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Abstract

Possibly the greatest advantage that a distributed computer control 

system has over a centralised control system is that the failure of one or 

more of its constituent computers does not prevent the other computers from 

operating normally. Unfortunately, the loss of the executive and 

application software hosted by a failed computer will prevent the surviving 

part of the control system from fulfilling its role. Whereas it is 

possible to design the executive software so that the loss of one of its 

constituent kernels will not prevent the others from functioning normally, 

it is not possible to do this for the application software.

Process survivability was conceived as a way of preventing 

application processes from being lost as a result of a computer failure. 

Process survivability enhances the high availability of a distributed 

computer control system’s hardware by making its application software 

invulnerable to computer failure. Process survivability is performed in a 

way that is transparent to the application programmer.

In this thesis we first describe the distributed computer control 

system called PROSUP (PROcess SURvivability) which we designed as an 

environment in which to develop process survivability.

The major part of this thesis is concerned with the design and 

development of process survivability for PROSUR. In particular, we 

describe how redmdant inactive copies of all of the application processes 

are incorporated into the application software and how the processes are 

recovered to a consistent state after a computer failure.

As well as showing that process survivability is practicable, we 

also investigate its practicality. A simulation study of a distributed 

computer control system incorporating process survivability has been 

performed to gain an insight into the effects that process survivability



might have on a control system's performance. The results of this 

simulation are presented and a number of interesting conclusions are drawn.
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1. Introduction

1.0 Introduction

Once a computer has been Introduced into an organisation it quickly 

becomes indispensable and the parent organisation has to rely on the 

computer's continued correct operation. As familiarity with the computer's 

powers increases so does the work load that is placed on it. This in turn 

means that the organisation's ability to operate normally without the 

computer decreases and the reliance placed on the computer's continued 

operation increases.

When such reliance is placed on a computer any interruption to the 

service that it provides (down-time) is much more than an inconvenience. 

In an on-line data processing system down-time costs money, and in a 

process control system down-time may not only be expensive, it may also 

result in a situation arising *>ere lives are endangered. Protracted 

down-time can result in the financial collapse of a commercial 

organisation: a recent survey in the United States of America found that 

"80* of companies would fail to survive a large scale computer disaster" 

(reported in Bremen 1983)»

A computer is said to have failed when it ceases to meet the 

specifications that define its behaviour. A computer's reliability is 

normally measured by the probability that it will not fail during a 

specified time period. The higher the probability and the longer the time 

period, the more reliable the computer is.

Obviously there is potentially a large market for reliable 

computers. Unfortunately computers are not inherently reliable as they are 

made up of »«reliable components rtiich are combined in a complex manner. 

Component reliability is continually being improved but it is very unlikely 

that it will ever reach 100*, and even if it did, the extra complexity
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resulting from combining the components together would bring the computer’s 

reliability down to well below 100*. The alternative to producing a 

computer that never goes wrong is to produce a computer that can continue 

to operate normally despite component failures.

An early but still flourishing market for highly reliable computers 

is the aerospace industry. Here computers have been used to support the 

manned space flights and to pilot the deep space probes. More recently, 

on-board computers are assisting pilots to fly marginally stable aircraft 

by making the myriad minor alterations to the aircraft's control surfaces 

that are needed to keep the plane in the air and which are beyond the 

pilot’s capabilities to perform. Such applications require a computer 

whose probability of failing during the aircraft or spaceship's mission 

time is so small that it can be ignored. (In an aircraft, computer failure 

must be as vnlikely as the wings falling off.) In order to obtain these 

high reliabilities computers have been developed that are fault tolerant, 

that is they are able to continue executing their programs normally and 

without interruption despite component failures.

Fault tolerant aerospace computers are based on the incorporation 

of protective redmdancy into the computer’s design. Protective redundancy 

is comprised of the extra hardware components, processing power and 

programs that are not needed to execute the computer’s programs, but are 

there to provide fault tolerance either by masking component faults or by 

replacing components when they are detected to be faulty (Carter and 

Bouricius 1971). These computers do indeed achieve the high level of 

reliability demanded by the aerospace industry. For example, the Fault 

Tolerant Spaeebourne Computer has a 95* probability of remaining 

operational for five years (O'Brien 1976).
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Such computers can also withstand limited physical damage, but as 

they are physically centralised It is likely that any major physical 

damage, such as that resulting from a fire, would completely destroy them.

In fairness, It should be noted that these computers are not designed to 

cope with such contingencies, as such a situation would most likely doom 

the aircraft or spaceship anyway.

In the majority of applications the threat of physical damage must 

be taken Into consideration. Numerous examples of organisations being left 

computer-less after the complete destruction of their computers abound - an 

Interesting selection of such stories can be found In Berthelsen 1983. 

Lawrence 1983 and Wong 1983« These risks can be reduced by careful 

management and by codes of practice, but they can never be removed. For 

example, a recent UK survey showed that 47* of fires affecting computer 

Installations started outside of that Installation (Wong 1983). In fact, 

in certain applications It may be impossible not to place the computer in a 

hostile environment where such damage Is likely - a computer In a warship 

is one such example.

As the physical threat cannot be removed, the computer system must 

be built to tolerate physical damage. This can be done In the same way 

that component failure Is tolerated except this time the unit of hardware 

redtndancy within the system must be the computer Itself. By basing the 

system on more than one computer and by dispersing these computers, the 

system cannot be totally destroyed by a single disastrous event at one

site.

The invention of the local area network, the falling cost of 

processing power, and a growing demand for a system whose characteristics 

include tolerance to computer failure have led to the development of 

distributed computer systems. The title -distributed computer system* has 

many meanings, but In this thesis we use It to describe a collection of
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computerà that are physically Interconnected by a local area network, and 

Which are logically interconnected to form a single unified system.

When one of the constituent computers of a distributed computer 

system fails it does not prevent the remaining computers from operating 

normally. The overall computing power has been reduced but the majority of 

the power is still available. Furthermore, the physical dispersal that can 

be achieved using a local area network effectively removes the chance of 

all of the computers failing at the same time.

The crash of a computer results in the loss of the executive and 

application software that was running on that computer. If this software 

provided a service that is vital to the continued running of the surviving 

computers* software, then although the majority of the distributed computer 

system is intact it will no longer be able to fulfil its role. The 

distributed computer system as a whole is still vulnerable to computer

fail »ire.

Distributed databases have been developed as a partial solution to 

this problem, as by replicating the data they ensure that a computer 

failure does not prevent access to vital data. However, all the other 

software resources provided by that computer would be lost and these may be 

equally vital.

The aim of the research described in this thesis is to investigate 

how the vulnerability of a distributed computer system’s software can be 

removed so that the full potential of its distributed hardware can be 

exploited. The result of this research is process survivability.

Distributed computer systems can be used for real-time work, 

ranging from process control in a chemical works to on-line transaction 

processing in a bank. Distributed computer systems used for such 

applications are called distributed computer control systems. Process
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survivability has been developed for Inclusion in a distributed computer 

control system because the cost of the control system failing, whether 

measured in money or lives, is greater than in any other application.

1 . 1  Distributed computer control systems

As we shall show in Chapter 2, a distributed computer control 

system consists of three levels: hardware, distributed kernel and 

application.

The hardware consists of a number of computers linked together by a 

local area network (Clark et al. 1978, Gee 1983). Devices are attached to 

the computers.

Each computer has a kernel. The kernels cooperate with each other 

to form the distributed kernel level. The distributed kernel level 

provides the logical unity that is a characteristic of distributed computer 

systems. This tnity is achieved by hiding the distributed nature of the 

hardware from the application level, thereby providing it with a single­

computer environment in which to operate.

The application level consists of a number of application processes 

that cooperate with each other to implement the control system's role. 

Cooperation is by an interprocess communication mechanism which is provided 

by the distributed kernel level.

When a computer crashes it ceases to work and the kernel and the 

application processes that are running on it are lost. If the control 

system is to continue then the distributed kernel level must be able to 

operate without the lost kernel, and the application level must be able to 

operate without the lost application processes.
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As we shall explain In Chapters 2 and 4, kernels generally operate 

autonomously and only cooperate with each other to support Interprocess 

communication between application processes on different computers. 

Because of this autonomy the loss of a kernel will not prevent the others 

from working normally.

Application processes are not normally autonomous. Some 

application processes provide unimportant services such as error logging, 

and the absence of these would not prevent the rest of the control system 

from operating. Other application processes however provide services that 

are vital, and without them the surviving application processes will not be 

able to operate properly.

Process survivability prevents an application process from being 

lost in a crash. By applying process survivability to every application 

process the application level is made crash tolerant. The application 

level will be unaffected by a computer crash.

Unfortunately, even with process survivability the control system 

as a whole is still not crash tolerant, as it is vulnerable to device loss 

as well. When a computer crashes the devices attached to it can no longer 

be used, and without these the control system's ability to fulfil its role 

is reduced. To remove this vulnerability the devices themselves would have 

to be replicated. Although this problem is outside of the scope of process 

survivability we return to it in several of the later chapters.

The control system is also vulnerable to the failure of its 

network. If the network fails the control system will be partitioned into 

small groups of computers. Again this vulnerability can be removed by

replication.
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1.2 Process survivability

Process survivability ensures that application processes survive 

the crash of their host computer by causing those processes to migrate to 

other computers. Process survivability effectively reconfigures the 

application level to avoid the crashed computer. This reconfiguration is 

transparent to the application processes.

Process survivability is achieved by incorporating non-running 

copies of all of the application processes into the application level. 

Non-running backup copies of each application process are placed on 

different computers. At intervals the backup copies are updated so that 

they form exact copies of their application process.

When an application process is lost in a crash, one of its backup 

copies is activated to replace it. In effect the application process has 

side-stepped the disaster, having been moved from the crashed computer to 

one of the survivors. The remaining backups ensure the survivability of 

the new generation of application process. By having multiple copies of 

each process the system can withstand the simultaneous destruction of a

number of computers.

By applying process survivability to every application process we 

ensure that in the event of a computer crash no application process is 

lost. Process survivability makes the application level crash tolerant.

Process survivability has been designed to have the following 

advantageous features:

a) Process survivability is transparent to the application programmer: 

process survivability does not involve any code in the application 

process, and so it will not fail due to programmer error.
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b) As long as the number of computers that have failed is within the level 

of process replication, crash tolerance can be maintained.

c) Multiple backups of each process ensure that crash tolerance is not 

affected by simultaneous computer failures.

d) Crash tolerance Is not affected by what a process is doing when Its host 

computer crashes. Process survivability coverage Is 100f (assuming that 

a backup copy of that process still exists).

e) Process survivability is automatic. There is no operator involvement 

other than specifying the level of redundancy required and the position 

of the backups.

This thesis describes how process survivability can be implemented 

for a 'paper* distributed computer control system called PROSUR (PROcess 

SURvivability). Part of the preliminary work for the research described 

involved designing PROSUR so as to create an environment in which process 

survivability could be developed. PROSUR is called a paper system because 

its characteristics have been specified on paper but it has not been 

implemented.

1 .3 The cost of process survivability

All fault tolerance is based on some form of protective redundancy 

- hardware, software or time (program execution). Process survivability is 

no exception.

In a number of distributed computer control system applications, 

maintaining the control system's response time to external events is 

important. After a computer crash backups will be activated to replace the 

lost application processes and the surviving computers will be running more 

application processes than before. If the control system's response time
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Is not to fall below acceptable levels, the computers must be configured 

with sufficient spare processing power to absorb the extra load. Once this 

spare power has been exhausted, further computer losses, although not 

causing the control system to fail, will cause the control system to start 

missing deadlines.

To be able to withstand n computer failures without its response 

time degrading, a distributed computer control system must contain time 

redundancy equivalent to the power of n computers. Thus the control system 

has n computers that are surplus to its normal requirements and these are 

the major cost of process survivability. (There are no designated standby 

computers in the system; the active application processes are partitioned 

between all of the computers.)

This expense can be spared if a degraded response time is 

acceptable after a computer failure. The distributed computer system can 

be configured without any computer redundancy, Just sufficient computers to 

fulfil its primary role and no more. (The absence of computer redwidaney 

does not mean that there is only one computer.) In the event of a computer 

failure the control system's response time would become slower.

Further protective reduidancy in the form of extra code, 

processing, and commwication network activity is needed to implement 

process survivability. All of this will either reduce the amount of 

profitable work that can be performed by the system, or will reduce the 

system's response time. A simulation study of a distributed computer 

control system incorporating process survivability has been performed in 

order to ascertain What these overheads are likely to be, and to what 

extent they might effect the control system's ability to perform useful 

work. The results of the simulation and the conclusions drawn from them 

are presented in a ^ater chapter.
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The Inclusion of protective redundancy In any form Increases the 

price of a system without Increasing Its through-put. Normally, a fault 

tolerant system will only be adopted when the cost of a system failure Is 

greater than the cost of preventing that failure.

1.U Possible applications

We believe that a distributed computer control system incorporating 

process survivability will be of greatest value In process control 

applications. Such applications require a crash tolerant service with a 

guaranteed response time which will not degrade even in the event of 

multiple failures. The cost of providing such a service should be 

justifiable on both financial and safety grounds.

A particularly extreme process control application Is that of a 

warship command and control system as the environment It operates in is 

hostile and the cost of a system failure is high. "Military command and 

control...systems must be able to operate fast, move fast or hide, and 

function in the presence of physical (as well as other) counter measures" 

(Licklider and Vezza 1978).

A naval command and control system controls the ship's weapons, 

sensors and displays in order to assist the command team in their decision 

making. The command and control system monitors the ship's environment 

using various sensors such as radar and sonar, and presents this 

information via displays to the command team. The decisions taken by the 

command team are in turn executed by the command and control system.

A warship and its crew are dependent on the warship's command and 

control system. If it fails in action the warship will quickly become 

untenable. Current command and control systems are based on a single 

computer thus making the ship vulnerable to a single hardware fault, and to 

light action damage that would not otherwise have affected the ship.
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By basing the command and control system around a distributed 

computer control system that incorporates process survivability, a lot of 

this vulnerability would be removed. Configuring the distributed computer 

control system to include a high level of computer (and time) redundancy 

should enable the command and control system to withstand action damage for 

as long as the ship remains a viable weapons platform. Dispersing the 

computers around the ship will reduce the chances of action damage 

destroying all of the computers in one go. If multiple crashes occur, 

process survivability's use of multiple backups for every application 

process ensures that the application processes survive.

Ideally the cost of the computer redundancy would be easily 

Justified by the need of a warship to remain operational. In practice 

however, the level of reduidaney would be based on the expected threat, the 

cost of providing that redundancy and the amount of space available to put

it in.

The value of basing a command and control system on a multi­

computer architecture has already been recognised. The Canadian navy has 

adopted such a system for use in their warships as a way of limiting the 

physical effects of action damage, but they do not attempt to achieve 

anything like process survivability (Carruthers 1979). In Britain, the 

Admiralty Surface Weapons Establishment are currently developing a 

distributed computer control system for use in Royal Navy warships (Rowland 

1982). This system does Incorporate crash tolerant application processes, 

and it is the subject of later discussion in Chapters 2 and 4.

Any commercial institution that supports an on-line transaction 

processing system for its own use, or for the use of its customers, would 

benefit by adopting a crash tolerant computer system, as even a small 

interruption in the computer's service would lead to a loss of money and 

loss of customer goodwill. One of the earliest examples of an on-line
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database, the SABRE airline reservation system (Plugge and Perry 1961), was 

based on a fault tolerant computer system.

The threat of a major disaster completely destroying a computer is 

now being taken very seriously, and has led to a number of 'hot standby' 

sites (Harrington 1983, Berthelsen 1983) being set up as commercial 

ventures. Hot standby sites are computer suites that can be taken over by 

a client in the event of a disaster destroying his own computer system.

Basing an on-line transaction processing system on a distributed 

computer control system that incorporates process survivability would 

remove the threat of loss of service due to hardware faults or disasters. 

The amount of protective redundancy that needs to be incorporated in such a 

system is much less than in a command and control system, as the chance of 

more than one failure at a time is remote. Process survivability's ability 

to provide a crash tolerant service without any computer redundancy, albeit 

at the risk of a degraded response time in the event of a failure, makes it 

attractive for commercial applications.

This 'no extra cost' configuration also means that a crash tolerant 

service could be provided t*>ere the extra cost could not normally be 

Justified, for example as a University time-sharing system.

1 .5 Su"— arv of contents of thesis

Process survivability is based on the use of standby redundancy 

within the application level of a distributed computer control system. The 

first three chapters review the background to process survivability.

Chapter 2 describes the organisation of a number of existing 

distributed computer control systems and describes the three-level model 

outlined in Section 1.1. Chapter 3 reviews the theory of fault tolerance 

and gives two extended examples of the use of standby redundancy to achieve
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fault tolerance.

Chapter 4 describes the two ways In which redundant copies of 

application processes can be Incorporated into the application level. A 

major example of each Is given. The rest of the thesis describes process 

survivability.

Chapter 5 reintroduces process survivability. Its alms, 

characteristics, and relationship to previous work are described. The 

succeeding chapters then describe how process survivability can be added to 

a specific example of a distributed computer control system - PROSUR.

Chapter 6 describes PROSUR, the model distributed computer control 

system that has been used as an environment in which to develop process 

survivability. PROSUR complies with the three-level model presented in 

Chapter 2, except that It has a fourth level Interposed between the 

application level and the distributed kernel level. This level, the 

process survivability level, supports the process redundancy incorporated 

in the application level. The main emphasis in this chapter is on how 

red endant copies of application processes are organised, maintained and 

used.

An application process’s backups are updated at intervals to become 

exact copies of that application process. So, when a backup is activated 

it will be out of date, and any outstanding messages that have been sent to 

its previous generation will have been lost. The combination of these two 

effects means that the restarted application process's state will be 

inconsistent with the state of the rest of the application level. Chapter 

7 discusses these inconsistencies in detail.

Part of the process survivability level’s role is to remove these 

inconsistencies. Chapter 8 introduces the way in which consistency is 

restored. Finally, Chapter 9 presents full details of how the process

13



survivability level would be implemented.

He have developed a way of Implementing process survivability. But 

is it practical, or will the overheads caused by its inclusion reduce the 

level of work being done to a prohibitively low level? A simulation study 

of PROSUR has been performed in order to examine this question. The 

simulation's alms, implementation and results are described in Chapter 10.

Finally in the Conclusion (Chapter 11) we review the work presented 

in this thesis, and describe the possibilities for the further development 

and exploitation of process survivability.
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2. Distributed Computer Control System Organisation

2.0 Introduction

A real-time computer system monitors the state of Its environment 

and reacts to events that occur within Its environment. A real-time system 

can be divided Into the controlled system and the control system.

The controlled system comprises those devices that provide an 

interface between the control system and its environment. The actual 

composition of the controlled system will depend on the function of the 

real-time system. For example, In an on-line transaction processing system 

It may consist of disks, VDUs and line printers, and In an Industrial 

process control system it may consist of thermometers, valves and relays.

The control system Is the regulating element in a feedback loop. 

It consists of the computer programs that perform the regulating and the 

computer hardware that those programs run on.

A distributed computer control system Is a control system that Is 

based on a number of computers linked together by a communication network. 

The control software Is dispersed between the computers with the Individual 

software components cooperating with each other to fulfil the system's

overall role.

In this chapter we describe the software and hardware structure of 

distributed computer control systems. Unfortunately there are as many ways 

of organising a distributed computer control system as there are 

distributed computer control systems. So we first review a selection of 

existing and proposed systems, and then we present a generalised 

description of a distributed computer control system. First however, we 

review the potential advantage, that can be attributed to a distributed

system.
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2.1 The potential advantages

Being based on a number of Interconnected computers, a distributed 

computer control system's hardware has a number of extremely advantageous 

characteristics s

1) The computers can be placed close to (or even within) the devices they 

use, thus reducing the control system's response time to external 

events. This will be particularly useful in an Industrial complex where 

the controlled system is perforce widely dispersed.

2) Processing can be performed in parallel, again reducing response time. 

Large tasks can be divided into smaller concurrently running tasks, and 

events that occur in parallel in the system's environment can be handled 

in parallel. The latter ability may be crucial in an emergency when 

alarms are generated by a number of sources.

3) Such an architecture makes it possible to exploit the 'enough* principle 

(Brenner et al. 1980). The enough principle states that by reducing 

hardware resource restrictions it is possible to produce simpler 

software. Hardware costs are continually falling, especially where 

established technology is concerned, but software costs continue to 

rise and so it is now economical to use hardware to reduce software 

complexity and hence reduce the overall cost of a control system.

1») The architecture is very modular. The computers communicate via a 

common medium - the communication network. As long as a computer can 

use the network in the standard way, it can communicate with the other 

computers. This means that the type of computers used can be tailored 

exactly to the requirements of the system, and as these requirements 

change, the hardware can be easily extended by the addition of other 

computers. Thus the system's processing requirements are met very

economically.
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5) The final and possibly the most important advantage is the high 

availability of the system. When a computer suffers a hardware failure 

it cannot prevent any of the other computers from running. The overall 

system has suffered a reduction in its processing power, but the 

majority of the power is still available. It is this characteristic 

that is exploited by process survivability. (The system is however

reliant on the continued operation of the network.)

The first three of these advantages can be easily exploited by the 

designer of a distributed computer control system. However if the control 

system is to benefit from the last two of the advantages, then its software 

must be designed so as to exploit them to their full potential.

2.2 Exlstltg distributed computer control systems

2.2.0 Introduction

In this section we briefly review the hardware and software layout 

of a number of distributed computer control systems. From these 

descriptions it will be seen that although details vary between systems 

their overall structure is very similar.

In the following descriptions we have where possible standardised 

the terminology used rather than use the authors« original terminology.

2.2.1 CONIC

CONIC (Kramer et ml. 1982, Lister et al. 1980) is designed for use 

as an industrial process control system. Unfortunately, neither of these 

papers gives an explanation of what the acronym CONIC stands for.
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The envisaged hardware structure is that of a group of computers 

Interconnected by a mesh of subnetworks linked together by gateways (Sloman 

1982).
Software consists of a number of concurrently running processes. 

Processes that cooperate to perform a particular service are grouped into a 

structure called a module. The internal structure of a module is hidden 

from other modules. A module must be located on a single computer, but 

there may be more than one module on a computer.

Interprocess and intermodule commmleation is provided by 

asynchronous message passing and by a request-reply message pair similar in 

operation to a procedure call. Furthermore, interprocess communication 

within a module can be performed by shared data.

In CONIC the software is divided into a hierarchy of distinct 

levels: kernel, communication system, operating system, application 

software and management software. Other than the kernel level, all of 

these levels are implemented using modules, processes and message passing.

The kernels support multiprocessing and intra-computer message 

passing, and they provide the routines needed by the local operating 

system. Inter-computer message passing is performed by a commiailcation 

module on each computer. The distinction between inter-computer and 

intra-computer commuiicatlon is hidden from the higher levels.

The operating systems on each computer provide the services needed 

to configure and reconfigire the application software, and management 

software. The management software monitors the system’s activities and 

controls the system's installation.
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2.2.2 Distributed Senaor Network (DSN)

DSN (Rashid 1980) Is a fault tolerant system developed at 

Carnegie-Mellon University. It is based on Three Rivers Corporation PERQs 

connected together by a network similar to Ethernet (Metcalfe and Boggs

1976).

The basic software unit is the process which performs a computation 

and/or manages resources. Each computer has a kernel and a set of 

processes. It Is assumed that the processes will be organised into a 

hierarchy of levels.

Application processes may be written In a number of languages, each 

of which will have Its own Interprocess communication mechanism. All of 

these mechanisms are Implemented using asynchronous message passing.

The kernel provides virtual memory management, multiprocessing, 

local Interprocess communications, routines to control the devices, and 

routines to create and delete processes. Inter-computer communication Is 

provided by a network process resident on each computer. This partitioning 

of labour Is Invisible to the application processes.

2.2.3 A Signal Processing System

This system (Stepczyk 1978) Is a dedicated system designed to 

perform signal processing.

The hardware consists of three PDP-11*s linked together by 

unidirectional bus links to for. a ring. All of the software Is written In 

Concurrent Pascal (Brinch Hansen 1977). Each computer runs a virtual 

machine environment for supporting Concurrent Pascal, and a number of 

processes. Interprocess communication la by synchronous message passing 

and by shared data In the form of monitors.
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Message passing Is Implemented by two monitors on each computer. 

One performs Intra-computer message passing and the other Inter-computer 

message passing, with the partitioning being hidden from the user processes 

by the class that provides the message passing routines.

Shared data is stored in monitors. Only local processes can use a 

monitor’s procedures. Every process that requires remote access to a 

monitor has a ’ghost’ process local to that monitor. To use a monitor a 

remote process sends Its ghost a message which the ghost translates into a 

call to the monitor. The results of the monitor call are then returned by 

the ghost to the remote process In a message. In a later version remote 

access to monitors will be allowed.

2.2.1* Action Data Network (ADHET)

ADN1JT (Moulding 1980a and Moulding 1980b) Is an experimental 

warship command and control system developed by the Admiralty Surface 

Weapons Establishment (ASWE).

ADHET Is based on a number of Ferranti Argus minicomputers linked 

together by an ASHE Serial Highway (Ministry of Defence 1981, Hill and 

Stalnsby 1980). The software is Implemented in Coral 66, supported by

Mascot.

The application software consists of a set of processes partitioned 

between the computers. The processes cooperate with each other using 

asynchronous message passing. The application processes on each computer 

are supported by a local copy of the Mascot Operating System (Miles 1980) 

and a communication package.

The Mascot Operating System supports only a single-computer Mascot 

environment. All Interprocess communications, whether inter-computer or 

intra-computer, are handled by the communication package on each computer.

20



Further details of ADNET are given in Chapter 4, Section 4.2.2.

2.2.5 Distributed Processes

'Distributed Processes' is a programming language concept proposed 

by Brinch Hansen (1978) for programming distributed real-time systems. 

Although he concentrates on language features there are sufficient details 

about the control system's configuration and implementation to justify its 

inclusion here.

Distributed Processes is designed for programming a network of 

microcomputers linked together by a communication network. The number of 

processes in the system is fixed and to ensure adequate response time there 

is only one application process per computer. Interprocess communication 

is by procedure calls.

Each computer runs a runtime environment for supporting distributed 

processes, a single application process and a number of 'ghost* processes. 

The ghosts are part of the remote procedure call implementation, and are 

similar to the ghost processes used in the Signal Processing System

described above.

A process's procedures are used by only a few processes. Each of 

these processes is represented by a ghost process resident on the server 

process's computer. When a user process executes a remote procedure call 

the parameters are passed to its ghost. The ghost performs the procedure 

call and then returns any results. Thus the remote procedure call is

actually based on message passing a t .  lower level. A similar scheme is

also used in Unix United (Brownbridge et al. 1982), although here the 

number of users is «known and so the ghost, are dynamically created a,

needed.

21



Multiprogramming the application process and the ghosts Is simple. 

There Is no preemption and the processes simply execute until they perform 

an explicit wait on some condition.

2.3 A generalised distributed computer control system organisation

2.3.0 Introduction

Although the previous section is not an exhaustive survey of 

distributed computer control systems, It Is sufficient to show that 

although details vary between systems their basic organisation is similar. 

In this section we present a generalised distributed computer control 

system model which has each of the above examples as special cases.

Three main levels can be identified: application level, distributed 

kernel level, and hardware level. We will now describe each of these In

turn.

2.3.1 The application level

The application level is divided into a number of application 

processes, which cooperate with each other In order to fulfil the control 

system's role. An application process is a named and executable instance 

of a program. The application processes are dispersed between the 

computers. The location of some application processes will be determined 

by the location of particular hardware resources, for example an 

application process that controls a line printer must be hosted by a 

computer that Is connected to a line printer.

The application level may be structured Internally by organising 

the application processes Into a hierarchy of levels, and/or by grouping 

the application processes into modules.
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Often a group of application processes will cooperate with each 

other In order to provide a particular service. In CONIC and In the 

distributed programming language proposed by Llskov (1979)* application 

processes are grouped into modules, and the module is used as the standard 

unit of application software. In both examples, all of the module's 

constituent application processes must be on the same computer.

The application processes (and the modules, if they are used) may 

be logically organised into a hierarchy of levels. The number of levels in 

a real-time system is much fewer than in most general purpose computer 

systems, often as few as two (Boebert et al. 1978). Prince and Sloman 

(1981) identify four hierarchical levels in an industrial process control 

system: direct control of devices, subsystem control, site-wide control, 

and management control. In other distributed computer control systems, 

such as the signal processing example above, there is no obvious layering

at all.

In traditional computer systems there is an operating system level 

between the kernel level and the application level, which provides access 

to system resources. In a real-time system the distinction between system 

and application resources is negligible, and so the operating system and 

application software are indistinguishable.

Application processes will be written in a high level language such 

as BCPL (Richards and Whitby-Strevens 1980), C (Kernlghan and Ritchie 1978) 

or Pascal (Jensen and Wirth 1978). The language will incorporate commands 

for interprocess commmication and for interfacing the application process 

with the runtime clock. The latter commands include finding the current 

time, and suspending the caller for a period of time or until a certain

time.
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Interprocess communication can be performed in a number of ways. 

asynchronous message passing, synchronous message passing, asynchronous 

procedure calling and synchronous procedure calling. Numerous attempts 

have been made to show which of these is the best, and a selection of these 

arguments can be found in Lauer and Needham 1979, Staunstrup 1982 and 

Stroustrup 1982. The common result of these comparisons is that there is 

no difference and that a choice should be made on the efficiency of the 

primitive operations needed to support the mechanisms.

A more relevant survey into the Interprocess communication needs of 

a distributed computer control system was performed as part of the CONIC 

project by Kramer et al. (1981). They identified the various interactions 

that occur between application processes, and concluded that these could be 

accomplished by using synchronous procedure calling for command-reply and 

query-status transactions, and by using asynchronous message passing for 

sending alarms, status messages and delayed responses to procedure calls 

(thus emulating asynchronous procedure calls). In CONIC itself a request- 

reply message passing construct is used instead of a synchronous procedure

call.

Despite Kramer et al.'s considered arguments there is no apparent 

consensus of opinion between existing systems. In the examples given in 

Section 2.2 all of these mechanisms are represented.

A fifth way of performing interprocess communication is by using 

shared data. This is normally rejected as it would require some form of 

global virtual address space. However, it is used in CONIC for intra­

module communication, but as a module's processes are all located on the 

same machine, this problem is avoided.

24



For simplicity and precision in the following discussion, we assume 

that interprocess communication is by asynchronous message passing. All of 

the arguments presented below apply equally to the other interprocess 

communication mechanisms. Asynchronous message passing was chosen because 

the two major examples in Chapter 4 use it, and so does PROSUK, the 

distributed computer control system incorporating process survivability. 

First we describe asynchronous message passing.

For two application processes (the sender and receiver) to 

communicate by asynchronous message passing they must be connected by a 

channel. A channel is formed by joining together the sender's output 

channel to the receiver's input channel. The sender sends messages to its 

output channel and the receiver receives these messages from its input 

channel. Messages that have been sent but which have not been received are 

buffered within the channel. The number of messages that can be buffered 

within a channel is limited, and if the sender tries to send a message to a 

full channel then it is suspended until space is available. Similarly, if 

the receiver tries to receive a message from an empty channel then it will 

be suspended until a message arrives#

Following Kramer et al. (1981) an application process’s response 

time is defined to be the time taken by an application process to recognise 

that a message is waiting to be received plus the time it takes to service 

that message. For a lot of applications, maintaining the application 

processes' response time within some critical bounds is an important 

consideration.

From the time at which an application process issues a command to 

send or receive a message «til that command finishes, the application 

process is suspended. The application process may be delayed by the 

channel's flow control, or if it 1» a sender and the receiver is on a 

different computer it will be delayed by the time taken to transfer the
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message between computers. If an application process is to maintain its 

response it is Important that the time spent sending or receiving a message 

has an upper limit. To achieve this the send and the receive commands have 

a timeout period. If the command takes longer than the timeout period to 

complete, then the command is aborted.

An application process will normally have more than one input 

channel. The pattern of message arrival on these channels cannot normally 

be predetermined. Messages are equally likely to arrive on any input 

channel and so an application process must be able to wait for a message 

from any of its input channels. Kramer et al. (1981) suggest the use of 

guarded commands (Hoare 1978) which will allow receives to be issued on a 

number of input channels at the same time, and as soon as one of the 

receives terminates, all of the others are aborted.

Prince and Sloman (1981) have identified the following three 

patterns of Information flow between application processes:

1 ) one-to-one: a message is sent by one application process to another.

2) One-to-many: a message is broadcast by one application process to 

several others, each of which will receive a copy. This might be used 

for raising an alarm or for requesting a service from a number of

identical servers.

3) Many-to-one: an application process receives messages from more than one 

application process. A process that provides a service may receive 

requests fhom a number of users.

In COHIC for «xa.p l«, to«»« now p .tt .rn . o.n 0.
exp licitly  inoorporatod into to. appllo.tlon con fl.u r.tion . To

create a on .-to -.an , oonn.otlon a .1«*!« ««tpot oOann.l la Unkad to 

ao„.ral input oo .n n .l., «nd to.n - i .n  a . . » » « «  1« » « " t . ■ ««■» « '  toat
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message is placed in each of the input channels. Similarly, a many-to-one 

connection is created by connecting a number of output channels to a single 

input channel. Messages sent down any of the output channels will be 

buffered in the input channel from where they can be received.

Alternatively, these interconnections could be created by using 

one-to-one connections only. This would not be as elegant or as efficient. 

For example, in the Distributed Processes System, if a process has to 

communicate with several other processes, then it has to call procedures in 

each of the recipients in turn.

For a message to be delivered, the physical address of the 

recipient's input channel must be known. Using physical addresses within 

the application processes is impractical as the final address of the 

recipient may not be known when the processes are written. Instead the 

processes are identified by logical names.

Before a message can be sent the receiver's logical name must be 

translated into its physical address. This translation can be made at one 

of many points: compilation time, system creation time or every time a 

message is sent. For example, if application processes can migrate between 

computers, then the mapping from logical name to physical address must be 

made every time a message is sent.

The use of logical names in the writing of the processes disguises 

the distributed nature of the control system's hardware. The difference 

between inter-computer and intra-computer communication is removed and thus 

the distributed architecture of the control system is logically united.
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2.3.2 The distributed kernel level

Each computer has Its own kernel, and these together form the 

distributed kernel level. A kernel provides the runtime environment needed 

to support local application processes. It provides routines for driving 

devices, and for creating and destroying processes, and it performs 

multiprogramming and virtual memory management.

All of these services effect local resources only and so they are 

performed autonomously by the individual kernels. Any access to the 

services provided by remote kernels, for example to create a process on a 

remote machine or to access a remote device, is coordinated by application 

level software.

It is common practice for lengthy kernel routines to be performed 

by 'executive processes' that are multiprogrammed along with the 

application processes. Lister (1979) suggests executive processes for 

performing I/O operations, and Brinch Hansen (1973) used them to perform 

process-creation commands. Allworth (1981) and Harper (1982) take this 

idea to its logical conclusion and suggest implementing every interrupt 

routine as an executive process.

A kernel is composed of a number of processes. One of these 

processes, the nucleus, is permanently locked in memory and runs in 

privileged mode. The other processes are the executive processes. The 

partition of labour between the kernel's nucleus and its executive 

processes is invisible to the application processes.

The nucleus provides such services as the first level interrupt 

handler, synchronisation primitives, and the dispatcher (Lister 1979). 

Communication between the nucleus and the executive processes, and 

comminication between executive processes, will be based on a mechanism 

more basic than that used for communication between application processes;
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for example, shared data with semaphores for synchronisation Is a common

choice.

Another service provided by a kernel Is that of Interprocess 

communication. In ADDAM and in the Signal Processing System, all 

Interprocess communication Is performed by an executive process. In CONIC, 

ESN and the Distributed Processes System, Interprocess communication 

between processes on different computers is performed by an executive 

process, while local Interprocess communication is performed by the 

kernel's nucleus. ESN can also be configured so that both local and remote 

Interprocess communication Is performed by the kernel's nucleus.

Remote Interprocess communication requires cooperation between the 

sending and the receiving kernel. This cooperation Is achieved by using 

the Inter-computer communication mechanism provided by the hardware level.

2.3.3 The hardware level

This level consists of the computers, and of the communication 

network that links them together. Each computer Is connected to the 

communication network by a network Interface. Input/output devices are 

attached to Individual computers.

Nearly all of a computer's operations are performed autonomously by 

that computer, for example reading and writing to local memory. However to 

transfer data from one computer to another requires the cooperation of both 

sender and receiver. This cooperation Is performed using a low-level 

protocol provided by the hardware/firmware In the network interface.

The composition of the hardware Is determined by a large number of 

factors, including the environmental requirements, the required 

performance, and to a large extent the concept of Its Inventors. In the 

above examples the trend is to use mini-computers or micro-computers linked 

together by some for. of local are. network (Clark et al. 1978, Gee 1983).
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2.4 Summary

The organisation outlined in the previous section is not limited to 

distributed computer control systems only. A number of so-called 

distributed computer systems exhibit this organisation, for example DCS 

(Rowe et al. 1973), SODS (Sincoskie and Farber 1980) and Roscoe (Solomon 

and Finkel 1979).

In Section 2.1 we presented a list of five advantages that result 

from basing a control system on a distributed architecture. If the full 

potential of all of these advantages is to be exploited then the software 

must be designed accordingly. This is particularly true of communication 

and availability.

In the same way that different types of computers can communicate 

with each other over a common commmication network, application processes 

written in different languages must be able to communicate with each other. 

In DSN application processes written in different languages with different 

intercommimication primitives can communicate with each other because all 

of the different interprocess communication mechanisms are implemented 

using asynchronous message passing. Similarly, if the computers are of 

different types then messages must be translated from one representation to 

another; for example, in DCLN (Liu and Reames 1977) all messages are 

translated into an intermediate format before being sent over the network.

As indicated in Section 2.1, possibly the greatest advantage of the 

distributed architecture is its high availability. This advantage is the 

rationale for the development of process survivability, and the rest of 

this thesis is dedicated to describing existing systems that exhibit 

process survivability and to developing process survivability for the 

distributed computer control system PROSUR.
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3. An Introduction to Fault Tolerance

3.0 Introduction

It la Impossible to build a computer system In which a fault does 

not exist and In which a fault cannot arise: Its hardware will degrade with 

time, and its software will probably be too complicated to be fault free. 

To achieve high reliability a computer system must be able to continue 

operating to specification despite the presence of a hardware or a software 

fault. Such a system Is called a fault tolerant computer system.

This chapter Introduces the principles of fault tolerance, and 

illustrates them with two extended examples: the recovery block scheme for 

implementing software fault tolerance, and the hardware fault tolerant STAR 

(Self Testing And Repair) computer.

3.1 A vocabulary for discussing fault tolerance

A computer system Is formed by superimposing a software system on a 

hardware system. In turn both systems are composed of sub-systems, and so 

on. To be able to discuss fault tolerance in computer systems we must 

first be able to describe the organisation of the systems themselves. The 

following system model reflects the structuring that should exist in all 

computer systems, both In their hardware and In their software. The model 

is based on those presented by Watson (1983) and by Anderson and Lee (1981 

and 1982). It is also similar to the model proposed by Jones (1978).

A system provides its environment with controlled access to Its 

resources. These resources may either be physical or logical; for example, 

disk blocks or files.
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The services provided by a system are defined by a set of data 

structures (its representation or external state) and by a set of 

operations that can be performed on the system’s external state. A 

system's behaviour is described by the effects that the operations have on 

its external state. The implementation of the services and the actual 

organisation of the resources are hidden from the environment.

Requests for operations to be performed by a system are made by the 

environment via the system’s interfaces. An Interface is simply the place 

of interaction between two systems. The system’s environment is also a 

system and may in turn be composed of a number of other sub-systems.

For an example we turn to the distributed computer control system 

model presented in the previous chapter. An application process is a 

system, and its input and output channels are its interfaces. An

application process’s representation and operations will depend on the

service it provides. If for example an application process provides access 

to a disk then its representation may be that of a set of files, and its

operations may include commands such as open file, close file, etc.

Requests for operations will be in the form of messages, and will be made 

via the application process’s channels; the results will be returned in a 

similar fashion. The way in which the filestore is organised ia hidden 

from the process's environment.

A system consists of a set of components and a design. The 

components provide the operations needed to implement the system’s own 

operations, and the design defines and controls the interactions between 

the components, and between the components and the interfaces. If a system

has no discernible internal structure, or if that structure is of no

consequence, then that system is said to be atomic.
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A component la Itself a system. It provides a set of operations 

and a representation of Its resources. To distinguish between the 

operations provided by a system and those provided by a component we call 

the latter actions. A system operation is Implemented by a set of actions 

instigated by the design. The set of components' representations comprises 

the system's Internal state. The system’s representation is an abstraction 

of its Internal state.

The design Is that part of the system that receives requests for 

operations from the environment and In turn Instigates the necessary 

actions to perform the operation. When necessary, the design also controls 

the interaction between components, and the Interactions between components 

and the Interfaces In order for the components to use services provided by 

the environment.

The design Is a system. The system's state does not Include the 

design's external state, as the system's state reflects the activity In the 

system and not Its organisation, which would normally be fixed. The design 

should not be confused with the plan that describes a system's 

organisation, nor with the process by which the system was designed.

A particularly classic example of the partition of labour between 

design and components is given in Chapter *». Section *».2.1, which describes 

how masking redmdancy can be Implemented within the application level of a 

distributed computer control system so as to make it crash tolerant. 

Returning to our earlier example of a system, an application process's code 

is the design and Its data structures are the components. The code 

receives requests for operations (messages) and Instigates the actions to 

manipulate the data structures. The Internal state of the application 

process will be the contents of the data structures. The state of the 

......... code (Its design) Is static and does not form a part of the

process's state.
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This system terminology can be used to describe a computer system 

recursively, or more conventionally, It can be used to describe the 

computer system In terms of a hierarchy of levels. Each hierarchical level 

consists of a number of systems. Each level provides the higher levels 

with a set of services, and In turn its systems are implemented using the 

services provided by the lower levels.

Since 1972 a project led by Professor B.Randell at the University 

of Newcastle upon Tyne has been investigating reliability in computer 

systems. As part of its wider research this project has been developing a 

vocabulary for discussing system reliability, with the aim of getting this 

vocabulary accepted as a standard. The final version of this vocabulary 

has been presented by Anderson and Lee (1981 and 1982). We have already 

drawn on this vocabulary for the description of a system and we now present 

those terms that describe reliability itself.

To be able to decide whether a system is reliable it is necessary 

to be able to recognise when it fails. In order to be able to do this it 

is necessary to assume the existence of an authoritative specification 

Which defines a system's acceptable behaviour. If the system's behaviour 

contradicts its authoritative specification it is said to have failed.

The reliability of a system is often measured by the probability 

that no failure will have occurred by a certain time. A common alternative 

measurement to this is the system's mean time between failures.

A system's behaviour is defined by the effect that a given 

operation has on the system's external state. The authoritative 

specification defines what constitutes a valid external state and defines 

how an operation will map the external state from one valid state to 

another. A system fails When an operation results in a transition fro. a 

valid external state to an invalid or erroneous one.



As the external state Is an abstraction of the system's internal 

state, an erroneous external state must mean that the internal state is 

erroneous as well. That part of the internal state that is actually

erroneous is called the error.

An erroneous internal state is the result of an erroneous 

transition that changed a valid internal state into an erroneous one. An

error need not cause the system to fail immediately, and a number of 

operations may be performed before the error manifests itself in the 

system's external state and causes it to fail.

The erroneous transition must be due to either the failure of one 

or more of the system's components or to the failure of the system's 

design. This is logical as a system consists only of its components and 

its design, and so its failure must be due to a failure in one of its

constituent parts.

As a component (or a design) is a system itself, its failure must 

be due to an error in its internal state. To distinguish between an error 

in a component/design from an error in the system, the former are referred 

to as component/design faults. Design faults and component faults are 

collectively called system faults.

A fault within a component or a design will eventually cause it to 

fall, and this will result in an erroneous transition (the manifestation of 

the fault) being performed on the system's Internal state, which will 

inject an error into the system's Internal state. Further valid

transitions will lead to the system failure.
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3.2 Fault tolerance and fault Intolerance

There are two complementary approaches to producing a highly 

reliable computer system: fault prevention and fault tolerance.

Fault prevention techniques attempt to produce a system In which 

there are no faults. Fault prevention Is performed in three stages. 

First, techniques such as quality control, formal specification, structured 

programming and top-down analysis are used in an attempt to avoid 

introducing faults In the first place. Unfortunately in a complicated 

system faults are bound to be Introduced, and so the second stage Is to 

detect these faults by testing and validation, and then to remove them. 

Finally, having hopefully removed all of the faults, the system must be 

¡screened from external stresses In order to prevent any faults from being 

introduced. The software and the hardware can be protected from malicious 

interference by a number of security mechanisms (Shanker 1977), although it 

is still vulnerable to enhancements.

Fault prevention Is not sufficient on its own to produce a highly 

reliable computer system. Hardware components deteriorate with time and 

they are vulnerable to external stresses that overwhelm the screening. 

Software Is too complicated to be tested exhaustively, and program 

validation Is still In Its Infancy. So despite the care taken faults will 

still occur and * e n  they do the system will fail, which is why a system 

that relies solely on fault prevention to achieve reliability is said to be

fault Intolerant.

As faults will always occur, the only way to achieve high 

reliability Is for a system to be designed to be fault tolerant. To 

achieve fault tolerance a syatem must Include mechanisms that can detect a 

component/design fault and intercede to correct that fault before it cause,

the system Itself to fall.
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Fault tolerance does not make fault prevention redundant, but It 

can be used to reduce the amount of effort that is put Into fault 

prevention, as any residual faults will be masked by the system’s fault 

tolerance mechanisms. However, this does not mean that fault tolerance can 

be used as a 'warm blanket', as without any attempt at fault prevention the 

system would most likely not work at all.

3.3 The four phases of fault tolerance

Fault tolerance mechanisms are Intended to prevent faults from 

causing system failures. The operation of fault tolerance mechanisms can 

be generalised Into the following four phases:

1 ) Error detection
To be able to tolerate a fault the system must first be able to 

detect it. By definition a fault Is part of a component• s/deslgn• s 

internal state and so cannot be detected by the system; neither can the 

resultant component/deslgn failure be detected as that is an event. 

However, the fault will manifest Itself as an error In the system’s 

Internal state and this can be detected. The first stage of fault 

tolerance Is to detect the error before It causes the system to fall.

2) Damage confinement and assessment
An error must be detected as soon as possible. Any delay may 

lead to erroneous Information being spread around the system. If 

immediate detection of an error cannot be guaranteed, then it Is 

necessary to discover the extent of the damage before dealing with the

error•

Damage confinement measures may be Incorporated Into the system 

in order to limit the amount of damage that can be caused. Damage 

confinement measures reduce the — » t  of work that must be done in 
damage assessment, thereby reducing the runtime overheads involved in
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fault tolerance.

3) Error recovery
Error recovery techniques are designed to transform the system's 

current erroneous internal state into an error free and well defined 

state from vdiich normal service can continue.

If the types of faults that can occur can be predicted, and if 

the limits of the resultant damage can be accurately assessed, then 

specific recovery routines can be provided that will correct only the 

damaged part of the system's state. This technique is called forward 

error recovery. The techniques such as Hamming codes used in computer 

communication to detect and correct errors in received data are an 

example of forward error recovery (Cole 1982).

Forward error recovery is very efficient as the minimum of 

adjustments are made to the system's state. Unfortunately its reliance 

on being able to predict both the fault and the resultant damage limits 

its general application as it means that it cannot cope with 

in predictable errors. However, it is very useful When conditions allow

its use.

If the faults and the resultant damage cannot be predicted then 

the only viable method of recovery is to restore the system to an 

error-free past state. This technique is called backward error

recovery.

The automatic repeat request techniques designed to provide 

error free computer communications are an example of backward error 

recovery. Here data is transmitted in block,. If the receiver detects 

an error in the current block it discards the block, and requests the 

sender to repeat it (Cole 1982).
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The two recovery techniques complement each other, and can be 

used together effectively. Two mechanisms for achieving software fault 

tolerance are exception handling (Goodenough 1975, HacLaren 1977, 

Cristian 1980) and recovery blocks (described in Section 3.6).

Exception handling is based on forward error recovery and recovery 

blocks are based on backward error recovery. Melliar-Smith and Randell 

(1977) propose that exception handling and recovery blocks can be used 

together: recovery blocks for coping with unexpected software faults, 

and exceptions for coping with predictable failures in input data and 

operators etc. Exception handling is not used for software faults as 

that would require the faults to be predictable, and if they are 

predictable they should be removed.

U) Fault treatment
If the error is not to occur again, then it is necessary to 

repair the fault. To do this the fault must first be located, and this 

may be difficult as it is often hard to diagnose the fault from the 

damage that it causes. Once located the fault can be repaired, or the 

system can be reconfigured to avoid it. If the fault was transient then 

there is no need to repair it, as it has already gone.

In practice certain stages can be reduced or removed altogether by 

decisions made during the system’s design stage; for example, the more

effective damage containment is, 

assessment phase to do.

It is also convenient to 

detected as 'normal running', and 

performed as 'continued running', 

running but it is often handy to be 

phases.

the less work there is for the damage

label the period before an error is 

the period after recovery has been 

Continued running is the same as normal 

able to distinguish between the two
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3.4 Protective redundancy

All fault tolerance techniques are based on the incorporation of 

protective redundancy into the system. Protective redundancy is the extra 

hardware, software and processing power that is needed solely to ensure 

fault tolerance, but which is not needed by the system to execute its 

normal programs.

Protective redvndaney can be categorised in two ways: as masking or 

standby redundancy, depending on how it is used; and as hardware, software 

or time redundancy, depending on what it is.

1 ) Masking and standby redundancy

In masking (or static) redundancy, redundant components operate 

in parallel to a component's operation in order to mask the effects of 

any failure that may occur in that component. As long as this 

redundancy remains effective any failure in the component will be hidden 

from the system's environment. Possibly the two best known examples of 

masking redundancy are Triple Modular Redundancy with voting (Mathur and 

Avlziensis 1970), and the forward error correction techniques mentioned

earlier.

In standby (or dynamic) redundancy, spare functionally identical 

components are incorporated into the system so that when an active 

component becomes faulty one of the standby components can be switched 

in to replace it. Such a scheme presupposes the existence of the 

necessary error detection and error recovery mechanisms. If this 

reconfiguration can be done automatically by the system then the system 

is said to be self-repairing. A special case of this is where there are 

no standbys, and the system is reconfigured into a degraded system. For 

example, in the event of a permanent processor failure, the

multiprocessor COPRA (Meraud et al. 1976, Maraud and Lloret 1978, Maraud 

et al. 1979) can reconfigure the software to run on the remaining
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processors.

Probably the first operational self-repairing computer was the 

hardware fault tolerant JPL-STAR computer described in Section 3.7. The 

software fault tolerant recovery block scheme is also self-repairing as 

in the event of a fault arising in the current software module, an 

alternative can be used to replace it.

A third option known as hybrid redundancy is a combination of 

masking redundancy and standby redundancy. Masking is used to provide 

fault tolerance and standby components are available to replace the 

masking redundancy components when they fail. The prime example of

hybrid redundancy is n-modular redundancy, which is triple modular 

redundancy with spares. N-modular redundancy is used in the Fault 

Tolerant Multiprocessor computer (Hopkins and Smith 1975).

Masking and standby redundancy both rely on the faults in their 

redundant components and in the components they are protecting being 

independent of each other, otherwise the fault could not be masked. For 

example, software fault tolerance can be provided by N-version 

programming which is based on masking (Chen and Aviziensis 1978, von 

Linde 1979), and by the recovery block scheme which is based on standby 

redundancy and self-repair. In both cases this protection would be 

nullified if the redundant software was identical to that being 

protected as any algorithmic fault would then be contained in the 

redundant and the protected software. Hence in these examples the 

redundant software is coded independently.
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2) Hardware, software and tine redundancy

Hardware redundancy ia primarily to provide hardware fault 

tolerance, although it can also be used to provide support for software 

fault tolerance. Software redundancy consists of the extra data and 

code needed to support the four phases of fault tolerance.

Time, or program execution, redundancy is the spare processing 

power that must be available if the extra processing required by the 

addition and performance of fault tolerance is not to result in a 

degraded response time.

3.5 The hardcore

In the final analysis all fault tolerant systems are totally 

dependent for their correct functioning on some critical components that 

are themselves fault intolerant. These components are known as the 

hardcore. If any confidence is to be placed in the system's ability to 

tolerate faults then the hardcore that supports the fault tolerance 

mechanisms must be extremely reliable as 'the chain is only as strong as 

its weakest link'.

To achieve high reliability in the hardcore the techniques of fault 

prevention must be applied to it. If these techniques are to be effective 

the hardcore must be kept as small and as simple as possible.

In a similar vein, efforts to produce secure systems have led to 

the development of 'security kernels' (Popek and Kline 1978). Security 

kernels are small minimal kernels that, in addition to the normal tasks of 

a kernel, are responsible for providing the security mechanism used by the 

whole system: hence their correct (and secure) operation is essential for 

the correct operation of the »diole system.
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MeDermld (1980) has suggested that this idea could be used to 

produce a 'reliability kernel'. Such a kernel would provide the recovery 

mechanisms used by the software mechanisms to provide software fault 

tolerance. By keeping the kernel small, the chances of it being 

implemented reliably are increased.

3.6 An example: the recovery block scheme

3.6.0 Introduction

In 1972 a project was established at the University of Newcastle 

upon Tyne, under the sponsorship of the Science and Engineering Research 

Council, in order to Investigate "the utility of computer architecture and 

programming techniques which will enable a system to have a very high 

probability of continuing to give a trustworthy service in the presence of 

hardware faults and/or software errors" (Randell 1975).

One of the major results of this project is the recovery block 

scheme for providing software fault tolerance. The recovery block scheme 

is a general purpose mechanism for incorporating software fault tolerance 

into a process so that it can operate reliably despite residual faults in 

its code. Current work includes Incorporating recovery blocks into a 

distributed naval command and control system based on Mascot (Anderson and 

Moulding 1982).

Descriptions of the recovery block scheme are given in numerous 

papers originating ft-om Newcastle. Two of the best known of these are 

Randell 1975 and Randell et al. 1978. Also, nearly all of the other papers 

referred to in this section contain a description. The most all-inclusive 

description is given in Anderson and Lee's book (1981).
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3.6.1 An overview

The reliability of a particular task within a process can be 

improved by implementing it as a recovery block. The syntax of a recovery 

block is given in Figure 3a, and an example of its use to sort an array A 

is given in Fig w e  3b.

Ensure Acceptance test>
By <prlmary module)

Elseby Alternative module 1> 
Elseby Alternative module 2>

Elseby <alternatlve module n> 
Else Error;

Figure 3a

Ensure A[i-1] <= A[i] For i=2, 3 • • n 
By Quicksort (A)

Elseby BubbleSort (A)
Elseby Straightlnsertion (A)
Else Error;

Figure 3b

A recovery block consists of a primary module and an ordered 

sequence of standby spares - the alternative modules. Each module performs 

the same task (sorts the array in our example) but in a different way.

When the recovery block is entered the primary module is executed. 

If the primary module fails then the process's state is reset to the state 

that existed prior to entering the recovery block and the first alternative 

module is executed. (The way in Which a failure is detected is described 

below in Section 3-6.2.) This is continued until either all of the modules 

have been tried «id have failed, or until one of the modules has been 

completed successfully.
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In our example Quicksort will be executed first. Then if Quicksort 

fails the process will be reset, thus undoing the effects of Quicksort, and 

BubbleSort will be tried. If BubbleSort fails then StraightInsertion will 

be tried.

The recovery block scheme provides software fault tolerance by 

incorporating redundant versions of a module into a program and then 

performing self-repair in the event of a module failure. This self-repair 

is supported by error detection and backward error recovery.

Various implementations of recovery blocks are described in Horning 

et al. 197U, Anderson and Kerr 1976 and Shrivastava 1978. In order to 

improve the efficiency of recovery blocks, hardware support for these 

implementations has been suggested. Two such proposals are presented in 

Lee et al. 1980 and Kant 1983 (the former of which has been implemented).

3.6.2 Error detection

After a module (primary or alternative) has been executed the user 

defined acceptance test is performed, to determine whether an error has

occurred. Normally an acceptance test will test the correctness of the

module's results, as more detailed testing of all of the process's 

variables would result in larger runtime overheads; in our example above 

the acceptance test checks that the array A has been sorted. If the 

acceptance test is passed then it is assumed that an error did not arise. 

The acceptance test is the embodiment of the authoritative specification.

The modules utilise the «denying operating system and hardware to 

perform their instructions. If «uch an instruction fails, for example due 

to division by zero, then an error has occurred, and the current module is 

aborted and recovery is performed.



Recovery blocks can be nested. If all of a recovery block's 

modules fall then the recovery block has failed, and the surrounding 

recovery block module is aborted #

3.6.3 Damage assessment and error recovery

Error recovery Is by backward error recovery: the process's state 

Is restored to the value it had Immediately prior to entering the recovery 

block. In doing this all of the effects of the faulty module are removed; 

it is as if the module had never been performed.

Because recovery consists of rolling back the state there is no 

need to perform damage assessment as all alterations performed by the 

faulty module have been undone.

3.6.4 Fault repair

After an error has been detected and recovered from, the next 

alternative module is tried. This replacement is not permanent as it is 

assumed that the program's residual faults will only manifest themselves 

rarely and then due to unusual circumstances.

All of a recovery block's modules are functionally identical as 

they are designed to perform the same task and must pass the same 

acceptance test. However, they cannot be copies of each other as this 

would mean that they all contained the same fault. A requirement for 

successful standby redindancy is that the copies have independent faults, 

and so each module must be independently implemented.

The primary module will be the most efficiently implemented 

(relative to some measurement) and hence the most complicated and error 

prone. The alternatives will normally be ordered by decreasing efficiency, 

and increasing simplicity and reliability. By only temporarily replacing 

the primary module it 1. ensured that the task is performed efficiently
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except for trtien an error Is detected.

Removing the fault from the module’s Implementation is left to a 

human operator. The recovery block scheme records the frequency with which 

each module fails so that the operator knows vdiich modules are faulty and 

which are worth repairing. If the frequency is low and the alternatives 

always mask the fault then it may not be worth repairing a faulty primary 

module.

3.7 Another example: the JPL-STAR computer

3.7.0 Introduction

The STAR (Self Testing And Repairing) computer is the result of an 

investigation into hardware fault tolerant computing conducted throughout 

the 1960’s at the Jet Propulsion Laboratory (JPL) at Pasadena, California. 

STAR is an experimental general purpose computer that exploits standby 

redundancy and self-repair to achieve high reliability. It became 

operational in 1969.

The work on STAR was sponsored by NASA, and so its characteristics 

are those that would be required for an on-board computer of an unmanned 

spacecraft on a ten year flight. The reliability requirements for such a 

computer are obviously high because of the consequences of a computer 

failure combined with the long mission time and the impossibility of

maintenance.

Work on STAR was terminated in 1972 when JPL turned its attention 

to designing a second-generation fault tolerant spacecraft computer based 

on a distributed computer system (Kennels 1978). This progression was 

motivated by advances in digital circuit technology which nullified the 

need for some of the design restrictions that had shaped STAR, and which 

made this more attractive solution feasible.



STAR is designed to tolerate hardware faults, but not software 

faults. Fault tolerance is based on hardware-implemented error detection, 

hardware-implemented and software-implemented self-repair, and software- 

implemented backward error recovery. It is of particular interest as it 

supports a form of process survivability.

3.7 .1  Hardware and software organisation

STAR'S hardware (Aviziensis et al. 1971) consists of a standard 

configuration of functional units supplemented by spare units that can be 

used to replace failed operational units. The central processing unit's 

functions are partitioned into a number of special purpose processors 

(arithmetic, logical, input/output, etc.). Memory is composed of a number 

of read only memory units and a number of read/wrlte memory units. The 

processors and the read only memory units have dedicated spares and the 

read/write memory units have a pool of spares. All of the functional units 

are linked together by two data buses and a control bus. Figure 3e 

illustrates this layout.

ROM Processors Read/write memory and spares

Figure 3c
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The heart of STAR'S fault tolerance Is the Test And Repair 

Processor (TARP). The TARP is connected to all three buses and to each 

functional «lit separately (the latter Is not shown In the diagram). The 

TARP monitors the rest of the computer In order to detect any errors.

Software Is divided Into user processes and the STAREX executive 

which supports them (Rohr 1973). STAREX multiplexes the user processes and 

provides them with routines for performing input/output etc. It also 

provides the backward error recovery mechanism.

3.7.2 Error detection and fault repair

Error detection, and the majority of the fault repair, Is performed 

by the hardware; In particular, by the TARP.

The TARP detects errors by cheeking the validity of every word sent 

over the data buses (all data and instruction words are encoded in an error 

detection code), and by checking status messages sent from the functional 

«llts. The TARP is thus the embodiment of the authoritative specification

within the system.

When the TARP detects an error it stops the computer. The TARP 

assumes Initially that the fault Is transient and control is transferred to 

the STAREX recovery routines to perform backward error recovery. (In 

Meraud and Lloret 1978 It is reported that 90* of the faults arising In 

COPRA are transient.) If the fault does not respond to this treatment then 

the TARP classes It as a permanent fault. The TARP replaces the failed 

« I t  and then control Is again passed to the recovery routines.

The TARP is STAR'S hardcore. It must be reliable and so It Is 

Implemented using n-modular red«idanoy of TARP units.



3.7.3 Backward error recovery

As they run, both the user processes and STAREX establish recovery 

points. Backward error recovery restores the software component 

Interrupted by the fault to the state that It was in when it performed its 

last recovery point.

When a fault has been detected by the TARP, control is transferred 

to the STAREX recovery routines to perform backward error recovery. They 

first determine v*iich software component was interrupted and then restart 

it from its last recovery point. If the fault interrupted the execution of 

a STAREX routine then STAREX (and not the calling user process) is rolled

back to its last recovery point; STAREX is relied upon to complete the 
routine and so a recovery point is established at the start of every 

routine.

User processes establish recovery points using a STAREX routine 

which stores a copy of the process's state within STAREX. The stored state 

consists of specified variables, processor register contents and the 

process's start address. Process checkpoints are double buffered so that 

in the event of a fault occurring during the establishment of a checkpoint 

the previous checkpoint will be intact and can be used. Processes have 

only one outstanding recovery point each.

STAREX itself has a high frequency of establishing recovery points 

and so the task is made as efficient as possible. STAREX is stored in 

duplexed memory (reads and writes are performed in parallel) and 

establishing a recovery point is simply a case of storing the restart 

address. After a fault the processor registers are flushed and so STAREX 

is programmed using the convention that all register value, needed after a 

recovery point are stored prior to the recovery point and then reloaded

afterwards.
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When STAREX Is rolled back to its last recovery point its data is 

not re-set to the values it had v*ien the recovery point was established. 

STAREX will repeat code but the effects of performing that code the first 

time have not been undone. To prevent this resulting in unfortunate side- 

effects the recovery points are inserted so that the inter-recovery point 

code is ldempotent.

3.7.1» Process survivability in STAR

If a read/write memory unit fails permanently it is replaced by one 

of the spares. The software that had been resident in the failed unit must 

be recreated in its replacement. Again this is done by the STAREX recovery 

routines.

User processes use simplex memory. A process is recreated from its 

code and constants, which are stored in the read only memory units, and 

from the data stored for its last recovery point. Thus all of the user 

processes that were using the faulty unit will have been rolled back to 

their last recovery point (irrespective of rfiose execution was

interrupted).

The executive is duplexed. When one of a pair of duplicated memory 

units is replaced the contents of the survivor are copied into the 

replacement. Survivability is the prime reason for duplexing the executive 

as without the duplexing it would be necessary for full checkpoints of the 

executive to be stored on backing store.

We return to process survivability in STAR in Chapter 4, Section



3.8 Fault toleranoe and process survivability

When a computer in a distributed computer control system crashes 

the application processes that were running on that computer are lost. 

These application processes may be vital to the correct running of the 

application level and without them the control system will fail. Process 

survivability ensures that no application processes are lost in a crash 

thereby making the application level crash tolerant.

Process survivability is achieved by introducing redundant copies 

of the application processes into the application level. Inactive backup 

copies of every application process are dispersed amongst the computers. 

At intervals the active copy of an application process will establish a 

recovery point. When an application process establishes a recovery point 

all of its backups are updated to become exact copies of the active 

process. When an application process's host computer crashes one of its 

backups will be activated to replace it. The backup will be started in the 

state that its previous generation was in When it performed its last 

recovery point. This is similar, in general but not in detail, to the way 

that user processes are recreated in STAR after a permanent memory unit 

failure. Another similarity with STAR is that process survivability does 

not support software fault tolerance.

Process survivability is achieved by Incorporating redmdant, 

standby spares of every application process into the application level and 

by performing self-repair by activating the appropriate standby copies in 

the event of a crash. This self-repair is supported by error detection in 

order to detect the crashes, damage assessment to determine Which 

application processes were lost in the crash, and finally by backward error 

recovery to restart these application processes from their last recovery

point.
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The software redundancy is supported by time (program execution) 

redundancy, and ultimately by hardware redundancy. Time redundancy is 

necessary if the control system is to maintain its response time. Time 

redundancy is needed during:

a) Normal running, to support the work that is performed to implement 

process survivability, for example establishing the recovery points.

b) Continued running, so that after a crash the extra work being performed 

by a computer due to activated backups does not affect the response time 

of all of its resident application processes.

Ultimately this time redundancy must be paid for by extra computers 

that would not be needed if the application level was not crash tolerant. 

Adding extra computers to support process survivability is an aspect of the 

’enough' principle mentioned in Chapter 2, Section 2.1.

All but one of the following chapters in this thesis describe 

process survivability. First however, in the next chapter we review 

existing mechanisms for making the application level of a distributed 

computer control system crash tolerant.

53



4. Crash Tolerance In Distributed Computer Control Syatema

4.0 Introduction

When a computer crashes It results In the Instantaneous and 

permanent loss of that computer. Such a crash may be caused by an external 

stress such as a fire or by the spontaneous failure of an Internal hardware 

component. In later chapters we will discuss partial computer failures 

with respect to process survivability.

The loss of a computer will not prevent the other computers from 

operating normally. Interconnecting the computers by a local area network 

allows the computers to be physically dispersed thereby providing passive 

protection from external stresses by limiting the number of computers that 

are likely to be affected.

A computer crash will also result in the loss of components from 

the two software levels of a distributed computer control system: the 

distributed kernel level and the application level. The ability of the 

control system to tolerate a crash will depend on how vital the lost kernel 

is to the distributed kernel level and how vital the lost application 

processes are to the rest of the application level.

In the examples presented in Chapter 2 the individual kernels 

operate completely autonomously except when performing interprocess 

communication between processes on different computers. As long as none of 

the kernels provide the other kernels with a unique service then the 

distributed kernel level will be able to continue operating normally 

despite the loss of one or more kernels.

The application level will contain some application processes whose 

loss would not prevent the control system fhom fulfilling its role, or 

whose loss would have only a marginal effect. An example of the former is



an error logger. On the other hand if the crashed computer hosted 

application processes that are vital for the continued operation of the 

surviving application processes then, despite the fact that the majority of 

the control system is intact, the control system will no longer be able to 

fulfil its role. Despite its multi-computer architecture the control 

system is still vulnerable to the loss of a single computer.

Process survivability makes the application level crash tolerant by 

ensuring that no application processes are lost in the crash. As was 

described in Chapter 3, Section 3.8, process survivability is achieved by 

incorporating redundant standby copies of every application process into 

the application level. In this chapter we review established methods of 

Implementing process redundancy in a distributed computer control system.

A prerequisite for making the application level crash tolerant is 

that the two lower levels that support it are also crash tolerant. 

Fortunately, the distributed kernel level can be made so, and the computer 

components of the hardware level are so naturally. Unfortunately, the 

network, which is arguably the most important hardware component, is often 

the most vulnerable. If the network fails, the control system will be 

partitioned into a number of small isolated groups of computers, with each 

group acting as if it were the only survivor. We will return to the 

problem in a later chapter, but for the present we assume that the network

is un-partitlonable.

4.1 Process redundancy, an introduction

By introducing redmdant copies of the application processes into 

the application level and by placing these copies on different computers, 

the application level can be made crash tolerant. There are two ways of 

organising process redundancy:
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1) Masking redundancy

All of the copies of the application process are active. 

Requests are issued to any of the copies and are performed by all of 

them. When one copy is lost the others continue to provide the service.

2) Standby redundancy

Only one copy of the application process is active; the others 

are inactive backups. At Intervals the backups are updated so that 

their states are the same as that of the active application process. 

When the active copy is lost one of its backups is activated to replace 

it.

As a third alternative Casey and Shelness (1977) suggest that their 

Domain Structure could be used to "exploit the inherent redundancy of the 

system in case of failure". However, no further details are given, and 

this aspect of the Domain Structure does not seem to have been developed.

In the next two sections we describe in detail how masking and 

standby redundancy are performed. Examples of existing systems that use 

these mechanisms are given.

In most of the examples we see masking and standby redundancy being

applied to application processes, but there is an example of masking

redundancy being applied to executive processes as well. In the

introduction to this chapter we stated that if the distributed kernel level 

is to be crash tolerant then it is necessary that none of the kernels 

should provide a unique service to the other kernels. This is not always 

possible and an alternative is to implement the executive processes

redundantly so that the unique service is not lost in a crash.
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4.2 Masking redundancy

4.2.0 Introduction

Masking redundancy can be applied to systems of processes as well 

as to Individual processes. In practice It appears that masking redundancy 

has only been used to Implement server systems that Interact with their 

users by requests and replies.

4.2.1 Masking redundancy In theory

A crash tolerant server consists of a set of replicate servers each 

of which Is running on a separate computer. Each replicate server provides 

the same services, which In turn are the same as the services provided by 

the crash tolerant server as a whole. Requests for operations to be 

performed can be made to any of the replicates. In the event of a computer 

crash the surviving replicates continue to provide the services.

Some crash tolerant servers provide a time invariant service In 

that past operations do not affect future ones, for example, reading from a

file. In this case each replicate can receive and perform requests for

operations independently of the others. In the event of a replicate being 

lost in a crash Its users can use one of the surviving replicates Instead; 

It does not matter that the Internal states of the replicates are

different.

However, most services will be time dependent and past operations 

will affect future ones, for example If writing as well as reading from 

files is supported. If after a crash the lost replicate's users are to be 

able to use one of the surviving replicates Instead, it is necessary that 

the external states of all of the replicates are Identical to each other. 

The rest of this sub-section, and the examples In the next, are concerned

with how a crash tolerant server that provides a time dependent service can

be implemented.
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Using Le Lann's terminology (Le Lann 1979) a crash tolerant server 

can be described as a system consisting of a set of producers and a set of 

consumers (see Figure 4a). Each producer and consumer pair would 

constitute a non-redwidant server. Producers and consumers are each 

systems in their own right and are each composed of one or more processes. 

In many examples the roles of producer and consumer are combined.

Requests

Producers

Consumers

A crash tolerant server (henceforth simply called a server) is a 

system as defined in Chapter 3. The server’s service is defined by a set 

of operations and by its external state on which the operations are defined 

to operate. The server’s internal state is the set of the external states 

of its consumers. The producers are part of the server’s design and so 

their states do not form part of the server’s state. Every consumer 

implements the same set of actions, and these actions are identical to the 

operations provided by the server: there is a 1-to-1 mapping from operation 

to action.
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Requests for operstlons can be issued to any of the producers. For 

the server to be able to continue after a crash the external state of each 

of its consumers must be identical (their internal states need not be 

identical as they may be implemented differently). To achieve this, when a 

producer receives a request for an operation it 'broadcasts' a request for 

the corresponding action to all of the consumers.

An operation will only produce a valid result if it is performed on 

a consistent internal state. Consistency in a crash tolerant server is

composed of:

a) Internal consistency

Each consumer's external state satisfies a meaningful predicate known as 

the system invariant.

b) Mutual consistency

Each consumer's external state is identical.

An operation maps the server's internal state from one consistent 

state to another. To prevent Invalid results being produced by an

operation being performed on an inconsistent state, the operations must be 

performed atomically. Following Le Lann 1983 we define an operation to be

atomic if:

a) The actions that implement an operation are either all performed 

successfully or none of them are. Any results produced by the actions 

do not survive the failure of an operation.

b) Operations must not interfere with each other. The partial or potential 

output fro. one operation must not be used a, input to another operation
at the same time.

These two aspects of atomicity are known as failure atomicity and
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seriallsability respectively (Spector and Schwarz 1983)•

Requests for operations may be received by different producers 

concurrently. If the producers were to Implement requests In parallel then 

the consumers' states would no longer be mutually consistent. If two or 

more producers were to broadcast requests for actions at the same time, 

then due to variations In Interprocess communication delays, the consumers 

would receive and obey these requests in a different order from each other. 

This would result In a breakdown In mutual consistency. For example, the 

same lock may be allocated to a different user by different consumers.

To prevent this, the requests for operations must be serialised. 

The serialisation of concurrent requests to a server Is called 

synchronisation (Kohler 1981). In a crash tolerant server the aim of 

synchronisation Is to ensure that the order in which actions are performed 

by each consumer is the same (Le Lann 1983).

Synchronisation can be achieved in a number of ways:

a) Event ordering
The operations (events) are time stamped by the producers, and 

the consumers perform the actions In that order. The time base can be 

provided by physical clocks, logical clocks and sequences (Le Lann

1983).

b) Voting
The producers communicate with each other to decide upon which 

request Is to be performed next. Voting schemes include synchronous 

voting and majority consensus (Holler 1983).

e) Executive privilege
One producer at a time has exclusive access to all of the 

controllers. This privilege may be assigned permanently, In *>loh case 

all requests are filtered through the privileged producer by the other
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producers. Alternatively the privilege can be assigned to the producers 

In turn, for example by using circulating tokens or shared variables 

(Holler 1983, Le Lann 1983).

When synchronisation Is achieved by cooperation between a group of 

peer processes It Is called decentralised synchronisation, and control of 

the server Is said to be decentralised. If synchronisation Is based on a 

unique component, for example a single physical clock, then synchronisation 

is centralised, and control of the server is also centralised. A 

centralised synchronisation component with backups Is not classed as 

decentralised (Jensen 1983, Le Lann 1979).

Masking redundancy can be based on either type of synchronisation 

as long as the synchronisation mechanism Is implemented so that crashes do 

not cause It to fall. If for example a circulating token is used, then It 

must be possible to regenerate the token If It is lost. Furthermore this 

recovery must be achieved In a decentralised way that does not depend on a 

tnique arbitrator. The synchronisation mechanism must be as resilient as

the servers that use It.

It Is not sufficient simply to broadcast the actions. If Internal 

and mutual consistency Is to be maintained the operations must also be 

failure atomic. At the start of the action each consumer establishes a 

recovery point. At the end of the operation If every consumer ha, 

completed Its action successfully then all of the consumers discard their 

recovery points, but If one or more of the consumers failed to complete 

their action then all of the consumers roll back to their recovery points. 

Synchronising the rolling back of all of the consumers or synchronising the 

discarding of the recovery points by all of the consumers would be achieved 

by using a mechanism such as the two-phase commit protocol (Gray 1978).
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If a consumer falls to complete an action because Its host computer 

crashes then the other consumers will still be able to complete the 

operation. Were a missing consumer to result In operations being aborted 

then each consumer would constitute a single point of failure, which is the 

opposite of what is required.

When one or more components of a server are lost In a crash It Is 

possible that the request will be lost and not be performed, or 

alternatively it is possible that the request will have been performed but 

the reply was lost. The user will have sent the request and be waiting for 

a reply. These two situations are inconsistent. The normal approach to 

restoring consistency Is for the user to detect the failure of its request 

by a time-out on the reply, and for It to repeat the request. If the 

producer to which the failed request was addressed has been lost then the 

user must locate another producer.

If the previous request failed because the reply was lost, then 

repeating the request will lead to the operation being repeated. To 

prevent this either the operations are implemented idempotently so that 

they can be repeated, or the producers must be able to detect repeated 

requests and act accordingly.

4.2.2 Masking redundancy In practice

As mentioned In the introduction to this thesis, the current 

generation of command and control system used in Royal Navy warships is 

based on a single computer. This makes the warship dangerously vulnerable 

to computer loss. In 1975, In an attempt to remove this weakness, the 

Admiralty Surface Weapons Establishment (ASWE) instigated the DIAS 

(Distributed Information Architecture for Ships) programme. The aim of 

this ongoing programme Is to develop a crash tolerant distributed computer 

system for use as a warship command and control system. The results of the 

first two phases of the DIAS programme - ADNET - were described briefly In



Chapter 2, Section 2.2.M. He now present a more detailed description of 

ADNET and a description of the work that has been done for the third phase.

ADNET is configured as a number of Ferranti Argus 700 military 

computers linked together by an ASHE Serial Highway. The peripheral 

devices such as weapons, sensors and Interactive consoles are connected 

directly to the computers.

Each computer's software is comprised of a Mascot Operating System, 

a commmications package and a number of application processes. The 

commixiieatlon package provides interprocess communication in the form of 

message passing. Two types of message passing are supported: broadcast and 

point-to-point.

The application processes on a computer can be divided into those 

that support local device handling, and those that contribute to the global 

resources of the system. The latter consist of those processes that form 

part of the overall system database, and those that provide some service 

used by the system as a vdiole.

The failure of a computer must not prevent the rest of the system 

from functioning. It is acceptable that those application processes that 

are concerned with handling devices will be lost. However, those

application processes that support global services must be preserved, and 

this is done by masking redundancy.

In ADNET application processes are classed as users, servers, 

producers and consumers with the usual meanings. To use a service the user 

first locates the server by broadcasting a 'request for service' message to 

each computer. The server will reply with its address, and then the user 

and server enter into a conversation conducted in terms of requests and

replies.
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Masking redundancy is only applied to application processes that 

are servers. So far it is only being used to Implement a partitioned and 

replicated database called ADDAM (ASHE Distributed DAtabase Management 

system, Tillman 1982). Previously it had been used to implement another 

server (a track designator) but that server's function was later merged 

with that of ADDAM. The following description is based on masking 

redundancy as used in ADDAM.

Synchronisation is achieved by organising the server replicates 

into a master-si ave relationship. Requests are sent to the master who 

performs the operation and then broadcasts the request to the slaves. The 

master then replies to the user. The master prevents concurrent access by 

mutual exclusion. (The roles of producer and consumer are combined in a 

server.)

Failure atomicity is omitted in order to reduce overheads. Instead 

each request is numbered by the master and when a slave detects that it has 

missed a request it asks the master for an update to its state.

The master and slave servers monitor each others' health. If the 

master is lost then the slaves vote amongst themselves to elect a new 

master. There also appears to be a facility for creating new slaves in 

order to maintain the level of redundancy.

The loss of a master may result in the loss of a request or a 

reply. The user detects a failure when a reply is not returned after a 

certain period. The user locates the new master by again broadcasting a 

request for service; on being sent the address of the new master it repeats 

the request. The literature does not explain how the servers avoid

repeating requests.
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Alsberg and Day (1976) propose a master-slave organisation for 

providing resilient access to resources. The master and slave replicates 

are organised into an ordered chain with the master at its head. A request 

can be issued to the master or a slave, but if it is issued to a slave it 

will be forwarded to the master for processing. Synchronisation is 

achieved by passing the requests down the chain with each replicate 

performing them in the same order. There is no mention of failure 

atomicity.

The master and slaves monitor each others' health by regularly 

passing messages up and down the chain. If the master is lost, the first 

slave in the chain takes over. If a slave is lost then the chain is

reconfigtred to avoid it. Recovery from lost requests or replies is 

performed by the user repeating the request.

In Saphir (Gaude et al. 1980) masking redundancy is implemented at 

the computer level. The computers are paired. Each pair consists of a 

master and a slave computer, both of which run the same software. All of 

the network traffic that is directed to a pair of computers is received by 

the master computer who then passes it on to its slave so that it is 

processed by both of them. All output produced by a slave computer, 

whether to the network or to the devices, is discarded by the hardware. 

When a master computer fails, its slave computer is able to use both the 

network and its devices nomally, and it continues to provide the pair's 

services.

The Honeywell Experimental Distributed Processor (HXDP, Jensen 

1978, Jensen et al. 1977) 1» another experimental warship command and

control system. From the details given in Boebert et al. 1978 it appears 

that HXDP is also implemented using masking redundancy, although in this 

example it is the executive processes and not the application processes 

that are implemented in this way. The distributed kernel level 1. crash
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tolerant, and application processes are simply lost.

I*.3 Standby redundancy

4.3.0 Introduction

Standby reduidancy is applied to individual processes. It does not 

matter whether they are users, servers, producers or consumers.

4.3.1 Standby redundancy in theory

A process is redundantly implemented as an active running replicate 

and a number of inactive backup replicates. All requests for operations 

are sent to the active replicate which performs them. Each replicate is 

located on a different computer. When the active replicate is lost in a 

crash one of its backups is activated to replace it. The decision as to 

Which backup to activate can be based on some fixed ordering between the 

backups, or on voting between the backups. However this decision is made 

its implementation must be crash tolerant, for example if an ordering is 

used then it must be resilient to backup loss. After a crash, those 

processes that were commuiicating with the lost replicate must be able to

locate its reincarnation.

Again it is possible to distinguish between processes that provide 

time dependent and time invariant processes.

When the service provided is time invariant it would be acceptable 

for the backups' Internal states to be left in their initial states. This 

would be very economical, although in this situation it would be even more 

economical to use masking redmdancy instead as then the work load could be 

shared between the replicates.
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Where the service Is time dependent however, the backups' Internal 

states must be the same as the Internal state of the active replicate so 

that the activated backup can carry on Where the previous Incarnation of 

the process left off. As In the previous section on masking redundancy we 

will concentrate on how processes that provide a time dependent service can 

be implemented using standby redundancy.

To update the backup replicates' Internal states a copy of the 

active replicate's Internal state must be used. It is impossible to 

continually update the backups' internal states and so they are updated at 

intervals When the active replicate establishes a recovery point.

When a backup Is activated It will be In exactly the same state as 

its previous Incarnation was udien it performed its last recovery point. 

The backup replicate will start to execute its code from immediately after 

that recovery point. Because recovery points are only performed at 

intervals, the Internal state of an activated backup will be out of date.

Restarting processes from a past state can lead to inconsistencies 

arising between the internal states of communicating processes. The 

precise details will depend on the interprocess communication mechanism 

used. (A full description of the effect that it has on asynchronous 

message passing is given in Chapter 7.) In general however, having rolled 

back one or both processes of a commuilcating pair the following 

inconsistencies may arise:

a) Data will have been received that has not yet been sent

An example of this is shown in Figure 4b which shows two 

processes at the time of a crash. (In this and later figures process 

execution is represented by a directed vertical line, recovery points 

are represented by a horizontal character, and the horizontal

directed lines each represent the passing of a message from one process 

to another.) Prior to the crash, and after its last recovery point,
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Process-A aent Proceaa-B a measage. After the oraah Proceaa-A la 

restarted from lta laat recovery point, and Proeeaa-B contlnuea 

normally. The recovery point waa eatabliahed before the meaaage waa

aent and ao Proceaa-B haa received a meaaage trtilch, with reapeet to 

Process-A’s current state, has not yet been sent.

CRASH

-»RECEIVE 

l_______ I

Proceas-A Process-B

Figure Mb

b) Data that haa been sent has been loat

Figure 4c below shows another two processes at the time of a 

crash. Prior to the crash, and after lta last recovery point, Proceas-C 

received a message aent to It by Process-D. After the crash Proceas-D 

contlnuea normally but Process-C is restarted from Its last recovery 

point. The recovery point was established before the message was 

received and so after being restarted Process-C’s Internal state does 

not contain the message. The message sent by Process-D has been lost.

SEND-

Recovery
Point
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CRASH

RECEIVE «-

Recovery
Point

Process-C

■SEND

Process-D

Figure 4c

These inconsistencies must be removed. The consequences of not 

removing them could be disastrous. For example, if an alarm message is 

lost the control system may not react quickly enough to a critical 

situation in its environment. Similarly, if a message exists that was not 

sent then no matter how the sender acts when it is restarted, the receiver 

will perform an action that it was not asked to do. Two ways of restoring 

consistency are available. One attempts to roll back the processes to a 

set of checkpoints Where the processes' states are consistent with each 

other, and the other turns the inconsistent state into a consistent one 

without further rollbacks. Process survivability employs the latter.

Standby redundancy is applied to individual processes rather than 

to systems of processes because performing a recovery point that spans more 

than one process is technically difficult especially if those processes are 

on different computers.
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H,3.2 Standby redundancy In practice

Possibly the most famous commercially available crash tolerant 

computer is the Tandem 16 NonStop System. The Tandem 16 was developed to 

provide commercial firms such as publishers and financiers with a hardware 

fault tolerant computer for on-line transaction processing. The prime aim 

of the Tandem 16 is to provide a guaranteed continuous operation despite a 

single hardware fault.

The following description of the Tandem 16 is based on those given 

in Bartlett 1978, Katzman 1978, Mackie 1978, Bartlett 1981 and Paker 1983-

A Tandem 16 can consist of up to 16 computers loosely linked by a 

duplicated external bus. Devices are attached to I/O Controllers. Each 

device can be connected to two I/O Controllers which in turn are each 

connected to two computers. Figure 4d shows a Tandem 16 consisting of two 

computers and a single multi-homed device.

Figure Md
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This hardware arrangement removes all single points of failure from 

the hardware. Unfortunately the use of a bus for inter-computer 

commixiicatlons, while providing a very high data rate of 13M bytes/second, 

limits the dispersal of the computers (in fact they are mounted all 

together in a single cabinet) thus making the entire system vulnerable to 

external stresses, for example a fire would easily disable the whole 

system. In fairness it should be noted that it was not designed to cope 

with such calamities as they would result in more than a single hardware 

fault.

The software is divided into processes. Interprocess communication 

is by message passing, where a message consists of a request and a reply. 

To provide a non-stop service the Tandem 16's software, like the hardware, 

must not contain any single points of failure. Ibis is achieved by standby 

redundancy of processes.

Any process can be implemented redundantly as a process-pair 

consisting of a primary process and a single backup process. (The large 

number of computers in a Tandem 16 is to ensure a high through-put rather 

than to support low vulnerability.) At intervals the primary process 

establishes a recovery point which updates the backup process's internal 

state. When the primary process is lost in a crash the backup process will 

be activated and it will start processing from the point at which the last 

recovery point was performed.

To ensure that consistency is restored after a crash, the following 

protocol is used by the processes to control process interactions. This 

protocol is shown diagrammatieally in Figure He.
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recovery
point

Figure Me

Before Issuing a request the user process performs a recovery 

point. It then sends Its request to the server primary process and waits 

for a reply. The server receives the request, performs a recovery point 

and then performs the requested operation. All requests are sequence 

numbered, and once the operation is performed the server stores the 

request's sequence number and the reply. A recovery point is performed and 

then the reply is returned to the user.

In the event of either or both processes being lost before the 

transaction is completed the request will be repeated thereby ensuring that 

the operation is performed at least once.
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If the server crashes after a request has been sent to its primary 

process then the message system automatically resends the request. This 

time the message is sent to the server's now active backup process. 

Depending on vrtiether the server had established its first recovery point or 

not, this request may or may not be a repeat. (Even if the server had 

received the original request and performed the recovery point its backup 

would not have been able to return the reply.)

Some operations are idempotent but the majority are not. The 

server uses the request's sequence number to detect repeated requests. If 

a request is a repeat, then instead of performing the operation the server 

returns the stored reply. Thus the request is not repeated but the results 

are still obtained.

If the user process crashes after sending its request, then its 

backup will restart from its last recovery point and will repeat the 

request. The server may have performed the original request but not been 

able to return the reply, or alternatively it may not have received the 

request. In the former case the server will return the stored results as 

described above, and in the latter case it will handle the request 

normally.

Thus each process has only one outstanding recovery point, and 

consistency is recovered by the above protocol implemented by the user and 

server processes' programmers. When a recovery point is created the 

process (and hence the programmer) must specify which part of the data 

segment is to be backed up. Obviously, if recovery from crashes is to 

restore consistency then this protocol must be implemented correctly.

A similar problem arises in the JPL-STAR computer *»ich uses 

standby redundancy to ensure that its user processes can survive the 

permanent failure of their host memory units. A description of process 

survivability in the JPL-STAR computer was given in Chapter 3, Section
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3. 7 .*».

The user processes in STAR communicate with each other via shared 

data stored within the STAREX executive. Access to the shared data is 

provided by routines supplied by STAREX. As STAREX is housed in duplex 

memory the permanent failure of one of its memory units will not affect its 

data. Alterations made to the shared data are permanent and are not 

affected by memory unit failures.

If after establishing its last recovery point, and prior to a 

crash, a user process performed a STAREX routine, then on restarting it 

will repeat that routine. Some STAREX routines are idempotent and can be 

repeated, but others are not and these must not be repeated. To overcome 

the latter problem STAREX provides a number of mechanisms that enable user 

processes to either undo the effects of an executive routine before 

repeating it or to skip the repeated call altogether.

DEMOS M/P (Powell and Presotto 1983) takes the same approach to 

crash tolerance as process survivability does (although the 

implementational details are very different). Both are based on the fact 

that application processes are deterministic and so, by giving a restarted 

process the same input as it had prior to the crash it will recover itself 

to a consistent state. This approach has the great advantage that crash 

tolerance is transparent to the application programmer. This lack of 

transparency is a positive drawback to the Tandem approach to crash

tolerance.

DEMOS M/P consists of a broadcast network, a number of computers 

and a computer called the -recorder*. The recorder plays a similar role to 

that played by STAR’S TARP in that it acts a, a repository for recovery 

data and it controls recovery after a crash. When a process performs a 

recovery point a copy of its internal state is recorded within the 

recorder. Every message sent over the network is copied and that copy is
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stored within the recorder (all Interprocess communication Is Inter­

computer) .

When a process Is lost In a crash the recorder causes It to be 

moved to a different computer and then restarted from its last recovery 

point. The recorder then sends the restarted process, copies of all of the 

messages that had been sent to the restarted process's previous generation 

after the last recovery point had been established. Any message produced 

by the restarted process and which was also sent prior to the crash by the 

restarted process’s previous generation is discarded in order to prevent 

side-effects.

The recorder is DEMOS M/P's hardcore. Although it is claimed that 

by centralising the recovery function its implementation is simpler and 

hence more reliable, it does make the entire control system vulnerable to

the loss of the recorder.

In the Auragen computer (Borg et al. 1983) this vulnerability is 

removed. As in Tandem, processes in the Auragen are implemented as 

process-pairs. Every time a primary process executes a recovery point its 

inactive backup process is updated so that both primary and backup process 

have the same internal states. When a primary process sends a message, 

copies of that message are sent to the receiver’s primary process, the 

receiver's backup process and the sender’s backup process.

When a backup process is activated it has copies of the messages 

that were sent to its primary process prior to the crash, and it has copies 

of the messages that were sent by its primary process prior to the crash. 

The former enable it to recover itself to a consistent state, and the later 

allows the operating system to detect when the backup process repeats a 

message that was sent prior to the crash; such messages are discarded.
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The Auragen approach ia a combination of the beat faceta of Tandem 

and DEMOS M/P: it la invulnerable to a aingle hardware failure and craah 

tolerance ia tranaparent to the application programmer.

Project Little (Brenner et al.1980) waa an experimental ultra 

reliable diatributed computer ayatem. Although not a diatributed computer 

control ayatem lta hardware and software organisation conforms to the 

three-layer model presented in Chapter 2. Each computer runs a control 

program which ia either an EXEC which supports one user process, or an SVOL 

which provides access to one storage device.

Little also employs a form of standby redundancy. As a user 

process executes, its host EXEC records information about the process’s 

state (although not actual checkpoints) in a file called the Tasklist which 

is stored on more than two SVOLs. In the event of a computer crash an idle 

EXEC will continue the interrupted process. No further details are given 

in the literature, and the project was terminated before this aspect of 

Little could be developed (Burton 1982).

Crash tolerance by standby redundancy is very similar to software 

fault tolerance by standby redundancy as both require the storing of past 

states. Inconsistencies similar to the two described in Section 4.3.1 also 

arise *>en backward error recovery is performed by one or more processes 

within a group of comm^icating processes. It is possible that the 

solutions used there could be applied to crash recovery as well. Most of 

the work that has been done on backward error recovery amongst

commmicatlng processes has been as a result of interest in the recovery 

block scheme described in Chapter 3, Section 3-6.

A process’s active and backup replicates would each maintain a

sequence of recovery points. After a crash backups would be activated to

replace the processes that were lost. Then the active processes would be 

rolled back to older recovery points in order to place the system into a
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consistent state. The set of recovery points that satisfy the criteria 

constitutes the recovery line. For example, referring back to the two 

examples shown In Figures Mb and He, consistency would be restored by 

rolling back Process-B to Its previous recovery point, and by rolling back 

Process-D to Its last recovery point. Thus crash recovery would result in 

the need to roll back processes being propagated from one process to 

another mtll a consistent state is achieved. Rolling back an active 

process would necessitate that Its backup replicates also discard the same 

recovery points.

Unfortunately there are two major drawbacks to this solution:

1 ) Data and processing overheads
Each process would consist of a number of replicates, each of 

which would have to maintain and store a possibly large sequence of 

recovery points. This sequence would Increase as the process runs. 

However, It Is possible to calculate which recovery points will never be 

needed and thereby delete the data that supports them. Of course this 

would In turn increase the processing load.

2) The domino effect
The propagation of rolling back can result In the so called 

•domino effect' where a crash can result In a group of processes having 

to «,11 back over many If not all of their recovery points. Figure 4f

below Illustrates this effect.

If in our example the computer hosting Process-A crashes, then 

one of Process-A's backup replicates is activated to replace it. In 

effect Process-A has been rolled back to Its most recent recovery point. 

To achieve consistency Proc.ss-B is rolled back to its third recovery 

point, Which in turn means that Process-C must be rolled back to Its 

second recovery point and so on. The eventual outcome will be that all 

of the processes will have been rolled back to their Initial state.
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Also, all of their backup replicates will have discarded all of their

recovery points as well.

Process-A Process-B Process-C

Figure Uf

The domino effect Is obviously very unsatisfactory especially in a 

real-time system. The use of standby redundancy for ADNET was rejected 

because of the "Immense backward error recovery problems" (Moulding 1980a), 

although as we have seen In Tandem and as we shall see for process 

survivability this Is not necessarily the case.

Examples of using the domino effect for backward error recovery in 

multi-computer systems can be found in Merlin and Randell 1978, Menasce 

1978, and McDermld 1981a and 1981b. McDermld suggests that crash recovery 

could be performed in this way. It has also been suggested that It could 

be used to provide crash tolerance in the LOCOS distributed operating 

system (Popek et al. 1981) «id In the related UCLA-Net (Rudisin 1980).
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Russell (1977 and 1980) describes a technique known as 'Directed 

commmlcatlons' that guarantees that a recovery line can be found without 

having to roll back the processes too far, thereby limiting the worst of 

the domino effect. (It also limits the number of outstanding recovery 

points that are needed, thereby reducing the data storage overheads.) 

Russell's solution is complicated when used for error recovery because of 

the need to verify that the messages do not contain errors, but for crash 

recovery this would be unnecessary.

Propagating recovery between processes and 'Directed 

communications' both try to find a recovery line (which may not exist) when 

it is needed. The alternative approach is to ensure that one always 

exists, and that the minimum amount of rolling back is performed. Horning 

et al. (197*0 describe the 'conversation' for use in multiprocess error 

recovery, and it is possible that it could be used for crash recovery as 

well, although the requirement that all of the processes involved in a 

conversation must leave it at the same time may, as Russell and Tiedeman 

(1979) suggest, "cause an unnecessary loss of efficiency in parallel

processing".

Unfortunately all of theae aohaaea involv. process., that asra not 

on th. crashed acput.r haring to roll hack. Ideally only thus, proc.ss.s 

that »era on the crashed ocaputer shculd have to roll back. On the 

posltl,. side, tha, nay b. abl. to support crash tolar.no. and softuar. 

fault tolerance at the same time.
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U.U Sunn ary

In this chapter we have described two ways of organising process 

redwdancy so that the application level (or the distributed kernel level) 

can be made crash tolerant. In the following chapter we introduce process 

survivability itself, and relate it to the two major examples - ADNET and 

Tandem - that were given in this chapter.
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5. An Introduction to Process Survivability

5.0 Introduction

The multi-computer architecture of a distributed computer control 

system has two characteristics that make it a suitable base for a crash 

tolerant computer system. Firstly, and most importantly, the loss of one 

computer does not prevent the other computers from working normally. The 

loss of a computer will reduce the control system's overall processing 

power, but the majority of the power will still be available. Secondly, by 

basing the control system around a network the computers can be physically 

dispersed, thus providing passive protection against external stresses by 

limiting the damage that can be caused. For example, by placing the 

computers in different buildings, the number of computers that can be 

damaged in a fire is reduced.

Unfortunately, these characteristics are not sufficient on their 

own to make the distributed computer control system invulnerable to 

computer crashes. The loss of an application process may result in the 

control system's application software failing to meet its specifications. 

Despite the architectural advantages of a distributed computer control 

system it is still vulnerable to a single computer crash.

Process survivability removes this vulnerability. Process 

survivability is the implementation of an application process using standby 

redundancy so that in the event of its host computer crashing an 

application process will survive and will continue to run on a different

computer.

Process .ur.lv.blHW support. out of or..h tolershce. Io * 

distributed o o w t . r  oootrol sy.te. of . oo.put.rs, .ppllo.tlon

proo«.. he. n backups, lb. .ppllo.tlo. 1...1 ■»» tol.r.t. n c p u t . r

crashes; sft.r tbst sny further ors.be. -Ill r..»lt 1. sppll.stlos
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processes being lost and in process survivability for the other application 

processes breaking down. The size of n will depend on a number of factors: 

the size of m, the magnitude of the envisaged threat to the control system, 

the cost of having what is in effect n redundant computers, and the level 

of acceptable performance because the overheads of process survivability 

increase along with the size of n.

Unfortunately, while process survivability is in our opinion a 

necessary requirement for a crash tolerant computer system, it is not a 

sufficient one. When a computer crashes those devices that are attached to 

it are no longer accessible. Without these devices the control system will 

not be able to exert full control over its environment. Providing a crash 

tolerant input/output service is outside of process survivability's brief, 

and so we have adopted the approach taken in ADNET where it is accepted 

that a crash will result in the loss of devices as well. We shall return

to this topic in later chapters.

5.1 The alms of process survivability

A number of requirements concerning the way that process 

survivability relates to the application programmer and how it should be 

implemented were defined. These requirements then guided the development 

of process survivability.

TO. primary r w l r m m t  la that procaaa survivability ahould b. 

complet.ly trmapar.pt to th. application programmer: application proo.aa.n 

ar. written a. th., mold b. If non-r.di.dmt. pmondanoy 1. only a p p m m t  

m m  th. control ayatm «  oonfliorm «  t h m  th. number and location of 

th. application proc.as.s- haohup. m .  .pmlflad. ».r. P ™ « . .

survivability to b. Irnplmmtm 1» m r t  h, application proo... cod. < m  1. 

th. c a m  in Tandem and ADEET) th.n It would b. Impo.alhl. to gu a r m t m  

auco.aaful oraah tol.rmoa. m  my alat.m »« th. part of th. progra-ar
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could result in process survivability failing. By making process 

survivability transparent we can guarantee that once the process

survivability code is debugged it will always work correctly.

Process survivability is based on standby redundancy rather than on 

masking redimdancy because we believed that it would constitute the best 

basis for achieving transparency. Although we cannot categorically state 

that standby redundancy is the best basis, we can state that it has been 

possible to make process survivability transparent to the application 

programmer, and we do not believe that this would have been possible had 

masking redundancy been used.

Transparency would also be advantageous were it possible for 

process survivability to be added to an existing distributed computer 

control system, as transparency would mean that it would not be necessary 

to retrain programmers nor would it be necessary to rewrite application 

process code. Both of these are financially attractive, and could tip the 

balance in favour of adopting process survivability for an existing control

system.

The drawback to process survivability being transparent is that it 

is impossible to take advantage of any optimisations that might arise in a 

particular application. However we believe that the value of such 

optimisations is far outweighed by the consequences of faulty crash

tolerance.

The secondary requirements were guidelines as to how process 

survivability was to be implemented:

a) If the control system is to be effective it must be able to maintain its 

response time to external events. This is particularly important when 

an external stress has destroyed a computer. For example, a chemical 

works may become critical after an explcsicn and prompt action by the
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control system would be needed to prevent a catastrophe. In order to 

maintain the response time we require that:

- The processing overheads of supporting process survivability during 

normal running should be kept as low as possible.

- The interruption to an application process’s service caused by a 

crash should be as short as possible.

- The disruption caused to application processes that have not crashed 

should also be as small as possible. In particular, there should be 

no domino effect - application processes that are not on a crashed 

computer are not rolled back.

b) Each application process should have only one outstanding checkpoint. 

More are not needed because of our determination not to use dominoing to

restore consistency.

c) Crashed application processes are recovered independently of each other. 

There is no coordination between the recovery of two application 

processes even if they normally communicate with each other.

d) Process survivability must be able to cope with multiple computer 

crashes even if they occur simultaneously.

e) Assuming that an application process’s redundancy has not been 

exhausted, a process must be able to recover from a crash no matter what 

it is doing at the time. In particular, application processes that are 

currently recovering fro. one crash must be able to recover from another

crash.
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The implementation has adhered to the last four requirements, and 

has attempted to minimise those overheads specified in the first one.

5,2 An Introduction to the Implementation of process survivability

Rather than trying to make process survivability completely general 

and suitable for all distributed computer control systems, we have 

developed it for a specially devised 'paper* distributed computer control 

system called PROSUR (PROcess SURvivability). PROSUR conforms to the 

layered model of a distributed computer control system outlined in Chapter 

2. Full details of PROSUR are given in the next chapter, Chapter 6.

All application processes are implemented as a process-set, where a 

process-set consists of an active primary replicate and a linearly ordered 

set of backup replicates. By having a number of backups per process-set we 

ensure that an application process can survive multiple crashes even when 

they occur simultaneously (for as long as its redundancy is not exhausted).

At intervals the primary replicate performs a recovery point which 

causes each of its backup replicates to be updated so that they are exact 

copies. When a primary replicate is lost in a crash the first of its 

backup replicates is activated to replace it. The activated backup 

replicate will start to execute from the place at which the last recovery 

point was performed - there is only one outstanding recovery point per

process•

Chapter 6 contains a high-level description of how process-sets are 

organised. Full implementations! details of the process-set, including how 

computer crashes are detected, are given in the first half of Chapter 9.

In Chapter 4, Section 4.3.1, we briefly described the type of 

inconsistencies that can arise between two application processes after on. 

or both of the. have been restarted after a crash. In Chapter 7. w.
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describe these inconsistencies in the form in which they arise in PROSUR.

In process survivability consistency is restored by replacing lost 

messages, and by forcing the restarted processes to act in exactly the same 

way as they did prior to the crash, with any repeated messages being 

discarded. The crux of this solution is that the process must act in the 

same way, and this is guaranteed by executing recovery points in the 

correct place. In this way consistency is restored without the need to 

roll back processes that were not on a crashed computer.

Chapter 8 outlines how consistency is achieved, and Chapter 9 gives 

full details of how it could be Implemented in PROSUR.

5 . 3  Comparisons with existing crash tolerant systems

Of the crash tolerant systems described in detail in the previous 

chapter, process survivability is most similar to crash tolerance in 

Tandem. Both are based on standby redundancy with a single outstanding 

checkpoint per process and both achieve consistency without the need to 

'domino' processes.

Minor implementational differences occur because of differing 

design alms and because Tandem is a finished product whereas process 

survivability and PROSUR are experimental. For example, Tandem is designed 

to withstand only a single component failure and so each process has only a 

single backup, but process survivability is designed to withstand multiple 

computer failures and so every process has a number of backups.

The major difference between the two is the way that consistency is 

restored after a backup is activated. In Tandem consistency is restored by 

a protocol implemented by application process code. If consistency is to 

be achieved then the protocol must be correctly implemented by the

application progr«m.er. In process survivability consistency is restored
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by the underlying process survivability mechanism and not by application 

process code. Once debugged, process survivability can be guaranteed to 

work always, whereas crash recovery in Tandem is vulnerable to programmer 

error. As Bartlett (1981) says, "Many [programmers] do [write application 

process-pairs], and if the design has been done carefully, they will 

recover correctly".

ADNET's crash tolerance is based on masking redundancy and so 

comparing its implementation with that of process survivability is of 

little value. However a comparison of the services provided by each of 

them is worthwhile.

Both provide crash tolerance to multiple computer failures. 

However, in ADNET crash tolerance is only implemented for server processes 

(all other classes of process are lost in a crash), but process 

survivability is applied to all of the application processes. Thus with 

process survivability all of the control system's application processes 

survive a crash, but in ADNET only the server processes do. Finally, crash 

tolerance in ADNET is achieved solely by application process code which 

must be correct if crash tolerance is to work correctly.

The major difference between process survivability and crash 

tolerance as provided in ADNET and Tandem is that process survivability is 

transparent to the application programmer. He believe that this is the 

major advantage that process survivability has over these systems, as it 

ensures that crash tolerance is not vulnerable to application programmer 

error. That this approach is also taken by two recent systems - Auragen 

and DEMOS M/P - is encouraging, as it implies that transparency is 

important in a crash tolerant system, and that it valued by others.
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5.1» Sunn ary

Process survivability is a way of implementing an application 

process so that it can survive the crash of its host computer. Each 

process has a number of backups so that it can withstand multiple computer 

crashes even if they occur simultaneously. By implementing all of the 

control system's application processes in this way, the control system's 

software can survive a number of computer crashes and still fulfil its 

specifications.

Unlike ADNET and Tandem, process survivability is transparent to 

the application programmer. This ensures that programmer errors cannot 

prevent process survivability from being performed correctly. Transparency 

also makes process survivability suitable for adding to existing 

distributed computer control systems, as there would be no need to retrain 

programmers and it would not be necessary to alter existing software.

Moulding (1980a, page 9) states that using standby redundancy 

"introduces immense backward error recovery problems and in practice no 

such automatic reconfiguration has been achieved". Process survivability 

removes these "inmense backward error recovery problems" by achieving 

consistency without recourse to 'dominoing'.

The rest of this thesis describes how process survivability could 

be implemented for the paper distributed computer control system PROSUR.
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6. PROSUB and the Foundations of Process Survivability

6.0 Introduotlon

PROSUR (PROcess SURvivability) is the distributed computer control 

system that was designed as an environment in which to develop process 

survivability. PROSUR is a 'paper* distributed computer control system, 

that is, it exists on paper but it has never been implemented.

PROSUR conforms to the three-level model of a distributed computer 

control system described in Chapter 2, consisting of a hardware level, 

distributed kernel level and application level. Process survivability is 

provided by a fourth level interposed between the distributed kernel level 

and the application level.

This chapter describes PROSUR's three standard levels and

introduces the implementation of the process survivability level. Then in 

the following three chapters the implementation of the process

survivability level is developed.

To facilitate the development of process survivability, PROSUR has 

been kept simple. While it has not been simplified to the extent that the 

value of process survivability has been nullified, it has resulted in 

PROSUR having a number of limitations as a distributed computer control 

system. The final section of this chapter outlines these shortcomings.

6.1 Application level

The application level is organised as a static configuration of 

processes co«m«ic.tlng with each other by asynchronous message passing.
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A process is a named running instance of a program. All programs 

are written in PROSUR's P/L which has been adapted from Pascal (Jensen and 

Wirth 1978) by removing the file handling facilities (Including READ and 

WRITE etc.) and by adding message passing and device driving commands.

Processes are connected together by uni-directional 1-to-1 typed 

channels, where a channel is a queue of messages. Each channel has only a 

single sender process and a single receiver process: there is no facility 

for many-to-1 or 1-to-many connections. The sender places messages into 

the channel using a SEND command and the receiver removes these messages in 

the order in which they were sent using a RECEIVE command. Messages that 

have been sent but which have not yet been received are buffered within the

channel.

The application level is created at system initialisation time by 

commands issued to the system manager. Application processes are created, 

named and allocated to computers, and the pattern of interconnecting 

channels that bind these processes together is specified. PROSUR is a 

static system, and so the configuration specified at system initialisation 

time remains constant throughout the control system's life. If the control 

system has to be altered in any way, for example to add or replace a 

process, then it must be turned off and then recreated. The only exception 

to this is the migration of processes between computers as a result of the 

actions of process survivability after a crash. After system 

initialisation the system manager has no further role.

A channel is formed by linking together the sender's output channel 

and the receiver's input channel. Input channels and output channels are 

declared within the programs by statements of the form:

To : OutputChannel [10] Of letter;

From : InputChannel [10] Of letter;
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where ’letter' is the base type of the channel and 10 is the maximum number 

of messages that can be buffered within the channel. Only input channels 

and output channels of the same base type and size can be linked together 

to form a channel. This linking is performed by the system manager at 

system initialisation time.

'To' and 'From' are the local names of the output and input 

channels. All interprocess communication is with respect to the local 

names of a channel. Hence the physical location of the processes is hidden 

from the processes. Such addressing is said to be 'location independent', 

and it is a vital feature in a system that incorporates process 

survivability. With process survivability a computer crash results in 

application processes being 'moved about', and location independent 

addressing (assuming adequate support from the kernel) ensures that the 

application processes will still be able to communicate with each other 

despite the changes in their physical locations. (Without location 

independent addressing it would be necessary to recompile the processes in 

order to adapt them to the altered configuration.)

The SEND and RECEIVE commands are of the form:

SEND (to, data, status, timeout) 

and

RECEIVE (from, data, status, timeout).

SEND places the message 'data' into the channel whose local name is 

'to*. RECEIVE takes the first message in the channel 'from' and places it 

into 'data*. Channels are typed and so in both commands the channel's base 

type must be the same as that of the 'data' parameter.
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If a process issues a RECEIVE on an empty channel then that process 

will be suspended until a message is available. If a process issues a SEND 

on a full channel, that is a channel in which all of the buffering is taken 

up by outstanding messages, then that process will be suspended until space 

is available in the channel.

The 'timeout' parameter in both commands allows a process to 

maintain its responsiveness. If a SEND/RECEIVE takes longer than the 

period specified by timeout, perhaps because of the above flow control 

reasons or in the case of a SEND because the network is busy, then the 

command is aborted with the 'status' parameter set to ' failed'. If a 

SEND/RECEIVE terminates normally 'status' is set to 'succeeded'.

PROSUR suffers from the generic problem associated with 

asynchronous message passing: if a SEND fails due to the timeout expiring 

it is possible that the message has in fact been successfully delivered. 

(The reason for this is explained in Section 6.3 of this chapter.) It is 

left to the application processes to cope with this problem, possibly by 

implementing some higher protocol amongst themselves.

The final interprocess communication command is the boolean 

function:

PENDING (from) : Boolean;

which returns true if there is a message in the input channel 'ft-om', and

false otherwise. PENDING allows a receiver to check whether there is a 

message ready to be received before actually Issuing a RECEIVE.

An input/output device is controlled by a process known as its 

•handler'. Other processes can only access a device indirectly by

comminicating with that device's handler by message passing. The device 

handlers provide the rest of the application level with a high level, 

message-based interface to their devices.



Like channels, devices are declared within their device handlers by

declarations of the form:

lp : LINEPRINTER;

where the type can be any of the system defined device types. The handler 

refers to its device by the local name. The device that is actually 

controlled is not specified until system initialisation time.

Device handlers control their devices using the DOIO procedure, 

Which is based on the 10 command in Concurrent Pascal (Brinch Hansen 1977). 

DOIO is of the form:

DOIO (dev, oper, data, stat, arg).

DOIO causes the device * dev* to perform the operation 'oper' (where oper 

can be INPUT, OUTPUT, MOVE or CONTROL), with any further information

concerning the operation being supplied by 'arg'. In the case of an

input/output operation the value input/output will be read from/placed into

'data'. The outcome of the operation, for example COMPLETED or

INTERVENTION, is returned by the parameter 'stat'.

The system manager ensures that the configuration specified is

correct, as error checking at system initialisation time ensures that 

expensive runtime error checking need not be performed. In particular it 

ensures that each device has only one handler and that both are on the same 

computer, and that each input/output channel is bound to only one

output/input channel and that they are of the same size and type.
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6.2 Process survivability level

Process survivability is based on standby redundancy of application 

processes. An application process and its redundant backup copies together 

constitute a process-set. Every application process (and that includes 

device handlers) is implemented as a process-set.

The process survivability level fulfils two roles:

1) It provides the process-set.

2) It ensures that any Inconsistencies that arise between processes after a 

crash are removed.

In this section we describe how a process-set is organised and what 

it does, but the details of how a process-set is implemented are left until 

Chapter 9. Neither does this section describe how consistency is restored. 

The next two chapters describe the inconsistencies and explain how they are 

removed. The implementational details of restoring consistency are 

presented in Chapter 9.

A process-set consists of the primary replicate which is the 

running copy of the process, and of a set of non-running copies of the 

primary replicate called backup replicates (see Figure 6a below). Each 

replicate is hosted by a different computer. When the primary replicate is 

lost due to the crashing of its host computer one of its backup replicates 

is activated to replace it. The remaining backup replicates provide 

standby redundancy for this new generation of the application process.
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Application process

process-set

The organisation of a process-set 

Figure 6a

A primary replicate is the running copy of the application process. 

It consists of a code segment and a data segment. The code segment 

contains the compiled PROSUR’s P/L program that defines the process, and 

the data segment contains the process’s global variables, runtime stack and

heap storage.

Each backup replicate also consists of two segments: the code 

segment, which is a copy of the primary replicate’s code segment, and the 

data segment, which is a copy of the primary replicate’s data segment.

A primary replicate’s code segment is constant and so copies of it 

can be placed into its backup replicates’ code segments at system 

initialisation time. The primary replicate’s data segment alters all the

time and so the backup replicates’ data segments must be updated as the 

primary replicate runs. It would be impossible for the backup replicates’

data segments to be continuously updated. Instead they are updated at

intervals when the primary replicate performs a secure point. A secure

data being sent to each of the backuppoint results in secure point



replicates. Secure point data contains sufficient information for each 

backup replicate's data segment to be updated so that it is an exact copy 

of the primary replicate's data segment.

Secure point placement is decided upon at runtime. There is no 

coordination of secure pointing between primary replicates. The insertion 

algorithm is a fundamental part of the implementation of process

survivability. The development of the insertion algorithm and its 

implementation are described in Chapters 8 and 9.

When a primary replicate is lost one of its backup replicates is 

activated to replace it. The 'reincarnated' primary replicate will start 

to execute its code from the instruction immediately after the last secure 

point that was successfully executed by the previous generation of primary 

replicate.

A process-set's backup replicates are ordered linearly. This 

ordering defines the sequence in vrtjich the backup replicates will be 

activated in the event of the primary replicate being lost. A backup 

replicate's predecessors consist of the current primary replicate and of 

those backup replicates that are before it in the sequence. When a backup

replicate's predecessors have all been lost it will be activated to become 

the new primary replicate. For convenience, we refer to the first backup 

replicate in the sequence as the senior backup replicate and the others as 

the Junior backup replicates.

When a computer crashes a number of primary replicates are lost and 

their senior backup replicates will be activated to replace them. At the 

same time a number of Junior and senior backup replicates are lost as well. 

The order of backup replicate activation is resilient to the loss of backup 

replicates: as a backup replicate is simply activated when its predecessors 

have all been lost, it does not matter that some of them were lost before 

they were activated.
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Process survivability provides 'n out of m' crash tolerance: the 

control system can withstand the loss of n of its m computers. As we shall 

explain in Chapter 8, application processes play an active role in 

recovering each other after a crash. For a control system to withstand n 

crashes it is necessary that every application process has n backup 

replicates as otherwise processes would be lost and would not be able to 

assist each others' recovery.

The position of the primary replicates is specified to the system 

manager at system initialisation time along with the level of redundancy 

required for all application processes. The position of the backup 

replicates is decided upon by the system manager. The system manager also 

initialises the backup replicates' code and data segments.

PROSUR is a static system, and the configuration cannot be altered 

(other than by process survivability) while it is on-line. The only way 

that a crashed computer can be reintegrated into the system is by re­

initialising the entire control system. For the same reason, when a 

primary or backup replicate is lost in a crash there is no attempt to 

maintain the level of redundancy by generating another replicate. The 

system has an initial level of redundancy. Once that many computers have 

crashed the redtndancy for some processes will have been exhausted, and any 

further crashes will cause the control system to fail.

He have adopted the same approach to device redundancy as used in 

ADNET where the "failure of a peripheral computer will result in the loss 

of that peripheral fhom the system" (Moulding 1980b, page 8). Devices are 

single-homed: each device is only attached to a single computer. The 

result of this is that when a computer crashes any devices that are 

connected to it can no longer be used.
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Although the devices In PROSUR ere single-homed the device handlers 

are still implemented as a process-set. The original primary replicate is 

hosted by the computer to Which the device is connected. The backup 

replicates will be hosted by computers that are not attached to the device, 

and so when a backup replicate is activated it will not be able to control 

its device. Device handlers are implemented as process-sets for two 

reasons:

1) As we shall explain later, processes assist in each others' recovery, 

and so if a device handler were lost it could not assist in the recovery 

of other processes.

2) The backup replicates can provide an intelligent response to further 

requests for services.

Does the loss of control over the devices nullify the advantages of 

process survivability? Obviously the designers of ADNET do not think so, 

but the opposite view is taken by the designers of HXDP who think that 

"processors in distributed real-time control systems are typically located 

near the sensors and actuators they serve; reconfiguration is rendered 

ineffective by the inability to move the function of the external devices" 

(Boebert et al. 1978, page 255). This difference in view is probably due 

to the fact that HXDP tends towards a process to computer ratio of 1:1, 

whereas ADNET and PROSUR have a much higher ratio and so computers are not 

concerned solely with controlling devices.

If a particular device is vital then it will be replicated, and 

each replicate will be connected to a seperate computer. Such an 

arrangement would be necessary anyway, as otherwise the control system 

would be extremely vulnerable to device failure. Each device will have its 

own device handler. In the event of a device handler crashing, its 

activated backup replicate would advise its users that it can no longer
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control Its device, and then the users could use one of the alternative 

device handlers instead. (Unfortunately the absence of dynamic channel 

linking in PROSUR makes this Inelegant as it requires a process to be 

permanently connected to each of the alternative device handlers.)

Farber (1978, page 387) states that "peripherals have to be 

connected not only to one but to several processors". Then If one computer 

crashes one of the other computers could control the device instead, 

thereby maintaining the service.

Unfortunately the connection between the computer and the device is 

vulnerable to failure. Were multi-homing to be adopted in PROSUR then it 

would be possible for the primary replicate's host to become disconeoted 

from the device, leading to the situation where the primary replicate can 

no longer control its device but its backup replicates oould.

The Tandem 16 uses multi-homed disks. Tandem is not troubled by 

the above problem as it is possible for a primary replicate and its single 

backup replicate (processes in Tandem have only one backup) to swop roles, 

thereby ensuring that the primary replicate is always controlling the 

device. In PROSUR the primary replicate cannot swop roles with one of its 

backups.

A possible solution to this problem would be to replicate the 

computer-device connection, thereby making it effectively invulnerable. 

However in a widely dispersed configuration this would lead to a 

prohibitively large amount of wiring. In Chapter 8, Section 8.3» we 

suggest a way, based on the Tandem approach, in which multi-homed devioes 

and process-sets can be Integrated so that a restarted backup replicate can 

control its devices.
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To sumaarise, devices ape single-homed and their device handlers 

are replicated. In the event of either the device falling, or the computer 

it is attached to crashing, the service provided will be lost. If a 

redundant I/O service is required then it would have to be implemented 

within the application level.

6 . 3  Distributed kernel level

Each computer runs a functionally identical kernel. These kernels 

together constitute the distributed kernel level. The distributed kernel 

level, along with the hardware level below it, provides the services that 

are used to implement the application level and the process survivability 

level.

In general the kernels operate independently of each other. Each 

kernel supports its local processes by providing time-sharing, virtual 

memory management, asynchronous message passing and low-level device 

control. The kernels cooperate with each other to transfer messages from 

one computer to another.

Each primary replicate hosted by a kernel is described within that 

kernel by a data structure known as its •descriptor'. A primary 

replicate's descriptor contains its status ('runnable', 'unrunnable'), a 

copy of its volatile environment and its page table.

Primary replicates on the same computer are time-shared by their 

host kernel. The descriptors of those primary replicates that are runnable 

are organised into the ready-queue, from trfiieh the kernel chooses the next 

primary replicate to be run.

While a primary replicate is being run it will make use of a number 

of registers such as the program counter. The values contained in these 

registers are the primary replicate's volatile environment. When a primary
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replicate relinquishes the processor, either because it has become 

mrunnable or because it has been pre-empted, its volatile environment is 

stored in its descriptor. When the primary replicate is next chosen to be 

run its stored volatile environment is reloaded into the registers and the 

primary replicate continues where it left off. If the volatile environment 

was not saved it would be overwritten by the next primary replicate to be 

executed.

Virtual memory is in the form of paging. Program addresses consist 

of a page number and a word number pair. The physical location of a 

particular page in main memory or on backing store is defined by the 

primary replicate's page table which is stored in its descriptor.

The distributed kernel level provides a reliable asynchronous 

message passing service that is used by the process survivability level to 

implement the interprocess communication mechanism used by the application 

processes. This service, which is very similar to the application level's 

communication mechanism, comprises 1-to-1 buffered channels for linking 

primary replicates together and a suite of kernel procedures for using 

them.

These channels are called pipes so as to distinguish them from 

interprocess channels. * pipe consists of an input pipe and an output 

pipe, which are linked together at initialisation time *»en the 

Interprocess channels which they implement are linked together. Input 

pipes, like input channels, have a type and a size, but output pipes only 

have a type. The buffering needed for a pipe is provided by the receiver's 

kernel and forms pmrt of the receiver's descriptor. In effect outstanding 

messages are buffered within the input pipe and the input pipe’s size is 

the number of messages that can be buffered within it.
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The kernel procedures for supporting Interprocess communication

are:

a) ksend (op: output pipe; m: message; Var s: status; t: timeout)

The message 'm' is sent down the output pipe ’op*. If the 

timeout period 't' expires or if the receiving primary replloate crashes 

then the ksend will fall and ’s' will be set to 'failed'; otherwise 's' 

is set to 'succeeded'.

b) kread (lp: input pipe; Var m: message; Var s: status; t: timeout)

A message is copied from the Input pipe 'ip' Into 'm'. The

message is not removed from the Input pipe but It oannot be re-kread.

If a message does not exist the caller will be delayed until a message 

arrives or tntil the timeout period 't' expires. If the kread was 

successful 's' is set to 'succeeded'; otherwise It Is set to 'failed'.

c) kfree (ip: input pipe)

Kfree removes from 'ip' the messages that have been kread in

since the last call of kfree. The space they occupied oan now be used

again.

d) krecelve (ip: input pipe; Var m: message; Var s: status; t: timeout)

This is identical to kread except that the message is removed 

rather than copied.

e) kpeeklast (lp: input pipe; Var m: message; Var s: status; t: timeout)

This returns a copy of the newest message in 'ip'. The message

is not removed from the channel and it can still be input by a kread or

a krecelve. The space occupied is not released by a kfree.

In all of these kernel procedures a timeout of minus one (-1) means 

for ever, and a aero (0) timeout means that the command will only succeed

if it oan be performed successfully Immediately. These two values oan only
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be used sensibly with certain of these procedures and then only under 

certain circumstances.

Within the distributed kernel level all of the computers, 

application processes and pipes are identified by numbers. Computers and 

application processes are uniquely numbered, although all replicates within 

a process-set have the same identity. Input and output pipes are uniquely 

numbered within their host replicate.

Channel addressing within the application level is by local name, 

and similarly pipes are addressed by local input pipe and output pipe 

numbers. In order for a kernel to deliver a message sent by a local 

process it must know the address of the recipient input pipe. An input 

pipe's address has three components: process number, input pipe number, and 

the number of the computer that hosts the receiver's primary replicate.

The computer component of an input pipe's address will alter as the 

application process moves around the control system as a result of crashes. 

Because of this, the mapping from output pipe number to input pipe address 

is done at the time the message is sent and not during compilation or at 

system initialisation time. The mapping is defined by a table contained 

within the sender's descriptor. For every output pipe number the table 

contains the recipient input pipe's address. For example, in Figure 6b 

below, the primary replicate's first output pipe is linked to the first 

input pipe of process number 6, whose primary replicate is resident on 

computer number 2. When a primary replicate calls ksend the kernel uses 

the 'op' parameter to look up in the caller's descriptor the address of the 

recipient input channel.
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computer

input pipe address 

process input pipe

1 2 6 1

output pipe 2 3 3 9

number 3

e
n

Figure 6b

All of the figures needed to fill these tables are provided by the 

system manager at initialisation time. After a crash it is necessary for 

some of these mapping tables to be altered to reflect the current location 

of the application processes. This is done by the affected application 

processes themselves using the kernel procedure:

kconnect (ops output pipe; c: computer number);

which tells the kernel to alter the caller's mapping table to reflect the 

fact that the receiver connected to the caller by output pipe 'op' is now 

on computer 'c'. How kconnect is used is described in Chapter 9» Sections

9.3.2 and 9.3.1».

Any ksend performed on an output pipe that needs to be reconnected, 

but which has not yet been reconnected, will fail as the recipient computer 

specified in the mapping table no longer exists.

A reliable interprocess communication mechanism is one in which 

messages are neither lost nor corrupted. To achieve this the kernels 

employ a fault tolerant protocol such as Byte Stream protocol (Johnson 

1980) to transfer messages between computers.



Byte Stream protocol provides reliable virtual circuits It uses

checksums and positive acknowledgements to detect errors, and uses 

repetition after a timeout period to recover from the loss. In order that 

this recovery does not result in messages being replicated, both messages 

and acknowledgements carry a sequence number. These virtual circuits are 

created at system initialisation time, and they are reset in order to re­

initialise the sequence numbers after a crash of either the sender or the 

receiver.

Unfortunately such protocols suffer from a generic problem. If the 

timeout specified by the sender expires before an acknowledgement is 

successfully received then the ksend will return with its status parameter 

set to failed, but the message may have been delivered successfully and the 

acknowledgement lost. As mentioned in Section 6.1, coping with this 

problem is left to the application processes.

There is a limit to the size of message that can be sent at one

time. If the message specified in a ksend is larger than this maximum

size, then it is split up and the constituent parts are sent separately.

When all of the parts have been received by the receiver’s kernel the 

message is reconstituted and placed into the input pipe. All of this is

transparent to the application level.

The kernels provide a procedure for controlling devices called 

kdoio which is used by the process survivability level to implement DOIO. 

Kdoio has the same parameters as DOIO except that the device is identified 

by a number rather than a variable name.

Every device attached to a kernel’s host computer is described 

within the kernel by a data structure called its descriptor. A device's 

descriptor contains the information concerning the device that is needed to 

Implement a call of kdoio on that device. A primary replicate’s descriptor 

contains a table of pointers to the device descriptors of the devices it
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handles. The device's identity specified in a call of kdoio is the index 

to that device's descriptor contained within this table.

Devices have only one handler and so there is no complicated 

sharing. The possible exceptions to this rule are those disks which are 

partly used for paging and tdiieh are also controlled by a device handler. 

In this ease the disk would be controlled by an executive process that 

handles requests from both the paging system and the disk's handler.

A backup replicate is organised in exactly the same way as a 

primary replicate. It has a descriptor and it is allocated pages for its 

data and code segments. The descriptor includes the buffering for the 

backup replicate's input pipes; even though the backup replicate may never 

be used this buffering must be available in case it is. If there is not 

sufficient storage in the kernel for the backup replicates' input pipes 

then either the level of redundancy is too high or the number of computers 

is too low. Minor differences of a backup replicate from a primary 

replicate are:

1) its status is 'unrunnable';

2) in its output-pipe mapping table the computer address column is full of 

zeros;

3) the table of pointers to device descriptors is empty as the devices are 

not attached to the backup replicate's host computer;

M) all of its pages are held on backing store.

Although we have described the services provided by a kernel as if 

it were a single entity, it would be Implemented as a 'core-resident' 

nucleus and a number of executive processes. The executive processes would 

be handled by the nucleus in the same way as a primary replicate is. To 

call a kernel procedure such as ksend, the primary replicate plaoes the

106



parameters in a location known to the kernel and then raises a software 

Interrupt.

For PROSUR to support process survivability the distributed kernel 

level must be able to continue normally despite the loss of one or more of 

the kernels. To do this none of the kernels must contain data or provide 

services that are needed by any of the other kernels. This is the case in 

PROSUR, as the kernels have their own copies of the necessary tables and 

none of them exports a service to the others. Also, if while a message is 

being transferred between computers, one of the kernels crashes, the other 

must be able to abort the transfer without waiting for the user specified 

timeout to expire.

There are two characteristics of the message passing system that 

are needed for process survivability. One of these, the late addressing of 

messages by the kernel, has already been discussed. The second is 

reliability.

Secure point data is transferred between computers using the 

message passing system. Were secure point data to be corrupted during 

transmission and were that corruption not noticed, then the backup 

replicate that is updated using that corrupted secure point data would 

itself be corrupted. Were the corrupted backup replicate to be activated 

it would fail, and this could cause the control system to fail as well.

Fortunately, even if the message passing service is less than 100* 

reliable, the probability of a corrupted backup being activated is still 

very small. As we shall describe later, when a secure point is executed 

the secure point data is sent to each backup replicate in turn, and also it 

is sent to each of them as a sequence of smaller messages. Hence, any 

corruption will most likely be limited to a small part of a single backup 

replicate. Furthermore, prior to a corrupted backup replicate being 

activated, the corrupted part may have been overwritten and corrected as a
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result of a later secure point.

The network overheads Involved In providing a 100J reliable message 

passing service are likely to be very high because of the level of 

redmdant data that would have to be transmitted. A less than 100f 

reliable service would be more practicable, and as long as the probability 

of a corrupted backup replicate being activated is sufficiently small then 

it would be an acceptable economy. Whether or not a 100> reliable service 

could ever be provided is an arguable point, and so the risk of corruption 

is probably unavoidable anyway.

6.1* Hardware level

PROSUR's hardware, which is illustrated in Figure 6c, consists of a 

number of identical computers joined together by a local area network. 

Each computer has sufficient local backing store to support virtual memory 

requirements.

devices

computers

network

PROSUR's hardware

Figure 6c
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î ach input/output device Is attached to a single computer. This 

computer will host the device handler's original primary replicate. The 

device is not attached to those computers that host the device handler's 

backup replicates. In certain situations some of the computers will be 

on-board computers, that is, they will be an integral part of the devices 

they control.

If the computers were not homogeneous, messages and secure point 

data originating from one computer would have to be translated before they 

could be used by another type of computer. This would necessitate the use 

of an intermediate format for data being sent between computers, as is the 

case for parameter and message passing in DLCN (Liu and Reames 1977). 

Furthermore, "the clarity that homogeneity provides in allowing one to see 

a single research problem at a time is very appealing" (Saltzer 1978, page 

49).

The computers are physically dispersed in order to reduce the 

chances of multiple computer crashes. The distances involved would depend 

on the perceived threats to the system. Even in a civilian application 

some level of dispersal would be desirable as a protection against such 

events as fires and floods.

Were the network to be broken then, depending on the network's 

type, the control system would by partitioned into two or more isolated 

groups of computers. Each group would consider themselves to be the only 

surviving computers and backup replicates would be activated in order to 

recover from the loss of those computers not in the partition. 

Partitioning leads to a number of problems:

a) some partitions would be too small to support the full control system;
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b) the separate partitions, whether complete or not, would compete with 

each other to fulfil the overall task;

c) when the network is repaired it would be necessary to close down the 

control system and reinitialise it in order to remove duplicate copies 

of processes.

Tandem (Katzman 1978) avoids this problem by having a duplicated 

network and by only guaranteeing the system to tolerate a single hardware 

failure, and so by definition Tandem need not be concerned with

partitioning. The network used in ADNET incorporates three or more 

redundant highways (Tillman et al. 1981) connected to the computers by 

spurs, and it is believed that in practice ADNET cannot be broken even in 

the hostile environment of a warship in action (Lakin 1982).

To avoid partitioning in PROSUR it is assumed that the network 

incorporates a high level of redundancy, and we amend our claims for 

process survivability to include the proviso that PROSUR will survive the 

failure of n computers (where n is the level of process redundancy) or the 

exhaustion of the network's redundancy.

In a commercial environment where the threat of physical damage is 

lower a network such as Planet (Gee 1983) which is basically a duplicated 

Cambridge Ring would provide sufficient redundancy. Interestingly, a 

military version of Planet has recently been developed for use on warships 

(Computing 1983) and it is probable that the level of redundancy in this 

version is even higher.
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6.5 PROSPR's shortcomings

PROSUR has been deliberately kept simple so as not to hinder or 

divert the development of process survivability. This simplification means 

that PROSUR is not a 100< practical distributed computer control system, 

but it does form a good basis for one. In this sub-section we outline 

those facilities that have been removed in the cause of simplicity.

There are two major omissions from the programming language 

PROSUR's P/L. Firstly, in Chapter 2 we explained the need for a process to 

be able to wait for a message from any one of a group of channels, but in 

PROSUR's P/L this can only be accomplished by the unsatisfactory use of a 

busy loop incorporating a lot of PENDING calls. The second amission is the 

group of commands that enable a process to suspend itself for a period of 

time or until a specific time.

PROSUR only supports 1-to-1 linking of input channels to output 

channels. A practical system would also support many-to-1 and 1-to-many 

linkages.

PROSUR is a static system. In order to alter the application level 

it is necessary to re-create the system. Although there are process 

control applications where this would be acceptable, the majority of 

applications require a dynamic system so that the application level can be 

altered without having to turn off the control system.

Shortcomings in process survivability itself are discussed in the 

concluding chapter.
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6.6 Summary

In this chapter we have outlined the organisation of the four 

levels of PROSUR, and we have described in general terms the way in which 

process redmdancy is implemented. In the following two chapters we 

describe the inconsistencies that arise after a crash (these are similar to 

those already described in Chapter 4) and how they can be removed. Then in 

Chapter 9 we present the implementational details of the distributed kernel 

level and of the process survivability level in order to describe how 

process survivability can be implemented in PROSUR.
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7. The Inconsistencies That Can Arise After A Craah

7.0 Introduction

In this chapter and in subsequent chapters, application processes 

are simply referred to as processes. Where this might lead to confusion 

with executive processes they are given their full title.

A process's state is defined by the values contained in its primary 

replicate's data segment and volatile environment. A process's state 

records its past actions in that the value of its state is the result of 

those past actions. When a process's primary replicate performs a secure 

point its backup replicates are updated so that their data segments and 

volatile environment are exact copies of those of the primary replicate.

Each channel links two processes together: the sender and the 

receiver. A channel is created at system initialisation time by linking 

together an output channel in the sender and an input channel in the 

receiver. Those outstanding messages that have been sent but which have 

not yet been received from a channel are buffered within the input channel 

half of that channel. A channel's state is defined by the messages 

currently buffered within its input channel half.

The controlled environment, which is the real world outside the I/O 

devices, also has a state. It is sufficient for our purposes to define the 

value of the environment's state as being solely the result of the control 

system's past actions.

The sequence of instructions that are executed by a process's 

primary replicate between two consecutive secure points is called a 'task . 

The task that was being executed by a process's primary replicate trtien its 

host computer crashed is, for descriptive purposes, referred to as the 

process's 'interrupted-task'. (The primary replicate of course does not
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know when It is executing an interrupted-task.)

When a computer crashes all of the primary replicates that were 

running on it are lost. The process-set mechanism activates the senior 

backup replicates of these primary replicates in order to replace them. In 

the following descriptions we will refer to a process's primary replicate 

simply as the process, and refer to the process’s activated senior backup 

replicate as the restarted process.

When a process is restarted it will start to execute its code from 

the instruction immediately after the last secure point that has been 

completed prior to the crash, and its state will be the same as it was when 

that secure point was performed. The process loses all knowledge of the 

actions that it performed during its interrupted-task.

As was explained in Section 6.3 of the previous chapter, all of the 

outstanding messages in a channel are buffered within the channel's input 

channel half. When a process is restarted it has the necessary buffering 

for its input channels, but the pre-crash contents will have been lost.

CRASH

time

Channel

ABC

Secure point



Aa an example of the effects of a crash, Figure 7a above shows the 

execution of a process prior to a crash. It has established a secure point 

(represented by a horizontal '[' character) and its single input channel 

contains three outstanding messages (A, B and C).

After the crash, messages A, B and C will have been lost and the 

application process's state will have been reset to that which existed when 

the last secure point was established. The restarted process will start to 

execute its code from that secure point.

The resetting of processes' states and the loss of outstanding 

messages leads to a number of inconsistencies arising between the 

processes' states, the channels' states and the controlled environment's 

state.

If all of the commands executed by a process simply manipulate its 

own state then there will be no relationship between that process's state 

and the channels' states, the control environment's state, and the other 

processes' states. When such a process is restarted there can be no 

inconsi stenc ies.

Inconsistencies arise when a process uses those commands that 

either affect states other than its own, or return values that are based on 

states other than its own. In PROSOR's P/L these commands are SEND, 

RECEIVE, PENDING and DO 10.

This chapter describes the inconsistencies that can arise after a 

crash, and it explains the combinations of circumstances that cause each of 

them to arise.

The first section of this chapter describes the inconsistencies 

that arise when two processes are linked together by a single channel and 

the host of one or both of the processes crashes. The second section 

describes the inconsistencies that arise between the state of a devioe
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handler (with a single device) and the state of the controlled environment 

when the device handler's computer crashes.

A process may have several channels connecting It to several other 

different processes, and a device handler may control one or more devices 

as well as having several channels. In the final section of this chapter we 

describe the cumulative effects of the Inconsistencies that arise on every 

channel and every device.

7.1 Inconsistencies between two comnunlcatlng processes

7.1.0 Introduction

A channel connects a sender to a receiver. In a crash the sender 

may be restarted, or the receiver may be restarted and the channel contents 

lost, or both of these may occur. The following three sub-sections 

describe the inconsistencies that can arise in each of these three cases.

7.1.1 Sender restarted

The sender and receiver processes are on different computers, and 

the sender's host computer crashes, but the receiver's host does not. As a 

result of this:

a) The sender is restarted from its last successfully completed secure 

point, that is from the start of its interrupted-task. (If a secure 

point was being performed at the time of the crash then that secure 

point will be discarded and the previous one used.)

b) The receiver process is unaffected and it continues to execute its code

uninterrupted by the crash.



c) The channel Is also unaffected as Its outstanding messages are buffered 

within Its Input channel end which is stored on the receiver's computer 

and that computer did not crash. None of the outstanding messages in

that channel are lost.

Were the sender to have sent any messages during its interrupted- 

task then these messages will have survived the crash, either within the 

channel if they are still outstanding, or as part of the receiver's state 

if they have been RECEIVEd. (If a message was being sent at the time of 

the crash then any part of that message that had been received by the 

receiver's kernel will be discarded - messages are either received 

completely or not at all.) However, the sender has been reset to the state 

that it was in at the start of its interrupted-task (which is before those 

messages were sent), and that state does not record that these messages 

have been sent. With respect to the sender's current state those messages 

that were sent by its interrupted-task have not yet been sent, but they 

already exist.

CRASH

time

Secure point

Sender Receiver

Figure 7b
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An example Is shown above in Figure 7b of two processes at the time 

of a crash. Prior to the crash two messages (A and B) were sent by the 

sender during Its Interrupted-task. After the crash the sender will be 

restarted from Its last secure point and the two mess.ges will survive, 

which is an Inconsistency.

7.1.2 Receiver restarted and channel contents lost

The sender and the receiver are on different computers, and the 

receiver's host computer crashes but the sender's host does not. As a 

result of this:

a) The receiver Is restarted from its last successfully completed secure 

point, that Is at the start of Its interrupted-task.

b) Any outstanding messages within the channel will be lost as they were 

buffered within the channel's input channel end which was stored on the 

receiver's computer.

c) The sender is unaffected and it continues to execute its code 

uninterrupted by the crash.

Any message that was outstanding at the time of the crash, or which 

had been RECEIVEd during the receiver's interrupted-task, will be lost. 

The only messages to have survived the crash are those that were RECEIVEd 

prior to the receiver's last secure point. The sender's state however will 

record the sending of every message that it has sent, including those that 

were lost in the crash. With respect to the sender's current state those 

messages that it has sent and which were not RECEIVEd prior to the 

receiver's last secure point have been lost.
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A further inconsistency can arise from using the PENDING function. 

If prior to its last secure point the receiver detects the presence of a 

message using PENDING but does not RECEIVE the message until after the 

secure point, then after the crash the receiver's state will still record 

that message's presence but the message will have been lost.

An example is shown below in Figure 7c of two processes at the 

time of a crash: messages A and B were sent by the sender; A was detected 

prior to the receiver's last secure point and then RECEIVEd after the 

secure point. After the crash the sender's state records that A and B have 

been sent, and the receiver's state records the presence of message A, but 

both A and B are lost.

CRASH

SEND

time

SEND

Receiver Sender

Figure 7c
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7.1.3 Sender and receiver restarted, and channel contents lost

The sender and the receiver are on the same computer, and that 

computer crashes. As a result of this:

a) The sender is restarted from its last secure point.

b) Any outstanding messages within the channel are lost.

c) The receiver is restarted from its last secure point.

The sender’s state will only record the sending of those messages 

that it sent prior to its interrupted-task, and the only messages to 

survive are those that were RECEIVEd by the receiver prior to its last 

secure point. The resultant inconsistencies will be one of the two cases 

described in the previous two sub-sections depending on whether, with 

respect to the sender's and receiver's current states, more messages have 

been sent than have survived or whether more messages have survived than 

have been sent.

Inconsistencies may also arise from the use of PENDING. Firstly, 

if a message's presence was detected prior to the receiver's last secure 

point (but the message was not RECEIVEd) then after the crash the record of 

the message’s presence will survive but the message itself will have been 

lost. Secondly, were that message to have been sent after the sender's 

last secure point then no record of it being sent would survive the crash 

either. The receiver's state would record the presence of a non-existent 

message that has not been sent.

Any message that was sent after the sender's last secure point and 

which was neither received nor detected prior to the receiver's last secure 

point does not result in an inconsistency, as the message and all record of 

its sending have gone. (Message B in Figure 7d below is such a message.)
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In the first of the above two diagrams (Figures 7d and 7e) we 

Illustrate the situation that results In more messages being sent than 

survive, and In the second we Illustrate the situation that leads to more 

surviving than were sent. In both cases the Inconsistency arising from the 

use of PENDING occurs. In the first diagram, the loss of message B does 

not lead to any inconsistency as after the crash it has neither been sent 

nor has It survived.

7.1.4 Summary

When a receiver crashes, all of the outstanding messages and all of 

the messages that It has RECEIVEd during Its Interrupted-task are lost. If 

_ message Is lost but the record of its sending survives then It Is called 

a 'missing' message. It is the missing messages that cause the 

inconsistencies. Those messages that are lost but not missing do not cause 

inconsistencies. For example, in Figure 7d messages A and B are both lost 

but only A is missing.

When a sender crashes, it forgets that it has sent those messages 

that it sent during its interrupted-task. Of these messages, it is only 

those which survive the crash that cause inconsistencies, as they are 

messages that should not yet exist. These messages are called 'premature' 

messages. Those messages that are forgotten but not premature do not cause 

inconsistencies. For example, in Figure 7e messages A and B are forgotten, 

but only A is premature.
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7.2 Inconsistenclea between a device handler and the environment

When a device handler's computer crashes, the device handler will 

be restarted from its last successfully completed secure point. All 

knowledge of the actions performed by its interrupted-task is lost.

For our purposes the environment's state is determined by the past 

actions of the input/output devices and so xrtxen a computer crashes the 

environment's state is unaffected.

If the device handler had performed any DO10 commands during its 

interrupted-task then the environment's state will have been altered by 

them. However, as the device handler has been reset to a state that 

existed prior to the execution of these commands, its state will not record 

the performing of these commands. Also any results such as status and data 

values input by these DOIOs will have been lost.

CRASH

x • » Itime

secure point

device handler

Figure 7f

Figure 7f above illxistrates this problem. A device handler 

controls a light which it turns on during its interrupted-task. After the 

crash the light will still be on, but the device handler will have been



restarted from Its last secure point and its state will not record that the 

light has been turned on.

These inconsistencies are similar to those .hat arise when only a 

sender is restarted (see Section 7.1.1) as the results of the DOIO (turning 

the light on) have survived but with respect to the device handler's 

current state the DOIO has not yet been performed. At the same time it is 

also similar to the case where only the receiver is restarted (see Section 

7.1.2) as the value returned by the DOIO's status parameter has been lost.

The values output by DOIOs (or the actions they perform) during an 

interrupted-task are called premature output-data, and the values input by 

DOIOs during an interrupted-task are called missing input-data. A single 

DOIO may input and output at the same time.

7.3 Process-wide and system-wide inconsistencies

So far the inconsistencies that arise after a crash have been 

described on a per-channel and on a per-device basis. We now describe them 

on a per-process basis and then on a system-wide basis.

In general an application process will be linked by channels to a 

number of other application processes. Some of these channels will be 

declared within the application process to be input channels and the others 

will be declared to be output channels, and so an application process is 

both a sender and a receiver.

Figtre 7g shows an application process as the hub of a circle of 

other application processes with which it commiaiicates. The channels that 

connect the hub application process to its communicants are shown as lines. 

The lines are directed to indicate the direction of the message flow in the 

channels. (The communicants' other channels are omitted.)



Figure 7g

These application processes may be located on one or more 

computers. A computer crash may result in one or more of the processes 

being restarted, and in the loss of messages from those processes' input 

channels. Henceforth a process that was on a crashed computer will be 

described as being crashed itself, implying that it has been restarted, and 

that the contents of its input channels have been lost.

We will first look at the inconsistencies that arise when the hub 

application process does not crash but all or some of its communicants do.

The overall inconsistencies that arise are simply the concatenation 

of the Inconsistencies that occur relative to each channel. On every 

output channel where the receiver has crashed messages may be missing, and 

on the input channels where the sender has crashed there may be premature 

messages.

As an example Figure 7h below shows the hub application process H, 

communicating with two other application processes C1 and C2 prior to the 

crash of C1 and C2. After the crash message A will be premature and



messages B and C will be missing.

CRASH

RECEIVE

CRASH

SEND
A«------ A"

time

C1 C2

Figure 7h

If the hub application process crashed along with some of its 

commmicants then again the overall inconsistencies would be the

concatenation of the inconsistencies that arise on each channel. For 

example, if in Figure 7h process H alone crashed then message A would be 

missing, and messages B and C premature.

A device handler will have devices as well as channels. Again the 

overall inconsistencies that arise after a crash would be the concatenation 

of those arising on each channel along with those arising on each device.

The system-wide inconsistencies are simply the concatenation of the 

inconsistencies that arise with respect to each process.



7.i| Summary

In this chapter we have described the inconsistencies that may 

arise after a crash. One of the tasks of the process survivability level 

Is to remove these inconsistencies after a crash. In the following chapter 

we outline how the process survivability level achieves this, and then in 

Chapter 9 full details of its implementation are given.

In this chapter we have only discussed the inconsistencies that 

arise after a single computer crash. We leave the discussion of multiple 

computer crashes in til Chapter 9, as it is more sensible to discuss them 

after we have described how process survivability is implemented.



8. An Introduction to Consistency Restoration after a Crash

8.0 Introduction

Prior to a crash all of the processes will be in a consistent state 

- they will not be subject to any of the inconsistencies described in the 

previous chapter. After a crash a restarted process's state may be 

inconsistent due to:

1) Missing messages: those messages which, with respect to their senders' 

current states, have been sent to the restarted process but have been 

lost in the crash.

2) Premature messages: those messages that were sent by the restarted 

process's interrupted-task and which survived the crash.

3) A record of the presence of a message in an input channel (the result of 

a PENDING) survives the crash but the message trtiose presence is recorded 

is lost in the crash.

4) Missing input-data: the input-data that was input from the controlled 

environment by DOIOs executed during a device handler's interrupted-task 

and hence lost in the crash.

5) Premature output-data: the output-data contained in the controlled 

environment's state which was produced by DOIOs executed during a device 

handler's interrupted-task.

The restarted processes are recovered to consistent states by the 

process survivability level.

In this chapter we introduce the way in which the process 

survivability level performs process recovery, and we present arguments to 

show that this recovery achieves its alms. The implementations! details of
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process recovery are given in the second half of the next chapter.

As we shall explain in the first section of this chapter restarted 

processes are restored to a consistent state by the following:

1) The process survivability level causes the missing messages to be 

replaced by copies of the originals.

2) The PENDING related inconsistencies are prevented completely by 

implementing RECEIVE and PENDING so that detected messages are actually 

input as well.

3) Processes written in PROSUR's P/L are invariant: if a process, or part 

of a process, is repeated with the same input it will act in exactly the 

same way and produce exactly the same results every time. We shall argue 

that by restarting a process from its last secure point and by replacing 

any messages that are missing from that process's input channels, then 

that process will, by simply re-executing its interrupted-task, recover 

itself to a state that is consistent with any premature messages that it 

produced prior to the crash.

Unfortunately, time-dependencies in PROSUR's P/L prevent some of 

the inputs needed by a restarted process from being replaced in time. In 

order to ensure that these time-dependencies do not prevent correct 

recovery the process survivability level inserts a secure point prior to 

every SEND. Section 8.2 of this chapter describes these time-dependencies, 

explains how these can prevent a restarted process from recovering to a 

consistent state, and finally explains how, by Inserting a secure point 

prior to every SEND, correct recovery can be achieved despite the time- 

dependencies.
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The rest of the chapter is concerned with restoring consistency 

between device handlers and the controlled environment (which unfortunately 

cannot be achieved in'PROSUR), and with the way that secure points must be 

executed.

8.1 Restoring consistency in an application process

8.1.0 Introduction

This section describes how the process survivability level recovers 

an ordinary application process (not a device driver) to a consistent 

state. Such a process is susceptible to the first three of the 

inconsistencies itemised in the introduction to this chapter.

As soon as a process is restarted it begins to execute its code; it 

is not held up while recovery is performed. Recovery is performed in 

parallel to the continued running of both the restarted processes and the 

unaffected processes (that is those processes that were not on a crashed 

computer).

Figure 8a below shows three processes at the time of a crash. 

Process-1 is unaffected by the crash, but Process-2 and Process-3 are both 

restarted from their last secure points. Process-1's input channel is not 

affected by the crash and continues to hold message D. The contents of 

Process-2's input channels are lost. This example will be used to 

illustrate the following descriptions.

8.1.1 Replacing the missing messages

Every time a process successfully SENDs a message, a copy of that 

message is stored within the sender's data segment. After a crash copies 

of the missing messages are re-sent so as to replace the missing messages. 

By storing the copies within the sender's data segment it is ensured that 

they will survive any crash as they will be backed up along with the rest
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of the sender's data segment every time the sender performs a secure point.

Referring to Figure 8a, messages A and B are missing after the 

crash. (Message C is not classed as being missing as its sender has been 

restarted from a secure point prior to the SEND that produced message C.) 

Process-1 's data segment contains a copy of message A and so this can be 

re-sent. Process-3 sent message B prior to its last secure point and so 

the copy of message B will have been backed up along with the rest of 

Process-3's data segment by Process-3's last secure point, and so message B 

can be re-sent.

CRASH

.SEND

!

CRASH

RECEIVE

SEND

RECEIVE\

SEND

secure
point

b l

\ SEND

time

secure
point

Process-1 Process-2 Process-3

Figure 8a
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The way in which the processes are stimulated to re-send the 

missing messages, and how they determine which messages are missing, is 

described in Chapter 9, Section 9.3.

8.1.2 Preventing the PENDING related Inconsistencies

In Chapter 7, Section 7.1.2, we described an inconsistency that can 

arise from the use of the PENDING command. If prior to its last secure 

point a receiver detected the presence of a message using PENDING but did 

not RECEIVE that message, then when the process is restarted its state will 

record the message's presence but the message will be missing.

As such a message is a missing message it will be replaced by a 

copy. However, replacing messages is done in parallel to the restarted 

process's continued running. This means that if the restarted process 

tries to RECEIVE the detected message then the RECEIVE's timeout may expire 

before the message is replaced. This is itself an inconsistency as the 

process 'knows' that there is a message in its input channel and its 

RECEIVE should not fail.

This problem is completely removed by extending each input channel 

to include a single-message buffer which is stored as part of the 

receiver's data segment, and by implementing PENDING and RECEIVE in the 

following way:

a) PENDING (from : InputChannel) : Boolean

If both the input channel 'from' and its single-message buffer 

are empty then PENDING returns a value of false. If the buffer is empty 

and the input channel is not empty, then the first message in the input 

channel is placed into the buffer and PENDING returns a value of true. 

If the buffer is not empty then PENDING returns a value of true.
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b) RECEIVE (from : InputChannel, ... )

If there la a message in from'a buffer then that meaaage la 

Input and the buffer la emptied. If the buffer la already empty then a 

message la input In the normal way.

Aa the detected meaaage la stored in the receiver's data segment at 

the same time as its presence is assimilated it is Impossible for the 

record of a message's presence to survive a crash and not the message 

itself. This solution also removes the possibility of the PENDING related 

inconsistency described in Section 7.1.3 that arises when both the sender 

and the receiver of a channel crash.

Implementing PENDING and RECEIVE in this way is an example of the 

use of fault avoidance.

When a receiver crashes, any messages that were detected by 

PENDINGs prior to the receiver's last secure point will survive the crash 

even if the messages were not subsequently RECEIVEd prior to the receiver's 

last secure point. This must be taken into consideration when calculating 

which messages are missing and which are premature. We return to this again 

in Chapter 9, Section 9.3«

8.1.3 Premature messages

The restarted processes must be recovered so that their states are 

consistent with any premature messages. In our example, Process-2 and 

Process-3 must be restored to states that are consistent with the presence 

of message D.

Processes written in PROSUR's P/L are invariant. This means that 

if a process, or part of a process, is re-executed with the same input 

(data segment, volatile environment and messages) it will act in exactly 

the same way and will produce exactly the same results every time.
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By ensuring that when a process is restarted It initially has the 

same data segment and volatile environment as it had at the start of its 

interrupted-task, and by ensuring that the restarted process RECEIVES the 

same messages as it did during its interrupted-task, we guarantee that:

a) The restarted process will repeat those SENDs which, when executed 

during its interrupted-task, produced the premature messages. (In our 

example, this is Process-2's only SEND.)

b) Not only are those SENDs repeated, but they also produce exactly the 

same messages as they did when executed prior to the crash.

Hence a restarted process's state becomes consistent with both the presence 

of the premature messages and with the contents of those messages, and the 

existence of the premature messages is no longer an inconsistency.

Those instructions that form the interrupted-task are called the 

restarted-task when re-executed after a crash. By ensuring that a 

restarted process has the same input as its interrupted-task, we guarantee 

that the process's restarted-task will be executed, and that the restarted 

process will act in exactly the same way and produce exactly the same 

output as it did during its interrupted-task.

Executing the restarted-task includes re-executing all of the SENDs 

that were performed during the interrupted-task. If the result of such a 

SEND has survived the crash then the repeated SEND is called a late-SEND, 

but if the resultant message did not survive the crash then the repeated 

SEND is called a normal-SEND. In our example Process-3's second SEND is a 

normal-SEND as message C did not survive the crash, and Process-2's SEND is 

a late-SEND because message D did survive the crash.



If executed normally the late-SENDa would result in the premature 

messages being duplicated, which would introduce further inconsistencies. 

To avoid this the late-SENDs are 'gagged'. When a SEND is gagged, the 

message is not actually sent but the SEND's status parameter is set to 

•succeeded’. Hence after a late-SEND the message exists (it survived the 

crash) and the sender 'knows' that the message exists (because the late- 

SEND returned a status of succeeded), and so the process's state is 

consistent with that premature message. By repeating and gagging all of 

its late-SENDs a restarted process is restored to a consistent state.

The normal-SENDs are executed normally. A description of how 

normal-SENDs and late-SENDs are distinguished is given in Chapter 9.

He now return to the example shown in Figure 8a. On restarting, 

Process-3 is consistent with its surviving messages as all of them were 

sent prior to its interrupted-task (the only message sent during its 

interrupted-task did not survive the crash). By ensuring that Process-2 

RECEIVES the same two messages (A and B) as its interrupted-task, it is 

gmranteed that Proeess-2 will repeat the SEND that originally produced 

message D. This late-SEND will be gagged so as to prevent D being 

duplicated. Process-2 will now be in a consistent state.

If a restarted process is to execute its restarted-task then its 

volatile environment and data segment must initially have the same value as 

they did at the start of the process's interrupted-task, and the restarted 

process must RECEIVE the same messages as it did during its interrupted- 

task. The implementation of the process-set ensures that the first of 

these requirements is met.

The messages that were RECEIVEd during a restarted process's 

interrupted-task will consist of:
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a) Messages that were sent by unaffected processes (for example, message A 

In Figure 8a), and messages that were sent by restarted processes prior 

to their Interrupted-task (for example, message B In Figure 8a).

b) Messages that were sent by restarted processes during their 

Interrupted-tasks (for example, message C in Figure 8a).

The first group of messages, described In (a), is a sub-group of 

the missing messages. After a process is restarted all of its missing 

messages are replaced by copies of the originals. If during its 

interrupted-task a process RECEIVES a message that will be missing after 

the crash (for example, both of Proeess-2's RECEIVES in Figure 8a) then 

when that RECEIVE is repeated as part of the process's restarted-task it 

will input a copy of the message that it originally input. Hence, if a 

process's interrupted-task only RECEIVEd messages from group (a) (or if it 

did not RECEIVE any messages at all), then on restarting the process would 

execute its restarted-task and produce exactly the same messages as its 

interrupted-task. For example, in Figure 8a both Process-2 and Process-3 

will act in exactly the same way as they did prior to the crash, as 

Process-3 does not input any messages at all, and Process-2 inputs two 

missing messages.

We come now to the second type of message that can be input during 

an interrupted-task: those messages that are sent to it by other restarted 

processes during their interrupted-tasks. If repeated RECEIVES, that 

originally input a message from this group, can be shown to input the same 

message after a crash as before, then we will have shown that a restarted 

process will have exactly the same input as it did during its interrupted- 

task, and so will act in exactly the same way as it did during its 

interrupted-task. To show this, we present the following algorithmic 

argument (a worked example is given in Section 8.1.4) to show that the 

messages produoed by a process's restarted-task are the same as those
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produced by ita Interrupted-task.

1) As has been explained before, if a restarted process has only RECEIVEd 

replaced messages, or if it has not RECEIVEd any messages at all, then 

when it repeats a SEND that SEND will produce exactly the same message 

as when it was executed by the interrupted-task.

2) On restarting, each restarted process will execute until either it waits 

to RECEIVE a message that will be (or has been) sent by another 

restarted process, or until it reaches the end of its restarted-task. 

By (1) above, any SEND executed by these restarted processes prior to 

this will produce exactly the same message as it did when executed prior 

to the crash.

3) If a restarted process has finished its restarted-task then, by our 

previous arguments, the messages that it has produced will be the same 

as those it sent during its interrupted-task.

U) of those application processes that issued a RECEIVE, one or more of 

them will RECEIVE a message ft’om one of the other restarted processes.

One of these RECEIVES must be satisfied unless the processes are 

dead-locked. Inserting secure points does not cause dead-locking, and 

so if the restarted processes are dead-locked it is because they were 

dead-locked prior to the crash and so they have been recovered.

5) The processes whose RECEIVES were satisfied will continue to execute 

their code uitll they again either reach the end of their restarted- 

tasks or they wait to RECEIVE a message that will be sent by another 

restarted process. Any SEND re-executed by a restarted process since 

its previous RECEIVE will have produoed the same message as it did 

during the interrupted-task as the restarted process's input has 

consisted of replaced messages and messages sent by other restarted 

processes which so far have been shown to be the same.



6) Continue from step 3 until all of the restarted processes have completed 

their restarted-tasks.

Hence every SEND performed by a process's restarted-task will 

produce the same message as it did when it was first executed during the 

process's interrupted-task. The late-SENDs will be gagged, and the 

normal-SENDs will be executed normally.

To summarise, in this sub-section we have shown that by restarting 

a process from its last secure point and by replacing the messages that are 

missing from its input channels, the restarted process will recover to a 

state that is consistent with its premature messages.

8.1.4 Summary and example

The way that PENDING and RECEIVE are implemented prevents the 

PENDING-related inconsistencies from ever arising.

Every time ta application process SENDs a message the process 

survivability level stores a copy of that message in the sender's data 

segment. These copies are used to replace those messages that are missing 

after a crash.

After a crash the process survivability level replaces the missing 

messages by sending copies of the originals. The restarted processes, 

being invariant, will recover themselves to states that are consistent with 

their premature messages. Any late-SENDs are gagged by the process 

survivability level in order to prevent further inconsistencies from 

arising.

We now present a worked example of how consistency is restored 

after a crash. Figure 8b shows three processes at the time of a crash. 

Process-1 is «»affected by the crash and its channel will continue to hold 

message D. Process-2 and Prooess-3 are both restarted from their last
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6 ) Continue from step 3 until all of the restarted processes have completed 

their restarted-tasks.

Hence every SEND performed by a process’s restarted-task will 

produce the same message as it did when it was first executed during the 

process's interrupted-task. The late-SENDs will be gagged, and the 

normal-SENDs will be executed normally.

To summarise, in this sub-section we have shown that by restarting 

a process from its last secure point and by replacing the messages that are 

missing from its input channels, the restarted process will recover to a 

state that is consistent with its premature messages.

8.1.4 Sunn ary and example

The way that PENDING and RECEIVE are implemented prevents the 

PENDING-related inconsistencies from ever arising.

Every time an application process SENDs a message the process 

survivability level stores a copy of that message in the sender's data 

segment. These copies are used to replace those messages that are missing 

after a crash.

After a crash the process survivability level replaces the missing 

messages by sending copies of the originals. The restarted processes, 

being invariant, will recover themselves to states that are consistent with 

their premature messages. Any late-SENDs are gagged by the process 

survivability level in order to prevent further inconsistencies from 

arising.

We now present a worked example of how consistency is restored 

after a crash. Figure 8b shows three processes at the time of a crash. 

Process-1 is waffected by the crash and its channel will continue to hold 

message D. Process-2 and Prooess-3 are both restarted from their last

138



secure points and messages A, C and B will be lost from their input 

channels. Message D is a premature message.

CRASH CRASH

Process-1 Process-2 Process-3

Figure 8b

Recovery would proceed in the following ways

1) A and B are missing messages and so will be replaced. We will 

distinguish between those messages that exist before and after the crash 

by appending suffixes of i and r respectively.

We can state that AixAr and Bi=Br, as they are copies of each other.
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2) Process-1 continues to run normally.

3) Process-2 RECEIVES the replaced message Ar. Proeess-2 then executes 

another RECEIVE, and as that input channel is empty it waits for 

Process-3's restarted-task to SEND a message.

4) Process-3 RECEIVES the replaced message Br, and then SENDs the message 

Cr to Process-2. Process-3 then completes its restarted-task.

Process-3’s input consists of the message Br, and as Br=Bi - from (1) 

above - we can state that Cr=Ci.

5) Process-2’s RECEIVE will terminate successfully, and Cr will be input. 

Process-2 will then perform the late-SEND which is gagged.

Process-2’s input consists of messages Ar and Cr. From (1) we know that 

ArsAi, and from (4) we know that Cr=Ci, and so Dr=Di, which is what we 

need for Process-2 to become consistent with its premature message Di.

6) All of the restarted application processes have finished their, 

restarted-tasks and they are all consistent again.

8.2 Time-dependent functions and secure point Insertion

8.2.0 Introduction

Figure 8c shows two processes at the time of a crash. During its 

interrupted-task Process-1 had detected the presence of message A and 

because of that it has sent message B to Process-2. Due to the crash 

Process-1 is restarted from its last secure point and the contents of its 

single input channel are lost. Process-2 is unaffected. After the crash 

message A is missing and message B is premature.
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Message A will be replaced by the process survivability level which 

will cause the message to be re-sent. However the message may not have 

arrived by the time the PENDING is re-executed. If it has not arrived, 

then the PENDING will return a value of false and Process-1 will not re- 

execute its SEND. Because the PENDING returned a different value Process-1 

has not recovered itself to a consistent state as message B exists but 

Process-1 does not know that it has sent it.

CRASH

Process-1 Process-2

l
time

Figure 8c

PENDING is an example of a time-dependent function. A time- 

dependent function is a function or a procedure that when repeated by a 

restarted process may return a different value to the one that was returned 

when the command was executed during the restarted process's interrupted- 

task.
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Restoring a restarted process to a state that Is consistent with 

Its premature messages relies on the restarted process getting the same 

Input as its Interrupted-task. Time-dependent functions input values that 

cannot be guaranteed to be the same when that command is re-executed after 

a crash.

There are a number of time-dependent functions in PROSUR's P/L. 

The rest of Section 8.2 identifies these commands and describes the secure 

point insertion strategy employed by the process survivability level in 

order to ensure that consistency is restored despite the existence of these 

time-dependent functions.

8.2.1 Time-dependent functions

There are four time-dependent functions in PROSUR's P/L. Three of 

these are the interprocess commtnication commands (SEND, RECEIVE and 

PENDING) and the fourth is DOIO.

a) SEND (OutputChannel, message, status, timeout)

The success or failure of a SEND depends on the length of the 

timeout period specified, and on how busy the network is and on how 

quickly the receiver is removing the messages. The network's and the 

receiver's activity before and after the crash will most likely be 

different, and so the value returned by the status parameter of a SEND 

that is repeated by a restarted process is likely to be different to the 

value that was returned when the SEND was executed during the process's 

interrupted-task.

b) RECEIVE (InputChannel, message, status, timeout)

The success or failure of a RECEIVE, and hence the value 

returned by its status parameter, depends on whether a message arrives 

within the timeout period or not. The message input by a repeated 

RECEIVE will either have been replaced by the process survivability
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level, or have been re-sent by another restarted process. Even if a 

RECEIVE succeeded when executed prior to the crash, it is possible that 

when the RECEIVE is repeated the replaced or re-sent message will not 

arrive in time and the RECEIVE will fail. (The repeated message may 

never arrive as the SEND's timeout might expire.) Alternatively, if the 

RECEIVE first failed it may succeed when repeated.

c) PENDING (InputChannel) : Boolean

We have already shown that PENDING is a time-dependent function. 

The fact that PENDING actually inputs the message that it detects has no 

bearing on this problem.

d) DO10 (device, operation, data, status, arguments)

All DOIOs, no matter what the operation, result in some value 

being input either by the data or the status parameter. Devices are 

only connected to a single computer, and so a repeated D0I0 will always 

fail. Assuming that the device had been working prior to the crash then 

this failure will be a different result to that obtained prior to the 

crash, and so DOIO is a time-dependent function.

Time-dependent functions may return the same value v*>en repeated 

but it is not possible to rely on this, and so they must be treated as 

though they will always return a different result when repeated.

8.2.2 The secure point insertion strategy

Under certain circumstances it is possible for consistency to be 

restored despite the presence of time-dependent functions in the restarted 

process’s interrupted-task. The following example illustrates these 

circumstances.
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Figure 8d shows two processes at the time of a crash. Process-1 is 

restarted. Process-2 Is unaffected and message A survives the crash. On 

restarting Process-1 must become consistent with its premature message A.

CRASH

secure point

time

Process-1 Process-2

Figure 8d

Process-1 ’s interrupted-task contained two time-dependent 

functions: PENDING and the SEND itself. Fortunately, the decision to 

perform the SEND and the composition of the message are determined before 

the time-dependent values of the SEND and the PENDING are available. No 

matter what value PENDING returns or vAiat status the SEND returns, that 

SEND will be re-executed and the same message will be sent. As the SEND is 

a late-SEND it will be gagged. Process-1 will have recovered itself to a 

consistent state.

This example shows that as long as consistency has been restored 

prior to the re-execution of any time-dependent functions then a restarted 

process will recover itself to a consistent state despite the presence of 

time-dependent functions in its interrupted-task.
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The process survivability level ensures that this is always the 

case by executing a secure point prior to the execution of the SEND that 

follows one or more time-dependent functions. As SENDS are themselves 

time-dependent functions, every SEND is preceded by a secure point and so a 

task can only contain a single SEND, and that SEND will be at the start of 

the task.

The secure point insertion strategy ensures that a restarted 

process will become consistent, but the presence of the time-dependent 

functions in the interrupted-task prevents the interrupted-task being 

completely re-executed. This does not matter, but it is necessary to 

redefine a restarted process’s restarted-task to be those instructions of 

the interrupted-task that must be repeated in order for the process to 

become consistent. As tasks can have only one SEND in them and as that 

SEND is always the first instruction, a restarted-task will either consist 

of a single SEND or be empty.

8.2.3 Summary

Despite the replacement of missing messages it is not possible to 

guarantee that a restarted process will input the same values as did its 

interrupted-task. In order to ensure that consistency can still be 

restored, the process survivability level inserts a secure point before 

every SEND.

Performing a secure point every time a SEND is executed is a heavy 

overhead. A way of reducing this overhead by reducing the number of secure 

points that are performed is described in the next chapter.

As all tasks begin with a SEND, RECEIVES will never be executed 

prior to consistency being restored and so all of our arguments presented 

in the later half of Section 8.1.3 appear to be unnecessary. However, in 

Chapter 9 we present a way of reducing the heavy secure point insertion
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load by allowing a task to contain several SENDS. This optimisation also 

prevents a certain type of RECEIVE counting as a time-dependent function, 

and so these RECEIVES may be re-executed prior to consistency being 

recovered and so our earlier arguments are not wasted.

8.3 Restoring consistency In a device handler

A device handler is treated by the process survivability level In 

exactly the same way as any other application process: a secure point is 

executed prior to every SEND, and when It Is restarted its missing messages 

are replaced and its late-SENDs are gagged.

A device handler also has to be made consistent with the controlled 

environment's state. This requires that any input-data input by the device 

handler's interrupted-task be made available again so that it can be re­

input, and that the DOIOs that produced the premature output-data be 

repeated and gagged. Unfortunately neither of these are possible.

Devices in PROSUR are only connected to single computer, and so it 

is impossible for a restarted device handler to control its device as its 

new host computer will not be connected to that device. When a restarted 

device handler repeats a DOIO, that DOIO always fails. Missing input-data 

cannot be re-input, and it is impossible to know which DOIOs to gag, and so 

it is impossible for a restarted device handler to become consistent with 

the controlled environment.

Furthermore it is not possible for a device handler to advise the 

rest of the control system of its device's current state as the device 

handler does not know what happened during its interrupted-task. The 

device handler only knows the state that its device was in at the time of 

the device handler's last secure point.
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None of these problems can be removed by the process survivability 

level. Instead it is left to the application level to cope with them.

All of these problems could be removed by extending process 

survivability and PROSUR in the following ways:

1) Multi-homing the devices so that all of the host computers of a device 

handler’s replicates are connected to its device. This ensures that a 

restarted device handler would still be able to control its device.

2) Enabling primary and backup replicates to exchange roles. Then if a 

primary replicate is unable to control its device because the computer- 

device link that it is using has failed, then one of its backup 

replicates would be activated to replace it, thereby maintaining control 

of the device.

3) Implementing the devices so that they can recognise repeated commands; 

if they receive a repeated command, the devices return the response that 

they returned when the command was first issued and do not execute the 

command. Then when a backup replicate repeats a DOIO, the DOIO would 

return the same data and status values as it did when it was executed 

prior to the crash.

A device handler's service would still be vulnerable to the failure 

of the device itself. The only way to remove this vulnerability is to 

duplicate both the device and its handler. The way in which these 

duplicates could be integrated into the control system was discussed 

earlier in Chapter 6, Section 6.2.
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8.U Time-dependent functions and secure point establishment

The presence of time-dependent functions In PHOSUR's P/L dictates 

two restrictions on the way that secure points are executed.

Figire 8e shows two processes at the time of a crash. Prior to the 

crash, Process-1 sent message A to Process-2, and then it detected a 

message In its input channel and because of that it sent a second message 

(B) to Process-2. This set of actions could be the result of executing:

SEND (out, A, ... ),

If PENDING (in) Then SEND (out, B, ... );

Both SENDs were preceded by secure points (SP1 and SP2).

CRASH

t

S P 1 ----

Process-1 Process-2

Figure 8e

After the crash Process-1 will be restarted from its last secure 

point (SP2) and its input channel will be empty. Process-2 is unaffected 

by the crash, and messages A and B will remain in its input channel. 

Process-1's missing message (C) is replaoed and Process-1 repeats its last
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SEND (which is gagged) and becomes consistent again.

However, were for some reason Process-1 to be restarted from the 

older of the two secure points (SP1) instead of from SP2, then it would be 

necessary for message C to be replaced and Process-1's two SENDS to be 

repeated and gagged. Unfortunately it is possible that this would not 

happen and Process-1 would not become consistent. For example, when 

Process-1 repeats the PENDING it might, for the reasons described in 

Section 8.2.1, return 'false' this time, and so the second SEND would not 

be repeated and Process-1 would not become consistent.

A description of how a secure point is established was given in 

Chapter 6, Section 6.2. Briefly, when a primary replicate executes a 

secure point, secure point data is gathered and sent by the primary 

replicate's host kernel to the kernels that host its backup replicates. 

The secure point data is then used to update the backup replicate's data 

segment and volatile environment.

The situation illustrated above could only arise if the last secure 

point had not been successfully established at the time of the crash, thus 

forcing the process to restart from the older, out of date, secure point. 

In order to prevent this from ever happening it is necessary that:

1) The primary replicate be suspended until the secure point data has been 

delivered to each of its backup replicate's host kernels. It is not 

necessary to delay the primary replicate until the secure point data has 

been merged with all of its backup replicates, but as a consequence of 

this a backup replicate must not be activated until all outstanding 

secure point data has been merged with its data segment and volatile 

environment.
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2) Secure point establishment must be atomic with respect to the crashing 

of the primary replicate that instigated the secure point. The secure 

point data must either be merged with all of the backup replicates or 

with none of them. In the latter case, the application process will be 

restarted from its previous secure point, but the problem Illustrated 

earlier will not arise as the primary replicate had not started the next 

task.

The two-stage protocol used to ensure that secure points are atomic 

is described in detail in the first half of the next chapter.

8.5 Summary

The inconsistencies that can arise due to the use of PENDING have 

been removed. PENDING inputs the message that it detects and stores it in 

the receiver's data segment from where it can be later RECEIVEd. If the 

record of a message's presence survives a crash so does the message.

Process recovery is supported by two actions during normal running. 

Firstly, every time a message is successfully sent a copy of that message 

is stored within the sender’s data segment. Secondly, a secure point is 

executed prior to every SEND - this is because of the presence of the 

time-dependent commands (SEND, RECEIVE, PENDING and DOIO) in PROSUR's P/L.

A restarted process may have messages missing from a number of its 

input channels, and a single premature message may be present in one of its 

output channels or within the data segment of one of its receivers. The 

missing messages are replaced by copies of the originals. The SEND that 

produced the premature message during the process's interrupted-task is 

repeated and gagged.
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Process survivability cannot restore a device handler to a state 

that is consistent with the results of the DOIOs performed during the 

device handler's interrupted-task. Furthermore, a device handler cannot 

report to the rest of the control system on the results of those DOIOs, or 

even advise the rest of the control system as to whether It performed those 

DOIOs or not. A way of removing both problems was presented.

The presence of time-dependent functions in PROSUR's P/L has the 

following implications for secure point creation:

a) The primary replicate is held up until the secure point data has been 

delivered to the backup replicates' host kernels.

b) Sending the secure point data to the backup replicates must be an 

atomic action despite the crashing of the primary replicate.
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9. Implementing Propesa Survivability In PROS UR

9.0 Introduction

This chapter describes how the process-set organisation is

implemented by the distributed kernel level, and how process recovery is 

implemented by the process survivability level. Process survivability's 

ability to provide recovery despite multiple computer crashes is also 

discussed.

Process survivability relies on the hardware level and the 

distributed kernel level exhibiting certain characteristics. The first 

section of this chapter recalls these characteristics.

The presence of time—dependent functions in PROSUR's P/L has 

resulted in a secure point being performed prior to every SEND. This 

appears to be a heavy overhead, and Section 9.5 describes a way in which 

the number of secure points can be reduced.

9.1 Hardware and distributed kernel level characteristics

In Chapter 6 we described, and rationalised, a number of

characteristics that it is necessary for the hardware level and distributed 

kernel level to exhibit if process survivability is to be feasible. In 

this section we briefly recall these characteristics.

1) The network that links the computers together cannot be broken.

2) The computers are homogeneous.

B) The individual kernels are designed so that the loss of one or more 

kernels will not prevent the other kernels from operating normally.
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it) The Inter-computer communication mechanism provided by the kernels is 

very reliable. This mechanism is used to transmit secure point data as 

well as application-level messages.

5) The mapping from local pipe name to physical address of the recipient 

input channel is done by the sender's kernel when the message is sent.

6) Any partly sent or partly received message is discarded if the sender or 

receiver kernel crashes.

9.2 Process set implementation

9.2.1 Normal running

A backup replicate, like a primary replicate, has a process 

descriptor, an allocation of pages in which its code and data segments are 

stored, and has sufficient buffering for its input channels. In fact a 

backup replicate is managed in exactly the same way as a primary replicate, 

except that its status is 'unrunnable' and all of its pages are stored on 

the backing store.

All program addresses consist of a page number and a word-offset 

number pair. The primary and backup replicates' page tables define the 

mapping from page number to physical location and so it does not matter 

that the code and data segments of a primary replicate, and the code and 

data segments of its backup replicates, are stored in different physical 

locations.

A primary replicate performs a secure point by executing the kernel 

procedure ' ksecurepoint •. The secure point is executed by the primary 

replicate's host kernel which collects and sends the secure point data to 

the backup replicates' host kernels. Secure point data consists of:
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a) a copy of the primary replicate’s volatile environment;

b) the numbers of those of the primary replicate's pages which have been 

written to since the last secure point;

c) a copy of those pages.

Once the primary replicate has called ksecurepoint it is suspended 

until the secure point is completed, and so an up to date copy of its 

volatile environment will be contained in its process descriptor. The 

primary replicate program counter (part of its volatile environment) will 

index the instruction following the ksecurepoint and so a restarted backup 

replicate will be restarted from after the secure point.

When the space occupied by a page in main memory is to be reclaimed 

for further use, that page must first be copied onto the backing store. If 

that page has not been altered since it was copied into main memory, then 

there is no need to do this. To detect this situation page tables often 

Include a boolean variable for each page, which is set to false when the 

page is copied into main memory, and is set to true when the page is 

written to. By extending the page table to include a similar boolean 

variable that is set to false for all pages when a secure point is 

performed and then set to true when a particular page is written to, it can 

be determined which pages have been written to since the last secure point.

As an alternative, tagged memory (Feustel 1973) could be used so 

that the secure point data would consist of those words that have been 

updated since the last secure point. In a similar vein Kant (1983) 

proposed that tagged memory could be used as an efficient way of supporting 

recovery blocks.
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A backup replicate'a code Is stored in its pages at system 

initialisation time. There is no need for a kernel to distinguish between 

those pages that contain a primary replicate's code and those that contain 

its data, as the code pages are never written to and so will never be 

included in secure point data.

Once the primary replicate's host kernel has ascertained which 

pages have been altered, it can assemble and send the secure point data. 

The secure point data will be too large to be transmitted as a single 

block, and so it is transmitted as a sequence of smaller blocks: the 

volatile environment and the numbers of the altered pages are sent first, 

followed, one at a time, by the altered pages themselves which are first 

copied from where they are stored in either main memory or secondary 

memory.

For the reasons described in Section 8.U establishing a secure 

point is atomic despite the crashing of the primary replicate's host 

computer: the secure point must either be completed by the senior backup 

replicate's host kernel or it must be aborted so that in effect it has 

never been executed. To achieve this the following two-stage protocol 

incorporating recovery is employed. (This protocol is presented as a 

finite state table in Figure 9a below.)

In order to simplify the following description, the primary 

replicate's host kernel will be called the primary-kernel, and the senior 

backup replicate's host kernel and the junior backup replicates' host 

kernels will be called the senior-kernel and the junior-kernels 

respectively. The senior-kernel and the junior-kernels are collectively 

called the backup-kernels.
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event

state ^

receive
secure point data

receive
commit

crash 
(senior- 
kernel only)

1s waiting for 
secure point 
data

store the secure 
point data, 
state :s2

ignore it send commits 
to other backup 
-kernels. 
FINISHED

2: waiting for 
a commit

discard previous 
secure point data

merge the stored 
secure point data, 
state:*1

discard stored 
secure point 
data.
ABORT

Figure 9a

The primary-kernel sends the secure point data, In a secure point 

message, to each of the backup-kernels In turn. The backup-kernels are 

ordered by the order In which the backup replicates are designated to be 

activated, and the secure point message Is sent to them In that order. 

Having done that the primary-kernel sends a commit message to each of the 

backup-kernels, again In the same order.

A secure point may have to be aborted, and so a backup-kernel does 

not use the secure point data to update the backup replicate until it 

receives a commit message. Each kernel has a list of the free pages on its 

local backing store. As a backup-kernel receives pages they are written to 

a free page, but the backup replicate's page table is not altered. Once 

the commit message is received the backup replicate's volatile environment 

and page table are updated and the superceded pages are freed.

If a computer crashes while a secure point message or a commit 

message is being sent to it, the primary-kernel aborts the transmission to 

that computer. The crashed computer will not be included in any further

secure point.



The above is the two-stage protocol. The following is the recovery

that is performed by the senior-kernel when the primary-kernel crashes. 

Before activating the senior backup replicate the current secure point must 

be completed or aborted in order to establish the same recovery point in 

every replicate.

First the senior-kernel discards any partially received commit 

message or secure point message, and then any outstanding messages are 

processed as normal. Once this has been done the senior-kernel completes 

the secure point.

Due to the secure point and the commit messages being sent to the 

backup-kernels in order, the senior-kernel may have received a secure point 

message which the Junior-kernels have not, or it may have received a commit 

message that the others have not. Figure 9b above illustrates the former 

case: a secure point message (SPM) had been sent to the senior-kernel and 

to one other backup-kernel prior to the crash. Figure 9c below illustrates 

the latter case: a secure point message (SPM) has been sent to all of the 

backup-kernels, but the commit message (04) has only been sent to the 

senior-kernel and one Junior-kernel.

senior-kernel

SPM

primary-kernel - junior-kernels

Figure 9b
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senior-kernel

Figure 9c

If the senior-kernel has received a secure point message but not a 

commit, it cannot assume that the junior-kernels have all received the 

secure point message# The senior-kernel will discard the secure point 

data: the secure point has been aborted. The senior backup replicate is 

restarted from the previous secure point. Some of the Junior-kernels may 

have received the secure point message, but they will discard it when they 

receive the next secure point message to be sent to them.

If the senior-kernel has received a commit it knows that the 

Junior-kernels must have received the last secure point message, but it 

does not know whether they received a commit message, and so it sends a 

commit to each of the junior-kernels. This completes the secure point. 

The senior backup replicate is then activated. Some of the junior-kernels 

may have already received the commit message and they will discard the 

repeated one.
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If the primary-kernel were to be lost between secure points, the 

senior-kernel would still send the commit message to all of the Junior- 

kernels.

If the senior-kernel were to crash while finishing 

(completing/aborting) the secure point, then the most senior of the 

Junior-kernels would finish it and so on, until either the secure point is 

finished or all of the backup replicates have been lost.

9.2.2 Error detection

Every computer has a heartbeat. A heartbeat is a small message 

sent at regular intervals by a computer's kernel to every other kernel. 

The heartbeats are monitored by the kernels. When a kernel detects that a 

particular computer's heartbeat has stopped it knows that that computer has 

crashed. The decision that a computer has crashed must be taken over 

several heartbeat intervals in order to prevent computers being prematurely 

diagnosed as having crashed just because a heartbeat was lost during 

transmission.

Computer crashes cannot be relied upon to be instantaneous. Often a 

crash will be preceded by a phase during which the computer is simply 

malfunctioning. If a computer malfunctions it is most likely that process 

survivability will be compromised and will not be able to cope with the 

eventual crash. To remove this threat the computers' hardware must be able 

to detect permanent hardware faults immediately. Having detected a fault 

the computer is crashed either by halting the processor or by isolating the 

computer from the network and its peripherals, both of which will stop the 

computer's heartbeat.

Ideally, the hardware should be able to recover itself from 

transient errors. Otherwise process survivability would have to be used to 

recover from a transient fault that oould have been recovered from by a



simple retry mechanism.

Carter et al. (1977) have shown that the cost of producing a

computer that can detect hardware faults and which has a simple retry 

mechanism is relatively Inexpensive compared to the cost of a computer 

without these facilities.

9.2.3 Damage assessment

A backup replicate's predecessors consist of its process-set's 

current primary replicate and of those backup replicates that are 

designated to be activated before it. Once a backup replicate's 

predecessors have all crashed it is activated.

When a kernel has detected that a computer has crashed it must 

decide Which, if any, of the backup replicates that it hosts must be 

activated. The information on vdiich it makes its decision is kept in two 

tables.

One table records for every computer (other than the kernel's host) 

which of the kernel's local backup replicates has a predecessor on that 

computer. A second table contains a count of the number of predecessors 

that each of its local backup replicates has left.

When a kernel detects a computer crash it decrements the 

predecessor count for each of its local backup replicates that had a 

predecessor on that computer. If any of these counts falls to zero that 

backup replicate is activated.

As an example Figure 9d shows these two tables (partially 

completed) for a particular kernel. If computer 1 were to crash then 

predecessors of backup replicates 1, 2, 4, 5 and 6 would be lost. After 

decrementing the predecessor counts for these five backup replicates, 

backup replicates 1 and 4 would be activated.
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Figure 9d

9.2.4 Recovery

Having decided which of Its local backup replicates are to be 

activated, the kernel must activate them. First however the recovery phase 

of the two-stage protocol described In Section 9.2.1 Is performed for each 

of the backup replicates that are to be activated. Once that is completed 

the backup replicate can be activated.

A backup replicate is Just a process whose state is 'unrunnable'. 

It can be activated by setting Its status to 'runnable* and by placing its 

process descriptor onto the ready-queue. As the activated backup
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replicate, now a primary replicate, atarta to run, the reaultant memory 

faulta will enaure that ita pages are loaded into the main atore aa 

necessary.

9.2.5 Fault repair and continued running

There ia no fault repair. The computer that crashed cannot be re­

integrated back into the control system without turning the control system 

off and then recreating it.

Continued running is exactly the same as normal running.

9.3 Process recovery

9.3.0 Introduction

The process survivability level defines three class types: 

Ichannel, Ochannel and IOdevice. (The general syntax of the class 

structure is given in Appendix A.) All input channels, output channels and 

devices defined in an application program are objects of the classes 

Ichannel, Ochannel and IOdeviee, respectively.

When for example, an application program defines an input channel 

aa:

From : Inputchannel [10] of letter; 

this is translated into the declaration:

From : Ichannel

and into the call:

INIT From (10, letter);

The declaration declares »From' to be an object of the class type Ichannel,
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and the INIT statement creates and customises From to be an Input channel 

of ten letters. Output channel and device declarations are translated In a 

similar way.

Fig ire 9e presents an outline of the Internal structure of 

Ichannel, Ochannel and IOdevlce. All three classes have parameters of type 

'Type', which means that a single class definition can be used for all 

types of channel and device; for example In the Ochannel class the 

'basetype' parameter defines the Input channel's type. This use of a 

'Type' parameter makes classes similar to generic packages In Ada (Wegner 

1980) .

Class Ichannel (size : Integer; basetype : Type);

Export RECEIVE, PENDING;

Procedure RECEIVE (Var message : basetype; Var status : IPCstatus;
timeout : Integer);

Begin

End;

Function PENDING : Boolean;

Begin
e

End;

Begin {main body}

End;

Class Ochannel (size : Integer; basetype : Type);

Export SEND;

Procedure SEND (message s basetype; Var status : IPCstatus;
timeout : Integer);

Begin

End;
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Begin {main body)

End;

Class IOdevice (device : IOdevice; basetype, argtype : Type);

Export DOIO;

Procedure DOIO (oper : IOoperatlon; Var data : basetype;
Var status : IOstatus; Var arg : argtype);

Begin

End;

Begin {main body)

End;

Figure 9e

Ichannel exports the two procedures, RECEIVE and PENDING, that can 

be applied to an input channel. Similarly Oehannel exports SEND and 

IOdevice exports DOIO. When SEND, RECEIVE, PENDING and DOIO are used in 

application programs, the first parameter specifies the name of the channel 

or device on Which they are applied. As these commands are exported by 

classes, commands of the form:

RECEIVE (from, ... )

are translated into:

From.RECEIVE ( ... )

The internal details of these three classes are developed in the 

rest of Section 9.3. A program listing of the three classes (written in a 

Pascal-like language) is given in Appendix C.

164



A restarted process will have messages missing from some, if not 

all, of its input channels, and it may also have a single premature message 

within one of its output channels or within one of its receivers. To 

recover a restarted process the missing messages must be replaced and any 

late-SEND must be gagged. This recovery is performed on a per-channel 

basis by the input channel and the output channel at either end. There is 

no co-ordination between the recovery of different channels.

Recovery is performed when a channel is ’broken' by the crashing of 

the sender and/or the receiver process. Recovery is instigated by the 

input channel and performed by the output channel. Recovery is performed 

in this way no matter which end of the channel crashes. When a process 

crashes, each of its channels is recovered in this way thereby recovering 

the process as a whole.

The following four sub-sections describe the four stages of channel 

recovery.

9.3.1 Normal running

Ichannel is based around a kernel-supplied input pipe called 

Dataln, and Ochannel is based around a kernel-supplied output pipe called 

DataOut. An interprocess channel is created by linking Dataln and DataOut 

together at system initialisation time, and the interface to this pips is 

provided by the input channel and output channel class object at either 

end. The rest of Iehannel’s and Ochannel's attributes are concerned with 

the provision of process recovery after a crash.

A class object is part of its host process. When a process 

executes a secure point the private data of all of its objects are also 

backed up. Thus the information on which recovery is based survives the 

crash, and this information will be consistent with the rest of the 

restarted process's state as it was backed up at the same time.
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Aa explained In Chapter 8, Section 8.1.2, the PENDING-related 

Inconsistencies are prevented by Implementing both PENDING and RECEIVE In a 

particular way and by extending the input channel to Include a single­

message buffer. This buffer is called 'Pstore', and the boolean 'Pflag' is 

used to indicate Whether it is full or not. Both Pstore and Pflag are 

declared within Ichannel.

When PENDING is called it checks whether there is a message in 

Pstore; if there is, PENDING returns true as there is a message in the 

input channel; if on the other hand Pstore is empty, PENDING attempts to 

input a message from Dataln using the procedure ‘Read’ with a zero timeout. 

Because of the zero timeout a message will only be input if it is already 

present in the pipe (Chapter 6, Section 6.3 discusses zero timeouts). If 

the Read succeeds, then the message is placed in Pstore, Pflag is set to 

true and PENDING returns true, but if Read fails, then Pflag is set to 

false and PENDING returns false. When RECEIVE is called it will return 

Pstore's contents if Pstore is full (and it will set Pflag to false), but 

if Pstore is empty, then a message is input normally using Read.

In Chapter 8, Section 8.1.2 we mentioned that when calculating 

Which messages survived a process's crash it is necessary to take into 

account the fact that PENDING actually inputs the message that it detects. 

RECEIVE and PENDING both use the procedure Read to input messages, and so 

When a process crashes it loses those messages that are buffered within its 

input pipes (the Dataln in each of its input channels) and the messages 

that it has Read in since its last secure point. Those messages that were 

Read in prior to the process's last secure point will survive.

All of the code at the input channel end for supporting channel 

recovery during normal running is contained in Read. The code in RECEIVE 

and PENDING is solely concerned with preventing the PENDING-related 

inconsistencies from arising.
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Returning to channel recovery, there are three activities performed 

during normal running in order to ensure recovery. These ares

1) secure point insertion;

2) message storage;

3) message tagging.

Secure pointing is provided by a class type called SPoint. Every 

application process has a single object of this class called SP. A listing 

of SPoint is included in Appendix C.

SP exports a procedure called 'Execute'. When Execute is called it 

uses the kernel procedure ksecurepoint to perform the secure point. The 

reason for embedding the call of ksecurepoint inside a class is that SP 

also performs important housekeeping operations, details of which are given 

later.

In order to ensure correct recovery, a secure point must be 

executed prior to every SEND, and so the Ochannel procedure SEND calls 

SP.Execute before attempting to actually send the message.

When a channel is broken messages may become missing. In order to 

replace these messages with copies of the originals it is necessary to 

store copies of the originals. This is done by the output channels 

themselves.

SEND uses ksend to output the message. If ksend is successful 

(status = succeeded) a copy of that message is placed onto the cyclic queue 

'RevyStore' by calling the procedure 'save'.
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It is necessary to limit RcvyStore's size. To do this the maximum 

number of messages that can possibly be replaced at recovery time must be 

limited. This in turn means that the number of messages that can be lost 

must be limited. RcvyStore's size can then be set to that limit.

The messages that are lost from a channel when its receiver crashes 

are those still in the input pipe and those that had been Read from it 

since the receiver's last secure point. The former is limited by the size 

of the input pipe which is defined by the class parameter 'size', and the 

latter is limited by the input channel executing a secure point after a 

certain number of successful Reads.

Every time a message is successfully input Read increments the 

Ichannel variable 'Rcount'. When Rcount becomes equal to the maximum 

'mRcount' a secure point is performed. The maximum number, mRcount, is 

arbitrarily set to the defined size of the channel which is the class 

parameter 'size'.

Thus the maximum number of messages that can be lost from a 

particular channel is 2»size, and so RcvyStore's size is E^size. There is 

no explicit flow control for placing messages into RcvyStore. If the 

message has been sent, then the space existed in the channel and so the 

copy can be stored without overwriting a message that might still be needed 

for recovery.

When a receiver crashes it is restarted with an empty input pipe 

and then the missing messages are replaced. The maximum number of messages 

that might have to be replaced is twice the size of the channel, and these 

would not all fit into the input pipe Dataln. So a further requirement is 

to ensure that all of the lost messages will fit into the input pipe.
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To do this, the size of the Input pipe Dataln is increased from 

'size' to 'extsize' which Is equal to the maximum number of messages that 

can be lost, i.e. 2*size. However, it is then necessary to ensure that 

this does not mean that the number of messages that can be lost is also 

increased. This is why, when kread (see Chapter 6, Section 6.3) returns a 

message from an input pipe, it does not release the space that the message 

occupied. Hence When a message is Read (using kread) another message 

cannot be sent to take its place, and so the maximum number of messages 

that can be lost remains 2*slze.

Once a secure point has been performed the Read messages cannot be 

lost and so the space they occupy can be freed. This is done by calling 

the kernel primitive kfree which releases the space occupied by messages 

that have been kread from that input pipe since the last kfree.

Any secure point, executed by any of a process's input channels and 

output channels, will prevent the loss of all of the messages Read from all 

of that process's input pipes since the last secure point. This fact is 

used to reduce the secure pointing frequency.

Every time a secure point is performed the secure pointing class 

SPoint increments the value of its variable 'tstamp'. The current value of 

tstamp can be read by using the function 'Timestamp' which is exported by 

SPoint. This value is used by an input channel to identify individual 

secure points so that it can detect whether a secure point has been 

executed since it last Read a message. Input channels remember the last 

secure point's identity (SP.Timestamp) in 'timestamp'.

When Read is called the value of timestamp is compared with that of 

SP.Timestamp. If a secure point has been performed then kfree is called, 

timestamp is updated and the count of the number of Reads performed is re­

set to 0.
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In order to perform channel recovery It Is necessary to calculate 

ttoich messages are missing and which, if any, is premature. To facilitate 

this every message sent down a channel is labelled with a sequence number.

Each output channel maintains a count ('Sseqno') of the number of 

times it has been called upon to send a message. Every time SEND is 

called, Sseqno is incremented and its new value is used to tag the message 

sent. Every time a message is Read by an input channel the sequence number 

is stripped off and stored in 'Rseqno'. The use to which Rseqno and Sseqno 

are put is described in Section 9.3.3.

A channel's type is defined by the parameter 'basetype' which is 

passed to both input and output channels. To accommodate the sequence 

number the output pipe's type is extended from 'basetype' to 'extbasetype'.

9.3.2 Error detection

Every input channel class and every output channel class has an 

exception handler called 'Recovery' which is associated with an event. 

When such an event occurs the exception is said to have been raised and the 

exception handler associated with it is executed. To execute an exception 

handler the host process's execution is interrupted and control is passed 

to the handler. When the handler has finished, control returns to the 

point at which the host process was interrupted. This is different from 

accepted practice (for example Cristian 1980, Goodenough 1975 and Harland 

1981) where the interrupted code is aborted, and is closer to the software 

interrupt used in interprocess communication in DSN (Rashid 1980). By 

using exceptions in this way recovery can be performed when necessary 

without disturbing the work being done by the processes.
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Damage assessment and recovery is performed by the output channel. 

To do this the output channel needs to know:

a) the sequence number of the last message to be sent successfully down 

that channel;

b) the sequence number of the last message to be delivered successfully to 

the input channel and to survive the crash;

and also it needs to know when to perform the recovery.

The output channel already knows the first of these values as it is 

stored in Sseqno. The second value, as well as the prompt, is supplied by 

the input channel at the other end of the channel.

When a channel breaks - due to the sender and/or the receiver being 

restarted - the input channel's exception handler is executed. Detecting 

the channel break and raising the exception is performed by the receiver's 

current host kernel. Details of how the kernel does this are given in 

Appendix B.

Iehannel's exception handler determines the sequence number of the 

last message to have been successfully sent down the channel and to have 

survived the possible restarting of the receiver. If the input pipe is not 

empty then this message is the most recently delivered message in the input 

pipe, and if the input pipe is empty then the message was the last one to 

be Read. The sequence number in the latter case is contained in Rseqno and 

in the former case the sequence number can be obtained using kpeeklast 

(defined in Chapter 6, Section 6.3). Kpeeklast is called with a zero 

timeout so that it will only succeed if a message is already present in the 

input pipe. If kpeeklast succeeds then the sequence number of the message 

returned is the required sequence number; if not then Rseqno is the 

required number.
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The Input channel and the output channel are linked by a second 

pipe which goes from the input channel where it is called 'RevyOut' to the 

output channel where it is called 'Rovyln'. The sequence number is sent 

by the input channel to the output channel down this pipe. However before 

the message can be sent the pipe must be reconnected.

A process's descriptor contains a table that defines for each of 

its output pipes the address of the recipient input pipe (see Chapter 6, 

Section 6.3). This address contains the number of the input pipe's host 

computer. After a crash this computer number will be incorrect: if the 

sender crashed then on restarting the location will be set to zero, and if 

the receiver crashed then the receiver will be on a different computer to 

that specified in the table. Hence after a crash output pipes must be 

reconnected so that the table contains the current computer locations of 

the recipient input pipes.

The output pipes that are used to carry recovery messages (RevyOut) 

are reconnected by the input channel to which they belong and the output 

pipes that are used to carry user messages (DataOut) are reconnected by the 

output channel to which they belong. There is no need to reconnect the 

input pipes as they will accept messages from any source.

When an input channel's exception handler 'Recovery' is called it 

is passed two parameters by the kernel. One ('rloc') is the input 

channel's current computer address, and the other ('sloe') is the current 

computer address of the output channel. Sloe is used by Recovery in a 

kconnect call in order to reconnect RevyOut. Rloc is sent, along with the 

sequence number, down the reconnected pipe to the output channel where it 

can be used to reconnect DataOut.



When the recovery message arrives in Revyln the input channel's 

exception is raised and its exception handler is executed. That is the end 

of the error detection phase.

When an exception is raised it will be handled as soon as the 

current instruction being performed by its host process has been completed. 

If the current instruction is a kernel procedure that involves a wait, for 

example ksend, kreceive, kdoio and kread, then the exception is handled in 

parallel to the wait, thereby preventing the exception handling being held 

up. The other kernel procedures such as kconnect and ksecurepoint are 

completed before the exception is handled: an important feature as 

ksecurepoint requires the process to be inactive.

In effect a process and its exception handlers are executed 

concurrently. This concurrency is virtual rather than actual as the 

process is suspended while its exceptions are performed. This virtual 

concurrency results in the need for critical regions (Brinch Hansen 1973) 

to be created in order to prevent the concurrent accessing of shared data. 

For example, in an input channel both Read and Recovery access Rseqno, and 

in an output channel both SEND and Recovery access Sseqno, ngagged and 

RcvyStore. To prevent concurrent access of this data these procedures and 

the exception handlers are executed with exception handling turned off 

(achieved using the 'With ExceptionsOff Do' construct). While a process is 

within one of its input channel's or output channel's critical regions, 

exceptions raised within that class object will not be handled until the 

process has left the critical region.

As an object's exception handler cannot be executed while control 

is within its critical region (within its handler or its procedure) it must 

be ensured that the process will eventually leave the critical region. To 

facilitate this any outstanding or future kernel call that involves a wait 

such as ksend will be aborted with a status of failed. However, an



exception raised within one object does not result in the aborting of 

kernel procedures executed by another object. For example, an exception 

raised in one input channel will not cause a kread issued by another input 

channel to be aborted.

If the kread at the heart of the RECEIVE or the ksend at the heart 

of the SEND is aborted in this way then the result is passed back to the 

process that called the RECEIVE or the SEND. Recovery and computer crashes 

are not totally invisible.

9.3.3 Damage assessment

Damage assessment is performed by the input channel's exception 

handler Recovery. Recovery uses the sequence number received from the 

input channel and the sequence number contained in Sseqno to decide whether 

messages need to be replaced, or whether SENDS need to be gagged, or 

whether no recovery is needed at all.

If the sequence number of the last message to arrive in the input 

channel is less than the sequence number of the last message to be sent 

then messages may be missing and so must be replaced. If the sequence 

number of the last message to arrive is greater (by one at the most) than 

the sequence number of the last message sent then the next SEND performed 

on this channel must be gagged. If the two numbers are the same then, with 

respect to this channel, the sender and receiver are consistent and no 

recovery is needed.

9.3.1* Recovery

All of the recovery is instigated by the output channel's exception 

handler Recovery. First it reconnects DataOut using kconnect specifying 

the computer number sent to it by the input channel. Then if message 

replacement is needed it calls the procedure Replace, or if gagging is 

needed it sets 'ngagged* to the number of SENDS that must be gagged (Sseqno



- rm.seqno, which will be either 1 or 0).

Replace takes copies of the missing messages from RcvyStore and 

re-sends them in the order in which they were originally sent. The copies 

are not removed from the queue as they may still be needed in case of 

future crashes.

Sseqno, the value used to tag messages, is incremented every time 

SEND is called. It is not a count of the number of messages sent. Thus 

sseq-rseq is the maximum, not the actual, number of messages that could be 

missing. So before re-sending a message, Replace checks that the message's 

sequence number is within the range of those missing.

A SEND can fail either because its timeout expired or because an 

exception was raised within its input channel. As explained in Section 

6.3, although a SEND has failed it is possible that the message has been 

delivered. Some of the messages that are missing after a crash may be the 

product of failed SENDS, but they will not be replaced as there will not be 

a copy of those messages in RcvyStore. This is an advantage as it removes 

these inconsistencies.

Recovery sets ngagged. The actual gagging is performed by SEND 

itself. When SEND is called it checks the value of ngagged to see if there 

are any SENDs still to be gagged. If there are it simply sets its status 

parameter to succeeded, decrements ngagged and returns; it does not ksend 

the message. The SEND has been gagged.

A SEND that returned a status of 'failed', but actually transmitted 

the message, may be gagged if that SEND was performed during the restarted 

process's interrupted-task and if the resultant message survived the crash. 

As a SEND is a time-dependent function its outcome will not affect correct 

recovery, and so it does not matter that the status returned by the SEND 

when it is re-executed is different to the status returned when it was
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first executed.

Gagging is only performed by restarted processes. If a process 

has not been restarted, recovery only consists of message replacement.

When a backup replicate Is activated all of its input channel 

exceptions are raised and will be handled before the restarted process 

starts to execute its normal code. Its output channel exceptions however 

will not be raised until the receivers send their recovery messages. 

Because of this delay it is possible that a SEND may be performed on a 

channel that has not yet been recovered. Such a SEND will fail because 

DataOut will not have been reconnected yet. Once that output channel's 

exception has been handled it may be necessary for the SEND to be gagged, 

but it would then be too late. To prevent this it is necessary to hold 

SENDs up until the output channels on which they operate are recovered. 

This is done using insecure variables.

An insecure variable is a boolean variable which has a defined 

default value to which it will revert after a crash. Every output channel 

has an insecure variable called WaitRcvy. WaitRcvy has a default value of 

true. When the class is created using INIT, WaitRcvy is set to false. 

After a crash all of the process's output channels' WaitRevys revert to 

true. When an output channel's exception handler has finished it sets 

WaitRevy to false. SENDs are delayed by the 'Waituntil' statement until 

WaitRcvy is false; thus a SEND performed before its output channel has been 

recovered is delayed until that channel has been recovered.

An insecure variable is stored as part of the process's process 

descriptor, but would not be backed up by a secure point. A backup 

replicate's insecure variables would be set to the default value.
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9.3*5 Continued running

Continued running la the period from when a backup replicate is 

activated, up until all of its channels have been recovered, at which point 

the restarted process enters its normal running phase again.

During the continued running phase a restarted process will execute 

its code while at the same time being Interrupted by the performance of its 

exception handlers. This section describes the effects that performing 

recovery has on such a process. It also describes the effect that 

supporting recovery has on an unaffected process that is connected to one 

or more restarted processes. One of the aims of process survivability is 

that it should be invisible to the processes, and so this section is, in 

part, a review of how successfully this aim has been met.

An unaffected process continues to execute its code uninterrupted 

except for the execution of exception handlers. If the unaffected process 

performs a SEND, or if a SEND is outstanding on an unrecovered channel, 

then that SEND will fail because the pipe DataOut has been broken and has 

not yet been reconnected. The SEND is not delayed by the WaltUntil 

statement as the process has not been restarted.

If an unaffected process performs a RECEIVE on an unrecovered 

channel, then the RECEIVE will be aborted with a status of failed if that 

input channel's exception is raised even though messages are present in the 

input channel. If the RECEIVE is not interrupted then it will act as 

normal.

When a backup replicate is activated all of its input channel 

exceptions will be raised, and they will be handled before the restarted 

process starts to execute its code. Any RECEIVE will be issued on a 

recovered channel and so will not be aborted due to an exception being 

raised. However, the RECEIVE's timeout period may expire before the
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missing messages are replaced, and so a RECEIVE may fail when it would have 

succeeded had it not been for the crash.

SENDs issued by the restarted process on an unrecovered output 

channel will be delayed in til the channel has been recovered. As the 

Waituntil is outside the SEND's critical region, the SEND will not be 

aborted i*ien its output channel's exception is eventually raised.

While the restarted process is in the continued running phase it 

also performs the operations performed during normal running in support of 

process survivability.

Process survivability is not totally invisible. In unaffected 

processes, SENDs and RECEIVES fail that would otherwise have succeeded, and 

in restarted processes RECEIVES that would otherwise have succeeded may 

fail and SENDs may be delayed past their timeout period. When a RECEIVE or 

SEND fails due to an exception being raised the process will treat it as if 

the timeout had expired as the two causes are indistinguishable. The major 

problem is extending the time taken to perform a SEND beyond its timeout.

Computers will not crash very often, and so the interruptions 

caused by process survivability are comparatively minor, especially when 

compared with the advantages of process survivability.

9.U Process survivability and multiple crashes

One of the stated design aims of process survivability is that it 

should be able to restore consistency despite multiple simultaneous, or 

nearly simultaneous, computer crashes. The computers are physically 

dispersed so as to reduce the chances of simultaneous crashes, but the 

possibility cannot be ruled out and so process survivability must be able 

to cope with this eventuality.
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Process-sets are based on multiple backup replicates so that as 

long as the number of computers that crash Is less than the level of 

redundancy, processes are not lost. Also the two-stage protocol used to 

send secure point data to the backup replicates is designed to establish a 

common secure point in all the replicates despite multiple crashes.

This section shows that the process survivability level is able to 

restore the processes to consistent states despite multiple crashes.

Simultaneous crashes are defined on a per-channel basis to be the 

crash of two or more computers such that the sender or the receiver process 

crashes while the exceptions raised by a previous crash are still raised or 

being handled. If the crash occurs after the class's exception handler has 

finished then the crashes are separate crashes.

The implementation described in the previous section can handle 

separate crashes. The fact that a separate crash has occurred earlier does 

not affect the handling of a later crash. Message replacement does not 

remove the message copies from RcvyStore and so they can be used again, and 

a gagged SEND stores a copy of the gagged message in RcvyStore so that it 

can be replaced if necessary. The rest of this section concentrates on 

simultaneous crashes.

A kernel detects that a computer has crashed when that computer's 

heartbeat fails. Different computers' heartbeats are staggered, as they 

cannot use the network at the same time, and so even if two computers crash 

at exactly the same instant, a kernel will detect one crash before the 

other. Hence a sender and a receiver never crash together.

We look first at the effect of simultaneous crashes on input 

channel recovery actions. Every time the kernel detects that the 

receiver's primary replicate has crashed or that the sender's primary 

replicate has crashed then the exception is raised in the input channel.
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If the receiver has crashed then the exceptions will be raised in different 

generations of the input channel. Where an exception has been raised a 

number of times the different instances are handled in the order in which 

they were created.

When the sender or the receiver crashes the input channel may:

1) already have its exception raised due to a previous crash;

2) be handling its exception;

3) already have handled a previous instance of the exception but recovery 

has still not been performed by the output channel to which the recovery 

message was sent.

The following describes the effect that the receiver or the sender crashing 

has on the actions of an input channel in each of the above situations. A 

combination of these three situations may apply; for example, an input 

channel may be handling one instance of its exception with another instance 

of that exception outstanding. The effect that a crash has in such a 

situation will be the union of the effects arising from the individual 

situations as described below.

1) The exception is already raised

a) receiver crashes

All of the outstanding instances of the exception are lost in the 

crash and so will not be handled.

b) sender crashes

The outstanding instances of the exception will be handled in turn. 

These outstanding instances are the result of the sender crashing 

several times before and so the computer location of the sender 

specified in each exception instance will be out of date, and so the 

sending of the recovery message will foil.
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2) A previous Instance of the exception la belt« handled

a) receiver crashes

The exception handling is terminated by the crash, but the recovery 

message may have been successfully sent prior to the crash.

b) sender crashes

The recovery message may have been successfully delivered before the 

sender crashed. If not then sending the recovery message will fail.

3) After a previous Instance of the exception has been handled

No matter Aether the sender or the receiver crashed the crash 

has no effect on the results of the previous exception - the recovery 

message has been sent.

On restarting (if the receiver was hit) or on handling all 

outstanding exceptions (if the sender was hit) the input channel class will 

handle the exception raised because of the last crash, and the recovery 

message will be sent to the output channel.

In the above there are examples of instances of the exception being 

lost before a recovery message could be delivered to the output channel 

class, and so multiple crashes do not always result in multiple recovery 

messages being sent to the output channel • An output channel is not 

always made aware of multiple crashes.

Alternatively, there are situations where simultaneous crashes do 

result in multiple recovery messages being sent to the output channel. 

Each recovery message contains data that was up to date when the exception

was handled, and these messages will arrive in the order in which they were

sent. The following describes the effect that a crash and the arrival of

the resultant recovery message have on an output channel that is performing

recovery.
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In the following we describe the effect that a crash has on 

recovery, and argue that interrupting recovery in this way does not affect 

the output channel's ability to perform recovery correctly. We first 

describe the effect of the receiver crashing, and then the effect of the 

sender crashing.

1) Receiver crashes

If the recovery being performed is gagging then it will not be 

affected by the loss of the receiver as it does not involve DataOut. If 

the output channel is performing message replacement at the time of the 

receiver's crash (or if the receiver crashed before it started) then 

those messages sent by the procedure 'replace' before the crash will 

have been delivered, but any ksends performed after the crash will fail.

The recovery message that was generated due to the receiver's 

crash will arrive. As the receiver crashed the only recovery that could 

be needed is message replacement. Message replacement prior to the 

crash will not have affected the contents of RevyStore, and if a SEND 

had been gagged then a copy of that message will have been stored and so 

can be replaced.

2) Sender crashes

Any recovery that was being performed is ended by the crash and 

any outstanding exceptions will be lost. When the sender is restarted 

its recovery data will have been reset as well and so will not be left 

in an inconsistent state by the crash. The recovery message sent as a 

result of the sender crashing will arrive, and the output channel will 

handle the exception as normal.

In the above we have shown by case analysis that process 

survivability can restore the processes to consistent states despite 

multiple computer crashes, even if those crashes interrupt the recovery
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performed by the input channel's and output channel's exception handlers.

9.5 Reducing the number of secure points needed

The presence of time-dependent functions in PROSUR's P/L means that 

every SEND must be preceded by a secure point. Such a secure point 

frequency appears to be heavy (although it is the same as the checkpoint 

frequency in Tandem), and in this section we present a way of reducing it.

The major problem is that SEND itself is a time-dependent function 

and so there can never be more than one SEND per task. The reason that 

SEND is a time-dependent function is that it includes a timeout. If the 

timeout were removed then SEND would no longer be a time-dependent function 

and there could be several SENDs in a task, and hence there would be less 

secure points.

A particular job will often be performed by a group of processes 

working together on the same computer. This association of processes has 

been recognised and has been used explicitly to structure the organisation 

of the application level in a number of distributed systems (Liskov 1979, 

Kramer et al. 1982).

He propose that processes can be grouped together to form a 

module. All processes in a module are on the same computer. Processes 

within a module are connected by intra-module channels, and processes in 

different modules are connected by inter-module channels. Intra-module 

channels are also intra-computer, but inter-module channels can be either 

inter-computer or intra-computer.

The backup replicates of processes in the same module are located 

on the same computers and in the same order. This ensures that after a 

crash a module's processes are still on the same computer, and so intra­

module channels remain intra-computer despite crashes. Inter-module
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channels may alter between being inter-computer and intra-computer.

Transferring a message between computers may take a long time 

because the network may be busy and because delivering the message 

correctly could (in theory) take an infinite amount of time. To prevent 

this delay affecting a sender process's response time the SEND command has 

a timeout. If a message is being sent intra-computer then there is no such 

delay, and so there is no need for the timeout. By omitting timeouts and 

status parameters on intra-computer SENDs, those SENDs are no longer time- 

dependent SENDS.

We propose that all SENDs and RECEIVES on intra-module channels do 

not have timeout and status parameters. Hence these SENDs and RECEIVES are 

not time-dependent functions.

An intra-module SEND that succeeded during a process's 

interrupted-task will succeed when repeated, as there is no timeout to 

prevent it. An intra-module RECEIVE that was executed during an 

interrupted-task will succeed and input the same message, as (having no 

timeout) it will wait for the missing message to be replaced or for the 

repeated message to be sent by the intra-module SEND which will succeed as 

it has no timeout either.

Furthermore, intra-module SENDs and RECEIVES cannot fail due to an 

exception being raised. As intra-module channels are also intra-computer 

both sender and receiver will be restarted. The receiver's input channel 

exceptions will be handled before it starts to re-execute its interrupted- 

task, and so intra-module RECEIVES cannot be interrupted by an input 

channel exception being raised. The sender is restarted as well and any 

re-executed SEND will be delayed on its 'Waituntil' statement until after 

that output channel's exception has been handled and so the SEND will not 

be interrupted by that exception.
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Inter-module SENDs, Inter-module RECEIVES, DOIOs and PENDINGs are 

still time-dependent functions. Intra-module SENDS and RECEIVES are not 

time-dependent functions. All SENDs, whether Intra-module or Inter-module, 

must be separated from preceding time-dependent functions by a secure 

point. A task can now contain a number of intra-module SENDs, but still 

only only one inter-module SEND. As it is likely that the amount of 

intra-module comminlcation will be higher than the amount of inter-module 

commvnication, being able to have several intra-module SENDs in a task 

should result in a good reduction in the number of secure points.

In the simulation presented in the next chapter we compare the 

performance obtained using this module-based secure point insertion 

strategy with the performance obtained using the 'worst-case' policy where 

every SEND causes a secure point.

The loss of timeouts from intra-module SENDs and RECEIVES may be a 

problem as they are also a way of preventing a process from being held up 

by a sluggish sender or receiver. However, as a module is a single entity 

and would be coded as such, this problem may not arise. The simulation 

study should give an indication as to whether this sacrifice is worth the 

reduction in the number of secure points that are performed.

9.6 Summary

In this chapter we have shown how the prooess-set is implemented by 

the distributed kernel level, and how process recovery is performed by the 

input channels and the output channels. Furthermore it has been argued 

that process survivability can cope with multiple computer crashes.

Supporting process survivability requires a secure point to be 

executed prior to every SEND. He have presented an alternative to this, 

based on the adoption of modules, which should considerably reduce the 

number of secure points performed.
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The process survivability level has been presented in earlier 

chapters as providing both the process-set and process recovery. However, 

the former task is performed by the distributed kernel level. The process 

survivability level consists of the input channels and the output channels, 

and only implements process recovery, but it remains convenient to continue 

presenting process-sets as being one of the services that the process 

survivability level provides.
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10. A Simulation of Proceaa Survivability

10.0 Introduction

Process survivability Is practicable, but is it practical? In the 

previous chapters we have argued that process survivability will work, but 

we do not know whether the overheads incurred will prohibit its useful 

adoption. A discrete event simulation of PROSUR has been Implemented in 

order to investigate the effects of these overheads.

The simplification and generalisations which of necessity have been 

introduced into the simulation prevent the results of the simulation being 

used to determine finally and irrevocably the practicality of process 

survivability. Instead it is intended that the results will provide us 

with an Insight into the probable effects that the addition of process 

survivability would have on a distributed computer control system’s 

performance.

10.1 The aims of the simulation

In this simulation the useful work performed by an application 

process is measured by the number of seconds for which that process was 

actually being executed (CPU seconds) in a given period of real time. A 

distributed computer control system’s performance is then measured by the 

average of the amount of useful work performed by each of its application 

processes.

As response time is an important factor in real-time systems it 

would arguably have been more useful to have used the average response time 

of the application processes as a measure of the system’s performance. 

However, in order to measure this an actual application would have had to 

been simulated, and unfortunately despite an extensive literature survey 

and letter writing campaign we were unable to find any suitable details for
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an existing system, and it was decided that it would be impractical in the 

time available to invent a realistic application. In the summary to this 

chapter, we attempt to draw conclusions about how the response time is 

affected.

A distributed computer control system will spend almost all of its 

entire working life in the 'normal running' state. The effect that process 

survivability has on a system's performance during normal running would to 

a great extent determine whether it could be usefully adopted or not. For 

certain applications a further important (if not critical) consideration 

would be the length of time that it takes the system to recover from a 

crash. However, important as the latter is, we have limited the simulation 

to the investigation of the effect that process survivability has on normal 

running performance in order to keep the simulation within manageable 

proportions.

To achieve our aim the following aspects of process survivability 

have been investigated:

a) In the previous chapter we described two secure point insertion 

strategies. One was worst case, requiring a secure point before every 

SEND. The other was an optimisation based on the use of modules within 

PROSUR's P/L which should lead to a reduction in the number of secure 

points and possibly to a reduction in the overheads as well. Both 

Insertion schemes are modelled and the comparison of the results will 

enable us to gauge the advantages that might result from adding modules 

to PROSUR's P/L and from the adoption of the optimised insertion 

strategy.

b) The level of redundancy will increase the amount of work involved in 

performing a secure point thus increasing the overheads. The way in 

which performance is affected by different levels of redundancy is

investigated.
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c) In both secure point insertion strategies it is the SENDS that determine 

the position of the secure points. An increase in the frequency with 

which the processes perform SENDs will increase the frequency of secure 

points and hence the overheads. The effects of varying the SEND 

frequency are investigated.

d) An accepted (if expensive) way of increasing a distributed computer 

control system's performance is to increase the number of computers. He 

investigate whether such an increase is maintained after the addition of 

process survivability, and vrtiether increasing the number of computers is 

a way of maintaining performance after the addition of process 

survivability.

The model of PROSUR that was simulated is described in the 

following two sections. The experiments performed and the results obtained 

are described in the last four sections of this chapter.

10.2 The simulated distributed computer control system

10.2.0 Introduction

To simulate PROSUR in full detail would be a prohibitively large 

task. Instead a simplified version of PROSUR has been modelled. This 

section describes this simplified version.

Process survivability overheads during normal running involve a 

large amount of network activity in order to send secure point data to the 

backup replicates* host kernels. The network is a shared resource and so 

an increase in its use will affect the whole of the control system. The 

simplification of PROSUR is achieved by concentrating on the network 

related parts, so that the network activity is modelled realistically, and 

by simplifying the rest.
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10.2.1 Hardware

The hardware configuration ia shown in Figure 10a. The computers 

are linked together by a Cambridge Ring (Wilkes and Wheeler 1979). The

Cambridge Ring was chosen because of familiarity with its operation. Each 

computer is interfaced to the ring by a locally designed access logic unit 

(Bennett and Singleton 1982). The access logic unit (ALU) is a 

microprocessor based unit that implements the basic block protocol (Johnson 

1980) thereby presenting the computer with a high level interface to the 

network.

Cambridge Ring

Figure 10a

An ALU receives messages from its computer that are to be sent over 

the network. These are placed in output queues, one for each possible 

destination computer. The ALU serves its output queues in round-robin 

order sending a message from each in turn. The message to be transmitted 

is placed into a basic block (with a 3 word overhead) and then sent to the 

destination computer's ALU. The speed with idlieh a basic block can be 

transmitted is a function of the ring's raw data rate and the number of 

network nodes.
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The Cambridge Ring's raw data rate is 10 megabits/sec. Packet 

overheads and sharing result in each ALU having a guaranteed point-to-point 

share at the physical level equal to 4/(n+1) megabits per second, where n 

is the number of ALUs (Bennett and Singleton 1982). Throughout the 

simulation we use a 16 bit word, and so this data rate is equal to

1/(4*(n+1)) mega words per second. However, the maximum data rate that can

be supported by an ALU is 50 FCwords per second, and so the guaranteed 

minimum data transfer rate between two ALUs at the physical level is:

1/(M(n+1)) Mwords per second, for n > 4 

and

50 Kwords per second, for n <= 4.

This data rate is a worst case minimum, as it is based on the

assumption that every ALU is using the network as much as possible. In 

'real life' some of the ALUs would not be using their full share, and this 

unused network capacity would be available to the other ALUs. However, in 

the interests of simplicity we have used this worst case figure as the

maximum rate at which data can be transferred between ALUs despite the 

inactivity of other ALUs.

An ALU can only receive one basic block at a time as on receiving a 

basic block's header it sets the source select register of the Cambridge 

Ring station to the sender's address (Johnson 1980). If an ALU cannot 

deliver a basic block because the receiver is already receiving a basic 

block from elsewhere, it waits for 16 cycles (where a cycle is the time it 

takes to send one word over the network) then tries again. If it still 

cannot deliver the block, it gives up trying to send that block, leaves the 

message on its output queue, and continues to handle its output queues 

normally. (16 was chosen as any lesser number resulted in the simulation 

overrunning the available runtime.)
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10.2.2 The application level

We first describe the model used to represent all processes, and 

then describe how the processes are configured to form the application 

level.

Processes are grouped Into modules. Although modules are not part 

of PROSUR they have been added in order to Investigate the module-based 

secure point insertion strategy.

Each process is modelled as a RECEIVE-work-SEND cycle. The work 

period, measured in CPU seconds, is generated by a Normal distribution with 

mean m, standard deviation 1 and a truncated range of 0 to 2#m. All 

processes have the same mean.

A RECEIVE is satisfied by a message from any of the calling 

process's input channels. This corresponds to the best case where a 

process never has to wait for a message from one channel when messages are 

outstanding on other channels. (Were the channels to be specified it would 

be possible for the simulated control system to deadlock.)

Before a message can be sent the output channel must be chosen. A 

module consists of processes that work together to provide a service. 

Hence it is envisaged that most message passing will be intra-module, and 

it was decided that 801 of all message passing is intra-module and only 20> 

inter-module. Having determined whether an inter-module or intra-module 

output channel is needed, the specific channel to be used is chosen by 

round-robin. The sender is suspended until the message is safely delivered 

into the receiver's input channel.

Messages do not have any contents but they do have a size. Based 

on the survey presented by Prince and Sloman (1981), it was decided that 

there would be two types of message: command (4 words long) and data (256 

words long), and the ratio of command messages to data messages would be
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Flow control on channels is only partly modelled. A receiver will 

be hung up if there are no outstanding messages in any of its input 

channels and will be activated upon the arrived of the first message in any 

input channel. There is no flow control on the SENDS; it is assumed that 

input channels never fill up. Timeouts on RECEIVES and SENDS are not 

modelled.

For our purposes a distributed computer control system 

configuration consists of C computers, each containing M modules of P 

processes each. Every process has R inter-module output channels and L 

intra-module output channels, where C, M, P, R and L are constants for a 

particular configuration.

Within a module the processes are ordered cyclically and a process 

with L intra-module output channels will be connected to the next L 

processes in the circle excluding itself. For example, Figure 10b shows 

the internal structure of a module where P equals five, and L equals two: 

the five processes (circles) are each connected by two intra-module output 

channels (directed lines) to the next two processes in the cycle.

Figure 10b



Every computer has M modules of P processes, and each process has R 

inter-module output channels. Inter-module output channels from the pth 

process of the mth module will be connected to the pth process of the mth 

module on R different computers. The computers are organised into a 

circle, and a computer with M#P#R remote channels will be connected to the 

next M#P#R computers in the circle, excluding Itself. For example, Figure 

10c shows how the inter-module output channels of the four processes on the 

left-most computer would be connected in the configuration C=J|, M=2, P=2 

and R=1.

Figure 10c

All inter-module channels have been configured so as to be inter­

computer. This means that the network loading is worst-case, as in a real 

system some inter-module channels would be intra-computer. One of our 

experiments is to investigate the advantages of reconfiguring the 

application level onto more computers, and by having all inter-module 

channels inter-computer we ensure that despite reconfiguration the network 

loading remains constant and so does not affect our results.
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10.2.3 Distributed kernel level

The processes are time sliced. Each computer has a ready-queue. 

When a process is ready to run it is placed at the end of its host's 

ready-queue. The process at the front of the ready-queue is run for a time 

slice of 25 milliseconds or until it suspends itself on a SEND or a 

RECEIVE. Paging is assumed but it is not modelled.

Messages are transferred in basic blocks. However it is not 

sufficient to rely on the basic block protocol as it does not provide 

recovery from errors during transmission. To be able to recover from such 

errors a higher level protocol incorporating a positive acknowledgement is 

needed. This protocol is provided by the kernel.

Although we assume that all transfers are error free it is 

necessary to model the higher level protocol so that the network load is 

realistic. When a message is sent, it is placed on the appropriate queue 

in the sender's ALU. When it is received by the receiver's ALU it is 

placed in the receiver's input channel and an acknowledgement message is 

placed on the appropriate output queue in the receiver's ALU. Once the 

acknowledgement has been delivered to the sender's ALU the SEND is 

completed and the sender is activated and placed on the ready-queue again.

10.2.4 Process survivability

Every process has the same level of redundancy. For the module- 

based secure point strategy to work the backup replicates of processes in 

the same module must be on the same computer (see Chapter 9, Section 9.5). 

This organisation is also used when simulating the worst-case secure point 

Insertion strategy even though it is not necessary. The backups are 

distributed fairly between the computers.
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Two secure point Insertion strategies are modelled: worst-case and 

module-based. When a process executes a secure point, secure point data is 

sent to each of the kernels hosting that process's backup replicates.

Secure point data consists of those pages (a one Kword page is 

used) of the process's data segment that have been altered since the last 

secure point plus a copy of the process's volatile environment. The number 

of pages that have been altered since the last secure point is defined by 

the bar chart shown in Figure 10d, where the number of pages is determined 

by the number of CPU seconds of work performed since the last secure point.

Kwords

Figure 10d

The bar chart is based on the 'working set' curve (Denning 1968, 

Splrn 1977). The working set curve, first described by Denning, describes 

how the number of different pages accessed in time t (known as the working 

set) increases with t. The values along the axes are 'guesstimates' as 

there are no suitable published figures on which to base them.
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The two stage protocol that is used to broadcast the secure point 

data is performed by the processes themselves. A basic block can contain 

at most 1K words and so secure point data is divided into a header block 

followed by a number of blocks each containing one page. The header 

contains the number of pages, details as to which pages they are, and a 

copy of the process's volatile environment. Each of these messages is sent 

separately by the user process.

Some of the secure point message's pages would be in main memory 

and others in secondary storage. The latter would increase the time it 

takes to perform a secure point. However as paging is not modelled, we 

assume that all pages are in main memory and hence ready to be sent 

immediately. For the same reason we do not model the updating of the 

backup replicates with the secure point data; in fact the backup replicates 

are not modelled at all.

10.3 Implementation details

The simulation is performed by two programs. One generates a 

PROSUR configuration, and the other is the discrete event simulator that 

simulates the running of that configuration.

The configuration generator takes as input the number of computers, 

the number of modules per computer, the number of processes per module, and 

the number of local and remote channels per process. It produces as output 

a file containing a description of the distributed computer control system.

The discrete event simulation takes as input the configuration, the 

level of redundancy, the type of process survivability to be modelled, and 

the mean work period of the processes.
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Both programs are written In Pascal. The configuration generator 

is 158 lines long, and the simulator itself is 1498 lines long. 

Development and testing was carried out on a local GEC 4190, and the final 

production runs were done on a University of Manchester Regional Computer 

Centre CDC 7600.

10.4 The experiments performed

In pursuit of the aims described in Section 10.1 a total of 138 

distinct experiments were performed.

The application level simulated consists of 48 modules each of six 

processes. Each process is connected by intra-module output channels to 

all of the other processes in its module, and each process also has one 

inter-module output channel connected in the manner described in sub­

section 10.2.2.

Four configurations were formed by partitioning the modules equally 

onto 4, 8, 16 and 32 computers. A common proposal for distributed computer 

systems is that there should be but one process per computer. In order to 

investigate any possible advantage this may ensure for process

survivability a fifth configuration consisting of 192 computers, each with 

one process, was also simulated. Each process in this configuration has 6 

inter-module output channels and no intra—module output channels.

192 processes divided into modules of 6 processes were chosen 

because they could be evenly partitioned a number of ways. Also, for 

larger numbers of processes the CDC Pascal ' s heap storage became exhausted•

Each configuration was simulated in a number of different 

situations, where a particular situation is defined by a combination of

three factors:



1) the level of redundancy;

2) the secure point insertion policy used;

3) the SEND frequency.

The combination of configuration and situation defines an experiment.

The 8, 16, 32 and 192 computer configurations were simulated with 

redundancy levels of 1, 2, 3, 4 and 6. The 4-computer configuration was 

simulated with redmdancy levels of 1, 2 and 3*

Each configuration was simulated with every level of redundancy 

using both worst-case and module-based secure point insertion. Each 

configuration was also simulated without process survivability in order to 

measure its normal performance.

A process is modelled as a RECEIVE-work-SEND loop. The work period 

is Normally distributed with the same mean and standard deviation for all 

processes. To investigate the effects of increasing the SEND frequency the 

above experiments were repeated using a mean work period of 2, 0.5 and 0.12 

seconds and standard deviations of 1, 0.1 and 0.01 seconds respectively.

Each simulation run simulates 30 minutes of real time. All of the 

measurements are reinitialised after 10 minutes in order to prevent the 

final results from being affected by any abnormalities produced while the 

simulation settles down. The final results are produced by the last 20 

minutes.

199



10.5 The résulta

10.5.0 Introduction

The result produced by each experiment is the average of the useful 

work performed by each process. The results of all the experiments are 

presented In three sets of graphs - Figures 10e, 10f and 10g. These 

results are also given in tabulated form In Appendix D. The accuracy of 

these results is discussed in Appendix E.

Each set consists of two graphs. One graph presents the

performance of all the configurations withi worst-case secure point

insertion and the other their performance with module-based secure point

insertion.

Each set of graphs plots the configurations' performances with

different mean work periods: Figure 10e - 2 seconds, Figure 10f - 0.5

seconds, and Figure 10g - 0.12 seconds.

A configuration’s performance in CPU seconds is plotted against its 

level of redundancy. The points for a particular configuration are Joined 

together to form a curve, and the curve is labelled with the number of 

computers in that configwation. The value plotted against a level of 

redmdancy of zero is the configuration's performance without process 

survivability. Performance is the average of the amount of useful work 

performed by each process, and the standard deviations of the processes' 

performances are shown to scale as vertical bars.

These results are described in the following sub-sections. All 

comments are made with the proviso that they are only relevant to the 

configurations and situations simulated. Speculation concerning the 

performance of configurations and situations not simulated is left until 

the conclusion. The possible causes of the results described in this 

section are discussed in the following section, Section 10.6.
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Figure 10e.1













10.5.1 Increasing the level of redundancy

First we describe the effect that increasing the level of 

redundancy has on a configuration's performance.

Every line in every graph can be considered to be a special case of 

the curve shown in Figure 10h. We interpret this to mean that:

a) A control system has an initial resilience to the overheads of process 

survivability, and so for low levels of redundancy its performance is 

either not affected or it is only slightly reduced by the addition of 

process survivability.

b) Once a control system's resilience is overcome, its performance 

decreases sharply with further increases in the level of redundancy.

c) When a certain level of redundancy has been reached, further increases 

in the level of redundancy only result in progressively smaller 

reductions in performance. (This latter characteristic is an important 

factor in the determining of process survivability's practicality.)

[
performance

Figure 10h
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The shape of a specific configuration's performance curve is 

determined by the balance of its natural resilience and the process 

survivability overheads of its situation. Some lines are virtually 

horizontal, for example lines 4 and 8 in Figure 10e.2, implying that in 

those configurations their resilience is not overcome and so their 

performance is maintained for all of the levels of redundancy tested. On 

the other hand, in some of the configurations resilience is immediately 

overcome by the overheads, for example in Figure 10f.2 line 32 falls 

sharply for low levels of redundancy.

10.5.2 Varying the process to computer ratio

Five configurations were simulated in order to study the effect 

that varying the process to computer ratio has on performance. In the 

following we distinguish between the configurations by their process to 

computer ratios.

Each of the six graphs plots the performance of all five 

configurations over the full range of redundancy levels with the same SEND 

frequency and with the same secure point insertion strategy. As the other 

factors are constant it is concluded that the differences between the 

configurations' performances must be due to their different process to 

computer ratios.

The following comments are based primarily on Figures 10f and 10g. 

The effects described below are not as well developed in Figure 10e, 

although a tendency towards them can be seen.

All comparisons are made between lines within the same graph, and 

not between lines in different graphs.
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When simulated without process survivability the performance 

figures are approximately inversely proportional to the configurations’ 

process to computer ratio. The lower the ratio the better the performance. 

Doubling the number of computers and halving the number of processes per 

computer results in an approximate doubling of the system's performance; a 

suitable return for the extra cost.

The most obvious difference between the configurations is that the 

smaller the process to computer ratio the greater the degradation in the 

configuration's performance. To be more precise, the smaller the ratio:

a) the lower the level of redundancy needed to overcome the configuration's 

resilience; and

b) the steeper the initial drop in performance.

As the lower ratio configurations are more adversely affected, 

their performances converge on the performances of the higher ratio 

configurations as the level of redundancy is increased. Convergence occurs 

in the order of increasing process to computer ratios; for example, in 

Fig ire 10f .2, line 192 converges on line 32, these two then converge on 

line 16, and finally all three converge on line 8. After two or more 

configurations' performances have converged, their performances remain 

converged for all further increases in the level of redundancy, and their 

performances slowly decline together as the level of redundancy increases.

Once converged, the performance of the lower ratio eonflguration(s) 

falls marginally below that of the higher ratio configuratlon(s). For 

example, in Figure 10f.2, when lines 192 and 32 converge on line 16, they 

both drop below line 16 and remain there. Performance is an average and so 

the performances of the individual processes in a configuration are spread 

over a range of values, with the size of the spread indicated by the 

standard deviation. A certain amount of overlapping between each
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configuration's range of performances can be seen, making such a ranking of 

configuration performances less distinct.

Despite the configurations' widely different initial performances, 

the convergence means that for the higher levels of redundancy a similar 

performance can be achieved with 8 computers as with 16, 32 or 192

computers, a considerable financial saving.

As observed in the previous sub-section, some configurations' 

performances are unaffected by the introduction of process survivability no 

matter what level of redundancy is used. These unaffected configurations 

are always those with the higher ratio of processes to computers.

10.5.3 The two secure point insertion policies

Two different secure point insertion strategies were simulated. 

The worst-case Insertion strategy results in a secure point being performed 

every SEND. The module-based insertion strategy results in less secure 

points but the secure point messages are larger.

Figure 101 consists of three graphs - 101.1, 101.2 and 101.3 - 

which were formed by superimposing the two graphs in each of Figures 10e, 

lOf and 10g respectively. (Standard deviations are omitted.) Each 

configuration's performance curve is labeled by the number of computers in 

that configuration, and by the letter 'w' or 'm' to indicate whether the 

performance curve was obtained using worst-case or module-based secure 

point insertion. These three graphs show the relative effects of the two 

insertion policies on each configuration for each SEND frequency simulated. 

Again comparisons are not made between performances obtained with different 

SEND frequencies.
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For some configurations with certain SEND frequencies there are 

either minimal differences in the performances obtained or no differences 

at all and these are omitted from the graphs in Figure 10i. The 192-

computer configuration has one process per computer and so all SENDS are

remote which results in both policies inserting a secure point prior to

every SEND. There are also cases where neither insertion policy results in 

overheads sufficient to affect the performance; for example, the «-computer 

configuration with a SEND frequency of 2 seconds and 0.5 seconds.

All further comments apply to those cases where there is a 

difference in performance between the two strategies.

Where performance is affected by process survivability a higher 

performance is maintained with the module-based insertion strategy. When 

worst-case insertion is used resilience is overcome by a lower level of

redundancy and the fall in performance after that is steeper. The 

convergence of the performances of different configurations also occurs at 

a lower level of redundancy with worst-ease insertion.

The three graphs in Figure 10J show the increases in a 

configuration's performance that are achieved by using module-based 

Insertion rather than worst-case insertion. Again those configurations 

that do not exhibit a difference are omitted.

The performance Increase obtained with module—based insertion first 

increases along with the level of redundancy, peaks, and then as the level 

of redundancy increases further it falls. It appears that with a 

sufficiently high level of redundancy all advantage would be lost.
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For some configurations with certain SEND frequencies there are 

either minimal differences in the performances obtained or no differences 

at all and these are omitted from the graphs in Figure 101. The 192-

computer configuration has one process per computer and so all SENDS are

remote which results In both policies Inserting a secure point prior to

every SEND. There are also cases where neither insertion policy results in 

overheads sufficient to affect the performance; for example, the 4-eomputer 

configuration with a SEND frequency of 2 seconds and 0.5 seconds.

All further comments apply to those cases where there is a 

difference in performance between the two strategies.

Where performance is affected by process survivability a higher 

performance is maintained with the module-based insertion strategy. When 

worst-case insertion is used resilience is overcome by a lower level of

redundancy and the fall in performance after that is steeper. The 

convergence of the performances of different configurations also occurs at 

a lower level of redundancy with worst-case insertion.

The three graphs in Figure 10 J show the increases in a 

configuration's performance that are achieved by using module-based 

insertion rather than worst-case insertion. Again those configurations 

that do not exhibit a difference are omitted.

The performance increase obtained with module-based insertion first 

increases along with the level of redundancy, peaks, and then as the level 

of redundancy increases further it falls. It appears that with a 

sufficiently high level of redundancy all advantage would be lost.
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Figure 10J



Because of the convergence described In the previous sub-section 

which occurs with both insertion policies, the increase in performance 

obtained in each configuration is virtually the same for high levels of 

redundancy. However, if the extra performance is considered as a

percentage of the configuration's performance without process 

survivability, then it can be seen that the greater advantage is obtained 

in the highest ratio configuration; viewed this way the performance 

advantage decreases along with the process to computer ratios.

These observations imply that the overheads are higher with worst- 

ease insertion, as was expected. The transmission of smaller secure point 

messages more frequently results in a higher overhead than does sending 

larger secure point messages less frequently.

10.5.4 Increasing the SEND frequency

We now look at how a configuration's performance varies as its SEND 

frequency is increased.

Prior to the addition of process survivability a configuration's 

performance is approximately the same for all three SEND frequencies. Once 

process survivability is added a better performance is obtained (for all 

levels of redundancy) with a 2 second mean work period than with a 0.5 

second mean, and both are better than that obtained with a 0.12 second 

mean. This is true for both secure point insertion strategies. The 

smaller the mean the worse the performance.

As the mean work period decreases, the configuration's resilience 

is overcome by lower levels of redundancy, and the initial fall in 

performance is sharper. Convergence of the different configurations' 

performances occurs at a lower level of redundancy.
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These results Imply that overheads are greater with the faster 

frequencies. More frequent SENDs result In more frequent secure points 

which, although the secure point messages will be smaller, result In 

greater overheads.

10.6 The causes of the effects described

10.6.0 Introduction

In this section we present possible explanations for the effects 

that were described In the previous section.

10.6.1 Increasing the level of redundancy

In Section 10.5.1 we presented Figure 10h as being the general 

shape of a configuration's performance curve as redundancy increases. In 

this sub-section we explain what makes the curve that shape, and why all 

the performance curves In Figures 10e, 10f and 10g, even the horizontal 

ones, are special cases of this curve.

In order to Illustrate our explanation we look at all five 

configurations when operating with worst-case secure point Insertion and a 

mean work period of 0.5 seconds. The performance figures for these 

configurations when operating in these situations are presented In Figure 

10f.2. (Any of the other combinations of insertion policy and mean work 

periods could have been used.)

All of the processes execute a RECEIVE-work —SEND cycle, where the 

SEND may be preceded by a secure point. The more of these cycles that a 

process performs the more work It performs.
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The average time that it takes a process to perform a RECEIVE in 

each of these configurations under these conditions is shown in Figure 10k. 

Similarly, the average time to perform a secure point and the average delay 

in performing a SEND are presented in Figures 101 and 10m respectively. 

The lines are labelled by the number of computers in each configuration. 

The tables for these graphs are in Appendix F. Standard deviations are 

omitted from the graphs but are included in the tables.

As the level of redundancy is Increased the time it takes to 

perform a secure point increases because the secure point data has to be 

sent to more backup replicates. In Figure 101 this increase can be seen to 

be virtually linear. The extra network activity caused by secure pointing 

in turn causes the delay on the SENDs to increase. As the secure point 

time increases the number of cycles performed, and hence the number of 

SENDs performed, decreases. As the RECEIVE phase is terminated by the 

arrival of a message, the Increased scarcity of messages increases the time 

it takes to perform a RECEIVE. The time it takes to execute a secure point 

plus the extra delays incurred in a SEND and a RECEIVE are the performance 

overheads of process survivability.

The increase in the time it takes to perform a SEND and a RECEIVE 

and a secure point is approximately linear (although the SEND delay figures 

are not linear they are too small to affect the overall linearity caused by 

the secure point and the RECEIVE). Hence the time it takes to execute a 

RECEIVE-work-SEND cycle also increases linearly, which results in the 

number of cycles that can be performed in a given time decreasing 

geometrically. He alústrate this last point in Figure 10n where we plot 

the graph y » 10/x.
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10 J

y=10/x

Figure 10n

10

We believe that the plunge and then the levelling-off of the 

performance curve shown in Figure 10h is due to the nearly linear increase 

In the time it takes to perform a secure point and a SEND and a RECEIVE.

We turn now to the cause of the initial resilience that a 

configuration's performance has to the process survivability overheads, and 

answer the question of why the curve in Figure 10h is initially horizontal.

Processes on the same computer are time shared. Those processes 

that are executing the work phase of a RECEIVE-work-SEND cycle are 

'contained' in the computer's ready-queue. The more processes there are in 

a computer's ready-queue the longer it will take those processes to 

complete their work phases.

222



We believe that a configuration's initial resilience is due to a 

combination of two factors:

1) While the number of processes in the ready-queue is high, and the 

process survivability overheads are low, the predominant factor in 

determining a process's performance will be the time that it takes the 

process to perform its work phases. As the process survivability 

overheads Increase, the ready-queue length will decrease and the 

predominant factor will become the time it takes to perform the SENDS, 

RECEIVES and secure points, and performance will fall.

2) As the process survivability overheads increase the number of processes 

that are executable at the same time decreases and so does the number of 

processes on the ready-queue. This reduction means that processes can 

perform their work phases faster, which partly compensates for the 

increase in the time spent RECEIVEing, secure pointing and SENDing.

Hence, a configuration's performance is limited for small levels of 

redundancy by the length of its ready-queue, and then for the higher levels 

of redundancy by the process survivability overheads. As the process

survivability overheads increase the ready-queues' sizes decrease, and

initially it is possible for this to compensate for the increased process 

survivability overheads, thereby maintaining the processes' cycle speed and

performance. Once the process survivability overheads have reached a

certain level (and this varies between configurations and situations) the 

reduction in ready-queue sizes no longer compensates for the increased 

overheads and so performance falls. The rate at rfiich performance falls is 

still alleviated by the shorter ready-queues.

Not all the curves in Figures 10e, 10f and 10g are the same shape 

as the general curve shown in Figure lOh. This is due to the different 

balances of ready-queue length and process survivability overheads in the
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different configurations and situations.

It was noted in Section 10.5.1 that those configurations with a 

higher process to computer ratio have the higher resilience to the 

overheads of process survivability. In fact, in the case of the 4-computer 

configuration its performance curves are all basically horizontal. This 

resilience is due to these configurations having the longer ready-queues. 

Those configwations with a lower ratio of processes to computers, such as 

the 32-computer configuration, have shorter ready-queues and so the ready- 

queue length does not dominate the process survivability overheads to the 

same extent; hence the lower-ratio configurations have a lower resilience.

Prior to performing the simulation it was expected that the network 

would be the bottle neck and that system performance would be limited by 

the need to share the network. As we have explained above, performance is 

limited by other factors, and not by the network. As an example, Figure 

10o presents the ALU performance for all five configurations, again 

operating wider worst-case secure point insertion and with a mean work 

period of 0.5 seconds. (These results are also presented in tabular form 

in Appendix G.) ALU performance is the average number of seconds worked by 

each ALU presented as a percentage of the 20 minutes simulated.

In general, ALU performance increases linearly for the lower levels 

of redundancy and then levels off over the higher levels of redundancy. 

The level of redundance at irtiich ALU performance levels off varies between 

the configurations and in the 4-computer configuration it does not occur at 

all.
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Figure 10o



Were the network to be the dominant factor we would expect all of 

the curves to approach 100J, and not level off below that. Also, referring 

back to Figu-e 101, if the network were the limiting factor we would not 

expect the secure point times to increase linearly; neither would we expect 

the SEND delays, shown in Figure 10m, to level off as they do. We believe 

that the levelling off in ALU performance is due to a reduction in the 

demands made on the ALUs by the processes as it corresponds to the 

levelling off in the configurations' performance curves as can be seen in 

Figire 10f.2.

10.6.2 Varying the process to computer ratio

In this sub-section we explain why the performances of the 

configurations converge. To illustrate our discussion we use the 16- 

computer and the 32-computer configurations again running with worst-ease 

secure point insertion and a mean work period of 0.5 seconds.

As can be seen in Figure 10f.2 the performance curves of the 16- 

computer and the 32-computer configurations converge for levels of 

redundancy of two and greater. The table in Figure 10p presents the 

average time spent in each RECEIVE—work—SEND cycle performing the RECEIVE, 

the SEND and the secure point.

Prior to a redundancy level of two the overheads are less in the 

32-computer configuration. From a redundancy level of two onwards the 

overheads in the 32-computer configuration are worse, although the 

difference remains constant as the level of redundancy increases.
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configuration

16 32

0 3.07 1.63

1 3.77 3.53

level 2 6.24 7.29
of

redundancy 3 9.65 10.88

4 13.02 14.24

6 19.44 20.78

Figure 10p

Despite the convergence in the process survivability overheads the 

32-eomputer configuration should still have a better performance as there 

are less processes per computer, but as we can see in Figure 10f.2 this is 

not the case. The ready-queues in the 16-computer configuration will 

decrease in length as the reduidancy level increases and at a certain 

level, two in this case, the length of its ready-queues will almost be the 

same length as in the 32-computer configuration and the processes will be 

able to execute their work phases as fast. For a redundancy level of 2 and 

greater, the length of the ready-queue in both configurations will be about 

the same size.

By halving the queue length and doubling the time it takes to send 

a basic block, the time it takes from request to completion to transmit a 

message, or to send secure point data, will remain about the same. This is 

why the process survivability overheads (which are predominantly made up of 

network utilisation) for the two configurations presented in Figure 10p are 

almost the same.
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As we have explained before, the ALUs and the network are under 

utilised. Were this not the case, then the above would probably not be 

true.

10.6.3 Insertion policies and SEND frequencies

It was expected that worst-ease secure point insertion would have a 

worse effect on the configurations' performances than module-based 

insertion would, and the results presented earlier support this assumption.

Figire 10q shows the average of the total time spent performing 

secure points by each process in the 16-computer configuration, operating 

with a mean work period of 0.5 seconds and with both secure point insertion 

policies. It can be seen that for all levels of redundancy a process will 

spend less time secure pointing with module-based insertion than with 

worst-case insertion.

worst-case module-bas

1 152.10 59.10

2 425.96 154.32
level

290.38of 3 565.91
redundancy

389.404 624.82

6 675.02 

Figure 10q

482.16

Similarly, it was expected that increasing the SEND frequency would 

Increase the number of secure points and decrease performance. That the 

performance is decreased has already been shown. Again using the 16- 

computer configuration operating with worst-case insertion, we ohow in 

Figire lOr that the total time spent by each process in secure pointing 

does increase as the SEND frequency increases.
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Mean work period

2 0.5 0.12

1 54.90 152.10 476.93

2 126.25 425.96 642.96
level

of 3 238.02 565.91 683.84
redundancy

4 382.15 624.82 697.33

6 526.99 675.02 721.19

Figure 10r

Worst-case insertion results in secure points being executed more 

often, and increasing the SEND frequency also increases the secure pointing 

frequency. These results are consistent with the graph, presented in 

Figure 10d, that defines the size of the secure point data, as there it can 

be seen that the higher the frequency of secure pointing the more data that 

must be transferred, as increasing the time since the last secure point 

does not Increase the size of the secure point data proportionally.

10.7 Sunn ary

Our experiments indicate that a high ratio of processes to 

computers is more practical for high levels of redundancy than a low ratio. 

For high levels of redundancy a comparable performance can be achieved with 

an 8-computer configiration as with 16, 32 or 192 computer configurations - 

a considerable financial saving.

The maximum level of redundancy that can be achieved in a 

distributed computer control system is limited by the number of computers. 

Because of this the larger computer configuration, although financially 

wasteful, may still be adopted in order to achieve the high levels of
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redwdancy required.

The attainment of high levels of redwdancy is facilitated by the 

levelling off of performances for high levels of redwdancy. If, for 

example, the performance obtained with a level of redwdancy of six is 

acceptable, then the performance obtained with a level of eight is also 

likely to be acceptable.

Unfortunately if performance falls below an acceptable level then 

there is no way of improving it other than by adopting module-based secure 

point insertion. It was hoped that increasing the number of computers 

would increase the performance, but convergence prevents this.

The adoption of modules into PROSUR's P/L and the use of module- 

based secure point insertion leads to an improved performance over all 

levels of redwdancy. The performance improvement is more significant in 

the higher ratio configurations trtiere it forms a higher percentage of the 

performance that can be obtained without process survivability. As the 

level of redwdancy is increased this advantage is reduced and it is 

possible that it might become negligible for very high levels of 

redwdancy.

As expected the process survivability overheads Increase as the 

SEND frequency increases. This may inhibit the adoption of process 

survivability for applications that involve a high frequency of message 

passing.

Response time in a real time system is a very Important 

characteristic. Unfortwately it was not possible to measure response time 

directly. However, it is possible to hazard a guess as to how response 

time might be affected.
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The most primitive response to a request is the RECEIVE-work-SEND 

cycle executed by every process. More complex requests would involve the 

server process issuing requests of its own to other processes. Hence, the 

increase in the time it takes to perform a RECEIVE-work-SEND cycle is a 

rough indication of the way that response time would be affected.

Referring back to the arguments presented in Section 10.6.1, the 

time it takes to perform the RECEIVE, SEND and secure point part of the 

cycle will increase linearly with the increase in redundancy. The time 

taken to perform the work phase of the cycle will depend on the size of the 

ready-queues and these will decrease as the time it takes to perform the 

rest of the cycle increases.

He believe that vrtiile performance remains unaffected by process 

survivability the response time will also be unaffected. Once the 

performance starts to fall, response time will increase linearly. As the 

ready-queues get smaller, there may be a slight decrease in the rate of 

increase but nothing as drastic as the levelling off that can be seen in 

the performance curves.

It was found that, contrary to expectations, configuration 

performance was not limited by the network. However, were the number of 

application processes to be increased, then the extra load on the network 

might result in the network becoming the limiting factor, and all of the 

above conclusions might be nullified.

Whether or not a particular performance or a particular response 

time is acceptable depends on the particular application involved. The 

most encouraging result is the levelling off of performance as the level of 

redundancy increases, rather than a steady fall. Unfortunately, this 

advantage may be nullified by the linear, or near linear, increase in 

response time as redundancy increases.
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11. Conclusion

11.1 The aim of process survivability

Possibly the greatest advantage that a distributed computer control 

system has over a centralised system Is that the failure of one or more of 

Its constituent computers does not prevent the other computers from 

operating normally. This advantage can be further enhanced by basing the 

distributed computer control system around a local area network so that the 

computers can be physically dispersed over a large area thereby limiting 

the damage that could be caused by a major catastrophe such as a fire. 

Unfortunately the loss of the executive and application software that was 

hosted by a crashed computer will prevent the surviving part of the control 

system from fulfilling its role. Although after a crash the majority of 

the distributed computer control system's processing power is still 

available the control system will have been crippled by the loss of vital 

software components.

Whereas it is possible to design the executive software of a 

distributed computer control system so that the loss of one of its 

constituent kernels will not prevent the others from functioning normally, 

it is not possible to do this for the application software. Process 

survivability was conceived as a way of preventing application processes 

from being lost in a computer crash.

Process survivability is a way of making the application level of a 

distributed computer control system 'n out of m' crash tolerant: the 

computer control system is able to tolerate the crashing of n out of its m 

computers. Process survivability enhances a distributed computer control 

system's natural high availability by making it invulnerable to computer 

crashes.
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11.2 A review of the work presented In this thesis

In this thesis we have established the need for process 

survivability in a distributed computer control system and we have 

Identified a number of applications that could beneficially be based on 

such a control system. Previous work in this field has been described and 

we have related process survivability to this work.

We have described PROSUR the distributed computer control system 

that we specially designed in order to have an environment in tdiich to 

design and develop process survivability.

The major part of this thesis is concerned with the implementation 

of process survivability in PROSUR. We have described how process-sets are 

implemented by the distributed kernel level, and how the process 

survivability level recovers the restarted application processes to a 

consistent state after a crash.

We believe, and we hope that it has been shown, that process 

survivability is practicable and that it could be implemented. However, 

the factor that would decide whether process survivability could be adopted 

or not, is the way in which the distributed computer control system's 

performance is affected by the overheads resultant from process 

survivability. A simulation study was performed to investigate this and 

the results of this study have been presented and some conclusions drawn.

11.3 An appraisal of process survivability

In Chapter 5 we specified that process survivability should ensure 

that all application processes survive multiple computer crashes (up to the 

limit of the processes' redundancy) no matter when these crashes occur, and 

that the provision of process survivability should be transparent to the 

application programmer. Furthermore, it was specified that each process
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should have only a single outstanding recovery point and that processes 

should be recovered Independently of each other, thereby avoiding the 

domino effect. He have been successful in meeting all of these 

requirements.

Another aim specified in Chapter 5 was to attempt to limit the 

overheads Imposed on the control system as a result of supporting process 

survivability. Unfortunately, because of the presence of time-dependent 

functions in PROSUR's P/L it is necessary to perform a secure point prior 

to every SEND. This seems to be a very high rate, although it is the same 

as that found in Tandem. A way of reducing the secure point rate was 

however described, and others no doubt could be found.

The simulation study has not provided us with a categorical answer 

to the question of whether process survivability is practical or not, but 

then, it was not intended to. Instead it has provided us with a number of 

interesting indications as to process survivability's practicality over a 

range of different situations. Without repeating the summary of the 

previous chapter we would like to reiterate the major conclusion that we 

have drawn.

Process survivability is better suited to distributed computer 

control systems that have a high ratio of processes to computers. The 

performance obtained in these configurations is less affected by process 

survivability, and for high levels of redundancy the performance of these 

configurations is better than that of those configurations with a lower 

ratio of processes to computers. Even then, process survivability with 

high levels of redundancy may be precluded because of its effect on 

response time, which appears to increase linearly with increases in 

redundancy.
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A further point to be made is that process survivability was not 

designed to cope with process death, and in order to prevent

inconsistencies arising due to process death all processes have the same

level of redundancy, and recovery is only guaranteed for as long as the

number of computer crashes is within that level of redundancy. If process 

survivability were to be enhanced so that it could cope with process death, 

then each process could have its own level of redundancy based on its 

importance, and this should reduce the overheads. In Appendix H we briefly 

describe the inconsistencies that can arise after a process dies and we 

explain the potential set of circumstances that causes them to arise.

11.it Future development

We believe that process survivability as it stands is a sound basis 

on which to develop a crash tolerant distributed computer control system. 

Rather than develop the combination of PROSUR and process survivability any 

further, we believe that it would be more profitable to add process 

survivability to an established distributed computer control system, 

perferably one with a definite application, as this would allow

concentration on and direction of process survivability's future

development.

Although process survivabiltiy was developed specifically for 

PROSUR this does not preclude its inclusion in other distributed computer 

control systems. Process survivability has been designed to be transparent 

to the application prograsimer. This transparency means that process 

survivability could be added to an existing distributed computer control 

system without having to rewrite application programs and re-train 

application programmers. Re-working would be limited to the distributed 

kernel level and to the hardware level so that they provide the support 

needed by the process survivability level. Although process survivability 

has been designed for a distributed programming language based on
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asynchronous message passing we cannot see any reason why it could not be 

adapted to cope with any of the other Interprocess communication 

mechanisms.

If process survivability is to be exploited to its full potential 

Its future must be In this direction: It must be developed with a 

particular application in mind.



Appendix A. Clase Conatruct

The class construct described below is based on those proposed by 

Wirth (1978) and Brinch Hansen (1977), and the terminology used to describe 

them is taken from Dahl and Hoare 1972.

A class type defines an abstract data type by grouping together a 

complex data structure and the procedures that manipulate that data 

structure. An instance of a class type is called an object.

The syntax of a class type is shown in Figure A.a. A class type 

consists of a class heading, input divisions, export divisions, 

declarations and main body. The variables and procedures declared within a 

class are its attributes. The import and export divisions define the 

interface between the class and the rest of the program.

CLASS— <identifier>— «parameter list>;  ------------ — \.

I------------------------------------------------------------------------------- * ----------------- <
-^-IMPORT FROM «class identifier) «import list>;-><

-^-EXPORT «export list);--------------- >--------- '

-^•«declarations) «main body).

Figure A.a

The formal parameters in the class heading enable an object to be 

tailored to a specific task when it is created. The class's main body 

contains the code to initialise the object's data structure. To create an 

object the program executes the command:

»IT «objectname) ( «actual parameters) ) 

where «objectname) has been deolared to be an instance of some class type.
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When INIT la called the object la created according to the parameter'a 

apeelflcatlon and the claaa'a main body la executed to lnitlaliae the 

object'a data atructure. Once an object haa been created lta data atructure 

exlata forever, and the data atrueture'a valuea are maintained even when 

control la not within the claaa'a code.

The Export diviaion apecifiea thoae procedurea declared within the 

claaa that can be uaed by the aurrounding program and by other claaaea. 

Only thoae procedurea that are explicitly exported by a claaa can be 

acceaaed. The other proeedurea and the data atructure declared within a 

claaa are private.

The Import diviaiona apeclfy thoae procedurea that are uaed by the 

claas and which are defined outaide of it. Theae procedurea can come from 

other claaaea and from the main program ltaelf. Each source has a separate 

Import statement.

The main program Implicitly Imports all procedures exported by its 

classes. Any procedure declared globally in the program la Implicitly 

exported to Its classes and implicitly imported by its classes.

To use a procedure exported by an object the procedure's name is 

preceded by the name of the object (if any), for example:

To.Send ( .... )

would call the procedure 'Send' imported from an object called 'To'.
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Appendix B. Exception Raising

In order to support exception raising each kernel maintains a 

number of tables and linked lists. Figure B.a illustrates these tables and 

lists for a particular kernel.

Computer
number

input
pipe

number

2n

Figure B.a

The first of these tables, Table 2 in Figure B.a, is part of every 

primary replicate's and every backup replicate's process descriptor. This 

table defines for each of the replicate's input pipes whether that pipe is 

used to carry user messages (in irtiioh case it is a Data In) or recovery 

messages (in which case it is a Revyln). The table also contains, for each
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input pipe that carries user messages, a list of the computer addresses of 

the replicates of the sender process that is linked to that input pipe. 

These lists are maintained in the order in which the sender’s replicates 

will be activated. There is no such list for input pipes carrying recovery 

messages.

Our example shows a particular replicate's table. The sender 

linked to this particular replicate by input pipe number 1 has replicates 

on computers 1, 4, 2 and others. The computer address of the sender’s 

current primary replicate is the first number in the list - 1.

The second table, Table 1 in Figure B.a, links together all of the 

list elements for a particular computer; there is only one of these tables 

per computer. The final piece of information needed by a kernel is its 

host computer's address.

All of the information needed to fill these tables is provided by 

the system manager at system initialisation time.

Every time a kernel places a message into an input pipe it 

determines whether that input pipe carries recovery messages or user 

messages. If the former is true then that pipe must be a Revyln in an 

Oehannel class and so that class's exception is raised.

When the kernel detects the crash of a computer it uses its Table 1 

to remove that computer's address elements from the input pipe's lists. If 

an element is removed and it is at the front of the list, and if the 

replicate to which the input pipe belongs is a primary replicate, then an 

exception is raised in the input channel class that contains that input 

pipe.
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In our example Table 2 belongs to a primary replicate. If computer 

1 crashes then the exception In the Input channel class to which input pipe 

number 1 belongs will be raised. The kernel will pass to the exception 

handler the receiver's current computer address (4) and the new computer 

address of the sender - 4.

When a backup replicate is activated all of its input channel 

exceptions are raised because all of its input channels have broken. Each 

exception handler is passed the address of the backup replicate's host 

computer and the address of that channel's sender (the first entry in that 

class's input pipe's list). If in our example Table 2 were to belong to a 

backup replicate that is activated, then the values 4 and 1 would be passed 

to the exception handler of the input channel class that hosts input pipe 

1.
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In our example Table 2 belongs to a primary replicate. If computer 

1 crashes then the exception In the Input channel class to which Input pipe 

number 1 belongs will be raised. The kernel will pass to the exception 

handler the receiver's current computer address (4) and the new computer 

address of the sender - 4.

When a backup replicate Is activated all of Its input channel 

exceptions are raised because all of its input channels have broken. Each 

exception handler is passed the address of the backup replicate's host 

computer and the address of that channel's sender (the first entry in that 

class's input pipe's list). If in our example Table 2 were to belong to a 

backup replicate that is activated, then the values 4 and 1 would be passed 

to the exception handler of the input channel class that hosts input pipe 

1 .
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Appendix C. Class Code

* The Input Channel Class

Class Iehannel (size : Integer; basetype : Type);

Import From SP
Timestamp, Execute;

Export
RECEIVE, PENDING;

Const 
extsize 
mRcount

s size • 2; 
= size;

Type
extbasetype = Record

seqno : Integer; 
data : basetype; 

End;

IPCstatus s (succeeded, failed);

RevyMsge = Record
seqno : Integer; 
loc : Integer; 

End;

Var
Da tain : klnputpipe [extsize] Of extbasetype;
Rseqno : Integer;
Rcount : Integer;
RevyOut : koutputpipe Of RevyMsge;
timestamp : Integer;
Pflag : Boolean;
Pstore : basetype;
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{ RECEIVE and PENDING }

Procedure Read (Var message : basetype; Var status : IPCstatus;
timeout : Integer);

Var
m : extbasetype;

Begin
With Exeeptionsoff Do 
Begin

If timestamp < SP.Timestamp Then Begin
Rcount :« 0;
kfree (Dataln);
timestamp : = SP.Timestamp;

End;
kread (Dataln, m, status, timeout);
If status = succeeded Then Begin

message := m.data;
Rseqno := m.seqno;
Rcount :■ Rcount ♦ 1;
If Rcount = mReount Then SP.Execute; 

End;
End;

End;

Procedure RECEIVE (Var message : basetype; Var status : IPCstatus;
timeout : Integer);

Begin
If Pflag Then Begin

status : = succeeded; 
message := Pstore;
Pflag :* false;

End
Else Read (message, status, timeout);

End;

Function PENDING : Boolean; 

Var
status : IPCstatus;

Begin
If Pflag Then PENDING :* true 

Else Begin
Read (Pstore, status, 0);
If statusssucceeded Then Pflag := true

Else Pflag :* false;

End;

PENDING :* Pflag; 
End;
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{ The Exception Handler }

Exception Handler Recovery (rloc, sloe : Integer); 

Var
m : extbasetype;
rm : RcvyHsge ; 
status : IPCstatus;

Begin
With Exceptionsoff Do 
Begin

rm.loc :» rloc;
kpeeklast (Dataln, m, status, 0);
If status s succeeded Then rm.seqno :• m.seqno

Else rm.seqno :« Rseqno; 
kconnect (RcvyOut, sloe); 
ksend (RcvyOut, rm, status, -1);

End ;
End;

Begin 
Rseqno 
Rcount 
timestamp 
Pflag 

End.

{ Main Body - initialisation code }

* 0;
= 0;
« 0 ;
= false;

244



The Output Channel Class

Class Oehannel

Import From SP 
Execute;

Export
SEND;

Const
extslze

Insecure
WaitRevy

Type
extbasetype

IPCstatus

RcvyMsge

Var
Da ta Out 
RcvyStore

Sseqno
ngagged
Rcvyln

(size : Integer; basetype : Type);

= size • 2;

= true;

= Record
seqno : Integer; 
data : basetype; 

End;

s (succeeded, failed); 

= Record
seqno : Integer; 
loc : Integer; 

End;

: koutputpipe Of extbasetype;
: Record

fifo : Array [1..extsize] Of extbasetype; 
top : Integer ;

End;
: Integer ;
: Integer;
: kinputpipe [MaxNoHits] Of RcvyMsge;
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{ SEND }

Procedure SEND (message : basetype; Var status : IPCstatus;
timeout : Integer);

Var
m : extbasetype;

Procedure save (m : extbasetype);

Begin
{ works with exception handling turned off by SEND )
With RcvyStore Do 
Begin

If top = extslze Then top := 1
Else top :* top + 1;

fifo[top] := m;
End;

End;

Begin
SP. Execute;
Waituntil ( WaitRcvy = false );
With Exceptionsoff Do 
Begin

Sseqno := Sseqno + 1; 
m.seqno :» Sseqno; 
m.data:s message;
If ngagged > 0 Then Begin

status := succeeded; 
ngagged := ngagged - 1;

End
Else ksend (DataOut, m, status, timeout); 

If status = succeeded Then save (m);
End;

End;

246



{ The Exception Handler }

Exception Handler Recovery

Var
rm
status

: RcvyMsge; 
: IPCstatus

Procedure replace (sseq, rseq : Integer);

Var
i, J : Integer;

Begin
{ works with exception handling turned off by recovery }
With RcvyStore Do
Begin

ngagged := 0;
For i : = (top + 1) - (sseq - rseq) To top Do

End;

Begin { Recovery }
With Exceptionsoff Do 
Begin

WaitRcvy :* false;
kreceive (Revyin, rm, status, 0);
kconnect (DataOut, rm.loc);
If Sseqno > rm.seqno Then replace (Sseqno, rm.seqno)

Else If Sseqno < rm.seqno Then ngagged := rm.seqno - Sseqno 
Else { do nothing, they are already consistent };

End;
End ; { Recovery }

Begin
If i <= 0 Then J :* extsize ♦ i

Else j :■ i;
If fifo[ J].seqno > rseq

Then ksend (DataOut, fifo[J], status, -1)
End;

End;

{ The Main Body - initialisation code )

Begin
Sseqno
RcvyStore. top
ngagged
WaitRcvy s false

End.
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The Secure Pointing Claes

Class SPoint ( );

Export
Timestamp, Execute;

Var
tstamp : Integer;

Function Timestamp : Integer; 

Begin
Timestamp : = tstamp;

End;

Procedure Execute;

Begin
tstamp : = tstamp + 1; 
ksecurepoint;

End;

Begin
tstamp : = 1; 

End*



The Device Class

Class IOdeviee (device : IOdeviee; basetype, argtype : Type);

Export
DOIO;

Type
IOdevice = (Lineprinter, disk, VDU ... );
IOoperation = (input, output, move, control);
IOstatus = (complete, failure ... );

Procedure DOIO (operation : IOoperation; Var data : basetype;
Var status : IOstatus; Var arguments s argtype);

Begin
kdoio (operation, data, device, status, arguments); 

End;

Begin
{ empty ) 

End.
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Appendix D. Performance Figures

All figures are shown to two decimal places.

Mean work period - 2 seconds
Secure point insertion - module-based

Mean

level of redundancy

0 1 2 3 4 6

4 25 25 25 25 na na

8 49.32 49.40 49.19 49.18 49.45 49.30

configuration 16 90.28 93.80 96.08 89.30 94.00 90.68

32 176.81 178.85 162.36 158.72 146.44 114.44

192 954.02 262.32 140.35 92.78 71.38 48.25

Standard Deviation

configuration

level of redundancy

0 1 2 3 4 6

4 5.66 5.57 5.76 5.85 na na

8 9.45 9.35 7.71 11.37 9.62 9.20

16 15.00 14.05 11.85 16.08 13.56 13.18

32 17.28 14.90 29.15 19.96 15.68 14.77

192 9.03 6.15

ooT“e& 3.48 3.56 2.71
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Mean work period - 2 seconds
Secure point insertion - worst-case

configuration

configuration

Mean

level of redundancy

0 1 2 3 4 6

4 25.00 25.00 24.98 25.00 na na

8 49.32 49.33 49.47 49.05 49.68 48.66

16 90.28 94.74 93.29 90.70 83.83 62.81

32 176.81 172.61 142.52 107.46 87.31 62.39

192 954.02 262.32 140.35 92.78 71.38 48.25

Standard Deviation

level of redundancy

0 1 2 3 4 6

4 5.66 5.81 5.86 6.02 na na

8 9.45 8.92 9.69 9.28 8.29 8.90

16 15.00 13.89 16.24 14.05 12.25 10.33

32 17.28 16.93 18.70 20.12 15.96 10.55

192 9.03 6.15 4.18 3.48 3.56 2.71
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Mean work period - 0.5 seconds
Secure point Insertion - module-based

configuration

configuration

Mean

level of reduidancy

0 1 2 3 4 6

4 25.000 24.82 24.77 24.90 na na

8 48.03 48.78 48.81 48.68 48.44 46.85

16 93.54 93.48 91.79 85.60 74.16 54.13

32 173.83 167.17 125.59 90.35 73.95 51.15

192 913.67 117.54 58.80 39.24 30.53 20.05

Standard Deviation

level of redundancy

0 1 2 3 4 6

4 3.11 3.46 3.58 3.14 na na

8 6.16 5.00 5.40 4.36 5.18 4.38

16 7.22 7.38 7.47 7.92 6.63 6.34

32 11.08 9.48 8.47 6.11 6.00 5.65

192 4.35 1.50 1.12 0.79 0.78 0.46
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Mean work period - 0.5 seconds
Secure point insertion - worst-case

Mean

configwation

configuration

level of redundancy

0 1 2 3 4 6

4 25.00 24.78 24.97 24.82 na na

8 48.03 48.72 48.69 47.71 42.02 30.80

16 93.54 92.13 75.43 55.25 42.91 29.66

32 173.83 130.47 75.11 52.35 40.54 28.14

192 913.67 117.54 58.80 39.24 30.53 20.05

Standard Deviation

level of reduidancy

0 1 2 3 4 6

4 3.11 3.23 3.16 3.33 na na

8 6.16 5.18 4.87 3.86 4.76 4.09

16 7.22 7.64 6.93 5.11 5.06 4.20

32 11.08 7.50 6.83 4.76 4.46 3.21

192 4.35 1.50 1.12 0.79 0.78 0.46
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Mean work period - 0.12 seconds
Secure point insertion - nodule-based

configuration

configiration

Mean

level of redundancy

0 1 2 3 4 6

4 24.59 24.74 24.75 24.61 na na

8 48.89 48.28 47.97 43.78 36.45 25.74

16 95.00 90.79 65.28 46.53 35.52 24.12

32 177.68 113.73 61.71 42.95 32.90 22.01

192 551.88 50.17 24.84 16.46 12.78 8.54

Standard Deviation

level of redwdancy

0 1 2 3 4 6

4 2.04 1.79 1.76 1.74 na na

8 2.66 2.76 2.72 2.98 2.57 2.14

16 3.85 3.68 3.15 3.40 2.39 1.59

32 5.44 4.01 2.77 2.40 1.92 2.00

192 0.39 0.17 0.23 0.10 0.22 0.09
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Mean work period - 0.12 seconds
Secure point Insertion - worst-case

Mean

config »ration

configuration

level of redundancy

0 1 2 3 4 6

4 24.59 24.71 24.63 23.12 na na

8 48.89 48.18 38.84 27.26 20.86 14.09

16 95.00 70.20 37.64 25.62 19.41 13.24

32 177.68 67.13 34.22 23.45 17.99 12.15

192 551.88 50.17 24.84 16.46 12.78 8.54

Standard Deviation

level of redundancy

0 1 2 3 4 6

4 2.04 1.75 1.71 1.51 na na

8 2.66 2.94 3.47 3.05 1.96 1.60

16 3.85 3.66 2.19 1.87 1.72 1.22

32 5.44 3.25 2.08 2.45 1.33 1.37

192 0.39 0.17 0.23 0.10 0.22 0.09
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Appendix E. Accuracy of the Simulation Results

The performance of a configuration under a given set of 

circumstances Is defined by a distribution X with a mean E[X]. We wish to 

estimate E[X] for each experiment performed.

Running an experiment once produces a sample from the distribution 

X. By repeating the experiment with different random number seeds we can 

produce a sample mean X, which is the average of the samples taken.

The sample mean x Is an unbiased estimator of E[X] (Sanders et al. 

1976). We aimed to take sufficient samples from each distribution In order 

to achieve a 99* confidence level that E[X] will be within 0.5 seconds of 

the sample mean i.e.

P ( X - 0.5 < E[X] < X + 0.5 ) = 0.99

Unfortunately, the amount of processing needed to achieve this 

level of accuracy for all 138 experiments was so great that the computer 

time and resources required to perform it were unavailable. Instead we 

first ran each experiment once so that the important ones could be 

Identified, and then these 54 were repeated (each time with a different 

random number seed) to achieve the required accuracy. Even then it was not 

possible to do this for all 54, as some of them would have had to be run 

several hundred times.

Other less important experiments were run 11 times each, and others 

only once. In each case the sample mean is used to estimate E[X] although 

without any great accuracy.

The tables below show which experiments are accurate (those marked 

with a '•') and how many samples were taken from each of the others. To 

achieve this limited overall accuracy required Just under 100 hours of CPU 

time on a CDC 7600.

256



Mean work period - 2 seconds
Secure point insertion - module-based

configuration

Mean work period - 2 seconds
Secure point insertion - worst-case

configuration

Mean work period - 0.5 seconds
Secure point insertion - module-based

level of redimdancy

0 1 2 3 4 6

4 1 11 11 11 na na

8 1 • • 1 • 1

configuration 16 1 28 • 1 • 1



Mean work period - 0.5 seconds
Secure point Insertion - worst-case

configuration

level of redundancy

0 1 2 3 4 6

4 1 11 11 11 na na

8 1 • ft 1 • 1

16 1 • ft 1 • 1

32 1 31 • 1 • 1

192 1 11 11 1 h 1

Mean work period - 0.12 seconds
Secure point Insertion - module-based

configuration

level of redundancy

0 1 2 3 4 6

4 1 11 11 11 na na

8 1 • • 1 * 1

16 1 • * 1 « 1

32 1 • ft 1 • 1

192 1 11 11 1 h 1

Mean work period - 0.12 seconds
Secure point insertion - worst-case

level of redundancy

configuration

0 1 2 3 4 6

4 1 11 11 11 na na

8 1 ft ft 1 • 1

16 1 ft ft 1 • 1

32 1 ft ft 1 • 1

192 1 11 11 1 h i
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I

Appendix F. Send, Receive and Secure Point Tlmea

All figures are shown to two decimal places, or more where appropriate.

Mean work period - 0.5 seconds
Secure point insertion - worst-case

Mean Receive Time

configuration

level of redundancy

0 1 2 3 4 6

4 9.07 9.81 9.48 9.23 na na

8 6.00 5.52 5.20 4.84 5.46 7.09

16 3.07 2.83 3.19 4.27 5.43 7.70

32 1.63 1.85 3.11 4.28 5.54 7.43

192 0.09 0.84 1.36 2.08 2.38 3.50

Standard Deviation of Receive Time

level of redundancy

configuration

0 1 2 3 4 6

4 16.71 18.79 18.39 17.28 na na

8 11.31 10.21 9.94 9.12 10.33 13.86

16 5.59 5.34 6.07 7.92 10.34 15.14

32 2.91 3.42 6.01 8.41 10.58 13.76

192 0.14 1.43 2.44 3.62 4.07 6.12
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Mean Send Delay

configuration

configuration

level of redundancy

0 1 2 3 4 6

4 0.000003 0.0057 0.013 0.026 na na

8 0.000014 0.02 0.058 0.13 0.20 0.31

16 0.00006 0.084 0.21 0.27 0.32 0.36

32 0.00021 0.27 0.33 0.40 0.39 0.42

192 0.02 0.48 0.41 0.45 0.50 0.49

Standard Deviation of Send Delay 

level of redundancy

0 1 2 3 4 6

4 0.00012 0.01 0.018 0.03 na na

8 0.00029 0.028 0.065 0.14 0.21 0.30

16 0.00088 0.097 0.23 0.29 0.34 0.36

32 0.0023 0.31 0.35 0.40 0.38 0.43

192 0.05 0.70 0.67 0.72 0.79 0.78
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Mean Secure Point Time

configuration

configuration

level of redundancy

1 2 3 4 6

4 1.98 3.92 5.42 na na

8 1.00 2.21 3.87 5.99 10.43

16 0.85 2.84 5.11 7.27 11.38

32 1.41 3.85 6.20 8.31 12.93

192 3.22 7.87 12.13 16.22 25.14

Standard Deviation of Secure Point Tine 

level of redundancy

1 2 3 4 6

4 0.90 1.61 1.99 na na

8 0.47 0.89 1.19 1.74 2.63

16 0.33 1.04 1.77 2.31 3.30

32 0.70 1.23 1.85 2.31 3.13

192 1.17 2.02 2.73 3.29 4.92
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Appendix G. ALU Performance Figures

All figtres are shown to two decimal places.

Mean work period - 0.5 seconds
Secure point insertion - worst-case

level of redundancy

configuration

0 1 2 3 4

4 0.05 11.64 25.6 41.29 na

8 0.09 23.68 53. **1 77.99 88.19

16 0.16 46.44 78.13 86.07 88.97

32 0.28 55.63 74.15 80.56 82.73

192 8.79 51.91 57.59 60.73 62.73

6

na

94.05

91.79

85.77

63.99
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Appendix H. Proceaa Death

If all of an application proceaa'a replicatea are loat then that 

proceaa la aaid to have died. When a proceaa dlea inconsistencies do not 

arise between the dead process and its communicants, but they can arise 

between two processes that commwicate with each other via the dead 

process. There follows a description of how these inconsistencies arise.

Figure Ha shows three processes at the time of a crash. Prior to 

the crash Process-1 sent a message to Process-2, and then, as a direct 

result of receiving this message, Process-2 sent Proeess-3 a further 

message. The crash results in Process-1 being restarted, and in Proeess-2 

dying. On restarting Prooess-1 will repeat its SEND and this will fail 

because Process-2 is dead. This leads to an inconsistency arising between 

Process-2 and Process-3 as Process-3 has received a message which with 

respect to Process-1's current state it should not have been sent.

CRASH DIES

SEND

Process-1

SEND- RECEIVE

RECEIVE

Process-2 Process-3

Figure H.a
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This Inconsistency cannot be prevented as the recovery of a process 

to a consistent state requires the assistance of that process's 

comminicants. In our example Process-1 cannot be recovered by gagging its 

SEND, because Process-2 has died. Tfce only way that this could be overcome 

is if a process's recovery were to be completely self-contained and not 

require assistance from its comminicants.
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