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ABSTRACT

A study of the deactivation of singlet molecular oxygen by 

HC1, HBr, Hj, and D2 has been made, paying particular attention to 

the temperature dependence.

The rate constants for the deactivation of 02(a1Ag) at 295K 

were found to be:

V HC1 _ Kd (8.00±0.34) x 104 mol-1 dm3 s“ 1

v HBr _ Kd (4.212.8) x 104 mol-1 dm3 s" 1

kdH2 = (2.2210.26) x 104 mol-1 dm3 s“ 1

kdD2 = (2.5611.30) x 103 mol-1 dm3 s“ 1

and those for the deactivation of C>2 (b 1 Z+g) were found to be:

k HC1 _
xq (1.6010.20) x 107 mol“ 1 dm3 s-1

v HBr _
*q (1.4210.07) x 108 mol“ 1 dm3 s“ 1

IICMX (2.7610.06) x 108 mol“ 1 dm3 s“ 1

k d2 =q (5.2710.18) x 106 mol“ 1 dm3 s“ 1

The determination of the deactivation rate constants over the 

temperature range 500 to 1200K was carried out using a discharge flow 

- shock tube apparatus. The temperature dependence of the



deactivation of Ojfa^g) may be described by the following Arrhenius 

expressions:

kdHC1 = (2.76±1.70) x 107 exp[-(1750±190)/T] mol-1 dm3 s~ 1 

kdH2 = ( 1.32 + 1.08) x 108 exp [-(2600±180)/T] mol-1 dm3 s-1  

kdD2 = (2.75±0.75) x 107 exp [-(2740 ±90)/T] mol-1 dm3 s_1

It was not possible to obtain data for the deactivation of 

02(a1Ag) by HBr above 295K.

The deactivation of 02 (b ̂ E+g) by HC1 was nearly independent of 

temperature, although the deactivation of 02(b1£+g) by H2 and D2 

showed a positive temperature dependence. These temperature 

dependences could not be fitted to a simple function of temperature.

The results of this study are discussed in terms of the 

deactivation probabilities. Where possible, the temperature 

dependence is compared with the predictions of the short range 

interaction theory of Rear and Abrahamson and the long range 

interaction theory of Braithwaite, Ogryzlo, Davidson and Schiff. 

Comparisons with the Landau-Teller theory of vibrational to 

vibrational energy transfer are also made.
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INTRODUCTION

1.1 Background

In recent years there has been a considerable amount of 

interest shown in the chemical and physical behaviour of the first 

two electronically excited states of molecular oxygen, in the gaseous 

phase. The areas in which there has been most activity are 

atmospheric chemistry, air pollution and laser technology.

(a) Atmospheric Chemistry

Studies of the airglow and the aurora can be traced as far 

back as 1788 when nights of unusual brightness appeared on record. 

However, it was not until 1909 that Yntema obtained photometric 

evidence of the airglow. The subject became intensely studied and 

more diversified. In 1961 there were more than 1600 references 

considered currently significant [1],

The first electronically excited species of oxygen, 02 (a1 ^ ) , 

is the most important and is produced in the atmosphere primarily by 

photolysis of ozone at wavelengths below 300nm. The main losses are 

due to collisional quenching and radiation to the ground state at 

1270nm. This infrared emission is present in the twilight glow and 

provides a measure of the ozone distribution above 80km, hence those 

workers concerned with ozone depletion and atmospheric modelling 

require a knowledge of the reactions of 02(a1 with other 

atmospheric species. There have been many investigations of the 

°2<a1 distribution, involving both terrestrial [2] and rocket 

borne [3] measurements.

The second electronically excited species, 02 (b1 J* ), is a 

companion of 02(a1 in the atmosphere and gives rise to the



infrared day glow at 762nm. its removal is almost entirely through 

quenching by atmospheric gases. This species is present in lower 

concentrations than Ojia^g) and is considered to be much less 

significant in atmospheric chemistry.

(b) Air Pollution

Although the reactions of singlet molecular oxygen are now 

known to be less important in atmospheric pollution than was once 

thought, they are still of interest because of the uniqueness of the 

products which may also have adverse biological effects.

In the presence of alkenes, it has been shown to oxidize 

nitric oxide in photochemical smogs, leading to the production of 

several eye irritants [4]. One such irritant is peroxyacetylnitrate 

(PAN). This is a water soluble substance which can be hydrolysed in 

the lung, in situ generation of 02(a1Ag) in this manner can cause 

cell damage, leading to lung cancer, via the formation of peroxides 

in the living cell. Indeed, singlet molecular oxygen has been studied 

in connection with blood disease, some forms of cancer and the ageing 

process in man [5].

(c) Laser Technology

The development of the oxygen-iodine laser was made possible 

due to the discovery of a practical 02(a1Ag) generator [6] utilizing 

chlorine and hydrogen peroxide, the overall reaction being:

C12 + h2°2 + 2Na0H--- > °2<a1 Ag) + 2NaCl + 2H20



This reaction was first observed by Mallet [8] in 1927 as a weak red

chemiluminescence, which was later found to be due to the 0 (a1A )
2 9

'dimol' emission. The 02(a1Ag) generator of McDermott and co-workers 

was able to produce about 40% C>2(a1Ag) in pure oxygen, at about 1 

torr. I2 was injected in an argon carrier gas at 90°C prior to 

entrance into the laser cavity. In this way, the first oxygen-iodine 

continuous wave laser was manufactured. Run times of several minutes 

were obtained with a measured laser output of 4 milliwatts. This 

laser system relies on the transfer of energy from chemically 

generated C>2 (a ̂ Ag) to produce an energy inversion in the spin-orbit 

states of atomic iodine, and has become known as the chemically 

pumped oxygen-iodine laser (COIL).

Recently, there has been intense interest in this laser 

system, with a view to producing a hybrid version capable of 

operating in a pulsed mode. Many workers [7,9,46] have been involved 

in studying the kinetics of this system. One result of these studies 

has been to identify the need for an iodine atom precursor, stable in 

electronically excited oxygen but which is also an inefficient 

quencher of 02(a1Ag), 02(b1Z+g), and I(2P1/2)r together with the 

capability to manufacture 02(a1Ag) in high concentration.

In each case, it is helpful to have a sound knowledge of the 

processes by which singlet molecular oxygen is both produced and 

removed under a variety of conditions. To this end, elucidation of 

the mechanisms of such processes would be a great advantage, in a 

thorough investigation of the subject, one of the most important 

pieces of information is the functional dependence of the rate 

constants of the various processes with respect to temperature , 

which can provide information about the intermolecular potentials 

involved.



Although there have been major developments in the theoretical 

approaches to understanding these processes, there remains a lack of 

convincing correlation with experimental observation. The reactions 

and quenching of singlet molecular oxygen have been studied by a 

variety of methods at room temperature. Temperature dependence 

studies have been restricted by attempts to raise or lower the 

temperature through the use of thermostatted jackets. This approach 

has limited the study to temperatures between 200K and 400K. while 

this temperature range is adequate for most purposes, the reactions 

of singlet molecular oxygen, particularly the deactivation of 

°2(b1 ), show little temperature dependence and so a much wider

range is desirable.

The approach in this study has been to combine the high 

temperature advantages of a shock tube with those of the lower 

temperature flow tube apparatus. The result has been the discharge 

flow-shock tube which allows reactions to be studied over a 

temperature range of 500K to 2000K, as well as at room temperature.



1.2 The Temperature Dependence Of Reaction Rates

The study of chemical reactions at high temperatures provides 

a considerable amount of information about the nature of a chemical 

reaction. With rare exceptions, the rate of a chemical reaction 

increases with temperature. In 1889, Arrhenius made the general 

observation that a plot of the natural logarithm of the rate constant 

versus reciprocal temperature for a series of reactions was linear. 

Recalling that Van't Hoff (1884) found that the same was true for 

equilibrium constants, because of the relationship:

dlnK/dT = Ah/RT2

Arrhenius proposed that:

( 1 . 2 )

k = Ae-Ea/RT

(1.3)

*
This equation assumes that both the pre-exponential factor and the 

activation energy are independent of temperature.

For the majority of gas phase rate constants, this simple form 

is adequate. However, for a small group of reactions this is not the 

case. One example is the termolecular recombination of atoms or atoms 

with diatomics. In such cases, it is found that the pre-exponential 

factor is temperature dependent and the equation must be modified to:

k = a *

(1.4)

where Ea' - Ea + CT and A* = A/Tn. Note that n = C/R. If n is 

considerably less than unity/ which is usual for gas reactions/ the



value of the T11 term approaches unity and Ea' approaches Ea, since 

C/R will be very small.

The pre-exponential factor is related to the collisional 

frequency of the reactant molecules. Simple Collision Theory [10], 

predicts the following relationship between rate constant and 

temperature:

k = irrAB2(8RT/iTu) 1/2e_Ea/,RT

(1.5)

where rftB is the collision cross-section and p the reduced mass. This 

equation may be expressed as.

k = CT1/2e-Ea/RT

( 1.6 )

which is also a similar expression to the Arrhenius equation.

Simple Collision Theory assumes that collisions are simple and 

does not allow for the existence of transition states and activated 

complexes, nor does it allow the activation energy to be calculated 

or steric effects to be taken into account.

Transition state theory [11] takes into account the formation 

of an activated complex, which has a transient existence at the top 

of a potential energy barrier between reactants and products, and 

predicts the following equation for the relationship between rate 

constant and temperature:



k = kBT/h. e+ « / R.e- Æ /RT

(1.7)

where kB is the Boltzmann constant, h is Plancks constant, 31 the 

enthalpy and ¿6 the entropy of the activated complex. 31 may be 

related to Ea by Ea = 31 + (n-1)RT, where n is the order of reaction. 

The overall equation becomes,

k = kgT/h. en. e+ Æ/R. e_Ea/RT

( 1.8 )

Therefore, with a few assumptions about the nature of the activated 

complex , the pre-exponential factor may be estimated, from a 

consideration of the partition functions. It is also possible to 

estimate the activation energy for small molecules, however this 

involves a complex quantum mechanical treatment. Again, this is very 

similar to the Arrhenius equation but incorporates a temperature 

dependence in the pre-exponential factor.

k = BTe-Ea/RT

(1.9)

Other temperature dependences are known. For example, the 

Landau-Teller Theory [12] of vibrational energy transfer predicts 

that the probability of energy transfer per collision, P, will be 

related to temperature by:
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Ln p a T-1/3

( 1 . 10 )

The rate constant is related to P by:

k = ZP( l-ehv/kT)

( 1. 11)

where Z is the collision rate, hence k a t-1/3 #

If the Landau-Teller Theory is approached from a quantum 

mechanical stand point, then several temperature dependent terms are 

found to play a part. The most widely applied approach is that of 

Schwartz, Slawsky and Hertzfeld, [12] sometimes called SSH Theory, it 

is a three dimensional quantum mechanical treatment which yields a 

prediction for the relaxation time. The most dominant of the 

temperature dependent terms is T-1 ^3 which results in a linear 

Landau-Teller plot, in general, most quantum mechanical approaches 

lead to:

Ln(1/k) = A + BT- 1 /3

( 1 . 1 2 )

In a few cases other temperature dependent terms become important. 

For example, some polar molecules show an inverse dependence due to 

the dominance of attractive forces in interactions.

In all equations given in this section the units of k will depend 

upon the overall order of reaction . For zero order , mol dm-3 s-1 ; 

for first order, s  ̂ ; and for second order, mol“  ̂ dm3 s- .̂



1.3 The Discharge Flow - Shock Tube

The combination of a flow discharge apparatus and a shock tube 

provides a powerful tool for the study of the high temperature 

reactions of unstable species, such as electronically excited 

molecules, atoms and radicals, which must be generated in situ*

This thesis is concerned with the study of singlet molecular 

oxygen in a discharge flow - shock tube. A brief history of the 

technique is given in this section.

Although the first shock tube was developed by Vieille in 1899 

[14], it was not until the early 1960's that Hartunian, Thompson and 

Hewitt [15] constructed the first discharge flow - shock tube. They 

used an RF discharge to study the chemiluminescent recombination 

reactions of atomic oxygen with carbon monoxide and also with nitric 

oxide. Gross and Cohen [16], working in the same laboratory, used the 

technique with a microwave discharge to study further 

chemiluminescent reactions.

The discharge flow - shock tube used in this study was 

developed from an apparatus constructed in 1969 by Borrell, Borrell 

and Brittain [17] to study active nitrogen. Later the technique was 

developed to allow singlet molecular oxygen to be studied. The system 

differs from those used previously in the direction of the flow; the 

f°r pre-shock analysis of the concentration gradient along 

the tube; and the use of whole post-shock regime for analysis.

In some respects singlet molecular oxygen facilitates the use 

of a discharge flow tube since reactions which remove 02(a^Ag), 

generated in the microwave discharge, are slow enough to produce an 

appreciable concentration of C>2(a1 Ag) along the tube at room 

temperature. In other respects the same property is a disadvantage, 

when at high temperature a measurable change is required during the 

h°t flow time of the experiment.
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In the case of 02 ( b ̂ I+g) » which is produced from C>2 ( a ̂ ) in 

the energy pooling reaction [18,19] establishing a steady state 

concentration, study is also relatively easy at room temperature. 

Potential problems arise at high temperatures when the analysis 

depends upon relaxation to a new steady state. For this to be 

observed the rate constants for the formation and removal of 

02 (b1£+g) must have different temperature dependences.

The apparatus and experimental techniques involved in this 

study are described in Chapter 2.



1.4 Singlet Molecular Oxygen

This section describes the electronic structure, spectroscopy, 

and reactions of singlet molecular oxygen together with methods of 

generating and detecting these species. It is not intended to be a 

comprehensive literature survey. The discovery and early work on 

singlet molecular oxygen is described, as well as the most recent 

work.

1.4.1 Electronic Structure

The electronic configuration of molecular oxygen may be 

written as:

KK(2s Og)2 (2s q1)2(2p<^)2 (2p^)4 (2p^ ) 2

Figure 1.1 shows the corresponding molecular orbital diagram. Since 

the two degenerate x antibonding orbitals contain only two electrons, 

it is possible to rearrange these electrons and write three 

electronic states for molecular oxygen; 3 £"g, 1 1 jfg, (Table 1.1).

The ground state, which has the lowest energy, occurs when the 

two electrons are unpaired and have parallel spins. The first two 

excited states occur when the spins are opposed. In the case of the 

first electronically excited state, 0 2 (a1^), the electrons are 

paired, therefore their orbital angular momentum is in the same 

direction, ft=2, giving rise to a doubly degenerate state. The second 

electronically excited state, 02(b1 i g ), has these electrons in 

different orbitals and thus their orbital angular momentum is 

opposed, JH). This gives rise to one unique state for C>2(b1 jfg), 

which is higher in energy than 02 (a1 since it is more 

energetically unfavourable for electrons of opposite spin to be

unpaired.
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Hund’s rule may be applied to confirm the energetic sequence 

of the states. The rule specifies that the state with maximum 

multiplicity lies lowest in energy and states of equal multiplicity, 

the one with the greatest A lies lowest. Therefore in order of 

increasing energy the electronic states for molecular oxygen are:

Figure 1.2 shows the potential energy - internuclear distance 

diagram for some of the lower electronic states of molecular oxygen 

[20] • The two lowest excited states are often produced together and 

so they are frequently referred to collectively as singlet molecular 

oxygen or simply singlet oxygen.

A detailed explanation of the state symbols may be found in 

several texts, such as Herzberg [21]. A brief summary of the main 

points is given here.

The symbols X, a, and b designate the ground state and the 

first and second electronically excited states of a molecule 

respectively.

The main state symbol describes the total orbital angular 

momentum (integer values of A from zero) around the symmetry axis as 

3» H, \  $, etcetera.

The main symbol is preceded by superscript 1, 2, 3 indicating 

the spin multiplicity of the state, (S = 0, 1/2, 1, etcetera, 

respectively).

X symbols are followed by a superscript which indicates 

whether the wave function does (-) or does not ( + ) change sign on 

reflection in any plane passing through the nuclei.

Linear molecules which have a centre of inversion (e.g. O^) 

have a symmetry element which defines the inversion of the wave 

function at the centre of the molecule (g for even, or u for odd). 

This notation is given as a subscript.





1.4.2 The Spectroscopy of Singlet Molecular Oxygen

The optical transitions of singlet molecular oxygen to the 

ground state are well known [21]. These are forbidden transitions, 

hence their radiative lifetimes are long and their intensities 

correspondingly low. The radiative lifetime of 02 (a1 is 

approximately 44 minutes [22] and that of 02 (b1 f  g>, approximately 7 

seconds [23] .

02(a1 y ----> o2(X3 f g) + hv  ( X =  1270nm)

(1.13)

°2 (b1 ¿ V ----> °2 (x3 ¿ V  + hv < A -  762nm)

(1.14)

The electric dipole transitions from the excited singlet 

states to the ground state are spin, symmetry, and in the case of 

°2(a1 V '  orbitally forbidden. The transitions occur as magnetic 

dipole transitions which have considerably smaller probabilities 

( 10 ) than those for allowed electric dipole transitions [21,48],

and are consequently much weaker.

Electric dipole transitions may be induced by a perturbation 

of the dipole during collision with another molecule. Such 

perturbations are normally small and result in a radiative life-time 

of the order of seconds for collision complexes. 02(b1 ¿̂ g) is 

essentially unaffected by such processes because its life-time is 

already of this order of magnitude. The radiative life-time of 

02 (a1 ̂ ) may be shortened in the presence of 02, N2, and CC>2 at high 

pressures (4 atmospheres) as demonstrated by Badger, Wright and 
Whitlock [49].

Simultaneous transitions [24] can occur when singlet oxygen —



singlet oxygen collisions are more probable. The spin inversion 

restriction upon the single molecule transition is removed when 

simultaneous transitions occur since the total electron spin may be 

conserved. The emission in such cases occurs as a single photon.

2°2 (a1 Ag) --- > 202(X3 JTg ) + hv (X = 634nm)

(1.15)

02 (a1Ag) + 02 (b1rfg) --- > 202 (X3 r g) + hv (X = 476nm)

(1.16)

202 (b1Z+g) --- > 202 (X3 JTg ) + hv (X= 381nm)

(1.17)

Other dimoi' emissions have also been observed when one of 

the electronic states is vibrationally excited. In this work only one 

'dimoi' emission has been studied (equation 1.15). This emission was 

monitored in order to observe the temperature dependence of the 

deactivation of 02 (a1Ag), as an alternative to monitoring the single 

molecule transition (equation 1.13) which would have required the use 

of an infrared detector.

1.4.3 Generation of Singlet Molecular Oxygen

There are five main methods of producing singlet molecular 

oxygen, in the gaseous phase, under laboratory conditions. A brief 

description of these methods is given in this section.

(a) Electric Discharge

Electric discharges (microwave, RF and DC) passed through 

molecular oxygen have been found to be the most convenient method of
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generating singlet molecular oxygen in a flowing gas. Microwave 

discharges are the most commonly used.

Purified oxygen is passed through a microwave discharge either 

on its own or diluted in an inert carrier gas at a pressure of 1 - 10 

“£orr. Downstream, the gas contains a fraction of 02(a1Ag). Estimates 

of the proportion of 02(a1Ag) to 02(x3E~g) produced in the discharge 

have varied from 5 - 20% [25,26,27] .

The mechanism of formation of singlet molecular oxygen by this 

method is uncertain, it has been suggested that atom recombination is 

involved [13] but a more probable explanation is an electron impact 

mechanism [28]. While 02(a^Ag) is mainly formed in the discharge,

°2(b1z+g) is mainly produced outside the discharge from o2(a1Ag) via 

the energy pooling reaction [17,18]. The concentration of 02 (b1r+g) 

in our apparatus is estimated to be 0.02%.

2o2(a1Ag) ---> o2(b1r+g) + o2(x3r-g)

(1.18) C0
Atomic oxygen is also a product of the discharge. If it is *

allowed to remain in the gas flow, this impurity will lead to an 

unnecessarily complex set of possible reactants and products 

particularly if quenching gases are also added to the flow. Atomic 

oxygen can be removed by the introduction of mercury vapour to the 

stream of gas. This serves not only to remove the oxygen atoms but 

also appears to catalyse their recombination and results in an 

increase in the concentration of 02(alAg) and 02(b1j:+g). This has 

been reported to be due to the following sequence of reactions [29].

3̂
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Hg + O HgO

(1 .1 9 )

HgO + O ----> Hg + 02*

( 1 . 2 0 )

Slanger and Black have also observed the production of 02 (a1Ag) via 

the recombination of oxygen atoms on a pyrex surface [30].

There are other approaches to the oxygen atom problem; one is 

to remove the oxygen atoms on a silver oxide or silver oxide / 

mercuric oxide surface; another to dilute the discharged oxygen 

sufficiently to ignore the oxygen atom concentration. The latter 

method carries with it the disadvantage that the 02(a1Ag) and 

02(b1Z+g) concentrations are also lowered, which decreases both the 

reaction rates and the accuracy with which they may be measured.

In our apparatus, the use of a microwave discharge to produce 

singlet molecular oxygen and mercury vapour to remove oxygen atoms is 

favoured. A detailed description is given in Chapter 2.

(b) Laser Excitation

This technique is particularly suitable for the production of 

either 02 (a^Ag) or Ojfb^E ) in the absence of the both each other 

and atomic oxygen. The narrow band width of a laser source allows 

Particular vibrational levels of an electronically excited molecule 

to be selectively populated. The problem of overcoming the small 

absorption coefficient for direct excitation of molecular oxygen, due 

to the forbidden nature of the transitions, is solved by using the 

high intensities of radiation produced by laser action.

Ojfa^Ag), in the v=1 vibrational state, has been produced 

using neodymium glass and neodymium YAG lasers [31,32]. Tunable dye
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lasers have been used [33,34] to produce 02(b1I+g ) in both the v=0 

and v=1 vibrational states. More recently Kohse-Hoinghaus and Stuhl 

have used the photolysis of 02(X3 2fg ), by a vacuum ultraviolet 

hydrogen laser, to generate 02(b1£+g ), indirectly, via energy 

transfer from 0(^D).

(c) Photolysis of Ozone

Ozone photolysis at wavelengths below 300nm [35] produces only 

two products, 02 (a1Ag) and 0(1d ).

03 + hv (X < 300nm) — > 0 ( 1D) + 02 < a 1Ag )

( 1.21)

The quantum efficiency of this reaction is approximately unity.

Energy transfer from the 0(1D) fragment produces 02 (b1I+g) if 
3 —02(X g) Present as an acceptor. This method also suffers from 

the same problems, of oxygen atom impurity, which arise in the 

electrical discharge technique.

(d) Photosensitization

Photosensitization is well documented as a method of producing 

singlet molecular oxygen in solution [36] but has not received much 

attention in the gas phase. A triplet sensitizer is used as a vehicle 

for the transfer of energy to 02(X3 Z~g ) and thus produce singlet 

molecular oxygen.

Findlay and Snelling [37] have used triplet benzene to produce 

°2 â ^g)» in the gas phase, while other workers have had success 

using triplet sulphur dioxide to produce 02(a1Ag) [38] and 02(b1E+g)

[39] .

Reactions of this type are thought to be responsible for the

c
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presence of singlet molecular oxygen in polluted atmospheres.

(e) Chemical Reaction

The use of chemical reactions as a source of singlet molecular 

oxygen for gas phase studies has been somewhat neglected. However a 

practical 02(a1Ag) generator has been built [6] using a basic 

solution of chlorine and hydrogen peroxide, which was described in 

section 1.1 .

Murray and Kaplan [40] have devised a method for preparing a 

solid ozone - triphenylphosphite complex in dichloromethane at -70°C.

(C6H50)3p + °3 ----> (C6H50)3P(03)

( 1 . 2 2 )

When heated to -35°C this complex decomposes to produce C>2 (a ̂ A^).

(C6H50)3p (03> --- > <C6H50)3P=0 + 02 (a1A )

(1.23)

1.4.4 Detection of Singlet Molecular Oxygen

There are several methods of detecting singlet molecular 

oxygen in the gaseous phase. For the most part these methods are 

physical rather than chemical, though a combination of the two can 

often prove useful. A detailed review of the possible methods of 

detection has been prepared by Wayne [28].The account given here of 

the detection of singlet molecular oxygen deals only with the methods 

used in this work.

Emission spectroscopy is used to monitor both 02(a1Ag) and 

°2 (b1E+g). Single molecule bands occur at 1270nm (eguation 1.13) and

Ni
l



762nm (equation 1.14). Since the use of a microwave discharge to 

produce singlet molecular oxygen results in a high concentration of

02(a1Ag), the 'dimol' emission band at 634nm (equation 1.15) is 

sufficiently intense to be observed using a visible/near infrared 

photomultiplier. The same photomultiplier may then be used to observe 

both excited species simply by changing the filter.

A chemical method was used to calibrate a particular 

photomultiplier - filter combination with respect to the 02(a1Ag) 

concentration. The reaction of 2,3 dimethylbut-2-ene with 02(a1Ag) is 

rapid and involves no side reactions with 0,(X3 I~ ) and 0,(b1E+ ).

( ch3 ) 2C=C< CHq ) 2 + C t ^ a ^ ) ----> H2C=C(CH,)-C(CH,),-OOH

(1.24)

This reaction was used as a titration reaction, giving an end point 

when the 634nm emission is extinguished. A full description is given 

in Chapter 2.



1.5 Aims Of This Study

The aim of this work was to study further the temperature 

dependence of the deactivation of both 02(a1Ag) and 02(b1 IT4- ).

It was hoped that the study of pairs of quenchers, in this 

case HC1 and HBr as well as H2 and , would yield more useful 

information than was obtained from previous studies [13,44] in which 

the quenchers varied considerably in nature. A further reason for the 

temperature dependence study of the quenching of singlet molecular 

oxygen by these additives was that some theoretical work had already 

been carried out on the quenching of 02(b1ifg), by HBr and H2, by 

Ogryzlo and co-workers [41,42]. Although temperature dependence 

determinations were carried out, by Ogryzlo and co-workers and also 

Kohse-Hoinghaus and Stuhl [43] on HBr, HC1, H2, and D2, they were 

over a comparatively short temperature range of about 200 degrees 

Kelvin around room temperature. Clearly, the greater the temperature 

range over which such reactions are studied, the better is the test 

of the proposed theories. A wide temperature range also allows one to 

be much more certain of the form of the observed temperature 

dependence.

Very little work has actually been carried out on the 

temperature dependence of °2(a1Ag). Previous work in this laboratory 

indicated that the temperature dependence of the quenching of 

°2(a1Ag) was Arrhenius in nature. It was also an aim of this work to 

expand these studies to include the quenching gases already 

mentioned.

This work may also be seen as part of the continual 

improvement and adaption of the discharge flow - shock tube for the 

study of the chemical kinetics of transient species in the gaseous 

phase. Indeed a brief study of the nitrogen atom recombination 

reac^ on has also been carried out, which is part of a preliminary
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examination of the reactions leading to the production of oxygen 

atoms via the reaction of nitric oxide with atomic nitrogen.
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EXPERIMENTAL

2.1 Introduction

This chapter serves to describe the discharge flow - shock 

tube apparatus. It is first described as a whole and then each of its 

component parts (flow tube, shock tube, gas handling and detection 

systems) is considered individually.

The test and calibration procedures carried out on the 

instrumentation are also described. An outline is given of the 

experimental routine, developed so that each measurement is performed 

under as near identical conditions as possible.

Finally, there is an appraisal of the safety aspect of 

operating the discharge flow - shock tube and handling the chemicals

involved,



2.2 Discharge Flow - Shock Tube Apparatus

The apparatus (Figure 2.1) includes a conventional microwave 

discharge flow tube, which may be used to make kinetic measurements 

at ambient temperatures. The flow tube has been constructed to allow 

shock waves to be propagated along its length to raise the 

temperature of the flowing gas instantaneously. The shock wave is 

produced by increasing the pressure of the gas in the driver section 

until it is high enough to burst the diaphragm. The shock heated test 

gas, previously moving at approximately one metre per second towards 

the driver section, is pushed back along its path by the contact 

surface, travelling past the photomultiplier detectors up to three 

orders of magnitude faster.

The advantage that this has over a conventional shock tube is 

that transient species may be produced in the flowing gas by a method 

which is independent of the shock heating. Thus, transient species 

can be studied at temperatures below those required for their 

production by purely thermal means.

The combination of a shock tube with a flash photolysis 

technique has been investigated by Burns and Hornig [62] and also by 

Bradley and Tuffnell [63], in an attempt to provide a means of 

generating transient species prior to shock heating. Such an 

apparatus requires the shock to be produced very rapidly after the 

transient species is generated? even then the onset of the decay may 

be missed. Another disadvantage is that there is little or no time to 

establish the pre-shock conditions and compare them with the 

post-shock conditions in the same experiment, as a result pre-shock 

conditions may have to be inferred from separate room temperature 

measurements.

The discharge flow-shock tube has advantages over the flash 

photolysis-shock tube approach, since the transient species produced
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in the flowing gas have a static concentration gradient.

Consequently, time may be taken to determine this gradient accurately 

before the high temperature measurements are made.

A view of the apparatus is presented in Plates 2.1 and 2.2 .

2.2.1 Discharge Flow Apparatus

Continuous flow tubes were among the first techniques devised 

[64] to follow fast reactions. Although originally designed to study 

reactions in the liquid phase, they were later utilized in gas phase 

studies as well. The principle is quite simple: one measures the 

concentration of reactants as a function of distance along a tube 

from the point of mixing.

With a continuous flow system, the distance is related to time 

by the linear flow velocity. One must assume that mixing reaches 

homogeneity very rapidly. Such tubes have been very successful in 

measuring the rate constants for a variety of gaseous processes at 

room temperature and other temperatures over a limited range using 

thermostatted jackets.

Figure 2.2 shows the flow tube component of the apparatus, 

together with the microwave cavity and gas handling system.

Singlet molecular oxygen is produced by passing purified 

oxygen over a mercury reservoir and then through a microwave 

discharge. The discharge is produced in a quartz tube by a 2450 MHz 

microwave generator (EMS Microtron 200), with a maximum power output 

of 200w. The microwave cavity (EMS 214L) is a 1/4 wave radial type, 

cooled by a jet of compressed air, which may be tuned to minimize the 

reflected power. Under normal operating conditions (100w generator 

output) the reflected power is about 1-2% when the cavity is well 

tuned. The cavity is shielded by a Faraday Cage and is located 1.3



Plate 2.1

The discharge flow-shock tube, looking towards the driver section. 

The flow tube is covered with black cloth and is located behind the 

test gas handling system.
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Plate 2.1

The discharge flow-shock tube, looking towards the driver section. 

The flow tube is covered with black cloth and is located behind the 

test gas handling system.
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Plate 2.2

The discharge flow-shock tube, looking towards the discharge. The 

console on the right houses the light screen detectors.
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metres upstream of the main flow tube.

After passing through the discharge the mercury laden oxygen 

contains 02(a1 ^ ) , 02(b1 ig), and 02(X^ £" ) together with Hg and 0 

atoms. The atomic oxygen is removed by reaction with the atomic 

mercury. A film of mercuric oxide is deposited in the 0.8 metres of 

tube following the discharge. Mercuric oxide is also active in 

removing oxygen atoms [29], producing 02(a1 ^) and regenerating 

atomic mercury, as described in section 1.4.3 (a) . The absence of 

atomic oxygen at the 02~test gas mixing point may be demonstrated by 

adding nitric oxide as a test gas. When this was done no air 

afterglow was detected, indicating the absence of oxygen atoms.

The microwave cavity and mercury reservoir are protected from 

the shock wave and the piston of high pressure gas by a PTFE cut-off 

valve, which is closed by the arrival of the shock wave. This 

prevents fragments of diaphragm material from lodging in the cavity 

and also stops the mercury being blown back into the gas handling 

system.

The main flow tube consists of a 5 m length of pyrex tubing 

(Corning Ltd.) with an i.d. of 50.8 mm. The tube is pumped by a large 

rotary pump (Edwards HISC 3000). The flow rate and the pressure in 

this tube can be controlled by a PTFE screw valve located between 

the flow tube and the pump.

The pressure in the flow tube is measured using a 

diethylphthalate manometer separately pumped by a smaller rotary pump 

(Edwards Speedivac ED35). The density of the diethylphthalate was
■3 _ *3measured as 1.1176 x 10J kg m , giving a factor for the conversion 

of mm DEP (diethylphthalate) to torr of 0.08251.

6



2.2.2 Shock Tube Apparatus

In its simplest form the shock tube [65] consists of a long 

straight tube, of uniform cross-section, divided into two sections by 

a thin diaphragm. Each section is filled with a gas (not necessarily 

the same gas) at different pressures. The diaphragm is rapidly 

removed either by pricking it with a needle or by increasing the 

pressure on one side until it bursts.

As the diaphragm bursts, the driver gas expands into the test 

section (low pressure) in the manner of a piston accelerating to a 

constant velocity. The resulting pressure step generates a shock wave 

which travels in front of the expanding gas (contact surface), along 

the axis of the tube, parallel to the walls. Meanwhile a rarefaction 

wave is propagated in the opposite direction at the velocity of 

sound. The shock wave heats the test gas, on which observations are 

made before the arrival of the contact surface. The time available 

for such observations can be of the order of microseconds or 

milliseconds depending on the length of the tube and the difference 

in velocity between the shock wave and the contact surface [66].

Figure 2.3 is a diagram of the shock tube component of the 

apparatus used in this work. The driver section is 1.3 m long , with 

an i.d. of 50.8 mm, and is constructed from stainless steel. This is 

separated from the 5 m long, 50.8 mm i.d., pyrex driven section (flow 

tube) by an aluminium diaphragm.

A wide range of shock speeds may be obtained, from 0.7 km s 1 

to 1.6 km s"1 in this tube. This is achieved by:

(a) changing the thickness of the diaphragm (0.051 or 0.102 mm) which 

results in bursting pressures of 2.3 and 6.5 atmospheres.
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(b) varying the composition of the driver gas (Ar/N2/He)

An argon driver gas with a bursting pressure of 2.3 

atmospheres, produces a shock wave with a speed of 0.7 km s- .̂ The 

upper limit, 1.6 km s \  is produced using a helium driver gas at a 

bursting pressure of 6.5 atmospheres.

The observation station at which the photomultipliers are 

located is 4.4 m from the diaphragm, to maximize the time elapsed 

between the passing of the shock wave and the arrival of the contact 

surface, without interference from the reflected shock wave produced 

when the shock wave reaches the end of the tube. The speed of the 

shock wave is measured using the laser light screen arrangement 

described in section 2.3 .

When not in use both driver and flow sections are left under 

vacuum to avoid unnecessary adsorption of water vapour by the system. 

The system is pumped down through liquid nitrogen traps for one hour, 

prior to experiments being carried out, in an attempt to remove as 

much water vapour as routinely possible.

2.2,3 Gas Handling System

The system for handling the driver gases is shown in figure 

2.3. The gases are used as supplied (Table 2.1) without further 

purification. The gases are taken from the supply cylinders by 10 mm 

nylon tubing to a manifold which also contains outlets to the 

atmosphere, a Budenberg dial gauge, and a small rotary pump (Edwards 

Speedivac ED 35).

Mixing of the driver gases may be achieved by introducing one 

gas into the driver section at a chosen pressure and then increasing 

the pressure of the driver section to the diaphragm bursting point 

using the second gas.

The handling of the test gas requires a more complicated
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Table 2.1. Gases Used

Gas Usage Supplier % Purity

Argon Driver B.O.C. 99.996

Helium Driver Gas & Equipment 99.995

Nitrogen Driver & Test B.O.C. 99.99

Oxygen Test B.O.C. 99.80

Hydrogen Test B.O.C. 99.996

Hydrogen Chloride Test B.O.C. 99.6

Hydrogen Bromide Test B.O.C. 99.8

Deuterium Test B.O.C. 99.70

Nitric Oxide Test B.O.C. 99.2
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system because of the need for further purification and accurate flow 

control, together with the handling requirements of both 

non-corrosive and corrosive gases

Figure 2.2 shows the framework of the oxygen gas handling 

system from the supply cylinder to the flow tube. The handling of the 

test gas is carried out in a similar system, up to the point where 

the oxygen enters the mercury reservoir. Each unit in each system can 

be isolated from its neighbours by a Rotaflow tap (Corning Quickfit).

Oxygen and the non-corrosive test gases are passed from their 

cylinders through a pressure regulator (Edwards VPC1) which maintains 

a pressure of 740 torr in the first gas reservoir. Corrosive gases 

were found to attack the pressure regulator and thus required special 

handling through a unit (Figure 2.4) which bypassed the regulator. 

This unit consisted of a Teflon Sampling Bag (Alltech Associates 

41302) with an inlet/outlet port connected to the supply cylinder and 

the gas reservoir by PTFE tubing. The inflation of the bag by the 

test gas was maintained between 3/4 and 1/2 full, to ensure a steady 

flow of gas to the reservoir at atmospheric pressure. The reservoir 

(1 dm'*) is present to help steady the flow of gas to the flow meter.

In the first experiments, when HBr and HC1 were studied, both 

flow meters were of the capillary type (Figure 2.5(a)). These flow 

meters were made in the laboratory and required calibration. The 

calibration was performed by flowing pure oxygen into a previously 

evacuated closed system, of known volume (15.3 dm^) [46], at a 

constant flow rate. The length of time for this operation was chosen 

so that the pressure rise in the closed system did not have an 

observable effect upon the flow rate. By measuring the final pressure 

of the closed system and knowing the volume and flow time provided 

that there is no change in temperature during the operation, the flow 

rate is calculated from:
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FLOW RATE = V ^ / P - j t

( 2 . 1 )

where V.,=volume of the closed system, P^pressure of the closed 

system, P2=pressure of the gas in the gas handling system, and t=flow 

time. This procedure was carried out for several different flow rates 

measured as mm of diethylphthalate on the meter. The calibration of 

the flow meters may then be corrected for the test gas by applying 

Poiseuille's Law [45].

%/%> = V T n
( 2 . 2 )

where ^  and ^  are the flow rates of the test gas and oxygen 

respectively, and iĵ and are the viscosities at the operating 

temperature (295K). The calibration graphs for the flow meters 

calibrated by the author are given in Figures 2.7 and 2.8

The disadvantage of capillary flow meter method is that daily 

fluctuations in pressure and temperature have an adverse effect upon 

the accuracy of the calibration. Corrections must be made constantly, 

particularly when the Teflon bag regulating unit is in use.

When H2 and D2 were studied, thermal mass flow meters (Brooks 

5810) were introduced to replace the capillary models. These flow 

sensors operate on the basis of a temperature difference rather than 

a pressure difference (Figure 2.5(b)). A heating coil uniformly heats 

the gas flow stream. As a result, both upstream and downstream sensor 

coils are heated by the flowing gas. When there is no flow, a 

balanced bridge circuit is established to provide a zero output 

signal. As gas flows within the sensor, a temperature differential is 

created between the upstream and downstream sensors. This difference
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generates a D.C. current which is directly proportional to the 

temperature difference and hence the mass flow rate. The mass flow 

rate is displayed on a meter in terms of ml per minute at s.t.p.

The precaution was taken of comparing the calibration of the 

mass flow meters with that of the capillary flow meters by installing 

a mass flow meter in series with a capillary flow meter. In this way 

their accuracies could be compared directly. Figure 2.9 shows the 

results of one of these tests.

After travelling through the flow sensor unit the gas is dried 

by passing through a column (60cm x 1.0cm i.d.) packed with type 4A 

molecular sieve. The columns are surrounded by a heating coil which 

facilitates the in situ regeneration of the molecular sieve. This is 

done by purging the system with nitrogen gas while the column is at a 

temperature of 453K. The exhaust gas exits before the needle valve 

which is closed to protect the remainder of the system from the wet 

gas.

The test gas then reaches the stainless steel fine control 

needle valve (Edwards Speedivac LB1B). This valve controls the flow 

of gas into the main tube. Steady flows from 0.10 cm3 s  ̂ to 

50.0 cm3 s-1 are maintained with this arrangement.

Before entering the flow tube the gas passes through the final 

purification unit which is a trap, filled with type 4A molecular 

sieve , maintained at 77K by a Dewar of liquid nitrogen, which 

removes any volatile impurities that have avoided absorption by the 

molecular sieve in the room temperature column.

Table 2.1 lists the manufacturers and initial purity of the 

gases used.
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Comparison of capil lary and thermal mass flow meters

T h e r m a l  m a s s  f l o w  m e t e r  r e a d i n g  / c m 3 s * 1

F I G U R E  2 . 9  D I R E C T  C A L I B R A T I O N  C H E C K  O F  T H E R M A L  M A S S  

W I T H  C A P I L L A R Y  F L O W  M E T E R S

Ai
is

aa
Ai

Nn
 3

~u
3C

5¿



4 6

2.3 Measurement T ech n iqu es and In s t ru m en ta tion

Emissions at 634nm and 762nm (Equations 1.14 and 1.15) were 

measured with two photomultipliers (EMI 9658B) fitted with 

interference filters (Baltzer). The photomultipliers are in housings 

which are electrically and magnetically shielded, and are operated at 

the manufacturers recommended voltage of 1.2 kV, using a Brandenburg 

472 E.H.T. supply.

The geometry of the photomultiplier/filter/slit arrangement is 

considered in section 2.3.1 . The spectral response of the 

photomultipliers, taken from the manufacturers data, is shown in 

Figure 2.6 . A Pye-Unicam spectrometer (SP8-100) was used to record 

the transmission characteristics of the filters (Figure 2.10 (a) and 

(b) >.

The two photomultiplier units, comprising photomultiplier, 

adjustable slit mechanism and filter, are located 4.4 m from the 

diaphragm , perpendicular to the flow tube. One photomultiplier unit 

remains stationary at the observation station as a reference, while 

the other may be moved along a 2.5 m track parallel to the flow tube. 

By exchanging the filters one can measure the gradient of either 

emission with a reference of the same wavelength or monitor both 

emissions simultaneously.

The system for measurement and recording data is shown in 

Figure 2.1 and presented in more detail as a block diagram (Figure 

2 . 11 ) .

The output from each photomultiplier is copied by a voltage 

follower and fed to either a digital voltmeter (Solartron 7040) or to 

a transient recorder (Datalab 905) for rapid data collection during 

the post-shock period.

The transient recorders are triggered, by a signal from the 

laser light screens, upon the arrival of the shock front. The output
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of the transient recorders is displayed on a pair of oscilloscopes 

(Hewlett Packard Series 140), which allows the trace to be 

photographed and retained for future reference.

Data from the transient recorder is transferred to the display 

memory of the graphics computer terminal (Hewlett Packard 2647A) and 

is then stored initially on magnetic tape. At a later stage the data 

are scaled and converted using the HP2647A in its computer mode, 

before the data are transferred to the University's main computer 

(GEC 4082).

The shock speed is determined by means of laser light screens 

which allow the passage of the shock front to be timed over a known 

distance. Two He/Ne lasers (Ferranti GP2, 1 mW and Rofin 7906,

1.5 mW) are used. The beam from the Rofin 7906 laser is split into 

two, using a half silvered mirror. The three laser beams cross the 

flow tube at an angle of 87° and pass to three silicon photovoltaic 

detectors (RS 303-674) through a system of mirrors. Each light screen
chas a path length of approximately 5 m.

Screen 1 is located on the diaphragm side of the observation
V

station and 2 and 3 are located 713 mm and 816 mm upstream of 1, on 

the opposite side of the observation station. The lasers, mirrors and 

detectors are mounted independently of the main apparatus so that 

vibration from the bursting of the diaphragm does not activate them 

prematurely.

The change in density at the shock front causes both 

reflection and refraction [46] of the incident laser beam which 

deflects it onto the detectors resulting in a sharp rise in output.

The risetime of the photovoltaic detectors and their voltage 

followers, used in the light screens, is about 0.5 is.

The pulse from light screen 1 starts the two timer-counters 

(Philips PM6671) and triggers the transient recorders. The timers are
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stopped by pulses from light screens 2 and 3. Thus two independent 

determinations of the shock speed are made. The difference between 

these two measurements is always less than 0.5%.

The attenuation of the shock front has previously been checked 

by Pedley [46], and the deceleration was found to be less than 1% per 

metre. The observations made in this work are in agreement with this.

The risetime of the photomultiplier unit was determined 

experimentally and found to be mainly dependent upon slit width. This 

is discussed in detail in the next section.

The measurement of emission intensity (photomultiplier output 

voltage), pressure and time constitutes the fundemental experimental 

data on which this work is based. Therefore, checks were made on the 

devices concerned with these measurements to maintain their accuracy.

The output from the transient recorders, oscilloscopes and 

digital voltmeters were checked periodically against the output of a 

signal generator (Marconi TF210) to ensure that all gave the same 

outputs for the same input signal.

The time base of the oscilloscopes and the transient recorder 

was also checked using the crystal oscillator in the timer-counter.

2.3.1 Risetime of the Detection Equipment

The overall risetime may be considered as two components: the 

risetime of the electrical system and the risetime of the optical 

system. These two components are combined, to give the overall 

risetime, as the square root of the sum of their squares.

(a) Electrical Risetime

The risetime was measured by irradiating the photomultiplier 

unit with a light emitting diode supplied with a square wave signal.

The risetime of the signal was in the 0.1 ys region. The response of
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the photomultiplier and transient recorder was displayed on an 

oscilloscope. A plot of In RISE versus time was made and the first 

order rate constant estimated. The risetime, T, is the reciprocal of 

this rate constant.

x= 2.7 *.3 M3

(b) Optical Risetime

During this work the single slit arrangement used by previous 

workers was exchanged for a double slit mechanism, designed 

specifically for the flow tube and constructed by the University's 

main workshop. Risetimes for both mechanisms are discussed here.

The risetime for the optical system is the time taken for the 

shock front to pass through the volume viewed by the photomultiplier. 

From a knowledge of the geometry of the optical system this can be 

calculated for a variety of shock speeds. The optical paths were 

drawn out to actual scale (Figures 2.12 and 2.13) and the optical 

windows established for various slit widths.

A 2.0 mm slit was used during (^(b^ ig) emission monitoring 

(762nm) and a 5.0 mm slit was used for the less intense 'dimol' 

emission (634nm). The flow tube is made of borosilicate glass (QVF 

7740) which has a refractive index of 1.474. The wall thickness is 

3.85 mm, hence the angle of refraction may be calculated from the 

angle of incidence and the light path mapped. The effect of the tube 

wall is to slightly reduce the size of the optical window.

Plots of percentage area swept versus time were made for each 

slit mechanism for the appropriate slit widths and shock speeds. The 

time taken for the shock front to sweep 80% of the total area was 

considered to be the optical risetime. The first and last 10% of the 

area was neglected because of the sigmoidal nature of the curve. The
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5 4

contribution from the off-axis plane was assumed to be insignificant. 

Tables 2.2 and 2.3 compare the risetimes of the two optical

These results show that the optical component of the system 

dominates the overall risetime, being responsible for over 90% of its 

value, in all cases. By using the double slit mechanism the risetime 

of the detection system is reduced by a factor of two.

These calculate risetimes may be used as integration times 

when the data is analysed reducing by one the number of parameters 

which are evaluated by iteration. A comparison of these 

calculated values with experimentally obtained values from 634nm data 

gave agreement within 1.0 ys.

2.3.2 Photomultiplier Calibration

A photomultiplier unit was calibrated to measure the 

concentration of C>2(a^Ag), via the 634nm emission, under normal 

operating conditions.

The concentration of 02(a^Ag) was established using a 

titration reaction. The titrant chosen was 2 ,3— dimethylbut-2-ene 

(TME) which reacts with 02(a1Ag) to produce 2,3- 

dimethy1-3-hydroperoxybut-1-ene.

The stoichiometry of the of the reaction is 1:1 and it proceeds to 

give 100% conversion [50,51,52]. TME does not react with either

j

S
/

C =  C
/
\

CH

CH
+ 02(a1Ag)

02(X^E“g) or 02(b1 E+g), nor does it quench 02(a1Ag) [50,51]

TME is a liquid with an appreciable vapour pressure at ambient
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Risetimes for 762 nm Emission Monitoring
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temperatures. The vapour pressure was measured using the apparatus 

shown in Figure 2.14 . The liquid sample was frozen using a carbon 

dioxide/acetone bath and the apparatus evacuated. The system was then 

closed and the sample allowed to come to ambient temperature (18°C). 

The pressure of the system was then recorded. It was noted that there

was always some liquid TME present*

This procedure was repeated several times/ until a consistent 

pressure was obtained. The vapour pressure was measured as 89.5 mmHg 

at 18°C•

Thermal mass flow meters were used to measure the flow rate of 

TME. These flow meters need no calibration to operate at the reduced 

vapour pressure of TME. A scaling factor was necessary since these 

instruments rely on heat capacities and are calibrated to give 

readings corrected to s.t.p. for air. The scaling factor is given by:

SF = Cp(Air)/Cp(TME) = 0.228

The heat capacity of TME is 127.41 J/mol °C, and that for air is 

29.05 J/mol °C [53].

Before carrying out the titration, an estimate was made of the 

reaction time under normal operating conditions. The titration 

kinetics are second order. At the end point the (^(a^ and TME 

concentrations are identical, hence the half-life of the reaction is 

given by:

fc1/2 “ 1y/kTMEt02(a
(2.4)

c a i 3 **1The rate constant for the reaction is 7.7 x 10 mol dm s 

[50,51,52] and the concentration of 02(a1 was expected to be about
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2 x 10-5 mol dm“3 (5% of the total 02) under the normal operating 

conditions of 6 torr pressure and 100W discharge power. Thus a 

half-life of about 65 ms was expected. Therefore, at a linear flow 

velocity of 1.0 m s”1 , the reaction should reach completion (99%) 

within 0.5 m (0.5 s) of the mixing point. The titration is therefore 

sufficiently rapid to be monitored at the observation station which 

is 1.0 m downstream of the mixing point. There would be very little 

deactivation of C>2(a1Ag) by 02(X3 2fg) under these conditions 

(half-life is approximately 3 s).

The end point of the titration was taken as the point where 

the 634nm emission is extinguished. Because the titration was carried 

out in a flowing gas it could be reversed, so there was little risk 

of over-shooting the end point.

The concentration of 02(a^Ag) was varied by altering the flow 

rate, pressure and discharge power. The flow rates of TME and O2, 

pressure , temperature and photomultiplier output (prior to 

titration) were recorded for various 02(a^Ag) concentrations. The 

concentration of 02(a^Ag) may be calculated from the equation:

Cone. = 1000P x (Flow TME) / 760FT x (Total Flow) units: mol dm 3

(2.5)

where the pressure, P, is in torr and the temperature, T, is in 

Kelvin. The units of the concentration are mol dm 3.

Since the photomultiplier was set up to monitor the ’dimol' 

emission at 634nm, the relationship between photomultiplier output 

and the square of the 02(a^Ag) concentration should be linear. A plot 

of photomultiplier output versus [02(a1Ag)]3 was made (Figure 2.15) 

and in fact found to be linear. This plot may be used to determine 

the 02(a1Ag) concentration from the photomultiplier output directly.

5 9

a



6 0

P h o t o m u l t i p l i e r  o u t p u t  v e r s u s  s q u a r e  o f  

0 2 ( a 1A g )  c o n c e n t r a t i o n

F I G U R E  2 . 1 5  P H O T O M U L T I P L Ì E R  C A L I B R A T I O N

.
H
v
u
a
n
 x

ii
sH

3A
it

jn



61

The percentage error in the 02(a1 concentration, determined in 

this manner, is 1.9% according to the least squares analysis.

A spin-off of this calibration was the investigation of the 

optimum flow rates, pressure and discharge power combinations for the 

production of 02(a1 t^) in this apparatus. It was found that the 

optimum conditions for a flow rate of 28 ml s'1 were, a pressure of 

5_7 torr and a discharge power of 120W, which are very close to those 

already in use, and investigated by Pedley [46].

A back extrapolation, taking into account deactivation by 

0,(X3 f ) and the wall, was made to calculate the percentage 02(a1 

in the oxygen flow immediately after the discharge cavity under 

optimum conditions. It was found to be 4%.
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7 .4 Routine Experimental Procedure

The following routine is carried out for a typical experiment, 

any deviations from this procedure being discussed in the appropriate 

chapter.

An aluminium diaphragm is positioned between the driver and 

flow tube sections. The liquid nitrogen traps protecting the main 

pump and in the purification system are filled. Both sections of the 

tube are evacuated, by continuous pumping, for 30 minutes.

The oxygen flow is switched on and adjusted to the required 

flow rate. The flow tube pressure is set to about 6 torr using the 

PTFE screw valve and measured accurately using a diethylphthalate 

manometer. The discharge is ignited using a Tesla coil and the 

compressed air cooling jet turned on. The output of the discharge is 

set to 100W and the reflected power checked. If necessary the cavity 

is tuned to reduce the reflected power to less than 2%. The 

photomultipliers' E.H.T. supply and the 10 volt light screen detector 

supply are switched on. The system is then left to stabilize for 

about 30 minutes, during which time the photomultiplier outputs are
v

observed to ensure that they are stable before the next stage is 

begun.

The decay of the emission down the tube, at either wavelength 

, may be established manually using the travelling photomultiplier.

The quenching gas is then added to the flow at a position about 0.2 m 

from the main flow tube. The flow of this gas is adjusted to the 

required rate and the pressure in the flow tube recorded again. Once 

the system has stabilized, the decay of the emission down the tube is 

measured again.

Having completed the room temperature measurements, the 

photomultipliers are placed opposite each other at the observation 

station. The lasers are switched on and the alignment of the light
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screen detectors adjusted. The photomultiplier outputs (pre-shock 

glows) are recorded and their output destinations changed from the 

digital voltmeters to the transient recorders. The sweep speed, 

sensitivity and time delay of the recorders is set to cover the 

expected shock speed. The transient recorders and the time interval 

meters are primed and final checks are made on the flow rates and 

pressure are made before the manometer and flow sensors are isolated.

The vacuum pump connected to the driver section is isolated 

and the driver gas introduced at a steady rate. When the pressure of 

the driver section reaches the diaphragm bursting pressure a shock 

wave is propagated into the flowing gas. The driver gas inlet and the 

screw valve to the main pump are closed. The driver and the flow tube 

sections are then opened to the atmosphere and separated to replace 

the diaphragm. The system is immediately evacuated and the entire 

procedure repeated for the next run*

The times for the shock to pass between light screens 1 and 2 

and also 1 and 3 are recorded as well as the dark current (base-line) 

reading of the photomultipliers. The data recorded by the transient 

recorders are transferred to the HP2647A computer and onto magnetic 

tape for storage and later analysis. These data are also displayed on 

an oscilloscope as an emission intensity vs time trace, which may be 

photographed for future reference.

The flow tube is cleaned at regular intervals using cotton 

wool, moistened with diethylether, followed by pumping for a full 

day. At such times the mercury reservoir is also changed to ensure a 

clean surface.

The flow tube and gas handling apparatus are checked daily for 

leaks by leaving them evacuated, but not pumping, overnight.

gJE£LE UNIVERSITY LIBRA*»'
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2.5 Safety Considerations
Potential hazards involved in operating the apparatus fall 

into five groups: chemical, low pressure, high pressure, electrical, 

and radiation.

(a) Chemical

The corrosive gases wsre handled in closed systems where 

possible and removed by liquid nitrogen traps before reaching the 

pumps. They were later disposed of by means of a water pump. The 

Teflon bag pressure regulator presented the greatest potential for 

leakage and was therefore located in a fumehood.

The possibility of explosion when hydrogen (or deuterium) and 

oxygen mixtures were shock heated in the presence of the microwave 

discharge was considered. There was little information available in 

the literature dealing with compositions in the range in which we 

were working. Experimentally, burning was observed, increasing as the 

mole fraction of hydrogen increased, and it was decided not to go 

above 4%. No trouble was experienced with mole fractions below this.

(b) Low Pressure

The risk of flying glass, should there be an implosion in the 

low pressure section, was reduced by wrapping the the glassware with 

tape. The manometers and capillary flow meters were provided with an 

overflow volume to prevent spillage should these units be subject to 

rapid pressurization. Care was taken to ensure that one section at a 

time experienced any pressure change so that an accident would not 

have a snowball effect.

(c) High Pressure

The presence of the diaphragm prevented the pressure in the
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driver section from exceeding 6.5 atmospheres (660 KPa). Thus there 

was never any risk of structural damage to this section or the flow 

tube section. The bursting of the diaphragm was carried out at one 

end of the apparatus, where the operator was not adjacent to any 

glassware. The gas cylinder heads were checked for leaks to prevent 

accidental pressurization of the pre-regulator gas handling system , 

particularly when the teflon bag regulator was in use.

(d) Electrical
High voltage, low impedance, sources such as E.H.T. supplies 

were earthed for safety and also to reduce mains pick-up and stray 

interference.

(e) Radiation

Microwave leakage was minimized by surrounding the discharge 

cavity with a Faraday cage. The cavity was located away from the 

normal operating area to avoid continual contact on the part of the 

operator.
'j

Viewing the laser beams (class 3A) directly was avoided. When 

close contact was necessary in setting up or adjusting the light 

screens only one beam was allowed to cross the room at any time«

Crossing in front of the beams was unnecessary since there were 

on/off switches fitted to both sides of the apparatus.
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SHOCK WAVE THEORY

3.1 Introduction

This chapter begins with a qualitative description of the 

formation of a shock wave and then goes on to discuss the nature of 

shock waves in gases and their associated phenomena. The basic 

relationships describing the conditions across the shock front are 

given and their derivation outlined. It is not intended to present a 

complete derivation in this thesis, as extensive treatments can be 

found in several texts [54,55,56], The chapter concludes with the 

corrections necessary to allow for the occurrence of vibrational 

relaxation in the shocked gas and a comparison of particle and 

laboratory time under experimental conditions.

r UNIVERSITY LIBRA*»'.
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3.2 Formation of Shock Waves

A shock wave may be defined as a moving pressure disturbance 

in which the velocity and pressure amplitude »rtf very much larger than 

that in an acoustic wave.

The concept of a shock wave is best understood by considering 

the accelerating piston model of Becker [54]. In this analogy, the 

driver gas is replaced by a piston accelerating to a constant 

velocity in the low pressure gas. The motion of the piston is divided 

into a large number of small successive movements. Each movement 

produces a pressure pulse which propagates into the test gas at the 

speed of sound and leaves the gas with a resultant motion in the same 

direction. The small increase in pressure will result in adiabatic 

heating of the gas. The second pulse, therefore, will travel at a 

velocity which is the result of the increased speed of sound in the 

heated gas and the velocity imparted to that gas by the previous 

pulse. Since each successive pulse will move with a velocity greater 

than the last, they will catch each other up. The pulses cannot 

actually pass one another and so they coalesce to form a single 

discontinuity moving at a velocity, relative to a stationary 

observer, above the speed of sound in the test gas.

In the shock tube, this discontinuity is known as the shock 

front. The depth of the shock front is of the order of a few mean 

free path lengths of the test gas. This supports the common 

theoretical approximation that the driver gas is accelerated, 

instantaneously, to a constant velocity and, as a consequence, so is

the shock front
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3.3 Wave Structure in a Shock Tube

A simple shock tube assembly is shown in Figure 3.1(a). When 

the diaphragm is removed, by bursting or puncturing, a shock wave 

travels into the driven section and a rarefaction wave travels into 

the driver section. Behind the shock front is the leading edge of the 

expanding driver gas (contact surface), moving with a constant 

velocity away from the tail of the rarefaction wave. The distribution 

of pressure along the tube, before and after the diaphragm is 

removed, is shown in Figure 3.1(b) and (c).

When the shock wave reaches the end of the tube, it undergoes 

a reflection but maintains the characteristics of a shock wave. The 

rarefaction wave is also reflected, from the end of the driver 

section, and maintains the characteristics of a rarefaction wave but 

has an increased velocity, since it is then travelling through a 

moving gas in the same direction as the flow. These processes are 

summarized in Figure 3.2, which is a time versus distance plot of the 

progress of the waves in a shock tube.

The position of the shock front is represented by line OA and 

that of the contact surface by OB. At point B the reflected shock 

wave, AB, meets the contact surface where it undergoes a reflection 

once again and has the effect of slowing down the progress of the 

contact surface. The head of the rarefaction wave is represented by 

OC and its tail by OD. The rarefaction wave is also reflected, at a 

velocity described by CE and DF.

Observations must be made on the shock heated gas after the 

passage of the shock wave but before the arrival of either the 

contact surface or the reflected shock wave. The maximum observation 

time may be obtained from the height of the boundary of region 2 

(OBA) above the lower limit (OA), at any point along the distance 

axis corresponding to the position of the observation station.
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The length of the driver section may become a determining 

factor in the observation time because the reflected rarefaction wave 

travels at a velocity greater than that of the shock wave. It will, 

therefore, eventually catch up and destroy the shock wave. Extending 

the driver section increases the time period before the rarefaction 

wave is reflected and thus gives the shock wave a longer head start.
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3.4 Shock Front Conditions

In order to derive the equations which define the conditions 

across the shock front, one must consider a control volume which 

encompasses the shock front (Figure 3.3). The upstream and downstream 

control planes, A and B, are set arbitrarily close to the shock 

front. The pressures, velocities and temperatures in the flowing gas 

change sufficiently slowly with distance, for heat conduction, 

viscous and all other internal irreversible processes to be 

neglected. These conditions are not isentropic, since there is an 

increase in entropy across the shock front associated with the 

randomization of the directed kinetic energy of the flow to thermal 

energy. However, the conservation laws of mass, momentum and energy 

still apply. Therefore the amount of these quantities entering the 

control volume at A is exactly balanced by the amount leaving at B.

In the equations which follow, the quantities subscripted 1 refer to 

the pre-shock conditions and those subscripted 2 to post-shock 

conditions.

Assuming that the gas behind the shock front is in a state of 

thermodynamic equilibrium, the conditions on either side of this 

discontinuity are described by the equations of mass, momentum and 

energy conservation.

The conservation of mass states that the products of the flow 

velocity, p, and density, p, of the gas entering and leaving the 

control volume are equal.

= P2P2 units: kg m’2 s’1

(3.1)

2The sum of the pressure, P, and the flow momentum, pp , 

entering and leaving the control volume must also be equal, as
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dictated by the law of conservation of momentum.

Pi + = P2 + P2^2^ units: N m-  ̂= kg m-  ̂ s“^

(3.2)

9The energy of the system has a flow, mp /2, and a thermal 

component, mh, thus the conservation of energy law states that:

m.|hi + mi Pi 2/2 2/2 units: J

(3.3)

where h is the specific enthalpy and m is the mass. Since mass is 

conserved. Equation (3.3) may be simplified to:

hi + 11^/2 = hj + units: J kg-1

(3.4)

The solution of these equations will allow the conditions in 

the post-shock regime to be determined from those in the pre-shock 

regime. There are, however, three equations and four unknowns so a 

solution can only be found if another relationship between two or 

more of these quantities can be obtained. The specific enthalpy of an 

ideal gas is given by:

h = 103Cp.T/M1 = 103RT[y/Y-1]/M' units:J kg"1

(3.5)

where Y=Cp/Cv, the ratio of the heat capacities at constant pressure 

and constant volume. The ideal gas equation may be written as:
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P = 10^pRT/M1 units: N m“^

(3.6)

where M' is the average molar mass.

Manipulating Equations (3.1) to (3.6), in such a way that all 

variables but pressure and density are eliminated, results in an 

expression for the post-shock to pre-shock pressure ratio of:

P j/ P ,  = ( P2- y 2 p1)/ (  p1- y 2 p2 )

(3.7)

where y2=( f-1)/(f+1). The ratios P2/P1 and Tj/T. may be derived in a 

similar manner.

p2/P'1 = [(P2/y2P 1)+U/[( i/ m2)+(p2/p 1)]

(3.8)

V T 1 “  (P2/ P i ) [ ( P 1+y2P2 ) / ( P2+u2P1) l

(3.9)

It is common practice to express these relationships in terms 

of the Mach Number of the shock, Mg.

Ms = V a
(3.10)

where Vg is the shock wave velocity and a is the velocity of sound in 

the test gas, which is related to the heat capacity by:
v
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a = (103yPT/M')1/2 units: m s“1

(3.11)

Substituting Mg into the relationships for pressure, density and 

temperature ratios results in the final forms of these equations.

P21 = P2/P1 = [2'tMs2-(y-1)]/( y+1)

(3.12)

S 21 = P2/Pi = m s2(Y-1)/[(Y-1)Ms2+2]

(3.13)

T21 = T2/T1 = f2'(Ms2-[(T-1)/(Y+1)]] x 

[(Y-1)Ms2+2]/[( Y+1)Ms2]

(3.14)

Therefore, by measuring the pre-shock pressure in the flow 

tube, the laboratory temperature and determining experimentally the 

shock wave velocity, the conditions P2, p2 and T2 behind the shock

front may be calculated.
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3.5 Experimental Control of High Temperatures

Control of the high temperature developed behind the shock 

front is achieved by controlling the velocity of the shock wave.

The velocity of the shock wave is controlled in the first 

instance by the pressure of the driver gas, P4, and that of the 

driven gas, P^. The heat capacity ratios of the driver gas, and

of the driven gas, yj, are also important, as is the ratio of the 

speed of sound in the two gases, a^/a4> A theoretical equation [56] 

describes the complex relationship between these factors, under 

perfect bursting conditions, where the diaphragm is removed cleanly 

and instantaneously.

P4/P1 = [2 >,Ms2-( Y,-1)]/( Y, + 1) x

[1-((MS-(1/MS))( V 1>al/< Y, + D a 4 )]-2 V <  \ - D

(3.15)

Knowing the constants Yj, a4 , and a1 for the different

gases used, a plot of log P4/P.j versus Mach Number may be produced. 

This has been done for helium, nitrogen and argon driver gases 

against an oxygen test gas. The results are shown on Figure 3.4, and 

may be used as a guide to the conditions required for particular 

shock strengths.

There are only two choices of diaphragm thickness (0.051 and 

0.102 mm) which burst at pressure differences of approximately 2.5 

and 6.5 atmospheres. The corresponding values of log P4/P1 for a flow 

tube pressure of 6 torr are also shown (Figure 3.4). If only pure 

gases are used, there are only three shock wave velocities attainable 

for each diaphragm. However, by mixing two gases, Mach Numbers which 

correspond to a gas with intermediate values of y and a can be 

obtained. The relationship between Mach Number and gas composition is
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not linear. Consequently, there is a certain amount of trial and 

error involved in obtaining the required Mach Number. With a little 

experience, however, shock waves with velocities within Mach 0.1 of 

the required value can be obtained on a regular basis.

The high temperature, T2, in the post-shock regime may be 

determined from the Mach Number of the shock wave (Equation 3.14). A 

plot has been made of T2 versus Mach Number for an oxygen test gas 

shock heated from 295K (Figure 3.5). The full line represents the 

temperature of oxygen under frozen conditions (ideal gas) and the 

broken line the temperature when vibrational relaxation takes place 

rapidly after shock heating.
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3.6 Corrections for Vibrational Relaxation

The shock parameters, P21, (^1 and T21, determined from

Equations (3.12), (3.13) and (3.14) are valid only for gases with 

heat capacities independent of temperature. This is adequate to 

describe monatomic gases and polyatomic gases where there is no 

energy transfer between translational and vibrational or rotational 

modes. However, modifications are required to account for the 

reduction in translational energy, and therefore temperature, when 

vibrational relaxation takes place rapidly after shock heating.

If the temperature of a shocked gas is in a region where some 

of the translational energy may be transferred rapidly into 

vibrational energy, the heat capacity will no longer be independent 

of temperature. As a result, the molar enthalpy has a temperature 

dependence described by the polynomial expression:

H = A + BT + CT2 + DT3 + ........

(3.16)

The coefficients in this equation are evaluated by polynomial curve 

fating of the equation to values of the enthalpy of the gas at 

various temperatures, obtained from J.A.N.A.F. tables [58].

When vibrational relaxation occurs, the shock equations cannot 

be solved explicitly and an iterative procedure is carried out to 

determine the conditions behind the shock front. Starting values for 

the iteration are obtained from Equations (3.12), (3.13) and (3.14), 

assuming the gas to be frozen, and then used along with Equation

(3.16) in the iterative process to obtain a new estimate for the 

enthalpy. This second estimate is used to make a second estimate of 

the values for pressure, density and temperature in the shock heated 

gas. The first iteration is now complete. The process is repeated.
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using the second set of estimates to produce a third set of estimates 

and then a fourth set and so on. The iteration is completed when 

consistent values for these parameters are obtained.

The shock parameters for both frozen and relaxed test gases 

and test gas mixtures are determined by computer. The program was 

adapted from Millikan [59]. A table of these shock parameters over 

the expected range of shock wave velocities (Mach numbers) was 

compiled for each test gas or mixture of test gases, so that they 

were available for quick reference when analysing the kinetic data.
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3.7 Comparison of Particle and Laboratory Time Scales

The shock heated gas is monitored using a photomultiplier unit 

mounted at a fixed position on the tube wall. Measurements made by 

the detector are carried out on a laboratory time scale, which is not 

identical to the particle time scale.

The difference may be understood by considering Figure 3*6 (a) 

and (b). When the shock front moving at a velocity Vg passes a 

particle at a distance d from the observation station, the particle 

is shock heated and will move in the same direction as the shock but 

at a lower velocity Vp . The shock front will pass in front of the 

detector after time d/Vg and the particle after time d/Vp has elapsed 

since shock heating. The difference in arrival time at the 

observation station is d/Vp - d/Vg, which is the time elapsed on the 

laboratory time scale. Therefore the particle time, tp , is related to

laboratory time, t. , by:

tp/ti = (d/Vp )/[(d/Vp )-(d/Vs)] = vs/(vs-vp )

(3.17)

For 'shock fixed' coordinates as used in Section 3.4 (Figure 

3.3) where the gas is treated as moving through a stationary shock 

front

"I = Vs

^2 = vs - vp

(3.18) and

(3.19)

Recalling that mass is conserved, 
(Equation 3.1)
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it follows that

•*■)/1*2 = p2/ p 1 = p21

V fcl P21

8 5

(3.20)

(3.21)

If the rate of a particular gaseous process behind the shock 

front is to be measured/ it will be necessary to convert the data 

collected in laboratory time to particle time. This is done simply by 

multiplying the time coordinate by the density ratio.

The disadvantage of this 'time compression' effect is that the 

resolution time is reduced by the factor t x/t pl which increases the 

need for a rapid response detection system.
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3.8 The Non-Ideality of a Real Shock Tube

The equations given in previous sections allow the conditions 

in an ideal shock tube to be determined. However, conditions in a 

real shock tube will deviate from the ideal conditions.

Non-uniform flow, caused by the formation of a boundary layer 

behind the shock front, may result in densities and temperatures in 

the shock heated gas which deviate from those calculated. The build 

up of the boundary layer in the apparatus used in this work was 

studied by Pedley [46]. His conclusion was that the effect is quite 

small and may be neglected. The effect of a boundary layer has, 

therefore, been ignored in this study.

The effect of drag at the walls will cause the shock front to 

decelerate, in long tubes with a small diameter this effect may be 

quite significant. However, the deceleration due to drag is quite 

small for tubes, such as the one used in this work which has a 

deceleration rate of less than 1% per metre, with diameters in excess 

of 5 cm [57].

Finally, the diaphragm tends to destroy the one-dimensional 

nature of the shock wave. Prior to bursting the diaphragm tends to 

bow, therefore, as it bursts the gas flow has a component towards the 

wall of the tube, rather than being directed purely along the axis. 

This effect results in a wave with some transverse character, which 

will lead to effectively higher shock velocities than those measured, 

effect is minimized [55] and a good approximation to a 

dimensional shock wave achieved when the expansion chamber is at 

least 20 times the diameter of the tube. In the apparatus used in 

work the length is 100 times the diameter of the tube.
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KINETIC MODELS AND DATA ANALYSIS

4.1 Introduction

This chapter contains the derivation of the kinetic models for 

the deactivation of 02 (a1Ag) and 02(b^ E*^) under pre-shock (room 

temperature) and post-shock (high temperature) conditions.

Sensitivity analysis is considered in general and then applied to 

these models. The sensitivity of the models with respect to the 

variable parameters within the models is described and the 

implications discussed. Finally the application of the computer 

programs, developed from these models, to analyse the experimental 

data is outlined.
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4.2 Room Temperature Deactivation of 0_(a1A )---------------------------------------J---- 9—

02(a1Ag) is generated by the microwave discharge in a pure 

oxygen matrix and removed by the following processes:

202(a1Ag) — k,— > 202(X3 2Tg) + hv (X=634nm)

(4.1)

202(a1Ag) — kp~ > 02( b V g ) + 02 (X3 l"g )

(4.2)

02(a1Ag) + 02(X3 L"g ) — kd° ~ > 202 (X3 r g)

(4.3)

02(a1Ag) + wall ~ k w A—  > 02 (X3 r g)

(4.4)

°2( a1 Ag) — k5— > 02 (X3 r"g) + hv ( A=1270nm)

(4.5)

02(a1 Ag) + M — kdm— > 02(X3 r g) + M

(4.6)

The rate equation for the change in concentration of C>2(a1Ag) is 

given by:
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-d[02(a1Ag)]/dt = k, [02(a1Ag ) ] 2 + kp [02 (a1 Ag)] 2 + k5 [02(a1Ag)] + 

kwA [02(a1Ag)J + kd°[02 (a1Ag)] [02(X3 r g)] + kdm [M] [02(a1 Ag)]

(4.7)

Reaction (4.5) is a forbidden radiative process and, as a result, is 

very slow in comparison to the other loss processes. The simultaneous 

transition described by equation (4.1) is not forbidden but relies on 

the square of the 02 (a1Ag) concentration and thus becomes less 

significant when the concentration of 02(a1Ag) is low. According to 

Borrell, Borrell and Pedley [19], reaction (4.2) is only significant 

for high concentrations of 02 (a1Ag). in the apparatus used, the 

concentration of 02(a1Ag) is low (less than 1 x 10-6 mol dm-3) and, 

therefore, reaction (4.2) is an insignificant removal process 

compared with the main loss processes (equations 4.3, 4 .4 , and 4.6 ).

Neglecting the slow reactions (equations 4.1, 4.2, and 4.5), 

the rate equation becomes:

-d[02(a1Ag)]/dt = kdo [02(X3 r“g)] [02(a1Ag)] + kdm [M] [02 (a1 Ag) ]

+ \,At02 (a1Ag)]

(4.8)

which may be simplified to:

- d [0 2 ( a 1Ag ) ] / d t  =  ( k d° [ 0 2 ( x 3 r - g )] + k dm[M] + kwA) [ 0 2 ( a 1Ag )]

= k'[02(a1Ag)]

(4.9)

where k' is the overall pseudo-first order rate constant for the 

removal or deactivation of 02(a^Ag) in the system. Integrating 

equation (4.9), between t=0 and t=t, one obtains the expression:
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In ([02(a1Ag)]/[02(a1Ag)]o ) = -k't

(4.10)

From equation (4.1), 634I a [o,(a^A )]2, therefore ̂ g

1/2ln(634I/634I0) = ln([02(a1Ag)]/[02(a1Ag)]o)

(4.11)

A plot of 1/2ln(®3‘̂I/<’3'*I0) versus time will yield the pseudo—first 

order rate constant, k', as its gradient. The validity of this 

procedure has been verified by Borrell [60] who compared the 

emissions at 634nm and 1270nm over a range of pressures in the same 

discharge flow apparatus.

It is also possible to obtain k’ by monitoring the 02(b1Z+g) 

emission at 762nm. 02(b^Z+g) is produced through the 'energy pooling' 

reaction (equation 4.2) and is removed by the following processes:

°2(b1j:+g) ~ ki2“-> 02 (X3 2~g ) + hv(X=762nm)

(4.12)

02(b12:+g) + wall — k ^ —  > 02(X3 2Tg)

(4.13)

°2<b1z:+g) + 02(X3 Z“g) —  kq°— > °2(a' V  + 02 (X3 E" )

(4.14)
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0,(b13:+ ) + M — k m— > 0_ (a 1A ) + M 2 g q 2 g
(4.15)

The rate equation for the change in [0,(b1Z+ )] with time may bei g
written as:

d[0,(bV )]/dt = k [0,(a1A ) ] 2 -k '°[0,(X3Z~ )] [OJb 1! 4 )] - z g  p z g  q  z g  Z g

kws[o2(b1i:+g)] - k12[o2(b1 z+g)) - kqm[M] [o2(b1i+g))

(4.16)

The concentration of 02(b1Z+g) is at steady state at any point in the 

flow [44], therefore d[02(b1 £+g) ] /dt = 0, and equation (4.16) may be 

rearranged to give:

[02 ( b V g)] = kp [02(a1Ag))2/(kq°[O2(X3 r g)J + kqm [M] + k12 + k^)

(4.17)

From equation (4.12), it is clear that 762I a [C>2 (b1Z^) ] , and from

equation (4.17) it may be deduced that [02(b1Z+g)] a [02(a1Ag)]2,

therefore 762I1/ 2 a [02(a1Ag)]. a plot of 1/2In(762I/762Ic) versus

time will also have a gradient which is equal to k'.

If a value of k' is obtained for the deactivation of 0,(a^A )2 g
both in the presence and the absence of a test gas, M, then a value 

for k^1” may be obtained by difference, provided that the 

concentration of 02(x3£ ) and the wall deactivation remain constant.

From equations (4.8 and 4.9)
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k' = kd0 t°2 <x3 + kdm [M] + kwA

(4.18)

in the presence of a quencher, and

k’ = kd°[o2(x3 fg)] + 3^/
(4.19)

when only oxygen is present.

The difference in k' is determined for several concentrations 

of M by varying both the percentage of M added and the total pressure 

of the test gas mixture. A plot of the difference in k' versus the 

concentration of M is constructed and the value of kdm extracted as 

the gradient.

It is possible that a given additive may be adsorbed onto the 

tube wall, thereby changing the rate constant for the wall 

deactivation. If this occurs, there are three possible effects.

(a) The change in the wall deactivation rate constant is independent 

of the concentration of M, producing a difference plot which does not 

pass through the origin. In this case, the value of kdm will remain 

the true value and the procedure will remain valid.

(b) The change in the wall deactivation rate constant is dependent 

upon the concentration of M but has a different functionality from 

the linear one of the deactivation rate due to M, upon the 

concentration of M. In this case, the difference plot will be curved 

and, therefore, the value of kdm will be incorrect. However, the 

curvature of the plot will alert the experimenter to this situation.
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(c) The dependence of both the rate of deactivation at the wall and

by M, upon the concentration of M may both be linear. In this case,

errors will not become apparent under normal conditions. It is

possible to check for the presence of such an effect with particular

additives, by coating the tube walls with another material to

deliberately change the wall characteristics. The experiment is

repeated and a comparison made between the two values of kT*. Aa
difference between the two values would indicate a concentration- 

dependent change in the wall constant for one of these surfaces. 

However, it would not be possible say whether one wall deactivation 

rate constant is reduced or the other increased by the presence of 

the test gas, M.

In practice the decay of the 634nm and 762nm emissions in the 

flow tube are not measured as a function of time but as a function of 

distance. The decay rate with time given in equation (4.9) is related 

to that with distance by:

d[0 2(a1 ¿^)]/dt = d[0 2 (a1 /^)]/dl x dl/dt

(4.20)

where dl/dt is the linear flow velocity, which remains constant 

during an individual experiment. The experimental rate constant k* is 

described, initially, as a function of distance and then converted to 

time by dividing by the linear flow velocity.

■rX
E

LE
 U

N
IV

E
R

S
IT

Y
 LIB

R
A

R
Y



9 4

LFV = 760 (VFR)/P^ ivr2

(4.21)

where VFR is the total volume flow rate, r is the radius 

tube and P1 is the pressure in the flow tube. Therefore, 

manipulation of the kinetic equations can be carried out 

a function of time.

of the flow 

the

entirely as
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4.3 High Temperature Deactivation of Q?(a1 Â )

Analogously with equation (4.9) the rate of change of 

02(a1 concentration at high temperatures expressed in particle 

time (see section 3.7) is:

d[02(a1 4j)]/dtp = -(kdm [M] + k°d [02(X3 f g)] + [o2(a1 ̂ ) ]

(4.22)

At the high temperatures generated by the shock wave the deactivation 

at the wall is very much slower than the collisional deactivation, 

since the wall remains at room temperature. Borrell [60] has shown 

that the deactivation rate due to pure oxygen is below the detection 

limit in our system at high temperatures. Equation (4.22) may 

therefore be simplified to:

d[02 (a1 ^)]/dtp = -kdm [M] [02 (a1 ̂ )]

(4.23)

Integrating equation (4.23) between the limits t = t and tp o p
one arrives at the expression:

P'

[°2 (a1 Aj)]tf/[0 2(a1 4j)J0 - exp(-kdm [M]tp )

(4.24)

since the decay of 02 (â  /̂ ) due to M at high temperatures is zero at 

time tp = 0. [0 2 (a1 ̂ )]t is the concentration of 02(a1 ^) at time tp 

after the arrival of the shock front, at any point in the tube, and 

[02(a ^j)]Q decays along the tube due to the concentration gradient 

in the pre-shock flow and is related to the immediate post-shock

concentration by:
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( ° 2 (a1V ] o = I ° 2 ( a 1 V ] 0° bS exp(- \ V 2)

(4.25)

where afc/2 is the room temperature decay of C>2(a1 Ag) expressed in 

particle time. Combining equations (4.24 and 4.25),

(°2(a1 V ] tp/t02(a1 Ag) ] ° ° bS = exP(-tp( ( V 2) + kdm[M]))

(4.26)

Replacing the concentration ratio with the emission intensity ratio 

and noting that 634I a [o2(a1Ag )]2,

634ltp/634lo°bS = exp(-tp(at + 2kdm [M]))

(4.27)

If the 'dimol1 emission at 634nm is a simple collisional

process then the immediate post—shock emission intensity, 634j^obs

can be related to the pre-shock glow, 634I at room temperature by:psg

634 obs/634t
o ' ■‘■psg (P2 i )2 ( T21

1/2634k

(4.28)

where K is a constant for any enhancement above that predicted by 

the simple collisional process, for which 634K = 1. Substitution of 

the expression for 634I0°bs from eqUation (4 .28) into equation (4.27) 

results in the following equation for the high temperature 

deactivation of C>2(a1Ag), monitored through the 634nm emission.
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634T /634j.
V psg= ( p21) 2 ( t 21 )1/2>634k  exp(-tp (2kdm [M]+at))

(4.29)

Therefore, the rate constant for the increased deactivation of 

°2(a1&g) at the high temperature can be determined by plotting the 

measured intensity against particle time and establishing the 

increase in gradient over that of the pre-shock decay. The pre-shock 

decay a,/2, measured as a function of distance.

-d[02 (a1Ag )]/dl = k'[02(a1Ag)]

(4.30)

must be converted to particle time.

-d[02(a1A )]/dt = -d[0-(a1A )]/dl x dl/dt  ̂ y p  ̂ y p
(4.31)

By definition, dl/dtp = V , the velocity of the shocked gas in 

particle time, so:

0^/2 = ax/2 x Vp

From equations (3.17 and 3.21),

V
P

= Vs [ 1 - ( 1 / p 21) ]

(4.32)

(4.33)

hence
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V2 = vs Ol[1-(1/P21) ]/ 2

(4.34)

Equation (4.29) predicts an instantaneous rise in emission 

intensity at the shock front followed by a decay. This ideal pattern 

for the observed emission is shown on figure 4.1(a). The actual 

emission-time trace is represented in figure 4.1(b). Four distinct 

regions may be distinguished in the observed trace:

(A) The pre-shock glow, 634I , before the arrival of the shockpsg
front.

(B) A rapid, but not instantaneous, increase in emission, due to the 

increase in density and temperature upon the arrival of the shock 

front.

(C) A fall off in emission intensity, as a result of the O^ta^Ag) 

concentration gradient at room temperature.

(D) The total loss of emission, due to the arrival of the contact 

surface.

Regions A and C are exactly as predicted by the kinetic 

model. The risetime, which characterizes region B is due to the 

finite slit width of the photomultiplier unit. In order to allow for 

this, equation (4.29) is integrated over the risetime, t̂ .

634. 634k 634j
psg( P21 > 2 (T 21 *1/2 f t pI exp (-t.

V 4s

p (2k<Jm [M]+ qt)) dtp/ts

(4.35)
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The integrated form being:

= 63^K634IpSg(P21)2 (t 2151/2 exp(-tp (2kdm [M]+«t))] 

x (exp(ts(2kdm [M] + ott))-1)/(ts(2kdm [M]+0(t))

(4.36)

When tp<tg, part of the integration area falls in the pre-shock glow. 

Therefore the integration of equation (4.29) is performed between ty 

and zero with a component for the pre-shock glow added to the area 

defined.

634-,- = 634 634k (ü ,2. .1/2
Xt^ ^ s g  K ^21' ' T2 1'

/ ••'A
X I exp(-tp (2kdm [M]+ 0̂ )) dtp/tfl + OJ4Ipsg(ts-tp)/ts

Jo (4.37)

Therefore,

634ltp = 634Ipsg634K(P21)2 (T2 1)1/2((_ 1/ts(2kdm [M]+at))

x (exp(-tp (2kdm [M]+ qt))-1) + 634Ipsg(ts-tp )/tg

(4.38)

While equation (4.35) can be integrated explicitly over the whole 

trace (equation 4.38), it is, in fact, integrated numerically from 

the point where the shock front arrives (common boundary of regions A 

and B, figure 4.1) using Simpson's Rule. This method of integration 

allows corrections, if necessary, for the variation in density, 

pressure and temperature due to vibrational relaxation to be made.

The fitting of equation (4.35) to the experimental data is 

done using an interactive computer graphics technique, which involves
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the iteration of the parameters in the equation until the best 

non-linear least squares fit is obtained. This procedure is described 

in section 4.3.3.

4.3.1 Sensitivity Analysis of the O^ta^^) Kinetic Model

In the kinetic model used to evaluate the high temperature 

rate constant for the deactivation of the parameters 6^K,

tg and (2kdm [M]afc) are obtained by fitting the model to the 

experimental data rather than by independent measurement. As a 

result, the parameters are inter-related and may not be determined to 

a high degree of precision. Therefore, the values obtained by the 

fitting are subject to uncertainty. Sensitivity analysis is used to 

determine the sensitivity of the model to small changes in each of 

these parameters. By comparing the regions of the maximum sensitivity 

of the model to individual parameters, one can gain an insight into 

the influence of errors in one parameter upon the precision of 

another. It may also be used to determine which parameters dominate 

the fit of the model to the data.

Sensitivity analysis may be carried out to determine the 

absolute sensitivity, S, of one parameter in an equation with respect 

to another. A simple function.

C = CDexp(-kt)

(4.39)

is chosen here to illustrate the definition of sensitivity and 

indicate the type of information which it can provide.

The absolute sensitivity of C with respect to k (equation 

4.39) is given by the rate of change of C with respect to a small 

change in k.
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s = dC/dk

(4.40)

therefore,

S = -tC0exp(-kt)

(4.41)

The absolute error in C increases linearly with time (independent 

variable) until such time as exp(-kt) becomes significant, then the 

error ceases to increase and begins to reduce. In other words, the 

error in the calculated concentration of a substance, which is 

decaying according to first order kinetics, as a result of the error 

in the rate constant, becomes less significant as the decay proceeds 

than in the initial stages. The sensitivity of C with respect to k is 

greatest when the rate of change of the sensitivity function with 

time is zero, dS/dt = 0.

dS/dt = CQ(kt-1)exp(-kt) = 0

(4.42)

hence, when dS/dt = 0,

Therefore, the value of C, derived from equation (4.39) will be most 

sensitive to an error in k after one lifetime of the decay process. 

Conversely, if k is obtained from fitting equation (4 .39) to a set of 

experimental data, which involves the measurement of C, the quality

C
a
v
d
s
n
 A

i-
lS

H3
Al

Nn
 3

13
3C

-



103

of the data after one lifetime will have more influence upon the 

accuracy and precision with which k is determined, than at any other 

time during the decay. Since small changes in k at this point produce 

large changes in C, the errors produced in k due to errors in the 

experimental data will be small. Therefore, it is important to 

include the first lifetime when extracting first order rate constants 

from experimental data.

If an error in C with respect to CQ is considered.

S - dC/dCQ = exp(-kt)

(4.44)

The above expression indicates that the error in C caused by an error 

in Co becomes less significant as time increases, according to the 

function exp(-kt). However, if c is measured and CQ is determined by 

extrapolation from a fitting of equation (4.39) to experimental data, 

then the data at the beginning of the decay will have most influence 

upon the determined value of CQ.

By comparing the sensitivity of C with respect to k, and C 

with respect to CQ, it can be deduced that k will dominate the 

fitting of equation (4.39) to a set of experimental data. These 

conclusions are not unexpected from the simple function which 

describes first order decay; however, the situation is likely to be 

less clear when more complex functions are involved. In such cases, 

sensitivity analysis would be a powerful tool in deciding which

ors carry greater influence and which parameters are subject to 

large errors from small errors in other parameters.

A computer program was written to deal with the sensitivity 

analysis of equation (4.35) with respect to each of the fitted
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parameters. The program is called SENDEL and is presented in Appendix

1.

Equation (4.35) is evaluated over a chosen integration period, 

using the Trapezium Rule. The integration period is divided into five 

sections, each of which is geometrically approximated to a trapezium. 

The area of each trapezium is calculated, all five areas are summed, 

and the mean average area for a 1 ps time interval calculated by 

dividing the total area by tg. The overall time, tp , is increased by 

ts/5 and the procedure repeated. When a division of the integration 

period falls in the pre shock glow (tp<0 ), then the value of the 

pre-shock glow is selected instead of the value obtained from 

equation (4.35).

The emission intensity - time data obtained from the numerical 

integration of equation (4.35) is differentiated with respect to the 

paramaters: 634K (AK in the program); the overall decay constant 

2kdm [M] at, (dk in the program); and the integration time, tg, (TS in 

the program). Differentiation is carried out by first evaluating 

equation (4.35) and then increasing the value of the appropriate 

parameter by a factor of 1.0001. The differential of equation (4.35) 

with respect to the selected parameter is given by the difference in 

emission intensity divided by the increase in the value of the 

selected parameter.

The original emission intensity - time coordinates, generated 

from equation (4.29), the unintegrated form of equation (4.35) are 

stored in file RSEND and the results of the differentiation of the 

kinetic model (equation 4.35) with respect to the selected parameter 

are stored in file RES. The results of the differentiation constitute 

the sensitivity analysis of the kinetic model with respect to the 

selected parameter.

The data stored in files RES and RSEND may be plotted using
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the standard plotting routines available in the Chemistry Department 

at Keele.

Figures 4.2 to 4.4 show the sensitivity of the emission 

intensity generated from equation (4.35), the kinetic model, with 

respect to each of the three variable parameters, as a function of 

the independent variable, t^. Whether the sensitivity is positive or 

negative is unimportant at this stage. The magnitude of the 

sensitivity of the emission with respect to the appropriate parameter 

as a function of time is the important result of the analysis.

Figure 4.2, shows the sensitivity of the kinetic model with 

respect to the enhancement factor, 634k . As expected, the model is 

more sensitive to errors in 634k  immediately after the shock, when 

the physical processes involving the enhancement take place. Errors 

in 634k become less significant as the experiment proceeds.

Figure 4.3 shows the sensitivity of the model with respect to 

the overall decay constant. As one might expect from the discussion 

of the simple first order decay (equation 4.39) at the beginning of 

this section, the model is most sensitive to the deactivation rate 

constant 2kdm [M]afc after one half-life, and is less sensitive during 

the final stage, where the decay curve may more easily be 

approximated to a straight line.

Figure 4.4 shows the sensitivity of the model with respect to 

the integration time, tg. The model is most sensitive at the 

beginning of the emission intensity profile, when the most dramatic 

changes in emission intensity are taking place. Compared to this 

region, the rest of the profile shows a negligible degree of 

sensitivity to tg. This is not unexpected since the integration time 

has the effect of averaging the emission signal and will create the 

greatest error in the emission intensity during the period when the 

change in concentration of Ojfa^Ag), and therefore emission
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intensity, is greatest.

Considering the sensitivity - time plots (figures 4.2 to 4.4), 

one can see that the sensitivity of the model with respect to the 

integration time and the overall decay constant is well separated in 

time. Therefore, the regions of the experimental data which best 

define these quantities are also well separated. As a result, the 

determinations of tg and 2k(Jm [M] + 0(t are essentially independent of 

each other. That is to say, errors in one exert very little influence 

upon the value of the other.

The sensitivity of the model with respect to the enhancement

factor is significant over the whole time axis and coincides with the

regions of sensitivity with respect to both the integration time and

the overall decay constant. The overlap with the sensitivity of the

model to the integration time is very small and the overlap with the

sensitivity of the model to the overall decay constant occurs when

the sensitivity of with respect to 634k is reducing. Thus the

evaluation of 634k by fitting the model to the experimental data will

be essentially independent of tg and k^tMl + c^ over the region where 
634 . ,K is least sensitive to the experimental data and therefore better 

defined.

The conclusion may be drawn that the values of tg, 634k and 

k(jm [M]+at obtained from the fitting of the model to the experimental 

data are well defined and that errors in these values are more likely 

to arise from the quality of the data rather than the inter-relation 

of the parameters.

4.3.2 Corrections for Q?(b1 as a Source or Sink for C>3(a1A?)

From equations (4.14 and 4.15) it is evident that the 

deactivation of Ojtb1^^) is a source of 02(a 1 Ag). Since the 

concentration of ) at any time is approximately 0.1% that of
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°2(a1Ag), the contribution from this source to the total 

concentration of Ojfa^g) is insignificant and may be neglected. The 

reversal of the processes described by equations (4.14 and 4.15),

02(a1Ag) + M --- > 02(b1z:+g) + M

(4.45)

where M includes 02(X^£“g) as a test gas, introduces the possibility 

of an alternative deactivation of 02(a1Ag) producing the higher 

energy species C>2 (b1Z+g). Clearly, this reaction will be very slow 

compared to the forward reaction, particularly at lower shock 

temperatures. Over the temperature range of the experiments carried 

out in this work (500 to 1200K), it is insignificant as a process for 

the removal of 02 (a^ Ag). Therefore no corrections are necessary to 

account for the participation of 02(b1 Z+g) in the 02(a1Ag) rate 

equation.

It is thought, however, that this reaction may be a 

significant source of 02(b^ £+g) at temperatures above 1200K. 

Corrections for such a situation are discussed in section 4.5.2.

4.3.3 Computer Analysis of Q?(a1Ag) Data

The kinetic model (equation 4.35) for 02(a1Ag) has been 

developed into an interactive computer graphics program by Borrell 

[61] for use with the GEC 4082 computer using the HP2647A graphics 

terminal.

The analysis proceeds by displaying the experimentally 

obtained emission intensity — time data as a plot. The point where 

the arrival of the shock front causes a rapid rise in emission 

intensity is set by eye as the starting point t = 0 . The end point 

is set just before the arrival of the contact surface causes complete
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loss of the emission.

Reasonable values of ts, 634K and 2k(Jm [M]+at for the start of 

the numerical fitting of the kinetic model are chosen. This is done 

interactively, using graphics to obtain an approximate fit to the 

plot by eye. The value of tg may also be obtained from tables 2.2 and 

2.3.

The analysis then continues by fitting equation (4.35), with 

rough values of the three variable parameters, to the experimental 

data by a non—linear least squares method. An iterative process is 

carried out to achieve the best fit values of tg, 634K and 

2kdm [M]+at. The value for 2kdm [M]+oit is compared with the calculated 

value for afc, derived from the measured pre-shock decay, a^, to 

obtain a value for 2kdm [M] .

Figure 4.5 shows the fit obtained for an actual set of data 

(run DSR212A) recorded during the study of the deactivation of 

°2(a1Ag) by nitrogen. The line through the points is the fit obtained 

using equation (4.35). There is no additional deactivation at the 

high temperature in this case.

Figure 4.6 (run DSR405A) shows a fit for experimental data

recorded during the study of the deactivation of 0~(a^A ) by
2 g

hydrogen. In this case, there is additional deactivation at the high 

temperature. The dotted line shows the curve predicted from the room 

temperature measurements, assuming kdm = 0.

A comparison of figures 4.5 and 4.6 with figure 4.1 shows that 

the shape of the shock trace is in agreement with the predicted 

Pro^3'3'e an<̂  confirms that the kinetic model is a good representation 

of the physical processes involved.

The use of interactive computer graphics, to fit the model to 

the experimental data, allows the operator to check the quality of 

the fit by superimposing the predicted profile onto the experimental
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points•

It is also possible to fix one of the parameters and fit the 

others so that the effect of variations in the value of a parameter 

can be explored. Such an exercise is useful, since it allows the 

experimenter to develop both a feel for the kinetic model and to 

explore the effect of errors in the measured quantities directly.

This facility permitted the discovery of the fact that fixing the 

value of the integration time to that obtained from tables 2 .2 and

2.3 gives a more precise value for 2kdm [M]+o(;. This observation was 

later supported by the sensitivity analysis discussed in section 

4.3.1. Another benefit of fixing the integration time was the reduced 

time required to complete the iteration process.

The program itself is quite complex and consists of numerous 

sub-routines. A comprehensive and detailed description of the program 

has been written by Pedley [46] . Since it has remained essentially 

unchanged, a description of the workings of the program will not be

given here
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4.4 Room Temperature Deactivation of 03(b1if )

02(b^£ ) is generated via the energy pooling reaction

(equation 4.2) and removed by the following processes:

02(b1I+g) — k12— > 02 (X3 £ g ) + hv( A=762nm)

(4.12)

°2(b1r+g) + wall 02(X3 2Tg)

(4.13)

02( b 12:+g) + 02(X3 r g) - k q°— > 02 (a1Ag) + 02(X3 2Tg )

(4.14)

02(b12;+g) + M — kqm— > 02 (a16g) + M

(4.15)

Compared with the main loss processes (equations 4.13, 4.14, and 

4.15), the radiative decay of 02(b1 £+g) is insignificant [28] and may 

be neglected. The rate equation for the removal of 02(b1£+g) may be 

written as:

d[02(b1 £+g)]/dt = kp [02(a1 Ag)]a -kq°[02(X3 r g )] [02(b1 £+g)]

-kqm [M] [02 (b1 £+g ) ] -1^Z[02 (b1 £+g)]

(4.46)

Since the concentration of 02(b̂  £+g ) is at steady state at any point 

in the flow, d[02(b1£ g)]/dt = 0, equation (4.46) may be rearranged
to:
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[02 (b1 r+g) ] / [0 2 (a1 Ag) ]* = kp/ (kq° [o2 (X3 r g)) +kgm [M] +kw h

(4.47)

From section 4.2,

[02(b1£+g)]/[0 2 (a1Ag ) ] 2 a 762I/634I

Therefore,

*m = 762i/634i = Qk /(k °[0_(X3 r  )]+kJm[M]+k 21) p q z g q w
(4.48)

where Q is a constant of proportionality. In the absence of a test 

gas, M, equation (4.48) becomes:

*_ = 762i/634i = Qk /(k °[0,(X3 2T )]+k 22 p q z g w
(4.49)

In equations (4.48 and 4.49), k 21 and k 12 are different wallw w
constants, as a result of the increase in pressure when M is added. 

These constants may be determined from equation (4.50) taken from 

Derwent and Thrush [67] .

\,Z = l/ir^P/P. )/(8D0 )+(2r/-»C')]
(4.50)

where r is the radius of the flow tube; DQ is the diffusion 

coefficient for 02(b^Z+g) at atmospheric pressure, Pq; P 1 is the flow 

tube pressure; y is the wall efficiency; and C' is the mean velocity 

of 02(b £ g), which is assumed to be the same as that for 02(X3 £ g).
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Combining equations (4.48 and 4.49) as ( $-$)/$ onem o  o
obtains :

< V 4o)/$o - (’'qm[Ml+kw 22-kwS1)/(kqO[02(x32"g)l+kw J:l)

(4.51)

Rearrangement gives :

kqm [M] = ((kq°[02 (X3 Z-g)]+kw 2;1)( V V V - (kW Z2-kW

(4.52)

For brevity,

kqm (Mi = i « V V

(4.53)

Therefore a plot of f ( , 4>q) versus [M] will yield k^m as the

gradient. Such a plot should pass through the origin, assuming that

there is no modification of the wall efficiency due to the adsorption

of the test gas. There have been no indications of wall modification

either in this work or in the work of Pedley [46], Grant [13],

Borrell [60] or Boodaghians [44] during measurements of 0„(b^2^ )
2 9

deactivation at room temperature in the apparatus used here.
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4.5 High Temperature Deactivation of O^tb1z+g)

The derivation which follows first assumes that there is no 

deactivation of 02(a1Ag) at high temperatures, and therefore that the 

decay of the emission intensity is entirely a result of the pre-shock 

decay. The rate equations derived in this way are then modified to 

allow for the deactivation of 02 (a1 Ag) at high temperatures.

(a) With no additional deactivation of 0?(a1A ) at high temperatures 

Analogously with equation (4.46)} the equation for the rate of 

change of 02<b1Z+g) concentration at high temperatures, expressed in 

particle timej is:

d[°2(b Z g>]/dtp = ^p [02(a1Ag)]2-(kqm [M]+kq°[02(X3 £-g)]+kw S)

x [02(b1 Z+g)]

(4.54)

The wall deactivation of Ojib' E g) is considerably reduced under

shock conditions because of the short duration of the observation

time. The collisional deactivation increases at high temperatures,

while the wall deactivation remains the same. Hence, the wall

deactivation may be neglected in the high temperature experiments.

However, the deactivation of 0~(b1 E+ ) due to 0„(X3 lT ) is
2 9 2 g

significant at high temperatures. If the collisional deactivation 

rate constants are combined,

kqm [M]+kqO[02 (X3 Z-g)] = ( k ^ + k ^ ) [M' ] = k qm ’[M>]

(4.55)

where x,,, and xQ are the mole fractions of M and 02 (X3 Z-g ) 

respectively; [M'J is the concentration of the mixture; and kqm is
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the effective rate constant of the mixture. Equation (4.54) may now 

be simplified to:

d[C>2(b1 E+g) 1 /dtp = kpf°2 (alAg> ]2 - kqm ’[M’] [02 (b1Z+g)]

(4.56)

Assuming that [02 (b1 £+g ) ] << [0 

(02(a1Ag)] is essentially constant, 

between t=0 and t=t„

2 (a1Ag)], in other words 

equation (4.56) may be integrated

/•ËOtp rtp
/ d [0 2 (b 1 )]+g) ] /( kp [0 2 (a 1 Ag) ] 2 - kqm '[M'] [0 2 (b 1 Z+ g ) ]  = / d t

*  .4

Therefore,

ln((kp(0 2 (a1Ag) ] 2 - kqm '[M*] [02 (b1 Z+g))t /

(kp [02 (a1Ag) ] 2 - kqm '[M>][0 2(b1 E+g)Jo )) = -kqm '[MMtp

(4.58)

Rearrangement gives :

[°2(b1 E+g ) ] t  / [ ° 2 ( b1 2+g ) ] 0 = (1-(kp [02 (a1 Ag)]2/kqm ’[M'] [02 (b1 r+g)Jo 

exp(-kqm '[M')tp ) + (kp [02 (a1Ag)]2/kqm '[M'][02(b1 Z+g)]Q )

(4.59)

where [0 2 (b^E g)]Q is the concentration at any point in the tube

immediately after the shock and [02<b1Z g)lt is that after time, tp . 

As t approaches infinity, a steady state will be reached. Under such

conditions, equation (4.59) reduces to:
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tOatb1 t*-g)] = kp [02 (a1Ag)]2/kqm '[M']

(4.60)

Equations (4.47 and 4.60) may be written as:

([0,2 ( a 1Ag ) ] 2/ [ 0 2 ( b 1 E+g ) ] [ M ' ] ) T i  = ( ( k qm’ + (kw J:/ [ M ' ] ) ) / k p )T

(4.61)

<[02(a V ] /[°2(b Z g) H M ’])T2 = (kqm '/kp >T2
(4.62)

The concentrations at tp=0 (immediately after the shock) are those in 

the pre-shock multiplied by the density ratio, p2i*

([02(a1Ag)]2/(02 (b1£+g)] [M*]) x (p21)2/(p2 1 ) 2 =

( [02 (a 1 Ag) ] 2/ [ 0 2 ( b 1 E+g ) ] [ M ' ] ) t

(4.63)

The enhancement factor, 7f̂ 2K is defined as the ratio of the observed 

post-shock emission, 7^2I^pg, immediately after the shock, to the 

predicted post-shock emission, 762Ipps

762K . 7« Iips/762Ipps _ ( p21) [02 (b1 E+g ) ] ̂  / [02 (b1 Z+g) ] ̂

(4.64)

Substituting for ( P21) l°2 (b1 E+g) ] T /[02(b1 £+g ) ] T from equation 

(4.63), ^
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762K = {[02 (a1 Ag) ] 2/ [M1 ] )T̂  ( [M' ] / [C>2 ( Ag) ] 2 )T  ̂( 1/p21 )

(4.65)

1 OSubstituting expressions for ( [0,(a A )] /(M'])m and
 ̂ 9 Tg

([M’]/[02(a1Ag)]2)T  ̂ from equations (4.61 and 4.62),

762K = ( [02(b1z+g)]kqm' A p)T2/(kp[o2(b1z:+g)]/(kqn>, + (kwV [M '] ) ) )Ti

X (P21)

(4.66)

120

But [0 2 (b1 S+g)]T  ̂( p2i ) - [Ojfb1 jfg) ] T , therefore1 <•+

762K = (kqm'A p) / (k p/ ( k qm, + (kwV [M -]) ) )T

(4.67)

762K may be expressed as:

K = (kp/kqm )/( [02 ( a^ Ag ) ] 2/[M* ] [02 (b^ E+g) 1 Q )

(4.68)

where concentrations and rate constants refer to the post-shock (high

temperature) conditions and [0,(b^E+ )] is the concentration of
z 9 0

02(b1Z+g) immediately after the shock. Therefore, equation (4.59) 

becomes:

[C>2 (Ir £+g) ] tp/IOj (b1 Z+g)] ̂  = (1-762K)exp(-kqm '[M']tp ) + 762K

(4.69)

As in the °2(a1Ag) kinetic model, the fall off in concentration under 

the post-shock conditions is a result of the pre-shock decay of
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762K = ([02(a1Ag)]2/[M'])^([M']/[02(alAg)];i)T ( 1 /p21 )

(4.65)

1 oSubstituting expressions for ([02(a Ag)] / [M'] )T and 

( [M']/[02 (a1Ag)]2)t  ̂ from equations (4.61 and 4.62),

762K = ([02 (b1Z+g)]kqn>,/kp )T2 /(kp [02(b1Z+g))/(kq">, + (kw V[M-])))Ti 

x (P2-|)

(4.66)

But [02(b1 E+g)]T  ̂( p21 ) - [Ojfb1 E‘l’g)]T , therefore1 r+

762K = (kqm 7 k p >T /(kp/(kqm, + (kw V[MM)))n
T1

(4.67)

762K may be expressed as:

762K = (kp/kqm ’)/((02(a1Ag)]2/[M'][0 2(b1 E+g)]Q )

(4.68)

where concentrations and rate constants refer to the post-shock (high

temperature) conditions and [0,(b1I+ )] is the concentration ofz 9 o
°2(b1E+g) immediately after the shock. Therefore, equation (4.59) 

becomes :

[02(b1 Z+g)]tp/ t02(b1 Z+g)]o = (1-762K)exP <-kqm V ] t p ) + 762K

(4.69)

As in the 02 (a^Ag) kinetic model, the fall off in concentration under 

the post-shock conditions is a result of the pre-shock decay of
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02(a1Ag) along the flow tube hence.

t ° 2 (b1 j:+g ) ] o = [0 2 (b'zTg)]ooßs expi-c^t >U +  \ 1 obs

(4.70)

where, [0 2(b E g H 0°bs is the initial post-shock concentration at the 

observation station. The combination of equations (4.69 and 4.70) 

gives:

[02(b1 E+ ) ] . /[0,(b1E+„>] °bs =9 t_ 2 g o

(762K + (1 - 762K)exp(-kqm ' [M']tp ))exp(-C(ttp )

(4.71)

Since

762I ^ / 762Ioobs = [02(b1E+g)]t /[02 (b1E+g)]oobs

(4.72)

and at the observation station the pre-shock glow is related to the 

immediate post-shock glow by:

762t obs _ 762t . .
o 1psg' P21 '

(4.73)

then,

7tp = 62lpsg( P21} (762jc+( 1-762K)exp(-kqm ' [M'] tp ) )exp(— o^tp)

121

(4.74)

Figure 4.7(a) shows the emission intensity - time profile 

predicted by equation (4.74). An instantaneous increase in the
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emission intensity at the shock front, followed by a relaxation 

period and then a decay is predicted. The form of a typical emission 

intensity - time trace is represented in figure 4.7(b). Five distinct 

regions may be distinguished in the observed trace:

76?(A) The pre-shock glow, I . before the arrival of the shockp sg

front.

(B) A rapid, but not instantaneous, increase in emission due to the 

increase in density after the arrival of the shock front.

(C) A period of relaxation to the new, high temperature, steady 

state.

(D) The decay of the emission, which reflects the fall-off in 

concentration of 02 (a^Ag) in the pre-shock glow.

(E) The complete loss of the signal upon the arrival of the contact 

surface.

Regions A, C and D are as predicted by equation (4.74), but 

region B shows a risetime which is a result of the finite slit width 

of the photomultiplier unit. As with the 02(a1Ag) kinetic model, the 

analysis equation must be integrated over the risetime, tg.
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762
Ipsg (P 21

/'tp) / (762K+(1-762K)exp(-k m ’[M’]tp ))

x exp(- Ofctp)dtp/ts

(4.75)

While equation (4.75) can be integrated explicitly over the 

whole trace, it is in fact integrated numerically using Simpson's 

Rule, in the same manner as equation (4.35), the kinetic model for 

02(a1Ag).

Equation (4.75) was originally used as the kinetic model for

the analysis of the high temperature data; however^ as the types of

deactivating species studied expanded^ modifications became necessary

to account for the simultaneous deactivation of 0->(a^A ).4 g

(b) with deactivation of 02(a1Ag) at high temperature

To allow for the deactivation of C>2 (a1Ag) by M at the high 

temperature, it is necessary to modify the rate equations. From the 

derivation of the 02 (a1Ag) kinetic model, the deactivation of 

°2*a can 1x3 represented as a function of time at any point in the 

post-shock regime by:

[°2(â  Ag) ] tp/ (° 2  (a1 Ag) J 0°bS = exp(-tp ( ( at/2 )+kdm ' [M‘ ] ))

(4.26)

Combining equation (4.26) with the rate equation for 02 (b1Z+g ) , 
equation (4.56),
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d[02 (b1 Z+g)]/dtp = kp ([02(a% )]o°bS)2exP (“tp (2kdln,[M ,1 + 0it))
- kqm ' [M13 [02(b1 r+g)]

(4.76)

Integrating equation (4.76) with between t =t and t =0 and carryinqP P p - 1 3
762out the substitution process for K, results in the following 

expression:

[ ° 2 ( b1 E+g) ] tp/ [ °2 ( b1 ̂ +g ) 1 0°bS = (762Kexp(-2kdm '[M']tp )+(1-762K) 

x exp(-kqm [M']tp ))exp(-attp )

(4.77)

762provided that K is redefined as:

762K = ( V (kqm,-kdm,)>T2/(V (kqm,_kdm,-(kw J:/[M,]))>T<
1

(4.78)

Considering equations (4.72 and 4.7 3),

762,
762W P21)(762exP (-2k<m'

x exp(-kq [M1]tp )) x

[M']tp )+(1-762K)

expi-o^)

(4.79)

Integration over the risetime, tg, gives:
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762I.t p
762

+ (1-762K)exp(-kqm [M' ] tp)) x expi-o^tp) dtp/tg

(4.80)

This equation is the kinetic model for the deactivation

0,(b1S+ ) allowing for simultaneous deactivation of 0„(a1A ). ̂ y 2 g
Equation (4.80) is integrated numerically using Simpson's Rule. The 

fitting of the kinetic model (equation 4.80) to the experimental data 

is done using an interactive computer graphics technique, which 

involves the iteration of the parameters in the equation until the 

best non-linear least squares fit is obtained. This procedure is 

described in section 4.5.3.

This kinetic model (equation 4.80) is used throughout this 

work to analyse the high temperature data recorded in the study of 

the deactivation of 02 (b1Z+q).

4.5.1 Sensitivity Analysis of the O^tb1^^) Kinetic Model

model, a computer program was written to carry out the evaluation, 

integration and differentiation of the analysis equation, with 

respect to selected parameters. The program is called SENSIG, and may

operates in the same manner. However, the number of variable 

parameters is increased. The dependent variables ares the enhancement

As with the sensitivity analysis of the 0_(a1A ) kineticz g

be found in Appendix 2. It is an adaptation of the SENDEL program and

factor 76z' 4
K, (called AK in the program); the 02(a Aq) decay

increment, 2k,j [M1], (DDK in the program); the pseudo-first order 

02(b1z+g) decay constant, kqm '[M'], (SDK in the program); the room 

temperature decay of 02(a1Aq), ô , (RDK in the program); and the
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integration time, tg/ (TS in the program).

The data from the evaluation of equation (4.79) over time, 

tp, are stored in file RSIG, while the data from the sensitivity 

analysis of the model with respect to the selected parameter are 

stored in file RESULT. Both files may be plotted out using the 

standard plotting routines available for general use in the Chemistry 

Department at Keele.

Figures 4.8 to 4.12 show the sensitivity of the emission 

intensity generated from equation (4.80), the kinetic model, with 

respect to each of the five dependent variables, as a function of the 

independent variable tp . Again it is the magnitude of the sensitivity 

with respect to the selected parameter which is the important result, 

rather than the sign.

Figure 4.8 shows the sensitivity of the kinetic model with 

respect to the enhancement factor, K. As expected, the sensitivity 

is greatest immediately after the shock heating when the physical 

processes involved in the enhancement take place. Errors in 

become less significant as the experiment proceeds.

Figure 4.9 shows the sensitivity of the model with respect to 

the pseudo-first order 02 (b1 i g) decay constant, kqm '[M']. The model 

is most sensitive to errors in this constant over the relaxation 

period and shows no sensitivity when the relaxation is complete.

Figure 4.10 shows the sensitivity of the model with respect 

to the increment in the 0 2(a^ t^) decay at the high temperature,

^d [M'l. As one might expect, the sensitivity follows the same 

pattern as the sensitivity of the 02 (a1^) kinetic model to the 

overall 02 (a1^) decay constant. The model is most sensitive after 

one lifetime (in this case 230 is). It is less sensitive immediately 

a^ er shock heating and towards the end of the decay, when the decay 

curve may be approximated to a straight line.
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Figure 4.11 shows the sensitivity of the model with respect 

to the room temperature decay constant. The pattern is the same as 

that for the sensitivity with respect to the increment in the 

02(a1 decay constant at high temperature, for exactly the same 

reasons.

Figure 4.12 shows the sensitivity of the model with respect 

to the integration time, tg. As with the 02(a1 kinetic model, the 

sensitivity maximum lies immediately after the arrival of the shock 

front, when the most dramatic changes in the emission intensity take 

place.

From these figures it may be deduced that the sensitivity of 

the 02 (b1 Z*"g) kinetic model with respect to the decay constants for 

02(b̂  jfg) and 02(a^ t^) is well separated in time; errors in one 

constant should therefore, have very little influence upon the 

evaluation of the other. The sensitivity of the model with respect to 

the room temperature and high temperature decay of 02 (a1 may be 

superimposed; one will therefore, have great influence upon the 

other. This is not suprising since 2kdm '[M'] is obtained by 

subtracting qj. from the observed high temperature decay. It does, 

however, reinforce the fact that must be an accurately measured 

experimental quantity.

The region which best defines the rate constants for the 

deactivation of C>2(a1 is also well separated from the region in 

which the model is most sensitive to the integration time; hence 

errors in ts will have very little effect upon kdm ’.

The regions of the model's sensitivity to the integration 

time and the 02 (b1 2?”g) decay constant coincide, particularly when the 

relaxation time is short. Thus, these two parameters will have great 

influence upon each other. This has been observed experimentally as 

well as deduced from the sensitivity analysis. Clearly, it would
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FIGURE 4.12 S E N S I T I V I T Y  O F  762nm K I N E T I C  M O D E L  
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be useful to have an accurate and independently measured value for

V
It was for this reason that the calculation of integration 

times, described in Chapter 2, was carried out. These values (table 

2.2) have been used as fixed parameters in the analysis of the high 

temperature data throughout this work.

The model is sensitive to 762.K over the whole time axis and

overlaps with the regions of greatest sensitivity to t , ks q
2kdm [M'l, and ô . Since, tg and are independently calculated and

measured quantities respectively, then provided their values are

determined accurately, the errors produced from the imprecision of

the fitting will involve only 2kdm '[M'], kqm '[M'] and 762K. The 
762sensitivity of K to the experimental data is smallest (dl/dAK is

762largest) early in the experiment» therefore, K will be better 

defined when the relaxation time is short. Conversely, the C>2 (b̂  jfg) 

decay constant is better defined when the relaxation time is long.

4.5.2 Corrections For Q0(a1 Aj) as a Source of Q0(b1 ]fg)

In previous studies carried out in this laboratory [72], it 

was noticed that the deactivation of 02 (b^ ig) tended to 'fall off' 

at higher temperatures. After examining the possibility of systematic 

errors, the possibility of C>2(a1 t^) becoming a source of 02 (b1 ig) at 

high temperatures was examined. This section describes the 

corrections which would apply if this were the case.

The primary source of 02(b1 i g) is the energy pooling reaction 

(equation 4.2), which is one of the fundamental processes involved in 

the rate equation for 02(b1 jfg) and has therefore been accounted for 

in the derivation of the kinetic models. However, the process 

described by equation (4.45),

IfFI E UNIVERSITY LIBRAR'



02 (a1 + M --k r— > 02 (b1 i g) +

(4.45)

is thought to become significant at high temperatures. Dr P. Borrell 

has derived the following equations to account for the presence of

this reaction in the kinetic scheme, k

kinetic model is actually:

as determined from the

k m ' = k f + k rq kq  + kq
(4.81)

where kq and kg are the forward and reverse rate constants for the 

collisional deactivation of 02 (b1 jfg) to 02 (a1 ¿^). By the principle 

of microscopic reversibility.

kqf = kqm '/( 1+0. 5exp(- Q^T))

(4.82)

133

where 0= 7555 Kelvin.

The factors for the correction of kqm ' to the rate constant 

for the deactivation of C>2(b1 i g), kg ,̂ are given in table 4.1. 

Clearly, reaction (4.45) has an insignificant effect upon the value 

of kqm (kgm = kgf) over the temperature range studied in this work 

(295 to 1200K).

The values obtained for the energy pooling rate constant must 

also be corrected for the presence of reaction (4.45) in the kinetic 

scheme. The equation for the correction is:
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Table 4. Correction Factors for 0 o ( b ^ O  Deactivation
------------------------------------------------------------------- ---------------y

Temperature/Kel vin Correction Factor

295 1.0000

1200 0.9991

2000 0.9887

5000 0.9006
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V = kP ~ <kqm ’ [«']/< (1+2exp( <yT))[0 2 (a1 ¿̂ )] )

(4.83)

where k^' is the corrected value of the experimentally obtained 

energy pooling constant, kp. The correction of kp relies on the 

magnitude of the deactivation rate constant for C>2 (b^ if q), and upon 

the mole fraction of 02(a1 ^) present ( (02(a1 ^)]/[M'])* Assuming a 

typical mole fraction of 02(a1 t^) to be 0.04, then the correction 

equation may be evaluated at various temperatures.

(T=295K) k ’ = k - (9 x 10_11k m ')r r 4

(T=1000K) kp ' = kp - (6 x 10_3kqm ')

(T=1200K) kp ' = kp - (2 x 10_2kqm ')

(4.84)

(4.85)

(4.86)

Typical values of the effective deactivation rate constant for the 

test gas mixture range from 1 x 103 to 1 x 106 mol  ̂ dm3 s 1. The 

error in kp , even for the most efficient test gas mixtures studied is 

negligible at room temperature but begins to become significant at 

1000K where the error is approximately 6% in the worst cases. At 

1200K, which is the high temperature limit of this work, the error 

may be as much as 20%. Errors of this magnitude are clearly 

important; therefore a routine has been added to the computer program 

for the analysis of C>2 (b^ ifq) to allow these errors to be calculated 

and corrections made.

Since the vast majority of the determinations carried out in 

this work (over 90%) were at temperatures below 900K where errors in 

kp are small, a rigorous test of these corrections has yet to be
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carried out with experimental data.

4.5.3 Computer Analysis of Q,(b1 E+g) Kinetic Data

The kinetic model (equation 4.80) has been developed into an

interactive computer graphics program by Borrell [61], for use with

the GEC 4082 computer using the HP2647A graphics terminal.

The analysis proceeds in the same manner as that for the

0,(a1A„) kinetic data, with the exception that there is one more

variable parameter, k m [M'], involved. The final result yields k m , 4 4

kdm , tg and 762k directly from the fitting of the kinetic model to

the experimental data. The variable k^ is determined from these rate

constants using equation (4.78). The corrections described in section

4.5.2 are then made to the rate constants k and k m' The ratep q .
constant for the deactivation of C>2 (b̂  E+g) clue to the additive, M,

alone may be calculated from equation (4.55) by hand.

Figure 4.13 shows the fit obtained with a set of experimental

data (Run DSR211B) obtained during the study of the deactivation of

C>2(b^£+g) by nitrogen. The line through the points is the fit

obtained using equation (4.80). There is no increase in the

deactivation of 0,(a^A_), at the high temperature, in this case, z g
A comparison with figure 4.7 shows that the predicted profile 

is in agreement with the the experimental data and confirms that the 

02<b^E+g) kinetic model is a good representation of the physical 

processes involved.

A detailed description of this program was also given by 

Pedley [46] and has remained essentially unchanged, except for the 

addition of the correction routine. Therefore, a description of the 

workings of the program will not be given here.
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THE COLLISIONAL DEACTIVATION OF Q0(a1 A )

1 3 8

5.1 Introduction

The results of the determination of the temperature 

dependence of the collisional deactivation of 02<a1Ag) by HC1, HBr, 

H2 and D2 are presented here. The chapter begins with the room 

temperature deactivation of C>2 (a1Ag) by these species and then 

discusses the high temperature results obtained through shock 

heating. Arrhenius expressions are obtained for the temperature 

dependence of the deactivation rate constants.

During the course of these studies several unexpected 

emissions were observed. The nature and origin of these emissions is 

discussed in the final section.

This chapter serves only to present the results and comment 

upon their validity. A detailed discussion of these results is given 

in chapter 7.
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5.2 Studies of the Colllsional Deactivation of Q2 (a1Ag) at 295K

The determination of the room temperature rate constants for 

the deactivation of 02(a1Ag) by HC1, HBr, H2 and D2 was carried out 

by the method described in section 4.2. The decay of 02(a1Ag) in pure 

02, along the flow tube, was measured using a movable photomultiplier 

equipped with either a 634nm or a 762nm filter. A test gas was then 

introduced into the flow, giving a 1-7% mixture by volume of the 

additive in pure 02, and the decay of 02(a^Ag) along the flow tube 

was measured again. A series of such measurements was performed in 

the pressure range 4-8 torr with linear flow velocities between 1.0 

and 2.5 m s_1. The difference in the observed rate constants, Ak', 

gives the pseudo-first order rate constant for the deactivation of 

02(a1Ag) by M.

Ak' = kdm [M]

which, when plotted against the concentration of the additive [M] , 

allows the second order rate constant for the deactivation of 

02(a1Ag) by M to be evaluated from the gradient.

kdHC1 = (8.00 ±0.34) x 104 

kdHBr = (4.2+2.8 ) x 104

kdHZ = (2.22 ±0.26) X 104 

kd°2 = (2 .56 ±1.30) x 103

mol-1 drn̂  S-1

mol-1 dm

mol dm3 -1s

mol-1 dm3 s-1

Error limits are 2o (95% confidence limits).
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5.2.1 Deactivation of by HC1 at 295K

The determination of the room temperature deactivation of 

°2(a1Ag) by HCl was carried out by Boodaghians [44,68]. The result is 

described here because it is an important part of the temperature 

dependence study, which was carried out jointly.

Figure 5.1 shows an example (Run R9) of a plot of 

0.51n(634I/634Io ) versus distance along the flow tube, both with and 

without 5% HCl added. The gradients of the two lines are taken and 

multiplied by the respective linear flow velocities to give 

pseudo-first order rate constants for the deactivation of 02 (a1A ), 

both in the presence and absence of 5% HCl. In this case the change 

in the observed rate constants is quite large (approximately a factor 

of 2), therefore little scatter is expected in the plot of Ak' versus 

[HCl].

Table 5.1 lists the experimental results and figure 5.2 shows 

a plot of Ak' against [HCl] . The gradient gives the second order rate 

constant, kdHc3, for the deactivation of 02 (a1Â ) by HCl.

kdHC1 = (8.00+0.34) x 104 mol-1 dm3 S-1

The error limits are 2o (95% confidence limits).

The only other result available is shortly to be published by 

Singh, Bachar and Setser [69], who found:

kdHC1 = (2 .4 ±1.8 ) x 103 mol-1 dm3 S-1

They observed non-linear behaviour in the deactivation of O (a^A )
2 g

with HCl concentrations below 1 x 10-5 mol dm-3 in an uncoated pyrex 

reactor but not when the reactor was coated with halocarbon wax.

The determinations carried out here were above
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Table 5.1 Deactivation of O ^ a V  ) by HC1 at 295 K

1 4 2

Run No P^/torr > — C/>
1

[ HC1]/mo1 dm'3 L F V / m s " 1 kJCl/ m o l ' 1 d m 3 s " 1

R9 5.79 1.72

RA9 5.96 1.25 1.63 x 10'5 1.76 7.67 x 104

R10 5.09 1.96

RA10 5.22 1.11 1.43 x 10'5 2.01 7.76 x 104

R11 6.45 1.54

RA11 6.62 1.52 1.81 x 10'5 1.58 8.40 x 104

R12 4.05 2.46

RA12 4.14 0.92 1.13 x 10'5 2.54 8.85 x 104 i 
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F i g u r e  5 . 2  D e a c t i v a t i o n  o f  0 2( a 1A g )  b y  H C I  

a t  r o o m  t e m p e r a t u r e  '
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1 x 10 mol dm . The plot is linear and has an intercept at the 

origin (0,0), which indicates that there is no wall modification in 

this case. During the course of the high temperature experiments the 

room temperature decay along the tube was measured with HC1 present 

many times. There was no observable difference between the decay 

gradients measured immediately after cleaning the flow tube and those 

measured after several days of experiments, which suggests that there 

was no additional deactivation due to a build up of HC1 on the walls 

of our apparatus. In the light of these observations, the rate 

constant for the collisional deactivation of 02(a1Ag) by HC1 

determined in this work is preferred.

5.2.2 Deactivation of Q-,(a1Ag) by HBr at 295K

Th© results of the determination of the room temperature 

deactivation of 02(a1Ag) by HBr failed to give either a straight line 

or a recognisable curve when Ak' was plotted against [HBr]. This was 

attributed to a change in the wall reaction. This change, however, 

failed to stabilize itself sufficiently to reduce the scatter in the 

plot, as long as 60 minutes after the addition of HBr to the flow.

When the system was not allowed to settle and the decay 

gradient was recorded immediately after the addition of HBr, in order 

to minimize the change in the wall reaction, the scatter was improved 

but not sufficiently to give a straight line (figure 5.3). Assuming

that the change in the wall reaction under these conditions is zero, 
k HBr .<3 was estimated from single point determinations, (table 5.2 ).

The average value of these individual determinations was
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Table 5.2 Deactivation of O p ( a 1A^) by HBr at 295 K

Run No P^/torr A k ' / s -1 [HBr]/mol d m ’3 L F V / m s " 1 ,HBr. ,-1 kd /mol

D1 3.96 2.60

DA1 4.04 0.54 1.11 x 10"5 2.68 4.9 x 104

D2 4.37 2.40

DA2 4.50 0.14 7.40 x 10"6 2.41 1.9 x 104

D3 4.70 2.23

DA3 4.87 0.29 8.00 x 10'6 2.24 3.6 x 104

D4 5.36 1.96

DA4 5.53 0.18 9.10 x 10"6 1.96 2.0 x 104

D5 3.67 2.81

DA5 3.80 0.69 1.04 x IQ'5 2.86 6.6 x 104
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kdHBr = (4.2±2.8 ) x 104 mol-1 dm3 s“ 1

When cleaning the flow tube an acidic vapour was observed, 

presumably released from the walls of the flow tube, which is further 

evidence for adsorption of HBr onto the tube walls.

Again the only other value available is shortly to be 

published by Singh, Bachar, and Setser [69].

kdHBr = (4.812.4) x 103 mol-1 dm3 s“ 1

As with HC1, they observed that the experimental pseudo-first order 

rate constant, obtained using an uncoated pyrex tube, was far from 

linear at HBr concentrations below 1 x 10“ 5 mol dm“3, which includes 

the range studied in this experiment. They solved the problem by 

coating their reactor with a halocarbon wax which should not permit 

any wall modification. The walls of the apparatus used in this work 

were not coated because of the practical difficulties involved in 

producing and maintaining a homogeneous coating on a 5 m long,

50.8 mm diameter tube which must remain horizontal and is used as the 

driven section of a shock tube.

In view of the difficulty experienced in obtaining the rate 
HR rconstant, kd , in this work, the result of Singh, Bachar and Setser 

is preferred. Since there is a large difference in the values for 

kd obtained in the two laboratories, it is thought worthwhile to 

record here the value obtained for kdHBr in this laboratory.

_5.2.3 Deactivation of C M a 1Ag) by H, at 295K

The results (table 5.3) of the determination of the room 

temperature deactivation of (^(a^A^) by Hj gave a good straight line
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Table 5.3 Deactivation of 0o (a 1A J by H0 at 295 K*•----- y--------«■

Run No P^/torr A k ' / s " 1 [H2 ]/tnol .dm"3 LFV/ m s ' 1 kJj2/ m o l ~ 1 dm3 s " 1

D6 5.65 1.83

DA6 5.69 0.095 4.63 x 10'6 1.84 2.06 x 104

D7 4.74 2.22

DA7 4.79 0.089 3.83 x 10'6 2.22 2.32 x 104

D8 4.29 2.45

DA8 4.33 0.072 3.49 x 10'6 2.46 2.06 x 104

D9 4.21 2.49

DA9 4.25 0.129 5.46 x 10"6 2.53 2.35 x 104

D10 4.21 2.49

DA10 4.25 0.162 6.73 x 10"6 2.54 2.41 x 104

D11 4.74 2.22

DA11 4.79 0.136 6.12 x 10"6 2.24 2.23 x 104

D12 4.74 2.22

DA12 4.79 0.167 7.56 x 10"6 2.25 2.21 x 104

D13 5.16 2.03

DA13 5.24 0.155 6.69 x 10~6 2.05 2.32 x 104

D14 5.16 2.03

DA14 5.24 0.165 8.27 x 10-6 2.06 2.00 x 104
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(figure 5.4) with an intercept at 0.01 s~1, indicating that there is 

no significant change in the wall reaction. The gradient of the line 

gives the second order rate constant:

kdH2 = (2 .22 ±0.26) x 104 mol-1 dm3 s-1

The error limits are 2a (95% confidence limits).

The result is approximately a factor of 10 higher than those 

of Findlay and Snelling [70] and Becker and co-workers [71]. Findlay 

and Snelling used a flash photolysis technique which involved 

subtracting values for the deactivation of 02 (a1Ag) by 02 alone.

Their value for k^^was 50% higher than the currently preferred 

value. This would, therefore, clearly lead to a lower value of kd^2.

Becker and co-workers experienced some difficulty in obtaining 

values of kdm for a variety of deactivators [84]. In some cases, the 

deactivation of 02(â  Ag) actually reduced upon the addition of the 

test gas. They attributed this phenomenon to wall effects and the 

slowing down of diffusion.

The experiments were repeated but gave the same result, within 

experimental error. Billington [83] working with a 2.5cm diameter 

discharge flow tube obtained:

kdH2 = 2.5 x 104 mol-1 dm3 s_1

with no indication of a change in the wall deactivation rate 

constant. This agrees well with the value reported in this work, 

which is preferred to that of other workers.
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(figure 5.4) with an intercept at 0.01 s , indicating that there is 

no significant change in the wall reaction. The gradient of the line 

gives the second order rate constant:

kdH2 = (2.22+0.26) x 104 mol-1 dm3 s-1

The error limits are 2a (95% confidence limits).

The result is approximately a factor of 10 higher than those 

of Findlay and Snelling [70] and Becker and co-workers [71]. Findlay 

and Snelling used a flash photolysis technique which involved 

subtracting values for the deactivation of 02 (a16g) by C>2 alone.

Their value for k ^ 2was 50% higher than the currently preferred 

value. This would, therefore, clearly lead to a lower value of kd 2̂ .

Becker and co-workers experienced some difficulty in obtaining 

values of kdm for a variety of deactivators [84] . In some cases, the 

deactivation of 0 2 (a1Ag) actually reduced upon the addition of the 

test gas. They attributed this phenomenon to wall effects and the 

slowing down of diffusion.

The experiments were repeated but gave the same result, within 

experimental error. Billington [83] working with a 2.5cm diameter 

discharge flow tube obtained:

kdH2 = 2.5 x 104 mol-1 dm3 s- ^

with no indication of a change in the wall deactivation rate 

constant. This agrees well with the value reported in this work, 

which is preferred to that of other workers.
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5.2.4 Deactivation of Q,(a1A?) by D? at 295k

The results of the room temperature deactivation of Oj(a^ A ) 

by D2 (table 5.4) are very scattered and did not give a straight line 

plot, (figure 5.5). It is thought unlikely that this is due to wall 

modification by D2, which is a non—polar species, particularly since 

no wall deactivation changes were observed during the study of the 

deactivation of 02 (a1Ag) by H2. The reason for the scatter is more 

likely to be that the small difference (less than 5%) in the measured 

gradients, as shown in figure 5.5, produces quite large errors in an 

individual Ak' value.

For this reason, a large number of determinations were carried 

out. The value of kd°2 from each experiment was evaluated and the 

mean value of 28 separate experiments calculated. The standard error 

of the mean was calculated according to the formula:

o = ±( E( v)/(n2-n ) ) 1/2

(5.1)

where v is the deviation from the average value (v^=k^-kav) and n is 

the number of points.

The value for the room temperature deactivation of 02(a1Ag) by 

°2 is thus:

kdD2 = (2.56 ±1.30) x 103 mol-1 dm3 s-1

No values for this constant were found in the literature.

although it does compare well with the recent work of Billington [83] 

who obtained:
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F i g u r e  5 . 6  R u n  D 1 7  A n  e x a m p l e  o f  o b s e r v e d  

d e c a y  g r a d i e n t s  o f  0 2 ( a  1A g )

P ,/to rr L F V /m s -1 G ra d ie n t/m -1 G rad ient/s -1

1<J

02 only

°2 + 3-55% D2

4-87

4-95

2 • 16 

2-20

- 0 - 2 8 3

- 0- 293

- 0-610

- 0 - 6 4 4
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Table 5.4 Deactivation of O q U ' a ^  by D p at 295 K
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Run No P^/torr A k ' / s ' 1 [D2 ]/mol dm"3 L F V / m s ' 1 kj2/ m o l ” 1 dm3 s ' 1

D15 4.62 2.27

DA15 4.66 0.035 3.76 x 10"6 2.29 9.33 x 103

D16 4.87 2.16

DA16 4.91 0.015 6.29 x 10~6 2.19 2.40 x 103

D17 4.87 2.16

DA17 4.95 0.034 9.60 x 10"6 2.20 3.50 x 103

D18 5.36 1.96

DA18 5.49 0.026 8.63 x 10-6 1.97 2.99 x 103

D19 5.36 1.96

DA19 5.53 0.037 1.29 x 10"5 1.98 2.89 x 103

D20 5.82 1.80

DA20 5.90 0.025 9.28 x 10~6 1.83 2.74 x 103

D21 5.82 1.80

DA21 5.94 0.021 1.39 x 10"5 1.8d 2.54

D22 6.93 1.52

DA22 7.10 0.068 1.34 x 10"5 1.53 5.10 x 103

D23 7.80 1.35

DA23 8.00 0.018 1.51 x 10-5 1.36 1.17 x 103

D24 7.76 1.35

DA24 8.09 -0.010 2.49 x 10"5 1.38 -3.82 x 102
\d
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Table 5.4 continued

Run No P^/torr A k ' / s " 1 [D2 ]/mol dm"3 L F V / m s " 1 k ^ / m o l ' 1 dm3 s ' 1

D25 5.36

DA25 5.57

D26 6.02

DA26 6.19

D27 6.02

DA27 6.29

D28 6.02

DA28 6.31

D29 6.35

DA29 6.44

D30 6.35

DA30 6.52

D31 6.02

DA31 6.35

D32 6.35

DA32 6.56

D33 6.35

DA33 6.64

D34 6.85

DA34 6.93

D35 6.85

DA35 7.01

-5

0.083 1.36 x 10 1.77-5

-5

-5

-6

-5

-5

0.061 2.62 x 10 J 1.70-5

0.016 6.02 x 10"6 1.54

-0.011 1.16 x 10"3 1.54-5

1.96

-0.007 1.87 x 10 3 2.01

1.74

1.74

0.066 1.93 x 10 1 .77

1.74

0.039 2.40 x 10 3 1.79

1.65

0.079 5.59 x 10 u 1.66

1.65

0.039 1.08 x 10 3 1.66

1.74

0.046 2.85 x 10 1.80

1.65

0.010 1.60 x 10"5 1.68

1.65

1.53

1.53

-3.58 x 10‘

6.12 x 10“

3.40 x 10“

1.63 x 10“

1.40 x 10"

3.62 x 10“

1.93 x 10“

6.44 x 10‘

2.32 x 10“

2.72 x 10“

-9.60 x 10"
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Table 5.4 continued

Run No P^/torr Ak'/s ^ d m -3 L F V / m s -1 kjj2/mo1 " 1 d m 3 s " 1

D36 6.85 1.53

DA36 7.05 0.004 1.68 x 10"5 1.56 2.44 x 102

D37 6.85 1.53

DA37 7.14 0.019 2.35 x 10“5 1.56 8.21 x 102

D38 5.90 1.78

DA38 6.11 0.001 1.71 x 10'5 1.83 7.6 x 10'

D39 5.90 1.78

DA39 6.19 -0.013 2.43 x 10'5 1.83 -5.31 x 102

D40 5.90 1.78

DA40 6.27 -0.026 3.34 x 10"5 1.85 -7.81 x 102

D41 5.90 1.78

DA41 6.31 -0.020 3.52 x 10"5 1.85 -5.80 x 102
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5.3 High Temperature Studies of the Collisional Deactivation of

The determination of the rate constants for the deactivation 

of Ojfa^g) at high temperature by each additive was carried out by 

the method described in section 4.3. The rate constants for the 

deactivation of (^(a^A^) by HC1/ H2 and D2 were measured between 500 

and 1200 Kelvin. It was not possible to carry out high temperature 

studies of the deactivation of 02 (a1Ag) by HBr, since no post-shock 

signal was obtained.

In the studies with the other three additives, experiments 

were performed with mixtures containing between 0.5 and 7.0 percent 

of the additive. The overall volume flow rate at s.t.p. was

28.0 cm3 s"1, at a total pressure of approximately 6 torr, giving a 

linear flow velocity of approximately 1.6 m s~1. Before shock 

heating, the pre-shock decay of Oj(â  Ag) along the flow tube was 

measured using a movable photomultiplier unit.

The following Arrhenius expressions were obtained for the 

temperature dependence of the deactivation of 02<a1Ag).

kdHC1 = (2.7511.70) x 107 exp[-( 1750 ±190 )/T] mol-1 dm3 s-1

kdH2 = (1.32±1.08) x 108 exp [-(2600 ±180 )/T] mol-1 dm3 s_1

kdD2 = (2.75±0.75) x 107 exp [-(2740 290 )/T] mol" 1 dm3 s_1

5.3.1 Deactivation of O^ta^g) by HBr at High Temperatures

The attempt to study the deactivation of C>2 (a1Ag) by HBr at 

high temperatures was unsuccessful. No recognisable post-shock signal 

could be seen in the very noisy traces which were recorded. The
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monitoring system was checked by shock heating pure oxygen to 

approximately the same temperature as the HBr/02 mixtures. This 

produced traces which showed that the monitoring apparatus was 

working correctly. The lack of signal was, therefore, not due to 

instrument failure and must have a chemical or physical explanation.

After several attempts to record high temperature HBr/02 data, 

the flow tube became coated with a brown deposit thought to be 

bromine. Such evidence of a chemical reaction suggests that the 

explanation for the lack of signal might involve an extremely rapid 

chemical reaction which removes 02 (a1Ag).

5.3.2 Deactivation of 0,(a1A ) by HC1 at High Temperatures

This experimental work was carried out in collaboration with 

Boodaghians [44] . However, the data ha\4f been reanalysed here, using 

calculated integration times from table 2.3.

The results of the analysis are given in table 5.5, and the 

input parameters for each run are listed in Appendix 3. Figure 5.7 

shows the temperature dependence of k^*33-. Since the temperature 

dependence is positive, an Arrhenius plot was made (figure 5.8). The 

high temperature values are extrapolated to the room temperature 

value, determined in section 5.2.1. The Arrhenius equation obtained 

between 295 and 1180K, by least squares analysis is:

kdHC1 = (2.75±1.70 ) x 107 exp [-( 1750 ±190 )/T] mol-1  dm3 s" 1

The equation predicts an activation energy of (14.511.7) kJ mol” .̂

This analysis agrees well with the previous analysis by 

Boodaghians, in which the integration time remained a dependent 

variable in the fitting of the 634nm Kinetic Model (equation 4.35).
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Table 5.5 High Temperature Deactivation of 02 (a1A g ) by HC1

HC1

%

Run No T2
Kelvin

634 k

>

,HC1
a

: • 10® mol  ̂ dm3 s

log k f
-1

3.0 R 3 4 7 599 0.92 1.95 6.29

3.0 R348 630 0.86 1.87 6.27

3.0 R346 705 0.98 2.78 7.01

3.0 R345 707 0.91 3.22 6.45
3.0 R344 725 0.91 1.98 6.51
3.0 R343 789 1.05 4.05 6.61
3.0 R341 838 1.09 3.03 6.48
3.0 R340 893 0.84 2.08 6.32
3.0 R339 964 1.22 9.09 7.00
3.0 R342 1038 1.28 3.65 6.56
5.0 R334 725 1.26 2.86 6.46
5.0 R350 735 0.95 1.13 6.50
5.0 R332 825 1.08 5.41 6.73
5.0 R330 891 0.99 3.88 6.59
5.0 R331 944 1.18 3.49 6.54
5.0 R355 1021 1.34 5.32 6.73
5.0 R353 1032 1.29 2.88 6.46
5.0 R352 1046 1.27 4.36 6.40
5.0 R356 1112 1.36 5.40 6.73
5.0 R354 1172 1.31 5.90 6.77
7.0 R364 605 1.03 2.52 6.40
7.0 R363 683 1.03 1.88 6.27
7.0 R362 701 1.00 2.56 6.40
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Boodaghians obtained:

kdHCl = (2.34±1.0 ) x 107 exp[-( 1660 ±180 )/T] mol-1 dm3 s“ 1

It was hoped that the scatter would be reduced by reanalysis with a 

fixed tg, but in fact, no improvement was observed. Subsequently, 

sensitivity analysis (section 4.3.1) showed that little change in the 

results could be expected through fixing tg.

The scatter is typical of shock tube measurements, in which 

the errors are associated with the bursting of the diaphragm and the 

establishment of the shock front. Since HC1 is an efficient 

deactivator of (^(a^A^), a low signal to noise ratio is observed 

under the pre-shock conditions. Small absolute errors in the 

measurement of the pre-shock glow will lead to large relative errors, 

particularly when it is used to predict the enhanced signal under 

post-shock conditions. This will clearly increase the degree of 

scatter in this case.

5,3.3 Deactivation of (^(a^A^) by H? at High Temperature

A series of determinations woi carried out on mixtures 

containing 0.5 and 1.0 percent H2 in pure oxygen. The results of the 

analysis are given in table 5.6. The input parameters for each run 

are given in Appendix 4. Figure 5.9 shows an increase in kdH2 with 

temperature.

At approximately 850K, an additional emission is seen at 

634nm, in the later part of the trace (figure 5.16), which allows the 

analysis of only the first part of the data recorded. The time to the 

beginning of the additional emission shortened with temperature so 

that above 1000K, it was not possible to analyse the data at all, as
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Table 5.6 High Temperature Deactivation of 0 „ (a A ) by H 
"" " *2---- 9------- 2

H2 Run No T 2
6 3 4 k kH2

Kd log k(

% Kelvin x 106 mol  ̂ d m ^ s

0.5 DSR61A 516 0.95 0.64 5.81
0.5 DSR30A 609 0.91 0.93 5.97

0.5 DSR27A 617 0.92 1.01 6.00

0.5 DSR21A 628 1.01 5.10 6.71

0.5 DSR33A 633 1.02 2.94 6.47

0.5 DSR36A 676 0.99 2.70 6.43

0.5 DSR38A 684 1.08 3.73 6.57

0.5 DSR34A 685 0.97 3.36 6.53
0.5 DSR39A 689 1.14 3.34 6.52

0.5 DSR40A 691 1.08 3.10 6.49

0.5 DSR37A 706 1.08 6.45 6.65

0.5 DSR43A 769 1.01 4.89 6.69

0.5 DSR44A 769 1.16 5.65 6.75

0.5 DSR41A 775 1.10 7.85 6.89

0.5 DSR46A 887 1.15 8.00 6.90

0.5 DSR47A 923 1.15 13.3 7.12

0.5 DSR49A 950 1.23 17.6 7.25

0.5 DSR48A 979 1.20 18.7 7.27

1.0 DSR59A 532 0.99 1.28 6.11

1.0 DSR52A 555 0.91 0.85 5.93

1.0 DSR54A 591 1.02 1.74 6.24

1.0 DSR55A 603 1.01 4.87 6.68

1.0 DSR50A 633 0.92 1.21 6.08



Table 5.6 continued

1 6 4

H2
%

Run No T2
Kel vin

6 3 4 k k^2Kd
x 10^ mol  ̂ d m 3 s

log kj2
.-1

1.0 DSR9A 644 1.01 6.90 6.84

1.0 DSR10A 668 1.04 3.20 6.51

1.0 DSR18A 701 0.99 4.95 6.69

1.0 DSR11A 750 1.00 1.16 6.06

1.0 DSR15A 765 0.98 3.40 6.53

1.0 DSR12A 767 0.99 2.89 6.46

1.0 DSR24A 789 1.00 9.30 6.97

1.0 DSR17A 814 0.95 3.64 6.56

1.0 DSR19A 818 1.11 5.00 6.70

1.0 DSR23A 870 1.22 8.50 6.93

1.0 DSR20A 879 1.23 10.1 7.00

1.0 DSR25A 946 1.19 12.0 7.08

1.0 DSR22A 987 1.30 15.8 7.20
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the additional emission became dominant. The nature and origin of 

this emission is discussed in section 5.4 .

In an attempt to remove the additional emission, and hence 

extend the temperature range above 1000K, nitrogen was added to the 

test mixture. In order to establish the effect of N2 upon the 

deactivation of 02 (a^Ag), mixtures of 10, 25 and 50 peircent N2 and 02 

were tested in the same manner as the mixtures. No additional

deactivation of 02 (a1Ag) was observed at the high temperatures 

(500-1400K). Results for these mixtures are given in table 5.7. Run 

parameters may be found in Appendix 5.

The determination of the deactivation of 02(a1Ag ) by H2 at 

high temperatures was repeated using 1.0% H2, 24.0% N2 and 75.0% 02 

mixtures (table 5.8). The run parameters are also given in Appendix 

4. Unfortunately the addition of N2 only shifted the appearance 

temperature of the additional emission to approximately 900K, 

preventing the extension of the temperature range. The results are 

included in figures 5.9 and 5.10.

The positive temperature dependence gave the Arrhenius plot 

shown in figure 5.10. The high temperature values are extrapolated to 

the room temperature value determined in section 5.2.3.

The Arrhenius equation obtained between 295 and 1000K by least 

squares analysis is:

kdH2 = (1.3211.08) x 108 exp [-(2600 ±180 )/T] mol-1 dm3 s“ 1

The equation predicts an activation energy of (21.611.5) kJ mol- .̂

Again the scatter is typical of shock-tube measurements and is 

influenced by the low signal to noise ratio observed when an 

efficient deactivator is studied.
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Table 5.7 High T e mperature Deactivation of 0o (ai ̂ A ) by

n 2/o 2 Mixtures
----- -c --— sp— -

n2 Run No T2
6 3 4 k

kma
% Kelvin x 104 mol  ̂ dm^ s ' 1

10 DSR234A 519 0.71 -1.09
10 DSR235A 519 1.34 +1.09
10 DSR236A 536 0.63 -1.07
10 DSR229A 605 0.74 +2.03
10 DSR230A 611 0.70 -0.43
10 DSR228A 679 0.78 -2.65
10 DSR227A 741 0.73 +2.24
10 DSR225A 829 0.78 -2.70
10 DSR232A 1039 0.87 +2.45
10 DSR224A 1110 0.79 -2.83
10 DSR223A 1127 0.89 -5.02
10 DSR233A 1263 0.95 +3.43
10 DSR231A 1492 1.15 +5.60
25 DSR238A 525 0.81 +1.06
25 DSR239A 528 0.75 -3.10
25 DSR216A 609 0.74 -0.79
25 DSR222A 611 0.80 -1.39
25 DSR221A 656 0.83 -0.78
25 DSR218A 742 0.86 +0.73
25 DSR217A 781 0.81 +0.77
25 DSR220A 814 0.88 -0.80
25 DSR219A 874 0.85 +0.85
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Table 5.7 continued

N2 Run No T2
634 k km

d
% Kelvin x 104 m o l ” 1 d m 3 s " 1

25 DSR211A 1003 1.01 +3.20
25 DSR212A 1087 1.05 +2.23
25 DSR215A 1135 1.09 +0.57
25 DSR214A 1375 1.67 -2.15
25 DSR213A 1424 1.93 +0.64 I
50 DSR208A 523 0.84 -1.58

1
1

50 DSR209A 526 0.86 +2.15
50 DSR210A 561 0.93 +0.97 i
50 DSR207A 607 0.89 -0.97

J
)

50 DSR206A 615 0.89 -0.99
j*

50 DSR205A 717 0.85 +1.21 3
50 DSR203A 769 0.82 +2.00

3»
3

50 DSR204A 844 0.96 -1.71
/

50 DSR201A 858 0.98 + 1.87
50 DSR202A 1149 1.32 +0.61
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Table 5.8 High Temperature Deactivation of Q,,(a1A g ) by Hp 

in an Hg/N.,/0,, Mixture

H, N, Run No To 6 3 4 k | A2 2 2 d log k
% % Kelvin x 106 m o l " 1 dm3 s ' 1

1.0 24.0 DSR420A 514 0.90 -1.50 _

1.0 24.0 DSR422A 525 0.87 -2.12 -

1.0 24.0 DSR421A 535 1.02 1.61 6.21

1.0 24.0 DSR423A 557 1.02 1.92 6.28

1.0 24.0 DSR417A 618 1.02 2.78 6.44

1.0 24.0 DSR419A 620 1.01 0.38 5.58

1.0 24.0 DSR412A 682 1.08 -0.06 -

1.0 24.0 DSR410A 691 1.06 0.82 5.92

1.0 24.0 DSR414A 704 1.05 0.61 5.79

1.0 24.0 DSR411A 738 1.08 2.31 6.36

1.0 24.0 DSR404A 807 1.07 1.22 6.09

1.0 24.0 DSR405A 849 1.10 2.07 6.32

1.0 24.0 DSR401A 877 1.10 2.58 6.41

1.0 24.0 DSR409A 877 1.15 6.50 6.81

1.0 24.0 DSR407A 968 1.16 8.45 6.93

1.0 24.0 DSR406A 978 1.24 6.45 6.81



5.3.4 Deactivation of (a Â ) by D? at High Temperatures

A series of determinations was carried out on mixtures 

containing 1.5 and 3.0 percent D2 in pure oxygen. The results of the 

analysis are given in table 5.9. The input parameters for each run 

are given in Appendix 6 .

An additional emission was observed at temperatures above 

900K. This emission was similar to that observed in the previous 

section and prevented the analysis of the full trace above 900K. It 

was not possible to analyse data obtained at temperatures above 1200K 

at all. This additional emission is included in the discussion in 

section 5.4.

Figure 5.11 shows an increase in k^D2 with temperature, 

therefore an Arrhenius plot was made (figure 5.12) which gave the 

following equation for the temperature dependence of the deactivation 

of 02(a1Ag) by Dj.

kd°2 = (2.8811.24) x 108 exp [-(3430+170 )/T] mol-1 dm3 s-1

The equation predicts an activation energy of (28.5 11.4) kJ mol“ .̂

A series of determinations was also carried out on D2/N2/C>2 

mixtures in an attempt to remove the additional emission. The results 

of these determinations are given in table 5.10, and are shown on 

figure 5.13. As in the determination of 02 (a1Ag) by H2, the addition 

of N2 did not dilute the 02(X^2Tg) sufficiently to remove the 

additional emission.

The rate constants determined in the presence of N2 are 

consistently lower than those determined in pure 02 . The Arrhenius 

plot (figure 5.14) gives the expression:
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Table 5.9 High Temperature Deactivation of 0 „ ( a 1A bv D„--------------- 1.-----y------ £

°2 Run No T2 6 3 4 k kD*Kd log kj*

l K e l vin X 10^ mol  ̂ dm3 s"^

1.5 DSR121A 533 0.77 -0.49 _

1.5 DSR119A 537 0.80 -0.07 -

1.5 DSR120A 545 0.78 -0.10 -

1.5 DSR118A 554 0.70 4.67 6.67
1.5 DSR122A 575 0.83 1.28 6.11
1.5 DSR124A 602 0.74 2.45 6.39
1.5 DSR123A 634 0.84 1.24 6.09
1.5 DSR107A 669 0.77 4.87 6.69
1.5 DSR106A 681 0.76 4.53 6.66
1.5 DSR122A 689 0.82 4.07 6.61
1.5 DSR103A 706 0.81 4.93 6.69
1.5 DSR104A 708 0.90 5.00 6.70
1.5 DSR114A 745 0.84 4.40 6.64
1.5 DSR117X 748 0.91 5.10 6.71
1.5 DSR117B 748 0.91 4.33 6.64
1.5 DSR113A 756 0.83 4.13 6.62
1.5 DSR109A 795 0.82 5.80 6.76
1.5 DSR115A 799 0.86 5.40 6.73
1.5 DSR125A 842 0.89 1.82 6.26
1.5 DSR105A 848 0.79 6.73 6.83
1.5 DSR116A 885 0.61 3.47 6.54
1.5 DSR116B 885 0.68 3.23 6.51



Table 5.9 continued

°2 Run No T2
634 k kD*a log k[j

% Kelvin x 106 m o l " 1 dm3 s ' 1

1.5 DSR126A 954 0.93 1.45 6.16

1.5 DSR102A 1146 1.18 30.6 7.48

1.5 DSR110A 1155 1.07 28.4 7.45

1.5 DSR111A 1178 1.39 48.3 7.68

1.5 DSR101A 1216 1.42 39.6 7.60

3.0 DSR129A 537 0.89 1.13 6.05

3.0 DSR127A 541 0.87 0.71 5.85

3.0 DSR128A 546 0.81 1.10 6.04

3.0 DSR130A 572 0.91 1.17 6.07

3.0 DSR131A 611 0.88 0.95 5.98

3.0 DSR132A 627 0.87 0.90 5.96

3.0 DSR136A 628 0.74 -0.43 -

3.0 DSR141A 630 0.88 0.81 5.91

3.0 DSR135A 636 0.87 0.71 5.85

3.0 DSR142A 649 0.88 1.10 6.04

3.0 DSR140A 698 0.86 1.19 6.07

3.0 DSR138A 719 0.98 1.63 6.21

3.0 DSR143A 728 0.93 1.46 6.16

3.0 DSR139A 763 0.91 1.33 6.12

3.0 DSR146A 768 0.82 0.36 5.55

3.0 DSR145AX 782 0.87 1.46 6.16

3.0 DSR144A 791 0.90 1.32 6.12

3.0 DSR137A 837 0.90 0.69 5.84



Table 5.10 High Temperature Deactivation of 0 „ ( a 1A ) bv D„— ¿---------g-------------2
in D^/N^/O^ mixtures

1 7 7

D2
n2 Run No

T2
6 3 4 k kD *d log k

% % Kelvin X 10^ mol  ̂ dm^ s-^

3.0 22.0 DSR316A 513 0.83 -2.25 -

3.0 22.0 DSR317A 514 0.81 -7.43 -

3.0 22.0 DSR314A 547 0.76 -1.04 -

3.0 22.0 DSR310A 596 0.83 -4.53 -

3.0 22.0 DSR315A 610 0.82 0.42 4.63

3.0 22.0 DSR311A 617 0.79 -0.11 -

3.0 22.0 DSR312A 618 0.82 3.37 5.53

3.0 22.0 DSR313A 626 0.84 1.98 5.30

3.0 22.0 DSR309A 627 0.83 8.37 5.92

3.0 22.0 DSR308A 703 0.93 12.6 6.10

3.0 22.0 DSR307A 749 0.84 15.1 6.18

3.0 22.0 DSR305A 767 0.81 4.30 5.63

3.0 22.0 DSR306A 786 0.87 5.40 5.73
3.0 22.0 DSR302A 833 0.85 19.5 6.29

3.0 22.0 DSR304A 912 0.97 31.4 6.50

3.0 47.0 DSR330A 511 0.89 -4.57 -

3.0 47.0 DSR331A 511 0.99 0.21 4.32

3.0 47.0 DSR332A 537 0.88 0.29 4.47

3.0 47.0 DSR333A 610 0.97 2.60 5.42

3.0 47.0 DSR327A 614 0.83 6.53 5.81
3.0 47.0 DSR320A 617 0.81 1.65 5.22

r
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Table 5.10 continued

°2 n 2 Run No T2
634 k kD *Kd log k

% % Kelvin x 105 m o l ' 1 dm3 s ' 1

3.0 47.0 DSR326A 657 0.91 1.35 5.13
3.0 47.0 DSR324A 692 0.93 6.80 5.84
3.0 47.0 DSR325A 717 0.91 6.60 5.82
3.0 47.0 DSR323A 734 0.90 4.93 5.69
3.0 47.0 DSR328A 817 0.90 9.73 5.99
3.0 47.0 DSR329A 852 0.97 10.4 6.02
3.0 47.0 DSR319A 864 0.99 20.2 6.31
3.0 47.0 DSR318A 978 1.16 44.3 6.65
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k ^  = (2.75®.75) x 107 exp[-(2740 d90)/T] mol-1 dm3 s_1

for the temperature dependence. An activation energy of (22.8®.7) kJ 

mol-1 is predicted.

Again the scatter is typical of shock tube results, but in 

this case the signal to noise ratio is higher than was observed for 

the two previous deactivators because D2 is a relatively inefficient 

deactivator at room temperature. This is reflected in the smaller 

errors which occur in the Arrhenius expression.

The first determination of the high temperature deactivation 

of 02(a1 by D2 was carried out, on the same apparatus, after the 

determination of the deactivation of 0 2 (a1 /̂ ) by H2; it is therefore 

possible that some H2 remained in the system during the early runs 

(1.5% D2). Since H2 is a more efficient deactivator of 02 (a1 

(approximately a factor of 10 at room temperature), even a small 

amount of this additive mixed with the D2 would increase the value of

. The apparatus was then checked and the earthing of the |
I

monitoring instruments improved. The studies on 0_/n , mixtures 

described in section 5.3.2 were then carried out before the second 

determination of k^m (in d2/C>2/N2 mixtures) was made. On completion 

of this second determination, the H2/0 2/N2 experiments were carried 

out to check on the H2/02 determination of kdH2 . As shown by figures 

5.9 and 5.10, the two sets of H2 results agreed well.

Therefore the expression for the temperature dependence of the 

deactivation of 02 (a1 ̂ ) by D2 carried out in the presence of N2 is 

preferred.

5.3.5 The Enhancement Factor, ^3i*K
634„Figure 5.15 shows a plot of the enhancement factor
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versus temperature for mixtures of various deactivating species with 

excited oxygen studied in this work. A selection of points has been 

plotted,' other points were omitted for clarity. The value of 634K is 

approximately equal to unity at temperatures up to 800K, as predicted 

by a simple collisional approach to the enhancement of the emission 

intensity. However, above 800K there is a systematic increase in 

634K. This increase is due to hot bands in the dimol emission of 

singlet oxygen and has been studied by Boodaghians and co-workers 

[73].

The line on figure 5.15 indicates the calculated value of 634K 

allowing for hot bands. The agreement of the experimental data with 

the calculated 634K - temperature plot is good evidence that the 

fitting of the 634nm Kinetic Model (equation 4.35) to the data is 

behaving as expected and that the model is a good representation of 

the real conditions. The enhancement factors obtained for all of the 

runs are given in tables 5.5 to 5.9.



5.4 Additional Emissions

An additional emission was observed at high temperatures in 

mixtures of C>2 with HC1, H2 or D2 . This emission appeared at 

temperatures above 900K. In each case, the form of the emission 

intensity - time profile changed, so that the emission intensity at 

634nm began to rise again. Run DSR126A (figure 5.16) is shown as an 

example. The emission shows an induction period of about 250 ps in 

this case. In general, the induction period reduces and the intensity 

of the additional emission increases with increasing temperature for 

all three additives.

The induction period and the presence of hydrogen (deuterium)

in each additive suggests that the emission may be a by-product of

the H + C>2 system. Washida, Akimoto and Okuda [74] have studied the

system at 295K and found that 09 (a^A ) is a product of the reaction:z g

H02 + H --- > h2 + 02 (a1 Ag or X3 Z~g)

(5.2)

The extra emission, therefore, could be due to this reaction, 

initiated by hydrogen atoms generated at high temperatures in the 

discharge flow - shock tube.

The experiments carried out in this work were designed to study 

the deactivation of Ojia^Ag) by HC1, Hj and D2 , and, as a result, the 

temperature range in which the additional emission is present was 

avoided. Spectroscopic studies were not possible because of the short 

duration of the high temperature experiment (1000 ps) and the short 

persistence of the additional emission (200 ps).

In the studies involving HC1 and HBr, further emissions were 

observed, which did not appear in the post-shock regime at either
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634nm or 762nm. These green emissions were observed when pure oxygen 

was passed through the microwave discharge and into the flow tube at 

room temperature, immediately after a shock tube experiment had been 

performed. They had sufficient intensity to be visible to the naked 

eye (plate 5.1) and persisted for about 15 minutes.

Attempts were made to record the spectra of these emissions 

using a Hilger Prism Spectrograph but a useful result was not 

obtained due to poor resolution. It was suspected that either mercury 

in the oxygen stream or aluminium from the diaphragm may be involved 

in a reaction with these compounds. However, experiments intended to 

reproduce the glow artificially by passing discharged C>2 over 

chlorides and bromides of mercury and aluminium were unsuccessful.

One possible origin of the green glow in the HBr/02 

experiments is the emission from the HgBr(B^ Z) radical which is 

blue/green in colour. The HgBr/HgBr2 dissociation laser, which relies 

on this emission, has been described by Erlandson and Cool [75] .

The existence of a similar system for HgCl/HgC^ would explain 

the glow in the HCl/Oj experiments, although no reference to such a 

system has been found in the literature.



185

Plate 5.1

A photograph of the green emission observed after shock heating 

HCI/O2 mixtures, followed by passing discharged C>2 along the flow 

tube.



A photograph of the green emission observed after shock heating 

HCl/02 mixtures, followed by passing discharged 02 along the flow



THE COLLISIONAL DEACTIVATION OF Q0 ( b 1 '¿+

6.1 Introduction

The results of the temperature dependence study of the 

deactivation of 02(b1 E+g) by HC1, HBr, H2 and D2 are presented in 

this chapter. The room temperature deactivation of C>2(b1 2+g) by these 

species is discussed first and then the high temperature results 

obtained by shock heating are considered.

As in the study of the deactivation of 0,(a1A ) reported inz g
the previous chapter, additional emissions were observed. These 

emissions are considered in the final section.

This chapter serves only to present the results and comment 

upon their validity. A detailed discussion of these results is given 

in the next chapter.



6.2 Studies of the Collisional Deactivation of 0,(b1 Z+ ) at 295K 

The determination of the room temperature (295K) rate 

constants for the deactivation of 02(b1 E+g) by HC1, HBr, H2 and D2 

was carried out by the method described in section 4.4.

The emission intensities at 634nm and 762nm were measured in 

the absence and then in the presence of the additive, M. A 

pseudo-first order deactivation rate constant, kqm [M] , for the 

additive was then determined from equation (4.52). The value of kq°2 

was taken as 1 x 10 3 mol 1 dm3 s 1 [46] and the wall deactivation 

rate constants were calculated using equation (4.52). The procedure 

was repeated many times over the total pressure range 3 - 1 0  torr, 

adding between 0.5 and 9.0 percent of the deactivator to pure 02- 

Plots of f( $m , 4>o ) versus [M] were constructed to give the 

second order rate constant kg™ as the gradient. The following rate 

constants were evaluated at 295K by least squares analysis.

kqHC1 = (1.60 ±0.20 ) x 107 mol-1 dm3 s“ 1

kqHBr = (1.42±0.07) x 108 mol“ 1 dm3 s“ 1

kg H2 = (2.76 ±0.06) x 108 mol“ 1 dm3 s“ 1

kqD2 = (5.27 ±0.18) x 106 mol“ 1 dm3 s“ 1

The error limits are 2 o.

— .2• 1 Deactivation of °3(b1 Z+q) by HC1 at 295K

The determination of the deactivation of 02(b1E+g ) by HC1 was 

carried out in collaboration with Boodaghians [44,68]. The



experimental results are listed t,n table 6.1. Figure 6.1 shows the 

plot of f(^HCl'*o^ versus [HCll • The gradient is the second order
t i p i  1 J.rate constant kq for the deactivation of 02(b E g) by HC1.

kqHC1 = (1.60 ±0.20) x 107 mol“ 1 dm3 s“ 1 

The error limits are 2 a.

This result is lower than previous estimates by 

Kohse-Hoinghaus and Stuhl [85] , Thomas and Thrush [77] and Gauthier 

and Snelling [86] .

kqHC1 = (7.8 ±2.4) x 107 mol“ 1 dm3 s“ 1 [85]

kqHC1 = (4.4±1.0) x 107 mol“ 1 dm3 s” 1 [77]

kqHC1 = (4.0±2.0) x 107 mol“ 1 dm3 s“ 1 [86]

but agrees well with the shortly-to-be-published result by Singh and 

Setser [87] .

kqHC1 - (2.4±1.2) x 107 mol“ 1 dm3 s“ 1 [87]

Although HC1 is an awkward gas to handle, consistent results 

were obtained for several different mixtures of HC1 and O^. Since the 

Plot is linear and has its intercept at the origin (0,0), no 

indication of a wall modification is observed in this case. Small 

amounts of impurities with a lower deactivation rate constant would 

have a negligible diluent effect upon an efficient deactivator, such 

as «Cl, and impurities with a higher deactivation rate constant would 

increase the value of the observed rate constant. One may conclude
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Table 6.1 The Deactivation of 0,,(b1i*) by HC1 at 295 K

HC1 PRESSURE 4>HC1 $02 f(*HCl, *0? ) [HC1 ]

% /torr

CO1C
D / 1 0 ' 3 /x 10'5 mol

4.26 3.94

3 4.34 12.28 112 0.71

4.76 3.98

3 4.80 12.77 118 0.79

5.25 4.00

3 5.30 13.68 132 0.87

5.71 3.97

3 5.84 14.50 147 0.96

6.37 4.16

3 6.45 15.58 157 1.06

6.87 4.34

3 6.95 16.41 163 1.14

7.38 4.38

3 7.50 17.62 182 1.23

7.95 4.63

3 8.07 18.63 189 1.32

8.48 4.71

3 8.61 20.10 210 1.41

10.22 5.34

3 10.43 25.33 267 1.71

9.39 5.07

3 9.48 22.78 237 1.55

dm

4.43 4.36
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Table 6.1 continued

HC1

%

PRESSURE

/torr

$HC1

/10'3

$ o 2

/ 1 0 " 3

f($HCl, $02 ) 

/ s ' 1

[HCl] 

/x 10"5 mol

5 4.55 22.38 220 1.24

3.89 4.21

5 4.06 17.30 165 1.11

4.92 4 . 4 5

5 5.09 19.56 184 1.39

4.84 4 . 9 7

7 5.01 28.00 249 1.92

5.38 5.10

7 5.51 31.64 285 2.11

5.88 5.15

7 6.08 35.62 331 2.73

6.74 5.07

7 6.87 40.73 410 2.63

7.04 5.17

7 7.28 * 42.12 423 2.79

7.41 4 . 8 8

7 7.70 45.11 498 2.95

7.74 5.03

7 8.07 44.66 486 3.09

8.36 4.95

7 8.69 45.40 522 3.22

„-3

9.35

9.68

5.46

52.837 588 3.71
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Table 6.1 continued

HC1

%

PRESSURE

/torr

<t>HCl

/ 1 0 -3

i>02

/ 1 0 -3

f(iHCl, O02 ) 

/ s ' 1

[HC1]

/x 10 5 mol dm 3

7 10.15 51.25 657 4.03

4.05 4.61

9 4.22 32.79 323 2.08

4.43 4.50

9 4.59 32.54 331 2.26

5.05 4.52

9 5.25 36.94 388 2.59

6.66 4.34

9 6.95 45.04 544 3.42

5.51 4.32

9 5.71 39.26 445 2.81

7.32 4.66

9 7.66 48.72 596 3.77
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that the lower rate constant reported here is not the result of 

impurities in the system. In view of these facts, it is believed that 

the rate constant determined in this work is reliable and it is 

preferred to those reported by other workers.

The absence of a wall modification in these experiments 

supports the observation that there was no wall modification during 

the HCl/02(a1Ag) experiments (section 5.2.1) and strengthens the view 

that a good value was obtained for kdHC1 at 295K.

6.2.2 Deactivation of O^tb1 I+q) by HBr at 295K
UDv.In order to obtain a good estimate of kg and to minimize 

the errors, a series of experiments was carried out which gave a 

total of 100 separate data points. The results are given in table 

6.2. Figure 6.2 shows the plot of f( ̂ gr' versus (HBr]. The 

gradient is the second order rate constant for the collisional 

deactivation of 02(b1Z+g) by HBr.

kqHBr = (1.42±0.07) x 108 mol-1 dm3 s" 1 

The error limits are 2 a.

The plot is linear and has an intercept close to the origin 

(0,0), indicating that there is no significant modification of the 

wall deactivation in this case.

The contrast between the wall effect observed in the 

HBr/o2(a1A^) experiments and the absence of a wall modification in 

this work may be explained by the difference in the nature of the 

wall deactivation processes. In the HBr/C>2(a1Aq) experiments, the 

rate of deactivation at the wall is controlled by the efficiency of 

the wall with respect to 02(a1Aq). Therefore, an increase in the wall
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Table 6.2 The Deactivation of 0->(b^z*) by HBr at 295 K*- y----------------------

HBr

t

PRESSURE

/torr

$ H B r  

/x 10"3

$o2

/x 10'

f(oHBr, $02 ) 

‘3 / s ’ 1

[HBr]

/x 10 5 mol dm 3

3.71 4.21

3 3.80 57 665 0.62

4.09 3.83

3 4.13 50 634 0.68

4.25 3.97

3 4.29 65 816 0.71

4.37 4.03

3 4.46 71 880 0.73

4.62 4.01

3 4.70 82 1042 0.77

5.12 4.02

3 5.24 86 1106 0.86

5.61 4.05

3 5.78 112 1480 0.95

6.60 4.05

3 6.27 113 1431 1.03

6.68 4.07

3 6.97 124 1781 1.15

7.88 4.15

3 7.96 133 1935 1.31

3.80 4.38

3 4.00 60 676 0.66

4.00 4.20

3 4.25 76 902 0.70



194

Table 6.2 continued

HBr

%

PRESSURE

/torr

$HBr 

/x 10":

$o2

3 /x 10"3

4.14 4.17

3 4.33 89

4.58 4.08

3 4.79 94

4.95 4.08

3 5.28 105

5.49 3.94

3 5.78 110

5.86 3.99

3 6.19 128

6.35 4.00

3 6.77 131

7.14 4.01

3 7.67 158

7.76 4.09

3 8.25 163

3.80 3.96

3 3.96 87

3.84 3.99

3 4.25 93

4.04 3.93

3 4.25 93

4.41 3.96

3 4.54 96

f($HBr, $02 ) 

/s'1

1078

1179

1338

1480

1736

1820

2290

2401

1108

1177

1192

[HBr]

/x 10 5 mol d m -3

0.71

0.79

0.87

0.95

1.02

1.11

1.26

1.36

0.65

0.70

0.70

1232 0.75
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Table 6.2 continued

HBr

%

PRESSURE 

/to rr

$>HBr 

/x 10"3

i>02

/x 10"3

f($>HBr, $02 ) 

/ s ' 1

[HBr]

/x 10'5 mol dm"3

4.70 3.96

3 4.95 113 1467 0.81

5.24 3.97

3 5.45 122 1616 0.90

5.57 3.94

3 5.98 135 1831 0.98

5.86 3.93

3 6.23 136 1876 1.02

6.39 3.93

3 6.81 146 2070 1.19

7.26 4.05

3 7.71 159 2299 1.27

3.80 3.98

3 3.96 57 703 0.65

3.96 3.98

3 4.13 75 941 0.68

4.08 3.96

3 4.25 91 1165 0.70

4.25 3.92

3 4.46 85 1096 0.74

4.54 3.88

3 4.79 93 1224 0.79

4.87 3.88

3 5.12 98 1305 0.84
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Table 6.2 continued

HBr

%

PRESSURE

/torr

$HBr 

/x 10"3

$ 0 2

/ x  10"3

f($HBr, <j>02 ) 

/ s ' 1

[HBr]

/x 10 5 mol d m -3

5.20 3.86

3 5.53 108 1467 0.91

5.69 3.85

3 5.90 115 1601 0.97

6.12 3.85

3 6.52 131 1869 1.08

7.14 3.93

3 7.26 129 1902 1.20

4.04 3.72

5 4.25 150 2071 1.16

4.91 3.71

5 5.28 170 2406 1.45

5.76 3.74

5 6.15 210 3065 1.69

6.81 3.80

5 7.22 240 3634 1.99

3.84 4.06

5 4.04 140 1780 1.11

4.54 4 . 0 7

5 4.58 163 2080 1.25

4.91 4.16

5 5.03 162 2044 1.38

5.53 4 . 1 2
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Table 6.2 continued

HBr PRESSURE $HBr $>02 f($HBr, $02 ) [HBr]
i  /torr /x 10'3 /x 10-3 / s ' 1 /x 10-5 mol d m 3

5.98 4.18

5 6.35 200

6.44 3.96

5 7.10 214

7.59 4.05

5 8.00 214

8.00 4.05

5 8.50 250

3.96 4.20

5 4.17 138

4.62 4.17

5 4.79 157

5.12 4.11

5 5.36 190

5.82 4.07

5 6.15 226

6.56 4.27

5 7.01 225

7.80 4.11

5 8.21 214

8.91 4.23

5 9.49 250

3.75

5 3.88 132 4.20

2637

3042

3172

3863

1685

1934

2461

3042

3000

3169

3854

1608

1.74 

1.95 

2.19 

2.33 

1.15 

1.32 

1.47 

1.69 

1.93 

2.26 

2.61
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Table 6.2 continued

HBr
*

PRESSURE $>HBr $02 f($HBr, $02) [HBr]
/torr /x 10'3 /x 10"3 / s " 1 /x 10'5 mol dm"3

4.29

5 4.46 146

4.95

5 5.28 167

5.45

5 5.78 188

5.86

5 6.27 196

6.27

5 6.60 192

7.18

5 7.26 217

7.55

5 7.67 231

3.92

5 4.08 118

4.04

5 4.29 124

4.46

5 4.62 146

4.79

5 4.99 155

5.28

5 5.69 167

4.20

4.11

4.16

4.18

4.24

4.10

4.28

3.95

3.88 

3.82

3.88 

3.85

1789

2137

2428

2562

2526

3105

3233

1527

1636

1980

2090

2311

1.22

1.45

1.58

1.72

1.81

1.99

2.10

1.12

1.18

1.27

1.37

1.57



1 9 9

Table 6.2 continued

HBr

%

PRESSURE

/torr

OHBr 

/x 10"3

$02

/x 10'3

f(i>HBr, $02 ) 

/ s ' 1

[HBr]

/x 10-5 mol dm'3

5.69 3.83

5 6.15 168 2381 1.68

6.19 3.82

5 6.68 186 2705 1.83

6.72 3.93

5 7.26 194 2822 2.00

7.38

5 8.04 215 3.91 3274 2.21

8.13

5 8.66 217 3.99 3365 2.38

3.67

7 3.92 136 4.18 1670 1.51

3.96

7 4.08 147 4.11 1849 1.57

4.25

7 4.58 163 4.06 2083 1.76

4.58

7 4.87 188 4.04 2431 1.87

4.95

7 5.32 192 4.01 2534 2.05

5.45

7 5.86 219 3.99 2966 2.26

5.61

7 6.11 216 3.96 2960 2.35
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Table 6.2 continued

HBr

%

PRESSURE

/torr

$HBr 

/x 10'3

$o2

/x 10'3

f($HBr, $02 ) 

/ s ’ 1

[HBr]

/x 10 5 mol dm"3

5.94

7 6.44 235 3.95 3289 2.48

6.44

7 7.18 257 3.98 3640 2.76

7.10

7 7.76 258 4.01 3774 2.99

3.71

7 3.96 165 4.04 2104 1.52

3.96

7 4.21 170 4.03 2171 1.61

4.25

7 4.54 186 4.00 2413 1.74

4.62 3.99

7 4.99 200 2623 1.91

4.99 4.00

7 5.40 216 2858 2.07

5.61 3.97

7 5.98 232 3164 2.29

6.52 4.03

7 7.14 273 3850 2.74

7.01 4.05

7 7.67 277 3991 2.94

3.71 4.18
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Tabi e 6.2 continued

HBr

%

PRESSURE

/torr

$HBr 

/x 10'3

$o2

/x 10"3

f(oHBr, $ 0 2 ) 

/ s ' 1

[HBr]

/x 10’^ mol d m -3

3.96 4.10

7 4.17 169 2120 1.60

4.29 4.10

7 4.54 193 2444 1.74

4.91 4.05

7 5.03 217 2830 1.93

5.16 4.03

7 5.61 237 3141 2.15

5.94 4.02

7 6.44 263 3616 2.47

6.35 4.03

7 6.93 264 3692 2.66

6.72 4.03

7 7.26 277 3951 2.78

7.43 4.06

7 8.09 273 4016 3.10



/
<

*H
B

r 
.«

*»
{>

,>
 /

X
 

1
0

202

F i g u r e  6 . 2  D e a c t i v a t i o n  o f  0 2 ( b  Z g )  b y  H B r  a t  2 9 5 K

4n

3-

2-

1-

A /  
/  

/ a
/

A ° /V
A a

4 0
o /

° / A
o /  &

□  o /  A
fl ° /

O O y A  Aa 
O/ a

□ y
□ □ O/ °

/ o

7

/l

D nD/o

&□ / □  □
□

/
/

%
/

/
/

/

% H B r

D 3 0  
o 5 0  
A 7 0

[ H B r ]  /  x  1 0 ‘ 5 m o l  d m -3



efficiency due to the adsorption of HBr will result in an increase in 

the wall deactivation rate for 02(a1Ag). In contrast, the efficiency 

of the wall with respect to 02 (b1 E+g) is so great that the wall 

deactivation rate is diffusion controlled. Therefore, an increase in 

the wall efficiency with respect to 02(b1E+g) will have no effect 

upon the wall deactivation rate for C>2(b1E+g).

The rate constant given here agrees very well with the work of 

Braithwaite and co-workers [42] and the forthcoming publication of 

Singh and Setser [87], who obtained:

k HBr = (2.3 ±0.5) x 108 mol-1 dm3 s-1 [42]

kqHBr = (1.20+0.36) x 108 mol-1 dm3 s" 1 [87]

6.2.3 Deactivation of 0-,(b1 E+ ) by H„ at 295K
-------------------— ----------------------------------- -d r 9 ----------------------- * f -------------------------------

HIn order to obtain a good estimate of k^ 2 and to minimize

errors, a series of experiments was performed which gave a total of

100 separate data points. The results are presented in table 6.3.

Figure 6.3 shows the plot of f( ,0 ) versus [H ] . The gradient isH2 o z

the second order rate constant for the collisional deactivation of 

°2(b1Z+g) by H2.

kqH2 = (2.76 ±0•06) x 108 mol-1 dm3 s-1 

The error limits are 2 o.

The plot is linear and has an intercept close to the origin 

(°.0 ), indicating that there is no significant change in the wall 

deactivation in this case*

Previously determined rate constants fall into two groups, an
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Table 6.3 The Deactivation of 0,,(b1;;*) by Hq at 295 K

H2

%

PRESSURE

/torr

$ h 2

/x 10"3

$o2

/x 10-3

f($H2 , $02 ) 

/ s ' 1

[h 2 ]

/x 10~® mol dm"3

5.03 5.08

0.5 5.03 45 421 1.36

5.20 5.25

0.5 5.20 46 420 1.40

5.45 5.28

0.5 5.45 47 431 1.47

5.69 5.35

0.5 5.69 49 450 1.53

6.02 5.32

0.5 6.02 52 491 1.62

6.44 5.47

0.5 6.44 56 528 1.73

6.93 6.05

0.5 6.93 60 519 1.87

7.34 5.64

0.5 7.34 62 590 1.98

7.84 5.72

0.5 7.84 66 641 2.11

8.09 5.75

0.5 8.09 70 690 2.18

5.07 5.21

0.5 5.07 49 450 1.37

5.28 5.34

0.5 5.28 48 435 1.43
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Table 6.3 continued

H2

%

PRESSURE

/torr

$h 2

/x 10'3

$o2

/x 10"3

$02 )

/ s ' 1

[h 2 ]

/x 10 6 mol dm

5.61 5.36

0.5 5.61 49 449 1.52

5.78 5.37

0.5 5.82 51 472 1.57

6.06 5.40

0.5 6.11 53 496 1.65

6.44 5.46

0.5 6.44 55 520 1.74

6.77 5.51

0.5 6.81 58 545 1.84

7.14 5.58

0.5 7.14 61 582 1.93

7.59 5.65

0.5 7.59 64 620 2.05

7.88 5.74

0.5 7.88 68 663 2.13

8.46 5.84

0.5 8.50 73 728 2.30

5.03 5.33

0.5 5.03 47 422 1.36

5.20 5.45

0.5 5.24 50 445 1.42
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Table 6.3 continued

H2
*

PRESSURE

/torr

$h 2

/x 10'3

$o2

/x 10"3

f(*H2 , $02 ) 

/ s ’ 1

[h 2 ]

/x 10 6 mol dm

0.5 5.53 51 457 1.49

5.86 5.55

0.5 5.86 53 468 1.58

6.19 5.57

0.5 6.19 56 504 1.67

6.44 5.65

0.5 6.44 57 513 1.73

6.77 5.70

0.5 6.81 62 567 1.84

6.97 5.70

0.5 6.97 63 584 1.88

7.10 5.77

0.5 7.10 63 581 1.92

7.43 5.85

0.5 7.43 66 614 2.01

5.07 5.23

0.5 5.07 45 412 1.38

5.24 5.32

0.5 5.28 45 407 1.44

5.45 5.36

0.5 5.49 50 458 1.49

5.69 5.35

5.69 510.5 474 1.55
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Table 6.3 continued

H2
%

PRESSURE

/torr

4>H2 

/x 10"3

$o2

/x 10'3

f ( * H 2 , $02 ) 

/ s ' 1

[h 2 ]

/x 10 6 mol d m -3

0.5 5.90 53 496 1.61
6.19 5.38

0.5 6.19 56 534 1.68
6.52 5.43

0.5 6.56 58 558 1.78
6.93 5.54

0.5 6.93 61 581 1.89
7.47 5.61

0.5 7.51 65 634 2.04
8.00 5.74

0.5 8.00 69 682 2.18
5.03 5.11

0.5 5.03 46 428 1.36
5.20 5.31

0.5 5.20 47 425 1.41

5.32 5.32

0.5 5.36 48 435 1.45

5.53 5.36

0.5 5.53 50 457 1.50

5.86 5.41

0.5 5.86 53 488 1.59

6.23 5.52

0.5 6.27 55 497 1.70
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Table 6.3 continued

H2

l

PRESSURE

/torr

o h 2

/x 10'3

$o2

/x 10"3

f(i>H2 , $ 0 2 ) 

/ s ’ 1

[ h 2]

/x 10 6 mol dm

0.5 6.60 58 539 1.79

6.97 5.60

0.5 6.97 62 581 1.89

7.10 5.63

0.5 7.14 62 582 1.94

7.59 5.77

0.5 7.63 67 635 2.07

5.12 5.21

0.5 5.16 46 424 1.40

5.36 5.22

0.5 5.36 47 433 1.46

5.53 5.25

0.5 5.53 50 469 1.50

5.69 5.27

0.5 5.73 51 481 1.56

5.86 5.29

0.5 5.86 52 492 1.59

6.23 5.32

0.5 6.23 55 530 1.70

6.68 5.43

0.5 6.68 58 564 1.82

6.85 5.46
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Table 6.3 continued

H2
%

PRESSURE

/torr

i>H2 

/x 10'3

$o2

/x 10'3

f(*H2 , *02 ) 

/ s ' 1

[h 2 ]

/x 10"6 mol

7.26 5.51

0.5 7.30 62 605 1.99

7.47 5.62

0.5 7.51 64 628 2.04

4.58 5.37

1.0 4.62 76 701 2.54

4.95 5.34

1.0 4.95 77 725 2.72

5.20 5.31

1.0 5.20 79 753 2.86

5.40 5.36

1.0 5.40 82 786 2.97

5.78 5.41

1.0 5.78 93 905 3.18

6.27 5.48

1.0 6.27 95 930 3.45

6.56 5.54

1.0 6.60 102 995 3.63

7.22 5.68

1.0 7.22 109 1079 3.97

7.84 5.84

1.0 7.84 121 1217 4.31

8.09 5.94

1.0 8.09 122 1221 4.45
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Table 6.3 continued

H2

%

PRESSURE 

/to rr

o h 2 

/x 10'3

$o2

/x 10-3

f ( 4 H 2 , $02 ) 

/ s ' 1

[h 2 ]

/x 10"6 mol dm'3

4.99 5.57

1.0 5.03 82 729 2.75

5.34 5.52

1.0 5.34 83 755 2.92

5.49 5.56

1.0 5.49 88 804 2.99

5.86 5.56

1.0 5.90 92 859 3.22

6.27 5.67

1.0 6.31 97 904 3.45

6.77 5.76

1.0 6.77 105 996 3.70

7.26 5.88

1.0 7.34 113 1081 4.01

7.84 5.94

1.0 7.84 121 1193 4.28

8.42 6.13

1.0 8.46 131 1295 4.62

8.91 6.19

1.0 8.91 141 1426 4.87

4.87 5.37

1.0 4.87 79 738 2.67

5.03 5.32

1.0 5.07 79 748 2.78
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Table 6.3 continued

H2
%

PRESSURE

/torr

$h 2

/x 10"3

$02

/x 10-3

f($H2 , $02 ) 

/ s ' 1

[h 2 ]

/x 10”® mol d m -3

5.28 5.36

1.0 5.28 84 797 2.89

5.49 5.38

1.0 5.53 86 826 3.03

6.11 5.44

1.0 6.11 96 937 3.35

6.44 5.54

1.0 6.48 101 976 3.55

6.85 5.58

1.0 6.93 108 1069 3.80

7.51 5.77

1.0 7.59 117 1167 4.12

8.50 5.93

1.0 8.58 136 1402 4.70

9.08 6.11

1.0 9.12 143 1485 5.00

4.66 5.44

1.0 4.70 80 731 2.54

5.03 5.42

1.0 5.03 83 772 2.74

5.53 5.47

1.0 5.57 89 841 3.03

5.94 5.57

1.0 5.98 93 869 3.25



212

Table 6.3 continued

H2
%

PRESSURE

/torr

$h 2

/x 10"3

4>02

/x 10"3

f($H2 , $02 ) 

/ s ' 1

[h 2 ]

/x 10"6 mol dm"3

6.52 5.64

1.0 6.56 102 971 3.57

7.10 5.73

1.0 7.14 112 1090 3.89

7.67 5.89

1.0 7.71 125 1226 4.20

8.25 5.98

1.0 8.25 135 1356 4.49

8.54 6.07

1.0 8.58 139 1397 4.62

8.99 6.18
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8 ” 1 3 —1upper group of values around 5 x 10 mol dm s [85,86,42] and a
8 —1 3 —1lower group of values around 2.5 x 10 mol dm s [87,89,90].

Since the effect of impurities tends to increase rather than decrease 

the observed rate constant, the lower group of values is preferred. 

The rate constant determined in this work lies within the lower 

group, consisting of results by Becker, Groth and Schurath [89] ,

Singh and Setser [87] and O'Brien and Myers [90]j who obtained:

kqH2 = (2.71+1.20) x 108 mol-1 dm3 s“ 1 [87]

kqH2 = (2.41±0.72) x 108 mol-1 dm3 s_1 [89]

kqH2 = (2.41 ±0.36) x 108 mol-1 dm3 s" 1 [90]

All four results lie within the same error limits. However, the value

of the rate constant determined here is preferred because of the 

large number of data points.

6.2.4 Deactivation of CU(b1 Z+q) by at 295K

Since only a small quantity of D2 was available, a series of 

experiments was carried out which gave only 40 separate data points. 

It is felt that 40 data points are sufficient to give a good estimate 

of the rate constant for the deactivation of 02(b1£+q) by D2 with 

reasonably small errors and still conserve D2 for high temperature 

experiments. The results of this determination are given in table 

6.4. Figure 6.4 shows the plot of f ( 4^ , 4Q) versus [D2] which has the 

rate constant kqD2 as its gradient.
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Table 6.4 The Deactivation of O ^ b 1!*) by Dp at 295 K

°2
%

PRESSURE

/torr

$ d 2

/x 1 0 ' 3

$02

/x 1G'3

f($D2 , $02 ) 

/ s ’ 1

[o2 ]

/x 10'6 mol d m -3

4.17 5.58

1.47 4.17 7.94 22.4 3.37

4.29 5.46

1.47 4.33 7.87 23.4 3.50

4.66 5.48

1.47 4.70 7.94 23.8 3.80

4.95 5.48

1.47 4.99 7.85 23.3 4.03

5.40 5.53

1.47 5.49 8 . 2 0 26.5 4.44

5.57 5.34

1.47 5.65 8.10 28.5 4.57

6.11 5.66

1.47 6.19 8 . 5 2 28.6 5.00

6.72 5.73

1.47 6.84 8 . 5 8 29.0 5.53

7.38 5.84

1.47 7.47 9.14 34.2 6.04

8.00 5.98

1.47 8.09 9.99 42.1 6.54

4.41 5.64

1.47 4.46 8.16 23.6 3.57

4.66 5.65
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Table 6.4 continued

D2
*

PRESSURE

/torr

$ d 2

/x 10'3

$o2

/x 10"3

f(*D2 , $02 ) 

/ s ' 1

[d 2 ]

/x 10"6 mol d m " 3

4.99 5.51

1.47 5.07 7.99 24.2 4.06

5.45 5.73

1.47 5.53 8.48 26.3 4.42

5.82 5.78

1.47 5.94 8.45 25.7 4.75

6.19 5.85

1.47 6.27 8.95 29.9 5.02

7.14 6.02

1.47 7.22 8.95 29.0 5.71

7.84 6.25

1.47 7.92 9.54 32.5 6.34

8.09 5.27

1.47 8.17 9.64 38.7 6.47

4.21 5.21

3.45 4.25 9.77 45.2 8.01

4.46 5.24

3.45 4.54 9.83 46.5 8.55

4.70 5.27

3.45 4.79 10.2 49.9 9.02

4.12 5.48

3.45 5.20 10.2 46.6 9.80

5.57 5.37

3.45 5.90 10.7 54.6 10.7
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Table 6.4 continued

°2
%

PRESSURE

/torr

$ d 2

/x 10"3

i>02

/x 10"3

f($D2 , $02 ) 

/ s ’1

[ d 2 ]

/x 10"^ mol d m -3

6.31 5.42

3.45 6.39 12.0 67.7 12.0

7.05 5.53

3.45 7.18 13.5 70.3 13.5

8.09 5.68

3.45 8.25 15.5 74.3 15.5

8.66 5.77

3.45 8.91 16.8 88.1 16.8

4.13 5.52

4.55 4.21 11.7 59.1 10.5

4.29 5.69

4.55 4.37 11.2 51.2 10.9

4.62 5.72

4.55 4.74 11.9 57.6 11.8

4.95 5.56

4.55 5.07 12.3 65.2 12.6

5.45 5.59

4.55 5.61 12.8 70.7 13.9

5.82 5.61

4.55 5.94 13.2 75.4 14.8

6.44 5.72

4.55 6.64 14.1 84.1 16.5
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Table 6.4 continued

d2 p r e s s u r e  $ d 2 $o 2 f ( $ D 2 , $o2 ) [D2 ]

I  /torr /x 10'3 /x 10"3 / s ' 1 /x 10-6 mol dm"3

4.55 7.30 14.8 91 .7 18.1

7.63 6.20

4.55 7.84 16.6 102.6 19.5

8.46 6.44
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kq°2 - (5.27 ±0.18) x 106 mol“ 1 dm3 s“ 1 

The error limits are 2 a.

Again, a linear plot is obtained with an intercept at the 

origin (0,0), indicating that there is no change in the wall 

reaction.

The rate constant given here is lower than those reported by 

O'Brien and Myers [90] and Davidson, Kear and Abrahamson [39].

kq°2 = (1.20+0.30) x 107 mol“ 1 dm3 s“ 1 [90]

kqD2 = (1.02 ±0.20 ) x 107 mol“ 1 dm3 s“ 1 [39]

It is nearer to that reported by Kohse-Hoinghaus and Stuhl [85] .

kq°2 = (8.43+1.20) x 106 mol“ 1 dm3 s~ 1 [85]

However, they estimate that the rate constant may be 10 - 20 

percent too large because of an unquantified H2 impurity in their D2 

supply. The presence of H2, which is 20 times more efficient as a 

deactivator of C>2 (b1E+q), is a possible reason why the other two 

values are also larger than the value reported in this work. The 

value reported here is preferred to the above values [85,90,36] as it 

is lower and therefore may be less affected by an H2 impurity.

Kohse-Hoinghaus and Stuhl [85] report that Becker, Groth and 

Schurath [92] determined the ratio kqD2:kqH2 to be 0.0168:1. Taking 

their value for kqH2 , which agrees well with that determined in the 

previous section, a value of
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kqD2 = 4.03 x 106 mol-1 dm3 s_1

is obtained.

Although this value is the lowest, the value determined here 

is preferred because it was obtained independently of the kq H2 value.



6.3 High Temperature Studies of the Collisional Deactivation of

The determination of the rate constants for the deactivation 

of 02(b1Z+g) at temperatures between 500 and 1200 Kelvin was carried 

out by the method described in section 4.5. As with the 02(a1Ag) 

studies/ it was not possible to make high temperature measurements of 

the deactivation of 02(b1I+g) by HBr, for the reasons outlined in 

section 5.3.1.

In studies with HC1, H2 and D2jexperiments were performed with 

mixtures of between 0.5 and 7.0 percent of these deactivators in pure 

02. The total volume flow rate at s.t.p. was 28.0 cm3 s-1, at total 

pressures of approximately 6 torr, giving a typical linear flow 

velocity of about 1.6 m s~1.

Before shock heating, the pre-shock decay of the C>2 (b1 E+g) 

emission (762nm) along the flow tube was measured using a movable 

photomultiplier.

Since the determination of the deactivation of ° 2 (a ̂ Ag) by 

each of these additives showed a significant increase in k^1” at high 

temperatures, the analysis of the C>2(b1E+g) data was carried out 

using the 762nm Kinetic Model (equation 4.80) which takes the 

simultaneous deactivation of Ojfa^g) into account.

6.3.1 Deactivation of Q?(b̂  Z+g) by HC1 at High Temperatures

This experimental work was carried out in collaboration with 

Boodaghians [44] . However, the data ha>/g been reanalysed here in view 

°f the corrections to the C>2(b1£+g) deactivation rate constants 

discussed in section 4.5.2. The corrections arise from the 

participation of the reaction:



2 2 3

0 2( a 1Ag ) + M ------ > 02 ( b 1 j;+ ) + M

(4.45)

and gain significance at temperatures above 1000K. Previous results 

for the temperature dependence of the deactivation of C>2(b1 £+g) by 

NH3, NO and HC1 have shown a 'fall off' in the rate constant for the 

process at high temperatures. By allowing for reaction (4.45), it was 

hoped to determine whether the 'fall off' is a true representation of 

the temperature dependence or the result of using an incomplete 

kinetic scheme to describe the reactions in the shock heated gas.

Fixed integration times, tgJcalculated for the single slit 

mechanism (table 2.3) were used, together with fixed values of the 

energy pooling reaction rate constant, k , which were obtained ih 

several previous studies [13,44,46,60] and are independent of the 

additive. The relaxation time of 02(b1Z+g), xrel, is very short in 

the presence of HC1 (k^m is large) and becomes comparable to the 

integration time at higher temperatures so that the fitting of the 

two parameters would be interdependent. Therefore t is fixed to 

reduce the errors in the kgm value. The fixing of kp allows 762k to 

be established from the value of kgm obtained by fitting the 762nm 

Kinetic Model to the data. The value of 762K is well defined as it is 

determined by the fit of equation (4.80) without influence from 

errors in tg.

The device of fixing tg and k^ allows the fitting of kgm and
y in *Kd to be carried out more accurately and more rapidly. The 

sensitivity analysis discussed in section 4.5.1 shows the wisdom of 

fixing these parameters in the 02(b1I+g) analysis.

The results of the analysis are given in table 5.5, and the 

input parameters for each run are listed in Appendix 3. Figure 6.5 

shows the temperature dependence of kgHC .̂ The dashed line has been



Table 6.5 Deactivation of O p C ^ g ) bY HC1

HC1

%

Run no T2
/Kelvin

762«

/X

k HC1q
107 m o l ' 1 dm3 s " 1

T rel 
MS /x

kP
104 mol  ̂ d m 3 s"^

3 RA346 599 1.22 3.1 116 4.06

3 RA348 630 1.25 3.3 96 4.49

3 RA345 707 1.22 6.3 56 6.92

3 RA337 804 1.13 11.0 28 10.57

3 RA340 893 1.61 7.3 28 12.57

3 RA342 1038 2.25 3.8 26 17.08

5 RA334 725 1.42 6.3 36 7.95

5 RA350 736 1.12 4.3 29 7.98

5 RA332 825 2.05 5.1 33 10.94

5 RA330 891 2.29 5.1 29 13.09

5 RA331 944 2.14 5.6 22 14.09

5 RA351 947 1.82 7.8 19 14.46

5 RA353 1032 3.53 6.6 18 16.64

5 RA352 1046 2.77 3.9 21 17.31

7 RA362 701 1.69 3.6 40 5.85

7 RA361 743 1.49 5.9 27 7.78

7 RA360 778 1.56 6.5 24 9.08

7 RA359 818 1.63 6.8 21 10.21

7 RA358 880 1.51 9.1 16 12.20

7 RA357 958 1.66 9.1 14 14.11
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drawn by eye to show the general trend. The plot shows a slight 

positive temperature dependence which 'falls off’ at higher 

temperatures.

The scatter in the results is typical of shock tube results. 

The large signal to noise ratio, however, aids the reduction of the 

scatter in these 02(b1E+g) studies carried out with the discharge 

flow - shock tube.

One may conclude from the reanalysis that the model used by 

Boodaghians (equation 4.80 without corrections) is as appropriate as 

the one used in this work, which allows for 02(a 1Ag) as a source of 

02(b1E+g), over the temperature range 295 to 1200 Kelvin. The 

observation that kqHC1 'falls off' at high temperatures must, 

therefore, be a result of the physical chemistry of the interaction.

The only other temperature dependence study of the 

deactivation of 02(b^ E+g) by HC1 found in the literature is that of 

Kohse-Hoinghaus and Stuhl [85] who also obtained a small positive 

temperature dependence over the range 205 to 311 Kelvin. Their data 

havg been added to figure 6.5. Taken together the two sets of data 

indicate that the deactivation of °2 (a1Ag) by HC1 is nearly 

independent of temperature. However, if the results were scaled down 

so that their value at 295K coincides with the one determined in this 

work, as indicated by the arrows on figure 6.5, they would follow the 

same trend as the results obtained here. That is to say, a small 

positive temperature dependence would be observed overall.

6.3.2 Deactivation of Q0(b^£+g) by H0 at High Temperature

A series of determinations was carried out on mixtures 

containing 0.5 and 1.0 percent H2 in pure 02. The data were analysed 

by fitting the 762nm Kinetic Model in the same way as described in



the previous section. The results of the analysis are given in table 

6.6(a). The input parameters for each run may be found in Appendix 4.

As with the Ojta^Ag) studies, an additional emission was seen 

at the monitoring wavelength (762run in this case) which prevented 

analysis of the data above 1000K. This additional emission is 

discussed in section 6.4. A series of experiments was carried out 

using a 1%H2/24%N2/75%02 mixture, in an attempt to extend the 

temperature range.

Rather than use previously determined values of kqN2 [46] to 

calculate the deactivation due to N2 in the H2/N2/C>2 mixtures, it was 

decided to measure the deactivation of 02 (b1£+g) due to N2/02 

mixtures before proceeding with the H2/n 2/02 experiments. Mixtures of 

10, 25 and 50 percent N2 in pure 02 were tested in the same manner as 

the H2/o 2 mixtures, except that kp was also fitted since kg™ is small 

(Trel is large) in this case. Results for these mixtures are given in 

table 6.7. Run parameters may be found in Appendix 5. For each 

mixture, k^"1 was plotted against temperature (figure 6.6 ). The 

scatter is sufficiently great, and the difference in deactivation 

sufficiently small, that it is not possible to draw three distinct 

curves through the points with any degree of accuracy.

An attempt was made to determine k^°2 an<j kgN2 by solving 

simultaneous equations at various temperatures. This was unsuccessful 

since the third set of results (50% N2) did not agree with predicted 

values for this composition made from values of kg°2 and kqN2, 

calculated from the other two sets of results (10 and 25% N2).

Although it would be possible to improve the scatter 

statistically by producing much more data, this would be a side track 

from the intended investigation. Since k^°2 an(j kgN2 could not be 

accurately obtained from this work, the overall constant k m for the 

N2/°2 Mixture was used when analysing the H2/N2/02 mixture.
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Table 6.6(a) D e a ctivation of O0 (b1zt) by H 0 in pure 0„c g-1 ------------ 2

H2

%

Run No T2
/Kelvin

762 k

/x

~ 7 ^
q

10® mol  ̂ dm® s"^
kp

/x 104 mol  ̂ dm® s ^

0.5 DSR61B 516 1.89 2.66 2.95

0.5 DSR30B 609 2.67 2.44 4.37
0.5 DSR29B 613 2.82 2.22 4.41

0.5 DSR27B 617 2.85 2.20 4.47

0.5 DSR32B 625 2.60 2.76 4.68
0.5 DSR31B 628 2.78 2.54 4.75
0.5 DSR33B 633 3.11 2.06 4.79
0.5 DSR35B 649 2.91 2.64 5.25
0.5 DSR36B 676 3.33 2.42 5.89
0.5 DSR38B 684 3.59 2.70 6.03
0.5 DSR34B 685 3.25 2.58 6.03
0.5 DSR39B 689 3.36 2.48 6.17
0.5 DSR40B 691 3.28 2.64 6.24
0.5 DSR37B 706 3.57 2.44 6.61
0.5 DSR42B 735 3.39 3.10 7.50
0.5 DSR43B 769 3.43 3.62 8.71
0.5 DSR44B 769 3.54 3.44 8.71
0.5 DSR41B 775 3.71 3.22 8.91
0.5 DSR46B 887 3.76 5.60 14.13
0.5 DSR45B 911 3.84 6.18 15.85
0.5 DSR47B 923 4.14 5.86 16.79
0.5 DSR49B 950 4.11 6.74 18.62
0.5 DSR48B 979 4.44 7.00 21.13
1.0 DSR60B 521 2.06 2.86 3.00



2 2 9

Table 6.6(a)

H2

t

Run No T2
/Kelvin

762 k

/x 10^ mol  ̂ dm^ s ^
kp_

/x 104 m o l "

1.0 DSR59B 532 2.12 2.93 3.16

1.0 DSR52B 555 2.31 2.89 3.47

1.0 DSR51B 557 2.01 3.49 3.50

1.0 DSR53B 564 2.15 3.67 3.63

1.0 DSR54B 591 2.47 3.06 3.98

1.0 DSR55B 603 2.58 3.13 4.27

1.0 DSR5B 610 3.14 2.54 4.37

1.0 DSR7B 621 3.21 2.58 4.57

1.0 DSR6B 625 3.30 2.55 4.68

1.0 DSR4B 627 2.90 3.07 4.73

1.0 DSR50B 633 2.71 3.32 4.79

1.0 DSR9B 644 2.93 3.28 5.13

1.0 DSR10B 668 3.34 3.12 5.62

1.0 DSR8B 693 3.84 2.96 6.31

1.0 DSR18B 701 3.35 3.51 6.46

1.0 DSR11B 750 3.95 3.61 7.94

1.0 DSR15B 765 3.59 4.26 8.41

1.0 DSR12B 767 3.73 4.17 8.51

1.0 DSR24B 783 3.71 4.44 9.16

1.0 DSR17B 814 4.08 4.62 10.47

1.0 DSR19B 818 3.59 5.46 10.59

1.0 DSR23B 810 4.20 5.63 13.18

1.0 DSR20B 879 4.42 5.55 13.80

1.0 DSR21B 883 4.42 5.59 13.96



230

Table 6.6(a) continued

H2 Run No T 2 762 k

/x 10® mol 1 dm3 s ^
kp

% /Kelvin /x 104 mol'^ d m 3 s"^

1.0 DSR25B 946 5.15 6.54 19.05

1.0 DSR22B 978 5.36 6.77 20.89





2 3 2

Table 6.6(b) 
continued
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Table 6.7 Deactivation of 0 o (b1r!) by N„/0o mixturesT-  ̂ 1- i-

n 2 Run No T2
762 k

< Trel kp
% /Kelvin /x 10 5 /MS /x 104 mol  ̂ dm^ s"^

10 DSR234B 519 1.49 3.97 781 2.49

10 DSR229B 604 1.89 4.70 473 3.78

10 DSR228B 676 2.07 5.90 364 4.46

10 DSR227B 742 2.12 3.96 441 3.45

10 DSR225B 829 2.26 5.51 275 5.16

10 DSR232B 1040 2.23 9.95 118 9.33

10 DSR226B 1053 1.63 15.77 80 10.41

10 DSR224B 1110 1.49 15.49 69 9.83

10 DSR223B 1124 1.43 30.22 41 17.22

10 DSR233B 1263 1.66 38.62 24 10.98

25 DSR239B 525 1.74 3.68 755 1.71

25 DSR238B 527 2.00 6.89 486 3.50

25 DSR216B 609 2.67 6.41 354 4.47

25 DSR222B 612 2.83 4.55 509 3.33

25 DSR221B 656 2.97 5.94 345 4.58

25 DSR218B 742 2.54 11.89 142 7.80

25 DSR220B 814 3.53 8.14 194 7.44

25 DSR219B 874 2.74 12.49 109 8.97

25 DSR211B 1001 2.67 21.44 57 14.91

25 DSR212B 1087 2.41 31.38 36 19.66

25 DSR215B 1135 2.20 30.57 39 17.10

50 DSR208B 523 2.28 10.20 330 3.67

50 DSR209B 526 2.64 7.15 484 2.97

50 DSR210B 561 3.26 6.19 431 3.23



Table 6.7 continued

N, Run No T, 762K km T ,2 2 q rel
I  /Kelvin /x 105 /ns

50 DSR207B 606

50 DSR206B 614

50 DSR205B 718

50 DSR203B 769

50 DSR204B 843

50 DSR201B 858

50 DSR202B 1147

3.03 8.24 285

3.82 6.24 351

4.94 7.06 273

4.83 7.46 243

5.74 9.13 176

9.00 4.99 43

4.18 27.6 304



The results of the temperature dependence study of the

deactivation of (^(b^I^g) by H2 in ^ / N j/Oj mixtures are given in 

table 6.6(b) and the run parameters are also given in Appendix 4.

Figure 6.7 shows the temperature dependence of k^H2. The 

dashed line has been drawn by eye to show the general trend. The plot 

shows an increase in kgH2 with temperature which, unlike that for the 

deactivation of C>2(b^ £+g) by HC1 and other efficient deactivators 

[44], does not 'fall off' at higher temperatures. The scatter is good 

for shock tube results which is due in part to the large signal to 

noise ratio and to the fact that H2 is easier to handle than HC1.

The only other temperature dependence study of the 

deactivation of 02(b^£+ ) by H2 was carried out by Kohse-Hoinghaus 

and Stuhl [85] , who obtained a positive temperature dependence in the 

range 202 to 344 Kelvin. Their data are also shown on figure 6.7. If 

the two sets of results were taken togethei^ the rate constant for the 

deactivation of 02(b1E+g) by H2 might seem to be independent of 

temperature. However, if their results are scaled down (indicated by 

arrows in figure 6.7) as suggested in the previous section, they 

agree with the positive temperature dependence observed in this work.

6.3.3 Deactivation of 0?(b̂  £+g) by D? at High temperature

A series of experiments was carried out on mixtures of 1.5 and

3.0 percent D2 in pure 02. The data wene analysed by fitting the 762nm 

Kinetic Model in the same manner as in the H2 and HC1 studies. The 

results of the analysis are given in table 6.8(a). The run parameters 

may be found in Appendix 6. The experiments using a 1.5 percent D2 

mixture did not show any deactivation of C>2 (b̂  £+g) due to the 

addition of D2 at the high temperatures. In the experiments using 3.0 

percent Dj, there was enough additional deactivation of (^(b^ £+g) bo
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Table 6.8(a) Deactivation of 0 „ ( b 1:0  by D 0 in pure _0oy

D2 Run No T 2
762 k

T rel kp
% /Kelvin /x 106 m o l -1 dm3 s ’2 MS /x 104 m o l " 1 dm3 s ' 1

1.5 DSR121B 533 0.84 -3.3 522 2.70

1.5 DSR119B 537 0.86 -2.0 533 2.84

1.5 DSR120B 545 1.62 -28.7 1067 1.87

1.5 DSR118B 554 2.46 -26.0 1609 3.14

1.5 DSR122B 575 1.05 -8.7 514 3.09

1.5 DSR124B 602 0.83 9.3 303 3.98

1.5 DSR123B 634 1.00 -4.7 272 4.25

1.5 DSR108B 661 1.25 -15.3 312 4.26

1.5 DSR107B 670 1.19 -5.3 280 4.76

1.5 DSR106B 681 1.10 1.3 237 5.16

1.5 DSR103B 706 0.78 72.0 156 7.29

1.5 DSR114B 746 1.11 -0.7 125 7.35

1.5 DSR113B 758 1.31 -12.7 152 7.23

1.5 DSR109B 798 1.29 -3.3 123 8.61

1.5 DSR115B 802 1.40 -14.0 131 8.62

1.5 DSR125B 844 1.38 -14.0 98 10.50

1.5 DSR105B 850 1.28 +8.0 93 10.90

1.5 DSR126B 955 1.13 29.3 57 15.00

3.0 DSR129B 536 0.92 1.3 405 2.55

3.0 DSR127B 541 0.93 2.7 409 2.67

3.0 DSR128B 547 0.95 6.3 490 2.60

3.0 DSR130B 572 0.78 15.7 287 3.40

3.0 DSR131B 612 0.82 17.3 210 4.07

3.0 DSR132B 627 0.74 24.0 152 4.47
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Table 6.8(a) continued

°2 Run No ^2  

/Kelvin

762 k

/ x

k *■q
106 m o l " 1 dm3 s ' 1

T rel 
MS / x

k p
104 m o l -1 dm3 s-1

3.0 DSR134B 628 0.86 19.7 191 4.36

3.0 DSR133B 630 0.75 26.7 167 4.62

3.0 DSR136B 630 0.75 27.3 167 4.76

3.0 DSR141BX 631 0.75 24.7 153 4.69

3.0 DSR135B 637 0.81 20.3 172 4.54

3.0 DSR142B 651 0.75 29.3 137 5.13

3.0 DSR140B 700 0.96 23.3 129 6.16

3.0 DSR138B 721 0.94 26.0 109 6.65

3.0 DSR143B 731 0.96 24.0 92 7.00

3.0 DSR139B 763 0.85 43.7 67 8.54

3.0 DSR147B 763 0.79 46.3 60 8.61

3.0 DSR146B 768 0.96 30.7 70 8.48

3.0 DSR145B 785 0.96 37.0 82 8.63

3.0 DSR144B 792 1.01 35.7 74 9.12

3.0 DSR137B 846 1.06 40.0 62 10.9





Table 6.8 (b) 
continued
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determine kgD2 .

As with the H2 studies, an additional emission was observed at 

762nm (see section 6.4) which prevented analysis above 900 Kelvin. A 

series of experiments was carried out using 3%D2/22%N2/75%C>2 and 

3%D2/47%N2/50%O2 mixtures in an attempt to extend the temperature 

range. The results of these experiments are given in table 6.8(b) and 

the run parameters are also in Appendix 6. The value of kgm for the 

N2/o2 mixtures determined in the previous section was used in the 

analysis of these data.

Since the N2/o2 results are scattered (not giving a precise 

value for kgm in N2/02 mixtures), the subtraction of kg1” for N2/02 

from the overall constant kgm in the D2/N2/02 experiments produces 

more scattered results than in the b2/02 experiments. This situation 

was worse than in the H2/N2/02 work because the deactivation of 

02(b1Z+g) by D2 is less efficient than by H2 and closer to the value 

for 02 at high temperatures. The obvious remedy to this situation is 

to increase the mole fraction of D2 in the mixture to obtain a 

greater difference between kg1" (d 2/N2/02) and kg1” (N2/02). In doing 

so, however, one is faced with the fact that the additional emission 

will appear at lower temperatures which will reduce the temperature 

range even further.

The results for both E>2/02 an<̂  D2 ^ 2 ^ 2  exPerimen*-s are 

plotted against temperature on figure 6.8. The dashed line has been 

drawn by eye to show the general trend. The plot shows a slight 

increase in kgD2 with temperature, but the scatter in the D2/N2/02 

results is so great that little else can be said.

Kohse-Hoinghaus and Stuhl [85] have also investigated the 

temperature dependence of the deactivation of 02 (b ̂ I+g) by Dj. Again 

they obtained a positive temperature dependence over the range 202 to 

344 Kelvin. Their data grv also shown on figure 6.8. Taken together
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the two sets of results show a positive temperalure dependence for the 

deactivation of Ojfa^Ag) by C>2 (b^E+g). The agreement is even better 

if the Kohse-Hoinghaus and Stuhl results are scaled down (indicated 

by arrows on figure 6.8) to make the 295K rate constants equal, as 

suggested in section 6.3.2.



6.4 Additional Emissions at 762nm

An additional emission was observed at high temperatures in 

mixtures of 02 with HC1, H2 and D2< The emission showed the same 

characteristics as that observed at 634nm (section 5.4) but appeared 

at temperatures as low as 750K. Since the 02(a1 and C>2(b1 jf ) 

studies were carried out simultaneously, many 762nm data were 

recorded in the range 750 to 1000 Kelvin which contained the 

additional emission.

The time elapsed between shock heating and the maximum 

intensity of this emission was recorded (table 6.9). This time is 

known as the induction time for the phenomenon. Plots were made of 

the induction time versus temperature observed in both the H2 and the 

D2 work (figures 6.9 and 6.10). The plots show that the induction 

time decreases with temperature and that the appearance temperature 

(temperature at which the emission is first observed) decreases with 

increasing concentration of H2 or

Since these characteristics are the same as those of the 

additional emission at 634nm, it is thought that the emission at 

762nm may be produced from a similar process to that suggested in 

section 5.4 (equation 5.2).

Indeed Hislop and Wayne [93] and Washida, Akimoto and Okuda 

[74] report that 02(b̂  lTg) is also a product of the reaction (6.2) in 

the scheme:

H + 02 + M ----> H02 + M (6.1)

H + h o2 ----> H2 + 02(b1 jfg, a1 ̂  or X3 f  ) (6.2)

The mole fractions of 02(X3 f  ), 02(a1 /̂ ) and 02(b1 ? g ) in the 

products of reaction (6.2) are 0.60, 0.015 and 0.00028 respectively.
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Table 6.9(a) Induction Times of Additional Emission with H0----------------2

H2 Run No Temperature Induction

% /Kelvin /M S

0.5 DSR47B 923 330

0.5 DSR49B 950 250

0.5 DSR48B 979 240

1.0 DSR24B 783 470

1.0 DSR14B 815 530

1.0 DSR19B 818 470

1.0 DSR23B 870 310

1.0 DSR20B 883 300

1.0 DSR21B 879 270

1.0 DSR25B 946 220

1.0 DSR22B 978 180

1.0* DSR404B 807 570

1.0* DSR405B 849 480

1.0* DSR402B 858 370

1.0* DSR401B 877 370

1.0* DSR409B 877 390

1.0* DSR407B 968 280

1.0* DSR406B 978 170

1.0* DSR403B 1157 50

with N2★
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Table 6.9(b) Induction Times of Additional Emission with D,

°2
%

Run No Temperature

/Kelvin

Induction

/ps

1.5 DSR125B 816 540

1.5 DSR126B 922 320

1.5 DSR102B 1130 120

1.5 DSR110B 1123 130

1.5 DSR111B 1151 120

1.5 DSR101B 1201 140

3.0 DSR145B 754 640

3.0 DSR144B 769 630

3.0* DSR322B 798 620

3.0* DSR328B 817 610

3.0* DSR329B 852 400

3.0* DSR319B 864 440

3.0* DSR304B 912 240

3.0* DSR321B 952 280

3.0* DSR318B 978 170

3.0* DSR303B 1035 100

3.0* DSR301B 1164 50

* With N2



80
0 

90
0 

10
00

 
11

00

T
e

m
p

e
ra

tu
re

 
/

 K
e

lv
in



T
e
m
p
e
r
a
t
u
r
e
 /

 Kelvin

I n d u c t i o n  t i m e  /  \ is

rooo
cnoo

F
ig

u
re

 
6

.1
0

 
In

d
u

c
tio

n
 

tim
e

s
 

o
f 

a
d

d
itio

n
a

l 
e

m
is

s
io

n
 

w
ith

 
D



250

The remaining product is the OH radical. The observation that 

concentration of 02<b1 Z+g) is not added to significantly by the 

02<a1A ) energy pooling reaction was also made by Hislop and Wayne.

The observation in this work that the 762nm emission appears 

at lower temperatures than the 634nm emission can be accounted for by 

the fact that the emission from 02<b1Z+g) is much stronger than that 

from o,(a1A ) and hence it can be seen at much lower concentrations.

In view of the reaction scheme given above, and the 

characteristics of the emission, one may conclude that the source of 

both the additional 762nm and 634nm emissions is due to additional 

02(b1Z+g) and C>2(a1Ag), produced from reactions (6.1) and (6.2). 

Reaction (6.1) may be initiated by hydrogen atoms generated at high 

temperatures in the discharge flow - shock tube.



DISCUSSION OF THE COLLISIONAL DEACTIVATION OF

SINGLET MOLECULAR OXYGEN

7.1 Introduction

In this chaptei^ the rate constants for the collisional 

deactivation of singlet molecular oxygen and their temperature 

dependences are discussed. The information which these results yield 

is considered in an attempt to gain some knowledge of the mechanisms 

involved in the transfer of energy.

There have been several theoretical approaches to the 

elucidation of a mechanism for the deactivation of singlet 

molecular oxygen. These calculations have concentrated on the 

deactivation of 02(b^E+g), where there is a large amount of 

experimental data, particularly at room temperature. The literature 

does not contain any quantitative attempts to calculate rate 

constants for the deactivation of 02(a1Ag). Some empirical and 

quantitative studies, however, have been carried out.

The chapter begins with a discussion of the deactivation of 

02(a^Ag) and then considers the deactivation of C^fb^iT^g). The final 

section summarises the features of the deactivation processes.



has to be

7.2 Discussion of the Collisional Deactivation of 0 , ( a 1A )

A relatively large excitation energy, 94.3 kJ mol-1, 

converted to vibrational or translational energy in the deactivation 

process. The deactivation of 02^a1^g^ to °2(x3£”g) requires a spin 

inversion (forbidden process) to take place, unless the deactivator 

has a triplet state lying below the 02(a1Ag) energy. The deactivators 

studied in this work, HC1, HBr, H2 and D2 do not have triplet states 

with energies in this region. Consequently, the low deactivation rate 

constants (< 1 x 105 mol“ 1 dm3 s“1) which are observed are not 

unexpected. These deactivation rate constants agree well with those 

determined for other molecular species [28], which fall in the range 

4.8 mol”1 dm3 s”1 for helium to 2.1 x 106 mol-1 dm3 s-1 for ozone.

The probability of the deactivation of 02(a1Ag) taking place 

upon collision with a deactivator at 295K may be calculated using 

equations (7.1) and (7.2).

k ^  = 2.751 x 109 ( °Am )2 (T/m)1/2 mol-1 dm3 s“ 1

(7.1)

PAM _  kdm/k AM

(7.2)

where k ^  is the rate constant predicted if deactivation takes place 

upon every collision, is the 'hard sphere' collision diameter in

A, and p is the reduced mass. The probabilities for the deactivation 

^2(u1^g) by the deactivators studied in this work, and those from 

previous work carried out in this laboratory [13,44,46,60], are given 

in table 7.1.

The deactivation probabilities inform us that only one in two 

million collisions will be successful when the most efficient
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1
Table 7.1 Deactivation Probabilities for 0^(a A ) at 295 K

M aMM
A°

aAM
A°

U

g mol ^

I

mol ^
kAM
dm3 s ' 1

I

mol ^

kMa
dm3 s ' 1

p
a m

H2 2.915 3.228 1.88 3.59 X 1011 2.22 X 104 6.1 X 10-8

°2 2.948 3.245 3.56 3.34 X 1011 2.56 X 103 7.7 X 10"9

HC1 3.305 3.423 14.9 1.43 X 1011 8.00 X 104 5.6 X 10"7

HBr 3.3 3.4 23.1 1.15 X 1011 4.2 X 1 0 4 3.7 X 10-7

°2 3.541 3.541 16.0 1.48 X 1011 9.40 X 102 6.4 X 10"9

n 2 3.749 3.654 14.9 1.63 X 1011 <40* <2.5 X 10-12

NO 3.599 3.570 15.5 1.53 X 1011 2.10 X 104 1.4 X 10"7

n 2o 3.816 3.679 20.9 1.40 X 1011 <3 X 103 <2.1 X 10"8

so2 4.404 3.973 21.3 1.85 X 1011 3 X 103 1.6 X 10'8

co2 3.897 3.719 18.5 1.87 X 1011 <3 X 103 <1.6 X 10’8

NH3 2.58 3.06 11.1 1.33 X 1011 5.37 X 103 4.0 X 10’8

* From reference [28]

c^M values are obtained from Hirschfelder, Curtiss and Bird [94] and 

also Lambert [12], is taken to be that for





deactivator, HC1, is a collision partner. This figure falls to one in 

two hundred million when a poor deactivator such as 02 is employed. 

The small probabilities indicate that most collisions (grazing 

collisions involving long range attractive forces) are too weak to 

result in energy transfer and that only a few collisions ('head on' 

collisions involving short range repulsive forces) are strong enough 

to influence energy transfer.

In order to determine whether the temperature dependence of

the deactivation of 0-(a1A ) by the deactivators studied in this work z g
reflects the T 1//2 temperature dependence predicted by simple 

collision theory, a plot was constructed of versus T (figure

7.1). The deactivation due to H2 was chosen because the results have 

the least scatter and cover the greatest temperature range. The 

probability, P^H , is obviously not constant over the temperature 

range studied, which indicates that the deactivation of 02(a1Ag) by 

H2 is not simply influenced by the collision rate.

Several theoretical approaches to the electronic to 

vibrational energy transfer in the deactivation of °2(a 1Ag) in 

solution (96,97,98] have been based on the well established theories 

of vibrational relaxation [12,88,99].

The classical Landau-Teller theory of vibrational relaxation 

is based on the assumption that only short range repulsive forces 

influence the energy transfer process. The theory works well for 

non-polar diatomic molecules, but it does not take into account the 

angle dependent dipole interaction involved when the collision 

partners are polar diatomic molecules.

Since the consideration of deactivation probabilities and the 

positive temperature dependence give experimental evidence of the 

participation of short range repulsive forces, it was thought 

worthwhile to examine the dependence of the deactivation of 02(a ̂ Ag)
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upon T-V3 for each of the additives. Plots were made of the 

logarithm of the deactivation probability, log P^, versus the 

temperature function, T-1''/3, (figures 7.2 to 7.4) to test the 

relationship:

Log P ^  = A - BT-1/3
(7.3)

which is predicted by the Landau-Teller theory.

A linear dependence between the logarithm of the deactivation 

probability and the term T-1/3 is observed for the deactivation by H2 

and D2, but not for the deactivation by HC1. It is not surprising 

that the deactivation of 02(a1Ag) by HC1 does not fit the 

Landau-Teller model since HC1 is a polar molecule. However, it is 

interesting that the deactivation of 02(a^Ag) by H2 and D2, which is 

an electronic to vibrational energy transfer process, shows the same 

temperature dependence as predicted by this theory of vibrational 

relaxation. If vibrational relaxation is involved in the overall 

deactivation of 0„(a^A ), it will follow the forbidden electronic to 

vibrational energy transfer step and will be a much more rapid 

process. Therefore, it is unlikely that the vibrational relaxation is 

the rate determining step which influences the temperature 

dependence.

This view is supported by the work of Wild, Klingshirn and 

Maier [96) which suggests that the deactivation of 02(a1Ag) by 

°2(x3E“g), in the liquid phase, is a three step process:

(i) Electronic to vibrational intersystem crossing which is rate

determining and is dominated by pathways involving

° 2 ( X3E- g ) v =2 and O ^ X 3 ) ^ ) ^ .

(li) Vibrational relaxation of the v>1 levels of 02 (X3 5Tg)



to the v=1 level, primarily by near-resonant vibrational to

vibrational energy transfer, which is a very rapid process, 

(iii) Collisional deactivation of 02(X3 ¡Tg)v_.| by slow vibrational 

to translational energy transfer.

One conclusion which may be drawn from the Landau-Teller 

relationship is that the factors which affect vibrational relaxation 

are also important in electronic to vibrational energy transfer.

The temperature dependences of the rate constants for the 

deactivation of 02(a1Ag) by HC1, H2 and D2 have also been shown to 

fit simple Arrhenius functions.

kdHCl = (2.75 ±1.70) x 107 exp [-( 1750 ±190)/T]

kdH2 = (1.32 ±1.08 ) x 108 exp [-(2600 ±180 )/T]

kd°2 = (2.75 ±0.75 ) x 107 exp [-(2740 ±90)/T]

These Arrhenius expressions predict activation energies of 14.5, 21.6 

and 22.8 kJ mol-1 respectively.

There are no studies of the temperature dependence of the 

deactivation of C>2 (a1 Ag), other than those reported by Boodaghians 

[44] , with which to compare these expressions. However, both the 

pre-exponential and exponential factors are similar to those reported 

by Boodaghians and also to those found in the temperature dependence 

studies of the chemical reaction of 02(a1Ag) with various alkenes 

[76] .

The activation energies are quite large, considering that the 

deactivation process involves the dissipation of energy and that 

these activation energies are insufficient to allow access to the



triplet states of the deactivators.

By analogy with vibrational to vibrational energy transfer one 

would expect resonant channels to be most important. Where resonant 

channels are not available, 'down hill' processes should dominate the 

transfer of energy, unless there is an 'up hill' channel which is 

nearer to resonance than the available 'down hill' channels and 

requires a small activation energy.

Table 7.2 shows the possible products of energy transfer 

between 02(a1Ag)v=Q and HC1(X1 ¡^g )v=0 which would require an 

activation energy. While the observed activation energy for the 

deactivation of 02(a1Ag ) by HC1 agrees, within experimental error, 

with that required for the energy transfer process:

°2*a1^g^v=0 + HCl<x1 ̂ g ) v = 0--- > °2 <x3 J'”g 1v=4 + Hcl<x 2 g^v=1
(7.4)

(13.0 kJ mol“1), there are two other pathways which involve a lower 

activation energy.

There are also six 'down hill' pathways which do not require 

an activation energy, two of which are nearer to resonance than the 

'up hill' pathway suggested. Although the excitation of HC1 to higher 

vibrational levels will be less favoured than excitation to v=1 in a 

single collision, it is difficult to understand why the pathway 

described by equation (7.4) should dominate the energy transfer 

process.

Table 7.3 shows that there is also a good correspondence 

between the observed activation energy for the deactivation of 

°2(a1Ag) by H2 and that required for the following process.
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Table 7.2 Potential Products of the Deactivation of 0 o (a A.) by HC1
■----------  3

Deactivation Products Energy Released

H C 1 ( X ^ g ) 0 2 (X3Eg-)

vibrational level vibrational level c m -1 molecule"^ kJ mole

1 0 -4997 -59.7

1 1 -3440 -41.1

1 2 -1908 -22.8

1 3 - 399 - 4.8

1 4 1088 13.0

1 5 2550 30.5

2 0 -2215 -26.5

2 1 - 658 - 7.9

2 2 874 10.4

2 3 2383 28.5

2 4 3870 46.2

2 5 5332 63.7

3 0 465 5.6

3 1 2022 24.2

3 2 3554 42.5

3 3 5063 60.5

3 4 6556 78.3

3 5 8012 95.7
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Table 7.3 Potential Products of the Deactivation of 0o (a 1A„) by H0

Deactivation Products Energy Released

H2 (X1Eg) 0 2 (X3 ^ )
-1 -1 cm molecule kJ m o l e  ^vibrational level vibrational level

1 0 -3723 -44.7

1 1 -2166 -26.0

1 2 -634 - 7.6

1 3 875 10.5

1 4 2362 28.2

1 5 4160 4 9 . 7

2 0 204 2.4

2 1 1761 21.0

2 2 3293 39.3

2 3 4874 58.3

2 4 6199 74.1

2 5 7751 92.6

3 0 3899 46.6

3 1 5454 6 5 . 2

3 2 6988 8 3 . 5
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+ ^2 (X1 5T̂ g) v=o > 02(X3 2r g)v_i + H2 ̂x 1 ̂  g1 v=2
(7.5)

which is 21.0 kJ mol-1. This suggests a favoured pathway in the 

deactivation of 02(a1Ag) by H2. Again, there are also pathways (bofh 

exothermic and endothermic) which are nearer to resonance than the 

one suggested above.

However, table 7.4 shows that in the less efficient 

deactivation of 02(a1Ag) by D2, there is not an energy requirement 

for an electronic to vibrational energy transfer process which 

corresponds to the observed activation energy. The closest comparison 

is for the process,

02(a1Ag)v=Q + ----> 02(X3 r g)v=1 + D2(X1r+g)v=3

(7.6)

which requires an activation energy of 27.6 kJ mol 1. The difference 

in the required and observed activation energies is too great to 

claim a correspondence with this process* It is also noted that there 

are three deactivation pathways which would require an activation 

energy lower than that observed and six exothermic channels, two of 

which are much nearer to resonance.

The preference for endothermic pathways over exothermic and 

resonant pathways raises doubts about the validity of these Arrhenius 

dependences•

A consequence of accepting that the activation energies are 

'real', and not simply fortuitous, is a dramatic change in the 

deactivation probabilities • If there is an additional energy 

requirement then the probability that two colliding molecules have 

sufficient energy is given by:
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Table 7.4 Potential Products of the Deactivation of 0 2 (1A g ) by D o

Deactivation Products Energy Released

D2( X 1 ^ )  ° 2( X 1 E g)

vibrational level vibrational level -1 -1cm molecule kJ mole

1 0 -4888 - 5 8 . 4

1 1 -3331 - 3 9 . 8

1 2 -1799 - 2 1 . 5

1 3 - 290 - 3 . 5

1 4 1197 14.3

1 5 2659 31.8

2 0 -2010 -24.0

2 1 - 453 - 5.4

2 2 1079 12.9

2 3 2588 30.9

2 4 4075 48.7

2 5 5537 66.2

3 0 757 9.0

3 1 2314 27.6

3 2 3846 46.0

3 3 5355 64.0

3 4 6842 81.8

3 5 8304 99.2



P£ = exp(—Ea/RT)

(7.7)

where Ea is the activation energy in J mol-1. Allowing for such a 

factor would increase the deactivation probabilities for some 

deactivators (NO, S02, HC1, H2 and Dj) by 3 - 4 orders of magnitude. 

Such revised probabilities would be approximately the same as those 

for the deactivation of 02(b1 (section 7.3). This seems unlikely

since the deactivation of 02(a1 ^) is a spin forbidden process, 

whereas the deactivation of 02(b1 )fg) is a spin allowed process and, 

therefore, more favourable.

In view of the inconsistencies involved in assuming that the 

observed activation energies are 'real', one must regard them with 

some degree of caution and, perhaps, some scepticism. Temperature 

dependence experiments performed by a technique which involves less 

scatter would be of great assistance in confirming or rejecting the 

validity of Arrhenius activation energies for the deactivation of 

02(a1 ^) by the deactivators studied here.

Thomas and Thrush [77,78] studied the deactivation of 02 (a1 

by various additives at 295K. They determined the fraction of 

deactivating steps, q̂ , which result in the population of a 

particular vibrational level in the deactivator. Then they took a 

statistical approach to predict the probability, P , of populating a 

particular level of the deactivator molecule during the deactivation 

process. A surprisal plot was made of ln( q^/Pv) versus the fraction 

of electronic energy which is transferred into vibrational energy and 

a linear relationship was observed. It was estimated from these 

calculations that approximately 25% of the electronic energy 

dissipated is transferred into translational and rotational energy.

Thomas and Thrush concluded that resonant deactivation



pathways were not particularly favoured and that the deactivation 

mechanism is not specific. The failure to favour strongly the 

resonant processes indicates that the deactivation occurs on the 

repulsive part of the intermolecular potential, which is in agreement 

with the implications of the positive temperature dependence observed 

in this thesis. They pointed out an exception to this general 

conclusion, the deactivation of °2(a1 ĝ) by NO, which results in the 

preferential population of both the v=2 and the v=4 levels of ground 

state NO, although the v=3 level is populated to a lesser extent.

This observation is supported by the detection of NO( X 11̂) in the 

products of the deactivation, by Ogryzlo and Thrush [79] .

Davidson and Ogryzlo [80] attempted to relate log and the

highest fundamental vibrational frequency of the deactivator. A good 

correlation was found for the deactivation of 02(b12Tfg) by diatomic 

molecules. The trend is that log kqm increases as the highest 

fundamental vibrational frequency of the deactivator increases. They 

concluded that the process involves electronic to vibrational energy 

transfer from 02(b̂ 2ft"g) to the deactivator.

A plot of log kdm for the deactivation of 02(a1Ag) at 295K 

versus the highest fundamental vibrational frequency of the 

deactivator has been constructed from the results reported here and 

those previously obtained in this laboratory, (figure 7.5). A 

correlation coefficient of 0.35 was obtained, which indicates that 

there is very little correlation between the deactivation rate 

constant and the highest fundamental vibrational frequency of the 

deactivator.

Parmenter and co-workers [81,82] have developed a theory which 

relates the collisional cross-section, a, to the potential energy 

well depth, e, of a complex A*-M, where A* is the excited species and

M is a deactivator
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Ino; = C + e.*„/kT m AM'
(7.8)

They observed that the experimental data can also be described by the 

related correlation:

lnam = C ’ + «  W k >V 2
(7.9)

at a given temperature, where 3 and C  are constants and e is themm
well depth between pairs of M molecules.

This theory is only appropriate when attractive forces 

dominate the interaction, and has been shown to hold for electronic 

deactivation, predissociation, and vibrational and rotational 

relaxation processes by Parmenter and co-workers.

Since equation (7.8) predicts a negative temperature 

dependence, which is contrary to the experimental observations for 

the deactivation of °2(a1Ag)j and there is already evidence for the 

participation of repulsive forces, it would be inappropriate to try 

to correlate the experimental data with equations (7.8) and (7.9).

One may conclude that there is a general, non-specific 

mechanism for the deactivation of C>2(a1Ag), for which the first and 

rate determining step is electronic to vibrational energy transfer. 

There is strong evidence, from the work of Thomas and Thrush, Maier 

and co-workers and this thesis that short range repulsive forces 

dominate the deactivation process. The work of Maier and co-Workers 

and the Landau-Teller relationship found here, point to electronic to 

vibrational energy transfer being influenced by the same factors as 

vibrational to vibrational energy transfer. This is in agreement with



the findings of Thomas and Thrush that most of the energy from

n fa1 A ) is transferred into vibration although as much as 25% may be2' g
transferred into translation and rotation in this process.

There is evidence for specific pathways being preferred in the 

case of the efficient deactivator, NO, and there is a suggestion from 

this work that specific pathways may also be favoured in the 

deactivation by HC1 and Hj.



7.3 Discussion of the Collisional Deactivation of O0(b^rl'?)

The deactivation of Ojfb1)^) to 02(X3Z"g) would require 156.9 

kJ mol-1 of excitation energy to be transferred into vibrational or 

translational energy. Furthermore, such a transition would require 

spin inversion (forbidden process) to take place, unless the 

deactivator has a triplet state lying below the (^(b^E+g) energy. 

Since the deactivators studied in this work do not have triplet 

states with energies in this region, one might expect the 

deactivation rate constants to compare with those for 02(a^Ag), which 

are less than 1 x 10-’ mol-1 dm3 s~1. In fact, the rate constants for 

the deactivation of 02(b̂ r*"g) are three or four orders of magnitude 

greater. The reason for such a difference [28] lies not in the fact 

that the transition from O^b^^g) to 02 (X3 E”g)  is not orbitally 

forbidden as it is for 02(a1Ag), but in the fact that 02(b12+g) may 

be deactivated to the 02 (a1Ag) state. A transition from 02(b1?fg) to 

02(a1Ag) requires only 62.6 kJ mol-1 of energy to be dissipated and 

is a spin allowed process.

The deactivation rate constants determined here agree well 

with those determined by other workers [39,42,77,85-90] and lie 

within the range of deactivation rate constants determined for other 

molecular deactivators [28] of 3.5 x 103 mol-1 dm3 s~1 for argon to

1.1 x 1010 mol“  ̂ dm3 s-  ̂ for ozone.

In order to determine whether the temperature dependence of 

the deactivation of 02(a1Ag) by the deactivators studied in this work 

is simply a result of the increase in collision rate with 

temperature, a plot of versus T was made (figure 7.7). The

deactivation due to H2 was chosen because the results have least 

scatter and cover the greatest temperature range. Clearly, p ju2 does 

not remain constant over the temperature range studied here.

The probability of the deactivation of 02(b1E+g) taking place



upon a single collision at 295K with the deactivators studied in this 

work and previous studies in this laboratory [13,44,46,60] are given 

[n table 7.5. The probabilities inform us that one in 200 collisions 

will be successful when the most efficient deactivator, NH3, is a 

collision partner, which is considerably more probable than the 

figure of one in 25 million obtained for the deactivation of Ojta^g) 

by this molecule. The less efficient deactivator, C>2, is successful 

only once in 1.5 million collisions with Ojfb1?^), a figure which is 

comparable to the one in 2 million obtained for the efficient 

deactivation of 02(a1Ag) by HC1.

The small probabilities (< 1 in 60,000) for the deactivation 

of 02(b1E+g) by D2, N2, 02 and S02 indicate that the successful 

interactions involve 'head on' collisions and that short range 

repulsive forces are involved. Molecules such as H2, HBr, CC>2 and NH3 

have relatively large deactivation probabilities (> 1 in 1,300), 

indicating that weaker interactions may also result in deactivation 

when these molecules collide with 02(b12Tfg).

Rear and Abrahamson [91] devised a method to calculate the 

deactivation rate constants for 02(b^E+g) at 295K. Their method is 

similar to the Schwartz, Slawsky and Herzfeld (SSH) theory [88] of 

vibrational energy transfer and assumes that the transfer takes place 

entirely under the influence of short range repulsive forces. The 

participation of long range attractive forces is not taken into 

account. In each case (table 7.6), their calculated values were at 

least a factor of ten lower than experimental values. The failure of 

these calculations to predict rate constants as high as those 

obtained experimentally suggests that short range repulsive forces 

are not solely responsible for the transfer of energy.

Later, Braithwaite, Davidson and Ogryzlo [42,95] attempted to 

calculate the same rate constants using a model which allows for only



upon a single collision at 295K with the deactivators studied in this 

work and previous studies in this laboratory [13,44,46,60] are given 

m  table 7.5. The probabilities inform us that one in 200 collisions 

will be successful when the most efficient deactivator, NHj, is a 

collision partner, which is considerably more probable than the 

figure of one in 25 million obtained for the deactivation of 02(a1Ag) 

by this molecule. The less efficient deactivator, 02, is successful 

only once in 1.5 million collisions with 02(b12+g), a figure which is 

comparable to the one in 2 million obtained for the efficient 

deactivation of °2(a ^g) by HC1.

The small probabilities (< 1 in 60,000) for the deactivation 

of 02(b1E+g) by D2, N2, C>2 and S02 indicate that the successful 

interactions involve 'head on' collisions and that short range 

repulsive forces are involved. Molecules such as H2, HBr, C02 and NH3 

have relatively large deactivation probabilities (> 1 in 1,300), 

indicating that weaker interactions may also result in deactivation 

when these molecules collide with C>2 ( b 1£*"g).

Kear and Abrahamson [91] devised a method to calculate the 

deactivation rate constants for 02 (b1Z+g) at 295K. Their method is 

similar to the Schwartz, Slawsky and Herzfeld (SSH) theory [88] of 

vibrational energy transfer and assumes that the transfer takes place 

entirely under the influence of short range repulsive forces. The 

participation of long range attractive forces is not taken into 

account. In each case (table 7.6), their calculated values were at 

least a factor of ten lower than experimental values. The failure of 

these calculations to predict rate constants as high as those 

obtained experimentally suggests that short range repulsive forces 

are not solely responsible for the transfer of energy.

Later, Braithwaite, Davidson and Ogryzlo [42,95] attempted to 

calculate the same rate constants using a model which allows for only



Table 7.5 Deactivation Probabilities for 0,,(b^z*) at 295 K

M k zM
x 1 0 ^  mol  ̂ d m 3 s'^

kM
q

m o l -1 d m 3 s ' 1
PlM

H2 3.59 2.76 x 108 7.7 x 10"4

°2 3.34 5.27 x 106 1.6 x 10"5

HC1 1.43 1.60 x 107 1.1 x 10"4

HBr 1.15 1.42 x 108 1.2 x 10"3

°2 1.48 1.00 x 105 6.8 x 10"7

n 2 1.63 1.20 x 106 7.4 x 10"6

NO 1.53 1.70 x 107 1.1 x 10“4

n2o 1.40 4.2 x 107* 3.0 x 10"4

s o 2 1.85 2.50 x 105 1.4 x 10'5

c o 2 1.87 2.20 x 108 1.2 x 10'3

NH3 1.33 7.05 x 108 5.3 x 10'3

* from reference [28]

values and therefore values are assumed to be equal to those 

in table 7.1.



Table 7.6 Calculated and Observed Values for the

Deactivation of O ^ b ^ E * )  at 295 K 
— — ----------------- < -------9-------------

M EXPERIMENT SRIT LRIT

mol"^ dm3 s -1 mol"^ d m 3 s -1 mol"^ d m 3 s 1

SRIT + LRIT
-1 3 -1mol 1 dnï3 s 1

H2 2.76 X 108 4.3 x 107 4.6 x 108 5.0 x 108

°2 5.27 X 106 9.2 x 105 1.2 x 107 X o

HC1 1.60 X 107 - 5.3 x 106 >5.3 x 106

HBr 1.42 X 108 1.2 x 108 3.4 x 108 4.6 x 108

°2 1.00 X 105 34 -vIO ^ 4

n 2 1.20 X 106 1.0 x 104 9.1 x 105 9.2 x 105

NO 1.70 X 107 _ 9.3 x 106 >9.3 x 106

SRIT - Kear and Abrahamson [91]

LRIT - Braithwaite, Davidson and Ogryzlo [42, 95]



long range attractive forces and their results are also given in 

table 7.6. A better correspondence between these calculations and the 

experimental values is noted. They conclude that in the deactivation 

of 02( b 1Z+g) by the diatomic molecules studied, energy transfer can 

take place under the influence of long range attractive forces. It is 

also suggested that their calculations and those of Kear and 

Abrahamson are complementary and therefore additive.

It appears from these calculations that both short and long 

range interactions are involved in the deactivation of 02(b1Efg). 

Since long range interaction theory (LRIT) values are greater than 

short range interaction theory (SRIT) values in each case, 

domination of the deactivation by long range attractive forces is 

implied. This is contrary to the interpretation of the small 

deactivation probabilities as an indication that short range 

interactions dominate the deactivation of 02(b^Z+g).

The work of Braithwaite, Ogryzlo, Davidson and Schiff [42] 

predicts a temperature dependence for the deactivation C>2(b^£^g) by 

HBr which is positive if the interactions are wholly short range and 

negative if the interactions are wholly long range.

Since HC1 is a similar molecular species to HBr, one might 

expect the predictions of LRIT and SRIT for the deactivation of 

°2(b1E+g) by HC1 to be similar to those for deactivation by HBr. In 

contrast to the 'u' shaped plot predicted by Braithwaite and 

co-workers for the deactivation by HBr versus temperature, the 

observed behaviour of the temperature dependence of the deactivation 

of 02(a1Ag) by HC1 shows a maximum (figure 6.5).

Braithwaite and co-workers have also calculated the rate 

constants for the deactivation of Ojib^F^g) by H2, based on LRIT and 

SRIT. Their predictions are shown on figure 7.6, along with the 

experimental results obtained in this work and from previous work
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carried out in this laboratory. In contrast to the predictions for

the deactivation by HBr, the temperature dependence of both SRIT and 

LRIT do not predict a 'fall off' in the value of the rate constant, 

kqH2, at high temperatures.

While the predictions of Braithwaite and co-workers do not 

extrapolate well to the higher temperatures studied in this work, the 

general trend and order of magnitude are in agreement. Their work is 

the only one which offers an explanation of the 'fall off' in the 

rate constant observed for HC1 and other polar species, but not for 

H2, D2 and C>2 at higher temperatures.

In order to determine whether the temperature dependence of 

the deactivation of 02(b^Z+g) by the deactivators studied in this 

work is simply a result of the increase in collision rate with 

temperature, a plot of versus T was made (figure 7.7). The

deactivation due to H2 was chosen because the results have least 

scatter and cover the greatest temperature range. Clearly, does

not remain constant over the temperature range studied here.

Since the deactivation of 02(a1Ag) showed Landau-Teller 

behaviour (equation 7.3) and there is also evidence for the 

participation of short range repulsive forces in the deactivation of 

02(b^£+g)/ it was thought worthwhile to examine the relationship 

between log Pj-M and T-1//3. in contrast to the temperature dependence 

of the 02(a1Ag) deactivation, none of the deactivators studied here 

showed a Landau-Teller type dependence upon temperature* The results 

for the deactivation of 02(b1Z+g) by H2 are given as an example of 

the type of plot obtained (figure 7.8).

Arrhenius plots were also tried for the deactivation of 

°2(b1E+g) by HC1, H2 and D2. In each case, it was impossible to fit 

the data to an Arrhenius expression.

An empirical correlation has been made, by Davidson and
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Ogryzlo [80], between log k^m and the highest fundamental vibrational 

frequency of the deactivator. A very good correlation was found for 

the deactivation of 02(b15Tfg) by homonuclear diatomics. They 

concluded that such a correlation may be interpreted as evidence that 

the deactivation process involves the transfer of the electronic 

energy of 02(b1E+g) to vibrational energy in the deactivator. Figure 

7.9 is a plot of log k^m versus the highest fundamental vibrational 

frequency of the deactivator for the deactivators studied in this 

work and those studied previously in this laboratory. The dashed line 

shows the general correlation for which the correlation coefficient 

is 0.78. This indicates that there is a reasonable correlation in the 

general case.

The full line shows the correlation for deactivation by the 

homonuclear diatomics alone. The correlation coefficient for these 

molecules alone is 0.999 which is an excellent correlation.

The correlation between the logarithm of the rate constant and 

the highest fundamental vibrational frequency of the deactivator is 

evidence that the ability of the deactivator to accept large 

quantities of vibrational energy is important in the deactivation of 

°2(b1j:+g) in general and particularly important in the deactivation 

of 02(b^£+g) by homonuclear diatomic molecules.

Thomas and Thrush [78] have observed vibrational excitation in 

several deactivators during the deactivation of both 02(a1Ag) and

°2<b1Z+g>.

In the deactivation of 02(b1rl'g) by HC1, they observed the 

strong infra-red emissions of the (1,0) and (2,1) bands of HC1 

together with the weaker emissions from the (2,0) band. This

corresponds to the process :



Figure 7.9 Dependence of t h e  logari thm of the  
deact iva t i on  constant  for O j C b ’Zg)  upon the  
highest  fundamental  v ib r a t iona l  f reque nc y  
of the d e a c t i v a t o r

H i g h e s t  f u n d a m e n t a l  v i b r a t i o n a l  f r e q u e n c y / c m -1
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¡(b1E+ > ^ 0  + HC1(X1Z + )v = 0 --- > 02(a1 A )v=0 + HC1(X1Zq+ )v=2

(7. 10)

which is endothermic by 5.1 kJ mol-1. Surprisal analysis [79] showed 

that the observed rate of excitation of HC1(X1Eg+)v=2 is consistent 

with equation (7.10). It was also shown that the vibrational

relaxation of HC1(X1Eg+ )v_2 to HC1(X 1Eg+)v_i could account for the 

entire population of HC1(X1Zg+ )v_ 1.

Thomas and Thrush also obtained indirect evidence that the 

H2(X1Eg+ )v_i is excited in the deactivation of 02(b1I+g) by H2. This 

was done by adding Hj to the experiments with 02(b15Tfg) and HC1. The 

emission of the (2,0) and (2,1) bands of HC1 was extinguished, 

leaving only the (1,0) band in the infra-red spectrum, which shows 

that the deactivation of 02(b12Tfg) by H2 yields a species with 

sufficient energy to excite HC1 to the first vibrational level but 

not to the second. The only species which fits this requirement is

H2(xV > v=1-
The surprisal plot for the deactivation of 02(b̂  ̂ g) was found 

to be the same as that for 02(a1Ag), which suggests a common 

non-specific mechanism. Although it shows that the electronic energy 

goes preferentially into vibrational energy in the products, their 

work suggests that resonant energy transfer is not important. It was 

found thatj in general, about 75 - 80 percent of the excitation energy 

is taken up by the deactivator, while the remaining 20 - 25 percent 

is accommodated by the rotational and translational modes of the 

deactivator and the deactivated. The endothermicity of the 

deactivation of (^(b1)^) by HC1 indicates that it is also possible 

to transfer energy from translation to vibration during the 

deactivation process.



One may conclude from this discussion of the collisional 

deactivation of 02(b1r+g) that the temperature dependence of the 

process is slightly positive but does not depend upon a simple 

function of temperature. The evidence from the deactivation 

probabilities, together with the predictions of SRIT and LRIT, 

indicate that the deactivation of Ojtb1^  ) ^  take place under the 

influence of both short and long range forces. The correlation 

between the logarithm of the rate constant and the highest 

fundamental vibrational frequency of the deactivator, and the product 

analyses and surprisal analysis of Thomas and Thrush, show that 

electronic to vibrational energy transfer is important, although 

energy differences may be made up from rotational and translational

involvement.



7.4 Concluding Remarks

While it is not yet possible to elucidate a detailed mechanism 

for the deactivation of C>2(a1 or C>2(b1 jf’g ), the experimental and 

theoretical studies have provided useful information about the types 

of processes involved. There are both similarities and differences in 

the deactivation of 02(a1 t^) and C>2(b1 jfg).

The mechanisms of deactivation are similar in that they both 

appear to involve short range repulsive forces. In both cases, the 

energy transferred from the electronically excited species goes 

mainly into vibrational modes of the deactivator, although resonant 

pathways are not required for the deactivation of either 02(a1 C^) or

02(b1 t q ).

The contrasts between the two processes are, however, more 

numerous and more striking. The room temperature (295K) rate 

constants for the deactivation of 02(b1 )fg) are 3 - 4  orders of 

magnitude greater than those for 02(a1 t^) because C>2(b^ j?q ) may be 

deactivated to 02(a1 /̂ ) via a spin allowed process while 02(a1 is
O _deactivated to 02(X I ) via a spin forbidden process. The 

temperature dependence of the deactivation of 02(â  is always 

positive, presumably because deactivation occurs wholly as a result 

of short range interactions. In contrast to the deactivation of 

02(a1 ^ ) , the deactivation of 02(b1 jf”g) shows an initial increase in 

the rate constant with temperature followed in some cases by a 'fall 

off' at higher temperatures. The variability of the overall 

temperature dependence of the deactivation rate of 02(b^ £ q ) seems to 

depend upon whether the temperature dependence of the deactivation 

through long range interactions (significant at higher temperatures) 

is positive or negative.

Further experiments are needed to establish the temperature 

dependence of the deactivation of both of these singlet molecular



oxygen species, particularly over the temperature range from 295 to 

500K, where there is a large gap in the work presented here. It would 

also be useful if calculations based on LRIT and SRIT could be 

performed to predict both the room temperature (295K) rate constants 

and the temperature dependence of the deactivation of Ojfa^Ag) by 

some of the deactivators studied here.



SUGGESTIONS FOR FURTHER WORK

8.1 Introduction
This chapter outlines some potentially rewarding studies 

which could be carried out using the discharge flow - shock tube 

technique. There are suggestions for the continued study of singlet 

molecular oxygen and also for the study of complementary chemical 

systems, which are expected to exhibit similar behaviour to singlet

molecular oxygen.



8.2 Studies Involving Singlet Molecular Oxygen

As already mentioned in chapter 7, the determination of the 

rate constants for the deactivation of singlet molecular oxygen in 

the temperature range 295 to 500K, by the deactivators studied in 

this work, would be most useful. At present, Billington [83] is 

investigating the deactivation and energy pooling reactions of 

singlet molecular oxygen in the temperature range 100 to 450K, using 

a thermally jacketed flow tube.

A study of the temperature dependence of the deactivation of 

singlet molecular oxygen by hydrogen deuteride (HD) would be a useful 

addition to the work carried out here. It would be interesting to 

compare HD to H2 and , which have different deactivation 

efficiencies. Since sufficient high purity HD to perform a series of 

discharge flow - shock tube experiments would be extremely expensive, 

it would be sensible to prepare and purify the gas in the laboratory. 

A method for the preparation of HD from LiAlH^ and D^O has been 

described by Wender, Friedel and Orchin [100] . The method involves 

the use of an apparatus described by Dibeler [101] and results in 99% 

HD after purification at liquid hydrogen temperatures.

Fookson, Pomerants and Rich [102] have also prepared this gas 

and report a purification method which allows a purity of 99.8% HD‘ 

the remaining 0.2% is Hj. Since is an efficient deactivator, it 

would be important to arrange for each batch of gas to be assayed.

A Bentham M300 monochromator is now available in this 

laboratory and would be of great assistance in identifying the green 

emission observed during the HC1 and HBr studies, if for some reason 

the work is repeated. In order to record the spectra of the 

additional emissions at high temperatures, a portable, rapid scan 

spectrometer would be required, although one is not yet available in 

this laboratory.



If the explanation of the additional emissions at 634nm and

762nm, given in sections 5.4 and 6.4, is correct, then the discharge 

flow - shock tube technique is well suited to study the production of 

02(b^Z+g) and 02(a1Ag) at high temperatures in mixtures of O2 with 

HC1, H2, D2 and probably HD.

Slanger [103, 104, 105] has reported the formation of six 

different bound electronic states of 02 by oxygen atom recombination. 

The species observed were 02(X £ ^), 02(a Ag) , 02(b £ g) and the 

three upper 02 states, 02(A3 £u+), o2<C3Au) and 02(c1£u”). The upper 

states are reported to have long lifetimes, which are estimated [105] 

to be about 0.2 seconds for 02 (A3 £u+ ) and about 40 seconds for 

02(CV >  and °2(C3\ i>. 7116 missions, many of which are in the 

visible region of the spectrum, should be intense enough to study 

with our system.

Already, a second discharge flow - shock tube has been 

constructed and preliminary experiments are being carried out on the 

production of oxygen atoms, via the reaction:

N + N O ----> N2 + O

( 8 . 1)

The reactions of atomic nitrogen are well understood at room 

temperature [106]. The use of the NO - O glow, as a standard method 

for determining oxygen atom concentrations, has been investigated by 

Schiff and co—workers [107,108] and shown to be reliable.



8.3 Studies of Other Electronically Excited Molecules

In recent years, Fink and co-workers [109,110,111] have been 

engaged in studies of the metastable states of group VI diatomic

molecules. Molecular species such as SO, S2, SeO, SeS, Se2 and TeSe 
1 1 +have Ag and Eg electronically excited states equivalent to those

of 02 •

These species may be produced in electronically excited states 

by first passing chlorides of these species (for example, S2C12 and 

SeOCl2) in helium through a microwave discharge to produce the 

appropriate ground state radicals. The products of the discharge are 

then added to a flow of 02(a1Ag) to produce the excited states.

The radiative lifetimes of these species are expected to be 

long, although they have not actually been measured. Studies by Fink 

and co-workers have concentrated on the spectroscopy of these 

molecules and the observation of several energy pooling reactions 

which may be compared to those of singlet molecular oxygen.

The discharge flow - shock tube technique would be 

particularly suited to the investigation of the excitation of the 

ground state species by 02 (a 1Ag). Studies of the energy pooling 

reactions and deactivation of these species may prove valuable to the 

study of electronic to vibrational energy transfer in general, and 

would be a useful comparison with the study of the deactivation of 

singlet molecular oxygen.

Lin and Setser [112] have recently studied the deactivation of 

NF(b1£g+) which is isoelectronic with 02 and also has a comparatively 

long radiative lifetime of 23 milliseconds. The temperature 

dependence of the deactivation of NF(b1Eg+) with a variety of 

Reactivators could be studied by the discharge flow - shock tube 

technique. This chemical system might be attractive to study because 

of the direct comparisons which could be made with 02(b1E+g). It
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APPENDIX 1

PROGRAM SENDEL

C

EXTERNAL FFUNC 

DIMENSION AV (1000)

DIMENSION AV1 (1000)

DIMENSION TPAV (1000)

DIMENSION RES (1000)

C

PRINT*,'This is a program to calculate the ANALYSIS EQUATION 

*'for the 634nm emission under CHANGED DECAY conditions; ',

*'INTEGRATE it with respect to time; and DIFFERENTIATE it ' , 

*'with respect to another parameter.'

C

5 OPEN(5,FILE='.RSEND')

OPEN(7 ,FILE —' .RES' )

REWIND 5 

REWIND 7 

DK=0.0025 

TS=10.0 

PSG=1.00 

R021=5.00 

T21=2.50 

AK=1.00 

PRINT*

PRINT*,'Total decay value (DK) = ',DK,' per microsec.'

HUNT*,'Integration time (TS )=',TS,'micro sec .'

PRINT* ,'Pre-shock glow (PSG) = ',PSG,' millivolts.'



2 9 2

PRINT*Density ratio (R021)=',R021 

PRINT*,1 Temperature ratio (T21)=',T21 

PRINT*,’Molecular enhancement factor (AK)=' ,AK 

PRINT*

PRINT*,'Do you wish to use alternative values? (answer 1 for ' , 

*' yes, 0 for no)

READ*,ANS

IF (ANS.EQ. 0) GOTO 10

PRINT*,'Input DK, TS, PSG, R021, T21, AK,'

READ* ,DK,TS , PSG,R021 ,T21 , AK

C

10 DO 20, TP=0,TS,1

WRITE (5 ,* )TP, FFUNC (DK, PSG,R021 ,T21 , AK,TP)

PRINT* ,TP, FFUNC (DK, PSG,R021 ,T21, AK,TP)

20 CONTINUE

C

DO 30, TP^TS,1000,50

WRITE (5,* )TP, FFUNC (DK, PSG,R021,T21 ,AK,TP)

PRINT* ,TP, FFUNC (DK, PSG,R021 ,T21 , AK,TP)

30 CONTINUE

C

HUNT*,'Do you wish to INTEGRATE with respect to time?'

PRINT*,'Answer 1 for yes, 0 for no!'

READ* , INT

IF (INT.EQ.0) GOTO 40

CALL FINT (FFUNC,DK, PSG,R021 ,T21 ,AK,TP,TS ,AV,TPAV)

PRINT*,'Which parameter do you wish to differentiate'

PRINT*,'with respect to ?'

PRINT*,'Enhancement factor, AK ?'

PRINT*,'Total decay value, DK ?'
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PRINT*,'Integration time, TS ?'

PRINT*

PRINT*,' Type 1, 2, or 3 for AK, DK, TS.'

READ*,PAR 

B=1.0001

IF(PAR.EQ. 1) THEN 

DIV=AK*(B-1.0)

AK=AK*B

ENDIF

IF( PAR *EQ. 2 ) THEN 

DIV=DK*(B-1.0)

DK=DK*B

ENDIF

IF(PAR.EQ. 3 ) THEN 

DIV=TS*(B-1.0)

TS=TS*B

ENDIF

CALL FINT (FFUNC,DK, PSG,R021 ,T21, AK,TP,TS , AV1 ,TPAV) 

DO 40, 1=1,500 

RES(I)=(AV1 (I)-AV(I))/DIV 

WRITE (7 ,* )TPAV(I) ,RES (I )

PRIOT*,TPAV(I) ,RES(I)

C

40 CONTINUE

111 PRINT*,'Type 1 to run again, 0 to finish.'

READ*,GO

IF(GO.EQ. 1) GOTO 5 

STOP

END



c ********************** function f f u n c********************

C This function calculates the post-shock glow.

FUNCTION FFUNC(DK,PSG,R021,T21,AK,TP) 

FFUNC=PSG*(RO21**2)*(T21**0.5)*AK*(EXP(-DK*TP) )

RETURN

END

0 *****************suBROUTINE FINT************************

C This subroutine integrates the ANALYSIS EQUATION with respect 

C to time.

SUBROUT INE F INT ( FFUNC , DK, PSG , R021 , T21 , AK ,T P, TS , AV, T PAV) 

DIMENSION Y (1000),AV(1000),TPAV(1000)

TP=—TS

DO 10,1=1,500 

IF (TP.LT.0) GOTO 11 

IF (TP.GE.0) GOTO 12

11 F1=PSG 

GOTO 13

12 F1=FFUNC(DK, PSG,R021 ,T21 ,AK,TP)

13 TP=TP+ (0• 2*TS )

IF (TP.LT.0) GOTO 14 

IF (TP.GE.0) GOTO 15

14 F2=PSG 

GOTO 16

15 F2=FFUNC(DK,PSG,R021,T21,AK,TP)

16 Y(I)=((F1+F2) /2 )*0•2*TS

10 CONTINUE

DO 20,1=1,500

AV(I)=(Y(I)+Y(1+1)+Y(1+2)+Y(1+3)+Y(1+4))/TS

TPAV(I)=(((I-6)*0.2)+0.5)*TS
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APPENDIX 2

PROGRAM SENSIG

C

EXTERNAL FFUNC 

DIMENSION AV (1000)

DIMENSION AV1 (1000)

DIMENSION TPAV (1000)

DIMENSION RESULT (1000)

C

PRINT*,'This is a program to calculate the ANALYSIS EQUATION 1 

PRINT*,'for the 762nm emission under CHANGED DECAY conditions;' 

PRINT*,'INTEGRATE with respect to time; and DIFFERENTIATE it' 

PRINT*,'it with respect to another parameter.'

C

5 OPEN( 5 ,FILE='. RSIG')

OPEN(7,FILE='.RESULT' )

REWIND 5 

REWIND 7 

PSG=1.00 

R021=5.00 

TS=10.0 

AK=3.60 

DDK=0.00083 

SDK=0.104 

RDK=0.00322 

PRINT*

PRINT*,'Preshock glow (PSG)=',PSG,'millivolts.'

PRINT*,'Density ratio (R021)=',R021
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PRINT*Integration time (TS)=',TS,'microsec.'

PRINT*,'Molecular enhancement factor (AK)=',AK 

PRINT*,'Increase in delta decay (DDK)=',DDK,'per microsec.' 

PRINT*,'Increase in sigma decay (SDK)=',SDK,'per microsec.' 

PRINT*,'Room temp, decay (RDK)=*,RDK,'per microsec.'

PRINT*

PRINT*,'Do you wish to use alternative values? (answer 1 for ', 

* 'yes, 0 for no). '

READ*,ANS

IF (ANS.EQ.O) GOTO 10

PRINT*,'Input PSG, RD21 , TS, AK, DDK, SDK, RDK'

READ*, PSG , R021 ,TS , AK , DDK, SDK , RDK

C

10 DO 20, TP=0,TS,1

WRITE ( E , * ) TP , FFUNC ( PSG , R02 1 , AK ,TP , DDK , SDK , RDK)

PRINT* , TP , FFUNC ( PSG , R021 , AK ,TP , DDK , SDK , RDK)

20 CONTINUE

C

DO 30, TP=TS,1000,50

WRITE(5,*)TP,FFUNC ( PSG,R021 ,AK,TP,DDK,SDK,RDK)

PRINT* , TP , FFUNC (PSG , R02 1 , AK ,TP , DDK , SDK , RDK)

30 CONTINUE

C

PRINT*,'Do you wish to INTEGRATE with respect to time?'

PRINT*,'Answer 1 for yes, 0 for nol'

READ*,INT

IF (INT.EQ.0) GOTO 40

CALL FINT( FFUNC,PSG,R021,AK,TP,DDK,SDK,RDK,TS,AV,TPAV)
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PRINT*,'Which parameter do you wish to differentiate' 

PRINT*,'with respect to ?'

PRINT*,'Enhancement factor, AK ?'

PRINT*,'Delta decay increment,DDK ?'

PRINT*,'Sigma decay increment,SDK ?'

PRINT*,'Room temp, decay, RDK ?'

PRINT*,'Integration time, TS ?'

PRINT*

PRINT*,'Type 1, 2, 3, 4, or 5 for AK, DDK,SDK,RDK, TS.' 

READ*,KNO 

B=1.0001

IF(KNO•EQ. 1) THEN 

DIV=AK*(B-1.0)

AK=AK*B

ENDIF

IF(KNO.EQ.2) THEN 

DIV=DDK*(B-1.0)

DDK=DDK*B

ENDIF

IF(KNO•EQ.3) THEN 

DIV=SDK*(B-1.0)

SDK=SDK*B

ENDIF

IF (KNO . EQ . 4) THEN 

DIV=RDK*(B-1.0)

RDK=RDK*B

ENDIF

IF(KNO.EQ.5) THEN 

DIV-TS*(B-1.0)

TS=TS*B
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ENDIF

CALL FINT( FFUNC, PSG ,R02 1 , AK,TP , DDK,SDK,RDK,TS , AV1 ,TPAV)

DO 40, 1=1,500

RESULT(I)=(AV1(1)—AV(I))/DIV 

WRITE(7,*)TPAV(I),RESULT(I)

PRINT*,TPAV(I),RESULT(I)

C

40 CONTINUE

111 PRINT*,'Type 1 to run again, 0 to finish.'

READ*,GO

IF(GO.EQ.I) GOTO 5

STOP

END

c **»****»**************FUNCTION f f un c********************

C This function calculates the post-shock glow.

FUNCTION FFUNC( PSG,R021 ,AK,TP,DDK,SDK,RDK)

FFUNC=PSG*R02 1 * ( ( AK*EXP( —DDK*TP ) ) + ( ( 1-AK) *EXP(-SDK*TP) ) )

**(EXP(—RDK*TP))

RETURN

END

C ********************SUBROUTINE FINT***********************

C This subroutine integrates the ANALYSIS EQUATION with respect

C to time.

SUBROUTINE FINT (FFUNC , PSG , R021 , AK ,TP , DDK , SDK , RDK , TS , AV , TPAV) 

DIMENSION Y ( 1000),AV( 1000),TPAV( 1000)

TP=—TS

DO 10,1=1,500 

IF (TP.LT.0) GOTO 11 

IF (TP.GE.0) GOTO 12

11 F1=PSG
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GOTO 13

12 F1=FFUNC(PSG,R021 ,AK,TP ,DDK,SDK,RDK)

13 TP=TP+(0•2*TS)

IF (TP.LT.O) GOTO 14 

IF (TP.GE.O) GOTO 15

14 F2=PSG 

GOTO 16

15 F2=FFUNC ( PSG , R02 1 , AK ,TP , DDK , SDK, RDK )

16 Y(I)=((F1+F2)/2)*0.2*TS

10 CONTINUE

DO 20,1=1,500

AV(I) = (Y(I)+Y(I+1)+Y(I+2)+Y(I+3)+Y(I+4))/TS 

TPAV(I) = (((I—6)*0•2)+0.5 )*TS 

20 CONTINUE 

RETURN

END



APPENDIX 3

Input Parameters for HCl/I^

Run No j 762 

/mV

j634

/mV
P 1
/torr

V s
/km s

“L
/x 10"3 u s " 1

P21

R(A)330 243 6.5 6.12 1.138 5.50 4.77

R(A)331 217 6.2 6.50 1.199 8.25 4.91

R(A)332 224 7.0 6.29 1.074 4.15 4.58

R(A)334 174 4.9 6.62 0.975 4.43 4.25

R(A)337 297 5.3 6.87 1.054 6.16 4.52

R(A)339 390 6.6 6.08 1.210 6.83 4.98

R(A)340 406 8.5 6.58 1.143 4.85 4.79

R(A)341 448 7.3 6.21 1.090 4.83 4.63

R( A) 342 467 7.3 6.21 1.276 7.41 5.15

R(A)343 388 5.8 5.92 1.041 4.48 4.47

R(A)344 391 6.5 6.17 0.972 4.37 4.24

R(A)345 356 6.1 6.72 0.952 4.16 4.17

R(A)346 364 5.9 6.21 0.950 4.50 4.16

R(A)347 437 7.2 6.41 0.823 3.32 3.65

R(A)348 436 7.2 6.29 0.862 3.54 3.82

R(A)350 250 5.6 6.25 0.981 4.55 4.27

R(A)351 237 5.6 6.33 1.191 8.13 4.92

R(A)352 173 4.8 6.45 1.278 8.39 5.15

R(A)353 192 5.1 6.54 1.267 8.04 5.12

R ( A ) 3 54 186 5.5 6.00 1.384 8.28 5.40

R(A)355 189 5.6 6.37 1.257 6.80 5.09

R(A)356 203 5.9 6.08 1.335 7.33 5.29
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Appendix 3 continued

Run No j 762 

/mV

j634

/mV
P 1
/ t o r r .

Vs
./km s ’ 1

“L
/x.10"3 m s "1

P21

R(A)357 189 5.7 6.29 1.189 6.36 4.94

R(A)358 153 4.9 6.37 1.125 6.58 4.73

R(A)359 134 4.7 6.54 1.064 5.73 4.54

R(A)360 131 4.9 6.54 1.024 5.94 4.41

R(A)361 142 5.1 6.58 0.987 5.12 4.29

R(A)362 142 5.5 6.66 0.940 4.33 4.12

R(A)363 158 6.0 6.71 0.920 3.97 4.04

R(A)364 136 6.0 6.58 0.837 3.22 3.67



APPENDIX 4

Input Parameters for and Hg/Ng/Og

Run No j 762 j634
P 1 V s “ I

/mV /mV /to r r / k m  s " 1 /x 10

DSR4A(B) 138 15 4.70 0.836 2.10 3.81

DSR5A(B) 138 17 4.91 0.842 1.87 3.72

DSR6A(B) 136 17 4.79 0.860 2.22 3.80

DSR7A(B) 121 14 5.12 0.855 2.24 3.78

DSR8A(B) 138 14 5.37 0.941 2.31 4.12

DSR9A(B) 95 13 5.36 0.884 1.94 3.89

DSR10A(B) 117 14 4.21 0.912 2.08 4.00

DSR11A(B) 107 14 4.21 1.004 2.52 4.34

DSR12A(B) 100 14 4.66 1.022 2.81 4.40

DSR13A(B) 168 13 4.21 1.426 4.68 5.39

DSR15A(B) 128 14 5.94 1.012 2.41 4.39

DSR17A(B) 152 15 5.28 1.072 2.39 4.55

DSR18A(B) 118 13 6.52 0.950 2.19 4.15

DSR19 A ( B ) 113 12 7.01 1.077 3.08 4.57

DSR20A(B) 120 12 6.19 1.137 3.24 4.75

DSR21A ( B ) 110 11 6.58 1.141 3.26 4.76

DSR22A(B) 129 12 6.35 1.230 3.44 5.01

DSR23A(B) 119 11 6.52 1.128 2.90 4.72

DSR24A(B) 159 15 6.19 1.040 2.59 4.45

DSR25A(B) 114 11 6.19 1.200 3.68 4.93

DSR27A(B) 241 13 6.68 0.850 1.80 3.76



Appendix 4 continued

Run No

C\J
VOb—

t I634 P,

/mV /mV /torr

DSR29A(B) 138 14 6.39

D S R 3 0 A (B ) 127 14 6.27

DSR31A(B) 187 17 6.35

DSR32A(B) 182 16 6.44

DSR34A(B) 162 15 6.27

DSR34A(B) 190 18 6.11

DSR35A(B) 174 18 6.27

DSR36A(B) 160 16 6.19

DSR37A(B) 169 16 6.11

DSR38A(B) 197 16 5.69

DSR39A(B) 185 16 6.11

DSR40A(B) 163 15 6.27

DSR41A(B) 174 16 6.31

DSR42A(B) 184 16 6.23

DSR43A(B) 159 15 6.11

DSR44A(B) 187 15 5.89

DSR45A(B) 147 14 6.35

DSR46A(B) 138 13 6.27

DSR47A(B) 165 15 5.98

DSR48A(B) 155 14 5.94

DSR49A(B) 142 13 6.11

DSR50A(B) 283 13 6.27

DSR51A(B) 201 10 5.65

V s

/ k m . s ' 1

a L

/x 10"3 p s -1

P21

0.846 1.87 3.74

0.841 2.00 3.72

0.864 2.00 3.81

0.860 1.89 3.80

0.870 1.84 3.84

0.932 2.21 4.08

0.889 2.13 4.91

0.921 2.06 4.04

0.956 2.22 4.17

0.930 2.05 4.07

0.936 2.27 4.10

0.939 2.39 4.11

1.030 2.59 4.43

0.987 2.54 4.28

1.024 2.63 4.41

1.024 2.67 4.41

1.166 3.60 4.85

1.143 3.22 4.78

1.177 3.15 4.88

1.229 3.26 5.02

1.202 3.01 5.95

0.871 1.95 3.83

0.773 1.58 3.42



Appendix 4 continued

Run No
j 762 j6 3 4

P 1

/ m V / m V / t o r r

DSR52A(B) 220 11 6.60

DSR53A(B) 229 10 6.72

DSR54A(B) 243 11 6.27

DSR55A(B) 265 12 6.02

DSR56A(B) 244 10 7.18

DSR57A(B) 447 11 5.78

DSR59A(B) 325 13 5.78

DSR60A(B) 209 10 7.05

DSR61A(B) 349 9 6.89

DSR401A ( B ) 49 13.0 5.86

DSR402B 37 - 6.77

DSR404A(B ) 50 12.0 5.36

DSR405A(B) 44 11.6 5.94

DSR406A(B) 42 11.2 6.35

DSR407A(B) 49 12.1 5.57

DSR409A(B) 46 12.1 5.61

DSR410A(B) 43 11.3 6.06

DSR411A(B) 48 11.8 5.28

DSR412A ( B ) 32 8.9 6.06

DSR413A ( B ) 31 9.3 5.90

DSR414A(B) 31 9.3 5.98

DSR415 A ( B ) 28 8.9 6.35

DSR416A(B) 34 10.0 6.68

Vs
/km s ^

a L
/x 10"3 u s ' 1

P21

0.771 1.49 3.42

0.784 1.60 3.46

0.819 1.56 3.61

0.834 1.56 3.68

0.766 1.71 3.39

0.802 1.51 3.55

0.740 1.14 3.25

0.725 1.32 3.18

0.716 1.32 3.15

1.141 2.71 4.63

1.122 2.90 4.57

1.071 2.20 4.42

1.113 2.49 4.54

1.236 3.18 4.89

1.164 2.60 4.69

1.141 2.34 4.63

0.945 1.75 3.99

0.997 1.58 4.18

0.936 1.73 3.95

0.988 2.00 4.14

0.959 1.90 4.04

0.889 1.66 3.78

0.854 1.71 3.64



Appendix 4 continued

Run No j 762 

/mV

j634

/mV
P 1
/torr

Vs
/km s ^

“ L
/x 10'3 p s ' 1

P21

DSR417A(B) 45 11.0 5.73 0.857 1.35 3.66

DSR418A(B) 41 10.3 6.60 0.868 1.83 3.70

DSR419 A (B ) 47 10.9 5.73 0.859 1.44 3.66

DSR420A(B) 44 10.9 6.52 0.718 1.01 3.05

DSR421A(B) 50 11.4 5.24 0.747 0.86 3.18

DSR422A(B) 33 9.8 7.01 0.733 1.26 3.12

DSR423A(B) 44 11.3 6.27 0.778 1.30 3.32

DSR424A(B) 37 10.4 6.44 0.836 1.62 3.57



APPENDIX 5

Input Parameters for

j 762 j634
P 1 V s “ L P21

/mV /mV /torr / k m  s ' 1 /x 10-3 p s " 1

DSR201A (B ) 120 7.4 5.94 1.129 1.64 4.40

DSR202A(B) 123 7.9 5.86 1.392 2.59 5.00

DSR203A(B) 104 6.6 5.82 1.033 0.97 4.13

DSR204A(B) 112 7.0 5.90 1.112 1.43 4.36

DSR205A(B) 103 7.0 5.82 0.981 1.17 3.97

DSR206A(B) 98 6.5 6.60 0.856 1.00 3.53

DSR207A(B) 129 7.8 5.86 0.846 0.85 3.49

DSR208A(B) 125 7.7 6.02 0.732 0.61 3.02

DSR209A(B) 135 8.2 5.78 0.735 0.60 3.04

DSR210 A ( B ) 115 7.2 6.52 0.784 0.81 3.25

DSR211A(B) 339 17.3 6.06 1.257 2.88 4.93

DSR212A(B) 359 15.5 6.06 1.331 3.21 5.09

DSR215 A ( B ) 278 12.8 5.57 1.371 3.69 5.18

DSR216 A ( B ) 238 11.7 6.23 0.842 1.51 3.61

DSR217A - 13.2 6.02 1.039 2.15 4.31

DSR218A(B) 326 14.9 5.86 1.001 2.16 4.19

DSR219A(B) 336 15.2 6.27 1.136 2.65 4.60

DSR220A(B) 362 15.8 5.86 1.075 2.18 5.54

DSR221A(B) 363 15.7 6.06 0.901 1.56 3.84

DSR222A(B) 364 15.6 6.02 0.846 1.34 3.62

DSR223A(B) 733 22.8 5.28 1.358 3.54 5.26



Appendix 5 continued

Run No j 762 

/mV

j634

/mV
P 1
/torr

Vs
/km s

“ L
-3 -1 /x 10 J MS

P21

DSR224A(B) 634 20.5 6.23 1.346 4.02 5.24

DSR225A(B) 687 21.5 5.78 1.087 2.47 4.56

DSR226A(B) 709 22.2 5.49 1.296 3.33 5.125

DSR227A(B) 673 21.1 5.69 0.997 2.09 4.270

DSR228A(B) 656 20.5 6.11 0.926 1.70 4.016

DSR229A(B) 680 20.6 6.15 0.835 1.36 3.66

DSR230A(B) 710 21.3 5.90 0.844 1.54 3.69

DSR232A(B) 655 19.6 6.02 1.282 3.71 5.09

DSR233A(B) 613 18.4 6.44 1.467 5.03 5.51

DSR234A(B) 622 19.4 5.98 0.721 1.11 3.15

DSR235A - 20.4 5.98 0.720 1.10 3.14

DSR236A - 213 5.82 0.743 1.18 3.25

DSR237A(B) 676 20.3 6.31 0.743 1.27 3.14

DSR238A(B) 432 17.1 5.58 0.734 0.92 3.14

DSR239A(B) 337 14.5 6.77 0.731 1.06 3.12



APPENDIX 6

Input Parameters for D2/ O2 and d 2/ n 2/ o 2

Run No j 762 j634
P 1 V s a L P21

/mV /mV /torr /km s " 1 /x 10"3 u s -1

DSR101A - 17 4.91 1.423 2.17 5.47

DSR102A - 25 5.78 1.365 2.58 5.34

DSR103A(B) 1075 25 4.74 0.915 1.13 3.99

DSR104A(B) 636 25 5.20 0.930 1.21 4.06

DSR105A(B) 622 25 5.28 1.084 1.65 4.59

DSR106A (B ) 686 25 4.99 0.894 1.06 3.92

DSR107A(B) 597 24 4.95 0.881 1.11 3.87

DSR108B 619 - 5.03 0.872 1.07 3.83

DSR10 9 A (B ) 699 27 5.36 1.029 1.87 4.42

DSR110A(B) 532 37 5.07 1.368 2.91 5.35

DSR111A(B) 561 34 5.40 1.383 3.23 5.38

DSR112A - 33 6.27 0.910 1.69 3.98

DSR113A(B) 582 34 5.94 0.986 2.01 4.26

DSR114A(B) 503 29 6.93 0.975 2.49 4.22

DSR115A(B) 603 34 5.57 1.032 2.17 4.42

DSR116A - 36 5.78 1.129 1.90 4.72

DSP.116B - 36 5.78 1.129 1.90 4.72

DSR117A - 19 5.69 0.978 1.43 4.23

DSR117B - 20 5.69 0.978 1.43 4.23

DSR118A(B) 659 19 4.21 0.737 0.77 3.24

DSR119A(B) 501 17 6.64 0.719 1.24 3.14

DSR120A(B) 749 23 4.87 0.730 0.91 3.20



Apoendix 6 continued

Run No j 762 

/mV

j634

/mV
P 1
/torr

Vs
/km s ' 1

“L
/X 10“3 m s ' 1

P21

DSR121A(B) 545 19 7.10 0.713 1.45 3.12

DSR122A(B) 803 24 5.20 0.766 1.20 3.37

DSR123A(B) 746 21 5.31 0.842 1.86 3.71

DSR124A(B) 682 21 5.86 0.801 1.43 3.54

DSR125A (B ) 404 21 6.11 1.078 3.32 4.57

DSR126A(B) 415 19 5.57 1.181 3.37 4.87

DSR127A(B) 349 15 6.44 0.732 1.23 3.19

DSR128A(B) 488 19 4.66 0.737 0.89 3.22

DSR129A(B) 332 15 7.10 0.723 1.34 3.14

DSR.130A( B ) 450 18 5.53 0.769 1.14 3.36

DSR131A (B ) 433 18 5.69 0.820 1.41 3.59

DSR132A(B) 376 16 6.44 0.841 1.75 3.68

DSR133A ( B ) 399 18 5.61 0.845 1.57 3.69

DSR134A(B ) 435 18 5.53 0.841 1.56 3.68

DSR135A(B) 435 18 5.82 0.851 1.74 3.72

DSR136A(B) 410 20 5.82 0.842 1.75 3.71

DSR137A(B) 473 20 5.45 1.082 2.78 4.55

DSR138A(B) 470 20 5.65 0.951 2.16 4.11

DSR139A(B) 400 18 6.31 1.005 2.85 4.31

DSR140A(B) 484 21 5.45 0.927 2.05 4.02

DSR141A ( B ) 405 18 6.48 0.844 2.00 3.69

DSR142A(B) 441 19 6.19 0.867 1.94 3.79

DSR143A(B) 412 18 6.35 0.968 2.55 4.17

DSR144A(B) 440 20 5.40 1.035 2.43 4.40



Appendix 6 c o n t in u e d

Run No j 762 

/mV

j634

/mV
P 1
/torr

Vs
/km s " 1

“ L
/x 10"3 u s ' 1

P21

DSR145A(B) 487 20 5.16 1.019 2.30 4.35

DSR146A(B) 355 17 6.77 1.009 3.01 4.32

DSR147A(B) 347 17 6.72 1.004 2.99 4.30

DSR302A(B) 270 16 6.52 1.107 2.48 4.51

DSR304A(B) 281 15 6.06 1.185 2.48 4.73

DSR305A(B) 302 16 5.57 1.037 1.90 4.29

DSR306A(B) 262 14 5.86 1.058 2.00 4.36

DSR307A(B) 273 14 5.65 1.018 1.40 4.23

DSR308A(B) 258 13 5.78 0.966 1.54 4.05

DSR309A(B) 270 14 5.69 0.876 1.18 3.71

DSR310A(B) 229 13 6.44 0.836 1.28 3.55

DSR311A(B) 285 15 5.69 0.863 1.16 3.66

DSR312 A ( B ) 281 14 5.78 0.864 1.28 3.66

DSR313A(B) 252 13 6.39 0.856 1.36 3.63

DSR314A(B) 308 15 5.63 0.770 0.97 3.27

DSR315A(B) 309 15 6.15 0.854 1.31 3.62

DSR316A(B) 309 15 6.11 0.722 0.88 3.05

DSR317A(B) 270 14 6.77 0.724 1.01 3.06

DSR318A - 5.8 6.81 1.255 1.98 4.78

DSR319A(B) 124 7.4 5.32 1.145 1.31 4.48

DSR320A(B) 101 6.6 5.94 0.868 0.78 3.56

DSR323A(B) 90 6.5 6.52 1.007 1.37 4.06

DSR324A(B) 96 6.5 6.35 0.959 0.97 3.90
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Appendix 6 c o n t in u e d

Run No j 762 

/mV

j634

/mV
P1
/torr

Vs
/km s ^

“L
-3 -1 /x 10. U S . '

P21

DSR325A(B) 97 6.6 6.56 0.988 1.24 4.00

DSR326A(B) 100 6.5 6.35 0.917 1.03 3.74

DSR327A(B) 107 6.8 6.11 0.864 0.82 3.54

DSR328A(B) 93 6.2 6.35 1.097 1.46 4.34

DSR329A(B) 91 6.1 6.77 1.133 1.72 4.45

DSR330A(B) 84 5.7 6.85 0.724 0.66 2.95

DSR331A(B) 91 5.7 6.72 0.724 6.10 2.95

DSR332A(B) 94 6.3 6.85 0.761 0.76 3.12

DSR333A(B) 126 7.1 5.69 0.834 0.72 3.43
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