study of error surfaces a wideband input is 

assumed. Figure 4.3 shows an example of an error contour plot for 

the adaptive filter of Figure 4.2, where the unknown system is a 

short circuit. For convenience the contours are evaluated as loci of 

constant ERLE. The error surface can be seen to be "saddle shaped", 

with a depression at the point (0,1) representing the single minimum 

in the surface.

4.1.3. Reduced Error Surfaces

For adaptive filters with more than 2 controlling parameters, 

the error contours can be plotted as a function of any two 

parameters, while the values of the remaining parameters are 

optimised. In particular any parameters in which the error surface 

is quadratic can be considered to have their optimum values, without 

obscuring the presence of local minima in the error surface. This 

would not be the case if simple fixed cross sections of the surface 

were considered. An error surface in which some quadratic parameters 

have been eliminated 1n this manner is known as a reduced error 

surface (Stearns, 1980). Error contour plots are a powerful tool 1n 

the study of adaptive filters and extensive use will be made of such
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plots in the remainder of this thesis.

4.1.4 Error Filtering

In the example of the 2 parameter adaptive filter discussed 

earlier, it was seen that the presence of a denominator term 

containing powers higher than 2 of the parameter bj contributed terms 

of order greater than 1 in the expression for the error gradient.

This introduced the possibility of more than a single minimum in the 

error surface. The denominator term can be removed by filtering the 

error signal by the transfer function (1+joob^). The filtered error 

signal is then given by:-

This technique of error filtering was first suggested by Mantey 

(1964), in the context of adaptive recursive digital filters. The 

equation for the filtered error criterion (filtered error power) is:-

The positions of the stationary points of the modified error 

criterion are given by:-

Since | E1 (a>)| 2 is positive and quadratic in aQ and bj, unless H(<d)»0,

the minimum is known as a distributed minimum, since the value of bj 

is irrelevant (equation 4.10). The effect of error filtering on the 

error surface can be visualised by using the error contour plotting

E’(ou) = E W d + j u ^ ) 4.9

F[e* (t) ] = / |X(u.) | 2 C  |H(o,) |2(l+u12b12)+a02 

- 2ag{Re[H(w)]-<iibjIm[H(a>)]}) du> 4.10

* /|X(<i))|̂ {Re[H(a>)]-<i)b}Im[H((ii)]} dui
4.11

/ |X( u) | 2dw

and

-ag/u> |X( u>) |2Im[H(<u) ]dui
4.12

/|X(oo)|2w2 |H(u))|2da)

then the above point (a0*, bj*) represents a minimum. When H(ui) = 0
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technique described earlier. Figure 4.4 shows the filtered error 

contours for the 2 parameter adaptive filter when the unknown system 

is a short circuit. It can be seen by comparison with Figure 4.3 

that in this case the position of the global minimum is unaltered, 

and that the modified error surface is quadratic in both ag and bj.

4.1.4.1 The Effect of Error Filtering on the Position of the Minimum

When error filtering is used, the adaptive filter minimises 

the filtered error power rather than the power of the unfiltered 

error. In the following analysis it is shown that if the filter 

structure is such that the non-filtered error power can not be made 

zero, then the minima in the filtered and unfiltered error surfaces 

do not occur at the same point.

In general, for an adaptive filter with N+l controlling 

parameters ag....a^, the mean square error surface can be written 

as:-

ES(ag.... aN) =/|E(oi,ag.....aN)| d<o

and the position of the minimum in the surface is given by the set of 

simultaneous equations: -

3 |E((u,ag....afl) I'
du> ■ 0, for k = 0,1,.

aai,
4.13

The equation of the filtered error surface can be written as:-

ES* (a0 .... aN) = /|F(u),a0,....aN)|2 |E(<o,a0.... aN)|2d<o

where F(u),a0.... aN) is the error filtering function. The minimum in

the filtered error surface is given by the set of simultaneous

equations:-
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da)

dio = 0 4.14

for k = 0,1.... N. For an error surface minimum which is independent

of the input signal bandwidth, the integrand of equation 4.13 must be 

zero, i.e:-

This condition also represents a solution in the error filtered case 

only if the error power at the minimum is zero, i.e:-

Thus when the adaptive filter is of sufficient order that the minimum 

non-filtered error power is zero, then the position of the minimum is 

unchanged by error filtering, irrespective of the input signal 

bandwidth. If the adaptive filter is insufficient, then

equation 4.13 will be non-zero, and equations 4.14 and 4.13 will have 

different solutions. Using error filtering thus changes the position 

of the minimum in the error surface as well as changing the shape of 

the error surface, if the adaptive filter is insufficient.

4.1.5 The Steepest Descent Algorithm

In the previous sections the concept of the error criterion 

as a surface in N+l dimensions (where N is the number of adaptive 

filter controlling parameters) was discussed. A simple technique for

2
0

0

since

* 0 for all k.

E(u),a0.... aN ) evaluated at the values of ak which are solutions to
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finding a minimum in a multi-variable function is the well-known 

steepest descent algorithm, and again the operation of the algorithm 

can best be understood by considering the function to be minimised as 

a surface. The task of the algorithm is to find a minimum in the 

surface. This is done by calculating (or estimating) the gradients 

of the error criterion with respect to each filter parameter, and 

adjusting the parameters in the direction of the negative gradient. 

Thus each parameter is adjusted in the direction which causes the 

error to decrease. When the gradients are all zero then no further 

adjustments are made, and the filter parameters are said to have 

converged to a minimum in the error surface.

A discrete time steepest descent algorithm for adjusting a 

filter parameter ak can be written as:-

ak (t+At) = ak(t) - K3F[e(t)]/3ak

where K is a step size factor and 3F[e(t)]/3ak is the error gradient 

with respect to ak. Rearranging and dividing by At gives: - 

ak (t+At)-ak (t) -K 3F[e(t)]

At At 3ak

To obtain the continuous form of the algorithm At + 0 and K + 0, 

while K/At ♦ Ak, a constant. Thus:- |,

dak (t)/dt * -Ak 3F[e(t)]/3ak 4.15

Simply expressed, the continuous time steepest descent algorithm sets 

the rate of change of each parameter equal to minus a constant times 

the error gradient for that parameter.

Solving equation 4.15 gives the required control function for 

the filter parameter ak:- 

t
ak(t) = -Ak/ 3F[e(r)]dT/3ak 4.16

It can be seen from equation 4.15 that for a given error gradient the 

factor Ak controls the speed of convergence of the algorithm.



A cross section of a hypothetical error surface is shown in 

Figure 4.5. This can be considered to be the error surface for the 

case when all the filter parameters except ak are kept constant and 

the surface is assured to have two minima and one maximum in ak. Use 

of the steepest descent algorithm, where ak has an initial starting 

point less than a^, would cause the value of ak to converge to the 

local minimum where the value of the error is greater than the 

error at the global minimum aj. Successful use of the steepest 

descent algorithm thus requires that the error surface possess a 

single minimum.

For many adaptive filter structures the gradient terms 

required by the steepest descent algorithm may be difficult to 

obtain. In some cases an estimate of the gradient may be simply 

obtained, but if an estimate of the gradient is used then the sign of 

the true gradient must be preserved, in order that the parameters be 

adjusted in the correct direction. Similarly the gradient estimate 

must equal zero at the same point in the surface as the true 

gradient, ensuring that convergence to the same point occurs. The 

effect of approximating the true error gradient for the mean-square 

error criterion, is considered in the next section.

4.1.6 Gradient Estimates for the Steepest Descent Algorithm

The error gradient used to adapt a filter parameter ak so as 

to minimise the mean-square error, using the steepest descent 

algorithm, 1s 3e2(t)/3ak. A signal which is proportional to this 

gradient is needed to control ak according to equation 4.16. To 

produce this signal directly, ak could be perturbed by a fixed small 

amount and the change in the error power would then be proportional 

to the required gradient. This process would involve complex
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hardware, and a long period of averaging would be necessary to 

measure the mean error power before and after each perturbation. It 

is therefore of interest to devise a simplified method of estimating 

the error gradients, suitable for implementation in continuous analog 

ci rcuitry.

In Appendix A.l it is shown that, in an average sense, the 

gradient of the instantaneous error squared is equal to the gradient 

of the mean error squared, i.e:-

3e2(t,ak)/3ak = 3e2(t,ak )/3ak 4.17

The derivation assumes that the error signal is statistically 

stationary, i.e. that x(t) and d(t) are stationary and that the loops 

controlling the filter parameters are open. Thus it is assumed that 

the filter parameters are not adjusted, i.e. that one merely wishes 

to know in which direction they should be adjusted out of academic 

interest. In Section 4.3 it will be shown that adjusting the 

parameters does not invalidate the gradient estimates.

The quantity on the left hand side of equation 4.17 is the 

average gradient of the instantaneous error squared. The process of 

averaging the gradient, if carried out, would considerably lengthen 

the time taken for the filter to adapt. A further simplification to 

the adaption circuits can be made by omitting the averaging Indicated 

by equation 4.17. This can be expected to introduce noise into the 

gradient estimates, i.e. they will only be correct in an average 

sense, but the average direction in which the filter parameters are 

adjusted will therefore also be correct. These approximations are 

analogous to the standard method of approximating the error gradients 

1n digital transversal adaptive filters (Wldrcw, 1966). Thus the 

control equation to minimise the mean-square error, for the parameter 

ak. is:-
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t
ak (t) = -Ak/e( t ) 3e( x)/3ak dx 4.18

where the factor of 2 has been included with the constant Ak.

At a local or global minimum the average gradient estimate is 

zero, i.e. this gradient estimate causes the filter to converge to 

the same point in the error surface as the true error gradient. It 

will be shown in a later section that the use of this gradient 

estimate considerably simplifies the implementation of continuous 

analog adaptive filters.

In Section 4.1.1 the possibility of using the mean magnitude 

of the error signal as the error criterion was mentioned. Use of 

this criterion is of interest since it may result in simpler adaption 

circuits for the analog adaptive filters. Consider an adaptive 

filter in which it is required to minimise the mean magnitude of the 

error signal. In this case the true gradient is 3|e(t)|/3ak where ak 

is the filter parameter to be adapted. This true gradient cannot be 

expressed in the frequency domain because of the non-linearity of the 

magnitude function, however if the approximation of equation 4.17 can 

be justified in this case, then an estimate for the gradient can be 

obtained as follows:-

3|e(t)|/3ak - 3|e(t)|/3ak = Sgn[e(t)]3e(t)/3ak 

where the averaging has been omitted. Using the steepest descent 

algorithm, the required control function for the ak parameter is:- 

t
ak (t) = -Ak/Sgn[e(x)]3e(x)/3ak dT 4.19

Thus a non-linear function is introduced Into the parameter control 

circuit in the adaptive filter, and in this case the multiplier which 

forms the product of equation 4.19 can be a simple polarity 

multiplier. In a similar manner, 1f only the sign of the gradient 

estimate were required in minimising the mean error squared, then the 

ak control equation could be written as:-
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t
ak (t) = -Ak/Sgn[e(T)]Sgn[3e(x)/3ak] dT 4.20

The multiplication indicated by the above equation can be performed 

by a simple exclusive-or type circuit, and this considerably 

simplifies the implementation of the circuits controlling the 

adaptive filter parameters. A fourth possible adaption algorithm can 

be formed by using a non-linear function in equation 4.18, i.e:- 

t
ak(t) = -Ak/e(T)Sgn[3e(r)/3ak] di 4.21

Use of non-linearities of the types indicated above are considered 

further in Section 4.3.

4.2 Adaptive Filter Structures

In Section 2.1.4 it was seen that the average input impedance 

of the lines in the line survey can be approximately matched by a 

three element network of the form of Figure 2.9. The result of 

Section 2.3 further showed that by using one of three balance 

networks of the same type, it is possible to achieve better return 

loss performance than that achieved by a single compromise network. 

These results suggest that the majority of lines are well matched by 

the 3-element network, and that the difficulty lies in matching all 

lines with a small number of such networks. In the following 

analysis it is shown that if the input impedance of the lines is that 

of a 3-element network whose values are variable, and if the balance 

and terminating impedances are purely resistive, then the transhybrid 

response consists of a variable gain, a pole and a zero, all of whose 

values are variable.

The transhybrid response 1s given by equation 2.16. Assuning 

Zt and Zb are resistive, and Zi 1s the input impedance of the 3 

element network Rl, R2 and C2, then the expression for the
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transhybrid response 1s:-

{ l + t s C o R p i R h - M A V R i - R ? ) ) }
H(s) = A ------ - ■ ■■■ ----  ---- 4.22

{l-t-(sC2R2(Rt^R1)/(Rt+Ri+R2))}

where A is a scaling factor, and H(s) has a gain, a pole and a zero, 

all of whose values are variable. Since the resistor values are 

positive, the pole is constrained to lie within the left-hand half of 

the s-plane, but the values of the gain and the zero can be either 

positive or negative.

If the terminating impedance Zt contains frequency selective 

components, then further poles or zeros can be introduced into H(s), 

but in general equation 4.22 represents the minimum complexity of the 

transhybrid response.

This analysis shows that an adaptive filter for use in an 

adaptive 2 to 4 wire converter should have a structure capable of 

synthesising at least a variable gain, a variable zero, and a 

variable pole. This result is used in the following sections as a 

criterion for judging the suitability of various adaptive filter 

structures for use in 2 to 4 wire conversion.

I,
4.2.1 Parallel Form Adaptive Filters

Figure 4.6 shows a block diagram of an parallel form adaptive 

filter consisting of N+l variable parameters ag....aN, and N 

frequency selective elements G1(s)....GN(s). The transfer function 

of the adaptive filter can be written as:-

N
Y(s)/X(s) - a0 + I G1(s)«1 4.23

i*l

If the unknown system which the adaptive filter is attempting to 

model is H(s), then the mean square error can be written as:-
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ES = /|X(a>)|2 { | H H | 2 - 2Re[H(<n)]£ Re^-(a>) ̂
i=l

N N N

ES is thus a quadratic function in all N+l parameters, and the single 

unique value for each parameter which minimises ES can be found as in 

Section 4.1.1.

If the approximation of equation 4.17 is made then the 

gradient estimate becomes:-

3e2(t)/3ak = 2e(t)3e(t)/3ak = -2e(t)gk(t) 

where gk(t) is the output of the kth frequency selective network.

Thus the control algorithm for each filter parameter requires only a 

single multiplier and an integrator to produce the coefficient 

according to equation 4.18.

If the transfer functions G^s) in the parallel form adaptive 

filter contain both poles and zeros, then the overall filter response 

will be capable of synthesising poles at any or all of the fixed 

positions of the poles of G^(s), and zeros whose positions are 

variable (equation 4.23). In this sense the performance of the 

parallel form adaptive filter is inefficient, since it would require 

a distinct GWs) for each distinct pole in the transhybrid responses 

of all lines.

If the parallel form adaptive filter structure is used as 

shown in Figure 4.7 to form an adaptive 2 to 4 wire converter, then 

the G.)s are the responses of potential dividers consisting of Z^ (the 

terminating impedance) and each of the N distinct balance impedances. 

This structure can thus have an effective balance impedance which is 

a linear combination of the N individual impedances. Ootter, De la 

Plaza et al (1980), used a parallel form adaptive filter with two 

distinct G.|S to form an adaptive 2 to 4 wire converter, where the
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filter parameters were ag = 9 and a^ = 1-6, and 9 is a single 

adaption parameter. In a digital implementation it was found that 

2-bit quantisation of 9 gave 12 dB ERL against an artificial line, 

i.e. the full range of linear combinations of balance impedances was 

not required. Although this simplification reduces the circuit 

complexity required in the adaptive filter, it was shown in Chapter 2 

that 3 distinct balance impedances would be necessary to achieve 

12 dB minimum SRL. While this does not take account of the 

possibility of combinations of the 3 impedances, the restrictions on 

the positions of the poles in the parallel form adaptive filter makes 

it non-optimal for use in 2 to 4 wire conversion.

4.2.2 Series Form or Transversal Adaptive Filters

A block diagram of this type of adaptive filter structure is 

shown in Figure 4.8. The filter consists of cascaded networks Gq (s) 

to Gn ( s ) whose outputs are weighted by the filter parameters aQ to aN 

and summed to produce the adaptive filter output. The filter 

transfer function is:-

N 1
Y(s)/X(s) - I a, n Gk(s) 4.24

i=0 k=*0

When the the filter is used in the system identification mode, where 

the unknown system is H(s), then the mean square error is:-

r  , , N 1 N i
ES = / |X( o>) |2{ |H(u>)|z -  H(o>)I a,n Gk(-oo) -  a.IKUw)J i = 0 k=0 1=0 k=0

N N i m
+ l ai l a n Gk (u) n G-. (-<u)} du

1-0 ra-O k-O 1 = 0

The highest power of any filter parameter appearing 1n this equation 

1s 2, and thus the error surface is quadratic in all parameters, 

irrespective of the nature of the networks G^(s). The gradient
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estimates are:-

3e2(t)/3ak = 2e(t)3e(t)/3ak = -2e(t)gk (t) 4.25

where gk (t) is the output of the kth cascaded transfer function. The 

implementation of the steepest descent algorithm for this filter 

structure therefore requires a single multiplier and integrator per 

filter parameter.

The responses Gk(s) should form an orthogonal set, so that 

the adaptive filter can model any possible transfer function. For 

example, if the cascade of networks Gk (s) is replaced by a tapped 

delay line then an analog transversal adaptive filter results. This 

type of structure was first used as an echo-canceller by Sondhi 

(1967), although a modified algorithm was used to control the filter 

tap weights. Since that time all echo-cancellers have made use of 

the transversal filter structure, although the tapped delay line was 

soon superceded by the use of CCDs and later by the use of digital 

techniques.

Sondhi also suggested the use of tapped R-C lines to 

implement the Gk (s) in a transversal adaptive filter. This was shown 

to be analagous to approximating the unknown system's impulse 

response by a set of Laguerre functions. Tattersall (1981), 

suggested the use of dispersive delay sections to replace the pure 

time delays used in transversal filters, avoiding the need for the 

pre and post-filtering associated with sampled-data techniques, and 

this type of network could be used to form an adaptive transversal 

filter. The above techniques however, all have the disadvantage of 

requiring very many taps to approximately synthesise a transfer 

function with a variable pole position.
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4.2.3 All Pole Adaptive Filters

Synthesis of a transfer function containing a variable pole 

requires the introduction of feedback between the adaptive filter 

output and its input. Consider the adaptive filter structure shown 

in Figure 4.9, where the filter output is fed back to the input, via 

frequency selective elements and variable parameters, to form a 

recursive type filter. The transfer function of the filter is:-

Y(s)/X(s) = a0/(l+b1s+....bNsN) 4.26

and it can be seen to be capable of synthesising N poles, all of 

whose positions are variable. The error signal when this filter is 

used to model an unknown system H(s), with an input signal X(s) 1s:- 

E(s) = X(s){H(s)-a0/(l+blS+....bNsN)} 4.27

The denominator terms in E (to) ensure that the gradients of the error 

surface with respect to bj contain powers of bj other than unity, and 

thus that the error surface is non-quadratic. The denominator terms 

in Ê (to) can be removed by considering the filtered error signal:-

E1 (s) = (1+SC]+....sNcN)E(s) 4.28

as explained in Section 4.1.4. If ĉ  = b^, for 1 = 0,1.... N, then

the filtered error surface contains at most powers of b̂  of order 2, 

and the error surface gradients contain at most powers of b̂  of order 

1. Thus the filtered error surface has a single unique minimum.

In Section 4.1.4.1 1t was shown that if the adaptive filter 

was sufficient, i.e. in this case the unknown system could be 

accurately modelled by an all pole filter, then the location of the 

minimum in the filtered error surface coincided with the location of 

the minimum in the non-filtered error surface.
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4.2.3.I. Implementation of the Error Filtering Function

In equation 4.28 the required error filtering function is 

indicated as a separate transfer function 1+0^ + 025^+....+cNs . For 

accurate implementation of the error filtering function, it is 

required that the ĉ  filter parameters accurately track the 

parameters in the adaptive filter transfer function. As shown in 

Figure 4.10 however, the required error signal can be obtained by 

modifying the adaptive filter structure, i.e. the desired signal Q(s) 

rather than the output signal Y(s), is fed back via the transfer 

function biS+....bNs . Thus the new error signal obtained in this 

fashion is E‘ (s), i.e:-

N
E'(s) = D(s){l+£b|S' }-aQx(s)

- {1+Xs1b1 }E(s )
1-1

E 1(s) is therefore the required filtered error signal. Figure 4.10 

shows that the overall effect of this modification is that the 

filtered error signal is the result of subtracting a linear 

combination of network outputs from the desired signal D(s), without 

feedback, I.e. the recursive adaptive filter has been transformed to 

the transversal type structure discussed 1n Section 4.2.2.

4.2.3.2 Calculation of the Filtered Error Gradients for the All Pole 

Filter

Using the gradient estimate of equation 4.17:-

3e,2(t)/3a0 = 2e'(t) 3e'(t)/3a0 * -2e'(t)x(t) 4.29

and
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»*

;
i

¡2

ae2(t )/3bi = 2e'(t)3e'(t)/3b1 = 2e'(t)g1(t) 4.30

where g.j(t) is the output of the ith differentiator in Figure 4.10. 

In the non-filtered case estimation of the error gradients requires 

the signal :-

f(t) =
3gX(s)S^

N~2
(l+b1s+....bNs )

In both filtered and unfiltered cases a multiplier and integrator is 

needed to adapt each filter parameter, however in the non-filtered 

case an additional system of a similar complexity to that of the 

basic filter structure is also required. Thus the use of error 

filtering, in addition to rendering the error surface quadratic, 

considerably simplifies estimation of the error gradients.

4.2.4 Pole-Zero Adaptive Filters

The all pole adaptive filter of Section 4.2.3 requires the 

use of perfect differentiator circuits, and it is incapable of 

synthesising zeros in its transfer function (equation 4.26). This 

drawback can be overcome by using the structure shown in Figure 4.11. 

The transfer function of the filter is:-

Y(s)/X(s) = (a0sN+a1sN'1+....aN )/(sN+b1sN_1+..... bN) 4.31

Thus an adaptive filter of this form is capable of synthesising N 

poles and N zeros, all of whose positions are variable. The 

unfiltered error surface for this filter is non-quadratic in the b 

parameters, however the filtered error surface produced by the error 

filtering function:-

E * (s) = {l+b1s"1+--- bNs_N }E(s) 4.32

is quadratic 1n both the bi and the a^ parameters. This filtered 

error signal can be produced by modifying the filter as shown in 

Figure 4.12.
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4.2.4.1 Filtered Error Gradients for the Pole-Zero Filter

The gradient estimates are:-

3e‘̂ (t)/3ai = 2e‘(t)3e'(t)/3a1 = -2e* (t)g^ (t) 4.33

and

3e‘2(t)/3b.j = 2e ‘ (t) 3e' (t)/3b^ = 2e1 (t )fn- (t) 4.34

where the signals f^(t) and g^t) are as shown in Figure 4.12. In 

Section 4.2 it was estimated that a filter with a single real pole 

and zero would provide adequate ERLE, and in the next section the 

behaviour of analog adaptive filters with a single real pole, and 

with a single real pole and zero, are studied.

4.3 Adaptive Filter Convergence

In the previous sections the filter parameters have been 

considered constant with time, i.e. as though the loop controlling 

the filter parameters were open. To investigate the transient 

behaviour of the adaptive filters, the filter parameters must be 

treated as functions of time, and the effect of the non-stationarity 

of the error signal on the gradient estimates cannot be neglected 

(see Section 4.1.6). In this section a technique for numerical 

analysis of the convergence of adaptive filters is presented. The 

technique is initially explained using the example of the adaptive 

gain circuit of Figure 4.13. The error signal e(t) given by:-

e(t) » d(t)-a0(t)x(t)

and the control algorithm (Section 4.2.1) 1s:- 

t

4.35

a0(t) = Aq / x( t)e( T)dr 
-0»

4.36

where Ag represents the control loop gain. If the initial conditions
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are represented by the a0(0), then the error signal can be written 

as: -

The value of the function e(t) which is a solution to equation 4.37 

fully determines the transient response of this adaptive filter for 

any given d(t), x(t) and initial condition ag(0).

Equation 4.37 is known as a Volterra integral equation of the 

second kind, and the solution can be obtained by using the Picard 

method of successive approximation (Kanwal,1971). The analytical 

solution is expressed in terms of an infinite series, known as the 

Neumann series, and the solution must be derived separately for each 

input signal or unknown system. Even for the simple adaptive gain 

filter, with a sinusoidal input signal, the derivation of an 

expression for the error signal is cumbersome. The successive 

approximation technique can however be readily implemented on a 

computer to provide a numerical solution for both e(t) and a0(t), the 

adaptive gain parameter. Consider equation 4.37 , where the initial 

condition is a0(0) = 0; if the error signal is initially estimated by 

d(t), i.e. eg(t ) = d(t), then an updated estimate for the error 

signal is given by:-

A new estimate for e(t) can now be formed using e^(t) in place of 

eQ(t). This iteration can be repeated indefinitely, and provided 

that the technique converges, it will lead to an approximate solution 

for e(t). Kanwal (1971), gives the condition for convergence as:-

t
4.37

t
4.38

This convergence criterion restricts the use of the iterative
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technique in investigating the behaviour of adaptive filters, and it 

will be seen that it limits the minimum adaptive filter convergence 

time for which a solution for e(t) can be found, although this does 

not mean that no solution exists (Kanwal, 1971, p30).

To implement the numerical solution of equation 4.37, the 

continuous signals must be represented by their samples at discrete 

time intervals, and the integrals can then be represented by discrete 

summations. Equation 4.37 then becomes:-

N
e(nAt) = d(n At)-x(n At) {ag(0)+AgAt£ x(i At)e(i At)}

i=l

The Fortran program listing to solve this equation for e(nAt), and 

calculate the values of the samples a0(nAt) is given in Appendix A.2. 

The input signal samples x(iAt) are specified as samples of a single 

sine wave or a sun of sine waves of random phases and specified 

frequencies. The samples d(iAt) are calculated from x(iAt) by 

specifying an unknown system of the form:-

H(s) = g(l+sz)/(l+sp1+sp2) 4.39

where g, z, pj and p2 are inputs to the program. The loop gain Ag is 

also an input to the program. Iteration is terminated when the 

mean-square value of the difference between the k+lth approximate 

solution for the error and the kth solution is less than some 

threshold value. Since the amplitude of the error is directly 

dependant on the amplitude of d(t), the threshold is set at 10"® 

times the mean-square value of d(t).

The use of non-linearities in the control circuits of 

adaptive filters was mentioned in Section 4.1.6, however Introduction 

of a non-linear function of the error signal or of the filtered error 

signal, transforms a linear equation such as equation 4.37 to a 

non-Hnear equation. In these cases Picard iteration will not 

necessarily provide a solution for e(t), and indeed this is found to
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be the case. Therefore the analysis of the effects of 

non-linearities on the convergence of the filters is confined to 

non-linear functions of the signal multiplying the error signal in 

the control equations. In this section, for the adaptive gain 

filter, and for the single pole and the pole-zero filters, the 

effects of the following variables on the speed of filter convergence 

are examined:-

1) input signal (x(t)) power

2) unknown signal (d(t)) power

3) control loop gains (Â  and )

4) non-linear functions of the input signals

5) input signal band-width

6) interaction between filter parameters

7) adaptive filter insufficiency

In the results of this section no attempt is made to estimate the 

convergence of the error signal, as for a multi-parameter filter the 

error varies with time according to the variation of each of the 

filter parameters, and is thus composed of a number of different time 

constants. Attention is therefore concentrated on the time taken for 

each filter parameter to converge to its optimum value.

4.3.1 Convergence of the Simple Gain Adaptive Filter

Using the linear adaption algorithm of equation 4.36, 1t 

was found that a0 converged exponentially to its optimum value when 

the unknown system was represented by a variable gain. Figure 4.14 

shows the dependence of the time constant of ag on the loop gain Ag 

and the input signal power. It can be seen that the time constant is 

linearly related to the loop gain; i.e. doubling the loop gain 

decreases the time constant by a factor of 2. The time constant is
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similarly dependent on the signal power, i.e. decreasing the signal 

power by a factor of 2 increases the time constant by a factor of 2. 

Figures 4.15a and b show an example of the convergence of a0 and the 

error signal, for an unknown system given by H(s) = 1, where the 

input signal was a sun of sinusoids of random phases between 1 kHz 

and 2 kHz.

Figure 4.16 shows the dependence of the time constant of a0 

on the loop gain and the power of the input signal, when a non-linear 

function of the input signal is used in the adaption algorithm 

(equation 4.21). It can be seen that the time constant is dependent 

on the square root of the signal power, rather than on the power.

The convergence of the circuit is therefore improved by the use of 

the non-linear function.

For values of Ag and input signal power such that the time 

constant was less than approximately 20 mS, it was found that the 

Picard iteration failed to converge, and more sophisticated 

techniques of solution (e.g. Fredholm theory, as described in Kanwal, 

1971, Ch. 4) are required.

The speed of convergence of the simple gain filter was found 

to be independent of the bandwidth of the input|,signal, and also of 

the power of the desired signal.

4.3.2 Convergence of the Single Pole Adaptive Filter

Figure 4.17 shows a block diagram of a first order all pole 

adaptive filter, with error filtering and circuitry to adapt the 

filter parameters a0 and b p  as explained in Section 4.2.3. The 

filtered error signal can be written as:-

e '(t) = d(t) + b^tjfft) - a0(t)x(t)

The parameter control equations, using the steepest descent
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algorithm, are:-

t
a0(t) = Ao/ x( x)e' (t )(1t

•  oo

t
bj(t) = - B j /  f(T)e'(x)dT

•  oo

where Ag represents the total ag control loop gain, and represents 

the total bj control loop gain. Convergence of ag and is broadly 

in accordance with the results of the previous section, i.e. the time 

constant of each filter parameter is dependent on the product of the 

power of the signal driving its control loop and the loop gain. This 

underlying relationship is however complicated by the fact that the 

unknown signal (d(t)), filtered by the differentiator transfer 

function, drives the bj control loop (Figure 4.17). Convergence of 

the b^ parameter is therefore dependent both on the power of the 

unknown signal, and its frequency/bandwidth. A further complication 

is the interdependence of the parameter values, since the optimum 

value for one parameter is dependent on the value of the other, as 

shown by equations 4.11 and 4.12.

The dependence of the convergence of the bj parameter on the 

power and bandwidth of the d(t) signal is verified by the results 

shown in Table 4.1. In the first 4 rows the input signal is a sun of 

sine waves of random phases between 500 Hz and 2.5 kHz, while in the 

5th row the banctoidth is reduced to 500 Hz to 1.5 kHz. Comparing 

rows 1, 2 and 3, it can be seen that reducing the power of d(t) by a 

factor of 4 (by introducing attenuation of 0.5 in the unknown system 

transfer function), has the same effect as reducing the loop gain Bj 

by a factor of 4. Comparing rows 1 and 3 however, shews that the 

effect of reduced d(t) power on the time constants of the parameters 

in not clear, since the a0 time constant increases by a factor of
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approximately 1.6, while the b^ time constant increases by a factor 

of 2.7. Comparing rows 2 and 4, the effect of the reduction in d(t) 

power is more predictable, since the bj time constant increases very 

approximately by a factor of 4. The fact that the expected 

relationship holds approximately only when the a0 time constant is 

much shorter than the b^ time constant, indicates that this anomalous 

behaviour is due to the interdependence of the parameters. This 

effect can be examined in more detail by plotting the paths of the 

filter parameter values as functions of time, on the error contour 

plot for the given input signal and unknown system. The plot 

corresponding to the conditions of rows 1 and 2 is shown in Figure 

4.18. Curve 1 shows the behaviour of the parameters for loop gains 

A0 = 480 and B1 = 10. It can be seen that aQ initially converges to 

a value which is optimum for a near zero value of bp Once this has 

occurred ag maintains an optimum value as bj converges slowly to the 

optimum in the error surface (at point aQ = 1, b^ = 0.25). Curve 2 

shows the situation with A0 = 480, B1 = 80, and in this case aQ and 

bj are always close to their optimum values, i.e. curve 2 tends to 

join the points on each error contour closest to the starting point. 

This occurs when the loop gains are in inverse proportion to the 

powers of the signals driving the control loops, 1.e :—

_Ag f(t)2

Bx x(t)2

Curve 3 shows the behaviour of ag and b^ for loop gains ag = 120,

= 80. In this case, for given values of b p  the values of ag are 

non-optimal.

By allowing a0 to adapt much more quickly than b p  as in 

curve 1, the convergence of bj is essentially independent of aQ, and 

in this case bj convergence is directly dependent on the power of the 

signal driving its control loop, i.e. the filter parameters have been
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uncoupled, allowing the factors governing the speed of convergence of 

b1 to be investigated.

Figure 4.19 shows the effect of reducing the input signal 

bandwidth to 500 Hz to 1.5 kHz, and it can be seen that the 

orientation of the error surface has changed, i.e. the semi-major 

axis of the elliptical contours is inclined closer towards the 

horizontal. This has the effect that the value of ERLE is less 

sensitive to the value of b p  and this reduces the interdependence 

between the parameters. Reduction in coupling between the parameters 

is desirable, since ideally each parameter adapts directly towards 

the global minimum, without adapting to minimise the error due to a 

temporary non-ideal value of another parameter. The reduction in 

coupling between the parameters evident in Figure 4.19 can be simply 

explained by the observation that the lower the frequency, the 

smaller the amplitude of the differentiator output, and the less 

critical the value of b p  Thus although in row 5 of Table 4.3 the 

power in the signal driving the bj control loop is increased slightly 

above that of row 2, the time constant of the aQ parameter is 

shortened, while that of remains approximately the same.

The effect of using the ipon-1inear algorithm with the single 

pole adaptive filter is to make the convergence time of each 

parameter dependent on the square-root of the power of the signal 

driving its control loop, as was found in the case of the simple gain 

adaptive filter.

The effect of insufficiency on the single pole adaptive 

filter can be examined by using a non-zero value of P2 in the 

transfer function of the unknown system. In this case the unknown 

system is of the 2nd order, and by gradually increasing p2, its 

response changes from overdamped towards underdamped, and the 

resonant frequency decreases. Thus if p2 is near zero, the unknown
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system can be approximately matched by a single real pole, and 

increasing P2 increases the degree of insufficiency of the adaptive 

fi Iter.

Figure 4.20a shows the adaptive filter adapting against an
A Q

unknown system given by g = 1, z = 0, p1 = 10 and P2 = 10 , while
_ Q

in Figure 4.21 P2 is increased to 5*10 . These correspond to 2nd

order systems given by fg = 5.0 kHz and c = 1.6 and fg = 2.3 kHz, c = 

0.707 (Figure 4.21). In both cases the input signal consists of 10 

sine waves of random phases evenly spaced between 500 Hz and 2.5 kHz. 

Figure 4.20a shows both the filtered error contours (solid lines), 

and the non-filtered contours (dashed lines), and it is evident that 

the optimum parameter values are the same in both cases (ag * 1, bj * 

0.25). The path of the values of ag and b^ on the error surface, for 

loop gains Ag = 480, 8  ̂= 80 are also shown, where the '*'s on the 

path represent 16 mS intervals. Greater than 15 dB ERLE is achieved 

within 64 mS and Figures 4.20b and c show the values of aQ and bj 

against time. In Figure 4.21a the depth of the minimum in the 

filtered error surface is less than 9 dB, whereas in the non-filtered 

case at least 12 dB ERLE is possible. The path of ag and b1 on the 

error surface is also shown, and it can be seen that the adaption 

algorithm performs considerably worse than in Figure 4.20a. The 

values of aQ and bj against time are shown in Figures 4.21b and c 

respectively. In this case it is not clear whether the algorithm 

converges slowly to the shallow minimum in the filtered surface, or 

whether it has failed to locate even this minimum.

In other experiments with insufficient single pole adaptive 

filters 1t has been found that the effect of error filtering 1s first 

to decrease the depth of the minimum in the filtered error surface, 

and that as the amount of insufficiency is increased, the location of 

the minimum in the non-filtered surface moves away from that in the
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filtered error surface.

4.3.3 Convergence of the Pole-Zero Adaptive Filter

In Figure 4.22 a first order pole-zero adaptive filter, 

with error filtering and adaption circuitry is shown. The equation 

for the filtered error signal is:-

e'(t) = d(t) + bxf(t) -aQx(t) -axg(t) 

and the parameter control equations, using the steepest descent 

algorithm to minimise the mean square filtered error, are:- 

t
a„(t) = Ag/x(x)e'(T)dx

-CO

t
a^t) = A 1 f g ( T ) e ‘ ( t )c1t

t
b0(t) = -B0/f(x)e'(x)dx

- 4 0

These equations are solved as in the previous sections.

In investigating the convergence of the pole-zero adaptive 

filter, it was first verified that convergence of each parameter is 

dependent on the product of the loop gain and the power of the signal 

driving the control loop. As a consequence of the use of integrators 

as the frequency selective elements in the filter, the convergence 

times of aj and are frequency dependent. Investigation of the 

convergence of the pole-zero filter then concentrated on the 

properties particular to this type of filter.

Since the first order pole-zero adaptive filter has 3 

adaptive parameters, the error surface cannot easily be visualised, 

and the reduced error contours described in Section 4.1.3. must be 

used. This presents problems in plotting the paths of the filter
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parameters, since each contour plot assures that one parameter is 

optimised, whereas the parameter values are calculated assuming only 

that all initial conditions are zero. This problem can be alleviated 

to some extent in the case of the filter adapting against simple gain 

circuits by setting the loop gains and B-, to zero, thus ensuring 

that a1 and b1 are always zero. Although this gives an unrealistic 

impression of the behaviour of the filter, it ensures that the 

parameter path is consistent with the contour values, and allows some 

insight into the performance of the filter to be gained.

Figures 4.23a and b show the reduced error contour plots 

EStao.bj) evaluated at aj = aloptimum and ESiaj.bj) at aQ = a0optimunl 

respectively, when the pole-zero filter of Figure 4.22 adapts against 

an unknown system consisting of a gain of 0.5, where the input is a 

sum of sine waves between 500 Hz and 2.5 kHz. Both the filtered 

(solid lines) and the unfiltered (dashed lines) error surfaces have a 

distributed minimum given by; ag = 0.5 and a^ = 0.5*bj. Convergence 

of a0 to its optimum value is shown in Figure 4.23a, where each 

indicates an 8 mS interval in time. This speed of convergence is 

however unrealistic, since in a real situation a^ and b^ would not 

initially be optimum.

Figures 4.24a and b show the reduced error contour plots when 

the filter is attempting to match a system given by g = 1, z = 0, pj 

= 10"^ and P2 = 0, with the same input as that of Figure 4.23. In 

this case the error surfaces, both filtered and unfiltered, have 

single unique minima at aQ =» 0, a1 =* bx = 1. In both Figures 4.24a 

and b the semi-major axis of the contours is not horizontal, and thus 

the optimum values of the parameters are all interdependent. A 

consequence of this is shown by plotting the path of the a^ and bj 

parameters (with Ag = 0, and thus aQ * 0) on Figure 4.24a, where it 

is evident that the slow convergence of either parameter retards the
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convergence of the other.

Figures 4.25a and b show the effect of increasing the 

bandwidth of the input to the band 2 kHz to 3 kHz. In this case the 

minimum in the surface has become more like a distributed minimum, 

i.e. the error, both filtered and unfiltered, is relatively 

insensitive to the absolute value of b p  as long as the ratio between 

bj and a^ remains the same. This occurs because the power in the 

d(t) signal is reduced as the frequency of the input is increased 

above the cutoff frequency of the unknown system. The filter 

posesses sufficient "degrees of freedom" in this case, so that using 

only ag and a^, with b1 = 0, over 15 dB ERLE can be achieved.

The effect of changing the input signal to a single 500 Hz 

sine wave is shown in Figures 4.26a and b. In this case the filter 

again possesses sufficient degrees of freedom, because it is 

unnecessary to match exactly the unknown system, instead the error 

can be reduced by merely matching the signal d(t) in amplitude and 

phase. Thus the minimum has become distributed in nature, requiring 

only the correct ratios between parameters rather than correct 

absolute values. This condition has been termed “insufficient input 

richness" (Johnson and Larimqre, 1977)

The effect of insufficiency on the pole-zero adaptive filter 

1s shown 1n Figures 4.27 to 4.29. In each case the unknown system is 

specified as a second order system, and in Figure 4.27 the resonant 

frequency (fg) is 5 kHz, decreasing in steps for Figures 4.28 and 

4.29. The damping factor for Figure 4.27 is 1.6, and this also 

decreases for the other figures. The input signal consists of a sun 

of sine waves with random phases, evenly spaced between 500 Hz and

2.5 kHz. If P2 were zero, the position of the minimum in both the 

filtered and the unfiltered error surfaces would be; aQ * 0, aj = 1 

and b1 ■ 1. Thus Figures 4.27a and b show that the minimum in both
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filtered and unfiltered surfaces has moved in the direction of

increasing and decreasing ag, but the depth of the minimum does 

not appear to be substantially decreased. While the pole-zero filter 

is unable to introduce a second pole to match the unknown system, it

can keep the error small by increasing b^ and decreasing aQ below 0,

so that a transmission zero is introduced into the left-hand half

s-plane. The values of a^ and b1 with aQ = 0, for loop gains Ag = 0,

Aj = 250 and = 250, are shown in Figure 4.27, however the

parameter values are not consistent with the contours, since the

optimum value for ag is not zero for the insufficient case. In

Figures 4.28a and b the amount of insufficiency is further increased,

since fg = 2.25 kHz and ? = 0.707. In this case the depth of the

filtered error minimum has begun to decrease, although both the

filtered and unfiltered surfaces have the same minimum. The position

of this minimum has moved further in the direction of increasing b^

and decreasing ag, and also begun to move in the direction of

increasing a^. The minimum in both surfaces is approximately given

by; a0 = -0.4, a^ = 1.25 and bj = 1.15. Figures 4.29a and b show an

example of extreme insufficiency, where fQ = 1.6 kHz and c = 0.5.

The minimum in the unfiltered error surface now occurs at; an = -0.4,

a1 = 0.9 and bj * 0.75, while for the unfiltered error surface the 

value of bj is somewhat higher. The maximum ERLE attainable in the 

filtered case is less than 9 dB, while for the unfiltered error at 

least 11 dB is possible.

The performance of the first order pole-zero adaptive filter

•i
■
I

against systems of order higher than 1 is substantially better than 

that of the single pole adaptive filter. This is due to the 

additional degree of freedom introduced by the third filter 

parameter, which can compensate to some extent for the insufficient

H

1

order of the f 11ter.
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4.4 State Variable Description of Adaptive Filters

In the previous section a method of analysing the convergence 

of analog adaptive filters was developed. This method was seen to 

fail when the filters converged at high speed. In this section an 

alternative method of analysis is discussed, initially with reference 

to the example of the adaptive gain circuit of Figure 4.13.

The response of an adaptive filter can be uniquely described 

by the values of its filter parameters at any time. It would thus 

seem apt to consider the filter parameters as state variables, and 

use the techniques of state variable analysis to investigate the 

convergence of the filters. The rate of change of ag can be derived 

from equation 4.36 as:-

da0/dt = A0x(t)e(t) 

and substituting for e(t) gives:-

dag/dt + Aga0(t)x2(t) - AQx(t)d(t) = 0 4.40

Equation 4.40 is a first order linear differential equation 

describing the transient behaviour of the parameter aQ (the state 

variable) for any input signal, unknown system output and loop gain. 

The general solution to equation 4.40 can be obtained by the 

integrating factor technique (Kreyszig, 1967), however if d(t) = 

ax(t), the equation is separable and the solution 1s:-

t t
aQ( t )  = o{l-Exp(-Ag/ x2(T)dr)) + a0 (0)Exp(-Ag/ x2(x)dr)

0 0

where aQ(0) is the Initial condition.

Since the function /x2(t)dr is positive, 1t can be seen that 

the filter parameter a0(t) converges to the optimum value a, and that 

the speed of convergence is proportional to the product of the loop 

gain and the power 1n the input signal. This result confirms those 

of Section 4.3, and in particular shows that the non-convergence of
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the iterative technique described earlier does not indicate a 

theoretical limit on the speed of convergence of the filter.

For the single pole adaptive filter the equations governing 

the behaviour of the ag and b^ parameters can be derived in a similar 

manner:-

dag(t)/dt + a0(t)A0x2 (t) - b1(t)Agx(t)f(t) - AQx(t)d(t) = 0 4.41

dbj(t)/dt + b1(t)B1f2 (t) - a0(t)B1f(t)x(t) + Bjf(t)d(t) = 0 4.42

Equations 4.41 and 4.42 are simultaneous (or coupled) first order 

linear differential equations, and they can be written in 

state-variable notation as:-

H » I ; the identity matrix

Similarly the pole zero adaptive filter can be described by 

equations 4.43 and 4.44, where:-

X(t) = A(t )X(t ) + D(t)H(t ) 4.43

where: -

; the state variable matrix
t>! ( t )

A0x2(t) -AgX(t)f(t) 
A(t) = ,

_-B1f(t)x(t) B1f2(t)_
;the coefficient matrix

-A0x(t)
D(t) = ; the transfer matrix

Bjf(t)_

and

M(t) = d(t) ; the input matrix, in this case a scalar 

The input-output equation for the system 1s:- 

e'(t) = BX + HM 4.44

where: -
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3 g ( f )

X(t) = aj(t)

-bj_ ( t )

V 2 (t) A gx(t )g(t) -AgX(t)f(t)

A(t) = A xg(t ) x ( t ) A 1 g 2 (t) - A ^ t J x U )

—B 1f ( t ) x ( t ) -B1 g ( t ) f ( t ) B ^ f 2 ( t )

D(t)

-A0x(t) 

-Axg(t) 

B1f(t)

B = [-x(t) -g(t) f(t)j

H = I

M = d(t)

Thus in general the investigation of the convergence of 

adaptive filters using state variable techniques, involves the 

solution of equations of the form of equation 4.43.

The theory of state variables deals mainly with systems where 

A(t) and D(t) are constant matrices, and in these cases the solutions 

for X(t ) can be found by solving a transformed set of simultaneous 

algebraic equations in the s-domain. This 1s not possible where the 

system being described has a time varying response, however Tou 

(1964) gives the general solution for equation 4.43 as:-

tfl
X(t) = *(t,tn)X(tQ) + / *(t,x)(D(T)M(T)}dr 

t

where ♦(t.tg) is the state transition matrix. The author adds that 

in general, however, no closed form expression for ♦(t.tg) exists.

A possible approach to the solution of equations of the form 

of equation 4.43, for particular input signals, would be to
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diagonalise the matrix A by a suitable linear transformation, and 

thus produce a set of independent first order differential equations 

which could be solved by conventional methods. This type of 

technique was used by Widrow (1966) in a conprehensive analysis of 

the convergence of adaptive transversal sampled data filters. It is 

felt however, that the iterative technique described in Section 4.3 

has the advantage of being considerably simpler and more general, 

although its convergence is not guaranteed.



Unknown System Optimum Power

of

d(t)

Loop Gains Time Const

G P1 a0 bl A0 B1 ^ 0 fcbl

1.0 10‘4 1.0 0.25 .117 480 80 26.2 32.1

1.0 10"4 1.0 0.25 .117 480 20 43.5 88.9

0.5 10*4 0.5 0.25 .03 480 80 43.5 88.9

0.5 10'4 0.5 0.25 .03 480 20 60.7 325.5

1.0 10-4 1.0 0.25 .15 480 20 35.4 87.7

Table 4.1 Convergence of the Single Pole Adaptive Filter using the

Linear Adaption Algorithm
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Fiqure  4 .8 ; Se r ie s  Form or Transversa l Adaptive F i l t e r

Figure 4 .9 ; The A l l -P o le  Adaptive F i l t e r



Figure 4 .1 0 ; The A l l -P o le  Adaptive F i l t e r  with Error F i l t e r in g

Figure 4 .11 : The Po le -Ze ro  Adaptive F i l t e r



Figure 4 .12: The P o le -Z e ro  Adaptive F i l t e r  with E rro r  F i l t e r in g

Figure 4 .1 3 ; A simple Adaptive Gain F i l t e r
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Figure  4 .15a: Convergence of aQ Using the 
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Using the Non-Linear Adaption Algorithm



Figure 4 .17 : Block Diagram of the F ir s t
Order A l l -P o le  Adaptive F i l t e r
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Figure 4.18; Convergence of the S in g le  Pole F i l t e r
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CHAPTER 5

IMPLEMENTATION AND PERFORMANCE OF THE ANALOG ADAPTIVE FILTERS

In this chapter the implementations of the adaptive gain 

circuit, the first order all pole adaptive filter and the first order 

pole-zero adaptive filters are described. The effects of non-ideal 

circuit components are analysed, and the factors which limit the 

performance of the filters are quantified. These performance 

limitations are explored experimentally by testing the filters 

against simple unknown systems. Neither the adaptive gain circuit, 

nor the single pole filter were found to converge against simulated 

transhybrid responses. The pole-zero filter, however, performed well 

against simulated transhybrid responses, and the results of its 

performance are included in this chapter. In the final section of 

this chapter the problems of implementing an adaptive hybrid, using 

the pole-zero filter, are discussed.

5.1 The Adaptive Gain and the Single Pole Adaptive Filters

The single pole adaptive filter discussed in Chapter 4 can be 

considered as an adaptive gain circuit which has an additional 

recursive parameter bj. Thus a prototype adaptive filter, which is 

capable of functioning as a simple adaptive gain, or as a single pole 

adaptive filter, can be constructed. A block diagram of such a 

filter is shown in Figure 5.1, where the switch Swl effectively zeros 

the bj parameter, thus switching the filter between the above two 

types.

The filter consists of signal path elements (shown in heavy 

lines), whose responses are controlled by the remaining elements of
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the filter (control path elements). The multipliers and M2 

implement the variable parameters ag and b^ respectively, and their 

outputs are combined in the adder to form the adaptive filter 

output y(t). The error signal is formed by the subtractor S2 and 

amplified by amplifier Ae for use in controlling the filter 

parameters. Similarly the input signal x(t) and the differentiator 

output g(t) are amplified to ensure high speed convergence. aQ is 

controlled by the amplifier Aag, the multiplier MaQ, and the 

integrator lag, as described in Section 4.2. 3.2. b̂  is controlled by 

Ab^, Mb^, and Ibp as described in Section 4.2.3.2 also.

A complete circuit diagram of the prototype adaptive filter 

is given in Appendix A3, and in Section 5.1.1 the design of the 

adaptive gain elements is described. Experimental results for the 

performance of the adaptive gain circuit are described in Section 

5.1.2. Section 5.1.3 describes the design of the additional circuit 

elements needed to implement the single pole adaptive filter, and in 

Section 5.1.4 results for the performance of the single pole adaptive 

fi 1 ter are given.

5.1.1.1 The BanArldth of the Signal Path Elements

The theoretical transfer function of the adaptive gain 

ci rcuit is given by

Y(s)/X(s) = ag, and E(s) = D(s) - aQX(s) 5.1

assuming that Mj, S1 and S2 have Infinite bandwidth. In practice 

these elements have limited bandwidth, and the resulting phase shift 

interferes with the correct operation of the filter. This effect can 

be quantified by considering the error signal which results when the 

filter is attempting to cancel the output of an unknown system whose 

transfer function is ou Assuming that the filter has N elements in
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the signal path, each of first order with a pole frequency of 

rads/sec, and that the filter converges correctly, then ag = 

the error signal is:-

E (o>) = aX(iu) 1- 1 n

“P
a, and 

5.2
1+j U)/(jJp

as shown in Figure 5.2. The return loss enhancement is:-

RLE(u>) = 0(«)/E(h ) = — 5>3
(l+ju>/cup)n-l

A plot of this function, evaluated in dB at the speech band edge 

(3.4KHz), for n = 1, 2, 3 and 4, is shown in Figure 5.3. It can be 

seen from the figure that the bandwidth of the individual circuit 

elements imposes an upper bound on the value of the return loss 

enhancement which can be achieved at the band edge.

5.1.1.2 The Effect of D.C. Offsets on the Adaptive Gain Circuit

In general the d.c. offsets possible in the adaptive gain 

circuit can be represented as shown in Figure 5.4. These offsets are 

detailed below, where some offsets have been lumped together, e.g. Og 

represents the output offset of Mag and the input offset of lag. 07 

and Og are not lumped with O4 and Og respectively, because the 

amplifiers Aag and Ae can not be assumed to operate linearly, due to 

their high gains. 0^ and Og are removed from the input of Ae by 

a.c. coupling (indicated by »), and their effects are ignored.

0]̂ and Og : The input offsets of the signal multiplier M^

03 : The output offset of the control multiplier Mag and the

Input offset of the control integrator lag

04 and 05 : The input offsets of the control multiplier Ma0

Og : The output offset of the signal multiplier Mj and the

Input offset of the adders and S2

O7 and Og : The input offsets of the control amplifiers Aa0
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the signal path, each of first order with a pole frequency of oip

rads/sec, and that the filter converges correctly, then a0 = a, and 

the error signal is:-

A plot of this function, evaluated in dB at the speech band edge 

(3.4KHz), for n = 1, 2, 3 and 4, is shown in Figure 5.3. It can be 

seen from the figure that the bandwidth of the individual circuit 

elements imposes an upper bound on the value of the return loss 

enhancement which can be achieved at the band edge.

5.1.1.2 The Effect of D.C. Offsets on the Adaptive Gain Circuit

In general the d.c. offsets possible in the adaptive gain 

circuit can be represented as shown in Figure 5.4. These offsets are 

detailed below, where some offsets have been lumped together, e.g. O3 

represents the output offset of Mag and the input offset of lag. O7 

and Og are not lumped with 04 and Og respectively, because the 

amplifiers Aag and Ae can not be assuned to operate linearly, due to 

their high gains. 0^ and Og are removed from the input of Ae by 

a.c. coupling (indicated by n), and their effects are ignored.

0^ and O2 : The Input offsets of the signal multiplier Mj

03 : The output offset of the control multiplier MaQ and the

input offset of the control integrator lag

04 and 05 : The input offsets of the control multiplier Ma0

Og : The output offset of the signal multiplier M1 and the

input offset of the adders and S2

O7 and Og : The input offsets of the control amplifiers Aa0

E(u) = aX( w) 1 -__1 5.2

as shown in Figure 5.2. The return loss enhancement 1s:—

(1+j «■ »✓ «p)"
RLE(u>) = D( w)/E( u) = -------- K---

(l+ju>/u>p)n- l
RLE(u) = D( (o)/E( w) = 5.3
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and Ae respectively.

The effect of O2 is merely to add a fixed voltage to the 

paramater voltage Vag, and this can be neglected by considering the 

actual filter parameter to be; a'g = ag + C^. The offset O3 , since 

it is followed by the integrator lag, causes VaQ to ramp towards its 

maximum positive or negative value. In the steady state O3 must be 

balanced by an equivalent d.c. voltage from the multiplier. The 

effect of O3 is shown in the following analysis:-

Suppose that the filter is adapting against an unknown system 

consisting of a variable loss (a), and that the input signal is a 

sine wave (Vsin(u>t)). Then P(t), the output signal of the control 

multiplier is:-

P(t) = AeAagV2[o-ag(t) ] - AeAagV2[a-ag(t) ]Cos2(a>t) 5.4 

where it is assuned that Ae and Aa0 are operating linearly. The 

second term in equation 5.4 is an a.c. signal at twice the frequency 

of the input signal, and should be considerably attenuated by lag. 

Thus in the steady state a0 tends towards its final value agf, and:-
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integrated by lag, driving ag(t) towards a. O3 either adds to this 

d.c. voltage, increasing the rate of convergence of ag(t), or 

subtracts from it, decreasing the rate of convergence.

The offset O5 adds an a.c. component to the signal at the 

multiplier output, and a d.c. component given by O4O5. A further 

a.c. component is added by O4 , although this component decreases as 

the filter converges.

5.1.1.3 The Signal and Control Multipliers

In general a distinction can be made between the multipliers 

required for the signal paths of the adaptive filters, and those 

required for the control paths. The signal path multipliers should 

have good linearity, while the linearity of the control multipliers 

is not critical, since any harmonic distortion products are 

attenuated by the associated integrators. In the case of the 

non-linear adaption algorithm, the control multipliers are required 

to perform only sign multiplication (Section 4.1.6). In all cases 

the control mu’tipliers should be 4-quadrant, whereas the bj signal 

multiplier need only be 2-quadrant, since negative bj would produce 

an unstable filter.

The approach adopted in Implementing the prototype adaptive 

filters is to use linear 4-quadrant multipliers for maximum 

flexibility, and possible simplifications are discussed where 

appropriate. Since the multipliers are required to have high 

bandwidth, the MC1495 variable transconductance multiplier was 

chosen. These multipliers produce a differential output current 

which is proportional to the product of the input voltages. For the 

signal path multipliers this current is converted to a single-ended 

output voltage using an operational amplifier. The output current of



the control multipliers is integrated directly by an operational 

amplifier circuit as described in the next section.

5.1.1.4 Design of the Control Integrators

The differential output currents of the control multipliers 

are applied to the inputs of the control integrators, whose outputs 

form the filter parameters. The value of the integration capacitor 

should be chosen such that a.c. signals at the output of the 

integrator are sufficiently rejected, since these would cause 

harmonic distortion in the error signal. In Appendix A4 the design 

of the integrator is described in detail, and a value of 10 pF is 

chosen for the integration capacitor. This ensures at least 50 dB 

ERL, assuming that the filter adapts correctly. The requirement for 

high integration capacitor values means that these components would 

have to be external to an integrated version of the adaptive filters. 

The nunber of capacitors required per filter parameter could be 

halved by using a differential to single-ended converter at the 

multiplier outputs. Similarly the values of the capacitors required 

could be reduced by following the integrators by low-pass filters.

5.1.1.5 The Amplifiers AaQ and Ae.

In Section 5.1.1.2 it was shown that amplifiers Aa0 and Ae 

should have high gains to overcome the effects of Oj. The fact that 

these amplifiers have finite gain-bandwidth products may therefore 

effect the performance of the filter. By a similar analysis to that 

of Section 5.1.1.2, It can be shown that the d.c. output voltage of 

the control multiplier is:-
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_ AeAa0V2 {a-a0(t)}cos(4.e -4>a0)
” / p o I y ^  5.6

2/l+uzaez yi+ojZaa02

where amplifiers Ae and Aa0 have open loop gains Ae and AaQ, and pole 

frequencies ae and afl0 respectively, <)>e = tan"*(wae), <t>a0 = 

tan'^wag), the input voltage is Vsin(iot), the unknown system has 

transfer function a, and both Ae and Aag are assumed to operate 

linearly. Thus the voltage which drives ag(t) towards a is dependent 

on the gain of the amplifiers, and also affected by a difference in 

the phase shift introduced by each amplifier. This result shows that 

the phase response of any of the control path elements leading up to 

the integrators can be neglected, provided that no differential phase 

shift is introduced between the input signals of the control 

multiplier.

Since in the prototype adaptive filters the loop gains are 

approximately 4000, the d.c. output voltage of the multiplier is 

severely limited by clipping, and this can be expected to slow the 

convergence of the filter parameters.

5.1.2 Performance of the Adaptive Gain Filter

In this section results are presented for the performance of 

the adaptive gain filter adapting against various unknown systems, 

and the effects of non-ideal circuit components are measured.

Section 5.1.2.1 gives the results when the filter adapts against 

unknown systems represented by a simple gain, for sine wave Inputs of 

various frequencies. In Section 5.1.2.2 the results for the 

performance of the filter with a wideband noise input signal are 

presented. In both of these sections the results are for the steady 

state performance of the filter, i.e. ap 1s allowed to converge and 

the final value of return loss is measured.

The adaptive gain filter was found to be incapable of
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accurately modelling the transhybrid responses due to most 

subscribers' lines, and attention was therefore concentrated on the 

remaining two types of adaptive filter.

5.1.2.1 The Adaptive Gain with Sinusoidal Input Signals

Figure 5.5 shows the return loss enhancement (RLE) achieved 

by the filter, as a function of the input signal level, for input 

signal frequencies of 200 Hz, 1 kHz and 4 kHz, where the unknown 

system was represented by a short circuit. It can be seen that the 

RLE falls linearly with decreasing input signal level over most of 

the range of input signal amplitudes. This occurs because the error 

signal contains noise introduced by the circuit, and the 'noise 

floor' is approximately 55 dB below the 0 dB input signal level (1 V 

RMS).

At high input signal levels the value of RLE is frequency 

dependant. This occurs because at these levels, and high input 

frequencies, the RLE is limited by the phase shift of the signal path 

elements, rather than by the circuit noise. At very high input 

signal levels (above 5 dB), the signal path multiplier Mj begins to 

introduce distortion, thus limiting the degree of cancellation. The 

signal level at which this occurs is also frequency dependant, since 

if the RLE is limited to say 40 dB by phase shift, then distortion 

products below this level are unrecorded.

At very low input signal levels (below -50 dB), the frequency 

of the input signal again affects the degree of cancellation which 

can be obtained. This effect is probably due to differential phase 

shift in the control path of the filter, which reduces the maximum 

available d.c. voltage at the multiplier output. When this occurs 

the offset 03 causes a0 to drift from its optimum value of 1.
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Figure 5.6 shows the performance of the circuit for the same 

input signal conditions, when the unknown system is represented by a 

unity gain inverting amplifier. In this case the performance of the 

circuit is virtually identical to that of Figure 5.5, with the 

exception that the limitation of the RLE due to phase shift is less 

severe, e.g. 55 dB RLE is obtainable at 1 kHz, whereas in the 

previous case the corresponding value was 50 dB. This improvement is 

due to the phase shift introduced by the inverting amplifier which 

forms the unknown system. This phase shift compensates for a similar 

phase shift in the signal path of the adaptive filter.

When the unknown system is represented by an open circuit, 

the return loss is as shown in Figure 5.7, for a 1 kHz input signal. 

The curve shown deviates from a straight line at very high input 

signal levels, when some distortion is produced by Mj. At lower 

input signal levels the value of a0 is zero, and phase shifts have no 

effect. Thus there is no observable difference in performance at 200 

Hz or at 4 kHz.

Figure 5.8 shows the behaviour of the voltage representing 

ag, as a function of the unknown system's gain, where the input 

signal was a 1 kHz sine wave at level 0 dB. It can be seen from the 

figure that the relationship between the parameter voltage and the 

gain of the unknown system 1s linear, and that offset 0g is 

approximately -0.14 V. Since much higher parameter voltages are 

possible, it is clear that the adaptive gain circuit as constructed 

can match unknown systems having gains greater than 1. The usefulness 

of this is explained in Section 5.1.3.2.
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5.1.2.2 The Adaptive Gain with Wideband Input Signals

The ERL when the adaptive gain filter adapts against unknown 

systems represented by an open circuit, a short circuit, and a unity 

gain inverter, for an input signal consisting of white noise, 

bandlimited to 500 Hz to 2.5 kHz, is shown in Figure 5.9. When the 

unknown system is an open circuit, the relationship between ERL and 

input signal level is almost exactly linear, as is the case for 

sinusoidal excitation. For unknown systems whose transfer functions 

are +1 or -1, the ERL values are approximately equal, i.e. the effect 

of phase shift in the inverting amplifier of the unknown system is 

unnoticed. This occurs because the ERL is averaged over low 

frequencies (where the phase shift is negligable), and because 

components in the input signal with frequencies above 2.5 kHz are 

attenuated. At very low input signal levels (below -45 dB) the 

performance differs slightly for the 3 types of unknown system. The 

explanation for this is that the offset O3, in the absence of an 

input signal, drives aQ towards the negative supply voltage. Thus at 

low input signal levels, the offset causes ag to drift from its 

optimum value at higher signa), levels for a positive parameter, than 

the signal levels at which drift occurs for a negative parameter.

Thus the offset in this case favours unknown systems with 180° phase 

shift.

5.1.3 Design of the Differentiator for the Single Pole Filter

The components required by the single pole adaptive filter 

are those of the adaptive gain filter, with the addition of the 

differentiator Dj, the signal path multiplier M2, and the bj control 

elements Ab p Mbj and Ib1 (Figure 5.1). The design of the
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differentiator is central to the correct functioning of the single 

pole filter, and in this section the factors affecting the design are 

briefly summarised. The details of the design are included in 

Appendix A4.

In the block diagram of Figure 5.1, the differentiator is 

indicated as having an ideal response. In practice, to guarantee the 

stability of the differentiator, it is necessary to introduce 

compensation poles into its closed loop transfer function (CLTF). 

These compensation poles however, could produce instability in the 

loop consisting of components Sj, D1 and M2 (Figure 5.1) if the error 

filtering were, removed, i.e. if the loop were closed via Sw2. This 

loop will be referred to as the bj feedback loop. The stability of 

this loop determines the frequency by which the compensation poles 

should have reduced the gain of the differentiator to unity. This 

frequency in turn determines the maximum time constant to which the 

adaptive filter can adapt.

In the prototype single pole adaptive filter it was found 

that an upper unity gain frequency of 2 MHz guaranteed the stability 

of the bj feedback loop, using an externally compensated operational 

amplifier. By placing the differentiator condensation poles at 19.5 

kHz and 21.9 kHz, the maximum time constant to which the filter can 

adapt is 264 uS. This is reduced to 120 uS by attenuation around the 

b^ feedback loop. In the next section the effect of the 

differentiator compensation poles on the performance of the adaptive 

filter is examined.

5.1.3.1 The Effect of Non-Ideal Differentiation

In the previous section 1t was seen that it 1s necessary to 

introduce two compensation poles into the CLTF of the differentiator.
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Figure 5.10 shows a plot of this function in dB for various values of 

compensating pole frequency and unknown system time constant. This 

figure shows that the differentiator inaccuracy imposes a severe 

restriction on the degree of cancellation possible against an unknown 

system with a given time constant. For the prototype single pole 

adaptive filter the predicted ERLE against the maximum time constant 

to which the filter can adapt (120 yS) is 6 dB. The stability return 

loss enhancement will be lower than this, since the differentiator 

inaccuracy is worst at the upper band edge.

In the above analysis it has been assuned that the adaptive 

filter parameters ag and bj have values which are optimal for the 

ideal differentiator case. This assunption neglects the possibility 

that more accurate cancellation can be achieved using alternative 

values of ag and b^, such that the filter condensates for the 

differentiator inaccuracy. Using the error contour plotting 

technique described in Section 4.1.2, it can be shown that such 

compensation is possible.

Figure 5.11 shows error contour plots for a single pole 

adaptive filter at various input signal frequencies, where the 

unknown system is a single pole of time constant 1 mS. At low 

frequencies the effect of the differentiator inaccuracy is small, and 

the optimum parameter values are close to their theoretical values 

(0.65,1.0). As the input signal frequency is increased however, the 

differentiator becomes less accurate, and the effect of this is seen 

to be a movement of the optimum parameter values, both of which

increase.
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5.1.4 Performance of the Single Pole Adaptive Filter

In this section results are presented for the performance of 

the single pole adaptive filter adapting against unknown systems 

represented by:-

H ( s ) = l / ( l + s a )

for various input signals. Section 5.1.4.1 gives the performance of 

the filter for sinusoidal input signals between 200 Hz and 4 kHz, 

while in Section 5.1.4.2 the results for wideband noise input signals 

are presented. It is seen that the inaccuracy of the differentiator 

imposes a severe limitation on the performance of the filter.

As is the case for the adaptive gain circuit, the single pole 

filter was found to be incapable of modelling the transhybrid 

responses of most subscribers' lines. For this reason its 

characteristics were not further investigated.

5.1.4.1 Performance of the Single Pole Filter with Sinusoidal 

Excitation

Figure 5.12a shows the filtered RLE achieved by the filter as 

a function of the time constant of the unknown system, for a range of 

input signal frequencies. The corresponding values of the filter 

parameter voltages Vag and Vb^ are shown in Figures 5.12b and 5.12c 

respectively.

From Figure 5.12a it can be seen that at all input signal 

frequencies, the filter achieves good cancellation for unknown 

systems with small time constants (< 40 uS). As the time constant 

increases above this value, the performance of the filter drops 

sharply, and the value of the time constant at which this drop occurs 

is frequency dependent. From Figure 5.12c it is clear that this
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sudden drop in cancellation occurs because b^ reaches its maximum 

value. Figure 5.12b shows that the frequency dependence of this 

'parameter saturation point1 is due to the differentiator inaccuracy, 

as explained in Section 5.1.3.2. Thus as the frequency of the input 

signal is increased, the optimum parameter values increase until 

eventually b^ saturates, and the cancellation suddenly drops. At the 

lowest input frequency (200 Hz), the value of time constant at the 

saturation point is 100 uS. This value is close to the theoretical 

maximum time constant of 120 uS, the difference being within the 

range possible for the low tolerance components used in the prototype 

filter.

For small time constants, and at high input signal 

frequencies, the performance of the single pole filter is better than 

that of the adaptive gain circuit, adapting against a short circuit 

(Figure 5.5). This is because it is able to compensate for the phase 

shift introduced in the ag signal path. The degree of cancellation 

achieved by the single pole filter at low unknown system time 

constants is frequency dependent, and is probably due to non-ideal 

control loop amplifiers.

5.1.4.2 Performance of the Single Pole Filter with Wideband Input 

S1gnals

Figure 5.13a shows the filtered ERLE achieved by the filter 

after convergence, as a function of the time constant of the unknown 

system. The values of the parameter voltages are shown in Figure 

5.13b. The use of a wideband input signal means that full 

compensation for the differentiator Inaccuracy 1s not possible, 

although the Increase In the value of ag shown 1n Figure 5.13b 

indicates that some compensation takes place. The graph of Figure
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5.13a falls linearly with increasing time constant, because 

increases with increasing time constant. Any inaccuracy in the 

differentiator response thus becomes more important, and the degree 

of cancellation achieved falls as a result.

When the time constant becomes greater than approximately 80 

uS, bj reaches its maximum value, and the cancellation drops rapidly 

thereafter. The value of a0 decreases gradually for time constants 

above 80 yS, indicating that the filter adopts a value of ag which 

minimises the error signal, although bj holds its maximum value.

5.2 The First Order Pole-Zero Adaptive Filter

In Section 5.1.3.1 it was shown that stability problems 

resulted from the use of a differentiator in the single pole adaptive 

filter. The stability constraints imposed on the design of the 

differentiator severely restrict the maximum time constant to which 

the single pole filter can adapt. Furthermore it was found that 

neither the adaptive gain circuit, nor the single pole filter could 

provide sufficient ERLE against most subscribers' lines.

In the first order pole-zero adaptive filter, as described in 

Chapter 4, the frequency selective element is an integrator. This 

avoids the stability problems associated with the use of a 

differentiator, and it will be shown that in theory a pole-zero 

filter can synthesise infinite time constants. In Section 5.3 it is 

shown that the ability of the first order pole-zero filter to 

synthesise a zero in addition to a pole, allows it to achieve 

considerable ERLE against simulated subscribers' lines.

In the following sections the aspects of the design of the 

first order pole-zero filter which differ significantly from those of 

Section 5.1 are discussed. Results for the performance of the filter
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are described in Section 5.3

5.2.1 Design of the Signal Integrators

Figure 5.14 shows a block diagram of a first order pole-zero 

adaptive filter, with error filtering and adaption circuitry, as 

described in Section 4.2.4. A circuit diagram of the filter is given 

in Appendix A3. The circuit consists of signal multipliers, adders 

and integrators, and control multipliers and integrators, as 

described for the previous filters, with the exception of the signal 

integrators lx and Id. In Section 4.2.4 it was assumed that these 

integrators both had transfer functions given by:- 

I(s) = -1/sp

i.e. ideal integrators with time constant p. This ideal transfer 

function has infinite gain at d.c., and in practice small 

d.c. offsets would cause such an integrator to 'ramp' towards the 

positive or negative supply rail. To control this effect the 

d.c. gain of the integrator can be reduced by using the 'leaky 

integrator' circuit shown in Figure 5.15 whose transfer function 1s:- 

I(s) » —1/(q+sp)

where p = C2R1. q = R1/R2 and it is assimed that the operational 

amplifier 1s ideal. In the following sections it is assumed that the 

integrators lx and Id are identical, i.e. only first order effects 

of leaky integration are examined.

5.2.1.1 The Effect of the Leaky Integrator on the Error Surface

The filtered error signal, using the leaky integrators, is:-
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y / e \ a + A -i+ —■“
q+sp

-MS} ag+-----
q+sp_

E'(s) = D(s)

while the unfiltered error signal 1s:-

X(s){a0+a1/(q+sp)}

5.8

E(s) = D(s) - 5.9
1+bj/(q+sp)

Thus the effect of the leaky integration is to change the error 

filtering function from 1+bj/sp to l+t^/iq+sp). This alters the 

frequency weighting effect of the error filtering, although the 

filtered error surface remains quadratic in ag, a^ and bj.

The effect of the leaky integration on the unfiltered error 

surface can be seen by considering a case where the filter adapts 

against an unknown system given by:- 

H(s) = a(l+ys)/(l+3s)

i.e. in this example the filter is sufficient. The optimum values of 

the filter parameters can be simply shown to be:-

ag = aY/0, aĵ = (p-qy)a/ 6 and b̂  ̂= (p/B)-q 

Since q = 0 for the ideal Integrator, it can be seen that the effect 

of the non-ideal integration is a movement in the position of the 

minimum in the error surface. The depth of the minimum is unaltered 

for this sufficient example, I.e. perfect matching of the adaptive 

filter and the unknown system responses is still possible.

5.2.1.2 Choice of the Integrator Time Constant

In this section 1t is shown that the pole-zero adaptive 

filter can accurately model large time constants, but that it is 

Incapable of modelling a range of small time constants. The signal 

Integrators are designed so as to minimise this effect.

In the example of the previous section, 1f the unknown system 

can be represented by a gain and a pole, I.e. if y 3 0, then the 

optimum filter parameters are:-
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a0 = 0, a1 = pct/8 and = (p/B)-q

If the time constant of the unknown system is very large, i.e. 8 + », 

then bj ♦ -q and a^ + 0 to keep the error zero. Thus in theory the 

filter can model an unknown system with an infinite time constant.

For small time constants, i.e. 8 0, the values of the

filter parameters required tend to infinity. Thus the minimum time 

constant which the filter can accurately model is given by:-

s > P«/almax and 8 > P/(blmax+<l) 5.10

Assuring a^max = bjmax = 1, then the worst case is given by 8mi-n = p. 

Furthermore, since q < 1, then when a = 1 this restriction is not 

significantly eased. For time constants smaller than p the error 

thus begins to rise from zero, if wideband excitation is assuned.

Very small time constants can however be modelled, to varying degrees 

of accuracy, by ag alone (over a restricted bandwidth), with a^ = b^

= 0. The error therefore decreases again for time constants less than 

some value.

Choosing small values of p results in an integrator having 

high gain at low frequencies, and this gain must be such that the 

signal handling capacity of the signal multipliers is not exceeded. 

For very low values of p this requirement is difficult to achieve if 

integration is to be accurate over the bancV/idth 300 Hz to 3.4 kHz. 

Thus the time constant of the integrator should be as large as 

possible, while providing an acceptable minimum error in the region 

where the filter is unable to accurately model a short time constant.

To quantify this effect, it is necessary to make some 

assunptions about the behaviour of the filter when it is unable to 

accurately model the unknown system. In particular, 1f it is assuned 

that very small time constants are modelled by a variable gain (a0 

alone), while long time constants are modelled by a single pole 

(using a1 and b ^  with aQ * 0), and that these two states are 

mutually exclusive, then the analysis is greatly facilitated.
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Figure 5.16 shows a variable gain ag attempting to model a 

single pole unknown system with a time constant 8. Writing the

where the input signal is assured to be bandlimited white noise of 

bandwidth The amount of attenuation achieved as a function of

frequency can be written as:-

If (0 = 0)2. the maximum frequency of the input signal, then 

this quantity represents the maximum SRL enhancement which the 

adaptive gain circuit can achieve. Since error fltering is used in 

the pole-zero filter, then equation 5.12 becomes:-

This equation represents the portion of the time constant range for 

which the filtered error decreases with decreasing time constant.

When the filter is correctly modelling the pole, then the 

error signal can be written as:-

When 8 < 8m-jn (equation 5.10), and assuning that the filter models 8 

by a larger time constant Ŝ -jp» then the filtered RLE can be shown to 

be: -

Equation 5.14 represents the SRL enhancement achievable over the 

portion of the time constant range 8 < 6min, where the filtered error 

increases with desreasing time constant.

Finally, to allow choice of the Integrator time constant p, 

it is necessary to assign a value to b^ in equation 5.13. Since in

equation for IE(oj)|2, and differentiating with respect to ag,  gives

the optimum value for ag as:-

* tan"* ( <02$)-tan"* (w, e)
5.11

D(»)/E'(ù») = l/{(l-a*g)2+a*082u)2} 5.12

D(u)/E(u) =
(l+ib^cap)2}

5.13
(1-a 0r+a g B V

* ★ ? ?

E*(s) * X(s)(l -B/8m1n)/(l+Bs)

|D(io)/E»|2 - 1/(1 - B/Bm1 n)2 5.14
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this case it was assuned that the filter was operating as a variable 

gain, then the value of bj is irrelevant if agb| = a^. For 

compatibility with equation 5.14 it should be assumed that bj = 

blmax* Ttle SRL enhancement due to equations 5.13 and 5.14 can now be 

plotted as a function of 6 for various values of p. This allows p to 

be chosen so as to achieve a given value of SRL enhancement in the 

transition between modelling by a variable gain and by a single pole. 

Such a plot is shown in Figure 5.17, and it can be seen that a value 

of p = 100 uS guarantees 6 dB SRL enhancement for any value of 

unknown system time constant. Thus 100 uS is the value of integrator 

time constant chosen for the signal integrators. Assuning perfect 

integration, this gives a gain of 14.5 dB at 300 Hz.

In this analysis it has been assuned that the adaptive filter 

models very small time consants by a variable gain, that as the time 

constant increases ag abruptly goes to zero, and that the filter then 

begins to model the time constant by a larger one. In practice the 

transition can be expected to be more gradual, however in Section

5.3.2 the above analysis will be seen to provide a reasonable model 

for the behaviour of the pole-zero adaptive filter.

5.2.1.3 The Effect of Leaky Integration on the Adaption Algorithm

In the analysis of the previous sections, it was assumed that 

the pole-zero filter correctly optimises its parameters, and the 

effect of leaky integration on the error surface was examined. In 

this section it is shown that the use of a leaky integrator has a 

significant effect on the performance of the adaption circuitry.

When the adaptive filter attempts to model a single pole 

system, the adaption circuitry calculates the cross-powers between 

the integrator outputs and the error signal, and adjusts the filter
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parameters so as to minimise the respective cross-powers (Figure 

5.14). Consider for example the cross-power between two sinusoidal 

signals which are displaced in phase by an angle i|>:-

l 2w
P = ~  /cos(ut)cos( cot+i(i)dt = (cosiji)/2Zir o

This fuction is plotted in Figure 5.18, and it can be seen that if t 

= w/2, then the cross-power is zero.

Thus if s = 0 and the integrators are perfect (i.e. they 

provide 90° phase shift), then there is no cross-power between either 

of the integrator outputs and the input signal. If the sum of the a^ 

and bj signal multiplier outputs is zero, then aQ alone controls the 

error signal, which is in phase with the input signal. The 

cross-powers driving the a^ and b^ parameters are therefore zero, 

i.e. the absolute values of a^ and b^ are irrelevant, provided that

a l  3 bl aO

If the signal integrators are leaky, they provide less than 

tt/2 phase shift, and depending on the magnitude of the integrator 

inaccuracy, there are small positive cross-powers between the error 

signal and the integrator outputs, even when a^ = b^a0 This drives aj 

and b^ towards their maximum values, and in effect the filter models 

a simple gain by the combination of ag and a superimposed pole-zero 

pair at the highest possible frequency. This effect is useful 1n 

that it "biases" the circuit towards poles and zeros at infinity.

The transition between modelling a short time constant by an adaptive 

gain and by a single pole is thus eased. It also helps to ensure the 

stability of the filter, as will be seen 1n the next section.

Assuning imperfect integrators, then as the unknown system’s 

time constant Increases, the total phase shift between the bj 

integrator's output and the error signal (which is assuned 1n-phase 

with the input signal) tends towards w/2, and eventually exceeds ir/2.
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Parameter bj then begins to be driven in the opposite direction to 

that previously described, i.e. towards bj = 0. The filter thus 

begins to converge, but this does not occur until a certain minimum 

time constant, which depends on the extent of the integrator 

inaccuracy and the bandwidth of the input signal. This contrasts 

with the case of perfect integrators, where any small phase shift due 

to the unknown system causes a small negative cross-power to drive 

the filter's parameters to convergence.

5.2.1.4 The Effect of D.C. Offsets

In Section 5.1.1.2 it was seen that the most significant 

d.c. offsets were the parameter control multiplier output offsets 

and the parameter control integrator input offsets. These offsets 

were seen to limit the precision with which the adaptive filter could 

approach its optimum parameters, i.e. a minimum level of error was 

requred to produce a d.c. signal at each multiplier output to balance 

the offset voltages. This is also true of the pole-zero filter, and 

the control amplifiers Ae, Aag, Aa  ̂ and Ab^ are used to ensure that 

very small error signals can produce sufficient d.c. signals at the 

multiplier outputs to balance the offsets.

The pole-zero filter however, because of the existence in 

some cases of a distributed minimum, is particularly susceptable to 

the effect of d.c. offsets. Thus if the d.c. offset at the input to 

the bj integrator tended to drive bj negative, then the resulting 

adaptive filter would be unstable without error filtering. In the 

previous section it was seen that the use of a leaky integrator 

biases the filter towards poles at infinity (bj = h^max), rather than 

at zero, and this helps to ensure the stability of the filter. 

Similarly, the effect of the leaky integrator is that bj must become
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less than -q, rather than 0, before the filter becomes unstable. In 

the experimental filter, it was found that the value of b^ never 

became negative.

In the previous section it was seen that the use of a leaky 

integrator can cause the adaption algorithm not to converge until a 

certain minimum phase shift is provided by the unknown system. This 

effect can be accentuated by the d.c. offsets at the inputs to the a^ 

and bj control integrators, since these must be balanced before a^ 

and bj begin to converge. Alternatively, the d.c. offsets may be of 

such a polarity as to add to, rather than subtract from, the 

cross-powers driving a^ and b̂ . Further discussion of the effects of 

d.c. offsets is included in Section 5.3.

5.3 Results for the Pole-Zero Adaptive Filter

In this section results are presented for the performance of 

the pole-zero filter, adapting against a variety of unknown systems, 

with both sinusoidal and wideband excitation. This allows the effect 

of non-ideal integration and d.c. offsets to be quantified. Section

5.3.4 gives the results for the steady state performance of the 

filter against simulated subscriber's lines, and in Section 5.3.5 the 

results for the dynamic performance are presented.

5.3.1 Unknown Systems Consisting of a Simple Gain

Figure 5.19 shows the filtered RLE achieved by the pole-zero 

filter, adapting against a short circuit, for various Input signal 

levels and at frequencies of 300 Hz, 1 kHz, and 3.4 kHz, where the 

filtered error signal was used for the measurements. It can be seen
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that the performance of the filter in general falls linearly with 

decreasing input signal level. This is due to the constant noise 

floor of the filter (Section 5.1.2.1 ). At high input signal levels 

the RLE decreases with decreasing input signal frequency. This 

effect occurs because the signal integrators (lx and Id in Figure 

5.14) have a low frequency gain of 10, and performance is limited by 

the distortion produced by the a1 and bj signal multipliers. This 

distortion was found to consist mostly of the 2nd harmonic of the 

input signal frequency.

At low input signal levels the performance of the filter 

again drops with increasing input signal frequency. This occurs 

because the roll-off of the responses of the control amplifiers Aag, 

Aaj and Ab1 reduces the cross-powers driving the filter parameters, 

which begin to drift under the influence of d.c. offsets.

Figure 5.20 shows the filtered RL achieved by the filter as a 

function of the input signal frequency, for unknown systems whose 

transfer functions are +1, 0, and -1, where the input signal level is 

0 dB. In the open circuit case the value of bj is irrelevant, since 

d(t) = 0. Under these circumstances the optimum values for a0 and a^ 

are zero. This minimises the effects of low frequency distortion 1n 

the a^ signal multiplier, and results in performance superior to the 

+1 and -1 cases.

When the transfer function of the unknown system is ±1, all 

three signal multipliers produce output signals (due to the 

distributed minimum). This results in harmonic distortion at low 

frequencies, causing the observed drop in return loss. The differing 

results for +1 and -1 are due to asymmetry in the a1 multiplier's 

overload characteristic, caused by the a^ offset voltage.
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5.3.2 Complex Unknown Systems

For sinusoidal input signals and complex unknown systems, the 

pole-zero filter is not necessarily required to match the transfer 

function of the unknown system, since the error signal can be made 

zero by matching the desired signal in amplitude and phase. In this 

case the behaviour of the filter is determined by non-idealities, 

e.g. d.c. offsets, leaky integration, etc. In this section attention 

is concentrated on the behaviour of the filter with wideband input 

signals, since this represents the worst case, although some results 

for sinusoidal excitation are included at the end of this section.

Some understanding of the operation of the pole-zero filter 

can be gained by investigation of its performance against unknown 

systems consisting of a simple variable pole. Figure 5.21d shows the 

filtered ERLE for such a system, where the excitation is white noise, 

bandlimited to 500 Hz to 2.5 KHz, at level -6 dB (Figure 5.19). The 

values of the filter parameters are shown in Figures 5.21a, b and c .

For time constants less than 60 uS the values of a^ and bj 

are constant, while ag decreases with increasing time constant. This 

corresponds to the filter modelling the unknown system by a variable 

gain (a0), a variable zero (-aj/agp rads/sec ), and a fixed pole 

(-bj/p rads/sec). As the time constant increases the position of the 

zero also increases, and its effect on the error signal becomes 

negligable. Furthermore, if the fixed pole frequency is also high, 

the filter effectively models the unknown system by a variable gain. 

Thus for a < 44 pS, the filter behaves approximately as explained in 

Section 5.2.1.2.

Since a1 and bj have effective maximum values of 

approximately 2.3, due to the gain of the sunming amplifier Sj 1n 

Figure 5.14, the value of the fixed pole is 100/2.3 « 43 pS. Thus
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when the unknown system time constant is 43 uS a large peak is 

observed in the ERLE. As the time constant increases above this 

value the ERLE falls again, until at approximately 70 y$ and bj 

converge and the ERLE suddenly increases. The discrepancy between 

the minimum time constant which the filter can model and the time 

constant at convergence, is due to the effects of leaky integration 

and d.c. offsets on the adaption algorithm, as explained in Section

5.2.1.3.

When the time constant becomes greater than 2 mS the power in 

d(t) becomes small, and bj begins to diverge.

Figure 5.22 shows the performance of the pole-zero filter 

with sine wave inputs of various frequencies, adapting against a 

single pole unknown system. It can be seen that at high input 

frequencies the filter achieves large values of filtered RLE over a 

wide range of unknown system time constants. At low frequencies 

however, a sharp drop in RLE is observed due to ag reaching its 

maximum negative voltage, although the filter reconverges for higher 

unknown system time constants. This effect appears to be due to 

inaccurate integration at low frequencies.

5.3.3. The Pole-Zero Filter Adapting against an Artificial Line

An Initial test of the performance of the filter was 

conducted by allowing 1t to adapt against subscriber's lines which 

were simulated by the artificial line and hybrid of Chapter 3. The 

adaptive filter was first calibrated so that Its gain, pole frequency 

and zero frequency could be calculated from the measured values of 

ag, a^ and b^. The calibration is achieved by allowing the filter to 

adapt against an unknown system whose gain and the positions of Its 

poles and zeros are known. The filter can then be used for system
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identification, and the value of ERLE serves as a guide to the 

accuracy of the identification. This facility is useful because when 

the filter adapts against simulated lines, the spread of poles and 

zeros of the transhybrid responses can be ascertained, and it also 

allows investigation of a possible interdependence of the pole and 

zero positions, or dependence of either on the line length, etc.

Figures 5.23a, b and c show the results obtained when the 

filter adapts against the hybrid and artificial line, with Zb = Z1 = 

600 0, and Zt = 370 n, 620 £2, 0.31 pF. (This value of terminating 

impedance was chosen because it ensures proper control of sidetone, 

as explained in Section 1.3.) For comparison the results obtained 

using the same transhybrid responses, simulated on the line and 

hybrid simulator (LHS) are also shown.

Figure 5.23a shows the estimated positions of the poles and 

zeros which lie in the left-hand s-plane. Poles or zeros at 

positions outside the range shown are recorded at the extremes of the 

range. Figure 5.23b shows the equivalent range in the right-hand 

s-plane. Figure 5.23c shows the measured values of the original ERL 

and cancelled ERL, where the original simulated and artificial ERLs 

were approximately equai].

For all line lengths above 0.1 mile the transhybrid response 

is modelled by zeros in the right-hand s-plane, and the filtered 

cancelled ERL is always greater than 24 dB. Both the pole and the 

zero frequencies initially decrease with increasing line length, 

although for line lengths above 3.5 miles they are approximately 

constant. Similarly the original ERL and filtered cancelled ERL 

decrease with increasing line length. For very short line lengths 

there is a large discrepancy between the estimated simulated response 

and the estimated artificial response. This is probably due to small 

differences between the actual hybrid and the simulated hybrid, or
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between the actual line characteristics and the simulated line 

characteristics, since the original ERL is greater than 30 dB and 

these effects could be signficant.

5.3.4 The Pole-Zero Filter Adapting against Simulated Lines

To obtain an estimate of the echo performance which could be 

obtained by using the pole-zero filter in an adaptive hybrid, the 

filter was allowed to converge against simulated subscribers' lines. 

These lines were chosen from the 1845 line survey described in 

Chapter 2, and simulated as described in Chapter 3, with the hybrid 

given by; Zb = 600 £2, and Zt ■ 370 0, 620 £2, 0.31 uF, and the load 

impedance as that of the measured 706-type telephone. Since 

measurement of the filter's performance against all 1845 lines would 

be impractical, a subset of lines was selected. To facilitate this 

selection the lines were first sorted in order of increasing original 

ERL, and every 25th line was selected for inclusion in the subset.

The total nunber of lines in the subset was then increased to 100 by 

selecting further lines from those at the extremes of original ERL. 

The filter was allowed to adapt against these lines with input 

excitation of white noise, bandlimited to 500 Hz to 2.5 KHz, at level 

-2.5 dB.

The results presented in the following sections are based on 

measurements of the unfiltered error. This signal is obtained by 

passing the filtered error through the the system shown 1n Figure 

5.24, whose response 1s:-

E '(s) 1 + b'j/iq'+sp')

Thus if q'*q, p'=p and b'j=bj, then E(s) 1s the unfiltered error 

signal. In the experimental pole-zero filter the response of the
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circuit was adjusted, using two potentiometers, so that with ag = â

= 0, E(s) matched D(s) to within 0.25 dB over the range 300 Hz - 3.4 

kHz. In an implementation of an adaptive hybrid using the pole-zero 

filter, it would be necessary to achieve this matching without 

adjustment.

Figure 5.25 shows a scatter plot of the results obtained from 

the measurements of original ERL and cancelled ERL, where the 

relevant statistics are given in Table 5.1. In these and in the 

following figures the x-axis indicates the nunber of the line in the 

subset of lines chosen from the 1845 line sample. The original ERL 

of the lines increases from left to right, as shown in Figure 5.25. 

The values of cancelled ERL bear no relationship to the original ERL 

values. The scatter plot of the lengths of the chosen lines is shown 

in Figure 5.26, and the correlation between the value of the original 

ERL and the length of the line is evident.

The scatter plots of the positions of the estimated poles and 

zeros of the transhybrid response are shown in Figures 5.27 and 5.28 

respectively. Poles and zeros above the maximum frequency are 

plotted at the maximum frequency, since the adaptive filter is 

inaccurate for very high frequency poles and zeros with the given 

excitation bandwidth. Both plots show a correlation between the line 

length (Figure 5.26) and the position of the pole or zero, the longer 

lines having the lower pole and zero positions. The majority of 

lines have zeros in the right-hand s-plane, although some short lines 

appear to produce both a pole and a zero in the left hand s-plane. 

These lines were found to be modellable by a variable gain and zero, 

or in some cases by a variable gain.



5.3.5 Results for the Convergence of the Pole-Zero Filter

The results of the previous sections describe the steady 

state performance of the pole-zero filter. The dynamic response of 

the filter is also important, since in practice it is required to 

converge quickly when subscribers' lines are connected. Moreover, 

when near-end speech is present, the adaption circuitry may need to 

be disabled, and the filter may be required to reconverge when 

near-end speech ceases. This section reports results obtained for 

the convergence of the pole-zero filter against simulated 

subscribers' lines.

5.3.5.1 Dynamic Measurement of the Error Signal

Figure 5.29 shows a simplified block diagram of the system 

used to measure the dynamic performance of the pole-zero filter. The 

error signal is half-wave rectified and low-pass filtered by an RC 

filter. Thus the d.c. output of the filter is proportional to the 

power of the error signal. The time constant of the RC filter is 44 

mS. This gives adequate rejection of signal components in the 

rectifier output, but allows the system to respond quickly (relative 

to the adaptive filter response) to transients due to the convergence 

of the filter. The combinati’on of rectifier and filter therefore 

functions as an envelope detector, and the output of the detector is 

displayed on a digital storage oscilloscope (DSO). Switch Sw2 is 

used to prevent the system from responding to transients due to 

loading transhybrid responses Into the LHS, while switch Swl is used 

to examine the convergence of the adaptive filter from Initial 

application of the input signal.
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5.3.5.2 Convergence from Zero Input Signal

Between the time when two subscribers are connected, and 

before speech has begun, the parameters of the adaptive filter used 

in an adaptive hybrid drift under the control of d.c. offsets. The 

final value of the filter parameters (and thus the time taken for the 

filter to converge) depends on the response being adapted to.

Figures 5.28 and 5.29 show the spread of responses to which the 

filter must adapt, and to obtain a realistic spread of convergence 

times, 21 equally spaced lines were therefore selected from those of 

Figures 5.28 and 5.29. For each of these lines the filter was first 

allowed to drift by setting the LHS output to zero and opening Swl. 

Sw2 was then opened and the transhybrid response of the line was 

loaded into the LHS. Swl and Sw2 were then closed and the dynamic 

performance of the filter was measured on the oscilloscope.

Figure 5.30 shows a typical oscilloscope trace obtained by 

following this procedure. The initial steep rising edge is due to 

the rise time of the RC filter. The maximum value of the trace 1s 

used as a measure of the initial ERL due to the combination of the 

adaptive filter and the subscriber's line. The error then decreases 

slowly as the adaptive filter converges. By measuring the power of 

the LHS output signal, the time taken to achieve any given value of 

ERLE can be calculated from a trace such as Figure 5.30.

The values of initial ERL measured for each of the selected 

lines are shown in Figure 5.31. For the best case line only 1.6 dB 

initial ERL is achieved, while for most of the lines the initial ERL 

is negative. It is therefore clear that the pole-zero filter cannot 

be allowed to begin convergence from a condition controlled by 

d.c. offsets, and some Initial conditions must be imposed on the 

filter parameters. Table 5.2 records the mean and standard
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deviations of the times required to achieve 0, 6 and 10 dB ERLE, 

averaged over the 21 lines. The table shows that even if the initial 

gain across the combination of adaptive filter and hybrid were 

acceptable, no improvement in ERL is achieved by the filter until 2.4 

S after the input signal is applied. Ideally the filter should 

provide some improvement in ERL within a few syllables of speech.

5.3.5.3 The Rate of Convergence

As shown in Figure 5.30, the power in the error signal 

decreases linearly with time as the filter converges. Thus the rate 

of convergence of the filter can be expressed as:- 

R = {201og10(v1/v2)}/(t2-t1) dB/Sec 

where v^ is the envelope detector output at time tj, and v2 is the 

output at time t2. The dependence of the rate of convergence on the 

input signal level is shown in Figure 5.32. In this case the filter 

was allowed to adapt, from zero input signal, against the line whose 

poles and zeros lay approximately half way between the extremes shown 

in Figures 5.27 and 5.28. The rate of convergence decreases with 

decreasing signal level, although the change is small over the first 

10 dB of the dynamic range of the filter.

5.3.5.4 Convergence with Inposed Initial Conditions

If some initial conditions are imposed on the parameters of 

the adaptive filter before the input signal is applied to 1t, then by 

a suitable choice of the conditions it should be possible to 

considerably improve the dynamic performance of the filter. Suitable 

initial conditions would be an estimate of the parameter values 

required to model the mean transhybrid response.
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Initial conditions can be imposed on the parameters of the 

experimental pole-zero filter by allowing it to adapt against a 

chosen initial transhybrid response. The transhybrid response is 

then altered to that of the required subscriber's line, and 

convergence of the error signal can be observed. The initial 

transhybrid response chosen was that whose pole and zero lay half way 

between the extreme pole and zero positions. Table 5.3 shows the 

longest times taken to achieve 0, 6 and 10 dB ERLE for the lines 

whose responses lay at either extreme. The high frequency pole and 

zero case (short lines) gives the worst performance, indicating that 

a slight improvement could be gained by altering the choice of 

initial conditions. Nonetheless, 6 dB ERLE was provided within 460 

mS in the worst case, and the initial ERL was always greater than 9 

dB.

5.4 Discussion

In this chapter it has been seen that neither the simple gain 

nor the single pole adaptive filter can accurately model most 

subscriber's lines. The pole-zero adaptive filter was shown to be 

capable of modelling large time constants, but incapable of 

accurately modelling a range of small time constants. To control 

this problem a method of designing the integrator in the filter was 

proposed.

The static performance of the pole-zero filter, adapting 

against simulated transhybrid responses, is more than adequate for 

use in an adaptive hybrid. The dynamic performance of the filter is 

inadequate however, and 1t was shown that some method of storing a 

set of initial conditions for the filter parameters 1s essential. 

These initial conditions could be common to the adaptive hybrids of
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all subscribers' lines, and could be imposed at the parameter control 

integrators, as is commonly done in analog computing.

A major problem in the implementation of an adaptive hybrid 

using the pole-zero filter, is the need to accurately compensate for 

the effects of error filtering on near-end speech signals. This 

compensation should be such that the passband ripple specification 

for the near-end channel is not breached. This may require the use 

of high accuracy components in certain sections of the filter, and 

strict control of the bj offset voltage. The stability of the 

pole-zero filter can be guaranteed by allowing only positive values 

of b p  provided that the bj offset voltage can be sufficiently 

reduced.

Simple polarity multiplication could be used for the control 

multipliers, and if the output offset of the multipliers can be kept 

small, then improvements in both the static and dynamic performance 

of the adaptive hybrid will result.

The problem of divergence of the filter parameters during 

near-end speech has not been examined, but since the filter uses an 

instantaneous error criterion, some form of near-end speech detection 

is necessary. Thus the parameter control integrators could be 

disconnected from the control multipliers on detection of near-end 

speech, and the filter parameters held until near-end speech ceases. 

If large values of integration capacitor are used, and the integrator 

operational amplifiers have low input offset currents, then the rate 

of drift of the filter parameters should be low.

Although the pole-zero filter can perform well in an adaptive 

hybrid, the conclusion to this chapter must be that sufficient 

problems of implementation remain to warrant the investigation of 

digital adaptive filters.



Mean Std Dev Mi n Max

Cancelled 

ERL (dB) 35.3 2.4 28.4 39.7

ERLE (dB) 26.7 3.2 20.0 31.7

Table 5.1 Performance of the Pole-Zero Adaptive Filter against 

100 Simulated Subscribers'Lines.

Table 5.2 Mean and Standard Deviations of Times (in Seconds) 

to achieve 0, 6 and 10 dB ERLE.

t 0 t 6 t 10

Short Lines .38 .46 .52

Long Lines 0 .22 .40

Table 5.3 Worst Case Times (in Seconds) to achieve 0, 6 and 

10 dB ERLEwith Initial Conditions.
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CHAPTER 6

THE FILTERING AND SAILING RATE REQUIREMENTS 

OF THE DIGITAL ADAPTIVE HYBRID

In Chapter 5 it was shown that an analog adaptive filter 

having a transfer function with a real pole and zero can provide 

ample ERLE against sibscribers' lines. The problems of implementing 

the analog adaptive hybrid were discussed in Section 5.4, and the use 

of a digital adaptive filter would avoid almost all of these 

problems. In Section 1.7 however 1t was shown that the use of a 

digital adaptive filter increases the complexity of the response 

which the filter must model.

In this chapter the effects of the intermediate sampling 

rate, the A/D and D/A converters and the analog filters on the 

performance of the digital adaptive hybrid are analysed. The aim of 

this analysis is to achieve an optimum combination of analog filters, 

with digital compensation for their responses, for each value of 

intermediate sampling rate.

Figure 6.1 shows a block diagram of the digital adaptive 

hybrid, where the adaptive filter operates at an intermediate 

sampling rate. The transfer function which the digital adaptive 

filter must be capable of synthesising is the combined responses of 

the D/A and A/D converters and the bandlimiting filters. The 

responses of these elements depend on the intermediate sampling rate 

used in the codec. Low sampling rates dictate the use of sharp 

cutoff analog filters whose responses can only be matched by a high 

order digital filter in the cancellation path. Section 6.1 therefore 

examines the relationship between the intermediate sampling rate and 

the required complexity of the analog bandlimiting filters.
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The analog filters and the converters introduce additional 

complexity into the response to be matched by the adaptive filter.

In Section 6.2 the effect of this additional complexity on the ERL 

and SRL which can be achieved is investigated. The responses of the 

filters and converters can be compensated by a fixed digital filter 

in the cancellation path. However, since the responses of the analog 

filters are imprecisely known, due to component tolerances and 

ageing, this technique can not be completely effective. Section 6.2 

therefore also examines the effect of deviations in the responses of 

the filters, assuming that the nominal responses of the filters are 

perfectly compensated.

The results of the previous two sections are used in Section

6.3 to deduce optimum filters for each sampling rate. The filters 

chosen are optimal in that they allow the largest deviations in the 

filters' responses, while still meeting return loss and filtering 

specifications.

In Section 6.4 the return loss which can be achieved by using 

simple digital filters to compensate for the effects of the 

converters and analog filters is investigated. Section 6.5 presents 

conclusions about the optimum combinations of filtering, sampling and 

compensation.

6.1 Choice of Analog Filter Order and Cutoff Frequency

The complexity of the bandlimiting filters must be such that 

both the response between the D/A input and the 4 wire receive port, 

and the response between the 4 wire transmit port and the A/O output, 

are within the template shown in Figure 6.2. In general this 

response 1s provided by the analog bandllmlting filters in 

conjunction with the filtering Inherent in the n/A and A/n
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converters. In particular, if delta-sigma modulation (Everard, 1979) 

is used for A/D and D/A conversion, the A/D converter will contain a 

digital quantisation noise filter having a Sinc2(x) response. 

Similarly, the output of the D/A converter is effectively sampled and 

held at the intermediate sampling frequency, thereby producing 

Sinc(x) frequency shaping. This filtering in the converter reduces 

the complexity of the required analog bandlimiting filters.

To determine the optimum cutoff frequency for the analog 

filters at different sampling rates, the maximun and minimun cutoff 

frequencies which can be allowed without infringing the specification 

of Figure 6.2 are calculated for Butterworth and Tchebichef filters 

of orders 1 to 5. This calculation is done for intermediate sampling 

rates of 8, 16, 32, 64 and 128 kHz. The maximun cutoff frequencies 

differ for the encode and decode directions because of the different 

internal filtering in the converters.

In cases where the minimun cutoff frequency is greater than 

the maximun cutoff frequency for a particular sampling rate, the 

filter cannot meet the specifications at that sampling rate. In the 

remaining cases the mean of the minimun and maximun cutoff 

frequencies is calculated and chosen as the nominal cutoff frequency. 

The filter types and nominal cutoff frequencies are recorded in Table

6.1 for the decode direction, and Table 6.2 for the encode direction. 

The percentage deviation in cutoff frequency allowed for each viable 

filter type, at each sampling frequency, is then calculated. This is 

important because it affects the component tolerances required in the 

analog filter. The results of this calculation are shown in Figure

6.3 for the decode direction, and Figure 6.4 for the encode 

di rection.

Both Figures 6.3 and 6.4 show that increasing the sampling 

rate increases the allowed deviation in cutoff frequency for a given
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filter order, although for the encode direction no filter is 

necessary for sampling rates of 32 kHz and above. Similarly, 

increasing the filter order for a given sampling rate allows larger 

deviations in cutoff frequency, although the advantage gained 

decreases with increasing filter order. This effect must be weighed 

against the higher individual component accuracies which are required 

to ensure the same deviation in cutoff frequency for a higher filter 

order. In all cases the Tchebichef filters allow higher deviations 

than the Butterworth filters. This occurs because they have narrower 

transition bands (and hence larger allowed deviations) than the 

corresponding Butterworth filters.

6.2 The Effect of the Filters and Converters on the ERL and SRL

The results of the previous section show that in some cases 

large deviations in the cutoff frequency of the analog filters are 

tolerable without infringing the filtering specifications. This 

property may be useful, since it allows the filters to be constructed 

from low precision components. If the necessary compensation for the 

responses of the D/A and A/D converters and the filters is provided 

by a fixed digital filter, then the deviations in the responses of 

the filters may unacceptably degrade the resulting return loss of the 

system. The responses for which the fixed filter must compensate 

consist of two parts:-

1) the Sinc(x) response due to the sample and hold of the n/A 

converter and the S1nc^(x) response due to the quantisation noise 

filter in the A/0 converter

and

2) the combined responses of the analog encode and decode filters.
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The responses due to the converters are fixed and will be considered 

fi rst.

6.2.1 Condensation for the Responses of the Converters

The sample and hold and the quantisation noise filter 

introduce phase and amplitude distortion. Since both responses have 

constant group delays, the phase responses can be simply compensated 

by a pure time delay in the fixed digital filter. If it is assuned 

that the transhybrid response is unity, then the return loss which 

can be achieved without compensating for the amplitude response of 

the sample and hold or the quantisation noise filter, at frequency f 

1s:-

1
RL(f)-------- ------- -

l-S1nc3(irf/fs)

where fs is the intermediate sampling frequency. The SRL at 3.4 kHz, 

and the ERL, for various sampling rates, are tabulated in Table 6.3.

The table shows that no compensation for the amplitude 

response of the converters is necessary at sampling frequencies of 

128, 64 and 32 kHz, and that without compensation at 16 kHz, 14 dB 

SRL at the band edge is still possible.

6.2.2 Compensation for the Responses of the Analog Filters

To examine the effect of component inaccuracies 1n the analog 

filters, it 1s initially assimed that only the delay effects due to 

the converters are compensated for. The transhybrid response is 

assuned to be unity, as is the response of the digital adaptive 

filter. This allows the ERL and SRL due to any analog filter, or 

combination of analog filters, to be calculated. The sensitivity of
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a particurlar filtering/sampling strategy to variations in component 

values is characterised by the sensitivity of the return loss to 

shifts in the cutoff frequency of the filters, since such shifts 

affect both the phase response and the amplitude response in the 

passband. This avoids restricting the analysis to a particular 

filter structure and simplifies the calculation, since Monte Carlo or 

similar analyses are not required.

1) ERL and SRL with no compensation for the analog filter's response

The results of the analysis of the effect of a shift in the 

analog filter's cutoff frequency, with compensation only for the 

delay due to the converters, are shown in Figures 6.5 and 6.6 for the 

various filtering/sampling options of Table 6.1. The figures show 

that the higher the sampling frequency, the less sensitive is the 

return loss to variations in cutoff frequency. At sampling rates of 

16 kHz and below, even with no deviation in the filter's cutoff 

frequency, compensation 1s necessary to achieve return loss greater 

than 0, dB. The figures also show that increasing the filter order 

increases the sensitivity of the the return loss to deviations in 

cutoff frequency.

If values of 20 dB and 10 dB are assigned to the minimun 

allowed ERL and SRL respectively, then at 54 kHz the maximun allowed 

negative deviations in cutoff frequency are as given in Table 6.4. 

Positive deviations have a lesser effect, since they have a lesser 

effect 1n the passband. The maximun allowed deviations in cutoff 

frequency are termed the return loss sensitivities of each filter.

At 32 kHz sampling rate, even with no downward shift in the 

filter's cutoff frequency, the 10 dB and 20 dB SRL and ERL 

specifications cannot be met without some compensation for the



responses of the filters.

2) ERL and SRL with perfect compensation for the nominal analog 

filter's response

Assuning that the responses of the filters are perfectly 

compensated, then the various filter types can be expected to have 

different return loss sensitivities. Analysis of these sensitivities 

allows choice of the optimun filters.

The return loss sensitivities of the various 

filtering/sampling options, assuning perfect compensation for the 

analog filter's response, are shown in Figures 6.7 and 6.8. These 

figures show the return loss sensitivities decreasing with increasing 

filter order, and in most cases the Butterworth filters have higher 

return loss sensitivities than the equivalent Tchebichef filters.

For sampling frequencies of 32 kHz and above, no analog filters are 

required in the encode path, and the return loss sensitivity of the 

decode filter is the overall return loss sensitivity for the 

s liscriber's line unit. However, at 16 kHz, the overall return loss 

sensitivity is due to the return loss sensitivities of both the 

encode and decode filters. In Section 6.3 a method of estimating 

this overall return loss sensitivity is proposed.

6.3 The Optimal Analog Filters

By superimposing Figures 6.3 and 6.4 on Figures 6.7 and 6.8 

respectively, the implications of the various sampling frequency and 

filtering options can be more clearly seen. This is shown in Figures

6.9 (decode direction) and 6.10 (encode direction). The following 

conclusions can be drawn from these figures:-
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1) 64 kHz sampling frequency

At 64 kHz sampling frequency the optimtm filter is the first 

order Tchebichef (nominal cutoff frequency = 6.7 kHz). The maximun 

allowed deviation in cutoff frequency is ±64% without infringing the 

filtering specification. Chosing the Butterworth type filter 

(nominal cutoff frequency = 25.74 kHz) reduces the allowed deviation 

to ± 62%, and for convenience the use of this filter is asstmed for 

the remainder of this chapter.

2) 32 kHz sampling frequency

At 32 -kHz sampling frequency the optinum filter is a second 

order Butterworth (nominal cutoff frequency = 10.19 kHz). The 

maximun allowed deviation is -37% without infringing the return loss 

specification. The filtering specification allows a deviation of 

±49%, indicating that the performance could be improved by increasing 

the cutoff frequency by a small amount.

3) 16 kHz sampling frequency

At 16 kHz sampling frequency the optimun decode filter is a 

3rd order Butterworth (nominal cufoff frequency = 5.34 kHz). A 

deviation of -15% in cutoff frequency is allowed without infringing 

the return loss specification, whereas ±19% deviation is allowable by 

the filtering specification.

In the encode path at 16 kHz sampling frequency, a second 

order Butterworth filter (nominal cutoff frequency = 7.428 kHz) 

allows -28% deviation while meeting the return loss specification, 

and ± 29.5% while still meeting the filtering specification. Use of 

a 2nd order Tchebichef filter (nominal cutoff frequency = 4.54 kHz) 

allows ± 38% deviation without Infringing the filtering 

specification, and if the nominal cutoff frequency is Increased, the 

deviation allowed while meeting the return loss specification can 

probably be increased above the -28% allowable for the Rutterworth
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fi Iter.

The filters described above are chosen as optimal for the 

various sampling frequencies, and in the next section the effects of 

imperfect compensation are discussed. Before this can de done 

however, it is necessary to make some assimptions about the combined 

effects of component tolerances in the encode and decode filters at 

16 kHz.

In Figure 6.11 the return loss sensitivity of the combination 

of encode and decode filters at 16 kHz sampling frequency is shown 

for deviations in the cutoff frequencies of both filters. It has 

been assumed that the responses of the nominal filters are perfectly 

compensated, but that the magnitude responses due to the converters 

are uncompensated. The figure shows that the overall return loss 

sensitivity is worst when both filters have cutoff frequencies lower 

than nominal, the maximum deviation 1n this case being approximately 

-10%. Figure 6.11 also shows that if both filters deviate in 

opposite directions, then large deviations are allowed, but that the 

allowed deviation is always lower for the decode filter than for the 

encode filter. For reference, the deviations allowed while meeting 

the filtering specifications are also shown in Figure 6.11. To 

obtain a realistic estimate of the performance of the filters at 16 

kHz, the probability distributions of the deviations 1n cutoff 

frequency for each filter should be superimposed on Figure 6.11, 

however in the following section the worst case is assumed, i.e. it 

is assumed that both filters have equal negative deviations 1n cutoff 

freq uency.



6.4 Digital Compensation for the Analog Filters

In the previous section it was assuned that the responses of 

the nominal analog bandlimiting filters could be perfectly matched, 

in both amplitude and phase, by a digital compensating filter. In 

practice this is impossible. In this section the effect on the ERL 

and SRL of modelling the analog filters by the following practical 

digital systems are examined: -

1) a mapped equivalent of the analog filters

2) a first order digital all-pass section

3) a pure time delay

4) a single pole digital filter

6.4.1 Mapping the Analog Filters to Equivalent Digital Filters

There are many techniques for mapping analog filter responses 

into the digital domain (Rabiner and Gold, 1975), however most of 

these techniques do not preserve the phase response of the filter in 

the passband. A technique which is suitable for all pole type analog 

responses (e.g. Butterworth and Tchebichef filters), is the invariant 

impulse response method. This technique produces a recursive digital 

filter whose impulse reponse 1s a sampled version of the analog 

filter's impulse response. However, for the method to be successful, 

the analog filter's response must be sufficiently bandlimited to 

prevent aliasing In the design process. This problem 1s particularly 

acute when attempting to design compensating filters which match the 

analog filters used for the higher sampling frequencies, since these 

filters have responses with significant values at more than half the 

sampling frequency. For example, at 32 kHz sampling frequency, the 

2nd order Butterworth filter only attenuates the first image band by
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18 dB. Figure 6.12 shows the passband responses of the analog filter 

and a digital equivalent designed using the impulse invariant method. 

It can be seen that gross aliasing has occurred.

At the 16 kHz sampling rate the required analog filters have 

higher values of stopband attenuation, and the invariant impulse 

response technique is capable of yielding a reasonably accurate 

digital compensation filter. This filter is however of 5th order. 

Attempts to map the analog filters to equivalent digital filters were 

abandoned for these reasons.

6.4.2 Compensation with a First Order Digital All-Pass Section

The requirement that all of the analog filters have a maximun 

ripple of 0.25 dB in the passband indicates that they can be matched 

to 30 dB return loss by all-pass sections, if the phase response of 

the sections can be matched to that of the filters. The response of 

a first order all-pass section is given by:-

H(z) = (z"*-a)/(l-az-1) 6.1

and the coefficient 'a' can be used to vary the phase response of the 

section. As in Section 6.2.2, the return loss for each of the 

filtering/sampling options is calculated, assuning that the all-pass 

network is used to compensate for the responses of the filters, and 

that the magnitude responses of the converters are uncompensated.

At 64 kHz and 32 kHz sampling rates, even with 'a' = 0, good 

compensation is achieved only for cutoff frequencies much lower than 

nomi nal.

At 16 kHz the optimum value for 'a' allows only ± 2% 

deviation in the cutoff frequencies of the filters, assuming that 

both deviate together, and the values of ERL and SRL achieved when 

both filters have their nominal cutoff frequencies are only slightly
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in excess of 20 dB and 10 dB respectively. To achieve adequate 

compensation at 16 kHz at least one further all-pass section is 

req ui red.

6.4.3 Compensation with a Pure Time Delay

If 'a' = 0 in equation 6.1, the all-pass section becomes 

equivalent to a pure time delay of 1 sample period. It has been seen 

that this provides good compensation at 64 and 32 kHz sampling rates, 

only if the cutoff frequency of the analog filter is much lower than 

nominal. Large deviations in cutoff frequency are allowed at these 

sampling rates however, and the nominal cutoff frequency can thus be 

decreased to ease the compensation problem.

Figure 6.13 shows the ERL and SRL achieved, as a function of 

the nominal cutoff frequency, if the analog filter in the decode path 

is compensated by a pure time delay of 1 sample period. The sampling 

frequency is 64 kHz, the filter is a first order Butterworth, and it 

is assuned that the magnitude responses of the converters are 

uncompensated. Also shown in Figure 6.13 are the maximum allowed 

negative deviations from the nominal cutoff frequency without 

breaching the filtering or the return loss specifications. The 

maximun positive deviations allowed while meeting both specifications 

are greater than 80% for nominal cutoff frequencies between 6 kHz and 

20 kHz, and are not shown in Figure 6.13.

Figure 6.13 shows that the nominal cutoff frequency should be

10.3 kHz to maximise the return loss, but this allows a negative 

deviation of only -4% without breaching the return loss 

specification. The deviation allowed can be increased to -20%, while 

still giving 33 dB ERL and 22 dB SRL (assuming no deviation), if the 

nominal cutoff frequency of the filter is increased to 12.3 kHz.
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At 32 kHz sampling rate, using the second order Butter-worth 

filter in the decode path, compensated with a delay of 1 sample 

period, and assuning the filter has the nominal cutoff frequency, the 

ERL and SRL achieved are as shown in Figure 6.14. The maximun 

deviations allowed are also shown in Figure 6.14. In this case it 

can be seen that choosing a nominal cutoff frequency of 7.2 kHz gives 

46 dB nominal ERL, and 21 dB nominal SRL. The maximun deviations 

allowed while meeting the return loss specification are +80% and 

-26%. The nominal cutoff frequency of the filter can be increased to 

allow larger negative deviations, but only at the expense of the 

return loss and the allowed positive deviation.

6.4.4 Compensation with a Single Pole Oigital Filter

The pure time delay of the previous section provides poor 

compensation for the nominal analog filters at 32 kHz and 64 kHz 

sampling rates because it over-compensates for the phase shift due to 

the filters. Reducing the nominal cutoff frequency of the filters 

allows better compensation to be achieved, but at the expense of the 

maximun allowed negative deviation. A system which provides less 

phase shift than the pure time delay is the single pole digital 

filter, whose response is given by:- 

H(z) = l/d-az*1)

The ERL and SRL as a function of the percentage deviation in cutoff 

frequency, for the first order Butterworth filter and various values 

of filter coefficient ('a'), at a sampling rate of 64 kHz, are shown 

1n Figures 6.15 and 6.16.

It can be seen from the figures that the optimum value of 'a' 

1s slightly less than 0.3, and that the digital filter provides 

excellent compensation. The maximun deviation allowed without
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infringing the return loss specification is -70%.

At 32 kHz sampling rate the performance of the single pole 

compensation is as shown in Figures 6.17 and 6.18. In this case the 

filter provides good average compensation, however Figure 6.18 

indicates that the compensation at the band edge is poor. 

Compensation at the nominal cutoff frequency, and the average 

compensation, can be traded off for increased allowed negative 

frequency deviation. The optimum value for 'a' is thus between 0.4 

and 0.5.

6.5 The Optimun Flltering/Compensation Strategy

For the various sampling rates, the following conclusions can 

be drawn from the data presented in this chapter: -

1) At 128 kHz sampling rate no analog bandlimiting filters are 

required. If the phase responses of the A/D and D/A converters are 

compensated by a pure time delay, the maximum possible ERL and SRL 

are 62 dB and 49 dB, as given in Section 6.2.1.

2) At 64 kHz sampling rate a first order analog filter is required 

in the decode direction. If a Butterworth filter is chosen, its 

optimum cutoff frequency is 25.7 kHz, and ±62% deviation from this 

nominal cutoff frequency is allowed without breaching the filtering 

specification.

If the phase responses due to the A/D and D/A converters are 

compensated by a time delay, but no other compensation is used, then 

26 dB ERL and 18 dB SRL are possible, assuming that the filter's 

cutoff frequency does not deviate from its nominal value. The 

maximum allowed deviation is -52% while still guaranteeing 20 dB ERL

and 10 dB SRL.
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The optinuin compensation for the response of the analog 

filter is a single pole digital filter, with coefficient 'a' - 0.3. 

This compensation gives approximately 60 dB ERL and 40 dB SRL, 

assuning the filter does not deviate from its nominal response. The 

maximim deviation allowed is -70% while guaranteeing 20 dB ERL and 10 

dB SRL, although a lesser deviation is allowed by the filtering 

specification.

If the nominal cutoff frequency of the analog filter is 

reduced, then a pure time delay of 1 sample period provides 

reasonable compensation for the filter's response. Reducing the 

cutoff frequency to 12.3 kHz still allows a negative deviation of 

-20% while meeting the filtering specification. The nominal ERL and 

SRL for this compensation are 33 dB and 22 dB respectively. These 

conclusions are sunmarised in Table 6.5.

3) at 32 kHz sampling rate a 2nd order Butterworth filter is 

required in the decode direction. The optimun cutoff frequency for 

the filter is 10.2 kHz, and the maximim allowed deviation in cutoff 

frequency is ±49% without breaching the filtering specification.

The response of the filter, in addition to the phase 

responses of the converters, must be compensated to achieve greater 

than 13 dB ERL or 6 dB SRL.

If compensation with a single pole digital filter is used, 

the optimun filter coefficient 1s between 0.4 and 0.5. This 

compensation achieves between 33 dB and 23 dB ERL, and between 15 dB 

and 14 dB SRL, depending on the value of the filter coefficient, and 

assunlng that the analog filter has the nominal cutoff frequency.

The maxlmun allowed deviation 1n cutoff frequency is between -27% and 

-36%.

Reducing the nominal cutoff frequency of the filter to 7.2 

kHz still allows a negative frequency deviation of -26%, with a
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single period pure time delay as compensation. The nominal ERL and 

SRL for this compensation are 46 dB and 21 dB respectively. These 

conclusions are sunmarised in Table 6.6.

4) At 16 kHz sampling rate a 2nd order Butte w t h  filter is 

required in the encode direction, and a 3rd order Butterwth filter 

is required in the decode direction. The allowed deviations in 

cutoff frequency, while meeting the filtering requirements, are ±19% 

for the decode filter, and ±30% for the encode filter.

Compensation for the filter responses is necessary, and the 

required compensation is a digital filter of at least 2nd. and 

possibly as high as 5th. order. If perfect compensation for the 

filter responses is possible, then the maximun deviations allowed in 

the cutoff frequencies of both filters, while guaranteeing 20 dB ERL 

and 10 dB SRL. is -10%. ass uni ng that worst case deviations occur.

5) At 8 kHz sampling frequency, both the encode and the decode 

directions require analog filters of order higher than 5th. 

Compensation for the responses of the filters would require a high 

order digital filter, and only very small deviations in the cutoff 

frequencies of the filters would be allowed.



! SAMPLING 
FREQUENCY 

1 IN kHz

FILTER
TYPE

—
NOMINAL 
CUTOFF 

FREQUENCY 
IN kHz

PERCENTAGE 
VARIATION 
ALLOWED 
(+ OR -)

128 NO FILTERS 
REQUIRED

- -

64 B1 25.74 61.7
B2 27.7 81
B3 28.9 84.9
B4 29.6 86.2
B5 30.07 86.9

T1 6.17 64.18
T2 17.61 84.16
T3 23.33 86.9
T4 26.91 88.0
T5 28.54 88.48

32 B2 10.19 48.8
B3 11.5 62.3
B4 12.46 67.2
B5 13.06 69.9

T2 6.51 57.18
T3 9.95 68.8
T4 12.0 73.1
T5 13.21 75.11

16 B3 5.341 18.7
B4 5.8 29.6
B5 6.137 35.9

| T2 2.94 5.12
T3 4.512 31.2
T4 5.57 42.0
T5 6.25 47.38

8 GREATER THAN 
5th ORDER,

B OR T
- -

TABLE 6.1: Decode path filtering/sampling options



SAMPLING 
FREQUENCY 
IN kHz

FILTER
TYPE

NOMINAL 
CUTOFF 

FREQUENCY 
IN kHz

PERCENTAGE
VARIATION
ALLOWED

(+ OR -)

128 NO FILTERS
64 REQUIRED -
32

16 B2 7.428 29.74
B3 7.44 41.63
B4 7.55 45.9
B5 7.62 48.45

T2 4.54 38.57
T3 6.01 48.38
T4 6.75 52.2
T5 7.16 54.07

8 B, GREATER
THAN 5th “

ORDER

T5 3.2915 .106

TABLE 6.2: Encode path filtering/sampling options



SAMPLING RATE 
| (kHz)

ERL (dB) SRL (dB)

t
128 62.1 49.2

64 50.0 37.2

32 38.1 25.3

16 26.2 13.9

8 15.0 4.2

TABLE 6.3: ERL and SRL if the magnitude responses of the converters 

are uncompensated

FILTER TYPE MAXIMUM DEVIATION 
IN CUTOFF FREQUENCY

B1,T1 - 52%

T2 - 40%

B2 - 38%

TABLE 6.4:Maximum allowed negative deviations in cutoff frequency 

while meeting the return loss specification, for a 

sampling rate of 64 kHz



NO
COMPENSATION

SINGLE
POLE

PURE TIME 
DELAY

MAXIMUM + 
ALLOWED 
DEVIATION -

62% 62% > 80%

52% 62% 20%

NOMINAL ERL 26.4 60 33

NOMINAL SRL 17.6 40 22

TABLE 6.5: Performance of digital compensation at 64 kHz 

sampling frequency

SINGLE
POLE

PURE TIME 
DELAY

MAXIMUM + 49% 80%
ftLLUWtU
DEVIATION - > 27%, < 36.5% 26%

NOMINAL ERL > 23.5, < 33 46

NOMINAL SRL > 13.6, < 15.4 21

TABLE 6.6 : Performance of digital compensation at 32 kHz

sampling frequency
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Allowed in Fc
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Allowed in  Fc
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6 0

4 0  ■

20  -

1 6 k

4 5
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Breach ing the F i l t e r i n g  S p e c i f ic a t io n

F i g u r e  6 . 4 :



F
ig

u
re

 
6

.5
i 

S
e

n
si

ti
v

it
y

 
o

f 
th

e 
E

R
L 

to
 R

ed
u

ct
io

n
s 

in
 

th
e

C
u

to
ff

 
F

re
q

u
en

ci
es

 
o

f 
th

e 
F

il
te

rs
 

w
it

h
 n

o 
C

om
p

en
sa

ti
on





Return Loss
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Return Loss  
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CHAPTER 7

DIGITAL RECURSIVE ADAPTIVE FILTERS

In Chapter 6 it was seen that the use of digital adaptive 

filters need not greatly increase the complexity of the response to 

be modelled by the filter. In this chapter the optimal structure and 

algorithm for the adaptive filter is investigated.

Section 7.1 assesses the suitability of various types of 

recursive adaptive filter for use in a digital adaptive hybrid.

Section 7.2 describes a new implementation of an experimental 

digital recursive adaptive filter, which allows the performance of 

the digital adaptive hybrid to be tested.

In Section 7.3 results are presented for the performance of 

the digital adaptive filter adapting against subscribers' lines, and 

the effect of various adaption algorithms on the convergence of the 

filter is investigated.

Section 7.4 discusses the implementation of a practical 

digital adaptive hybrid, using the results of the previous sections.

7.1 Digital Recursive Adaptive Filters

The transfer function of an Nth order recursive digital 

filter can be written as

G(z) Y(z)/X(z)

N <
Zaiz_1

i*0

N
1+I V

1*1
-i

7.1

The poles and zeros which this transfer function realises can be 

obtained by factorising the numerator and denominator polynomials
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In Chapter 6 it was seen that the use of digital adaptive 

filters need not greatly increase the complexity of the response to 

be modelled by the filter. In this chapter the optimal structure and 

algorithm for the adaptive filter is investigated.

Section 7.1 assesses the suitability of various types of 

recursive adaptive filter for use in a digital adaptive hybrid.

Section 7.2 describes a new implementation of an experimental 

digital recursive adaptive filter, which allows the performance of 

the digital adaptive hybrid to be tested.

In Section 7.3 results are presented for the performance of 

the digital adaptive filter adapting against subscribers' lines, and 

the effect of various adaption algorithms on the convergence of the 

filter is investigated.

Section 7.4 discusses the implementation of a practical 

digital adaptive hybrid, using the result, of the previous sections.

7.1 Digital Recursive Adaptive Filters

The transfer function of an Nth order recursive digital 

filter can be written as

I V 1
1*0

G(z) = Y(z)/X(z) = --------  7.i
N «

1+I V -1
1*1

The poles and zeros which this transfer function realises can be 

obtained by factorising the numerator and denominator polynomials
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into the form:-

N
n(z-a. ) 
1=1
N
n(z-8-f)
1=1

where and 8i are the locations of the zeros and poles in the z

plane. Thus the Nth order filter can realise at most N poles and N 

zeros, and these can be situated on the real axis, or in complex 

conjugate pairs.

A realisation of the transfer function of equation 7.1 can be 

obtained by writing it in the form of a difference equation, 1.e :-

This equation can be realised in the direct form as shown in Figure 

7.1. When this filter is used as an adaptive filter, adapting 

against an unknown system whose transfer function is H(z), then the 

error signal is:-

As was seen in Chapter 4, the mean square value of the error signal 

can be considered to be a surface, in this case in 2N+1 dimensions. 

To derive the value of the mean square error for a given X(z), H (z ) 

and G(z), the inverse Z transform of equation 7.3 can be taken, 

giving en. This procedure is equivalent to substituting values for

xn, dn, a1 and b̂  into equations 7.2 and 7.4, for n » o, 1, 2.....

Alternatively, E(u>T) can be calculated from equation 7.3 by 

integration around the unit circle, i.e. z = eJ“T , where 1/T = Fs, 

the sampling frequency.

In the following subsections the major developments in

y n " a0V alx;Oxn+alxn-l+* * *,anxn-N " blyn-l'b2yn-2"*••^i^n-N 7,2

i=l

7.3

7.4
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digital recursive adaptive filters are reviewed, and the suitability 

of the various techniques for use in a digital adaptive hybrid are

7.1.1 Mantey (1964)

Mantey has shown that the error surface resulting from 

equation 7.3 is not quadratic, and that it can have multiple minima, 

even when the adatptive filter is sufficient. For the case when the 

filter is of lower order than the unknown system, an example has been 

reported more recently by Larimore and Johnson (1977), in which the 

error surface has two minima. To overcome the problem of multiple 

minima, Mantey proposed the use of a modified or filtererd error 

criterion. This was achieved by filtering the error signal by the 

denominator polynomial of equation 7.1 to produce the filtered error 

signal E'(z), i.e:-

Mantey showed that the filtered error signal is quadratic in both the 

a^ and the b̂  coefficients, and that when the filter is sufficient, 

the minimisation of the mean square filtered error also minimises the 

mean square unfiltered error.

In addition to producing a quadratic filtered error surface, 

Mantey's proposal greatly simplifies the coefficient adaption 

algorithm. This can be seen by writing the equation for the Nth 

filtered error sample:-

Thus e ‘n can be considered as the subtracted outputs of two distinct 

transversal filters, one operating on samples of d(t) and the other 

operating on samples of x(t). The gradients of the instantaneous

assessed,

1*1
7.5

ln+bldn-l+* * • 'bNdn-N"aOxn‘* • • *aNxn-N 7.6



squared filtered error can therefore be written as:-

7.7

The steepest descent algorithm (Widrow, 1966) for adapting the a and 

b coefficients is:-

where the subscripts i,n+l denote the 1th coefficient at time t = 

(n+l)T, and the parameters va and ub are the a and b step sizes.

This algorithm is relatively simple to implement by comparison with 

those for the other types of recursive adaptive filter, considered in 

the remainder of this section. Further simplifications are possible 

by using non-linear functions of the signal samples, as widely 

reported for transversal adaptive filters

The alteration in the filter structure guarantees the 

stability of the filtered error signal, as was seen for the analog 

recursive adaptive filters. Since error filtering in the digital 

case also affects the near-end signal, it is necessary to form the 

unfiltered error signal. This is done by passing the filtered error 

through a system with transfer function:-

and in this case stability problems may arise. The stability of the 

circuit which provides the compensation for the effects of error 

filtering can however be assured by checking the values of the bi 

coefficients as they are calculated by the adaption algorithm, e.g:- 

for a first order filter the stability requirement is simply:- 

b1 < 1

For higher order filters the check becomes more complex.

7.8

and

b1,n+l = bi,n " ubendn-1 7.9



147 -

7.1.2 White (1975)

A recursive adaptive filter proposed by White used a 

recursive algorithm to compute the error gradients for the ai and bi 

coefficients. An example of the technique used can be obtained by 

calculating the gradient 3en/3b.j from equations 7.4 and 7.2, where N 

= 2, i.e: -

3en 3yn 3yn-i 3yn-2
- -— = yn-i+bi—  +h-—

3b,'1 3 ^  «oj V „ 1

Thus 3en/3b.j is the output of the recursive section shown in Figure 

7.2. The gradient with respect to â  can be calculated in a similar 

manner. The above algorithm has also been referred to as Steam's 

algorithm (Stearns, Elliott and Ahmed, 1976).

To implement a second order recursive adaptive filter, using 

White's algorithm, requires 6 second order sections. In addition it 

is necessary to make some asunptions about the initial values of .the 

error gradients, and the effect of these assunptions on the 

convergence of the filter is unknown.

+bc
3b, '3b,

7.1.3 Feintuch (1976)

Feintuch's controversial paper proposed to adjust the 

coefficients 1n the recursive filter whose output is given by 

equations 7.4 and 7.2, using the algorithms:-

a1 ,n+l = a1 ,n+waenxn-1 
and

^i.n+l * b1,n”Mbenyn-1

In subsequent correspondence Johnson and Larimore (1977) pointed out 

that Feintuch's algorithm represents a truncation of White's 

algorithm after the first term, and that the basis on which it was



- 148 -

derived is invalid when the filter's coefficients are updated using 

the gradients. Two examples of the failure of Feintuch's algorithm 

were given by Johnson and Larimore, both of which involved 

insufficiency in the adaptive filter. In one case the error surface 

had two minima, neither of which were located by the adaption 

algorithm, while in the other case it failed to locate even a single 

mi nimum.

Feintuch and Bershad (1977) in reply to Johnson and Larimore, 

reported two examples in which Feintuch's algorithm showed correct 

convergence. In both of these cases the adaptive filter was 

sufficient. A further comment on Feintuch's algorithm was made by 

Widrow and Me. Cool (1977).

7.1.4 Parflch and Ahmed (1978)

Parikh and Ahmed proposed a sequential regression algorithm 

(SER) for recursive adaptive filters, in which the error criterion to 

be minimised is

J(«) - ql[d(i) - y(1) ] 2 + aTa 7.11
i

where the filter output is:- 

yi = <*T*i

and yk is the desired signal sample, a is the vector of filter 

coefficients, B is the vector of input and output samples, and q is a 

weighting factor. The first term 1n equation 7.11 is a measure of 

the error, while the second term is added to control the filter 

coefficients when the input signal is zero. Using equation 7.11, the 

expression for the rth estimate of the coefficient vector 1s:-

«k 3 *-l*«pic’1V k  k 1 1....r 7.12

where
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7.13

and Xj = Va(gj), the gradient vector at time t = jT. If the second 

term is absent from equation 7.11 , then the identity matrix is 

absent from equation 7.13, and when the input signal is zero, is a

Equation 7.12 then becomes meaningless (Ahmed, Hummels et al, 1979). 

Pk and Aj are computed recursively using the relationships:- 

N

Parikh and Ahmed used an example of a first order adaptive filter 

converging against a second order system, to show the convergence of 

the SER algorithm to the global minimum. It was also shown that 

White's algorithm converged to the minimum which was nearest to its 

starting point.

Implementation of the SER algorithm in hardware would be 

extremely difficult because of the many operations involved in 

calculating equations 7.12 and 7.14 to 7.16. Furthermore, Parikh and 

Ahmed do not suggest a method of assigning initial values to the 

gradients of equation 7.14. It is indicative of the complexity of 

this approach that Ahmed, Hummels et al report an example of a 

modified SER algorithm operating at 8 samples/sec.

singular matrix. Pj  ̂ does not exist under these conditions, and

\j = + I^p.j-i^j-p (White's algorithm) 7.14

and

Pk'1 = P k - f1 - P k - f1 W P k - f 1/ ? 7.15

where

y = SkV iA  + i/q 7.16
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7.1.5 Treichler, Larimore and Johnson (1978)

Treichler, larimore and Johnson applied analytical techniques 

developed by Ljung (1977) and Landau (1976) to the convergence of 

adaptive filters. In particular it was shown that if the adaptive 

filter whose transfer function is given by equation 7.1 models an 

unknown system with transfer function:-

I
HU) = - ¿ 4 —

1 +
1*1

then the error signal can be considered to be generated by the system 

shown in Figure 7.3, where W(z) is a function of the desired signal, 

the adaptive filter's output and of the mismatch between the 

coefficients of the adaptive filter and those of the unknown system. 

The transfer function of the forward path is:-

F U ) ------ J---- -
i + l ez’ 1

1=1

Thus assuning 8  ̂ is constant, then the time varying element of the 

adaption algorithm is isolated in the feedback path of Figure 7.3, 

and the hyperstability theory of non-linear systems (Popov, 1973 or 

Larimore, 1981) can be applied. Treichler, Larimore and Johnson 

reported that to guarantee the convergence of the error signal, it is 

sufficient that:-

1) the feedback path satisfy the constraint given by:-

OB

i  «kek < Ak=0



- 151 -

where A is a positive constant, i.e. the gain of the feedback path is 

positive on average, and

2) the system in the forward path has a strictly positive real part, 

i.e. the fonvard path always introduces less than 90° phase shift.

The latter condition imposes restrictions on the type of unknown 

system against which an adaption algorithm will converge, and it was 

shown that the region of convergence does not include unknown systems 

of the second order with poles near z = 1.

Treichler Larimore and Johnson suggested that the adaption 

algorithm minimise a filtered error signal given by:-

E'(z) = E(z)[l + l c-jZ-1]
1-1

In this case the forward path transfer function of Figure 7.3 

becomes:-

P
1 + l C-iZ'1

F(2)------J = l _

1 + i r 1
and the error filtering coefficients (c^) can then be used to control 

the convergence of the filtered error signal, in accordance with the 

hyperstability conditions.

In an example in which the adaptive filter was sufficient, it 

was shown that the use of a single error filtering coefficient caused 

much faster convergence of Feintuch's algorithm. It was also found 

that the hyperstability condition was "sufficient but not necessary" 

to ensure convergence.

More recent work on hyperstable adaptive filters, for example 

Johnson, Larimore, Treichler and Anderson (1981), and Johnson,

Landau, Taylor and Dugard (1981) has failed to arrive at a 

satisfactory technique for automatically selecting the error 

filtering coefficients. Nevertheless, the implementation of simple
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error filtering functions does not greatly complicate the adaptive 

filter structure, and the technique may allow simple adaption 

algorithms to be used.

7.1.6 Parikh, Ahmed and Stearns (1980)

Parikh, Ahmed and Stearns introduced an algorithm for 

adapting the coefficients of a lattice type digital recursive 

adaptive filter. This lattice structure is a development of a 

technique used for the linear prediction of speech, and it has the 

advantage that each lattice coefficient can be adjusted independently 

of the other coefficients (Gibson and Haykin, 1980). This leads to 

fast convergence. A further advantage of the lattice filter is that 

a simple check on each coefficient is adequate to ensure the 

stability of the filter (Gray and Markel, 1973).

The scheme proposed by Parikh, Ahmed and Stearns used a 

highly complex recursive algorithm to adapt the coefficients of the 

lattice, in general 3 multiplications, 3 additions and an N-stage 

convolution being required for each new coefficient, where N is the 

order of the filter. A recent attempt to simplify this algorithm 

(Ayala, 1982) resulted in the lattice becoming unstable following 

convergence.

Oue to the difficulty of implementing the lattice adaptive 

filter in hardware, it was not considered suitable for use in a 

digital adaptive hybrid.

7.2 The Experimental Digital Recursive Adaptive Filter

In the previous section It was seen that the filter structure 

proposed by Mantey is relatively simple, and is readily implemented
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in hardware. The results of Chapter 5 show that an analog adaptive 

filter having a single pole and zero can achieve adequate ERLE 

against most subcsribers' lines. Furthermore, Chapter 6 showed that 

the process of A/D and D/A conversion need not introduce much further 

complexity into the required adaptive filter structure. For the 

above reasons it was decided to implement a low order digital 

recursive adaptive filter, based on that proposed by Mantey. To 

maintain maximum flexibility the adaption algorithm is resident on a 

computer, while for real-time operation with simulated transhybrid 

responses the actual filter is implemented in hardware. The 

following sections describe the implementation and operation of the 

experimental digital recursive adaptive filter.

7.2.1 Implementation of the Experimental Filter

Figure 7.4 shows a block diagram of the required filter 

structure. The filter consists of two transversal sections, each 

having 4 coefficients. The combined output from these sections 1s:- 

3 3
E'(z) = D(z)Ibir 1 - X ( z ) [ a iz - 1 7. 11*0 1=0

E'(z) is therefore the filtered error signal of Section 7.1.1. The 

remaining section of the filter implements the compensation for the 

effect of error filtering on near-end speech, 1.e:-

E(z)/E'(z) = ---- $------
1 - l Clz-1 

i=l

7.18

and assuning c1 => bj, for 1 * 1,2,3, with bQ = 1, then the 

non-filtered error signal is given by equation 7.3, with N = 3. Thus 

the structure of Figure 7.4 is capable of implementing recursive 

adaptive filters of up to third order, with compensation for error 

fi ltering.
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in hardware. The results of Chapter 5 show that an analog adaptive 

filter having a single pole and zero can achieve adequate ERLE 

against most subcsribers1 lines. Furthermore, Chapter 6 showed that 

the process of A/D and D/A conversion need not introduce much further 

complexity into the required adaptive filter structure. For the 

above reasons it was decided to implement a low order digital 

recursive adaptive filter, based on that proposed by Mantey. To 
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experimental digital recursive adaptive filter.

7.2.1 Implementation of the Experimental Filter

Figure 7.4 shows a block diagram of the required filter 

structure. The filter consists of two transversal sections, each 

having 4 coefficients. The combined output from these sections 1s:-

E* (z) = 0(2)1 - X(z)I ajz’ 1 7.17
1=0 i=0

E ‘(z) is therefore the filtered error signal of Section 7. 1.1. The 

remaining section of the filter implements the compensation for the 

effect of error filtering on near-end speech, i.e:-

E(z)/E*(z) = ---- $----- -
1 + l c^ ’ 1 

1=1

7.18

and assuming c1 = b{, for 1 = 1,2,3, with bg = 1, then the 

non-filtered error signal is given by equation 7.3, with N = 3. Thus 

the structure of Figure 7.4 is capable of implementing recursive 

adaptive filters of up to third order, with compensation for error 

filtering.
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Figure 7.5 shows a block diagram of the implementation of the 

filter, using only a single multiplier and accumulator (MAC) to 

perform all the required arithmetic operations. Both the signal 

samples and the coefficients are represented by 12 bit 2s complement 

numbers. This implementation is similar to that of the 128th order 

transversal filter described in Chapter 3, with the exception that 

the signal samples are held in a RAM rather than in a recirculating 

shift register. This allows the samples to be readily accessed by 

the adaption algorithm, but requires a complex RAM addressing scheme, 

as discussed in the next section.

The samples of x(t) are obtained from the A/D, which also 

produces input samples for the line and hybrid simulator (LHS). The 

d(t) samples are read from the output of the LHS, and the D/A can be 

used to examine the filtered error, the unfiltered error, or the LHS 

output, as shown in Figure 7.5. A delay of either 1 or 2 sample 

periods can be imposed on the xn samples to compensate for the delays 

through the LHS.

The experimental filter is Interfaced to the computer using 

techniques similar to those described in Chapter 3, and in the next 

section discussion is therefore restricted to the operation of the 

filter itself.

7.2.2 Operation of the Experimental Filter without Adaption

Figure 7.6a shows the contents of both the signal and the 

coefficient RAMs at some time t = t0. Within the next sample period

both RAMs are addressed in the sequence 0,1.... 11, with the MAC

first calculating e'n according to equation 7.6, with N = 3. e'n is 

then clocked into output register 2, and the MAC continues to 

calculate: -
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3
en = e'rf -.2cien_i 7.1.9

1 = 1

en is then clocked into output register 1, and a single cycle of 

operation has been performed.

Before the next such cycle can begin, the filter loads xn+1, 

dn+l and en signal RAM locations 3, 7 and 11 respectively. Thus 

the contents of the RAMs are as shown in Figure 7.6b. To calculate 

e 'n+l ar,d en+l t 1̂e signal RAM is now addressed in the sequence

3.0. 1.2, 7,4,5,6, 11,8,9,10. This completes the second cycle, and 

the filter now loads xn+2, dn+2 and en+1 into locations 2, 6 and 10 

respectively. This leaves the RAM contents as shown in Figure 7.6c.

To complete the 3rd cycle the signal RAM is addressed in the sequence

2.3.0. 1, 6,7,4,5, 10,11,8,9, while e ' n+2 and en+2 are calculated. 

Signal RAM locations 1, 5 and 9 are now loaded with xn+3, dn+2 and 

en+2, and the RAMs' contents are as shown in Figure 7.6d.

During the 4th cycle the signal RAM is addressed in the 

sequence 1,2,3,0, 5,6,7,4, 9,10,11,8 while e'p+4 and Sp+4 are 

calculated. Finally locations 0, 4 and 8 are loaded with xn+4, dn+4 

and en+3* having the RAMs' contents as shown in Figure 7.6e. The 

filter has now completed 4 cycles, and the sequence repeats.

Figure 7.7 shows a simplified timing diagram of the operation 

of the filter during the second cycle, in which the error samples 

e'n+i and en+1 are calculated, new signal samples are loaded into the 

signal RAMs, and the accumulator is cleared preparatory to 

calculating e ' n+2 and en+2*

7.2.3 Operation of the Experimental Filter during Adaption

The computer 1s Interfaced to the filter via 4 1nput/output 

ports, 1n a manner similar to that described in Chapter 3. In order 

to load coefficients into the coefficient RAM, or to read signal



- 156 -

samples from the signal RAM, the computer halts the RAM address 

counter via the control port. A handshaking system ensures that the 

counter is always halted during the first cycle, when the contents of 

the RAMs are as shown in Figure 7.6a. The computer can then address 

either of the RAMs by first writing the address of the required 

location to the address counter via the address port, and reading the 

signal sample from the signal port, or writing the updated 

coefficient to the coefficient port. The sample of the filtered 

error signal is obtained by addressing output register 2 (via the 

address counter), and reading the sample via the signal port. The 

Macro-11 programs AFWRIT and AFREAD which allow the filter to be 

controlled from a Fortran program are given in Appendix A2.

While the filter is in the halt state the previous error 

signal samples are held at the output registers, and no new signal 

samples are input to the signal RAM. Thus when the filter is 

restarted with new coefficients, a transient is observed in the error 

signals. When the transient response due to the recursive section of 

the filter is long, then the transient in the unfiltered error signal 

is slow to decay. Transients in the filtered error signal decay 

after 4 input sample periods.

7.3 Performance of the Experimental Filter

In this section results for the performance of the 

experimental digital recursive adaptive filter, adapting against 

simulated transhybrid responses, are given. In Section 7.3.1 the 

optimum order for the filter is investigated by measuring the values 

of cancelled ERL which filters of various orders can achieve against 

all 1845 lines in the line survey. The dynamic performance of the
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optimal filter is investigated in Section 7.3.2.

Section 7.3.3 investigates the effect of the adaption 

algorithm on the speed of convergence of the adaptive filter, and an 

adaption algorithm with an adaptive loop gain is developed.

7.3.1 Filter Order

Measurement of the cancelled ERL achieved by adaptive filters 

of various orders against all 1845 lines in the line survey would be 

a time consuming task. However, since the adaptive filter is 

controlled by a computer, and the computer has access to samples of 

the input, desired input, and non-filtered error signals, then 

automated measurements of original ERL, cancelled ERL and ERLE are 

possible. This can be achieved by calculating the quantities: - 

original ERL = 101og10{a2x/a2d } 

cancelled ERL = lOlog^fa^/a^} 

and

ERLE = 101og10{a2d/a2e }

2 2 2where a x, a d. and ace are the variances of the samples of the input, 

desired input and error signals respectively. In the experimental 

digital recursive adaptive filter the samples are available In blocks 

of 4 consecutive samples (Section 7.2.2), and to ensure that no 

samples are used more than once it is necessary to introduce a delay 

between readings of data from the filter. To determine the number of 

blocks of 4 samples of each signal which are required for accurate 

calculation of the return losses, the following experiment was 

conducted.

The adaptive filter and the LHS were loaded with coefficients 

which gave a RLE of 6.02 dB at all frequencies. 100 calculations of 

ERLE were carried out for various numbers of blocks of 4 samples, and
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the resulting mean and standard deviations of the ERLE calculations 

were computed. The value of the mean ERLE was found to be accurate 

to within 1% in all cases.

Using 100 blocks of samples it was found that the standard 

deviation of ERLE was 0.2 dB. If the values of ERLE are assumed to 

be normally distributed about the mean, then this number of blocks 

gives a probability of 99.75* that the ERLE is within ± 0.6 dB of the 

computed value. Thus in the remainder of this section 100 blocks of 

4 consecutive samples are used to calculate the return losses, and 

the accuracy of the calculation is estimated to be ± 0.6 dB.

To investigate the performance which can be achieved by 

adaptive filters of various orders, the transhybrid response due to 

each subscriber's line in the line survey is calculated and loaded 

into the LHS, as described in Chapter 3. The adaptive filter is then 

allowed to adapt against this response using the linear adaption 

algorithm described in Section 7.1.1, with an input signal of white 

noise, bandlimited to 500 Hz to 2.5 kHz, at level -4 dB. The value 

of the step size is chosen so that the filter converges quickly at 

this level of input signal (see Section 7.3.3). After 500 iterations, 

the value of the return losses are calculated as described 

previously, and the final values of the filter coefficients are also 

stored for subsequent analysis. The value of 500 iterations is 

chosen because it ensures that the filter has converged fully in all 

cases. A copy of the Fortran program ADHYB, used to carry out these 

measurements is given in Appendix A2.

Table 7.1 records the results obtained for 5 different 

adaptive filter orders, where NA is the number of transversal 

coefficients used 1n the adaptive filter, and NB is the number of 

feedback coefficients. The entries in the table are in order of 

decreasing mean cancelled ERL, the best performance being obtained by

4
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the structure with NA = 2 and NB = 1 (a variable pole and zero). In 

this case the mean cancelled ERL is 33.6 dB, and the minimum 

cancelled ERL is 26 dB. Using 4 transversal coefficients alone, the 

mean ERL is reduced by 4.3 dB, while the minimum cancelled ERL is 

reduced by 10 dB. The remaining filter structues are simpler than 

either of the previous two, but their performance is considerably 

worse.

7.3.2 Dynamic Performance of the Experimental Filter

In the previous section it was seen that the filter having a 

variable pole and zero gave the best performance of a range of simple 

structures. In this section the number of iterations required for 

this filter to achieve a given cancelled ERL is measured. This 

measurement is performed with the step size close to the maximum step 

size possible for the given input signal level, and using the linear 

adaption algorithm. The effect of lower input signal levels, and 

different step sizes and adaption algorithms, is considered in 

Section 7.3.3.

As discussed in Section 5.3.5, the dynamic performance of the 

filter is vital In determining the feasibility of an adaptive hybrid 

In Section 5.3.5 it was also shown that the dynamic performance of an 

adaptive hybrid can be considerably improved by allowing it to begin 

convergence from a properly chosen set of initial coefficients.

Since the storage of a set of initial coefficients 1s a trivial 

problem in the case of a digital adaptive filter, this method was 

used in measuring the convergence of the filter. Figures 7.8a, b and 

c show plots of the probability distributions of the coefficients a«, 

a1 and bj for the single pole and zero filter, adapting against the 

1845 subscribers' lines, where a coefficient value of 2048 represents
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an actual coefficient value of 1. The mean values of the coefficients 

are: -

a0m “ 102, alm - -563 and = 666 

and these values were chosen as the initial coefficient set of the 

filter. The filter was then allowed to adapt against the 1845 

subscribers lines, and the initial cancelled ERL and the number of 

iterations required to achieve 20 dB cancelled ERL were measured. 

Figure 7.9 shows a plot of the resulting cumulative distribution of 

initial cancelled ERL, and it can be seen that all lines have initial 

cancelled ERL greater than 7 dB. This figure thus represents the 

guaranteed minimum initial ERL which can be achieved in the network 

using the single pole and zero filter, with the given initial 

coefficient set. Figure 7.9 also shows however, that 52% of lines 

have initial cancelled ERL values greater than 20 dB. Figure 7.10 

shows the cumulative distribution of the nunber of iterations 

required to achieve 20 dB cancelled ERL. For all lines this value of 

ERL is achieved within 100 iterations. For 80% of lines however, 20 

dB cancelled ERL is achieved within 20 iterations, while for all 

lines this value of cancelled ERL is obtained within 100 iterations.

Using the linear adaption algorithm, with the adaptive filter 

operating at 16 kHz, the rate of iteration of the experimental 

adaptive filter was found to be 400/Sec. Thus in the worst case, 20 

dB canceled ERL was achieved within 250 mS. This slow iteration rate 

is due to the implementation of the adaption algorithm in Fortran, 

and it could be increased by an assembly language Implementation.

The fastest possible iteration rate for the experimental filter is 

once per 4 input samples.
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7.3.3 Adaption Algorithms

In this section the effect of various adaption algorithms on 

the convergence of the adaptive filter is investigated 

experimentally, using an example of an adaptive transversal filter 

having a single coefficient. Widrow (1966) has shown that for a 

digital transversal adaptive filter, using the linear adaption 

algorithm, there is a maximum value of step size which can be allowed 

without causing the filter to diverge. Widrow also showed that this 

maximum step size is inversely proportional to the power of the input 

signal. To investigate these effects further, the Oth order 

transversal filter was allowed to adapt against an LHS response 

having a single Oth order coefficient of value 1024, for various 

values of step size and input signal power. An average value of the 

coefficient aQ was calculated after each iteration of the algorithm, 

over Nadpt adaptions from an initial value of 0. This allows an 

averaged convergence curve for the coefficient to be plotted, with 

the variations in the speed of convergence due to statistical 

fluctuations in the input signal removed. In each case Nadpt was 

chosen so that a smooth curve was obtained for aQ. The standard 

deviations of the a0 values after each iteration were also 

calculated, since this gives a measure of the speed with which the 

spread in the values of a0 is reduced to zero. A typical convergence 

curve, obtained as described above, for the case when the input 

signal level is -4 dB and the step size is 1/1024, is shown in Figure 

7.11. It can be seen that "â  converges exponentially to its optimum 

value, and that the spread of coefficient values rapidly reaches its 

maximum value and then drops to zero, Indicating that in all cases 

the filter converges. Figure 7.12a and b shows the values of the 

time constants of ag and oag (in iterations), as a function of the



step size, for various levels of input signal (white noise, 

bandlimited to 500 Hz to 2.5 kHz). Using the linear adaption 

algorithm. The figure shows that for each level of input signal 

there is a value of step size which gives optimal convergence, and 

increasing the step size above this level causes the filter to 

"hunt". An example of this is shown in the results of a single 

adaption of a0 with step size = 1/96 and input level = -4 dB, 

recorded in Figure 7.13. This hunting causes the sharp increase in 

the time constant of aag shown in Figure 7.12b. As the value of the 

step size is further increased the hunting becomes worse and the 

filter eventually becomes unstable.

The dependence of the speed of convergence of the filter on 

the power of the input signal is undesirable, and it can be reduced 

by using only the sign of the input signal in the adaption algorithm 

(Sondhi and Presti, 1966, see Chapter 1). Thus if the adaption 

algorithm is

a0 , i + l  = a0 , i  + Mae i s 9nCxi3

then the dependence of the speed of convergence of the filter on the 

step size ua and the input signal level is shown in Figure 7.14a and 

b. In this case the optimum step size is inversely proportional to 

the square root of the signal power, i.e:- a reduction in the signal 

power by a factor of 4 allows a doubling of the optimum step size.

These results show that to achieve optimum convergence of the 

filter it is necessary to estimate the power of the input signal, and 

adjust the step size accordingly. Such a scheme was proposed for use 

in an echo canceller by Hoge (1975).

In the experimental adaptive filter the power of the input 

signal can be simply obtained by calculating the variance of the 

input signal samples over a suitable nunber of blocks of 4 samples. 

This process takes time however, and during this time the filter must
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adapt using a default step size. This default step size should be 

optimum for the maximum input signal power, to avoid the possibility 

of instability. Thus if the input signal power is low, the initial 

convergence will be far from optimal. To minimise this effect the 

nunber of blocks used to compute a2x should be small. Use of too few 

blocks to compute a2x however, could result in too high a value of 

step size for a given input signal power, and the filter could become 

unstable. To allow a choice between these conflicting requirements, 

100 calculations of the input signal power were performed over 

various numbers of iterations, and the mean and standard deviations 

of the signal powers were calculated. The input signal was 

bandlimited white noise at level -4 dB. If it is assuned that the 

calculated values of the signal power are normally distributed about 

the mean, then the a, 2a and 3a values can be used to assign limits 

to the errors in the calculations with probabilities of 66.6%, 95% 

and 99.75% respectively. This is shown in Figure 7.15, from which it 

can be seen that choosing 32 iterations over which to calculate a2x 

gives a 99.7% probability that the actual a2x value is within ± 50% 

of the calculated value.

If the non-linear adaption algorithm were used, the required 

step size would be inversly proportional to the square root of a2x. 

Since extraction of the square root would be difficult 1n an 

all-hardware implementation of the adaptive filter, the linear 

adaption algorithm should be used with the adaptive step size. A 

value of 1/512 was chosen as the required step size at the -4 dB 

signal level. This is sufficiently far from the optimum step size to 

ensure no danger of instability, even with an error of ± 50% in a2x. 

The mean calculated value of o2x for the -4 dB input signal level was 

0.23*10+®, and thus the equation for the step size is:-
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0.23*10+6

Figure 7.16 shows the convergence of the mean and standard deviations 

of ag, using the adaptive step size, when the input signal level is 

-34 dB. The figure shows that with the initial value of step size no 

adjustement in the initial value of ag is observed, however after 32 

iterations the step size is increased and the filter converges 

rapidly. Using this algorithm the maximum time required for the 

filter to converge is 32 iterations, followed by a time constant of 

approximately 4 iterations.

When the adptive filter has a feedback path in addition to 

the feedforward path, then the feedback path can be considered to be 

a transversal filter if error filtering is used. Thus the optimum 

step size used in calculating the feedback coefficient is related to 

the power in the desired input signal. Estimation of this power, in 

adition to that of the input signal, would add greatly to the 

complexity of the filter, although it could perhaps be assumed that 

power of d(t) is a constant proportion of the power of x(t). For the 

results of Sections 7.3.1 and 7.3.2, the step sizes were the same for 

both the feedback and the feedforward coefficients, and thus it can 

be deduced that the times taken for the filter to converge to 20 dB 

cancelled ERL, with any input signal level, are those of Section

7.3.2 plus 32 iterations. This assumes that an adaption algorithm 

with an adaptive step size 1s used, and that the number of iterations 

over which the step size is measured is 32.

7.4 Discussion

It has been shown that a digital adaptive filter using error 

filtering, with a single feedback coefficient and a pair of 

feedforward coefficients, provides a minimum cancalled ERL of 26 dB
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for all 1845 lines in the survey. Using a set of stored initial 

coefficients., the filter ensures 7 dB initial cancelled ERL for all 

lines. The filter guarantees 20 dB cancelled ERL for all lines 

within 100 iterations at high signal levels. If an adaptive step 

size is used, this figure is increased by only 32 iterations, even 

for very low signal levels.

A block diagram of the proposed first order digital adaptive 

filter, for use in a digital adaptive hybrid, is shown in Figure

7.17. The filter includes compensation for effects of error 

filtering, and a means of measuring the input signal power for use in 

adapting the step size. The multiplications indicated by multipliers 

a0, a1 and the two bj multipliers, and the additions indicated by Sj 

and Sg can be easily performed by a single time-shared 

multiplier/accumulator (MAC), as in the experimental adaptive filter. 

Similarly the multipl iers Ma0, Mal and Mbl, and the accumulators 

following them, could consist of another time-shared MAC. Estimation 

of the signal power would require a third MAC. The scalers in the 

circuit can be designed to scale by powers of 2, and are therefore 

simply implemented.

A suggested implementation of the circuit is shown in Figure

7.18. For a 32 kHz sampling rate, MAC1 should be capable of 

performing a single multiply/accumulate in 7.8 uS, while MAC2 should 

be capable of performing a single multiply/accumulate in 10.4 US.

This assumes that the coefficients are updated as fast as possible, 

i.e; at the sampling frequency. MAC3 is required to perform a single 

multi ply/accumulate in 31.25 yS. Thus the main arithmetic 

requirement of the filter could be performed by a single MAC, capable 

of performing a multiply/accunulate in 3.9 uS. In addition to the 

MACs, the filter requires only 9 words of data storage (assuning N 

bits are used to represent both the coefficients and the signal
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samples), 2 multiplexers and 2 scalers. This level of complexity is 

well within the possibilities of current technology (for example 

Adams, Harbridge and Macmillan, 1981), however the use of a single 

time-shared MAC would require complicated control and timing 

circuitry. Use of separate MACs allows greater flexibility in the 

choice of the nunber of bits required to represent the various 

signals, and this could lead to considerable reductions in the 

required speed of the MACs.



Mean Std. Dev Mi nimum Maximum

Original ERL 10.14 1.95 6.0 17.5

Na=2, Nb=l

Cancelled ERL 33.65 3.06 26.0 41.5

ERLE 23.5 2.11 11.5 30.5

Na=4, Nb=0

Cancelled ERL 29.3 5.97 16.0 44.5

ERLE 19.16 4.46 9.5 31.5

Na=2, Nb=l, a0=0

Cancelled ERL 28.2 5.15 14.5 38.0

ERLE 18.1 5.35 2.5 28.5

Na=2, Nb=0

Cancelled ERL 24.4 6.75 12.0 39.5

ERLE 14.3 5.07 6.0 25.0

Na=>l, Nbal

Cancelled ERL 19.5 5.65 9.0 36.0

ERLE 9.4 3.87 2.5 9.0

Note: All Return Losses are expressed in dB.

Table 7.1 Performance of the Experimental Digital Recursive Adaptive 

Filter against Subscribers' Lines.
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CHAPTER 8

CONCLUSIONS

This work has investigated the use of adaptive filters to 

improve the process of two to four wire conversion in telephony. The 

problem of inaccurate two to four wire conversion was seen to be due 

to the large spread of input impedances of subscribers' lines. In 

Chapter 2 data on the compositions and lengths of 1845 subscribers' 

lines were used to examine the spread of input impedances of the 

lines. It was shown that at low frequencies the best match to the 

input impedances of the lines was the load impedance, while at high 

frequencies the best match was the characteristic impedance of the 

lines. The use of an optimised load impedance, based on this 

observation, was investigated. It was shown that the best 

transhybrid return loss which could be obtained using the optimised 

load was a mean ERL of 18.3 dB, and a minimum ERL of 9.5 dB. A 

technique for designing balance impedances was developed, and using 

this technique, with an optimised load impedance, the best 

performance obtained was 23.9 dB mean ERL and 9 dB minimum ERL. The 

technique for designing balance impedances was used to show that the 

minimum number of distinct balance impedances required to achieve 10 

dB minimum SRL in the network was 3.

The nature of the transhybrid impulse response was 

investigated, and it was shown that a transversal adaptive filter 

would require a large number of taps to achieve adequate ERLE on all 

lines, although only a small nunber of taps are required for most 

lines. Future work in this area should involve refinement of the 

technique for designing balance impedances, and this could possibly 

be achieved by using the techniques of Cluster Analysis (see
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Ambikairajah, 1982) to group together those lines whose imput 

impedances as a function of frequency are similar.

Chapter 3 described the implementation of a line and hybrid 

simulator, which when used with the data on the 1845 subscribers' 

lines allows both analog and digital adaptive filters to be tested 

realistically. The accuracy of the simulator was estimated by using 

it to simulate known frequency responses. This simulator is 

considerably more flexible than previous methods using artificial 

lines, etc, and is also suitable for automated measurements.

The theory of recursive analog adaptive filters was developed 

in Chapter 4, and it was shown that simple filters could be 

implemented by using a filtered error signal to control the filter 

parameters. The effect of the error filtering on the performance of 

the filter was analysed. The use of estimates of the gradient of the 

filtered error signal was investigated, and it was shown that on 

average the gradient estimates were correct, provided that the filter 

parameters were not updated. Relaxing this condition was shown not 

to interfere with the convergence of the filter, and the use of the 

gradient estimates considerably simplified the implementation of the 

filters. Various possible filter structures were analysed in terms 

of suitability for use in an adaptive hybrid, and three filters; an 

adaptive gain circuit, a single pole filter, and a first order 

pole-zero filter, were proposed for implementation. A technique for 

analysing the convergence of analog adaptive filters was developed. 

This technique was used to study the factors affecting the 

convergence of the proposed filters.

Chapter 5 described the implementation of the proposed 

filters, and the effects of non-ideal circuit components on the 

performance of the filters were examined. It was shown that high 

loop gains were needed to overcome the effect of the input offsets to



the control integrators, and that this limited the maximum cancelled 

return loss which could be achieved. In the case of the single pole 

filter, it was found that the constraints imposed by the stability of 

the differentiator severely restricted the maximum time constant 

against which the filter could adapt. Neither the single pole filter 

nor the adaptive gain circuit provided significant ERLE against the 

responses due to most subscribers' lines. The pole-zero filter was 

shown to be theoretically capable of modelling infinite time 

constants, but incapable of modelling a range of small time 

constants. The signal integrators in the pole-zero filter were 

designed to limit the effects of this anomaly. It was shown that the 

pole-zero filter could be calibrated, allowing it to be used for 

system identification. When the filter adapted against subscribers' 

lines, this allowed the poles and zeros of the responses to be 

estimated. The pole-zero filter performed well against subscribers' 

lines, the mean value of cancelled ERL achieved was 35.3 dB, while 

the minimum value was 28.4 dB.

The dynamic performance of the pole-zero filter was found to 

be inadequate unless some method of storing a set of initial 

conditions for the parameters of the filter was used. This 

requirement can be achieved, however it is also necesary to control 

the size of the input offsets to the signal multipliers. In 

addition, the effect of error filtering on near-end speech must be 

compensated. This adds considerably to the complexity of the analog 

adaptive hybrid, and also requires strict control over the input 

offset to the b^ control multiplier. For these reasons the 

implementation of the analog adaptive hybrid, using the single pole 

filter, was deemed impractical. Future work on continuous analog 

recursive adaptive filters should investigate simplifications to the 

adaption algorithms for applications where the disadvantages referred
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to above are insignificant. For example, in adaptive, noise 

cancellation there is no near-end signal problem, and the transfer 

function of the adaptive filter is irrelevant, provided that the 

error signal power is minimised. Thus there is no need to compensate 

for the effect of error filtering.

The effects of the process of A/D and D/A conversion, and of 

the analog filters, on the conplexity of the response to be modelled 

by a digital adaptive hybrid were investigated in Chapter 6. Analog 

filters were designed to meet the filtering requirements for various 

intermediate sampling frequencies, and the effects of the filters on 

the ERL and SRL which can be achieved by an adaptive hybrid, without 

additional complexity, were investigated. The introduction of simple 

fixed digital filters to compensate for the responses of the analog 

filters and the converters was proposed, and the effect of component 

tolerances on the performance which can be achieved was investigated. 

It was shown that at intermediate sampling rates as low as 32 kHz, 

proper choice of the order and cutoff frequency of the analog filter 

allows a single period pure time delay to be used to compensate for 

its response. Thus the use of a digital adaptive hybrid need not add 

much further complexity to the ¡response to be matched by the digital 

filter.

In Chapter 7 the suitability of various adaptive digital 

filters for use in a digital adaptive hybrid was assessed, and the 

direct form recursive filter, with error filtering, was seen to allow 

easy adaption of the filter coefficients. The implementation of an 

experimental digital recursive adaptive filter, of up to 3rd order, 

was described. The filter includes a recursive section to compensate 

for the effects of error filtering on near-end speech. To allow 

flexibility in the choice of adaption algorithms, the adaption of the 

filter coefficients is performed by computer. Results were presented
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for the performance of recursive digital adaptive filters of various 

orders against the 1845 subscribers' lines. Of the low order 

filters, the first order recursive filter gave the best performance, 

achieving 33.5 dB mean ERL and 26.0 dB minimum ERL. The dynamic 

performance of this filter against subscribers' lines was measured, 

using a set of stored initial coefficients. It was shown that 52% of 

lines had initial cancelled ERL greater than 20 dB, and this value of 

cancelled ERL was achieved for all lines within 100 iterations.

An adaption algorithm using an adaptive step size was 

developed, and it was shown that this algorithm considerably 

increased the speed of convergence of a 0th order transversal filter 

at low input signal levels. In the final section of Chapter 7 it was 

shown to be possible to implement a practical digital adaptive 

hybrid, based on the first order digital adaptive filter, using 

currently available technology.

In this thesis the effects of near-end speech on the 

performance of the adaptive filters have not been Investigated. It 

has been assumed that a near-end speech detector can be used to 

prevent adaption of the filter coefficients during double talking.

This proposition should be Investigated further for the proposed 

digital adaptive filter and adaption algorithm. Results reported by 

Mackechnie (1970) and Ochial et al (1977) however, indicate that 

simple solutions to the problem can be found.

In the results of Chapter 7 the mean values of the 

distributions of the filter coefficients were used as initial 

coefficients for the filter. The possibility of improving the 

initial value of cancelled ERL by altering the choice of initial 

coefficients should be investigated.

The results reported for the performance of the proposed 

adaptive filter were for subscribers' lines terminated in the input



impedance of the telephone. The effects of alterations of the load 

impedance on the performance of the filter should also be examined.

The nunber of bits required to represent the filter 

coefficients in the adaptive hybrid should be investigated, as this 

may lead to large savings in both the required data storage and the 

speed of the multipliers. Similarly, it may be possible to use 

coarsely quantised data words in the adaption algorithm, resulting in 

further savings in the complexity of the adaptive hybrid. A final 

area for suggested future work is in simplifying the techniques used 

to measure the power of the input signal for the adaptive step size 

algorithm.
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APPENDIX 1

Al.1 Windowing and the Inverse FFT

In this appendix the derivation of the inverse fast Fourier 

transform (FFT) from the inverse Fourier transform is considered, and 

the effects of using a non-rectangular window in the frequency domain 

are discussed.

The expression for the inverse Fourier transform of any 

conplex transfer function H(ja>) is given by:-

h(t) 3 / H(jw)ej4,t i
— ao

This equation gives the value of h(t), the impulse response, at any 

time t, -« < t < «, where the transfer function H(jw) must be 

specified for all w, -<» < w < ®. The expression for the inverse 

discrete Fourier transform is obtained by approximating the above 

integral by a sunmation over intervals Aw in the frequency domain, 

thus: -

oo
hi(t) = Au>1 h(jkAw)ejk¿lüt 2

|C=-CB

H(jw) is now represented by its samples at intervals Aw over the 

entire frequency range, and the expression gives an approximation to 

the actual impulse response for all t. To examine the accuracy of 

this approximation, the process of "discretising“ the transfer 

function can be considered as multiplying 1t by a set of Impulses 

given by:-

oo
S(w) 3 J 5(w-kAw) 3

k= -«

The effect of this process is that the approximate impulse response 

h^(t) is the actual impulse response h(t) convolved with s(t), the
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entire frequency range, and the expression gives an approximation to 

the actual impulse response for all t. To examine the accuracy of 

this approximation, the process of "discretising" the transfer 
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given by:-

30

S(w) 3 £ 5(u-kA(u) 3
k=-®

The effect of this process is that the approximate impulse response 

hi(t) is the actual impulse response h(t) convolved with s(t), the



inverse Fourier transform of the the sampling function S(ui). s(t) 

can be obtained by substituting 2ir/Tp = Ao> into the time sampling 

Fourier transform pair:-

00 oo
1 6(t-kTp)-**-£ 6(0>-2Trk/T ) 4

Thus the inverse Fourier transform of the frequency sampling function 

is a time sampling function:-

s(t) = 6(t - 2wk/Aw) k = --- -2,-1,0,1,2..... 5

and assuning h(t) = 0 outside the interval 0 < t < Tp, the 

approximation is accurate.

Equation 2 thus allows accurate calculation of impulse 

responses up to time Tp, provided that they have decayed to zero in 

this time interval. The effect of sampling the transhybrid frequency 

reponse on the calculated transhybrid impulse response is illustrated 

in Figures Al.l(a) and Al.1(b). It can be seen that in the case 

Illustrated some overlap error occurs because Aw is insufficiently 

small. This overlap error which can occur as a result of sampling in 

the frequency domain is analogous to the aliasing error which can 

occur due to sampling in the time domain.

Equation 2 requires that samples of the transfer function 

H(jw) be available for all w where H(jw) * 0. In many cases this 

computation would be impractical and it is of interest to examine the 

effect on the calculated impulse response of limiting the range over 

which frequency response samples are required. Suppose samples of 

H(jw) outside the range -ws /2 < w < ws /2 are assuned to be zero.

This assumption is equivalent to multiplying H(jw) by the window 

function:-

W(w) ■ 1, -oij/2 < in < tî /2
6

= 0, otherwise

The equation used to calculate the Impulse response in this case is:-



7

where kj = a>s/(2Ato).

The effect in the time domain is that the calculated response is 

convolved with the inverse transform of the window function w(t),

i.e. the periodic approximate impulse response h^(t) convolved with a 

Sine function whose main lobe width is = 4tt/o>s. The effect of the 

convolution with the main lobe is a "smearing out" of the calculated 

impulse response, limiting the time resolution to T,. Convolving the 

approximate impulse response with the side lobes of the Sine function 

leads to a smaller smearing out effect, known as "leakage". Figure 

Al- 1(c) shows the effect of the rectangular window function on the 

calculated impulse response. Since hj(t) is periodic there is also 

an edge effect due to the main lobe of the Sine function smearing the 

Initial portion of the impulse response into the final portion.

The ratio of the height of the first side lobe of the Sine 

function to the height of its main lobe is 0.212 or -13.3 dB. Use of 

a rectangular window function could thus lead to impulse responses 

appearing longer than they actually are, for example the convolution 

of an impulse with a Sine function is a Sine function, which only 

decays to zero in infinite time. To achieve higher side lobe 

rejection, it 1s necessary to use a frequency domain window function 

which tapers to zero at the point where a discontinuity 1s Introduced 

by the rectangular window function. Use of such windows involves

where:-

w(t) ---------
cost/2

o)sSi n( u)st/2)
8

The calculated impulse response therefore is:-

CO
Sin(u>sf/2)
---------- h, (t -*r)dt

( 0JS t/2 )
9



trading-off the smearing effect against the leakage effect, as lower 

relative side lobe heights of the transform of the window function 

mean greater main lobe widths.

Two windows which are simple to confute are the Hanning and 

Hamming windows, which have rejections of first side lobes of -31 dB 

and -41 dB respectively, and whose main lobe widths are 8ir/<os

Equation 7 allcws computation of the impulse response at any 

time t, where -«• < t < «. If however the windowed frequency response 

Hw (ju) is considered periodic, rather than zero, outside the interval 

-;os /2 < ai < o>s/2 , the expression for the resultant impulse response 

is: -

Exchanging the order of integration and sunmation, and changing the 

variable of integration gives:-

Thus assining the frequency response to be periodic outside -u%/2 < u 

< 0)5/2 has the effect of making the calculated impulse response 

sampled 1n nature. This process 1s analogous to considering the 

Fourier series of the periodic spectrin, where the calculated impulse 

response is of the form h(i AT). The effect of assining the frequency 

response to be periodic 1s shown 1n Figure Al.l(d).

The equation used to calculate the impulse response samples 

from the frequency response samples therefore 1s:-

10

00 00
h3(t) = l e ' ^ ' V  /Hw (j(m+k(us))eJ’t((,)+ka)s) d(w+k<o,.)

= fe_J’k“sth2(t)

= ó(t+2irk/a>s )h2(t) 11



h(nTs) = Au>/H(jku)s/N)e2lTjkn/N n = 0,1,.... N-l l?
k=-N/2

where Ts - AT - 2tt/u>s. This calculation can be performed efficiently 

using a fast Fourier transform routine.

Appendix A1.2 describes some measurements of the effects of 

the Hanning and Hamming windows on the calculation of simple impulse 

responses.

A1.2 Measurement of the effects of using non-rectangular windows in 

calculating impulse responses

To determine the effects of the non-rectangular window 

functions on the accuracy of the impulse response calculation, test 

calculations were performed on impulse responses due to first order 

systems. The impulse response of a first order system is:- 

h(t) = (e_t/a)/a

where the frequency response is:- 

H(o>) = l/(l+joa)

The time taken for the impulse response to decay to p% of its peak 

value is:-

tp = a.loge (100/p)

Thus to generate a cumulative distribution of test impulse response 

decay times, the parameter a is stepped through appropriate values. 

For each value of 'a* the frequency response H(co) is calculated, and 

inverse Fourier transformed to produce the impulse response. The 

time taken for the envelope of the impulse response to decay to 

various percentages of its peak value is then calculated.

Figure A1.3 shows the cumulative distribution of decay times 

to 5%, 1* and 0.5% of peak value, for 100 first order systems whose 

decay times to 5% of peak should vary linearly between 0 and 16 mS.

In this case a simple rectangular frequency window was used in the



calculation. Figure A1.2 shows the decay times for the same 100 

first order systems, where the frequency response was multiplied by a 

Hamming window prior to computation of the impulse response. The 

true distributions are also shown on both figures. It can be seen 

that using the Hamming window, all decay times are sligthly 

lengthened. This is due to the smearing out effect of the transform 

of the window function. The rectangular window function gives 

accurate results for decay times to 5% of peak, however, when lower 

values of impulse response amplitude are measured, the side lobes of 

the Sin(x)/x function cause the decay times to appear longer than the 

true values. The Hamming window function is used in calculating 

impulse response decay times in the line survey because its transform 

has much lower side lobe amplitudes than those of the Sin(x)/x due to 

the rectangular window.

A1.3 Estimating the error gradients for the steepest descent 

algorithm

In this appendix it is shown that in an average sense, the 

gradient of the instantaneous error squared is equal to the gradient 

of the mean error squared, i.e:-

¿e2(t? = je2(t) 13
3a 3a

where e(t) is the error signal and 'a' is any of the parameters of 

the adaptive filter. The assunption made in this derivation is that 

the error signal 1s statistically stationary, thus the x(t) and d(t) 

signals are assuned to be stationary, and the filter parameters are 

assuned to be constant with time. This assunption therefore 

precludes adjustment of the filter parameters, as though knowledge of 

the gradient terms were required to design a fixed filter which would

minimise the error signal for a given x(t) and d(t).



gives: -

Using the chain rule on the left hand side of equation 13

3e£it) = 2e(t)3e{t) 14
3a 3a

The general form of Parseval's theorem 1s:-

-------------------00 *

s1(t)s2(t) = / s1(t)s2(t)dt = / Si(u>)S?(-u,)du> 1 5
- 0 0

and

00 GO

lS.(t) . 3_/ Efcaje^^do) . / 3E(a))eJa)tdaj 
3a 3a -°° -00 33

where the dependence of E(w,a) on 'a' is implicit. Thus:-

00
3e£_(t) = 2/ E(id) 3E(-oi)d(i) 15
3a -•» 3a

Let E(w) = U(<d) + j V(to) 17

where U(w) = Re[E(w)] 

and V( u>) = Im[E((i))]

Si mi larly: -

3E(«i)/3a = Re{3E(u))/3a} + jIm{3E(a))/3a}

= P(u>) + jQ(to) 28

and

3E(-u)/3a = P(a») - jQ(w),

treating 3E(u)/3a as the spectrin of a real signal. Thus from 

equation 16:-

3e2(t)/3a = 2/{U(w)P((i)) - jU(u)Q(io) + jV(w)P(u) + V((j)Q((o)}du> 19

but differentiating equation 17 gives:-

3E(m) = 3U(to) + j 3V( id) 20
3a 3a 3a

and comparing equations 20 and 18 gives:-

P(oi) = M i i l  and Q(ui) =
9a 3a

Substituting equation 21 into equation 19 gives:-

21



3e‘
3a

i l l  = 2 /iu (u > )M “) .  jU (w) !V MJ  1 3a 3a

+ jV(>„)3U(M) + V(m)3V(m)}
3a 3a a<J

= 2 /{U(u>)iili^ + V ^ H ^ J d a ,
J 3a 3a

- 2j [{U(u) i ! W .
J 3a 3a

The first integral of equation 22 can be written as:-

du>

dai

22

= i_e2(t)
3a

To show that the second integral of equation 22 is zero, consider:-

3e£[t) _ 2 E(-u)i£LiiJd(u, from Parseval's theorem.
3a 3a

In this case E(-oo) = U(<d) - jV(oi)

and + JQ(“) a 3U(n>) + j 3V(ai) as before.
3a 3a 3a *

Thus: -

3e2(t) = 2 /»(m )3U(m) + jii(,.,)9V(M)
3a J 3a 3a

- jV(ui)— L1!1̂ + V(u))l^) du 
3a 3a

Therefore: -

Comparing equations 23 and 22 gives:-
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A2.3 Simulation of the Convergence of the Adaptive Gain 
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O
 O
 O

Appendix A2.1 The Line Survey Program

C PROGRAM LINES CALCULATES THE TRANSHYBRID ERL AND S RL, AND THE IMPULSE 
C E f S  S f S n ™ O O L S “- 10 S"8“ “ “ ' FOLLOWING FILES^

LDAT 
ZOGMA 
TELE 
RE S 
PLOT

LINE SURVEY DATA BASE
TABULATED CHARACTERISTICS OF THE VARIOUS LINE TYPES 
TABULATED IMPEDANCE OF THE TELEPHONE 
RESULTS FOR ERL, SRL AND DECAY TIMES FOR EACH LINE 
RESULTS FOR ERL, SRL AND DECAY TIME DISTRIBUTIONS

C

C
C

C
C

PROGRAM LINES(INPUT,OUTPUT,ZOGMA,PLOT,TELE,RES,LDAT
1, TAPE5-INPUT,TAPE6-OUTPUT,TAPE7-ZOGMA,TAPE12-PLOT2. TAPE9-TELE,TAPE10-RES,TAPE11-LDAT)
COMMON NLINES,ERLMN,SRLMN,FL(256)
DIMENSION W(129) ,PK(128) ,IPK(128) ,L(17) ,TYP(17) ,FL(256) 
DIMENSION WIND(129),LMN(6)
COMPLEX Z0(129) ,ZB(129) ,TC,TCC,GMA(129) ,ZT(129) ,ZOT(2193) 
1 GMAT(2193).ZTELC129),ZI(256)
PI2-8.0*ATAN(I.0)

SET THE FREQUENCY RESOLUTION 
WINC-31.25*PI2

READ THE NUMBER OF LINES TO BE ANALYSED AND THE VALUES OF THE 3-ELEMENT 
BALANCE AND TERMINATING IMPEDANCES.

READ(5,*)NLINES
READ(5,*)RST,RPT,CT
READ(5,*)RSB,RPB,CB
WRITE(10,*)RST,RPT,CT,RSB,RPB,CB
T1-CT*WINC*RPT*1.OE-06
T2-CB*WINC*RPB*1.OE-06
T3-PI2/256.

CALCULATE THE WINDOW RESPONSE AND THE VALUES OF THE BALANCE AND 
TERMINATING IMPEDANCES.

DO 10 1-1,129
WIND(I)-0.54+0.46* COS(FLOATCI-1)*T3) 
ZT(I)-CMPLX(RST,0.0)+CMPLX(RPT,0.0)/CMPLX(1.0,T1*(I-1)) 
ZB(I)-CMPLX(RSB,0.0)+CMPLX(RPB,0.0)/CMPLX(1.0,T2*(I-1) ) 10 CONTINUE
READ(5,*)ITEL,IWINDO 
WRITE(10,*)ITEL,IWIND0

C JUMP IF LOAD IMPEDANCE IS OTHER THAN THE TELEPHONE 
IF(ITEL.NE.l)GO TO 35 
READ(9,*)TELENO 
READ(9,240)(ZTEL(I),1-1,129)

240 FORMAT(4(E13.6))
GO TO 30

C READ VALUES OF THE 3-ELEMENT LOAD IMPEDANCE 
35 READ(5,*)RST,RPT,CT 

WRITE(10,*)RST,RPT,CT 
T1-CT*WINC*RPT*1.OE-06 

C CALCULATE THE VALUES OF THE LOAD IMPEDANCE 
DO 50 1-1,129
ZTEL(I)-CMPLX(RST,0.0)+CMPLX(RPT.0.0)/CMPLX(1.0,T1*(I-1)) 

50 CONTINUE



C READ THE PROPOGATION CONSTANT AND CHARACTERISTIC IMPEDANCE DATA 
C FOR ALL THE LINE TYPES

30 READ(7,240)(GMAT(I),1=1,2193)
READ(7,24 0)( Z 0 T (I) , 1-1,219 3)

C IN ITIALISE VARIABLES TO CALCULATE MEAN RETURN LOSSES 
ERLMN-0.0 
SRLMN-0.0 
DO 800 IX -1,6 
LMN(IX)«0 

800 CONTINUE
C LOOP FOR EACH SUBSCRIBERS' LINE 

DO 300 ILIN-l.NLINES
C PUT THE INPUT IMPEDANCE OF THE OTH LINE SECTION EQUAL TO THE 
C LOAD IMPEDANCE

DO 20 1-1,129  
Z K I)-Z T E L (I)

20 CONTINUE
C READ DETAILS OF A LINE FROM THE DATA BASE 

R E A D (ll,* )L IN O ,R D ,(F L (I),1-1,16)
C LOOP FOR EACH SECTION OF LINE 

DO 130 ISECT-1,16
C CONVERT DATA TO LENGTH AND TYPE OF LINE 

L (IS E C T )-IF IX (F L (IS E C T ))
TYP(ISECT)»FL(ISECT)-L(ISECT)

C JUMP IF END OF LINE
IF(L(ISECT).LT.O )GO  TO 140 

C CALCULATE INDEX INTO LINE DATA TABLE (ZOGMA)
IF(TYP(ISECT).G E.0 .1 0 7 5 .AND.TYP(ISECT).LE.0 .1 101)N-0 
IF(TYP(ISECT).G E.O .1175.AND.TYP(ISECT).LE.O .1201)N=129 
IF(TYP(ISECT).G E.0 .1 6 7 5 .AND.TYP(ISECT).LE.0 .1 701)N-258 
IF(TYP(ISECT).G E.O .2075.AND.TYP(ISECT).LE.O.2101)N-387 
IF(TYP(ISECT) .GE.O.2475.AND.TYP(ISECT) .LE.0.2501)N -516  
IF(TYP(ISECT) .GE.O.3 0 75.AND.TYP(ISECT).LE.O.3 101)N-645 
IF(TY P(ISECT). GE.O.3 175.AND.TYP(ISECT).LE.0.3201)N-774 
IF(TYP(ISECT).GE.O .3975.AND.TYP(ISECT).LE.O.401)N-903 
IF(TYP(ISECT).GE.O .4075.AND.TYP(ISECT).LE.O.4101)N=1032 
IF(TY P(ISECT). GE.O.4975.AND.TYP(ISECT).LE.0.501)N-1161 
IF(TYP(ISECT).GE.O .5075.AND.TYP(ISECT).LE.O.5101)N-1290 
IF(TYP(ISECT).GE.O .6075.AND.TYP(ISECT).LE.O.6101)N-1419 
IF(TY P(ISECT). GE.O.6275.AND.TYP(ISECT).LE.0.6301)N-1548 
IF(TYP(ISECT).G E.O .8075.AND.TYP(ISECT).LE.O.8101)N-1677 
IF(TYP(ISECT).G E.O .8975.AND.TYP(ISECT).LE.0.901)N-1806 
IF(TY P (ISECT).GE.O.6975.AND.TYP(ISECT).LE.0.701)N»1935 
IF(TYP(ISECT).G E.O .7475.AND.TYP(ISECT).LE.O.750DN-2064

C LOOP FOR EACH FREQUENCY POINT 
DO 250 IF-1,129  

C LOOK UP LINE DATA
Z 0(IF)-Z 0T (N +IF)
GMA( IF) -GMAT( IF+N )
GMA(IF)KJMA(IF)*L(ISECT)

C CALCULATE INPUT IMPEDANCE OF THE LINE SECTION 
TCC-CMPLX(-AIMAG(GMA(IF)) ,REAL(GMA(IF)) )  
TC-CSIN(TCC)/CCOS(TCC)
TCC-CMPLX(-AIMAG( TC) ,REAL(TC))
Z I(IF )» (Z I(IF )-Z O (IF )* T C C )/(C M P L X (1.0 ,0 .0 )-Z I(IF )* T C C /Z 0 (IF )) 

250 CONTINUE 
C NEXT LINE SECTION 

130 CONTINUE 
140 CONTINUE

C ZI IS  NOW THE INPUT IMPEDANCE OF THE LINE



C CALCULATE THE TRANSHYBRID RESPONSE 
DO 160 IF-1,129
ZI(IF)-(ZB(IF)/(ZB( IF)+ZT(IF) ) )-( ZI(IF)/ (ZI(IF)+ZT(IF))) 
ZI(IF)-ZI(IF)*CMPLX(2.0,0.0)

160 CONTINUE
C ZI NOW SPECIFIES THE TRANSHYBRID RESPONSE 
C EVALUATE THE ERL AND SRL

CALL EVAL(ZI,TYP(9),TYP(1 3 ))
C UPDATE THE RUNNING TOTALS FOR MEAN ERL AND SRL 

ERLMN«ERLMN+TYP(9)
SRLMN=SRLMN+TYP(13)

C JUMP IF  WINDOW NOT REQUIRED 
IF(IWINDO.NE.l)GO TO 560 

C WINDOW THE FREQUENCY RESPONSE 
DO 550 IK-1,129  
Z I( I K ) - Z I( IK)*WIND(IK)

550 CONTINUE 
560 CONTINUE

C MIRROR THE RESPONSE AROUND HALF THE SAMPLING FREQUENCY, EVEN REAL 
C PARTS, ODD IMAGINARY PARTS, TO PRODUCE A REAL IMPULSE RESPONSE 

DO 450 1-1,127
450 ZI(257-I)=CM P LX (R E A L(Z I(I+1)) ,-A IM A G (Z I(I+ l)) )

ZI(129)»CMPLX(REAL(ZI(129) ) ,0 .0 )
CALL FF T (Z I,256 ,1,FL)

C FIND PEAK AMPLITUDE OF IMPULSE RESPONSE, HELD IN FL 
VM-0.0
DO 510 1-1,129  
F -A B S (F L (I))
IF(F.GE.VM)VM-F 
F L ( I) - F  

510 CONTINUE
C SET LEVELS TO WHICH THE RELATIVE DECAY TIMES ARE REQUIRED 

TYP(3)-VM*0.5 
TYP(2 )-VM*0.01 
TYP(1 )=VM*0.005 

C LOOP FOR EACH LEVEL 
DO 540 K-1,3  
V-TYP(K)

C STARTING FROM THE LAST IMPULSE RESPONSE SAMPLE, FIND THE FIRST 
C SAMPLE WHERE THE LEVEL IS EXCEEDED 

DO 520 1-1,129  
J - 130-1
IF(FL(J).G E.V )G O  TO 530 

520 CONTINUE 
530 L (4 -K )« J  
540 CONTINUE

C REPEAT FOR DECAY TIMES TO ABSOLUTE LEVELS 
T Y P (3 )-0 .1*0.05 
T Y P (2 )-0 .1*0.01 
T Y P (l)- 0 .1*0.005 
DO 640 K-1,3  
V-TYP(K)
DO 620 1-1,129  
J - 130-1
IF(FL(J).G E.V )G O  TO 630 

620 CONTINUE 
630 L (7 -K )“J  
640 CONTINUE

C CALCULATE MEAN DECAY TIMES 
DO 820 IX -1,6



C CALCULATE THE TRANSHYBRID RESPONSE 
DO 160 IF-1 ,1 2 9
Z I(IF )= (Z B (IF )/(Z B (IF )+ Z T (IF )) ) - ( Z I ( I F ) / ( Z I ( I F ) + Z T ( I F ) ))  
Z I(IF )-Z I(IF )* C M P L X (2 .0 ,0 .0 )

160 CONTINUE
C ZI NOW SPECIFIES THE TRANSHYBRID RESPONSE 
C EVALUATE THE ERL AND SRL

CALL EVAL(ZI,TYP(9) ,TYP(1 3 ))
C UPDATE THE RUNNING TOTALS FOR MEAN ERL AND SRL 

ERLMN-ERLMN+TYP( 9)
SRLMN=SRLMN+TYP( 13)

C JUMP IF  WINDOW NOT REQUIRED 
IF(IWINDO.NE.1)GO TO 560 

C WINDOW THE FREQUENCY RESPONSE 
DO 550 IK-1,129  
Z I( IK) -Z I ( IK ) *WIND( IK)

550 CONTINUE 
560 CONTINUE

C MIRROR THE RESPONSE AROUND HALF THE SAMPLING FREQUENCY, EVEN REAL 
C PARTS, ODD IMAGINARY PARTS, TO PRODUCE A REAL IMPULSE RESPONSE 

DO 450 1-1,127
450 ZI(257-I)=CMPLX(REAL(ZI( 1+1) ) ,-A IM A G (Z I(I+l) ) )

ZI(129)-CMPLX(REAL(ZI(12 9 )),0 .0 )
CALL FFT(Z I,2 5 6 ,1 ,FL)

C FIND PEAK AMPLITUDE OF IMPULSE RESPONSE, HELD IN FL 
VM-0.0
DO 510 1-1,129  
F»ABS(FL(I))
IF(F.GE.VM)VM-F 
F L (I)-F  

510 CONTINUE
C SET LEVELS TO WHICH THE RELATIVE DECAY TIMES ARE REQUIRED 

TYP(3)-VM*0.5 
TYP(2)-VM*0.01 
TYP(1)-VM*0.005 

C LOOP FOR EACH LEVEL 
DO 540 K-1,3 
V-TYP(K)

C STARTING FROM THE LAST IMPULSE RESPONSE SAMPLE, FIND THE FIRST 
C SAMPLE WHERE THE LEVEL IS EXCEEDED 

DO 520 1-1,129  
J -1 3 0 -I
IF(FL(J).G E.V )G O  TO 530 

520 CONTINUE 
530 L (4 -K )-J  
540 CONTINUE

C REPEAT FOR DECAY TIMES TO ABSOLUTE LEVELS 
TYP(3)-0.1* 0.05  
T Y P (2)-0.1*0.01 
T Y P (1)-0.1*0.005 
DO 640 K-1,3  
V-TYP(K)
DO 620 1-1,129  
J - 130-1
IF(FL(J).G E.V)G O  TO 630 

620 CONTINUE 
630 L (7 -K )-J  
640 CONTINUE

C CALCULATE MEAN DECAY TIMES 
DO 820 IX -1,6



LMN(IX)=LMN(IX)+L(IX)
820 CONTINUE
810 WRITE(10 ,76 0)L IN O ,(L (I),1 = 1 ,6 ),TYP(9),TYP(13)
760 F0R M A T(I4,1X ,6(I3,1X ),2(F7.2,1X ))
300 CONTINUE

FLINES-FLOAT(NLINES)
ERLMN-ERLMN/FLINES 
SRLMN-SRLMN/FLINES 
DO 790 IX-1,6
FL(IX)-FLOAT(LMN(IX))/FLINES 

790 CONTINUE
WRITE(1 0 ,7 8 0 )(ERLMN, SRLMN, ( FL( I X ) , IX - 1 ,6 ))
WRITE(6,780) (ERLMN.SRLMN, (F L (IX ) , IX -1 ,6 ))

780 FO RM AT(2(F8.3,2X),6(F7.2,2X))
C CALL SUBROUTINE ANL TO FORM CUMULATIVE DISTRIBUTIONS 

CALL ANL 
STOP 
END 

C

c — — —
C SUBROUTINE EVAL EVALUATES THE ERL (B) AND SRL (C) DUE TO A TRANSHYBRID 
C FREQUENCY RESPONSE (A)
C
---------------------------------------------------------------
c

SUBROUTINE EVAL(A,B,C)
COMPLEX A(256)
DIMENSION D(129)
C— 200.0
DO 10 1-11,110
T-CABS(A(I))
IF (T .L T .l.O E -1 1 )T -1 .O E -1 1 
D(I)-20.0*ALOG10(T)
IF (D (I).G T .C )C -D (I)

10 CONTINUE 
B-0.0
DO 20 1-17,81  
B«B+D(I)

20 CONTINUE 
B-B/65.0  
RETURN 
END 

C
-------------------------------------------------------------
c
C SUBROUTINE FFT CALCULATES FORWARD AND INVERSE FAST FOURIER TRANSFORMS 
C IS I  -  1 FOR INVERSE, IN WHICH CASE THE IMPULSE RESPONSE IS ASSUMED 
C REAL AND HELD IN RESULT
C
-------------------------------------------------------------
c

SUBROUTINE FFT(DATA,N,ISI,RESULT)
COMPLEX DATA(N),TEMP,W,CN 
REAL RESULT(N)
PI-4.0*ATAN(1.0)
FN-N
J - l
DO 80 1 -1 ,N 
IF (I-J )3 0 ,4 0 ,4 0



30 TEMP-DATA(J)
DATACJ)-DATACI)
DATA(I)-TEMP 

40 M-N/2
50 IF(J-M )70,70,60  
60 J-J-M  

M -(m -i)/2  
GO TO 50 

70 J-J+M 
80 CONTINUE 

MMAX-1
90 IF(MMAX-N)100,130,130 

100 ISTEP»2*MMAX 
DO 120 M-l.MMAX
THETA-PI*FL0AT(ISI*(M-1) )/FLOAT(MMAX)
W-CMPLXC COS(THETA).SIN(THETA))
DO 110 I-M.N.ISTEP
J-MMAX+I
TEMP-W*DATA(J)
DATA(J) -DATACI)-TEMP 
DATA(I) -DATACI)+TEMP 

110 CONTINUE 
120 CONTINUE 

MMAX-ISTEP 
GO TO 90

130 IFCISI)160,140,140 
140 DO 150 1-1,N

RESULTCI) -REALC DATACI) ) /FN 
150 CONTINUE 
160 CONTINUE 

END 
C
-------------------------------------------------------------
c
C SUBROUTINE ANL ANALYSES THE DATA ON ERL, SRL AND DECAY TIMES FOR 
C EACH LINE CONTAINED IN "RES" AND FORMS THE CUMULATIVE DISTRIBUTIONS
C
-------------------------------------------------------------
C

SUBROUTINE ANL
COMMON NLINES,ERLMN,SRLMN,FLC256)
DIMENSION M 1(129 ,3,2),R 1(129 ,3,2),L (6 ),T 1C 129 ,3,2),L P C 3)
REAL TVARC6),M3C61,2),TC2),R3C61,2)
FLINES«FLOATCNLINES)/100.
REWIND 10 
LPCU-5 
LPC2)-1 
LPC3)-0

C READ DETAILS OF HYBRID AND LOAD AND COPY TO PLOT FILE 
READC10,*)RST,RPT,CT,RSB,RPB,CB 
WRITEC12,*)RST,RPT,CT,RSB,RPB ,CB 
READC10,*)ITEL,IWIND0 
WRITEC1 2 ,* )ITEL, IWINDO 
WRITEC6,40)RST,RPT,CT,RSB,RPB,CB 

40 FORMATC' R S T -',F7. 2 , 2X, 'RPT-' ,F 7 .2 ,2 X ,'C T -' ,E10.3, /
1, ' RSB-' ,F 7 .2 ,2 X ,'R P B -',F 7 .2 ,2X , 'C B -',E 1 0 .3 )
WRITEC6,160)IWINDO 

160 FORMATC' IWINDO - ',11)
IFCITEL.NE.DGO TO 50 
WRITEC6.210)



210 FORMAT(/, LOAD IS TYPICAL 706-TYPE TELEPHONE'!
GO TO 20

50 READ(10,*)RST,RPT,CT 
WRITE(12,*)RST,RPT,CT 
WRITE(6,220)RST,RPT,CT

220 FORMAT(/,' RSL-' ,F 7.2 ,2 X ,'R P L -' ,F 7 .2 ,2 X ,' C L-'E 10.3) 
INITIALISE VARIABLES FOR RETURN LOSS DISTRIBUTION CALCULATIONS
*  ARRAY OF RETURN LOSS VALUES AGAINST WHICH ACTUAL RETURN
LOSSES ARE CHECKED

20 DO 10 1 -1 ,2  
DO 10 J-1 ,6 1
M 3(J,I)-30.5-FLO A T(J)*0.5  
R 3 ( J , I ) - 0 .0  

10 CONTINUE
INITIALISE VARIABLES FOR DECAY TIME CALCULATIONS 

DO 30 13-1,2  
DO 30 12-1,3  
DO 30 11-1,129  
M 1 ( I1 , I2 , I3 ) - I1  
R l ( I l , I 2 , I 3 ) - 0 . 0  

30 CONTINUE
C INITIALISE VARIABLES TO CALCULATE STD. DEVIATIONS OF RETURN LOSSES 
C AND DECAY TIMES 

ERLVAR-0.0  
SRLVAR-0.0 
DO 480 IX - 1,6 
TVAR(IX)-0.0  

480 CONTINUE
C LOOP FOR EACH LINE

DO 200 ILINE-1.NLINES 
R E A D (1 0 ,6 5 )L IN 0 ,(L (I),I-1 ,6 ),T (1 ),T (2 )

65 FORMAT( 1 4 ,IX,6( 1 3,IX) ,2 (F 7 .2, IX) )
C UPDATE RUNNING TOTALS FOR STD. DEV. CALCULATIONS 

Pl-ERLMN-T(l)
P2-SRLMN—T(2)
ERLVAR-ERLVAR+(P1*P1)
SRLVAR-SRLVAR+(P2*P2)
DO 490 IX -1,6  
P3-FLO A T(L(IX))-FL(IX )
TVAR(IX)-TVAR(IX)+(P3*P3)

490 CONTINUE 
11-0

C LOOP FOR ABSOLUTE AND REALTIVE (TO PEAK AMPLITUDE) DECAY TIMES 
DO 62 13-1,2

C LOOP FOR EACH VALUE TO WHICH THE DECAY TIME DISTN. IS REQUIRED 
DO 61 1 -1 ,3  
J - l

C JUMP IF  DECAY TIME LESS THAN CHECK TIME 
70 IF (L (I1 + I).L E .M 1 (J ,1 ,1 3 ))GO TO 80

C INCREASE CHECK TIME 
J - J + l
IF ( J . L E . 129)GO TO 70

C DECAY TIME TO THIS VALUE IS GREATER THAN 16 MS, SKIP TO NEXT VALUE 
GO TO 61

C INCREMENT TOTAL NUMBERS OF LINES WITH DECAY TIMES LESS THAN
C CHECK TIMES

80 DO 60 M-J.129
R 1 (M ,I,I3 )-R 1 (M ,I,I3 )+ 1 .0

60 CONTINUE
61 CONTINUE



11=3
62 CONTINUE

C LOOP ONCE FOR ERL, AGAIN FOR SRL 
DO 200 1=1,2  
J=1

C JUMP IF  LOSS GREATER THAN MARKER

75 IF (-T (I).G T .M 3 (J ,I))G O  TO 85
C INCREMENT MARKER 

J - J + l
IF(J.LE .61)G O  TO 75 
GO TO 68

C INCREMENT TOTAL NUMBERS OF LINES 
85 DO 95 M-J.61

R 3(M ,I)=R 3(M ,I)+1.0  
95 CONTINUE 
68 CONTINUE 

200 CONTINUE

C OUTPUT RESULTS FOR DECAY TIMES TO VARIOUS PERCENTAGES OF PEAK 
P2=FLOAT(NLINES-l)
DO 510 IX -1 ,6
TVAR(IX)=SQRT( TVAR(IX)/P2)

510 CONTINUE 
DO 90 1=1,3 
DO 90 J-1 ,1 2 9  
R 1 (J ,I,1 )= R 1 (J ,I,1 )/F L IN E S  
T1( J , 1 ,1 )=FL0AT(M1( J , 1 , 1 ) ) / 8 .0 

90 CONTINUE
C OUTPUT RESULTS FOR RETURN LOSSES 

DO 300 1=1,3  
DO 300 J= 1 ,129  
R 1 (J ,I,2 )» R 1 (J,I,2 )/F L IN E S  
T l(J ,I,2 )= F L 0 A T (M 1 (J ,I,2 ))/8 .0  

300 CONTINUE
DO 310 1=1,2  
DO 310 J-1 ,6 1  
R 3 (J,I)= R 3 (J,I)/F L IN E S  

310 CONTINUE
DO 400 1=1,2  
DO 420 J= 1 ,3
W R ITE (12,450)(R 1(K ,J,I),K »1,129)

450 FORMAT(8(F7. 2 , IX ))
WRITE( 1 2 ,5 0 0 )F L ( J + ( I- 1 )* 3 ),TVAR(J+(1-1)*3)
WRITE(6 ,5 0 0 )FL(J + ( I - 1 )* 3 ),TVA R(J+(I-1)*3)

500 FORMAT(2(F8.3,4X))
420 CONTINUE 
400 CONTINUE

DO 430 1=1,2
WRITE(12,4 5 0 )(R 3 (J ,I),J = 1 ,6 1 )

430 CONTINUE
SRLVAR=SQRT(SRLVAR/P2)
ERLVAR»SQRT(ERLVAR/P2)
WRITE(1 2 ,4 7 0 )ERLMN,ERLVAR,SRLMN, SRLVAR 
WRITE ( 6,4 7 0) ERLMN, E RLVAR, S RLMN, S RL VAR 

470 FORMAT(2(F8.3,4X,F7.4,4X))
STOP
END



APPENDIX A2.2 The Load Macro for the Line and Hybrid Simulator
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APPENDIX A2.3 Simulation of the Convergence of the Adaptive Gain

C
---------------------------------------------
c
C PROGRAM ADGAIN SIMULATES THE CONVERGENCE OF THE 
C ADAPTIVE GAIN FILTER. THE MAXIMUM NUMBER OF 
C SAMPLES IS 512, IE : THE MAXIMUM TIME FOR 
C WHICH THE OPERATION OF THE FILTER CAN BE 
C SIMULATED IS 64 MS AT 8 KHZ. THE UNKNOWN 
C SYSTEM IS SPECIFIED AS A SIMPLE GAIN/LOSS, AND THE 
C INPUT SIGNAL IS SPECIFIED AS A SINE WAVE OR SUM OF 
C SINE WAVES.
C
---------------------------------------------
c

REAL X (5 12) ,D (512) ,EOLD(512) ,ENEW(512) ,AO(512)
DATA X /5 1 2 * 0 .0 /,D /512*0.0/
PI2»8.0*ATAN(1.0)

C SET DEVICE LIBRARY FOR GRAPHICS AND SCALE DRAWING AREA 
CALL DEVBEG 
CALL UNITS(l.O)
C0NV-180.0/PI2

C TIME RESOLUTION IS 0.25 MS 
TRES-0.25E-03 
NPTS-512

C SPECIFY THE UNKNOWN SYSTEM 
50 WRITE(2,10)
10 FORMAT('INPUT G ' )

READ(1,*)G
AOM-G
WRITE(2,130 )AOM

130 FORMAT('THE OPTIMUM AO VALUE IS  : ', F 6 .3 , )
C SPECIFY THE SIGNAL SOURCE, SINE WAVE OR SUM OF 
C SINES

WRITE(2,70)
70 FORMAT('INPUT FREQ,FREQ STEP,AMPLITUDE,NUMBER OF STEPS') 

READ(1,*)W,DW,AMP,NW 
C CALCULATE THE POWER OF X

PX»AMP*AMP*FLOAT(NW)/2.0
W«W*PI2
DW-DW*PI2

C LOOP FOR EACH FREQUENCY 
DO 80 IW-l.NW
PHRANIK RANDOM( 1. ) - 0 . 5) *PI2 
T2-W*TRES

C LOOP FOR EACH SIGNAL SAMPLE 
DO 20 I-l.N PTS  
Pl-T2*FLO AT(I-1)-PHRAND 
T1-AMP*SIN(P1)
X (I)-X (I)+ T 1  
D(I)«D(I)+G*T1  

20 CONTINUE 
W-W+DW 

80 CONTINUE 
C CALCULATE POWER OF D 

P1>PX*G*G 
WRITE(2, 120)PX,PD

120 FORMAT(' INPUT POWER -  ' , F 7 . 4 , '  UNKNOWN POWER -  ' , F 7 . 4 , )  
T l-0 .0

150 WRITE(2,60)
60 FORMAT('INPUT CONTROL AMPLIFIER GAINS')



C AX IS THE INPUT SIGNAL AMPLIFIER GAIN 
C AE IS THE ERROR SIGNAL AMPLIFIER GAIN 
C AI IS THE INTEGRATOR TIME CONSTANT 

READ(1,*)AX,AE,AI 
T2-0.0  
T l-0 .0  
Pl-TRES/AI

C SET FIRST APPROXIMATION TO THE ERROR AND CALCULATE THE 
C POWER IN D

DO 180 I-l.N PTS  
E O LD (I)-D (I)
T 2-T 2+D (I)*D (I)

180 CONTINUE
D2AVG-T2*TRES/FLOAT(NPTS)
P3-TRES/AI
T2=T2*1.0E-05/FLOAT(NPTS)

C BEGIN PICARD ITERATION 
ITER-0

C INITIALISE T3 FOR INTEGRATION AND T4 TO CALCULATE 
C THE MEAN SQUARE DIFFERENCE IN ERROR BEFORE AND 
C AFTER EACH ITERATION.

30 T3-0.0  
T4-0.0
DO 40 I-l.N PTS  
T3-T3+EOLD(I)*AX*X(I) *P3 
A 0 (I)-T 3
E N E W (I)-D (I)-(X (I)* T 3 )
T5-ENEW (I)-E0LD(I)
T5«T5*T5 
T4-T4+T5 

40 CONTINUE
C UPDATE THE ERROR APPROXIMATION 

DO 90 I-l.N PTS  
EOLD(I)-ENEW(I)

90 CONTINUE 
ITER-ITERH  
T4-T4/FLOAT(NPTS)

C OUTPUT THE ITERATION NUMBER AND THE MEAN SQUARE DIFFERENCE 
C IN ERROR.

WRITE(2 ,* )ITER,T4
C JUMP IF  NOT CONVERGED AFTER 80 ITERATIONS 

IF(ITER.GT.79)GO TO 150 
C JUMP IF NOT CONVERGED ENOUGH

IF ((T 4 .G T .T 2).O R .(IT E R .L T .1 0 ))G0 TO 30 
C PLOT ERROR SIGNAL

CALL PL0T(ENEW,NPTS,1,'ERROR*.')
WRITE(2,110)

110 FORMATd PLOT COEFFICIENT?, 1 / 0 ')
READd ,*)FTEST
IF(FTEST. EQ. 1. ) CALL PLOT(AO,NPTS, 1 , 'AO*. ' )

190 CONTINUE
C CALCULATE THE AVERAGE AO VALUE OVER THE FINAL N POINTS 

N-49 
T l-0 .0
DO 200 I-NPTS-N.NPTS
T l-T l+ A O d )

200 CONTINUE
A0F«T1/FL0AT(N+1)

C CALCULATE ERROR POWER FOR THIS VALUE OF AO 
T l-0 .0



o
 o

DO 210 I-l.N P TS  
ER=D (I)-A0F*X(I)
T1»T1+ER*ER

210 CONTINUE
C CALCULATE ERLE ACHIEVED

ERP=*T1*TRES/FL0AT(NPTS+1)
ERLE=20.0*ALOG10(D2AVG/ERP)

C CALCULATE THE TIKE CONSTANT 
TX-AOF/AOM
IF(TX.GE.0.995)G0 TO 100 
TC=-FLOAT(NPTS) *TRES/( ALOG(1-T X ))

100 WRITE(2,2 3 0 )AOF,ERLE,TC
230 FORMAT('AO FINAL -  '.E 1 0 .3 , ' ERLE = ', F 7 . 2 , '  TC = ' 

1E10.3)
WRITE(2,160)

160 FORMATC'INPUT 0 TO END')
READ(1,*)FTEST 
IF(FTEST.NE.O.O)GO TO 150 
CALL DEVEND 
STOP 
END 

C 
Cc
---------------------------------------------
c
C SUBROUTINE PLOT PLOTS UP TO N DATA POINTS FROM ARRAY 
C A ON THE Y AXIS. THE X AXIS REPRESENTS TIME. N MAX IS  
C 512. IAX IS 1 IF  AXES ARE REQUIRED, AND YLAB IS AN 
C ARRAY CONTAINING THE LABEL FOR THE Y AXIS. THE PROGRAM 
C USES SUBROUTINES FROM THE GINO GRAPHICS LIBRARY.
C
---------------------------------------------
C

SUBROUTINE PLOT(A,N,IAX,YLAB)
DIMENSION A(512) ,C(512) ,B(512) ,YLAB(4)
CALL PICCLE 
DO 20 I-1,N  
B (I)-F L O A T (I-I)
C (I)« A (I)* 1 0 0 .

20 CONTINUE
C SWITCH OFF ANY PREVIOUS TRANSFORMATIONS

CALL TRANSF(-l)
C SET X RIGHT LIMIT

XR-512.
C SET X LEFT LIMIT

XL-0.0
C SET Y TOP

YT-100.
C SET Y BOTTOM

YB— 100.
XRNG-ABS(XR-XL)
YRNG-ABS(YT-YB)
NRES IS NUMBER OF UNITS OF Y PER TICK 
NINT IS NUMBER OF TICKS PER NUMBER 
NRES-10 
NIN>2
CALL SH IFT2(35.0 ,3 5 .0 )

C SCALE TO REQUIRED DIMENSIONS
CALL SCALE2(1 0 0./XRNG,100./YRNG)



CALL M0VT02(0.0 ,0 .0 )
C SHIFT FOR REQUIRED ORIGIN 

CALL SHIFT2(-XL,-YB)
C
C DRAW Y AXIS.NUMBERING FROM TOP TO BOTTOM
C

CALL LINT02(XL,ABS(YT)) 
TICENL-XL+XRNG/50.
TICENS-XL+XRNG/100.

C SET LOCATION OF AXIS LABEL AND NUMBERS 
PNUM-XL-XRNG/6.
PLAB-XL-XRNG/4.

C SET NUMBERING INTERVAL 
J-NINT
DO 110 I - i , INT(YRNG+1. 5 ) ,NRES
TICEN-TICENS
F=ABS(YT)-FLOAT(I-l)
IF(J.NE.NINT)GO TO 120
FM -(Y T+1-I)/100.0
J -0
TICEN-TICENL 
CALL M0VT02( PNUM,F )

C PRINT NUMBER
CALL CHAFIX(FM,6,-2)

120 CALL M0VT02(XL,F)
C TICK AXIS

CALL LINT02(TICEN,F)
J - J + l

110 CONTINUE
CALL M0VT02( PLAB,YB+YRNG*0.77)

C LABEL AXIS
CALL CHAARR(YLAB,2,4)

C
C DRAW X AXIS,NUMBERING FROM RIGHT TO LEFT
C

NRES-8
NINT-8
CALL M0VT02(XL,YB)
CALL LINT02(XR,YB)
TICENL-YB+YRNG/50.
TICENS-YB+YRNG/100.
PNUM-YB-YRNG/20.
PLAB-YB-YRNG/10.
J-NINT
DO 210 I-l.XR N G f1.NRES
TICEN-TICENS
F-XR-FLOAT(I-l)

C JUMP IF  NUMBER NOT REQUIRED
IF(J.NE.NINT)GO TO 220 
J -0
M -IN T(0.5+IN T(F/4.0))
TICEN-TICENL 
CALL MOVT02(F,PNUM)

C PRINT NUMBER
CALL CHAINT(M,-4)

220 CALL M0VT02(F,YB)
CALL LINT02(F,TICEN)
J - J + l

210 CONTINUE
CALL M0VT02( XL+XRNG*0.7 5 ,P LAB )



c LABEL AXIS
CALL CHAHOL(11HTIME (MS)*.)

C
CALL M 0VT02(B(1),C(1))
CALL P0LT02(B,C,N)
CALL CHAMOD
RETURN
END



APPENDIX A2.4 The AFWRIT Program
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APPENDIX A2.5 The AFREAD Program

QO  uj 
I - Z

x  
a  3
UJ i- 
Q UJ
z  x
UJ
t -  x  

tn x  uj 
H UJ *—

x
a
x
Q Z
UJ

* -J
1— CD CO 2  *-• •

<X « z  a  x  j
c  —> X

cn • z x  cn x <x
X 1-  - i  o i L)X X i  — X o  1-
1- <x H X z Z

h- cn <r i -  «X a <r
a  cn cn u x  z X
z  x  o n  -  <r aI C E  J x  cn o

z  a z  a  x
U J w Q D h U J C t t Q .  
Q a < r z  X E  Ul 2  

«  Q  I -  N  » 1  
cn ut uj <r

q  <x <x 
uj z  uj o
I  XI-..

-  U  (fl uj
I -  U1 I -  l i  <1 io  E
23 :> «X h  UJ Q
Q. 1-1 0 . I-  <X 3  Q
z  i -  cn a  z  <x
H  X  U J U J - i

<r no 3
a  a  a
U J 1  Q  U J
X   ! QZ

U J X )
I  “cn

ui . _
a  cn 
- x  

i- o  a
XJ X  Q Z
a- x  <r 
z  o  
—  cn ai

U J
UJ _j Lii
I

■ I- >
uj z  a
h- o  
<r u  q

_  i- <r
o  i -  cn a  uj
—  ' z a :  

x  <r
ui

H- Z  I  O E  
Z  O I -  I -  
Ul X  UJ
r u . i h i  
uj a  uj h- 
j  q  x  tn 
a- <c a  x  
z  uj a: cn o  
O x  x  «  
u  i- i- 

<t a  z  
cn i -  z  uj uj 
-i  <x a  i -  z

Q * 1  Z  23
x  cn x  a

cn x  i -  x  a  x  
i— W UJ u  <x

<r _i c n ____
H Z U I 3  I _____

• ! t « j O N w ( n c n  
o  x  a. u  - i  ui x
CD h- z
n  cj a  a  cn

z a i x
z  cn k

UJ X «i
x  a  u.

a -u r ^ u j z c n c n c n H -Q  
z  <x CD x  <r ui x  c u i  c  u. *i x  -  - —
cn x  a  

uj cn
cn

_! x  uj x  x
--- I C Q U . O Z * —
U  C  Z  Q  a. U. C

Z  CD <t 3
_________ UJ U l CD n

Z " X I H J ¡ U 1  
a  a  q  i- cni— 1 1  q  m

cn — • c  x  ui o
z  i a  x  x  
<r x  >  u  x  i- x
x  a  x  v  uj
a x a z c n z  
a  x  
x  uj 
x

Q
X  
Ul 
X 
Ul

-I _l

Ul UJ H
X  I- c  o  
1 - 3  3  

-i cn 
• o  z  cn 

x  cn c  ui 
ui m  x  x  
i- c  cd a  

a  a  _  
I- x  c  I  
c  x  h-

_  x  >
33 3  33

_  ( 3  U J
x  u t  - i  x  a
I— —I —I !— U J

m e  z
O C  > H  
Í- U  O  _l X

H  _ J  U J
z  u j  c  a
u j  x  a  z
I- h UJ h aj

UJ

1  X  z  c  
X  O  UJ • < -  
3  x  z  cn cn 

x  >-
C  3  —J —i C  
1— 0 X 3  
C  J  Z  3  
a  J  Q  CD ' 

C  CJ -<

a
c  ^
UJ T-4
01 o
lL 3*
<r \

cn
3
O
-J
a
u.

cn
<i

cn
tu
cn
cn
UJ
01 \ 
Q  i 
Q  <
<L :

t- -J
q: o
q  01
a. h- 

2  
O
CJ

I
:>
01 
Q
a .
ZJ

V—
cc a :  
u j  a  
h -  a .  
2
z j  < r  
a  k  
u  <x 

a  
cn 
cn 
tu 
q: 
o
Q
<r

0  o
cn cn 
cn cn 
u j  u j
01 01 
a  a  
a  o  
<x <r

n  <*■
o  co CO 
co
>  r* r- 
rs co co
CO
T-* Il || 
II i"—
_i z  <r 
x  cj a  

a  cd 
z  a  -
3  «  cn

X  • X  z
cn x  o  x  <r
cn , <z o  X  X
UJ 'u X  z
01 X  <1 X
Q z  z  cn x
Q <X 1  K
<E x  <r x  x

a  z  <x i
o: a  z  x
uj a: r  a
u. x  a  n  cn
u. <x z  x  cn cn
3 J- i X  X
QQ <r <r i- x

a z  —  en o
2 a  i a
Q K Z  X  H  <Z
01 n n o  —
01 03 3  a
UJ 1 en cd h-

r-j z 1- X  X
Q «  a Z  O  <E X
oi i X X  X
01 x  cn h- Z h a H
UJ o  z -J 3  z  z  cnH- X <r O  o  1 HQ -J r- i—  I- X X  CJ W  CD

o: cn 1—J >—1 n  51 <r —  x  <ro  cn SL 2Q 03 X 01 X X I -2  UJ UJ X  CD O  <C
01 U. !- z  z K o x  <r a-J Q 3  -1 a  a -1 <r x

O  Q <X ►—* —« x  c n x h
oi <r h- X cn cn u. x  i- x  tn 3

2 m  cn x  n  x
2  2 UJ CV Q Z X »— z  x  a  x  z
o  <r 2  ¡3 a  a cn 3  n  Q  <t nu  a: UJ -L X  X UJ Z  X  <T —

-J Z) i- aK  O  »- 0- ^ X  X CJ j- i- i—  n  <r
j  a: cn 2 cn tn ca UJ X  X  X  z  X
<l  uj <r O  <1 <r <x oi CD CD CD i  XI  N  _J CJ 2 z  z • fc ■— • » i. ik

X X X UJ UJ UJ UJ
z  z  z 2 z  z  z
»—• ►—* • >—«
x x x u. X X X
x x x UJ UJ UJ UJ
Q  Q  Q Q a  a  a X

h-
z cn
u X
% o
(S3 o X <*• H-
•* X » X X <r
1- •• + •k X a
-J + o CO
<r in X >-»
I in X in X cn

cn
X X a: N «
% w 21 V % 2t

o  - in o  o  o
o  o  o n o  o  o 2* !> o o X«
o  o  o o  o  o o o o o o O
o  o  o O  er o z z  z 2 2 2
« r o o ** O • •
O  O  H ii o  o  — • ■
II o  z u. il ii :i Qs— ti iu u_ ^  cm cn =1 •.
-J O  Z” 3 Ul 1—
ex X  X £0 cn cn cn CK
x x x X cr ex <r u. <r
a. N  a- a. z  z  z <r



Z -  Z CE Û û
□ X Q _j UJ CE

en *—1h- Q  U P- Q X Z O
CE K 1 K  V, »H x z o z
UJ X N Z »H es -i -J

a U. CJ CE n h- 1—4 X -J «J
h* UJ n U- o CE o Z UJ en z <r a 3 b-1—4h- a: X -1 Z h- X > es CH 3 4—1
en -j CÛ O  U. Z X ce 1-4UJ b - 3 3 ce<r o Z CE o  — h» H- o 3 3 ce Z X <rh- X K UJ X U. Q CE UJ o <x Z 3-J Z -I CK en uj CH Z CE ce O 2- K U 3 3 3<X o: ►H en UJ >- _j LU UJ o h- CE z * -4 CJX UJ x X -J *-• CL h- U CH O 3 3 3h- en U K o. en z en <X a Q CE z Z o es <X b -J— _1 en * Z <1 en UJ 3 UJ UJ a UJ U CE K Z K— 4-4 33 4—4 UJ CE CSJ ■X csj en UJ CE CE 4-H z <r CE 3 3 3 3UJ lk CH O CE en v-4 CE 3 X UJ Q 3 3 O •—43 3 4—4
U

en
Q U. -I Q h- t— UJ ce U 3 3 3 U Z h- 3X z Q UJ -J Q  X Q 3 1 -1 CE UJ Q 's 3 3 X 3 4-4

LU en 4—4 X K— X <x Z  Z <x 3 T-4 F—4 UJ 3 z X ce ce 3 h- 3 •-4 3 <*•
ÜJ <1 Z h- Z uj es UJ H Ll h- Z UJ Q 4—4 a Z 3

-J -J Z UJ a K  *-« Z CH -J 4—4 K z Q 3 CE 3 3 <r 3
-J Z <r <r Z en 4—4 X  en <r a II 3 4—4 X 4— 4 X h- X 3 3 X
<x 3 CH UJ en en UJ CE Q *—i 3 U. Z  UJ h- z 3 <r 4—4 3 Z ZX -J UJ UJ <r UJ <r UJ ce Q o 3 X ce ce ce
X CL U >■ CL CE a Z  i- b- CL ce a ce z CH <r 3 U 3 X 3 3 <£ 3en X UJ Q. z Q x C3 4-4 X z z Q <x 3 O UJ h- X 3 X K h- 3 3
<x 3 X O Q Q UJ ^  CH UJ <r 3 Q UJ o 4— 4 b- -J Q o o <r 3 3 3 3 3x “5U U U <x CE en z  z CH “5<r CE z en 3 U a h- U z “J en CE U ce

Q h- n <X n 4-
CE Z CE N « 3 Z -J

en * en U « X ce SJ •* X CJ CE n n n
ce 4- CE O 4» UJ + i» 4» K 3 + en Q t- CH CH z
* X •» Q X z z 3 <X Z CH a z te
—H Q «H X a CS 3 3 Q C3 *» X U N n n
X CS X n * es ce 3 3 3 i—» CH O % « X X X
3 >- t-H 3 1- CE SJ — 3 3 3 3 4-H 3 w 3 (SJ SJ 3 3 en
<X 4-4 en <r ►H 4» « en » 4» 3 O 3 3 4* 4k 3 » » <x en «I X
X c * X X CSJ Cl n * CJ n N 3 O 3 % n U en N es Q o U n X o X U z
% z Si « Z CE CE CE m 3 CE ce % 3 * (SJ CE 3 CH « CE CE CE CL CE % CL « 3 «
h- 3 a» h- CS D- Z :> z- ce :> u 3 3 3 3 CH 3 :> z O > en z 3 es en 3 U

3 Q 4—4UJ a a a a 3 Q z X 3 O Q O 3 Q o a □ a h- c 4-4 3 4-* b- —
3 3 Z 3 CQ z CJ z z "5 Z 1—4 CJ 3 X X U ~3 X z u Z z CE U 3 3 3 CH en

en
LU

•- en



o
n
 

o
o
o
n
o
o
o
o
n
o
 

o
o
o

APPENDIX A2.6 The A'DHYB Program

C ------------------------------------------------------------- --------------------------------
C
C P R O G R A M  A D H Y B  T E S T S  T H E  P E R F O R M A N C E  O F  D I G I T A L  R E C U R S I V E  A D A P T I V E  
C F I L T E R S  A G A I N S T  S I M U L A T E D  S U B S C R I B E R S  L I N E S .

R E A L  W I N D ( 1 2 9 ) , T Y P ( 1 6 ) , F L ( 2 5 7 ) , R E S ( 1 2 9 ) , R E S C U 29)
I N T E G E R  I C 0 E F F ( 2 5 7 ) , L < 1 6 ) . L E N G T H
C O M P L E X  Z L ( Z 5 7 > , Z T ( 2 5 7 ) , Z B ( 2 5 7 ) , Z 1 , Z 2 , Z I ( 2 5 7 ) , G M A < 2 5 7 ) , 2 0 ( 2 5 7 )

1 , T C , T C C
C O M M O N / D A T L H S / L H S <129)
C O M M O N / A F D A T A / I A F ( 1 2 ) , I A F D A T (13), N D E L , I C O M P  

L H S  C O N T A I N S  T H E  C O E F F I C I E N T S  OF  T H E  L H S , IAF C O N T A I N S  T H E  
C O E F F I C I E N T S  O F  T H E  A D A P T I V E  F I L T E R ,  I A F D A T  C O N T A I N S  T H E  
S A M P L E S  O F  D A T A  F R O M  T H E  F I L T E R  IN T H E  O R D E R  1-

X ( N ) , X ( N - l ) , X C N - 2 ) , X ( N - 3 ) , D I N ) ,D I N - 1 ) , D ( N - 2 ) ,D I N - 3 ) ,
E (N — 1 ) , E ( N - 2 ) , E ( N - 3 ) , E ( N - 4 ) , E ' ( N - l )

N D E L  C O N T R O L S  T H E  L E N G T H  O F  T H E  D E L A Y  I N T R O D U C E D  B Y  M A C R O  S D E L ,
A N D  I C O M P  IS 1 F O R  C O M P E N S A T I O N  F O R  T H E  E F F E C T S  OF E R R O R  
F I L T E R I N G .

T Y P E  5 1 0
5 1 0  F O R M A T « / , ' * * * *  D I G I T A L  A D A P T I V E  H Y B R I D  P E R F O R M A N C E  * * * *  ',/)

N P T S  IS T H E  N U M B E R  O F  F R E Q U E N C Y  P O I N T S  U S E D  TO  R E P R S E N T  T H E  T R A N S ­
H Y B R I D  S P E C T R U M  IN T H E  R A N G E  0 TO H A L F  T H E  S A M P L I N G  F R E Q U E N C Y .  
N ? T S = 1 2 9  
N P T S 1 = N P T S - 1  
N P T S 2 « N P T S 1 * 2  
N P T S 3 - N P T S 2 + 1  
P I = 4 . 0 * A T A N ( 1.0)
P I 2 = 8 . 0 * A T A N ( 1.0)
S C A N G = P I 2 / 3 6 0 .
T 2 = P I 2 / F L 0 A T ( N P T S 2 >

C F S  IS T H E  S A M P L I N G  F R E Q U E N C Y ,  F I N C  IS T H E  F R E Q U E N C Y  R E S O L U T I O N  
F S * 160 0 0 .
F I N C » F S / F L 0 A T « N P T S 2 >
W I N C = P I 2 * F I N C
S C * 8 0 0 0 . / F S
N F * I N T ( ( N P T S 1 * S C ) + 1 .5)
N D F * I N T ( ( 2 5 0 . 0 / F I N C ) + 0 . 5 )
I R E C S Z = N P T S * 4
C A L L  A S S I G N  ( 1 , ' D Y l I Z O G M A . D A T ' , 1 5 , ' R D O ')

D E F I N E  F I L E  1 ( 3 5 , I R E C S Z - U , I R E C 1 )
C A L L  A S S I G N  ( 3 , ' D Y 1 I H Y B . D A T ' , 1 3 , ' R D O '>
D E F I N E  F I L E  3 ( 3 , I R E C S Z , U > I R E C 3 )

C R E A D  T H E  H Y B R I D  Z T  A N D  ZB 
R E A D O ' D H Y B N O  
R E A D ( 3 ' 2 X Z T ( I > ,  1 = 1, N PTS)
R E A D < 3 ' 3 ) ( Z B ( I ) , 1 = 1 , N PTS)

C L O S E  ( U N I T = 3 )
M A X R E C * 1 9 5 0
I R E C S Z s36

C F I L E  L D A T  C O N T A I N S  T H E  L I N E  S U R V E Y  D A T A  B A S E  
C A L L  A S S I G N  ( 2 , ' D Y l I L D A T . D A T ' , 1 4 , ' R D O ')
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APPENDIX A2.6 The ADHYB Program

PROGRAM ADHYB TESTS THE PERFORMANCE OF DIGITAL RECURSIVE ADAPTIVE 
FILTERS AGAINST SIMULATED SUBSCRIBERS LINES.

REAL HINDI 129), TYP (16),FL(257),RES(129),RESC(12S)
INTEGER IC0EFFI257),L(16>-LENGTH
COMPLEX ZL<257>,ZT(257>,ZB<257>,Z1,Z2,ZI(257>,GMA<257),ZO(257>
1>TC,TCC
COMMON/DATLHS/LHS(129)
COMMON/AFDATA/IAFI12),IAFDATI13),NDEL,ICOMP 

C LHS CONTAINS THE COEFFICIENTS OF THE LHS, IAF CONTAINS THE 
C COEFFICIENTS OF THE ADAPTIVE FILTER, IAFDAT CONTAINS THE 
C SAMPLES OF DATA FROM THE FILTER IN THE ORDERl-
C
C X(N),X(N-l),X(N-2),X(N-3), D(N),D(N-1),D(N-2)»D(N-3),
C EIN-l),E(N-2),E(N-3),EIN-4), E'(N-l)
C .
C NDEL CONTROLS THE LENGTH OF THE DELAY INTRODUCED BY MACRO SDEL,
C AND ICOMP IS 1 FOR COMPENSATION FOR THE EFFECTS OF ERROR 
C FILTERING.

TYPE 510
510 FORMAT«/,' **** DIGITAL ADAPTIVE HYBRID PERFORMANCE **** ',/)

C NPTS IS THE NUMBER OF FREQUENCY POINTS USED TO REPRSENT THE TRANS-
C HYBRID SPECTRUM IN THE RANGE 0 TO HALF THE SAMPLING FREQUENCY.

N?TS=129 
NPTS1-NPTS-1 
NPTS2»NPTS1#2 
NPTS3-NPTS2+1 
PI*4.0*ATAN(1.0)
PI2=8.0*ATAN(1.0 )
SCANG*PI2/360.
T2=PI2/FL0AT(NPTS2)

C FS IS THE SAMPLING FREQUENCY, FINC IS THE FREQUENCY RESOLUTION 
FS*16000.
FINC-FS/FL0AT(NPTS2)
HINC=PI2*FINC
SC=8000./FS
NF*INT((NPTS1*SC)+1.5)
NDF*INT((250.0/FINC)+0.5)
IRECSZ=NPTS*4
CALL ASSIGN (1, 'DYlJZOGMA.DAT',15,'RDO')
DEFINE FILE 1(35,IRECSZ.U,IREC1)
CALL ASSIGN (3,'DYl .‘HYB.DAT', 13,'RDO')
DEFINE FILE 3(3,IRECSZ,U,IREC3)

C READ THE HYBRID ZT AND ZB 
READO'l )HYBNO 
READ(3'Z)(ZT(I)»I*1,NPTS)
READ(3'3)(ZB<I),1*1,NPTS)
CLOSE (UNIT-3)
MAXREG-1850
IRECSZs36

C FILE LDAT CONTAINS THE LINE SURVEY DATA BASE 
CALL ASSIGN (2, 'DYlILDAT.DAT',14,'RDO')
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DEFINE FILE 2(MAXREC,IRECSZ,U,IRECS2) 
IRECSZ-20
DEFINE FILE 3<MAXREC,IRECSZ,U,IREC3)

C READ THE DEFAULT LOAD IMPEDANCE
CALL ASSIGN(4.'DYl1ZTELE.LST',15, 'RDO')
READ(4,*)TELENO
READ(4 » 220) ( ZL ( I ), I = 1 > NPTS)

220 F0RMAT(4(E13.6))
CLOSE (UNITM)

C CALCULATE HINDOU RESPONSE UP TO FS/2 
DO 5 IPT=1fNPTS 
V=FLOAT(IPT-1)*T2 
HINDI IPT)»0.54+0.4S*C0S(V)

5 CONTINUE

SET THE STEP SIZES FOR THE ADAPTION ALGORITHM 
FL1*1024.
FL2=FL1 
GL1* 1.0/FL1 
GL2*1.0/FL2

RETURN LOSSES ARE CALCULATED OVER NBLKS BLOCKS OF 4 SAMPLES, 
NITER IS THE NUMBER OF ITERATIONS AFTER HHICH THE CANCELLED ERL 
IS MEASURED. NA IS THE NUMBER OF TRANSVERSAL COEFFICIENTS,
NB IS THE NUMBER OF RECURSIVE COEFFICIENTS 

NBLKS=100 
NDEL-100 
NITER*500 
N A M  
NB=0

NAVG IS THE NUMBER OF ITERATIONS OVER HHICH MEASUREMENTS ARE 
AVERAGED, AND AN INITIAL MEASUREMENT IS MADE AFTER NINIT 
ITERATIONS.

NAVG>50
NINIT-100
HRITE<5,370>

370 FORMAT( ' INPUT STARTING LINENO AND FINISHING LINENO')
READ(2,*)NLINS,NLINF 
NLINES-NLINF+l-NLINS 
MAXREC-1850 
IRECSZ*18
DEFINE FILE IFILEiMAXREC,IRECSZ,U,IREC4)
HRITE(IFILE'l)FL1,FL2,NA,NB 
1,NBLKS,NAVG,NINIT,NITER,NDEL 
HRITEIIFILE'2)NLINES

LIND«3-NLINS
DO 190 LINE « NLINS,NLINF 
DO 35 IPT*1,NPTS 
ZI(IPT)-ZLdPT)

35 CONTINUE
READ(2 'LINE)LINO,RD,(FL(I),I*1,1S)
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70 FORMAT«/.' LINE ',14,/, ' LINE NUMBER = M 4 , / )
TYPE 70,LINE,LINO 

C PRINT 80
80 FORMAT«' LENGTH TYPE ')

TYPE 80 
LENGTH=0
DO 130 ISEC - 1,18 
LtISEC)aIFIX(FL(ISEC))
TYP( ISEC)*FL( ISEO-L« ISEC)
IF(L(ISEC).LE.0.0)GO TO 140 
LENGTH=LENGTH+L<ISEC)

C PRINT 75,L«ISEC),TYP«ISEC)
75 FORMAT«I6,5X,F5.2)

TYPE 75,L(ISEC),TYP<ISEC)
C LOOK UP ZO AND GMA

100 IF(TYP(ISEC).GE.O.1075.AND.TYP(ISEC).LE.0.11)N=2 
IF « TYP(ISEC).GE.O.1175. AND.TYP«ISEC).LE.O.12>N=4 
IF«TYP( ISEC J.GE.0.1875. AND. TYP( ISEO.LE.0.17) N=6 
IF(TYP(ISEC).GE.0.2075.AND.TYP(ISEC).LE.0.21)N=8 
IF(TYP(ISEC).GE.0.2475.AND.TYP«ISEC).LE.0.25)N=10 
IF(TYP(ISEC).GE.O.3075.AND.TYP(ISEC).LE.0.31)N=12 
IF(TYP<ISEC).GE.0.3175.AND. TYP(ISEC).LE.O.32)N=14 
IF(TYP(ISEC).GE.0.3S75.AND.TYP«ISEC).LE.0.4)N=16 
IF(TYP(ISEC).GE.0.4075. AND.TYP«ISEC).LE.0.41)Na18 
IF(TYP( ISEC).GE.0.4975.AND.TYP(ISEC).LE.0.5)N°20 
IF(TYP(ISEC).GE.0.5075. AND.TYP«ISEC).LE.0.51)N=22 
IF«TYP(ISEC).GE.0.8075.AND.TYP(ISEC).LE.O.61>N=Z4 
IF(TYP(ISEC).GE.O.8275. AND. TYP<ISEC).LE.O.S3)N=2B 
IP(TYP(ISEC).GE.0.8075. AND.TYP«ISEC).LE.0.81)N=28 
IF(TYP(ISEC).GE.0.8975. AND.TYP«ISEC).LE.0.9)N=30 
IF(TYP(ISEC).GE.0.8975.AND.TYP«ISEC).LE.0.7)N=32 
IF(TYP(ISEC).GE.0.7375.AND.TYP«ISEC).LE.0.75)N=34 
READ«1'N)(GMA(I),1=1,NPTS)
RLADtl'N+l)<ZO(I), 1 = 1 ,NPTS)

C COMPUTE SENDING END IMPEDANCE 
DO 250 IF*1»NPTS 
GMA(IF)*GMA«IF)*L(ISEC)
TCCaCMPLX(AIMAG«GMA( IF)),-REAL(GMA(IF)))
TCsCSIN(TCC)/CCOS(TCC)
TCC*CMPLX(-AIMAG(TC),REAL( TC ) )
ZI(IF)*(ZI(IF)+ZO(IF)*TCC)/«CMPLX«1.0,0.0)+ZI(IF)*TCC/ZO<IF))

250 CONTINUE
C SENDING END IMPEDANCE BECOMES RECEIVING END IMPEDANCE FOR NEXT SECTION 

130 CONTINUE 
140 TYPE 200,LENGTH
200 FORMAT«/,' LINE LENGTH * ',17,' METRES')

ZI IS NOW THE IMPEDANCE PRESENTED TO THE HYBRID BY THE COMBINATION 
OF SUBSCRIBERS APPARATUS AND LINE

COMPUTE THE TRANS-HYBRID FREQUENCY RESPONSE 

DO 170 IF*1,NPTS
ZI(IF)*(ZB(IF)/(ZB(IF)+ZT(IF))>— <ZI<IF)/(ZI<IF)+ZT(IF))) 
ZI(IF)*ZI<IF)*CMPLX(2.0,0.0)
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C WINDOW THE RESPONSE USING HAMMING WINDOW 
ZI(IF)*ZI(IF>*WIND<IF>

170 CONTINUE
T=PI/FL0AT(NPTS2)
COMPUTE THE TRANS-HYBRID RESPONSE IN DB 
CALL RESP(ZI,RES,RESC, T >NPTS)

MIRROR THE RESPONSE ABOUT FS/2 FOR REAL IMPULSE RESPONSE

DO 450 1*1rNPTS1-1
450 ZI(NPTS3-I)=CMPLX(REAL(ZI(1+1)),-AIMAG(ZI(1+1)))

ZI(NPTS)=CMPLX(REAL(ZI(NPTS)),0.0)
COMPUTE ECHO-RETURN-LOSS (ERL) AND STABILITY-RETURN-LOSS (SRL)
CALL EVAL(RES,FINC,NPTS,ERL,SRL)

COMPUTE TRANS-HYBRID IMPULSE RESPONSE

CALL FFT(ZI,NPTS2»1,FL)
SHIFT IMPULSE RESPONSE TO ACCOUNT FOR HIDTH OF MAIN LOBE OF HINDOW 
IN TIME DOMAIN 
DG 270 1*1,NPTS 
J*I-1
IF(J.LT.1)J*J+NPTS2 
ICOEFF<I)=INT(FL(J)*2047.)

270 CONTINUE
CALL MACRO-11 ROUTINE TO LOAD LHS COEFFICIENTS 
CALL L0AD(0,ICOEFF(1))

INITIALISE THE ADAPTIVE FILTER 
DO 300 J=1,12 
IAF(J)*0 

300 CONTINUE
IAF(5)=-2048

C ALLOW FILTER TO ADAPT INITIALLY FOR NINIT ITERATIONS 
DO 310 ITER=1,NINIT

C WRITE COEFFICIENTS TO FILTER 
CALL AFWRIT(0,IAF(1))
CALL SDELAY(NDEL)

C READ SIGNAL SAMPLES FROM THE FILTER 
CALL AFREAD(0,1AFDAT(1))

C CALCULATE NEW COEFFICIENTS USING LINEAR ALGORITHM 
CALL ADLINKGL1 ,GL2,NA,NB)

310 CONTINUE
C CALCULATE RETURN LOSSES 1 OERL = ORIGINAL ERL, FERL * CANCELLED
C ERL, ERLE1 = INITIAL ERLE

CALL AFRLOS(OERL,FERL,ERLE1,NBLK S)
WRITE(5,380)NINIT,ERLE1

380 FORMAT( ' ERLE AFTER',14,' ITERATIONS IS ',FS.l,' DB')
C FINISH ADAPTION

DO 320 ITER*NINIT+1,NITER 
CALL AFWRIT(0,IAF(1))
CALL SDELAY(NDEL)
CALL AFREAD(0,1AFDAT(1))
CALL ADLIN1(GL1,GL2,NA,NB)
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320 CONTINUE
C INITIALISE VARIABLES TO MEASURE AVERAGE 
C COEFFICIENTS OVER NAVG ITERATIONS 

ERLE2*0.0 
0ERLa0.0 
FERL=0.0 
A0 = 0 .0 
A1*0.0 
B1=0.0 
A3=0.0

RETURN LOSSES AND

DO 330 IAVG-1»NAVG 
CALL AFHRIT(0 >IAF(1))
CALL SDELAY(NDEL)
CALL AFREADIO >IAFDAT(1 ))
CALL ADLIN1(GL1,GL2,NA,NB)
AC=AO+FLOAT( IAF(1))
A1=A1+FL0AT(IAF(2))
B1=B1+FL0AT(IAF(3))
A3=A3+FL0AT<IAF(4))
CALL SDELAY(NDEL)
CALL AFRLOS(A > B, C, NBLKS)
OERL=OERL+A 
FERL=FERL+B 
ERLE2=ERLE2+C 
CALL SDELAY(NDEL)

330 CONTINUE
FAVG*FLOAT(NAVG)
A0aA0/FAVG
A1*A1/FAVG
B1*B1/FAVG
A3*A3/FAVG
OERL*OERL/FAVG
FERLaFERL/FAVG
ERLE2aERLE2/FAVG
HRITE( 5 ,3 9 0 ) OERL, FERL, ERLE2

390 FORMAT!' OERL .* '» F 6 . l t / » '  FERL 1 ' r F 6 . l t / , '  ERLE ' ,F 6 .1 )  
C STORE RESULTS FOR SUBSEQUENT PROCESSING

WRITE(IFILE 'LINE+LIND)LINO,LENGTH,OERL»FERL>ERLE1»ERLE2 
1 >A0,A1>B1»A3 

190 CONTINUE 
C GO TO 296

STOP 'RIGHT» THATS IT, IVE HAD ENOUGH '
END

THIS SUBROUTINE EVALUATES ERL AND SRL AND RETURNS THEM IN ARGUMENTS 
B AND C RESPECTIVELY.

SUBROUTINE EVAL(A,FINC,N,B,C>
REAL A(N)

C COMPUTE THE SAMPLE NUMBERS CORRESPONDING TO 300 HZ, 500 HZ, ETC 
IFlaINT(300./FINC) ♦!



n
o
o
n

IF2=INT(500./FINC)+1
IF3=INT(2500./FINC)+1
IF4=INT!3400./FINC)+1

C FIND THE MINIMUM LOSS OVER THE RANGE 300 TO 3400 HZ 
C=A(IF1)
DO 10 I*IFlrIF4 
I F (A ( I ) .GT.C)C*A(I )

10 CONTINUE 
C*-C

C COMPUTE THE AVERAGE LOSS OVER THE RANGE 500 TO 2500 HZ 
B=0.0
DO 20 I=IF2rIF3 
B=B+A(I)

20 CONTINUE
B=-B/FLOAT( IF3-IF2+1 )
RETURN
END

C
C
C
C
C

THIS SUBROUTINE COMPUTES THE FFT OR INVERSE FFT USING RADIX 2 
DECIMATION IN TIME ALGORITHIM

SUBROUTINE FFT(DATA.N ,IS I,RESULT >
COMPLEX DATA(N),TEMP,W,CN 
REAL RESULTIN)
PI*4.0*ATAN(1.0)
FN=N 
J = 1
DO 80 1*1»N 
IF(I-J)30f40,40 

30 TEMP*DATA(J)
DATA!J)=DATA(I)
DATA!I) *TEMP 

40 M=N/2
50 IF!J-M)70t70iS0 
60 J*J-M 

M*!M+l)/2 
GO TO 50 

70 J*J+M 
80 CONTINUE 

MMAX*1
90 IF(MMAX-N)100,130rl30 

100 ISTEP«2*MMAX 
DO 120 M*1»MMAX
THETA*PI*FLOAT( ISI * ! M—1)>/FLOAT( MMAX)
W-CMPLX( COS ! THETA) , SIN(THETA))
DO 110 I*M»NiISTEP 
J*MMAX+I 
TEMP*H*DATA(J)
DATA!J)*DATA(I)-TEMP 
DATA!I)«DATA!I)+TEMP 

110 CONTINUE



IF2-INT(500./FINC)+1 
IF3=INT(2500./FINC>+1 
IF4-INT(3400./FINC)+1

C FIND THE MINIMUM LOSS OVER THE RANGE 300 TO 3400 HZ 
C=A(IF1)
DO 10 I«IF1,IF4 
IF(A(I).DT.C)C«A(I)

10 CONTINUE 
C— C

C COMPUTE THE AVERAGE LOSS OVER THE RANGE 500 TO 2500 HZ 
B=0.0
DO 20 I=IF2rIF3 
B=B+A<I)

20 CONTINUE
B--B/FLOAT(IF3-IF2+1)
RETURN
END

C
C
C
C
C
C
C THIS SUBROUTINE COMPUTES THE FFT OR INVERSE FFT USING RADIX 2 
C DECIMATION IN TIME ALGORITHIM
C

SUBROUTINE FFT< DATA,N ,IS I,RESULT)
COMPLEX DATA(N ),TEMP,U ,CN 
REAL RESULT(N)
PI-4.0*ATAN(1.0)
FN-N 
J = 1
DO 80 I*ltN 
IF(I-J>30,40,40 

30 TEMP-DATAIJ)
DATA(J)=DATA(I)
DATA!I»-TEMP 

40 M-N/2
50 IF(J-M»70,70,60 
GO J-J-M 

M-<M+l>/2 
GO TO 50 

70 J-J+M 
80 CONTINUE 

MMAX-1
90 IF(MMAX-N)100»130r130 
100 ISTEP-2*MMAX 

DO 120 M»1rMMAX
THETA-PI*FLOAT <ISI* < M—1)»/FLOAT(MMAX)
W-CMPLX<COS(THETA),SIN(THETA))
DO 110 I»M»NrISTEP 
J-MMAX+I 
TEMP-H*DATA(J)
DATA!J)*DATA(I»-TEMP 
DATA!I)-DATA!I»+TEMP 

110 CONTINUE



i 20 CONTINUE 
MMAX=ISTEP 
GO TO 90

130 IF(ISI)160, 140.140 
C INVERSE TRANSFORM ! ASSUME THE TIME SERIES IS REAL 

140 DO 150 1=1,N
RESULT(I)=REAL(DATA<I))/FN 

150 CONTINUE 
ISO CONTINUE 

RETURN 
END 

C
c--------------------------------------------------------------------------------------
c
C SU3R0UTINE ADLIN1 IMPLEMENTS THE LINEAR STEEPEST DESCENT 
C ALGORITHM AND UPDATES THE FILTER COEFFICIENTS. IF ICOMP 
C THEN THE ERROR FILTERING COMPENSATION COEFFICIENTS ARE 

! C ALSO UPDATED.

CC--------------------------------------------------------------
c

SUBROUTINE ADLINI(GL1,GL2,NA,NB>
COMMON/AFDATA/IAF<12),IAFDATI13>,NDEL,ICOMP 

C LOOP FOR TRANSVERSAL COEFFICIENTS 
DO 10 IA=1,NA 
T1«IAF(IA>
DEL=GL1*IAFDATIIA)*IAfDAT(13)
T1=T1+DEL
IF(T1.GT.2047.)T1=2047.
IF(T1.LT.-2048.)Tl=-2048.
I AF(IA) = INT(T1)

10 CONTINUE
IF(NB.LE.0)RETURN 

C LOOP FOR RECURSIVE COEFFICIENTS 
DO 20 IB=1fNB 
T1=IAF(IB+5)
DEL=GL2*IAFDAT(IB+5)«IAFDAT<13)
T1=T1+DEL
IF1T1.GT.2047.)T1=2047.
IF(T1.LT.-204B.)T1=-2048.
N1-INTCT1)
IAF<IB+5)*N1 
IF(ICOMP.NE.1)G0 TO 20 
IAF(IB+8 )*-Nl 

20 CONTINUE 
RETURN 
END 

C
C--------------------------------------------------------------
c
c SUBROUTINE ADSGN1 IMPLEMENTS THE STEEPEST DESCENT 
C ALGORITHM USING ONLY THE SIGN BIT OF THE SIGNAL,
C AND UPDATES THE FILTER COEFFICIENTS. IF ICOMP = 1 
C THEN THE ERROR FILTERING COMPENSATION COEFFICIENTS ARE 
C ALSO UPDATED.
C



cc
SUBROUTINE ADSGN1(GL1,GL2,NA,NB)
COMMON/AFDATA/IAF(1Z),IA FD AK13),NDEL,ICOMP 
01=1024.*GL1 
02=1024.*GL2

C LOOP FOR TRANSVERSAL COEFFICIENTS 
DC) 10 IA=1 fNA 
T1=IAF(IA)
DEL=Q1*IAFDAT(13)*ISIGN(1,IAFDAT(IA)) 
T1=T1+DEL
IFCT1.GT.2047.)T1=2047.
IFCTl.LT.-2048.)Tl=-2048.
IAF(IA) = INT(T1 )

10 CONTINUE
IF(NB.LE.0)RETURN 

C LOOP FOR RECURSIVE COEFFICIENTS 
DC) 20 18= 1 > NB 
T1=IAF(IB+5)
DEL*Q2*IAFDAT(13)* ISIGN(1,IAFDATCIB+5)) 
T1=T1+DEL
IFCT1.GT.2047.)T1=2047.
IFCT1.LT.-2048.)Tl=-2048.
N1=INT(T1)
IAFCIB+5)=N1 
IFCICOMP.NE.1)G0 TO 20 
IAFCIB+8 )=-Nl 

20 CONTINUE 
RETURN 
END

\

I



APPENDIX 3

CIRCUIT DIAGRAMS

A3* 1 Circuit Diagram of the Line and Hybrid Simulator

A3.2 Circuit Diagram of the Single Pole Adaptive Filter

A3.3 Circuit Diagram of the Pole-Zero Adaptive Filter

A3.4 Circuit Diagram of the Experimental Digital Recursive 

Adaptive Filter
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APPENDIX 4

DETAILS OF CIRCUIT DESIGN FOR THE ANALOG ADAPTIVE FILTERS

A4*1 Design of the Control Integrators

A4.2 Design of the Differentiator for the Single Pole Adaptive Filter



APPENDIX 4

A4.1 Details of the design of the control integrators for the analog 

adaptive filters

The frequency response of the integrators should be such that 

a.c. signals at the integrator output are sufficiently rejected, and 

do not cause harmonic distortion in the error signal. In the 

following analysis the effect of a given a.c. signal, superimposed on 

the parameter voltage of an adaptive gain circuit, on the return loss 

(RL) which can be achieved by the circuit is calculated. Figure A4.1

shovs a diagram of the circuit, and the error signal can be written 

as: -

e(t) = ox(t)—(ort-r(t) )x(t)

= -r(t)x(t) x

and

e2(t) = r2(t)x2(t) 2

where it has been assuned that the filter has adapted correctly, and

r(t) is the a.c. voltage superimposed on the adaptive gain parameter.

Equation 2 can be written as:-

e2(t) = x2(t)r2(t) + 2 r(t)x(t) 3
(Papoulis, 1965)

The second term of equation 3 indicates that the power in the error 

signal depends on the correlation between r(t) and x(t). The RL can 

be written as:-

x2(t) x2(t) 4
RL * ■= -  * -=̂ - — ----- ---

e2(t) x2(t)r2(t) + 2 r(t)x(t) 2



In the worst case x(t) and r(t) are perfectly correlated, ie: r(t) = 

Ax(t), and under these circumstances the RL can be written as:- 

1
RL = ~ -— -

3 r2(t) 5

Thus for 50 dB minimum RL, r2(t) < 3.3*1(T7. If the input signal is 

sinusoidal, then the integrator provides least rejection of 

a.c. signals at the lowest operating frequency (300 Hz). Thus the

peak to peak a.c. signal at the integrator output should be less than

1.6 mV at 300 Hz.

Figure A4.2 shows the parameter control integrator, where the 

output currents of the control multiplier (Ij and I2 ) are applied 

directly to the inputs of the control integrator. If the operational 

amplifier is assuned to have a transfer function given by:-

H(s) = A/(l+sa) 6

then the integrator output can be shown to be:-

Cli(s) - Io(s)]/sc 7
V o(s) = ----------- -̂-------

l+((l+sa)/A)

Thus if the frequency is such that the open loop gain of the 

amplifier is much greater than 1, then integration is accurate, 

irrespective of the value of C. The operational amplifier used in the 

integrator need not therefore have a very large gain-bandwidth 

product. Assuning:-

A/(l+sa) >> 1 8

and using the equation for the transfer function of the multiplier, 

the output of the integrator is: —

v(t)
“e^ 2

vy(T)v.(x)dT
CRxReIb1as

where vx and vfi are the Input signals, ax and a0 are input 

attenuators and Rx, R0 and W  control the scaling factor of the 

multiplier. The output of the integrator is attenuated by a factor



aa0 to form aQ. Thus the combination of multiplier and integrator 

can be represented by the equivalent circuit shown in Figure A4.3. 

The magnitude of the effective integrator transfer function 1s:-

10
C Rx Re !bias “

The values of the attenuators aa0, ae and ax are fixed by signal 

handling considerations in the various amplifiers. The maximum value 

of rbias is Tinted by the power dissipation of the multiplier, and 

the values of Rx and Re are limited by the maximum signal voltages 

allo/ed in the multiplier. Thus the value of C is chosen such that 

a.c. signals at the output of the integrator are sufficiently 

rejected. Since the signals at the output of the equivalent circuit 

of the multiplier are at very high levels, then very high attenuation 

is required. For example, if the multiplier input signals are 10 V 

pk to pk, then a value of 10 yF for C gives a maximum pk to pk 

a.c. voltage of 1 mV at the integrator output.

To calculate 03, the effective input offset voltage to the 

integrator, the rate of change of a0 with respect to time can be 

written as:-

da£(t) o^glj

dt C

where aa0 is the value of the attenuator at the output of the 

integrator, and I3 is the output offset current of the multiplier.

Thus the value of 03 is:-

I3RxRyIbias

11

°3 ’
2ax<V

12

For the prototype adaptive gain filter, with maximum and minimum 

values of I3, the effective offset voltages at the input to the 

Integrator are 31 V and 154 V respectively. The maximum effective 

d.c. voltage due to the product at the Integrator output is 225 V,



and it can be seen that 03 can have a large effect on the convergence 

of the circuit. The effect of 03 on the final level of RLE which can 

be achieved is small however, due to the high gain of the amplifier

Ae.

A4.2 Details of the design of the differentiator for the single pole 

adaptive filter

In the block diagram of Figure 5.1 the response of the 

differentiator was taken to be:-

H(s) = -scr 13

i.e. an ideal differentiator response. In theory this response could 

be achieved by the use of a resistor, a capacitor, and an operational 

amplifier. In practice the non-ideal amplifier response causes the 

circuit to become unstable. This problem can be controlled by 

introducing two zeros into the open loop transfer function (OLTF) of 

the differentiator, resulting in the circuit of Figure A4.4.

Assenting the response of the operational amplifier to be:-

G(s) = A/(l+sa) 14

then the closed loop transfer function (CLTF) of the circuit 1s:-

H *(s) = -H(s)/ {1 + (1+sa)(1+H(s))/A}

where,

H(s)
SC2R1

(1+sCjRj) (I+SC2R2)

If it is assuned that the open loop gain of the amplifier at the 

frequencies of interest 1s much greater than 1, ie:- 

(l+sa)/A «  1 

and further that:-

15

16

17

H(s)(l+sa)/A «  1

then the response of the circuit 1s:-

18



If the maximum input frequency is such that the effect of the two 

compensation poles C2R2 and CjRj can be neglected, then the the 

circuit has the transfer function of the ideal differentiator.

To ensure the stability of the differentiator, the 

conpensating zeros of the OLTF should introduce phase lead before the 

total phase shift around the loop becomes 180° . The effect of this 

compensation is that at high frequencies the CLTF of the 

differentiator produces -90° phase shift. This could produce 

instability in the loop consisting of the components SI, Dl and M2 

(Figure 5.1) if the error filtering were removed, i.e. if the loop 

were closed via Sw2. This loop will be referred to as the bj 

feedback loop. Removal of error filtering would be necessary once 

the filter has converged, to prevent near-end speech being effected 

by the error filtering function. With error filtering removed, any 

additional phase shift introduced by the operational amplifiers of 

the bj feedback loop could cause oscillation. Since the 

differentiator is the only element in the loop which requires a high 

closed loop gain, it contributes most of the phase shift around the 

loop. To ensure stability of the b2 feedback loop with error i, 

filtering removed, the gain of the loop must be less than unity 

before significant phase shift is introduced by the differentiator 

operational amplifier.

The constraints governing the design of the differentiator 

can be illustrated as shown In Figure A4.5. The transfer function of 

the adaptive filter, using an Ideal differentiator, 1s:-

G(s) = a0/(l+b1sC2R1) 20

and assuning bĵ has a maximum value of +1, then the maximum time 

constant to which the loop can adapt is C2R1. This is required to be 

as large as possible. Similarly the lower of the two pole 

frequencies, say 1/C^Rj, governs the maximum frequency at which



accurate differentiation is possible. Typically 1/CjRj should be a 

decade above the maximum input frequency of the adaptive filter. The 

frequency at which the gain of the differentiator should return to 

unity is determined by the stability requirement for the bj feedback 

loop. To restrict the phase shift introduced by the the response of 

the operational amplifier in the differentiator, the maximum gain 

required of the differentiator should much less than the open loop 

gain of the amplifier (equation 18). If a margin of 20 dB is taken 

as adequate, this requires that the upper unity-gain frequency of the 

differentiator be a decade below the unity-gain frequency of the open 

loop operational amplifier.

The restriction on the value of the upper unity-gain 

frequency thus requires that the maximum time constant to which the 

loop can adapt be traded off against the maximum input frequency for 

which good cancellation can be achieved. In the prototype single 

pole adaptive filter it was found that an upper unity gain frequency 

of 2 MHz guaranteed the stability of the bj feedback loop, using an 

externally compensated operational amplifier. By placing the 

differentiator compensation poles at 19.5 kHz and 21.9 Khz, the 

maximum time constant to which the filter can adapt is 264 yS. This 

is reduced to 120 yS by attenuation around the bj feedback loop.
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PHOTOGRAPHS

A5.1 Photograph of the Pole-Zero Adaptive Filter

A5.2 Photograph of the main Line and Hybrid Simulator Board

A5.3 Photograph of the Experimental Digital Recursive Adaptive
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