
This work is protected by copyright and other intellectual property rights and
duplication or sale of all or part is not permitted, except that material may be
duplicated by you for research, private study, criticism/review or educational

purposes. Electronic or print copies are for your own personal, non-
commercial use and shall not be passed to any other individual. No quotation
may be published without proper acknowledgement. For any other use, or to

quote extensively from the work, permission must be obtained from the
copyright holder/s.

Process Survivability in a Distributed Computer Control System.

Peter Trueman B.Sc. M.Sc.

This thesis is submitted in partial
fulfilment of the requirements for the degree

of Doctor of Philosophy

University of Keele

1985

Abstract

Possibly the greatest advantage that a distributed computer control

system has over a centralised control system is that the failure of one or

more of its constituent computers does not prevent the other computers from

operating normally. Unfortunately, the loss of the executive and

application software hosted by a failed computer will prevent the surviving

part of the control system from fulfilling its role. Whereas it is

possible to design the executive software so that the loss of one of its

constituent kernels will not prevent the others from functioning normally,

it is not possible to do this for the application software.

Process survivability was conceived as a way of preventing

application processes from being lost as a result of a computer failure.

Process survivability enhances the high availability of a distributed

computer control system’s hardware by making its application software

invulnerable to computer failure. Process survivability is performed in a

way that is transparent to the application programmer.

In this thesis we first describe the distributed computer control

system called PROSUP (PROcess SURvivability) which we designed as an

environment in which to develop process survivability.

The major part of this thesis is concerned with the design and

development of process survivability for PROSUR. In particular, we

describe how redmdant inactive copies of all of the application processes

are incorporated into the application software and how the processes are

recovered to a consistent state after a computer failure.

As well as showing that process survivability is practicable, we

also investigate its practicality. A simulation study of a distributed

computer control system incorporating process survivability has been

performed to gain an insight into the effects that process survivability

might have on a control system's performance. The results of this

simulation are presented and a number of interesting conclusions are drawn.

Acknowledgements

I would like to thank Dr.K.H.Bennett, my supervisor, for the help

and guidance that he has given me throughout my research. I would also

like to thank Professor C.M.Reeves for his encouragement.

The financial support of the Science and Engineering Council of

Great Britain is gratefully acknowledged.

Finally, especial thanks are given to my parents and to Julia for

the support, encouragement and assistance that they have always given me.

1

Contents

Acknowledgements ..

Contents ..

1. Introduction ..

1.0 Introduction ..

1.1 Distributed computer control systems

1.2 Process survivability ...

1.3 The cost of process survivability

1.4 Possible applications ...

1.5 Summary of contents of thesis

2. Distributed Computer Control System Organisation

2.0 Introduction... . * * * *

2.1 The potential advantages

2.2 Existing distributed computer control systems

2.2.0 Introduction ...

2.2.1 COMIC ...

2.2.2 Distributed Sensor Network (DSN) ‘

2.2.3 A Signal Processing System '

2.2.4 Action Data Network (ADNET)

2.2.5 Distributed Processes

2.3 A generalised distributed computer control system organisation

2.3.0 Introduction ...

2.3.1 The application level

2.3.2 The distributed kernel level

2.3.3 The hardware level

2.4 Summary ..

1

ii

1
1
5
7

8
10

12

15
15
16
17
17
17
19
19
20

21

22

22
22

28

29
30

il

3. An Introduction to Fault Tolerance............

3.0 Introduction

3.1 A vocabulary for discussing fault tolerance .

3.2 Fault tolerance and fault intolerance

3.3 The four phases of fault tolerance

3.** Protective redundancy.......................

3.5 The hardcore

3.6 An example: the recovery block scheme

3.6.0 Introduction

3.6.1 An overview

3.6.2 Error detection

3.6.3 Damage assessment and error recovery .

3.6.4 Fault repair

3.7 Another example: the JPL-STAR computer . . .

3.7.0 Introduction

3.7.1 Hardware and software organisation . .

3.7.2 Error detection and fault repair . . .

3.7.3 Backward error recovery

3.7.4 Process survivability in STAR

3.8 Fault tolerance and process survivability . .

31

31

31

36

37

40

42

43

43

44

45

46

46

47

47

48

49

50

51

52

4. Crash Tolerance in Distributed Computer Control Systems

4.0 Introduction

4.1 Process redundancy, an introduction . . . • • • • •

4.2 Masking redundancy

4.2.0 Introduction

4.2.1 Masking redundancy in theory

4.2.2 Masking redundancy in practice

54

54

55

57

57

57

62

664.3 Standby redundancy

4.3.0 Introduction

iii

66

It. 3.1 Standby redundancy in t h e o r y

4.3.2 Standby redundancy in p r a c t i c e

4.it Summary..

5. An Introduction to Process Survivability

5.0 Introduction ..

5.1 The aims of process survivability

5.2 An introduction to the implementation of process survivability

5.3 Comparisons with existing crash tolerant systems

5.4 Summary ..

6. PROSUR and the Foundations of Process Survivability

6.0 Introduction ..

6.1 Application level ..

6.2 Process survivability level

6.3 Distributed kernel level

6.4 Hardware level ..

6.5 PROSUR's shortcomings..

6.6 Summary ..

7. The Inconsistencies That Can Arise After A Crash

7.0 Introduction ..

7.1 Inconsistencies between two communicating processes

7.1.0 Introduction ..

7.1.1 Sender restarted ..

7.1.2 Receiver restarted and channel contents lost

7.1.3 Sender and receiver restarted, and channel contents lost

7.1.4 Summary ..
7.2 Inconsistencies between a device handler and the environment .

7.3 Process-wide and system-wide inconsistencies

7.4 Summary ..

66

70

80

81

81

82

85

86
88

89

89

89

94

100
108

111
112

113

113

116

116

116

118

120
122
123
124
127

lv

8. An Introduction to Consistency Restoration after a Crash

8.0 Introduction ..

8.1 Restoring consistency In an application process

8.1.0 Introduction ..

8.1.1 Replacing the missing messages

8.1.2 Preventing the PENDING related inconsistencies

8.1.3 Premature messages

8.1.4 Summary and example

8.2 Time-dependent functions and secure point insertion

8.2.0 Introduction ...

8.2.1 Time-dependent functions

8.2.2 The secure point Insertion strategy

8.2.3 Summary ..

8.3 Restoring consistency In a device handler

8.1* Time-dependent functions and secure point establishment

8.5 Summary ..

9. Implementing Process Survivability In PROSUR

9.0 Introduction ..

9.1 Hardware and distributed kernel level characteristics

9.2 Process set implementation

9.2.1 Normal r u n n i n g ...

9.2.2 Error detection

9.2.3 Damage assessment

9.2.4 Recovery ...

9.2.5 Fault repair and continued running

9.3 Prooess recovery ...

9.3.0 Introduction ...

9.3.1 Normal r u n n i n g

9.3.2 Error detection

v

128

128

130

130

130

132

133

138

140

140

142

143

145

146

148

150

152

152

152

153

153

159

160

161

162

162

162

165

170

9.3.3 Damage assessment

9.3.1* Recovery

9.3.5 Continued running

171*

m

177

9.H Process survivability and multiple crashes

9.5 Reducing the number of secure points needed

10.2 The simulated distributed computer control system . .

. . . . 200

10.5.1 Increasing the level of redundancy

10.5.2 Varying the process to computer ratio

10.5.3 The two secure point insertion policies 210

10.5.H Increasing the SEND frequency

10.6 The causes of the effects described

10.6.1 Increasing the level of redundancy

10.6.2 Varying the process to computer ratio • • • •

10.6.3 Insertion policies and SEND frequencies . . •

Vi

11. Conclusion 232

11.1 The aim of process survivability........................... 232

11.2 A review of the work presented in this thesis...............233

11.3 An appraisal of process survivability.......................233

11.1» Future development..^35

Appendix A. Class Construct ... 2^7

Appendix B. Exception Raising 239
PUPAppendix C. Class C o d e ..

Appendix D. Performance F i g u r e s ..250

Appendix E. Accuracy of the Simulation Results 256

Appendix F. Send, Receive and Secure Point Times 259

Appendix G. ALU Performance F i g u r e s 262

Appendix H. Process Death ...

„ , 265References ...

vii

1. Introduction

1.0 Introduction

Once a computer has been Introduced into an organisation it quickly

becomes indispensable and the parent organisation has to rely on the

computer's continued correct operation. As familiarity with the computer's

powers increases so does the work load that is placed on it. This in turn

means that the organisation's ability to operate normally without the

computer decreases and the reliance placed on the computer's continued

operation increases.

When such reliance is placed on a computer any interruption to the

service that it provides (down-time) is much more than an inconvenience.

In an on-line data processing system down-time costs money, and in a

process control system down-time may not only be expensive, it may also

result in a situation arising *>ere lives are endangered. Protracted

down-time can result in the financial collapse of a commercial

organisation: a recent survey in the United States of America found that

"80* of companies would fail to survive a large scale computer disaster"

(reported in Bremen 1983)»

A computer is said to have failed when it ceases to meet the

specifications that define its behaviour. A computer's reliability is

normally measured by the probability that it will not fail during a

specified time period. The higher the probability and the longer the time

period, the more reliable the computer is.

Obviously there is potentially a large market for reliable

computers. Unfortunately computers are not inherently reliable as they are

made up of »«reliable components rtiich are combined in a complex manner.

Component reliability is continually being improved but it is very unlikely

that it will ever reach 100*, and even if it did, the extra complexity

1

resulting from combining the components together would bring the computer’s

reliability down to well below 100*. The alternative to producing a

computer that never goes wrong is to produce a computer that can continue

to operate normally despite component failures.

An early but still flourishing market for highly reliable computers

is the aerospace industry. Here computers have been used to support the

manned space flights and to pilot the deep space probes. More recently,

on-board computers are assisting pilots to fly marginally stable aircraft

by making the myriad minor alterations to the aircraft's control surfaces

that are needed to keep the plane in the air and which are beyond the

pilot’s capabilities to perform. Such applications require a computer

whose probability of failing during the aircraft or spaceship's mission

time is so small that it can be ignored. (In an aircraft, computer failure

must be as vnlikely as the wings falling off.) In order to obtain these

high reliabilities computers have been developed that are fault tolerant,

that is they are able to continue executing their programs normally and

without interruption despite component failures.

Fault tolerant aerospace computers are based on the incorporation

of protective redmdancy into the computer’s design. Protective redundancy

is comprised of the extra hardware components, processing power and

programs that are not needed to execute the computer’s programs, but are

there to provide fault tolerance either by masking component faults or by

replacing components when they are detected to be faulty (Carter and

Bouricius 1971). These computers do indeed achieve the high level of

reliability demanded by the aerospace industry. For example, the Fault

Tolerant Spaeebourne Computer has a 95* probability of remaining

operational for five years (O'Brien 1976).

2

Such computers can also withstand limited physical damage, but as

they are physically centralised It is likely that any major physical

damage, such as that resulting from a fire, would completely destroy them.

In fairness, It should be noted that these computers are not designed to

cope with such contingencies, as such a situation would most likely doom

the aircraft or spaceship anyway.

In the majority of applications the threat of physical damage must

be taken Into consideration. Numerous examples of organisations being left

computer-less after the complete destruction of their computers abound - an

Interesting selection of such stories can be found In Berthelsen 1983.

Lawrence 1983 and Wong 1983« These risks can be reduced by careful

management and by codes of practice, but they can never be removed. For

example, a recent UK survey showed that 47* of fires affecting computer

Installations started outside of that Installation (Wong 1983). In fact,

in certain applications It may be impossible not to place the computer in a

hostile environment where such damage Is likely - a computer In a warship

is one such example.

As the physical threat cannot be removed, the computer system must

be built to tolerate physical damage. This can be done In the same way

that component failure Is tolerated except this time the unit of hardware

redtndancy within the system must be the computer Itself. By basing the

system on more than one computer and by dispersing these computers, the

system cannot be totally destroyed by a single disastrous event at one

site.

The invention of the local area network, the falling cost of

processing power, and a growing demand for a system whose characteristics

include tolerance to computer failure have led to the development of

distributed computer systems. The title -distributed computer system* has

many meanings, but In this thesis we use It to describe a collection of

3

computerà that are physically Interconnected by a local area network, and

Which are logically interconnected to form a single unified system.

When one of the constituent computers of a distributed computer

system fails it does not prevent the remaining computers from operating

normally. The overall computing power has been reduced but the majority of

the power is still available. Furthermore, the physical dispersal that can

be achieved using a local area network effectively removes the chance of

all of the computers failing at the same time.

The crash of a computer results in the loss of the executive and

application software that was running on that computer. If this software

provided a service that is vital to the continued running of the surviving

computers* software, then although the majority of the distributed computer

system is intact it will no longer be able to fulfil its role. The

distributed computer system as a whole is still vulnerable to computer

fail »ire.

Distributed databases have been developed as a partial solution to

this problem, as by replicating the data they ensure that a computer

failure does not prevent access to vital data. However, all the other

software resources provided by that computer would be lost and these may be

equally vital.

The aim of the research described in this thesis is to investigate

how the vulnerability of a distributed computer system’s software can be

removed so that the full potential of its distributed hardware can be

exploited. The result of this research is process survivability.

Distributed computer systems can be used for real-time work,

ranging from process control in a chemical works to on-line transaction

processing in a bank. Distributed computer systems used for such

applications are called distributed computer control systems. Process

*

survivability has been developed for Inclusion in a distributed computer

control system because the cost of the control system failing, whether

measured in money or lives, is greater than in any other application.

1 . 1 Distributed computer control systems

As we shall show in Chapter 2, a distributed computer control

system consists of three levels: hardware, distributed kernel and

application.

The hardware consists of a number of computers linked together by a

local area network (Clark et al. 1978, Gee 1983). Devices are attached to

the computers.

Each computer has a kernel. The kernels cooperate with each other

to form the distributed kernel level. The distributed kernel level

provides the logical unity that is a characteristic of distributed computer

systems. This tnity is achieved by hiding the distributed nature of the

hardware from the application level, thereby providing it with a single­

computer environment in which to operate.

The application level consists of a number of application processes

that cooperate with each other to implement the control system's role.

Cooperation is by an interprocess communication mechanism which is provided

by the distributed kernel level.

When a computer crashes it ceases to work and the kernel and the

application processes that are running on it are lost. If the control

system is to continue then the distributed kernel level must be able to

operate without the lost kernel, and the application level must be able to

operate without the lost application processes.

5

As we shall explain In Chapters 2 and 4, kernels generally operate

autonomously and only cooperate with each other to support Interprocess

communication between application processes on different computers.

Because of this autonomy the loss of a kernel will not prevent the others

from working normally.

Application processes are not normally autonomous. Some

application processes provide unimportant services such as error logging,

and the absence of these would not prevent the rest of the control system

from operating. Other application processes however provide services that

are vital, and without them the surviving application processes will not be

able to operate properly.

Process survivability prevents an application process from being

lost in a crash. By applying process survivability to every application

process the application level is made crash tolerant. The application

level will be unaffected by a computer crash.

Unfortunately, even with process survivability the control system

as a whole is still not crash tolerant, as it is vulnerable to device loss

as well. When a computer crashes the devices attached to it can no longer

be used, and without these the control system's ability to fulfil its role

is reduced. To remove this vulnerability the devices themselves would have

to be replicated. Although this problem is outside of the scope of process

survivability we return to it in several of the later chapters.

The control system is also vulnerable to the failure of its

network. If the network fails the control system will be partitioned into

small groups of computers. Again this vulnerability can be removed by

replication.

6

1.2 Process survivability

Process survivability ensures that application processes survive

the crash of their host computer by causing those processes to migrate to

other computers. Process survivability effectively reconfigures the

application level to avoid the crashed computer. This reconfiguration is

transparent to the application processes.

Process survivability is achieved by incorporating non-running

copies of all of the application processes into the application level.

Non-running backup copies of each application process are placed on

different computers. At intervals the backup copies are updated so that

they form exact copies of their application process.

When an application process is lost in a crash, one of its backup

copies is activated to replace it. In effect the application process has

side-stepped the disaster, having been moved from the crashed computer to

one of the survivors. The remaining backups ensure the survivability of

the new generation of application process. By having multiple copies of

each process the system can withstand the simultaneous destruction of a

number of computers.

By applying process survivability to every application process we

ensure that in the event of a computer crash no application process is

lost. Process survivability makes the application level crash tolerant.

Process survivability has been designed to have the following

advantageous features:

a) Process survivability is transparent to the application programmer:

process survivability does not involve any code in the application

process, and so it will not fail due to programmer error.

7

b) As long as the number of computers that have failed is within the level

of process replication, crash tolerance can be maintained.

c) Multiple backups of each process ensure that crash tolerance is not

affected by simultaneous computer failures.

d) Crash tolerance Is not affected by what a process is doing when Its host

computer crashes. Process survivability coverage Is 100f (assuming that

a backup copy of that process still exists).

e) Process survivability is automatic. There is no operator involvement

other than specifying the level of redundancy required and the position

of the backups.

This thesis describes how process survivability can be implemented

for a 'paper* distributed computer control system called PROSUR (PROcess

SURvivability). Part of the preliminary work for the research described

involved designing PROSUR so as to create an environment in which process

survivability could be developed. PROSUR is called a paper system because

its characteristics have been specified on paper but it has not been

implemented.

1 .3 The cost of process survivability

All fault tolerance is based on some form of protective redundancy

- hardware, software or time (program execution). Process survivability is

no exception.

In a number of distributed computer control system applications,

maintaining the control system's response time to external events is

important. After a computer crash backups will be activated to replace the

lost application processes and the surviving computers will be running more

application processes than before. If the control system's response time

8

Is not to fall below acceptable levels, the computers must be configured

with sufficient spare processing power to absorb the extra load. Once this

spare power has been exhausted, further computer losses, although not

causing the control system to fail, will cause the control system to start

missing deadlines.

To be able to withstand n computer failures without its response

time degrading, a distributed computer control system must contain time

redundancy equivalent to the power of n computers. Thus the control system

has n computers that are surplus to its normal requirements and these are

the major cost of process survivability. (There are no designated standby

computers in the system; the active application processes are partitioned

between all of the computers.)

This expense can be spared if a degraded response time is

acceptable after a computer failure. The distributed computer system can

be configured without any computer redundancy, Just sufficient computers to

fulfil its primary role and no more. (The absence of computer redwidaney

does not mean that there is only one computer.) In the event of a computer

failure the control system's response time would become slower.

Further protective reduidancy in the form of extra code,

processing, and commwication network activity is needed to implement

process survivability. All of this will either reduce the amount of

profitable work that can be performed by the system, or will reduce the

system's response time. A simulation study of a distributed computer

control system incorporating process survivability has been performed in

order to ascertain What these overheads are likely to be, and to what

extent they might effect the control system's ability to perform useful

work. The results of the simulation and the conclusions drawn from them

are presented in a ^ater chapter.

9

The Inclusion of protective redundancy In any form Increases the

price of a system without Increasing Its through-put. Normally, a fault

tolerant system will only be adopted when the cost of a system failure Is

greater than the cost of preventing that failure.

1.U Possible applications

We believe that a distributed computer control system incorporating

process survivability will be of greatest value In process control

applications. Such applications require a crash tolerant service with a

guaranteed response time which will not degrade even in the event of

multiple failures. The cost of providing such a service should be

justifiable on both financial and safety grounds.

A particularly extreme process control application Is that of a

warship command and control system as the environment It operates in is

hostile and the cost of a system failure is high. "Military command and

control...systems must be able to operate fast, move fast or hide, and

function in the presence of physical (as well as other) counter measures"

(Licklider and Vezza 1978).

A naval command and control system controls the ship's weapons,

sensors and displays in order to assist the command team in their decision

making. The command and control system monitors the ship's environment

using various sensors such as radar and sonar, and presents this

information via displays to the command team. The decisions taken by the

command team are in turn executed by the command and control system.

A warship and its crew are dependent on the warship's command and

control system. If it fails in action the warship will quickly become

untenable. Current command and control systems are based on a single

computer thus making the ship vulnerable to a single hardware fault, and to

light action damage that would not otherwise have affected the ship.

10

By basing the command and control system around a distributed

computer control system that incorporates process survivability, a lot of

this vulnerability would be removed. Configuring the distributed computer

control system to include a high level of computer (and time) redundancy

should enable the command and control system to withstand action damage for

as long as the ship remains a viable weapons platform. Dispersing the

computers around the ship will reduce the chances of action damage

destroying all of the computers in one go. If multiple crashes occur,

process survivability's use of multiple backups for every application

process ensures that the application processes survive.

Ideally the cost of the computer redundancy would be easily

Justified by the need of a warship to remain operational. In practice

however, the level of reduidaney would be based on the expected threat, the

cost of providing that redundancy and the amount of space available to put

it in.

The value of basing a command and control system on a multi­

computer architecture has already been recognised. The Canadian navy has

adopted such a system for use in their warships as a way of limiting the

physical effects of action damage, but they do not attempt to achieve

anything like process survivability (Carruthers 1979). In Britain, the

Admiralty Surface Weapons Establishment are currently developing a

distributed computer control system for use in Royal Navy warships (Rowland

1982). This system does Incorporate crash tolerant application processes,

and it is the subject of later discussion in Chapters 2 and 4.

Any commercial institution that supports an on-line transaction

processing system for its own use, or for the use of its customers, would

benefit by adopting a crash tolerant computer system, as even a small

interruption in the computer's service would lead to a loss of money and

loss of customer goodwill. One of the earliest examples of an on-line

11

database, the SABRE airline reservation system (Plugge and Perry 1961), was

based on a fault tolerant computer system.

The threat of a major disaster completely destroying a computer is

now being taken very seriously, and has led to a number of 'hot standby'

sites (Harrington 1983, Berthelsen 1983) being set up as commercial

ventures. Hot standby sites are computer suites that can be taken over by

a client in the event of a disaster destroying his own computer system.

Basing an on-line transaction processing system on a distributed

computer control system that incorporates process survivability would

remove the threat of loss of service due to hardware faults or disasters.

The amount of protective redundancy that needs to be incorporated in such a

system is much less than in a command and control system, as the chance of

more than one failure at a time is remote. Process survivability's ability

to provide a crash tolerant service without any computer redundancy, albeit

at the risk of a degraded response time in the event of a failure, makes it

attractive for commercial applications.

This 'no extra cost' configuration also means that a crash tolerant

service could be provided t*>ere the extra cost could not normally be

Justified, for example as a University time-sharing system.

1 .5 Su"— arv of contents of thesis

Process survivability is based on the use of standby redundancy

within the application level of a distributed computer control system. The

first three chapters review the background to process survivability.

Chapter 2 describes the organisation of a number of existing

distributed computer control systems and describes the three-level model

outlined in Section 1.1. Chapter 3 reviews the theory of fault tolerance

and gives two extended examples of the use of standby redundancy to achieve

12

fault tolerance.

Chapter 4 describes the two ways In which redundant copies of

application processes can be Incorporated into the application level. A

major example of each Is given. The rest of the thesis describes process

survivability.

Chapter 5 reintroduces process survivability. Its alms,

characteristics, and relationship to previous work are described. The

succeeding chapters then describe how process survivability can be added to

a specific example of a distributed computer control system - PROSUR.

Chapter 6 describes PROSUR, the model distributed computer control

system that has been used as an environment in which to develop process

survivability. PROSUR complies with the three-level model presented in

Chapter 2, except that It has a fourth level Interposed between the

application level and the distributed kernel level. This level, the

process survivability level, supports the process redundancy incorporated

in the application level. The main emphasis in this chapter is on how

red endant copies of application processes are organised, maintained and

used.

An application process’s backups are updated at intervals to become

exact copies of that application process. So, when a backup is activated

it will be out of date, and any outstanding messages that have been sent to

its previous generation will have been lost. The combination of these two

effects means that the restarted application process's state will be

inconsistent with the state of the rest of the application level. Chapter

7 discusses these inconsistencies in detail.

Part of the process survivability level’s role is to remove these

inconsistencies. Chapter 8 introduces the way in which consistency is

restored. Finally, Chapter 9 presents full details of how the process

13

survivability level would be implemented.

He have developed a way of Implementing process survivability. But

is it practical, or will the overheads caused by its inclusion reduce the

level of work being done to a prohibitively low level? A simulation study

of PROSUR has been performed in order to examine this question. The

simulation's alms, implementation and results are described in Chapter 10.

Finally in the Conclusion (Chapter 11) we review the work presented

in this thesis, and describe the possibilities for the further development

and exploitation of process survivability.

1M

2. Distributed Computer Control System Organisation

2.0 Introduction

A real-time computer system monitors the state of Its environment

and reacts to events that occur within Its environment. A real-time system

can be divided Into the controlled system and the control system.

The controlled system comprises those devices that provide an

interface between the control system and its environment. The actual

composition of the controlled system will depend on the function of the

real-time system. For example, In an on-line transaction processing system

It may consist of disks, VDUs and line printers, and In an Industrial

process control system it may consist of thermometers, valves and relays.

The control system Is the regulating element in a feedback loop.

It consists of the computer programs that perform the regulating and the

computer hardware that those programs run on.

A distributed computer control system Is a control system that Is

based on a number of computers linked together by a communication network.

The control software Is dispersed between the computers with the Individual

software components cooperating with each other to fulfil the system's

overall role.

In this chapter we describe the software and hardware structure of

distributed computer control systems. Unfortunately there are as many ways

of organising a distributed computer control system as there are

distributed computer control systems. So we first review a selection of

existing and proposed systems, and then we present a generalised

description of a distributed computer control system. First however, we

review the potential advantage, that can be attributed to a distributed

system.

15

2.1 The potential advantages

Being based on a number of Interconnected computers, a distributed

computer control system's hardware has a number of extremely advantageous

characteristics s

1) The computers can be placed close to (or even within) the devices they

use, thus reducing the control system's response time to external

events. This will be particularly useful in an Industrial complex where

the controlled system is perforce widely dispersed.

2) Processing can be performed in parallel, again reducing response time.

Large tasks can be divided into smaller concurrently running tasks, and

events that occur in parallel in the system's environment can be handled

in parallel. The latter ability may be crucial in an emergency when

alarms are generated by a number of sources.

3) Such an architecture makes it possible to exploit the 'enough* principle

(Brenner et al. 1980). The enough principle states that by reducing

hardware resource restrictions it is possible to produce simpler

software. Hardware costs are continually falling, especially where

established technology is concerned, but software costs continue to

rise and so it is now economical to use hardware to reduce software

complexity and hence reduce the overall cost of a control system.

1») The architecture is very modular. The computers communicate via a

common medium - the communication network. As long as a computer can

use the network in the standard way, it can communicate with the other

computers. This means that the type of computers used can be tailored

exactly to the requirements of the system, and as these requirements

change, the hardware can be easily extended by the addition of other

computers. Thus the system's processing requirements are met very

economically.

16

5) The final and possibly the most important advantage is the high

availability of the system. When a computer suffers a hardware failure

it cannot prevent any of the other computers from running. The overall

system has suffered a reduction in its processing power, but the

majority of the power is still available. It is this characteristic

that is exploited by process survivability. (The system is however

reliant on the continued operation of the network.)

The first three of these advantages can be easily exploited by the

designer of a distributed computer control system. However if the control

system is to benefit from the last two of the advantages, then its software

must be designed so as to exploit them to their full potential.

2.2 Exlstltg distributed computer control systems

2.2.0 Introduction

In this section we briefly review the hardware and software layout

of a number of distributed computer control systems. From these

descriptions it will be seen that although details vary between systems

their overall structure is very similar.

In the following descriptions we have where possible standardised

the terminology used rather than use the authors« original terminology.

2.2.1 CONIC

CONIC (Kramer et ml. 1982, Lister et al. 1980) is designed for use

as an industrial process control system. Unfortunately, neither of these

papers gives an explanation of what the acronym CONIC stands for.

17

The envisaged hardware structure is that of a group of computers

Interconnected by a mesh of subnetworks linked together by gateways (Sloman

1982).
Software consists of a number of concurrently running processes.

Processes that cooperate to perform a particular service are grouped into a

structure called a module. The internal structure of a module is hidden

from other modules. A module must be located on a single computer, but

there may be more than one module on a computer.

Interprocess and intermodule commmleation is provided by

asynchronous message passing and by a request-reply message pair similar in

operation to a procedure call. Furthermore, interprocess communication

within a module can be performed by shared data.

In CONIC the software is divided into a hierarchy of distinct

levels: kernel, communication system, operating system, application

software and management software. Other than the kernel level, all of

these levels are implemented using modules, processes and message passing.

The kernels support multiprocessing and intra-computer message

passing, and they provide the routines needed by the local operating

system. Inter-computer message passing is performed by a commiailcation

module on each computer. The distinction between inter-computer and

intra-computer commuiicatlon is hidden from the higher levels.

The operating systems on each computer provide the services needed

to configure and reconfigire the application software, and management

software. The management software monitors the system’s activities and

controls the system's installation.

18

2.2.2 Distributed Senaor Network (DSN)

DSN (Rashid 1980) Is a fault tolerant system developed at

Carnegie-Mellon University. It is based on Three Rivers Corporation PERQs

connected together by a network similar to Ethernet (Metcalfe and Boggs

1976).

The basic software unit is the process which performs a computation

and/or manages resources. Each computer has a kernel and a set of

processes. It Is assumed that the processes will be organised into a

hierarchy of levels.

Application processes may be written In a number of languages, each

of which will have Its own Interprocess communication mechanism. All of

these mechanisms are Implemented using asynchronous message passing.

The kernel provides virtual memory management, multiprocessing,

local Interprocess communications, routines to control the devices, and

routines to create and delete processes. Inter-computer communication Is

provided by a network process resident on each computer. This partitioning

of labour Is Invisible to the application processes.

2.2.3 A Signal Processing System

This system (Stepczyk 1978) Is a dedicated system designed to

perform signal processing.

The hardware consists of three PDP-11*s linked together by

unidirectional bus links to for. a ring. All of the software Is written In

Concurrent Pascal (Brinch Hansen 1977). Each computer runs a virtual

machine environment for supporting Concurrent Pascal, and a number of

processes. Interprocess communication la by synchronous message passing

and by shared data In the form of monitors.

19

Message passing Is Implemented by two monitors on each computer.

One performs Intra-computer message passing and the other Inter-computer

message passing, with the partitioning being hidden from the user processes

by the class that provides the message passing routines.

Shared data is stored in monitors. Only local processes can use a

monitor’s procedures. Every process that requires remote access to a

monitor has a ’ghost’ process local to that monitor. To use a monitor a

remote process sends Its ghost a message which the ghost translates into a

call to the monitor. The results of the monitor call are then returned by

the ghost to the remote process In a message. In a later version remote

access to monitors will be allowed.

2.2.1* Action Data Network (ADHET)

ADN1JT (Moulding 1980a and Moulding 1980b) Is an experimental

warship command and control system developed by the Admiralty Surface

Weapons Establishment (ASWE).

ADHET Is based on a number of Ferranti Argus minicomputers linked

together by an ASHE Serial Highway (Ministry of Defence 1981, Hill and

Stalnsby 1980). The software is Implemented in Coral 66, supported by

Mascot.

The application software consists of a set of processes partitioned

between the computers. The processes cooperate with each other using

asynchronous message passing. The application processes on each computer

are supported by a local copy of the Mascot Operating System (Miles 1980)

and a communication package.

The Mascot Operating System supports only a single-computer Mascot

environment. All Interprocess communications, whether inter-computer or

intra-computer, are handled by the communication package on each computer.

20

Further details of ADNET are given in Chapter 4, Section 4.2.2.

2.2.5 Distributed Processes

'Distributed Processes' is a programming language concept proposed

by Brinch Hansen (1978) for programming distributed real-time systems.

Although he concentrates on language features there are sufficient details

about the control system's configuration and implementation to justify its

inclusion here.

Distributed Processes is designed for programming a network of

microcomputers linked together by a communication network. The number of

processes in the system is fixed and to ensure adequate response time there

is only one application process per computer. Interprocess communication

is by procedure calls.

Each computer runs a runtime environment for supporting distributed

processes, a single application process and a number of 'ghost* processes.

The ghosts are part of the remote procedure call implementation, and are

similar to the ghost processes used in the Signal Processing System

described above.

A process's procedures are used by only a few processes. Each of

these processes is represented by a ghost process resident on the server

process's computer. When a user process executes a remote procedure call

the parameters are passed to its ghost. The ghost performs the procedure

call and then returns any results. Thus the remote procedure call is

actually based on message passing a t . lower level. A similar scheme is

also used in Unix United (Brownbridge et al. 1982), although here the

number of users is «known and so the ghost, are dynamically created a,

needed.

21

Multiprogramming the application process and the ghosts Is simple.

There Is no preemption and the processes simply execute until they perform

an explicit wait on some condition.

2.3 A generalised distributed computer control system organisation

2.3.0 Introduction

Although the previous section is not an exhaustive survey of

distributed computer control systems, It Is sufficient to show that

although details vary between systems their basic organisation is similar.

In this section we present a generalised distributed computer control

system model which has each of the above examples as special cases.

Three main levels can be identified: application level, distributed

kernel level, and hardware level. We will now describe each of these In

turn.

2.3.1 The application level

The application level is divided into a number of application

processes, which cooperate with each other In order to fulfil the control

system's role. An application process is a named and executable instance

of a program. The application processes are dispersed between the

computers. The location of some application processes will be determined

by the location of particular hardware resources, for example an

application process that controls a line printer must be hosted by a

computer that Is connected to a line printer.

The application level may be structured Internally by organising

the application processes Into a hierarchy of levels, and/or by grouping

the application processes into modules.

22

Often a group of application processes will cooperate with each

other In order to provide a particular service. In CONIC and In the

distributed programming language proposed by Llskov (1979)* application

processes are grouped into modules, and the module is used as the standard

unit of application software. In both examples, all of the module's

constituent application processes must be on the same computer.

The application processes (and the modules, if they are used) may

be logically organised into a hierarchy of levels. The number of levels in

a real-time system is much fewer than in most general purpose computer

systems, often as few as two (Boebert et al. 1978). Prince and Sloman

(1981) identify four hierarchical levels in an industrial process control

system: direct control of devices, subsystem control, site-wide control,

and management control. In other distributed computer control systems,

such as the signal processing example above, there is no obvious layering

at all.

In traditional computer systems there is an operating system level

between the kernel level and the application level, which provides access

to system resources. In a real-time system the distinction between system

and application resources is negligible, and so the operating system and

application software are indistinguishable.

Application processes will be written in a high level language such

as BCPL (Richards and Whitby-Strevens 1980), C (Kernlghan and Ritchie 1978)

or Pascal (Jensen and Wirth 1978). The language will incorporate commands

for interprocess commmication and for interfacing the application process

with the runtime clock. The latter commands include finding the current

time, and suspending the caller for a period of time or until a certain

time.

23

Interprocess communication can be performed in a number of ways.

asynchronous message passing, synchronous message passing, asynchronous

procedure calling and synchronous procedure calling. Numerous attempts

have been made to show which of these is the best, and a selection of these

arguments can be found in Lauer and Needham 1979, Staunstrup 1982 and

Stroustrup 1982. The common result of these comparisons is that there is

no difference and that a choice should be made on the efficiency of the

primitive operations needed to support the mechanisms.

A more relevant survey into the Interprocess communication needs of

a distributed computer control system was performed as part of the CONIC

project by Kramer et al. (1981). They identified the various interactions

that occur between application processes, and concluded that these could be

accomplished by using synchronous procedure calling for command-reply and

query-status transactions, and by using asynchronous message passing for

sending alarms, status messages and delayed responses to procedure calls

(thus emulating asynchronous procedure calls). In CONIC itself a request-

reply message passing construct is used instead of a synchronous procedure

call.

Despite Kramer et al.'s considered arguments there is no apparent

consensus of opinion between existing systems. In the examples given in

Section 2.2 all of these mechanisms are represented.

A fifth way of performing interprocess communication is by using

shared data. This is normally rejected as it would require some form of

global virtual address space. However, it is used in CONIC for intra­

module communication, but as a module's processes are all located on the

same machine, this problem is avoided.

24

For simplicity and precision in the following discussion, we assume

that interprocess communication is by asynchronous message passing. All of

the arguments presented below apply equally to the other interprocess

communication mechanisms. Asynchronous message passing was chosen because

the two major examples in Chapter 4 use it, and so does PROSUK, the

distributed computer control system incorporating process survivability.

First we describe asynchronous message passing.

For two application processes (the sender and receiver) to

communicate by asynchronous message passing they must be connected by a

channel. A channel is formed by joining together the sender's output

channel to the receiver's input channel. The sender sends messages to its

output channel and the receiver receives these messages from its input

channel. Messages that have been sent but which have not been received are

buffered within the channel. The number of messages that can be buffered

within a channel is limited, and if the sender tries to send a message to a

full channel then it is suspended until space is available. Similarly, if

the receiver tries to receive a message from an empty channel then it will

be suspended until a message arrives#

Following Kramer et al. (1981) an application process’s response

time is defined to be the time taken by an application process to recognise

that a message is waiting to be received plus the time it takes to service

that message. For a lot of applications, maintaining the application

processes' response time within some critical bounds is an important

consideration.

From the time at which an application process issues a command to

send or receive a message «til that command finishes, the application

process is suspended. The application process may be delayed by the

channel's flow control, or if it 1» a sender and the receiver is on a

different computer it will be delayed by the time taken to transfer the

25

message between computers. If an application process is to maintain its

response it is Important that the time spent sending or receiving a message

has an upper limit. To achieve this the send and the receive commands have

a timeout period. If the command takes longer than the timeout period to

complete, then the command is aborted.

An application process will normally have more than one input

channel. The pattern of message arrival on these channels cannot normally

be predetermined. Messages are equally likely to arrive on any input

channel and so an application process must be able to wait for a message

from any of its input channels. Kramer et al. (1981) suggest the use of

guarded commands (Hoare 1978) which will allow receives to be issued on a

number of input channels at the same time, and as soon as one of the

receives terminates, all of the others are aborted.

Prince and Sloman (1981) have identified the following three

patterns of Information flow between application processes:

1) one-to-one: a message is sent by one application process to another.

2) One-to-many: a message is broadcast by one application process to

several others, each of which will receive a copy. This might be used

for raising an alarm or for requesting a service from a number of

identical servers.

3) Many-to-one: an application process receives messages from more than one

application process. A process that provides a service may receive

requests fhom a number of users.

In COHIC for «xa.p l«, to«»« now p .tt .rn . o.n 0.
exp licitly inoorporatod into to. appllo.tlon con fl.u r.tion . To

create a on .-to -.an , oonn.otlon a .1«*!« ««tpot oOann.l la Unkad to

ao„.ral input oo .n n .l., «nd to.n - i .n a . . » » « « 1« » « " t . ■ ««■» « ' toat

26

message is placed in each of the input channels. Similarly, a many-to-one

connection is created by connecting a number of output channels to a single

input channel. Messages sent down any of the output channels will be

buffered in the input channel from where they can be received.

Alternatively, these interconnections could be created by using

one-to-one connections only. This would not be as elegant or as efficient.

For example, in the Distributed Processes System, if a process has to

communicate with several other processes, then it has to call procedures in

each of the recipients in turn.

For a message to be delivered, the physical address of the

recipient's input channel must be known. Using physical addresses within

the application processes is impractical as the final address of the

recipient may not be known when the processes are written. Instead the

processes are identified by logical names.

Before a message can be sent the receiver's logical name must be

translated into its physical address. This translation can be made at one

of many points: compilation time, system creation time or every time a

message is sent. For example, if application processes can migrate between

computers, then the mapping from logical name to physical address must be

made every time a message is sent.

The use of logical names in the writing of the processes disguises

the distributed nature of the control system's hardware. The difference

between inter-computer and intra-computer communication is removed and thus

the distributed architecture of the control system is logically united.

27

2.3.2 The distributed kernel level

Each computer has Its own kernel, and these together form the

distributed kernel level. A kernel provides the runtime environment needed

to support local application processes. It provides routines for driving

devices, and for creating and destroying processes, and it performs

multiprogramming and virtual memory management.

All of these services effect local resources only and so they are

performed autonomously by the individual kernels. Any access to the

services provided by remote kernels, for example to create a process on a

remote machine or to access a remote device, is coordinated by application

level software.

It is common practice for lengthy kernel routines to be performed

by 'executive processes' that are multiprogrammed along with the

application processes. Lister (1979) suggests executive processes for

performing I/O operations, and Brinch Hansen (1973) used them to perform

process-creation commands. Allworth (1981) and Harper (1982) take this

idea to its logical conclusion and suggest implementing every interrupt

routine as an executive process.

A kernel is composed of a number of processes. One of these

processes, the nucleus, is permanently locked in memory and runs in

privileged mode. The other processes are the executive processes. The

partition of labour between the kernel's nucleus and its executive

processes is invisible to the application processes.

The nucleus provides such services as the first level interrupt

handler, synchronisation primitives, and the dispatcher (Lister 1979).

Communication between the nucleus and the executive processes, and

comminication between executive processes, will be based on a mechanism

more basic than that used for communication between application processes;

28

for example, shared data with semaphores for synchronisation Is a common

choice.

Another service provided by a kernel Is that of Interprocess

communication. In ADDAM and in the Signal Processing System, all

Interprocess communication Is performed by an executive process. In CONIC,

ESN and the Distributed Processes System, Interprocess communication

between processes on different computers is performed by an executive

process, while local Interprocess communication is performed by the

kernel's nucleus. ESN can also be configured so that both local and remote

Interprocess communication Is performed by the kernel's nucleus.

Remote Interprocess communication requires cooperation between the

sending and the receiving kernel. This cooperation Is achieved by using

the Inter-computer communication mechanism provided by the hardware level.

2.3.3 The hardware level

This level consists of the computers, and of the communication

network that links them together. Each computer Is connected to the

communication network by a network Interface. Input/output devices are

attached to Individual computers.

Nearly all of a computer's operations are performed autonomously by

that computer, for example reading and writing to local memory. However to

transfer data from one computer to another requires the cooperation of both

sender and receiver. This cooperation Is performed using a low-level

protocol provided by the hardware/firmware In the network interface.

The composition of the hardware Is determined by a large number of

factors, including the environmental requirements, the required

performance, and to a large extent the concept of Its Inventors. In the

above examples the trend is to use mini-computers or micro-computers linked

together by some for. of local are. network (Clark et al. 1978, Gee 1983).

29

2.4 Summary

The organisation outlined in the previous section is not limited to

distributed computer control systems only. A number of so-called

distributed computer systems exhibit this organisation, for example DCS

(Rowe et al. 1973), SODS (Sincoskie and Farber 1980) and Roscoe (Solomon

and Finkel 1979).

In Section 2.1 we presented a list of five advantages that result

from basing a control system on a distributed architecture. If the full

potential of all of these advantages is to be exploited then the software

must be designed accordingly. This is particularly true of communication

and availability.

In the same way that different types of computers can communicate

with each other over a common commmication network, application processes

written in different languages must be able to communicate with each other.

In DSN application processes written in different languages with different

intercommimication primitives can communicate with each other because all

of the different interprocess communication mechanisms are implemented

using asynchronous message passing. Similarly, if the computers are of

different types then messages must be translated from one representation to

another; for example, in DCLN (Liu and Reames 1977) all messages are

translated into an intermediate format before being sent over the network.

As indicated in Section 2.1, possibly the greatest advantage of the

distributed architecture is its high availability. This advantage is the

rationale for the development of process survivability, and the rest of

this thesis is dedicated to describing existing systems that exhibit

process survivability and to developing process survivability for the

distributed computer control system PROSUR.

30

3. An Introduction to Fault Tolerance

3.0 Introduction

It la Impossible to build a computer system In which a fault does

not exist and In which a fault cannot arise: Its hardware will degrade with

time, and its software will probably be too complicated to be fault free.

To achieve high reliability a computer system must be able to continue

operating to specification despite the presence of a hardware or a software

fault. Such a system Is called a fault tolerant computer system.

This chapter Introduces the principles of fault tolerance, and

illustrates them with two extended examples: the recovery block scheme for

implementing software fault tolerance, and the hardware fault tolerant STAR

(Self Testing And Repair) computer.

3.1 A vocabulary for discussing fault tolerance

A computer system Is formed by superimposing a software system on a

hardware system. In turn both systems are composed of sub-systems, and so

on. To be able to discuss fault tolerance in computer systems we must

first be able to describe the organisation of the systems themselves. The

following system model reflects the structuring that should exist in all

computer systems, both In their hardware and In their software. The model

is based on those presented by Watson (1983) and by Anderson and Lee (1981

and 1982). It is also similar to the model proposed by Jones (1978).

A system provides its environment with controlled access to Its

resources. These resources may either be physical or logical; for example,

disk blocks or files.

31

The services provided by a system are defined by a set of data

structures (its representation or external state) and by a set of

operations that can be performed on the system’s external state. A

system's behaviour is described by the effects that the operations have on

its external state. The implementation of the services and the actual

organisation of the resources are hidden from the environment.

Requests for operations to be performed by a system are made by the

environment via the system’s interfaces. An Interface is simply the place

of interaction between two systems. The system’s environment is also a

system and may in turn be composed of a number of other sub-systems.

For an example we turn to the distributed computer control system

model presented in the previous chapter. An application process is a

system, and its input and output channels are its interfaces. An

application process’s representation and operations will depend on the

service it provides. If for example an application process provides access

to a disk then its representation may be that of a set of files, and its

operations may include commands such as open file, close file, etc.

Requests for operations will be in the form of messages, and will be made

via the application process’s channels; the results will be returned in a

similar fashion. The way in which the filestore is organised ia hidden

from the process's environment.

A system consists of a set of components and a design. The

components provide the operations needed to implement the system’s own

operations, and the design defines and controls the interactions between

the components, and between the components and the interfaces. If a system

has no discernible internal structure, or if that structure is of no

consequence, then that system is said to be atomic.

32

A component la Itself a system. It provides a set of operations

and a representation of Its resources. To distinguish between the

operations provided by a system and those provided by a component we call

the latter actions. A system operation is Implemented by a set of actions

instigated by the design. The set of components' representations comprises

the system's Internal state. The system’s representation is an abstraction

of its Internal state.

The design Is that part of the system that receives requests for

operations from the environment and In turn Instigates the necessary

actions to perform the operation. When necessary, the design also controls

the interaction between components, and the Interactions between components

and the Interfaces In order for the components to use services provided by

the environment.

The design Is a system. The system's state does not Include the

design's external state, as the system's state reflects the activity In the

system and not Its organisation, which would normally be fixed. The design

should not be confused with the plan that describes a system's

organisation, nor with the process by which the system was designed.

A particularly classic example of the partition of labour between

design and components is given in Chapter *». Section *».2.1, which describes

how masking redmdancy can be Implemented within the application level of a

distributed computer control system so as to make it crash tolerant.

Returning to our earlier example of a system, an application process's code

is the design and Its data structures are the components. The code

receives requests for operations (messages) and Instigates the actions to

manipulate the data structures. The Internal state of the application

process will be the contents of the data structures. The state of the

......... code (Its design) Is static and does not form a part of the

process's state.

33

This system terminology can be used to describe a computer system

recursively, or more conventionally, It can be used to describe the

computer system In terms of a hierarchy of levels. Each hierarchical level

consists of a number of systems. Each level provides the higher levels

with a set of services, and In turn its systems are implemented using the

services provided by the lower levels.

Since 1972 a project led by Professor B.Randell at the University

of Newcastle upon Tyne has been investigating reliability in computer

systems. As part of its wider research this project has been developing a

vocabulary for discussing system reliability, with the aim of getting this

vocabulary accepted as a standard. The final version of this vocabulary

has been presented by Anderson and Lee (1981 and 1982). We have already

drawn on this vocabulary for the description of a system and we now present

those terms that describe reliability itself.

To be able to decide whether a system is reliable it is necessary

to be able to recognise when it fails. In order to be able to do this it

is necessary to assume the existence of an authoritative specification

Which defines a system's acceptable behaviour. If the system's behaviour

contradicts its authoritative specification it is said to have failed.

The reliability of a system is often measured by the probability

that no failure will have occurred by a certain time. A common alternative

measurement to this is the system's mean time between failures.

A system's behaviour is defined by the effect that a given

operation has on the system's external state. The authoritative

specification defines what constitutes a valid external state and defines

how an operation will map the external state from one valid state to

another. A system fails When an operation results in a transition fro. a

valid external state to an invalid or erroneous one.

As the external state Is an abstraction of the system's internal

state, an erroneous external state must mean that the internal state is

erroneous as well. That part of the internal state that is actually

erroneous is called the error.

An erroneous internal state is the result of an erroneous

transition that changed a valid internal state into an erroneous one. An

error need not cause the system to fail immediately, and a number of

operations may be performed before the error manifests itself in the

system's external state and causes it to fail.

The erroneous transition must be due to either the failure of one

or more of the system's components or to the failure of the system's

design. This is logical as a system consists only of its components and

its design, and so its failure must be due to a failure in one of its

constituent parts.

As a component (or a design) is a system itself, its failure must

be due to an error in its internal state. To distinguish between an error

in a component/design from an error in the system, the former are referred

to as component/design faults. Design faults and component faults are

collectively called system faults.

A fault within a component or a design will eventually cause it to

fall, and this will result in an erroneous transition (the manifestation of

the fault) being performed on the system's Internal state, which will

inject an error into the system's Internal state. Further valid

transitions will lead to the system failure.

35

3.2 Fault tolerance and fault Intolerance

There are two complementary approaches to producing a highly

reliable computer system: fault prevention and fault tolerance.

Fault prevention techniques attempt to produce a system In which

there are no faults. Fault prevention Is performed in three stages.

First, techniques such as quality control, formal specification, structured

programming and top-down analysis are used in an attempt to avoid

introducing faults In the first place. Unfortunately in a complicated

system faults are bound to be Introduced, and so the second stage Is to

detect these faults by testing and validation, and then to remove them.

Finally, having hopefully removed all of the faults, the system must be

¡screened from external stresses In order to prevent any faults from being

introduced. The software and the hardware can be protected from malicious

interference by a number of security mechanisms (Shanker 1977), although it

is still vulnerable to enhancements.

Fault prevention Is not sufficient on its own to produce a highly

reliable computer system. Hardware components deteriorate with time and

they are vulnerable to external stresses that overwhelm the screening.

Software Is too complicated to be tested exhaustively, and program

validation Is still In Its Infancy. So despite the care taken faults will

still occur and * e n they do the system will fail, which is why a system

that relies solely on fault prevention to achieve reliability is said to be

fault Intolerant.

As faults will always occur, the only way to achieve high

reliability Is for a system to be designed to be fault tolerant. To

achieve fault tolerance a syatem must Include mechanisms that can detect a

component/design fault and intercede to correct that fault before it cause,

the system Itself to fall.

36

Fault tolerance does not make fault prevention redundant, but It

can be used to reduce the amount of effort that is put Into fault

prevention, as any residual faults will be masked by the system’s fault

tolerance mechanisms. However, this does not mean that fault tolerance can

be used as a 'warm blanket', as without any attempt at fault prevention the

system would most likely not work at all.

3.3 The four phases of fault tolerance

Fault tolerance mechanisms are Intended to prevent faults from

causing system failures. The operation of fault tolerance mechanisms can

be generalised Into the following four phases:

1) Error detection
To be able to tolerate a fault the system must first be able to

detect it. By definition a fault Is part of a component• s/deslgn• s

internal state and so cannot be detected by the system; neither can the

resultant component/deslgn failure be detected as that is an event.

However, the fault will manifest Itself as an error In the system’s

Internal state and this can be detected. The first stage of fault

tolerance Is to detect the error before It causes the system to fall.

2) Damage confinement and assessment
An error must be detected as soon as possible. Any delay may

lead to erroneous Information being spread around the system. If

immediate detection of an error cannot be guaranteed, then it Is

necessary to discover the extent of the damage before dealing with the

error•

Damage confinement measures may be Incorporated Into the system

in order to limit the amount of damage that can be caused. Damage

confinement measures reduce the — » t of work that must be done in
damage assessment, thereby reducing the runtime overheads involved in

37

fault tolerance.

3) Error recovery
Error recovery techniques are designed to transform the system's

current erroneous internal state into an error free and well defined

state from vdiich normal service can continue.

If the types of faults that can occur can be predicted, and if

the limits of the resultant damage can be accurately assessed, then

specific recovery routines can be provided that will correct only the

damaged part of the system's state. This technique is called forward

error recovery. The techniques such as Hamming codes used in computer

communication to detect and correct errors in received data are an

example of forward error recovery (Cole 1982).

Forward error recovery is very efficient as the minimum of

adjustments are made to the system's state. Unfortunately its reliance

on being able to predict both the fault and the resultant damage limits

its general application as it means that it cannot cope with

in predictable errors. However, it is very useful When conditions allow

its use.

If the faults and the resultant damage cannot be predicted then

the only viable method of recovery is to restore the system to an

error-free past state. This technique is called backward error

recovery.

The automatic repeat request techniques designed to provide

error free computer communications are an example of backward error

recovery. Here data is transmitted in block,. If the receiver detects

an error in the current block it discards the block, and requests the

sender to repeat it (Cole 1982).

38

The two recovery techniques complement each other, and can be

used together effectively. Two mechanisms for achieving software fault

tolerance are exception handling (Goodenough 1975, HacLaren 1977,

Cristian 1980) and recovery blocks (described in Section 3.6).

Exception handling is based on forward error recovery and recovery

blocks are based on backward error recovery. Melliar-Smith and Randell

(1977) propose that exception handling and recovery blocks can be used

together: recovery blocks for coping with unexpected software faults,

and exceptions for coping with predictable failures in input data and

operators etc. Exception handling is not used for software faults as

that would require the faults to be predictable, and if they are

predictable they should be removed.

U) Fault treatment
If the error is not to occur again, then it is necessary to

repair the fault. To do this the fault must first be located, and this

may be difficult as it is often hard to diagnose the fault from the

damage that it causes. Once located the fault can be repaired, or the

system can be reconfigured to avoid it. If the fault was transient then

there is no need to repair it, as it has already gone.

In practice certain stages can be reduced or removed altogether by

decisions made during the system’s design stage; for example, the more

effective damage containment is,

assessment phase to do.

It is also convenient to

detected as 'normal running', and

performed as 'continued running',

running but it is often handy to be

phases.

the less work there is for the damage

label the period before an error is

the period after recovery has been

Continued running is the same as normal

able to distinguish between the two

39

3.4 Protective redundancy

All fault tolerance techniques are based on the incorporation of

protective redundancy into the system. Protective redundancy is the extra

hardware, software and processing power that is needed solely to ensure

fault tolerance, but which is not needed by the system to execute its

normal programs.

Protective redvndaney can be categorised in two ways: as masking or

standby redundancy, depending on how it is used; and as hardware, software

or time redundancy, depending on what it is.

1) Masking and standby redundancy

In masking (or static) redundancy, redundant components operate

in parallel to a component's operation in order to mask the effects of

any failure that may occur in that component. As long as this

redundancy remains effective any failure in the component will be hidden

from the system's environment. Possibly the two best known examples of

masking redundancy are Triple Modular Redundancy with voting (Mathur and

Avlziensis 1970), and the forward error correction techniques mentioned

earlier.

In standby (or dynamic) redundancy, spare functionally identical

components are incorporated into the system so that when an active

component becomes faulty one of the standby components can be switched

in to replace it. Such a scheme presupposes the existence of the

necessary error detection and error recovery mechanisms. If this

reconfiguration can be done automatically by the system then the system

is said to be self-repairing. A special case of this is where there are

no standbys, and the system is reconfigured into a degraded system. For

example, in the event of a permanent processor failure, the

multiprocessor COPRA (Meraud et al. 1976, Maraud and Lloret 1978, Maraud

et al. 1979) can reconfigure the software to run on the remaining

MO

processors.

Probably the first operational self-repairing computer was the

hardware fault tolerant JPL-STAR computer described in Section 3.7. The

software fault tolerant recovery block scheme is also self-repairing as

in the event of a fault arising in the current software module, an

alternative can be used to replace it.

A third option known as hybrid redundancy is a combination of

masking redundancy and standby redundancy. Masking is used to provide

fault tolerance and standby components are available to replace the

masking redundancy components when they fail. The prime example of

hybrid redundancy is n-modular redundancy, which is triple modular

redundancy with spares. N-modular redundancy is used in the Fault

Tolerant Multiprocessor computer (Hopkins and Smith 1975).

Masking and standby redundancy both rely on the faults in their

redundant components and in the components they are protecting being

independent of each other, otherwise the fault could not be masked. For

example, software fault tolerance can be provided by N-version

programming which is based on masking (Chen and Aviziensis 1978, von

Linde 1979), and by the recovery block scheme which is based on standby

redundancy and self-repair. In both cases this protection would be

nullified if the redundant software was identical to that being

protected as any algorithmic fault would then be contained in the

redundant and the protected software. Hence in these examples the

redundant software is coded independently.

41

2) Hardware, software and tine redundancy

Hardware redundancy ia primarily to provide hardware fault

tolerance, although it can also be used to provide support for software

fault tolerance. Software redundancy consists of the extra data and

code needed to support the four phases of fault tolerance.

Time, or program execution, redundancy is the spare processing

power that must be available if the extra processing required by the

addition and performance of fault tolerance is not to result in a

degraded response time.

3.5 The hardcore

In the final analysis all fault tolerant systems are totally

dependent for their correct functioning on some critical components that

are themselves fault intolerant. These components are known as the

hardcore. If any confidence is to be placed in the system's ability to

tolerate faults then the hardcore that supports the fault tolerance

mechanisms must be extremely reliable as 'the chain is only as strong as

its weakest link'.

To achieve high reliability in the hardcore the techniques of fault

prevention must be applied to it. If these techniques are to be effective

the hardcore must be kept as small and as simple as possible.

In a similar vein, efforts to produce secure systems have led to

the development of 'security kernels' (Popek and Kline 1978). Security

kernels are small minimal kernels that, in addition to the normal tasks of

a kernel, are responsible for providing the security mechanism used by the

whole system: hence their correct (and secure) operation is essential for

the correct operation of the »diole system.

M2

MeDermld (1980) has suggested that this idea could be used to

produce a 'reliability kernel'. Such a kernel would provide the recovery

mechanisms used by the software mechanisms to provide software fault

tolerance. By keeping the kernel small, the chances of it being

implemented reliably are increased.

3.6 An example: the recovery block scheme

3.6.0 Introduction

In 1972 a project was established at the University of Newcastle

upon Tyne, under the sponsorship of the Science and Engineering Research

Council, in order to Investigate "the utility of computer architecture and

programming techniques which will enable a system to have a very high

probability of continuing to give a trustworthy service in the presence of

hardware faults and/or software errors" (Randell 1975).

One of the major results of this project is the recovery block

scheme for providing software fault tolerance. The recovery block scheme

is a general purpose mechanism for incorporating software fault tolerance

into a process so that it can operate reliably despite residual faults in

its code. Current work includes Incorporating recovery blocks into a

distributed naval command and control system based on Mascot (Anderson and

Moulding 1982).

Descriptions of the recovery block scheme are given in numerous

papers originating ft-om Newcastle. Two of the best known of these are

Randell 1975 and Randell et al. 1978. Also, nearly all of the other papers

referred to in this section contain a description. The most all-inclusive

description is given in Anderson and Lee's book (1981).

«3

3.6.1 An overview

The reliability of a particular task within a process can be

improved by implementing it as a recovery block. The syntax of a recovery

block is given in Figure 3a, and an example of its use to sort an array A

is given in Fig w e 3b.

Ensure Acceptance test>
By <prlmary module)

Elseby Alternative module 1>
Elseby Alternative module 2>

Elseby <alternatlve module n>
Else Error;

Figure 3a

Ensure A[i-1] <= A[i] For i=2, 3 • • n
By Quicksort (A)

Elseby BubbleSort (A)
Elseby Straightlnsertion (A)
Else Error;

Figure 3b

A recovery block consists of a primary module and an ordered

sequence of standby spares - the alternative modules. Each module performs

the same task (sorts the array in our example) but in a different way.

When the recovery block is entered the primary module is executed.

If the primary module fails then the process's state is reset to the state

that existed prior to entering the recovery block and the first alternative

module is executed. (The way in Which a failure is detected is described

below in Section 3-6.2.) This is continued until either all of the modules

have been tried «id have failed, or until one of the modules has been

completed successfully.
44

In our example Quicksort will be executed first. Then if Quicksort

fails the process will be reset, thus undoing the effects of Quicksort, and

BubbleSort will be tried. If BubbleSort fails then StraightInsertion will

be tried.

The recovery block scheme provides software fault tolerance by

incorporating redundant versions of a module into a program and then

performing self-repair in the event of a module failure. This self-repair

is supported by error detection and backward error recovery.

Various implementations of recovery blocks are described in Horning

et al. 197U, Anderson and Kerr 1976 and Shrivastava 1978. In order to

improve the efficiency of recovery blocks, hardware support for these

implementations has been suggested. Two such proposals are presented in

Lee et al. 1980 and Kant 1983 (the former of which has been implemented).

3.6.2 Error detection

After a module (primary or alternative) has been executed the user

defined acceptance test is performed, to determine whether an error has

occurred. Normally an acceptance test will test the correctness of the

module's results, as more detailed testing of all of the process's

variables would result in larger runtime overheads; in our example above

the acceptance test checks that the array A has been sorted. If the

acceptance test is passed then it is assumed that an error did not arise.

The acceptance test is the embodiment of the authoritative specification.

The modules utilise the «denying operating system and hardware to

perform their instructions. If «uch an instruction fails, for example due

to division by zero, then an error has occurred, and the current module is

aborted and recovery is performed.

Recovery blocks can be nested. If all of a recovery block's

modules fall then the recovery block has failed, and the surrounding

recovery block module is aborted #

3.6.3 Damage assessment and error recovery

Error recovery Is by backward error recovery: the process's state

Is restored to the value it had Immediately prior to entering the recovery

block. In doing this all of the effects of the faulty module are removed;

it is as if the module had never been performed.

Because recovery consists of rolling back the state there is no

need to perform damage assessment as all alterations performed by the

faulty module have been undone.

3.6.4 Fault repair

After an error has been detected and recovered from, the next

alternative module is tried. This replacement is not permanent as it is

assumed that the program's residual faults will only manifest themselves

rarely and then due to unusual circumstances.

All of a recovery block's modules are functionally identical as

they are designed to perform the same task and must pass the same

acceptance test. However, they cannot be copies of each other as this

would mean that they all contained the same fault. A requirement for

successful standby redindancy is that the copies have independent faults,

and so each module must be independently implemented.

The primary module will be the most efficiently implemented

(relative to some measurement) and hence the most complicated and error

prone. The alternatives will normally be ordered by decreasing efficiency,

and increasing simplicity and reliability. By only temporarily replacing

the primary module it 1. ensured that the task is performed efficiently

46

except for trtien an error Is detected.

Removing the fault from the module’s Implementation is left to a

human operator. The recovery block scheme records the frequency with which

each module fails so that the operator knows vdiich modules are faulty and

which are worth repairing. If the frequency is low and the alternatives

always mask the fault then it may not be worth repairing a faulty primary

module.

3.7 Another example: the JPL-STAR computer

3.7.0 Introduction

The STAR (Self Testing And Repairing) computer is the result of an

investigation into hardware fault tolerant computing conducted throughout

the 1960’s at the Jet Propulsion Laboratory (JPL) at Pasadena, California.

STAR is an experimental general purpose computer that exploits standby

redundancy and self-repair to achieve high reliability. It became

operational in 1969.

The work on STAR was sponsored by NASA, and so its characteristics

are those that would be required for an on-board computer of an unmanned

spacecraft on a ten year flight. The reliability requirements for such a

computer are obviously high because of the consequences of a computer

failure combined with the long mission time and the impossibility of

maintenance.

Work on STAR was terminated in 1972 when JPL turned its attention

to designing a second-generation fault tolerant spacecraft computer based

on a distributed computer system (Kennels 1978). This progression was

motivated by advances in digital circuit technology which nullified the

need for some of the design restrictions that had shaped STAR, and which

made this more attractive solution feasible.

STAR is designed to tolerate hardware faults, but not software

faults. Fault tolerance is based on hardware-implemented error detection,

hardware-implemented and software-implemented self-repair, and software-

implemented backward error recovery. It is of particular interest as it

supports a form of process survivability.

3.7 .1 Hardware and software organisation

STAR'S hardware (Aviziensis et al. 1971) consists of a standard

configuration of functional units supplemented by spare units that can be

used to replace failed operational units. The central processing unit's

functions are partitioned into a number of special purpose processors

(arithmetic, logical, input/output, etc.). Memory is composed of a number

of read only memory units and a number of read/wrlte memory units. The

processors and the read only memory units have dedicated spares and the

read/write memory units have a pool of spares. All of the functional units

are linked together by two data buses and a control bus. Figure 3e

illustrates this layout.

ROM Processors Read/write memory and spares

Figure 3c

48

The heart of STAR'S fault tolerance Is the Test And Repair

Processor (TARP). The TARP is connected to all three buses and to each

functional «lit separately (the latter Is not shown In the diagram). The

TARP monitors the rest of the computer In order to detect any errors.

Software Is divided Into user processes and the STAREX executive

which supports them (Rohr 1973). STAREX multiplexes the user processes and

provides them with routines for performing input/output etc. It also

provides the backward error recovery mechanism.

3.7.2 Error detection and fault repair

Error detection, and the majority of the fault repair, Is performed

by the hardware; In particular, by the TARP.

The TARP detects errors by cheeking the validity of every word sent

over the data buses (all data and instruction words are encoded in an error

detection code), and by checking status messages sent from the functional

«llts. The TARP is thus the embodiment of the authoritative specification

within the system.

When the TARP detects an error it stops the computer. The TARP

assumes Initially that the fault Is transient and control is transferred to

the STAREX recovery routines to perform backward error recovery. (In

Meraud and Lloret 1978 It is reported that 90* of the faults arising In

COPRA are transient.) If the fault does not respond to this treatment then

the TARP classes It as a permanent fault. The TARP replaces the failed

« I t and then control Is again passed to the recovery routines.

The TARP is STAR'S hardcore. It must be reliable and so It Is

Implemented using n-modular red«idanoy of TARP units.

3.7.3 Backward error recovery

As they run, both the user processes and STAREX establish recovery

points. Backward error recovery restores the software component

Interrupted by the fault to the state that It was in when it performed its

last recovery point.

When a fault has been detected by the TARP, control is transferred

to the STAREX recovery routines to perform backward error recovery. They

first determine v*iich software component was interrupted and then restart

it from its last recovery point. If the fault interrupted the execution of

a STAREX routine then STAREX (and not the calling user process) is rolled

back to its last recovery point; STAREX is relied upon to complete the
routine and so a recovery point is established at the start of every

routine.

User processes establish recovery points using a STAREX routine

which stores a copy of the process's state within STAREX. The stored state

consists of specified variables, processor register contents and the

process's start address. Process checkpoints are double buffered so that

in the event of a fault occurring during the establishment of a checkpoint

the previous checkpoint will be intact and can be used. Processes have

only one outstanding recovery point each.

STAREX itself has a high frequency of establishing recovery points

and so the task is made as efficient as possible. STAREX is stored in

duplexed memory (reads and writes are performed in parallel) and

establishing a recovery point is simply a case of storing the restart

address. After a fault the processor registers are flushed and so STAREX

is programmed using the convention that all register value, needed after a

recovery point are stored prior to the recovery point and then reloaded

afterwards.

50

When STAREX Is rolled back to its last recovery point its data is

not re-set to the values it had v*ien the recovery point was established.

STAREX will repeat code but the effects of performing that code the first

time have not been undone. To prevent this resulting in unfortunate side-

effects the recovery points are inserted so that the inter-recovery point

code is ldempotent.

3.7.1» Process survivability in STAR

If a read/write memory unit fails permanently it is replaced by one

of the spares. The software that had been resident in the failed unit must

be recreated in its replacement. Again this is done by the STAREX recovery

routines.

User processes use simplex memory. A process is recreated from its

code and constants, which are stored in the read only memory units, and

from the data stored for its last recovery point. Thus all of the user

processes that were using the faulty unit will have been rolled back to

their last recovery point (irrespective of rfiose execution was

interrupted).

The executive is duplexed. When one of a pair of duplicated memory

units is replaced the contents of the survivor are copied into the

replacement. Survivability is the prime reason for duplexing the executive

as without the duplexing it would be necessary for full checkpoints of the

executive to be stored on backing store.

We return to process survivability in STAR in Chapter 4, Section

3.8 Fault toleranoe and process survivability

When a computer in a distributed computer control system crashes

the application processes that were running on that computer are lost.

These application processes may be vital to the correct running of the

application level and without them the control system will fail. Process

survivability ensures that no application processes are lost in a crash

thereby making the application level crash tolerant.

Process survivability is achieved by introducing redundant copies

of the application processes into the application level. Inactive backup

copies of every application process are dispersed amongst the computers.

At intervals the active copy of an application process will establish a

recovery point. When an application process establishes a recovery point

all of its backups are updated to become exact copies of the active

process. When an application process's host computer crashes one of its

backups will be activated to replace it. The backup will be started in the

state that its previous generation was in When it performed its last

recovery point. This is similar, in general but not in detail, to the way

that user processes are recreated in STAR after a permanent memory unit

failure. Another similarity with STAR is that process survivability does

not support software fault tolerance.

Process survivability is achieved by Incorporating redmdant,

standby spares of every application process into the application level and

by performing self-repair by activating the appropriate standby copies in

the event of a crash. This self-repair is supported by error detection in

order to detect the crashes, damage assessment to determine Which

application processes were lost in the crash, and finally by backward error

recovery to restart these application processes from their last recovery

point.

52

The software redundancy is supported by time (program execution)

redundancy, and ultimately by hardware redundancy. Time redundancy is

necessary if the control system is to maintain its response time. Time

redundancy is needed during:

a) Normal running, to support the work that is performed to implement

process survivability, for example establishing the recovery points.

b) Continued running, so that after a crash the extra work being performed

by a computer due to activated backups does not affect the response time

of all of its resident application processes.

Ultimately this time redundancy must be paid for by extra computers

that would not be needed if the application level was not crash tolerant.

Adding extra computers to support process survivability is an aspect of the

’enough' principle mentioned in Chapter 2, Section 2.1.

All but one of the following chapters in this thesis describe

process survivability. First however, in the next chapter we review

existing mechanisms for making the application level of a distributed

computer control system crash tolerant.

53

4. Crash Tolerance In Distributed Computer Control Syatema

4.0 Introduction

When a computer crashes It results In the Instantaneous and

permanent loss of that computer. Such a crash may be caused by an external

stress such as a fire or by the spontaneous failure of an Internal hardware

component. In later chapters we will discuss partial computer failures

with respect to process survivability.

The loss of a computer will not prevent the other computers from

operating normally. Interconnecting the computers by a local area network

allows the computers to be physically dispersed thereby providing passive

protection from external stresses by limiting the number of computers that

are likely to be affected.

A computer crash will also result in the loss of components from

the two software levels of a distributed computer control system: the

distributed kernel level and the application level. The ability of the

control system to tolerate a crash will depend on how vital the lost kernel

is to the distributed kernel level and how vital the lost application

processes are to the rest of the application level.

In the examples presented in Chapter 2 the individual kernels

operate completely autonomously except when performing interprocess

communication between processes on different computers. As long as none of

the kernels provide the other kernels with a unique service then the

distributed kernel level will be able to continue operating normally

despite the loss of one or more kernels.

The application level will contain some application processes whose

loss would not prevent the control system fhom fulfilling its role, or

whose loss would have only a marginal effect. An example of the former is

an error logger. On the other hand if the crashed computer hosted

application processes that are vital for the continued operation of the

surviving application processes then, despite the fact that the majority of

the control system is intact, the control system will no longer be able to

fulfil its role. Despite its multi-computer architecture the control

system is still vulnerable to the loss of a single computer.

Process survivability makes the application level crash tolerant by

ensuring that no application processes are lost in the crash. As was

described in Chapter 3, Section 3.8, process survivability is achieved by

incorporating redundant standby copies of every application process into

the application level. In this chapter we review established methods of

Implementing process redundancy in a distributed computer control system.

A prerequisite for making the application level crash tolerant is

that the two lower levels that support it are also crash tolerant.

Fortunately, the distributed kernel level can be made so, and the computer

components of the hardware level are so naturally. Unfortunately, the

network, which is arguably the most important hardware component, is often

the most vulnerable. If the network fails, the control system will be

partitioned into a number of small isolated groups of computers, with each

group acting as if it were the only survivor. We will return to the

problem in a later chapter, but for the present we assume that the network

is un-partitlonable.

4.1 Process redundancy, an introduction

By introducing redmdant copies of the application processes into

the application level and by placing these copies on different computers,

the application level can be made crash tolerant. There are two ways of

organising process redundancy:

55

1) Masking redundancy

All of the copies of the application process are active.

Requests are issued to any of the copies and are performed by all of

them. When one copy is lost the others continue to provide the service.

2) Standby redundancy

Only one copy of the application process is active; the others

are inactive backups. At Intervals the backups are updated so that

their states are the same as that of the active application process.

When the active copy is lost one of its backups is activated to replace

it.

As a third alternative Casey and Shelness (1977) suggest that their

Domain Structure could be used to "exploit the inherent redundancy of the

system in case of failure". However, no further details are given, and

this aspect of the Domain Structure does not seem to have been developed.

In the next two sections we describe in detail how masking and

standby redundancy are performed. Examples of existing systems that use

these mechanisms are given.

In most of the examples we see masking and standby redundancy being

applied to application processes, but there is an example of masking

redundancy being applied to executive processes as well. In the

introduction to this chapter we stated that if the distributed kernel level

is to be crash tolerant then it is necessary that none of the kernels

should provide a unique service to the other kernels. This is not always

possible and an alternative is to implement the executive processes

redundantly so that the unique service is not lost in a crash.

56

4.2 Masking redundancy

4.2.0 Introduction

Masking redundancy can be applied to systems of processes as well

as to Individual processes. In practice It appears that masking redundancy

has only been used to Implement server systems that Interact with their

users by requests and replies.

4.2.1 Masking redundancy In theory

A crash tolerant server consists of a set of replicate servers each

of which Is running on a separate computer. Each replicate server provides

the same services, which In turn are the same as the services provided by

the crash tolerant server as a whole. Requests for operations to be

performed can be made to any of the replicates. In the event of a computer

crash the surviving replicates continue to provide the services.

Some crash tolerant servers provide a time invariant service In

that past operations do not affect future ones, for example, reading from a

file. In this case each replicate can receive and perform requests for

operations independently of the others. In the event of a replicate being

lost in a crash Its users can use one of the surviving replicates Instead;

It does not matter that the Internal states of the replicates are

different.

However, most services will be time dependent and past operations

will affect future ones, for example If writing as well as reading from

files is supported. If after a crash the lost replicate's users are to be

able to use one of the surviving replicates Instead, it is necessary that

the external states of all of the replicates are Identical to each other.

The rest of this sub-section, and the examples In the next, are concerned

with how a crash tolerant server that provides a time dependent service can

be implemented.
57

Using Le Lann's terminology (Le Lann 1979) a crash tolerant server

can be described as a system consisting of a set of producers and a set of

consumers (see Figure 4a). Each producer and consumer pair would

constitute a non-redwidant server. Producers and consumers are each

systems in their own right and are each composed of one or more processes.

In many examples the roles of producer and consumer are combined.

Requests

Producers

Consumers

A crash tolerant server (henceforth simply called a server) is a

system as defined in Chapter 3. The server’s service is defined by a set

of operations and by its external state on which the operations are defined

to operate. The server’s internal state is the set of the external states

of its consumers. The producers are part of the server’s design and so

their states do not form part of the server’s state. Every consumer

implements the same set of actions, and these actions are identical to the

operations provided by the server: there is a 1-to-1 mapping from operation

to action.

58

Requests for operstlons can be issued to any of the producers. For

the server to be able to continue after a crash the external state of each

of its consumers must be identical (their internal states need not be

identical as they may be implemented differently). To achieve this, when a

producer receives a request for an operation it 'broadcasts' a request for

the corresponding action to all of the consumers.

An operation will only produce a valid result if it is performed on

a consistent internal state. Consistency in a crash tolerant server is

composed of:

a) Internal consistency

Each consumer's external state satisfies a meaningful predicate known as

the system invariant.

b) Mutual consistency

Each consumer's external state is identical.

An operation maps the server's internal state from one consistent

state to another. To prevent Invalid results being produced by an

operation being performed on an inconsistent state, the operations must be

performed atomically. Following Le Lann 1983 we define an operation to be

atomic if:

a) The actions that implement an operation are either all performed

successfully or none of them are. Any results produced by the actions

do not survive the failure of an operation.

b) Operations must not interfere with each other. The partial or potential

output fro. one operation must not be used a, input to another operation
at the same time.

These two aspects of atomicity are known as failure atomicity and

59

seriallsability respectively (Spector and Schwarz 1983)•

Requests for operations may be received by different producers

concurrently. If the producers were to Implement requests In parallel then

the consumers' states would no longer be mutually consistent. If two or

more producers were to broadcast requests for actions at the same time,

then due to variations In Interprocess communication delays, the consumers

would receive and obey these requests in a different order from each other.

This would result In a breakdown In mutual consistency. For example, the

same lock may be allocated to a different user by different consumers.

To prevent this, the requests for operations must be serialised.

The serialisation of concurrent requests to a server Is called

synchronisation (Kohler 1981). In a crash tolerant server the aim of

synchronisation Is to ensure that the order in which actions are performed

by each consumer is the same (Le Lann 1983).

Synchronisation can be achieved in a number of ways:

a) Event ordering
The operations (events) are time stamped by the producers, and

the consumers perform the actions In that order. The time base can be

provided by physical clocks, logical clocks and sequences (Le Lann

1983).

b) Voting
The producers communicate with each other to decide upon which

request Is to be performed next. Voting schemes include synchronous

voting and majority consensus (Holler 1983).

e) Executive privilege
One producer at a time has exclusive access to all of the

controllers. This privilege may be assigned permanently, In *>loh case

all requests are filtered through the privileged producer by the other

60

producers. Alternatively the privilege can be assigned to the producers

In turn, for example by using circulating tokens or shared variables

(Holler 1983, Le Lann 1983).

When synchronisation Is achieved by cooperation between a group of

peer processes It Is called decentralised synchronisation, and control of

the server Is said to be decentralised. If synchronisation Is based on a

unique component, for example a single physical clock, then synchronisation

is centralised, and control of the server is also centralised. A

centralised synchronisation component with backups Is not classed as

decentralised (Jensen 1983, Le Lann 1979).

Masking redundancy can be based on either type of synchronisation

as long as the synchronisation mechanism Is implemented so that crashes do

not cause It to fall. If for example a circulating token is used, then It

must be possible to regenerate the token If It is lost. Furthermore this

recovery must be achieved In a decentralised way that does not depend on a

tnique arbitrator. The synchronisation mechanism must be as resilient as

the servers that use It.

It Is not sufficient simply to broadcast the actions. If Internal

and mutual consistency Is to be maintained the operations must also be

failure atomic. At the start of the action each consumer establishes a

recovery point. At the end of the operation If every consumer ha,

completed Its action successfully then all of the consumers discard their

recovery points, but If one or more of the consumers failed to complete

their action then all of the consumers roll back to their recovery points.

Synchronising the rolling back of all of the consumers or synchronising the

discarding of the recovery points by all of the consumers would be achieved

by using a mechanism such as the two-phase commit protocol (Gray 1978).

61

If a consumer falls to complete an action because Its host computer

crashes then the other consumers will still be able to complete the

operation. Were a missing consumer to result In operations being aborted

then each consumer would constitute a single point of failure, which is the

opposite of what is required.

When one or more components of a server are lost In a crash It Is

possible that the request will be lost and not be performed, or

alternatively it is possible that the request will have been performed but

the reply was lost. The user will have sent the request and be waiting for

a reply. These two situations are inconsistent. The normal approach to

restoring consistency Is for the user to detect the failure of its request

by a time-out on the reply, and for It to repeat the request. If the

producer to which the failed request was addressed has been lost then the

user must locate another producer.

If the previous request failed because the reply was lost, then

repeating the request will lead to the operation being repeated. To

prevent this either the operations are implemented idempotently so that

they can be repeated, or the producers must be able to detect repeated

requests and act accordingly.

4.2.2 Masking redundancy In practice

As mentioned In the introduction to this thesis, the current

generation of command and control system used in Royal Navy warships is

based on a single computer. This makes the warship dangerously vulnerable

to computer loss. In 1975, In an attempt to remove this weakness, the

Admiralty Surface Weapons Establishment (ASWE) instigated the DIAS

(Distributed Information Architecture for Ships) programme. The aim of

this ongoing programme Is to develop a crash tolerant distributed computer

system for use as a warship command and control system. The results of the

first two phases of the DIAS programme - ADNET - were described briefly In

Chapter 2, Section 2.2.M. He now present a more detailed description of

ADNET and a description of the work that has been done for the third phase.

ADNET is configured as a number of Ferranti Argus 700 military

computers linked together by an ASHE Serial Highway. The peripheral

devices such as weapons, sensors and Interactive consoles are connected

directly to the computers.

Each computer's software is comprised of a Mascot Operating System,

a commmications package and a number of application processes. The

commixiieatlon package provides interprocess communication in the form of

message passing. Two types of message passing are supported: broadcast and

point-to-point.

The application processes on a computer can be divided into those

that support local device handling, and those that contribute to the global

resources of the system. The latter consist of those processes that form

part of the overall system database, and those that provide some service

used by the system as a vdiole.

The failure of a computer must not prevent the rest of the system

from functioning. It is acceptable that those application processes that

are concerned with handling devices will be lost. However, those

application processes that support global services must be preserved, and

this is done by masking redundancy.

In ADNET application processes are classed as users, servers,

producers and consumers with the usual meanings. To use a service the user

first locates the server by broadcasting a 'request for service' message to

each computer. The server will reply with its address, and then the user

and server enter into a conversation conducted in terms of requests and

replies.

63

Masking redundancy is only applied to application processes that

are servers. So far it is only being used to Implement a partitioned and

replicated database called ADDAM (ASHE Distributed DAtabase Management

system, Tillman 1982). Previously it had been used to implement another

server (a track designator) but that server's function was later merged

with that of ADDAM. The following description is based on masking

redundancy as used in ADDAM.

Synchronisation is achieved by organising the server replicates

into a master-si ave relationship. Requests are sent to the master who

performs the operation and then broadcasts the request to the slaves. The

master then replies to the user. The master prevents concurrent access by

mutual exclusion. (The roles of producer and consumer are combined in a

server.)

Failure atomicity is omitted in order to reduce overheads. Instead

each request is numbered by the master and when a slave detects that it has

missed a request it asks the master for an update to its state.

The master and slave servers monitor each others' health. If the

master is lost then the slaves vote amongst themselves to elect a new

master. There also appears to be a facility for creating new slaves in

order to maintain the level of redundancy.

The loss of a master may result in the loss of a request or a

reply. The user detects a failure when a reply is not returned after a

certain period. The user locates the new master by again broadcasting a

request for service; on being sent the address of the new master it repeats

the request. The literature does not explain how the servers avoid

repeating requests.

64

Alsberg and Day (1976) propose a master-slave organisation for

providing resilient access to resources. The master and slave replicates

are organised into an ordered chain with the master at its head. A request

can be issued to the master or a slave, but if it is issued to a slave it

will be forwarded to the master for processing. Synchronisation is

achieved by passing the requests down the chain with each replicate

performing them in the same order. There is no mention of failure

atomicity.

The master and slaves monitor each others' health by regularly

passing messages up and down the chain. If the master is lost, the first

slave in the chain takes over. If a slave is lost then the chain is

reconfigtred to avoid it. Recovery from lost requests or replies is

performed by the user repeating the request.

In Saphir (Gaude et al. 1980) masking redundancy is implemented at

the computer level. The computers are paired. Each pair consists of a

master and a slave computer, both of which run the same software. All of

the network traffic that is directed to a pair of computers is received by

the master computer who then passes it on to its slave so that it is

processed by both of them. All output produced by a slave computer,

whether to the network or to the devices, is discarded by the hardware.

When a master computer fails, its slave computer is able to use both the

network and its devices nomally, and it continues to provide the pair's

services.

The Honeywell Experimental Distributed Processor (HXDP, Jensen

1978, Jensen et al. 1977) 1» another experimental warship command and

control system. From the details given in Boebert et al. 1978 it appears

that HXDP is also implemented using masking redundancy, although in this

example it is the executive processes and not the application processes

that are implemented in this way. The distributed kernel level 1. crash

65

tolerant, and application processes are simply lost.

I*.3 Standby redundancy

4.3.0 Introduction

Standby reduidancy is applied to individual processes. It does not

matter whether they are users, servers, producers or consumers.

4.3.1 Standby redundancy in theory

A process is redundantly implemented as an active running replicate

and a number of inactive backup replicates. All requests for operations

are sent to the active replicate which performs them. Each replicate is

located on a different computer. When the active replicate is lost in a

crash one of its backups is activated to replace it. The decision as to

Which backup to activate can be based on some fixed ordering between the

backups, or on voting between the backups. However this decision is made

its implementation must be crash tolerant, for example if an ordering is

used then it must be resilient to backup loss. After a crash, those

processes that were commuiicating with the lost replicate must be able to

locate its reincarnation.

Again it is possible to distinguish between processes that provide

time dependent and time invariant processes.

When the service provided is time invariant it would be acceptable

for the backups' Internal states to be left in their initial states. This

would be very economical, although in this situation it would be even more

economical to use masking redmdancy instead as then the work load could be

shared between the replicates.

66

Where the service Is time dependent however, the backups' Internal

states must be the same as the Internal state of the active replicate so

that the activated backup can carry on Where the previous Incarnation of

the process left off. As In the previous section on masking redundancy we

will concentrate on how processes that provide a time dependent service can

be implemented using standby redundancy.

To update the backup replicates' Internal states a copy of the

active replicate's Internal state must be used. It is impossible to

continually update the backups' internal states and so they are updated at

intervals When the active replicate establishes a recovery point.

When a backup Is activated It will be In exactly the same state as

its previous Incarnation was udien it performed its last recovery point.

The backup replicate will start to execute its code from immediately after

that recovery point. Because recovery points are only performed at

intervals, the Internal state of an activated backup will be out of date.

Restarting processes from a past state can lead to inconsistencies

arising between the internal states of communicating processes. The

precise details will depend on the interprocess communication mechanism

used. (A full description of the effect that it has on asynchronous

message passing is given in Chapter 7.) In general however, having rolled

back one or both processes of a commuilcating pair the following

inconsistencies may arise:

a) Data will have been received that has not yet been sent

An example of this is shown in Figure 4b which shows two

processes at the time of a crash. (In this and later figures process

execution is represented by a directed vertical line, recovery points

are represented by a horizontal character, and the horizontal

directed lines each represent the passing of a message from one process

to another.) Prior to the crash, and after its last recovery point,

67

Process-A aent Proceaa-B a measage. After the oraah Proceaa-A la

restarted from lta laat recovery point, and Proeeaa-B contlnuea

normally. The recovery point waa eatabliahed before the meaaage waa

aent and ao Proceaa-B haa received a meaaage trtilch, with reapeet to

Process-A’s current state, has not yet been sent.

CRASH

-»RECEIVE

l_______ I

Proceas-A Process-B

Figure Mb

b) Data that haa been sent has been loat

Figure 4c below shows another two processes at the time of a

crash. Prior to the crash, and after lta last recovery point, Proceas-C

received a message aent to It by Process-D. After the crash Proceas-D

contlnuea normally but Process-C is restarted from Its last recovery

point. The recovery point was established before the message was

received and so after being restarted Process-C’s Internal state does

not contain the message. The message sent by Process-D has been lost.

SEND-

Recovery
Point

66

CRASH

RECEIVE «-

Recovery
Point

Process-C

■SEND

Process-D

Figure 4c

These inconsistencies must be removed. The consequences of not

removing them could be disastrous. For example, if an alarm message is

lost the control system may not react quickly enough to a critical

situation in its environment. Similarly, if a message exists that was not

sent then no matter how the sender acts when it is restarted, the receiver

will perform an action that it was not asked to do. Two ways of restoring

consistency are available. One attempts to roll back the processes to a

set of checkpoints Where the processes' states are consistent with each

other, and the other turns the inconsistent state into a consistent one

without further rollbacks. Process survivability employs the latter.

Standby redundancy is applied to individual processes rather than

to systems of processes because performing a recovery point that spans more

than one process is technically difficult especially if those processes are

on different computers.

69

H,3.2 Standby redundancy In practice

Possibly the most famous commercially available crash tolerant

computer is the Tandem 16 NonStop System. The Tandem 16 was developed to

provide commercial firms such as publishers and financiers with a hardware

fault tolerant computer for on-line transaction processing. The prime aim

of the Tandem 16 is to provide a guaranteed continuous operation despite a

single hardware fault.

The following description of the Tandem 16 is based on those given

in Bartlett 1978, Katzman 1978, Mackie 1978, Bartlett 1981 and Paker 1983-

A Tandem 16 can consist of up to 16 computers loosely linked by a

duplicated external bus. Devices are attached to I/O Controllers. Each

device can be connected to two I/O Controllers which in turn are each

connected to two computers. Figure 4d shows a Tandem 16 consisting of two

computers and a single multi-homed device.

Figure Md

70

This hardware arrangement removes all single points of failure from

the hardware. Unfortunately the use of a bus for inter-computer

commixiicatlons, while providing a very high data rate of 13M bytes/second,

limits the dispersal of the computers (in fact they are mounted all

together in a single cabinet) thus making the entire system vulnerable to

external stresses, for example a fire would easily disable the whole

system. In fairness it should be noted that it was not designed to cope

with such calamities as they would result in more than a single hardware

fault.

The software is divided into processes. Interprocess communication

is by message passing, where a message consists of a request and a reply.

To provide a non-stop service the Tandem 16's software, like the hardware,

must not contain any single points of failure. Ibis is achieved by standby

redundancy of processes.

Any process can be implemented redundantly as a process-pair

consisting of a primary process and a single backup process. (The large

number of computers in a Tandem 16 is to ensure a high through-put rather

than to support low vulnerability.) At intervals the primary process

establishes a recovery point which updates the backup process's internal

state. When the primary process is lost in a crash the backup process will

be activated and it will start processing from the point at which the last

recovery point was performed.

To ensure that consistency is restored after a crash, the following

protocol is used by the processes to control process interactions. This

protocol is shown diagrammatieally in Figure He.

71

recovery
point

Figure Me

Before Issuing a request the user process performs a recovery

point. It then sends Its request to the server primary process and waits

for a reply. The server receives the request, performs a recovery point

and then performs the requested operation. All requests are sequence

numbered, and once the operation is performed the server stores the

request's sequence number and the reply. A recovery point is performed and

then the reply is returned to the user.

In the event of either or both processes being lost before the

transaction is completed the request will be repeated thereby ensuring that

the operation is performed at least once.

72

If the server crashes after a request has been sent to its primary

process then the message system automatically resends the request. This

time the message is sent to the server's now active backup process.

Depending on vrtiether the server had established its first recovery point or

not, this request may or may not be a repeat. (Even if the server had

received the original request and performed the recovery point its backup

would not have been able to return the reply.)

Some operations are idempotent but the majority are not. The

server uses the request's sequence number to detect repeated requests. If

a request is a repeat, then instead of performing the operation the server

returns the stored reply. Thus the request is not repeated but the results

are still obtained.

If the user process crashes after sending its request, then its

backup will restart from its last recovery point and will repeat the

request. The server may have performed the original request but not been

able to return the reply, or alternatively it may not have received the

request. In the former case the server will return the stored results as

described above, and in the latter case it will handle the request

normally.

Thus each process has only one outstanding recovery point, and

consistency is recovered by the above protocol implemented by the user and

server processes' programmers. When a recovery point is created the

process (and hence the programmer) must specify which part of the data

segment is to be backed up. Obviously, if recovery from crashes is to

restore consistency then this protocol must be implemented correctly.

A similar problem arises in the JPL-STAR computer *»ich uses

standby redundancy to ensure that its user processes can survive the

permanent failure of their host memory units. A description of process

survivability in the JPL-STAR computer was given in Chapter 3, Section

73

3. 7 .*».

The user processes in STAR communicate with each other via shared

data stored within the STAREX executive. Access to the shared data is

provided by routines supplied by STAREX. As STAREX is housed in duplex

memory the permanent failure of one of its memory units will not affect its

data. Alterations made to the shared data are permanent and are not

affected by memory unit failures.

If after establishing its last recovery point, and prior to a

crash, a user process performed a STAREX routine, then on restarting it

will repeat that routine. Some STAREX routines are idempotent and can be

repeated, but others are not and these must not be repeated. To overcome

the latter problem STAREX provides a number of mechanisms that enable user

processes to either undo the effects of an executive routine before

repeating it or to skip the repeated call altogether.

DEMOS M/P (Powell and Presotto 1983) takes the same approach to

crash tolerance as process survivability does (although the

implementational details are very different). Both are based on the fact

that application processes are deterministic and so, by giving a restarted

process the same input as it had prior to the crash it will recover itself

to a consistent state. This approach has the great advantage that crash

tolerance is transparent to the application programmer. This lack of

transparency is a positive drawback to the Tandem approach to crash

tolerance.

DEMOS M/P consists of a broadcast network, a number of computers

and a computer called the -recorder*. The recorder plays a similar role to

that played by STAR’S TARP in that it acts a, a repository for recovery

data and it controls recovery after a crash. When a process performs a

recovery point a copy of its internal state is recorded within the

recorder. Every message sent over the network is copied and that copy is

74

stored within the recorder (all Interprocess communication Is Inter­

computer) .

When a process Is lost In a crash the recorder causes It to be

moved to a different computer and then restarted from its last recovery

point. The recorder then sends the restarted process, copies of all of the

messages that had been sent to the restarted process's previous generation

after the last recovery point had been established. Any message produced

by the restarted process and which was also sent prior to the crash by the

restarted process’s previous generation is discarded in order to prevent

side-effects.

The recorder is DEMOS M/P's hardcore. Although it is claimed that

by centralising the recovery function its implementation is simpler and

hence more reliable, it does make the entire control system vulnerable to

the loss of the recorder.

In the Auragen computer (Borg et al. 1983) this vulnerability is

removed. As in Tandem, processes in the Auragen are implemented as

process-pairs. Every time a primary process executes a recovery point its

inactive backup process is updated so that both primary and backup process

have the same internal states. When a primary process sends a message,

copies of that message are sent to the receiver’s primary process, the

receiver's backup process and the sender’s backup process.

When a backup process is activated it has copies of the messages

that were sent to its primary process prior to the crash, and it has copies

of the messages that were sent by its primary process prior to the crash.

The former enable it to recover itself to a consistent state, and the later

allows the operating system to detect when the backup process repeats a

message that was sent prior to the crash; such messages are discarded.

75

The Auragen approach ia a combination of the beat faceta of Tandem

and DEMOS M/P: it la invulnerable to a aingle hardware failure and craah

tolerance ia tranaparent to the application programmer.

Project Little (Brenner et al.1980) waa an experimental ultra

reliable diatributed computer ayatem. Although not a diatributed computer

control ayatem lta hardware and software organisation conforms to the

three-layer model presented in Chapter 2. Each computer runs a control

program which ia either an EXEC which supports one user process, or an SVOL

which provides access to one storage device.

Little also employs a form of standby redundancy. As a user

process executes, its host EXEC records information about the process’s

state (although not actual checkpoints) in a file called the Tasklist which

is stored on more than two SVOLs. In the event of a computer crash an idle

EXEC will continue the interrupted process. No further details are given

in the literature, and the project was terminated before this aspect of

Little could be developed (Burton 1982).

Crash tolerance by standby redundancy is very similar to software

fault tolerance by standby redundancy as both require the storing of past

states. Inconsistencies similar to the two described in Section 4.3.1 also

arise *>en backward error recovery is performed by one or more processes

within a group of comm^icating processes. It is possible that the

solutions used there could be applied to crash recovery as well. Most of

the work that has been done on backward error recovery amongst

commmicatlng processes has been as a result of interest in the recovery

block scheme described in Chapter 3, Section 3-6.

A process’s active and backup replicates would each maintain a

sequence of recovery points. After a crash backups would be activated to

replace the processes that were lost. Then the active processes would be

rolled back to older recovery points in order to place the system into a

76

consistent state. The set of recovery points that satisfy the criteria

constitutes the recovery line. For example, referring back to the two

examples shown In Figures Mb and He, consistency would be restored by

rolling back Process-B to Its previous recovery point, and by rolling back

Process-D to Its last recovery point. Thus crash recovery would result in

the need to roll back processes being propagated from one process to

another mtll a consistent state is achieved. Rolling back an active

process would necessitate that Its backup replicates also discard the same

recovery points.

Unfortunately there are two major drawbacks to this solution:

1) Data and processing overheads
Each process would consist of a number of replicates, each of

which would have to maintain and store a possibly large sequence of

recovery points. This sequence would Increase as the process runs.

However, It Is possible to calculate which recovery points will never be

needed and thereby delete the data that supports them. Of course this

would In turn increase the processing load.

2) The domino effect
The propagation of rolling back can result In the so called

•domino effect' where a crash can result In a group of processes having

to «,11 back over many If not all of their recovery points. Figure 4f

below Illustrates this effect.

If in our example the computer hosting Process-A crashes, then

one of Process-A's backup replicates is activated to replace it. In

effect Process-A has been rolled back to Its most recent recovery point.

To achieve consistency Proc.ss-B is rolled back to its third recovery

point, Which in turn means that Process-C must be rolled back to Its

second recovery point and so on. The eventual outcome will be that all

of the processes will have been rolled back to their Initial state.

77

Also, all of their backup replicates will have discarded all of their

recovery points as well.

Process-A Process-B Process-C

Figure Uf

The domino effect Is obviously very unsatisfactory especially in a

real-time system. The use of standby redundancy for ADNET was rejected

because of the "Immense backward error recovery problems" (Moulding 1980a),

although as we have seen In Tandem and as we shall see for process

survivability this Is not necessarily the case.

Examples of using the domino effect for backward error recovery in

multi-computer systems can be found in Merlin and Randell 1978, Menasce

1978, and McDermld 1981a and 1981b. McDermld suggests that crash recovery

could be performed in this way. It has also been suggested that It could

be used to provide crash tolerance in the LOCOS distributed operating

system (Popek et al. 1981) «id In the related UCLA-Net (Rudisin 1980).

78

Russell (1977 and 1980) describes a technique known as 'Directed

commmlcatlons' that guarantees that a recovery line can be found without

having to roll back the processes too far, thereby limiting the worst of

the domino effect. (It also limits the number of outstanding recovery

points that are needed, thereby reducing the data storage overheads.)

Russell's solution is complicated when used for error recovery because of

the need to verify that the messages do not contain errors, but for crash

recovery this would be unnecessary.

Propagating recovery between processes and 'Directed

communications' both try to find a recovery line (which may not exist) when

it is needed. The alternative approach is to ensure that one always

exists, and that the minimum amount of rolling back is performed. Horning

et al. (197*0 describe the 'conversation' for use in multiprocess error

recovery, and it is possible that it could be used for crash recovery as

well, although the requirement that all of the processes involved in a

conversation must leave it at the same time may, as Russell and Tiedeman

(1979) suggest, "cause an unnecessary loss of efficiency in parallel

processing".

Unfortunately all of theae aohaaea involv. process., that asra not

on th. crashed acput.r haring to roll hack. Ideally only thus, proc.ss.s

that »era on the crashed ocaputer shculd have to roll back. On the

posltl,. side, tha, nay b. abl. to support crash tolar.no. and softuar.

fault tolerance at the same time.

79

U.U Sunn ary

In this chapter we have described two ways of organising process

redwdancy so that the application level (or the distributed kernel level)

can be made crash tolerant. In the following chapter we introduce process

survivability itself, and relate it to the two major examples - ADNET and

Tandem - that were given in this chapter.

80

5. An Introduction to Process Survivability

5.0 Introduction

The multi-computer architecture of a distributed computer control

system has two characteristics that make it a suitable base for a crash

tolerant computer system. Firstly, and most importantly, the loss of one

computer does not prevent the other computers from working normally. The

loss of a computer will reduce the control system's overall processing

power, but the majority of the power will still be available. Secondly, by

basing the control system around a network the computers can be physically

dispersed, thus providing passive protection against external stresses by

limiting the damage that can be caused. For example, by placing the

computers in different buildings, the number of computers that can be

damaged in a fire is reduced.

Unfortunately, these characteristics are not sufficient on their

own to make the distributed computer control system invulnerable to

computer crashes. The loss of an application process may result in the

control system's application software failing to meet its specifications.

Despite the architectural advantages of a distributed computer control

system it is still vulnerable to a single computer crash.

Process survivability removes this vulnerability. Process

survivability is the implementation of an application process using standby

redundancy so that in the event of its host computer crashing an

application process will survive and will continue to run on a different

computer.

Process .ur.lv.blHW support. out of or..h tolershce. Io *

distributed o o w t . r oootrol sy.te. of . oo.put.rs, .ppllo.tlon

proo«.. he. n backups, lb. .ppllo.tlo. 1...1 ■»» tol.r.t. n c p u t . r

crashes; sft.r tbst sny further ors.be. -Ill r..»lt 1. sppll.stlos

81

processes being lost and in process survivability for the other application

processes breaking down. The size of n will depend on a number of factors:

the size of m, the magnitude of the envisaged threat to the control system,

the cost of having what is in effect n redundant computers, and the level

of acceptable performance because the overheads of process survivability

increase along with the size of n.

Unfortunately, while process survivability is in our opinion a

necessary requirement for a crash tolerant computer system, it is not a

sufficient one. When a computer crashes those devices that are attached to

it are no longer accessible. Without these devices the control system will

not be able to exert full control over its environment. Providing a crash

tolerant input/output service is outside of process survivability's brief,

and so we have adopted the approach taken in ADNET where it is accepted

that a crash will result in the loss of devices as well. We shall return

to this topic in later chapters.

5.1 The alms of process survivability

A number of requirements concerning the way that process

survivability relates to the application programmer and how it should be

implemented were defined. These requirements then guided the development

of process survivability.

TO. primary r w l r m m t la that procaaa survivability ahould b.

complet.ly trmapar.pt to th. application programmer: application proo.aa.n

ar. written a. th., mold b. If non-r.di.dmt. pmondanoy 1. only a p p m m t

m m th. control ayatm « oonfliorm « t h m th. number and location of

th. application proc.as.s- haohup. m . .pmlflad. ».r. P ™ « . .

survivability to b. Irnplmmtm 1» m r t h, application proo... cod. < m 1.

th. c a m in Tandem and ADEET) th.n It would b. Impo.alhl. to gu a r m t m

auco.aaful oraah tol.rmoa. m my alat.m »« th. part of th. progra-ar

82

could result in process survivability failing. By making process

survivability transparent we can guarantee that once the process

survivability code is debugged it will always work correctly.

Process survivability is based on standby redundancy rather than on

masking redimdancy because we believed that it would constitute the best

basis for achieving transparency. Although we cannot categorically state

that standby redundancy is the best basis, we can state that it has been

possible to make process survivability transparent to the application

programmer, and we do not believe that this would have been possible had

masking redundancy been used.

Transparency would also be advantageous were it possible for

process survivability to be added to an existing distributed computer

control system, as transparency would mean that it would not be necessary

to retrain programmers nor would it be necessary to rewrite application

process code. Both of these are financially attractive, and could tip the

balance in favour of adopting process survivability for an existing control

system.

The drawback to process survivability being transparent is that it

is impossible to take advantage of any optimisations that might arise in a

particular application. However we believe that the value of such

optimisations is far outweighed by the consequences of faulty crash

tolerance.

The secondary requirements were guidelines as to how process

survivability was to be implemented:

a) If the control system is to be effective it must be able to maintain its

response time to external events. This is particularly important when

an external stress has destroyed a computer. For example, a chemical

works may become critical after an explcsicn and prompt action by the

83

control system would be needed to prevent a catastrophe. In order to

maintain the response time we require that:

- The processing overheads of supporting process survivability during

normal running should be kept as low as possible.

- The interruption to an application process’s service caused by a

crash should be as short as possible.

- The disruption caused to application processes that have not crashed

should also be as small as possible. In particular, there should be

no domino effect - application processes that are not on a crashed

computer are not rolled back.

b) Each application process should have only one outstanding checkpoint.

More are not needed because of our determination not to use dominoing to

restore consistency.

c) Crashed application processes are recovered independently of each other.

There is no coordination between the recovery of two application

processes even if they normally communicate with each other.

d) Process survivability must be able to cope with multiple computer

crashes even if they occur simultaneously.

e) Assuming that an application process’s redundancy has not been

exhausted, a process must be able to recover from a crash no matter what

it is doing at the time. In particular, application processes that are

currently recovering fro. one crash must be able to recover from another

crash.

84

The implementation has adhered to the last four requirements, and

has attempted to minimise those overheads specified in the first one.

5,2 An Introduction to the Implementation of process survivability

Rather than trying to make process survivability completely general

and suitable for all distributed computer control systems, we have

developed it for a specially devised 'paper* distributed computer control

system called PROSUR (PROcess SURvivability). PROSUR conforms to the

layered model of a distributed computer control system outlined in Chapter

2. Full details of PROSUR are given in the next chapter, Chapter 6.

All application processes are implemented as a process-set, where a

process-set consists of an active primary replicate and a linearly ordered

set of backup replicates. By having a number of backups per process-set we

ensure that an application process can survive multiple crashes even when

they occur simultaneously (for as long as its redundancy is not exhausted).

At intervals the primary replicate performs a recovery point which

causes each of its backup replicates to be updated so that they are exact

copies. When a primary replicate is lost in a crash the first of its

backup replicates is activated to replace it. The activated backup

replicate will start to execute from the place at which the last recovery

point was performed - there is only one outstanding recovery point per

process•

Chapter 6 contains a high-level description of how process-sets are

organised. Full implementations! details of the process-set, including how

computer crashes are detected, are given in the first half of Chapter 9.

In Chapter 4, Section 4.3.1, we briefly described the type of

inconsistencies that can arise between two application processes after on.

or both of the. have been restarted after a crash. In Chapter 7. w.

85

describe these inconsistencies in the form in which they arise in PROSUR.

In process survivability consistency is restored by replacing lost

messages, and by forcing the restarted processes to act in exactly the same

way as they did prior to the crash, with any repeated messages being

discarded. The crux of this solution is that the process must act in the

same way, and this is guaranteed by executing recovery points in the

correct place. In this way consistency is restored without the need to

roll back processes that were not on a crashed computer.

Chapter 8 outlines how consistency is achieved, and Chapter 9 gives

full details of how it could be Implemented in PROSUR.

5 . 3 Comparisons with existing crash tolerant systems

Of the crash tolerant systems described in detail in the previous

chapter, process survivability is most similar to crash tolerance in

Tandem. Both are based on standby redundancy with a single outstanding

checkpoint per process and both achieve consistency without the need to

'domino' processes.

Minor implementational differences occur because of differing

design alms and because Tandem is a finished product whereas process

survivability and PROSUR are experimental. For example, Tandem is designed

to withstand only a single component failure and so each process has only a

single backup, but process survivability is designed to withstand multiple

computer failures and so every process has a number of backups.

The major difference between the two is the way that consistency is

restored after a backup is activated. In Tandem consistency is restored by

a protocol implemented by application process code. If consistency is to

be achieved then the protocol must be correctly implemented by the

application progr«m.er. In process survivability consistency is restored

86

by the underlying process survivability mechanism and not by application

process code. Once debugged, process survivability can be guaranteed to

work always, whereas crash recovery in Tandem is vulnerable to programmer

error. As Bartlett (1981) says, "Many [programmers] do [write application

process-pairs], and if the design has been done carefully, they will

recover correctly".

ADNET's crash tolerance is based on masking redundancy and so

comparing its implementation with that of process survivability is of

little value. However a comparison of the services provided by each of

them is worthwhile.

Both provide crash tolerance to multiple computer failures.

However, in ADNET crash tolerance is only implemented for server processes

(all other classes of process are lost in a crash), but process

survivability is applied to all of the application processes. Thus with

process survivability all of the control system's application processes

survive a crash, but in ADNET only the server processes do. Finally, crash

tolerance in ADNET is achieved solely by application process code which

must be correct if crash tolerance is to work correctly.

The major difference between process survivability and crash

tolerance as provided in ADNET and Tandem is that process survivability is

transparent to the application programmer. He believe that this is the

major advantage that process survivability has over these systems, as it

ensures that crash tolerance is not vulnerable to application programmer

error. That this approach is also taken by two recent systems - Auragen

and DEMOS M/P - is encouraging, as it implies that transparency is

important in a crash tolerant system, and that it valued by others.

87

5.1» Sunn ary

Process survivability is a way of implementing an application

process so that it can survive the crash of its host computer. Each

process has a number of backups so that it can withstand multiple computer

crashes even if they occur simultaneously. By implementing all of the

control system's application processes in this way, the control system's

software can survive a number of computer crashes and still fulfil its

specifications.

Unlike ADNET and Tandem, process survivability is transparent to

the application programmer. This ensures that programmer errors cannot

prevent process survivability from being performed correctly. Transparency

also makes process survivability suitable for adding to existing

distributed computer control systems, as there would be no need to retrain

programmers and it would not be necessary to alter existing software.

Moulding (1980a, page 9) states that using standby redundancy

"introduces immense backward error recovery problems and in practice no

such automatic reconfiguration has been achieved". Process survivability

removes these "inmense backward error recovery problems" by achieving

consistency without recourse to 'dominoing'.

The rest of this thesis describes how process survivability could

be implemented for the paper distributed computer control system PROSUR.

88

6. PROSUB and the Foundations of Process Survivability

6.0 Introduotlon

PROSUR (PROcess SURvivability) is the distributed computer control

system that was designed as an environment in which to develop process

survivability. PROSUR is a 'paper* distributed computer control system,

that is, it exists on paper but it has never been implemented.

PROSUR conforms to the three-level model of a distributed computer

control system described in Chapter 2, consisting of a hardware level,

distributed kernel level and application level. Process survivability is

provided by a fourth level interposed between the distributed kernel level

and the application level.

This chapter describes PROSUR's three standard levels and

introduces the implementation of the process survivability level. Then in

the following three chapters the implementation of the process

survivability level is developed.

To facilitate the development of process survivability, PROSUR has

been kept simple. While it has not been simplified to the extent that the

value of process survivability has been nullified, it has resulted in

PROSUR having a number of limitations as a distributed computer control

system. The final section of this chapter outlines these shortcomings.

6.1 Application level

The application level is organised as a static configuration of

processes co«m«ic.tlng with each other by asynchronous message passing.

89

A process is a named running instance of a program. All programs

are written in PROSUR's P/L which has been adapted from Pascal (Jensen and

Wirth 1978) by removing the file handling facilities (Including READ and

WRITE etc.) and by adding message passing and device driving commands.

Processes are connected together by uni-directional 1-to-1 typed

channels, where a channel is a queue of messages. Each channel has only a

single sender process and a single receiver process: there is no facility

for many-to-1 or 1-to-many connections. The sender places messages into

the channel using a SEND command and the receiver removes these messages in

the order in which they were sent using a RECEIVE command. Messages that

have been sent but which have not yet been received are buffered within the

channel.

The application level is created at system initialisation time by

commands issued to the system manager. Application processes are created,

named and allocated to computers, and the pattern of interconnecting

channels that bind these processes together is specified. PROSUR is a

static system, and so the configuration specified at system initialisation

time remains constant throughout the control system's life. If the control

system has to be altered in any way, for example to add or replace a

process, then it must be turned off and then recreated. The only exception

to this is the migration of processes between computers as a result of the

actions of process survivability after a crash. After system

initialisation the system manager has no further role.

A channel is formed by linking together the sender's output channel

and the receiver's input channel. Input channels and output channels are

declared within the programs by statements of the form:

To : OutputChannel [10] Of letter;

From : InputChannel [10] Of letter;

90

where ’letter' is the base type of the channel and 10 is the maximum number

of messages that can be buffered within the channel. Only input channels

and output channels of the same base type and size can be linked together

to form a channel. This linking is performed by the system manager at

system initialisation time.

'To' and 'From' are the local names of the output and input

channels. All interprocess communication is with respect to the local

names of a channel. Hence the physical location of the processes is hidden

from the processes. Such addressing is said to be 'location independent',

and it is a vital feature in a system that incorporates process

survivability. With process survivability a computer crash results in

application processes being 'moved about', and location independent

addressing (assuming adequate support from the kernel) ensures that the

application processes will still be able to communicate with each other

despite the changes in their physical locations. (Without location

independent addressing it would be necessary to recompile the processes in

order to adapt them to the altered configuration.)

The SEND and RECEIVE commands are of the form:

SEND (to, data, status, timeout)

and

RECEIVE (from, data, status, timeout).

SEND places the message 'data' into the channel whose local name is

'to*. RECEIVE takes the first message in the channel 'from' and places it

into 'data*. Channels are typed and so in both commands the channel's base

type must be the same as that of the 'data' parameter.

91

If a process issues a RECEIVE on an empty channel then that process

will be suspended until a message is available. If a process issues a SEND

on a full channel, that is a channel in which all of the buffering is taken

up by outstanding messages, then that process will be suspended until space

is available in the channel.

The 'timeout' parameter in both commands allows a process to

maintain its responsiveness. If a SEND/RECEIVE takes longer than the

period specified by timeout, perhaps because of the above flow control

reasons or in the case of a SEND because the network is busy, then the

command is aborted with the 'status' parameter set to ' failed'. If a

SEND/RECEIVE terminates normally 'status' is set to 'succeeded'.

PROSUR suffers from the generic problem associated with

asynchronous message passing: if a SEND fails due to the timeout expiring

it is possible that the message has in fact been successfully delivered.

(The reason for this is explained in Section 6.3 of this chapter.) It is

left to the application processes to cope with this problem, possibly by

implementing some higher protocol amongst themselves.

The final interprocess communication command is the boolean

function:

PENDING (from) : Boolean;

which returns true if there is a message in the input channel 'ft-om', and

false otherwise. PENDING allows a receiver to check whether there is a

message ready to be received before actually Issuing a RECEIVE.

An input/output device is controlled by a process known as its

•handler'. Other processes can only access a device indirectly by

comminicating with that device's handler by message passing. The device

handlers provide the rest of the application level with a high level,

message-based interface to their devices.

Like channels, devices are declared within their device handlers by

declarations of the form:

lp : LINEPRINTER;

where the type can be any of the system defined device types. The handler

refers to its device by the local name. The device that is actually

controlled is not specified until system initialisation time.

Device handlers control their devices using the DOIO procedure,

Which is based on the 10 command in Concurrent Pascal (Brinch Hansen 1977).

DOIO is of the form:

DOIO (dev, oper, data, stat, arg).

DOIO causes the device * dev* to perform the operation 'oper' (where oper

can be INPUT, OUTPUT, MOVE or CONTROL), with any further information

concerning the operation being supplied by 'arg'. In the case of an

input/output operation the value input/output will be read from/placed into

'data'. The outcome of the operation, for example COMPLETED or

INTERVENTION, is returned by the parameter 'stat'.

The system manager ensures that the configuration specified is

correct, as error checking at system initialisation time ensures that

expensive runtime error checking need not be performed. In particular it

ensures that each device has only one handler and that both are on the same

computer, and that each input/output channel is bound to only one

output/input channel and that they are of the same size and type.

93

6.2 Process survivability level

Process survivability is based on standby redundancy of application

processes. An application process and its redundant backup copies together

constitute a process-set. Every application process (and that includes

device handlers) is implemented as a process-set.

The process survivability level fulfils two roles:

1) It provides the process-set.

2) It ensures that any Inconsistencies that arise between processes after a

crash are removed.

In this section we describe how a process-set is organised and what

it does, but the details of how a process-set is implemented are left until

Chapter 9. Neither does this section describe how consistency is restored.

The next two chapters describe the inconsistencies and explain how they are

removed. The implementational details of restoring consistency are

presented in Chapter 9.

A process-set consists of the primary replicate which is the

running copy of the process, and of a set of non-running copies of the

primary replicate called backup replicates (see Figure 6a below). Each

replicate is hosted by a different computer. When the primary replicate is

lost due to the crashing of its host computer one of its backup replicates

is activated to replace it. The remaining backup replicates provide

standby redundancy for this new generation of the application process.

94

Application process

process-set

The organisation of a process-set

Figure 6a

A primary replicate is the running copy of the application process.

It consists of a code segment and a data segment. The code segment

contains the compiled PROSUR’s P/L program that defines the process, and

the data segment contains the process’s global variables, runtime stack and

heap storage.

Each backup replicate also consists of two segments: the code

segment, which is a copy of the primary replicate’s code segment, and the

data segment, which is a copy of the primary replicate’s data segment.

A primary replicate’s code segment is constant and so copies of it

can be placed into its backup replicates’ code segments at system

initialisation time. The primary replicate’s data segment alters all the

time and so the backup replicates’ data segments must be updated as the

primary replicate runs. It would be impossible for the backup replicates’

data segments to be continuously updated. Instead they are updated at

intervals when the primary replicate performs a secure point. A secure

data being sent to each of the backuppoint results in secure point

replicates. Secure point data contains sufficient information for each

backup replicate's data segment to be updated so that it is an exact copy

of the primary replicate's data segment.

Secure point placement is decided upon at runtime. There is no

coordination of secure pointing between primary replicates. The insertion

algorithm is a fundamental part of the implementation of process

survivability. The development of the insertion algorithm and its

implementation are described in Chapters 8 and 9.

When a primary replicate is lost one of its backup replicates is

activated to replace it. The 'reincarnated' primary replicate will start

to execute its code from the instruction immediately after the last secure

point that was successfully executed by the previous generation of primary

replicate.

A process-set's backup replicates are ordered linearly. This

ordering defines the sequence in vrtjich the backup replicates will be

activated in the event of the primary replicate being lost. A backup

replicate's predecessors consist of the current primary replicate and of

those backup replicates that are before it in the sequence. When a backup

replicate's predecessors have all been lost it will be activated to become

the new primary replicate. For convenience, we refer to the first backup

replicate in the sequence as the senior backup replicate and the others as

the Junior backup replicates.

When a computer crashes a number of primary replicates are lost and

their senior backup replicates will be activated to replace them. At the

same time a number of Junior and senior backup replicates are lost as well.

The order of backup replicate activation is resilient to the loss of backup

replicates: as a backup replicate is simply activated when its predecessors

have all been lost, it does not matter that some of them were lost before

they were activated.

96

Process survivability provides 'n out of m' crash tolerance: the

control system can withstand the loss of n of its m computers. As we shall

explain in Chapter 8, application processes play an active role in

recovering each other after a crash. For a control system to withstand n

crashes it is necessary that every application process has n backup

replicates as otherwise processes would be lost and would not be able to

assist each others' recovery.

The position of the primary replicates is specified to the system

manager at system initialisation time along with the level of redundancy

required for all application processes. The position of the backup

replicates is decided upon by the system manager. The system manager also

initialises the backup replicates' code and data segments.

PROSUR is a static system, and the configuration cannot be altered

(other than by process survivability) while it is on-line. The only way

that a crashed computer can be reintegrated into the system is by re­

initialising the entire control system. For the same reason, when a

primary or backup replicate is lost in a crash there is no attempt to

maintain the level of redundancy by generating another replicate. The

system has an initial level of redundancy. Once that many computers have

crashed the redtndancy for some processes will have been exhausted, and any

further crashes will cause the control system to fail.

He have adopted the same approach to device redundancy as used in

ADNET where the "failure of a peripheral computer will result in the loss

of that peripheral fhom the system" (Moulding 1980b, page 8). Devices are

single-homed: each device is only attached to a single computer. The

result of this is that when a computer crashes any devices that are

connected to it can no longer be used.

97

Although the devices In PROSUR ere single-homed the device handlers

are still implemented as a process-set. The original primary replicate is

hosted by the computer to Which the device is connected. The backup

replicates will be hosted by computers that are not attached to the device,

and so when a backup replicate is activated it will not be able to control

its device. Device handlers are implemented as process-sets for two

reasons:

1) As we shall explain later, processes assist in each others' recovery,

and so if a device handler were lost it could not assist in the recovery

of other processes.

2) The backup replicates can provide an intelligent response to further

requests for services.

Does the loss of control over the devices nullify the advantages of

process survivability? Obviously the designers of ADNET do not think so,

but the opposite view is taken by the designers of HXDP who think that

"processors in distributed real-time control systems are typically located

near the sensors and actuators they serve; reconfiguration is rendered

ineffective by the inability to move the function of the external devices"

(Boebert et al. 1978, page 255). This difference in view is probably due

to the fact that HXDP tends towards a process to computer ratio of 1:1,

whereas ADNET and PROSUR have a much higher ratio and so computers are not

concerned solely with controlling devices.

If a particular device is vital then it will be replicated, and

each replicate will be connected to a seperate computer. Such an

arrangement would be necessary anyway, as otherwise the control system

would be extremely vulnerable to device failure. Each device will have its

own device handler. In the event of a device handler crashing, its

activated backup replicate would advise its users that it can no longer

98

control Its device, and then the users could use one of the alternative

device handlers instead. (Unfortunately the absence of dynamic channel

linking in PROSUR makes this Inelegant as it requires a process to be

permanently connected to each of the alternative device handlers.)

Farber (1978, page 387) states that "peripherals have to be

connected not only to one but to several processors". Then If one computer

crashes one of the other computers could control the device instead,

thereby maintaining the service.

Unfortunately the connection between the computer and the device is

vulnerable to failure. Were multi-homing to be adopted in PROSUR then it

would be possible for the primary replicate's host to become disconeoted

from the device, leading to the situation where the primary replicate can

no longer control its device but its backup replicates oould.

The Tandem 16 uses multi-homed disks. Tandem is not troubled by

the above problem as it is possible for a primary replicate and its single

backup replicate (processes in Tandem have only one backup) to swop roles,

thereby ensuring that the primary replicate is always controlling the

device. In PROSUR the primary replicate cannot swop roles with one of its

backups.

A possible solution to this problem would be to replicate the

computer-device connection, thereby making it effectively invulnerable.

However in a widely dispersed configuration this would lead to a

prohibitively large amount of wiring. In Chapter 8, Section 8.3» we

suggest a way, based on the Tandem approach, in which multi-homed devioes

and process-sets can be Integrated so that a restarted backup replicate can

control its devices.

99

To sumaarise, devices ape single-homed and their device handlers

are replicated. In the event of either the device falling, or the computer

it is attached to crashing, the service provided will be lost. If a

redundant I/O service is required then it would have to be implemented

within the application level.

6 . 3 Distributed kernel level

Each computer runs a functionally identical kernel. These kernels

together constitute the distributed kernel level. The distributed kernel

level, along with the hardware level below it, provides the services that

are used to implement the application level and the process survivability

level.

In general the kernels operate independently of each other. Each

kernel supports its local processes by providing time-sharing, virtual

memory management, asynchronous message passing and low-level device

control. The kernels cooperate with each other to transfer messages from

one computer to another.

Each primary replicate hosted by a kernel is described within that

kernel by a data structure known as its •descriptor'. A primary

replicate's descriptor contains its status ('runnable', 'unrunnable'), a

copy of its volatile environment and its page table.

Primary replicates on the same computer are time-shared by their

host kernel. The descriptors of those primary replicates that are runnable

are organised into the ready-queue, from trfiieh the kernel chooses the next

primary replicate to be run.

While a primary replicate is being run it will make use of a number

of registers such as the program counter. The values contained in these

registers are the primary replicate's volatile environment. When a primary

100

replicate relinquishes the processor, either because it has become

mrunnable or because it has been pre-empted, its volatile environment is

stored in its descriptor. When the primary replicate is next chosen to be

run its stored volatile environment is reloaded into the registers and the

primary replicate continues where it left off. If the volatile environment

was not saved it would be overwritten by the next primary replicate to be

executed.

Virtual memory is in the form of paging. Program addresses consist

of a page number and a word number pair. The physical location of a

particular page in main memory or on backing store is defined by the

primary replicate's page table which is stored in its descriptor.

The distributed kernel level provides a reliable asynchronous

message passing service that is used by the process survivability level to

implement the interprocess communication mechanism used by the application

processes. This service, which is very similar to the application level's

communication mechanism, comprises 1-to-1 buffered channels for linking

primary replicates together and a suite of kernel procedures for using

them.

These channels are called pipes so as to distinguish them from

interprocess channels. * pipe consists of an input pipe and an output

pipe, which are linked together at initialisation time *»en the

Interprocess channels which they implement are linked together. Input

pipes, like input channels, have a type and a size, but output pipes only

have a type. The buffering needed for a pipe is provided by the receiver's

kernel and forms pmrt of the receiver's descriptor. In effect outstanding

messages are buffered within the input pipe and the input pipe’s size is

the number of messages that can be buffered within it.

101

The kernel procedures for supporting Interprocess communication

are:

a) ksend (op: output pipe; m: message; Var s: status; t: timeout)

The message 'm' is sent down the output pipe ’op*. If the

timeout period 't' expires or if the receiving primary replloate crashes

then the ksend will fall and ’s' will be set to 'failed'; otherwise 's'

is set to 'succeeded'.

b) kread (lp: input pipe; Var m: message; Var s: status; t: timeout)

A message is copied from the Input pipe 'ip' Into 'm'. The

message is not removed from the Input pipe but It oannot be re-kread.

If a message does not exist the caller will be delayed until a message

arrives or tntil the timeout period 't' expires. If the kread was

successful 's' is set to 'succeeded'; otherwise It Is set to 'failed'.

c) kfree (ip: input pipe)

Kfree removes from 'ip' the messages that have been kread in

since the last call of kfree. The space they occupied oan now be used

again.

d) krecelve (ip: input pipe; Var m: message; Var s: status; t: timeout)

This is identical to kread except that the message is removed

rather than copied.

e) kpeeklast (lp: input pipe; Var m: message; Var s: status; t: timeout)

This returns a copy of the newest message in 'ip'. The message

is not removed from the channel and it can still be input by a kread or

a krecelve. The space occupied is not released by a kfree.

In all of these kernel procedures a timeout of minus one (-1) means

for ever, and a aero (0) timeout means that the command will only succeed

if it oan be performed successfully Immediately. These two values oan only

102

be used sensibly with certain of these procedures and then only under

certain circumstances.

Within the distributed kernel level all of the computers,

application processes and pipes are identified by numbers. Computers and

application processes are uniquely numbered, although all replicates within

a process-set have the same identity. Input and output pipes are uniquely

numbered within their host replicate.

Channel addressing within the application level is by local name,

and similarly pipes are addressed by local input pipe and output pipe

numbers. In order for a kernel to deliver a message sent by a local

process it must know the address of the recipient input pipe. An input

pipe's address has three components: process number, input pipe number, and

the number of the computer that hosts the receiver's primary replicate.

The computer component of an input pipe's address will alter as the

application process moves around the control system as a result of crashes.

Because of this, the mapping from output pipe number to input pipe address

is done at the time the message is sent and not during compilation or at

system initialisation time. The mapping is defined by a table contained

within the sender's descriptor. For every output pipe number the table

contains the recipient input pipe's address. For example, in Figure 6b

below, the primary replicate's first output pipe is linked to the first

input pipe of process number 6, whose primary replicate is resident on

computer number 2. When a primary replicate calls ksend the kernel uses

the 'op' parameter to look up in the caller's descriptor the address of the

recipient input channel.

103

computer

input pipe address

process input pipe

1 2 6 1

output pipe 2 3 3 9

number 3

e
n

Figure 6b

All of the figures needed to fill these tables are provided by the

system manager at initialisation time. After a crash it is necessary for

some of these mapping tables to be altered to reflect the current location

of the application processes. This is done by the affected application

processes themselves using the kernel procedure:

kconnect (ops output pipe; c: computer number);

which tells the kernel to alter the caller's mapping table to reflect the

fact that the receiver connected to the caller by output pipe 'op' is now

on computer 'c'. How kconnect is used is described in Chapter 9» Sections

9.3.2 and 9.3.1».

Any ksend performed on an output pipe that needs to be reconnected,

but which has not yet been reconnected, will fail as the recipient computer

specified in the mapping table no longer exists.

A reliable interprocess communication mechanism is one in which

messages are neither lost nor corrupted. To achieve this the kernels

employ a fault tolerant protocol such as Byte Stream protocol (Johnson

1980) to transfer messages between computers.

Byte Stream protocol provides reliable virtual circuits It uses

checksums and positive acknowledgements to detect errors, and uses

repetition after a timeout period to recover from the loss. In order that

this recovery does not result in messages being replicated, both messages

and acknowledgements carry a sequence number. These virtual circuits are

created at system initialisation time, and they are reset in order to re­

initialise the sequence numbers after a crash of either the sender or the

receiver.

Unfortunately such protocols suffer from a generic problem. If the

timeout specified by the sender expires before an acknowledgement is

successfully received then the ksend will return with its status parameter

set to failed, but the message may have been delivered successfully and the

acknowledgement lost. As mentioned in Section 6.1, coping with this

problem is left to the application processes.

There is a limit to the size of message that can be sent at one

time. If the message specified in a ksend is larger than this maximum

size, then it is split up and the constituent parts are sent separately.

When all of the parts have been received by the receiver’s kernel the

message is reconstituted and placed into the input pipe. All of this is

transparent to the application level.

The kernels provide a procedure for controlling devices called

kdoio which is used by the process survivability level to implement DOIO.

Kdoio has the same parameters as DOIO except that the device is identified

by a number rather than a variable name.

Every device attached to a kernel’s host computer is described

within the kernel by a data structure called its descriptor. A device's

descriptor contains the information concerning the device that is needed to

Implement a call of kdoio on that device. A primary replicate’s descriptor

contains a table of pointers to the device descriptors of the devices it

105

handles. The device's identity specified in a call of kdoio is the index

to that device's descriptor contained within this table.

Devices have only one handler and so there is no complicated

sharing. The possible exceptions to this rule are those disks which are

partly used for paging and tdiieh are also controlled by a device handler.

In this ease the disk would be controlled by an executive process that

handles requests from both the paging system and the disk's handler.

A backup replicate is organised in exactly the same way as a

primary replicate. It has a descriptor and it is allocated pages for its

data and code segments. The descriptor includes the buffering for the

backup replicate's input pipes; even though the backup replicate may never

be used this buffering must be available in case it is. If there is not

sufficient storage in the kernel for the backup replicates' input pipes

then either the level of redundancy is too high or the number of computers

is too low. Minor differences of a backup replicate from a primary

replicate are:

1) its status is 'unrunnable';

2) in its output-pipe mapping table the computer address column is full of

zeros;

3) the table of pointers to device descriptors is empty as the devices are

not attached to the backup replicate's host computer;

M) all of its pages are held on backing store.

Although we have described the services provided by a kernel as if

it were a single entity, it would be Implemented as a 'core-resident'

nucleus and a number of executive processes. The executive processes would

be handled by the nucleus in the same way as a primary replicate is. To

call a kernel procedure such as ksend, the primary replicate plaoes the

106

parameters in a location known to the kernel and then raises a software

Interrupt.

For PROSUR to support process survivability the distributed kernel

level must be able to continue normally despite the loss of one or more of

the kernels. To do this none of the kernels must contain data or provide

services that are needed by any of the other kernels. This is the case in

PROSUR, as the kernels have their own copies of the necessary tables and

none of them exports a service to the others. Also, if while a message is

being transferred between computers, one of the kernels crashes, the other

must be able to abort the transfer without waiting for the user specified

timeout to expire.

There are two characteristics of the message passing system that

are needed for process survivability. One of these, the late addressing of

messages by the kernel, has already been discussed. The second is

reliability.

Secure point data is transferred between computers using the

message passing system. Were secure point data to be corrupted during

transmission and were that corruption not noticed, then the backup

replicate that is updated using that corrupted secure point data would

itself be corrupted. Were the corrupted backup replicate to be activated

it would fail, and this could cause the control system to fail as well.

Fortunately, even if the message passing service is less than 100*

reliable, the probability of a corrupted backup being activated is still

very small. As we shall describe later, when a secure point is executed

the secure point data is sent to each backup replicate in turn, and also it

is sent to each of them as a sequence of smaller messages. Hence, any

corruption will most likely be limited to a small part of a single backup

replicate. Furthermore, prior to a corrupted backup replicate being

activated, the corrupted part may have been overwritten and corrected as a

107

result of a later secure point.

The network overheads Involved In providing a 100J reliable message

passing service are likely to be very high because of the level of

redmdant data that would have to be transmitted. A less than 100f

reliable service would be more practicable, and as long as the probability

of a corrupted backup replicate being activated is sufficiently small then

it would be an acceptable economy. Whether or not a 100> reliable service

could ever be provided is an arguable point, and so the risk of corruption

is probably unavoidable anyway.

6.1* Hardware level

PROSUR's hardware, which is illustrated in Figure 6c, consists of a

number of identical computers joined together by a local area network.

Each computer has sufficient local backing store to support virtual memory

requirements.

devices

computers

network

PROSUR's hardware

Figure 6c

108

î ach input/output device Is attached to a single computer. This

computer will host the device handler's original primary replicate. The

device is not attached to those computers that host the device handler's

backup replicates. In certain situations some of the computers will be

on-board computers, that is, they will be an integral part of the devices

they control.

If the computers were not homogeneous, messages and secure point

data originating from one computer would have to be translated before they

could be used by another type of computer. This would necessitate the use

of an intermediate format for data being sent between computers, as is the

case for parameter and message passing in DLCN (Liu and Reames 1977).

Furthermore, "the clarity that homogeneity provides in allowing one to see

a single research problem at a time is very appealing" (Saltzer 1978, page

49).

The computers are physically dispersed in order to reduce the

chances of multiple computer crashes. The distances involved would depend

on the perceived threats to the system. Even in a civilian application

some level of dispersal would be desirable as a protection against such

events as fires and floods.

Were the network to be broken then, depending on the network's

type, the control system would by partitioned into two or more isolated

groups of computers. Each group would consider themselves to be the only

surviving computers and backup replicates would be activated in order to

recover from the loss of those computers not in the partition.

Partitioning leads to a number of problems:

a) some partitions would be too small to support the full control system;

109

b) the separate partitions, whether complete or not, would compete with

each other to fulfil the overall task;

c) when the network is repaired it would be necessary to close down the

control system and reinitialise it in order to remove duplicate copies

of processes.

Tandem (Katzman 1978) avoids this problem by having a duplicated

network and by only guaranteeing the system to tolerate a single hardware

failure, and so by definition Tandem need not be concerned with

partitioning. The network used in ADNET incorporates three or more

redundant highways (Tillman et al. 1981) connected to the computers by

spurs, and it is believed that in practice ADNET cannot be broken even in

the hostile environment of a warship in action (Lakin 1982).

To avoid partitioning in PROSUR it is assumed that the network

incorporates a high level of redundancy, and we amend our claims for

process survivability to include the proviso that PROSUR will survive the

failure of n computers (where n is the level of process redundancy) or the

exhaustion of the network's redundancy.

In a commercial environment where the threat of physical damage is

lower a network such as Planet (Gee 1983) which is basically a duplicated

Cambridge Ring would provide sufficient redundancy. Interestingly, a

military version of Planet has recently been developed for use on warships

(Computing 1983) and it is probable that the level of redundancy in this

version is even higher.

110

6.5 PROSPR's shortcomings

PROSUR has been deliberately kept simple so as not to hinder or

divert the development of process survivability. This simplification means

that PROSUR is not a 100< practical distributed computer control system,

but it does form a good basis for one. In this sub-section we outline

those facilities that have been removed in the cause of simplicity.

There are two major omissions from the programming language

PROSUR's P/L. Firstly, in Chapter 2 we explained the need for a process to

be able to wait for a message from any one of a group of channels, but in

PROSUR's P/L this can only be accomplished by the unsatisfactory use of a

busy loop incorporating a lot of PENDING calls. The second amission is the

group of commands that enable a process to suspend itself for a period of

time or until a specific time.

PROSUR only supports 1-to-1 linking of input channels to output

channels. A practical system would also support many-to-1 and 1-to-many

linkages.

PROSUR is a static system. In order to alter the application level

it is necessary to re-create the system. Although there are process

control applications where this would be acceptable, the majority of

applications require a dynamic system so that the application level can be

altered without having to turn off the control system.

Shortcomings in process survivability itself are discussed in the

concluding chapter.

I l l

6.6 Summary

In this chapter we have outlined the organisation of the four

levels of PROSUR, and we have described in general terms the way in which

process redmdancy is implemented. In the following two chapters we

describe the inconsistencies that arise after a crash (these are similar to

those already described in Chapter 4) and how they can be removed. Then in

Chapter 9 we present the implementational details of the distributed kernel

level and of the process survivability level in order to describe how

process survivability can be implemented in PROSUR.

112

7. The Inconsistencies That Can Arise After A Craah

7.0 Introduction

In this chapter and in subsequent chapters, application processes

are simply referred to as processes. Where this might lead to confusion

with executive processes they are given their full title.

A process's state is defined by the values contained in its primary

replicate's data segment and volatile environment. A process's state

records its past actions in that the value of its state is the result of

those past actions. When a process's primary replicate performs a secure

point its backup replicates are updated so that their data segments and

volatile environment are exact copies of those of the primary replicate.

Each channel links two processes together: the sender and the

receiver. A channel is created at system initialisation time by linking

together an output channel in the sender and an input channel in the

receiver. Those outstanding messages that have been sent but which have

not yet been received from a channel are buffered within the input channel

half of that channel. A channel's state is defined by the messages

currently buffered within its input channel half.

The controlled environment, which is the real world outside the I/O

devices, also has a state. It is sufficient for our purposes to define the

value of the environment's state as being solely the result of the control

system's past actions.

The sequence of instructions that are executed by a process's

primary replicate between two consecutive secure points is called a 'task .

The task that was being executed by a process's primary replicate trtien its

host computer crashed is, for descriptive purposes, referred to as the

process's 'interrupted-task'. (The primary replicate of course does not

113

know when It is executing an interrupted-task.)

When a computer crashes all of the primary replicates that were

running on it are lost. The process-set mechanism activates the senior

backup replicates of these primary replicates in order to replace them. In

the following descriptions we will refer to a process's primary replicate

simply as the process, and refer to the process’s activated senior backup

replicate as the restarted process.

When a process is restarted it will start to execute its code from

the instruction immediately after the last secure point that has been

completed prior to the crash, and its state will be the same as it was when

that secure point was performed. The process loses all knowledge of the

actions that it performed during its interrupted-task.

As was explained in Section 6.3 of the previous chapter, all of the

outstanding messages in a channel are buffered within the channel's input

channel half. When a process is restarted it has the necessary buffering

for its input channels, but the pre-crash contents will have been lost.

CRASH

time

Channel

ABC

Secure point

Aa an example of the effects of a crash, Figure 7a above shows the

execution of a process prior to a crash. It has established a secure point

(represented by a horizontal '[' character) and its single input channel

contains three outstanding messages (A, B and C).

After the crash, messages A, B and C will have been lost and the

application process's state will have been reset to that which existed when

the last secure point was established. The restarted process will start to

execute its code from that secure point.

The resetting of processes' states and the loss of outstanding

messages leads to a number of inconsistencies arising between the

processes' states, the channels' states and the controlled environment's

state.

If all of the commands executed by a process simply manipulate its

own state then there will be no relationship between that process's state

and the channels' states, the control environment's state, and the other

processes' states. When such a process is restarted there can be no

inconsi stenc ies.

Inconsistencies arise when a process uses those commands that

either affect states other than its own, or return values that are based on

states other than its own. In PROSOR's P/L these commands are SEND,

RECEIVE, PENDING and DO 10.

This chapter describes the inconsistencies that can arise after a

crash, and it explains the combinations of circumstances that cause each of

them to arise.

The first section of this chapter describes the inconsistencies

that arise when two processes are linked together by a single channel and

the host of one or both of the processes crashes. The second section

describes the inconsistencies that arise between the state of a devioe

115

handler (with a single device) and the state of the controlled environment

when the device handler's computer crashes.

A process may have several channels connecting It to several other

different processes, and a device handler may control one or more devices

as well as having several channels. In the final section of this chapter we

describe the cumulative effects of the Inconsistencies that arise on every

channel and every device.

7.1 Inconsistencies between two comnunlcatlng processes

7.1.0 Introduction

A channel connects a sender to a receiver. In a crash the sender

may be restarted, or the receiver may be restarted and the channel contents

lost, or both of these may occur. The following three sub-sections

describe the inconsistencies that can arise in each of these three cases.

7.1.1 Sender restarted

The sender and receiver processes are on different computers, and

the sender's host computer crashes, but the receiver's host does not. As a

result of this:

a) The sender is restarted from its last successfully completed secure

point, that is from the start of its interrupted-task. (If a secure

point was being performed at the time of the crash then that secure

point will be discarded and the previous one used.)

b) The receiver process is unaffected and it continues to execute its code

uninterrupted by the crash.

c) The channel Is also unaffected as Its outstanding messages are buffered

within Its Input channel end which is stored on the receiver's computer

and that computer did not crash. None of the outstanding messages in

that channel are lost.

Were the sender to have sent any messages during its interrupted-

task then these messages will have survived the crash, either within the

channel if they are still outstanding, or as part of the receiver's state

if they have been RECEIVEd. (If a message was being sent at the time of

the crash then any part of that message that had been received by the

receiver's kernel will be discarded - messages are either received

completely or not at all.) However, the sender has been reset to the state

that it was in at the start of its interrupted-task (which is before those

messages were sent), and that state does not record that these messages

have been sent. With respect to the sender's current state those messages

that were sent by its interrupted-task have not yet been sent, but they

already exist.

CRASH

time

Secure point

Sender Receiver

Figure 7b

117

An example Is shown above in Figure 7b of two processes at the time

of a crash. Prior to the crash two messages (A and B) were sent by the

sender during Its Interrupted-task. After the crash the sender will be

restarted from Its last secure point and the two mess.ges will survive,

which is an Inconsistency.

7.1.2 Receiver restarted and channel contents lost

The sender and the receiver are on different computers, and the

receiver's host computer crashes but the sender's host does not. As a

result of this:

a) The receiver Is restarted from its last successfully completed secure

point, that Is at the start of Its interrupted-task.

b) Any outstanding messages within the channel will be lost as they were

buffered within the channel's input channel end which was stored on the

receiver's computer.

c) The sender is unaffected and it continues to execute its code

uninterrupted by the crash.

Any message that was outstanding at the time of the crash, or which

had been RECEIVEd during the receiver's interrupted-task, will be lost.

The only messages to have survived the crash are those that were RECEIVEd

prior to the receiver's last secure point. The sender's state however will

record the sending of every message that it has sent, including those that

were lost in the crash. With respect to the sender's current state those

messages that it has sent and which were not RECEIVEd prior to the

receiver's last secure point have been lost.

118

A further inconsistency can arise from using the PENDING function.

If prior to its last secure point the receiver detects the presence of a

message using PENDING but does not RECEIVE the message until after the

secure point, then after the crash the receiver's state will still record

that message's presence but the message will have been lost.

An example is shown below in Figure 7c of two processes at the

time of a crash: messages A and B were sent by the sender; A was detected

prior to the receiver's last secure point and then RECEIVEd after the

secure point. After the crash the sender's state records that A and B have

been sent, and the receiver's state records the presence of message A, but

both A and B are lost.

CRASH

SEND

time

SEND

Receiver Sender

Figure 7c

119

7.1.3 Sender and receiver restarted, and channel contents lost

The sender and the receiver are on the same computer, and that

computer crashes. As a result of this:

a) The sender is restarted from its last secure point.

b) Any outstanding messages within the channel are lost.

c) The receiver is restarted from its last secure point.

The sender’s state will only record the sending of those messages

that it sent prior to its interrupted-task, and the only messages to

survive are those that were RECEIVEd by the receiver prior to its last

secure point. The resultant inconsistencies will be one of the two cases

described in the previous two sub-sections depending on whether, with

respect to the sender's and receiver's current states, more messages have

been sent than have survived or whether more messages have survived than

have been sent.

Inconsistencies may also arise from the use of PENDING. Firstly,

if a message's presence was detected prior to the receiver's last secure

point (but the message was not RECEIVEd) then after the crash the record of

the message’s presence will survive but the message itself will have been

lost. Secondly, were that message to have been sent after the sender's

last secure point then no record of it being sent would survive the crash

either. The receiver's state would record the presence of a non-existent

message that has not been sent.

Any message that was sent after the sender's last secure point and

which was neither received nor detected prior to the receiver's last secure

point does not result in an inconsistency, as the message and all record of

its sending have gone. (Message B in Figure 7d below is such a message.)

120

CRASH CRASH

Receiver Sender

Figure 7d

CRASH CRASH

Figure 7e

ftime

Itime

121

In the first of the above two diagrams (Figures 7d and 7e) we

Illustrate the situation that results In more messages being sent than

survive, and In the second we Illustrate the situation that leads to more

surviving than were sent. In both cases the Inconsistency arising from the

use of PENDING occurs. In the first diagram, the loss of message B does

not lead to any inconsistency as after the crash it has neither been sent

nor has It survived.

7.1.4 Summary

When a receiver crashes, all of the outstanding messages and all of

the messages that It has RECEIVEd during Its Interrupted-task are lost. If

_ message Is lost but the record of its sending survives then It Is called

a 'missing' message. It is the missing messages that cause the

inconsistencies. Those messages that are lost but not missing do not cause

inconsistencies. For example, in Figure 7d messages A and B are both lost

but only A is missing.

When a sender crashes, it forgets that it has sent those messages

that it sent during its interrupted-task. Of these messages, it is only

those which survive the crash that cause inconsistencies, as they are

messages that should not yet exist. These messages are called 'premature'

messages. Those messages that are forgotten but not premature do not cause

inconsistencies. For example, in Figure 7e messages A and B are forgotten,

but only A is premature.

122

7.2 Inconsistenclea between a device handler and the environment

When a device handler's computer crashes, the device handler will

be restarted from its last successfully completed secure point. All

knowledge of the actions performed by its interrupted-task is lost.

For our purposes the environment's state is determined by the past

actions of the input/output devices and so xrtxen a computer crashes the

environment's state is unaffected.

If the device handler had performed any DO10 commands during its

interrupted-task then the environment's state will have been altered by

them. However, as the device handler has been reset to a state that

existed prior to the execution of these commands, its state will not record

the performing of these commands. Also any results such as status and data

values input by these DOIOs will have been lost.

CRASH

x • » Itime

secure point

device handler

Figure 7f

Figure 7f above illxistrates this problem. A device handler

controls a light which it turns on during its interrupted-task. After the

crash the light will still be on, but the device handler will have been

restarted from Its last secure point and its state will not record that the

light has been turned on.

These inconsistencies are similar to those .hat arise when only a

sender is restarted (see Section 7.1.1) as the results of the DOIO (turning

the light on) have survived but with respect to the device handler's

current state the DOIO has not yet been performed. At the same time it is

also similar to the case where only the receiver is restarted (see Section

7.1.2) as the value returned by the DOIO's status parameter has been lost.

The values output by DOIOs (or the actions they perform) during an

interrupted-task are called premature output-data, and the values input by

DOIOs during an interrupted-task are called missing input-data. A single

DOIO may input and output at the same time.

7.3 Process-wide and system-wide inconsistencies

So far the inconsistencies that arise after a crash have been

described on a per-channel and on a per-device basis. We now describe them

on a per-process basis and then on a system-wide basis.

In general an application process will be linked by channels to a

number of other application processes. Some of these channels will be

declared within the application process to be input channels and the others

will be declared to be output channels, and so an application process is

both a sender and a receiver.

Figtre 7g shows an application process as the hub of a circle of

other application processes with which it commiaiicates. The channels that

connect the hub application process to its communicants are shown as lines.

The lines are directed to indicate the direction of the message flow in the

channels. (The communicants' other channels are omitted.)

Figure 7g

These application processes may be located on one or more

computers. A computer crash may result in one or more of the processes

being restarted, and in the loss of messages from those processes' input

channels. Henceforth a process that was on a crashed computer will be

described as being crashed itself, implying that it has been restarted, and

that the contents of its input channels have been lost.

We will first look at the inconsistencies that arise when the hub

application process does not crash but all or some of its communicants do.

The overall inconsistencies that arise are simply the concatenation

of the Inconsistencies that occur relative to each channel. On every

output channel where the receiver has crashed messages may be missing, and

on the input channels where the sender has crashed there may be premature

messages.

As an example Figure 7h below shows the hub application process H,

communicating with two other application processes C1 and C2 prior to the

crash of C1 and C2. After the crash message A will be premature and

messages B and C will be missing.

CRASH

RECEIVE

CRASH

SEND
A«------ A"

time

C1 C2

Figure 7h

If the hub application process crashed along with some of its

commmicants then again the overall inconsistencies would be the

concatenation of the inconsistencies that arise on each channel. For

example, if in Figure 7h process H alone crashed then message A would be

missing, and messages B and C premature.

A device handler will have devices as well as channels. Again the

overall inconsistencies that arise after a crash would be the concatenation

of those arising on each channel along with those arising on each device.

The system-wide inconsistencies are simply the concatenation of the

inconsistencies that arise with respect to each process.

7.i| Summary

In this chapter we have described the inconsistencies that may

arise after a crash. One of the tasks of the process survivability level

Is to remove these inconsistencies after a crash. In the following chapter

we outline how the process survivability level achieves this, and then in

Chapter 9 full details of its implementation are given.

In this chapter we have only discussed the inconsistencies that

arise after a single computer crash. We leave the discussion of multiple

computer crashes in til Chapter 9, as it is more sensible to discuss them

after we have described how process survivability is implemented.

8. An Introduction to Consistency Restoration after a Crash

8.0 Introduction

Prior to a crash all of the processes will be in a consistent state

- they will not be subject to any of the inconsistencies described in the

previous chapter. After a crash a restarted process's state may be

inconsistent due to:

1) Missing messages: those messages which, with respect to their senders'

current states, have been sent to the restarted process but have been

lost in the crash.

2) Premature messages: those messages that were sent by the restarted

process's interrupted-task and which survived the crash.

3) A record of the presence of a message in an input channel (the result of

a PENDING) survives the crash but the message trtiose presence is recorded

is lost in the crash.

4) Missing input-data: the input-data that was input from the controlled

environment by DOIOs executed during a device handler's interrupted-task

and hence lost in the crash.

5) Premature output-data: the output-data contained in the controlled

environment's state which was produced by DOIOs executed during a device

handler's interrupted-task.

The restarted processes are recovered to consistent states by the

process survivability level.

In this chapter we introduce the way in which the process

survivability level performs process recovery, and we present arguments to

show that this recovery achieves its alms. The implementations! details of

128

process recovery are given in the second half of the next chapter.

As we shall explain in the first section of this chapter restarted

processes are restored to a consistent state by the following:

1) The process survivability level causes the missing messages to be

replaced by copies of the originals.

2) The PENDING related inconsistencies are prevented completely by

implementing RECEIVE and PENDING so that detected messages are actually

input as well.

3) Processes written in PROSUR's P/L are invariant: if a process, or part

of a process, is repeated with the same input it will act in exactly the

same way and produce exactly the same results every time. We shall argue

that by restarting a process from its last secure point and by replacing

any messages that are missing from that process's input channels, then

that process will, by simply re-executing its interrupted-task, recover

itself to a state that is consistent with any premature messages that it

produced prior to the crash.

Unfortunately, time-dependencies in PROSUR's P/L prevent some of

the inputs needed by a restarted process from being replaced in time. In

order to ensure that these time-dependencies do not prevent correct

recovery the process survivability level inserts a secure point prior to

every SEND. Section 8.2 of this chapter describes these time-dependencies,

explains how these can prevent a restarted process from recovering to a

consistent state, and finally explains how, by Inserting a secure point

prior to every SEND, correct recovery can be achieved despite the time-

dependencies.

129

The rest of the chapter is concerned with restoring consistency

between device handlers and the controlled environment (which unfortunately

cannot be achieved in'PROSUR), and with the way that secure points must be

executed.

8.1 Restoring consistency in an application process

8.1.0 Introduction

This section describes how the process survivability level recovers

an ordinary application process (not a device driver) to a consistent

state. Such a process is susceptible to the first three of the

inconsistencies itemised in the introduction to this chapter.

As soon as a process is restarted it begins to execute its code; it

is not held up while recovery is performed. Recovery is performed in

parallel to the continued running of both the restarted processes and the

unaffected processes (that is those processes that were not on a crashed

computer).

Figure 8a below shows three processes at the time of a crash.

Process-1 is unaffected by the crash, but Process-2 and Process-3 are both

restarted from their last secure points. Process-1's input channel is not

affected by the crash and continues to hold message D. The contents of

Process-2's input channels are lost. This example will be used to

illustrate the following descriptions.

8.1.1 Replacing the missing messages

Every time a process successfully SENDs a message, a copy of that

message is stored within the sender's data segment. After a crash copies

of the missing messages are re-sent so as to replace the missing messages.

By storing the copies within the sender's data segment it is ensured that

they will survive any crash as they will be backed up along with the rest

130

of the sender's data segment every time the sender performs a secure point.

Referring to Figure 8a, messages A and B are missing after the

crash. (Message C is not classed as being missing as its sender has been

restarted from a secure point prior to the SEND that produced message C.)

Process-1 's data segment contains a copy of message A and so this can be

re-sent. Process-3 sent message B prior to its last secure point and so

the copy of message B will have been backed up along with the rest of

Process-3's data segment by Process-3's last secure point, and so message B

can be re-sent.

CRASH

.SEND

!

CRASH

RECEIVE

SEND

RECEIVE\

SEND

secure
point

b l

\ SEND

time

secure
point

Process-1 Process-2 Process-3

Figure 8a

131

The way in which the processes are stimulated to re-send the

missing messages, and how they determine which messages are missing, is

described in Chapter 9, Section 9.3.

8.1.2 Preventing the PENDING related Inconsistencies

In Chapter 7, Section 7.1.2, we described an inconsistency that can

arise from the use of the PENDING command. If prior to its last secure

point a receiver detected the presence of a message using PENDING but did

not RECEIVE that message, then when the process is restarted its state will

record the message's presence but the message will be missing.

As such a message is a missing message it will be replaced by a

copy. However, replacing messages is done in parallel to the restarted

process's continued running. This means that if the restarted process

tries to RECEIVE the detected message then the RECEIVE's timeout may expire

before the message is replaced. This is itself an inconsistency as the

process 'knows' that there is a message in its input channel and its

RECEIVE should not fail.

This problem is completely removed by extending each input channel

to include a single-message buffer which is stored as part of the

receiver's data segment, and by implementing PENDING and RECEIVE in the

following way:

a) PENDING (from : InputChannel) : Boolean

If both the input channel 'from' and its single-message buffer

are empty then PENDING returns a value of false. If the buffer is empty

and the input channel is not empty, then the first message in the input

channel is placed into the buffer and PENDING returns a value of true.

If the buffer is not empty then PENDING returns a value of true.

132

b) RECEIVE (from : InputChannel, ...)

If there la a message in from'a buffer then that meaaage la

Input and the buffer la emptied. If the buffer la already empty then a

message la input In the normal way.

Aa the detected meaaage la stored in the receiver's data segment at

the same time as its presence is assimilated it is Impossible for the

record of a message's presence to survive a crash and not the message

itself. This solution also removes the possibility of the PENDING related

inconsistency described in Section 7.1.3 that arises when both the sender

and the receiver of a channel crash.

Implementing PENDING and RECEIVE in this way is an example of the

use of fault avoidance.

When a receiver crashes, any messages that were detected by

PENDINGs prior to the receiver's last secure point will survive the crash

even if the messages were not subsequently RECEIVEd prior to the receiver's

last secure point. This must be taken into consideration when calculating

which messages are missing and which are premature. We return to this again

in Chapter 9, Section 9.3«

8.1.3 Premature messages

The restarted processes must be recovered so that their states are

consistent with any premature messages. In our example, Process-2 and

Process-3 must be restored to states that are consistent with the presence

of message D.

Processes written in PROSUR's P/L are invariant. This means that

if a process, or part of a process, is re-executed with the same input

(data segment, volatile environment and messages) it will act in exactly

the same way and will produce exactly the same results every time.

133

By ensuring that when a process is restarted It initially has the

same data segment and volatile environment as it had at the start of its

interrupted-task, and by ensuring that the restarted process RECEIVES the

same messages as it did during its interrupted-task, we guarantee that:

a) The restarted process will repeat those SENDs which, when executed

during its interrupted-task, produced the premature messages. (In our

example, this is Process-2's only SEND.)

b) Not only are those SENDs repeated, but they also produce exactly the

same messages as they did when executed prior to the crash.

Hence a restarted process's state becomes consistent with both the presence

of the premature messages and with the contents of those messages, and the

existence of the premature messages is no longer an inconsistency.

Those instructions that form the interrupted-task are called the

restarted-task when re-executed after a crash. By ensuring that a

restarted process has the same input as its interrupted-task, we guarantee

that the process's restarted-task will be executed, and that the restarted

process will act in exactly the same way and produce exactly the same

output as it did during its interrupted-task.

Executing the restarted-task includes re-executing all of the SENDs

that were performed during the interrupted-task. If the result of such a

SEND has survived the crash then the repeated SEND is called a late-SEND,

but if the resultant message did not survive the crash then the repeated

SEND is called a normal-SEND. In our example Process-3's second SEND is a

normal-SEND as message C did not survive the crash, and Process-2's SEND is

a late-SEND because message D did survive the crash.

If executed normally the late-SENDa would result in the premature

messages being duplicated, which would introduce further inconsistencies.

To avoid this the late-SENDs are 'gagged'. When a SEND is gagged, the

message is not actually sent but the SEND's status parameter is set to

•succeeded’. Hence after a late-SEND the message exists (it survived the

crash) and the sender 'knows' that the message exists (because the late-

SEND returned a status of succeeded), and so the process's state is

consistent with that premature message. By repeating and gagging all of

its late-SENDs a restarted process is restored to a consistent state.

The normal-SENDs are executed normally. A description of how

normal-SENDs and late-SENDs are distinguished is given in Chapter 9.

He now return to the example shown in Figure 8a. On restarting,

Process-3 is consistent with its surviving messages as all of them were

sent prior to its interrupted-task (the only message sent during its

interrupted-task did not survive the crash). By ensuring that Process-2

RECEIVES the same two messages (A and B) as its interrupted-task, it is

gmranteed that Proeess-2 will repeat the SEND that originally produced

message D. This late-SEND will be gagged so as to prevent D being

duplicated. Process-2 will now be in a consistent state.

If a restarted process is to execute its restarted-task then its

volatile environment and data segment must initially have the same value as

they did at the start of the process's interrupted-task, and the restarted

process must RECEIVE the same messages as it did during its interrupted-

task. The implementation of the process-set ensures that the first of

these requirements is met.

The messages that were RECEIVEd during a restarted process's

interrupted-task will consist of:

135

a) Messages that were sent by unaffected processes (for example, message A

In Figure 8a), and messages that were sent by restarted processes prior

to their Interrupted-task (for example, message B In Figure 8a).

b) Messages that were sent by restarted processes during their

Interrupted-tasks (for example, message C in Figure 8a).

The first group of messages, described In (a), is a sub-group of

the missing messages. After a process is restarted all of its missing

messages are replaced by copies of the originals. If during its

interrupted-task a process RECEIVES a message that will be missing after

the crash (for example, both of Proeess-2's RECEIVES in Figure 8a) then

when that RECEIVE is repeated as part of the process's restarted-task it

will input a copy of the message that it originally input. Hence, if a

process's interrupted-task only RECEIVEd messages from group (a) (or if it

did not RECEIVE any messages at all), then on restarting the process would

execute its restarted-task and produce exactly the same messages as its

interrupted-task. For example, in Figure 8a both Process-2 and Process-3

will act in exactly the same way as they did prior to the crash, as

Process-3 does not input any messages at all, and Process-2 inputs two

missing messages.

We come now to the second type of message that can be input during

an interrupted-task: those messages that are sent to it by other restarted

processes during their interrupted-tasks. If repeated RECEIVES, that

originally input a message from this group, can be shown to input the same

message after a crash as before, then we will have shown that a restarted

process will have exactly the same input as it did during its interrupted-

task, and so will act in exactly the same way as it did during its

interrupted-task. To show this, we present the following algorithmic

argument (a worked example is given in Section 8.1.4) to show that the

messages produoed by a process's restarted-task are the same as those

136

produced by ita Interrupted-task.

1) As has been explained before, if a restarted process has only RECEIVEd

replaced messages, or if it has not RECEIVEd any messages at all, then

when it repeats a SEND that SEND will produce exactly the same message

as when it was executed by the interrupted-task.

2) On restarting, each restarted process will execute until either it waits

to RECEIVE a message that will be (or has been) sent by another

restarted process, or until it reaches the end of its restarted-task.

By (1) above, any SEND executed by these restarted processes prior to

this will produce exactly the same message as it did when executed prior

to the crash.

3) If a restarted process has finished its restarted-task then, by our

previous arguments, the messages that it has produced will be the same

as those it sent during its interrupted-task.

U) of those application processes that issued a RECEIVE, one or more of

them will RECEIVE a message ft’om one of the other restarted processes.

One of these RECEIVES must be satisfied unless the processes are

dead-locked. Inserting secure points does not cause dead-locking, and

so if the restarted processes are dead-locked it is because they were

dead-locked prior to the crash and so they have been recovered.

5) The processes whose RECEIVES were satisfied will continue to execute

their code uitll they again either reach the end of their restarted-

tasks or they wait to RECEIVE a message that will be sent by another

restarted process. Any SEND re-executed by a restarted process since

its previous RECEIVE will have produoed the same message as it did

during the interrupted-task as the restarted process's input has

consisted of replaced messages and messages sent by other restarted

processes which so far have been shown to be the same.

6) Continue from step 3 until all of the restarted processes have completed

their restarted-tasks.

Hence every SEND performed by a process's restarted-task will

produce the same message as it did when it was first executed during the

process's interrupted-task. The late-SENDs will be gagged, and the

normal-SENDs will be executed normally.

To summarise, in this sub-section we have shown that by restarting

a process from its last secure point and by replacing the messages that are

missing from its input channels, the restarted process will recover to a

state that is consistent with its premature messages.

8.1.4 Summary and example

The way that PENDING and RECEIVE are implemented prevents the

PENDING-related inconsistencies from ever arising.

Every time ta application process SENDs a message the process

survivability level stores a copy of that message in the sender's data

segment. These copies are used to replace those messages that are missing

after a crash.

After a crash the process survivability level replaces the missing

messages by sending copies of the originals. The restarted processes,

being invariant, will recover themselves to states that are consistent with

their premature messages. Any late-SENDs are gagged by the process

survivability level in order to prevent further inconsistencies from

arising.

We now present a worked example of how consistency is restored

after a crash. Figure 8b shows three processes at the time of a crash.

Process-1 is «»affected by the crash and its channel will continue to hold

message D. Process-2 and Prooess-3 are both restarted from their last

138

6) Continue from step 3 until all of the restarted processes have completed

their restarted-tasks.

Hence every SEND performed by a process’s restarted-task will

produce the same message as it did when it was first executed during the

process's interrupted-task. The late-SENDs will be gagged, and the

normal-SENDs will be executed normally.

To summarise, in this sub-section we have shown that by restarting

a process from its last secure point and by replacing the messages that are

missing from its input channels, the restarted process will recover to a

state that is consistent with its premature messages.

8.1.4 Sunn ary and example

The way that PENDING and RECEIVE are implemented prevents the

PENDING-related inconsistencies from ever arising.

Every time an application process SENDs a message the process

survivability level stores a copy of that message in the sender's data

segment. These copies are used to replace those messages that are missing

after a crash.

After a crash the process survivability level replaces the missing

messages by sending copies of the originals. The restarted processes,

being invariant, will recover themselves to states that are consistent with

their premature messages. Any late-SENDs are gagged by the process

survivability level in order to prevent further inconsistencies from

arising.

We now present a worked example of how consistency is restored

after a crash. Figure 8b shows three processes at the time of a crash.

Process-1 is waffected by the crash and its channel will continue to hold

message D. Process-2 and Prooess-3 are both restarted from their last

138

secure points and messages A, C and B will be lost from their input

channels. Message D is a premature message.

CRASH CRASH

Process-1 Process-2 Process-3

Figure 8b

Recovery would proceed in the following ways

1) A and B are missing messages and so will be replaced. We will

distinguish between those messages that exist before and after the crash

by appending suffixes of i and r respectively.

We can state that AixAr and Bi=Br, as they are copies of each other.

139

2) Process-1 continues to run normally.

3) Process-2 RECEIVES the replaced message Ar. Proeess-2 then executes

another RECEIVE, and as that input channel is empty it waits for

Process-3's restarted-task to SEND a message.

4) Process-3 RECEIVES the replaced message Br, and then SENDs the message

Cr to Process-2. Process-3 then completes its restarted-task.

Process-3’s input consists of the message Br, and as Br=Bi - from (1)

above - we can state that Cr=Ci.

5) Process-2’s RECEIVE will terminate successfully, and Cr will be input.

Process-2 will then perform the late-SEND which is gagged.

Process-2’s input consists of messages Ar and Cr. From (1) we know that

ArsAi, and from (4) we know that Cr=Ci, and so Dr=Di, which is what we

need for Process-2 to become consistent with its premature message Di.

6) All of the restarted application processes have finished their,

restarted-tasks and they are all consistent again.

8.2 Time-dependent functions and secure point Insertion

8.2.0 Introduction

Figure 8c shows two processes at the time of a crash. During its

interrupted-task Process-1 had detected the presence of message A and

because of that it has sent message B to Process-2. Due to the crash

Process-1 is restarted from its last secure point and the contents of its

single input channel are lost. Process-2 is unaffected. After the crash

message A is missing and message B is premature.

140

Message A will be replaced by the process survivability level which

will cause the message to be re-sent. However the message may not have

arrived by the time the PENDING is re-executed. If it has not arrived,

then the PENDING will return a value of false and Process-1 will not re-

execute its SEND. Because the PENDING returned a different value Process-1

has not recovered itself to a consistent state as message B exists but

Process-1 does not know that it has sent it.

CRASH

Process-1 Process-2

l
time

Figure 8c

PENDING is an example of a time-dependent function. A time-

dependent function is a function or a procedure that when repeated by a

restarted process may return a different value to the one that was returned

when the command was executed during the restarted process's interrupted-

task.

141

Restoring a restarted process to a state that Is consistent with

Its premature messages relies on the restarted process getting the same

Input as its Interrupted-task. Time-dependent functions input values that

cannot be guaranteed to be the same when that command is re-executed after

a crash.

There are a number of time-dependent functions in PROSUR's P/L.

The rest of Section 8.2 identifies these commands and describes the secure

point insertion strategy employed by the process survivability level in

order to ensure that consistency is restored despite the existence of these

time-dependent functions.

8.2.1 Time-dependent functions

There are four time-dependent functions in PROSUR's P/L. Three of

these are the interprocess commtnication commands (SEND, RECEIVE and

PENDING) and the fourth is DOIO.

a) SEND (OutputChannel, message, status, timeout)

The success or failure of a SEND depends on the length of the

timeout period specified, and on how busy the network is and on how

quickly the receiver is removing the messages. The network's and the

receiver's activity before and after the crash will most likely be

different, and so the value returned by the status parameter of a SEND

that is repeated by a restarted process is likely to be different to the

value that was returned when the SEND was executed during the process's

interrupted-task.

b) RECEIVE (InputChannel, message, status, timeout)

The success or failure of a RECEIVE, and hence the value

returned by its status parameter, depends on whether a message arrives

within the timeout period or not. The message input by a repeated

RECEIVE will either have been replaced by the process survivability

1M2

level, or have been re-sent by another restarted process. Even if a

RECEIVE succeeded when executed prior to the crash, it is possible that

when the RECEIVE is repeated the replaced or re-sent message will not

arrive in time and the RECEIVE will fail. (The repeated message may

never arrive as the SEND's timeout might expire.) Alternatively, if the

RECEIVE first failed it may succeed when repeated.

c) PENDING (InputChannel) : Boolean

We have already shown that PENDING is a time-dependent function.

The fact that PENDING actually inputs the message that it detects has no

bearing on this problem.

d) DO10 (device, operation, data, status, arguments)

All DOIOs, no matter what the operation, result in some value

being input either by the data or the status parameter. Devices are

only connected to a single computer, and so a repeated D0I0 will always

fail. Assuming that the device had been working prior to the crash then

this failure will be a different result to that obtained prior to the

crash, and so DOIO is a time-dependent function.

Time-dependent functions may return the same value v*>en repeated

but it is not possible to rely on this, and so they must be treated as

though they will always return a different result when repeated.

8.2.2 The secure point insertion strategy

Under certain circumstances it is possible for consistency to be

restored despite the presence of time-dependent functions in the restarted

process’s interrupted-task. The following example illustrates these

circumstances.

1M3

Figure 8d shows two processes at the time of a crash. Process-1 is

restarted. Process-2 Is unaffected and message A survives the crash. On

restarting Process-1 must become consistent with its premature message A.

CRASH

secure point

time

Process-1 Process-2

Figure 8d

Process-1 ’s interrupted-task contained two time-dependent

functions: PENDING and the SEND itself. Fortunately, the decision to

perform the SEND and the composition of the message are determined before

the time-dependent values of the SEND and the PENDING are available. No

matter what value PENDING returns or vAiat status the SEND returns, that

SEND will be re-executed and the same message will be sent. As the SEND is

a late-SEND it will be gagged. Process-1 will have recovered itself to a

consistent state.

This example shows that as long as consistency has been restored

prior to the re-execution of any time-dependent functions then a restarted

process will recover itself to a consistent state despite the presence of

time-dependent functions in its interrupted-task.

144

The process survivability level ensures that this is always the

case by executing a secure point prior to the execution of the SEND that

follows one or more time-dependent functions. As SENDS are themselves

time-dependent functions, every SEND is preceded by a secure point and so a

task can only contain a single SEND, and that SEND will be at the start of

the task.

The secure point insertion strategy ensures that a restarted

process will become consistent, but the presence of the time-dependent

functions in the interrupted-task prevents the interrupted-task being

completely re-executed. This does not matter, but it is necessary to

redefine a restarted process’s restarted-task to be those instructions of

the interrupted-task that must be repeated in order for the process to

become consistent. As tasks can have only one SEND in them and as that

SEND is always the first instruction, a restarted-task will either consist

of a single SEND or be empty.

8.2.3 Summary

Despite the replacement of missing messages it is not possible to

guarantee that a restarted process will input the same values as did its

interrupted-task. In order to ensure that consistency can still be

restored, the process survivability level inserts a secure point before

every SEND.

Performing a secure point every time a SEND is executed is a heavy

overhead. A way of reducing this overhead by reducing the number of secure

points that are performed is described in the next chapter.

As all tasks begin with a SEND, RECEIVES will never be executed

prior to consistency being restored and so all of our arguments presented

in the later half of Section 8.1.3 appear to be unnecessary. However, in

Chapter 9 we present a way of reducing the heavy secure point insertion

145

load by allowing a task to contain several SENDS. This optimisation also

prevents a certain type of RECEIVE counting as a time-dependent function,

and so these RECEIVES may be re-executed prior to consistency being

recovered and so our earlier arguments are not wasted.

8.3 Restoring consistency In a device handler

A device handler is treated by the process survivability level In

exactly the same way as any other application process: a secure point is

executed prior to every SEND, and when It Is restarted its missing messages

are replaced and its late-SENDs are gagged.

A device handler also has to be made consistent with the controlled

environment's state. This requires that any input-data input by the device

handler's interrupted-task be made available again so that it can be re­

input, and that the DOIOs that produced the premature output-data be

repeated and gagged. Unfortunately neither of these are possible.

Devices in PROSUR are only connected to single computer, and so it

is impossible for a restarted device handler to control its device as its

new host computer will not be connected to that device. When a restarted

device handler repeats a DOIO, that DOIO always fails. Missing input-data

cannot be re-input, and it is impossible to know which DOIOs to gag, and so

it is impossible for a restarted device handler to become consistent with

the controlled environment.

Furthermore it is not possible for a device handler to advise the

rest of the control system of its device's current state as the device

handler does not know what happened during its interrupted-task. The

device handler only knows the state that its device was in at the time of

the device handler's last secure point.

146

None of these problems can be removed by the process survivability

level. Instead it is left to the application level to cope with them.

All of these problems could be removed by extending process

survivability and PROSUR in the following ways:

1) Multi-homing the devices so that all of the host computers of a device

handler’s replicates are connected to its device. This ensures that a

restarted device handler would still be able to control its device.

2) Enabling primary and backup replicates to exchange roles. Then if a

primary replicate is unable to control its device because the computer-

device link that it is using has failed, then one of its backup

replicates would be activated to replace it, thereby maintaining control

of the device.

3) Implementing the devices so that they can recognise repeated commands;

if they receive a repeated command, the devices return the response that

they returned when the command was first issued and do not execute the

command. Then when a backup replicate repeats a DOIO, the DOIO would

return the same data and status values as it did when it was executed

prior to the crash.

A device handler's service would still be vulnerable to the failure

of the device itself. The only way to remove this vulnerability is to

duplicate both the device and its handler. The way in which these

duplicates could be integrated into the control system was discussed

earlier in Chapter 6, Section 6.2.

1A7

8.U Time-dependent functions and secure point establishment

The presence of time-dependent functions In PHOSUR's P/L dictates

two restrictions on the way that secure points are executed.

Figire 8e shows two processes at the time of a crash. Prior to the

crash, Process-1 sent message A to Process-2, and then it detected a

message In its input channel and because of that it sent a second message

(B) to Process-2. This set of actions could be the result of executing:

SEND (out, A, ...),

If PENDING (in) Then SEND (out, B, ...);

Both SENDs were preceded by secure points (SP1 and SP2).

CRASH

t

S P 1 ----

Process-1 Process-2

Figure 8e

After the crash Process-1 will be restarted from its last secure

point (SP2) and its input channel will be empty. Process-2 is unaffected

by the crash, and messages A and B will remain in its input channel.

Process-1's missing message (C) is replaoed and Process-1 repeats its last

148

SEND (which is gagged) and becomes consistent again.

However, were for some reason Process-1 to be restarted from the

older of the two secure points (SP1) instead of from SP2, then it would be

necessary for message C to be replaced and Process-1's two SENDS to be

repeated and gagged. Unfortunately it is possible that this would not

happen and Process-1 would not become consistent. For example, when

Process-1 repeats the PENDING it might, for the reasons described in

Section 8.2.1, return 'false' this time, and so the second SEND would not

be repeated and Process-1 would not become consistent.

A description of how a secure point is established was given in

Chapter 6, Section 6.2. Briefly, when a primary replicate executes a

secure point, secure point data is gathered and sent by the primary

replicate's host kernel to the kernels that host its backup replicates.

The secure point data is then used to update the backup replicate's data

segment and volatile environment.

The situation illustrated above could only arise if the last secure

point had not been successfully established at the time of the crash, thus

forcing the process to restart from the older, out of date, secure point.

In order to prevent this from ever happening it is necessary that:

1) The primary replicate be suspended until the secure point data has been

delivered to each of its backup replicate's host kernels. It is not

necessary to delay the primary replicate until the secure point data has

been merged with all of its backup replicates, but as a consequence of

this a backup replicate must not be activated until all outstanding

secure point data has been merged with its data segment and volatile

environment.

149

2) Secure point establishment must be atomic with respect to the crashing

of the primary replicate that instigated the secure point. The secure

point data must either be merged with all of the backup replicates or

with none of them. In the latter case, the application process will be

restarted from its previous secure point, but the problem Illustrated

earlier will not arise as the primary replicate had not started the next

task.

The two-stage protocol used to ensure that secure points are atomic

is described in detail in the first half of the next chapter.

8.5 Summary

The inconsistencies that can arise due to the use of PENDING have

been removed. PENDING inputs the message that it detects and stores it in

the receiver's data segment from where it can be later RECEIVEd. If the

record of a message's presence survives a crash so does the message.

Process recovery is supported by two actions during normal running.

Firstly, every time a message is successfully sent a copy of that message

is stored within the sender’s data segment. Secondly, a secure point is

executed prior to every SEND - this is because of the presence of the

time-dependent commands (SEND, RECEIVE, PENDING and DOIO) in PROSUR's P/L.

A restarted process may have messages missing from a number of its

input channels, and a single premature message may be present in one of its

output channels or within the data segment of one of its receivers. The

missing messages are replaced by copies of the originals. The SEND that

produced the premature message during the process's interrupted-task is

repeated and gagged.

150

Process survivability cannot restore a device handler to a state

that is consistent with the results of the DOIOs performed during the

device handler's interrupted-task. Furthermore, a device handler cannot

report to the rest of the control system on the results of those DOIOs, or

even advise the rest of the control system as to whether It performed those

DOIOs or not. A way of removing both problems was presented.

The presence of time-dependent functions in PROSUR's P/L has the

following implications for secure point creation:

a) The primary replicate is held up until the secure point data has been

delivered to the backup replicates' host kernels.

b) Sending the secure point data to the backup replicates must be an

atomic action despite the crashing of the primary replicate.

151

9. Implementing Propesa Survivability In PROS UR

9.0 Introduction

This chapter describes how the process-set organisation is

implemented by the distributed kernel level, and how process recovery is

implemented by the process survivability level. Process survivability's

ability to provide recovery despite multiple computer crashes is also

discussed.

Process survivability relies on the hardware level and the

distributed kernel level exhibiting certain characteristics. The first

section of this chapter recalls these characteristics.

The presence of time—dependent functions in PROSUR's P/L has

resulted in a secure point being performed prior to every SEND. This

appears to be a heavy overhead, and Section 9.5 describes a way in which

the number of secure points can be reduced.

9.1 Hardware and distributed kernel level characteristics

In Chapter 6 we described, and rationalised, a number of

characteristics that it is necessary for the hardware level and distributed

kernel level to exhibit if process survivability is to be feasible. In

this section we briefly recall these characteristics.

1) The network that links the computers together cannot be broken.

2) The computers are homogeneous.

B) The individual kernels are designed so that the loss of one or more

kernels will not prevent the other kernels from operating normally.

152

it) The Inter-computer communication mechanism provided by the kernels is

very reliable. This mechanism is used to transmit secure point data as

well as application-level messages.

5) The mapping from local pipe name to physical address of the recipient

input channel is done by the sender's kernel when the message is sent.

6) Any partly sent or partly received message is discarded if the sender or

receiver kernel crashes.

9.2 Process set implementation

9.2.1 Normal running

A backup replicate, like a primary replicate, has a process

descriptor, an allocation of pages in which its code and data segments are

stored, and has sufficient buffering for its input channels. In fact a

backup replicate is managed in exactly the same way as a primary replicate,

except that its status is 'unrunnable' and all of its pages are stored on

the backing store.

All program addresses consist of a page number and a word-offset

number pair. The primary and backup replicates' page tables define the

mapping from page number to physical location and so it does not matter

that the code and data segments of a primary replicate, and the code and

data segments of its backup replicates, are stored in different physical

locations.

A primary replicate performs a secure point by executing the kernel

procedure ' ksecurepoint •. The secure point is executed by the primary

replicate's host kernel which collects and sends the secure point data to

the backup replicates' host kernels. Secure point data consists of:

153

a) a copy of the primary replicate’s volatile environment;

b) the numbers of those of the primary replicate's pages which have been

written to since the last secure point;

c) a copy of those pages.

Once the primary replicate has called ksecurepoint it is suspended

until the secure point is completed, and so an up to date copy of its

volatile environment will be contained in its process descriptor. The

primary replicate program counter (part of its volatile environment) will

index the instruction following the ksecurepoint and so a restarted backup

replicate will be restarted from after the secure point.

When the space occupied by a page in main memory is to be reclaimed

for further use, that page must first be copied onto the backing store. If

that page has not been altered since it was copied into main memory, then

there is no need to do this. To detect this situation page tables often

Include a boolean variable for each page, which is set to false when the

page is copied into main memory, and is set to true when the page is

written to. By extending the page table to include a similar boolean

variable that is set to false for all pages when a secure point is

performed and then set to true when a particular page is written to, it can

be determined which pages have been written to since the last secure point.

As an alternative, tagged memory (Feustel 1973) could be used so

that the secure point data would consist of those words that have been

updated since the last secure point. In a similar vein Kant (1983)

proposed that tagged memory could be used as an efficient way of supporting

recovery blocks.

15M

A backup replicate'a code Is stored in its pages at system

initialisation time. There is no need for a kernel to distinguish between

those pages that contain a primary replicate's code and those that contain

its data, as the code pages are never written to and so will never be

included in secure point data.

Once the primary replicate's host kernel has ascertained which

pages have been altered, it can assemble and send the secure point data.

The secure point data will be too large to be transmitted as a single

block, and so it is transmitted as a sequence of smaller blocks: the

volatile environment and the numbers of the altered pages are sent first,

followed, one at a time, by the altered pages themselves which are first

copied from where they are stored in either main memory or secondary

memory.

For the reasons described in Section 8.U establishing a secure

point is atomic despite the crashing of the primary replicate's host

computer: the secure point must either be completed by the senior backup

replicate's host kernel or it must be aborted so that in effect it has

never been executed. To achieve this the following two-stage protocol

incorporating recovery is employed. (This protocol is presented as a

finite state table in Figure 9a below.)

In order to simplify the following description, the primary

replicate's host kernel will be called the primary-kernel, and the senior

backup replicate's host kernel and the junior backup replicates' host

kernels will be called the senior-kernel and the junior-kernels

respectively. The senior-kernel and the junior-kernels are collectively

called the backup-kernels.

155

event

state ^

receive
secure point data

receive
commit

crash
(senior-
kernel only)

1s waiting for
secure point
data

store the secure
point data,
state :s2

ignore it send commits
to other backup
-kernels.
FINISHED

2: waiting for
a commit

discard previous
secure point data

merge the stored
secure point data,
state:*1

discard stored
secure point
data.
ABORT

Figure 9a

The primary-kernel sends the secure point data, In a secure point

message, to each of the backup-kernels In turn. The backup-kernels are

ordered by the order In which the backup replicates are designated to be

activated, and the secure point message Is sent to them In that order.

Having done that the primary-kernel sends a commit message to each of the

backup-kernels, again In the same order.

A secure point may have to be aborted, and so a backup-kernel does

not use the secure point data to update the backup replicate until it

receives a commit message. Each kernel has a list of the free pages on its

local backing store. As a backup-kernel receives pages they are written to

a free page, but the backup replicate's page table is not altered. Once

the commit message is received the backup replicate's volatile environment

and page table are updated and the superceded pages are freed.

If a computer crashes while a secure point message or a commit

message is being sent to it, the primary-kernel aborts the transmission to

that computer. The crashed computer will not be included in any further

secure point.

The above is the two-stage protocol. The following is the recovery

that is performed by the senior-kernel when the primary-kernel crashes.

Before activating the senior backup replicate the current secure point must

be completed or aborted in order to establish the same recovery point in

every replicate.

First the senior-kernel discards any partially received commit

message or secure point message, and then any outstanding messages are

processed as normal. Once this has been done the senior-kernel completes

the secure point.

Due to the secure point and the commit messages being sent to the

backup-kernels in order, the senior-kernel may have received a secure point

message which the Junior-kernels have not, or it may have received a commit

message that the others have not. Figure 9b above illustrates the former

case: a secure point message (SPM) had been sent to the senior-kernel and

to one other backup-kernel prior to the crash. Figure 9c below illustrates

the latter case: a secure point message (SPM) has been sent to all of the

backup-kernels, but the commit message (04) has only been sent to the

senior-kernel and one Junior-kernel.

senior-kernel

SPM

primary-kernel - junior-kernels

Figure 9b

157

senior-kernel

Figure 9c

If the senior-kernel has received a secure point message but not a

commit, it cannot assume that the junior-kernels have all received the

secure point message# The senior-kernel will discard the secure point

data: the secure point has been aborted. The senior backup replicate is

restarted from the previous secure point. Some of the Junior-kernels may

have received the secure point message, but they will discard it when they

receive the next secure point message to be sent to them.

If the senior-kernel has received a commit it knows that the

Junior-kernels must have received the last secure point message, but it

does not know whether they received a commit message, and so it sends a

commit to each of the junior-kernels. This completes the secure point.

The senior backup replicate is then activated. Some of the junior-kernels

may have already received the commit message and they will discard the

repeated one.

158

If the primary-kernel were to be lost between secure points, the

senior-kernel would still send the commit message to all of the Junior-

kernels.

If the senior-kernel were to crash while finishing

(completing/aborting) the secure point, then the most senior of the

Junior-kernels would finish it and so on, until either the secure point is

finished or all of the backup replicates have been lost.

9.2.2 Error detection

Every computer has a heartbeat. A heartbeat is a small message

sent at regular intervals by a computer's kernel to every other kernel.

The heartbeats are monitored by the kernels. When a kernel detects that a

particular computer's heartbeat has stopped it knows that that computer has

crashed. The decision that a computer has crashed must be taken over

several heartbeat intervals in order to prevent computers being prematurely

diagnosed as having crashed just because a heartbeat was lost during

transmission.

Computer crashes cannot be relied upon to be instantaneous. Often a

crash will be preceded by a phase during which the computer is simply

malfunctioning. If a computer malfunctions it is most likely that process

survivability will be compromised and will not be able to cope with the

eventual crash. To remove this threat the computers' hardware must be able

to detect permanent hardware faults immediately. Having detected a fault

the computer is crashed either by halting the processor or by isolating the

computer from the network and its peripherals, both of which will stop the

computer's heartbeat.

Ideally, the hardware should be able to recover itself from

transient errors. Otherwise process survivability would have to be used to

recover from a transient fault that oould have been recovered from by a

simple retry mechanism.

Carter et al. (1977) have shown that the cost of producing a

computer that can detect hardware faults and which has a simple retry

mechanism is relatively Inexpensive compared to the cost of a computer

without these facilities.

9.2.3 Damage assessment

A backup replicate's predecessors consist of its process-set's

current primary replicate and of those backup replicates that are

designated to be activated before it. Once a backup replicate's

predecessors have all crashed it is activated.

When a kernel has detected that a computer has crashed it must

decide Which, if any, of the backup replicates that it hosts must be

activated. The information on vdiich it makes its decision is kept in two

tables.

One table records for every computer (other than the kernel's host)

which of the kernel's local backup replicates has a predecessor on that

computer. A second table contains a count of the number of predecessors

that each of its local backup replicates has left.

When a kernel detects a computer crash it decrements the

predecessor count for each of its local backup replicates that had a

predecessor on that computer. If any of these counts falls to zero that

backup replicate is activated.

As an example Figure 9d shows these two tables (partially

completed) for a particular kernel. If computer 1 were to crash then

predecessors of backup replicates 1, 2, 4, 5 and 6 would be lost. After

decrementing the predecessor counts for these five backup replicates,

backup replicates 1 and 4 would be activated.

160

Computer ID

Process ID

I

• ' I
. 1 I

I I

n

Figure 9d

9.2.4 Recovery

Having decided which of Its local backup replicates are to be

activated, the kernel must activate them. First however the recovery phase

of the two-stage protocol described In Section 9.2.1 Is performed for each

of the backup replicates that are to be activated. Once that is completed

the backup replicate can be activated.

A backup replicate is Just a process whose state is 'unrunnable'.

It can be activated by setting Its status to 'runnable* and by placing its

process descriptor onto the ready-queue. As the activated backup

161

replicate, now a primary replicate, atarta to run, the reaultant memory

faulta will enaure that ita pages are loaded into the main atore aa

necessary.

9.2.5 Fault repair and continued running

There ia no fault repair. The computer that crashed cannot be re­

integrated back into the control system without turning the control system

off and then recreating it.

Continued running is exactly the same as normal running.

9.3 Process recovery

9.3.0 Introduction

The process survivability level defines three class types:

Ichannel, Ochannel and IOdevice. (The general syntax of the class

structure is given in Appendix A.) All input channels, output channels and

devices defined in an application program are objects of the classes

Ichannel, Ochannel and IOdeviee, respectively.

When for example, an application program defines an input channel

aa:

From : Inputchannel [10] of letter;

this is translated into the declaration:

From : Ichannel

and into the call:

INIT From (10, letter);

The declaration declares »From' to be an object of the class type Ichannel,

162

and the INIT statement creates and customises From to be an Input channel

of ten letters. Output channel and device declarations are translated In a

similar way.

Fig ire 9e presents an outline of the Internal structure of

Ichannel, Ochannel and IOdevlce. All three classes have parameters of type

'Type', which means that a single class definition can be used for all

types of channel and device; for example In the Ochannel class the

'basetype' parameter defines the Input channel's type. This use of a

'Type' parameter makes classes similar to generic packages In Ada (Wegner

1980) .

Class Ichannel (size : Integer; basetype : Type);

Export RECEIVE, PENDING;

Procedure RECEIVE (Var message : basetype; Var status : IPCstatus;
timeout : Integer);

Begin

End;

Function PENDING : Boolean;

Begin
e

End;

Begin {main body}

End;

Class Ochannel (size : Integer; basetype : Type);

Export SEND;

Procedure SEND (message s basetype; Var status : IPCstatus;
timeout : Integer);

Begin

End;

163

Begin {main body)

End;

Class IOdevice (device : IOdevice; basetype, argtype : Type);

Export DOIO;

Procedure DOIO (oper : IOoperatlon; Var data : basetype;
Var status : IOstatus; Var arg : argtype);

Begin

End;

Begin {main body)

End;

Figure 9e

Ichannel exports the two procedures, RECEIVE and PENDING, that can

be applied to an input channel. Similarly Oehannel exports SEND and

IOdevice exports DOIO. When SEND, RECEIVE, PENDING and DOIO are used in

application programs, the first parameter specifies the name of the channel

or device on Which they are applied. As these commands are exported by

classes, commands of the form:

RECEIVE (from, ...)

are translated into:

From.RECEIVE (...)

The internal details of these three classes are developed in the

rest of Section 9.3. A program listing of the three classes (written in a

Pascal-like language) is given in Appendix C.

164

A restarted process will have messages missing from some, if not

all, of its input channels, and it may also have a single premature message

within one of its output channels or within one of its receivers. To

recover a restarted process the missing messages must be replaced and any

late-SEND must be gagged. This recovery is performed on a per-channel

basis by the input channel and the output channel at either end. There is

no co-ordination between the recovery of different channels.

Recovery is performed when a channel is ’broken' by the crashing of

the sender and/or the receiver process. Recovery is instigated by the

input channel and performed by the output channel. Recovery is performed

in this way no matter which end of the channel crashes. When a process

crashes, each of its channels is recovered in this way thereby recovering

the process as a whole.

The following four sub-sections describe the four stages of channel

recovery.

9.3.1 Normal running

Ichannel is based around a kernel-supplied input pipe called

Dataln, and Ochannel is based around a kernel-supplied output pipe called

DataOut. An interprocess channel is created by linking Dataln and DataOut

together at system initialisation time, and the interface to this pips is

provided by the input channel and output channel class object at either

end. The rest of Iehannel’s and Ochannel's attributes are concerned with

the provision of process recovery after a crash.

A class object is part of its host process. When a process

executes a secure point the private data of all of its objects are also

backed up. Thus the information on which recovery is based survives the

crash, and this information will be consistent with the rest of the

restarted process's state as it was backed up at the same time.

165

Aa explained In Chapter 8, Section 8.1.2, the PENDING-related

Inconsistencies are prevented by Implementing both PENDING and RECEIVE In a

particular way and by extending the input channel to Include a single­

message buffer. This buffer is called 'Pstore', and the boolean 'Pflag' is

used to indicate Whether it is full or not. Both Pstore and Pflag are

declared within Ichannel.

When PENDING is called it checks whether there is a message in

Pstore; if there is, PENDING returns true as there is a message in the

input channel; if on the other hand Pstore is empty, PENDING attempts to

input a message from Dataln using the procedure ‘Read’ with a zero timeout.

Because of the zero timeout a message will only be input if it is already

present in the pipe (Chapter 6, Section 6.3 discusses zero timeouts). If

the Read succeeds, then the message is placed in Pstore, Pflag is set to

true and PENDING returns true, but if Read fails, then Pflag is set to

false and PENDING returns false. When RECEIVE is called it will return

Pstore's contents if Pstore is full (and it will set Pflag to false), but

if Pstore is empty, then a message is input normally using Read.

In Chapter 8, Section 8.1.2 we mentioned that when calculating

Which messages survived a process's crash it is necessary to take into

account the fact that PENDING actually inputs the message that it detects.

RECEIVE and PENDING both use the procedure Read to input messages, and so

When a process crashes it loses those messages that are buffered within its

input pipes (the Dataln in each of its input channels) and the messages

that it has Read in since its last secure point. Those messages that were

Read in prior to the process's last secure point will survive.

All of the code at the input channel end for supporting channel

recovery during normal running is contained in Read. The code in RECEIVE

and PENDING is solely concerned with preventing the PENDING-related

inconsistencies from arising.

166

Returning to channel recovery, there are three activities performed

during normal running in order to ensure recovery. These ares

1) secure point insertion;

2) message storage;

3) message tagging.

Secure pointing is provided by a class type called SPoint. Every

application process has a single object of this class called SP. A listing

of SPoint is included in Appendix C.

SP exports a procedure called 'Execute'. When Execute is called it

uses the kernel procedure ksecurepoint to perform the secure point. The

reason for embedding the call of ksecurepoint inside a class is that SP

also performs important housekeeping operations, details of which are given

later.

In order to ensure correct recovery, a secure point must be

executed prior to every SEND, and so the Ochannel procedure SEND calls

SP.Execute before attempting to actually send the message.

When a channel is broken messages may become missing. In order to

replace these messages with copies of the originals it is necessary to

store copies of the originals. This is done by the output channels

themselves.

SEND uses ksend to output the message. If ksend is successful

(status = succeeded) a copy of that message is placed onto the cyclic queue

'RevyStore' by calling the procedure 'save'.

167

It is necessary to limit RcvyStore's size. To do this the maximum

number of messages that can possibly be replaced at recovery time must be

limited. This in turn means that the number of messages that can be lost

must be limited. RcvyStore's size can then be set to that limit.

The messages that are lost from a channel when its receiver crashes

are those still in the input pipe and those that had been Read from it

since the receiver's last secure point. The former is limited by the size

of the input pipe which is defined by the class parameter 'size', and the

latter is limited by the input channel executing a secure point after a

certain number of successful Reads.

Every time a message is successfully input Read increments the

Ichannel variable 'Rcount'. When Rcount becomes equal to the maximum

'mRcount' a secure point is performed. The maximum number, mRcount, is

arbitrarily set to the defined size of the channel which is the class

parameter 'size'.

Thus the maximum number of messages that can be lost from a

particular channel is 2»size, and so RcvyStore's size is E^size. There is

no explicit flow control for placing messages into RcvyStore. If the

message has been sent, then the space existed in the channel and so the

copy can be stored without overwriting a message that might still be needed

for recovery.

When a receiver crashes it is restarted with an empty input pipe

and then the missing messages are replaced. The maximum number of messages

that might have to be replaced is twice the size of the channel, and these

would not all fit into the input pipe Dataln. So a further requirement is

to ensure that all of the lost messages will fit into the input pipe.

168

To do this, the size of the Input pipe Dataln is increased from

'size' to 'extsize' which Is equal to the maximum number of messages that

can be lost, i.e. 2*size. However, it is then necessary to ensure that

this does not mean that the number of messages that can be lost is also

increased. This is why, when kread (see Chapter 6, Section 6.3) returns a

message from an input pipe, it does not release the space that the message

occupied. Hence When a message is Read (using kread) another message

cannot be sent to take its place, and so the maximum number of messages

that can be lost remains 2*slze.

Once a secure point has been performed the Read messages cannot be

lost and so the space they occupy can be freed. This is done by calling

the kernel primitive kfree which releases the space occupied by messages

that have been kread from that input pipe since the last kfree.

Any secure point, executed by any of a process's input channels and

output channels, will prevent the loss of all of the messages Read from all

of that process's input pipes since the last secure point. This fact is

used to reduce the secure pointing frequency.

Every time a secure point is performed the secure pointing class

SPoint increments the value of its variable 'tstamp'. The current value of

tstamp can be read by using the function 'Timestamp' which is exported by

SPoint. This value is used by an input channel to identify individual

secure points so that it can detect whether a secure point has been

executed since it last Read a message. Input channels remember the last

secure point's identity (SP.Timestamp) in 'timestamp'.

When Read is called the value of timestamp is compared with that of

SP.Timestamp. If a secure point has been performed then kfree is called,

timestamp is updated and the count of the number of Reads performed is re­

set to 0.

169

In order to perform channel recovery It Is necessary to calculate

ttoich messages are missing and which, if any, is premature. To facilitate

this every message sent down a channel is labelled with a sequence number.

Each output channel maintains a count ('Sseqno') of the number of

times it has been called upon to send a message. Every time SEND is

called, Sseqno is incremented and its new value is used to tag the message

sent. Every time a message is Read by an input channel the sequence number

is stripped off and stored in 'Rseqno'. The use to which Rseqno and Sseqno

are put is described in Section 9.3.3.

A channel's type is defined by the parameter 'basetype' which is

passed to both input and output channels. To accommodate the sequence

number the output pipe's type is extended from 'basetype' to 'extbasetype'.

9.3.2 Error detection

Every input channel class and every output channel class has an

exception handler called 'Recovery' which is associated with an event.

When such an event occurs the exception is said to have been raised and the

exception handler associated with it is executed. To execute an exception

handler the host process's execution is interrupted and control is passed

to the handler. When the handler has finished, control returns to the

point at which the host process was interrupted. This is different from

accepted practice (for example Cristian 1980, Goodenough 1975 and Harland

1981) where the interrupted code is aborted, and is closer to the software

interrupt used in interprocess communication in DSN (Rashid 1980). By

using exceptions in this way recovery can be performed when necessary

without disturbing the work being done by the processes.

170

Damage assessment and recovery is performed by the output channel.

To do this the output channel needs to know:

a) the sequence number of the last message to be sent successfully down

that channel;

b) the sequence number of the last message to be delivered successfully to

the input channel and to survive the crash;

and also it needs to know when to perform the recovery.

The output channel already knows the first of these values as it is

stored in Sseqno. The second value, as well as the prompt, is supplied by

the input channel at the other end of the channel.

When a channel breaks - due to the sender and/or the receiver being

restarted - the input channel's exception handler is executed. Detecting

the channel break and raising the exception is performed by the receiver's

current host kernel. Details of how the kernel does this are given in

Appendix B.

Iehannel's exception handler determines the sequence number of the

last message to have been successfully sent down the channel and to have

survived the possible restarting of the receiver. If the input pipe is not

empty then this message is the most recently delivered message in the input

pipe, and if the input pipe is empty then the message was the last one to

be Read. The sequence number in the latter case is contained in Rseqno and

in the former case the sequence number can be obtained using kpeeklast

(defined in Chapter 6, Section 6.3). Kpeeklast is called with a zero

timeout so that it will only succeed if a message is already present in the

input pipe. If kpeeklast succeeds then the sequence number of the message

returned is the required sequence number; if not then Rseqno is the

required number.

171

The Input channel and the output channel are linked by a second

pipe which goes from the input channel where it is called 'RevyOut' to the

output channel where it is called 'Rovyln'. The sequence number is sent

by the input channel to the output channel down this pipe. However before

the message can be sent the pipe must be reconnected.

A process's descriptor contains a table that defines for each of

its output pipes the address of the recipient input pipe (see Chapter 6,

Section 6.3). This address contains the number of the input pipe's host

computer. After a crash this computer number will be incorrect: if the

sender crashed then on restarting the location will be set to zero, and if

the receiver crashed then the receiver will be on a different computer to

that specified in the table. Hence after a crash output pipes must be

reconnected so that the table contains the current computer locations of

the recipient input pipes.

The output pipes that are used to carry recovery messages (RevyOut)

are reconnected by the input channel to which they belong and the output

pipes that are used to carry user messages (DataOut) are reconnected by the

output channel to which they belong. There is no need to reconnect the

input pipes as they will accept messages from any source.

When an input channel's exception handler 'Recovery' is called it

is passed two parameters by the kernel. One ('rloc') is the input

channel's current computer address, and the other ('sloe') is the current

computer address of the output channel. Sloe is used by Recovery in a

kconnect call in order to reconnect RevyOut. Rloc is sent, along with the

sequence number, down the reconnected pipe to the output channel where it

can be used to reconnect DataOut.

When the recovery message arrives in Revyln the input channel's

exception is raised and its exception handler is executed. That is the end

of the error detection phase.

When an exception is raised it will be handled as soon as the

current instruction being performed by its host process has been completed.

If the current instruction is a kernel procedure that involves a wait, for

example ksend, kreceive, kdoio and kread, then the exception is handled in

parallel to the wait, thereby preventing the exception handling being held

up. The other kernel procedures such as kconnect and ksecurepoint are

completed before the exception is handled: an important feature as

ksecurepoint requires the process to be inactive.

In effect a process and its exception handlers are executed

concurrently. This concurrency is virtual rather than actual as the

process is suspended while its exceptions are performed. This virtual

concurrency results in the need for critical regions (Brinch Hansen 1973)

to be created in order to prevent the concurrent accessing of shared data.

For example, in an input channel both Read and Recovery access Rseqno, and

in an output channel both SEND and Recovery access Sseqno, ngagged and

RcvyStore. To prevent concurrent access of this data these procedures and

the exception handlers are executed with exception handling turned off

(achieved using the 'With ExceptionsOff Do' construct). While a process is

within one of its input channel's or output channel's critical regions,

exceptions raised within that class object will not be handled until the

process has left the critical region.

As an object's exception handler cannot be executed while control

is within its critical region (within its handler or its procedure) it must

be ensured that the process will eventually leave the critical region. To

facilitate this any outstanding or future kernel call that involves a wait

such as ksend will be aborted with a status of failed. However, an

exception raised within one object does not result in the aborting of

kernel procedures executed by another object. For example, an exception

raised in one input channel will not cause a kread issued by another input

channel to be aborted.

If the kread at the heart of the RECEIVE or the ksend at the heart

of the SEND is aborted in this way then the result is passed back to the

process that called the RECEIVE or the SEND. Recovery and computer crashes

are not totally invisible.

9.3.3 Damage assessment

Damage assessment is performed by the input channel's exception

handler Recovery. Recovery uses the sequence number received from the

input channel and the sequence number contained in Sseqno to decide whether

messages need to be replaced, or whether SENDS need to be gagged, or

whether no recovery is needed at all.

If the sequence number of the last message to arrive in the input

channel is less than the sequence number of the last message to be sent

then messages may be missing and so must be replaced. If the sequence

number of the last message to arrive is greater (by one at the most) than

the sequence number of the last message sent then the next SEND performed

on this channel must be gagged. If the two numbers are the same then, with

respect to this channel, the sender and receiver are consistent and no

recovery is needed.

9.3.1* Recovery

All of the recovery is instigated by the output channel's exception

handler Recovery. First it reconnects DataOut using kconnect specifying

the computer number sent to it by the input channel. Then if message

replacement is needed it calls the procedure Replace, or if gagging is

needed it sets 'ngagged* to the number of SENDS that must be gagged (Sseqno

- rm.seqno, which will be either 1 or 0).

Replace takes copies of the missing messages from RcvyStore and

re-sends them in the order in which they were originally sent. The copies

are not removed from the queue as they may still be needed in case of

future crashes.

Sseqno, the value used to tag messages, is incremented every time

SEND is called. It is not a count of the number of messages sent. Thus

sseq-rseq is the maximum, not the actual, number of messages that could be

missing. So before re-sending a message, Replace checks that the message's

sequence number is within the range of those missing.

A SEND can fail either because its timeout expired or because an

exception was raised within its input channel. As explained in Section

6.3, although a SEND has failed it is possible that the message has been

delivered. Some of the messages that are missing after a crash may be the

product of failed SENDS, but they will not be replaced as there will not be

a copy of those messages in RcvyStore. This is an advantage as it removes

these inconsistencies.

Recovery sets ngagged. The actual gagging is performed by SEND

itself. When SEND is called it checks the value of ngagged to see if there

are any SENDs still to be gagged. If there are it simply sets its status

parameter to succeeded, decrements ngagged and returns; it does not ksend

the message. The SEND has been gagged.

A SEND that returned a status of 'failed', but actually transmitted

the message, may be gagged if that SEND was performed during the restarted

process's interrupted-task and if the resultant message survived the crash.

As a SEND is a time-dependent function its outcome will not affect correct

recovery, and so it does not matter that the status returned by the SEND

when it is re-executed is different to the status returned when it was

175

first executed.

Gagging is only performed by restarted processes. If a process

has not been restarted, recovery only consists of message replacement.

When a backup replicate Is activated all of its input channel

exceptions are raised and will be handled before the restarted process

starts to execute its normal code. Its output channel exceptions however

will not be raised until the receivers send their recovery messages.

Because of this delay it is possible that a SEND may be performed on a

channel that has not yet been recovered. Such a SEND will fail because

DataOut will not have been reconnected yet. Once that output channel's

exception has been handled it may be necessary for the SEND to be gagged,

but it would then be too late. To prevent this it is necessary to hold

SENDs up until the output channels on which they operate are recovered.

This is done using insecure variables.

An insecure variable is a boolean variable which has a defined

default value to which it will revert after a crash. Every output channel

has an insecure variable called WaitRcvy. WaitRcvy has a default value of

true. When the class is created using INIT, WaitRcvy is set to false.

After a crash all of the process's output channels' WaitRevys revert to

true. When an output channel's exception handler has finished it sets

WaitRevy to false. SENDs are delayed by the 'Waituntil' statement until

WaitRcvy is false; thus a SEND performed before its output channel has been

recovered is delayed until that channel has been recovered.

An insecure variable is stored as part of the process's process

descriptor, but would not be backed up by a secure point. A backup

replicate's insecure variables would be set to the default value.

176

9.3*5 Continued running

Continued running la the period from when a backup replicate is

activated, up until all of its channels have been recovered, at which point

the restarted process enters its normal running phase again.

During the continued running phase a restarted process will execute

its code while at the same time being Interrupted by the performance of its

exception handlers. This section describes the effects that performing

recovery has on such a process. It also describes the effect that

supporting recovery has on an unaffected process that is connected to one

or more restarted processes. One of the aims of process survivability is

that it should be invisible to the processes, and so this section is, in

part, a review of how successfully this aim has been met.

An unaffected process continues to execute its code uninterrupted

except for the execution of exception handlers. If the unaffected process

performs a SEND, or if a SEND is outstanding on an unrecovered channel,

then that SEND will fail because the pipe DataOut has been broken and has

not yet been reconnected. The SEND is not delayed by the WaltUntil

statement as the process has not been restarted.

If an unaffected process performs a RECEIVE on an unrecovered

channel, then the RECEIVE will be aborted with a status of failed if that

input channel's exception is raised even though messages are present in the

input channel. If the RECEIVE is not interrupted then it will act as

normal.

When a backup replicate is activated all of its input channel

exceptions will be raised, and they will be handled before the restarted

process starts to execute its code. Any RECEIVE will be issued on a

recovered channel and so will not be aborted due to an exception being

raised. However, the RECEIVE's timeout period may expire before the

177

missing messages are replaced, and so a RECEIVE may fail when it would have

succeeded had it not been for the crash.

SENDs issued by the restarted process on an unrecovered output

channel will be delayed in til the channel has been recovered. As the

Waituntil is outside the SEND's critical region, the SEND will not be

aborted i*ien its output channel's exception is eventually raised.

While the restarted process is in the continued running phase it

also performs the operations performed during normal running in support of

process survivability.

Process survivability is not totally invisible. In unaffected

processes, SENDs and RECEIVES fail that would otherwise have succeeded, and

in restarted processes RECEIVES that would otherwise have succeeded may

fail and SENDs may be delayed past their timeout period. When a RECEIVE or

SEND fails due to an exception being raised the process will treat it as if

the timeout had expired as the two causes are indistinguishable. The major

problem is extending the time taken to perform a SEND beyond its timeout.

Computers will not crash very often, and so the interruptions

caused by process survivability are comparatively minor, especially when

compared with the advantages of process survivability.

9.U Process survivability and multiple crashes

One of the stated design aims of process survivability is that it

should be able to restore consistency despite multiple simultaneous, or

nearly simultaneous, computer crashes. The computers are physically

dispersed so as to reduce the chances of simultaneous crashes, but the

possibility cannot be ruled out and so process survivability must be able

to cope with this eventuality.

178

Process-sets are based on multiple backup replicates so that as

long as the number of computers that crash Is less than the level of

redundancy, processes are not lost. Also the two-stage protocol used to

send secure point data to the backup replicates is designed to establish a

common secure point in all the replicates despite multiple crashes.

This section shows that the process survivability level is able to

restore the processes to consistent states despite multiple crashes.

Simultaneous crashes are defined on a per-channel basis to be the

crash of two or more computers such that the sender or the receiver process

crashes while the exceptions raised by a previous crash are still raised or

being handled. If the crash occurs after the class's exception handler has

finished then the crashes are separate crashes.

The implementation described in the previous section can handle

separate crashes. The fact that a separate crash has occurred earlier does

not affect the handling of a later crash. Message replacement does not

remove the message copies from RcvyStore and so they can be used again, and

a gagged SEND stores a copy of the gagged message in RcvyStore so that it

can be replaced if necessary. The rest of this section concentrates on

simultaneous crashes.

A kernel detects that a computer has crashed when that computer's

heartbeat fails. Different computers' heartbeats are staggered, as they

cannot use the network at the same time, and so even if two computers crash

at exactly the same instant, a kernel will detect one crash before the

other. Hence a sender and a receiver never crash together.

We look first at the effect of simultaneous crashes on input

channel recovery actions. Every time the kernel detects that the

receiver's primary replicate has crashed or that the sender's primary

replicate has crashed then the exception is raised in the input channel.

179

If the receiver has crashed then the exceptions will be raised in different

generations of the input channel. Where an exception has been raised a

number of times the different instances are handled in the order in which

they were created.

When the sender or the receiver crashes the input channel may:

1) already have its exception raised due to a previous crash;

2) be handling its exception;

3) already have handled a previous instance of the exception but recovery

has still not been performed by the output channel to which the recovery

message was sent.

The following describes the effect that the receiver or the sender crashing

has on the actions of an input channel in each of the above situations. A

combination of these three situations may apply; for example, an input

channel may be handling one instance of its exception with another instance

of that exception outstanding. The effect that a crash has in such a

situation will be the union of the effects arising from the individual

situations as described below.

1) The exception is already raised

a) receiver crashes

All of the outstanding instances of the exception are lost in the

crash and so will not be handled.

b) sender crashes

The outstanding instances of the exception will be handled in turn.

These outstanding instances are the result of the sender crashing

several times before and so the computer location of the sender

specified in each exception instance will be out of date, and so the

sending of the recovery message will foil.

180

2) A previous Instance of the exception la belt« handled

a) receiver crashes

The exception handling is terminated by the crash, but the recovery

message may have been successfully sent prior to the crash.

b) sender crashes

The recovery message may have been successfully delivered before the

sender crashed. If not then sending the recovery message will fail.

3) After a previous Instance of the exception has been handled

No matter Aether the sender or the receiver crashed the crash

has no effect on the results of the previous exception - the recovery

message has been sent.

On restarting (if the receiver was hit) or on handling all

outstanding exceptions (if the sender was hit) the input channel class will

handle the exception raised because of the last crash, and the recovery

message will be sent to the output channel.

In the above there are examples of instances of the exception being

lost before a recovery message could be delivered to the output channel

class, and so multiple crashes do not always result in multiple recovery

messages being sent to the output channel • An output channel is not

always made aware of multiple crashes.

Alternatively, there are situations where simultaneous crashes do

result in multiple recovery messages being sent to the output channel.

Each recovery message contains data that was up to date when the exception

was handled, and these messages will arrive in the order in which they were

sent. The following describes the effect that a crash and the arrival of

the resultant recovery message have on an output channel that is performing

recovery.
181

In the following we describe the effect that a crash has on

recovery, and argue that interrupting recovery in this way does not affect

the output channel's ability to perform recovery correctly. We first

describe the effect of the receiver crashing, and then the effect of the

sender crashing.

1) Receiver crashes

If the recovery being performed is gagging then it will not be

affected by the loss of the receiver as it does not involve DataOut. If

the output channel is performing message replacement at the time of the

receiver's crash (or if the receiver crashed before it started) then

those messages sent by the procedure 'replace' before the crash will

have been delivered, but any ksends performed after the crash will fail.

The recovery message that was generated due to the receiver's

crash will arrive. As the receiver crashed the only recovery that could

be needed is message replacement. Message replacement prior to the

crash will not have affected the contents of RevyStore, and if a SEND

had been gagged then a copy of that message will have been stored and so

can be replaced.

2) Sender crashes

Any recovery that was being performed is ended by the crash and

any outstanding exceptions will be lost. When the sender is restarted

its recovery data will have been reset as well and so will not be left

in an inconsistent state by the crash. The recovery message sent as a

result of the sender crashing will arrive, and the output channel will

handle the exception as normal.

In the above we have shown by case analysis that process

survivability can restore the processes to consistent states despite

multiple computer crashes, even if those crashes interrupt the recovery

182

performed by the input channel's and output channel's exception handlers.

9.5 Reducing the number of secure points needed

The presence of time-dependent functions in PROSUR's P/L means that

every SEND must be preceded by a secure point. Such a secure point

frequency appears to be heavy (although it is the same as the checkpoint

frequency in Tandem), and in this section we present a way of reducing it.

The major problem is that SEND itself is a time-dependent function

and so there can never be more than one SEND per task. The reason that

SEND is a time-dependent function is that it includes a timeout. If the

timeout were removed then SEND would no longer be a time-dependent function

and there could be several SENDs in a task, and hence there would be less

secure points.

A particular job will often be performed by a group of processes

working together on the same computer. This association of processes has

been recognised and has been used explicitly to structure the organisation

of the application level in a number of distributed systems (Liskov 1979,

Kramer et al. 1982).

He propose that processes can be grouped together to form a

module. All processes in a module are on the same computer. Processes

within a module are connected by intra-module channels, and processes in

different modules are connected by inter-module channels. Intra-module

channels are also intra-computer, but inter-module channels can be either

inter-computer or intra-computer.

The backup replicates of processes in the same module are located

on the same computers and in the same order. This ensures that after a

crash a module's processes are still on the same computer, and so intra­

module channels remain intra-computer despite crashes. Inter-module

183

channels may alter between being inter-computer and intra-computer.

Transferring a message between computers may take a long time

because the network may be busy and because delivering the message

correctly could (in theory) take an infinite amount of time. To prevent

this delay affecting a sender process's response time the SEND command has

a timeout. If a message is being sent intra-computer then there is no such

delay, and so there is no need for the timeout. By omitting timeouts and

status parameters on intra-computer SENDs, those SENDs are no longer time-

dependent SENDS.

We propose that all SENDs and RECEIVES on intra-module channels do

not have timeout and status parameters. Hence these SENDs and RECEIVES are

not time-dependent functions.

An intra-module SEND that succeeded during a process's

interrupted-task will succeed when repeated, as there is no timeout to

prevent it. An intra-module RECEIVE that was executed during an

interrupted-task will succeed and input the same message, as (having no

timeout) it will wait for the missing message to be replaced or for the

repeated message to be sent by the intra-module SEND which will succeed as

it has no timeout either.

Furthermore, intra-module SENDs and RECEIVES cannot fail due to an

exception being raised. As intra-module channels are also intra-computer

both sender and receiver will be restarted. The receiver's input channel

exceptions will be handled before it starts to re-execute its interrupted-

task, and so intra-module RECEIVES cannot be interrupted by an input

channel exception being raised. The sender is restarted as well and any

re-executed SEND will be delayed on its 'Waituntil' statement until after

that output channel's exception has been handled and so the SEND will not

be interrupted by that exception.

184

Inter-module SENDs, Inter-module RECEIVES, DOIOs and PENDINGs are

still time-dependent functions. Intra-module SENDS and RECEIVES are not

time-dependent functions. All SENDs, whether Intra-module or Inter-module,

must be separated from preceding time-dependent functions by a secure

point. A task can now contain a number of intra-module SENDs, but still

only only one inter-module SEND. As it is likely that the amount of

intra-module comminlcation will be higher than the amount of inter-module

commvnication, being able to have several intra-module SENDs in a task

should result in a good reduction in the number of secure points.

In the simulation presented in the next chapter we compare the

performance obtained using this module-based secure point insertion

strategy with the performance obtained using the 'worst-case' policy where

every SEND causes a secure point.

The loss of timeouts from intra-module SENDs and RECEIVES may be a

problem as they are also a way of preventing a process from being held up

by a sluggish sender or receiver. However, as a module is a single entity

and would be coded as such, this problem may not arise. The simulation

study should give an indication as to whether this sacrifice is worth the

reduction in the number of secure points that are performed.

9.6 Summary

In this chapter we have shown how the prooess-set is implemented by

the distributed kernel level, and how process recovery is performed by the

input channels and the output channels. Furthermore it has been argued

that process survivability can cope with multiple computer crashes.

Supporting process survivability requires a secure point to be

executed prior to every SEND. He have presented an alternative to this,

based on the adoption of modules, which should considerably reduce the

number of secure points performed.

185

The process survivability level has been presented in earlier

chapters as providing both the process-set and process recovery. However,

the former task is performed by the distributed kernel level. The process

survivability level consists of the input channels and the output channels,

and only implements process recovery, but it remains convenient to continue

presenting process-sets as being one of the services that the process

survivability level provides.

186

10. A Simulation of Proceaa Survivability

10.0 Introduction

Process survivability Is practicable, but is it practical? In the

previous chapters we have argued that process survivability will work, but

we do not know whether the overheads incurred will prohibit its useful

adoption. A discrete event simulation of PROSUR has been Implemented in

order to investigate the effects of these overheads.

The simplification and generalisations which of necessity have been

introduced into the simulation prevent the results of the simulation being

used to determine finally and irrevocably the practicality of process

survivability. Instead it is intended that the results will provide us

with an Insight into the probable effects that the addition of process

survivability would have on a distributed computer control system’s

performance.

10.1 The aims of the simulation

In this simulation the useful work performed by an application

process is measured by the number of seconds for which that process was

actually being executed (CPU seconds) in a given period of real time. A

distributed computer control system’s performance is then measured by the

average of the amount of useful work performed by each of its application

processes.

As response time is an important factor in real-time systems it

would arguably have been more useful to have used the average response time

of the application processes as a measure of the system’s performance.

However, in order to measure this an actual application would have had to

been simulated, and unfortunately despite an extensive literature survey

and letter writing campaign we were unable to find any suitable details for

187

an existing system, and it was decided that it would be impractical in the

time available to invent a realistic application. In the summary to this

chapter, we attempt to draw conclusions about how the response time is

affected.

A distributed computer control system will spend almost all of its

entire working life in the 'normal running' state. The effect that process

survivability has on a system's performance during normal running would to

a great extent determine whether it could be usefully adopted or not. For

certain applications a further important (if not critical) consideration

would be the length of time that it takes the system to recover from a

crash. However, important as the latter is, we have limited the simulation

to the investigation of the effect that process survivability has on normal

running performance in order to keep the simulation within manageable

proportions.

To achieve our aim the following aspects of process survivability

have been investigated:

a) In the previous chapter we described two secure point insertion

strategies. One was worst case, requiring a secure point before every

SEND. The other was an optimisation based on the use of modules within

PROSUR's P/L which should lead to a reduction in the number of secure

points and possibly to a reduction in the overheads as well. Both

Insertion schemes are modelled and the comparison of the results will

enable us to gauge the advantages that might result from adding modules

to PROSUR's P/L and from the adoption of the optimised insertion

strategy.

b) The level of redundancy will increase the amount of work involved in

performing a secure point thus increasing the overheads. The way in

which performance is affected by different levels of redundancy is

investigated.
188

c) In both secure point insertion strategies it is the SENDS that determine

the position of the secure points. An increase in the frequency with

which the processes perform SENDs will increase the frequency of secure

points and hence the overheads. The effects of varying the SEND

frequency are investigated.

d) An accepted (if expensive) way of increasing a distributed computer

control system's performance is to increase the number of computers. He

investigate whether such an increase is maintained after the addition of

process survivability, and vrtiether increasing the number of computers is

a way of maintaining performance after the addition of process

survivability.

The model of PROSUR that was simulated is described in the

following two sections. The experiments performed and the results obtained

are described in the last four sections of this chapter.

10.2 The simulated distributed computer control system

10.2.0 Introduction

To simulate PROSUR in full detail would be a prohibitively large

task. Instead a simplified version of PROSUR has been modelled. This

section describes this simplified version.

Process survivability overheads during normal running involve a

large amount of network activity in order to send secure point data to the

backup replicates* host kernels. The network is a shared resource and so

an increase in its use will affect the whole of the control system. The

simplification of PROSUR is achieved by concentrating on the network

related parts, so that the network activity is modelled realistically, and

by simplifying the rest.

189

10.2.1 Hardware

The hardware configuration ia shown in Figure 10a. The computers

are linked together by a Cambridge Ring (Wilkes and Wheeler 1979). The

Cambridge Ring was chosen because of familiarity with its operation. Each

computer is interfaced to the ring by a locally designed access logic unit

(Bennett and Singleton 1982). The access logic unit (ALU) is a

microprocessor based unit that implements the basic block protocol (Johnson

1980) thereby presenting the computer with a high level interface to the

network.

Cambridge Ring

Figure 10a

An ALU receives messages from its computer that are to be sent over

the network. These are placed in output queues, one for each possible

destination computer. The ALU serves its output queues in round-robin

order sending a message from each in turn. The message to be transmitted

is placed into a basic block (with a 3 word overhead) and then sent to the

destination computer's ALU. The speed with idlieh a basic block can be

transmitted is a function of the ring's raw data rate and the number of

network nodes.

190

The Cambridge Ring's raw data rate is 10 megabits/sec. Packet

overheads and sharing result in each ALU having a guaranteed point-to-point

share at the physical level equal to 4/(n+1) megabits per second, where n

is the number of ALUs (Bennett and Singleton 1982). Throughout the

simulation we use a 16 bit word, and so this data rate is equal to

1/(4*(n+1)) mega words per second. However, the maximum data rate that can

be supported by an ALU is 50 FCwords per second, and so the guaranteed

minimum data transfer rate between two ALUs at the physical level is:

1/(M(n+1)) Mwords per second, for n > 4

and

50 Kwords per second, for n <= 4.

This data rate is a worst case minimum, as it is based on the

assumption that every ALU is using the network as much as possible. In

'real life' some of the ALUs would not be using their full share, and this

unused network capacity would be available to the other ALUs. However, in

the interests of simplicity we have used this worst case figure as the

maximum rate at which data can be transferred between ALUs despite the

inactivity of other ALUs.

An ALU can only receive one basic block at a time as on receiving a

basic block's header it sets the source select register of the Cambridge

Ring station to the sender's address (Johnson 1980). If an ALU cannot

deliver a basic block because the receiver is already receiving a basic

block from elsewhere, it waits for 16 cycles (where a cycle is the time it

takes to send one word over the network) then tries again. If it still

cannot deliver the block, it gives up trying to send that block, leaves the

message on its output queue, and continues to handle its output queues

normally. (16 was chosen as any lesser number resulted in the simulation

overrunning the available runtime.)

191

10.2.2 The application level

We first describe the model used to represent all processes, and

then describe how the processes are configured to form the application

level.

Processes are grouped Into modules. Although modules are not part

of PROSUR they have been added in order to Investigate the module-based

secure point insertion strategy.

Each process is modelled as a RECEIVE-work-SEND cycle. The work

period, measured in CPU seconds, is generated by a Normal distribution with

mean m, standard deviation 1 and a truncated range of 0 to 2#m. All

processes have the same mean.

A RECEIVE is satisfied by a message from any of the calling

process's input channels. This corresponds to the best case where a

process never has to wait for a message from one channel when messages are

outstanding on other channels. (Were the channels to be specified it would

be possible for the simulated control system to deadlock.)

Before a message can be sent the output channel must be chosen. A

module consists of processes that work together to provide a service.

Hence it is envisaged that most message passing will be intra-module, and

it was decided that 801 of all message passing is intra-module and only 20>

inter-module. Having determined whether an inter-module or intra-module

output channel is needed, the specific channel to be used is chosen by

round-robin. The sender is suspended until the message is safely delivered

into the receiver's input channel.

Messages do not have any contents but they do have a size. Based

on the survey presented by Prince and Sloman (1981), it was decided that

there would be two types of message: command (4 words long) and data (256

words long), and the ratio of command messages to data messages would be

192

Flow control on channels is only partly modelled. A receiver will

be hung up if there are no outstanding messages in any of its input

channels and will be activated upon the arrived of the first message in any

input channel. There is no flow control on the SENDS; it is assumed that

input channels never fill up. Timeouts on RECEIVES and SENDS are not

modelled.

For our purposes a distributed computer control system

configuration consists of C computers, each containing M modules of P

processes each. Every process has R inter-module output channels and L

intra-module output channels, where C, M, P, R and L are constants for a

particular configuration.

Within a module the processes are ordered cyclically and a process

with L intra-module output channels will be connected to the next L

processes in the circle excluding itself. For example, Figure 10b shows

the internal structure of a module where P equals five, and L equals two:

the five processes (circles) are each connected by two intra-module output

channels (directed lines) to the next two processes in the cycle.

Figure 10b

Every computer has M modules of P processes, and each process has R

inter-module output channels. Inter-module output channels from the pth

process of the mth module will be connected to the pth process of the mth

module on R different computers. The computers are organised into a

circle, and a computer with M#P#R remote channels will be connected to the

next M#P#R computers in the circle, excluding Itself. For example, Figure

10c shows how the inter-module output channels of the four processes on the

left-most computer would be connected in the configuration C=J|, M=2, P=2

and R=1.

Figure 10c

All inter-module channels have been configured so as to be inter­

computer. This means that the network loading is worst-case, as in a real

system some inter-module channels would be intra-computer. One of our

experiments is to investigate the advantages of reconfiguring the

application level onto more computers, and by having all inter-module

channels inter-computer we ensure that despite reconfiguration the network

loading remains constant and so does not affect our results.

19U

10.2.3 Distributed kernel level

The processes are time sliced. Each computer has a ready-queue.

When a process is ready to run it is placed at the end of its host's

ready-queue. The process at the front of the ready-queue is run for a time

slice of 25 milliseconds or until it suspends itself on a SEND or a

RECEIVE. Paging is assumed but it is not modelled.

Messages are transferred in basic blocks. However it is not

sufficient to rely on the basic block protocol as it does not provide

recovery from errors during transmission. To be able to recover from such

errors a higher level protocol incorporating a positive acknowledgement is

needed. This protocol is provided by the kernel.

Although we assume that all transfers are error free it is

necessary to model the higher level protocol so that the network load is

realistic. When a message is sent, it is placed on the appropriate queue

in the sender's ALU. When it is received by the receiver's ALU it is

placed in the receiver's input channel and an acknowledgement message is

placed on the appropriate output queue in the receiver's ALU. Once the

acknowledgement has been delivered to the sender's ALU the SEND is

completed and the sender is activated and placed on the ready-queue again.

10.2.4 Process survivability

Every process has the same level of redundancy. For the module-

based secure point strategy to work the backup replicates of processes in

the same module must be on the same computer (see Chapter 9, Section 9.5).

This organisation is also used when simulating the worst-case secure point

Insertion strategy even though it is not necessary. The backups are

distributed fairly between the computers.

195

Two secure point Insertion strategies are modelled: worst-case and

module-based. When a process executes a secure point, secure point data is

sent to each of the kernels hosting that process's backup replicates.

Secure point data consists of those pages (a one Kword page is

used) of the process's data segment that have been altered since the last

secure point plus a copy of the process's volatile environment. The number

of pages that have been altered since the last secure point is defined by

the bar chart shown in Figure 10d, where the number of pages is determined

by the number of CPU seconds of work performed since the last secure point.

Kwords

Figure 10d

The bar chart is based on the 'working set' curve (Denning 1968,

Splrn 1977). The working set curve, first described by Denning, describes

how the number of different pages accessed in time t (known as the working

set) increases with t. The values along the axes are 'guesstimates' as

there are no suitable published figures on which to base them.

196

The two stage protocol that is used to broadcast the secure point

data is performed by the processes themselves. A basic block can contain

at most 1K words and so secure point data is divided into a header block

followed by a number of blocks each containing one page. The header

contains the number of pages, details as to which pages they are, and a

copy of the process's volatile environment. Each of these messages is sent

separately by the user process.

Some of the secure point message's pages would be in main memory

and others in secondary storage. The latter would increase the time it

takes to perform a secure point. However as paging is not modelled, we

assume that all pages are in main memory and hence ready to be sent

immediately. For the same reason we do not model the updating of the

backup replicates with the secure point data; in fact the backup replicates

are not modelled at all.

10.3 Implementation details

The simulation is performed by two programs. One generates a

PROSUR configuration, and the other is the discrete event simulator that

simulates the running of that configuration.

The configuration generator takes as input the number of computers,

the number of modules per computer, the number of processes per module, and

the number of local and remote channels per process. It produces as output

a file containing a description of the distributed computer control system.

The discrete event simulation takes as input the configuration, the

level of redundancy, the type of process survivability to be modelled, and

the mean work period of the processes.

197

Both programs are written In Pascal. The configuration generator

is 158 lines long, and the simulator itself is 1498 lines long.

Development and testing was carried out on a local GEC 4190, and the final

production runs were done on a University of Manchester Regional Computer

Centre CDC 7600.

10.4 The experiments performed

In pursuit of the aims described in Section 10.1 a total of 138

distinct experiments were performed.

The application level simulated consists of 48 modules each of six

processes. Each process is connected by intra-module output channels to

all of the other processes in its module, and each process also has one

inter-module output channel connected in the manner described in sub­

section 10.2.2.

Four configurations were formed by partitioning the modules equally

onto 4, 8, 16 and 32 computers. A common proposal for distributed computer

systems is that there should be but one process per computer. In order to

investigate any possible advantage this may ensure for process

survivability a fifth configuration consisting of 192 computers, each with

one process, was also simulated. Each process in this configuration has 6

inter-module output channels and no intra—module output channels.

192 processes divided into modules of 6 processes were chosen

because they could be evenly partitioned a number of ways. Also, for

larger numbers of processes the CDC Pascal ' s heap storage became exhausted•

Each configuration was simulated in a number of different

situations, where a particular situation is defined by a combination of

three factors:

1) the level of redundancy;

2) the secure point insertion policy used;

3) the SEND frequency.

The combination of configuration and situation defines an experiment.

The 8, 16, 32 and 192 computer configurations were simulated with

redundancy levels of 1, 2, 3, 4 and 6. The 4-computer configuration was

simulated with redmdancy levels of 1, 2 and 3*

Each configuration was simulated with every level of redundancy

using both worst-case and module-based secure point insertion. Each

configuration was also simulated without process survivability in order to

measure its normal performance.

A process is modelled as a RECEIVE-work-SEND loop. The work period

is Normally distributed with the same mean and standard deviation for all

processes. To investigate the effects of increasing the SEND frequency the

above experiments were repeated using a mean work period of 2, 0.5 and 0.12

seconds and standard deviations of 1, 0.1 and 0.01 seconds respectively.

Each simulation run simulates 30 minutes of real time. All of the

measurements are reinitialised after 10 minutes in order to prevent the

final results from being affected by any abnormalities produced while the

simulation settles down. The final results are produced by the last 20

minutes.

199

10.5 The résulta

10.5.0 Introduction

The result produced by each experiment is the average of the useful

work performed by each process. The results of all the experiments are

presented In three sets of graphs - Figures 10e, 10f and 10g. These

results are also given in tabulated form In Appendix D. The accuracy of

these results is discussed in Appendix E.

Each set consists of two graphs. One graph presents the

performance of all the configurations withi worst-case secure point

insertion and the other their performance with module-based secure point

insertion.

Each set of graphs plots the configurations' performances with

different mean work periods: Figure 10e - 2 seconds, Figure 10f - 0.5

seconds, and Figure 10g - 0.12 seconds.

A configuration’s performance in CPU seconds is plotted against its

level of redundancy. The points for a particular configuration are Joined

together to form a curve, and the curve is labelled with the number of

computers in that configwation. The value plotted against a level of

redmdancy of zero is the configuration's performance without process

survivability. Performance is the average of the amount of useful work

performed by each process, and the standard deviations of the processes'

performances are shown to scale as vertical bars.

These results are described in the following sub-sections. All

comments are made with the proviso that they are only relevant to the

configurations and situations simulated. Speculation concerning the

performance of configurations and situations not simulated is left until

the conclusion. The possible causes of the results described in this

section are discussed in the following section, Section 10.6.

200

Figure 10e.1

10.5.1 Increasing the level of redundancy

First we describe the effect that increasing the level of

redundancy has on a configuration's performance.

Every line in every graph can be considered to be a special case of

the curve shown in Figure 10h. We interpret this to mean that:

a) A control system has an initial resilience to the overheads of process

survivability, and so for low levels of redundancy its performance is

either not affected or it is only slightly reduced by the addition of

process survivability.

b) Once a control system's resilience is overcome, its performance

decreases sharply with further increases in the level of redundancy.

c) When a certain level of redundancy has been reached, further increases

in the level of redundancy only result in progressively smaller

reductions in performance. (This latter characteristic is an important

factor in the determining of process survivability's practicality.)

[
performance

Figure 10h

207

The shape of a specific configuration's performance curve is

determined by the balance of its natural resilience and the process

survivability overheads of its situation. Some lines are virtually

horizontal, for example lines 4 and 8 in Figure 10e.2, implying that in

those configurations their resilience is not overcome and so their

performance is maintained for all of the levels of redundancy tested. On

the other hand, in some of the configurations resilience is immediately

overcome by the overheads, for example in Figure 10f.2 line 32 falls

sharply for low levels of redundancy.

10.5.2 Varying the process to computer ratio

Five configurations were simulated in order to study the effect

that varying the process to computer ratio has on performance. In the

following we distinguish between the configurations by their process to

computer ratios.

Each of the six graphs plots the performance of all five

configurations over the full range of redundancy levels with the same SEND

frequency and with the same secure point insertion strategy. As the other

factors are constant it is concluded that the differences between the

configurations' performances must be due to their different process to

computer ratios.

The following comments are based primarily on Figures 10f and 10g.

The effects described below are not as well developed in Figure 10e,

although a tendency towards them can be seen.

All comparisons are made between lines within the same graph, and

not between lines in different graphs.

208

When simulated without process survivability the performance

figures are approximately inversely proportional to the configurations’

process to computer ratio. The lower the ratio the better the performance.

Doubling the number of computers and halving the number of processes per

computer results in an approximate doubling of the system's performance; a

suitable return for the extra cost.

The most obvious difference between the configurations is that the

smaller the process to computer ratio the greater the degradation in the

configuration's performance. To be more precise, the smaller the ratio:

a) the lower the level of redundancy needed to overcome the configuration's

resilience; and

b) the steeper the initial drop in performance.

As the lower ratio configurations are more adversely affected,

their performances converge on the performances of the higher ratio

configurations as the level of redundancy is increased. Convergence occurs

in the order of increasing process to computer ratios; for example, in

Fig ire 10f .2, line 192 converges on line 32, these two then converge on

line 16, and finally all three converge on line 8. After two or more

configurations' performances have converged, their performances remain

converged for all further increases in the level of redundancy, and their

performances slowly decline together as the level of redundancy increases.

Once converged, the performance of the lower ratio eonflguration(s)

falls marginally below that of the higher ratio configuratlon(s). For

example, in Figure 10f.2, when lines 192 and 32 converge on line 16, they

both drop below line 16 and remain there. Performance is an average and so

the performances of the individual processes in a configuration are spread

over a range of values, with the size of the spread indicated by the

standard deviation. A certain amount of overlapping between each

209

configuration's range of performances can be seen, making such a ranking of

configuration performances less distinct.

Despite the configurations' widely different initial performances,

the convergence means that for the higher levels of redundancy a similar

performance can be achieved with 8 computers as with 16, 32 or 192

computers, a considerable financial saving.

As observed in the previous sub-section, some configurations'

performances are unaffected by the introduction of process survivability no

matter what level of redundancy is used. These unaffected configurations

are always those with the higher ratio of processes to computers.

10.5.3 The two secure point insertion policies

Two different secure point insertion strategies were simulated.

The worst-case Insertion strategy results in a secure point being performed

every SEND. The module-based insertion strategy results in less secure

points but the secure point messages are larger.

Figure 101 consists of three graphs - 101.1, 101.2 and 101.3 -

which were formed by superimposing the two graphs in each of Figures 10e,

lOf and 10g respectively. (Standard deviations are omitted.) Each

configuration's performance curve is labeled by the number of computers in

that configuration, and by the letter 'w' or 'm' to indicate whether the

performance curve was obtained using worst-case or module-based secure

point insertion. These three graphs show the relative effects of the two

insertion policies on each configuration for each SEND frequency simulated.

Again comparisons are not made between performances obtained with different

SEND frequencies.

210

For some configurations with certain SEND frequencies there are

either minimal differences in the performances obtained or no differences

at all and these are omitted from the graphs in Figure 10i. The 192-

computer configuration has one process per computer and so all SENDS are

remote which results in both policies inserting a secure point prior to

every SEND. There are also cases where neither insertion policy results in

overheads sufficient to affect the performance; for example, the «-computer

configuration with a SEND frequency of 2 seconds and 0.5 seconds.

All further comments apply to those cases where there is a

difference in performance between the two strategies.

Where performance is affected by process survivability a higher

performance is maintained with the module-based insertion strategy. When

worst-case insertion is used resilience is overcome by a lower level of

redundancy and the fall in performance after that is steeper. The

convergence of the performances of different configurations also occurs at

a lower level of redundancy with worst-ease insertion.

The three graphs in Figure 10J show the increases in a

configuration's performance that are achieved by using module-based

Insertion rather than worst-case insertion. Again those configurations

that do not exhibit a difference are omitted.

The performance Increase obtained with module—based insertion first

increases along with the level of redundancy, peaks, and then as the level

of redundancy increases further it falls. It appears that with a

sufficiently high level of redundancy all advantage would be lost.

21«

For some configurations with certain SEND frequencies there are

either minimal differences in the performances obtained or no differences

at all and these are omitted from the graphs in Figure 101. The 192-

computer configuration has one process per computer and so all SENDS are

remote which results In both policies Inserting a secure point prior to

every SEND. There are also cases where neither insertion policy results in

overheads sufficient to affect the performance; for example, the 4-eomputer

configuration with a SEND frequency of 2 seconds and 0.5 seconds.

All further comments apply to those cases where there is a

difference in performance between the two strategies.

Where performance is affected by process survivability a higher

performance is maintained with the module-based insertion strategy. When

worst-case insertion is used resilience is overcome by a lower level of

redundancy and the fall in performance after that is steeper. The

convergence of the performances of different configurations also occurs at

a lower level of redundancy with worst-case insertion.

The three graphs in Figure 10 J show the increases in a

configuration's performance that are achieved by using module-based

insertion rather than worst-case insertion. Again those configurations

that do not exhibit a difference are omitted.

The performance increase obtained with module-based insertion first

increases along with the level of redundancy, peaks, and then as the level

of redundancy increases further it falls. It appears that with a

sufficiently high level of redundancy all advantage would be lost.

214

Figure 10J

Because of the convergence described In the previous sub-section

which occurs with both insertion policies, the increase in performance

obtained in each configuration is virtually the same for high levels of

redundancy. However, if the extra performance is considered as a

percentage of the configuration's performance without process

survivability, then it can be seen that the greater advantage is obtained

in the highest ratio configuration; viewed this way the performance

advantage decreases along with the process to computer ratios.

These observations imply that the overheads are higher with worst-

ease insertion, as was expected. The transmission of smaller secure point

messages more frequently results in a higher overhead than does sending

larger secure point messages less frequently.

10.5.4 Increasing the SEND frequency

We now look at how a configuration's performance varies as its SEND

frequency is increased.

Prior to the addition of process survivability a configuration's

performance is approximately the same for all three SEND frequencies. Once

process survivability is added a better performance is obtained (for all

levels of redundancy) with a 2 second mean work period than with a 0.5

second mean, and both are better than that obtained with a 0.12 second

mean. This is true for both secure point insertion strategies. The

smaller the mean the worse the performance.

As the mean work period decreases, the configuration's resilience

is overcome by lower levels of redundancy, and the initial fall in

performance is sharper. Convergence of the different configurations'

performances occurs at a lower level of redundancy.

216

These results Imply that overheads are greater with the faster

frequencies. More frequent SENDs result In more frequent secure points

which, although the secure point messages will be smaller, result In

greater overheads.

10.6 The causes of the effects described

10.6.0 Introduction

In this section we present possible explanations for the effects

that were described In the previous section.

10.6.1 Increasing the level of redundancy

In Section 10.5.1 we presented Figure 10h as being the general

shape of a configuration's performance curve as redundancy increases. In

this sub-section we explain what makes the curve that shape, and why all

the performance curves In Figures 10e, 10f and 10g, even the horizontal

ones, are special cases of this curve.

In order to Illustrate our explanation we look at all five

configurations when operating with worst-case secure point Insertion and a

mean work period of 0.5 seconds. The performance figures for these

configurations when operating in these situations are presented In Figure

10f.2. (Any of the other combinations of insertion policy and mean work

periods could have been used.)

All of the processes execute a RECEIVE-work —SEND cycle, where the

SEND may be preceded by a secure point. The more of these cycles that a

process performs the more work It performs.

217

The average time that it takes a process to perform a RECEIVE in

each of these configurations under these conditions is shown in Figure 10k.

Similarly, the average time to perform a secure point and the average delay

in performing a SEND are presented in Figures 101 and 10m respectively.

The lines are labelled by the number of computers in each configuration.

The tables for these graphs are in Appendix F. Standard deviations are

omitted from the graphs but are included in the tables.

As the level of redundancy is Increased the time it takes to

perform a secure point increases because the secure point data has to be

sent to more backup replicates. In Figure 101 this increase can be seen to

be virtually linear. The extra network activity caused by secure pointing

in turn causes the delay on the SENDs to increase. As the secure point

time increases the number of cycles performed, and hence the number of

SENDs performed, decreases. As the RECEIVE phase is terminated by the

arrival of a message, the Increased scarcity of messages increases the time

it takes to perform a RECEIVE. The time it takes to execute a secure point

plus the extra delays incurred in a SEND and a RECEIVE are the performance

overheads of process survivability.

The increase in the time it takes to perform a SEND and a RECEIVE

and a secure point is approximately linear (although the SEND delay figures

are not linear they are too small to affect the overall linearity caused by

the secure point and the RECEIVE). Hence the time it takes to execute a

RECEIVE-work-SEND cycle also increases linearly, which results in the

number of cycles that can be performed in a given time decreasing

geometrically. He alústrate this last point in Figure 10n where we plot

the graph y » 10/x.

221

10 J

y=10/x

Figure 10n

10

We believe that the plunge and then the levelling-off of the

performance curve shown in Figure 10h is due to the nearly linear increase

In the time it takes to perform a secure point and a SEND and a RECEIVE.

We turn now to the cause of the initial resilience that a

configuration's performance has to the process survivability overheads, and

answer the question of why the curve in Figure 10h is initially horizontal.

Processes on the same computer are time shared. Those processes

that are executing the work phase of a RECEIVE-work-SEND cycle are

'contained' in the computer's ready-queue. The more processes there are in

a computer's ready-queue the longer it will take those processes to

complete their work phases.

222

We believe that a configuration's initial resilience is due to a

combination of two factors:

1) While the number of processes in the ready-queue is high, and the

process survivability overheads are low, the predominant factor in

determining a process's performance will be the time that it takes the

process to perform its work phases. As the process survivability

overheads Increase, the ready-queue length will decrease and the

predominant factor will become the time it takes to perform the SENDS,

RECEIVES and secure points, and performance will fall.

2) As the process survivability overheads increase the number of processes

that are executable at the same time decreases and so does the number of

processes on the ready-queue. This reduction means that processes can

perform their work phases faster, which partly compensates for the

increase in the time spent RECEIVEing, secure pointing and SENDing.

Hence, a configuration's performance is limited for small levels of

redundancy by the length of its ready-queue, and then for the higher levels

of redundancy by the process survivability overheads. As the process

survivability overheads increase the ready-queues' sizes decrease, and

initially it is possible for this to compensate for the increased process

survivability overheads, thereby maintaining the processes' cycle speed and

performance. Once the process survivability overheads have reached a

certain level (and this varies between configurations and situations) the

reduction in ready-queue sizes no longer compensates for the increased

overheads and so performance falls. The rate at rfiich performance falls is

still alleviated by the shorter ready-queues.

Not all the curves in Figures 10e, 10f and 10g are the same shape

as the general curve shown in Figure lOh. This is due to the different

balances of ready-queue length and process survivability overheads in the

223

different configurations and situations.

It was noted in Section 10.5.1 that those configurations with a

higher process to computer ratio have the higher resilience to the

overheads of process survivability. In fact, in the case of the 4-computer

configuration its performance curves are all basically horizontal. This

resilience is due to these configurations having the longer ready-queues.

Those configwations with a lower ratio of processes to computers, such as

the 32-computer configuration, have shorter ready-queues and so the ready-

queue length does not dominate the process survivability overheads to the

same extent; hence the lower-ratio configurations have a lower resilience.

Prior to performing the simulation it was expected that the network

would be the bottle neck and that system performance would be limited by

the need to share the network. As we have explained above, performance is

limited by other factors, and not by the network. As an example, Figure

10o presents the ALU performance for all five configurations, again

operating wider worst-case secure point insertion and with a mean work

period of 0.5 seconds. (These results are also presented in tabular form

in Appendix G.) ALU performance is the average number of seconds worked by

each ALU presented as a percentage of the 20 minutes simulated.

In general, ALU performance increases linearly for the lower levels

of redundancy and then levels off over the higher levels of redundancy.

The level of redundance at irtiich ALU performance levels off varies between

the configurations and in the 4-computer configuration it does not occur at

all.

224

Figure 10o

Were the network to be the dominant factor we would expect all of

the curves to approach 100J, and not level off below that. Also, referring

back to Figu-e 101, if the network were the limiting factor we would not

expect the secure point times to increase linearly; neither would we expect

the SEND delays, shown in Figure 10m, to level off as they do. We believe

that the levelling off in ALU performance is due to a reduction in the

demands made on the ALUs by the processes as it corresponds to the

levelling off in the configurations' performance curves as can be seen in

Figire 10f.2.

10.6.2 Varying the process to computer ratio

In this sub-section we explain why the performances of the

configurations converge. To illustrate our discussion we use the 16-

computer and the 32-computer configurations again running with worst-ease

secure point insertion and a mean work period of 0.5 seconds.

As can be seen in Figure 10f.2 the performance curves of the 16-

computer and the 32-computer configurations converge for levels of

redundancy of two and greater. The table in Figure 10p presents the

average time spent in each RECEIVE—work—SEND cycle performing the RECEIVE,

the SEND and the secure point.

Prior to a redundancy level of two the overheads are less in the

32-computer configuration. From a redundancy level of two onwards the

overheads in the 32-computer configuration are worse, although the

difference remains constant as the level of redundancy increases.

226

configuration

16 32

0 3.07 1.63

1 3.77 3.53

level 2 6.24 7.29
of

redundancy 3 9.65 10.88

4 13.02 14.24

6 19.44 20.78

Figure 10p

Despite the convergence in the process survivability overheads the

32-eomputer configuration should still have a better performance as there

are less processes per computer, but as we can see in Figure 10f.2 this is

not the case. The ready-queues in the 16-computer configuration will

decrease in length as the reduidancy level increases and at a certain

level, two in this case, the length of its ready-queues will almost be the

same length as in the 32-computer configuration and the processes will be

able to execute their work phases as fast. For a redundancy level of 2 and

greater, the length of the ready-queue in both configurations will be about

the same size.

By halving the queue length and doubling the time it takes to send

a basic block, the time it takes from request to completion to transmit a

message, or to send secure point data, will remain about the same. This is

why the process survivability overheads (which are predominantly made up of

network utilisation) for the two configurations presented in Figure 10p are

almost the same.

227

As we have explained before, the ALUs and the network are under

utilised. Were this not the case, then the above would probably not be

true.

10.6.3 Insertion policies and SEND frequencies

It was expected that worst-ease secure point insertion would have a

worse effect on the configurations' performances than module-based

insertion would, and the results presented earlier support this assumption.

Figire 10q shows the average of the total time spent performing

secure points by each process in the 16-computer configuration, operating

with a mean work period of 0.5 seconds and with both secure point insertion

policies. It can be seen that for all levels of redundancy a process will

spend less time secure pointing with module-based insertion than with

worst-case insertion.

worst-case module-bas

1 152.10 59.10

2 425.96 154.32
level

290.38of 3 565.91
redundancy

389.404 624.82

6 675.02

Figure 10q

482.16

Similarly, it was expected that increasing the SEND frequency would

Increase the number of secure points and decrease performance. That the

performance is decreased has already been shown. Again using the 16-

computer configuration operating with worst-case insertion, we ohow in

Figire lOr that the total time spent by each process in secure pointing

does increase as the SEND frequency increases.

228

Mean work period

2 0.5 0.12

1 54.90 152.10 476.93

2 126.25 425.96 642.96
level

of 3 238.02 565.91 683.84
redundancy

4 382.15 624.82 697.33

6 526.99 675.02 721.19

Figure 10r

Worst-case insertion results in secure points being executed more

often, and increasing the SEND frequency also increases the secure pointing

frequency. These results are consistent with the graph, presented in

Figure 10d, that defines the size of the secure point data, as there it can

be seen that the higher the frequency of secure pointing the more data that

must be transferred, as increasing the time since the last secure point

does not Increase the size of the secure point data proportionally.

10.7 Sunn ary

Our experiments indicate that a high ratio of processes to

computers is more practical for high levels of redundancy than a low ratio.

For high levels of redundancy a comparable performance can be achieved with

an 8-computer configiration as with 16, 32 or 192 computer configurations -

a considerable financial saving.

The maximum level of redundancy that can be achieved in a

distributed computer control system is limited by the number of computers.

Because of this the larger computer configuration, although financially

wasteful, may still be adopted in order to achieve the high levels of

229

redwdancy required.

The attainment of high levels of redwdancy is facilitated by the

levelling off of performances for high levels of redwdancy. If, for

example, the performance obtained with a level of redwdancy of six is

acceptable, then the performance obtained with a level of eight is also

likely to be acceptable.

Unfortunately if performance falls below an acceptable level then

there is no way of improving it other than by adopting module-based secure

point insertion. It was hoped that increasing the number of computers

would increase the performance, but convergence prevents this.

The adoption of modules into PROSUR's P/L and the use of module-

based secure point insertion leads to an improved performance over all

levels of redwdancy. The performance improvement is more significant in

the higher ratio configurations trtiere it forms a higher percentage of the

performance that can be obtained without process survivability. As the

level of redwdancy is increased this advantage is reduced and it is

possible that it might become negligible for very high levels of

redwdancy.

As expected the process survivability overheads Increase as the

SEND frequency increases. This may inhibit the adoption of process

survivability for applications that involve a high frequency of message

passing.

Response time in a real time system is a very Important

characteristic. Unfortwately it was not possible to measure response time

directly. However, it is possible to hazard a guess as to how response

time might be affected.

230

The most primitive response to a request is the RECEIVE-work-SEND

cycle executed by every process. More complex requests would involve the

server process issuing requests of its own to other processes. Hence, the

increase in the time it takes to perform a RECEIVE-work-SEND cycle is a

rough indication of the way that response time would be affected.

Referring back to the arguments presented in Section 10.6.1, the

time it takes to perform the RECEIVE, SEND and secure point part of the

cycle will increase linearly with the increase in redundancy. The time

taken to perform the work phase of the cycle will depend on the size of the

ready-queues and these will decrease as the time it takes to perform the

rest of the cycle increases.

He believe that vrtiile performance remains unaffected by process

survivability the response time will also be unaffected. Once the

performance starts to fall, response time will increase linearly. As the

ready-queues get smaller, there may be a slight decrease in the rate of

increase but nothing as drastic as the levelling off that can be seen in

the performance curves.

It was found that, contrary to expectations, configuration

performance was not limited by the network. However, were the number of

application processes to be increased, then the extra load on the network

might result in the network becoming the limiting factor, and all of the

above conclusions might be nullified.

Whether or not a particular performance or a particular response

time is acceptable depends on the particular application involved. The

most encouraging result is the levelling off of performance as the level of

redundancy increases, rather than a steady fall. Unfortunately, this

advantage may be nullified by the linear, or near linear, increase in

response time as redundancy increases.

231

11. Conclusion

11.1 The aim of process survivability

Possibly the greatest advantage that a distributed computer control

system has over a centralised system Is that the failure of one or more of

Its constituent computers does not prevent the other computers from

operating normally. This advantage can be further enhanced by basing the

distributed computer control system around a local area network so that the

computers can be physically dispersed over a large area thereby limiting

the damage that could be caused by a major catastrophe such as a fire.

Unfortunately the loss of the executive and application software that was

hosted by a crashed computer will prevent the surviving part of the control

system from fulfilling its role. Although after a crash the majority of

the distributed computer control system's processing power is still

available the control system will have been crippled by the loss of vital

software components.

Whereas it is possible to design the executive software of a

distributed computer control system so that the loss of one of its

constituent kernels will not prevent the others from functioning normally,

it is not possible to do this for the application software. Process

survivability was conceived as a way of preventing application processes

from being lost in a computer crash.

Process survivability is a way of making the application level of a

distributed computer control system 'n out of m' crash tolerant: the

computer control system is able to tolerate the crashing of n out of its m

computers. Process survivability enhances a distributed computer control

system's natural high availability by making it invulnerable to computer

crashes.

232

11.2 A review of the work presented In this thesis

In this thesis we have established the need for process

survivability in a distributed computer control system and we have

Identified a number of applications that could beneficially be based on

such a control system. Previous work in this field has been described and

we have related process survivability to this work.

We have described PROSUR the distributed computer control system

that we specially designed in order to have an environment in tdiich to

design and develop process survivability.

The major part of this thesis is concerned with the implementation

of process survivability in PROSUR. We have described how process-sets are

implemented by the distributed kernel level, and how the process

survivability level recovers the restarted application processes to a

consistent state after a crash.

We believe, and we hope that it has been shown, that process

survivability is practicable and that it could be implemented. However,

the factor that would decide whether process survivability could be adopted

or not, is the way in which the distributed computer control system's

performance is affected by the overheads resultant from process

survivability. A simulation study was performed to investigate this and

the results of this study have been presented and some conclusions drawn.

11.3 An appraisal of process survivability

In Chapter 5 we specified that process survivability should ensure

that all application processes survive multiple computer crashes (up to the

limit of the processes' redundancy) no matter when these crashes occur, and

that the provision of process survivability should be transparent to the

application programmer. Furthermore, it was specified that each process

233

should have only a single outstanding recovery point and that processes

should be recovered Independently of each other, thereby avoiding the

domino effect. He have been successful in meeting all of these

requirements.

Another aim specified in Chapter 5 was to attempt to limit the

overheads Imposed on the control system as a result of supporting process

survivability. Unfortunately, because of the presence of time-dependent

functions in PROSUR's P/L it is necessary to perform a secure point prior

to every SEND. This seems to be a very high rate, although it is the same

as that found in Tandem. A way of reducing the secure point rate was

however described, and others no doubt could be found.

The simulation study has not provided us with a categorical answer

to the question of whether process survivability is practical or not, but

then, it was not intended to. Instead it has provided us with a number of

interesting indications as to process survivability's practicality over a

range of different situations. Without repeating the summary of the

previous chapter we would like to reiterate the major conclusion that we

have drawn.

Process survivability is better suited to distributed computer

control systems that have a high ratio of processes to computers. The

performance obtained in these configurations is less affected by process

survivability, and for high levels of redundancy the performance of these

configurations is better than that of those configurations with a lower

ratio of processes to computers. Even then, process survivability with

high levels of redundancy may be precluded because of its effect on

response time, which appears to increase linearly with increases in

redundancy.

23H

A further point to be made is that process survivability was not

designed to cope with process death, and in order to prevent

inconsistencies arising due to process death all processes have the same

level of redundancy, and recovery is only guaranteed for as long as the

number of computer crashes is within that level of redundancy. If process

survivability were to be enhanced so that it could cope with process death,

then each process could have its own level of redundancy based on its

importance, and this should reduce the overheads. In Appendix H we briefly

describe the inconsistencies that can arise after a process dies and we

explain the potential set of circumstances that causes them to arise.

11.it Future development

We believe that process survivability as it stands is a sound basis

on which to develop a crash tolerant distributed computer control system.

Rather than develop the combination of PROSUR and process survivability any

further, we believe that it would be more profitable to add process

survivability to an established distributed computer control system,

perferably one with a definite application, as this would allow

concentration on and direction of process survivability's future

development.

Although process survivabiltiy was developed specifically for

PROSUR this does not preclude its inclusion in other distributed computer

control systems. Process survivability has been designed to be transparent

to the application prograsimer. This transparency means that process

survivability could be added to an existing distributed computer control

system without having to rewrite application programs and re-train

application programmers. Re-working would be limited to the distributed

kernel level and to the hardware level so that they provide the support

needed by the process survivability level. Although process survivability

has been designed for a distributed programming language based on

235

asynchronous message passing we cannot see any reason why it could not be

adapted to cope with any of the other Interprocess communication

mechanisms.

If process survivability is to be exploited to its full potential

Its future must be In this direction: It must be developed with a

particular application in mind.

Appendix A. Clase Conatruct

The class construct described below is based on those proposed by

Wirth (1978) and Brinch Hansen (1977), and the terminology used to describe

them is taken from Dahl and Hoare 1972.

A class type defines an abstract data type by grouping together a

complex data structure and the procedures that manipulate that data

structure. An instance of a class type is called an object.

The syntax of a class type is shown in Figure A.a. A class type

consists of a class heading, input divisions, export divisions,

declarations and main body. The variables and procedures declared within a

class are its attributes. The import and export divisions define the

interface between the class and the rest of the program.

CLASS— <identifier>— «parameter list>; ------------ — \.

I--- * ----------------- <
-^-IMPORT FROM «class identifier) «import list>;-><

-^-EXPORT «export list);--------------- >--------- '

-^•«declarations) «main body).

Figure A.a

The formal parameters in the class heading enable an object to be

tailored to a specific task when it is created. The class's main body

contains the code to initialise the object's data structure. To create an

object the program executes the command:

»IT «objectname) («actual parameters))

where «objectname) has been deolared to be an instance of some class type.

237

When INIT la called the object la created according to the parameter'a

apeelflcatlon and the claaa'a main body la executed to lnitlaliae the

object'a data atructure. Once an object haa been created lta data atructure

exlata forever, and the data atrueture'a valuea are maintained even when

control la not within the claaa'a code.

The Export diviaion apecifiea thoae procedurea declared within the

claaa that can be uaed by the aurrounding program and by other claaaea.

Only thoae procedurea that are explicitly exported by a claaa can be

acceaaed. The other proeedurea and the data atructure declared within a

claaa are private.

The Import diviaiona apeclfy thoae procedurea that are uaed by the

claas and which are defined outaide of it. Theae procedurea can come from

other claaaea and from the main program ltaelf. Each source has a separate

Import statement.

The main program Implicitly Imports all procedures exported by its

classes. Any procedure declared globally in the program la Implicitly

exported to Its classes and implicitly imported by its classes.

To use a procedure exported by an object the procedure's name is

preceded by the name of the object (if any), for example:

To.Send (....)

would call the procedure 'Send' imported from an object called 'To'.

238

Appendix B. Exception Raising

In order to support exception raising each kernel maintains a

number of tables and linked lists. Figure B.a illustrates these tables and

lists for a particular kernel.

Computer
number

input
pipe

number

2n

Figure B.a

The first of these tables, Table 2 in Figure B.a, is part of every

primary replicate's and every backup replicate's process descriptor. This

table defines for each of the replicate's input pipes whether that pipe is

used to carry user messages (in irtiioh case it is a Data In) or recovery

messages (in which case it is a Revyln). The table also contains, for each

239

input pipe that carries user messages, a list of the computer addresses of

the replicates of the sender process that is linked to that input pipe.

These lists are maintained in the order in which the sender’s replicates

will be activated. There is no such list for input pipes carrying recovery

messages.

Our example shows a particular replicate's table. The sender

linked to this particular replicate by input pipe number 1 has replicates

on computers 1, 4, 2 and others. The computer address of the sender’s

current primary replicate is the first number in the list - 1.

The second table, Table 1 in Figure B.a, links together all of the

list elements for a particular computer; there is only one of these tables

per computer. The final piece of information needed by a kernel is its

host computer's address.

All of the information needed to fill these tables is provided by

the system manager at system initialisation time.

Every time a kernel places a message into an input pipe it

determines whether that input pipe carries recovery messages or user

messages. If the former is true then that pipe must be a Revyln in an

Oehannel class and so that class's exception is raised.

When the kernel detects the crash of a computer it uses its Table 1

to remove that computer's address elements from the input pipe's lists. If

an element is removed and it is at the front of the list, and if the

replicate to which the input pipe belongs is a primary replicate, then an

exception is raised in the input channel class that contains that input

pipe.

240

In our example Table 2 belongs to a primary replicate. If computer

1 crashes then the exception In the Input channel class to which input pipe

number 1 belongs will be raised. The kernel will pass to the exception

handler the receiver's current computer address (4) and the new computer

address of the sender - 4.

When a backup replicate is activated all of its input channel

exceptions are raised because all of its input channels have broken. Each

exception handler is passed the address of the backup replicate's host

computer and the address of that channel's sender (the first entry in that

class's input pipe's list). If in our example Table 2 were to belong to a

backup replicate that is activated, then the values 4 and 1 would be passed

to the exception handler of the input channel class that hosts input pipe

1.

241

In our example Table 2 belongs to a primary replicate. If computer

1 crashes then the exception In the Input channel class to which Input pipe

number 1 belongs will be raised. The kernel will pass to the exception

handler the receiver's current computer address (4) and the new computer

address of the sender - 4.

When a backup replicate Is activated all of Its input channel

exceptions are raised because all of its input channels have broken. Each

exception handler is passed the address of the backup replicate's host

computer and the address of that channel's sender (the first entry in that

class's input pipe's list). If in our example Table 2 were to belong to a

backup replicate that is activated, then the values 4 and 1 would be passed

to the exception handler of the input channel class that hosts input pipe

1 .

241

Appendix C. Class Code

* The Input Channel Class

Class Iehannel (size : Integer; basetype : Type);

Import From SP
Timestamp, Execute;

Export
RECEIVE, PENDING;

Const
extsize
mRcount

s size • 2;
= size;

Type
extbasetype = Record

seqno : Integer;
data : basetype;

End;

IPCstatus s (succeeded, failed);

RevyMsge = Record
seqno : Integer;
loc : Integer;

End;

Var
Da tain : klnputpipe [extsize] Of extbasetype;
Rseqno : Integer;
Rcount : Integer;
RevyOut : koutputpipe Of RevyMsge;
timestamp : Integer;
Pflag : Boolean;
Pstore : basetype;

242

{ RECEIVE and PENDING }

Procedure Read (Var message : basetype; Var status : IPCstatus;
timeout : Integer);

Var
m : extbasetype;

Begin
With Exeeptionsoff Do
Begin

If timestamp < SP.Timestamp Then Begin
Rcount :« 0;
kfree (Dataln);
timestamp : = SP.Timestamp;

End;
kread (Dataln, m, status, timeout);
If status = succeeded Then Begin

message := m.data;
Rseqno := m.seqno;
Rcount :■ Rcount ♦ 1;
If Rcount = mReount Then SP.Execute;

End;
End;

End;

Procedure RECEIVE (Var message : basetype; Var status : IPCstatus;
timeout : Integer);

Begin
If Pflag Then Begin

status : = succeeded;
message := Pstore;
Pflag :* false;

End
Else Read (message, status, timeout);

End;

Function PENDING : Boolean;

Var
status : IPCstatus;

Begin
If Pflag Then PENDING :* true

Else Begin
Read (Pstore, status, 0);
If statusssucceeded Then Pflag := true

Else Pflag :* false;

End;

PENDING :* Pflag;
End;

243

{ The Exception Handler }

Exception Handler Recovery (rloc, sloe : Integer);

Var
m : extbasetype;
rm : RcvyHsge ;
status : IPCstatus;

Begin
With Exceptionsoff Do
Begin

rm.loc :» rloc;
kpeeklast (Dataln, m, status, 0);
If status s succeeded Then rm.seqno :• m.seqno

Else rm.seqno :« Rseqno;
kconnect (RcvyOut, sloe);
ksend (RcvyOut, rm, status, -1);

End ;
End;

Begin
Rseqno
Rcount
timestamp
Pflag

End.

{ Main Body - initialisation code }

* 0;
= 0;
« 0 ;
= false;

244

The Output Channel Class

Class Oehannel

Import From SP
Execute;

Export
SEND;

Const
extslze

Insecure
WaitRevy

Type
extbasetype

IPCstatus

RcvyMsge

Var
Da ta Out
RcvyStore

Sseqno
ngagged
Rcvyln

(size : Integer; basetype : Type);

= size • 2;

= true;

= Record
seqno : Integer;
data : basetype;

End;

s (succeeded, failed);

= Record
seqno : Integer;
loc : Integer;

End;

: koutputpipe Of extbasetype;
: Record

fifo : Array [1..extsize] Of extbasetype;
top : Integer ;

End;
: Integer ;
: Integer;
: kinputpipe [MaxNoHits] Of RcvyMsge;

245

{ SEND }

Procedure SEND (message : basetype; Var status : IPCstatus;
timeout : Integer);

Var
m : extbasetype;

Procedure save (m : extbasetype);

Begin
{ works with exception handling turned off by SEND)
With RcvyStore Do
Begin

If top = extslze Then top := 1
Else top :* top + 1;

fifo[top] := m;
End;

End;

Begin
SP. Execute;
Waituntil (WaitRcvy = false);
With Exceptionsoff Do
Begin

Sseqno := Sseqno + 1;
m.seqno :» Sseqno;
m.data:s message;
If ngagged > 0 Then Begin

status := succeeded;
ngagged := ngagged - 1;

End
Else ksend (DataOut, m, status, timeout);

If status = succeeded Then save (m);
End;

End;

246

{ The Exception Handler }

Exception Handler Recovery

Var
rm
status

: RcvyMsge;
: IPCstatus

Procedure replace (sseq, rseq : Integer);

Var
i, J : Integer;

Begin
{ works with exception handling turned off by recovery }
With RcvyStore Do
Begin

ngagged := 0;
For i : = (top + 1) - (sseq - rseq) To top Do

End;

Begin { Recovery }
With Exceptionsoff Do
Begin

WaitRcvy :* false;
kreceive (Revyin, rm, status, 0);
kconnect (DataOut, rm.loc);
If Sseqno > rm.seqno Then replace (Sseqno, rm.seqno)

Else If Sseqno < rm.seqno Then ngagged := rm.seqno - Sseqno
Else { do nothing, they are already consistent };

End;
End ; { Recovery }

Begin
If i <= 0 Then J :* extsize ♦ i

Else j :■ i;
If fifo[J].seqno > rseq

Then ksend (DataOut, fifo[J], status, -1)
End;

End;

{ The Main Body - initialisation code)

Begin
Sseqno
RcvyStore. top
ngagged
WaitRcvy s false

End.

247

The Secure Pointing Claes

Class SPoint ();

Export
Timestamp, Execute;

Var
tstamp : Integer;

Function Timestamp : Integer;

Begin
Timestamp : = tstamp;

End;

Procedure Execute;

Begin
tstamp : = tstamp + 1;
ksecurepoint;

End;

Begin
tstamp : = 1;

End*

The Device Class

Class IOdeviee (device : IOdeviee; basetype, argtype : Type);

Export
DOIO;

Type
IOdevice = (Lineprinter, disk, VDU ...);
IOoperation = (input, output, move, control);
IOstatus = (complete, failure ...);

Procedure DOIO (operation : IOoperation; Var data : basetype;
Var status : IOstatus; Var arguments s argtype);

Begin
kdoio (operation, data, device, status, arguments);

End;

Begin
{ empty)

End.

249

Appendix D. Performance Figures

All figures are shown to two decimal places.

Mean work period - 2 seconds
Secure point insertion - module-based

Mean

level of redundancy

0 1 2 3 4 6

4 25 25 25 25 na na

8 49.32 49.40 49.19 49.18 49.45 49.30

configuration 16 90.28 93.80 96.08 89.30 94.00 90.68

32 176.81 178.85 162.36 158.72 146.44 114.44

192 954.02 262.32 140.35 92.78 71.38 48.25

Standard Deviation

configuration

level of redundancy

0 1 2 3 4 6

4 5.66 5.57 5.76 5.85 na na

8 9.45 9.35 7.71 11.37 9.62 9.20

16 15.00 14.05 11.85 16.08 13.56 13.18

32 17.28 14.90 29.15 19.96 15.68 14.77

192 9.03 6.15

ooT“e& 3.48 3.56 2.71

250

Mean work period - 2 seconds
Secure point insertion - worst-case

configuration

configuration

Mean

level of redundancy

0 1 2 3 4 6

4 25.00 25.00 24.98 25.00 na na

8 49.32 49.33 49.47 49.05 49.68 48.66

16 90.28 94.74 93.29 90.70 83.83 62.81

32 176.81 172.61 142.52 107.46 87.31 62.39

192 954.02 262.32 140.35 92.78 71.38 48.25

Standard Deviation

level of redundancy

0 1 2 3 4 6

4 5.66 5.81 5.86 6.02 na na

8 9.45 8.92 9.69 9.28 8.29 8.90

16 15.00 13.89 16.24 14.05 12.25 10.33

32 17.28 16.93 18.70 20.12 15.96 10.55

192 9.03 6.15 4.18 3.48 3.56 2.71

251

Mean work period - 0.5 seconds
Secure point Insertion - module-based

configuration

configuration

Mean

level of reduidancy

0 1 2 3 4 6

4 25.000 24.82 24.77 24.90 na na

8 48.03 48.78 48.81 48.68 48.44 46.85

16 93.54 93.48 91.79 85.60 74.16 54.13

32 173.83 167.17 125.59 90.35 73.95 51.15

192 913.67 117.54 58.80 39.24 30.53 20.05

Standard Deviation

level of redundancy

0 1 2 3 4 6

4 3.11 3.46 3.58 3.14 na na

8 6.16 5.00 5.40 4.36 5.18 4.38

16 7.22 7.38 7.47 7.92 6.63 6.34

32 11.08 9.48 8.47 6.11 6.00 5.65

192 4.35 1.50 1.12 0.79 0.78 0.46

252

Mean work period - 0.5 seconds
Secure point insertion - worst-case

Mean

configwation

configuration

level of redundancy

0 1 2 3 4 6

4 25.00 24.78 24.97 24.82 na na

8 48.03 48.72 48.69 47.71 42.02 30.80

16 93.54 92.13 75.43 55.25 42.91 29.66

32 173.83 130.47 75.11 52.35 40.54 28.14

192 913.67 117.54 58.80 39.24 30.53 20.05

Standard Deviation

level of reduidancy

0 1 2 3 4 6

4 3.11 3.23 3.16 3.33 na na

8 6.16 5.18 4.87 3.86 4.76 4.09

16 7.22 7.64 6.93 5.11 5.06 4.20

32 11.08 7.50 6.83 4.76 4.46 3.21

192 4.35 1.50 1.12 0.79 0.78 0.46

253

Mean work period - 0.12 seconds
Secure point insertion - nodule-based

configuration

configiration

Mean

level of redundancy

0 1 2 3 4 6

4 24.59 24.74 24.75 24.61 na na

8 48.89 48.28 47.97 43.78 36.45 25.74

16 95.00 90.79 65.28 46.53 35.52 24.12

32 177.68 113.73 61.71 42.95 32.90 22.01

192 551.88 50.17 24.84 16.46 12.78 8.54

Standard Deviation

level of redwdancy

0 1 2 3 4 6

4 2.04 1.79 1.76 1.74 na na

8 2.66 2.76 2.72 2.98 2.57 2.14

16 3.85 3.68 3.15 3.40 2.39 1.59

32 5.44 4.01 2.77 2.40 1.92 2.00

192 0.39 0.17 0.23 0.10 0.22 0.09

254

Mean work period - 0.12 seconds
Secure point Insertion - worst-case

Mean

config »ration

configuration

level of redundancy

0 1 2 3 4 6

4 24.59 24.71 24.63 23.12 na na

8 48.89 48.18 38.84 27.26 20.86 14.09

16 95.00 70.20 37.64 25.62 19.41 13.24

32 177.68 67.13 34.22 23.45 17.99 12.15

192 551.88 50.17 24.84 16.46 12.78 8.54

Standard Deviation

level of redundancy

0 1 2 3 4 6

4 2.04 1.75 1.71 1.51 na na

8 2.66 2.94 3.47 3.05 1.96 1.60

16 3.85 3.66 2.19 1.87 1.72 1.22

32 5.44 3.25 2.08 2.45 1.33 1.37

192 0.39 0.17 0.23 0.10 0.22 0.09

255

Appendix E. Accuracy of the Simulation Results

The performance of a configuration under a given set of

circumstances Is defined by a distribution X with a mean E[X]. We wish to

estimate E[X] for each experiment performed.

Running an experiment once produces a sample from the distribution

X. By repeating the experiment with different random number seeds we can

produce a sample mean X, which is the average of the samples taken.

The sample mean x Is an unbiased estimator of E[X] (Sanders et al.

1976). We aimed to take sufficient samples from each distribution In order

to achieve a 99* confidence level that E[X] will be within 0.5 seconds of

the sample mean i.e.

P (X - 0.5 < E[X] < X + 0.5) = 0.99

Unfortunately, the amount of processing needed to achieve this

level of accuracy for all 138 experiments was so great that the computer

time and resources required to perform it were unavailable. Instead we

first ran each experiment once so that the important ones could be

Identified, and then these 54 were repeated (each time with a different

random number seed) to achieve the required accuracy. Even then it was not

possible to do this for all 54, as some of them would have had to be run

several hundred times.

Other less important experiments were run 11 times each, and others

only once. In each case the sample mean is used to estimate E[X] although

without any great accuracy.

The tables below show which experiments are accurate (those marked

with a '•') and how many samples were taken from each of the others. To

achieve this limited overall accuracy required Just under 100 hours of CPU

time on a CDC 7600.

256

Mean work period - 2 seconds
Secure point insertion - module-based

configuration

Mean work period - 2 seconds
Secure point insertion - worst-case

configuration

Mean work period - 0.5 seconds
Secure point insertion - module-based

level of redimdancy

0 1 2 3 4 6

4 1 11 11 11 na na

8 1 • • 1 • 1

configuration 16 1 28 • 1 • 1

Mean work period - 0.5 seconds
Secure point Insertion - worst-case

configuration

level of redundancy

0 1 2 3 4 6

4 1 11 11 11 na na

8 1 • ft 1 • 1

16 1 • ft 1 • 1

32 1 31 • 1 • 1

192 1 11 11 1 h 1

Mean work period - 0.12 seconds
Secure point Insertion - module-based

configuration

level of redundancy

0 1 2 3 4 6

4 1 11 11 11 na na

8 1 • • 1 * 1

16 1 • * 1 « 1

32 1 • ft 1 • 1

192 1 11 11 1 h 1

Mean work period - 0.12 seconds
Secure point insertion - worst-case

level of redundancy

configuration

0 1 2 3 4 6

4 1 11 11 11 na na

8 1 ft ft 1 • 1

16 1 ft ft 1 • 1

32 1 ft ft 1 • 1

192 1 11 11 1 h i

258

I

Appendix F. Send, Receive and Secure Point Tlmea

All figures are shown to two decimal places, or more where appropriate.

Mean work period - 0.5 seconds
Secure point insertion - worst-case

Mean Receive Time

configuration

level of redundancy

0 1 2 3 4 6

4 9.07 9.81 9.48 9.23 na na

8 6.00 5.52 5.20 4.84 5.46 7.09

16 3.07 2.83 3.19 4.27 5.43 7.70

32 1.63 1.85 3.11 4.28 5.54 7.43

192 0.09 0.84 1.36 2.08 2.38 3.50

Standard Deviation of Receive Time

level of redundancy

configuration

0 1 2 3 4 6

4 16.71 18.79 18.39 17.28 na na

8 11.31 10.21 9.94 9.12 10.33 13.86

16 5.59 5.34 6.07 7.92 10.34 15.14

32 2.91 3.42 6.01 8.41 10.58 13.76

192 0.14 1.43 2.44 3.62 4.07 6.12

259

Mean Send Delay

configuration

configuration

level of redundancy

0 1 2 3 4 6

4 0.000003 0.0057 0.013 0.026 na na

8 0.000014 0.02 0.058 0.13 0.20 0.31

16 0.00006 0.084 0.21 0.27 0.32 0.36

32 0.00021 0.27 0.33 0.40 0.39 0.42

192 0.02 0.48 0.41 0.45 0.50 0.49

Standard Deviation of Send Delay

level of redundancy

0 1 2 3 4 6

4 0.00012 0.01 0.018 0.03 na na

8 0.00029 0.028 0.065 0.14 0.21 0.30

16 0.00088 0.097 0.23 0.29 0.34 0.36

32 0.0023 0.31 0.35 0.40 0.38 0.43

192 0.05 0.70 0.67 0.72 0.79 0.78

260

Mean Secure Point Time

configuration

configuration

level of redundancy

1 2 3 4 6

4 1.98 3.92 5.42 na na

8 1.00 2.21 3.87 5.99 10.43

16 0.85 2.84 5.11 7.27 11.38

32 1.41 3.85 6.20 8.31 12.93

192 3.22 7.87 12.13 16.22 25.14

Standard Deviation of Secure Point Tine

level of redundancy

1 2 3 4 6

4 0.90 1.61 1.99 na na

8 0.47 0.89 1.19 1.74 2.63

16 0.33 1.04 1.77 2.31 3.30

32 0.70 1.23 1.85 2.31 3.13

192 1.17 2.02 2.73 3.29 4.92

261

Appendix G. ALU Performance Figures

All figtres are shown to two decimal places.

Mean work period - 0.5 seconds
Secure point insertion - worst-case

level of redundancy

configuration

0 1 2 3 4

4 0.05 11.64 25.6 41.29 na

8 0.09 23.68 53. **1 77.99 88.19

16 0.16 46.44 78.13 86.07 88.97

32 0.28 55.63 74.15 80.56 82.73

192 8.79 51.91 57.59 60.73 62.73

6

na

94.05

91.79

85.77

63.99

262

Appendix H. Proceaa Death

If all of an application proceaa'a replicatea are loat then that

proceaa la aaid to have died. When a proceaa dlea inconsistencies do not

arise between the dead process and its communicants, but they can arise

between two processes that commwicate with each other via the dead

process. There follows a description of how these inconsistencies arise.

Figure Ha shows three processes at the time of a crash. Prior to

the crash Process-1 sent a message to Process-2, and then, as a direct

result of receiving this message, Process-2 sent Proeess-3 a further

message. The crash results in Process-1 being restarted, and in Proeess-2

dying. On restarting Prooess-1 will repeat its SEND and this will fail

because Process-2 is dead. This leads to an inconsistency arising between

Process-2 and Process-3 as Process-3 has received a message which with

respect to Process-1's current state it should not have been sent.

CRASH DIES

SEND

Process-1

SEND- RECEIVE

RECEIVE

Process-2 Process-3

Figure H.a

263

This Inconsistency cannot be prevented as the recovery of a process

to a consistent state requires the assistance of that process's

comminicants. In our example Process-1 cannot be recovered by gagging its

SEND, because Process-2 has died. Tfce only way that this could be overcome

is if a process's recovery were to be completely self-contained and not

require assistance from its comminicants.

264

References

The system of bibliographical citation used throughout the thesis

Is in the same style as that used by Lister in 'Fundamentals of operating

systems' (Lister 1979)» The abbreviations used in the journal titles are

taken from 'The abbreviation of titles of periodicals' published by the

British Standards Institution (1975).

Allworth, S.T. (1981), Introduction to real-time software design, The

Macmillan Press Ltd., London

Alsberg, P.A. and Day, J.D. (1976), A principle for resilient sharing of

distributed resources, Prop.2nd. Int.Conf. Software Engineering, San

Francisco, 562-570

Anderson, T. and Kerr, R. (1976), Recovery blocks in action: a system

supporting high reliability, Proc.2nd.Int.Conf. Software Engineering,

San Francisco, 477—^57

Anderson, T. and Lee, P.A. (1981), Fault tolerance: principles and

practice, Prentice/Hall International, London

Anderson, T. and Lee, P.A. (1982), Fault tolerance terminology proposals,

Dig.Pap. FTCS-12: 12th.Annu.Int.Symp. Fault-Tolerant Computing, Santa

Monica (CA), 29-33

Andersen, T. and Moulding, M.R. (1982), Evaluating software fault tolerance

in a real-time system, Internal Report, MARI, Newcastle upon Tyne

Aviziensis, A., Gilley, G.C., Mathur, F.P., Rennels, D.A., Rohr, J.A. and

Rubin, D.K. (1971), The STAR (Self-Testing And Repairing) computer: an

investigation of the theory and practice of fault-tolerant computer

design, IEEE Trans. Computers, C-20(11), 1312-1321

265

Bartlett, J.F. (1978), A 'nonstop* operating system, Prop.11th. Hawaii

Int.Conf. System Sciences, Honolulu, 103-117

Bartlett, J.F. (1981), A nonstop kernel, Proo.8th.Symp. Operating System

Principles, Pacific Grove (CA), 22-29

Bennett, K.H. and Singleton, P. (1982), The design of a microprocessor-

based access logic for the Cambridge Ring, J. Microcomputer

Applications, 5_, 195-207

Berthelsen, C. (1983), Disaster: it may never happen but..., Computer

Systems, Dec., 29-32

Boebert, W.E., Franta, W.R., Jensen, E.D. and Kain, R.Y. (1978),

Decentralized executive control In distributed computer systems, Proc.

COMPSAC 78, Chicago, 25*1-258

Borg, A., Baumbach, J., and Glazer, S. (1983), A message system supporting

fault tolerance, Proc.9th. ACM Symp. Operating System Principles,

Bretton Woods (NH), 90-99

Bremen, C. (1983), Guarding against the day of disaster, Computing, 27 Oct.

Brenner, J.B., Burton, C.P., Kitto, A.D. and Portman, E.C.P. (1980),

Project Little - an experimental ultra reliable system, ICL Technical

¿ i , J 2 (1) , 47-58

Brlneh Hansen, P. (1973), Operating system principles, Prentice-Hall Inc.,

Englewood Cliffs (NJ)

Brinch Hansen, P. (1977), The architecture of concurrent programs.,

Prentice-Hall Inc., Englewood Cliffs (NJ)

266

Brlnch Hansen, P. (1978), Distributed Processes: a concurrent programming

concept, Commun. ACM, _21_(11), 934-941

British Standards Institution (1975), The abbreviation of titles of

periodicals. Part 2. Word-abbreviation list, BS4148, pt.2, n.p.

Brownbrldge, D.R., Marshall, L.F. and Randell, B. (1982), The Newcastle

Connection or UNIXes of the world unite!, Software Practice and

Experience, 12, 11M7—1162

Burton, C.P. (1982), Private letter, Decision Support Unit, International

Computers Ltd., Manchester, 30 Sept.

Carruthers, Cdr.J.F. (1979), Shinpads - a new ship Integration concept,

Naval Engineers J., April, 155-163

Carter, W.C. and Bourlcius, W.G. (1971), A survey of fault-tolerant

architecture and its evaluation, Computer, 4_(1), 9-16

Carter, W.C., Putzolu, G.R., Wadla, A.B., Bourlcius, W.G., Jessep, D.C.,

Hsieh, E.P. and Tan, C.J. (1977), Cost effectiveness of self checking

computer design, Dig.Pap. FTCS-7: 7th.Annu.Int.Conf. Fault-Tolerant

Computing, Los Angeles, 117-123

Casey, L. and Shelness, N. (1977), A domain structure for distributed

computer systems, Proc.6th. ACM Symp. Operating System Principles,

West Lafayette (IN), 101-108

Chen, L. and Aviziensls, A. (1978), N-Verslon programming: a fault-

tolerance approach to reliability of software operation, Dlg.Pa^

FTCS-8: 8th.Annu.Int.Conf. Fault-Tolerant Computing, Toulouse, 3-9

Clark, D.D., Pogran, K.T. and Reed, D.P. (1978), An Introduction to local

area networks, Prop. IEEE, 66(11), 1487-1517

267

Cole, R. (1982), Computer oomnunlcatlons, The Macmillan Press Ltd., London

Computing (1983), Raeal develops local net for use by navy, Computing, 15

Sept.

Cristlan, F. (1980), Exception handling and software-fault tolerance,

Dig. Pap. FTCS-10: 10 th. Int .Symp. Fault-Tolerant Computing, Kyoto,

Japan, 97-103

Dahl, 0.-J. and Hoare C.A.R. (1972), Hierarchical program structures, in

Structured Programming (eds.. O.-J.Dahl, E.W.Dijkstra and C.A.R.Hoare),

Academic Press Inc. (London) Ltd., 175-220

Dennir«, P.J. (1968), The working set model for program behaviour, Commun.

ACM, _1U5>* 323-333

Farber, G. (1978), Principles and applications of decentralised process

control computer systems, IFAC 1978, _1_, Helsinki, 385-392

Feustel, E.A. (1973), On the advantages of tagged architecture, IEEE Trans.

Computers, C-22(7), 6!t4-656

Gaude, C., Girard, B., Langet, J., Palassin, S. and Kaiser, C. (1980),

Design and appraisal of operating systems matched in selective active

redundancy, Dig.Pap. FTCS-10! 10th.Int.Symp. Fault-Tolerant Computing,

Kyoto, Japan, 78-80

Gee, K.C.E. (1983), Introduction to local area computer networks, The

Macmillan Press Ltd., London

Goodenough, J.B. (1975), Exception handling: issues and a proposed

notation, Coamw. ACM, 18(12), 683-696

268

Gray, J.N. (1978), Notes on database operating systems, in Operating

systems: an advanced course (eds. R.Bayer, R.M.Graham and

G.Seegmuller), Springer-Verlag, Berlin, 393—^81

Harland, D.M. (1981), On facilities for handling exceptions and preventing

deadlock In a system of concurrent processes, Internal Report,

Department of Computational Science, University of St.Andrews,

Scotland

Harper, M.E. (1982), Mutual exclusion within both software - and hardware -

driven kernel primitives, ACM Operating Systems Review, J6/4), 60-68

Harrington, T. (1983), Gauging the odds in the back-up business, Computing,

24 Mar., 30-31

Hill, J.S. and Stainsby, M.G. (1980), ASHE Serial Highway: a highway for

intercomputer comnunication, J. Naval Science, 6_(3), 216-221

Hoare, C.A.R. (1978), Comnunicating sequential processes, Commm. ACM,

21(8), 666-677

Holler, E. (1983), Multiple copy update, in Distributed systems -

architecture and implementation (eds. B.H.Lampson, M.Paul and

H.J.Siegert), Springer-Verlag, Berlin, 284-307

Hopkins, A.L. and Smith, T.B. (1975), The architectural elements of a

symnetrie fault-tolerant multiprocessor, IEEE Trans. Computers,

C-24(4), 498-505

Horning, J.J., Lauer, H.C., Melliar-Smith, P.M. and Randell, B. (1974), A

program structure for error detection and recovery, Proc.Conf^

Qperatlre Systems: Theoretical and Practical Aspects. Rocenquourt,

France, 177-193

269

Jensen, E.D. (1978), The Honeywell Experimental Distributed Processor - an

overview, Computer, 11(1), 28-38

Jensen, E.D. (1983), Distributed control, In Distributed systems -

architecture and Implementation (eds. B.W.Lampson, M.Paul and

H.J.Siegert), Sprlnger-Verlag, Berlin, 175-190

Jensen, E.D., Anderson, A. and Marshall, G.D. (1977), Feasibility

demonstration of distributed processing for small ship command and

control, IEEE Computer Science Repository., Rep.R77-121

Jensen, K. and Wlrth, N. (1978), Pascal user manual and report, Springer-

Verlag, New York

Johnson, M.A. (1980) Rlre byte stream protocol specification, Internal

Report, Computer Laboratory, University of Cambridge

Jones, A.K. (1978), The object model: a conceptual tool for structuring

software, in Operating systems: an advanced course (eds. R.Bayer,

R.M.Graham and G.Seegmuller), Springer-Verlag, Berlin, 7-16

Kant, K. (1983), Efficient local checkpointing for software fault

tolerance, ACM Operating Systems Review, J7(2), 11-13

Katzman, J.A. (1978), A fault-tolerant computing system, Prop. 11th. Hawaii

Int.Conf. System Sciences, Honolulu, 85-102

Kernighan, B.W. and Ritchie, D.M. (1978), The C programing language,

Prentice-Hall Inc., Englewood Cliffs (NJ)

Kohler, W.H. (1981), A survey of techniques for synchronization and

recovery In decentralised computer systems, Computing Surveys, 13(2),

149-183

270

Kramer, J., Magee, J. and Sloman, M. (1981), Intertask communication

primitives for distributed computer control systems, 2nd.Int.Conf.

Distributed Computing Systems, Paris

Kramer, J., Magee, J., Sloman, M. and Lister, A. (1982), COMIC: an

integrated approach to distributed computer control systems, Internal

Report, Department of Computing, Imperial College of Science and

Technology, London

Lakin, W. (1982), Private Conversation, Director, ADNET Project, ASHE,

Portsmouth, 26 Nov.

Lauer, H.C. and Needham, R.M. (1979), On the duality of operating system

structures, Proc.2nd.Int.Symp. Operating Systems, reprinted In ACM

Operating Systems Review, _13(2), 3-19

Lawrence, A. (1983), There’s a lesson to be learnt from every disaster,

Datallnk, 2 May, 10

Le Lann, G. (1979), An analysis of different approaches to distributed

ccmputirg, Proc. 1st.Int.Conf. Distributed Processing Systems,

Hunstvllle (ALA), 222-232

Le Lann, G. (1983), Synchronization, In Distributed systems - architecture

and Implementation (eds. B.W.Lampson, M.Paul and H. J.Siegert),

Springer-Verlag, Berlin, 266-283

Lee, P.A., Ghanl, N. and Heron, K. (1980), A recovery cache for the PDP-11

IEEE Trans. Computers, C-29(6), 546-5*»9

Licklider, J.C.R. and Vezza, A. (1978), Applications of Information

networks, Proc. IEEE, 66(11), 1330-13**6

271

Llskov, B. (1979)I Primitives for distributed computing, Proc.7th.Symp.

Operating System Principles, Pacific Grove (CA) ,33-^2

Lister, A.M. (1979), Fundamentals of operating systems, 2nd.ed., The

Macmillan Press Ltd., London

Lister, A., Magee, J., Sloman, M. and Kramer, J. (1980), Distributed

process control systems: programming and configuration, Internal

Report, Department of Computing and Control, Imperial College, London

Liu, M.T. and Reames, C.C. (1977), Message communication protocol and

operating system design for the Distributed Loop Computer Network

(DLCN), Proc.Hh.Annu.Symp. Computer Architecture, n.p., 193-200

Mackie, D. (1978), The Tandem 16 NonStop system, State of the art report on

system reliability and integrity, 2, Infoteoh, Maidenhead, 163-279

MacLaren, M.D. (1977), Exception handling in PL/1, SIGPLAN Notices, \2X3)»

101-1OM

Mathur, F. P. and Aviziensis, A. (1970), Reliability analysis and

architecture of a hybrid-redundant digital system: generalized triple

modular redundancy with self-repair, AFIPS Spring Joint Computing

Conf.Proc., 36, 375-383

Me Derm id, J.A. (1980), Checkpointing and error recovery in distributed

systems, Internal report, Royal Signals and Radar Establishment,

Malvern

McDermid, J.A. (1981a), Checkpointing and error recovery in distributed

systems, Proo.2nd.Int.Conf. Distributed Computing Systems, Paris,

271-282

272

McDermid, J.A. (1981b), Error recovery techniques for fault tolerant

distributed computer ay a tenia, Ph.D. Thesis, University of Birmingham

Melliar-Smith, M.P. and Randell, B. (1977), Software reliability: the role

of programmed exception handling, SIGPLAN Notices, 12(3), 95-100

Menasee, D.A. (1978), Coordination in distributed systems: concurrency,

crash recovery and database synchronization, Ph.D. Thesis, Univ.

California at Los Angeles

Meraud, C., Browaeys, F. and Germain, G. (1976), Automatic rollback

techniques of the COPRA computer, Proc. FTCS-6: 1976 Int.Symp. Fault-

Tolerant Computing, Pittsburgh (PA), 23-29

Meraud, C. and Lloret, P. (1978), COPRA: a modular family of reconfigurable

computers, Proo. IEEE 1978 National Aerospace and Electronics Conf.,

Dayton (OH), 822-827

Meraud, C., Browaeys, F., ftieille, J.P. and Germain, G. (1979), Hardware

and software design of the fault tolerant computer COPRA, Dig.Pap._

FTCS-9: 9th.Atm. Int.Symp. Fault-Tolerant Computing, Madison (WI), 167

Merlin, P.M. and Randell, B. (1978), Consistent state restoration in

distributed systems, Dig.Pap. FTCS-8: 8th.Ann.Int.Conf. Fault-Tolerant

Computltg, Toulouse, 129-134

Metcalfe, R.M. and Boggs, D.R. (1976), Ethernet: distributed packet

switchir« for local computer networks, Coamun. ACM, .19(7), 395-404

Miles, J. (1980), ASHE Mascot operating system: reference manual, Internal

report, ASHE, Portsmouth

Ministry of Defence (1981), The ASHE Serial Highway, Defence Standard

00-19/Issue, MoD, Directorate of Standardisation, London

273

Moulding, M.R. (1980a), Reliability In multi-computer ayatens, Internal

report, ASHE, Portsmouth

Mouldir«, M.R. (1980b), The ADNET comnunlcatlons system, Internal report,

ASWE, Portsmouth

O'Brien, F.J. (1976), Rollback point Insertion strategies, Prop. FTCS-6:

1976 Int.Symp. Fault-Tolerant Computing, Pittsburgh (PA), 138-142

Paker, Y. (1983), Multimicroprocessor systems, Academic Press, London

Plugge, W.R. and Perry, M.N. (1961), American Airlines' "SABRE" electronic

reservations system, Proc. Western Joint Computer Conf., Los Angeles,

593-602

Popek, G.J. and Kline, C.S. (1978), Issues In kernel design, In Operating

systemsi an advanced course (eds. R.Bayer, R.M.Graham and

G.Seegmuller), Sprlnger-Verlag, Berlin, 209-227

Popek, G., Walker, B., Chow, J., Edwards, D., Kline, C., Rudisin, G. and

Thiel, G. (1981), LOCUS: a network transparent, high reliability

distributed system, Proc.8th.Symp. Operating System Principles,

Pacific Grove (CA), 169-177

Powell, M.L. and Presotto D.L. (1983), Publishing: a reliable broadcast

communication mechanism, Proo.9th. ACM Symp. Operating System

Principles, Bretton Woods (HH), 100-109

Prince, S. and Sloman, M. (1981), The communication requirements of a

distributed computer control system, Iffi Prop., _1£8, pt.E(1), 21-34

Randell, B. (1975), System structure for software fault tolerance, IEEE

Trans. Software Engineering, SE-1(2), 220-232

274

Randell, B., Lee, P.A. and Treleaven, P.C. (1978), Reliability issues in

computing system design, Computing Surveys, JO/2), 123-165

Rashid, R.F. (1980), A network operating system kernel for SPICE/DSN,

Internal report, Department of Computer Science, Carnegie-Mel Ion

University, Pittsburgh (PA)

Rennels, D.A. (1978), Architectures for fault-tolerant spacecraft

computers, Prop. IEEE, 66(10), 1255-1268

Richards, M. and Whitby-Strevens, C. (1980), BCPL the language and its

compiler, Cambridge University Press, Cambridge

Rohr, J.A. (1973), STAREX self-repair routines: software recovery in the

JPL-STAR computer, Digest of Papers FTC/3: 73 Int.Symp. Fault-Tolerant

Computing, Palo Al to (CA), 11-16

Rowe, L.A., Hopwood, M.D. and Färber, D.J. (1973), Software methods for

achieving fail-soft behaviour in the distributed computing system,

Proc. IEEE Symp. Computer Software Reliability, n.p., 7-11

Rowland, T. (1982), Falklands disasters highlight the need for a review of

warship's self defence, Electronic Times, 17 June, 8-9

Rudisin, G.J. (1980), Architectural Issues in a reliable distributed file

system, M.Sc. Thesis, Computer Science Department, Univ. California at

Los Angeles

Russell, D.L. (1977), Process backup in producer-consumer systems,

Proo.6th.Svmp. Operating System Principles, West Lafayette (IN),

151-157

Russell, D.L. (1980), State restoration in systems of communicating

processes, IEEE Trans. Software Engineering, ^ 6 (2) , 183-19^

275

Russell, D.L. and Tiedeman, M.J. (1979), Multlprocess recovery using

conversations, Dig.Pap. FTCS-9i 9th.Ann.Int.Symp. Fault-Tolerant

Computing, Madison (MI), 106-109

Saltzer, J.H. (1978), Research problems of decentralized systems with

largely autonomous nodes, API Operating Systems Review, ^20), *»3-52

Sanders D.H., Murph A.F. and Eng R.J. (1976), Statistics: a fresh approach,

McGraw-Hill Book Co., New York

Shanker, K.S. (1977), The total computer security problem: an overview,

Computer, 10(6), 50-73

Shrlvastava, S.K. (1978), Sequential Pascal with recovery blocks, Software

Practice and Experience, 8, 177-185

Slncoskle, W.D. and Farber, D.J. (1980), SODS/OS: a distributed operating

system for the IB1 Series/1, ACM Operating Systems Review, JiL(3) >

H6-51

SIoman, M.S. (1982), The CONIC comnunicatlon system for distributed process

control, Internal report, Imperial College, London

Solomon, M.H. and Finkel, R.A. (1979), The Roscoe distributed operating

system, Proc.7th.Symp. Operating System Principles, Pacific Grove

(CA), 108-111

Spector, A.Z. and Schwarz, P.M. (1983), Transactions: a construct for

reliable distributed computing, ACM Operating Systems Review, 17(2),

18-35

Spim, J.R. (1977), Program behaviour: models and measurements,, Elsevier,

North-Holland Inc., New York

276

Staunstrup, J. (1982), Message passing communication vs procedure call

eomunieation, Software Practise and Experience, 12, 223-23*1 223-23*1

Stepczyk, F. (1978), A case study In real-time distributed processing

design, Proc. COMPSAC 78, Chicago, 51*1-519

Stroustrup, B. (1982), An experiment with the interchangeability of

processes and monitors, Software Practice and Experience,

1011-1025

Tillman, P.R. (1982), ADDAM - the ASWE distributed database management

system, in Distributed databases (ed. H.J.Scheider), North-Holland

Pub.Co., Amsterdam, 185-196

Tillman, P.R., Lakin, W.L., Sampson, K.F., Miles, J.A., Anderson, A. and

Adcock, A. (1981), Software technology for naval applications: an

interim report on ADNET, Internal report, ASWE:Software Sciences Ltd.,

Portsmouth

Von Linde, O.B. (1979), Computers can now perform vital functions safely,

Railway Gazette International, 135(11), 100*1-1006

Watson, R.W. (1983), Distributed system architecture model, in Distributed

systems - architecture and implementation (eds. B.W.Lampson, M.Paul

and H.J.Siegert), Springer-Verlag, Berlin, 10-56

Wegner, P. (1980), Programing with Ada: an introduction by means of

graduated examples, Prentice-Hall Inc., Englewood Cliffs (NJ)

Wilkes, M.V. and Wheeler, D.J. (1979), The Cambridge digital communication

rlig, Proc. Local Area Network Symp., Boston, U.S.Bureau of Standards

Wirth, N. (1978), Modula-2, Internal report, Institut fur Informatik,

Eidgenössische Technische Hoekshule, Zurich

277

, K. (1983), When bombs, fire and flood hit the system, Computer

Weekly, 10 Nov., 44-46

	etheses coversheet 2017.pdf
	371157.pdf

