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Abstract

Feedback is a key element of galaxy evolution, and the accretion of gas onto a central

supermassive black hole (SMBH) is an important source of feedback. Modelling the en-

ergy released as an optically thick wind (with speed vw) allows observable relationships

between galactic properties to be derived. Models of wind feedback predict that the

momentum-flux of an outflow at large scales will exceed that of the wind source. This

so-called momentum-boosting of large-scale outflows and the presence of small-scale

winds have both been observed in many local active galaxies. This thesis analyses the

dynamical properties of wind-driven shells in order to investigate momentum-boosting

in active galaxies and the observed correlation between SMBH mass (MBH) and stellar

velocity dispersion (σ).

The effects of ambient gas pressure on wind-driven shells are analysed and it is

shown that shells can be become confined by this pressure. The inclusion of ambi-

ent pressure is also shown to formally alter previously derived MBH − σ relations. For

energy-driven shells at large scales it is found that there is an upper limit to momentum-

boosting for a given MBHvw combination, and that maximum possible boosting occurs

for a fixed ratio of wind and shell kinetic energies. It is demonstrated that observed

large-scale outflows have momentum-boosts which are consistent with maximal boost-

ing, and therefore such a scenario may be commonplace for large-scale outflows. By

considering maximally boosted shells an MBH − σ relation is derived which allows for

the interpretation of the scatter in the MBH − σ data as a distribution in momentum-

boosts.

These conclusions and the dynamics of shells are further examined for the case

of a growing SMBH and therefore a non-steady wind. It is shown that infalling shells

are capable of resuming outward motion due to the ever-growing wind force, and that

conditions required for shells to be driven to large radii are not significantly different

from the steady wind case. The conclusions regarding maximal momentum-boosting

for steady winds are demonstrated to still be valid for non-steady winds.
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1

1 Introduction

For nearly a century galaxies have been studied as fundamental structures within the

universe, yet their formation remains an open problem in modern astrophysics. As

we now know it is dark matter haloes which are the fundamental units of cosmic

structure. These haloes form out of density perturbations in the early universe, and

grow hierarchically through the gradual addition of further dark matter to strongly

bound cores (e.g., the review of Frenk & White 2012). It is within these haloes where

baryonic matter condenses to form stars. The subsequent evolution of the galaxy

depends on the hydrodynamical evolution of the constituent gaseous medium, and the

effects produced during the formation of stars and supermassive black holes (SMBHs).

Stars, gas, and dark matter are the quintessential constituents of galaxies, but

there is mounting observational evidence to suggest that central SMBHs are also present

within all large galaxies (see Kormendy & Ho 2013 for a review). This has led to the

discovery that the mass of the SMBH (MBH) correlates with global properties of its host

galaxy. The most prominent of these correlations with the SMBH mass are with bulge

luminosity; Lbulge and bulge mass; Mbulge (Magorrian et al. 1998), and stellar velocity

dispersion; σ (Ferrarese & Merritt 2000; Gebhardt et al. 2000). These correlations

may be the result of primary correlations between the SMBH mass and properties of

the dark matter halo (Ferrarese 2002; Volonteri, Natarajan & Gültekin 2011; Larkin

& McLaughlin 2016). The sphere of influence of an SMBH is far too small to permit

any current causal connection between the black hole gravity and these global galactic

properties. Therefore, these phenomenological correlations are thought to be indicative

of coevolution between the SMBH and the galaxy (Kormendy & Richstone 1995). Such

coevolution may be through a process within the gaseous protogalaxy which causes the

growth of the SMBH to affect the structure of its host, which in turn leads to the

cessation of further black hole growth. Such a process is an example of feedback (Silk

& Rees 1998; Haehnelt, Natarajan & Rees 1998).

SMBHs have masses in the range: MBH ∼ 106−109M⊙, and have grown primarily
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through the accretion of gas. The total energy released in growing an SMBH exceeds

the typical binding energy of large galaxies, and therefore the formation of the SMBH

has the capability to significantly affect its host (Silk & Rees 1998; King & Pounds

2015). A possible consequence of SMBH growth is that the accretion occurs at a rate

high enough to drive an optically thick wind into the gaseous protogalaxy (Fabian 1999;

King & Pounds 2003). This wind can sweep up ambient gas into an outflow consisting

of shocked wind and gas, and if strong enough it has the ability to clear the galaxy

of ambient gas and halt further accretion onto the SMBH. The result of this process

would be a dormant central SMBH with a mass related to the depth of the galaxy’s

potential well, and therefore correlating with present day stellar properties (King 2003;

Murray, Quataert & Thompson 2005).

The dynamics of a wind-driven outflow can be broadly separated into two limiting

regimes based on whether the shocked wind is efficiently cooled (momentum-driving)

or not (energy-driving). Outflows are expected to begin momentum-driven, but will

ultimately transition to the energy-driven regime (Faucher-Giguère & Quataert 2012).

Simple analytical models of protogalactic outflows driven by winds within both regimes

have predicted SMBH masses required for the outflow to reach large radii which are

consistent with the observed MBH−σ correlation (King 2005; McQuillin & McLaughlin

2013; Zubovas & Nayakshin 2014). Further studies have been able to relate this SMBH

mass to properties of dark matter haloes (McQuillin & McLaughlin 2012), and conse-

quently show how the MBH − σ correlation relates to the redshift evolution of galaxies

(Larkin & McLaughlin 2016). Numerical simulations of wind-driven outflows have re-

inforced these results, and have shown that they are also applicable to local active

galaxies. Active galaxies and low redshift quasars host observable outflows, and such

simulations are capable of analysing the anisotropy of outflows and assessing which

driving regime is dominant (Costa, Sijacki & Haehnelt 2014; Zubovas & Nayakshin

2014; Hartwig, Volonteri & Dashyan 2018).

A key insight is that the outflows observed in active galaxies are analogous to

the outflows which have occurred in protogalaxies at high redshift. These gas out-

flows have been observed over a wide range of scales within active galaxies. At small
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(10−100pc) galactic scales observations from Chandra, XMM-Newton and Suzaku of

X-ray absorption are consistent with fast vw ∼ 0.01− 0.1c winds with mass loss rates

typically Ṁw ∼ M⊙ yr−1 (e.g. Sako et al. 2001; Pounds et al. 2003b; Tombesi et al.

2010; Gofford et al. 2013). These winds can have momentum-fluxes of similar order

to the central source, Ṁwvw ≈ LAGN/c. At larger (1−10kpc) galactic scales obser-

vations of molecular (CO and OH) absorption are consistent with outflows travelling

at more moderate speeds (vout ∼ 100 − 1000 km s−1), but with large mass outflow

rates Ṁout ∼ 100 − 1000M⊙ yr−1 (e.g. Sturm et al. 2011; Cicone et al. 2014). The

momentum-fluxes of these large-scale outflows are found to be boosted to many times

that of the source. For a limited number of galaxies the presence of small scale winds

and large scale outflows have been observed within the same system (Tombesi et al.

2015; Feruglio et al. 2015), and it is these objects which are the most promising for

testing the dynamical predictions of the wind feedback model at these limiting galactic

scales.

In order to remain analytically tractable most of the analytical models of wind-

driven outflows have retained a number of simplifying assumptions which are restric-

tive. One such assumption is that the ram pressure of the ambient medium can be

neglected. Although it is included in some calculations (Faucher-Giguère & Quataert

2012) its effects have yet to be examined in their own right. A further assumption

commonly found is that the SMBH mass is constant. This is in contradiction to the

core assumption that the SMBH is growing via the accretion of matter, and there are

few analytical studies which have treated this issue in isolation (see Gilli et al. 2017).

This thesis attempts to address these issues; by first investigating the dynamical effects

of ambient gas pressure, and then by extending the results at large scales to obtain a

clear observational context in terms of momentum-boosting, and ultimately going on

to introduce the temporal aspects of SMBH growth.
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1.1 Galaxies

1.1.1 Galaxy Morphologies

Galaxies were first recognised by the appearance of their stellar content (Hubble 1926),

and can be broadly grouped into four types: ellipticals, lenticulars, spirals and irregu-

lars. This led to the development of the Hubble-Sandage classification scheme (Hubble

1936; Sandage 1961) which is represented concisely as the Hubble ‘Tuning fork’ shown

in Figure 1.1. Originally thought of as an evolutionary path the Hubble sequence shown

in Figure 1.1 led to the convention that elliptical galaxies are referred to as early-type

galaxies, and spiral galaxies are referred to as late-type.

Elliptical galaxies are ellipsoidal (or spheroidal) in appearance. They are denoted

EN, with N ≡ 10× (1− b/a), where 0 < N < 7, and with a and b the apparent major

and minor axes of the ellipsoid respectively. Hence an E0 galaxy appears circular,

whereas an E7 (b/a = 0.3) galaxy appears as a highly elongated ellipse. Extremely

flattened elliptical galaxies with axis ratios b/a < 0.3 have not been observed.

Ellipticals can be subdivided further on whether they appear ‘boxy’ or ’disky’

(see Figure 1.1), with very disky ellipticals being similar in appearence to lenticular

galaxies. Lenticular galaxies consist of a central condensation of stars, called the bulge

(which itself structurally resembles an elliptical galaxy), and the envelope, a flatter, less

concentrated region of stars beyond the bulge. Lenticular galaxies can be subclassified

based on whether or not the galaxy displays a bar-like structure of stars across the

galactic centre. They are denoted S0m (or SB0m if a bar is present), where m denotes

the presence of absorbing dust around the bulge, and ranges between 1 (no absorbing

dust) to 3 (high level of absorbing dust). Lenticular galaxies can be viewed as an

intermediate morphological type between elliptical and spiral galaxies.

Most spiral galaxies have a spheroidal bulge situated in a disk which hosts spiral

concentrations of stars. These are called the spiral arms of the galaxy. Spiral galaxys

are subdivided based on whether they contain a bar, and are denoted Sa, Sb or Sc

(equivalently SBa, SBb, and SBc for barred spirals). Sa galaxies have luminous bulges,
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Figure 1.1: The Hubble sequence showing the range of galaxy morphologies. On the
left are the elliptical galaxies which are subdivided into boxy (E(boxy)n) and disky
(E(disky)n) types (shown here with n = 4). The ellipticals are connected to the
lenticular (top) and spiral galaxy (bottom) branches through the S0 lenticulars. The
lenticular branch shows the three different types (left-to-right: S0a,S0b,S0c) of lentic-
ulars based on their (decreasing) bulge-to-total light ratios. The spiral branch shows
the three different types (left-to-right: Sa,Sb,Sc) of spirals based on the (decreasing)
prominance of the bulge and the (increasing) diffuseness of the spiral arms. The two
branches connect through the dwarf-spheroidals and irregular Im galaxies. (See Kor-
mendy & Bender 2012 for discussion and original image.)

and possess tightly wound spiral arms. These three properties become progressively

reduced in Sb, Sc and Sd spirals, such that the bulge is progressively less luminous

(ultimately vanishing in an Sd spiral), and the spiral arms are progressively less defined.

The same subdivision can be extended to lenticular galaxies by considering their bulge-

to-disk ratio. Bulge dominated lenticulars can therefore be denoted S0a, with S0b and

S0c having progressively smaller bulge-to-disk ratios.

Any galaxies that cannot be readily placed within the Hubble Sequence are re-

ferred to as irregular galaxies. These galaxies display asymmetry and lack a clearly

defined nucleus. They are broadly grouped into two categories. Irr I galaxies are de-

fined as those which show some structure, and are labeled Sm if spiral structure is

present, or labelled Im if not. Irr I galaxies could be considered as an extension of
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the spiral branch (see Figure 1.1). Irr II galaxies however have little structure, and

therefore cannot be classified within the Hubble sequence.

Ellipticals, spirals, and irregulars have a further subtype: the dwarf galaxy. Dwarf

galaxies are the smaller counterparts of these galaxy types, and are denoted with a lower

case d, such as dE for a dwarf-elliptical galaxy. Dwarf elliptical galaxies typically have

masses of 107−109M⊙, and luminosities between 105−107L⊙. This is the lower end of

the observed range of masses 105−1012M⊙ and luminosities 105−1012L⊙ of ellipticals.

Dwarf spheroidal galaxies are another distinct dwarf galaxy type, with luminosities

even lower than those of dwarf ellipticals. Dwarf ellipticals are very common whereas

dwarf-spirals are very rare. Locally, dwarf galaxies are the most common galaxy type,

but due to their low luminosities they become difficult to detect at greater distances.

The Hubble-Sandage scheme is one of many such visual classification schemes

(see Binney & Merrifield 1998 for an overview), which are very useful in describing

the broader structural features which are helpful in understanding the evolution and

internal dynamics of galaxies. However, when faced with large sample sizes of galaxies,

alternative and more detailed approaches are used which utilise parameters that can

be derived from galaxy light distributions via computational analysis. The surface

brightness distributions of galaxies can be fitted by surface brightness functions I(R)

of projected distance R from the galaxy’s centre which vary based on the morphological

type of the galaxy. For elliptical galaxies and the bulges of spiral and S0 type galaxies

the R1/4 law (de Vaucouleurs 1948) can be used:

I(R) = Ie10
−3.33[(R/Re)1/4−1] , (1.1)

where Re is the effective (or half-light) radius, defined as the projected radius within

which half the total luminosity is emitted, and Ie is the intensity at the half-light radius.

Dwarf ellipticals and the disks of spiral galaxies are better fitted by an exponential

function:

I(R) = I0 exp (−R/h) , (1.2)

with I0 the central surface brightness, and h the disk scale length. Both the de Vau-

couleurs law and exponential function can be encompassed within a generalised form
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which was introduced by Sérsic (Sérsic 1968):

I(R) = Ie10
−bn[(R/Re)

1/n
−1] , (1.3)

where the constant bn is defined such that half the total luminosity is within R <

Re. The parameter n is known as the Sérsic index, and if n = 4 then the R1/4 law

is recovered whereas if n = 1 then the resulting light distribution is exponential in

form. The Sérsic index has been shown to correlate with elliptical galaxy and bulge

luminosities (Graham 2001; Graham & Guzmán 2003).

1.1.2 Galaxy Masses

The masses of spiral galaxies can be estimated as a function of the circular speeds

Vc of the rotating stars and gas in the disk by assuming a spherically symmetric mass

distribution, and equating the centripetal acceleration to the gravitational acceleration.

This leads to the equation:

Msp(r) =
V 2
c r

G
. (1.4)

When reaching large radii the mass of a spiral galaxy should converge and equation

(1.4) predicts that the rotation velocities fall off as r−1/2 (i.e. are Keplerian). However,

observations of spirals have shown that the rotation velocities tend to a constant at

large radii beyond the luminous regions (Rubin & Ford 1970; Ostriker, Peebles & Yahil

1974, see also Figure 1.2) which by equation (1.4) implies the presence of dark matter

with a roughly linear dependence on r at large galactic radii.

The masses of galaxy bulges or elliptical galaxies can be determined from their

stellar dynamics. In galaxies the stars compose a gravitationally bound system which

is assumed to be in dynamical equilibrium. This assumption is justified as long as the

crossing time of the galaxy is much less than the age of the galaxy: tcr = R/ 〈v〉 ≪ tage,

where R is the galaxy radius and 〈v〉 is the average speed of a star. If this is the case

then the system in equilibrium satisfies the virial theorem (see Binney & Tremaine

2008 for its derivation):

2K +W = 0 , (1.5)
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Figure 1.2: Rotation velocities in the spiral galaxy M31 plotted against distance to the
galaxy centre. The solid curve is the adopted rotation curve, and the dashed curve is
a second rotation curve which requires the density to always be positive. (Reproduced
from Rubin & Ford 1970)

where K = M 〈v2〉 /2 is the global kinetic energy of the stellar system with total mass

M , and W is the gravitational potential energy. If the velocity dispersion is assumed

to be isotropic then the line-of-sight velocity dispersion is related to the mean square

speed by: 〈v2〉 = 3σ2
l.o.s. Equation (1.5) leads to: 2K = 3Mσ2

l.o.s = −W , and the

gravitational radius can be introduced as a useful scale:

rg ≡
GM

3σ2
l.o.s

≃ 3.6 kpc

(

M

1011M⊙

)(

200 km s−1

σl.o.s

)2

. (1.6)

Assuming a power law density distribution ρ ∝ rp−3 for a galaxy, with p > 0, and

assuming also that the mass converges within the radius R means that the mass of a
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galaxy can be expressed as:

M(R) =

∫ R

0

4πr2ρ(r) dr =
4πρgrr

3
g

p

(

R

rg

)p

, (1.7)

where ρgr is the density at rg. Using equation (1.5) allows the mass of the system to

be expressed as:

M(R) =
3(2p− 1)

p

Rσ2
l.o.s

G
. (1.8)

For a system with constant density (p = 3) the multiplicative factor is 3(2p−1)/p = 5,

and for a system with linear mass growth (p = 1) the factor is 3(2p − 1)/p = 3.

Equation (1.8) is a useful estimate for the mass of a bulge or elliptical galaxy, but it is

valid only for globally defined values of M and σ.

By observing the motions of globular clusters surrounding elliptical galaxies it

has been shown that the velocity dispersion remains approximately constant outside

of the galaxy (Côté et al. 2003). This would indicate the presence of unobservable

dark mass, or dark matter (Zwicky 1933) surrounding the galaxy in a halo with a

linear dependence on r. A simple model of dark matter which replicates the M(r) ∝ r

behaviour is the singular isothermal sphere (SIS). The SIS has a centrally singular

density profile:

ρ(r) =
σ2

2πGr2
, (1.9)

which is obtained by considering an isothermal self-gravitating sphere of gas with tem-

perature:

T =
mσ2

kB
, (1.10)

where kB is the Boltzmann constant, and m is the mass of an individual particle.

Equation (1.10) shows that the velocity dispersion is constant at all radii within the

SIS. The mass profile of the SIS is:

M(r) =

∫ r

0

4πu2ρ(u) du =
2σ2r

G
. (1.11)

This replicates the linear r dependence of dark matter at large radii in ellipticals, and

the combined dark matter and stellar mass at large radii in spirals. Despite its singular
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nature and infinite mass the SIS halo model is still routinely used as a zeroth-order

model for treating dark matter haloes. More effective models of dark matter haloes have

been found from numerical simulations of dark matter within a cosmological context,

and this subject is treated in more detail in Section 1.2.

1.1.3 Galaxy Colours

Through the analysis of large sample sizes obtained from the SDSS and 2dF galaxy

surveys it was found that galaxies can be broadly separated into red and blue sequences

(see Figure 1.3). Red galaxies were found mainly to be high-mass early-type galaxies

with little to no star formation, and are often dubbed ‘old, red and dead’ galaxies.

Blue galaxies were found mainly to be late-type galaxies undergoing star formation.

Early-type galaxies lose their gas reservoir rapidly over time scales less than

250 Myr, and move quickly through the green valley (from blue to red). Late-type

galaxies lose their gas reservoir over longer time scales of around 1 Gyr, and therefore

move more slowly through the green valley (Schawinksi et al. 2014). This leads to the

question of what was responsible for rapidly clearing gas and consequently shutting

off the star formation in early-type galaxies at higher redshift. A first step towards

understanding how this may have occurred can be gained by looking at a further galaxy

type: active galaxies.

1.1.4 Active Galaxies

Active galaxies are those which possess very luminous active galactic nuclei (AGN) rel-

ative to their total luminosity. AGN were discovered as extragalactic quasi-stellar radio

sources (Schmidt 1963) and consequently dubbed quasars. Quasars can be millions of

times more radio luminous than our own Galaxy, but strong radio emission is not a

necessary feature of most quasars (Sandage 1965). The luminosities of quasars can be

101−105 more luminous than the Milky Way, which has a luminosity of LMW ∼ 1010L⊙.

Most of the radiation emitted from AGN is non-thermal, and therefore from a non-
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Figure 1.3: Galaxy colour as a function of stellar mass. Galaxy morphologies were
determined using Galaxy Zoo visual classifications (Lintott et al. 2008). The left panel
shows all galaxies, the top-right shows early-type galaxies, and the bottom-right shows
late-type galaxies. This figure shows that most early-type galaxies occupy the red-
sequence. Late-type galaxies peak in the blue-sequence but also reach into the red-
sequence. The green lines indicate the ‘green valley’ which is a transitional phase for
both early- and late-type galaxies. (Reproduced from Schawinksi et al. 2014)

stellar source. Normal elliptical galaxies which are collections of stars can be treated

as black bodies, and therefore their spectra occupy a small range in wavelengths with

weaker radiation at shorter wavelengths (relative to the optical band). AGN however

have broad spectra which occupy a wide range of wavelengths, and feature strong emis-

sion lines relative to normal galaxies as shown in Figure 1.4. The emission from AGN

can be highly variable with luminosities changing on timescales which can be as short

as days.
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Figure 1.4: Comparison of AGN spectra. Each panel shows intensity against wave-
length. The top-left panel shows the spectrum for the BL Lac object 0814+425
(upper) and a composite spectrum of multiple quasars (lower). The bottom-left
panel shows the spectra for the LINER in NGC 4579 (upper) and the normal spi-
ral galaxy NGC 3368 (lower). The top-right panel shows the spectra for the Seyfert
I galaxy NGC 4151 (upper) and the Seyfert II galaxy NGC 4951 (lower). The
bottom-right panel shows the spectra of broad-line radio galaxy (BLRG) 3C 390.3
(upper) and narrow-line radio galaxy (NLRG) Cygnus A (lower). (Reproduced from
https://pages.astronomy.ua.edu/keel/agn)

A class of radio-loud AGN which exhibit rapid variability are blazars (or BL Lac

objects) which have spectra devoid of any emission lines typically seen in quasars. A

class of radio-quiet AGN which are analogous to low-luminosity (0.1−10LMW) quasars

are Seyfert galaxies which display narrow emission lines consistent with gas velocities
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of 500 − 1000 km s−1. Seyfert galaxies can be divided into two classes: Seyfert Is

which display broad-line emission (in addition to narrow-line emission) indicating gas

velocities of 1000− 5000 km s−1; and Seyfert IIs which display only narrow-line emis-

sion. These were unified (Antonucci 1993; Miller 1994) under the scheme illustrated

in Figure 1.5 in which Seyfert II galaxies differ only from Seyfert Is simply by their

orientation. In Seyfert IIs the broad emission-line region (BLR) is obscured by a dusty

torus. There are also radio-loud galaxies which (like Seyfert galaxies) exhibit narrow-

and broad-line emission, and their spectra are shown in Figure 1.4. A further type of

AGN are low-ionisation nuclear emission-line regions (LINERs) which are less luminous

than other AGN, but are very common amongst local galaxies. The high luminosities

of AGN, their compact form, variability, and the observed broad-band spectra indicate

that the source of their energy is compact and non-stellar in nature. These features of

AGN suggest that the required source of high energy is a central accreting supermas-

sive black hole (SMBH) (Salpeter 1964; Lynden-Bell 1969; Rees 1977). The radiation

from AGN is emitted by particles as they accelerate during their infall onto the SMBH

via a succession of quasi-circular orbits. For a particle with rest mass m0 and angular

momentum per unit mass l close to a Schwarzschild black hole the following radial

equation of motion applies (see Krolik 1999):

1

c2

(

dr

ds

)2

=

(

E∞

m0c2

)2

−
(

1− 2GMBH

rc2

)(

1 +
l2

c2r2

)

, (1.12)

where s is the proper time, and E∞ is the particle’s energy at infinity. Equation

(1.12) can be analysed as if it were a classical equation of motion by relating E∞ to a

pseudo-energy of the particle by E∗ = (E∞/m0c
2)2/2, and the effective potential can

be written:

Veff(r) =
1

2

(

1− 2GMBH

rc2

)(

1 +
l2

c2r2

)

. (1.13)

The effective potential has extrema when:

rm =
l2

2GMBH

[

1±
√

1− 12(GMBH/lc)2
]

, (1.14)

only if l ≥
√
12GMBH/c. The smallest stable orbit occurs at rmin = 6GMBH/c

2, i.e.
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Figure 1.5: AGN unification scheme. The central SMBH is surrounded by a gaseous
accretion disk which is approximately 0.001pc across. At a distance of around 0.1pc are
the fast moving gas clouds in the BLR which produce the broad emission-lines observed
in some AGN spectra. Optically thick cold gas surrounds the BLR in the form of a
torus which is ∼ 10pc across, and which obscures the BLR in Seyfert II galaxies. At a
distance of approximately 100pc small slow moving low density gas clouds are located.
The jets inject energy into this region which is emitted by the clouds and is observed
as narrow emission-lines in AGN spectra. (Reproduced from Ferrarese & Ford 2005)

three times the Schwarzschild radius:

rS ≡ 2GMBH

c2
. (1.15)

The maximum efficiency of energy conversion (denoted η) for gas falling into a Schwarz-

schild black hole is found from the binding energy Eb of a particle at the radius of

smallest stable orbit. The binding energy can be found by subtracting the energy of
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the particle at infinity from the rest mass of the particle; first by finding the pseudo-

energy of the particle E∗(rmin) = Veff(rmin) = 4/9, and then by finding the energy at

infinity E∞ =
√

2E∗(rmin)m0c
2 = (

√
8/3)m0c

2 and subtracting it from the rest mass

energy to give Eb = (1 −
√
8/3)m0c

2 ≃ 0.057m0c
2. Therefore the accretion efficiency

for a Schwarzschild black hole is approximately η ≡ Eb/m0c
2 ≃ 0.06. For a rotating

(Kerr) black hole, the angular momentum of the black hole leads to a smallest stable

orbit for the infalling particle to be much smaller, and consequently the binding energy

of the particle to be much larger. This means that the accretion efficiency could be as

high as η = 0.42 for a rotating black hole.

For hydrogen gas falling toward the black hole at a distance far enough away that

Newtonian physics applies (r ≫ rS) the outwards force on the infalling particles due

to radiation emitted with luminosity L is:

Frad =
σT

4πr2
L

c
, (1.16)

where σT is the Thomson cross section. The force due to radiation depends on distance

in the same way as that from gravitation due to the black hole:

Fgrav = −GMBHmp

r2
, (1.17)

where mp is the proton mass. Balancing these two forces: Frad + Fgrav = 0 leads to a

critical luminosity called the Eddington luminosity:

LEdd =
4πGMBHmpc

σT

≃ 1.3× 1038
(

MBH

M⊙

)

erg s−1 , (1.18)

where mp is the proton mass, and σT/mp ≡ κ ≃ 0.04 m2 kg−1 is the Thomson scatter-

ing opacity.

If an accreting black hole produces radiation with luminosity LEdd then it is said

to be accreting at the Eddington rate ṀEdd ≡ LEdd/ηc
2. Considering a black hole

which accretes with efficiency η at a constant fraction q of the Eddington rate shows

that such a black hole grows exponentially:

dMBH

dt
=

q

η
ṀEdd =

q

η

4πGMBH

κc
=⇒ MBH(t) = M0 exp

[

4πqGt

ηκc

]

. (1.19)
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The Salpeter (or e-folding) time is therefore (Salpeter 1964):

tS =
MBH(t)

ṀBH(t)
=

ηκc

4πqG
≃ (4.5× 107)

( η

0.1

)

(

1

q

)

yr . (1.20)

An estimate of typical SMBH masses can be obtained by considering the luminos-

ity function of quasars (Soltan 1982). Since the luminosity function of quasars varies

with redshift (see Figure 1.6) any expression for the number density of quasars with

luminosity L would also be a function of redshift: n(L, z) dL. Therefore the density

of mass accreted by these black holes would be the product of the number of quasars

with luminosity L (divided by ηc2) and integrated over cosmic time. The density can

also be expressed in terms of the number of quasars N in redshift interval dz with flux

densities S in the interval dS:

ρBH =
1

ηc2

∫ ∫

Ln(L, z) dL dt

=
4π

ηc3

∫ ∫

(1 + z)S N(S, z) dS dz .

(1.21)

Considering that the peak in quasar activity is z ∼ 2 (see Figure 1.6) we can

assume 1+z ∼ 3, and
∫

SN(S)dS can be found from the counts of radio quiet quasars.

A corrective factor of Fbol/10FB can be applied which accounts for the conversion of

B-band luminosities to bolometric luminosities (Krolik 1999). Then comparing with

the density of galaxies with luminosities close to the characteristic luminosity of field

galaxies: L∗ = 2× 106(H/0.75)3 G pc−3 gives the mean BH mass per galaxy to be:

〈MBH〉 = 1.6× 107
(

Fbol

10FB

)(〈1 + z〉
3

)(

H

0.75

)−1
( η

0.1

)−1

. (1.22)

This means that at the centre of every large galaxy should reside a ‘dead quasar’ in

the form of an SMBH with a mass of order: MBH ≈ 107M⊙.

There is mounting observational evidence to support this result (Kormendy &

Ho 2013). The measured SMBH masses (see Section 1.3) are also found to correlate

with global properties of their host galaxies such as bulge mass and velocity dispersion

(see Section 1.4). Since these galactic properties are outside the direct gravitational

influence of the SMBH it is likely that the SMBH and the galaxy interacted via a process
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Figure 1.6: Evolution of AGN bolometric luminosity density as a function of redshift.
The red band is computed from a compilation of X-ray luminosity functions integrated
in the range logLX = 42−45 (see Fiore et al. 2017 for details). The solid blue line is the
bolometric AGN luminosity density from Aird et al. (2015). The cyan band shows the
UV luminosity density (reflecting star formation) averaged from Santini et al. (2009),
Gruppioni et al. (2015), Bouwens et al. (2011) and Bouwens et al. (2015), and the
black line is the same from the review by Madau & Dickinson (2014). (Reproduced
from Fiore et al. 2017)

at higher redshift. This interaction is likely to have occurred during the accretion phase

of the SMBH.

If the large masses of these central SMBHs were the result of gas accretion within

protogalaxies then they must have released a large amount of radiative energy back

into the gas feeding the black hole. The energy released in forming a 107M⊙ black
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hole is:

Eacc = ηMBHc
2 ∼ 2× 1060

(

MBH

107M⊙

)

erg . (1.23)

This is larger than the binding energy of a host bulge of mass 1011M⊙ (as shown in

the review by King & Pounds 2015):

Ebulge ∼ Mbulgeσ
2 ∼ 8× 1058

(

σ

200 km s−1

)2

erg . (1.24)

This means that these now dormant SMBHs can significantly affect their host galaxy

during their growth. The energy released during accretion may be able to couple with

the ambient gas in the protogalaxy either through an optically thick wind (King &

Pounds 2003) or by radiation pressure on dust (Fabian 1999). If this occurs then the

surrounding gas could be driven away from the SMBH, and in doing so halt further

accretion onto the SMBH. The clearing of gas from the galaxy and termination of

accretion resulting from the growth of an SMBH is an example of a feedback process.

Such a feedback process could explain the rapid clearing of gas in early-type galaxies

which result in them becoming ‘red and dead’, and how SMBH masses come to correlate

with the global properties of their host galaxy.

In order to understand the feedback process in detail it is required that properties

of dark matter haloes are introduced properly, and this is carried out in Section 1.2.

This is then followed by an overview of SMBHs, and how they correlate with galactic

properties in Sections 1.3 and 1.4, respectively. In Section 1.5 some of the physical

processes responsible for feedback and the observational evidence in support of these

processes are explained. This chapter concludes with an outline of the thesis in Section

1.6.
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1.2 Dark Matter Haloes

1.2.1 ΛCDM Cosmology

Nonbaryonic dark matter is the dominant form of matter in the universe accounting

for approximately 85% of all matter (Planck collaboration 2016). A small fraction of

baryonic matter is dark, i.e. non-luminous matter such as SMBHs and planets. The

favoured cosmological model of dark matter is cold dark matter (CDM) (Blumenthal

et al. 1984) which requires the velocities of dark matter particles to be cold in the

early universe in order to account for the small scale clumping required to explain the

observed galactic scale fluctuations. CDM favours the hierarchical merging of smaller

dark matter structures formed from matter density perturbations which are upscaled

from cosmic inflation to form larger haloes as opposed to the fragmentation of bigger

structures (see review by Frenk & White 2012).

1.2.2 Halo Density Profiles

N-body simulations of structure formation in ΛCDM cosmologies lead to the use of

double power law profiles for the dark matter density in haloes. The (α′, β′, γ′) profile

of dark matter haloes utilises a ‘universal’ double power law density function of the

form (An & Zhao 2013):

ρDM(r/rsc) = ρsc2
(β′−γ′)/α′

(

r

rsc

)−γ′

[1 + (r/rsc)
α ′]

(γ′−β′)/α′

. (1.25)

Five parameters define these profiles: ρsc is the density at the scale radius rsc. The

scale radius marks the region of transition from the −γ′ inner logarithmic slope to the

−β′ outer logarithmic slope, and α′ dictates the degree of this transition (Merritt et al.

2006). For realistic dark matter haloes the parameter γ′ is typically ∼ 1, i.e. shallower

than the singular isothermal sphere at small radii (see equation 1.9). At large radii the

parameter β′ is typically ∼ 3 − 4, and therefore steeper than the singular isothermal

sphere (Dehnen & McLaughlin 2005). This means that the circular speed curves of
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these non-isothermal haloes:

V 2
c (r) =

GMDM(r)

r
, (1.26)

will have a well defined peak at a radius denoted rpk.

The so-called Hernquist profile (Hernquist 1990; Dubinski & Carlberg 1991) has

the parameter values: (α′, β′, γ′) = (1, 4, 1). This profile has a projection very close to

the R1/4 law, but unlike the Sérsic profile it has an analytical mass distribution (see

Table 1.1). The mass profile M(r) of the Hernquist halo scales like r2 at small radii and

converges at large radii. Two other profiles that are included in equation (1.25) are the

Moore profile (Moore et al. 1998; Moore et al. 1999) which has: (α′, β′, γ′) = (1, 3, 1.5),

and the NFW profile (Navarro, Frenk & White 1996, 1997) which has: (α′, β′, γ′) =

(1, 3, 1). The NFW profile also scales like M(r) ∝ r2 at small radii, but instead of

converging at large radii it diverges logarithmically instead.

Despite the empirical justification for the profile given by equation (1.25), there

is no theoretical motivation for this form. An alternative is to begin with the simpler

empirical fact, and perhaps more fundamental aspect that simulated haloes satisfy a

ρ− σ relation of the form (Taylor & Navarro 2001; Hansen 2004):

ρ(r)

σǫ′
r

∝ r−ξ , (1.27)

where σr is the radial component of velocity dispersion, ξ ∼ 1 − 2, and ǫ′ ≃ 3. This

equation can then be used as a constraint when deriving the halo density profile from

the spherical Jeans equation:

d

dr
ρσ2

r +
2B(r)

r
ρσ2

r = −ρ(r)
GM(r)

r2
, (1.28)

which for B = 0 is effectively the equation of hydrostatic support. Departure from this

equation is quanitified by the parameter B(r) = 1− (σ2
θ + σ2

φ)/2σ
2
r which characterises

the anisotropy (with B ∼ 0 implying isotropy). The Jeans equation can then be solved

leading to a family of solutions (Dehnen & McLaughlin 2005). In the isotropic case,

the following Dehnen-McLaughlin profile can be obtained:

ρ(r) =
5

9

Mtot

πr3sc

(r/rsc)
−7/9

[1 + (r/rsc)4/9]
6 . (1.29)
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In terms of the parameters in equation (1.25) this profile has (α′, β′, γ′) = (4
9
, 31

9
, 7
9
),

and as with the other profiles it has a well defined peak in Vc(r).

Further haloes of interest are the Burkert profile which is suitable for the mass

profiles of dwarf galaxies (Burkert 1995), and the Einasto profile which applies a Sérsic-

type fitting function (equation 1.3) for the three-dimensional mass density profile

(Einasto 1965). Each of these profiles is detailed in Table 1.1. They perform com-

paratively well with one another in describing dark matter haloes (for an overview see

Merritt et al. 2006). A comparison of the density, mass and circular speed curves of

the SIS halo (equation 1.9) with the non-isothermal haloes from Table 1.1 are shown in

Figure 1.7. This figure shows that for all of the listed non-isothermal haloes the den-

sity profiles are shallower than isothermal at small radii and steeper than isothermal

at large radii, and that all haloes possess a well defined peak in their circular speed

curves at rpk.

1.2.3 Protogalactic Gas

Dark matter haloes accrete baryonic matter within their deep potential wells leading

to the formation of stars. This cosmological infall of gas is expected to occur superson-

ically, which causes shocks to form and the infalling gas to become thermalised (Rees

& Ostriker 1977). If the heated gas cools then it will lose pressure support and fall

to the centre. This will increase the density and lead to star formation in the halo

core. Estimates of cooling rates indicate that massive dark matter haloes should have

‘overcooled’. This would lead to the formation of more massive galaxies than any seen

today (White & Rees 1978; White & Frenk 1991; Benson et al. 2003). A solution to

this overcooling problem is a feedback process which is capable of limiting cooling by

energy injection back into the gas. Such a process may arise from supernovae during

star formation as the gas condenses, or from radiative accretion onto a central black

hole (see Sections 1.1.4 and 1.5). The energy from supernovae is insufficient to heat the

entire halo, and therefore energy input from AGN is favoured (see review by Benson

2010). This energy is likely to be in the form of an outflow due to super-Eddington ac-
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cretion (King 2009). Much like how AGN feedback is invoked to explain how early-type

galaxies become ‘red and dead’ the overcooling problem is another aspect of galaxy for-

mation where the presence of a centrally accreting SMBH is warranted. The question

of how these black holes form, and how they are detected is treated in the following

section.
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Figure 1.7: Density, mass, and circular speed curves for the SIS, Hernquist, NFW,
Dehnen-McLaughlin, Burkert, and Moore dark matter haloes plotted against halo ra-
dius. The halo radii are normalised to rpk: x ≡ r/rpk. Top: Density distributions
normalised to the density at x = 1. Middle: Mass distributions normalised to halo
mass at x = 1. Bottom: Circular speed profiles normalised to the circular speed at
x = 1.
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ρDM(x) MDM(x) Vc(x)

SIS
σ2

2πGx2
2σ2x

G
2σ2

Hernquist
8ρpk
x

(1 + x)−3 4Mpkx
2 (1 + x)−2 4GMpk

rpk
x (1 + x)−2

NFW
4ρ−2

Rx
(1 +Rx)−2 Mpk

ln(1 +Rx)−Rx/ (1 +Rx)

ln(1 +R)−R/(1 +R)

GMpk

rpk

ln(1 +Rx)−Rx/ (1 +Rx)

x [ln(1 +R)−R/(1 +R)]

Dehnen-

McLaughlin

26ρ0
[

(11/9)9/4x
]−7/9

{

1 +
[

(11/9)9/4x
]4/9

}6 Mpk

(

20

11

)5
(

(11/9)x4/9

1 + (11/9)x4/9

)5
GMpk

rpk

(

1

x

)(

20

11

)5
(

(11/9)x4/9

1 + (11/9)x4/9

)5

Burkert
4ρ0

(1 +Rx)(1 +R2x2)
Mpk

ln
[

(1 +Rx)
√
1 +R2x2

]

− tan−1(Rx)

ln
[

(1 +R)
√
1 +R2

]

− tan−1(R)

GMpk

rpk

ln
[

(1 +Rx)
√
1 +R2x2

]

− tan−1(Rx)

x{ln
[

(1 +R)
√
1 +R2

]

− tan−1(R)}

Moore
23/2ρ0

(Rx)3/2(1 +Rx)3/2
Mpk

sinh−1
(√

Rx
)

−
√

Rx/(1 +Rx)

sinh−1
(√

R
)

−
√

R/(1 +R)

GMpk

rpk

sinh−1
(√

Rx
)

−
√

Rx/(1 +Rx)

x
[

sinh−1
(√

R
)

−
√

R/(1 +R)
]

Table 1.1: Dark matter profile density, mass, and circular speed functions. For the non-isothermal haloes x ≡ r/rpk.
The constant for the NFW halo is: R = rpk/r−2 ≃ 2.163, whereas for the Burkert halo: R = rpk/r0 ≃ 3.245, and
Moore halo: R = rpk/r0 ≃ 1.055.
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1.3 Supermassive Black Holes

1.3.1 Growth from Seed Black Holes

As discussed in Section 1.1.4, SMBHs with masses ∼ 107M⊙ reside in the centres of

most galaxies (Ferrarese & Ford 2005; Kormendy & Ho 2013), but how they formed

remains an unsolved and complex problem in astrophysics. Growth of these SMBHs

by accretion is responsible for powering quasars observed at redshifts as high as z > 6

(Barth et al. 2003) which indicates the presence of SMBHs when the universe was less

than 1 Gyr old. Before SMBHs can grow by accretion of gas there must be a seed black

hole to begin with. There are many possible explanations for how these seeds may

have formed (Rees 1978), but three popular explanations are (see Volonteri 2010 for

a review): direct gas collapse (Haehnelt & Rees 1993), stellar mergers in high redshift

galaxy clusters (Devecchi & Volonteri 2009), and Population III remnants (Madau &

Rees 2001). Direct collapse of halo gas toward the centre of a protogalaxy can produce

and subsequently feed a seed black hole with its mass in the range 104−105M⊙. Stellar

mergers of compact nuclear star clusters during the first episodes of star formation could

lead to the formation of seed stars with masses: 102 − 104M⊙ on timescales as short

as 3 Myr (Volonteri 2010). Population III stars are the earliest stars to form in the

universe, and their remnants could form black hole seeds with masses in the range

102 − 103M⊙.

The development from a seed black hole into an SMBH occurs through the ac-

cretion of protogalactic gas. This process can be broadly separated into two modes: a

quasar mode during which the black hole rapidly accretes at or near to the Eddington

rate (equation 1.19), and a radio mode during which the black hole accretes at a lower

rate which produces weak optical but strong radio emission (see Harrison 2014 for a re-

view). Most of the SMBH growth occurs during the quasar phase when large amounts

of gas are driven into the black hole through galaxy mergers. This gas forms a lumi-

nous accretion disk around the black hole, and the radiation released is responsible for

the feedback process in which winds from the accretion disk couple with the ambient
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gas and limit further accretion (see Section 1.5). During the radio mode energy is also

injected into the surrounding gas in the form of highly collimated jets. Both of these

modes can be observed in the AGN of local active galaxies, which can be treated as

the low redshift analogues of the formative processes which occurred at high redshift

in protogalaxies.

1.3.2 Reverberation Mapping

If the AGN within active galaxies are the result of a centrally accreting SMBH, then

the mass of the SMBH can be determined from properties of the AGN spectrum. As

discussed in Section 1.1.4, the unification scheme for AGN (Antonucci 1993; Urry &

Padovani 1995) has the central SMBH and accretion disk obscured by a thick molecular

torus. Within this torus is the broad emission line region (BLR) shown in Figure 1.5.

The BLR is comprised of small dense clouds of gas which are ionised by the radiation

from the central SMBH, and can be observed in the form of broad emission lines.

These emission lines vary in response to changes in the continuum radiation, and show

a delayed response which indicates the size of the BLR to be 10 to 100 times larger than

the accretion disk which is about ∼ 1000rS. Determining the size of the BLR RBLR in

this manner and using the virial theorem (Section 1.1.2) the mass of the SMBH can

be found from:

MBH =
FRBLRσ

2

G
, (1.30)

where σ is the velocity dispersion inferred from the emission line width, and F is a

factor of order unity which takes into account the geometry of the BLR. This is the

process of reverberation mapping (Blandford & McKee 1982; Netzer & Peterson 1997

- see Peterson & Bentz 2006 for a review) and has led to the determination of many

SMBH masses (Kaspi et al. 2000; Grier et al. 2012).
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1.3.3 Stellar Dynamical Methods for SMBH Detection

Reverberation mapping only works in the detection of accreting SMBHs, and therefore

another method must be used for finding the now quiescent SMBHs present in the

centres of normal galaxies (see Section 1.1.4).

The inner parsecs of the Milky Way host a dense nuclear star cluster (Becklin

& Neugebauer 1968), hot gaseous clouds of ionised hydrogen, and a clumpy torus of

cool molecular gas. At the centre is the compact and optically dark radio source Sgr

A* (Balick & Brown 1974) which is currently the best evidence for the existence of an

SMBH. By monitoring the Keplerian stellar orbits (of innermost arcsecond ‘S-stars’)

around this object it has been determined that this is an SMBH of mass: MBH ≃
4.4 × 106M⊙ (Gillessen et al. 2009, see Genzel, Eisenhauer & Gillessen 2010 for a

review).

For more distant systems stars can be used as dynamical tracers around the

SMBH as long as they lie within its sphere of influence:

rinf =
GMBH

σ2
. (1.31)

If the galaxy is treated as a collisionless stellar system with a distribution function

f(x,v, t) which describes the density of stars in the phase space (x,v), then the number

of stars within the element of volume dxdv is given by f(x,v, t)dxdv. The stars passing

through this phase space volume are governed by the continuity equation:

∂f

∂t
+ v · ∇f −∇Φ · ∂f

∂v
= 0 , (1.32)

where Φ is the total gravitational potential. Equation (1.32) is the collisionless Boltz-

mann equation, and it states that the phase space density is conserved along all paths.

Assuming a spherical potential the Jeans equation (1.28) can be obtained by

taking the first moment of equation (1.32) (Merritt 2013), which can then be used to

obtain an expression for the mass of the SMBH and stars:

M(r) = MBH +M∗(r) =
rσ2

r

G

[

−d ln ρ(r)

d ln r
− d ln σ2

r(r)

d ln r
− 2B(r)

]

. (1.33)
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The first SMBH mass measurement using equation (1.33) assumed isotropy (B = 0,

Sargent et al. 1978).

Relaxing the assumption of isotropy increases the complexity of SMBH mass

measurements (see Ferrarese & Ford 2005 for a review). Developments in dealing with

anisotropic systems (Schwarzschild 1979, 1993) have led to the construction of SMBH

detection codes (Dressler & Richstone 1988; Kormendy & Richstone 1992). SMBH

masses measured using these codes (Gebhardt et al. 2000, 2003) have been shown to

agree with results from reverberation mapping, and with those from gas dynamical

methods.

1.3.4 Gas Dynamical Methods for SMBH Detection

Most spiral galaxies and the majority of ellipticals show optical nebular line emission

from ionised gas at their centres. Measuring the velocity Vc of particles in the (assumed

circular) disk of ionised gas allows the interior mass to be measured directly from the

rotational velocity of the gas (Harms et al. 1994; Ferrarese, Ford & Jaffe 1996):

V 2
c (r) =

G(M∗ +MDM +MBH)

r
. (1.34)

The mass of the central SMBH is one of the free parameters which is obtained from a

best fit to the data of the galaxy. The other parameters relate to the disk. They include

the disk stellar mass to light ratio which is required to obtain its stellar mass density,

the disk’s systemic velocity, and its angle of inclination (Ferrarese & Ford 2005).

Gas dynamical mass measurements are technically simpler than stellar dynamical

measurements. They lack the complexity associated with anisotropic stellar motions

as the motion of the gas is simply characterised by one velocity Vc(r) at every radius.

However, there are a number of requirements which must be met in order for this model

to work. The gas must orbit the galaxy’s centre in the form of a regular symmetric

disk, and should be free from perturbations due to turbulence (Barth et al. 2016),

radiation pressure, or magnetic fields. Very few galaxies satisfy these criteria, and
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therefore despite its simplicity the approach is less successful than stellar dynamical

modelling.

Gas dynamical measurements have provided measurements for large samples of

central SMBHs (Sarzi et al. 2002; Beifiori et al. 2009; Davis et al. 2013, 2017, 2018;

Onishi et al. 2015; Barth et al. 2016; Smith et al. 2019). In turn these samples serve

as constraints on the observed correlations between the SMBH and global properties

of the galaxy (Kormendy & Ho 2013; Beifiori et al. 2012) which will be discussed in

the following section.

1.4 Phenomenological Correlations

1.4.1 Galaxy Correlations

As outlined in Section 1.1.4, SMBHs in the centres of galaxies are expected to be

ubiquitous, and this argument is supported by observations made using the techniques

described in Section 1.3. As discussed in both of these sections, if an SMBH has grown

via the accretion of gas in a highly active quasar phase then the energy released may

have influenced global properties of the galaxy. This is supported by observed correla-

tions between the SMBH mass and global stellar properties such as velocity dispersion

and bulge mass. Before discussing these correlations it is important to outline how the

stellar properties of the galaxy relate with one another. These correlations have a rich

history and have many equivalent formulations.

An empirical relation between the luminosity of elliptical galaxies and their stellar

velocity dispersion was provided by Faber & Jackson (1976). They found that the (B-

band) luminosity measured inside the effective radius Re correlates with the central

velocity dispersion of the galaxy. The Faber-Jackson relation takes the following form:

Lgal ∝ σa′ (1.35)

where a′ ≃ 4. This proportionality (with a′ = 4) can be obtained from equation (1.8)

using the virial theorem and by assuming a constant mass-luminosity ratio M/L and
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a constant surface brightness ∝ L/R2.

An analogous relation for spiral galaxies was obtained by Tully & Fisher (1977).

They obtained the rotation velocities Vrot of several spiral galaxies from Doppler broad-

ened 21cm emission lines of neutral hydrogen. They found that the rotation velocities

correlated with the intrinsic luminosity of the galaxies, but the slope is dependent on

the passband. The Tully-Fisher relation has the following form:

Lgal,B ∝ V 2.5
rot , (1.36)

in the B blue waveband, and

Lgal,H ∝ V 4
rot , (1.37)

in the H infrared waveband (Aaronson & Mould 1983).

The Faber-Jackson relation is a projection of the Fundamental Plane for elliptical

galaxies. The Fundamental Plane is a set of correlations which defines a plane in

the space of effective radius Re, velocity dispersion σ, and average effective surface

brightness 〈I〉e ∝ L/Re:

log(Re) = A′ log(σ) +B′ log(〈I〉e) + C ′ (1.38)

with A′ ≃ 1.5, B′ ≃ −0.8 and C ′ ≃ 0.15 (see D’Onofrio et al. 2006 for a review).

1.4.2 SMBH Mass Correlations with the Host Spheroid

The earliest observed MBH correlation was that between the SMBH mass and the

(visual band) luminosity of the host bulge or elliptical galaxy (Dressler 1989; Kormendy

& McClure 1993; Kormendy & Richstone 1995). This has been subsequently observed

in larger samples (Marconi & Hunt 2003; Ferrarese & Ford 2005; Gültekin et al. 2009;

McConnell & Ma 2013) using K-band (near infrared) luminosities to minimise the

effects of internal absorption (extinction) and young (bright blue) stars. The relation

can be expressed in the form (Kormendy & Ho 2013):

MBH

109M⊙
= (0.544+0.067

−0.059)

(

LK,bulge

1011LK⊙

)1.22±0.08

. (1.39)
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This relation is shown alongside the data from Kormendy & Ho (2013) in Figure

1.8. Kormendy & Richstone (1995) highlighted that this correlation is indicative of

coevolution between the SMBH and the host bulge because the total bulge luminosity

is outside of the direct influence of the SMBH.

The next natural step is to relate this to the stellar bulge mass Mbulge either

through the virial theorem (Marconi & Hunt 2003) using equation (1.8), or through

dynamical modelling to obtain a mass-to-light ratio (Magorrian et al. 1998; Häring &

Rix 2004). Using the latter method the following correlation can be obtained (Kor-

mendy & Ho 2013):

MBH

109M⊙
= (0.49+0.06

−0.05)

(

Mbulge

1011M⊙

)1.17±0.08

. (1.40)

By considering the galaxy luminosity correlations in Section 1.4.1, the MBH − L

relation leads to the consideration of a possible correlation of SMBH mass with stellar

velocity dispersion within the bulge. The MBH − σ relation (Ferrarese & Merritt 2000;

Gebhardt et al. 2000) is (Kormendy & Ho 2013):

MBH

109M⊙
= (0.310+0.037

−0.033)

(

σ

200 km s−1

)4.38±0.29

. (1.41)

This relation is shown alongside the data of Kormendy & Ho (2013) in Figure 1.8. The

velocity dispersion is the line of sight velocity dispersion which is typically averaged

within the effective radius Reff. Effective radii can be of the order 1 − 10 kpc for

large galaxies (Binney & Tremaine 2008). The effective radius is therefore much larger

than the gravitational influence radius rinf (see equation 1.31) of an SMBH with mass

given by equation (1.41), and therefore far beyond the reach of the SMBH’s direct

gravitational influence. This again is an indication that the SMBH and its host spheroid

are likely to have coevolved via a mutual process.
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Figure 1.8: MBH − LK and MBH − σ relations (reproduced from Kormendy & Ho 2013).
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1.4.3 SMBH Mass Correlations with the Dark Matter Halo

Velocity dispersions are measured within the effective radii of galaxy bulges. Large

scale circular velocities can be measured at radii an order of magnitude beyond this

at radii where the gravity of the dark matter halo becomes dominant. In spiral galax-

ies the disk circular velocity can be measured directly from HI observations at large

radii where the rotation velocity curve flattens. In elliptical galaxies the circular ve-

locity can be obtained from the dynamical modelling of stellar motions (Gerhard et al.

2001). Measurements of circular velocity can be compared with bulge stellar velocity

dispersion to obtain a Vc − σ relation (Ferrarese 2002):

log Vc = (0.84± 0.09) log σ + (0.55± 0.19) . (1.42)

The strength of the Vc−σ correlation was found to be lowered when using larger sample

sizes (Ho 2007), however this sample included nearly bulge-less galaxies where σ could

only be measured at small scales from the central cluster. These galaxies increased

the scatter in the Vc − σ correlation. The Vc − σ relation can be combined with the

MBH − σ relation (Ferrarese & Merritt 2000) to give a relation between MBH and Vc

(Volonteri, Natarajan & Gültekin 2011),:

(

MBH

108M⊙

)

≃ (0.25± 0.07)

(

Vc

200 km s−1

)4.22±0.93

, (1.43)

(see also Baes et al. 2003). This relation may be as strong as the MBH − σ relation

(Volonteri, Natarajan & Gültekin 2011), yet there are objections as to how any proper-

ties of the dark matter halo could directly correlate with the SMBH mass (Kormendy

& Bender 2011).

If the correlations were set by a gas clearing feedback event during an active

quasar phase (see Section 1.1.4) then the resultant SMBH mass will be set by the

gravitational potential of the gaseous protogalaxy. This potential is dominated by the

gravitational potential of the dark matter, and can therefore lead to a correlation be-

tweenMBH and the maximum circular speed of the halo Vc,pk (McQuillin & McLaughlin

2012). How correlations at z = 0 may have arisen between MBH and σ can then be
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understood by determining the relationship between σ and Vc,pk at z = 0. Then by

accounting for the redshift evolution of Vc,pk(z) the MBH set at higher redshift can be

related to the current stellar σ. The resultant MBH − σ correlation is non-linear in

log-log space (Larkin & McLaughlin 2016).

Throughout the preceding sections the requirement for negative feedback within

protogalaxies has been indicated. This feedback occurs during an active growth phase

of SMBHs which is expected (through theory and observation) to be present in all large

galaxies (see Sections 1.1.4 and 1.3). The radiation released by an accreting SMBH

(observed in quasars and local AGN) is likely to have a significant effect upon its host

galaxy. This may explain the rapid depletion of gas and suppression of star formation

in early-type galaxies (see Section 1.1.3), and prevent the overcooling of dark matter

haloes (see Section 1.2). It may also explain how the central SMBH masses came to

correlate with global stellar properties and even dark matter properties of their host

galaxies (current section). The details of how this feeback occurs, and the observational

support for such a process are discussed in the following section.

1.5 Feedback

1.5.1 SMBH Winds

This section outlines the key analytical and observational results relating to wind-

driven outflows from an accreting SMBH. Much of the theory regarding the dynamics

and structure of these outflows was developed in the context of stellar wind-blown

bubbles. The theory of wind-blown bubbles will be covered in detail in Chapter 2.

As mentioned in Sections 1.1.4 and 1.3.1, the feedback produced when SMBHs

grow through the rapid accretion of gas during a highly active quasar phase can sig-

nificantly affect the host galaxy. If this energy can couple with the ambient gas in the

galaxy in the form of an outflow, then it may clear the gas and halt further accretion

onto the SMBH. A feedback process in which an outflow sweeps a galaxy clear of gas
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in this manner would also lead to the cessation of star formation (Di Matteo, Springel

& Hernquist 2005; Springel, Di Matteo & Hernquist 2005; Bower et al. 2006; Croton

et al. 2006; Hopkins et al. 2008), and could account for how early-type galaxies deplete

their gas reservoirs and inhibit star formation as outlined in Section 1.1.3. Another

possible outcome of this feedback would be an SMBH mass which correlates with global

properties of the galaxy such as those outlined in Section 1.4.

A mechanism by which the accretion energy couples with the ambient gas is

through a mechanical wind of accretion disk material. King & Pounds (2003) developed

the case of a super-Eddington accreting SMBH which produces a Compton-thick wind

with constant speed vw and a momentum-flux approximately equal to LEdd/c. They

begin with the wind density:

ρw =
Ṁw

4πvwr2
, (1.44)

and consider the electron scattering optical depth τ which depends on this density and

is integrated from infinity down to a radius R:

τ =

∫

∞

R

κρw dr =
κṀw

4πvwR
, (1.45)

where κ = σT/mp is the opacity. Defining the photospheric radius as the radius where

τ = 1 (single scattering), and requiring this to be close to the escape radius the following

relationship is obtained:

Ṁwvw = τ
LEdd

c
. (1.46)

Therefore the energy flux of the wind is:

Ėw =
1

2
Ṁwv

2
w = τ

LEddvw
2c

, (1.47)

and the wind density can be expressed as:

ρw = τ
LEdd

4πv2wr
2c

. (1.48)

Observations of AGN do indicate the presence of small scale r ∼ 10 − 100rS

winds. X-ray spectra from AGN show the absorption from ionised gas, or a ‘warm

absorber’ (Halpern 1984; Reynolds & Fabian 1995; Sako et al. 2001). The warm
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absorber corresponds to the motion of ions moving with velocities vw ∼ 1000 km s−1.

Higher-velocity winds have been detected in UV observations of broad absorption-

line (BAL) quasars (Weymann et al. 1991; Ganguly et al. 2007), and in blueshifted

X-ray absorption lines in quasar spectra which show highly ionised and fast vw ≈
0.1 − 0.25c winds (Chartas et al. 2002; Pounds et al. 2003b; Pounds et al. 2003a;

Reeves, O’Brien & Ward 2003; Reeves et al. 2009). Further studies using XMM-

Newton and Suzaku data found many more AGN winds with outflow velocities in the

range vw ∼ 0.03 − 0.3c (Cappi et al. 2006; Tombesi et al. 2010; Gofford et al. 2013)

along with high mass outflow rates and energy fluxes. Particularly high mass outflow

rates of Ṁw ∼ 2M⊙ yr−1, and energy rates Ėw ∼ 4.5×1044 erg s−1 have been observed

in the Seyfert Galaxy PG1211+143 (Pounds & Reeves 2007, 2009).

Winds with such high speeds are capable of sweeping the ambient gas into a

shell and driving it with velocity v away from the SMBH. Such a fast moving shell

at radius r would be bounded by two shock fronts (see chapter 2): one which travels

forward into the ambient medium and one which travels back into the wind. Between

the wind shock at rsw and the shell of swept up gas is a region of shocked wind, and it

is possible for the expansion of this region as the wind inputs energy to drive the shell

outwards. Whether or not the pressure of the shocked wind region drives the shell is

determined by whether it is efficiently cooled (with timescale tcool). This defines two

limiting regimes: the energy-driven regime for which none of the thermal energy of the

shell is radiated away (tcool ≫ r/v), and the momentum-driven regime for which all of

the thermal energy of the shocked wind is radiated away before the wind can replenish

it (tcool ≪ rsw/vw). In the energy-driven regime the pressure of the expanding shocked

wind region drives the shell, while in the momentum-driven regime this pressure is lost

and it is the momentum transferred directly by the wind which drives the shell. For a

more detailed discussion of these regimes see Sections 2.2.2 and 2.2.3.

For a momentum-driven shell from a wind with momentum-flux Ṁwvw = τLEdd/c

propagating within an SIS dark matter halo with gas tracing the dark matter directly,

the shell will achieve a terminal velocity at large radii. The following SMBH mass must
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be exceeded to have a positive coasting velocity at large radii (King 2003, 2005):

Mσ ≡ f0κσ
4

τπG2
≃ 4.56× 108M⊙

1

τ

(

f0
0.2

)(

σ

200 km s−1

)4

, (1.49)

(see also Fabian 1999; Murray, Quataert & Thompson 2005), with f0 the gas to dark

matter ratio. McQuillin & McLaughlin (2012) showed that exceeding Mσ is a necessary

but not sufficient condition for the shell to reach large radii. They found that the shell

also requires an initial momentum:

Mshv

2f0Mσσ0

>

√

MBH

2(MBH −Mσ)
. (1.50)

The dependence of a momentum-driven shell’s velocity field on initial momentum in

an SIS halo is shown in Figure 1.9 (with each curve corresponding to a different value

of initial momentum) for three values of MBH = 0.3Mσ, 1.01Mσ, 3Mσ. This figure

shows that for MBH > Mσ there are ‘launch solutions’ where (previously stalled) shells

can resume outward motion from non-zero radii. It also shows that MBH = 3Mσ

results in a momentum-driven shell with large radius terminal velocity v∞ = 2σ: the

escape velocity for a truncated isothermal sphere. Since momentum-driven shells in an

SIS acquire a constant coasting speed at large radii the ‘critical mass’ Mσ can then be

defined simply as the SMBH mass which allows a shell to reach large radii (i.e. positive

coasting velocity). In the case of momentum-driven shells launched from constant mass

SMBHs, this is equivalent to the SMBH mass which leads to shells that never stall. If

changes are introduced such as including ambient pressure or a growing SMBH then

these two masses may no longer be equivalent. This is because in these circumstances a

shell may stall, and after a period of infall resume outward motion and reach large radii.

SMBH masses just in excess of Mσ lead to shells with very small coasting velocities.

Therefore a solution of interest will always be v∞ = 2σ where the shell achieves an

appreciable velocity equal to the escape velocity for a truncated SIS.

An energy-driven shell sweeping up gas in an SIS halo will also achieve a constant

terminal velocity. By equating this velocity to the escape velocity of a truncated SIS it

can be shown that the product of SMBH mass and wind speed is required to be greater
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Figure 1.9: Velocity fields of momentum-driven shells in an SIS halo from McQuillin
& McLaughlin (2012). Shown in the left panel are shells which are launched from a
central massive object (SMBH or nuclear star cluster) with mass below the critical

mass
∼

MCMO ≡ MCMO/Mσ < 1, and therefore these shells go on to stall at finite radii.
The middle panel shows the case where shells are just able to reach large radii. The
right panel shows a range of shell solutions which can escape, and launch solutions
which start from the v2 = 0 line.

than (McQuillin & McLaughlin 2013):

MBHvw ≥ 1

τ

4(4γ − 3)

(γ − 1)

κf0
πG2

σ5 ≃
(

6.68× 106
)

M⊙c
1

τ

(

f0
0.2

)(

σ

200 km s−1

)5

. (1.51)

Equations (1.49) and (1.51) exhibit similar scalings to the MBH − σ correlation which

has MBH ∝ σ4−5 (see Section 1.4). Equation (1.49) has no additional parameter, but

equation (1.51) includes the wind velocity. McQuillin & McLaughlin (2013) use equa-

tion (1.51) to interpret the scatter in the MBH−σ data as a distribution in wind speeds,

and they infer a median wind speed of vw = 0.035c from the data. When compared

with actual wind speed distributions obtained from X-ray observations of local active

galaxies (Tombesi et al. 2011; Gofford et al. 2013) (with median vw/c = 0.1, 0.056

respectively) the inferred distribution of McQuillin & McLaughlin (2013) compares

well. Equations (1.49) and (1.51) (with vw = 0.035c) are shown in Figure 1.10 plotted
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alongside the data of Gültekin et al. (2009) and McConnell & Ma (2013).
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Figure 1.10: The derived MBH − σ relations plotted alongside the data of Gültekin
et al. (2009) and McConnell & Ma (2013).

Both of equations (1.49) and (1.51) for momentum- and energy-driven shells were

obtained assuming an SIS halo. An improvement to equation (1.49) can be made by

analysing a momentum-driven shell propagating into a non-isothermal halo. A critical

SMBH mass is sought which leads to shells that never stall. By looking at the velocity

fields (Figure 1.11), it can be seen that all solutions have a minimum in dv2/dr before
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accelerating at large radii. The critical case can be defined as the one where the velocity

at this minimum is exactly zero for a shell launched with zero initial momentum. Then

it can be shown that a momentum-driven shell with inital momentum greater than or

equal to zero never stalls in a non-isothermal halo if its mass is greater than (McQuillin

& McLaughlin 2012):

MBH ≥ f0κ

πG2

V 4
c,pk

4
≃ 1.14× 108M⊙

(

f0
0.2

)(

Vc,pk

200 km s−1

)4

, (1.52)

where Vc,pk is the peak value of the halo’s circular speed (see Section 1.2.2). This

establishes a theoretical connection between the SMBH mass and dark matter halo.

The redshift evolution of quasars can be taken into account by relating the circular

speed at the time of gas blowout Vc,pk(z) in equation (1.52) with the z = 0 stellar

velocity dispersion σap(Re) (measured within an aperture equal to the stellar effective

radius) which leads to a non-linear MBH − σap(Re) correlation in log-log space (Larkin

& McLaughlin 2016).

The dominant process responsible for cooling the shocked wind region is inverse

Compton scattering (King 2003, 2005). By analysing cooling times for inverse Comp-

ton scattering (McQuillin & McLaughlin 2013; Faucher-Giguère & Quataert 2012),

and from simulations of outflows (Costa, Sijacki & Haehnelt 2014) it has been shown

that wind-driven outflows spend most of their time in the energy-driven regime. This

may lead to the conclusion that equation (1.51) is preferable to equation (1.49). How-

ever, the correlation between MBH and σ is likely to be established early-on in the

momentum-driven regime, since in order to reach large enough radii that cooling be-

comes inefficient and the shell can transition to the energy-driven regime the central

SMBH mass must exceed Mσ.

Smoothed particle hydrodynamics simulations of galaxies support the establish-

ment of the MBH correlations via the momentum deposition of a wind into the ambient

gas (Debuhr, Quataert & Ma 2011). They also confirm the likelihood of high mass

outflow rates at larger galactic radii which is consistent with energy-driven shells clear-

ing gas and suppressing star formation (Debuhr, Quataert & Ma 2012; Costa, Sijacki

& Haehnelt 2014). The gas blowout from feedback is a possible explanation for the
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Figure 1.11: Velocity fields of momentum-driven shells in a Hernquist halo from Mc-
Quillin & McLaughlin (2012). This figure shows in order for shells with zero initial
momentum (magenta curve) to reach large radii without stalling it is required that the
mass of the central massive object (SMBH or nuclear star cluster) exceed the mass
given by equation (1.52).

clearing of gas and cessation of star formation in early-type galaxies. It is also possi-

ble for gas outflows to cause ‘positive feedback‘ by actually triggering star formation

(Zubovas et al. 2013). This could be achieved either by forming stars within the shell

which go on to enrich the intracluster medium (Ishibashi & Fabian 2012; Ishibashi,

Fabian & Canning 2013), or even instead from radio mode feedback where the jets

from a modestly accreting central SMBH induce star formation (Gaibler et al. 2012).

Many of the results using analytical approaches to model protogalactic outflows

(obtaining equations 1.49−1.52 for example) have been obtained assuming a constant

SMBH mass. This assumption conflicts with the fact that the SMBH is likely to be

accreting mass at a substantial rate (as outlined in Sections 1.1.4 and 1.3.1). While

some analytical work has been carried out on outflows from growing SMBHs (Gilli et al.

2017), a time dependent treatment which includes growing SMBHs, and which actually

tracks shell infall dynamics following a stall and any subsequent potential re-expansion
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has yet to be carried out. A natural extension of this time-dependent investigation is

to incorporate cooling processes, which will allow for a full treatment of the outflow’s

evolution throughout its lifetime rather than simply assuming either momentum- or

energy-driven. This will enable the conditions which specify the transition through

dynamical regimes to be stated in terms of global parameters such as the rate of

energy injection by the wind, or the dark matter halo mass.

1.5.2 Large Scale Outflows

In addition to the small scale winds observed from X-ray data, large ∼ kpc galactic

scale outflows can be observed within quasars and local ultra luminous infrared galaxies

(ULIRGs) in various forms of emission from the outflowing gas. These include emission

from ionized gas (Greene, Zakamska & Smith 2012; Harrison et al. 2012), neutral atomic

gas (Veilleux, Cecil & Bland-Hawthorn 2005; Rupke & Veilleux 2011), and molecular

gas in CO millimetre (Feruglio et al. 2010; Cicone et al. 2012, 2014; Feruglio et al.

2017) and in OH (Sturm et al. 2011; Maiolino et al. 2012; González-Alfonso et al. 2014,

2017. Large scale outflows have much lower velocities than the small scale winds, often

in the range ∼ 100− 1000km s−1, but they typically have higher mass outflow rates of

10− 1000M⊙ yr−1. These rates are often higher than the rates of star formation, and

therefore the large scale outflows are the likely candidates for sweeping the galaxy clear

of gas. Observations of large scale outflows have shown that their momentum-fluxes

can be boosted relative to the source which have: Ṁv/LAGN/c ≫ 1. These momentum

boosts can be modest, such as 2− 10LAGN/c (Feruglio et al. 2017; Rupke, Gültekin &

Veilleux 2017), or significantly larger with Ṁv/LAGN/c ≫ 10 (Fiore et al. 2017; Rupke,

Gültekin & Veilleux 2017).

This momentum boosting is inconsistent with momentum-driven shells, for which

the momentum-flux can never exceed Ṁwvw. Instead it can only occur for energy-driven

shells where the thermal energy transferred to the outflow by the wind is conserved,

and therefore the pressure of hot shocked wind region can lead to momentum-fluxes

far in excess of Ṁwvw. Zubovas & King (2012) obtained the terminal velocity for an
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energy-driven shell propagating in an SIS halo in the limit that the wind is strong,

where MBHvw ≫ Mσσ, which leads to fast (v ≫ σ) outflows, and found that the

momentum boost on the shell is:

Ṁshv

Ṁwvw
≃ vw

v
. (1.53)

This expression for the momentum boost only applies for constant mass SMBHs launch-

ing fast (v ≫ σ) shells within isothermal dark matter haloes (Zubovas & King 2012;

Faucher-Giguère & Quataert 2012). Studies have also shown that the momentum boost

has an upper limit which occurs as a result of the outflow having to do work against

gravity (Richings & Faucher-Giguère 2018). It has also been demonstrated that mo-

mentum boosting can occur under certain circumstances in outflows driven by radiation

pressure on dust (Ishibashi, Fabian & Maiolino 2018). It is important to note that not

all large-scale outflows have momentum-boosts, and therefore may be consistent with

momentum-driving (González-Alfonso et al. 2017).

For some systems both the small scale wind and resultant large scale molecular

outflow have been observed (Tombesi et al. 2015, 2017; Feruglio et al. 2015). These

systems provide a way of testing expressions such as equation (1.53) for the momentum-

boost of the outflow. Figure 1.12 from Tombesi et al. (2015) shows equation (1.53)

against observed values of Ṁv for a number of systems, and indeed the relationship

predicts a value of vw ∼ 0.2c based on Ṁv of the large scale outflow which agrees

with their observed value for vw. Broadly this comparison shows that the large scale

momentum-fluxes are consistent with shells launched by winds with speeds in the range

vw = 0.1− 0.4c.

According to equation (1.53) the level of momentum boosting is dependent on

the small scale wind velocity close to the SMBH. Therefore this feature of outflows is

very useful in connecting small and large scale outflows within a observational context.

While some attempts have been made to compare simple analytical results with obser-

vational data (Feruglio et al. 2015; Tombesi et al. 2015), a detailed analytical treatment

of momentum boosts within non-isothermal (or even isothermal) haloes has yet to be

carried out. Another commonly overlooked aspect of these outflows is the dynami-
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cal effect of the ambient gas ram pressure which is usually assumed to be negligible,

but is included in more complete analytical treatments of wind-driven outflows within

non-isothermal haloes (Faucher-Giguère & Quataert 2012; Gilli et al. 2017; Richings

& Faucher-Giguère 2018).

Figure 1.12: Momentum-fluxes of small and large scale outflows vs. outflow velocity.
Reproduced from Tombesi et al. (2015). This plot has the momentum-flux of the out-
flow normalised to that of the wind plotted against the outflow velocity. The red stars
correspond to the measured momentum-fluxes for F1111+3257, the green triangles are
OH observations of ULIRGs, the black triangles are CO observations of ULIRGS, and
the blue dots are small scale X-ray observations.
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1.6 Outline of the Thesis

In Chapter 2 the aspects of wind-driven bubbles in the absence of gravity will be

outlined. The intention is to familiarise the reader with the core theory utilised in the

subsequent chapters, and to provide solutions which can be compared to results from

later chapters which will include gravity. This chapter follows on from the work of Koo

& McKee (1992) which generalised previous work on wind bubbles to cover power-law

mass injection rates and power-law gas density profiles. I generalise this work further

by introducing a power-law cooling function, and examine how variation in cooling

rates impact the bubble dynamics.

Chapter 3 contains the treatment of shells launched by steady winds: i.e. those

with MBH = const. The intention of this chapter is to lay the groundwork before

introducing a time-dependent MBH(t). This is achieved by developing previous work on

steady winds through the inclusion of ambient pressure on the shell, and by examining

both momentum- and energy-driven shells within isothermal and non-isothermal dark

matter haloes. The emphasis of this chapter will be on how the shells propagate in

time as well as their spatial behaviour, and this will require the infall dynamics of shells

to be accounted for. Particular focus will be maintained on the momentum-boosts of

shells in order to connect any conclusions to observations of active galaxies. This work

will culminate in the analysis of how relationships obtained from these shells between

the SMBH and global outflow and galactic properties can be applied to the MBH − σ

correlation described in Section 1.4, and observations of momentum-boosted outflows

in active galaxies.

Chapter 4 follows on from Chapter 3 and shows the treatment of shells launched

by non-steady winds: i.e. those with a growing MBH(t). It will carry this out by intro-

ducing a form for the SMBH mass which allows the constant mass case and exponential

mass case (see equation 1.19) to be recovered. Broadly, the aim of this chapter is to

analyse the differences that emerge in shell dynamics from introducing a non-steady

wind, and the results are to be compared directly back to Chapter 3. An estimate is

sought for the critical SMBH mass which is required in order to have shells that can
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reach large radii without stalling, and this is to be compared with any critical masses

obtained in Chapter 3. The conclusions drawn relating to outflow or galactic properties

from analysing shells driven by steady winds in Chapter 3 are to be reassessed in this

chapter to see if they still apply for non-steady winds.

Chapter 5 discusses the results and conclusions from the previous chapters and

provides possible directions for future work.
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2 Dynamics of Wind-Driven Bubbles

In order to begin the discussion of wind driven outflows from supermassive black holes

which were outlined in section 1.5, this chapter will review the theory and literature

of wind-blown bubbles which result from a point source of mass injection inside of an

ambient gas distribution. These bubbles exist as a shell-like structure bounded by two

strong shocks. One of these strong shocks propagates back into the wind, and the other

out into the ambient medium. The motion of this shock structure defines the motion

of the bubble as a whole. This chapter will begin by explaining the development of

these shocks, and how the gas properties within them are expected to vary.

This chapter will then provide an overview of how these bubbles evolve through-

out their lifetimes, and extend the theory to include variable cooling rates. Much of

this theory was developed within the context of stellar wind bubbles which were of-

ten considered in the absence of gravity (Avedisova 1972; Steigman, Strittmatter &

Williams 1975; Castor, McCray & Weaver 1975; Weaver et al. 1977; Ostriker & McKee

1988; Koo & McKee 1992b; Koo & McKee 1992a). These analyses showed that the

dynamics of the bubble can be broadly separated into two regimes: momentum-driven

or energy-driven. As introduced in Section 1.5, which of these two regimes applies is

determined by the efficiency of cooling in the shocked wind, and therefore the possible

mechanisms for cooling are reviewed within this section. The original work in this

chapter is the extension of the work by Koo & McKee (1992a) to include a general

power-law form for the cooling function, and this enables the evolution of bubbles to

be re-evaluated for different forms of cooling.

Much of the work on stellar wind bubbles was carried out assuming that inward

gravitational forces could be neglected. In order to fully account for the dynamics

of wind driven bubbles from SMBHs the effects of gravity must be included. This

chapter will conclude with an overview of attempts thus far to properly account for

gravity acting on such bubbles, and set up the equations of motion of SMBH wind

driven bubbles under gravity which will be analysed throughout this thesis.
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2.1 Bubble Formation and Structure

2.1.1 Shock Structure

The following analysis concerns an ideal gas consisting of particles with mass m in a

distribution with density ρg, temperature T , pressure Pg, and ratio of specific heats

CP/CV = γ. Any perturbations within the gas will propagate as waves with adiabatic

sound speed cs given by:

cs =

√

γPg

ρg
=

√

γkBT

m
. (2.1)

A point source within the gas distribution can be introduced which injects mass in the

form of an isotropic steady wind with speed vw and density ρw(t). This leads to the

creation of a spherical boundary (with radius rc) between the wind and the ambient gas

called a contact discontinuity through which the gas properties describing the wind and

the ambient medium are expected to change rapidly. If the wind speed is supersonic

vw > cs, then the wind acts as a piston driving into and sweeping up the ambient gas.

This causes the density profile of the ambient gas close to the contact discontinuity

to become much steeper than the undisturbed ambient gas (see Frank, King & Raine

2002 for details). This steepening of the density profile leads to the formation of a

shockwave which has a thickness of the order of the mean free path λd for the gas

particles (see Figure 2.1).

This results in the creation of a shell-like region of shocked ambient gas between

the contact discontinuity and the forward shock (with radius rs) which drives into the

undisturbed ambient gas. This region is often what is meant when referring to the

shell. As the shell gains mass its inertia increases, and from momentum conservation

its velocity will drop below vw. This leads to a second shock front dubbed the reverse

(or, wind) shock (with radius rsw). This creates another shell-like region (consisting

of shocked wind - see Figure 2.2) which is bounded by the contact discontinuity and

the wind shock driving back into the freely flowing wind (Koo & McKee 1992b). The

region of shocked ambient medium will be referred to as ‘the shell’, while the term
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Figure 2.1: The development of a shock in a constant density medium. The plots
show gas density against position in the gas. From left to right shows the motion of a
region of gas which increases in density as it sweeps up more gas which is distributed
uniformly. The result is a region of high density shocked gas bounded by a shock of
thickness ∼ λd which moves into the ambient gas (reproduced from Frank, King &
Raine 2002).

‘wind bubble’ is used to describe the entire structure which also includes the shocked

wind.

2.1.2 Jump Conditions

Across the shocks the gas density, velocity, and pressure change from their pre-shock

values ρ1, v1, P1 (such as in the undisturbed ambient gas or freely flowing wind) to the

post-shock values ρ2, v2, P2 (such as in the shocked ambient gas or shocked wind regions)

all defined in the frame of reference where the shock is at rest. For a one-dimensional

steady flow these changes are given by the Rankine-Hugoniot jump conditions. These

conditions are obtained from mass, momentum, and energy conservation across the
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wind

shocked wind

shocked ambient
medium

rs

rc
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Figure 2.2: The structure of a wind bubble. In the centre is the point source from which
the wind emanates. The wind and the ambient gas distribution are separated by the
contact discontinuity at rc which is shown as the dotted line. Either side of the contact
discontinuity are the shocked wind region (shown in grey) which is separated from the
freely flowing wind by a strong shock at rsw, and the shocked ambient medium which is
separated from the undisturbed ambient medium by a strong shock at rs. Both strong
shocks are depicted as solid black lines.

shocks (see Choudhuri 1998):

ρ2
ρ1

=
v1
v2

=
(γ + 1)M 2

2 + (γ − 1)M 2

→ γ + 1

γ − 1
(M ≫ 1) ,

(2.2)

and the pressure:

P2

P1

=
2γM 2 − (γ − 1)

γ + 1
, (2.3)
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where M = v1/cs,1 = v1/
√

γP1/ρ1 is the Mach number of the pre-shock medium. The

pre-shock pressure can be written in terms of the Mach number: P1 = ρ1v
2
1/γM 2.

Equation (2.3) can then be rewritten as:

P2 =
2v21ρ1
(γ + 1)

− γ − 1

γ + 1

v21
M 2

ρ1
γ
. (2.4)

In the so-called strong shock limit of M ≫ 1 equation (2.4) gives:

P2 →
2v21ρ1
(γ + 1)

(M ≫ 1) . (2.5)

2.2 Evolution of the Bubble Structure

This section now considers a spherically symmetric gas distribution which scales as a

power law in radius. The gas is centred on a point mass producing a wind which drives

an outflow, and it has the following density profile:

ρg(r) = ρs

(

r

r0

)p−3

, (2.6)

where p is the scaling of the total gas mass with radiusMg(r) ∝ rp, r0 is a characteristic

radius, and ρs is the density at that radius. If the gas were distributed in the form of

a singular isothermal sphere (SIS) (see Section 1.1.2) then p = 1. It is useful to define

a mean density inside the radius r:

−

ρg(< r) =
Mg(r)
4
3
πr3

=
3

p
ρg(r) . (2.7)

Consider a mechanical wind from the point source injecting mass as a function of time:

Ṁw(t) =
Mw,s

ts

(

t

ts

)α

, (2.8)

where α is the mass rate parameter, ts is the scale time, andMw,s is defined as Ṁw(ts)ts.

Physically this mass may be a wind of stellar material, or a wind of accretion disk

material from an accreting SMBH (see Section 1.5). The parameter value α = −1
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corresponds to a blast wave, and the value α = 0 corresponds to a constant injection

rate, whereas the values α = 1 and α = 2 correspond to an SMBH with constant and

linear growth rates respectively (since Ṁwvw ∝ MBH). The total mass injected by the

wind at time t is therefore:

Mw(t) =
Mw,s

α + 1

(

t

ts

)α+1

. (2.9)

2.2.1 Free Expansion

At early times the wind mass exceeds the mass of swept up ambient medium, i.e.

Mw(t) ≫ Mg(rs) ≈ Mg(rc). During this time the shell is infinitesimally thin (rs ≈ rc)

as the ram pressure of the wind compresses the region of shocked ambient medium. At

early times the wind can therefore be approximated as freely expanding. However, it

is expected at later times and larger radii that the mass of swept up ambient medium

will eventually exceed the mass of the wind: Mw(t) ≪ Mg(rs).

It is useful to define a fiducial radius rf and time:

tf ≡ rf
vw

, (2.10)

at which the average wind density is equal to the mean gas density inside rf . The

density of the wind at rf is given by mass conservation to be ρw(rf ) = Ṁw(tf )/4πr
2
fvw.

Following Koo & McKee (1992a) and using Mw(tf )/tf for the mass rate at tf :

ρw(rf ) =
Mw(tf )

4πr2fvwtf
≡ 3ρs

p

(

rf
r0

)p−3

=
−

ρg(rf ) . (2.11)

This leads to:

rf =

[

pMw,s

12π(α + 1)(ρs/r
p−3
0 )(vwts)α+1

]1/(p−1−α)

. (2.12)

Then for times t ≪ tf the wind can be treated as freely expanding, but for times t ≫ tf

the dynamics of the bubble are determined by the mass of swept up gas. The pre-shock

(r . rsw) density of the wind depends on the crossing time of the wind: tcr = rsw/vw,
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and it can be written in terms of the fiducial quantities:

ρw(t− tcr, rsw) =
Mw,s

4πr2swvwt
α+1
s

(

t− rsw
vw

)α

= (α + 1)
−

ρg(rf )

(

rsw
rf

)−2(
t

tf
− rsw

rf

)α

.

(2.13)

2.2.2 Radiative (Momentum-Driven) Bubble

As introduced in Section 1.5 if the cooling time of the shocked wind region tcool is much

less than the time taken for the wind to input more energy tcr = rsw/vw then the shell

is driven directly by the momentum of the wind (McKee & Hollenbach 1987). This

cooling requires that the wind shock is radiative and the region of shocked wind exists as

a thin shell. If the forward shock is also radiative then the region of shocked ambient

medium also occupies a thin region. In this case the shell is approximated as thin:

rsw ≈ rc ≈ rs (see Figure 2.3). If the forward shock is not radiative then any results

obtained assuming a thin shell are no longer exact, but remain a good approximation

(Koo & McKee 1992a). As long as the wind shock is radiative (tcool ≪ tcr) the shell is

expected to be momentum-driven.

The mass of the momentum-driven shell at time t consists of the mass of shocked

wind injected up to the time t − r/vw combined with the mass of swept-up ambient

medium. The momentum of the shell with radius r = rc ∼ rsw ∼ rs and speed v is

equal to the momentum of the wind Mwvw by momentum conservation:
[

Mw (t− r/vw) +
4πρsr

3
0

p

(

r

r0

)p]

v = Mw (t− r/vw) vw . (2.14)

Equation (2.14) can be put in terms of the fiducial quantities (using equations 2.9 and

2.11):
(

t

tf
− r

rf

)α+1

=

[

(

t

tf
− r

rf

)α+1

+
1

3

(

r

rf

)p
]

v

vw
, (2.15)

which can be solved to give:

t

tf
=

r

rf
+

[

α + 2

3(p+ 1)

]1/(α+2)(
r

rf

)(p+1)/(α+2)

, (2.16)
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rsw ≈ rc ≈ rs

Figure 2.3: The structure of a radiative bubble with the thin shell approximation. The
shocked wind region between rsw and rc (shown in grey) is cooled and confined to a
thin shell in the radiative bubble. Under the thin shell approximation the region of
shocked ambient medium between rc and rs is also assumed to be cooled.

which has the limiting behaviour:

r = vwt (t ≪ tf ) , (2.17)

r =

[

α + 2

3(p+ 1)

]1/(p+1)(
t

tf

)(α+2)/(p+1)

rf (t ≫ tf ) . (2.18)



55

Differentiating equation (2.16) with respect to time gives:

vw
v

− 1 =
vsw,w

v
=

1

3

[

3(p+ 1)

α + 2

](α+1)/(α+2)(
r

rf

)(p−α−1)/(α+1)

, (2.19)

where vsw,w is the (negative of the) velocity of the wind shock relative to the wind, and

therefore vw = vsw,w + v. This leads to the ratios:

v

vw
=

1

1 + vsw,w/v
,

vsw,w

vw
=

vsw,w/v

1 + vsw,w/v
. (2.20)

Differentiating equation (2.16) with respect to time again shows shells with

α+1 < p are decelerating, α+1 = p have constant velocity, and α+1 > p are acceler-

ating. The accelerating momentum-driven shells will be subject to the Rayleigh-Taylor

instability (Koo & McKee 1992a).

The equations obtained in this section for the motion of momentum-driven shells

can be used to analyse cooling times and understand the timescales over which the

bubble remains radiative.

2.2.3 Adiabatic (Energy-Driven) Bubble

If the wind shock is not radiative then the shocked wind retains its thermal energy and

the shell of shocked ambient medium is referred to as energy-driven. This means that

the dynamics of the shell are determined primarily by the pressure of the hot shocked

wind region (see Figure 2.4) which fills most of the bubble’s volume (Avedisova 1972;

Castor, McCray &Weaver 1975; Weaver et al. 1977). Without additional mass injection

bubbles that transition to the energy-driven regime at t > tf will remain so for all time

(Koo & McKee 1992a).

The internal energy of the shocked wind with pressure P and volume V is given

by: U = PV/(γ − 1). This is equal to the energy input by the wind minus losses

from doing PdV work. The equation for energy conservation in the shocked wind is

therefore:
d

dt

[

4

3
π(r3c − r3sw)

P

γ − 1

]

=
1

2
Ṁwv

2
w − 4π(r2cvc − r2swvsw)P . (2.21)
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Figure 2.4: The structure of an energy-driven bubble. The shocked wind region shown
in pink between rsw and rc is hot and occupies most of the region interior to rc. The
thermal expansion of this region drives the shell of shocked ambient medium located
between rc and rs.

By assuming that most of the bubble is occupied by the hot shocked wind (i.e. rc ≫ rsw)

equation (2.21) has the solution:

rs
rf

=
t
(α+3)/(p+2)
f

rf

[

3(γ − 1)

2(3γ − 2)

(

p+ 2

α + 3

)3
rp−3
0

4πρs

Mw,s

tα+1
s

]1/(p+2)
(

t

tf

)(α+3)/(p+2)

. (2.22)

Equation (2.22) gives the radius of the shell of shocked ambient medium which is driven

by the expansion of the hot shocked wind region.
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2.2.4 Cooling Timescales

In this section previous work by Koo & McKee (1992a) is developed by introducing a

general power-law cooling function, and the cooling times of the shocked wind and the

shocked ambient medium are rederived. A characteristic cooling time is also introduced

which will serve as a simple cooling timescale to be compared with the actual shocked

wind and ambient medium cooling times. This section will conclude with an overview

of the physical cooling processes and how they can be related to the power-law cooling

function.

The cooling function Λ(T ) represents the energy emitted by a gas normalised to

the number density of particles, and is a function of electron temperature T . A cooling

function which is a power law in temperature will be adopted:

Λ(T ) = Λs

(

T

Ts

)β

, (2.23)

where Λs is the value at the scale temperature Ts, and β is the cooling function pa-

rameter.

Cooling functions can be expressed in terms of a cooling time tcool = E/Ė with

Λ(T ) = Ė/n′, and the thermal energy per particle is E = xtkBT :

tcool =
xtkBTs

n′Λs

(

T

Ts

)1−β

, (2.24)

where xt is the number of particles per hydrogen nucleus, and n′ is the number density

of hydrogen.

Using the ideal gas law, and equations (2.2) and (2.4) in the strong shock limit

leads to the cooling time:

tcool =
Cv2−2β

1

ρ1
, (2.25)

where ρ1 is pre-shock density, v1 the pre-shock gas velocity, and C is defined to be:

C =

[

21−β(γ − 1)2−βµ2−β
H

(γ + 1)3−2βx−β
t k−β

B

]

T β
s

Λs

, (2.26)

where µH is the mean mass per hydrogen nucleus. It can be seen that β = 1 leads to

a cooling time which is independent of the pre-shock gas velocity v1.
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Using equation (2.13) with (2.25) gives the cooling time of the shocked wind to

be:

tcool,sw =
Cv2−2β

sw

ρw
=

t1
α + 1

(

vsw
vw

)2−2β (
rsw
rf

)2(
t

tf
− rsw

rf

)−α

, (2.27)

and the cooling time of the shocked ambient medium can be found by using equation

(2.6):

tcool,sa =
Cv2−2β

s

ρg(rs)
=

3t1
p

(

vs
vw

)2−2β (
rs
rf

)3−p

, (2.28)

where t1 is the characteristic cooling time:

t1 =
Cv2−2β

w
−

ρg(rf )
. (2.29)

The characteristic cooling time given by equation (2.29) is to be compared with the

cooling times given by equations (2.27) and (2.28). If t1 serves as an upper limit to

tcool,sw and tcool,sa at a specific radius and for a particular range of parameters (α, p, β)

then it may be used in place of these times when analysing bubble evolution.

Before analysing the cooling times given by equations (2.27)−(2.29) the cool-

ing function should be physically motivated. In general the cooling function should

represent all the possible cooling and heating rates of a gas, i.e. from collisional line

radiation, continuum emission, recombination processes, photoionisation, collisional

ionisation, and Compton cooling or heating (Sutherland & Dopita 1993). The cooling

function also depends on the metallicity Z (the fraction of mass not in the form of H

or He) of the gas:

Λ(T, Z) = Λlines + Λcont ± Λrec − Λphoto + Λcoll ± ΛCompton . (2.30)

Which of these processes is dominant depends on the temperature range. For example,

in the temperature range 104 K < T < 107.5 K metal line cooling is expected to be

dominant, and the cooling function takes the functional form (Draine 2011; Richings

& Faucher-Giguère 2018):

Λline(T ) =















5.0× 10−22
(

T
105 K

)2
(

Z
Z⊙

)

nenH erg cm−3 s−1 104 < T ≤ 105 K

5.0× 10−22
(

T
105 K

)−0.7
(

Z
Z⊙

)

nenH erg cm−3 s−1 105 < T ≤ 107.5 K .

(2.31)



59

At higher temperatures (T > 107 K) continuum (free-free, or Bremsstrahlung) cooling

is dominant with the function:

Λff = 1.426× 10−27T 1/2nenH × [g(1, T ) + 0.4g(2, T )] erg cm−3 s−1

(T > 107.5 K) ,
(2.32)

where g is defined by (Richings & Faucher-Giguère 2018):

g(Zi, T ) =

{

0.79464 + 0.1243 log10(T/Z
2
i ) (T/Z2

i ) < 3.2× 105 K
2.13164− 0.1240 log10(T/Z

2
i ) (T/Z2

i ) ≥ 3.2× 105 K ,
(2.33)

where Zi is the ion charge of species i.

Compton cooling occurs when low-energy photons scatter off high-energy elec-

trons (i.e. inverse Compton scattering). At gas temperatures above 107 K Compton

cooling is expected to be dominant. The cooling function for Compton cooling from a

quasar radiation field with luminosity L = ηc2MBH can be approximated by (Sazonov

et al. 2005):

ΛCompton(T ) = 4.1× 10−35(1.9× 107 − T )
L

r2
erg cm−3 s−1 . (2.34)

Costa, Sijacki & Haehnelt (2014) obtain a cooling time from this function, and also

highlight that at higher temperatures T & 109 K the inverse Compton cooling rate

scales as ∝ T 2.

The physically interesting values for β are therefore −1 < β ≤ −1/2 for metal-

line cooling, β = 0 for a constant cooling rate, β = 1/2 for free-free cooling, and

1 < β ≤ 2 for Compton cooling.

2.2.5 Cooling Times for a Momentum-Driven Bubble

Equations (2.27) and (2.28) are the general cooling times for the shocked wind and

shocked ambient medium which have been extended to include general power law cool-

ing. This section will analyse these cooling times for variation in the cooling parameter

β. Equation (2.27) can be examined in the case that the bubble is momentum-driven
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by using equations (2.19), (2.20) and (2.16), which leads to the following expression:

tcool,sw =
t1

α + 1

(

1

3

)2−2β [
3(1− p)

α + 2

](α+2)(2−2β)(
rsw
rf

)[(2−α)(1+p)−2β(p−α−1)]/(α+2)

.

(2.35)

Consistency requires tcool,sw/t ≪ 1, and therefore the bubble is momentum-driven

(rather than energy-driven) for t ≪ tf only if:

β < 1 +
1− pα/2

p− α− 1
p > (α + 1)

β > 1 +
1− pα/2

p− α− 1
p < (α + 1) ,

(2.36)

where p > α + 1 corresponds to decelerating bubbles, and p < α + 1 corresponds to

accelerating bubbles. The condition given by equation (2.36) is shown as a contour

plot in Figure 2.5, and tabulated for a range of α and p values in Table 2.1. Figure

2.5 and Table 2.1 show that higher values of p and α which produce decelerating

momentum-driven bubbles are more restrictive on the cooling function parameter β,

such as requiring it to be negative when α ∼ 1.5 and p ∼ 3. Or, to put it another

way, energy driven bubbles will occur in the free expansion stage if the level of cooling

is low (smaller β), and the rate of energy injection is high (high α), along with lower

small scale density (high p).

2.2.6 Critical Wind Velocity

The characteristic cooling time can be compared with the cooling time of the shocked

ambient medium at rs = rf :

tcool,sa(rf )

t1
=

3

p

(

3A(α+1)/(α+2) + 1

3A(α+1)/(α+2)

)2β−2

, (2.37)

where

A =

[

α + 2

3(1 + p)

]

, (2.38)

and similarly for the cooling time of the shocked wind, leading to the ratio:

tcool,sw(rf )

t1
= (α + 1)−1

(

3A(α+1)/(α+2) + 1
)2β−2 Aα/(α+2) . (2.39)



61

βcrit

0 0.5 1 1.5 2 2.5 3

p

-1

-0.5

0

0.5

1

1.5

2

α

-5

-4

-3

-2

-1

0

1

2

3

4

5

accelerating

β > βcrit required

decelerating

β < βcrit required

Figure 2.5: Contour plot of the cooling parameter β below which a momentum-driven
bubble occurs at early times (t ≪ tf ), as a function of gas density parameter p and
wind growth parameter α. βcrit is given by equation (2.36).

The ratio of equation (2.39) with (2.37) gives:

tcool,sw
tcool,sa

=
p

3(α + 1)

(

3A(α+1)/(α+2)
)2β−2 A−α/(α+2) . (2.40)

Calculating these ratios shows for β < 1, over the range of α and p values considered

in Table 2.1, that clearly:

tcool,sw(rf ) ≪ t1 (2.41)

for all but a narrow range of α and p (Figure 2.6). For most combinations of α and p,

typically:

tcool,sw(rf ) < tcool,sa(rf ) . t1 . (2.42)

which is highlighted in Figures 2.7 and 2.8.
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α
−1.0 −0.50 0.0 0.50 1.0 1.5 2.0

0 ±∞ > −1.0 > 0 > 0.33 > 0.50 > 0.66 > 0.66

0.5 < 3.5 ±∞ > −1.0 > 0.13 > 0.50 > 0.69 > 0.80

1.0 < 2.5 < 3.5 ±∞ > −0.50 > 0.50 > 0.83 > 1.0

p 1.5 < 2.2 < 2.4 < 3.0 ±∞ > 0.50 > 1.1 > 1.3

2.0 < 2.0 < 2.0 < 2.0 < 2.0 ±∞ > 2.0 > 2.0

2.5 < 1.9 < 1.8 < 1.7 < 1.4 < 0.5 ±∞ > 4.0

3.0 < 1.8 < 1.7 < 1.5 < 1.2 < 0.50 < −1.5 ±∞

Table 2.1: Cooling parameter β values for which a momentum-driven bubble occurs at
early times as given by equation (2.36). Values for accelerating (rather than deceler-
ating) bubbles are highlighted in grey.

Figure 2.6 shows that the cooling time of the shocked wind at the fiducial radius

relative to t1 is mainly dependent on variation in α, i.e. changing the rate at which

energy is transferred to the bubble has a more significant effect on the cooling time

of the shocked wind, than changing the density distribution of the ambient medium.

Figure 2.7 for the cooling time of the shocked ambient medium at tf relative to t1

shows the inverse, that the density distribution of the ambient medium, rather than

the rate of energy injection by the wind, is more important in determining the level

of cooling. It can be seen from these figures that by increasing the level of cooling by

increasing β, the ratio of tcool,sw or tcool,sa with t1 simply increases. When the ratio of

the two cooling times tcool,sw(rf ) and tcool,sa(rf ) are taken as in Figure 2.8, it can be

seen that variations in both α and p affect the ratio similarly, and that the cooling

times are more similar for a higher rate of cooling (higher β).

A useful distinction can be made between wind speeds for which the characteristic

cooling time t1 is much less than the fiducial time tf , and wind speeds for which they
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Figure 2.6: Contour plot of the ratio of the shocked wind cooling time at the fiducial
radius tcool,sw(rf ) with the characteristic cooling time t1, as a function of gas density
parameter p and wind growth parameter α.

are not. Therefore if t1 ≪ tf then both of the shock cooling times tcool,sw(rf ) and

tcool,sa(rf ) are also likely to be much less than tf if β < 1. This will lead to two distinct

sequences, one where the bubbles leave the free-expansion stage in the momentum-

driven regime t1 ≪ tf , and one where the bubbles leave the free expansion stage in the

energy-driven regime t1 ≫ tf .

The critical wind velocity is defined as the wind velocity which leads to t1 = tf :

vcrit =

{

(

Mw,s

4πtα+1
s (α + 1)

)p−2(
3ρs

prp−3
0

)

}1/[3p−(5−p)(α+1)+2β(1−p+α)]

, (2.43)

hence if vw < vcrit these slow winds will leave the free expansion stage (t > tf ) as

momentum-driven bubbles, whereas if vw > vcrit then these fast winds will leave the



64

β = −1

log10

(

tcool,sa
t1

)

β = 0

β = 1

log10

(

tcool,sa
t1

)

β = 2

0 0.5 1 1.5 2 2.5 3

p

-1
-0.5

0
0.5
1

1.5
2

α

-1.5
-1
-0.5
0
0.5
1

0 0.5 1 1.5 2 2.5 3

p

-1
-0.5

0
0.5
1

1.5
2

-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1

0 0.5 1 1.5 2 2.5 3

p

-1
-0.5

0
0.5
1

1.5
2

α

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 0.5 1 1.5 2 2.5 3

p

-1
-0.5

0
0.5
1

1.5
2

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Figure 2.7: Contour plot of the ratio of the shocked ambient medium cooling time at
the fiducial radius tcool,sa(rf ) with the characteristic cooling time t1, as a function of
gas density parameter p and wind growth parameter α.

free expansion stage as energy driven bubbles. Slow winds will therefore follow a

radiative sequence, and fast winds will follow an adiabatic sequence at times t ≫ tf .

The characteristic cooling time can be expressed in terms of vcrit:

t1
tf

=

(

vw
vcrit

)5−2β−(4−qα−q)/(p−α−1)

(2.44)

There is a range of p therefore, for which these definitions are reversed, with slow

winds following adiabatic sequences, and fast winds following radiative sequences. This

happens if:

p < pcrit =
−9− 5α + 2β + 2βα

−6− α + 2β
. (2.45)

This critical value is shown in Figure 2.9 for a range of cooling parameter β. The
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Figure 2.8: Contour plot of the ratio of the shocked wind cooling time at the fiducial
radius tcool,sw(rf ) with the shocked ambient medium cooling time at the fiducial radius
tcool,sa(rf ), as a function of gas density parameter p and wind growth parameter α.

regions shown in red correspond to combinations of p and α which result in the inverse

behavior for slow and fast winds. For example, in the case of a fast wind where:

vw ≫ vcrit, if α is such that p > pcrit, i.e. the combination of α and p is within the

white region, then the bubble is energy-driven, due to t1 ≫ tf . In contrast, if α and p

are within the red region (of lower p values) then the bubble is momentum-driven.

2.2.7 Radiative Sequence

In order for this sequence to occur after the free expansion stage, it is required that

the wind is slow: vw ≪ vcrit, and p > pcrit (or contrastingly fast: vw ≫ vcrit, but with:
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Figure 2.9: The critical density parameter resulting in the reversal of slow and fast
winds. The plots for β = −1 and β = 0 are comparable to the plotted parameters of
Koo & McKee (1992a) who assumed β = −1/2. This figure shows that for higher rates
of cooling the reversal of slow and fast winds is more likely. Within this parameter space
(red region) slow winds produce energy-driven shells rather than momentum-driven,
and fast winds produce momentum-driven shells rather than energy-driven.

p < pcrit). Whether the momentum-driven bubble becomes energy-driven depends

on three time scales, the crossing time of the wind: tcr = rsw/vw, the cooling time

of the wind: tcool,sw, and the age of the bubble: t. As long as cooling time of the

shocked wind is much less than the crossing time: tcool,sw ≪ tcr, then the bubble

remains momentum-driven. Beyond this the bubble can transition to a bubble which

is partially radiative (a PRB); this occurs during the time tcr ≪ tcool,sw ≪ t. The

transition to an energy-driven bubble occurs when tcool,sw ≫ t. At any of these three

stages the pressure of the ambient medium can potentially confine the bubble, leading
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to either a pressure confined momentum-driven bubble, pressure confined PRB, or

pressure confined energy-driven bubble.

The transition from the momentum-driven bubble to a PRB occurs for t > tr,

where tr is given by tcool,sw = tcr. Setting these times equal to each other gives:

r

vw
=

t1
α + 1

(

vsw
vw

)2−2β (
rsw
rf

)2(
tr
tf

− r

rf

)−α

. (2.46)

Using equation (2.16) with t ≫ tf , and the fact that vsw ∼ vw, gives the transition

time to a partially radiative bubble:

tr
tf

=

[

α + 2

3(1 + p)

(

(α + 1)tf
t1

)1+p
]1/[2−pα]

. (2.47)

Since tr ≫ tf (and tf ≫ t1 in the typical radiative sequence) we require 2 − pα > 0,

which restricts α < 2/p. If this condition is met, and t > tr with t ≫ tf , the PRB

occurs. During this stage the volume occupied by the hot portion of the shocked wind

is much larger than that of the unshocked wind: r3s ≫ r3sw, this arises since tcool,sw ≫ tcr.

However, most of the shocked wind mass is still cooled, and confined to a thin region

close to rc (see Figure 2.10).

The density of the hot shocked wind is approximately constant: ρsw = (γsw +

1)ρw/(γsw − 1), and the mass of the hot shocked wind can be approximated by:

Msw(t) ≈
∫ t

t−tcool,sw

Ṁw(t) dt (2.48)

which by mass conservation 4πr3ρsw/3 ∼ Msw(t) gives:

(

rs
rf

)3(
rsw
rf

)−4

≈ 3(γsw − 1)t1
(α + 1)(γsw + 1)tf

(

t

tf

)α

. (2.49)

Expressions for rs and rsw can be found by solving equation (2.49) (see Koo & McKee

1992a), which leads to the following proportionalities:

rs ∝ t(α+4)/(2p+1) (2.50)

and

rsw ∝ t[6+(p+2)α]/[2(2p+1)] (2.51)
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Figure 2.10: The structure of a partially radiative bubble (PRB). Much like the energy-
driven bubble most of the PRB is occupied by hot shocked wind (shown in pink).
However, unlike the energy-driven bubble the PRB has a region of cool shocked wind
(shown in grey) close to the contact discontinuity.

which is to be compared with the radius of the momentum-driven bubble:

r ∝ t(α+2)/(q+1) . (2.52)

This shows that the wind shock will be at a smaller radius for a PRB than for a

momentum-driven bubble, c.f. Figures 2.10 and 2.3. The ratio of rs with rsw increases

in time, as expected for a PRB, which has an expanding hot shocked wind region.
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Whether a PRB transitions to an energy-driven bubble can be determined by

comparing the cooling time of the shocked wind tcool,sw with the age of the bubble t:

tcool,sw
t

∝ t(5−2p+α−pα)/(2p+1) (2.53)

which shows that if α+1 < (4− p)/(p− 1), then the cooling time becomes larger than

the age and the bubble becomes energy-driven. This transition time is ten, which for

the ratio of ram pressures fP ≡ ρwv
2
w/ρg(r)v

2 is:

ten = tf







[

3(α + 1)

pfP

(

2q + 1

α + 4

)2
)−3

[

3(γsw − 1)

(γsw + 1)

]p−1(
(α + 1)tf

t1

)p+2







1/[4−p−(p−1)(α+1)]

,

(2.54)

and the motion of the bubble is as described in Section 2.2.3.

For any of the three stages in the radiative sequence pressure confinement can

occur. This happens when the ram pressure of the shell ρg(rs)v
2
s is equal to the ambient

pressure Pg(rs). When this occurs the motion of the shell is subsonic, and there is no

longer a forward shock.

In summary, during the radiative sequence a momentum-driven bubble transi-

tions to a PRB at time tr, which itself will eventually transition to an energy-driven

bubble at time ten. At any of these stages it is possible for the bubble to become con-

fined by the ambient pressure. If there is additional mass injected into the hot wind of

an energy-driven bubble, such as via the evaporation of molecular clouds entrained in

the outflow, then it is possible for the bubble to transition again to a momentum-driven

or partially-radiative stage.

2.2.8 Adiabatic Sequence

In order for this sequence to occur after the free expansion stage, it is required that

the wind is fast: vw ≫ vcrit, and p > pcrit (or inversely, slow: vw ≪ vcrit, but with

p < pcrit). Only one timescale is important in this sequence, which is the time tout

when the forward shock becomes radiative.
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These bubbles leave the free expansion stage in the energy-driven regime and are

described by the solutions in Section 2.2.3. They begin with a non-radiative forward

shock, which will go on to become radiative. The ratio of the cooling time of the

shocked ambient medium to the age of the bubble has the following proportionality:

tcool,sa
t

∝ r3−p
s v3s
t

∝ t[10+(6−p)α−7p]/(p+2) (2.55)

which for p < pcrit decreases with time and the ambient shock becomes radiative. This

causes the shell of shocked ambient medium to collapse to a thin region at the time

tout which is found by setting tcool,sa = t:

tout
tf

=

[

(2πξ′)(6−p)/(p+2)3

q

(

α + 3

p+ 2

)3
](p+2)/[−10+2p−(6−p)α]

(

vw
vcrit

)(p+2)/(p−α−1)

, (2.56)

where ξ′ is a constant of order unity.

Energy-driven bubbles with or without radiative forward shocks can become pres-

sure confined. Whether this occurs is determined by the comparison of the ram pres-

sure of the shell ρg(rs)v
2
s with the ambient pressure Pg(rs). When the ambient pressure

exceeds the ram pressure of the shell, the bubbles will become pressure confined.

2.3 Black Hole Winds and Gravity

For the momentum-driven bubble, gravitational forces due to the source point mass

MBH(t) and the surrounding dark matter halo with a radial mass distribution MDM(r)

can be introduced by including an extra term in equation (2.14):

[

Mw

(

t− r

vw

)

+
4πρs
p

(

r

r0

)p]

v = Mw

(

t− r

vw

)

vw

−
∫ t

0

G

r2

[

Mw

(

t− r

vw

)

+
4πρs
p

(

r

r0

)p]

[MBH(t) +MDM(r)] dt .

(2.57)

Taking the time derivative of this equation and considering a more general radial gas

distribution Mg(r), and including the resistive pressure of the ambient medium gives



71

a general equation of motion for the momentum driven shell:

d

dt

{[

Mw

(

t− r

vw

)

+Mg(r)

]

v

}

= τ
LEdd

c

(

t− r

vw

)

− 4πr2Pg(r)

−G

r2

[

Mw

(

t− r

vw

)

+Mg(r)

]

[MBH(t) +MDM(r)] ,

(2.58)

where equation (1.46) has been used for the SMBH wind source. Many simplified cases

of equation (2.58) have been solved and analysed. Most commonly, it is assumed that

the bubble has left the free expansion stage: Mw(t) ≪ Mg(r), and therefore that the

crossing time of the wind is negligible compared to the age of the bubble: t ≫ r/vw.

These assumptions result in the following equation of motion:

d

dt
[Mg(r)v] = τ

LEdd

c
(t)− 4πr2Pg(r)−

Mg(r)G

r2
[MBH(t) +MDM(r)] . (2.59)

It is commonly assumed that Mg(r) = f0MDM(r), i.e. that the gas traces the dark

matter directly. In this case, and assuming that Pg(r) = 0, MBH is constant, and that

the dark matter distribution is an SIS (see equation 1.11) leads to the critical SMBH

mass (see equation 1.49):

MBH =
f0σ

4

τπG2κ
, (2.60)

which results in a positive terminal coasting velocity for the momentum driven shell

(King 2003, 2005).

A critical mass which results in the escape of the shell has also been obtained for

the case that the dark matter halo is non-isothermal (McQuillin & McLaughlin 2012):

MBH =
f0κ

πG2

V 4
c,pk

4
, (2.61)

where Vc,pk is the peak of the halo’s circular speed curve (see Section 1.2).

For an energy-driven bubble, equation (2.21) for energy conservation in the hot

shocked wind can be extended to account for the work done against the gravity of the

point source MBH and the dark matter halo MDM(r):

d

dt

[

4

3
π(r3c − r3sw)

P

γ − 1

]

=
LEdd(t)vw

2c
− 4π(r2cvc − r2swvsw)P

− GMg(r)vc
r2c

[MBH(t) +MDM(r)]− nΛ(T ) ,

(2.62)
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where the cooling function Λ(T ) is present for a PRB, but absent for an energy driven

bubble. Rather than obtaining a power-law solution as in Section 2.2.3, a solution to

the equation of motion for the shell is sought:

d

dt
[Mg(r)v] = 4πr2 [P − Pg(r)]−

GMg(r)

r2
[MBH(t) +MDM(r)] , (2.63)

where P satisfies equation (2.62), and r = rc ∼ rs is assumed.

Typically for the case of an energy-driven shell it is assumed that rsw ≪ rc ∼
rs = r, leading to:

d

dt

[

4

3
πr3

P

γ − 1

]

=
LEdd(t)vw

2c
− 4πr2vP

− GMg(r)v

r2
[MBH(t) +MDM(r)] .

(2.64)

Equation (2.64) has been treated for the case of constant MBH(t) and Pg = 0 within

an SIS dark matter halo. Requiring that the terminal coasting speed v∞ of the shell is

equal to the escape speed of a truncated SIS, a critical mass - wind speed combination

has been found (McQuillin & McLaughlin 2012):

MBHvw =
1

τ

4(4γ − 3)

(γ − 1)

κf0
πG2

σ5
0 . (2.65)

Furthermore, it has been found that at large radii, the shell is expected to have a

momentum boost (Zubovas & King 2012):

Ṁshv∞
LEdd/c

=

√

η(γ + 1)

4ṁ

f0
fc

v∞c

σ2
0

∼ 20q1/6
(

σ

200 km s−1

)−2/3

, (2.66)

where ṁ ≡ Ṁw/ṀEdd, q is the fraction of Eddington luminosity introduced in Section

1.1.4, and fc is the ratio of gas to all matter (i.e. accounting for star formation).

Since an analytical approach to solving equation (2.59), or equation (2.63) cou-

pled with equation (2.64), by incorporating a time dependent black hole mass and

ambient pressure has yet to be carried out, this goal will be the focus of the following

two chapters in this thesis. In Chapter 3 equation (2.59) is analysed for the simplis-

tic case that MBH (and therefore LEdd/c) is constant. Similarly, equation (2.64) with
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(2.63) is analysed under the same assumption, with tracking of shell infall behaviour

also included. The main purpose of Chapter 3 is to demonstrate how the solutions

to these simplified equations can be applied and understood within an observational

context, and therefore to also frame the results from the subsequent chapters within

this context.

In Chapter 4, for the first time the effects of a growing black hole with different

growth profiles is investigated analytically. Therefore equations (2.59) and (2.64) with

(2.63) are examined in their entirety.
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3 Aspects of Steady Winds

As discussed in Section 1.5 observations of outflows within active galaxies have shown

that their momentum-fluxes Ṁv can vary greatly in relation to the radiative momentum-

flux of the AGN: LAGN/c. If LAGN ∼ LEdd then the outflow can be understood as

being driven by an optically thick wind from an accreting SMBH with momentum-

flux Ṁwvw ∼ LEdd/c ∼ LAGN/c (King & Pounds 2003). Support for the existence

of such winds has been obtained from observations of active galaxies where outflow

momentum-fluxes are typically measured to be of the order LAGN/c at small galactic

scales (Pounds & Reeves 2007, 2009; Tombesi et al. 2010; Gofford et al. 2013).

At large galactic scales the momentum-flux can vary over a significant range rel-

ative to the source: Ṁoutvout ∼ (0.1 − 100)LAGN/c (Feruglio et al. 2017; Fiore et al.

2017; Rupke, Gültekin & Veilleux 2017), but typically these large-scale outflows will

have momentum-fluxes which are boosted relative to LAGN/c. For momentum-fluxes

which are less than or equal to Ṁwvw the outflow could be modelled as being either

momentum-driven or energy-driven (see Chapter 2). However, if the momentum-flux

is boosted then it can only correspond to the energy-driven regime. By considering

that the primary source of cooling for outflows from AGN is inverse Compton scat-

tering (Ciotti & Ostriker 1997; King 2003), then it is more likely that the outflow

will be energy-driven at large scales (Faucher-Giguère & Quataert 2012; McQuillin &

McLaughlin 2013).

The dynamics of these outflows can be modelled as shells of swept-up gas blown

by steady (constant force) winds travelling into ambient gas distributions. By utilising

such models within the context of high-redshift protogalaxies which are treated as

having a dark matter distribution in the form of a singular isothermal sphere (SIS),

and by requiring that the shell be able to reach large radii the observed correlation

between the SMBH mass and velocity dispersion (see Section 1.4) can be derived. This

was carried out for a momentum-driven shell where it was found that the necessary
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SMBH mass to reach large radii was (King 2005):

Mσ =
f0κσ

4
0

τπG2
≃ 4.56× 108M⊙

1

τ

(

σ0

200km s−1

)4(
f0
0.2

)

. (3.1)

Another relation was also obtained by using an energy-driven shell and requiring that

the large radius coasting speed v∞ of the shell was equal to the escape velocity of a

truncated SIS (McQuillin & McLaughlin 2013). Unlike the momentum-driven case the

derived necessary SMBH mass in the energy-driven case contains the wind speed as a

free parameter:

MBHvw ≥ 1

τ

4(4γ − 3)

(γ − 1)

κf0
πG2

σ5 ≃ 2.00× 1015M⊙
1

τ

(

f0
0.2

)(

σ

200 km s−1

)5

. (3.2)

This relationship was used to interpret the scatter in the MBH−σ data as variations in

the wind speeds of protogalaxies when they were cleared of gas (McQuillin & McLaugh-

lin 2012). They found that the wind speed from fitting equation (3.2) to the MBH − σ

data compares very well with the median wind speeds from samples of local active

galaxies.

These results can be improved by modelling the protogalaxy as a more realistic

non-isothermal dark matter halo (see Section 1.2). A dark matter halo with a density

profile which is shallower than an SIS at small radii but steeper at large radii has a

well defined peak in its circular speed curve. By requiring that a momentum-driven

shell can reach large radii in a non-isothermal dark matter halo without stalling it was

shown that the sufficient SMBH mass is (McQuillin & McLaughlin 2012):

MBH ≥ f0κ

τπG2

V 4
c,pk

4
≃ 1.14× 108M⊙

1

τ

(

Vc,pk

4

)4(
f0
0.2

)

(3.3)

This theoretical relation is very similar to the observational correlation between the

SMBH mass and the large scale circular speed Vc,a (observationally determined from

large scale gas velocities) in galaxies where the dark matter dominates (Volonteri,

Natarajan & Gültekin 2011). By defining a characteristic velocity dispersion such that

σ0 =
√
2Vc,pk this becomes equation (3.1) and it can be related to the MBH − σ data.
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In addition to modelling outflows in gaseous protogalaxies these wind-driven

shells can be used to model outflows in local active galaxies. The large-scale coast-

ing velocity v∞ for an energy-driven shell in an SIS halo has been used in the limit

that the wind is very strong (vw ≫ σ0) to obtain an expression for the large-scale

momentum-boost of an energy-driven shell (Zubovas & King 2012):

Ṁshv∞

Ṁwvw
=

√

Ṁsh

Ṁw

∼ vw
v∞

(3.4)

where the quantity
√

Ṁsh/Ṁw is referred to as the mass-loading factor, which is part

of the overall ‘boost factor’ for the outflow. This relation has been used to compare

with observational results from active galaxies with vw/v∞ corresponding to the ‘boost

factor’ of the outflow for energy-driven shells (Tombesi et al. 2015; Feruglio et al. 2015).

The issues with this relation are that it was obtained in the limit that the winds are

fast (vw ≫ σ0) and that typically MBH ∼ Mσ and vw ∼ 0.1c.

Within this chapter the dynamics of both momentum- and energy-driven wind-

blown shells are studied with the inclusion of ambient pressure, with a methodology

which is similar to the approaches previously used by McQuillin & McLaughlin (2012,

2013) in order to investigate the dynamics of shells. The aims of this chapter are: (1)

to fully explore the dynamics of wind blown shells subject to ambient pressure within

isothermal and non-isothermal galaxies with particular emphasis on their momentum-

fluxes, (2) to demonstrate the approaches used to obtain SMBH masses for comparison

with the MBH − σ data and determine if this can be extended to include momentum-

boosting, (3) to utilise a time-dependent approach in order to lay the groundwork for

introducing a time-dependent SMBH mass in Chapter 4.

In Section 3.1 the equations of motion for momentum- and energy-driven shells

are introduced, as are the methods which will be utilised for solving them. In Section

3.2 momentum-driven shells in isothermal and non-isothermal haloes are analysed with

ambient pressure included and a new type of solution is found which corresponds to

a pressure confined shell. This section concludes with an analysis of the momentum-

fluxes ṗsh of momentum-driven shells and it is verified that they are approximated well
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by the observable Ṁshv over the typical observational ranges for large-scale molecular

outflows. Section 3.3 covers the dynamics of energy-driven shells with ambient pressure

included, and confined shells are also found to occur in the energy-driven regime when

ambient pressure is accounted for. This chapter concludes with a study of momentum-

fluxes of energy-driven shells. By analysing the momentum-fluxes of shells at large radii

in an SIS it is found that maximum momentum boosting always occurs at a specific

speed vp,max. Requiring maximum boosting sets the wind energy and kinetic energy

to have a specific ratio which is independent of changes to the constant inward forces

in the SIS halo (such as ambient pressure). Changes to the gravitational force affect

the specific value of vp,max, but not the ratio of kinetic and wind energy. This ratio

is the boost-factor for the outflow, and it is shown for a small sample of outflows in

active galaxies that they have velocities which are broadly distributed about the peak

of maximum boosting. By requiring that shells have maximum momentum boosting

at large radii in an SIS halo leads to the SMBH mass:

MBH =
f0κσ

4
0

2πτG2

[

4(3γ − 2)

3(γ − 1)

(

vp,max

vw

)](

vp,max

σ0

)2

. (3.5)

The first factor is the momentum-driven MBH − σ relation (divided by 2), the second

factor in the square brackets is the inverse of the boosting factor, and the third factor

v2p,max is the square of the speed at maximum boosting. Using the expression obtained

for vp,max enables equation (3.5) to be compared with the MBH − σ data as shown

in Figure 3.1. If protogalaxies were cleared by maximally boosted outflows then the

scatter in the MBH − σ data can be interpreted as variation in the boosting factor at

the time of blowout. Regions of MBH and σ data could be identified as being consistent

with energy- or momentum-driven outflows based on the level of boosting. Since the

boost factor is determined by the ratio of the wind speed to the outflow speed this

hints at regions where winds are expected to be fast or slow relative to the outflow

speed. Fast winds are such that the outflow speed is far less than that of the wind and

therefore the boost factor is substantially higher, which means energy-driven outflows,

and therefore this definition of fast winds can be connected to the definitions introduced

in Chapter 2. By distinguishing between momentum- and energy-driven outflows in the
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data provides insight into vacancies or overdensities in the data. Finally, by taking data

from a small sample of active galaxies it is shown that the observed momentum-boosts

can match up well with the predicted boost factor (see Figure 3.1).

It is then shown that the momentum-boost distributions in the SIS halo for which

it is defined 2σ2
0 ≡ V 2

c,pk match those of the Hernquist halo precisely at the peak of

the circular speed curve rpk. For maximum momentum-boosting the exact same ratio

applies between wind and kinetic energies as in the SIS halo. By using the value for

the ratio of wind to kinetic energy at rpk the following mass for a maximally boosted

shell is obtained:

MBH =
f0κV

4
c,pk

4πτG2

[

4(3γ − 2)

3(γ − 1)

(

vp,max

vw

)](

vp,max

Vc,pk

)2

. (3.6)

If maximum boosting is required when the outflow reaches rpk as this is where the

gravitational force is strongest, then equation (3.6) can be viewed as the energy-driven

analogue of equation (3.3). The momentum-driven equation (3.3) is recovered (to

within a factor of 2) if the upper limit of unity on the momentum boost is used (i.e.

the quantity in square brackets is set to unity) and vp,max ≃
√
2Vc,pk, which is the shell

velocity of a maximally boosted shell at rpk.

3.1 Equation of Motion for the Shell

Consider a shell of shocked swept up ambient medium with mass Msh driven by a

time-independent (steady) wind with outwards pressure P (r), and subject to opposing

forces from ambient gas pressure Pg(r) and from the gravity of the SMBH mass MBH

and dark matter mass MDM. The equation of motion for this shell is (see Section 2.3):

d

dt
[Mshv] = 4πr2 [P (r)− Pg(r)]−

GMsh(r)

r2
[MBH +MDM(r)] . (3.7)

It is important to note that v = dr/dt is the velocity of the shell (not the wind), and

for both the momentum- and energy-driven shells the radius r refers to the contact

discontinuity between the shell and the shocked wind region (see Section 2.1). Equation
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Figure 3.1: Plot of MBH − σ data from McConnell & Ma (2013) and Gültekin et al.
(2009) against the derived MBH − σ relation given by equation (3.5). The data in-
cluded on the momentum boosts are from Cicone et al. (2014) and Rupke, Gültekin &
Veilleux (2017). Their colours correspond to whether the measured momentum boost
is numerically close to one of the chosen intervals.

(3.7) was first solved in the case of a momentum-driven shell within an SIS halo with

Pg(r) = 0 (King 2005), and for the case that the gas traces dark matter directly

(Msh(r) ∝ MDM(r)). By requiring that the shell can reach large radii results in the

critical mass given by equation (3.1). The critical mass given by equation (3.1) is
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a natural mass scale to use, and masses normalised to this value will be denoted
∼

M ≡ M/Mσ. This leads to the definition of a characteristic radius:

rσ =
GMσ

σ2
0

=
f0κσ

2
0

τπG
≃ 49.25 pc

(

σ0

200 km s−1

)2(
f0
0.2

)

τ−1 . (3.8)

which will be used as the scale radius for the SIS, and radii normalised to this value

will be denoted
∼

r ≡ r/rσ. Velocities will be normalised to the characteristic velocity

dispersion
∼

v ≡ v/σ0.

The method for selecting scales for non-isothermal haloes will be that used by

McQuillin & McLaughlin (2012). They utilise the natural scale radius rpk at which the

circular speed curve Vc(r) peaks (see Section 1.2). The characteristic velocity dispersion

σ0 can then be given meaning within non-isothermal haloes by relating it to the peak

value of circular speed Vc,pk = Vc(rpk) through the relation:

σ2
0 ≡ V 2

c,pk/2 . (3.9)

This allows the mass and radius scales given by equations (3.1) and (3.8) to be used

with non-isothermal haloes, giving:

∼

V 2
c,pk = 2 (3.10)

and
∼

MDM(rpk) ≡
∼

Mpk = 2
∼

rpk . (3.11)

Normalising all radii to rpk within non-isothermal haloes:

x ≡ r/rpk , (3.12)

and introducing a dimensionless mass profile m(x) for the halo:

∼

MDM(x) =
∼

Mpkm(x) , (3.13)

which has the property:

∼

MDM(1) =
∼

Mpk =⇒ m(1) = 1 . (3.14)
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For any halo with a peaked circular speed curve the normalised mass of the shell will

be given by:
∼

M sh(x) ≡ f0h(x)
∼

MDM(x) = f0h(x)
∼

Mpkm(x) , (3.15)

where h(x) describes how the ambient gas traces the dark matter and f0 is therefore

the gas fraction at x = 1. In this chapter it will ultimately be assumed that the gas

traces the dark matter directly, i.e. h(x) ≡ 1 and therefore Msh/MDM = f0 ≃ 0.2 (King

2003).

Introducing the characteristic timescale
∼

t = t/tσ such that dx/d
∼

t =
∼

v:

tσ ≡ rpk
σ0

≃ 2.4× 108 yr

(

rpk
50 kpc

)(

200 km s−1

σ0

)

, (3.16)

Using the mass, radius, and time normalisations Mσ, rpk and tσ allows the equation of

motion (3.7) to be written:

d

d
∼

t

[

h(x)m(x)
∼

v
]

= 4πx2
[∼

P (x)−
∼

P g(x)
]

− 2h(x)m(x)

x2

[ ∼

MBH
∼

Mpk

+m(x)

]

, (3.17)

where pressures are normalised in the manner
∼

P ≡ P/Pσ with:

Pσ ≡ f0Mpkσ
2
0

r3pk

≃ 6.0× 1044 erg pc−3

(

f0
0.2

)(

Mpk

4.7× 1011M⊙

)(

σ0

200 km s−1

)2(
50 kpc

rpk

)3

.

(3.18)

3.1.1 Ambient Gas Pressure

The ambient pressure is given by the equation of hydrostatic support:

dPg

dr
= −ρg(r)

G [Mg(r) +MDM(r)]

r2
, (3.19)

which when normalised leads to the following expression for the ambient gas pressure:

∼

P g(x) =
1

2π

∫

∞

x

[1 + f0]

[

d

du
h(u)m(u)

]

m(u)

u4
du =

∼

ρg(x)
∼

σ2
g(x) (3.20)



82

where the density is normalised to:

ρσ ≡ f0Mpk

r3pk
≃ 7.5× 10−4M⊙ pc−3

(

f0
0.2

)(

Mpk

4.7× 1011M⊙

)(

50 kpc

rpk

)3

. (3.21)

3.1.2 Infall

When a stall point (
∼

v = 0) is reached the shell propagates back into the region swept

clear of gas. Within this region the equation of motion changes to:

h(xstall)m(xstall)
d
∼

v

d
∼

t
= 4πx2P (x)− 2h(xstall)m(xstall)

x2

[ ∼

MBH
∼

Mpk

+m(x)

]

. (3.22)

This assumes that the ambient gas beyond xstall remains static whilst the shell prop-

agates back into the region previously swept clear of gas. This assumption is valid in

the limit that the infall timescale tff of the shell is much shorter than the dynamical

collapse timescale tcol of the ambient gas. The consistency of this assumption will need

to be confirmed when it is required. The opposing limit (not considered in this chap-

ter) would be that the ambient gas falls toward the centre faster than the shell, which

means that the ambient gas refills the region previously swept clear of gas, and exerts

pressure on the shell as they both infall.

Realistically the scenario would probably be between these two regimes. As the

shell stalls and begins to fall inward the ambient pressure would decrease smoothly

(rather than shutting off instantly) as the dense shell accelerates back toward the

SMBH and eventually outruns the ambient gas completely. If the shell were to stall

again and be pushed back out toward the ambient medium it would propagate into a

region of newly replenished lower-density ambient gas until it reached its original stall

radius. This detailed treatment of infall is not within the scope of this chapter, nor is

it in line with its aim, which is to introduce a simple type of infall in order to begin

investigating the time evolution of shells.

The precise post-stall behaviour will not affect any conclusions relating to shells

that never stall. Requiring that the shell reach large radii without stalling is an example
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of a sufficient condition for the escape of a shell. Therefore any critical parameter values

which lead to this condition being satisfied are completely independent of how the shell

infalls.

3.1.3 Solution Method

Analytical solutions to equations (3.17) and (3.22) cannot always be obtained. This is

particularly true for non-isothermal haloes, and for the case that the shell is energy-

driven, as the driving pressure term in (3.17) must satisfy an additional equation

(see Section 2.3). In general MBH is expected to grow as a function of time, which

increases the complexity of the equations of motion, and further motivates the need

for a numerical solution method.

In order to solve equation (3.17) a program has been written which utilises a

Runge-Kutta adaptive stepsize solution method (Press 2007). This solves equation

(3.17) (or equation 3.22 if the shell is infalling) for x(t) and m(x)
∼

v, and additionally

dm(x)
∼

v/d
∼

t as required in the energy-driven case (see Section 2.3).

For the case that the gas traces the dark matter directly (h(x) = 1) it is possible

to obtain analytical expressions for the ambient gas pressure
∼

P g for the dark matter

haloes considered in this chapter. These analytical expressions are used within the

code to give the gas pressure at any point. If the gas were not to directly trace the

dark matter, then the ambient gas pressure would need to be obtained by numerically

solving equation (3.20) during the runtime of the program.

3.2 Momentum-Driven Outflows

In the case that the outflow is momentum-driven (see Section 2.2.2) the shell of shocked

ambient medium is driven by the ram pressure of the wind, which for an SMBH wind

the force is (King & Pounds 2003):

4πr2P (r) = Ṁwvw = τ
LEdd

c
, (3.23)
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which when normalised becomes:

4πx2
∼

P (x) = 2
∼

MBH , (3.24)

and equation (3.17) becomes:

d

d
∼

t

[

h(x)m(x)
∼

v
]

= 2
∼

MBH − 4πx2
∼

P g(x)−
2h(x)m(x)

x2

[ ∼

MBH
∼

Mpk

+m(x)

]

. (3.25)

Equation (3.25) describes the motion of the shell as it propagates into the ambient

medium. If the shell stalls and begins to infall then the motion of the shell is no longer

described by equation (3.25).

3.2.1 Infall

If a shell reaches a stall point xstall where
∼

v = 0 instantaneously, and the acceleration

at xstall is negative, then the shell infalls back into the region swept clear of gas. The

equation of motion becomes:

h(xstall)m(xstall)
d
∼

v

d
∼

t
= 2

∼

MBH − 2h(xstall)m(xstall)

x2

[ ∼

MBH
∼

Mpk

+m(x)

]

. (3.26)

Equation (3.26) can be solved for the square of the velocity of an infalling shell:

v2ff(x) =
4

∼

MBH

h(xstall)m(xstall)
(x− xstall)+4

∼

MBH
∼

Mpk

1

x

(

1− x

xstall

)

−4

∫ x

xstall

m(u)

u2
du (x < xstall) .

(3.27)

It is not always analytically possible to obtain the infall timescale tff from equation

(3.27). This means that the assumption tff ≪ tcol cannot always be directly confirmed.

If this is not possible then the consistency of this assumption can be investigated by

comparing the infall velocity with the velocity vcol for the dynamical collapse of the

ambient gas. If vff ≫ vcol throughout the infall peroid, then tff ≪ tcol is a reasonable

assumption.
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3.2.2 The Singular Isothermal Sphere

Equation of Motion

For an SIS halo the mass profile is (see Table 1.1):

MDM(r) =
2σ2

0

G
r . (3.28)

Normalising the mass to Mσ (equation 3.1) leads to:

∼

MDM(x) = 2x . (3.29)

where x ≡ r/rσ for this scale-free case. Hence, the general equation of motion (3.25)

can be used for the SIS halo with m(x) = x, and
∼

Mpk = 2. Considering the case that

gas traces dark matter directly (h(x) = 1), then equation (3.20) with m(u) = u gives

the normalised pressure of the ambient (hydrostatic) gas in an SIS halo to be:

∼

P g(x) =
1 + f0
4πx2

. (3.30)

The equation of motion (3.25) becomes:

d

d
∼

t

[

x
∼

v
]

= 2
( ∼

MBH − 1
)

− (1 + f0)−
∼

MBH

x
. (3.31)

Equation (3.31) has no explicit time dependence, which means that it can be reduced

to a first order equation in radius:

d

dx

[

x2∼v2
]

= 2
[

2
( ∼

MBH − 1
)

− (1 + f0)
]

x− 2
∼

MBH . (3.32)

Aside from the additional factor of 2(1 + f0)x = 8πx3
∼

P g equation (3.32) is the same

as that solved by McQuillin & McLaughlin (2012). This section will adopt a similar

methodology to theirs which begins by solving for the square of the shell velocity, and

exploring the asymptotic limits of this expression. This is followed by an analysis

of the initial momentum, and how certain values which are unphysical at x = 0 can

define launch solutions which begin at radii xlaunch > 0. The shell stall radii are then
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analysed, and a condition on the initial momentum is obtained which results in shells

which never stall.

Equation (3.32) has the solution:

∼

v2 = 2
( ∼

MBH − 1
)

− (1 + f0)−
2

∼

MBH

x
+

C

x2
(3.33)

where C = m2(0)
∼

v2(0) is the square of the shell’s normalised momentum at x = 0.

If the ambient pressure is neglected by dropping the factor 1 + f0 then the result of

McQuillin & McLaughlin (2012) is recovered, and if the SMBH gravity is neglected

then the result of King (2005) is recovered.

Large Radii and the Necessary SMBH Mass for the Escape of a Shell

At large radii the velocity tends to a constant:

∼

v2 = 2
( ∼

MBH − 1
)

− (1 + f0) (x ≫ 1) , (3.34)

which in order to be positive requires:

∼

MBH >
∼

MBH,crit = 1 + (1 + f0)/2 ≃ 1.6 . (3.35)

This is the necessary SMBH mass for the shell to reach arbitrarily large radii (c.f. King

2005; McQuillin & McLaughlin 2012). The inclusion of ambient gas pressure increases

the critical mass given by equation (3.1) by 60%. This mass alone is not a sufficient

condition for escape as it is also required that the shell receives a large enough impulse

at x = 0 in order to overcome the inward gravitational forces to obtain its coasting

speed (McQuillin & McLaughlin 2012).

At large radii, and therefore at late times the shell radius has a linear dependence

on time and is independent of the initial shell momentum C:

x(
∼

t) =

√

2
( ∼

MBH − 1
)

− (1 + f0)
∼

t (
∼

t ≫ 1) . (3.36)

The shell radius at large radii has the same dependence on time as that obtained in

Section 2.2.2 for a momentum-driven bubble propagating into an SIS gas distribution
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in the absence of gravitational forces (see equation 2.16 with p = 1 and α = 0). This is

because the gravitational force of the dark matter on the shell is constant at all radii

in the SIS halo: MDM(r) ∝ Msh(r) ∝ r.

Small Radii

At small radii the C/x2 term in equation (3.33) becomes dominant:

∼

v2 =
C

x2
− 2

∼

MBH

x
(x ≪ 1) . (3.37)

The shell radius as a function of time tends to:

x(
∼

t) =
(

2
√
C

∼

t
)1/2

(
∼

t ≪ 1) . (3.38)

Launch Solutions

If C ≤ 0 < 2
∼

MBH/x then
∼

v2 is negative at small radii, and x(
∼

t) is imaginary. However,

the derivative d
∼

v2/dx is greater than zero, which means
∼

v2 will be zero at some larger

radius, and it increases beyond this point. These correspond to launch solutions which

begin at the radius xlaunch. Combining
∼

v2 = 0 and d
∼

v2/dx ≥ 0 with equation (3.33)

gives:

xlaunch ×
[

2(
∼

MBH − 1)− (1 + f0)
]

≥
∼

MBH , (3.39)

with ambient gas pressure effects represented by the factor −(1+ f0). Equation (3.39)

shows that launch solutions are only possible if
∼

MBH > 1 + (1 + f0)/2. These launch

solutions represent shells that have previously stalled and have been relaunched by

the wind (McQuillin & McLaughlin 2012 - see also Figure 1.9 in Section 1.5). Since

equation (3.31) (rather than equation 3.32) is to be numerically solved with respect

to time (and including infall) these launch solutions can occur as a part of a shell’s

trajectory if it stalls and is able to resume outward motion.

Stall Points and Required Initial Momentum for Escape

The critical mass given by equation (3.35) means that a shell will have a positive coast-
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ing velocity at large radii, but the shell must have a large enough initial impulse to

overcome the gravitational and ambient pressure forces in order to reach large radii.

If C > 0 then
∼

v2 is large and positive at radii tending to zero, but the derivative

d
∼

v2/dx is negative and so the shell decelerates. If the shell stalls it does so at a radius

given by setting equation (3.33) equal to zero, which leads to:

xstall =

∼

MBH −
√

∼

MBH
2 −

[

2
( ∼

MBH − 1
)

− (1 + f0)
]

C

2
( ∼

MBH − 1
)

− (1 + f0)
(3.40)

In the case that MBH < 1 + (1 + f0)/2 the discriminant in equation (3.40) is always

positive and greater than
∼

MBH
2. This results in the numerator and denominator in

equation (3.40) both being negative, and therefore xstall > 0, i.e. the shell will not

reach large radii.

If the discriminant is negative, then xstall is complex and
∼

v2 = 0 never occurs.

The shell will never stall, and therefore always escape if:

∼

M2
BH − [2(

∼

MBH − 1)− (1 + f0)]C < 0 (3.41)

or in terms of C:

C > Cesc =

∼

M2
BH

2
( ∼

MBH − 1
)

− (1 + f0)
. (3.42)

Physically this is a statement that the shell’s initial momentum must be large enough

for it to overcome the inward forces of gravity and ambient pressure. Therefore a

sufficient condition for a shell to reach large radii without stalling is that for a given

MBH > Mσ the initial momentum must exceed Cesc(
∼

MBH) (McQuillin & McLaughlin

2012).

Finding the minimum value of Cesc by differentiating with respect to
∼

MBH and

equating to zero gives Cesc = 2 + (1 + f0) when
∼

MBH = 2 + (1 + f0), i.e. when

Cesc =
∼

MBH. Therefore the lower limit of the square of initial momentum for any
∼

MBH

is:

C > Cmin = 2 + (1 + f0) . (3.43)
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This is a necessary condition for the escape of shell which all shells must satisfy if they

are to reach large radii without stalling. It is not a sufficient condition because for a

specific value of C > Cmin there are two
∼

MBH solutions to equation (3.42) which bound

the range of values that
∼

MBH can have in order for a shell to reach large radii without

stalling.

Equation (3.41) has a single real solution MBH = Cmin when C = Cmin. For

C > Cmin equation (3.41) has two real solutions. The smaller of these two solutions

corresponds to the SMBH value required (for a given initial C) to overcome the ambient

pressure and gravitational forces:

∼

MBH,low = C
[

1−
√

1− Cmin/C
]

. (3.44)

The larger corresponds to the SMBH value that must not be exceeded if the shell is to

escape the gravity of the SMBH:

∼

MBH,high = C
[

1 +
√

1− Cmin/C
]

. (3.45)

The effects of these two masses can be seen in Figure 3.2 by plotting SMBH mass
∼

MBH against shell radius x for numerical solutions to (3.31) (black curves) alongside

the stall solutions
∼

v2 = 0 given by equation (3.33) (blue curves). Three values of C

are shown: the lowest value of initial momentum which shells must exceed in order to

escape: C = Cmin, and two larger values C = 5, 10 are shown for ten
∼

MBH values in

logarithmic intervals between 0.001 and 100.

To sum up: for a momentum-driven shell in an SIS halo to never stall and to

achieve a positive terminal coasting speed it must be driven by a wind from an SMBH

with mass in excess of MBH,crit as given by equation (3.35), and its initial momentum

must exceed Cesc as given by equation (3.42), or equivalently for a given initial mo-

mentum the SMBH mass must lie between MBH,low and MBH,high.

Infall

In the case that C < Cesc(
∼

MBH) then the shell stalls at xstall given by equation (3.40).

By using equation (3.40) with (3.31) it can be shown that the acceleration at xstall is
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Figure 3.2: SMBH mass against shell radius for momentum-driven shells in an SIS halo
for three values of initial momentum. The blue curves show the velocity from equation

(3.33) equated to zero and solved for
∼

MBH. Equivalently these curves correspond to
the stall radii given by equation (3.40). The black lines are individual shell solutions
shown simply in terms of their constant SMBH mass. This figure shows how the range
of SMBH masses which allows shells to reach large radii without stalling increases
with increasing initial momentum.
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always negative. This means that the shell will begin to infall, and if it infalls faster

than the ambient gas then its equation of motion is:

xstall
d
∼

v

d
∼

t
= 2

∼

MBH −
∼

MBHxstall

x2
− 2xstall

x
(x < xstall) (3.46)

and the subsequent infall velocity is:

∼

v2(x) =4
∼

MBH

(

x

xstall

− 1

)

+
2

∼

MBH

x

(

1− x

xstall

)

+ 4 ln
(xstall

x

)

(x < xstall) .

(3.47)

The time tff taken by the shell with infall velocity given by equation (3.47) to infall from

xstall to x = 0 is to be compared with the collapse time of the gas tcol ∼
√

1/Gρ̄g. For

the SIS halo with gas tracing dark matter directly the collapse time is tcol ∼ r/σ0, and

therefore the gas redistributes itself with a velocity ∼ σ0. Since tff is not readily solved

for in equation (3.47) the infall velocity is instead to be compared with σ0. If
∼

v ≫ 1

for much of the infall, then the assumptions regarding the static distribution of the gas

as the shell infalls are justified. The infall velocity given by equation (3.47) is shown

in Figure 3.3 for a range of SMBH masses and initial momenta. This figure shows that

for the range of
∼

MBH and C values chosen that the magnitude of infall velocity exceeds

σ0 over most of its infall trajectory, and that the approximation tff ≪ tcol is acceptable.

Just as the shell begins to infall at xstall the force from ambient pressure is re-

moved, and the acceleration may now be less than, equal to, or greater than zero at

xstall. Equation (3.46) shows that if the acceleration is negative at xstall, then it will

remain so for x < xstall. This means that solutions with negative acceleration at xstall

cannot stall again during infall. Instead they simply fall back down to the SMBH. If
∼

MBH ≤ 1, then by inspection of equation (3.46) it can be seen that the acceleration is

negative at xstall. If
∼

MBH > 1 then requiring that the acceleration in equation (3.46)

is negative leads to:

xstall <

∼

MBH

2(
∼

MBH − 1)
(
∼

MBH > 1). (3.48)
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Figure 3.3: Infall velocity fields for momentum-driven shells launched by a steady wind
in an SIS halo for a range of SMBH masses. The black curves show the infall velocity
fields of shells for a range of initial momenta (0.0001 < C < 1000). The dotted red
line shows the maximum possible xstall from equation (3.40).

If (3.48) is satisfied then stalled shells driven by winds from SMBHs with masses
∼

MBH >

1 will have negative acceleration, and subsequently infall to the SMBH. If equation

(3.48) is not satisfied then the shell has positive acceleration at xstall, and rather than

infalling the shell moves outward. This means that these shells are described by a
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launch solution in the absence of ambient pressure (see McQuillin & McLaughlin 2012).

This condition can be put in terms of the initial momentum by using equation (3.40)

with equation (3.48):

C < Cff =

∼

M2
BH

4(
∼

MBH − 1)2

[

2(
∼

MBH − 1) + (1 + f0)
]

(
∼

MBH > 1) . (3.49)

If
∼

MBH ≤ 1, or
∼

MBH > 1 and C < Cff then the shell has negative acceleration at xstall

and falls back toward the SMBH without stalling again.

If C > Cff then the shell has positive acceleration at xstall. This corresponds

to an instantaneous impulse that the shell receives from the wind as the ambient gas

pressure drops off suddenly from the shell as it stalls and just starts to infall. The

result of this is that the overall force on the shell increases by the amount close to that

which was being imparted by the ambient pressure which in the SIS halo is 1+f0. The

shell attempts to move back out until it collides with the stationary ambient medium

and is again subject to its ram pressure.

Numerical Solutions

The resultant shell radii x and velocities
∼

v from numerically integrating the equation

of motion (3.31) and equation (3.46) (when the shell stalls) are shown in Figure 3.4 as

a function of time
∼

t . In Figure 3.5 the shell velocity
∼

v and momentum-flux of the shell

ṗsh are shown as functions of shell radius x. These figures show solutions with fifteen

different values of C in logarithmic intervals within the range 0.001 < C < 1000. The

five SMBH masses:
∼

MBH = 0.36, 1.01, 1.3, 1.61, 3.6 display the entire range of shell

behaviour and they correspond to a mass significantly below any necessary mass for

a shell to escape, a mass slightly above the necessary mass for the escape of a shell

in the absence of ambient pressure, an intermediate mass between the two necessary

masses without and with ambient pressure, a mass slightly above the necessary mass

for the escape of a shell subject to ambient pressure, and a mass significantly above

this necessary mass (respectively).

Three possible outcomes exist for the shell: the shell stalls once and falls back
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to the SMBH, the shell reaches large radii without ever stalling, or the shell stalls

repeatedly as it becomes confined by the ambient pressure.

For
∼

MBH = 0.36, 1.01, 1.3 all solutions stall. For
∼

MBH = 0.36 all post-stall

solutions follow equation (3.47), as do those solutions with
∼

MBH = 1.01, 1.3 which

have C values which satisfy equation (3.49): C < Cff. The momentum-flux plot in

Figure 3.5 shows that these are the solutions where the impulse received from the wind

(as the ambient pressure drops instantly at a stall) is too weak to result in a positive

net force. The solutions for
∼

MBH = 1.01, 1.3 with C > Cff do not infall because the

instantaneous force of 1 + f0 is strong enough to result in a positive net force which

pushes the shell outwards again. This impulse results in shells which are similar to

the launch solutions obtained when C < 0 and the ambient pressure is neglected (see

McQuillin & McLaughlin 2012) but with the key difference being that the shell mass is

constant. These solutions stall again when the ambient medium and its associated ram

pressure are encountered. But because the shell moved briefly without sweeping up

mass when it recollides with the ambient gas it does so with a higher force than it had

before. It is this which allows the shell to make slow progress despite being pressure

confined, and it is shown by the small ’saw-tooth’ steps above the blue curves in Figure

3.6. The process repeats indefinitely for these SMBH mass values because the net force

with ambient pressure included is never positive since
∼

MBH is less than the critical

value of 1.6. This process of repeated stalling does however result in a small average

velocity which increases to a constant value as the SMBH gravity becomes negligible.

These velocities are shown with blue dashed lines in Figure 3.4 and correspond to
∼

vavg = 0.008, 0.05 for
∼

MBH = 1.01, 1.3 respectively. This is a new type of shell solution

which corresponds to the scenario where the wind is strong enough to prevent the shell

from infalling but not so strong that it can overcome the ambient pressure. Therefore

the best physical interpretation for these solutions are that they represent confinement

by the ambient pressure. This is supported by the approximately constant radii that

the shells possess for long intervals of time. However, the repeated stalling and the

resultant slow motion are likely to result in the dissolution of the shell’s shock structure.

A region where the repetitive stalling behaviour occurs is highlighted in Figure
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3.5 in a green box, which is enhanced for a single solution with C = 100 in Figure

3.6. The top left panel of Figure 3.6 shows the numerical velocity solution in black

alongside the analytical solution from equation (3.33) in green, a launch solution in blue

given by equation (3.33) with C < 0 and ambient pressure neglected, and an analytical

solution in red for when the ambient pressure is reapplied given by equation (3.33)

with C ≫ 100. In the lower left panel the numerical solution for the momentum-flux is

shown in black, with the analyical momentum-flux from equation (3.31) in green, the

analytical momentum-flux from equation (3.31) without ambient pressure in blue, and

the momentum-flux from equation (3.46) in magenta. This shows that when the shell

with motion described by equation (3.31) stalls (green curve) the ambient pressure

term is dropped and the force suddenly increases by an amount 1 + f0 (blue curve).

The net force is positive at the stall point and the shell attempts to move outward

with constant mass, and because its mass is constant the force becomes larger still

(departs from blue force curve). The shell then encounters the ambient medium and

its associated ram pressure which causes the force to become instantly negative (green

curve). The velocity decreases to zero as the force is negative (red curve in top panel).

This repeats indefinitely because the equation of motion (3.31) never permits a positive

net force for
∼

MBH < 1.6, but the shell makes slow progress because of the small motions

with constant mass. The case where
∼

MBH = 1.61 is shown in the right hand panels,

and this solution does achieve a positive net force after stalling twice.

For the larger SMBH masses:
∼

MBH = 1.61, 3.6 the shells only stall if equation

(3.42) is not satisfied. A single solution in each case with Cff < C < Cesc is shown which

stalls multiple times before going on to escape. The solution shown for
∼

MBH = 1.61

has a large enough initial momentum that it stalls only a couple of times before going

on to escape, whilst the solution for
∼

MBH = 3.6 has a low value of initial momentum

which results in it stalling many times. The solutions with C > Cesc never stall, and

the asymptotic late time expressions for x and
∼

v given by equation (3.36) and (3.34)

are shown as red dashed curves in Figure 3.4.
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Figure 3.4: Shell radius and velocity versus time for a momentum-driven shell launched by a steady wind in an SIS
halo. Blue and red dashed lines show asymptotic stalling and escape solutions respectively. The C values displayed
are in logarithmic intervals increasing from bottom to top (upper panels) and left to right (lower panels) between
C = 1 and C = 1000. See main text for discussion.
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ṗ s
h
/(
M

σ
σ
0
/t

σ
)

r/rσ

101 102
-0.5

0

0.5

1

1.5

r/rσ

Figure 3.6: Stalling shell velocity and momentum-flux versus radius for a momentum-driven shell launched by a
steady wind in an SIS halo. The solutions shown are taken from within the green boxes in Figure 3.5. Numerical
velocity solutions are shown in black alongside the analytical solution from equation (3.33) in green, a launch solution
in blue given by equation (3.33) with C < 0 and ambient pressure neglected, and an analytical solution in red for
when the ambient pressure is reapplied given by equation (3.33) with C ≫ 100. In the lower left panel the numerical
solution for the momentum-flux is shown in black, with the analyical momentum-flux from equation (3.31) in green,
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3.2.3 Hernquist Halo

Equation of Motion

The mass profile for the Hernquist halo is (see Table 1.1):

MDM(x) = Mpk
4x2

(1 + x)2
, (3.50)

where x = r/rpk and Mpk is the mass at x = 1. Dividing by Mpk gives the function

m(x):

m(x) =
4x2

(1 + x)2
. (3.51)

In the case that h(x) ≡ 1 the normalised pressure of the ambient gas can be found by

using equation (3.51) with equation (3.20):

∼

P g(x) =
16(1 + f0)

π

[

ln

(

1 +
1

x

)

− 2x(3x(2x+ 7) + 26) + 25

12(1 + x)4

]

. (3.52)

The equation of motion (3.25) becomes:

d

d
∼

t

[

4x2

(1 + x)2
∼

v

]

= 2
∼

MBH−64(1 + f0)x
2

[

ln

(

1 +
1

x

)

− 2x(3x(2x+ 7) + 26) + 25

12(1 + x)4

]

− 8

(1 + x)2

[ ∼

MBH
∼

Mpk

+
4x2

(1 + x)2

]

.

(3.53)

The ambient pressure and the ambient pressure force are shown in Figure 3.7.

Asymptotics

The Hernquist halo has a shallower density profile than the SIS halo at small radii

which means that the shell sweeps up less mass at smaller radii. A consequence of

this is that the SMBH gravity is less significant at small radii in the Hernquist halo.

This can be seen by using the fact that m(x) → 4x2 at small radii and therefore the

gravitational force of the SMBH scales with the outward wind force. The shell will

have a positive net force at small radii as long as:

∼

MBH

[

1− 4
∼

Mpk

]

> 0 (3.54)
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Figure 3.7: Ambient pressure (top) and the ambient pressure force on a shell (bottom)
against radius in a Hernquist halo.

and therefore if
∼

Mpk > 4. This means that unlike the SIS halo the Hernquist halo

does not require shells to have a positive initial momentum in order to begin moving

outward. If the initial momentum of the shell is zero (C = 0), then the shell radius at

early times is given by:

x(
∼

t) =

[

3
∼

MBH

4

(

1− 4
∼

Mpk

)

∼

t2

]1/3

(
∼

t ≪ 1; C = 0) . (3.55)

Because the driving term 2
∼

MBH scales with the SMBH gravity term and dominates

the ambient pressure and dark matter gravity terms the shell radius solution given by

equation (3.55) has the same dependence on time as the radius of a momentum-driven
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bubble in the absence of gravity (see equation 2.16 with p = 2 and α = 0).

If the shell has an initial momentum C > 0 then the shell radius at early times

is:

x(
∼

t) =

(

3
√
C

∼

t

4

)1/3

(
∼

t ≪ 1; C > 0) . (3.56)

From equations (3.55) and (3.56) the velocity at early times is:

∼

v =

[

2
∼

MBH

9

(

1− 4
∼

Mpk

)

∼

t−1

]1/3

=

√

√

√

√

∼

MBH

3

(

1− 4
∼

Mpk

)

x−1 (
∼

t ≪ 1; C = 0) ,

(3.57)

or if C > 0:

∼

v =
1

3

(

3
√
C

∼

t−2

4

)1/3

=

√
C

4x2
(
∼

t ≪ 1; C > 0) . (3.58)

At late times the mass profile converges (m(x) → 4), and the right hand side of

equation (3.53) tends to 2
∼

MBH. The resultant shell radius is:

x(
∼

t) =

∼

MBH

4

∼

t2 (
∼

t ≫ 1) , (3.59)

which because the halo mass tends to a constant shows the same dependence on time

as the momentum-driven bubble in the absence of gravity (see equation 2.16 with p = 0

and α = 0). The velocity of the shell is:

∼

v =

∼

MBH

2

∼

t =

√

∼

MBHx (
∼

t ≫ 1) . (3.60)

Infall

In order to determine whether a shell infalls at a stall point its acceleration must be

found at that point. If the shell stalls then its acceleration can be determined from
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equation (3.53):

d
∼

v

d
∼

t
=
(1 + xstall)

2

4x2
stall

{

2
∼

MBH

− 64(1 + f0)x
2
stall

[

ln

(

1 +
1

xstall

)

− 2xstall(3xstall(2xstall + 7) + 26) + 25

12(1 + xstall)4

]

− 8

(1 + xstall)2

[ ∼

MBH
∼

Mpk

+
4x2

(1 + xstall)2

]}

(x = xstall) .

(3.61)

Without an analytical expression for xstall it is not possible to determine the sign of

the acceleration at xstall in terms of the parameter values. However, by numerically

integrating (3.53) and evaluating (3.61) at xstall for a range of parameters it is apparent

that the acceleration is always negative at xstall.

At xstall the shell begins to infall. If the infall timescale tff is much less than

the collapse timescale
∼

t col = (Gρ)−1/2 =
√

πx(1 + x)2/4, then the shell ‘outruns’ the

infalling ambient medium and is no longer subject to its pressure. Numerical solutions

show that the stall radii for a physically interesting range of parameters are x ∼ 1

which means that
∼

t col ∼ 1. The infall time for a shell however is always
∼

tff ≪ 1 for a

broad range of parameter values, and therefore
∼

tff ≪
∼

t col is a justifiable assumption.

The velocity of an infalling shell can be obtained from the equation of motion at

radii less than xstall and in the absence of ambient pressure:

4x2
stall

(1 + xstall)2
d
∼

v

d
∼

t
= 2

∼

MBH − 8x2
stall

(1 + xstall)2x2

[ ∼

MBH
∼

Mpk

+
4x2

(1 + x)2

]

. (3.62)

If xstall is such that the acceleration in equation (3.62) is negative, i.e. if the force from

removing ambient pressure (4πx
∼

P g) does not lead to a positive net force, then the shell

infalls back to the SMBH with velocity:

∼

v2(x) =
∼

MBH
(1 + xstall)

2

x2
stall

(x− xstall) + 4

∼

MBH
∼

Mpk

1

x

(

1− x

xstall

)

+
16

1 + x

(

1− 1 + x

1 + xstall

)

.

(3.63)

However, if xstall is such that the acceleration in equation (3.62) is positive when the

ambient pressure is removed, then the shell resumes outward motion, and this makes
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it possible for shells to move beyond their initial stall radii.

Numerical Solutions

The equation of motion (3.53) and the infall equation (3.62) have been solved numer-

ically and the shell radius and velocity fields are shown in Figure 3.8 as functions of

time
∼

t . In Figure 3.9 the shell velocities
∼

v and momentum-fluxes ṗsh are shown as

functions of shell radius x. Both figures show solutions with fifteen values of C in

logarithmic intervals within the range: 0.001 < C < 1000 and C = 0 (shown in ma-

genta). The five SMBH masses:
∼

MBH = 0.36, 1.0, 1.01, 1.4, 3.6 display the range of

shell behaviour. In both figures
∼

Mpk = 4000 which corresponds to a Milky Way sized

halo with σ0 = 120 km s−1 and rpk = 50 kpc (McQuillin & McLaughlin 2012).

There are three distinct outcomes for the shell: the shell stalls and infalls back to

the SMBH, the shell reaches large radii without stalling, or the shell becomes confined

by the ambient pressure. There is a difference for the Hernquist halo which is that

the pressure confined shells will either ultimately infall or reach large radii after a

long (t > 100tσ ≃ 1010 yr) period of stalling. This is because unlike the SIS halo the

Hernquist halo is finite, and because of that the ambient pressure force will ultimately

tend to zero (see Figure 3.7). However the stalling timescale is certainly large enough

that the shell can be effectly considered as permanently pressure confined.

For
∼

MBH = 0.36 the three distinct outcomes exist for the shell, while for
∼

MBH =

1.4, 3.6 all shells simply escape without stalling. For
∼

MBH = 1.0 shells either escape or

become confined by the ambient pressure, but at very late times these confined shells

eventually infall. In the case that
∼

MBH = 1.01 all shells escape or they stall to become

pressure confined, and shells that do stall ultimately go on to escape. The difference

between these two outcomes is because there is a necessary SMBH mass for escape

between these two values. Once again, although these solutions do formally go on to

reach large radii they only do so on long (t > 100tσ) timescales.



104

10−2

10−1

100

101

102

103

104
r/
r p

k
MBH=0.36Mσ

halo: Hernquist
MBH=Mσ MBH=1.01Mσ MBH=1.4Mσ MBH=3.6Mσ

−2

−1

0

1

2

10−210−1 100 101 102 103 104

v
/σ

0

MBH=3.6Mσ

10−1 100 101 102 103 104

MBH=3.6Mσ

10−1 100 101 102 103 104

t/tσ

MBH=3.6Mσ

10−1 100 101 102 103 104

MBH=3.6Mσ

10510−1 100 101 102 103 104

MBH=3.6Mσ

Figure 3.8: Shell radius and velocity versus time for a momentum-driven shell launched by a steady wind in a
Hernquist halo. Each black curve corresponds to a numerical solution with initial momentum at logarithmic intervals
within the range: 0.001 < C < 1000, and they increase from bottom to top (upper panels) and left to right (lower
panels). The dashed red curves are the asymptotes given by equation (3.59), and the magenta curves are the C = 0
numerical solutions.
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Necessary and Sufficient SMBH Masses

If a shell never stalls then the critical SMBH mass which defines this case is a sufficient

condition for the escape of a shell. McQuillin & McLaughlin (2012) obtained a sufficient

mass for the escape of momentum-driven shells within non-isothermal haloes. This was

obtained by considering the mass
∼

M crit and radius xcrit where the acceleration and the

velocity of the shell are both zero (McQuillin & McLaughlin 2012). This critical mass

was then maximised (with the corresponding radius xc,max) for any initial momentum

(see Section 1.5), and was shown to be

∼

Mmax
crit ≃ m2(xc,max)

x2
c,max

[

1− 1
∼

Mpk

m(xc,max)

x2
c,max

]−1

(
∼

Mpk ≫ 1) , (3.64)

where xc,max is given by:

d lnm

d ln x

∣

∣

∣

∣

x=xc,max

≃ 1 +
1

2
∼

Mpk

1

xc,max

dm

dx

∣

∣

∣

∣

∣

x=xc,max

. (3.65)

Figure 3.10 shows the confinement behaviour for two solutions: one of which is

below the necessary mass as given by equation (3.64), and the other is above this mass.

The top panels show shell velocity and the bottom panels show the force on the shell.

As introduced for the SIS case the shell exhibits repeated stalls which arise from the

release of ambient pressure at a stall point causing the total force to become positive

and causing the shell to recollide with the ambient medium. Unlike the SIS case the

force curve in the absence of ambient pressure (shown in blue) does not tend to a

constant, instead it descends into a minimum (at x = 1) and then increases beyond

this point. Therefore for masses below the sufficient mass in the absence of ambient

pressure this minimum drops below zero, and the shell’s acceleration is negative even

when the ambient pressure shuts off so it must infall (red curve). For SMBH masses

above the sufficient mass the force curve in the absence of ambient pressure is always

positive so the shell remains pressure confined until it becomes possible to accelerate

(beyond the minimum) in the absence of ambient pressure.
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The necessary and sufficient masses with and without ambient pressure have been

found numerically for a range of
∼

Mpk for the case that C = 0, and are shown in Figure

3.11. If the ambient pressure is included then the SMBH mass which is necessary for

escape (i.e. the shell may stall before escaping) is equal to the sufficient SMBH mass for

which the shell never stalls in the absence of ambient pressure. The sufficient SMBH

mass permitting the shell to reach large radii without ever stalling is approximately

40% larger than the necessary mass, and therefore 40% larger than the sufficient mass

in the absence of ambient pressure. It is important to note while shells driven by winds

from the necessary mass value formally go on to reach large radii they only do so after

an extended period (100tσ) of stalling.

Effects of SMBH Gravity

As mentioned earlier, in the Hernquist halo and any other non-isothermal halo with

mass scaling like
∼

MDM ∝ x2 for x ≪ 1 the SMBH gravity scales with the wind at

small radii. Because of this the shells in the Hernquist halo do not require an initial

momentum to overcome the gravity of the SMBH. This is shown by the lack of an upper
∼

v = 0 curve in Figure 3.12 which displays the numerical solutions to equation (3.53)

in terms of MBH for a range of SMBH masses and initial momenta. The necessary and

sufficient masses for C = 0 are highlighted within this figure.

3.2.4 Momentum-Fluxes of Momentum-Driven Shells

By their very nature momentum-driven shells which are subject only to gravity and

ambient pressure cannot have a force which exceeds that supplied by the driving wind:

ṗw = Ṁwvw. This is evident by simply normalising the equation of motion (3.25) to

the driving force of the wind, which in the adopted units is 2
∼

MBH:

ṗsh

Ṁwvw
= 1− 2πx2

∼

P g(x)
∼

MBH

− h(x)m(x)

x2

[

1
∼

Mpk

+
m(x)
∼

MBH

]

, (3.66)

This so-called momentum-boost can never exceed unity for momentum-driven shells.

This is not the case for energy-driven shells (see Chapter 2). The dynamics of wind-
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curve peaks. The black curve gives the sufficient SMBH mass required for a shell
subject to ambient pressure to never stall. The blue curve gives both the necessary
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pressure. The magenta dashed curve gives the necessary SMBH mass required for a
shell to reach large radii in the absence of ambient pressure.

driven outflows in active galaxies can therefore be understood by knowing which of the

driving regimes applies, and this can be achieved by measuring the momentum-boosts

of outflows in active galaxies. For outflows Ṁv is used as a proxy for momentum-

flux, where Ṁ = 4πrNv and N is the column density of the outflow. Hence, for the

shell solutions it is useful to compare values of Ṁshv to the actual momentum-flux

ṗsh = Ṁshv +Mshdv/dt.

The Singular Isothermal Sphere

Figure 3.13 compares ṗsh/Ṁwvw and Ṁshv/Ṁwvw for momentum-driven shells within
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(bottom). Shown as black curves are the numerical solutions to the equations of motion

for a range of
∼

MBH with
∼

Mpk = 4000. The dashed black curve is the
∼

MBH = 1 case.
For C = 0 the solid red curve is the necessary mass required for escape, and the solid
green curve is the sufficient mass required for a shell that never stalls. The blue curves
are the numerically determined radii at which the shells first stall.

an SIS halo driven by winds from three different SMBH masses; each with three dif-

ferent values of initial momentum C = 0.01, 100, 106. Any infall behaviour is excluded
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from Figure 3.13. It can be seen that unlike ṗsh the value of Ṁshv is sensitive to the

initial momentum, with larger initial momenta increasing the difference between the

two quantities at smaller radii. For these solutions Ṁshv is always positive because the

shells are always moving outward and always gaining mass. The momentum-flux ṗsh

is negative at small radii as a result of the deceleration experienced due to the SMBH

gravity. At large radii the shells tend to a constant terminal velocity and therefore

Ṁshv → ṗsh, with larger initial momentum pushing this equality to larger radii.

The quantity Ṁshv serves as a suitable proxy for ṗsh at large radii. This range in

radii does coincide with the typical scales r ∼ 10− 100rσ ≃ 0.5− 5 kpc (for σ0 = 200

km s−1) at which large-scale outflows are observed. The quantity Ṁshv for momentum-

driven shells is boosted relative to that of the wind at small radii, but this is due to the

shell receiving a large initial impulse at early times. At large radii there is no boosting

of Ṁshv as it tends to ṗsh which must be less than unity according to equation (3.66).

At all radii in the SIS halo the gravitational force of the dark matter and the force of the

ambient pressure are constant (see equation 3.31), and therefore at large radii (away

from the SMBH) this results in a constant reduction in the terminal momentum-flux

of the shell:

Ṁshv

Ṁwvw
→ ṗsh

Ṁwvw
= 1− MBH,crit

MBH

(x ≫ 1;
∼

MBH >
∼

M crit) , (3.67)

where MBH,crit is given by equation (3.35) which is the SMBH mass required to reach

large radii. The constancy of the dark matter and ambient pressure forces is what leads

to the momentum-boost for a momentum-driven shell at large radii in an SIS halo to

always be less than unity.

Hernquist Halo

Figure 3.14 compares ṗsh/Ṁwvw and Ṁshv/Ṁwvw for momentum-driven shells in a

Hernquist halo driven by winds from three SMBH masses, each with three different

values of initial momentum C = 0, 100, 106. For the Hernquist halo the density profile

is shallower at small radii than the SIS, and since it is assumed that the gas traces the

dark matter directly this means that the mass of the shell is much smaller at small
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Figure 3.13: The momentum-fluxes of momentum-driven shells within an SIS halo
normalised to the momentum-flux of the wind versus shell radius. The top panel shows
the normalised momentum-flux ṗsh/Ṁwvw, and the bottom panel shows the quantity

Ṁ shv/Ṁwvw. The black curves have
∼

MBH = 0.36, the red curves have
∼

MBH = 1.01,

and the green curves have
∼

MBH = 3.6. For each value of MBH there are three values of
initial momentum: C = 0.01, 10, 106 (left, middle, and right groupings respectively).
Shown in magenta are several observational datapoints taken from Table 3.1 (Rupke,
Gültekin & Veilleux 2017) which are approximately consistent with momentum-driving.
The blue curve is the solution with the SMBH mass MBH = 1.11MBH,crit chosen to
intercept the plotted points.
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radii in a Hernquist halo. Because of this the outward force of the wind dominates the

gravitational force of the SMBH, and at small radii the momentum-flux ṗsh tends to

that of the wind: Ṁwvw. The shell only begins to accumulate gravitationally significant

mass as the shell approaches rpk. It is around rpk that the gravitational force of the

dark matter contributes strongly and negatively to the momentum-flux of the shell.

The total mass of dark matter is finite, and therefore its gravitational force tends to

zero as r → ∞ causing the normalised momentum-flux to tend to unity also at large

radii. However, the range of radii at which outflows are observed is less than rpk ∼ 50

kpc (for a Milky Way sized halo), which is the only region where Ṁshv approximates

the momentum-flux well, and only in the case that the initial momentum of the shell

is small.

The value of Ṁshv at small radii with C = 0:

Ṁshv

Ṁwvw
=

4

3

(

1− 4
∼

Mpk

)

(x ≪ 1;C = 0)

∼ 4

3
(x ≪ 1;C = 0;

∼

Mpk ≫ 1) .

(3.68)

Observational Implications

Overall for momentum-driven shells the momentum-fluxes for small initial momenta

are approximated well by Ṁshv at large radii r ≫ rσ in the SIS halo, and at small radii

r ≪ rpk in the Hernquist halo. Observations of outflows are typically made within

the range rσ ≪ r ≪ rpk, and therefore the measured values of Ṁv are reflective of

the actual momentum-flux if the outflow is suitably described by a momentum-driven

shell. Outflows have been observed at large radii with momentum-boosts which are

consistent with momentum-driven shells (Rupke, Gültekin & Veilleux 2017). Several

of these outflows are reproduced in Table 3.1, and are consistent with momentum-

driving as shown in Figures 3.13 and 3.14. However, it is important to note that the

typical values of momentum-boosts for outflows are much more commonly found to be

far in excess of unity (Cicone et al. 2014; Tombesi et al. 2015), and there is a large

amount of theoretical support for a transition to energy-driving before reaching large

radii (Faucher-Giguère & Quataert 2012).
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Name r (kpc) log(Ṁv/LAGN/c) Ṁv/(LAGN/c) σ (km s−1) logMBH/M⊙
F07599+6508 8.1 -1.25 0.05 - 8.59
F13218+0552 12 -1.33 0.047 - 8.55
F13342+3932 11 -0.82 0.15 - 9.12
PG1613+658 8 0.16 1.44 - 8.34
F21219−1757 5.9 0.20 1.58 121 8.61

Table 3.1: Momentum-boost data for momentum-driven shells from Rupke, Gültekin
& Veilleux (2017).

3.3 Energy-Driven Outflows

In the energy-driven regime the shell of shocked ambient medium is driven by the

expansion of the hot shocked wind region (see Section 2.2.3). The equation of motion

for the shell is still equation (3.17), but the outward driving pressure on the shell P is

given by the energy equation for the hot shocked wind. This equation states that the

time rate of change of energy in the hot shocked wind is equal to the rate of mechanical

energy input by the wind minus losses due to P dV work and work done against gravity.

The rate of mechanical energy input by the wind is given by (McQuillin & McLaughlin

2013):

Ėw =
1

2
Ṁwv

2
w = τ

LEddvw
2c

(3.69)

and the amount of this energy transferred to the wind is given by the energy equation:

d

dt

[

4

3
πr3

P

γ − 1

]

= Ėw − P
d

dt

[

4

3
πr3
]

− GMsh(r)v

r2
[MBH(t) +MDM(r)] . (3.70)

When normalised to the characteristic quantities given by equations (3.1) and (3.8)

equation (3.70) becomes:

d

d
∼

t

[

4

3
πx3

∼

P

γ − 1

]

=
∼

MBH
∼

vw − 4πx2∼v
∼

P − 2h(x)m(x)
∼

v

x2

[ ∼

MBH(
∼

t)
∼

Mpk

+m(x)

]

. (3.71)
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Figure 3.14: The momentum-fluxes of momentum-driven shells within a Hernquist halo
normalised to the momentum-flux of the wind versus shell radius. The top figure shows
actual normalised momentum-flux ṗsh/Ṁwvw, and the bottom figure shows the quantity

Ṁshv/Ṁwvw. The green curves have
∼

MBH = 3.6, the red curves have
∼

MBH = 1.01, and

the black curves have
∼

MBH = 0.36. For each value of
∼

MBH there are three values of
initial momentum: C = 0, 100 and C = 106.
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Combining equation (3.71) with the normalised equation of motion for the shell (3.17)

gives:

d2

d
∼

t2

[

h(x)m(x)
∼

v
]

= −2
∼

v

x2

d

dx

{

h(x)m(x)

[ ∼

MBH
∼

Mpk

+m(x)

]}

+
3(γ − 1)

∼

MBH
∼

vw
x

− 12γπx
∼

v
∼

P g(x)− 4πx2∼v
d
∼

P g

dx

−(3γ − 2)

∼

v

x

d

d
∼

t

[

h(x)m(x)
∼

v
]

− 2(6γ − 7)
h(x)m(x)

∼

v

x3

[ ∼

MBH
∼

Mpk

+m(x)

]

.

(3.72)

Equation (3.72) is to be solved numerically for the shell radius x(
∼

t), momentumm(x)
∼

v,

and momentum-flux d
[

m(x)
∼

v
]

/d
∼

t . If the shell stalls and begins to infall then equation

(3.72) is not used, unless the shell resumes outward motion and returns to its initial

stall radius.

3.3.1 Infall

If a stall point xstall is reached where
∼

v = 0, and if the acceleration d
∼

v/d
∼

t is negative at

xstall then the shell begins to infall back into the region swept clear of gas. Assuming

that the ambient pressure falls off quickly due to a rapidly infalling shell, then the

equation of motion for the infalling shell at x < xstall is:

h(xstall)m(xstall)
d2

∼

v

d
∼

t2
= −2h(xstall)m(xstall)

∼

v

x2

dm

dx
+

3(γ − 1)
∼

MBHvw
x

− (3γ − 2)h(xstall)m(xstall)
∼

v

x

d
∼

v

d
∼

t
− 2(6γ − 7)

h(xstall)m(xstall)
∼

v

x3

[ ∼

MBH
∼

Mpk

+m(x)

]

.

(3.73)

Equation (3.73) is to be solved in conjunction with equation (3.72) in order to obtain

the shell radius x, momentum m(x)
∼

v, and momentum-flux d
[

m(x)
∼

v
]

/d
∼

t throughout

its entire expansion and potential infall.
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3.3.2 The Singular Isothermal Sphere

Equation of Motion

The equation of motion for an energy-driven shell propagating into an SIS can be

obtained by using the expressions for MDM(r) and Pg(r) from Section 3.2.2 along with

h(x) ≡ 1 and equation (3.72) to give:

d2

d
∼

t2

[

x
∼

v
]

= −
∼

v

x2

[ ∼

MBH + 4x
]

+
3(γ − 1)

∼

MBH
∼

vw
x

− 3γ(1 + f0)
∼

v

x

+
2(1 + f0)

∼

v

x
− (3γ − 2)

∼

v

x

d

d
∼

t

[

x
∼

v
]

− 2(6γ − 7)

∼

v

x2

[ ∼

MBH

2
+ x

]

.

(3.74)

Asymptotics

In order to explore the early-time behaviour of equation (3.74) a power-law form for

x ∝
∼

t q can be considered. The only possible case for a shell to move outward at early

times is when q = 1/2 and it starts with an initial constant momentum (the square of

which will be continued to be denoted C for consistency). Therefore the radius of the

shell at early times is:

x(
∼

t) =
(

2
√
C

∼

t
)1/2

(
∼

t ≪ 1) , (3.75)

where C is the (square of) the initial momentum. This is the same small radius solution

which applied for the momentum-driven shell (equation 3.38). The velocity at early

times is:
∼

v2 =

√
C

2
∼

t
=

C

x2
(
∼

t ≪ 1) . (3.76)

At large radii the shell velocity tends to a constant
∼

v∞. This was also the case for the

momentum-driven shell in an SIS, and it is also the case for an energy-driven bubble

in an SIS gas distribution in the absence of gravity (see equation 2.22 with α = 1 and

p = 1). This arises in each of these cases because the driving force, ambient pressure
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force and the gravitational force are constant at all radii. Therefore, when the radially

decreasing SMBH gravity is negligible the force on the shell tends to a constant, and

hence the shell will always achieve a constant terminal velocity.

The Terminal Coasting Velocity and the Escape Speed

Taking the limit that x → ∞ with equation (3.74) results in a large scale coasting

velocity for the energy-driven shell which satisfies the cubic equation:

(3γ−2)
∼

v3
∞
+[2(6γ−5)+(3γ−2)(1+f0)]

∼

v∞ = 3(γ−1)
∼

MBH
∼

vw (
∼

t ≫ 1) . (3.77)

A natural choice for this coasting velocity is the escape velocity for a truncated SIS

halo: vesc = 2σ0. This can be viewed as an escape condition for a shell which leads

to the definition of a critical MBHvw combination that must be exceeded. Setting the

velocity equal to this value (
∼

v∞ = 2) gives:

∼

MBH
∼

vw =
4(4γ − 3)

γ − 1
+

2(3γ − 2)(1 + f0)

3(γ − 1)
(
∼

v∞ = 2) . (3.78)

The final term in equation (3.78) results from the inclusion of ambient pressure, and

if this term is neglected then the result reduces to that obtained by McQuillin &

McLaughlin (2013).

For γ = 5/3 the critical combination is required to be
∼

MBH
∼

vw = 22+3(1+ f0) ≃
25.6, or with units restored:

(

MBH

108M⊙

)

(vw
c

)

= 7.78× 10−2

(

σ0

200 km s−1

)5(
f0
0.2

)

τ−1 . (3.79)

As mentioned in Section 1.5 McQuillin &McLaughlin (2013) used the value ofMBHvw =

22Mσσ0 with MBH and σ values from a sample of now quiescent galaxies to infer the

wind speeds they would have had during their active phase. This approach interprets

the scatter in the MBH − σ relation as a distribution of wind speeds. They found for

their sample that the median wind speed was vw = 0.035c. This result is changed

minimally by the inclusion of ambient pressure.
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The Fast and Slow Wind Limits

There are two limits to equation (3.77): the case of a ‘fast wind’ where the SMBH mass

and wind speed combination is very large relative to Mσσ, and a ‘slow wind’ where

the inverse is true. In the limit of a fast wind the terminal coasting velocity is very

large relative to σ0 and therefore the cubic term in equation (3.77) dominates and the

velocity tends to:

∼

v∞ →
[

3(γ − 1)
∼

MBH
∼

vw
3γ − 2

]1/3

(
∼

v ≫ σ0,
∼

t ≫ 1) . (3.80)

A similar result was obtained by Zubovas & King (2012) for the values vw ∼ 0.1c and

MBH ∼ Mσ, i.e. a fast wind. Equation (3.80) can also be obtained if all gravitational

and ambient pressure terms are omitted in the shell equation of motion (3.74), and

therefore this limit can be interpreted as the case where the wind is strong enough that

the effects of gravity and ambient pressure can be completely neglected.

For completeness consider the case of a ‘slow wind’ where the resultant coasting

velocity is small compared to σ. In this case the linear term in equation (3.77) is

dominant and therefore:

∼

v∞ =
3(γ − 1)

∼

MBH
∼

vw
2(6γ − 5) + (3γ − 2)(1 + f0)

(
∼

v ≪ σ0,
∼

t ≫ 1) . (3.81)

Infall

Any
∼

MBH
∼

vw combination will result in a terminal coasting velocity. Whether or not

the shell stalls before achieving large radii is determined by the value of the initial

momentum. If the initial momentum is large enough then it is possible for a shell to

attain
∼

v∞ at large radii without stalling on its way out. However, for smaller values

of initial momentum the shell is likely to stall. Numerical solutions to equation (3.74)

for a wide range of parameters show that when a shell stalls at a radius xstall that the

acceleration is negative, and it will subsequently begin to infall.

Assuming that the shell infalls faster than the typical collapse speed σ0 of the

ambient gas, which was justified in the momentum-driven case, then it leaves the
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undisturbed ambient gas situated at xstall, and the shell propagates back into the region

swept clear of gas. In this case when the ambient gas pressure falls off the equation of

motion becomes:

xstall
d2

∼

v

d
∼

t2
=− 2xstall

∼

v

x2
+

3(γ − 1)
∼

MBHvw
x

− (3γ − 2)xstall
∼

v

x

d
∼

v

d
∼

t

− 2(6γ − 7)
xstall

∼

v

x3

[ ∼

MBH
∼

Mpk

+m(x)

]

(x < xstall) .

(3.82)

By considering the energy equation for an infalling shell (3.70) it can be seen that

because the shell velocity is negative all of the terms in the equation increase. This

means that as the volume of the shell decreases the pressure of the shocked wind region

increases, and the wind will also continuously deposit energy into the shocked wind.

This means that the pressure force on the shell of swept-up ambient medium gets larger

in time and with smaller radius as the shell infalls. This ultimately causes the shell

to stall again and begin to move back out. When the shell encounters the ambient

medium again the force is suddenly decreased. This can cause the shell to stall again

and lead to another period of infall. This behaviour will repeat until the time increas-

ing pressure force of the shocked wind region exceeds the radially dependent inward

gravitational forces, and the shell can cease stalling and move out to large radii. It

appears then that an energy-driven shell cannot fall back to the SMBH, and indeed no

numerical solution to equation (3.74) falls back to x = 0.

Numerical Solutions

The shell radii x and velocities
∼

v obtained by numerically integrating equation (3.74)

are presented against time
∼

t in Figure 3.15. The shell velocities and momentum-fluxes

are shown against radius in Figure 3.16. A single value was chosen for the wind speed

for the solutions shown:
∼

vw = 45 which is the median wind speed vw = 0.03c obtained

by McQuillin & McLaughlin (2012) normalised to σ0 = 200 km s−1. Three SMBH

mass values are shown in Figures 3.15 and 3.16:
∼

MBH = 0.06, 0.14, 0.49. These values

give the SMBH mass - wind speed combinations:
∼

MBH
∼

vw = 2.7, 6.3, 22 which lead to
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terminal velocities
∼

v∞ ∼ 0.5, 1, 2 respectively as given by equation (3.78) in the absence

of ambient pressure. The solutions were obtained for a range of initial momentum val-

ues in logarithmic intervals between: C = 10−6 − 106, but for clarity only four values

of initial momentum are displayed: C = 0.01, 2.56, 100, 106. The velocity fields for the

case that ambient pressure is neglected:
∼

P g(x) = 0 are also included in Figures 3.15

and 3.16 for comparison.

These solutions show that there are two outcomes for energy-driven shells: one

is that the shell reaches large radii and acquires its coasting velocity without ever

stalling, and the other is that it reaches large radii after stalling multiple times. This

second outcome can be broadly separated into two outcomes: one where the shell stalls

due to the gravity of the dark matter halo or ambient pressure, and the other where

the shell stalls due to the gravity of the SMBH. The stalls which occur due to the

gravity of the SMBH broadly represent a new type of solution which corresponds to a

gravitationally confined, or pressure-supported shell. The source of this confinement is

primarily gravitational as shown by turning off the ambient pressure in both figures.

Unlike the momentum-driven case where the shell was supported by the ram pressure

of the wind, in the energy-driven case the shell is always supported against infall by

its thermal pressure.

It can be seen that there are two types of gravitational confinement occurring.

The first is the very significant confinement due to the SMBH gravity. This occurs for

small initial momenta and is most extreme for larger SMBHmasses. Such shells can end

up confined by the SMBH gravity for very long periods (t ≫ tσ), and repeatedly stall

at an approximately finite radius (not included in Figures 3.15 and 3.16 for clarity).

Away from the SMBH the dark matter gravity can cause the shell to stall, and in

this case the initial momentum has little impact on the nature of the stall at large

radii except in simply determining where it occurs. The SMBH mass determines the

behaviour at the stall point, and in this case the small MBH values lead to increased

instances of stalling.
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Figure 3.15: Shell radii (top) and velocities (middle and bottom) of energy-driven shells
propagating within an SIS halo. For the top and bottom panels which include ambient
pressure the gas fraction is set to f0 = 0.2. Three combinations of SMBH mass and

wind speed are considered:
∼

MBH
∼

vw = 2.7 (left), 6.3 (middle), and 22 (right). The time
scale is tσ ≃ 2.5× 105 yr, and the radius scale is rσ ≃ 50 pc for a velocity dispersion of
σ0 = 200 km s−1. Four values of initial momentum are shown: C = 0.01, 2.56, 100, 106,
which increase from bottom to top (uppermost panel) and from left to right (lower
panels).
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radius of energy-driven shells propagating within an SIS halo. For the panels which
include ambient pressure the gas fraction is set to f0 = 0.2. Three combinations of

SMBH mass and wind speed are considered:
∼

MBH
∼

vw = 2.7 (left), 6.3 (middle), and 22
(right). The radius scale is rσ ≃ 50 pc for a velocity dispersion of σ0 = 200 km s−1.
Four values of initial momentum are shown: C = 0.01, 2.56, 100, 106 (from left to right
respectively).
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3.3.3 Hernquist Halo

Using the expressions for MDM(r) and Pg(r) from Section 3.2.3, and with h(x) ≡ 1

equation (3.72) becomes:

d2

d
∼

t2

[

4x2

(1 + x)2
∼

v

]

= −2
∼

v

x2

d

dx

{

4x2

(1 + x)2

[ ∼

MBH
∼

Mpk

+
4x2

(1 + x)2

]}

+
3(γ − 1)

∼

MBH
∼

vw
x

−192γ(1 + f0)x
∼

v

[

ln

(

1 +
1

x

)

− 2x(3x(2x+ 7) + 26) + 25

12(1 + x)4

]

+
64x

∼

v(1 + f0)

(1 + x)5
− (3γ − 2)

∼

v

x

d

d
∼

t

[

4x2

(1 + x)2
∼

v

]

− 8(6γ − 7)
∼

v

x(1 + x)2

[ ∼

MBH
∼

Mpk

+
4x2

(1 + x)2

]

(3.83)

In order to move outward the shell must begin with nonzero initial momentum at
∼

t = 0.

This results in the early time shell radius:

x(
∼

t) =

(

3
√
C

∼

t

4

)1/3

(
∼

t ≪ 1; C > 0) , (3.84)

and early time shell velocity:

∼

v =
1

3

(

3
√
C

∼

t−2

4

)1/3

=

√
C

4x2
(
∼

t ≪ 1; C > 0) . (3.85)

Both of these equations are the same as those obtained for the momentum-driven shell

at early times (equations 3.56 and 3.58). The momentum-flux at early times is zero

because the initial momentum is the constant value
√
C.

At late times the shell radius tends to:

x(
∼

t) =

√

2(γ − 1)
∼

MBH
∼

vw
∼

t3

9γ − 7
(
∼

t ≫ 1) , (3.86)

and the velocity:

∼

v =

√

√

√

√
(γ − 1)

∼

MBH
∼

vw
∼

t

2γ − 14/9
=

[

3(γ − 1)
∼

MBH
∼

vwx

4γ − 28/9

]1/3

(
∼

t ≫ 1) . (3.87)
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The momentum-flux at late times is

d

d
∼

t

[

m(x)
∼

v
]

= 2

√

√

√

√

(γ − 1)
∼

MBH
∼

vw

(2γ − 14/9)
∼

t
=

4

3

[

3(γ − 1)
∼

MBH
∼

vw
4γ − 28/9

]2/3

x−1/3 (
∼

t ≫ 1) .

(3.88)

If the shell stalls at a radius xstall, and the acceleration at xstall is negative then the

shell will begin to infall. Assuming that the infall timescale is much shorter than the

collapse time of the ambient gas, then the ambient gas remains at xstall while the shell

infalls. The equation of motion for the infalling shell is:

4x2
stall

(1 + xstall)2
d2

d
∼

t2

[

∼

v
]

= − 64
∼

vx2
stall

x(1 + xstall)2

[

1

(1 + x)3

]

+
3(γ − 1)

∼

MBH
∼

vw
x

−(3γ − 2)
4
∼

vx2
stall

x(1 + xstall)2
d
∼

v

d
∼

t
− 8(6γ − 7)

∼

vxstall

x3(1 + xstall)2

[ ∼

MBH
∼

Mpk

+
4x2

(1 + x)2

]

.

(3.89)

As described in the previous section for the SIS halo the volume of the shell decreases as

the shell infalls which causes the pressure in the shocked wind region to increase. This

increase in pressure will lead to the shell stalling during infall and resuming its outward

motion. Because the outward force has the same scaling as the SMBH gravity in a

Hernquist halo this means that energy-driven shells do not become pressure confined

at small radii.

The shell radii x and velocities
∼

v of energy-driven shells propagating within a

Hernquist halo are presented against time in Figure 3.17. The shell velocities and

momentum-fluxes are shown against radius in Figure 3.18. These solutions were ob-

tained by numerically integrating equation (3.83), and also equation (3.89) for when

the shell infalls. For the solutions shown the single value of
∼

vw = 45 was again

chosen for the wind speed (see Section 3.3.2 for motivation). Using the SMBH val-

ues
∼

MBH = 0.01, 0.06, 0.49 leads to the SMBH mass - wind speed combinations
∼

MBH
∼

vw = 0.45, 4.7, 22. Three values of initial momentum are selected to reflect the

range of shell behaviour: C = 10−8 shown in magenta, C = 1 shown in red, and

C = 100 shown in black. Also shown in both figures are the velocity fields in the

absence of ambient pressure for comparison.
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Figure 3.17: Shell radii (top) and velocities (middle and bottom) of energy-driven
shells propagating within a Hernquist halo. For the top and bottom panels which
include ambient pressure the gas fraction is set to f0 = 0.2. Three combinations of

SMBH mass and wind speed are considered:
∼

MBH
∼

vw = 0.45 (left), 2.7 (middle), and
22 (right). The time scale is tσ = 2.5× 108 yr, and the radius scale is rpk ≃ 50 kpc for
a velocity dispersion of σ0 = 200 km s−1. Three values of initial momentum are shown:
C = 10−8 shown in magenta, C = 1 shown in red, and C = 100 shown in black.
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Figure 3.18: Shell velocities (top, middle) and momentum-fluxes (bottom) versus radius
of energy-driven shells propagating within a Hernquist halo. For the panels which
include ambient pressure the gas fraction is set to f0 = 0.2. Three combinations of

SMBH mass and wind speed are considered:
∼

MBH
∼

vw = 2.7 (left), 2.7 (middle), and 22
(right). The radius scale is rpk ≃ 50 kpc for a velocity dispersion of σ0 = 200 km s−1.
Three values of initial momentum are shown: C = 10−8 shown in magenta, C = 1
shown in red, and C = 100 shown in black.
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3.3.4 Momentum-Fluxes of Energy-Driven Shells

As introduced at the start of this chapter, observations of outflows within active galax-

ies have shown that their momentum-fluxes can vary greatly in relation to the radia-

tive momentum-flux of the AGN: LAGN/c. One way to understand these ’boosts’ in

momentum-flux is that the outflow is in an energy-driven regime.

The Singular Isothermal Sphere

For energy-driven shells propagating within an SIS halo the normalised momentum-

flux ṗsh/Ṁwvw and the quantity Ṁshv/Ṁwvw are compared in Figure 3.19. It shows a

single case of initial momentum C = 0.01 and three wind speeds: vw = 45σ0, 75σ0 and

100σ0, which correspond for σ0 = 200 km s−1 to vw = 0.03c, 0.05c and 0.07c. It can

be seen that Ṁshv approximates the momentum-flux well over a large range of radii.

It is evident that the larger the wind speed the larger the momentum-boost of the

energy-driven shell at large radii r ≫ rσ. Larger values of initial momentum will lead

to Ṁshv approximating the momentum-flux only at larger radii. The rapid variation

at small radii corresponds to confinement from the SMBH gravity.

In Section 3.3.2 it was shown that the large radius coasting velocity of an energy-

driven shell is:

(3γ−2)
∼

v3
∞
+[2(6γ−5)+(3γ−2)(1+f0)]

∼

v∞ = 3(γ−1)
∼

MBH
∼

vw (
∼

t ≫ 1) . (3.90)

Introducing units back into this equation and making use of the definition of the wind

energy: Ėw ≡ τLEdd/2c = 2πGτMBHvw/κ, the shell mass: Ṁsh = 2f0σ
2
0v∞/G, and the

gravitational force on the shell due to dark matter: Fgrav = 4f0σ
4
0/G it can be shown

that:

Ṁshv
2
∞
+

[

6γ − 5

3γ − 2
+

1 + f0
2

]

Fgravv∞ =
3(γ − 1)

3γ − 2
Ėw . (3.91)
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Figure 3.19: The momentum-fluxes of energy-driven shells within an SIS halo nor-
malised to the momentum-flux of the wind versus shell radius. The top figure shows
actual normalised momentum-flux ṗsh/Ṁwvw, and the bottom figure shows the quan-

tity Ṁshv/Ṁwvw. All solutions have
∼

MBH = 0.49 and C = 0.01, but have different

values of wind speed
∼

vw = 45, 75 and 100, which for σ0 = 200 km s−1 are vw = 0.03c
(black), 0.05c (red), and 0.067c (green) respectively. The value of the scale radius is
rσ ≃ 50 pc.

The share of energies is therefore:

Ṁshv
2
∞

=
3(γ − 1)

3γ − 2
Ėw − 6γ − 5

3γ − 2
Fgravv∞ − 1 + f0

2
Fgravv∞

= Ėw − Ėw

3γ − 2
+

Fgravv∞
3γ − 2

− 2Fgravv∞ − 1 + f0
2

Fgravv∞

= Ėw − U̇ − 2Fgravv∞ − 1 + f0
2

Fgravv∞ ,

(3.92)
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where the energy equation (3.70) has been used in the last step to introduce the internal

energy of the hot shocked wind.

Making use of Ėw = Ṁwv
2
w/2 the top equality of equation (3.92) can be rearranged

to give:
Ṁ shv

2
∞

Ṁwv2w
=

3(γ − 1)

2(3γ − 2)
−
[

6γ − 5

3γ − 2
+

1 + f0
2

]

Fgravv∞

Ṁwv2w

=
3(γ − 1)

2(3γ − 2)
−
[

6γ − 5

3γ − 2
+

1 + f0
2

] ∼

v∞
∼

MBH
∼

vw

(3.93)

Then using (3.90) for
∼

MBH
∼

vw gives:

Ṁshv∞

Ṁwvw
=

vw
v∞

3(γ − 1)

2(3γ − 2)

{

1 +

[

2(6γ − 5)

3γ − 2
+ (1 + f0)

](

σ0

v∞

)2
}−1

(3.94)

which can be expressed as:

Ṁshv∞

Ṁwvw
=

vw
v∞

3(γ − 1)

2(3γ − 2)

{

1 +

(

vp,max

v∞

)2
}−1

, (3.95)

where vp,max is:

vp,max =

√

2(6γ − 5)

3γ − 2
+ (1 + f0) σ0

≃ 2.1σ0 (γ = 5/3; f0 = 0.2) .

(3.96)

The entire right hand side of (3.95) is essentially the ‘boost factor’ for energy-

driven shells coasting at large radii. If v∞ ≫ vp,max then the momentum-boost tends

to:
Ṁshv∞

Ṁwvw
=

3(γ − 1)

2(3γ − 2)

vw
v∞

=
1

3

vw
v∞

(γ = 5/3) .

(3.97)

This is consistent with the conclusion drawn by Zubovas & King (2012), and is effec-

tively the equation used with observations of outflows in active galaxies (Tombesi et al.

2015; Feruglio et al. 2015). This relation is shown with data from observed outflows in

Figure 1.12.

The limit used to derive equation (3.97) is likely to correspond to fast winds since

vw > v∞ ≫ vp,max & σ0 according to equation (3.90), or equivalently to low σ systems.
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Note that this relation is obtained if all gravitational and pressure terms are dropped

in the equations of motion, and therefore this limit is equivalent to an energy-driven

shell in the absence of gravity.

In the other limit that v∞ ≪ vp,max then the momentum boost becomes:

Ṁshv∞

Ṁwvw
=

3(γ − 1)

2(3γ − 2)

vw
vp,max

v∞
vp,max

≃ 1

3

vw
vp,max

v∞
vp,max

(γ = 5/3) .

(3.98)

These shells will have very low momentum boosts resulting from the fact that v∞ is

small compared to vp,max ∼ 2σ0 (and v∞ & σ0 as a lower limit in order the shell to

retain its shock structure). In order for these slow shells to occur the SMBH and the

wind speed combination according to equation (3.90) must be low relative to Mσσ0.

Therefore this limit corresponds to slow winds, but considering that v∞ ∼ σ0 and that

vp,max & 2σ0 this can only correspond to a narrow range of outflow velocities and wind

speeds vw > vp,max & v∞ ∼ σ0.

Equation (3.95) is plotted in Figure 3.20 against v∞ for a constant vw, and there-

fore shows the variation in momentum-boosting if the large scale coasting speed were

determined solely by variation in MBH. This function has a well defined maximum in

terms of outflow speed v∞. The right hand panel shows the variation in momentum-

boosting as a function of MBH which has to be the varying quantity if vw is fixed and

v∞ is varied. Also shown in Figure 3.20 in grey are the limiting solutions given by

equation (3.97) where v∞ ≫ σ0 which is the case that outflows are assumed to be fast

and the winds driving them are also fast.
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Figure 3.20: Large-scale momentum-flux normalised to that of the wind against velocity
and SMBH mass for energy-driven shells propagating within an SIS halo. The left
panel shows asymptotic momentum-flux normalised to that of the wind for an energy-
driven shell propagating within an SIS halo for a range of wind speeds plotted against
SMBH mass (left). The right panel shows the same but plotted against the terminal
velocity. In this figure γ = 5/3. For σ0 = 200 km s−1 the plotted wind speeds are
0.03c, 0.05c, 0.1c, 0.2c and 0.3c.
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Figure 3.20 shows that the terminal momentum-boost of the shell normalised

to that of the wind (equation 3.95) has a well defined maximum at a specific outflow

speed v∞. A similar distribution of momentum-boosts has been obtained by Richings &

Faucher-Giguère (2018). The velocity at which the maximum occurs is vp,max as given

by equation (3.96). This value is close to the circular speed inside the SIS (
√
2σ0), and

close to the escape velocity from a truncated SIS (2σ0). In fact:

vp,max →
√
2σ0 = vcirc (γ → 1)

→ 2σ0 = vesc (γ → ∞)
(3.99)

representing the limits of a very hot shocked wind and very cold shocked wind respec-

tively. The escape velocity for a truncated SIS was used in Section 3.3.2 following

McQuillin & McLaughlin (2012) to obtain a critical MBHvw combination. Because

vp,max is close to this escape velocity the conclusions in Section 3.3.2 can be understood

in terms of the SMBH mass and wind speed combination which result in maximum

momentum-boosting, i.e. using vp,max with equation (3.90) gives
∼

MBH
∼

vw ≃ 18.26 for

γ = 5/3. Hence, by assuming v∞ = 2σ0 the derived MBH − σ relation of McQuillin &

McLaughlin is close to that for a maximally boosted shell. They use their relation to

obtain a median wind speed from a sample of MBH−σ data, and find that the resultant

value vw ≃ 0.03c compares well with median wind speeds from samples of local active

galaxies.

The large radius outflow velocity at which maximum boosting occurs does not

depend on the value of vw, but the overall level of boosting does. One way to interpret

Figure 3.20 is by varying the size of the velocity dispersion σ0. Maximally boosted

outflows with velocities given by (3.96) in high σ0 systems will have similar ∼ σ0 high

speeds at large radii, and in this case the speed of the wind relative to σ0 and therefore

vp,max will be lower, i.e. slow winds. This means that even though the outflow is at

maximum boosting the level of boosting is low in magnitude. In other words these

would be systems where if maximal boosting were to be achieved this would require an

outflow with speed vp,max ∼ σ0 which is high and therefore defines a slow vw ∼ σ0. From

the plot against SMBH mass this would imply a high SMBH mass system. Conversely,
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maximally boosted outflows in low σ0 systems would have very fast winds but slow

large-scale outflow speeds relative to the wind, and this would result in large-scale

outflows with high magnitudes of boosting. Looking at the plot against SMBH this

would correspond to systems with low SMBH masses.

If conditions were such that the momentum-boost were always driven to the upper

limit, then the left panel of Figure 3.20 is open to the interpretation that growth in the

SMBH mass would lead to a decrease in the wind speed. This would mean that in such

systems where the SMBH has grown rapidly there would be much slower winds because

the constant momentum-boost would require the wind speed to drop. Conversely for

slower growing SMBHs the wind would be able to maintain a high speed for longer

periods of time. It is expected that rapid SMBH growth may occur in systems with

higher velocity dispersions as these will have contained more gas for feeding the SMBH.

Carrying out the inverse process of fixing the SMBH value simply shows that

higher vw and v∞ simply increase the momentum-boost which is without a maximum.

Therefore, whether or not an outflow has maximum momentum-boosting is not at all

related to the speed of the wind, but it is dependent on properties of the galaxy such

as MBH or σ. With this knowledge in mind and looking back at equation (3.95) and

putting in v∞ = vp,max for maximum momentum-boosting gives:

Ṁshvp,max

Ṁwvw
=

3(γ − 1)

4(3γ − 2)

vw
vp,max

=
1

6

vw
vp,max

(γ = 5/3) ,

(3.100)

which means that maximum boosting occurs when the momentum-boost is exactly half

of upper limit given by equation (3.97). Multiplying this equation by vp,max/vw gives

the kinetic energy-flux of the outflow with maximum momentum-boosting:

Ṁshv
2
p,max/2

Ėw

=
3(γ − 1)

4(3γ − 2)

=
1

6
(γ = 5/3) .

(3.101)

This means that the outflow velocity at which maximum momentum boosting occurs is

when the kinetic energy flux of the shell is equal to the specific fraction of wind energy
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given by equation (3.101). Note that this is completely independent of any changes

to the gravitational potential or the inclusion of ambient pressure, i.e. the fraction

of wind energy imparted to the kinetic motion of the shell when momentum-boosting

is maximal does not depend on the system parameters such as velocity dispersion or

SMBH mass.

In order to understand what happens to the rest of the wind energy when maxi-

mum boosting occurs equation (3.92) can be used to show that:

3(γ − 1)

2(3γ − 2)
Ėw =

6γ − 5

3γ − 2
Fgravvp,max + (1 + f0)Fgravvp,max

= Ṁshv
2
p,max

(3.102)

i.e. for maximum boosting half of the available wind energy goes into kinetic energy

and the other half goes into any resistive losses. Again, the ratio of wind energy in the

kinetic energy of the shell is the same regardless of any changes to the gravitational

potential, such as including ambient pressure as long as the force is constant at large

radii. Changes to the gravitational potential determine the specific velocity vp,max

where the peak occurs.

Therefore the maximum in momentum-boosting has the physical interpretation

as being the point where twice the kinetic energy of the outflow is equal to all of

the work done against gravity. If outflows are driven such that the momentum-boost

increases up to (but does not exceed) the upper limit, then the velocity vp,max at which

maximum momentum-boosting occurs would be the expected velocity for observed

large scale outflows. Figure 3.21 shows how observed large scale momentum-fluxes

relative to LAGN/c compare to the theoretical relation given by equation (3.95). The

values for the velocities and momentum-fluxes of the outflows were taken from the

study of AGN outflows by Cicone et al. (2014). The stated velocity values have a

conservative error of ±50%, while the error on the momentum rate is taken to be 0.45

dex.

Figure 3.21 shows that the data of Cicone et al. is broadly situated close to the

peaks of the momentum-flux curves. The plotted data and inferred wind speeds are

presented in Table 3.2.
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1
3
7

Object vout/ km s−1 σ/ km s−1 vout/σ
Ṁoutvout
LAGN/c

MBH/(10
8M⊙) Ṁshv∞

Ṁwvw
vw/c

I Zw I 500 ±250 115 [i] 4.33 ±3.0 6 0.28 ±0.08[1] - 0.06 : -

NGC 6240 400 ±200 282 ±20[2] 1.42 ±0.81 25 1.44 ±0.6[2] 25 ±12 0.20 : 0.28

NGC 1068 150 ±75 165 ±12[3] 0.9 ±0.52 27 0.17 ±0.13[4] 25 ±15 0.08 : 0.18

IC 5063 300 ±150 152 ±25[3] 1.97 ±1.3 21.5 0.55 [5] 6 ±3 0.17 : 0.15

IR F23365+3604 450 ±210 110 [6] 4.09 ±2.9 31 0.42 [i] - 0.28 : -

Table 3.2: Table of data for large-scale molecular outflows. (Column 1) Name of the object. (2) Average outflow
velocity (Cicone et al. 2014) (3) Velocity dispersion (various sources). (4) Outflow velocity normalised to the
velocity dispersion. (5) Outflow momentum-flux normalised to LAGN/c (Cicone et al. 2014). (6) SMBH mass
(various sources) (7) Momentum boost calculated from MBH and σ using equation (3.103) (assuming vp,max = 2σ0).
(8) Wind speed calculated using the values from columns (2) and (5) with equation (3.100), and alternatively using
data from columns (3) and (5) with the assumption v∞ = 2σ0. Sources: [1] Vestergaard & Peterson. 2005. [2]
Medling et al. 2011. [3] Nelson & Whittle. 1995. [4] Kormendy et al. 1998. [5] Woo & Urry. 2002. [6] Martin &
Soto. 2016. [i] Obtained from the MBH − σ relation given by equation (3.1). The error on momentum-boost values
in column 5 is taken to be 0.45 dex, and this follows over to the derived wind speed values in column 8.
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The observed outflows appear to be consistent with having velocities which are

close to where maximum-boosting occurs. This supports the idea that maximum boost-

ing may be a common scenario for outflows. Simply requiring that maximum boost-

ing occurs, and therefore rearranging equation (3.101) for the SMBH mass and using

Ėw = 2πGτMBHvw/κ with Ṁshvp,max = 2f0σ
2
0v

2
p,max/G gives:

MBH =
f0κσ

4
0

2πτG2

[

4(3γ − 2)

3(γ − 1)

(

vp,max

vw

)](

vp,max

σ0

)2

, (3.103)

where the quantity inside the square brackets is the inverse of the boost factor which

is shown in equation (3.101). Equation (3.103) remains unchanged for variations in

the constant inward potential such as including ambient pressure. However, these

variations (or variations in γ) will alter the specific value of vp,max, but this is expected

to always be close to vp,max ∼ 2σ0. The value of vw may vary significantly from system

to system, and for any variation in γ so will the factor multiplying the wind speed inside

the square brackets. These variations are encapsulated as variations in the boost factor.

If MBH and σ are known for an active system, then equation (3.103) can be

used to determine the value of the maximum momentum-boost of the outflow at large

radii. This has been done in column 7 of Table 3.2, and the values are consistent with

the observationally determined values shown in column 5. Furthermore, as shown in

column 8, the wind speed can be determined using the observed value of the boost factor

and large scale outflow velocity (or alternatively by doubling the velocity dispersion).

These results demonstrate how the form of equation (3.103) is an improvement over

that of equation (3.2), as it permits the MBH − σ relation to be expressed not just in

terms of vw (a parameter determined from observations close to the AGN) like equation

(3.2) (if one assumes v∞ = 2σ0), but also in terms of the boost factor (a parameter

determined from observations at large galactic radii). For quiescent systems where the

MBH and σ values were set by an outflow at high redshift, equation (3.103) can be used

to determine the momentum-boost of this outflow and give insight into whether the

galaxy was cleared during a minimally boosted (possibly momentum-driven) phase or

highly boosted (and therefore energy-driven) phase.

Equation (3.103) has the same scaling MBHvw ∝ σ5
0 as found by McQuillin &
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McLaughlin (2013), and therefore a highly boosted outflow (i.e. higher wind speed)

will result in a smaller SMBH mass. In order to relate this to the momentum-driven

shell examined in Section 3.2, consider the force on a momentum-driven shell in the

absence of ambient pressure:

ṗsh
ṗw

= 1− Fgrav

ṗw

→ 1− 1
∼

MBH

(x ≫ 1) .
(3.104)

Equation (3.104) gives the momentum-boost for momentum-driven shells, and if this is

inverted and used in equation (3.103) in place of the boosting term, and the equation for

the velocity (3.34) is used in place of vp,max/σ0, then the equation balances. Considering

the case that the initial momentum of the momentum-driven shell is minimised: C & 2,

then this means that MBH & 2Mσ, and the momentum boost from equation (3.104)

is & 1/2, while equation (3.34) gives v &
√
2σ, then the momentum-driven MBH − σ

relation (equation 3.1) is recovered (to within a factor of 2). Note that the same result

is obtained for the maximally boosted energy-driven shell if the boost factor is unity

(and vp,max = 2σ0 as expected).

Choosing vp,max to take its value given by equation (3.96) (without ambient pres-

sure) allows it to be plotted against the MBH − σ data as shown in Figure 3.1. It also

defines the SMBH mass where the boost factor is unity to be about 2Mσ. Note that

changing vp,max within the expected range of 1−3σ changes Figure 3.1 minimally. The

comparison with observational data shows that the scatter can be interpreted as vari-

ations in the boost parameter with higher levels of boosting expected at lower velocity

dispersions and higher SMBH masses. There is a clear absence of low momentum-

boosting at low σ and low MBH. This means that for these galaxies vw is expected to

be high in order to increase the boost factor. Physically this may correspond to the

fact that faster winds will inhibit the amount of cooling that an outflow receives, and

this will result in only energy-driven outflows. Furthermore, faster winds are likely to

clear a protogalaxy of its gas on much smaller timescales which may explain the lower

masses at lower σ. At higher σ it can be seen that the data cluster heavily around
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the momentum-conserving line (which is coincident with the line where the boost is

unity). This means that these systems may have been cleared by momentum-driven

shells which have low values for the boost parameter. In order that the parameter

can become low it is required that the wind speed is also low. This is consistent with

momentum-driving as a slower wind will be subject to cooling for longer timescales.

Consequently such slower winds will take longer to clear the galaxy, and this will result

in the larger SMBH masses at high σ.

In support of equation (3.103) are the coloured plotted points in Figure 3.1 which

correspond to observational data from active galaxies. The colours indicate their prox-

imity to the intervals in boosting. These are data from Cicone et al. (2014) shown in

Table 3.2 and from Rupke, Gültekin & Veilleux (2017) (see publication) which include

both low and high momentum-boosting. The data for the larger boosted outflows ap-

pear to be very consistent with equation (3.103), whereas the smaller boosted outflows

deviate more.

This is an interesting result gained from utilising the fact that the share of wind

energy in shell kinetic energy is a constant value which is independent of assumptions

regarding the constant inward forces. Whether or not this relationship holds in a non-

isothermal halo is examined in the following section.

Hernquist Halo

Obtaining a critical mass for outflows with maximal momentum-boosting can be car-

ried out for the Hernquist halo. The most important region in the Hernquist halo is

where the force of gravity is strongest. In the absence of ambient pressure this oc-

curs precisely at the peak of the circular speed curve: rpk. If the momentum-fluxes

of energy-driven shells are: ṗsh(rpk) ∼ Ṁshv(rpk) then the analysis from the previous

section can be used.

Figure 3.22 shows numerical solutions for Ṁshv which are normalised to Ṁwvw =

τLEdd/c for a range of MBH masses and wind speeds plotted against the velocity at rpk.

Note that every point along each curve corresponds to a different velocity and therefore

a different value of MBH. This figure shows that around rpk the normalised momentum-
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flux is a peaked function when plotted against the velocity at rpk. The theoretical

momentum-flux curves for the SIS halo compare very well with the numerical solutions

for the Hernquist halo. Also shown in grey are the ‘fast-wind limit’ curves given by

equation (3.97). Running through centres of both plots are (in the left panel) the

kinetic energy fluxes normalised to Ėw (as given by equation 3.101) and multiplied by

a factor of 100 to be visible) and (in the right panel) the work done against gravity

normalised to Ėw (and multiplied by a factor of 10 to be visible). These energy shares

at maximum-boosting in the Hernquist halo at rpk are the same as those in the SIS

halo for shells at large radii as given by equation (3.102).

This means that an expression can be obtained for the mass of a maximally

boosted shell at rpk where the dark matter gravity is strongest. Beginning with equation

(3.101) and expressing Ṁshvp,max at rpk:

1

2
Ṁshv

2
p,max =

f0Mpkv
3
p,max

2rpk

[

dm

dx

]

x=1

=
3(γ − 1)

4(3γ − 2)
Ėw

which results in:

MBH =
f0κV

4
c,pk

4πG2

[

4(3γ − 2)

3(γ − 1)

(

vp,max

vw

)](

vp,max

Vc,pk

)2

(3.105)

Including ambient pressure moves the peak in gravitational force to radii inside of rpk,

but as long as the velocity fields undergo a minimum at this peak the above arguments

can be used for systems with ambient pressure included.
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Figure 3.22: The momentum-boosts of energy-driven shells within a Hernquist halo
versus shell velocity at rpk for a range of SMBH masses (0.001Mσ ≤ MBH < 100Mσ).
The peaked coloured curves correspond to shells propagating within a Hernquist halo
with radii limited to within 0.9 < r/rpk < 1.1, whilst the grey curves correspond to the
momentum-fluxes given by equation (3.95) (left panel) and its v ≪ σ0 limit given by
equation (3.97) (right panel) for coasting shells within an SIS halo. The multicoloured
curves in front of these plots are the ratios of shell kinetic energy with wind energy
(left) and gravitational energy (right). The horizontal lines correspond to the values
of these ratios expected at maximum boosting. Shells that stall are excluded from the
plot. These shells are launched with an initial momentum-flux of

√
C = 0.0001, for the

range of wind speeds
∼

vw = 45 (red), 75 (green), 150 (blue), 300 (black) and magenta

(450). The Hernquist halo has a peak mass
∼

Mpk = 4000. The vertical black line is the
value of vp,max.
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3.4 Summary and Discussion

This chapter considered shells driven by steady winds and examined how they evolved

in time. This was achieved by tracking the infall behaviour of any shells which stall.

Shells experience stalls if the driving wind is not strong enough to overcome the gravity

of the SMBH or the dark matter halo. As they have not been studied in their own

right the confining effects of ambient pressure were also included.

The dynamics of momentum-driven shells in an SIS halo with ambient pressure in-

cluded were analysed and it was shown that the previously derived necessary condition

for escape given by equation (3.1) (King 2005), and the previously derived condition on

the initial momentum of the shell in order to overcome gravitational forces (McQuillin

& McLaughlin 2012) are both altered to require higher SMBH masses and higher ini-

tial momentum due to the inclusion of ambient pressure. The momentum-fluxes of

shells ṗsh are compared with the observable Ṁshv and it is shown that the observable

Ṁshv is a good approximation in the large radius limit since momentum-driven shells

tend to a constant velocity. It was shown that there are three possible outcomes for

momentum-driven shells: (1) they reach large radii without stalling, (2) they stall once

and infall back to the SMBH, (3) they become confined by the ambient pressure of the

gas. The relationship between the SMBH mass and the initial momentum which lead

to shells that never stall was then analysed. It was then shown how for the smallest

values of initial momentum there is a narrow range of allowed SMBH masses which

lead to escape: those which are too large cause the shell to be confined by the SMBH

gravity, and those which are too small mean that the driving force of the shell is too

weak to overcome gravity.

The analysis then went on to momentum-driven shells in a Hernquist halo with

ambient pressure included, and it was found that the previously required mass (equa-

tion 3.3, McQuillin & McLaughlin 2012) in the absence of ambient pressure is no longer

a sufficient condition for a shell to escape without stalling. It does however survive

as a necessary condition for escape. It was found that the observable Ṁshv is a good

approximation for shell momentum-fluxes ṗsh at radii inside of where the circular speed
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of the halo peaks: r . rpk. The same three shell outcomes for a momentum-driven

shell in the SIS halo occurred in the Hernquist halo, but with a difference for the

pressure confined shells. Because the gas pressure and dark matter gravity forces vary

radially in the Hernquist halo, any pressure confined shells will make progress when

they stall before rpk where the halo gravity is strongest. When they reach rpk whether

they infall back to the SMBH or escape to large radii is determined by equation (3.3)

which applies for momentum-driven shells in the absence of ambient pressure; if the

mass exceeds this value then even pressure confined shells can escape, and hence why

equation (3.3) still applies. However the time required for such shells to reach rpk is

long enough to consider them as effectively pressure-confined.

Energy-driven outflows propagating within an SIS halo were treated and it was

demonstrated that the terminal coasting speed is reduced by the inclusion of ambient

pressure, which in turn means that equation (3.2) (McQuillin & McLaughlin 2013) is

increased by the inclusion of ambient pressure. There are three possible outcomes for

energy-driven shells in an SIS halo: (1) they reach large radii without stalling, (2)

they stall several times but go on to reach large radii, (3) they stall so much that

they are effectively confined primarily by the gravity of the SMBH. Much like in the

momentum-driven case only solutions with high enough initial momentum can avoid

being significantly affected by the SMBH.

The momentum-fluxes of energy-driven shells in an SIS halo were examined and

it was shown that the equation (3.4) for the momentum-boost of a shell (c.f. Zubovas &

King 2012) is the ‘fast wind’ limit of a momentum-boost relationship which is actually

a peaked function of shell terminal velocity v∞. Expressions for the location of the

peak were obtained and it was shown that the maximum momentum-boosting occurs

exactly when the shell kinetic-to-wind energy ratio is:

Ṁshv
2
∞

=
3(γ − 1)

2(3γ − 2)
Ėw . (3.106)

Note that the relationship between kinetic energy and wind energy at maximum boost-

ing is independent of any changes to the resistive forces such as the inclusion of am-

bient pressure. Changing these forces changes the velocity at which peak momentum
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boosting occurs, but it does not change this relationship. Data from observations

of active galaxies indicate that large-scale outflows may be consistent with maximum

momentum-boosting, and therefore requiring that a shell is at maximum boosting leads

to the SMBH mass given by equation (3.103):

MBH =
f0κσ

4
0

2πτG2

[

4(3γ − 2)

3(γ − 1)

(

vp,max

vw

)](

vp,max

σ0

)2

. (3.107)

This mass contains a ‘boost factor’ quantifying the level of momentum boosting, and

the scatter in the MBH − σ data was interpreted in terms of this factor.

By analysing the momentum-fluxes of energy-driven shells at rpk in a Hernquist

dark matter halo it was shown that the Ṁshv∞ curves for the SIS halo for σ0 ≡
√
2Vpk

match the Hernquist ones very well. It was shown in the absence of ambient pressure

that the relations Ṁv2 = 3(γ−1)Ėw/2(3γ−2) and Ṁv2 = (6γ−5)Fgrav/(3γ−2) hold

true for maximum momentum-boosting at rpk. The maximum inward gravitational

force due to dark matter occurs at the point where the circular speed curve peaks.

Therefore by requiring that the shell has maximum boosting at rpk led to the mass

given by equation (3.105). This relation also contains the ‘boost factor’ but evaluated

at rpk. Both of the previously derived MBH−σ relations can be recovered by specifying

values of the velocity at maximum boosting and the boost factor.

Using the derived mass for maximum boosting given by equation (3.103) allowed

the scatter in the MBH − σ data to be interpreted as variation in momentum-boosts.

This could allow for the data to be broadly separated into slow and fast winds using

similar definitions as in Chapter 2. This would mean that systems with low velocity

dispersions were cleared by outflows driven by fast winds, and are therefore energy-

driven. These fast winds could clear the central regions of gas quickly and this could

explain why such systems have lower SMBH masses. The vacancy of points in the

data at low σ is where low boost factors occur; this interval of σ may represent winds

which are too fast to permit momentum-driven shells to occur. Conversely, systems

with high velocity dispersions could potentially have been cleared by outflows driven

by slow winds which results in a longer timescales for clearing the gas and therefore

larger SMBHs. At high velocity dispersions it can be seen that there is less momentum-
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boosting and that the data appear to cluster around lower values for the boost factor.

This could be interpreted as an interval in σ where outflows were mostly momentum-

driven. The fact that slow winds produce momentum-driven shells and fast-winds

produce energy-driven shells is consistent with efficient cooling at small radii. This

is precisely what is expected for outflows subject to inverse Compton cooling. The

conclusion that the scatter can be interpreted as variation in momentum-boosting

appears to be supported by the inclusion of some data from observations of active

galaxies. From the supplied SMBH values and velocity dispersions this relation predicts

momentum-boosts which are in broad agreement with the measured values.

In order to investigate fast and slow winds a time-dependent SMBH mass can

be introduced. This will allow for the growth of SMBHs to be incorporated, and will

assist in determining whether the conclusions relating to the MBH − σ data from this

section are justified.
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4 Time-Dependent Winds

Chapter 3 concluded with the results relating to maximally boosted energy-driven

shells. Supported by observations of local active galaxies which appear to be consistent

with maximal boosting it was theorised that if conditions were always such that an

outflow were maximally boosted when sweeping its host protogalaxy clear of gas then

the resultant supermassive black hole (SMBH) mass would depend on a boost factor

and the outflow speed in addition to the velocity dispersion of the galaxy. The scatter in

the MBH−σ relation was interpreted in terms of these momentum-boosts. This chapter

explores the results of introducing a growing SMBH and therefore a growing wind

force which drives the shell. The primary aims are to examine the assumptions and

conclusions from Chapter 3 within this context. It will be confirmed that momentum-

driven shells will have momentum-boosts which are never in excess of unity and do

not deviate from unity significantly. It is to be investigated whether the SMBH mass

which leads to momentum-driven shells that never stall is not fundamentally altered

by including a growing SMBH. It is also to be investigated whether energy-driven

shells will continue to have a momentum-boost distribution with a well defined peak

corresponding to the even sharing of wind energy as this was required for the analysis

in Chapter 3.

This chapter will for the first time include a form for the SMBH mass into the

equations of motion (listed at the end of Chapter 2) which is capable of producing

results for different SMBH accretion rates. This form is a seed mass M0 multiplied by

a growth factor which depends on the growth timescale ts, and a parameter α which

is related to the rate of accretion onto the SMBH:

MBH = M0

(

1 +
t

tsα

)α

, (4.1)

which recovers the constant SMBH mass for α → 0 and the exponentially growing

SMBH mass for α → ∞. The exponentially growing SMBH mass has already been

utilised by Gilli et al. (2017) when studying the motion of momentum- and energy-

driven shells primarily in uniform gas distributions, but they extend their analysis to
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the NFW dark matter halo (Navarro, Frenk & White 1996). This chapter will follow

Chapter 3 and include a gas distribution which traces the dark matter directly and

includes ambient gas pressure on the shell.

Section 4.1 introduces the functional forms for the SMBH mass, and outlines the

ranges to be explored in the SMBH growth parameters such as the Salpeter time for

an exponentially growing SMBH. This section also introduces the fiducial value for

the Salpeter time for an exponentially growing SMBH. Section 4.2 details the general

equations of motion which will be solved throughout this chapter.

Section 4.3 is a treatment of the dynamics of momentum-driven shells driven by

growing SMBH winds. It begins by analysing the dynamics of momentum-driven shells

within a singular isothermal sphere (SIS) halo for variation in the growth parameter α.

The shell dynamics confirm that there is a smooth transition from the constant SMBH

mass (α = 0) for increasing α to the exponential mass case as α → ∞. It is shown

that there is a new shell outcome for momentum-driven shells. This is the ability of an

infalling shell to resume outward motion due to the growth of the SMBH wind force.

Through variation of the growth timescale ts it is shown that in order to reach large

radii without stalling a shell must exceed the critical mass MBH,low at the radius xstall

which were both found in Section 3.2.2 for shells driven by a constant SMBH wind. An

approximate timescale is obtained for a growing shell to reach xstall which is dependent

on the value of the initial momentum. This timescale is used with the definition of

the SMBH mass to provide a relationship between the seed mass M0 and the growth

timescale ts which will permit shells to escape without stalling. The relationship gives

results which are comparable with numerically determined M0 and ts values required

to reach large radii without stalling, but it overpredicts the required seed mass for

smaller values of initial momentum. It is found for rapidly growing SMBHs that there

is a necessary SMBH seed mass in order to have real shell solutions at large radii, and

that for moderate values of α the necessary value for the seed mass is not significantly

different from the required SMBH mass in the steady wind case. A final attempt to

estimate the required SMBH mass to reach large radii without stalling is carried out

by using the fact that an accelerating shell will go on to reach large radii without
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stalling. Finding the time at which the shell acceleration changes sign for shells which

just barely accelerate without stalling i.e. those which have low velocity at this point

allows the required SMBH mass to be estimated. It is found that these values are

very close to the SMBH mass which must be exceeded in the steady wind case for a

reasonable range of ts.

Section 4.3 continues with the analysis of momentum-driven shells driven by time-

dependent winds within a Hernquist halo. The smooth transition between solutions is

once again confirmed for variation in α. Shells which stall within the Hernquist halo

can do so many times before escaping or ultimately infalling. This arises solely from the

increasing wind force, and is therefore a new shell behaviour. For the case of zero initial

momentum there are substantial differences from the SIS halo regarding the criteria in

order to reach large radii without stalling. Due to there being zero initial momentum

for the shell there is no fixed stall radius for shells from steady winds which can be

compared with. Instead the only method for estimating the SMBH mass required for

shells to reach large radii without stalling is to numerically determine the SMBH mass

when shells that just barely escape begin to accelerate. The numerical output is not as

smooth as was obtained in the SIS halo, and for the fiducial value of ts it appears that

shells with SMBH masses a factor of ten lower than the required steady wind mass can

go on to accelerate without stalling. However, for slower growing SMBHs with values

above the fiducial ts the required SMBH mass is close to the steady wind value. This

section concludes by showing that the momentum boosts of momentum-driven shells

driven by growing SMBH winds in an SIS halo tend to the upper limit of unity at large

radii, and that the observable Ṁshv differs from the actual momentum-flux only by a

factor of 2 at most at large radii for the fastest growing SMBHs. For the Hernquist

halo it is shown that the observable Ṁshv is an acceptable proxy for ṗsh inside the

radius rpk where the circular speed curve peaks.

Section 4.4 compares energy-driven shell radii, velocities and momentum-fluxes

from non-steady winds with the results from the steady wind case. It is found that

the overall shell dynamics at earlier times are not substantially different. This means

that shells from non-steady winds experience the same confinement displayed by shells
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from steady winds at small radii if the initial velocity is low. The primary difference

between the two cases is that energy-driven shells from non-steady winds accelerate

at large radii in the SIS halo, and that they accelerate sooner in the Hernquist halo.

The momentum-fluxes of energy-driven shells can therefore be significantly higher at

large radii than in the steady wind case. The momentum-boosts in the SIS halo no

longer tend to a constant at large radii, but Ṁshv continues to serve as a suitable proxy

for ṗsh at large radii. Because the momentum-boost is relative to the momentum-

flux of the ever-growing wind the momentum-boost tends to zero at large radii. The

result is a broad peak in momentum-boosting as a function of radius for any shell

solution. This means that a specific radius needs to be chosen in order to analyse the

momentum-boosts in terms of shell velocities. Then variation in shell velocities (at a

specfic radius) will correspond to variations in M0 (for a set value of ts). It is found

that the distribution in momentum-boosts as a function of velocity (and therefore

seed mass) remains the same for the SIS as long as the selected radius is within a

region where the momentum-boost is not expected to be rapidly changing. This is

equivalent to requiring the shell to be far enough away from the SMBH such that only

the gravity of the dark matter halo is significant, but not so far away such that the

shell is rapidly accelerating due to the growth of the SMBH. The conclusion is that

as long as the SMBH growth is not too rapid then the analytical momentum-boost

distribution for steady winds obtained in Chapter 3 will continue to apply to shells

driven by non-steady winds over a dynamically significant range of radii. This means

that under these conditions the derived MBH−σ relation for maximally boosted shells

from steady winds can be extended to apply to shells driven by non-steady winds.

Section 4.4 concludes with an analysis of energy-driven shells in a Hernquist halo.

It is shown that the observable Ṁshv remains a suitable proxy for ṗsh at radii within rpk,

and that while there is a radius within the halo where the analytical momentum-boost

curves for the SIS halo are a good approximation this radius is no longer at rpk. This

means that the derived MBH−σ0 relationship obtained in Chapter 3 cannot be readily

extended to apply to shells from non-steady winds. However, maximum boosting does

occur at a radius inside rpk, and this radius will vary subject to selected parameter
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values. The significance of the deviation of this radius from rpk and therefore the

departure from the steady wind case requires further investigation.

4.1 MBH as a Function of Time

If the SMBH is accreting with accretion efficiency η (see Section 1.1.4), and at a fraction

q of the Eddington rate (equation 1.19), then it satisfies the equation:

ṀBH(t) =
qLEdd

ηc2
=

4πGqMBH

ηκc
. (4.2)

This has the solution:

MBH(t) = M0 exp

[

4πqGt

ηκc

]

, (4.3)

where M0 is the seed mass. The appropriate range for seed mass values is M0 ∼ 102 −
105M⊙ (Volonteri 2010, see Section 1.3.1). This range in terms of the characteristic

mass Mσ (see Sections 1.5 and 3.1, and equation 3.1) is M0 ∼ 10−7 − 10−4Mσ.

The Salpeter (1964) (or e-folding) time is:

ts =
MBH(t)

ṀBH(t)
=

ηκc

4πqG
≃ (4.7× 107)

( η

0.1

)

(

1

q

)

yr . (4.4)

The mass of the SMBH will more than double during the time ts which will have a

significant effect on the dynamics of the outflow. For an exponentially growing SMBH

to reach Mσ from the seed mass 10−4Mσ it would have to accrete at the Eddington

rate for ten Salpeter times.

A very useful functional form for the SMBH mass is:

MBH = M0

(

1 +
t

tsα

)α

, (4.5)

as it possesses the following limits:

MBH → M0 (α → 0) , (4.6)

recovering the constant SMBH mass case, and

MBH → M0 exp

(

t

ts

)

(α → ∞) , (4.7)
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recovering the exponential case. The value α = 1 is an interesting case as this corre-

sponds to an SMBH which grows at a constant rate:

ṀBH =
M0

ts
. (4.8)

Therefore SMBHs with the time parameter α < 1 will have accretion rates which

decrease in time, and SMBHs with α > 1 will have accretion rates which increase in

time.

Assuming that the wind has the momentum-flux Ṁwvw = τLEdd/c (King &

Pounds 2003 - see also Section 1.5) then the momentum-flux of the wind is:

Ṁwvw =
4πGM0

κ

(

1 +
t

tsα

)α

. (4.9)

At late times (i.e. t ≫ αts) then the mass injection rate grows as a power-law in time:

Ṁw =
4πGM0

καavw

(

t

ts

)α

. (4.10)

This can be related back to the work in Chapter 2 which assumed a power law mass

injection rate. Using this with the wind mass-injection rate given by equation (2.8) in

Section 2.2 defines the characteristic quantity as Mw,s ≡ 4πGM0tsτ/vwκα
α.

4.2 Shell Equations of Motion

The equation of motion for either a momentum-driven or energy-driven shell is simi-

lar to equation (3.7) which was solved in Chapter 3 but with time-dependent SMBH

masses:

d

dt
[Mshv] = 4πr2 [P (t)− Pg(r)]−

GMsh(r)

r2
[MBH(t) +MDM(r)] , (4.11)

where it can be seen that the driving pressure term: P (t), and the SMBH gravity

now both depend on time. Performing the same normalisation steps as carried out in

Section 3.1 leads to the normalised equation of motion:

d

d
∼

t

[

h(x)m(x)
∼

v
]

= 4πx2
[∼

P (
∼

t)−
∼

P g(x)
]

− 2h(x)m(x)

x2

[ ∼

MBH(
∼

t)
∼

Mpk

+m(x)

]

. (4.12)
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The functional forms of Pg(x) remain the same as those introduced in Section 3.1.1.

If the shell encounters a stall point and the acceleration is negative at this point

then the shell will begin to infall. During infall the equation of motion for the shell is:

d
∼

v

d
∼

t
=

4πx2
∼

P (
∼

t)

h(xstall)m(xstall)
− 2

x2

[ ∼

MBH(
∼

t)
∼

Mpk

+m(x)

]

(x < xstall) . (4.13)

As in Chapter 3 it is assumed that the infall timescale tff is much less than the dynamical

collapse timescale tcol of the ambient gas. The same numerical methods utilised in

Chapter 3 will be used to solve equations (4.12) and (4.13) (see Section 3.1.3 for

details).

4.3 Momentum-Driven Outflows

In the case that the outflow is momentum-driven the shocked wind region is cooled and

it occupies a thin region behind the shell of shocked ambient medium (see Chapter 2

for an overview). Because of this the thin shell of shocked ambient medium is driven

directly by the ram pressure of the wind:

4πr2P (t) = Ṁwvw =
τLEdd(t)

c
=

4τπGMBH(t)

κ
. (4.14)

When normalised equation (4.14) becomes:

4πx2
∼

P (
∼

t) = 2
∼

MBH(
∼

t) . (4.15)

The equation of motion (4.12) therefore becomes:

d

d
∼

t

[

h(x)m(x)
∼

v
]

= 2
∼

MBH(
∼

t)− 4πx2
∼

P g(x)−
2h(x)m(x)

x2

[ ∼

MBH(
∼

t)
∼

Mpk

+m(x)

]

. (4.16)

If the shell encounters a stall point xstall where
∼

v = 0 instantaneously, and the acceler-

ation d
∼

v/d
∼

t is negative at that point, then the shell will begin to infall. The equation

of motion for the infalling shell (4.13) becomes:

d
∼

v

d
∼

t
=

2
∼

MBH(
∼

t)

h(xstall)m(xstall)
− 2

x2

[ ∼

MBH(
∼

t)
∼

Mpk

+m(x)

]

(x < xstall) . (4.17)
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Equations (4.16) and (4.17) are to be solved numerically for the radii, velocities, and

momentum-fluxes of momentum-driven shells.

4.3.1 The Singular Isothermal Sphere

For an SIS halo the mass profile is (see Table 1.1):

MDM(r) =
2σ2

0

G
r . (4.18)

Normalising the mass to Mσ (equation 3.1), and using the definition of rσ (equation

3.8) leads to:
∼

MDM(x) = 2x . (4.19)

where x ≡ r/rσ for this scale-free case. Hence, the general equation of motion (4.16)

can be used for the SIS halo with m(x) = x, and
∼

Mpk = 2. Considering the case that

gas traces dark matter directly (h(x) = 1), then the normalised pressure of the ambient

(hydrostatic) gas in an SIS halo is (see Section 3.2.2):

∼

P g(x) =
1 + f0
4πx2

. (4.20)

The equation of motion (4.16) becomes:

d

d
∼

t

[

x
∼

v
]

= 2
[ ∼

MBH(
∼

t)− 1
]

− (1 + f0)−
∼

MBH(
∼

t)

x
. (4.21)

which is to be compared with the equation of motion obtained when assuming a con-

stant SMBH mass: equation (3.31). If the shell experiences infall in the manner stated

for the derivation of equation (4.13) then the equation of motion for an infalling shell

from equation (4.17) is:

d
∼

v

d
∼

t
=

2
∼

MBH(
∼

t)

xstall

− 1

x2

[ ∼

MBH(
∼

t) + 2x
]

(x < xstall) . (4.22)
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The Salpeter Time

For the SIS halo all times are normalised to tσ:

tσ =
rσ
σ0

=
f0κσ0

τπG
≃ 2.45× 105

1

τ

(

σ0

200 km s−1

)

yr . (4.23)

This means that the Salpeter time given by equation (4.4) in units of tσ is of order:
∼

t s ∼ 102 (for σ0 = 200 km s−1). Dividing equation (4.4) by (4.23) gives:

ts
tσ

=
ηcτ

4f0σ0

≃ 187.5τ

(

0.2

f0

)(

200 km s−1

σ0

)

. (4.24)

By considering the possible ranges of the velocity dispersion, accretion rate, and accre-

tion efficiency, then the appropriate range for the Salpeter time for an exponentially

growing SMBH in an SIS will be from
∼

t s = 10− 1000. If equation (4.5) for the SMBH

mass is used then a wider range of the scale time
∼

t s will be considered:
∼

t s = 10−5−105.

Asymptotics

At very early times the SMBH mass will tend to the seed mass value:

∼

MBH(
∼

t) →
∼

M0 (
∼

t ≪
∼

t sα) , (4.25)

for the exponentially growing SMBH this requires that
∼

t ≪
∼

t s. Therefore, as in the

constant mass case (see Section 3.2.2) nonzero initial momentum is required for the

shell to start moving outwards from x = 0. The shell radius at early times is therefore:

x2(
∼

t) = 2
√
C

∼

t (
∼

t ≪
∼

t sα) , (4.26)

and the velocity at early times is:

∼

v2 =
C

x2
=

√
C

2
∼

t
(
∼

t ≪
∼

t sα) . (4.27)

For times when
∼

t ≪
∼

t sα the SMBH mass can be approximated by the seed mass, and

the shell behaves as described in Section 3.2.2. At times when
∼

t ≫ α
∼

t s the SMBH

mass tends to:
∼

MBH(
∼

t) =
∼

M0

( ∼

t
∼

t s

)α

(
∼

t ≫
∼

t sα) , (4.28)
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and therefore the shell momentum tends to:

x
∼

v → 2
∼

t sα

α + 1

∼

M0

( ∼

t

αts

)α+1

− (3 + f0)
∼

t −
∫

∼

t

0

∼

M0

x

( ∼

t

α
∼

t s

)α

d
∼

t +
√
C (

∼

t ≫
∼

t sα) .

(4.29)

If the shell radius is to be an increasing function of time then the shell momentum at

early times (
∼

t ≪ 1) will be
√
C, whereas at late times (

∼

t ≫ 1) the shell momentum

will be:

x
∼

v → 2
∼

t sα

α + 1

∼

M0

( ∼

t

αts

)α+1

− (3 + f0)
∼

t (
∼

t ≫
∼

t sα;
∼

t ≫ 1) , (4.30)

and therefore the shell radius is:

x2(
∼

t) → 4
∼

t2sα
2

(α + 1)(α + 2)

∼

M0

( ∼

t

αts

)α+2

− (3 + f0)
∼

t2 (
∼

t ≫
∼

t sα;
∼

t ≫ 1) , (4.31)

where 1+ f0 represents the influence of ambient pressure on the shell. Equation (4.31)

tends to the square of equation (3.36) for the constant SMBH mass case (α → 0) as

required. Note that this has the same dependence on time as the momentum-driven

shell in the absence of gravity obtained in Chapter 2. This can be shown by taking

the late time limit in equation (2.17) and setting p = 1 as appropriate for the SIS gas

distribution.

Following the same procedure but using equation (4.7), or taking the limit α → ∞
in equation (4.31) allows the exponential mass case to be obtained:

x2(
∼

t) = 4
∼

M0

∼

t2s exp
(

∼

t/
∼

t s

)

− (3 + f0)
∼

t2 (
∼

t ≫ 1) . (4.32)

For α > 0 equation (4.31) gives the late time velocity to be:

∼

v(t) =

√

∼

M0(α + 2)

α + 1

( ∼

t
∼

t sα

)α/2

=

√

(α + 2)
∼

MBH(
∼

t)

α + 1
(
∼

t ≫
∼

t sα;
∼

t ≫ 1) ,

(4.33)

which means that shells with α > 0 will have increasing velocity at late times. Since

the shell is decelerating at early times but accelerating at late times implies that there



157

will be at least one minimum in a shell’s velocity field where the acceleration changes

sign.

Variation in α: Infall and Re-Expansion for Momentum-Driven Shells

Utilising an SMBH mass which grows as a function of time has led to the introduction

of three new parameters (M0, α, ts) in place of MBH if equation (4.5) is used, or two

new parameters (M0, ts) if the exponential mass is used. The first step in exploring

this parameter space is to confirm in the limit of α → 0 that the shell dynamics are

the same as those obtained in Section 3.2.2. It is also expected that there should be

a smooth transition of shell dynamics between the constant and exponential SMBH

mass as α is varied from 0 to large values.

Equations (4.21) and (4.22) have been solved numerically with the SMBH masses

given by equations (4.5) and (4.7). The velocity fields are shown as functions of radius

in Figure 4.1. The effects of ambient pressure were shown in Section 3.2.2 to be

significant for a momentum-driven shell which stalls. In order to isolate the effects

from the growth of the SMBH Figure 4.1 shows the results of varying α with and

without ambient pressure included.

In Figure 4.1 the constant (α = 0) SMBH mass solutions are shown as magenta

curves, the constant growth rate (α = 1) solutions are shown as red curves, and the

solutions using the exponential SMBH mass are shown as green curves. In addition to

these there are a number of nonzero α solutions in the range 0.0001 < α < 500 which

are shown as black curves. The seed mass value is selected to be values between 0.1Mσ

and 2.22Mσ to show the full range of shell behaviours. For M0 = 0.1Mσ all solutions

stall and infall back to the SMBH regardless of growth rate or inclusion of ambient

pressure, while for M0 = 2.22Mσ all solutions are able to escape. A single value of

the growth timescale is chosen for all solutions:
∼

t s = 1. This is lower than the typical

value for normalised Salpeter time given by equation (4.4), however a lower value of
∼

t s is used to help distinguish between individual α values. For all solutions a single

value of initial momentum is chosen to be C = 4 which is twice the lower limit on

the initial momentum if ambient pressure is excluded (see Section 3.2.2). The radius
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scale covers radii from 0.1rσ ≃ 5 pc to 100rσ ≃ 5 kpc for a value of velocity dispersion:

σ0 = 200 km s−1 and gas fraction: f0 = 0.2.

In Section 3.2.2 it was shown that there were only two possible outcomes for

a momentum-driven shell driven by a steady wind in an SIS halo in the absence of

ambient pressure: either the shell stalls and directly infalls back to the SMBH, or the

shell never stalls and goes on to reach large radii at constant velocity. The asymptotic

speed of the steady wind solutions are shown by the magenta curves at large radii in

Figure 4.1. The introduction of a non-steady wind (α > 0) means that any solutions

that reach large radii now accelerate, and their velocity increases according to equation

(4.33). This leads to the minima in velocity fields shown in Figure 4.1.

Another new type of behaviour introduced is the ability of pressure confined shells

to now escape (blue curve). This is in contrast to the pressure confined shells of Section

3.2.2, which repeatedly stalled as the terminal force on the shell with ambient pressure

never became positive. Now because the outward force is an increasing function of

time it is possible for pressure confined shells to overcome the ambient pressure and go

on to reach large radii.

A further type of behaviour which has been introduced is the ability of an infalling

shell to stall and resume outward motion which ultimately culminates in reaching large

radii. This was only seen previously for the energy-driven shells which can resist infall

due to their internal pressure. For these momentum-driven shells the SMBH is not

large enough to initially push the shell out to large radii and the shell stalls. As it

begins to infall the growth of the SMBH is fast enough to allow the shell to stall again

and resume its outward motion. This behaviour is shown in Figure 4.1 both with and

without ambient pressure for the small seed mass values of
∼

M0 = 0.2, 0.21, 0.5.

Figure 4.1 has shown that there is a smooth transition between the α values

of interest (0 and 1 - from magenta to red curves), and between these cases and the

exponential case. It is therefore acceptable to focus attention on these key values

without excluding any cases that may be dynamically distinct.
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Variation in the Growth Timescale: ts

The next step is to understand how the solutions change with variation in the growth

timescale ts. For the exponential SMBH this is the Salpeter time and the fiducial value

for this is
∼

t s ∼ 100 (see equation 4.24). The Salpeter time can be reduced or increased

by varying quantities such as the Eddington ratio or the accretion efficiency. For

an introduction on how the accretion efficiency can change see Section 1.1.4. Further

variation in the normalised value can be introduced by changes to the fiducial timescale

given by equation (4.23) through differing velocity dispersions or gas fractions. In light

of these restrictions the equation of motion (4.21) is solved for shell solutions which

are driven by an exponentially growing SMBH wind with Salpeter times in the range

ts = 0.1− 104tσ. The smaller values correspond to more rapidly growing SMBHs while

the larger values correspond to slowly growing SMBHs. The solutions are presented

for different seed mass values in Figure 4.2.

Each curve in Figure 4.2 corresponds to a solution with a specific value of ts. The

magenta and green curves are the solutions with the highest and lowest values of ts

respectively, while the red curve is the solution with
∼

t s = 100. The range of seed masses

is chosen to extend beyond those presented in Figure 4.1 with the very low seed mass

value of M0 = 0.0001Mσ included to show that shells from the fastest growing SMBH

winds are able to escape. For all solutions the value of initial momentum C = 4 is

selected. This value is simply twice the minimum possible value of initial momentum,

and in the constant mass case by equation (3.44) it defines a lower SMBH mass of

MBH,low ≃ 2.1Mσ which must be exceeded in order to reach large radii without stalling

(see Section 3.2.2).

It is evident from Figure 4.2 that for a given seed mass value there is a particular

value of the Salpeter time which determines whether a shell can reach large radii. This

implies that a certain value of MBH(t) is required in order for shells to reach large

radii. Hence, for a given seed mass there is a value of ts above which SMBHs do not

grow fast enough in order to drive their shells to large radii without stalling. It is

clear that for the value of
∼

t s = 100 the seed mass required for escape lies between



161

1.61Mσ and 2.22Mσ, and it has been confirmed numerically that the required value is

M0 ≃ 2.17Mσ, which itself is not far from the required mass value of MBH,low = 2.21Mσ

in the case of a steady wind with C = 4 (see Section 3.2.2). It is important to note that

the rapidly growing SMBHs can grow to values which are far in excess of the upper

limit on the SMBH mass defined in the steady wind case by equation (3.45) which is

MBH,high ≃ 5.8Mσ for C = 4. It is found for non-steady winds that the shell solutions

do not stall due to high values of the SMBH mass as they do in the steady wind case.

For the slower growing SMBHs with Salpeter times of the order of the expected 100tσ

there appears to be little difference between the seed mass required to reach large radii

and the constant SMBH mass MBH,low required to reach large radii. However, for the

very small Salpeter times it has been shown that even very small seed masses do not

prevent these rapidly growing SMBH winds from driving shells to large radii. Despite

such rapidly growing winds representing potentially unphysical solutions the limit of

rapid growth is worthy of investigation.

In order to fully explore the variation in the growth timescale parameter ts the

equation of motion (4.21) has also been solved numerically for the shell solutions which

are driven by a constantly growing SMBH wind (α = 1), and the results are presented

in Figure 4.3. In this case the range in growth timescale has been taken to a wider

range of values: ts = 10−4 − 104tσ.

As before each curve in Figure 4.3 corresponds to a solution with a specific value

of ts. The magenta and green curves are the solutions with the highest (104tσ) and

lowest (10−4tσ) values of ts respectively. The same range in seed masses as was used

for the exponential case is utilised for Figure 4.3, and for all solutions the value of the

initial momentum is again chosen to be C = 4.

It can be seen from Figure 4.3 that unlike the exponential case no solutions for

the selected range of ts can escape for the seed mass value ofM0 = 0.0001Mσ. A further

difference is that the most rapidly growing solution corresponding to the lowest value

of ts = 10−4 (shown in green) can never reach large radii, and that it stalls and infalls

on a very short timescale which decreases with increasing seed mass. For increasing

seed mass more of the rapidly growing solutions infall at early times, and the solution
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which separates these cases from the other solutions is shown in red. Aside from these

differences the solutions for α = 1 are very similar to those for the exponential mass

case. This is particularly true for the lower values of ts and for the higher seed mass

values. Hence, for longer growth timescales ts the solutions do not vary significantly for

changes in the parameter α, which corresponds to differences in the rate of accretion.

Figures 4.2 and 4.3 both imply that in order for a shell to reach large radii without

stalling it must have values of ts and M0 within a certain range. In other words for a

shell to escape the SMBH mass must exceed (or not exceed) a certain value at a specific

time or radius. In order to demonstrate this the SMBH mass for the constantly growing

case α = 1 is plotted against time and radius in Figure 4.4.

Figure 4.4 shows the same solutions from Figure 4.3, and the curve colours rep-

resent the same solutions. Importantly, any post-stall shell behaviour is excluded from

this plot, and therefore any shells that reach large radii do so without stalling. Also

denoted in Figure 4.4 by the dashed blue line is the SMBH mass to be exceeded in

order for a shell to reach large radii if the SMBH mass is constant. Because the initial

momentum has been selected to be C = 4 this is MBH,low = 2.21Mσ by using equation

(3.44) from Section 3.2.2. Shown as a black vertical line in the radius plot is the low

SMBH mass limit of xstall which was found in Section 3.2.2 to be:

xstall =

∼

MBH −
√

∼

MBH
2 −

[

2
∼

MBH − 3− f0

]

C

2
∼

MBH − 3− f0

→
√
C√

3 + f0
(
∼

MBH ≪ 1).

(4.34)

For the chosen value of C = 4 this results in a value of xstall ≃ 1.12. It is clear from Fig-

ure 4.4 that shells driven by SMBHs with masses which exceed MBH,low approximately

at xstall are able to reach large radii. If the SMBH mass does not exceed MBH,low by the

time the shell reaches x ∼ xstall then the shell will stall. This leads to the conclusion

that xstall approximately corresponds to a critical radius within which the SMBH must

grow to the required value of MBH,low. Associated with this radius will be a critical

time, and this is also supported by Figure 4.4, as it appears that all shells that stall
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do so at a particular time. These same conclusions also apply for other α values and

for the exponential mass case.

A possible critical time can be obtained by setting the expression for shell radius

at early times (
∼

t ≪
∼

t sα) given by equation (4.26) equal to xstall:

∼

t stall =

√
C

6 + 2f0
(
∼

t ≪
∼

t sα) , (4.35)

which for C = 4 gives
∼

t stall ≃ 0.31, and this value is denoted by the black vertical lines

in the top panel of Figure 4.4. It is clear that this time is unsatisfactory, and that the

actual critical time for α = 1 is slightly below tσ.

Figure 4.4 also shows growth to very large SMBH masses MBH ≫ 100Mσ as their

shells reach large radii. This occurs primarily for the rapid growing cases which have

growth timescales ts far below the expected ts ∼ 100 for the Salpeter time.

For a given initial momentum it has been shown that SMBHs must grow to the

value MBH,low determined in Section 3.2.2 by the time the shell reaches xstall. For the

lower and more realistic growth timescales ts this means that the seed mass must be

close to the value of MBH,low. Crucially this means that the condition for such shells

to reach large radii is not fundamentally different from the one obtained for constant

SMBHs. The rapidly growing SMBHs with low values of ts can achieve the value

MBH,low by xstall even if the seed mass is very low, however this results in shells which

grow to unphysically large values at typical outflow radii.
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Figure 4.2: Velocity fields against time for momentum-driven shells driven by an exponentially growing SMBH wind
with varying time parameter ts in an SIS halo. The solutions shown correspond to variation in ts over the range:
ts = 0.1 (green curve) to 104 (magenta curve), with the red curve corrsponding to the solution with ts = 100tσ. The
black curves have ts values in logarithmic intervals between 0.1 − 104tσ which increase from the green to magenta
curves, and for all solutions the initial momentum is C = 4.
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with varying time parameter ts in an SIS halo. The solutions shown correspond to variation in ts over the range:
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Figure 4.4: SMBH mass against time and shell radius for momentum-driven shells driven by a constantly growing
wind (α = 1) with varying time parameter ts in an SIS halo. The same range in values from Figure 4.3 are displayed.
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In order to understand how things change by introducing a growing SMBH,

Figure 3.2 in Section 3.2.2 is to be re-examined for non-steady winds, and this is

shown in Figure 4.5. It shows for an initial momentum of C = 4 the steady wind case

in the top panel, and the middle and bottom panels show the α = 1 and exponential

cases respectively. It is shown that the stall (v = 0) curves for the constant mass

case are still effectively those for the growing mass cases, and that the SMBH mass is

required to exceed MBH,low at xstall in order to reach large radii.

SMBH Masses for the Escape of a Shell

As in Section 3.2.2 a necessary mass for escape can be defined by simply requiring that

the square of the shell’s velocity is positive at large radii. Here instead a necessary

mass can be obtained which results in the square of the shell’s radius being positive at

late times
∼

t ≫ 1. For times when t ≫ αts in order to have positive shell radii equation

(4.31) requires that:

4
∼

M0

∼

t2sα
2

(α + 1)(α + 2)

( ∼

t
∼

t sα

)α+2

> (3 + f0)
∼

t2 (
∼

t ≫
∼

t sα;
∼

t ≫ 1) . (4.36)

This leads to:
( ∼

t
∼

t sα

)α

>
(α + 1)(α + 2) (3 + f0)

4
∼

M0

(
∼

t ≫
∼

t sα;
∼

t ≫ 1) . (4.37)

This can be rearranged to show that:

∼

MBH(
∼

t) =
∼

M0

( ∼

t

α
∼

t s

)α

>
(α + 1)(α + 2)

2

∼

M crit (
∼

t ≫
∼

t sα;
∼

t ≫ 1) , (4.38)

where
∼

M crit = (3 + f0)/2 is the SMBH mass required to have a real shell solution at

large radii in the constant SMBH mass case (see Section 3.2.2).

Equation (4.38) states that in order to have a real shell solution at large radii

it is required that the growing SMBH mass exceeds the constant SMBH mass that

was required to have a real shell solution at large radii for a steady wind. The steady
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Figure 4.5: SMBH mass with three different functional forms plotted against shell
radius for momentum-driven shells in an SIS halo. Each curve has a different value of
∼

MBH (or
∼

M0 in the non-steady cases). The blue curve shows
∼

v
2
= 0 for the constant

SMBH mass case, with C = 4 > 3 + f0.

wind result is recovered by taking α → 0. For lower values of α it is the case that the

necessary mass to have real solutions at large radii is not dissimilar from the constant

mass case. However, for larger values of α equation (4.38) requires SMBH masses to

be much higher than any observed.
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Equation (4.38) can be rearranged for the seed mass:

∼

M0 =
(α + 1)(α + 2) (3 + f0)

4

(∼

t sα
∼

t

)α

(
∼

t ≫
∼

t sα;
∼

t ≫ 1) , (4.39)

which shows that if there is a fixed critical time for all shells like that indicated by

Figure 4.4, then the required seed mass values for shells to reach large radii without

stalling will have the proportionality: M0 ∝ tαs .

The results from numerically integrating the equation of motion (4.21) to find the

necessary and sufficient seed masses
∼

M0 which permit a shell to reach large radii with

and without stalling (respectively) are shown in Figure 4.6 for three α values; α = 0.1

for a declining SMBH growth rate, α = 1 for the constant rate, and the exponential

mass case. Three values of initial momentum are selected: C = 3.21 which is the

minimum allowed initial momentum in the constant mass case (see expression for Cesc

in Section 3.2.2), and C = 4, 10 to show the results for larger initial momentum. It is

important to note that if the initial momentum is decreased below C = 3.21 then the

faster growing SMBHs with lower ts can still reach large radii without stalling. As the

value of C is decreased this limits escape to all but the smallest ts cases.

In Figure 4.6 the solid coloured lines are the sufficent seed masses which lead to

shells which never stall, and the solid black lines in close proximity to these are the

necessary masses which correspond to solutions that are able to stall but ultimately

reach large radii. As shown in Figure 4.1 the necessary seed masses may lead to

shells which stall and become pressure confined but ultimately escape, or shells which

stall and are pushed back out by the increasing wind force. The constant SMBH

mass required for escape is indicated by the magenta line, and it can be seen that for

larger values of the growth timescale ts that the seed masses required to reach large

radii without stalling are not fundamentally different from the constant SMBH mass

required for escape. It can also be seen that the
∼

M0 permitting escape does have the
∼

tαs dependence indicated by equation (4.39).

Figure 4.6 shows for the rapidly growing SMBHs that the sufficient seed mass for

escape and the growth timescale ts are related by a constant factor, and it is evident



170

that this factor is dependent on the initial momentum. Although it has already been

concluded that the critical mass for escape continues to be MBH,low for moderately

growing SMBHs, an expression for a sufficient seed mass will be derived which will

attempt to reflect the relationship between M0 and ts which permit shells to reach

large radii without stalling.

This can be achieved by using the expression for the stall time given by equation

(4.35) which effectively assumes a steady wind. This was obtained by using equation

(4.26) with the value for xstall appropriate for small SMBHs in the case of steady winds.

This timescale was shown to be less than the actual time at which shells encountered

xstall in Figure 4.4. Therefore if it is required that the SMBH mass exceeds MBH,low

at this earlier time, then the SMBH mass will certainly exceed MBH,low by the time it

reaches xstall. Hence, by setting MBH(tstall) = MBH,low leads to the following expression

for the seed mass:
∼

M0 =
∼

MBH,low

(

1 +

√
C

(6 + 2f0)

∼

t sα

)−α

. (4.40)

Any shell driven by an SMBH with this seed mass for a given α and ts will be able

to reach large radii. This is plotted alongside the necessary and sufficient masses for

escape in Figure 4.6 and is shown as coloured dashed curves. Due to the selected

time being earlier than the actual time at which shells reach xstall it can be seen that

equation (4.40) does overpredict the required seed mass for escape.
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A further way of investigating what may be the required SMBH mass for escape

is to find the value of MBH(t) when the solutions shown in Figure 4.6 are at their lowest

velocity, i.e. when the acceleration changes sign. This point will be where the shells

start to accelerate and ultimately go on to reach large radii. The time tex at which

this minimum in velocity occurs has been found for the solutions shown in Figure 4.6,

and the SMBH mass at that time has been calculated over the range of ts values. The

results from this are presented in Figure 4.7. This shows that for the plotted range

of ts that the SMBH mass MBH(tex) at the point of lowest velocity for shells which

barely escape without stalling is close to the value required to reach large radii without

stalling in the steady wind case: MBH,low ≃ 2.21Mσ.

4.3.2 Hernquist Halo

Equation of Motion

For the Hernquist halo the dimensionless mass profile in terms of x ≡ r/rpk is:

m(x) =
4x2

(1 + x)2
, (4.41)

as introduced in Section 3.2.3. The ambient gas pressure was also derived in Chapter

3, and it was found to be:

∼

P g(x) =
16(1 + f0)

π

[

ln

(

1 +
1

x

)

− 12x3 + 42x2 + 52x+ 25

12(1 + x)4

]

. (4.42)

Using these expressions with the equation of motion (4.16) gives:

d

d
∼

t

[

4x2

(1 + x)2
∼

v

]

=2
∼

MBH(
∼

t)− 64(1 + f0)x
2

[

ln

(

1 +
1

x

)

− 12x3 + 42x2 + 52x+ 25

12(1 + x)4

]

− 8

(1 + x)2

[ ∼

MBH(
∼

t)
∼

Mpk

+
4x2

(1 + x)2

]

.

(4.43)

If the shell stalls and the acceleration at the stall point is negative then the shell will

begin to infall. If the shell infalls faster than the ambient gas then equation (4.17) with
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equations (4.41) and (4.42) gives:

4x2
stall

(1 + xstall)2
d
∼

v

d
∼

t
= 2

∼

MBH(
∼

t)− 8

(1 + x)2

[ ∼

MBH(
∼

t)
∼

Mpk

+
4x2

(1 + x)2

]

. (4.44)

Salpeter Time

For the Hernquist halo all times are normalised to tσ ≡ rpk/σ0 which is:

tσ ≡ rpk
σ0

≃ 2.4× 108 yr

(

rpk
50 kpc

)(

200 km s−1

σ0

)

. (4.45)
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This means that the Salpeter time given by equation (4.4) in units of tσ will be of order
∼

t s ∼ 0.1. Combining equations (4.4) with (4.45) gives:

ts
tσ

=
ηκcσ0

4πqGrpk
≃ 0.18

( η

0.1

)( κ

0.04

)

(

1

q

)(

σ0

200 km s−1

)(

50 kpc

rpk

)

. (4.46)

By considering the typical range in the scale values an appropriate range for
∼

t s would

be 10−2 − 100, but this will be extended in order to account for all possible shell

behaviours. A similar range to that used for the SIS halo will be adopted for
∼

t s in the

case that equation (4.5) is used.

Asymptotics

At early times such that
∼

t ≪
∼

t sα the SMBH mass tends to the value of its seed mass.

If the shell begins with an initial non-zero momentum (the square of which is denoted

C) then the shell radius at early times is:

x(
∼

t) =

[

3
√
C

∼

t

4

]1/3

(
∼

t ≪
∼

t sα; C > 0) , (4.47)

The C = 0 solution for the shell radius is:

x(
∼

t) =

[

3
∼

M0

4

(

1− 4
∼

Mpk

)

∼

t2

]1/3

(
∼

t ≪
∼

t sα; C = 0) , (4.48)

which was also derived in Section 3.2.3 (see that section for the early-time velocities).

At late times the wind force dominates the equation of motion since m(x) → 4

for the Hernquist halo:

∼

v(
∼

t) =

∼

M0

∼

t sα

2(α + 1)

( ∼

t
∼

t sα

)α+1

(
∼

t ≪
∼

t sα;
∼

t ≫ 1) , (4.49)

which leads to the large scale shell radius:

x(
∼

t) =

∼

M0(
∼

t sα)
2

2(α + 1)(α + 2)

( ∼

t
∼

t sα

)α+2

(
∼

t ≪
∼

t sα;
∼

t ≫ 1) , (4.50)



175

This radius has the same dependence on time as the momentum-driven solution for a

shell which is not subject to gravity obtained in Section 2.2.2, and this can be shown

by setting p = 0 at late times in equation (2.17) as required for the Hernquist halo.

Equation (4.50) recovers equation (3.59) for α → 0 and the exponential SMBH mass

case if α → ∞ (which can be obtained by assuming exponential form throughout):

x(
∼

t) =

∼

M0

2
et/

∼

t s (
∼

t ≫ 1) . (4.51)

It can be seen from equation (4.47) that at early times the shell is decelerating while

at late times equations (4.50) and (4.51) show that the shell is accelerating. This in-

dicates the presence of at least one minimum in the shell’s velocity fields where the

acceleration changes sign.

Variation in α: Infall and Re-Expansion for Momentum-Driven Shells

Equation (4.43) has been solved numerically for the SMBH mass given by equations

(4.5) and (4.7). The velocity fields are shown as functions of time and radius in Figure

4.8. Since the effects of ambient pressure were shown in Section 3.2.3 to be signifi-

cant for a momentum-driven shell which stalls, in order to isolate the effects occurring

from the growth of the SMBH Figure 4.8 shows the results of varying α with ambient

pressure included (top row) and with ambient pressure neglected (bottom row). To

better observe the detailed behaviour of the solutions, specific values of α are selected:

α = 0 (magenta curve) for a constant SMBH mass, α = 1 (red curve) for a constantly

growing SMBH, an exponential SMBH mass (green curve), and some intermediate val-

ues of α selected to display the full range of shell behaviours. For the Hernquist halo

a wider range of seed mass values can be explored which lead to shells that escape

than was available for the SIS halo, and therefore the range is selected to be from

M0 = 0.0001− 1.4Mσ. A single value of the growth timescale ts = 0.1tσ is selected as

this is close to the value of the Salpeter time in units of tσ. A single value of initial

momentum C = 0 is selected for all shell solutions, and a single value is taken for the

mass of dark matter at rpk: Mpk = 4000Mσ. The plotted range is r = 10−4 − 100rpk

which for a typical value of rpk ≃ 50 kpc gives a plotted range from 5pc to 5000kpc.
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Figure 4.8 shows that there are four distinct possible outcomes for a momentum-

driven shell driven by a growing wind force in a Hernquist halo: (1) the shell stalls and

directly infalls back to the SMBH, (2) the shell stalls repeatedly and eventually infalls

back to the SMBH (low seed mass solutions in black), (3) the shell stalls multiple times

and goes on to reach large radii (low seed mass solutions in blue), (4) the shell never

stalls and reaches large radii.

In the case that ambient pressure is neglected the introduction of a growing

SMBH has therefore brought about two new outcomes for the shell which were not

experienced by shells driven by steady winds. The ability of the shell in the absence

of ambient pressure to stall during infall and resume outward motion is not possible

for a shell driven by a steady wind. For a growing wind it can be seen that this can

lead to temporary support at a specific radius by the wind before the shell ultimately

infalls or escapes. Aside from the rapidity of the stalling around a point of confinement

it can be seen (particularly for the lowest seed mass) that the overall behaviour with

and without ambient pressure is very similar. The primary difference being that the

strength of the impulse on the shell (shown as increasing velocity) as it makes slow

progress increases if ambient pressure is present but decreases if it is not. If the shell is

subject to ambient pressure this increasing impulse occurs because the shell has a very

small infall time before it is pushed back into the ambient gas, and therefore each time

this happens the wind force has grown by a small amount. If the shell is not subject

to ambient pressure then the strength of the force on the shell when it reencounters

the ambient medium has increased, but the size of the increase is determined by the

length of infall time before the shell resumes outward motion. For an increasing wind

force the infall time decreases, and therefore the change in force between stalling an

re-encountering the ambient medium decreases in time.

It can be seen that shells driven by growing winds do go on to accelerate at large

radii, however this was also the case for shells driven by a steady wind (see Section

3.2.3). As was found for the SIS halo there is a smooth transition between the α = 0

through α = 1 to the exponential solutions. Focus can therefore be maintained on

particular values of α without excluding any dynamically distinct cases.
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Variation in the Growth Timescale: ts

As was carried out for the SIS halo the next step is to analyse how the solutions

change with variation in the growth timescale ts. For the exponential SMBH mass the

variation in ts corresponds to variation in the Salpeter time. Physically this corresponds

to changes in the accretion efficiency of the SMBH or changes to its accretion rate

relative to the Eddington rate (see Section 1.1.4). The equation of motion (4.43) has

been solved numerically for shell solutions driven by an exponentially increasing SMBH

wind for a range in Salpeter times, and the results are shown in Figure 4.9. The range

in the Salpeter times has been taken to be 0.0001tσ < ts < 1000tσ. The solutions with

ts = 0.0001tσ are shown as green curves, and those with ts = 1000tσ are shown as

magenta curves. The physically interesting case of ts = 0.2tσ is represented by the red

curves.

The range in seed masses is chosen to show the cases where the solution with ts =

0.2 stalls but ultimately escapes (M0 = 0.0001Mσ), where it narrowly avoids stalling

(M0 = 0.1), and where its minimum in velocity has a value of v ∼ σ0 (M0 = 0.5Mσ).

The seed masses M0 = 1.01Mσ and M0 = 1.4Mσ show the cases where the smallest

value of ts (for an approximately constant SMBH) stalls but ultimately reaches large

radii, and where it reaches large radii without stalling respectively. For all solutions

Mpk = 4000Mσ and the value of C = 0 has been chosen, but for higher values of C the

same shell behaviour is exhibited but typically with higher velocities (see Section 3.2.3

for a review of varying this parameter).

It can be seen from Figure 4.9 that there is a combination of M0 and ts which

allows a shell to reach large radii without stalling. The constant SMBHmass required in

order to reach large radii without stalling was found in Section 3.2.3 to beMBH ≃ 1.4Mσ

(see Figure 3.11). For the solution with a Salpeter time of ts = 0.2tσ a seed mass which

is less than a tenth of this value is large enough to guarantee the shell reaches large

radii without stalling. It has been confirmed numerically that the required seed mass

value for ts = 0.2tσ to have a shell reach large radii without stalling is M0 ≃ 0.09Mσ.

In order to explore the relationship between sufficient values of ts and M0 further,
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the equation of motion (4.43) has been solved for the case that the SMBH grows at a

constant rate (α = 1) and the results are shown in Figure 4.10. The same range of ts

is considered as was used in the exponential case, and the same seed mass values have

also been used. The initial momentum is again set to C = 0.

The overall shell dynamics for α = 1 are very similar to the exponential case

with the strongest apparent difference being a higher number of stalling shells for the

smallest seed mass case. Unlike the SIS case there are no solutions which stall due to

growing too rapidly. This is because the gravitational force of the SMBH on the shell

in the Hernquist halo is much weaker than in the SIS due to the lower shell mass at

small radii. Figures 4.9 and 4.10 both show that there must be a specific combination

of M0 and ts which allow shells to reach large radii without stalling. This implies that

there is a specific SMBH mass MBH(t) which must be exceeded at a given time in order

for the shell not to stall, and that the required ts enables the SMBH to acquire this

value before stalling. In order to investigate this further the SMBH mass for each of

the shell solutions is to be plotted against time and radius.

Figure 4.11 shows the same exponential SMBH mass solutions as Figure 4.9, and

as before the red curve corresponds to the ts = 0.2tσ case. The same range in seed

masses is used as before, and C = 4 for all solutions. Any post-stall shell behaviour is

excluded from the diagram. The horizontal dashed blue lines show the sufficient mass

required for escape in the constant mass case: MBH ≃ 1.4Mσ as found in Section 3.2.3.

The solid blue lines are the analytical v = 0 curves for the steady wind case in the

absence of ambient pressure. These are obtained from the full solution for the velocity

of a momentum-driven shell (see McQuillin & McLaughlin 2012):

∼

v2 =
∼

MBH

(

1 + x

x

)4 [

1 + x− 1

1 + x
− 2 ln(1 + x)

]

+

(

C

16
− 4

3

∼

MBH
∼

Mpk

)

1 + x

x
− 16

5

x

1 + x
.

(4.52)
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Equation (4.52) can be set to zero and rearranged for the SMBH mass:

∼

MBH(xstall) =

(

C

16

1 + x

x
− 16

5

xstall

1 + xstall

)

×
{

4

3

1 + xstall
∼

Mpkxstall

−
(

1 + xstall

xstall

)4 [

1 + xstall −
1

1 + xstall

− 2 ln(1 + xstall)

]

}−1

,

(4.53)

giving the SMBH mass leading to a stall in terms of stall radius xstall. Note that all

of this assumes that ambient pressure is negligible which explains why the curves in

Figure 4.11 do not touch the numerically determined solutions which included ambient

pressure. The solutions which exclude ambient pressure are shown in greater detail in

Figure 4.12 where it can be seen that the escaping solutions are in close proximity to

the v = 0 curve.

Figure 4.11 shows that if there is a critical time or radius at which the shell must

exceed a particular SMBH value then it clearly is not an approximately constant value

as was found in the SIS halo for a nonzero value of initial momentum. It is to be noted

also that the sufficient SMBH mass obtained in the constant mass case made use of

the fact the minima in the velocity fields of all shells occurred at rpk (McQuillin &

McLaughlin 2012). If growing SMBHs are included in the equation of motion then this

is no longer the case as shown in Figures 4.8, 4.9, and 4.10.
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pressure is excluded from the solutions presented.
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Critical SMBH Masses

Equation (4.43) has been integrated numerically to find the necessary SMBH seed

masses which lead to shells that may stall but ultimately reach large radii, and the suf-

ficient SMBH seed masses which lead to shells that reach large radii without stalling.

These solutions are shown in Figure 4.13 for the case that C = 0. For nonzero initial

momentum the stall radius for constant mass shells tends to a finite value in the limit

of small SMBH mass. Because of this the same approach as utilised for the SIS halo

can be used to obtain a sufficient SMBH mass for shells launched with finite initial

momentum in a Hernquist halo. It is important to emphasise that the sufficient SMBH

seed masses are independent of any assumptions relating to the infall behaviour of

shells. The coloured curves show the sufficient seed masses with α = 0.1 as the blue

curve, α = 1 as the red curve, and the exponential case as the green curve. The black

curves are the necessary seed masses which correspond to (from top-to-bottom) the

values α = 0.1, 1 and the exponential case.

The most prominent aspect of Figure 4.13 is that the necessary and sufficient

masses are so wildly different. This occurs because of the effects shown in Figure 4.8

where shells can stall multiple times but still go on to reach large radii. The solutions

also show the sameM0 ∝ tαs scaling as was found for shells with nonzero initial momenta

in the SIS halo, but this behaviour occurs at much lower seed mass values.

A further way of investigating what may be the required mass for escape is to

find the value of MBH(tex) when the solutions shown in Figure 4.13 are at their lowest

velocity at the time tex. This point will be where the shells will be close to stalling

before they start to accelerate and ultimately go on to reach large radii. The time

tex at which this minimum in velocity occurs and the SMBH mass at this time have

been calculated for the solutions shown in Figure 4.6 over a range of ts values. The

results from this are presented in Figure 4.14. The results are quite different from those

obtained in the SIS case. It is clearly shown that for lower values of ts the SMBH mass

can be far from the sufficient mass required in the steady wind case: MBH & 1.4Mσ

(see Section 3.2.3). However for lower values of α and for higher values of ts the SMBH

mass at tex is close to the sufficient mass in the steady wind case.
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4.3.3 Momentum-Boosts of Momentum-Driven Shells

The Singular Isothermal Sphere

An important aspect of shell dynamics to be addressed is whether the momentum-

boost of the outflow is changed by the inclusion of a growing SMBH. This is especially

important if the conclusions from Chapter 3 are to be generalised to the case of growing
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Figure 4.14: Times tex and SMBH masses MBH(tex) at velocity field minima for shells
which are just able to reach large radii without stalling in a Hernquist halo plotted
against accretion scale time.

SMBHs. Figure 4.15 shows the momentum-fluxes and the observable Ṁshv (normalised

to the wind force ṗw) for shells driven by an SMBH which grows at a constant rate

(α = 1) for a range of growth timescales ts in an SIS halo. Each panel corresponds

to a different seed mass M0 value, and each curve corresponds to a different growth

timescale ts value. The green curves highlight the fastest growing case, the magenta

curves the slowest growing case and the red curves are the solutions which separate

shells which stall due to growing too quickly from those which do not stall.

It can be seen from Figure 4.15 that both quantities representing momentum

boosting tend to a constant at large radii. The actual momentum-boosts ṗsh/ṗw all
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tend to unity at large enough radii, whereas the quantity Ṁshv/ṗw tends to the value

of 3/4. Therefore unlike the steady wind case where ṗsh and Ṁshv are equal at large

radii (due to constant terminal speed) for a growing SMBH the two quantities differ

by a factor of 3/4. This can be understood by looking at the value of ṗsh/ṗw from

equation (4.21):
ṗsh
ṗw

= 1− 1− f0

2
∼

MBH(
∼

t)
(
∼

t ≫ 1) (4.54)

which tends to unity at late times with increasing SMBH mass.

The observable Ṁshv for the SIS scales like the square of the velocity. In nor-

malised units Ṁshv is simply
∼

v2 for the SIS. Using the velocity given by equation (4.33)

and dividing by the normalised wind force 2
∼

MBH gives the momentum-boost at late

times:
Ṁ shv

ṗw
=

∼

v2

2
∼

MBH

=
1

2

(

1 +
1

α + 1

)

(α > 0;
∼

t s ≫ 1) . (4.55)

In the limit that α → 0 this tends to unity, however in order to obtain this late time

expression it was assumed that α > 0, and therefore terms are missing. For α = 1

the momentum-boost has a value of 3/4 as shown in Figure 4.15, and for α → ∞ this

tends to a lower limit of 1/2. So for growing SMBHs the maximum momentum-boost

as given by Ṁshv for momentum-driven shells will be between 1/2 and unity. This

means that by using Ṁshv/ṗw as a proxy for the actual momentum-boost could lead

to results which are out by up to a factor of 2. However, this deviation is less for the

slower growing SMBHs as shown in Figure 4.15 by the magenta curve and those close

to it. As was found for the constant mass case in Section 3.2.4 it can be seen that

Ṁ shv approximates ṗsh at large scales in the SIS halo.
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Hernquist Halo

Figure 4.16 shows the momentum-fluxes and the observable Ṁshv (normalised to the

wind force ṗw) for shells driven by an SMBH which grows at a constant rate (α = 1)

for a range of growth timescales ts in a Hernquist halo. Each panel corresponds to

a different seed mass M0, and each curve corresponds to a different growth timescale

ts. The green curves highlight the fastest growing case, and the magenta curves the

slowest growing case. For clarity, any infall behaviour is excluded from the plot, and

the initial momentum and mass of dark matter at rpk take the usual values of C = 0

and Mpk = 4000Mσ respectively.

The momentum-boosts ṗsh/ṗw are similar to those obtained in the constant mass

case in Section 3.2.4 shown in Figure 3.14. The expression for the momentum-boost

from equation (4.43) is:

ṗsh
ṗw

= 1− 4πx2
∼

P g(x)

2
∼

MBH(
∼

t)
− 8

(1 + x)2

[

1

2
∼

Mpk

+
2x2

(1 + x)2
∼

MBH(
∼

t)

]

, (4.56)

which shows that the momentum-boost tends to unity at small and late times, and

therefore at small and large radii. The observable quantity Ṁshv is given by:

Ṁshv =
dMsh

dx
v2 = Mpk

dm

dx
v2 =

8Mpkxv
2

(1 + x)3
. (4.57)

At early times equation (4.48) gives the shell radius, and the velocity is therefore:

∼

v(
∼

t) → 2

3

[

3
∼

M0

4

(

1− 4
∼

Mpk

)]1/3
∼

t−1/3 . (4.58)

Using equation (4.57) at small radii with equations (4.48) and (4.58) shows that

Ṁ shv/ṗw at early times tends to:

Ṁ shv

ṗw
=

4

3

(

1− 4
∼

Mpk

)

. (4.59)

For the value of
∼

Mpk = 4000 assumed throughout equation (4.59) gives a value of

Ṁ shv/ṗw ≃ 4/3 at early times as shown in Figure 4.16. At late times and therefore
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large radii the leading factor corresponding to dm/dx tends to zero, and therefore so

does Ṁ shv/ṗw.

It is not directly clear from Figure 4.16 how well the observable Ṁ shv represents

the actual momentum-boost ṗsh/ṗw. In order to investigate this the ratio of the two

quantities shown in Figure 4.16 is taken and is shown in Figure 4.17. While the ratio

does spike where Ṁ shv becomes small it can be seen that for all but the smallest seed

mass Ṁ shv is a reasonable approximation to ṗw for shell radii inside of rpk as was also

found for the constant SMBH mass case. This means that the momentum-fluxes of

shells are well approximated by Ṁ shv over a significant range of observable radii.
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Ṁ

sh
v
/ṗ
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4.4 Energy-Driven Outflows

This section analyses the effects of introducing a growing SMBH into the equations of

motion for an energy-driven shell. The equation of motion for the energy-driven shell

is that given by equation (4.12). This is to be combined with the normalised energy

equation for the hot shocked wind region:

d

d
∼

t

[

4

3
πx3

∼

P

γ − 1

]

=
∼

MBH(
∼

t)
∼

vw − 4πx2∼v
∼

P − 2h(x)m(x)
∼

v

x2

[ ∼

MBH(
∼

t)
∼

Mpk

+m(x)

]

, (4.60)

which results in the following dimensionless equation of motion for the shell:

d2

d
∼

t2

[

h(x)m(x)
∼

v
]

= − 2

x2

d

d
∼

t

{

h(x)m(x)

[ ∼

MBH(
∼

t)
∼

Mpk

+m(x)

]}

+
3(γ − 1)

∼

MBH(
∼

t)
∼

vw
x

− 12γπx
∼

v
∼

P g(x)− 4πx2∼v
d
∼

P g

dx

−(3γ − 2)

∼

v

x

d

d
∼

t

[

h(x)m(x)
∼

v
]

− 2(6γ − 7)
h(x)m(x)

∼

v

x3

[ ∼

MBH(
∼

t)
∼

Mpk

+m(x)

]

.

(4.61)

For a shell experiencing infall equation (4.61) reduces to:

h(xstall)m(xstall)
d2

∼

v

d
∼

t2
= −2h(xstall)m(xstall)

x2

d

d
∼

t

[ ∼

MBH(
∼

t)
∼

Mpk

+m(x)

]

+
3(γ − 1)

∼

MBH(
∼

t)
∼

vw
x

− (3γ − 2)
h(xstall)m(xstall)

∼

v

x

d
∼

v

d
∼

t

− 2(6γ − 7)
h(xstall)m(xstall)

∼

v

x3

[ ∼

MBH(
∼

t)
∼

Mpk

+m(x)

]

,

(4.62)

corresponding to a constant mass shell falling back into the region cleared of gas and

free from ambient pressure.

4.4.1 The Singular Isothermal Sphere

Equation of Motion

For the SIS halo the mass function is m(x) = x, and for this halo
∼

Mpk = 2. Therefore
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equation (4.61) becomes:

d2

d
∼

t2

[

x
∼

v
]

= − 2

x2

d

d
∼

t

{

x

[ ∼

MBH(
∼

t)

2
+ x

]}

+
3(γ − 1)

∼

MBH(
∼

t)
∼

vw
x

− (3γ − 2)(1 + f0)

∼

v

x

−(3γ − 2)

∼

v

x

d

d
∼

t

[

x
∼

v
]

− 2(6γ − 7)

∼

v

x2

[ ∼

MBH(
∼

t)

2
+ x

]

,

(4.63)

with the corresponding infall equation:

d2
∼

v

d
∼

t2
= − 2

x2

d

d
∼

t

[ ∼

MBH(
∼

t)

2
+ x

]

+
3(γ − 1)

∼

MBH(
∼

t)
∼

vw
xxstall

− (3γ − 2)

∼

v

x

d
∼

v

d
∼

t
− 2(6γ − 7)

∼

v

x3

[ ∼

MBH(
∼

t)

2
+ x

]

.

(4.64)

Asymptotics

At early enough times the SMBH always tends to the seed mass value
∼

M0. Then for

the reasons outlined in Chapter 3 the energy-driven shell must begin with an initial

impulse in order to start motion. In this case the early time radius and velocity are

given by equations (4.26) and (4.27).

At late times by assuming that x(
∼

t) is an increasing power of
∼

t then the following

applies:

d2

d
∼

t2

[

x
∼

v
]

→ 3(γ − 1)
∼

M0
∼

vw
x

( ∼

t
∼

t sα

)α

(
∼

t ≪
∼

t sα;
∼

t ≫ 1) . (4.65)

This leads to:

x(
∼

t) = 3

[

3(γ − 1)
∼

M0
∼

vw
∼

t3

2α(2α + 3)(α + 3)

( ∼

t
∼

t sα

)α]1/3

(
∼

t ≫
∼

t sα;
∼

t ≫ 1) , (4.66)

which has the same scaling in time as obtained for the energy-driven bubble in the

absence of gravity in Section 2.2.3 given by equation (2.22) with p = 1 as required for
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the SIS halo. The velocity at late times is therefore:

∼

v(
∼

t) =

[

3(γ − 1)(α + 3)2
∼

M0
∼

vw
2α(2α + 3)

( ∼

t
∼

t sα

)α]1/3

(
∼

t ≫
∼

t sα;
∼

t ≫ 1) , (4.67)

which means that shells will be accelerating at late times.

Variation in α

The numerical solutions to equation (4.63) for different SMBH mass growth rates are

shown in Figures 4.18 and 4.19. Figure 4.18 shows shell radii and velocities against

time, and also shows the shell velocities in the absence of ambient pressure. Figure

4.19 shows the velocities and momentum-fluxes against radius, and also shows the shell

velocities in the absence of ambient pressure. In order to compare with the constant

SMBH mass case analysed in Chapter 3 the same SMBH mass values will be used for

the seed mass: M0 = 0.06, 0.14, 0.49Mσ. The wind speed in both figures has been set

to vw = 45σ0 which for σ0 = 200 km s−1 is vw ≃ 0.03c. This is the median wind speed

found by McQuillin & McLaughlin (2013) for a sample of active galaxies. These values

give the SMBH seed mass and wind speed combinations:
∼

M0
∼

vw = 2.7, 6.3, 22. The

solutions were obtained for a range of initial momentum values in logarithmic inter-

vals between: C = 10−6 − 106, but for clarity only four values of initial momentum

are displayed: C = 0.01, 2.56, 100, 106. The growth timescale has been set to the value

ts = tσ which is much smaller than the Salpeter time ts ≃ 100tσ. This has been done in

order to show the departures from the constant mass case for a rapidly growing SMBH

as the differences between the constant mass case and the case where ts ≃ 100tσ are

minimal. The black curves correspond to the steady wind solutions from Section 3.3.2,

the red curves correspond to solutions with α = 1, and the green curves correspond to

the exponential mass case.

As can be seen from Figures 4.18 and 4.19 the shells driven by winds from growing

SMBHs go on to accelerate as expected rather than coasting with a terminal velocity.

At early times the solutions differ minimally from the constant mass case as this is

when the SMBH mass can be approximated by the seed mass. For lower seed mass
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values it can be seen that much like the constant SMBH mass case the shells become

confined by the gravity of the SMBH and stall multiple times, but when a large enough

radius is reached the shell is able to cease stalling and goes on to accelerate.

Fundamentally, aside from the large radius accelerations of the shells there is

minimal difference in terms of the overall shell dynamics from introducing a growing

SMBH for energy-driven shells in an SIS halo. Importantly, it is left to confirm that the

momentum-boosts are not significantly changed by the inclusion of a growing SMBH,

and that there still exists a well defined peak in momentum-boosting.

4.4.2 Hernquist Halo

Equation of Motion

Using the dimensionless mass function m(x) = 4x2/(1+x)2 with equation (4.61) gives:

d2

d
∼

t2

[

4x2

(1 + x)2
∼

v

]

= − 2

x2

d

d
∼

t

{

4x2

(1 + x)2

[ ∼

MBH(
∼

t)
∼

Mpk

+
4x2

(1 + x)2

]}

+
3(γ − 1)

∼

MBH(
∼

t)
∼

vw
x

− 12γπx
∼

v
∼

P g(x)− 4πx2∼v
d
∼

P g

dx

−(3γ − 2)

∼

v

x

d

d
∼

t

[

4x2

(1 + x)2
∼

v

]

− 2(6γ − 7)
4
∼

v

x(1 + x)2

[ ∼

MBH(
∼

t)
∼

Mpk

+
4x2

(1 + x)2

]

,

(4.68)

where the ambient pressure terms are:

∼

P g(x) =
16(1 + f0)

π

[

ln

(

1 +
1

x

)

− 12x3 + 42x2 + 52x+ 25

12(1 + x)4

]

, (4.69)

and:

d
∼

P g

dx
=

16(1 + f0)

πx(1 + x)5
. (4.70)

For a shell experiencing infall equation (4.68) reduces to

d2
∼

v

d
∼

t2
= − 2

x2

d

d
∼

t

[ ∼

MBH(
∼

t)
∼

Mpk

+
4x2

(1 + x)2

]

+
3(γ − 1)(1 + xstall)

2
∼

MBH(
∼

t)
∼

vw
4xx2

stall

− (3γ − 2)

∼

v

x

d
∼

v

d
∼

t
− 2(6γ − 7)

∼

v

x3

[ ∼

MBH(
∼

t)
∼

Mpk

+
4x2

(1 + x)2

]

.

(4.71)
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Asymptotics

Much like energy-driven shells in the SIS halo those in the Hernquist halo must also

begin with a nonzero value of initial momentum, and therefore equation (4.47) applies

at early times. At late times by assuming that x(
∼

t) is a positive power of
∼

t means that

m(x) → 4 at late times. This leads to the following result:

d2
∼

v

d
∼

t2
+ (3γ − 2)

∼

v

x

d
∼

v

d
∼

t
=

3(γ − 1)
∼

M0
∼

vw
4x

( ∼

t
∼

t sα

)α

(
∼

t ≫
∼

t sα;
∼

t ≫ 1) . (4.72)

Solving this for x(
∼

t) as a positive power of
∼

t :

x(
∼

t) = 2

{

3(γ − 1)
∼

vw
∼

M0

∼

t3

2(α + 3)(α + 1)[α− 1 + (α + 3)(3γ − 2)]

( ∼

t
∼

t sα

)α}1/2

, (4.73)

which has the same scaling as the energy-driven bubble in the absence of gravity from

Section 2.2.3 given by equation (2.22) with p = 0 as required for the Hernquist halo.

The velocity at late times is therefore:

∼

v(
∼

t) =

{

3(γ − 1)(α + 3)
∼

vw
∼

M0

∼

t

2(α + 1)[α− 1 + (α + 3)(3γ − 2)]

( ∼

t
∼

t sα

)α}1/2

, (4.74)

which implies accelerating solutions at large radii.

Variation in α

Equation (4.68) has been solved numerically for different SMBH mass growth rates and

the solutions are displayed in Figures 4.20 and 4.21. The top panel of Figure 4.20 shows

shell radii against time and the bottom panel shows shell velocities against time. Both

panels include the effects of ambient pressure. The middle panel shows shell velocities

against time with ambient pressure neglected. The top panel of Figure 4.21 shows

shell velocities versus shell radius and the bottom panel shows the momentum-fluxes

against shell radius. Both panels include the effects of ambient pressure. The middle

panel shows shell velocities against radius with ambient pressure neglected. The seed

mass values have been chosen to be the same as the constant SMBH mass values used
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in Section 3.3.3: M0 = 0.01, 0.06, 0.49Mσ. The wind speed is set to vw = 45σ0, and the

resultant SMBH mass and wind speed combinations are indicated at the top of each

Figure. The mass at rpk is selected to be Mpk = 4000Mσ for all solutions. Each plot

shows three groups of three shell solutions which are grouped based on the value of

initial momentum. The values of initial momentum are: C = 0.0001, 1, 10 in order to

demonstrate the range of shell behaviours, and to be in agreement with those used in

Section 3.3.3. For each of these initial momenta there are three solutions which differ

by the form of the SMBH mass. The black curves show the constant SMBH mass

results from Section 3.3.3, the red curves show the results for a constantly growing

SMBH (α = 1), and the green curves show the results for an exponentially growing

SMBH. For all of the solutions which have a growing SMBH the value of the growth

timescale is set to be the Salpeter time given by equation (4.4): ts = 0.2tσ.

As expected from equation (4.74) Figures 4.20 and 4.21 show that all shells ulti-

mately go on to accelerate. These figures show that there are no significant differences

in the shell dynamics from the inclusion of a growing SMBH mass. The solutions with

a growing SMBH mass accelerate much earlier than the constant SMBH mass case, and

the shells driven exponential SMBH mass wind accelerate earlier than the α = 1 solu-

tions. This is expected as the outward force in the exponential mass case will always

exceed the α = 1 case if ts is the same value for both. The most striking difference from

the constant SMBH mass case is in the shell momentum-fluxes. Rather than tending

to zero over the plotted range the values are significantly higher beyond rpk. It can be

seen that larger seed masses lead to these values of momentum-flux to be much larger.

This prompts the question of whether or not the large-scale momentum-boosts around

rpk will differ substantially from the constant SMBH mass case.

4.4.3 Momentum-Boosts of Energy-Driven Shells

The Singular Isothermal Sphere

Figure 4.22 shows the momentum-boosts for energy-driven shells driven by an expo-

nentially growing SMBH wind in an SIS halo. There are two groups of solutions in



200

each panel, with one group having the wind speed vw = 45σ0, and the other having

vw = 150σ0. For each of these wind speeds the growth timescale is varied over three

values ts/tσ = 1, 100, 1000 which are coloured magenta, red and green respectively. A

single value of initial momentum is selected to be C = 0.1 as this value is not so small

that it leads to an extended period of confinement, nor is it so large that the shell

only begins to accelerate at very large radii. A single value for the seed mass is also

selected: M0 = 0.14Mσ which is the value which, when combined with a wind speed of

vw = 45σ0, leads to a terminal outflow speed of v ∼ σ0 in the steady wind case.

It can be seen from Figure 4.22 that a larger wind speed leads to a larger

momentum-boost. The figure also shows that Ṁshv serves as a suitable proxy for

ṗsh at large radii. The confining effects of the SMBH and dark matter gravity can be

seen at small radii. The momentum-boosts for the non-steady winds no longer tend to

a constant value, but instead now are a peaked distribution in shell radius. The peak of

this curve is coincident with the steady wind case, and the breadth of the coincidence

is determined by the growth timescale ts. The shorter this timescale is the smaller

the interval in radii the peak occupies. For the fiducial value of ts = 100tσ the peak

occupies a range which spans 1−50rσ. Before this range in radii the gravitational force

of the SMBH causes the boost to be lower, and after this range the growing SMBH

causes the boost to diminish because the wind momentum-flux is growing as well.

Figure 4.23 shows for two different radii (rσ and 10rσ) the momentum-boost

distribution for energy-driven shells driven by an exponentially growing SMBH wind

in an SIS halo in the absence of ambient pressure. In order to obtain these solutions the

growth timescale was set to the fiducial value: ts = 100tσ, and the initial momentum

was set to C = 0.1. The seed mass was then varied through a large range of values in

M0 = 0.0001 − 100Mσ in order to obtain a significant range about vp,max in velocity

space.

The momentum-boosts in Figure 4.23 show that even for non-steady winds the

analytical expressions obtained in Section 3.3.4 continue to accurately describe the

momentum-flux distribution. Furthermore, it is also shown in Figure 4.23 that max-

imum momentum-boosting occurs at the same velocity given by equation (3.96) and
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with the same ratio of kinetic to wind energy. This means that the derived MBH − σ

relation given by equation (3.103) can be extended to shells driven by non-steady winds.

Hernquist Halo

The momentum-boosts for energy-driven shells in a Hernquist halo are shown in Figure

4.24, and it can be seen that the momentum-boosts vary significantly with radius.

The MBH − Vc,pk relation given by equation (3.105) was obtained by finding that the

momentum-boost distribution in terms of shell velocities at rpk was precisely matched

by the analytical curves for the SIS halo. Figure 4.25 shows that this is no longer

the case at rpk but that at the smaller radius of 0.3rpk the analytical curves provide a

better match. This means that the MBH − Vc,pk relation given by equation (3.105) is

unlikely to apply for outflows from non-steady winds. However, in the case that the

wind grows slowly it may suffice as a reasonable approximation for the SMBH mass of

maximally boosted outflows in a Hernquist halo.
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Figure 4.18: Shell radii (top) and velocities (middle and bottom) of energy-driven shells
propagating within an SIS halo. For the top and bottom panels which include ambient
pressure the gas fraction is set to f0 = 0.2. Three combinations of SMBH mass and

wind speed are considered:
∼

M0
∼

vw = 2.7 (left), 6.3 (middle), and 22 (right). The time
scale is tσ = 2.5 × 105 yr for a velocity dispersion of σ0 = 200 km s−1. Black curves
correspond to shell solutions driven by a constant SMBH wind, red curves correspond
to solutions driven by an SMBH wind which grows at a constant rate (α = 1), and
the green curves correspond to solutions driven by an exponentially increasing SMBH
wind. Four values of initial momentum are shown: C = 0.01, 2.56, 100, 106. For the
growing cases the growth timescale has been set to ts = tσ ≃ 105 yr.
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Figure 4.19: Shell velocities (top and middle) and momentum-fluxes (bottom) versus
radius of energy-driven shells propagating within an SIS halo. For the panels which
include ambient pressure the gas fraction is set to f0 = 0.2. Three combinations of

SMBH mass and wind speed are considered:
∼

MBH
∼

vw = 2.7 (left), 6.3 (middle), and
22 (right). Four values of initial momentum are shown: C = 0.01, 2.56, 100, 106. The
radius scale is rσ = 49.25 pc for a velocity dispersion of σ0 = 200 km s−1.
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Figure 4.20: Shell radii (top) and velocities (middle and bottom) of energy-driven shells
propagating within a Hernquist halo. For the top and bottom panels which include
ambient pressure the gas fraction is set to f0 = 0.2. Three combinations of SMBH mass

and wind speed are considered:
∼

M0
∼

vw = 0.45 (left), 4.7 (middle), and 22 (right). The
time scale is tσ = 1.5×108 yr for a velocity dispersion of σ0 = 120 km s−1. Black curves
correspond to shell solutions driven by a constant SMBH wind, red curves correspond
to solutions driven by an SMBH wind which grows at a constant rate (α = 1), and the
green curves correspond to solutions driven by an exponentially increasing SMBH wind.
For the growing cases the growth timescale has been set to ts = 0.02tσ ≃ 3 × 107 yr.
Three values of initial momentum are shown: C = 10−8, 1, 100.
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Figure 4.21: Shell velocities (top and middle) and momentum-fluxes (bottom) of
energy-driven shells propagating within a Hernquist halo. For the top and bottom
panels which include ambient pressure the gas fraction is set to f0 = 0.2. Three com-

binations of SMBH mass and wind speed are considered:
∼

M0
∼

vw = 0.45 (left), 4.7
(middle), and 22 (right). The time scale is tσ = 1.5 × 108 yr for a velocity dispersion
of σ0 = 120 km s−1. Black curves correspond to shell solutions driven by a constant
SMBH wind, red curves correspond to solutions driven by an SMBH wind which grows
at a constant rate (α = 1), and the green curves correspond to solutions driven by an
exponentially increasing SMBH wind. For the growing cases the growth timescale has
been set to ts = 0.02tσ ≃ 3 × 107 yr. Three values of initial momentum are shown:
C = 10−8, 1, 100.
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ṗ s
h
/Ṁ
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Figure 4.22: Momentum-boosts of shells in an SIS halo driven by a wind from an expo-
nentially growing SMBH plotted against radius. The top panel shows the momentum-
boost of the shell defined in terms of ṗsh against shell radius, the middle panel shows
the observable momentum-boost defined in terms of Ṁshv against shell radius, and
the bottom panel shows the ratio of ṗsh and Ṁshv against shell radius. Each panel
shows two groups of solutions which are separated by the value of the wind speed.
The more boosted solutions have a wind speed of vw = 150σ0 and the less boosted
solutions have a wind speed of vw = 45σ0. All solutions have the same seed mass value
of M0 = 0.14Mσ. For each wind speed there are three values of the growth timescale:
ts = 1, 100, 1000tσ which are shown in green, red and magenta respectively.
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Figure 4.23: Momentum-boosts of shells in an SIS halo driven by a wind from an expo-
nentially growing SMBH plotted against velocity. Each point on the peaked coloured
curves corresponds to a velocity which occurs at the specified radius and is determined
by a seed mass value M0 as ts = 100tσ. The coloured curves that rise through the
centres of the plots are the ratios of the kinetic energy with the wind energy. Shown as
a black vertical line is the value of vp,max which is the velocity for maximum boosting
for steady winds, and the horizontal black lines are the exact values for kinetic energy
to wind energy ratio. It can be seen that this exact ratio occurs at 10rσ ≃ 500 pc. The
colours correspond to different wind speeds with vw = 45, 75, 150, 300, 450σ0 shown in
red, green, blue, black, and magenta.
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Figure 4.24: Momentum-boosts of shells in a Hernquist halo driven by a wind from
an exponentially growing SMBH plotted against radius. The top panel shows the
momentum-boost of the shell defined in terms of ṗsh against shell radius, the middle
panel shows the observable momentum-boost defined in terms of Ṁshv against shell
radius, and the bottom panel shows the ratio of ṗsh and Ṁshv against shell radius.
Each panel shows two groups of solutions which are separated by the value of the
wind speed. The more boosted solutions have a wind speed of vw = 150σ0 and the
less boosted solutions have a wind speed of vw = 45σ0. All solutions have the same
seed mass value of M0 = 0.06Mσ. For each wind speed there are three values of the
growth timescale: ts = 0.001, 0.2, 100tσ which are shown in green, red and magenta
respectively.
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Figure 4.25: Momentum-boosts of shells in a Hernquist halo driven by a wind from an
exponentially growing SMBH plotted against velocity. The coloured curves correspond
to the momentum boosts over a range in velocity values which occur at the radii
0.3rpk and rpk. Since ts = 0.2tσ where tσ ≃ 1.5 × 108 yr each point along the curves
corresponds to a seed mass value M0. The colours correspond to different wind speeds
with vw = 45, 75, 150, 300, 450σ0 shown in red, green, blue, black, and magenta. The
coloured curves that rise through the centres of the plots are the ratios of the kinetic
energy with the wind energy. Shown as a black vertical line is the value of vp,max which
is the velocity for maximum boosting for steady winds, and the horizontal black lines
are the exact values for kinetic energy to wind ratio.
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4.5 Summary and Discussion

This chapter investigated the dynamics of shells driven by non-steady winds into

isothermal and non-isothermal haloes. It was found for momentum-driven shells prop-

agating into SIS and Hernquist haloes that there is a new type of shell behaviour where

shells can stall repeatedly but are ultimately pushed out to large radii by the growing

wind force. The SMBH mass required for solutions to reach large radii without stalling

was sought. For the SIS halo it was found that if the SMBH exceeded the sufficient

SMBH mass from the steady wind case by the time the shell reached xstall (from the

steady wind case) then the shell was able to reach large radii without stalling. This

was confirmed by finding the sufficient seed mass M0 and growth time ts combinations

which resulted in shells that never stalled, and it was found that when these shells were

at their lowest velocities (i.e. just avoiding a stall point) the SMBH masses were compa-

rable to the sufficient SMBH mass from the steady wind case. By treating the winds as

being steady at early times it was possible to obtain a sufficient SMBH mass expression

which permits shells to reach large radii without stalling. For momentum-driven shells

in the Hernquist halo it was found that obtaining an estimate of the sufficient SMBH

mass was not as simple. The numerically determined sufficient M0 and ts combinations

showed that the SMBH mass at the minimum in velocity for these shells was close to

the sufficient SMBH mass in the steady wind case, but that it departed significantly

from this value for smaller ts. The momentum-boosts of momentum-driven shells from

non-steady winds were confirmed to always be less than unity, and that Ṁshv continued

to be a suitable proxy for ṗsh.

The energy-driven shells from non-steady winds in the SIS halo were shown to

accelerate at large radii rather than tend to a constant velocity as was the case for

steady winds. These shells display confinement behaviour at small radii where the force

of SMBH gravity is dominant. Shells driven by non-steady winds in the Hernquist halo

were found to simply accelerate at earlier times than their steady wind counterparts,

but otherwise the dynamics were not substantially altered by the inclusion of a growing

wind force. The momentum-boosts of energy-driven shells were investigated and it
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was shown that in the SIS halo the large scale momentum-boosts as a function of shell

velocity were still accurately described by the analytical expression obtained in the

steady wind case. This means that shells from non-steady winds continue to have a

maximum momentum-boost at the velocity determined in the steady wind case, and

that the ratio between shell kinetic and wind energy is the same as that found in the

steady wind case. This allows the derived MBH − σ relation for energy-driven shells

driven by steady winds to be extended to non-steady winds. The conditions used in

order to derive the MBH − Vc,pk relation in the steady wind case were found no longer

to apply for shells blown by non-steady winds for typical parameter values, however

maximum boosting was found to occur at a smaller radius. How this radius for non-

isothermal haloes depends on parameter values, and how it departs from the steady

wind case is worthy of further investigation.
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5 Summary and Discussion

5.1 Summary

Quasar-mode feedback is a critical aspect of galaxy formation as outlined in Chapter

1, and a possible mechanism for this feedback is a wind from an accreting black hole.

This wind is capable of driving large outflows of gas into the galaxy as observed in

local active galaxies. Such a process may be responsible for establishing the observed

correlations between the central supermassive black hole (SMBH) and global properties

of now inactive galaxies. The aim of this thesis has been to model the dynamics of

wind-driven gas outflows in order to better understand the observed correlations in

inactive galaxies and the properties of outflows in active galaxies.

In Chapter 2 the theory of outflows was introduced, and the solutions were revis-

ited for momentum- and energy-driven shells which propagate in the absence of gravity.

Much of the theory relating to these outflow regimes has previously been developed

within the context of stellar wind bubbles. This chapter extended previous work on

bubble evolution (Koo & McKee 1992a) by including a power law form for the cool-

ing function to allow for the different cooling processes expected to be dominant for

outflows from SMBH winds.

In Chapter 3 the dynamics of momentum- and energy-driven shells were analysed

for the scenario that they propagate into a gaseous ambient medium which traces dark

matter directly and exerts an inward pressure on the shell. Analytical and numerical

solutions for shell radii and velocities were obtained as functions of time for two different

dark matter haloes; the singular isothermal sphere (SIS) and Hernquist halo, and

therefore two forms of ambient pressure and gravitational force were utilised. By

following the infall behaviour of shells it was shown that momentum-driven shells can

become pressure confined. This outcome has not been analysed in its own right within

the context of SMBH winds. It was also demonstrated that the previously derived

MBH − σ correlations change to have higher SMBH masses due to the inclusion of



213

ambient pressure. The momentum-fluxes of shells were also examined and it was shown

that energy-driven shells have a peaked distribution of momentum-flux relative to that

of the wind as a function of large scale outflow velocity (which is set by MBH). When

compared with data on large-scale outflows in active galaxies (Cicone et al. 2014)

it was shown that these so-called momentum-boosts are consistent with maximum

momentum-boosting, and therefore maximum possible boosting may be a typical state

for wind-driven outflows. By requiring that energy-driven shells are maximally boosted

leads to the derivation of a new MBH − σ relation which allows the scatter in the

MBH − σ data to be interpretted as a range in momentum-boosts, and which can

recover previously derived momentum- and energy-driven relations.

In Chapter 4 the previous work was extended to include a growing SMBH, and

therefore a growing wind force. A new form for the SMBH mass was introduced which

allows for a range of growth rates from constant to exponential growth to be analysed.

By numerically solving the equation of motion for momentum- and energy-driven shells

it was shown that it is possible for an infalling shell to resume outward motion due to

the growth of the wind force. It was also demonstrated that the requirement for shells

from growing SMBH winds to reach large radii without stalling is that they effectively

exceed the required SMBH mass derived in the steady wind case. It was also shown that

the exact peaked distribution in momentum-boosting which was obtained for energy-

driven shells from steady winds is still maintained for shells from growing winds but

that it now occurs for a smaller range in radii. Hence, this chapter concludes that

the introduction of a growing SMBH wind does not fundamentally alter the results

obtained for steady winds in Chapter 3, i.e. outflows from non-steady winds with

momentum-boosts of about unity will still be around the MBH ∼ Mσ line, and the

derived MBH − σ relation from Chapter 3 still applies for outflows from non-steady

winds at large radii.

The following sections examine the results of each chapter in more detail and

discuss any improvements and potential future research.
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5.2 Dynamics of Wind-Driven Bubbles

Chapter 2 extended the work of Koo & McKee (1992a) to include a power-law cooling

function. Koo & McKee developed a rigorous treatment of wind-blown bubbles by

building on earlier work which typically focused on stellar wind bubbles (Avedisova

1972; Weaver et al. 1977). By using a power-law energy injection rate (scaling like tα)

and a power-law gas mass distribution (scaling like rp) they were able to introduce and

derive timescales which separate the outflow regimes of the shell. The most featured

of these timescales is the fiducial timescale tf defined to mark the end of the free-

expansion stage. This timescale is independent of the cooling function and therefore

remains unrevised in Chapter 2. Potential future work involving this timescale would

be to use the SMBH mass defined in Chapter 4 by equation (4.5) in order to find

the fiducial time for an SMBH which grows from a seed mass. This will recover the

timescale used by Koo & McKee in the limit that the ratio t/ts is very large and

the SMBH mass is reduced to a power law in time. Further investigation into free-

expansion could be carried out by using a double-power law gas mass profile such as

the Hernquist profile utilised throughout this thesis.

Koo & McKee restricted their attention to decelerating bubbles, as accelerating

bubbles are expected to be subject to the Rayleigh-Taylor instability. This limits their

attention to a specific set of values for α and p, for example if the gas mass profile is

an SIS then p = 1, which limits the value of the injection rate parameter to: α < 1.

Based on the work in Chapter 4 it is shown that if gravity is included then shells are

decelerating in an SIS halo for all α, and therefore the parameter space for stable shells

is extended by including gravity.

In Chapter 2 the cooling timescales for the shocked wind and shocked ambient

medium have been extended for the case of a power law cooling function. This allows

for different cooling processes to be used when deriving the timescales which separate

the possible driving regimes. In order to have a momentum-driven shell during free-

expansion a restriction is placed on the parameter values α, p and the new cooling

parameter β. A three-dimensional plot in Figure 2.5 was produced along with Table 2.1
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which showed the value of β which must not be exceeded in order to have a momentum-

driven shell at early times. This plot and the associated table show that the value of

β in order to meet this restriction is lower for higher values of p. Within the context

of SMBH winds the dominant cooling process is inverse Compton scattering (King

2003; McQuillin & McLaughlin 2012), and how this relates to the values in Table 2.1

is worthy of further investigation. Costa, Sijacki & Haehnelt (2014) state that for the

higher temperatures expected for the shocked wind region that the cooling function for

inverse Compton scattering may have β = 1− 2 which would lead to an energy-driven

shell at early times for mass profiles such as Hernquist at small radii.

The characteristic cooling timescale t1 which was introduced is useful for being

approximately greater than the cooling time of the shocked wind tcool,sw, and therefore

allows for the critical wind velocity separating slow and fast winds to be conveniently

defined. It was shown for variation in β that t1 becomes equal to and exceeds the value

of tcool,sw for a substantial range of parameter space for higher β. This shows once

again the reversal of momentum- and energy-driven shells for higher β values. It was

also shown that the cooling time of the shocked ambient medium tcool,sa is also more

likely to exceed t1 for higher β.

The critical wind velocity vcr is defined by requiring tf = t1 for a momentum-

driven shell, and therefore if a wind is slow : vw ≪ vcr then it will be subject to cooling

when it leaves the free-expansion stage and will therefore still be momentum-driven.

If the inverse is true then the wind is fast and the shell is no longer subject to cooling

when it leaves free-expansion. For particular combinations of α and p this definition

is reversed and slow winds lead to energy-driven shells and fast to momentum-driven.

The combinations which result in the reversal are shown to occupy a greater region of

parameter space for a larger value of β, i.e for β = 2, constant (α = 0) slow winds

will lead to energy-driven shells emerging from free-expansion rather than momentum-

driven.

Later on, in Chapter 3 the scatter in the MBH − σ data was interpreted as a

distribution in momentum-boosts, and therefore as a distribution in wind speeds (as

previously concluded by McQuillin & McLaughlin 2013). This permits regions of the
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MBH − σ data to be classified as corresponding to outflows which were blown by fast

or slow winds. Future work would therefore be to obtain values for vcr for appropriate

values of α, p, and β which allow such an interpretation to be made. This can also be

extended to observations of active galaxies where observations of the small scale wind

velocity and the large scale outflow can be made (Tombesi et al. 2015; Feruglio et al.

2015). Using the results from such observations will allow conclusions to be drawn

regarding vcr and the efficiency of cooling by using the momentum-boost to determine

whether the outflow is momentum- or energy-driven.

Chapter 2 concluded with an overview of the equations of motion for momentum-

and energy-driven shells subject to gravitational and ambient pressure forces. Future

work for a more complete treatment of outflow dynamics can be achieved by finding

solutions to the equations of motion which account for the mass of the shocked wind

region and the crossing time of the wind. A potential next step is to introduce a

functional form for the cooling function which depends on shell radius and time. This

will allow for the transitions between momentum- and energy-driven shells to be studied

and for the analysis of the intermediate partially radiative bubble stage (Koo & McKee

1992a). A preliminary attempt to introduce cooling into these equations has been

carried out by Faucher-Giguère & Quataert (2012), and they concluded that SMBH

wind driven outflows are expected to be energy-driven over much of their lifetimes.

5.3 Aspects of Steady Winds

Chapter 3 began by extending the work of McQuillin & McLaughlin (2012) to include

the effects of ambient pressure and infall. Ambient pressure has been included in

previous analyses (Faucher-Giguère & Quataert 2012), but its effects have yet to be

studied in their own right. The analysis in Chapter 3 started with momentum-driven

outflows in SIS and Hernquist dark matter haloes. It was found that the inclusion of

ambient pressure leads to a new type of solution for the momentum-driven shell which

corresponds to pressure confinement (see Koo & McKee 1992a for discussion). Strictly
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speaking these shell solutions are able to make slow progress before reaching large radii,

but due to the outflow time taken (t > 1010 yr), and that the numerical solution method

required discrete steps, it is likely that these shells remain static. Future work may

be to improve this issue by allowing for the gradual release of ambient pressure as the

shell begins to infall (rather than its discontinuous instant release). However, the shock

structure of a shell that has stalled is unlikely to persist, and therefore future work

should also include an examination of the conditions for which momentum-driven shells

remain stable. Ultimately, the derived MBH − σ relations for momentum-driven shells

are only slightly affected by the inclusion of ambient pressure, with the normalisation

of the newly required SMBH masses (for the shell to reach large radii without stalling)

being increased by approximately a half.

The second half of Chapter 3 analysed the dynamics of energy-driven shells. This

work included ambient pressure and it showed that there are solutions which correspond

to confined energy-driven shells. These shells are confined by gravitational forces and

the ambient pressure, but are supported against infall by their own thermal pressure

(see Koo & McKee 1992a). The momentum-boosts of energy-driven shells were then

analysed in detail, and it was found that the distribution of momentum-boosts in

terms of shell terminal velocity (v∞) is a peaked function. This means that there is

a specific outflow velocity vp,max at which maximum momentum-boosting occurs. The

momentum-boost result from Zubovas & King (2012) which was obtained in the limit

that v∞ ≫ σ0 for high outflow speeds at large scales can be understood as being the

limit that v∞ ≫ vp,max (since vp,max ∼ 2σ0 for typical values of γ), and being equivalent

to neglecting the effects of gravity. By neglecting gravity all of the available wind kinetic

energy is imparted on the bulk motion of the shell, which means for lower wind speeds

the momentum-boost tends to infinity. This limit has been used with observational

data to infer wind speeds, or to confirm energy-driving (Tombesi et al. 2015; Feruglio

et al. 2015). The actual (peaked) distribution would be better used with observational

data (i.e. equation 3.95 rather than 3.97) as observed outflows do not always have

vp,max ≫ σ (see Cicone et al. 2014 and Table 3.2). Instead, such outflows seem to

occur at velocities which put the momentum-boosts around this peaked distribution,
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as shown in Figure 3.21.

If Zubovas & King (2012) were to have chosen an outlow velocity then this would

result in an MBHvw − σ0 relation which applies when the maximum available wind

energy is imparted on the shell, i.e. the low gravity limit. In their work McQuillin &

McLaughlin (2013) set the terminal shell velocity equal to 2σ0 to obtain an MBHvw−σ0

relation. In my work I required maximum momentum-boosting which gave a different

MBHvw − σ0 relation as this requires the velocity to be the value vp,max. For γ = 5/3

this leads to a velocity: vp,max ∼ 2σ0, and therefore an MBHvw value which is not

dissimilar from that of McQuillin & McLaughlin. This means that their result and

subsequent analysis can be understood in terms of maximally boosted energy-driven

shells. However, rather than specify a value for vp,max, as it formally depends on γ

and any inward forces on the shell (such as ambient pressure), it is retained as a

parameter in equation (3.103) in Chapter 3. By doing so, this allows anMBH−σ relation

to be defined which incorporates the momentum-boost as a distinct parameter, and

therefore now allows MBH to be expressed solely in terms of large scale observational

parameters (large-scale outflow velocity and momentum-boost). This means that if two

of the parameters out of MBH, vp,max (which is approximately 2σ), or the momentum-

boost can be determined observationally for an active galaxy, then the other can be

determined using equation (3.103). This was done for the momentum-boosts of three

systems in Table 3.2 using known MBH and σ values, and the resultant boosts were

found to be in agreement with the observed values. Furthermore, if an observer can

determine the large scale momentum-boost of an outflow, then the small scale wind

speed can be estimated using the expression for the boost factor. Note that using this

equation does presume that the observed outflows are maximally boosted at large scales

(in addition to the other assumptions utilised in this model). A direction for further

research is to investigate whether or not outflows are likely to be maximally boosted at

large radii, and this can be achieved by obtaining more observational data to test this

hypothesis. A possibility for further theoretical research would be to examine what the

physical processes responsible for maximum boosting may be.

McQuillin & McLaughlin (2013) interpret the scatter in the MBH − σ data as
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variation in the wind speeds which drove outflows in protogalaxies to clear their hosts

of gas. They derive a median wind speed from the MBH − σ data by using their

MBHvw − σ relation, and show that this compares well with the median wind speeds

from samples of small scale observations of local AGN. Equation (3.103) permits the

variation in wind speed to also be interpreted as a variation in momentum-boosts,

and therefore a similar analysis to McQuillin & McLaughlin could be carried out but

with a median momentum-boost, and samples of large scale observations of galactic

outflows, rather than small scale AGN winds. The scatter in the MBH − σ data can

therefore be interpretted as a distribution in the momentum-boosts which were present

when the protogalaxies were cleared of gas by the outflow. It was shown in Chapter

3 that the maximally boosted momentum-driven MBH − σ relation (i.e. MBH = 2Mσ)

is coincident with the energy-driven relation for the case that the boost is unity. This

occurs if the wind speed is not significantly in excess of vp,max (which is approximately

2σ), and therefore this leads to the notion that the high MBH and high σ data which are

intersected by the momentum-driven line (where the boost is unity) may correspond to

protogalactic systems which were cleared by a momentum-driven outflow, which itself

was driven by a slow wind (relative to σ). This is consistent with the conclusions from

Chapter 2, where slow winds (relative to a critical velocity) produce momentum-driven

outflows (for a specific range of parameter values), and fast winds produce energy-

driven outflows. This is also consistent with conclusions drawn regarding the prevelance

of energy-driving (Faucher-Giguère & Quataert 2012; Costa, Sijacki & Haehnelt 2014),

as most of the data in Figure 3.1 is coincident with curves corresponding boosted

energy-driven shells. However, it is important to note that slow and fast winds are

defined relative to different quantities in Chapters 2 and 3. Consequently, there is

scope for future work to reconcile the outcomes in these chapters to gain a better

understanding of slow and fast winds, and the driving regimes that they produce.

An encouraging result from the analysis in Chapter 3 is that when data from

large-scale observations of active galaxies are included alongside the MBH−σ data, the

predicted values for the momentum-boosts are in broad agreement with the measured

values (Cicone et al. 2014; Rupke, Gültekin & Veilleux 2017). As new measurements of
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MBH, σ, vp,max, vw, and momentum-boosts are gathered for active systems the more the

predictions (and the model on which it is built) of equation (3.103) can be tested. For

example, recent (Mizumoto, Izumi & Kohno 2019) observations of small scale winds

in the systems listed in Table 3.2 give wind speeds of 0.24c, 0.12c, 0.28c, and 0.31c,

which are comparable to the corresponding theoretical values 0.06c, 0.20c, 0.18c, and

0.17c listed in Table 3.2. However, these theoretical values have a significant degree of

uncertainty which comes from the 0.45 dex error in the momentum-boost. As future

projects are carried out and higher resolution measurements of systems can be made at

both small and large radii, the suitability of equation (3.103) and its underlying theory

of maximally boosted shells can be more effectively assessed. Such projects will include

the X-ray Imaging and Spectroscopy Mission (XRISM - with a launch date of 2022),

which may be followed by further X-ray missions in the form of the Advanced Telescope

for High Energy Astrophysics (ATHENA) and Lynx (with proposed launch dates 2031

and 2035 respectively). These X-ray projects will provide small scale observations of

high energy winds (giving values for vw and Ṁwvw), while the proposed Origins Space

Telescope (OST) with a launch date of 2035 will provide infrared observations of the

galactic scale outflows (giving values for vp,max and the boost factor).

Finally, by comparing the momentum-boost curves obtained for outflows in a

Hernquist halo with the analytical curves from the SIS halo a clear match is found

at rpk. Requiring that energy-driven shells have a maximum momentum-boost at rpk

(where the halo gravity is strongest) results in an MBH − Vc,pk relation for energy-

driven outflows. The form of this relation can be compared with that obtained by

McQuillin & McLaughlin (2012) for momentum-driven shells which reach large radii

without stalling. An important issue to be highlighted is that the theory in Chapter

3 assumes that the protogalactic σ0 at the time of gas blowout can be related directly

to the observed σ today. It has been shown that the MBH − Vc,pk relation (McQuillin

& McLaughlin 2012) for a momentum-driven outflow can lead to a curve which fits

right through the MBH − σ data by taking into account the redshift evolution of σ

(Larkin & McLaughlin 2016). A similar analysis could be carried out but using instead

the energy-driven MBH − Vc,pk relation given by equation (3.105) to determine if the
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conclusions in Chapter 3 remain valid when the relationship between Vc,pk and σ is

properly accounted for.

5.4 Time-Dependent Winds

Chapter 4 introduced a functional form for the SMBH mass which can recover the

constant and exponential SMBH masses for specific values of its growth parameter

α. An intermediate case between these two masses can also be used for α = 1 which

corresponds to a constantly accreting SMBH.

It was found for infalling momentum-driven shells blown by growing winds that

they were capable of resuming outward motion and ultimately reaching large radii.

The dynamics of outflows were investigated for variation in the growth timescale ts,

and an expression for a sufficient SMBH mass which permits shells to reach large radii

without stalling was sought. A satisfactory expression could not be obtained, but

instead estimates for the sufficient mass were found. This was achieved for the SIS

halo by showing that shells could reach large radii without stalling if they exceeded the

sufficient mass from the steady wind case. Specifically it was shown that they must

exceed this value by the time they reach the stall radius of a shell blown by a steady

wind, which is determined by the value of the initial momentum. This was confirmed

by obtaining sufficient seed mass values M0 for a range of ts, and it was shown for these

shells, which just barely reach large radii without stalling, that the mass of the SMBH

when the velocity is at its lowest is close to the steady wind sufficient mass. For the

Hernquist halo only solutions with C = 0 were examined in detail as the methods used

for the SIS halo can be extended to the Hernquist halo if the shell has nonzero initial

momentum. The C = 0 case is therefore distinct, and it was shown that obtaining

a sufficient SMBH mass for this case is more difficult. In the end the numerically

determined values for the sufficient M0 for a range in ts were examined, and they show

that the SMBH mass can depart significantly from the sufficient mass for the steady

wind case over a physically interesting range of ts. However for slower growing winds,
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which produce shells that just barely go on to accelerate, the SMBH mass at their

velocity minima is approximately the steady wind sufficient SMBH mass. Despite the

complexities associated with the momentum-driven shells in the Hernquist halo this

chapter achieved its aims of showing (at least for the SIS halo) that the conclusions

from Chapter 3 regarding momentum-driven shells are not significantly altered by the

inclusion of a growing SMBH wind.

The second part of this chapter focussed on energy-driven shells blown by non-

steady winds. It was shown that energy-driven shells in the SIS halo now accelerate

at large radii, but at smaller radii the dynamics are not fundamentally different. It

was demonstrated that energy-driven shells at large radii in the SIS halo have the same

peaked distribution of momentum-boosts in terms of shell velocity, that this peak occurs

at vp,max as defined in Chapter 3, and that this occurs when the shell kinetic and wind

energies are in the required ratio. Through the analysis of the large-scale momentum-

boosts in the SIS halo for the fiducial growth timescale considered it was shown that

analytical relationships derived in Chapter 3 for shells driven by steady winds continued

to apply, but for a narrower range of radii. Hence the SMBH mass for these shells driven

by non-steady winds will continue to be given by theMBH−σ0 relation (equation 3.103)

derived in Chapter 3. Future work would examine the true limits of this relation for

non-steady winds as it is likely to not be applicable to rapidly growing SMBH. This

chapter can be extended further by analysing the boosts in terms of the seed mass (or

SMBH mass), and assessing whether the momentum-boost distributions correspond to

physically realistic values of MBH, rather than simply being shown in terms of outflow

velocity. For the Hernquist halo it was found that the shells driven by non-steady

winds simply accelerate earlier than their steady-wind driven counterparts, but that

this impacts the conclusions drawn in Chapter 3, as the characteristic distribution of

momentum-flux with outflow velocity occurs at smaller radii than rpk. The main focus

of this chapter was to simply examine the conclusions of Chapter 3 within the context

of non-steady winds, which means that there are significant extensions which can be

made by developing these results within a more physical and observational context.

For example, by introducing typical or expected accretion, cooling, and flow timescales
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into the analysis of shell dynamics, which in turn will enable earlier concepts such as

critical wind velocity and cooling to be revisited. Finally, since all energy-driven shells

from non-steady winds are accelerating at large radii this work could be extended by

analysing the stability of such shells, either in terms of Rayleigh-Taylor instabilities,

or gravitational instabilities (Vishniac 1983).
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A Glossary of Acronyms

ATHENA Advanced Telescope for High Energy Astrophysics
AGN Active Galactic Nucleus
BH Black Hole
BLR Broad emission Line Region
BLRG Broad Line Radio Galaxy
CDM Cold Dark Matter
IC Index Catalogue (of nebulae and clusters of stars)
IRAS Infrared Astronomical Satellite
LINER Low Ionisation Nuclear Emission Line Region
NFW Navarro, Frenk & White
NGC New General Catalogue
NLRG Narrow Line Radio Galaxy
PRB Partially Radiative Bubble
SIS Singular Isothermal Sphere
SF Star Formation
SMBH Supermassive Black Hole
ULIRG Ultra Luminous Infrared Galaxy
XRISM X-ray Imaging and Spectroscopy Mission
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B Glossary of Symbols

α Black hole mass/wind growth parameter
α′ Dark matter density profile parameter
a Apparent major axis of an elliptical galaxy
a′ Scaling parameter in the Faber-Jackson relation
A′ Fundamental plane parameter
A Cooling time constant
β Cooling function parameter
β′ Dark matter density profile parameter
βcrit Critical cooling function parameter
b Apparent minor axis of an elliptical galaxy
bN Sérsic parameter
B(r) Anisotropy parameter
B′ Fundamental plane parameter
c Speed of light in vacuo
cs Sound speed
cs,1 Pre-shock sound speed
C The square of a shell’s initial momentum
C Cooling time constant
C ′ Fundamental plane parameter
Cesc The square of a shell’s initial momentum required to reach large radii
Cff Initial momentum required for a shell to escape after stalling
Cmin The lowest value of the shell’s initial momentum which is required to

reach large radii
CP Specific heat at constant pressure
CV Specific heat at constant volume
η Accretion efficiency
η′ Power on velocity disperion in the empirical relation between dark matter

density, velocity dispersion, and radius.
E∗ Pseudo-energy of a particle
E∞ Energy of a particle at infinity
Eacc Energy released during accretion
Eb Binding energy of a particle
Ebulge Binding energy of a bulge

Ėw Energy released by the wind
f(x,v, t) Distribution function for a stellar system
f0 Gas to dark matter ratio
fP Ratio of ram pressures
F Factor taking into account geometry of BLR
Fgrav Gravitational force
Frad Force from radiation pressure
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γ Ratio specific heats
γ′ Dark matter density profile parameter
γsw Ratio of specific heats in the shocked wind region
g Subfunction of the continuum cooling function
G Gravitational constant
h Disk scale length
h(x) Function describing how the ambient gas traces dark matter
H Scaled Hubble constant
I(R) Surface brightness function
I0 Central surface brightness
Ie Intensity at the effective radius
〈Ie〉 Average effective surface brightness
κ Thomson scattering opacity
kB Boltzmann constant
K Global kinetic energy of a stellar system
λd Mean free path
Λ Cooling function
Λcoll Cooling function fore collisional ionisation
ΛCompton Cooling function for Compton scattering
Λcont Cooling function for continuum emission
Λlines Cooling function for collisional line radiation
Λphoto Cooling function for photoionisation
Λrec Cooling function for recombination processes
Λs Value of the cooling function at the scale temperature
l Angular momentum of a particle
L⊙ Solar luminosity
LK⊙ Solar luminosity in the K band

LAGN AGN luminosity
Lbulge Bulge luminosity
LK,bulge Bulge luminosity in the K band
LEdd Eddington luminosity
Lgal Galaxy luminosity
Lgal,B Galaxy luminosity in the B band
Lgal,H Galaxy luminosity in the H band
LMW Milky Way luminosity
LX X-ray luminosity
µH Mean mass per hydrogen nucleus
m Mass of an individual particle
m(x) The ratio of shell mass to dark matter interior to x
m0 Rest mass of a particle
ṁ Eddingtion ratio
M Mach number
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M Mass of a stellar system
∼

M Mass normalised to Mσ

M⊙ Solar mass
M∗ Stellar mass
Mσ Critical SMBH mass required for a shell to escape in an SIS halo
M0 Seed mass
MBH Black hole mass
MBH,crit Necessary SMBH mass required for a shell to reach large radii
MBH,low The lowest necessary SMBH mass which is required for a shell to

reach large radii
MBH,high The highest necessary SMBH mass which is required for a shell to

reach large radii
Mbulge Bulge mass
Mcrit The SMBH mass which results in a shell with both acceleration and

velocity equal to zero
MDM Dark matter mass
Mg Mass of swept-up ambient gas
Mmax

crit The highest critical SMBH mass for a range of initial momentum values
Mpk Mass of a dark matter interior to rpk
Msh Shell mass
Msp Spiral galaxy mass
Mw Wind mass
Mw,s Wind mass at scale time

ṀBH Black hole growth rate

ṀEdd Eddington mass rate

Ṁout Outflow mass rate

Ṁpk Dark matter mass at rpk
Ṁw Wind mass rate
n Sérsic index
ne Number density of electrons
nH Number density of hydrogen
n′ Number density of hydrogen
N Elliptical galaxy parameter
N ′ Column density of an outflow
Φ Gravitational potential
p Parameter for power law mass profile
pcrit Critical value of the parameter for power law mass profile
ṗsh Momentum-flux of a shell
P Shocked wind pressure
P1 Pre-shock gas pressure
P2 Post-shock gas pressure
Pg Gas pressure
q Ratio of accretion rate to Eddington rate
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ρ Density of stellar system
−

ρ Mean density
ρ1 Pre-shock gas density
ρ2 Post-shock gas density
ρDM Dark matter density
ρg Gas density
−

ρg Mean gas density.
ρgr Density at gravitational radius
ρpk Density at rpk
ρσ Characteristic density
ρs Density at characteristic radius r0
ρsc Density at scale radius rsc
r Radius from galactic centre
∼

r Radius normalised to rσ
r−2 Radius at which the logarithmic slope of the dark matter density profile is -2
rσ Characteristic radius
rc Radius of contact discontinuity
rf Fiducial radius
rg Gravitational radius
rinf Influence radius of an SMBH
rm Radius of extrema in effective potential
rmin Radius of smallest stable orbit
rpk Radius at which the peak of the dark matter circular speed curve peaks
rs Radius of the forward shock
rsc Scale radius
rsw Radius of the wind shock
rS Schwarzschild radius
R Projected distance from galactic centre
RBLR Radius of the BLR
Re Effective radius
σ Stellar velocity dispersion
σ0 Characteristic velocity dispersion
σap Stellar velocity dispersion measured within an aperture
σg Velocity dispersion of the ambient gas
σl.o.s Line of sight stellar velocity dispersion
σφ Stellar velocity dispersion in the φ direction
σr Stellar velocity dispersion in the radial direction
σθ Stellar velocity dispersion in the θ direction
σT Thomson cross section
s Proper time
S Flux density
τ Scattering parameter
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t Time
t1 Characteristic cooling time
tage Galaxy age
tcol Collapse timescale of the ambient gas
tcool Cooling time
tcool,sa Cooling time of shocked ambient medium
tcool,sw Cooling time of shocked wind
tcr Crossing time
ten Transition time to an energy-driven bubble
tex Time when a when reaches a minimum in velocity
tf Fiducial time
tff Infall timescale of the shell
tout Time taken for the collapse of the shocked ambient medium
tstall Stall time of a shell
tr Transition time to a partially radiative bubble
tσ Characteristic time scale
ts Scale time
tS Salpteter time
T Temperature
Ts Scale temperature
U Internal energy of shocked wind
v Three-dimensional velocity of a star
v Forward shock velocity
v1 Pre-shock gas velocity
v2 Post-shock gas velocity
v∞ Coasting velocity at large radii
vcrit Critical wind speed
vc Velocity of contact discontinuity
vcirc Circular velocity
vcol Collapse velocity of the ambient gas
vesc Escape velocity
vff Infall velocity of the shell
vout Observed outflow velocity
vp,max Velocity of shell at peak momentum-boosting
vw Wind speed
vsw Velocity of the wind shock
vsw,w Velocity of wind shock relative to the wind
〈v〉 Average stellar speed
〈v2〉 Mean square stellar speed
V Gas volume
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Vc Circular speed
Vc,pk Peak circular speed
Veff Effective potential
Vrot Rotational velocity
W Gravitational potential energy of a stellar system
ξ Parameter for the scaling of the ratio dark matter density with velocity dispersion
ξ′ Numerical constant of order unity
x Galactic radius divided by rpk
x Three-dimensional position of a star
xc,max The xc,crit associated with Mmax

crit

xcrit The radius where the acceleration and the velocity of the shell are both zero
xlaunch Launch radius for a shell
xstall Stall radius of a shell
xt Number of particles per hydrogen nucleus
z Redshift
Z Metallicity
Z⊙ Solar metallicity
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Côté P., McLaughlin D., Cohen J., Blakeslee J., 2003, A&A, 591, 850

Croton D. J., Springel V., White S. D. M., De Lucia G., Frenk C. S., Gao L., Jenkins

A., Kauffmann G., Navarro J. F., Yoshida N., 2006, MNRAS, 365, 11

Davis T. A., Bureau M., Cappellari M., Sarzi M., Blitz L., 2013, Nature, 494, 328

Davis T. A., Bureau M., Onishi K., Cappellari M., Iguchi S., Sarzi M., 2017, MNRAS,

468, 4675

Davis T. A., Bureau M., Onishi K., van de Voort F., Cappellari M., Iguchi S., Liu L.,

North E. V., Sarzi M., Smith M. D., 2018, MNRAS, 473, 3818

de Vaucouleurs G., 1948, Annales d’Astrophysique, 11, 247

Debuhr J., Quataert E., Ma C.-P., 2011, MNRAS, 412, 1341

Debuhr J., Quataert E., Ma C.-P., 2012, MNRAS, 420, 2221

Dehnen W., McLaughlin D. E., 2005, MNRAS, 363, 1057

Devecchi B., Volonteri M., 2009, ApJ, 694, 302

Di Matteo T., Springel V., Hernquist L., 2005, Nature, 433, 604

D’Onofrio M., Valentinuzzi T., Secco L., Caimmi R., Bindoni D., 2006, NewAR, 50,

447

Draine B. T., 2011, Physics of the Interstellar and Intergalactic Medium, Princeton

University Press

Dressler A., Richstone D. O., 1988, ApJ, 324, 701



234 BIBLIOGRAPHY

Dressler A., 1989, in Osterbrock D. E., Miller J. S., eds, Active Galactic Nuclei, IAU

Symposium Vol. 134, p. 217

Dubinski J., Carlberg R. G., 1991, A&A, 378, 496

Einasto J., 1965, Trudy Astrofizicheskogo Instituta Alma-Ata, 5, 87

Faber S. M., Jackson R. E., 1976, ApJ, 204, 668

Fabian A., 1999, MNRAS, 308, L39

Faucher-Giguère C., Quataert E., 2012, MNRAS, 425, 605

Ferrarese L., Ford H., 2005, Sp. Sci. Rev., 116, 523

Ferrarese L., Merritt D., 2000, ApJ, 539, L9

Ferrarese L., 2002, ApJ, 578, 90

Ferrarese L., Ford H. C., Jaffe W., 1996, ApJ, 470, 444

Feruglio C., Maiolino R., Piconcelli E., Menci N., Aussel H., Lamastra A., Fiore F.,

2010, A&A, 518, L155

Feruglio C., Fiore F., Carniani S., Piconcelli E., Zappacosta L., Bongiorno A., Cicone

C., Maiolino R., Marconi A., Menci N., Puccetti S., Veilleux S., 2015, A&A, 583,

A99

Feruglio C., Ferrara A., Bischetti M., Downes D., Neri R., Ceccarelli C., Cicone C.,

Fiore F., Gallerani S., Maiolino R., Menci N., Piconcelli E., Vietri G., Vignali C.,

Zappacosta L., 2017, A&A, 608, A30

Fiore F., Feruglio C., Shankar F., Bischetti M., Bongiorno A., Brusa M., Carniani S.,

Cicone C., Duras F., Lamastra A., Mainieri V., Marconi A., Menci N., Maiolino

R., Piconelli E., Vietri G., Zappacosta L., 2017, A&A, 601, 21



235

Frank J., King A., Raine D., 2002, Accretion Power in Astrophysics, Cambridge Uni-

versity Press, 3rd edition

Frenk, C S., White S., 2012, Annalen der Physik, 524, 507

Gaibler V., Khochfar S., Krause M., Silk J., 2012, MNRAS, 425, 438

Ganguly R., Brotherton M. S., Cales S., Scoggins B., Shang Z., Vestergaard M., 2007,

ApJ, 665, 990

Gebhardt K., Bender R., Bower G., Dressler A., Faber S., Filippenko A., Green R.,

Grillmair C., Ho L., Kormendy J., Lauer T., Magorrian J., Pinkney J., Richstone

D., Tremaine S., 2000, ApJ, 539, L13

Gebhardt K., Richstone D., Tremaine S., Lauer T. R., Bender R., Bower G., Dressler

A., Faber S. M., Filippenko A. V., Green R., Grillmair C., Ho L. C., Kormendy

J., Magorrian J., Pinkney J., 2003, ApJ, 583, 92

Genzel R., Eisenhauer F., Gillessen S., 2010, Reviews of Modern Physics, 82, 3121

Gerhard O., Kronawitter A., Saglia R. P., Bender R., 2001, AJ, 121, 1936

Gillessen S., Eisenhauer F., Trippe S., Alexander T., Genzel R., Martins F., Ott T.,

2009, ApJ, 692, 1075

Gilli R., Calura F., D’Ercole A., Norman C., 2017, A&A, 603, A69

Gofford J., Reeves J., Tombesi F., Braito V., Turner T., Miller L., Cappi M., 2013,

MNRAS, 430, 60
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