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ABSTKACT

This thesis describes an investigation of adaptive noise 

cancelling applied to human brain evoked potentials (EPs), with 

particular emphasis on visually evoked responses. The chief 

morphological features and signal properties of EPs are described. 

Consideration is given to the amplitude and spectral properties of the 

underlying spontaneous electroencephalogram and the importance of noise 

reduction techniques in EP studies is empnasised. A number of methods 

of enhancing EP waveforms are reviewed in the light of the known 

limitations of coherent signal averaging. These are shown to oe 

generally inadequate for enhancing individual EP responses.

The theory of adaptive filters is reviewed with particular 

reference to adaptive transversal filters usiny the Widrow-Hoff 

algorithm. The theory of adaptive noise cancelling using correlated 

reference sources is presented, and new work is described which relates 

canceller performance to the magnitude-squared coherence function of the 

input signals. A novel filter structure, the gated adaptive filter, is 

presented and shown to yield improved cancellation without signal 

distortion when applied to repetitive transient signals in stationary 

noise under the condition of fast adaption. The signal processing 

software available is shown to be inadequate, and a comprehensive 

Fortran program developed for use on a PDP-11 computer is described.

The properties of human visual evoked potentials and the EEO are 

investigated in two normal adults using a montage of 7 occipital 

electrodes. Signal enhancement of EPs is shown to be possible oy 

adaptive noise cancelling, and improvements in signal to noise in the 

range 2-10 dB are predicted. A discussion of filter strategies is



presented, and a detailed investiyation of adaptive noise cancel liny 

performed usiny a ranye of typical EP data. Assessment of the results 

confirms the proposal that substantial improvement in sinyle EP response 

recoynition is achieved by this technique.
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CHAPTER ONE.

INTRODUCTION.

1.1 Introduction and historical background.

The field of evoked potential research has been Intensively 

studied since 1947 when Dawson first demonstrated a technique that 

enabled the minute electrophysiological signals from peripheral nerve to 

be investigated [11. Since then and particularly following the advances 

in instrumentation afforded by the development of semiconductor 

technology, many hundreds of papers have been written which describe 

attempts to characterise the nature of the signals that can be recorded 

from the peripheral and central nervous system 1n response to sensory 

stimulation. Present understanding of these evoked potentials (EPs) has 

made significant contributions to our understanding of brain sensory 

processes and the technique is now an important complement to 

traditional EEG analysis in fundamental research in neurophysiology, 

psychology and pharmacology, as well as offering unique diagnostic 

capability in clinical care. Typical examples of EPs are shown in 

fig. 1.1.

A fundamental difficulty in the investigation of these signals 

is the presence of unwanted signals in the raw data record. These have 

been generally referred to as 'noise' in traditional communications 

engineering, as opposed to the 'signal' representing the desired 

component [37], Though this terminology is open to ambiguity, 1t 

commonly appears 1n the literature and will be retained for that reason. 

'Noise' thus includes any deterministic or stochastic interference 

component, and will specifically include the background (unevoked) EEG
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FIGURE 1.1 Typical examples of evoked potentials from the 
human brain (adapted from fig.5.5 in de Weerd 
& Kop [241).
a) somatosensory evoked potential
b) visual flash evoked potential
c) brainstem auditory evoked potential
S indicates moment of stimulation. Note differences 
in calibration bars.
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Itself, random Instrumentation noise and deterministic components such 

as mains interference.

While the amplitude of external Interference can generally be 

reduced to acceptable levels by appropriate experimental techniques, 

such as use of differential amplifiers and correct grounding and 

screening procedures, it is not possible to avoid recording the 

spontaneous activity of the brain when scalp electrodes are used. The 

EEG remains the most serious interference component in recording 

cortical EPs due to its relatively high amplitude and generally similar 

spectral characteristics. Techniques are therefore required to 

eliminate or at least attenuate this activity.

1.2 Coherent signal averaging.

One of the earliest of such techniques, still in routine use 

today, is coherent signal averaging [38], This technique gained wide 

popularity as it is straightforward to analyse, and implementation in 

dedicated instrumentation or general purpose computing equipment is not 

difficult. The basis of the method is that the amplitude of repetitive 

signals buried in uncorrelated random noise can be enhanced with respect 

to the mean noise level by the square root of the number of averages 

taken [39]. This performance can be achieved provided that certain 

assumptions concerning the signals are satisfied, principally that the 

signal is homogeneous (i.e. the signal mean at all sample points is 

Invariant), and the noise is stationary and uncorrelated with the signal 

or with itself for lag times greater than the sampling epoch.

These assumptions are only approximately met 1n practice, and 

several examples are cited in the literature of significant variations
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occurring in EP or EEG properties [26],[42]. In addition there are 

inherent limitations to the technique which render it unsuitable in some 

instances. The major limitation is that due to the poor signal to noise 

ratio a large number of responses are required (typically about 50 for 

cortical EPs and several hundred for brain-stem EPs) to obtain reliable 

and reasonably noise-free averages. This can result 1n long data 

recording sessions which a) limit the amount of information that can be 

gained in an investigation, b) increase the possibility of external 

artifact or nonstationary EEG activity giving erroneous results, c) 

increase the possibility of inaccurate results due to EP inhomogeneity 

and d) render the method impractical or difficult such as when testing 

babies or infants. Fundamental studies which require the individual 

responses to be made available are also unsuited to this method.

For these reasons interest has recently focussed on the 

development of methods that are more appropriate in these circumstances. 

Three different approaches have been taken. The first is concerned with 

developing modified averaging procedures that are relatively insensitive 

to changes in waveform latency or other signal Inhomogeneity. These 

include temporal alignment of responses prior to averaging [41], 

weighted averaging [42] and selective averaging of homogenous subsets of 

data [43], The second approach attempts to improve the efficiency of 

averaging to obtain a reduction 1n the number of averages required or to 

improve the statistical reliability of the results. These have included 

'optimal' linear filtering methods such as Wiener filtering [45], and 

its time-varying counterpart [83], although de Weerd [113] recommends 

that these be employed to obtain better quality averages rather than to 

obtain a reduction in the number of averages employed. Finally others 

have abandoned averaging altogether and have sought ways of measuring 

individual response characteristics, generally peak amplitudes and
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latencies, usually by statistical methods such as cross-correlation with 

a suitable template [46]. These latter methods do not furnish an 

estimate of the actual waveform. While these have extended the range of 

possible situations that can be investigated, they are often specific 

solutions to particular problems, rather that general purpose 

alternatives to signal averaging. In addition they can be rather 

demanding computationally which restricts their wider application in 

routine practice.

There is still considerable interest in developing other methods 

of processing EP signals which do not suffer from these disadvantages. 

The methods described are generally single dimensional, that is they 

take no account of the relationships between spatially different EEG 

signals. This inspired research into the possibility of exploiting 

redundant information in the multi-channel EEG to obtain signal 

enhancement. Since most routine EEG and EP studies of significance 

employ a number of electrodes, the possibility of obtaining improvements 

in signal estimation by this means are attractive and would not 

necessarily involve significant departures from existing practice. 

Improved signal estimation might lead to reduced recording durations, 

with consequent advantages for both research and clinical use of EPs.

1>3 Signal enhancement using correlated reference sources.

Previous studies have shown that significant correlations are 

present in the EEG over extensive scalp areas, and the work of Walter et 

al is typical of these [31], Evoked potentials tend to be distributed 

about the cortical area devoted to each sensory process. This suggests 

that EEG activity in areas distant from the sensory region may be 

sufficiently well-correlated with the selected EP recording site to
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permit some degree of cancellation to be gained. This obviously 

requires the EP to be considered as an independent signal added to the 

spontaneous brain activity which, though not strictly true 1n all cases 

[44], is nevertheless accepted to be a reasonable assumption for 

stimulus intensities that are much higher than threshold [45].

In order to assess the potential use of this technique, it was 

important to determine the nature and extent of correlations over the 

scalp which could be used to yield a reduction in spontaneous activity 

at other locations. Typical scalp distributions of common EPs were also 

required, to enable reference sites to be chosen that did not contain 

significant EP components. Visual evoked potentials were chosen to 

assess the viability of this approach as these are widely used in vision 

research as well as clinical care, and the experimental facilities were 

immediately available at Keele.

Previous experience and reports in the literature testify of the 

changing character of EEG signals, such as the waxing and waning of 

rhythmic components. Most workers in the EP field would agree that 

brain activity appears to take place in loosely coupled networks or 

neurons, which exhibit continually changing patterns of 

inter-relationship [7]. It was therefore decided at an early stage to 

develop a general method of cancelling background EEG activity using a 

correlated reference source, which makes no assumptions about the nature 

of the correlations with regard to frequency or time properties.

1«4 Adaptive techniques 1n signal processing.

Fortunately adaptive techniques exist which are potentially able 

to cancel noise activity by means of a correlated reference source. A
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large part of this thesis 1s devoted to their Investigation 1n order to 

determine their general suitability to EEG processing. Adaptive filters 

permit the amplitude and phase relations between correlated signals to 

be continuously modelled, and for this reason offer potential 

improvements over simpler techniques that assume fixed signal 

relationships. They are inherently self-designing and are well-suited 

to applications when a fixed filter 1s difficult or impossible to 

specify, as well as offering the capability of dealing with changing 

signal statistics. Pioneering work 1n adaptive filters took place over 

two decades ago [87], and it has since attracted widespread research 

interest. As a result the field 1s advancing rapidly, and such filters 

enjoy wide application, notably in communications and control 

engineering. Applications to biomedical signals have also been 

demonstrated, and Include cancelling of mains interference [92], 

separation of maternal and fetal ECG activity [108] and filtering of 

electrogastrographic signals [109]. A similar approach has been 

described using non-adapt1ve techniques for the removal of ECG artifact 

in EMG signals [48].

Adaptive filters have generally been implemented digitally, 

though analogue designs also exist. Digital filters have a number of 

attractive properties, such as simple design procedures, freedom from 

component and environmental influence upon performance, and the ability 

to accurately specify the parameters of high performance filters with 

precision. They can be implemented either In special-purpose hardware 

or in general-purpose computers. The latter possibility greatly 

facilitates experimental studies during the development of many 

different filter strategies whose operation can be analysed in 

considerable detail.
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Fig. 1.2 shows a particularly useful structure which uses a 

tapped delay line filter whose coefficients are adjustable by a control 

algorithm to enable some criterion of filter performance to be met. 

Commonly this criterion is to minimise the mean square error of the 

filter when compared with some desired signal. Adaptive transversal 

filters of this form have been used 1n echo cancellation, system 

modelling and noise cancelling [50], It is this latter mode of use that 

is relevant to this thesis as it permits a reference signal to be 

optimally filtered to permit cancellation of correlated activity in 

another channel.

This is illustrated in fig. 1.3 which shows two inputs to the 

adaptive noise canceller, a primary input containing a signal s(t) 

embedded in noise np(t), and a reference channel containing correlated 

noise nr(t). If the degree of correlation between the two noise signals 

is high, effective cancellation of np(t) can be obtained by 

appropriately filtering np(t) so that it very nearly matches np(t). 

Significant reduction of the noise in the primary channel can be 

obtained even if the signal and noise have similar spectral 

characteristics, and it is this property which makes this approach 

attractive as a means to signal enhancement of EP records. The main 

thrust of this thesis will be devoted to the investigation of this 

possibility.

1.5 The structure of this thesis.

In the next chapter the nature of EP and EEG signals 1s 

reviewed. Sections are Included which discuss their origin, 

physiological attributes, applications and signal properties. This 

serves to illustrate the uses to which EPs can be put, and demonstrates
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PRIMARY SIGNAL

FIGURE 1.3 Block diagram of an adaptive noise canceller. The reference 
noise source n is filtered by the adaptive filter to form 
a best least squares estimate of the noise n in the primary 
signal source, yielding a best least squares'estimate of the 
signal S at the canceller output.
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that In the majority of experiments signal extraction procedures must be 

employed to recover them from the raw record.

Chapter 3 reviews a number of such signal processing methods.

Coherent signal averaging is discussed first, particularly with regard 

to the main assumptions implicit in its use. Subsequent material deals 

with alternative or additional procedures that can be employed when 

these assumptions are not fully met. This discussion reveals that few 

methods of signal processing have been advanced to deal with 

multi-channel EEG derivations in a manner which exploits their 

inter-relationships. It clearly illustrates the necessity for this 

extended study.

Adaptive filters are introduced in chapter 4, and the main 

theoretical results derived or otherwise presented. Consideration is 

restricted to adaptive transversal filters using tapped delay line 

architectures controlled by the Widrow-Hoff Least Mean Square adaptive 

algorithm, though brief mention is made of other strategies. The theory '*

of adaptive noise cancelling is introduced, and the main results 

presented that indicate how effective the method can be in different 

situations. Analysis of the main noise cancelling properties is 

extended in Appendix C where expressions are derived to predict noise 

cancellation performance using the coherence function. Chapter 4 

concludes with a brief overview of previous applications of adaptive 

filters to biomedical signals, though adaptive noise cancellation of EP 

signals is considered to be novel.

This theory is extended 1n chapter 5 to incorporate 

modifications to the basic adaptive filter which form the proposed gated 

adaptive filter (GAF), which is based on the time-sequenced filter
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[102]. The GAF was specifically developed to enable EP signals to be 

filtered using fast adaption which would otherwise result in distortion 

of the signal when using the basic adaptive filter or time-sequenced 

adaptive filter. Computer studies are described which compare each of 

these filters and show that the GAF is the best filter to apply when 

filtering repetitive transient signals using fast adaption.

Chapter 6 precedes the main experimental investigations by 

describing the experimental methodologies and equipment employed.

Oetails are presented of EP experiments, including the stimulation and 

recording arrangements, and the off-line data processing capability.

The latter had to be developed for this research programme, and 

discussion of the hardware and software strategies is presented. In 

particular, a general purpose signal processing software package 

developed by the author is described. This is written in Fortran IV and 

is suitable for a DEC PDP-11 computer having the appropriate harware 

configuration. Additional details concerning this package are contained 

in Appendix A.

Chapter 7 is concerned with a preliminary investigation of EP 

and EEG characteristics to determine whether the method of adaptive 

noise cancelling is feasible and what improvement in signal quality is 

predicted. The study considers the scalp distributions of visual evoked 

potentials and the coherence properties of the EEG over transverse 

occipital sites. Spectral functions are computed and primarily include 

auto-spectral power densities, cross-power spectral densities and the 

magnitude squared coherence for all possible electrode combinations in 

two subjects. From these results it is possible to specify the 

conditions necessary for effective use of an adaptive noise canceller, 

and several possibilities are forwarded for further investigation.
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These possibilities are examined 1n detail in chapter 8 by the 

application of suitable adaptive filters. Practical considerations such 

as filter choice, parameter value selection and baseline removal methods 

are first dealt with and a comparison of the GAF and basic adaptive 

filter Is undertaken using data selected from typical EP experiments. A 

detailed analysis of the adaptive noise cancelling procedure 1s given 

using several data records from each experimental subject under a 

variety of stimulus conditions. The conclusions of this study are 

presented in the final chapter, which considers the interpretation of 

the results and gives recommendations regarding the use of this 

technique. Methodological difficulties are also discussed and the 

chapter concludes with suggestions for future research.

Four appendices are included. The first contains additional 

material concerning the software package described in chapter 6.

Appendix B summarises the computational procedures involved in 

performing the spectral analyses. Appendix C presents the theory which 

shows how the magnitude squared coherence function can be used to 

predict signal improvement through use of an adaptive noise canceller. 

Appendix 0 presents the results of a preliminary investigation into the 

use of a multi-reference adaptive filter for EP signal enhancement.



CHAPTER TWO.

THE ORIGIN, NATURE AND APPLICATIONS OF EVOKED POTENTIALS.

2.0 Introduction.

It is neither desirable, nor possible, to attempt a 

comprehensive review of the field of evoked potentials (EPs) in a work 

of this nature. For this the reader is referred to a number of 

monographs, review articles and other published material 

[2],[3],[4],[5],[6],[7]. A brief introduction and review will however 

be included to provide a sufficient background for the reader unfamiliar 

with this subject.

The material in this chapter includes a description of the 

nature of evoked potentials (primarily visual evoked potentials), and 

will discuss how they arise, what fundamental properties they possess 

and what value they are to the visual neurophysiologist and practising 

clinician. Following this, the remainder of the chapter will focus on 

the properties of EPs from a signal analysis perspective, from which it 

will become apparent that signal extraction procedures must be employed 

for their successful isolation. This discussion will also be concerned 

with the main features of the EEG which presents a fundamental obstacle 

to eliciting the noise-free EP. It is important to characterise the 

nature of both EP and background EEG signals as these must be adequately 

understood if signal extraction methods are to be correctly applied. 

Previous work in this area will be reviewed in the following chapter.
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2.1 Definitions and nomenclature.

The electrical activity recorded by electrodes located on the 

scalp or cerebral surface is known as the electroencephalogram (EEG) and 

since its discovery in humans in 1929 [8] it has found widespread 

application as a research tool in many scientific disciplines, such as 

neurophysiology, psychology and pharmacy, as well as being a firmly 

established technique in clinical care. The EEG primarily reflects the 

general electrochemical activity of the brain and as such provides a 

useful monitor of cerebral state.

The method of evoked potentials is a more specific probe of 

brain functioning and is used to investigate the activity arising from 

externally applied stimulation. The electrical record following the 

stimulus is composed of endogenous activity reflecting the brain state 

of the individual at the time of stimulation, known as the spontaneous 

or background EEG, together with activity correlated with the 

stimulating event, variously known as the evoked potential (EP) or 

evoked response (ER). Evoked potentials are commonly defined as 

electrical potentials which are time-locked to the sensory stimulation 

which produces them. This definition, although not wholly adequate, has 

largely arisen from the use of signal averaging techniques, which permit 

small amplitude signals to be recovered from independent background 

activity on the basis of coherence with the applied stimulus. The 

difficulties of this definition are that it includes activity that may 

not be related to the brain's response such as stimulus-related 

artifacts, and does not include stimulus-related activity which is not 

coherent with the stimulus or is not of a deterministic form.
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2.1.1 Cortical EPs to sensory stimulation.

The term EP is in fact used to describe a wide range of 

potentials ranging from the compound action potential of peripheral 

nerve lasting about 6 ms to highly complex cortical waveforms involving 

undetermined psychological factors and having a duration of several 

hundred ms. EPs may be recorded from the peripheral and central nervous 

systems. In the latter case it is possible to obtain spinal, brainstem 

and cortical EPs, according to the assumed structures from which they 

originate. In this thesis, attention will be focussed upon cortical 

visually evoked potentials.

Of the various kinds of EP, sensory EPs are the most familiar 

and extensively studied. They are elicited by stimulating any of the 

visual, auditory, somatosensory or olfactory organs (or their 

corresponding afferents), alone or in combination. Gustatory- 

stimulation is difficult to arrange experimentally, though EPs have been 

obtained for these. The most common are visual evoked potentials (VEP), 

auditory evoked potentials (AEP) and somatosensory evoked potentials 

(SEP). Brain stem evoked potentials (BSEP) are also in this category 

and enable responses to be obtained, usually to auditory stimulation 

from the brain stem, a structure difficult to investigate by any other 

means. In this thesis examples will be shown mainly using VEPs, though 

some of the techniques described are also likely to be relevant to the 

other EPs. Typical examples of sensory EPs were shown in fig. 1.1.

The term event-related potential (ERP) is retained to describe 

electrical activity concomitant with an identified event (stimulation or 

action), whether or not it can be regarded as evoked by the stimulus. 

Examples of ERPs are motor potentials which accompany or antecede all



voluntary muscular contractions, and slow-wave potentials. The latter 

is a general category for endogenous potentials that typically arise 

when the stimulus undergoes evaluation by the subject for significance 

or has some cognitive significance. These have quite different spatial 

and temporal properties compared with sensory EPs, and will not be 

discussed further in this thesis. The reader is referred to the review 

by Hillyard and Picton [14] for further information regarding these.

2.1.2 'Transient' and 'Steady-state' EPs.

A further distinction may be drawn between so-called 'transient' 

and 'steady-state' EPs. The former arise when low stimulation rates are 

employed such that the response is largely attributable to each 

individual stimulus contains a minimal contribution from previous 

stimuli. They permit investigation of the temporal structure of 

responses and have generally required averaging techniques to recover 

them from the background activity.

Steady state EPs on the other hand are obtained when a train of 

periodic stimulation is employed at such a rate that the individual 

brain responses are confounded and the initial transient to the 

application of the train has decayed, leaving a steady state continuous 

response. Though temporal information is now largely lost it is 

nevertheless possible to obtain useful information from the amplitude 

and phase of the frequency components. Fourier analysers locked to the 

stimulus frequency or harmonics provide a convenient means of analysing 

only those components that are frequency locked to the stimulus, and is 

the means by which steady-state signal extraction is performed[2].
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For a linear system either would yield a complete descriptor; 

but for a highly nonlinear system such as the brain both approaches can 

be required and can yield complementary information. Each has its own 

advantages and disadvantages, but transient EPs are generally preferred 

because they allow the temporal sequence of each response to be studied 

and related to known cortical structures and mechanisms on the basis o f  

their anatomical distributions and temporal characteristics. For an 

introduction to the methods and applications of steady-state EPs the 

reader is referred to Regan's monograph [2],

2.1.3 Conmon conventions for labelling EP features.

Before proceeding to describe the origins of cortical VEPs, it 

will be appropriate at this stage to briefly describe the nomenclatures 

in common use to identify major EP features. These invariably 

concentrate on the major peaks and troughs in the response, and there 

are three ways commonly employed to do so

a) simple sequential ordering of components or peaks, e.g. Cl, C2, C3

b) sequential ordering with polarity, e.g. Nl, P2 represents the first 

major (negative) peak and the second (positive) peak

c) polarity with latency, e.g. P300 represents a positive peak 

occurring approximately 300 ms following the stimulus

Those which are purely sequential become inconvenient when 

intermediate features need to be included later, while those based on 

polarity or latency do not account for differences in response in 

different individuals or to different stimulus conditions. There is no 

generally adopted labelling scheme which is free from pitfalls, and all 

three are used by different groups. In this thesis the first will
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generally be adopted, following the convention of Jeffreys [13] and 

others, though occasional use is made of the alternative nomenclatures.

2.2 Physiological and anatomical basis for the Visual Evoked

Potenti al

2.2.1 The visual pathway.

Though the material in this section is contained in many- 

elementary texts that describe visual neurophysiology such as [40], the 

main features of the visual pathway, shown in fig. 2.1, are now briefly- 

reviewed. Fig. 2.1 also shows the major anatomical and physiological 

subdivisions of the human cortex. Receptor cells in the retina, both 

cones and rods, receive incoming light energy and convert this into 

graded electrical potentials. These are transmitted via other cells to 

the retinal ganglion cells which perform elementary image processing 

upon the signals and transmit image information in the form of spike 

trains. The axons of these cells converge to form the bundle of fibres 

known as the optic fibre. At the optic chiasm, the optic fibres from 

each eye meet and the nasal half-fields of each eye cross so that 

left-half field information from each eye proceeds to the right 

hemisphere and the right-half field maps to the left hemisphere.

From the optic chiasm, the fibres of the optic tract converge 

upon the lateral geniculate nucleus (LGN), which is primarily a 

processing station from which the signals arrive at the visual cortex. 

Some contrast enhancement is thought to take place at the LGN, and the 

nucleus may have a role in mechanisms of eye movement and binocular 

interactions, but otherwise little transformation of the visual image
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takes place. A web of fibres streams out from the LGN to area 17 of the 

visual cortex in each hemisphere, which is the first cortical region 

involved in visual processing. Neighbouring regions are also involved, 

probably at a higher level of abstraction. Thus the secondary visual 

cortex appears to be the first region where binocular fusion takes 

place. Before this point, information from each eye is thought to be 

processed separately.

2.2.2 The cortical representation of visual information.

As scalp-recorded VEPs are believed to arise mainly in the 

visual cortex, little further will be said about the early visual 

pathway, apart from those aspects which have some bearing on the nature 

of the VEP. One such aspect concerns the projection of the retinal 

field upon visual cortex. In daylight levels of illumination, the rod 

cells, being much more sensitive to light, are completely saturated and 

play no part in vision. Although they are more numerous than the cone 

cells, (approximately 130 million compared with 7 million cones in each 

eye), they are evenly distributed over the visual field. The cone cells 

on the other hand are concentrated in the fovea, the central 1-2° of the 

visual field, and their density decreases inversely with eccentricity, 

being approximately 150,000/mm^ at the fovea. It is the foveal region 

which is most sensitive to spatial discrimination, and this has 

consequences for the cortical representation of visual information.

The afferent fibres do not project haphazardly onto visual 

cortex, but are arranged retinotopically, that is in some correspondence 

to retinal location. The area of cortex is not proportional to the area 

of the retina it subserves, but more nearly to the number of receptors, 

whose density varies with retinal location. Foveal regions project to
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disproportionately large areas of cortex which may be more than ten 

times larger than the area devoted to a corresponding solid angle in the 

periphery. This is partly attributable to the greater density of 

receptors and smaller receptive fields of ganglion cells serving the 

fovea, and is known as the 'magnification factor'. The same principle 

is demonstrated in the mapping of body surfaces to the somatosensory 

regions of cortex, where the cortical representations of the lips and 

fingers is far greater in area than that of the trunk, for example.

As a result of this it is the central 6-12° field of vision 

which is predominantly responsible for VEP generation. This is also due 

to the cortical topography of the primary visual area which is located 

at the occipital pole so that macular regions project to the exposed 

surface of the occipital lobe, but peripheral regions are located in the 

medial surfaces in the interhemispheric gap. A diagram showing the 

projection of retina to cortex may be seen in fig. 2.2 illustrating the 

magnification factor, retinotopic mapping and the transverse and lateral 

reversal of the visual field.

2.2.3 The effect of cortical structure upon VEP form.

The cortical representation of visual image information has a 

number of consequences for VEP studies which use patterned stimulation. 

Firstly approximate fixation of a well-defined pattern is necessary to 

ensure that the chosen retinal region is stimulated, as changes in 

fixation can lead to the cortical EP generator moving around the curved 

surface of the cortex and producing variable scalp potentials. Secondly 

the choice of area stimulated will have a bearing on the resulting VEP 

form, and interpretation of results must be made with attendant regard 

to the underlying anatomy and physiology. For example use of lower
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half-field stimulation is often preferable to upper-half field 

stimulation as there is less infolding of the cortex, resulting in 

larger responses over the scalp surfaces at the occiput. A third 

consequence is that responses from different individuals are likely to 

show a good deal of variability as the cortical topography is not 

exactly the same in each individual. These points will be illustrated 

in a later section describing gross properties of VEPs.

Data on the processes that form the VEP signals are sparse.

While it is generally accepted that the VEP reflects organised activity 

of neuronal populations in the visual cortex, it is not clear how they 

arise nor what processes are involved, though some clues to these are 

available. This is partly due to our profound ignorance of the visual 

cortex, unlike the retina whose structure and functional properties are 

now largely understood.

2.3 Electrogenesis of the EEG and Evoked Potential.

This topic is subject to considerable confusion and uncertainty 

as reflected in the literature, so this discussion will be necessarily 

brief. Nonetheless it is acknowledged that research into the 

fundamental relationships between gross scalp records and underlying 

neural processes is crucial to the future of EP studies particularly in 

sensory physiology research, and therefore warrants further study [ 6].

2.3.1 Genesis of the EEG.

From a consideration of several factors, such as scalp 

distributions and correlations with cortical slow waves, it is generally 

accepted that the EEG and EP are predominantly of neural origin [6],
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though it is possible for non-neurogenic components to be present, such 

as the EMG, EOG and ECG. The former two can generally be avoided in VEP 

experiments by careful precautions to avoid eye movements and to 

minimise muscular tension. The ECG is not generally present in VEP 

recordings. The use of high unnaturally intensity stimuli must also be 

avoided as these can generate stimulus-related myogenic activity [9].

The basic mechanism underlying the EEG is the movement of ions 

across the semi-permeable membranes of fibres or neurons in the cerebral 

cortex, subcortex or deeper nuclei. This ionic current gives rise to 

current flow in the tissues overlying the cortex - the dura, 

cerebrospinal fluid, skull, scalp, and hence to potential differences 

that may be measured with voltage amplifiers by means of electrodes 

attached to the scalp.

Initially it was thought that the EEG was the envelope of 

summated action potentials originating in cohesive neuronal assemblies. 

This hypothesis arose out of the success gained in relating neoronal 

firing patterns to motor activity. This gave way to the present 

hypothesis that the EEG is a complex summation of graded post-synaptic 

potentials (PSPs). This is a far more likely hypothesis as the 

relatively slow time courses of PSPs matches the EEG, and animal studies 

have demonstrated that an EEG is still obtained when spike activity is 

abolished by drugs. At present it appears that the pyramidal cells are 

responsible for the EEG, and summation of their PSPs is facilitated by 

the columnar organization of these cells extending from lower to upper 

cortical surfaces [10]. EPs are also thought to primarily reflect 

graded PSPs, though some EP components may be due to summed action 

potentials which are sufficiently well synchronised, such as axon 

volleys [2].
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In general there is poor understanding of the locations and 

mechanisms of EEG generators. Alpha activity is thought to originate in 

visual association areas rather than primary visual cortex, but little 

is known of other sites of EEG origin. The locations of EP generating 

sites are also generally uncertain, with the exception of a small number 

of components. Several of the components of the BSEP to auditory 

stimulation have now been related to the passage of afferent signals 

through various sub-cortical nuclei [5].

2.3.2 Modelling of EEG transmission processes.

Following the successful application of field theory to 

modelling the ECG using dipole models and volume conduction, various 

workers have attempted the same for EPs. This theory is fundamentally 

unable to provide unique models for generative processes solely on the 

basis of observed scalp fields, and it is possible to infer equivalent 

dipole sources only in an infinite homogeneous conducting medium, which 

is not strictly the case for the brain. Nonetheless studies based on 

these assumptions have been used to predict amplitudes of cortical 

signals for sources of different sizes and at different depths in the 

cortex [47], and to hypothesize likely sites for some EP components 

[46]. This has had good success in some cases, particularly BSEPs which 

apparently do fit these assumptions quite well.

There is still considerable disagreement about this approach as 

brain tissue is not a good conductor, and volume conduction is only 

likely to be effective over short distances. It is also considered 

unlikely that EP generators can be modelled by large dipole surfaces 

under the scalp. Other theories to explain transmission of the EEG are 

based on conduction of potentials through specific pathways. The latter
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is able to account for observations that closely spaced cortical 

electrodes can sometimes display very different activity whereas widely- 

spaced electrodes can have similar activity. This is not easily- 

explained if volume conduction were the main transmission mechanism.

But this theory cannot account for the observation that BSFPs are 

transmitted over fairly large distances, apparently by volume 

conduction, when no other pathway exists.

2.3.3 The relation between the cortical and scalp EEG.

The scalp record does not contain as much information as the 

cortical record, and there is no clear picture demonstrated of a simple 

relationship existing between the two. There are marked similarities 

observed, with the scalp record generally related to underlying activity 

especially when it is synchronous over a cortical area subtending a 

large angle [11], but possibly also containing contributions from other 

cortical sites. Activity arising from sources of small angular subtense 

is heavily attenuated and may not even appear at all, as in the case of 

sharply localised spike activity [10]. Different workers report quite 

different degrees of attenuation through the scalp ranging from 50% [11] 

to orders of magnitude smaller [12], though this depends on the type of 

signal and its hypothesized source.

It is accepted by a number of workers that the material 

overlying the cortex acts as a spatial lowpass filter. Theoretical 

studies have shown this and are apparently supported by observations, 

though there is not universal agreement on this. As these studies were 

based on dipole models, it is not clear how much reliance can be placed 

on them. Some spatial filtering is likely to occur as this would 

account for the loss of detail in the scalp record as compared with the
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cortical record, and the apparent enhancement of features in the scalp 

record when spatial deconvolution procedures have been employed [48],

Until this is resolved it is not clear how well the scalp record 

reflects underlying cerebral processes, though in a recent review 

Childers concludes that at present there is no general predictive model, 

nor one immediately foreseen, which successfully relates neural events 

to the EEG [7]. Nevertheless the ease with which the EEG can be 

recorded from the intact human scalp, and the variety of uses to which 

it has been put ensure a continuing and important role for EEG studies.

2.4 The gross nature of Visual Evoked Potentials.

In this section the nature of transient visually evoked 

potentials will be described. The description in this section closely 

follows a review by Jeffreys [4,Chapter 6], and will concentrate on the 

most important temporal and spatial properties of the VEP.
c

2.4.1 VEPs to flash and pattern stimuli.

Much of the early work was performed using unpatterned 

luminance-change stimuli produced by gas discharge tubes. The resulting 

flash evoked potentials have a complicated structure which has only 

relatively recently been comprehended as described in [3]. An example 

of their form is shown in fig. 2.3. In spite of a large body of 

experimental work, luminance EPs have not proved very useful in 

diagnostic procedures because of their poor correlation with perceptual 

thresholds. Furthermore the relative strengths of the channels giving 

rise to the primary, secondary and late responses varies substantially 

among subjects and with stimulus parameters. The variation in amplitude 

and latency that is found to exist makes the flash EP less suitable for



a)

b)

FIGURE 2.3 Illustration of the variability of human flash-evoked potentials 
in a) one subject and b) in four different subjects. In b) two 
successive VEPs are shown in each record. (Adapted from figs.2 
and 3, Kinney JAS, J.Opt.Soc.Am., 67, p.1456 (1977) ).
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differential diagnosis than for example the pattern EP. This is 

illustrated in fig. 2.3. Pattern evoked potentials have a number of 

advantages in both clinical and research environments which has made 

them by far the most popular choice of EP. Little further attention 

will be paid to flash EPs for this reason though it is noted that in 

certain situations they retain advantages over the latter, particularly 

when used with patients who cannot be relied upon to fixate, such as 

young children [20].

Patterned stimuli generally elicit much larger amplitude 

responses and provide a much richer range of stimulus possibilities than 

unpatterned stimuli. This has a firm physiological basis, as the (now 

classical) studies performed by Hubei and Wiesel in the early 1960's 

showed that (in cat and monkey at least) the majority of visual cortical 

neurones are sensitive to spatially structured stimuli and relatively 

insensitive to overall luminance changes. Patterned stimuli are much 

more useful to the visual scientist as they permit stimulus attributes 

such as contrast, stereoscopic depth, motion, colour etc. to be 

investigated.

The visual evoked response to patterned stimuli is a composite 

response having contributions from different cortical regions and/or 

processes. These often overlap in time and space and so must be 

investigated with careful attention to the use of multiple recording 

sites and location of retinal stimulation. Differences in form over the 

scalp are rather significant and have important consequences for the 

work in this thesis. Three different contributions to the VEP can be 

identified: the pattern-related onset and offset components, and 

non-pattern-related components.
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2.4.2 Pattern-related components of the VEP.

Jeffreys and Axford [13] showed that pattern-related components 

of anatomically separate origin can be identified by studying the 

influence of retinal location of stimulation upon their scalp 

distributions. Three components related to pattern onset were 

identified, which they termed Cl, C2 and C3 (Cl and C2 are shown in fig. 

2.4). The components labelled as C3 are now thought to be composites of 

several components and will henceforth be referred to as 'C31. These 

occur in all subjects tested and have similar peak latency times which 

are relatively independent of electrode position and retinal location. 

Their form and polarity do vary with these experimental conditions, 

which allows them to be identified. Though these show variability among 

individuals in their detailed form, they display many characteristic 

properties in general. One such property is the linear additivity of 

responses obtained to stimulation of different retinal regions. Thus 

the response to whole-field stimulation closely resembles the linear sum 

of the responses obtained to stimulation of each quadrant alone.

Fig. 2.4 shows the temporal characteristics of Cl and C2. Their 

peak latencies are approximately 75 and 110 ms after stimulus onset.

Note the temporal overlap of these components which renders 

consideration of EP peaks alone inadequate for proper investigation of 

EPs. It is all too possible for amplitude and latency differences to be 

observed in peaks which are due to variations in the relative 

contributions of these components to the EP, and thus confuse 

interpretation of the EP [49]. A number of studies have been made of 

the properties of these components, and the main conclusions are now

presented.
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Firstly, they have quite different amplitude distributions over 

the scalp according to the region of retina stimulated. This allows 

experiments to be conducted that selectively favour recording of one 

particular component, and thus permit its properties to be deduced. To

illustrate this fig. 2.4a shows a set of EPs obtained from a transverse

row of 7 electrodes to a patterned stimulus presented to the lower 

visual half-field. The Cl component reverses polarity across the scalp, 

whereas C2 remains relatively unchanged. Leads 2 and 6 in this case can

be used as a bipolar pair to enhance Cl. A similar scheme to isolate C2

is shown in fig. 2.4b, though the C2 component has a similar 

distribution to the *C3* components and so is more difficult to isolate.

Experiments designed to investigate the nature of these 

components have concluded that Cl largely reflects contrast-specific 

mechanisms of vision. These are sensitive to patterned stimuli (both to 

onset and offset) but not overall luminance changes, and they exhibit a 

systematic increase in response amplitude with increasing contrast over 

a relatively large range of contrast. They do not require the presence 

of well-defined contours.

C2 (and 'C3') on the other hand apparently reflect 

contour-specific mechanisms which respond best to well-defined contours 

in the stimulus pattern but are less sensitive to actual contrast. They 

are orientation and dimension specific and are most sensitive to 

discontinuous contours. Unlike the former contrast-specific response, 

they appear only at stimulus onset and are highly adaptive. Several 

similarities in these properties suggests a possible relationship with 

the contour-sensitive' neurones found in cat and monkey visual cortex.

It is possible to obtain clues to their likely anatomical sources from a 

consideration of their scalp distributions to retinal stimulation and
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stimulus properties, but at present there is no general agreement on the 

sites of origin.

2.4.3 Pattern-related offset components.

The most consistent pattern-related offset components appear to 

be two peaks occurring at about 110 and 150 ms following stimulus 

offset, often preceded by a component corresponding to Cl. These main 

offset peaks have quite different properties from C2 and 'C3‘, though 

their latencies correspond. For example they vary less with retinal 

location stimulated and exhibit less adaptation. Brief stimulation, 

which minimises adaptation effects in the onset response and hence 

permits faster stimulation rates, has the disadvantage that the offset 

components are confounded with the onset components. As these are 

relatively small compared with the onset components in most cases this 

is generally not a difficulty, provided one is only interested in the 

onset components.

2.4.4 Non-pattern-related components.

In addition to the pattern-related components there are also 

non-pattern-related components which are sensitive to overall luminance 

changes. These vary from subject to subject, but in most cases are 

relatively small in the latency range 0-150 ms where the most important 

pattern-related components occur, though they may produce peaks at 

approximately 100 and 150 ms. These correspond to components of similar 

character but larger amplitude in the flash EP, and so are likely to be 

luminance-related components. An important finding is that in contrast 

to the pattern-related onset components, these are relatively unaffected 

retinal location, nor do they show an additive amplitude relationship
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of the type exhibited by Cl and C2. This suggests that they have 

different cortical sources and that these sources are essentially 

independent of each other.

The greatest non-pattern-related contributions occur in the 

later response with peaks at about 200 and 300 ms. These have a more 

anterior distribution with a maximum near the vertex, and have been 

shown to be non-stimulus specific. Unlike the components described so 

far which vary systematically with stimulus parameters, these later 

endogenous components are affected by the cognitive state of the subject 

and appear to reflect stimulus evaluation [14]. Examples of these are 

the P300 wave which appears to be correlated with the improbability of 

the stimulus event, and the Contingent Negative Variation or Expectancy 

wave which appears when a warning stimulus is very likely to be followed 

by a second stimulus demanding a response. Further details of these are 

available in the review by Hi 11 yard and Picton [14].
r

/■

2-5 Applications of Evoked Potentials.

In spite of the severe experimental difficulties that are 

encountered in recording EPs there are a number of situations for which 

this method is well-suited and even uniquely so. Users of EPs tend to 

be mainly interested in sensory physiology and perceptual mechanisms or 

are clinical users, though there is increasing interest in the later 

cognitive brain responses among psychologists and others.
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2.5.1 The use of EPs in brain sensory research.

Research into sensory processes has made most significant 

advances through traditional psychophysical methods and more recently 

through neurophysiological studies at the level of individual neurones. 

The advent of microelectrode recording techniques has probably been most 

responsible for our present understanding of mechanistic brain science 

leading for example to the pioneering discoveries of Hubei and Wiesel in 

the early 1960 s. Although this has paved the way for extraordinarily 

fruitful though painstaking research, it is limited in that it can only 

provide information regarding the behaviour of a single cell (or at most 

a small number of cells). This is necessarily inadequate if we are to 

understand the organized behaviour of a large number of functionally 

related units.

Psychophysics has also greatly contributed to our present 

understanding of sensory perception, largely through detailed 

investigation of the limits of perception, and has provided good 

evidence for some higher level features that can be expected to be found 

m  the visual system. For instance a body of psychophysical evidence 

has been accumulated to support the notion that the sensory pathways of 

the brain break down complex sensory stimuli into a small number of 

abstract features that are processed virtually independently in 

different 'channels'. These may be for perception of form, motion, 

colour etc., and neurophysiological evidence exists for cells that could 

embody these processes. In the main, the psychophysical findings have 

celled on soundly based, though often restricted, studies performed 

mainly on humans using threshold stimuli and requiring statistical 

treatment of a large number of subjective reports of sensory experience.
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Evoked potentials on the other hand are thought to reflect the 

organized activity of functional sub-units in the brain, though some 

critics are sceptical of the potential value of EP recording, owing to 

uncertainty about what they represent and the poor resolution they 

offer. They are however the only electrophysiological means available 

to investigate brain function in man, as intra-cerebral recordings may 

not be made except in rare cases when they are advised for medical 

purposes.

As well as providing independent electrophysiological evidence 

to support psychophysical measures, EPs offer possibilities that may not 

be attained through psychophysical methods alone. In situations where 

there is a close correlation between EPs and sensory perception, EPs 

offer a single means of objectively investigating sensory processes at 

super-threshold and sub-threshold perception levels as well as threshold 

levels. As the former corresponds more closely with normal experience, 

it may be more meaningful than investigating perception at threshold 

when the processes involved are close to the limit of operation.
f t

Some of the areas where VEPs correlate well with perception are 

contrast threshold and adaption, real and apparent motion, spectral 

sensitivity of the eye and stereoscopic depth perception [15]. EP 

studies of these phenomena provide further information on brain 

processes as well as enabling the nature of the VEP to be elicited.

Some of this research has had ramifications for clinical and ophthalmic 

practice, for example VEP methods have been developed to perform routine 

refractions. These can offer advantages over traditional methods in 

young or difficult patients.
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Research is also proceeding into other possible uses of EPs. 

Carmon at al [16] have used EPs to obtain an objective measure of pain 

sensation. To minimize suffering of the experimental subject it is 

obviously necessary to use the minimum number of (painful) stimuli.

This in turn demands advanced signal extraction techniques to obtain 

reliable results from single responses. Other research areas that have 

a similar requirement are studies into the possibility of feedback 

control based on evaluation of the stimulus [17] and studies on dynamic 

properties of single EP responses [18].

When poor correlations exist, EPs offer a means of studying 

sensory processes which are necessary for perception but which are not 

accessible to psychophysical means because they occur at peripheral 

level or do not directly intrude into conscious experience. An example 

of the former situation is the processing required to perform 

'housekeeping' duties such as accomodation in the visual system. The 

latter situation is found in patients who are cortically blind through 

removal of some or all of the visual cortex, but who may nonetheless 

have some EP response to visual stimuli, showing that some visual 

processing apparatus remains, though insufficient to support normal 

vision. This discussion demonstrates that EP techniques provide 

experimental possibilities that may not be realised through 

psychophysics or single-cell studies alone, and that fruitful 

integration of these methods is possible in present-day brain research.

2.5.2 Applications of EPs in clinical medici ne.

The use of EPs in clinical practice suffered from an initial 

loss of credibility due to unfounded optimism initially placed in the 

technique when it was still in its infancy. They have since proved to
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be valuable in a number of Situations including diagnosis, treatment 

monitoring and direct involvement in surgical procedures, though it is 

fair to say that at present they only occupy a minor role in clinical 

practice compared with the more widely-used EEG.

EP techniques have proved useful in the diagnosis of disorders 

of the visual, auditory and somatosensory pathways. Lesions in these 

are often shown up as abnormalities of the EP, and in general there is 

good correlation between the severity of the sensory loss and EP 

abnormality. Information on the site of the loss can also be obtained 

from the nature of the abnormality in some cases. For example, large 

and significant delays are present in the VEP in conditions such as 

optic neuritis and in progressively demyelinating diseases such as 

multiple sclerosis. These delays can be reliably detected at an early 

stage even before clinical signs are present, and the use of EPs in the 

diagnosis of multiple sclerosis is one of the most successful 

applications of the EP technique [3].

A large number of applications take advantage of the objectivity 

of EP measures. Thus diagnoses can be made in cases when the patient is 

unable or unwilling to cooperate. This can be the case with babies and 

young children, coma patients or adults suffering from senile dementia 

or mental disorders. Harding [19] has demonstrated the value of EPs in 

assessing the integrity of the eye and visual pathway in accident 

victims who have suffered severe optic trauma. This can aid in 

treatment planning. Much interest has also focussed on the use of EPs 

in assessing visual and auditory function in babies and young children 

from the first weeks of life onward. This aids detection of abnormal 

neural development at an early stage when the system is still plastic 

and can be reversed. It also aids early diagnosis of diseases that



affect these pathways and permits detection of defects that can he 

corrected through the use of eyeglasses or hearing aids in time to 

prevent retarded development. Some examples of this work are described 

by Harden et al [20]

Other applications have been the use of EPs in surgery to locate 

more effectively the site to be removed, and to measure brain function 

under the influence of drugs or pathway dysfunction. Applications in 

psychiatry, in particular to the discrimination of psychogenic from 

pathological disorders, is one area where EPs provide a unique objective 

tool. Although it is fair to say that the applications of EPs in the 

clinical field are not as developed nor as widely adopted as for 

instance those of the EEG, there has been growing interest in the 

technique which is likely to continue in the foreseeable future.

2.6 Gross properties of Evoked Potential and EEG signals.

This section is concerned with a description of the EP and EEG 

in terms of their gross signal properties. A summary of these is 

important to enable suitable signal processing methods to be used and 

applied correctly. Indeed the very need for such methods is indicated 

b> a consideration of this material. Following a general consideration 

of interference sources, this section will be concerned with the most 

important properties of the EP and then with the EEG, which is the most 

serious interference component as it is unavoidably present in the scalp 

record and has many similarities to EP activity.

The very low amplitudes of EP signals requires elaborate 

procedures to record them with minimum instrumentation noise and 

external artifacts. This involves thorough scalp and electrode
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preparation, use of low noise differential amplifiers, careful screening 

and earthing procedures and care in siting the experimental equipment to 

avoid a.c. mains interference. With sufficient attention to these it 

is possible to reduce extraneous interference to acceptable levels.

In addition to these, interference from biological sources must 

also be guarded against. The four most common sources of biological 

interference in EP recordings are the ECG, EOG, EMG and unevoked EEG 

activity itself. ECG signals are generally not recorded at scalp sites 

unless a non-cephalic reference is used, which is generally avoided for 

this reason. EOG activity can be quite serious when the eyes are 

rotated due to a standing potential of several mV that exists between 

the cornea and retina of each eye. This can give rise to large 

artifacts, as rotation of the eyes through 10° can generate a d.c. 

potential shift of about 120 uV. This is not a major problem when visual 

fixation is employed, as it is in most VEP experiments, provided that 

fixation is maintained. Several techniques exist to remove these 

artifacts should this be necessary, e.g. [21],[22]. Examples of some 

of these artifacts are shown in fig. 2.5.

Activity generated by cranial or facial muscles can arise in the 

EP record, though again these can be minimised by suitable precautions. 

This includes adoption of a relaxed posture by the subject and avoidance 

of unnecessary body, head or facial movements. These can not always be 

avoided completely, particularly if inexperienced subjects or patients 

are involved, but are not usually a major problem when experienced 

subjects are used. Most muscle activity recorded at the scalp occurs in 

the main signal bandwidth, from about 14 Hz extending to beyond 100 Hz, 

and generally peaking 1n the range 30-60 Hz [23]. The EEG exhibits 

increased noise activity when these muscles are contracted, but there
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Examples of common artifacts in EEG records a) muscle activity,
b) pulse artifact caused by electrode overlying an artery,
c) ECG artifact, d) eyeblink and eyelid closure. (Adapted from 
Tigs. 5.9, 5.11 and 5.12 in Cooper, Osselton & Shaw [101).
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seems to be little correlation between this activity and the EMG 

recorded for the muscles involved, unless the scalp electrode lies 

directly over the muscle, indicating that nonlinear transmission 

processes are involved. The ongoing activity of the brain presents a 

fundamental obstacle to eliciting noise-free EPs, and for this reason 

will be considered in detail in a separate section later.

2.6.1 EP signal characteristics.

As previously discussed, many different types of EP can be 

recorded which have quite different signal properties. It is therefore 

intended to restrict this discussion to cortical EPs, with VEPs being 

the main examples in view of their importance to this thesis. In 

discussing these signals it is important to remember that the precise 

form of the response is greatly affected by the stimulation procedure, 

and that it varies in different individuals. The description must 

therefore be rather general, though sufficiently detailed to allow the 

merits of different techniques to be assessed. The discussion of EP 

signals centres on their amplitude range, temporal and spectral 

properties, and on the extent of the variability encountered. The 

significance of these will become evident when they are considered in 

relation to the EEG.

The main components of cortical EPs rarely exceed 30 yV and are 

often considerably less. The amplitudes are commonly measured from one 

peak to an adjacent trough, though some workers use a pre-response 

baseline to establish a reference level. The latter avoids confounding 

the effects of different components in the measurement. The EP is 

generally polyphasic in form, typically lasts 100-300 ms, and generally 

has several peaks of varying duration in the range 10-100 ms. Owing to
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the transient nature of the response (and the variation in 

characteristic form) it is generally inappropriate to use traditional 

spectrum analysis methods which assume time-invariance of the signal, 

though some estimate of spectral occupancy can be gained from these. It 

is better to examine how the frequency structure of the signal varies 

with signal duration, and this can be achieved by passing the signal 

through a series of bandpass filters of different centre frequency, or 

by employing joint time-frequency spectral methods [24].

Fig. 2.6 shows the result of applying such a method to a typical 

VEP and AEP, and clearly shows that a time-invariant spectral analysis 

can yield misleading results. From these examples it is clear that a 

fairly large bandwidth (approx. 200 Hz) is required for an accurate 

representation of the signal. Nevertheless the majority of clinical and 

research work employs much lower bandwidths, typically about 50 Hz.

This choice of bandwidth, though sub-optimal, is generally sufficient to 

characterise the main components of the EP and affords some attenuation 

of higher frequency interference, such as muscle-related activity.

The variability in form of the responses for different subjects 

and for different stimuli has already been mentioned. The latter 

clearly reflects physiological differences in perceiving different 

stimuli, and thus permits these processes to be studied. This has 

already been considered in a previous section of this chapter.

Differences in the form of responses to the same stimuli in different 

individuals also exist, and hinder direct comparison of responses from a 

pool of subjects. Statistical criteria can be defined by which abnormal 

responses can be identified, but signals from different subjects cannot 

be directly pooled for processing as though they belonged to one 

population. Apart from multivariate statistical procedures, techniques
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of signal processing are generally confined to a set of responses from a 

single individual to one stimulus.

Even within a set of such responses it is possible that 

trial-to-trial variations exist in the responses. It is important to 

consider this possibility for two reasons. Firstly some signal 

processing methods, such as averaging, implicitly assume that the 

underlying responses are identical and their efficiency or accuracy are 

impaired if this is not the case. This possibility is considered in 

more detail in the next chapter. The second reason is that variability 

can be an intrinsic source of information which may help our 

understanding of sensory processes, just as the variation in form 

arising in different individuals or with different stimuli can yield 

useful information. For this reason there is a growing interest in 

methods of analysis that are sensitive to individual response detail, 

though these are still at an early stage of development.
r

It is not clear from inspection of the raw records themselves ;

whether variability arises in the responses themselves or is due to the 

background EEG. In general the average EP is quite consistent and does 

not show marked variations in form. A substantial body of evidence does 

however indicate that the responses vary on a trial to trial basis.

Many studies e.g. [25] have shown that the first response to a 

train of stimuli is significantly different from the remaining ones.

This is illustrated in fig. 2.7 using VEP data from our own lab which 

were averaged according to trial number. Several investigations have 

shown that habituation of EPs does occur, with an exponentially decaying 

amplitude response and other characteristics of habituation [18]. Apart 

from differences in the first response this generally manifests itself



IGURE 2.7 Average VEPs obtained as a function of stimulus order. The 
first waveform is the average of the first response in each of 
16 separate runs, each run comprising 16 stimulus presentations. 
There is little evidence of habituation except that the first 
response is larger than succeeding ones. EPs obtained by 
presenting the stimulus for 500ms, at approximately 1Hz 
repetition rate.
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fjGURE 2.7 Average VEPs obtained as a function of stimulus order. The
first waveform is the average of the first response in each of 
16 separate runs, each run comprising 16 stimulus presentations. 
There is little evidence of habituation except that the first 
response is larger than succeeding ones. EPs obtained by 
presenting the stimulus for 500ms, at approximately 1Hz 
repetition rate.
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as a slowly decaying amplitude over the course of the experiment, and 

usually does not seriously affect the form of the averaged response.

Variations in form have also been shown to occur, and these have 

greater affect upon the average, as they 'smear' the fine detail of the 

response. The most easily illustrated example of this is variation of 

the latency of waveforms with regard to the stimulus onset. Studies 

have shown that the latency is affected by stimulus intensity and 

duration, such that near-threshold stimuli exhibit a significantly 

delayed latency compared with high intensity stimuli. It has been 

demonstrated by a number of workers that variability in the latency of 

individual responses to identical photic stimuli occurs in the range 

5-20 ms. Some workers have also explored the possibility that 

individual peaks vary in their latency and good evidence has been shown 

for this, in for example the work of Aunon and McGillem [26], though 

this has not yet been confirmed for other stimuli types or sensory 

modalities. It does indicate however that caution is required before 

assuming that each response is identical, though in general the
¥

variation in individual responses has not been sufficiently serious to 

affect widespread use of procedures that assume response invariance, 

such as averaging.

2.6.2 EEG signal characteristics.

The EEG is a continuous signal that is more readily analysed by 

traditional signal analysis methods. As with EPs the form of the EEG 

varies considerably with scalp recording position and from individual to 

individual, and is generally quite stable in frequency composition 

within a recording session provided that the subject remains in a stable 

state of wakefulness. The EEG takes on markedly different character
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when the subject becomes drowsy or falls asleep, but these changes are 

not of concern here as VEP experiments are generally carried out using 

alert subjects.

The characteristics of EEG signals are described in elementary 

texts such as [27],[28], but the main features of relevance to this 

study will be be presented here. The EEG appears to be a randomly 

varying signal, of approximate amplitude in the range 20-100 yV, with 

main signal power in a bandwidth of about 50 Hz, though frequency 

components beyond this can be recorded. A typical amplitude spectrum of 

a normal adult EEG is shown in fig. 2.8. Within the signal there are 

often strong rhythmic components, and early EEG investigations were 

primarily concerned with characterising these and discovering their 

relation to cerebral function and clinical abnormality. While clinical 

electroencephalography has advanced a great deal since then, routine 

analysis of records still include a description of EEG activity in terms
r

of the main alpha (8-13 Hz), beta (>13 Hz), theta (4-8 Hz) and delta 

(<4 Hz) bands. These will now be briefly described as they constitute 

the main activity of the normal waking EEG. Examples of these rhythms 

can be seen in fig. 2.9.

The most common rhythmic component in the waking EEG is the 

alpha rhythm, and this has received a great deal of research interest.

A distinction must be drawn between general activity in the alpha band 

and the alpha rhythm. The latter is defined as "rhythmic activity in 

the frequency range 8-13 Hz, being most prominent in the posterior 

regions, present most markedly when the eyes are closed and attenuated 

during attention, especially visual" [29].
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About 85% of healthy adults have an alpha rhythm in the 

frequency range 9.5-10.5 Hz, though some rare individuals have a mixture 

of the normal alpha rhythm and a different frequency rhythm, often half 

its frequency. The centre alpha frequency is quite stable in 

individuals, even from day to day, and varies less than 0.5 Hz, except 

at the onset of drowsiness or sleep. In about 66% of the population the 

amplitude is in the range 20-60 uV and it rarely exceeds 100 uV peak to 

peak.

The amount of alpha activity present in the waking EEG varies 

from person to person, and usually waxes and wanes in bursts or spindles 

lasting 1-2 s. In most individuals it is present for 20-80% of the 

record, though about 10% of normal adults show very little regular 

alpha, and a small proportion have a steady unvarying rhythm. Occipital 

alpha tends to be slightly asymmetrically distributed, and usually 

occurs with a greater amplitude and higher incidence over the right 

hemisphere, though the reason for this is unknown. Although it is often 

thought of as being sinusoidal, this is incorrect and the alpha rhythm 

can depart significantly from a sinusoid, even to having a spiky

appearance. Asymmetry of negative and positive half-cycles is also 

common.

In addition to the occipital rhythm, independent foci of alpha 

activity can arise in fronto-central and temporal regions in about 20% 

of normal adults. In both locations the frequency is often lower than 

alpha rhythm, generally in the range 7-11 Hz with a mean frequency 

of 9 Hz. In the central region the wave may have an n- or u-shaped form 

and is known as the mu rhythm. As with the alpha rhythm it can be 

fairly constant or intermittent. Unlike the occipital alpha rhythm it 

is not affected by eye closure or visual stimulation, but is blocked by
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real, intended or imagined motion, or tactile stimulation, particularly 

of the hands. It may be either bilateral or unilateral, and if the 

former, may appear independently in either hemisphere.

Beta activity is defined as activity occurring with a frequency 

greater than 13 Hz. Normally it is of fairly low amplitude and rarely 

exceeds 20 yV. it is commonly seen in central and frontal regions where 

it appears as an 18-24 Hz rhythm. One form of beta activity becomes 

evident when the alpha rhythm becomes desynchronized, and it appears 

either as rhythmic or randomly organized activity. In general beta 

activity is bilaterally synchronous, though it may have asymmetric 

features.

Theta activity (that is activity occurring in the 4-8 Hz band), 

is generally inconspicuous in the normal waking EEG. It is not uncommon 

to find it in central areas, though it is seldom the main pattern and 

tends to be of low amplitude (<15 yV) and intermixed with alpha and beta 

waves. It is rare for rhythmic activity to occur. Large amplitude 

theta activity (greater than 50% of the alpha amplitude) is evidence of 

clinical abnormality.

Rhythmic delta activity (that is frequency components less than 

4 Hz) is also rarely found, though it can occur episodically over 

occipital regions. Brief mixed alpha-theta bursts or single theta or 

delta waves may occasionally occur independently in the left or right 

temporal region or posterior region in some adults. These are often 

seen mixed with alpha waves in young adults and can be quite large, in 

the range 75-150 yV, but are attenuated by opening of the eyes. They 

often occur in both hemispheres but are usually asymmetric, being larger 

over the right hemisphere. They have no known clinical significance.
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2.6.3 EEG correlations over the scalp.

While there have been very many papers written on spectral 

analysis of the EEG, there have been relatively few comprehensive 

studies of the correlation properties of the EEG over the scalp in 

normal subjects, with respect to frequency. This is partly due to the 

large quantity of computations required and the difficulty in 

interpreting them. The results of some studies will be reviewed here to 

provide a general picture of what is known.

One of the first of such studies considered the correlated 

activity over posterior regions of the brain, using standard 10-20 

electrode placements [30] during an auditory vigilance task [31]. This 

yielded 6 channels of data that were subjected to detailed spectral 

analysis, including autospectral and cross-spectral power and coherence 

estimates. These were presented in the form of a combined 

time-frequency plot to permit ready assessment of the nature and extent 

of inter-channel correlations. An example of their results is shown in
¥

fig. 2.10. The study was performed on 30 normal subjects and the main 

results are now summarised.

The highest intensities occurred in two frequency ranges, below 

1 Hz and from about 9-11 Hz. Though the amplitudes varied over the 

course of the experiment, this general pattern was maintained. The 

coherences tended to be highest when the spectral intensities were high, 

and were most consistently high in the alpha band, except for channels 

cross-coupled with a transverse occipital channel. This occurred in 

spite of the fact that the occipital bipolar pair exhibited as much or 

more alpha activity compared with other channels, and was evidence for 

orthogonal transverse and longitudinal components of alpha activity. In
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some subjects there was greater coherence between longitudinally derived 

activity, while in others coherence was greater between transverse 

derivations. Of the 30 subjects considered, only 3 showed no evidence 

of orthogonality of transverse and longitudinal alpha activity, showing 

that this activity may not be considered to be transmitted isotropically 

over the scalp.

Dumermuth and Fluhler [32] performed a similar study using more 

electrodes over a larger scalp area, but used only one subject. Their 

results were similar and confirmed highest coherences in the alpha band, 

though several paired channels showed high coherences over much of the 

0-20 Hz bandwidth analysed. The results varied with location and 

orientation of electrodes, though neighbouring medial and lateral 

regions generally showed highest correlations.

2.6.4 Stationarity and normality of the EEG.

Any purely random process can be characterised in terms of its
*

statistical properties; indeed these form the only valid descriptors 

that may be employed. Because EEG signals largely appear to have random 

signal characteristics, much of the signal analysis of the EEG has been 

based on this approach. Two key notions regarding the statistical 

treatment of random signals are stationarity, and to a lesser extent, 

normality. Analysis is greatly simplified if one or both of these are 

true of the data.

A random process can be characterised by the ensemble of all 

possible sample functions that could be realized by that process. In 

dealing with time series data, the sample functions are an ordered 

sequence of data samples in time. The statistical relations governing
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the data samples can be used to characterise the process. Stationarity 

simply requires that the average statistical properties computed over 

the ensemble of all possible realisations must not vary with respect to 

translations in time.

The condition of strict stationarity requires that all 

statistical moments computed over the ensemble, that is the mean, 

variance and higher moments, be invariant with respect to translations 

in time. If this is true of the mean and variance alone, the process is 

termed weakly stationary, or stationary in the wide sense. A further 

distinction can be drawn in that if the ensemble-averaged statistics 

computed for a stationary process are identical to the time-averaged 

statistics for each sample function, the process is said to be ergodic.

Ergodicity is useful as it allows estimates of ensemble statistics to be 

computed from a single record. In practice, it is often only possible 

to obtain a single time record, for which it is appropriate to define 

the condition of self-stationarity. This is obtained if the time
ç

averaged statistics for each of a number of sub-records show no
*

statistical variation, and is the appropriate condition for EEG signals.

This will be referred to throughout this thesis simply as stationarity.

Another useful statistical description of a signal is its 

amplitude distribution function. A particularly useful situation exists 

when the probability distribution is gaussian or normal, which often 

occurs with real data. In this case the amplitude distribution can be 

characterised by the mean and variance alone, as higher moments are 

directly related to these. This ensures that strict stationarity is 

obtained when weak stationarity alone occurs. Many useful mathematical 

results are available for normal processes and for this reason they are 

often assumed to exist, even when this is not strictly true, as much
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useful information can be obtained. The signal can be defined in terms 

of the mean and autocorrelation alone, or in the frequency domain, by 

the power spectrum. Confidence limits for both time and spectral 

estimates are readily computed, although departures from normality are 

not thought to seriously affect the latter [33]. In addition linear 

transformations on the data are sufficient to yield optimal processing 

in the least mean square sense.

Each of these properties has been investigated in the EEG in a 

number of studies, owing to their importance in the statistical 

treatment of these data. There is general agreement that the waking EEG 

can be considered stationary for moderate intervals of 12-25 s, though 

normality is not so well obtained. In one study of 30 subjects, McEwan 

and Anderson [34] showed that 50% of 8 s epochs can be considered both 

wide sense stationary and normal, but stationarity alone was 

demonstrated for 50% of 64 s epochs. Kawabata [35] confirmed this by- 

reporting that the mean, variance and power in the range 0-17.5 Hz were 

stationary for 25 s epochs and for 90% of 50 s epochs. This study was 

based on two subjects, though another study of 104 subjects by Cohen 

[36] showed that the mean may be considered stationary only for 12 s 

epochs at the 1% significance level. Each of these studies employed 

different statistical tests, and the results were reported to be 

approximately the same for different scalp regions including occipital 

sites. Nonetheless it is fairly clear from an examination of the EEG 

record that short term nonstationarities do occur, so care needs to be 

taken before automatically invoking the assumption of stationarity.
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2.7 Sumary.

In this chapter evoked cortical potentials were introduced and 

described in terms of their physiological origin, relation to stimulus 

attributes and their signal characteristics. Visual evoked potentials 

to patterned stimuli are a particularly informative response, owing to 

the wide range of stimulus parameters that may be controlled, and much 

of the discussion was presented in terms of these signals. In addition 

material was presented to show the range of applications to which EPs

have been put, both in neurophysiology research and in clinical 

medicine.

General characteristics of both cortical EP and unevoked EEG 

signals were summarised. These show clearly the difficulty in obtaining 

estimates of the low amplitude EP from the raw signal record, and 

indicate the need for signal extraction methods. This section included 

a discussion of the correlation properties of the EEG over the scalp 

which is of primary relevance to the projected aims of this thesis.

Before proceeding with the theoretical and experimental details 

concerning this approach, the next chapter reviews some commonly applied 

signal enhancement methods used with EPs. This includes a discussion of 

their main advantages and limitations and provides further justification 

tor the investigation of novel signal enhancement methods.
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CHAPTER THREE.

A REVIEW OF EVOKED POTENTIAL SIGNAL ENHANCEMENT METHODS

3.1 Introduction.

In the last chapter the basic nature of evoked potentials in 

terms of neurophysiology and signal characteristics was briefly 

introduced. In this chapter I intend to review various methods of 

estimating EPs from raw records. Firstly signal averaging will be 

described, with regard to the underlying assumptions, followed by a 

number of techniques and modifications which may be employed when these 

assumptions do not hold. A number of alternative methods will also be 

described which attempt to improve upon averaging and even make the 

individual responses available. The coverage of this material is 

broadly similar to the review chapters of Aunon, McGillem and Childers 

in the Critical Reviews in Bioengineering series [51] [52] which may be

consulted for a more detailed description of the various techniques \

discussed.

3-2 Coherent signal averaging.

Signal averaging is the most widely used signal extraction 

technique, as it is simple to apply and is effective in many 

applications. As it has been described in detail elsewhere [39] only 

the main results will be presented here. The continuous-time signal 

i(t) recorded following the i'th stimulus may be considered as the sum 

neuronal response s^t), the background EEG activity e^t), and an 

signal a^(t), each drawn from an ensemble of sample functions 

representing a random process to include the effects of signal
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variability. This can be written:

x,(t) = s.(t) + e.(t) + a^t) (3.1)

where the mean signal component is s(t), and both e.(t) and a.(t) are 

assumed to be zero mean processes.

The ensemble average v(t) is the mean of all responses in the 

ensemble at each sample time. This may be written as

The rationale is that the underlying signal will be enhanced 

preferentially to the incoherent 'noise' activity such that given a 

large enough sample size N, reliable noise-free estimates are obtained 

of the average signal s(t). It is easy to show that in the limit the 

mean response will be the underlying signal s(t) and hence that 

averaging is an unbiased estimation procedure, viz:

that the artifact term is identically zero. Such an assumption may be 

justified for this analysis, as careful experimental procedure can 

largely eliminate these potential artifacts.

It is well known that when certain conditions to be described 

aPPly, the expected amplitude of the noise component is reduced by a 

factor of/N in the average. This result may be stated as:

N
v(t) = 1/N l  Xi(t)

i = l (3.2)

E[ v(t) ] = E[ s.(t) + a,(t) + e J t )  ]
= E[ s (t) ] 1 1
= s(t)1

noting that the EEG activity is assumed to have

(3.3)

zero mean and assuming

where

Pi(t) = /N . pQ(t) (3.4)
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Pl(t) ' s(t) / °x(t) (3.5)

is the input amplitude signal to noise ratio and

po(t) = '  %(t) (3.6)

is the output amplitude signal to noise ratio. ax (t) and ay (t) are the 

standard deviations of x.(t) and v(t) respectively. The conditions 

required for these results to hold are as follows. The signals s.(t) 

must be

(a) synchronous with the stimulus

(b) homogeneous, though nonstationary in general

(c) of finite duration less than the minimum stimulation period

and the noise samples ei(t) must be

(d) mutually independent for periods equal to or greater than the 

stimulation period

(e) independent of the signal

(f) stationary

It is thus implicitly assumed that the record x^t) is the 

linear sum of the signal and noise records. Mo constraint is made upon 

the EEG to be a normal random process. The requirement that the signal 

be homogeneous though not necessarily stationary simply means that each 

sample function may be nonstationary, as it will be for a deterministic 

transient signal, but nonstationarity with respect to the fixed lag 

times across the ensemble of sample functions. Although these 

conditio"5 are assumed to hold for a broad range of signals, they are 

often satisfied only approximately and sometimes may not even be 

PPlicable. A number of workers have therefore proposed modified or 

alternative procedures for use in such cases. These will now be

in the following sections, treating each condition separately.
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3.2.1 Signal not synchronous with the stimulus.

3.2.1.1 Latency correction of responses prior to averaging.

As has been demonstrated by Brazier and others [53] [26] the 

single EP can vary on a stimulus to stimulus basis which obviously 

degrades the performance of averaging, though these appear to be more 

serious for intracerebral recordings than for scalp recordings [42].

Variability in the time of occurrence of each EP is more serious since 

the resolution of the average is reduced and important features can be

smeared out'. In an attempt to deal with this, Woody [41] developed an

iterative procedure to identify the time of occurrence of each EP by 

crosscorrelation with a suitable template in order to align each

corrected response in time prior to normal averaging. This process can

then be repeated using the improved average as the new template until 

some convergence criterion is attained. His results on cat EP data 

showed a significant improvement in resolution, and many workers have 

since applied this technique. /

Wastell [54] applied a mathematical correction to Woody's 

original technique and studied its performance on human pattern VEPs.

His results suggested that iteration was proceeding beyond the point of 

meaningful improvement, due to an inadequate convergence criterion. It 

was recommended that the method be applied with caution by selecting a 

good initial template and employing a more sensitive criterion. Aunon 

and Sencaj [55] also studied the performance of Woody's filter using

flash VEPs, and found that although it sometimes yielded a larger 

response compared with signal averaging, it tended to lock onto and 

ance the largest component present and attenuate others. More 

seriously it was unable to discriminate between signal and noise and
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performed badly when applied to noise-only records, probably by locking 

onto the alpha waves. Steeger and Herrmann [61] also reported that 

application of Woody's method gave poorer results when applied to 

auditory EPs in man, and suggested that this was due to erroneous 

synchronization of EP-like transients in the EEG. and proposed an 

alternative method of detecting the signal which is optimally adapted to 

EP and EEG signal characteristics. They also recorrmended that a 

practical reliability test be performed which would estimate the number 

of erroneous synchronizations for a given SNR.

It has also been suggested that apart from variations in the 

latency of the overall response, significant variability in the latency 

of individual components of the response may be present. This has been 

supported by the evidence of a number of workers [59] [53]. it seems 

clear [26] that genuine latency variations are responsible rather than 

the statistical effects of the background EEG. may not be simply- 

attributed to the background EEG. McGillem and Aunon [58] proposed a 

technique they call latency-corrected averaging (LCA) to effectively 

deal with this difficulty. Their method, briefly, is to first apply a 

filter to the raw data to remove components characteristic of the EEG 

but not EP. The single trial data are then processed using a triangular 

window to identify significant peaks in each, and a histogram 

constructed of their distribution. The LCA is formed by aligning and 

averaging segments in the single trials that correspond to these. If 

desired, a continuous representation of the disjoint LCA may be obtained 

using a polynomial interpolation.

The authors claim significant improvements over both averaging 

and Woody's method [55] using both artificial and human VEP data. As 

previously mentioned, Woody's filter tends to lock onto the largest peak
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present, but if individual components are of variable latency then these 

will be attenuated. LCA does not suffer from this drawback as each 

significant peak is independently compensated for. The morphology of 

the average peak is preserved, but often peaks not evident otherwise are 

disclosed. Also the method works well in the case of noise-only trials 

in that only a small number of peaks are spuriously detected, unlike 

Woody's filter.

3.2.1.2 Deconvolution of the average.

Another approach, that of temporal deconvolution, was suggested 

independently by Sjontoft [57] and McGillem et al [58]. The basis of 

the method is that the (smeared) average can be considered as the sum of 

signals which have undergone random delays, and thus can be 

mathematically represented as the convolution of the underlying signal 

with a suitable smearing function h^(t):

xi(t) = s(t) * hi(t) {3#7)

where h.(t) is defined as a dirac pulse with random delays t . having

probability distribution (p.d.f.) p(t):

h,(t) - a(t - x,) (3.a)

Taking the Fourier Transform of v(t), the expectation of x,(t),

yields

V(f) " S<f) * M  (3.9)

where V(f), S(f) and P(f) are the Fourier transforms of v(t), s(t) and 

Pit) resPectively. The underlying signal may be estimated by applying 

the inverse filter P ^f) to the smeared average, but this method 

suffers from instabilities whenever noise is present in the records, 

which requires constraints to be applied in the solution.
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Sjontoft considered two types of convolving function having 

Gaussian and rectangular p.d.f.s whose mathematical properties enabled 

him to derive a computationally simple method of extracting S(f) without 

the use of the Fourier Transform. To deal with the noise problem, he 

suggested fitting a polynomial to the average and using it instead of 

the average itself to estimate the higher derivatives, though rigorous 

justification for this was not presented. McGillem and Aunon applied 

the inverse filter directly using the Fourier Transform, and simply 

truncated computation of its coefficients beyond significant signal 

frequencies, thereby avoiding the instability at higher frequencies.

While, again, this seems intuitively reasonable, no formal justification 

for this was provided.

Twyman and Lastimosa [60] applied the method of constrained 

least squares deconvolution to BSEPs. This method seeks an optimum 

solution based on some criterion, here taken to be a measure of the 

smoothness of the solution, to suppress high frequency components. It 

requires a priori knowledge of the convolving function and also the ^

noise mean and variance. As these are not known in this application, 

the authors modelled the EEG as a stationary zero-mean process and 

estimated its variance statistically. Then from a consideration of the 

likely mechanisms of spatial and temporal distortions, they used a 

Gaussian convolving function to approximate these for simplicity.

Enhanced resolution of previously indistinct components was reported and

authors claimed that this enabled more confident clinical 

assessments to be made.
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3.2.1.3 Phase averaging.

Two other methods of correcting for variations in response 

latency have been proposed. The first is the phase-locked time average 

developed by Auerbach et al [62]. This method computes the Fourier 

coefficients of each response and instead of summing these algebraically 

(which yields the Fourier transform of the normal signal average), 

averages them vectorially, using an augmented phase angle defined by the 

authors. This yields an average which may be inverse transformed to 

obtain the phase-locked time average. The method was developed to 

reproduce the average signal of a set of responses of varying amplitude 

suffering random delays to onset, buried in band-limited noise. Within 

certain operational constraints, the method has been shown to work well 

using an artificially generated test pulse buried in pink noise. Though 

this would appear to be a useful and rewarding technique, no further 

work has been reported regarding its application to evoked potentials or 

to determine its performance analytically or by other simulations.

*

Rodriguez et al [63] proposed a similar method known as 

unwrapped phase averaging (UPA). This also obtains an estimate of a 

deterministic signal experiencing random delays and buried in noise of 

similar spectral characteristics by operating on the Fourier 

coefficients of the raw data. Empirical evidence was presented showing 

that the average signal estimate could be derived from averages of the 

amplitude and phase spectra. However their method requires that the 

spectrum of the signal be a reasonably smooth function and that 

the signal amplitude spectrum be related to the noise spectrum by a 

known scale factor. The method of UPA gave good results using 

artificial signals in noise with SNR in the range 0 - 1 0  dB.

PPlication to VEP data yielded a more distinct signal than conventional
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averaging, but appeared to distort the EP estimates. This could be due 

to incorrect estimation of the SNR, or incorrect assumptions regarding 

signal invariance or noise statistics. No comparisons were presented 

with adaptive crosscorrelation averaging or deconvolution, so it is 

difficult to form any estimate of the applicability of the method to 

EPs. However both of these methods suggest that consideration of the 

phase response may well be important in the estimation of EP signals.

In summary, then, there are a number of procedures that may be 

performed when latency variations occur in the ensemble of records. If 

these occur in the whole response, then adaptive alignment by 

crosscorrelation, deconvolution or phase averaging methods can be used. 

The former requires a good template relatively free from noise and is 

best when SNR is fairly good, otherwise it tends to lock onto noise 

components and may give unsatisfactory results. Deconvolution by a 

number of methods is appropriate when some knowledge of the delay- 

distribution exists and has the added advantage of being able to 

compensate for temporal smearing if the transmission properties of the 

intervening tissues are known or can be modelled by a linear process.

The main disadvantages of deconvolution are that it is prone to 

instability as high frequency noise in the raw records tends to be 

amplified, and the nature of the delay distribution is usually not 

precisely known and has to be estimated. Although enhanced resolution 

claimed b> each group, no thorough case studies or simulations were 

presented to demonstrate the reliability convincingly. Indeed the 

inclusion of a deconvolution result using a deliberately large

spersion value by Sjontoft demonstrated the possibility of spurious 

enhancement.
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The phase averaging methods have not been sufficiently well 

developed to permit a fair assessment. Both are appropriate for fairly 

poor SNR data, but phase-locked time averaging appears to be more suited 

to EPs as UPA sets constraints which are less suited, such as signal 

invariance and known SNR which is frequency independent. The former 

onl> requires a priori knowledge of the approximate duration of the 

signal and extent of latency jitter, and yields the mean response if 

amplitude variability is present. Each of these methods can only 

compensate for delay experienced by the whole waveform, but LCA can be 

applied when individual shifts in latency occur in the different 

components. Although this has been given the fullest study of all of 

these methods, with the possible exception of Woody's filter, it has not 

featured in the reports of others' work and so independent confirmation 

of its potential benefits is unavailable.

3.2.2 Signal Inhomogeneity.

While averaging of a non-stationary signal is a simple extension 

of averaging of a stationary signal, the requirement of homogeneity is 

more stringent. Mere variability of the signal can be accommodated, but 

a fundamental requirement is that there be a well-defined signal to 

estimate, and by well-defined we can mean having a stationary mean value 

at each time point. It is impossible to form a single estimate of the 

signal otherwise as some distribution of waveforms would be implied. A 

good example where inhomogeneity occurs is in the case of habituation.

lear that in such a case averaging may yield a mean response, but 

one which is inaccurate and misleading, though it may serve as an 

Pproximation. if the nature of the inhomogeneity is known, e.g. an 

xponential 1 > decreasing amplitude of otherwise invariant responses, 

this can be dealt with appropriately in the averaging process.
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Bendat [39] allowed for this possibility in his analysis by permitting 

the signals in an ensemble to have time-wise correlations and computed 

the key results of averaging for this case. He also suggested that by 

comparing the averages of two ensembles with respect to the expected 

confidence limits (assuming homogeneity) it would be possible to 

identify non-homogeneous ensembles which could than be analysed on the 

basis of some predictive model of homogeneity.

Ruchkin [64] presented a technique to form separate averages 

corresponding to different categories or modes. Firstly an ensemble is 

examined to see if it is likely that there are several modes, and if so 

what latency ranges are involved. The ensemble may then be examined at 

these particular latencies to determine the modes present and at what 

point the boundaries are most likely to have occurred. Note that this 

technique requires the responses to be analysed in strictly ordered 

sequence, and thus is only useful for modes occurring in discrete 

sub-sequences. John [65] developed the Sort method as an extension of 

the previous method. The main difference is that it is not dependent on 

the contiguity of the various EP types. Briefly the method works by- 

examining the amplitude histograms of the single trials for each sample 

point, identifying those ranges of amplitude that differentiate 

non-homogeneous components, then classifying and averaging each response 

depending on the amplitude sub-range to which it belongs at selected 

time points. This method has been used successfully to identify EPs 

having different characteristics that would otherwise have been lumped 

together to provide a much less sensitive estimate. However it requires

eful application, and the author recommends independent validation of 

the results.
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of latency and amplitude variability and showed that variations in

amplitude are less serious, as the overall morphology of the signal is

not seriously affected, which is the object of most EP studies. Cummins

[66] has shown that signal averaging is not the best linear estimator

when significant amplitude variability occurs in the signal, and shows

that a better estimate is obtained if each response is weighted by the

value of its crosscorrelation with the deterministic response. Several

workers have proposed methods of selective or weighted averaging that

are based on this. Pfurtscheller and Cooper [43] analysed auditory EPs

using intracerebral electrodes, and by crosscorrelating the single trial

responses with a suitable template, they showed that significant

amplitude and latency variations are present in these. By selectively

averaging only those responses that matched given amplitude criteria, an

average was obtained that was 30% larger than the ordinary average,

suggesting that information is lost by the latter method. More recently

Gasser et al [42] used similar methods to obtain averages of

surface-recorded EPs which are less affected by variability in ?

responses. They employed a weighted averaging scheme, where each

response is assigned a weight according to whether it can be classified

as typical or atypical, on the basis of crosscorrelation with the

probable response template. A study of 42 children using flash VEPs

demonstrated convincingly that weighted averaging of inhomogeneous EP

data yields more reliable estimates of these signals.

So to summarise, an ensemble may be first assumed homogeneous

and then tested to see if this is valid. Whereupon various techniques

may be applied to determine the number and nature of the different modes

urring and by identification of these in the raw data, form averages

each homogeneous set. Only Bendat considers the case where there is
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a continuously varying inhomogeneity that may be modelled and analysed, 

as the other methods assume that a finite set of homogeneous modes 

exists.

3.2.3 Signal duration exceeding stimulation period.

Though EPs are generally considered as having finite duration, 

the desirability for short analysis epochs can cause a problem when long 

latency components persist beyond this, as distortions are introduced 

into the average. This is the case with the alpha-like 

after-discharge" that can follow photic stimulation. If this is still 

occurring at the time of the next stimulus, the responses will be 

clearly confounded. This is a particular hazard when periodic 

stimulation is employed. Ruchkin [67] has analysed this situation and 

recommended the use of aperiodica!ly delivered stimuli of some 

appropriate random characteristic. By estimating the duration of the 

signal from previous experiments it is usually possible to ascertain 

what stimulation rate is permissible to avoid overlapped responses. Use *

of this procedure with aperiodic stimulation is usually sufficient to 

avoid this problem.

3-2.4 Correlation between EEG records.

While short-term correlations do exist in the background EEG 

which itself may be approximated as narrow band noise, the assumption of 

uncorrelated EEG activity across sample records is universally made for 

simplification. It is not altogether unreasonable, particularly for 

longer records, though it is to be noted that short records are best if 

gnal repeatability and noise stationarity are to be ensured. Records 

ned using fast stimulation rates are more prone to suffer from
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having correlated noises, and lower (aperiodic) stimulation should be 

employed to minimise this problem.

The effect of correlated EEG activity in different records is 

not to introduce bias into the average, but rather to render the noise 

reduction process less effective such that the /N improvement is no 

longer obtained. Cummins [66] has indicated that signal averaging 

remains the best linear estimator even when the noise is correlated and 

time dependent, provided that variability of the neuronal responses is 

small. In such cases the variance of the estimate approaches a minimum 

value as averaging proceeds, rather than decreasing as 1/N. This 

suggests that there is a limit beyond which useful gains in 

noise-reduction may be obtained.

3.2.5 Correlation between the EP and the EEG.

This question is at the very heart of EP research, and is 

concerned with the appropriateness of the commonly used signal in <

additive noise model. There is evidence that the brain response (at 

least to auditory stimulation) is dependent on psychological factors 

such as arousal and anxiety. Changes in shape and amplitude have been 

obtained depending on task relevance and subject attentiveness [68].

Pattern VEP components are less sensitive to these factors, and the 

assumption of a brain response primarily affected by stimulus parameters 

is more nearly justified. Nonetheless changes in VEP form can be 

related to the nature of the background EEG, for example the flash EP 

vanes in form depending upon the phase of the alpha rhythm when 

stimulation is applied [68], Application of the stimulus can also 

affect the background EEG, exemplified by the attenuation of alpha 

activity following stimulus presentation [70]. It is clear then that
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the assumption of independence of EP and EEG activity must be treated 

with caution, though attempts to model this are uncommon«

It is not clear to what extent the EP is correlated with the EEG 

owing to the difficulty in differentiating between these signals in the 

raw responses. Salomon and Barfod [71] hypothesized that the EEG record 

following the stimulus is the sum of an impulse (filtered to represent 

the EP transient signal), and white noise, representing underlying 

random EEG processes, each processed by a common time-varying filter to 

represent the changing nature of brain processes. By applying a 

whitening filter to the data which effectively forms the inverse of the 

hypothesized common filter they were able to demonstrate that the 

inverse filtered EPs showed less variability, which provides some 

experimental justification for considering EP and EEG processes jointly. 

Basar and colleagues [73] have supported a model of EP generation 

processes based on coupled oscillators that are brought into synchrony 

by the stimulus. They report experimental evidence in support of this 

model based on intracerebral studies in cat using photic stimulation, 

though it is not clear how well these results may be extrapolated to 

surface-recorded activity in man using more subtle stimuli. Sayers and 

Beagley [44] have shown that better detection of near-threshold auditory 

EPs is possible by considering the relative phases of EEG components 

before and after stimulation rather than the amplitude response, on the 

grounds that the stimulus acts to alter the phase relationships of the 

spontaneous EEG frequency components. This has been challenged by- 

Jervis and colleagues [73] who argue that a purely additive signal in 

noise model will also result in phase re-ordering of frequency- 

components of the post-stimulus EEG. Their analysis of EP data in fact 

suggested that additive processes were more likely to be the main
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mechanism than phase re-ordering.

In addition to this study, evidence in support of an additive 

relationship between the EP and EEG comes primarily from the relative 

success with which well-defined EPs are reliably obtained using 

averaging procedures. EP components can often be reliably related to 

stimulus parameters and to neurophysiology. This is particularly true 

of the brainstem EPs though cortical EPs are acknowledged to be more 

susceptible to variability and influence of higher order mental 

processes. In spite of the evidence for superior detection of low-level 

auditory EPs reported by Sayers and Beagley [44], these authors admit 

that the hypothesis of additive EP generation processes is nonetheless a 

useful one in practice, and one that becomes more reasonable for 

stimulus intensities beyond threshold. Until this situation becomes 

clearer following further research, it is proposed to continue using the 

simple signal plus noise model implicit in averaging, while being aware 

of its possible limitations.

3.2.6 Nonstationarity of the EEG.

Stationarity of the EEG has already been discussed in some 

detail in chapter 2 where it was reported that short data segments in 

the range 12-25 s may be considered stationary. Stationarity is usually- 

assumed in the analysis of averaging for simplification. If this 

condition is not strictly met the improvement predicted by expressions 

such as (3.6) may no longer be obtained. Little mention of this 

difficulty occurs in the literature concerning signal processing of EPs, 

and the matter behoves further investigation, although in practice many

are content with the results gained from averaging, so it may not be 

onsidered too serious. The effects of suboptimal averaging are
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unlikely to be important for routine work when a certain amount of 

residual noise is tolerable in the average, but may affect long runs 

when small responses are being recorded such as to threshold stimuli.

3.3 Optimal Filtering.

3.3.1 A Posteriori Wiener Filtering

In attempting to obtain better estimates of the signal than 

averaging alone can provide, attention has recently focussed on the 

possible application of optimal linear filters, mainly based on Wiener's 

theory [37]. Although not an alternative to averaging, they may be 

considered as a useful adjunct to it. The motivation for such a 

technique is that a unique filter can be formulated on the basis of 

known signal and noise characteristics to optimally improve the SNR 

according to some criterion. Thus the filter is not a fixed filter 

designed on the basis of typical data, rather it is matched to the 

characteristics of a given data set to provide the best obtainable *

filtering operation in some sense. The potential gains lie in a reduced 

number of averages required to attain an arbitrary level of accuracy in 

the average, or alternatively, a more accurate estimate from a given 

data set. This work will be briefly reviewed, particularly with regard 

to the main conclusions that have been reached, but for a fuller review 

the reader is referred to [74].

Wiener's theory of optimal filtering [37] states that for a 

signal in noise such that both are uncorrelated, stochastic stationary 

Processes with zero mean, application of a filter H(f) defined as

H(f) = S(f) / ( S(f) + N(f) ) (3.10)
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results in an output signal which is optimally filtered in the least 

mean square sense. S(f) and N(f) denote the signal and noise power 

spectra respectively. The signal estimate $(t) is

s(t) = X(f) . H(f) ] (3.11)

where F *[.] denotes the inverse Fourier transform operation.
The resulting LMS error e(t) is

e(t) = E[ (s(t) - s(t))2 ] (3.12)

The effect of the filter is thus to weight the spectral components 

proportionally to the SNR at each frequency, (i.e. noise-only 

components are completely attenuated and signal-only components 

completely passed, assuming no spectral overlap).

Walter [75] first proposed the use of a form of Wiener filter to 

EPs where the signal and noise spectra were estimated from the raw data 

in an ensemble. His formulation proved to be incorrect for this 

application and was modified by Doyle [76]. I shall refer to this 

filter as an a posteriori Wiener filter (APWF). Since then a number of 

research workers have examined the use of APWF to both simulated and 

real data, with conflicting reports on the gains achieved, some 

describing it as extremely valuable and others dismissing it. De Weerd 

[74] has discussed the application of APWF to EP estimation and noted 

the following points:

a) Wiener s filter as originally proposed requires that the 

signal and noise be stationary, stochastic processes and yet in the 

estimation of the signal and noise power spectra by APWF, recourse is 

made to a deterministic model. This is inconsistent, though there are 

indications that this is not a very serious difficulty as long as the 

signal has a spectrum which is relatively time invariant. McGillem and 

Aunon [77] using essentially the time-domain equivalent of the APWF
X

'' 
r
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concluded that the resulting filter would be virtually the same for 

deterministic signals as for random stationary signals.

b) Because of the considerable spectral overlap between EPs and 

EEGs the Wiener coefficients generally lie within the range 0 - 1 .  This 

has the double effect of passing some noise and yet attenuating the 

signal at those frequencies, resulting in a distorted estimate. In 

marked contrast to averaging which introduces little or no bias, this 

can considerably degrade the morphology of the EP. It is even possible 

to obtain filtered estimates from noisy data which are better than the 

average in the least mean square sense, but which are so heavily 

smoothed that large distortions are present. This is a particular 

hazard of all optimal filters and necessitates the exercise of caution 

and control tests.

c) Related to this is the serious difficulty that as the signal 

and noise properties are unknown a priori, these have to be estimated 

from the data and thus only an estimate of the Wiener filter can be 

obtained, which obviously involves a departure from optimality. This 

question was extensively investigated by Strackee and Cerri [78] and De 

Weerd and Martens [45] who concluded that the estimated transfer 

function suffers from a large variance and negative bias at low SNR. It 

is often found that negative values are obtained for the filter 

coefficients due to chance correlations between signal and noise which 

is clearly a departure from the original assumptions. Commonly these 

negative values are simply clipped to zero, though this is a somewhat 

arbitrary procedure. More rigourously, Woestenberg et al [80] performed 

a statistical test on each filter coefficient to retain only those which 

could be confidently attributed to the signal and reject all others by 

clipping them. This does ensure that only genuine signal components are
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passed by the filter and thus represents an improvement, however the 

rejection of all coefficients below 0.8 (as happens for a confidence 

level of 95%) does mean that signal components are removed. De Weerd 

and Martens suggested that proper smoothing of the spectral estimates 

(with clipping of any residual negative coefficients) can significantly 

overcome this difficulty with much Improved results. Nonetheless the 

resulting filter can still only be regarded as an approximation to the 

optimal filter.

d) From studies of the time-varying spectral composition of EPs 

of various modalities, De Weerd and Kap [24] have shown that an 

empirical inverse relationship approximately exists between frequency 

and duration of EP activity. This means that a short burst of high 

frequency activity will have its power smeared out over the whole 

analysis epoch, resulting in a significant under-estimation. This has 

the effect of attenuating these components while also passing noise at 

the same frequency which might have been removed. This prompted 

research into a time-varying filter, which will be described later. K

In spite of these drawbacks, APWF in one of its modified forms 

can nonetheless yield improved estimates over averaging. It seems clear 

that the cases when this improvement did not obtain are particular 

examples of the difficulties described. Thus Carlton and Katz [79] 

failed to obtain improved estimates because they used EPs with a highly 

transient characteristic, and Wastell [81] demonstrated the problem of 

spurious signal components in the estimate that were actually due to 

noise. Better results are obtained when the signal is more periodic 

such as the EP employed by Hartwell and Erwin [82]. However the 

somewhat paradoxical situation is that as the SNR decreases, which is 

hen an alternative to averaging is most desired, the performance of the
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APWF becomes poorer as the filter coefficient estimates become 

increasingly less accurate. In particular it is less effective, or even

quite inappropriate, when sharply transient signals are being used, when 

a fixed filter is no longer adequate.

3.3.2 Time-varying filtering.

Stemming from this analysis of APWF de Weerd [83] 

developed a more generalised method, known as time-varying filtering 

(TVF). It differs from APWF in that it may be used to estimate 

transient signals as effectively as periodic signals. The process 

consists of estimating the power of the data record in the combined 

tine-frequency domain and then applying a filter whose transfer function 

varies in time over the duration of the sample record. This may be 

represented mathematically as follows:

G(t,f) =
(3.13)

S(t,f)

S(t,f) + 1/N N(t,f) 

where G(t,f) is the time-varying filter coefficient, and S(t,f) N(t,f) 

3re the Sl9nal 3nd no1se time-varying power spectra respectively.

Because time and frequency are inversely related quantities 

there is no physical measure that can simultaneously localize the power 

of a signal within an arbitrarily small region in time and 

multaneously within an arbitrarily narrow band in frequency. The 

on adopted by de Weerd and Kap was to employ a bank of filters 

whose bandwidth is proportional to their centre frequency so that

Urate tlme 1ocallzatlon of short duration high frequency bursts would 

ained, while longer duration low frequency activity would be 

> resolved in frequency. This scheme is compatible with the 

general characteristics of EPs. Instead of a continuum in the
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time-frequency domain, a quantized scheme is employed with regions of 

constant time-frequency product as basic units. The power of the signal

and noise can then be estimated in each of these regions over the entire

observation interval. The ensemble average record in each frequency 

band is modulated by the time-varying filter coefficients and the final

estimate formed from the sum of these. This may be described

mathematically:

S(t) “ ^Sqit) xq(t)
(3.14)

where xq(t) is the ensemble average record in the q'th band, g (t) is

the time-varying filter coefficient in the q'th frequency band! and s(t) 

is the TVF estimate.

Simulations have clearly demonstrated that TVF is superior both 

to APWF and to averaging in most conditions, and yields significantly 

improved estimates in terms of reduced noise activity. The method has 

also been applied to a large number of EPs of all modalities which have 

undergone clinical evaluation, with the conclusion that when used 

correctly it does offer advantages over APWF and averaging in nearly all 

Blind use of the technique is cautioned against, and the authors 

recommend that it be employed in conjunction with averaging, and only 

f°r data that contain a discernible EP. Its use is also recomended for 

obtaining improved estimates rather than a reduction in the number of 

eps as a small data set is more liable to give amplitude distortion.
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time-frequency domain, a quantized scheme is employed with regions of 

constant time-frequency product as basic units. The power of the signal 

and noise can then be estimated in each of these regions over the entire 

observation interval. The ensemble average record in each frequency- 

band is modulated by the time-varying filter coefficients and the final 

estimate formed from the sum of these. This may be described 

mathematical ly:

S(t) «,<*> (3.14)

where xq(t) is the ensemble average record in the q'th band, g (t) is

the time-varying filter coefficient in the q'th frequency band^ and §(t) 

is the TVF estimate.

Simulations have clearly demonstrated that TVF is superior both 

to APWF and to averaging in most conditions, and yields significantly 

improved estimates in terms of reduced noise activity. The method has 

also been applied to a large number of EPs of all modalities which have 

undergone clinical evaluation, with the conclusion that when used 

correctly it does offer advantages over APWF and averaging in nearly all 

Blind use of the technique is cautioned against, and the authors 

recommend that it be employed in conjunction with averaging, and only 

for data that contain a discernible EP. Its use is also r e c o r d e d  for 

obtaining improved estimates rather than a reduction in the number of 

SWeePS 35 3 Sma11 data Set is more liable to give amplitude distortion.

.i W
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3.3.3 Adaptive filtering.

Friedman and Carmen [110] applied optimal filtering to visual, 

auditor, and somatosensory EPs using an adaptive teohnique to determine 

the filter coefficients for each data set. The, were Initially 

concerned with making accurate measurements on a small number of single 

trials to painful stimulation with a view to determining the 

relationship between the levels of pain and EP amplitudes, which for 

practical and ethical reasons requires a single trial approach.

The Adaptive Filter (AF) will be described In detail in the 

following chapter, but briefly it is a self-adapting „near filter 

designed to achieve some specified filter performance, in this case to 

minimise the mean square error between the filtered responses and a 

given EP template. These authors first applied Woody's method to obtain 

a good quality average. Using this as tbe reference template they 

applied the adaptive filter to the single trials to remove activity 

unrepresentative of the template.

The results seem impressive, suggesting a significant 

improvement in SNR. The average of the AF outputs corresponded well to 

the conventional averages, indicating that little or no systematic bias 

was introduced, but individual filtered responses sometimes showed 

significant deviations. The production of the template is critical to 

success of this method, and in this respect the assumption of signal 

invariance is unfortunate. There are a number of other difficulties 

with this approach, but these will be discussed in section 4.5 after the 

theory of adaptive filters has been presented.
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3.4 Other Approaches.

Averaging, optimal filtering, and their variations are all 

unidimensional methods which seek to recover a signal added to noise on 

the basis of known or estimated characteristics. However they do not 

attempt to take into account data from other related signal sources. 

This promises to be useful in the context of EP processing, as it is 

relatively easy to obtain multi-channel recordings from a number of 

electrodes distributed over the scalp. The main difficulty is that as 

each electrode is located at a different site the responses vary, 

reflecting differences in underlying cerebral activity, tissue 

structure, transmission characteristics etc. Thus it is not a simple 

case of multi-source derivation of one signal, but rather a multi-source 

derivation of a large number of different, but correlated signals. The 

simplest way of obtaining noise reduction by the use of multichannel 

derivations is to take combinations of the activity in each channel.

The use of bipolar derivations can be an effective way of attenuating 

common activity in a given signal channel. When the spatial 

distribution of EPs are known, they can sometimes be enhanced by this 

method, as shown by Jeffreys and discussed in chapter 2. Incautious use 

of bipolar derivations can however lead to distorted estimates of the EP 

signals as will become apparent in chapter 7.

Hjorth [84] has described a novel way of determining the local 

> near an electrode, known as 'source-derivation'. Based on a 

theory b> Laplace, the mean curvature of the potential field 

stnbution is zero in an area if it contains no independent sources, 

^us the source derivation replaces standard derivations, which yield 

ty of an electrode with respect to some reference potential, 

with essentially the mean potential gradient directed at each electrode
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frc the neighbouring ones. The result is that the contribution of the 

potential field under the active electrode is accentuated relative to 

the surrounding electrical activity. Clinical evaluations have shown 

that this method gives similar results to standard EEG derivations, 

though it often localizes the source of activity better, „elding a S»R 

improvement between 2 and 4. studies of the correlations between 

activity of neighbouring electrodes give much smaller values than when 

standard derivations are used, supporting the idea that neighbouring 

activity is being effectively attenuated. The technigue affords a gain 

in topographical selectivity and can be considered as a spatial filter. 

Essentially , weighted sum of the neighbouring activity is subtracted 

fro. each electrode, which is a linear process. Though the technique is 

attracting growing interest, it is not yet widely adopted, though it has 

recently been applied to EP studies giving encouraging results in

attempts to map the scalp activity for different retinal areas 

stimulated [85].

There has been at least one attempt described to form a spatial 

average over a number of electrode locations rather than a temporal 

average using the sequence of trials [86]. The rationale for this is 

that some SNR improvement may occur as random noise in each channel is 

attenuated relative to the signal which may be sufficiently similar in 

channels to constructively combine. In this work the motive was not 

so .uch to form an accurate estimate of the underlying signal, but 

™ther to minimize the uncertainty in detecting its presence. Results 

strated that this can be obtained, but this method has to be 

applied with care as it is quite possible for an EP signal to reverse 

Polarity across the scalp which would obviously weaken the resulting 

output, it is therefore unsuitable for general use and has not been 

seriously espoused by others. It may be useful in certain known
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situations or if it is applied in a more sophisticated manner. Other 

than these no attempt has been published which seeks to use 

multi-channel EEC data in order to obtain improved EP estimates. This

clearly indicates the necessity for an extended study into this 

possibility.

3.5 Stannary.

This chapter has been concerned with a description of signal 

averaging and its limitations when applied to the study of evoked 

potentials. It has been noted that suboptimal and even inaccurate 

results can be obtained through use of averaging procedures in certain 

circumstances, primarily if the signal exhibits appreciable variability 

in form or latency in the ensemble of responses. While procedures have 

been developed to overcome some of these difficulties, involving 

alignment of variable latency responses prior to averaging and averaging 

of responses that belong to homogeneous subensembles, these techniques 

are still unable to overcome the limitations of nonstationary EEG 

records and require many responses to be averaged which can be 

impractical or impossible in situations that do not permit this.

Attempts to improve the efficacy of averaging by the use of ‘optimal1 

filtering have achieved some success in improving the quality of EPs, 

but still involve averaging of moderate numbers of responses and so do 

not significantly alter this situation.

There is therefore considerable motivation to develop other 

ns of improving upon averaging performance. Little work has been 

done on multichannel processing of data to obtain improved signal 

estimates by appropriate manipulation of these data, though some studies 

indicated that this possibility is worth pursuing. This is the
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approach that Is investigated in this thesis. As discussed in the 

introductory chapter, adaptive filters were considered to be a promising 

means of gaining signal improvements by using reference activity that is 

correlated with the primary signal channel. The next two chapters are 

therefore devoted to a discussion of the theory and methods of adaptive

filters, and will be followed by an account of the experiments performed 

to investigate this approach.
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CHAPTER FOUR

THEORY AND REVIEW OF ADAPTIVE FILTERS.

4.1 Basic Adaptive Filter Theory

4.1.1 Introduction

In this chapter the principles and some of the main theoretical 

results concerning adaptive filters will be reviewed. In particular, 

the Widrow-Hoff Least Mean Square (LMS) adaptive algorithm will be used 

as a basis for examining adaptive filter operation, though extensions 

and developments of this algorithm and more recent approaches will also 

be considered. The use of certain adaptive structures In signal 

processing will then be considered, followed by a brief review of 

previous applications to certain biological signals.

Adaptive filters are not a very recent development, having been

f,rst pr°p°se<l at ,east 25 w a r s  ago. They have been the sebject of 

•uch research since then and have been useful 1n a number of

applications In control engineering, conmunlcatfons and signal 

processing. The development of some of this research Is described In 

W ] .  Traditional,,, filtering has been perfonsed on continuous-time 

analogue signals b, electronic circuits employing fro,uenc,-dependent 

to achieve the desired function. Pioneering work on optimal 

filtering strategies for stationary stochastic signals was done by 

Norbert wiener In the 1940's and later extended b, Kalman and Bucy to 

non-statlonary signals [88]. Both of these approaches mgulre a prior, 

knowledge of the signal statistics for optimal perfonsance to be 

realised, though this may be approximately achieved 1f estimates only
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are available.

Apart from Kalman-Bucy designs, traditional filters are usually 

time-invariant and hence may not be suitable for signals whose 

properties vary In time. When the signal statistics are not known or 

cannot be accurately estimated, an adaptive solution may offer superior 

performance over Wiener filters and can approach the performance of 

Kalman filters with much less computation. As this Is the situation

that is encountered with EEG signals an Investigation of this approach 

was pursued.

An adaptive filter may be defined to be one whose 

characteristics are variable and adjusted during operation by a suitable 

control algorithm according to some criterion of optimality. Each of 

these three elements, the filter structure, adaptive algorithm and 

performance criterion will now be discussed, though the discussion will 

be limited to finite-precision sampled-t1me systems. The reason for 

this is that although similar methods and results can be developed for 

continuous-time or analogue signals, most of the work has been done in 

the context of digital signal processing. The advantages of digital 

filters are well known, and relate to the ease with which high 

Performance filters of predictable characteristics may be implemented on 

general-purpose digital computers or special-purpose hardware.

*•1.2 Adaptive Linear Combiner.

A simple structure that lies at the heart of many adaptive 

Iters is the adaptive linear combiner, shown in fig. 4.1. This 

samples N inputs at the chosen sampling rate, multiplies each Input Xl. 

b> « corresponding weighting coefficient wfJ. and combines the weighted



FIGURE 4.1
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inputs to form a single output yj where j Is the time Index. This may 

be stated as follows,

y. = [ x.. . w »
J 1=1 ij 1j

The reason for applying the subscript j to the weights {w^.} is 

that they are permitted to vary as filtering progresses. F1g. 4 . / also 

shows another input, the desired signal dj, which 1s used to train the 

adaptive filter. While this signal will not be available 1n general, 

(otherwise there would be no need for a filter), It 1s often possible to 

use a related signal to adequately train the adaptive filter. An error 

signal ej is obtained from the difference between the filter output and 

the desired signal at each sample instant and used to control the 

adaptive process:

There are a number of »ays of obtaining the Inputs (xj>. These 

»ay be derived fro. a spatial array of sensors, for example, and 

combined to yield a composite signal as In adaptive array processing.

I" this case the »eights form a spatial filter that allo»s the adaptive 

array to be optimally steered to the main signal direction, a process 

known as adaptive beamforming [89].

A particularly useful structure 1s obtained If the inputs are 

taken from a tapped delay line. In this case the linear combiner forms 

a transversal or finite impulse response (FIR) filter, and the whole 

tructure is known as an adaptive transversal filter (ATF). This is 

chematically in fig. 4.2. it 1s also possible to derive adaptive 

structures with Infinite Impulse response characteristics, but a recent
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review reports that these have not yet attained the level of maturity 

attained by the FIR algorithms, and considerable effort Is required

before robust algorithms with wel1-understood convergence properties are 

available [112].

4.1.3 Adaptive Transversal Filters.

Transversal structures are simpler to conceptualise and analyse. 

Two structures have been used to Implement FIR filters, the direct or 

transversal form, and the lattice form. Each has its own particular 

advantages and disadvantages which will now be briefly summarised. 

Transversal structures are based on the tapped delay line and linear 

combiner, as previously shown. This structure lends itself to fairly 

efficient implementation, with reductions in complexity possible, e.g. 

by time-sharing a single fast multiplier and accumulator. The 

correspondence of the tap weights with the model parameters is 

convenient for system identification and spectral estimation, though 

these are not explicitly required in this application. This 1s not the 

case with the lattice filter structure shown in fig. 4.3 which uses 

reflection coefficients that are not simply related to the model 

parameters, (though they can be extracted by a suitable transformation).

Lattice filters have the advantage that the solution for a model 

o f order N automatically produces the residual error signals for all 

models of lower order. This can be important for certain applications.

reason why lattice filters have come into prominence is their 

superior numerical properties. They are less sensitive to rounding 

errors and can tolerate shorter word lengths for the coefficients, which 

esirable features in practical Implementations [105], but they 

generally require more multipliers than the direct form. The lattice



CO
c
0  •

• r -  r —1
CD 4-> OsJ
CJ ro  r—

rO * r - ■M r—
“O  -*-> G  »—<

C  (D  -M CD
O P  ro CO E  »—1CO r — C. eu tr>- — cu •—  o
CD •'-3  -C  "O  C Lr—CO "O U i. E
*0 íO (O O t  
-Q <D co

CU S. QJ CDC i- 4-> <D O O
O  ro (O - P * i -  c+■» <u4-> G 

03 CU 
•—  *4- 

CU*— O) G 
03 G  

• r -  <U i- T3 _C 
O  1 .+ J  

*4- 03
a> c

C  < u * r
O  G

cu

S ^ a ;•r- -O *=- 1 
■ p  C  D i  CO ro .C cu
to ^  
to a» 
cu to to <-)■+->•»— 
o C E 
S- CU •« -Q-t- C 

U  V -
4- > *r—  E  C
• r -  C*_ O  
O  CD 4-> 
•t-> O
5- u Ë  O (U4J 

C+“  -G  »r™I—  i-“O oeu a>CO • i—
3  CD 03 

Gi- 3 eueu +-> >■M U*r-
* r -  G  Q . C+- -M i0 

CO T 3
CD ro  
>  CD 

• r -  ü  CD4-> ’i— _Ca-M-p 
03 4->

T J  «3 > ,  <C -O

CO

3̂-
ÜJo:
ZD
CD

4-> C0 »
3  r— JD'—  ‘r- ro 
O  f l r -  
C0 4—> •!— 

CD ro 
CU T3 >  

-C I ro  
4-> G

eu eu
* 0  .G  G  
•—  -M  03 
CD S.

• r  3  (✓) 
> > L u  G  

CD
CD 4-> 
U • r— 
C >>-r- 
Qir-Cp 
-C (O 

3  CD 
“O  O  >
C  C U * r  
(O C -P

ro  Q .
03

CD i—  T3 
0 ) 3  (O 
CO E

■M - r -  C i-
CO CO O



78 -

filter in fig. 4.3 requires three times as many multiplier operations as 

the equivalent transversal form.

As algorithms of similar complexity now exist for both lattice 

and transversal filters, the choice 1s dictated by the particular 

application. Here the main function 1s system modelling, though the 

model parameters are not themselves required. As It was envisaged that 

off-line processing would be performed using a general-purpose 

laboratory computer, at least 1n the Initial stages of the 

investigation, the numerical advantage of lattice filters was not 

important. The transversal structure 1s simpler to Implement and 

analyse and generally permits faster computation. It was therefore 

chosen for this study, though had It been necessary to construct a 

dedicated processor, a lattice form might well have been preferred.

The ATF can be used In a variety of situations such as noise 

cancelling, system identification and channel equalization. The 

principle behind all of these is the same and is based on the ability of 

the ATF to dynamically model unknown systems. The general situation is 

depicted in fig. 4.4 where the input and output signals, (possibly 

corrupted by independent random noise), to an unknown linear 

time-invariant system are used as the two inputs. The function of the 

is to form an output sequence (yj} from the input sequence {Xj} 

which closely approximates the desired signal {dj}. when convergence 

been attained the filter weights characterise the unknown system.
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4.2 LMS Adaptive Filter Algorithm

4.2.1 Theoretical basis.

The most obvious (and most common) criterion for optimizing 

filters is to minimise the mean square error (MSE), although this 1s not 

the only one that may be used [90]. Wiener's theory of optimal filters 

is based on this approach as this can yield the best possible linear 

filter for gaussian signals. Many signal processing and statistical

procedures adopt this approach for the same reason and because it is 

mathematically tractable.

The theory of AF will now be outlined using this criterion, and 

will closely follow that of Widrow et al [91] [92]. Recall the basic 

filter structure introduced earlier which yielded an expression for the 

output in terms of the filter input and weights. This may be rewritten 

using matrix notation. Throughout this thesis the following conventions 

will be observed; matrices and vectors will be underlined, while scalar 

quantities will be printed in normal type. The transpose of a matrix 

will be indicated by the superscript T. Equation 4.1 may thus be 

rewritten:

yj = Xjw = w'xj

where the input vector at the j'th sampling instant is

(4.3)

h  = I*OjXlj * ‘ * * V l i  ] (4.4)

r
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and the weight vector 1s

-  ' r wo "i • • • Y i J (4.5)

The object of the adaptive algorithm Is to choose weights such that the 

MSB signal 1s minimised. The MSB is formed by squaring expression (4.2) 

and taking expectations over the ensemble, where E[.] denotes the 

expectation operator, thus

E[ef] E[d|] - 2E[d.x}]t| ♦ »TE[Xj xJ:« (4.6)

This may be written

E[e|] = E[df] - 2PTW + WT|RW

where P and R are the Input correlation matrices defined by

(4.7)

P = E [ dj Xj]

^  ̂ d.x • • • d x 1J Oj j lj j*N-lj J

(4.8)

and

R = E [ Xj. XJ ]
(4.9)

.IV'll
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= E

X
Oj

X
Oj

X X
Oj lj O

X••• X
N-lj

X
lj

X
Oj

X X
lj lj

• • • X
ij

X
N-lj

x x  x x
N-lj Oj N-lj lj Y l j Y l j

For stationary Inputs the MSE 1s a quadratic function of the 

weights that can be pictured as a concave hyperparabolold. This 

function has a unique minimum which may be found by differentiating 

(4.7) with respect to the weights {wi} to obtain the gradient VEte?]

V E[ef] = -2P + 2RW (4.10)

When this is set to zero, this results In the matrix formulation of the 

Wiener-Hopf equation, yielding W° as the optimal weight vector.

o -l 
W = R l p

(4.11)

The development of the adaptive filter theory up to this point 

has been in terms of a general multi-input filter. This will now be 

particularised to the case of adaptive transversal filters. For these 

~ 3 represents the tapped delay line at sampling instant j, thus

*  = C V l  • • • Xj-N+1 ] 

in this case the correlation matrices are

(4.12)

1. 
'
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R =

and

rxx(0) rxx(D • • • rxx("-D '

rxx(D

•

rxx(0)

•

• • • ’•xxC-2 )

• •

(4.13)

• •

rxx(N-i) :

• •

* • • rxx(°)

xdCO) rxd(D • • • rxd(N-l) ] (4.14)

Where rxx(k) and rxd(k) are the discrete cross-correlation and 

autocorrelation matrices defined by

r**(k) - e c xj xj t t :

rx d W  ■ E : X. d.
J J+k J (4

The equivalence of expression (4.11) with the discrete 

Wiener-Hopf eqeetlon 1s reedtl, shown. ^  latt0r M J  ^  state(f ^

N-l

L  rxx("-') ■ rxd(k)4=0 (4.17)

for the finite-length, one-sided opttaal filter. This ■», be rewritten 

in matrix form

W° R = p

which is clearly equivalent to (4.11).

(4.18)
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By noting that the z-transform of the convolution sum in (4.17) 

is equal to the product of the z-transforms of w°(k) and rx (k), (4.17) 

may be written

W°(Z).6XX(Z) = 6X(J(z)

and hence

W°(z) = 6xd(z) / 6xx(z)

where

W°(z) = l  Wo(k).z-k
k=-®

6xx(z) = l  rxx(k).z-k
K = -a>

6xd<z) = J  rxd(k).z“k
K = -OD

This result will be convenient in later analysis of adaptive noise 

cancelling.

While it is possible to compute the exact solution from 

P ession (4.11) this is impractical when the number of weights is 

Targe or the data rate 1s high as it Involves N(N+l)/2 correlation 

measurements and the Inversion of an NxN matrix. In addition this 

Process needs to be repeated continuously if the signal statistics are 

trying with time. In general R and P will not be known, though direct 

inversion of the sample matrices can be employed when these can be 

mated [93], Recent techniques which have been developed to do this 

more efficiently than by direct calculation are described briefly in a

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)
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later section, but do not have the same computational advantage as the 

Iterative methods.

The Widrow-Hoff LMS algorithm can circumvent this difficulty by 

providing a simple Iterative procedure to achieve convergence of the 

filter to the Wiener solution. This algorithm does not explicitly 

compute the correlation matrices or matrix manipulations and only 

requires that the weight vector be adjusted from estimates of the 

gradient, in addition to computing the transversal filter output. The 

algorithm is based on the method of steepest descent to find the minimum 

of the error function. This Involves adjusting the present weight

vector by an amount opposite In sign and proportional to the magnitude 

of the instantaneous gradient, thus

“ 1+1 * U Ĵ' (4.24)

u is a parameter that controls the rate of convergence and stability.

This is illustrated in fig. 4.5 for a one-weight filter, showing the 

parabolic error surface and several Iterations of the weight vector as 

U  converges to the MSE solution. The LMS algorithm uses an estimate of

the gradient v based on the Instantaneous error ej rather than the true 

error gradient, thus

3e| 3e|



error

MMSE

a)

error

weight

Diagram illustrating successive iterations of the gradient descent

one^weight filter"" fl?h ? r ab?-a rePr^ ent? the error functl'°" for a .  ̂filter. Each iteration of the algorithm adjusts the weiaht
to converge to the minimum mean square error (MMSE) solution, w°.

MMSE

b)
iteration number

¡ S k ? . T S S  a  B  s s s y

" " • >  " » e d  bj " a d ! l i r e “ 5™t?Sn'idr“ rsmean tr,JeCt0ry «“ "O'*

FIGURE 4.5



- 85 -

— iT

(4.26)

S = "-3

Using relations (4.2) and (4.3) this can be written

*  = -2eJ^j (4.27)

which when applied to equation (4.12) result In the Widrow-Hoff weight 

update algorithm

W = W-- + 2 u p  Y •
-j+1 -J ^ eiAl (4.28)

This procedure provides an unbiased estimate of the Wiener weight vector 

W° if the inputs are uncorrelated, though published reports indicate 

that even strongly correlated signals may not seriously degrade filter 

performance [94].

4.2.2 Convergence of the LMS Adaptive Filter.

The stability and convergence properties of the steepest descent 

gradient searching algorithm presented here have been analysed by Widrow

Ct 31 i 9 1 1 m  A Summary of the main results will now be presented, due to 

their importance to this investigation.

Unconditionally stable operation is obtained provided that

0 < u < l / X ^  (4.29)

Where W  Is the largest eigenvalue of R. In general R or Its 

eigenvalues will not be known, but a sufficient condition which ensures
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that (4.29) 1s satisfied 1s

0 < u < 1 / l  E [xf]
1=1 1 (4.30)

since the sum of the eigenvalues 1s equal to the trace of a real 

symmetric matrix. It is convenient In practice to use the normalised 

convergence coefficient y', which ensures that stability is guaranteed 

provided that

0 < y' < 1 (4.31)

u1 is then defined by

N
w' = v  l  E [x2] 

i=1 1 (4.32)

Another important property is the convergence time, which has 

been shown to be exponential. In general each weight coefficient will 

not converge to the optimal value at the same rate. It is possible to 

analyse the convergence of the AF in terms of a set of transformed 

weights iw'j} which are mutually orthogonal. These converge 

independently according to a first order relaxation process which 

constitute the basic modes of the adaptive system. The p'th mode has a

constant tp that is related to the p'th eigenvalue xp of R as 

foilows (for the case of slow adaption)

1 / 2yXp (4.33)

where Tp is measured in units of iteration cycles. The time constant 

for the MSE arising from the p'th mode is half this value, i.e.
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Tp(mse) “ 1 / 4uxp (4.34)

This expression shows one of the major defects of this algorithm 

in that different modes may converge at different rates. By noting that 

the maximum possible value of „ 1s l/xmax (4.29). 1t may be seen that 

the slowest converging mode is that corresponding to the minimum

eigenvalue Xm1n, and hence overall convergence is limited by the ratio 

of the maximum to minimum eigenvalues. This results In a lower bound 

upon ip(mse) as

"in {xp(mse)} = xmax / 4 xfn1 n (4.35)

It is this difficulty that has prompted research into adaptive 

algorithms that are independent of eigenvalue spread. These are briefly 

reviewed in a later section. While it is difficult to ascertain the 

eigenvalues of an unknown (and possibly time-varying) system, it can be 

shown that the eigenvalue spread corresponds approximately to the spread 

in spectral power density for large N [95]. This can be useful to 

determine whether or not the LMS algorithm is viable in practice.

It may be helpful to consider fig. 4.6 to visualize this 

situation. A set of equi-valued contours of the mean square error 

surface are plotted as a function of the weights for a two-weight AF.

In general the contours are ellipses whose major and minor axes 

dimensions correspond to the eigenvalues of the autocorrelation matrix, 

and the directions of the principal axes are parallel to the 

eigenvectors, it 1s clear that the perpendicular to the gradient of the 

error surface does not pass through the minimum, resulting in a 

uboptimal trajectory. This can seriously degrade the convergence when 

the ellipse dimensions are very unequal, but Wldrow has argued that 

iess the ratio is very large (>10) this may not present difficulties
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in practice.

An important property is the accuracy with which the filter may 

be expected to converge to the Wiener solution. Due to statistical 

errors in the samples which result in gradient estimation noise, the 

weight vectors rarely converge to the exact solution, resulting in an 

error greater than the minimum MSE. A dimensionless quantity that 

reflects the weight vector 'misadjustment' has been defined [87] as

excess mean square error
M = --------------------------

miminum mean square error
(4.36)

It is shown in [91] that the misadjustment can be related to the filter 

order and average eigenvalue by the expression:

M u N Xave (4.37)

where xave is the average eigenvalue. This may then be rewritten using 

expression (4.32) to yield a useful relation for the misadjustment in 

terms of the filter order and the time constant of the adaptive process, 

assuming that all the eigenvalues are equal:

M = N / 4 Tp(mse) (4.38)

Note that u' is exactly equal to the misadjustment M, since the sum of 

the diagonal elements of a real symmetric matrix is equal to the sum of 

the eigenvalues.

There are two practical points regarding adaptive transversal 

filters that will now be briefly mentioned before going on to discuss 

the performance characteristics. The first 1s a simple modification 

that can be made to permit data having non-zero mean to be filtered.
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correct solution, and can even become unstable. Ferrara [96] has 

analysed this difficulty and proposed the simple expedient of augmenting 

the weight vector by an additional 'bias weight1, and the tapped delay 

line with a constant to represent the dc component to be filtered out,

viz:

-  = [ 1 xi * * * XN ]T (4.39)
and

W = C w0 • • • wN ]T (4.40)

The effect of this is to adaptively compensate for any dc 

component present in the input. Further details are available in the 

reference [96]. This simple modification is straightforward to apply 

and carries with it very little overhead.

The second consideration is that of causality. The theoretical 

treatment outlined in the previous section required an infinite-length, 

two-sided (and therefore non-causal) filter, which is not physically 

realizable. As typical Wiener impulse responses tend to decay 

asymptotically to zero from the centre of the response, it is usually 

possible to implement an approximate solution using a finite length 

transversal filter. To correct for the delay that arises in the filter 

output due to the two-sided filter Impulse response, a corresponding 

delay is inserted into the primary input. This results in an overall 

delay in the filter output, but is not important in many practical 

situations, such as offline processing or real-time processing using a 

delayed time reference. The delay required is not critical, and Widrow 

et al [g2] suggest that a value of approximately half the filter length 

is satisfactory. The weight vectors will converge to the desired 

two-sided response centred about the chosen delay value.
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4.2.3 Filter Performance.

The effect on filter performance of the parameters N and u will 

now be discussed. To do this three aspects will be considered,

(i) filter accuracy

(ii) speed of convergence

(iii) computational accuracy

The first two are of importance in characterising the 

fundamental dynamic properties of the filter, whereas the last is 

primarily of Importance as regards implementation, though this can have 

considerable bearing on practical designs. Filter inaccuracy can be 

represented by the difference between the ideal filter and the actual 

filter output. Inaccuracy can arise in several ways which will now be 

briefly discussed.

a) errors in the weight vectors due to the use of the instantaneous 

gradient instead of the true gradient. These are present even when 

the filter has attained convergence in the mean, and the weights at 

each sample time merely fluctuate about the true solution.

b) errors in the weight vector arising from inability to track 

nonstationary events in the data (if present)

c) insufficient weights to adequately represent the Wiener solution, and 

<i) lack of precision in storing the filter weights and performing the

filter computations.

The first is a feature of the LMS gradient search technique and 

represents the lower limit 1n accuracy obtainable by this method, though 

arbitrarily small misadjustment error can be achieved by using a
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sufficiently slow adaption rate (equation 4.35). The errors due to case

b) can be minimised by ensuring that adaption occurs rapidly. This is 

in conflict with the previous requirement and a compromise is required. 

This will be discussed presently, c) and d) need not present a problem 

provided that sufficient attention is paid to these in the 

implementation.

The choice of N is governed by the need to represent the Wiener 

response with sufficient accuracy, though the minimum value to achieve 

this is clearly preferable. As the solution is generally not known a 

priori, this choice is often made heuristically, guided by knowledge of 

the system and past experience. The number of weights is given by the 

ratio of the sampling frequency to the desired frequency resolution 

[91], This is easily shown as the Fourier transform of the impulse 

response yields N/2 amplitude coefficients which must span the frequency 

range up to the Nyquist limit. No analytic expressions have been 

published to select the optimum value of N for any given situation.

When N has been selected, the misadjustment is determined by the 

value of u. Widrow suggests that a suitable strategy is to choose u to 

obtain a misadjustment of approximately 10%, which is likely to be 

acceptable for many practical applications [87]. When filtering short 

data records, it may be more desirable to have fairly rapid adaption to 

obtain efficient filtering and reduced processing time. In practice the 

initial converging phase in the output can be avoided by applying the 

filter a second time using the converged weight vector. This can only 

be done if the data are stationary and off-line processing of the 

signals is employed.
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If the data are non-stat1onary to some degree, the choice of y  

is no longer arbitrary and must be made to achieve satisfactory tracking 

performance. Nonstationary systems are notoriously difficult to analyse 

but an initial attempt has been made by Widrow et al [91] using a simple 

form of non-stationarity. They concluded from a theoretical and 

experimental standpoint that the best compromise between misadjustment 

and mistracking errors was to make these equal. This may be used to 

determine the value of y  if the nature of the nonstationarity is known, 

but a heuristic approach is likely to be necessary in practice.

The precision with which the filter coefficients are stored and 

the computations performed are important. These considerations have 

been examined in some detail by Caraiscos and Liu [97] who derived 

expressions for the contribution to the MSE arising from the 

computational process for both fixed point and floating point 

implementation. In general the precision of the arithmetic and weight 

storage is more important than that of the data. This can be seen 

intuitively by considering the basic algorithm (4.28). If y is small, 

it is possible for the update term to be less than the quantization 

interval, which will prevent convergence from being attained. For this 

reason the weights need to be stored with greater precision than the 

filter computation itself requires. If 8 bit precision is sufficient to 

represent the data (as it is in many applications) much higher precision 

is required for the weight storage and computation, in the range 16-24 

bits [112]. The precise value will depend upon the value of y  used.

The use of single precision floating point operations, typically 

employing a 24 bit mantissa and 8 bit exponent, is therefore considered 

adequate for many applications.



93 -

The computational time using a serial processor is approximately 

equal to 2N multiply and add operations. This can be achieved in real 

time by small computers at low data rates, but may not be possible for 

data rates corresponding to typical biological signals when the filters 

have many weights. This may not be a problem in off-line analysis, but 

hardware designs can readily be implemented should they be necessary.

The memory requirements are relatively small, being approximately 2.5N 

storage cells for the filter weights and delay lines. In addition the 

code requirements are small due to the simplicity of the algorithm.

These factors contribute strongly to the widespread use of this 

algorithm.

4.3 Improved LMS algorithms.

While the Widrow-Hoff method of steepest descent is probably the 

most widely used and understood adaptive algorithm, it may be inadequate 

in some circumstances due to slow convergence. Research in recent years 

has been directed at finding algorithms with superior convergence 

properties, and also at methods of achieving computational reductions.

The former is particularly important for applications to non-stationary 

systems. Algorithms which offer computational savings are of most value 

to real-time systems where the data rate is high and filter order fairly 

large. As it was envisaged that the technique would be implemented on a 

general-purpose laboratory computer for off-line analysis this was not 

the most important aspect, though obviously a fast algorithm is 

desirable to achieve efficient data analysis. Some of these techniques 

will therefore be briefly discussed.
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4.3.1 Block Filtering

Substantial computational savings are obtained if block adaptive 

filtering is employed as this permits costly convolutions and 

correlations to be performed more speedily using the FFT. Significant 

computational savings can be achieved over the normal LMS method for 

N > 32. This may be done by partitioning the input data sequences {dj> 

and {Xj} into blocks of length L and performing adaptive filtering upon 

each in turn. Clark et al [98] have shown that maintaining the filter 

weights constant throughout each block and updating the weights once at 

the end of each block is essentially equivalent to the normal LMS ATF 

when the inputs are stationary, though the output sequence iyj} is 

delayed by one block length. (This is usually not important except for 

signal processing applications that involve control operations or other 

real-time applications.)

It has been shown that the adaption accuracy and speed are 

similar to the normal LMS method, provided that the time lag between the 

input sequences is small compared to the block length. Because the 

weights are only updated once every L samples, to achieve the same 

convergence rate and readjustment uB (the block LMS parameter „) must 

be equal to uL. However the stability conditions for v  and uB are 

identical, which may restrict the value of uB in cases when fast 

adaption or large block length are involved.

♦•3.2 Frequency Domain Adaptive Filter

In the previous section the FFT was simply used to reduce the 

number of computations Involved in the time-domain BLMS ATF. A 

frequency-domain ATF can be constructed with the same computational
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advantage through the use of the FFT, but which is structurally 

different from the time-domain AF. Instead of having a weight vector 1n 

the time domain which is used to implement the transversal filter, it is 

possible to define the filter in the frequency domain, with the weights 

acting upon the Fourier coefficients of the data sequences. The complex 

form of the LMS adaptive algorithm must be used in this case [111],

Clark et al [99] have shown that this structure is equivalent to the 

time-domain AF. An example of this type of structure is shown in 

fig. 4.7.

There are two reasons for considering frequency-domain ATFs 

whose weights act on the frequency transformed data. Firstly, the use 

of a single weight for each frequency bin can introduce simplifications 

into the analysis of their performance, which is very difficult in the 

time-domain versions. This can arise if the input data can be 

considered as uncorrelated random processes, in which case each filter 

weight is adjusted independently of the others, permitting analytic 

expressions for the MSE statistics to be derived. More importantly, the 

convergence of these filters can be optimised by computing convergence 

coefficients for each weight, so that the eigenvalue spread need no 

longer restrict the adaption speed, since each mode can adapt at the 

same rate. Several schemes to implement this have been proposed as 

discussed in [100] and [101]. Since the filter weights are held 

constant throughout each block, the filter is unable to respond to rapid 

changes, which can be a disadvantage if continuous tracking of the

system is important. In these cases sequential updating algorithms must 

he employed.
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4.3.3 Time-sequenced Adaptive Filter

A modified version of the basic LMS ATF known as the 

Time-sequenced Adaptive filter (TSAF) was introduced by Ferrara [96] 

[102] to permit adaptive filtering of a class of non-stationary data to 

be described. It offers the possibility of effecting rapid changes in 

the impulse response to sudden non-stationarities, while maintaining the 

accuracy of slow adaption. This technique is suitable for recurring or 

periodically occurring signals when the recurrence moment (or period) is 

known a priori. In such cases the data may be considered to be composed 

of piece-wise stationary segments of known duration with respect to the 

signal recurrence moment. For each piecewise stationary segment there 

will be an associated error surface and optimal weight vector. By using 

a different weight set to form the filter output during each separate 

segment, it is possible to achieve the optimal time-varying filter, 

whereas a normal AF would converge to the best time-invariant filter. A 

block diagram of the time-sequenced approach is presented in fig. 4.8. 

Ferrara has analysed this technique and verified its validity both 

theoretically and by computer simulations. In appropriate situations 

the gain in signal improvement can be substantial, permitting finer 

detail to be resolved. This is gained with little extra computational 

overheads since only one weight set is used at any moment. The storage 

requirements are greater as a result of the extra weights.

♦•3.4 Multi-reference Adaptive Filter

A powerful extension of the basic AF is the multi-reference AF, 

introduced by Widrow et al [92] [103]. If several linearly Independent 

reference inputs are available containing components correlated with 

those in the primary input, it is possible to provide a filter structure
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that permits attenuation of these components. This is shown in 

fig. 4.9. In the simple two-1nput AF the weights are updated at each 

sampling instant by a computation involving the reference signal and 

error signal. This can be extended to the case of a multi-reference ANC 

by forming a combined reference output from the sum of each filter 

output, and using the resulting error signal to adapt the weights of 

each individual filter as before. These then converge to the 

multi-reference Wiener solution which optimises the MSE in the desired 

signal estimate.

A very brief description of this filter is contained in [92], 

but lacks important detail. In particular no analysis of convergence 

properties or other filter parameters was presented, though a recent 

paper by Ferrara and Widrow [103] analysed the case of a multi-reference 

adaptive filter that may be used to enhance a signal in additive noise 

when several such channels are available. In this case each channel 

contains signal components whose precise waveform may vary but which are 

correlated with each other, albeit in unknown ways. The noise signals 

are uncorrelated with each other and with the signal from channel to 

channel. Simply adding the channels together can lead to severe signal 

distortion and may not provide the best possible noise cancellation, 

especially if the signal to noise powers vary in each channel. The 

multi-reference adaptive filter seeks to optimally combine these to 

provide a relatively undistorted signal estimate with maximum noise 

cancellation. Formulae were derived for the signal distortion and 

output noise power which showed that good estimation of the signal is 

possible provided that the sum of the individual channel signal to noise 

power ratios as a function of frequency is large compared to unity at 

all frequencies. The output SNR is then approximately equal to the sum 

of the individual channel SNR figures and distortion is small. Note
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that this mode of using the adaptive filter 1s complementary to the 

adaptive noise canceller to be described In the next section, which 

assumes that It 1s the noise signals that are correlated In the 

reference channels. The channel enhancement mode of applying an 

adaptive filter 1s illustrated in fig. 4.10.

4.3.5 Exact Least Squares Algorithms.

In recent years activity has focussed on adaptive algorithms 

which attempt to compute the exact least squares solution at each sample 

time. These can offer significantly faster convergence than gradient 

methods if the eigenvalue disparity is large (e.g. >10) and there 1s

little uncorrelated noise present. When these conditions are fulfilled, 

convergence can be achieved in about 2N samples. The computational 

speed of these algorithms was initially rather poor, but algorithms now 

exist for both lattice and transversal filters which approach the 

computational speed of the LMS algorithm [104] [105], though they 

generally involve approximately three times as many multiplications.

The disadvantages of these methods are that they are more difficult to 

analyse and implement and can involve greater computations. They may 

also be susceptible to instability in certain situations.

It is uncertain whether they can significantly improve upon the 

performance of the LMS algorithm when the data do not have high 

eigenvalue disparity or significant uncorrelated noise components [104], 

and it is not clear that they are equally effective when applied to 

nonstationary data. Widrow and Walach [106] have shown that for at 

ieast one form of nonstationary, (a random displacement of the optimal 

solution In weight vector space), it is unlikely that any algorithm can 

d0 si9n1ficantly better than the LMS algorithm. For these reasons and
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because it seemed more appropriate to Investigate the possibility of 

adaptive filtering of evoked potentials using the most straightforward 

method available consideration of these was deferred until initial 

results became available.

4.4 Adaptive Noise Cancelling.

4.4.1 Basic principle of adaptive noise cancelling.

The particular technique to be considered here is depicted in 

fig. 4.11 which shows a single-channel adaptive noise canceller (ANC) 

comprising an ATF with 2 inputs and one output. The primary input dj 

contains a signal Sj combined with an uncorrelated noise n^j, and a 

reference input contains a noise n£j which is correlated with n^j but 

not Sj. in addition independent random noise components Uj and vj are 

present in the primary and reference inputs respectively. It is assumed

that Sj, nij, n2j, uj and vj are statistically stationary, zero-mean 

random processes and that n^- and n2j are related by an unknown system 

function h(k) such that

n2j = nlj * h(k) (4.41)

where * denotes convolution.

The object of adaptive noise cancelling is to obtain a filter 

function which uses the reference to optimally cancel the correlated 

component n^. from dj, leaving a better estimate of Sj at the output. 

While this can be done using a fixed filter, a priori knowledge of the 

different signal statistics would be required, and a filter designed to 

implement this cancelling function for each individual situation.

Because this information is not generally available and because the
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appropriate filter may be estimated relatively easily by adaptive means, 

this approach Is generally preferable, though 1t 1s not fundamental to 

this technique.

It will now be shown how an ATF that attempts to minimise the 

mean square error can yield noise cancellation in general even when the 

signal statistics are unknown. Assume that u,- and v ;  are zero for 

simplification. The time index will be omitted in the following for 

brevity. The output e is then

e2 = s2 + ("i -  y)? + 2 s (nj - y) (4.43)

taking expectations,

E C e2 ] = E [ s2 ] + E [ (nx - y)2 ] (4.44)

since s is independent of nj and assumed so for y. As E[s2] is 

independent of the filter, the minimum output power is given by

min E [ e2 ] = E [ s2 ] + min E [ (nx - y)2 ] (4.45)

so that as the filter converges to the minimum mean square output power, 

it also minimises ECfnj-y)2]. The filter output y is then the best 

least mean squares estimate of nlt and e of s, within the constraints of 

the particular filter structure employed.

The usefulness of this to signal processing is evident in that 

If a reference is available that is strongly correlated with the noise 

present in a primary signal, cancellation of this noise is possible
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using only this correlation, independent of their individual spectral 

characteristics. This will be shown more clearly in later analyses.

Note that signal enhancement can also be obtained if two correlated 

signals are available, corrupted by uncorrelated noise. In this case nj 

and n2 would represent the correlated signal components and s an 

interference component. The output y then yields the best least squares 

estimate of the signal n^ in the primary input. These arguments can 

also be extended to include multiple reference inputs.

It is important to consider how the filter behaves when this 

simple situation no longer holds. There are four cases that can be 

considered

a) uncorrelated random noises present in both inputs i.e. Uj and Vj no 

longer zero

b) signal components present in the reference input

c) nonstationary signals, and

d) time-varying transfer function

It has been argued [107] that the effects of c) and d) are 

essentially the same as a), so analysis may be restricted to the first 

two. These have been analysed by Widrow et al [92], whose main results 

will be reproduced here due to their importance in assessing the 

potential usefulness of ANC in any particular situation.

♦•4.2 Case I. Uncorrelated noises present 1n both Inputs.

This is the most likely situation to be encountered in practice, 

as there are very few situations when neither input has little or no 

uncorrelated noise components. It is clear that uncorrelated noise in
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the primary Input can not be cancelled, and perfect cancellation can not 

be achieved if either input contains uncorrelated noise. Expressions 

derived by Widrow et al [92] are presented in this section that permit 

the performance of the ANC to be predicted in these cases. The 

situation to be analysed is shown in fig. 4.11(a) and described in the 

previous section. As Sj, uj, vj and nj are taken to be mutually 

uncorrelated signals, the Wiener-Hopf response defined by equation 

(4.17) may be evaluated. The autospectrum and cross-spectrum of the 

filter inputs may be written

5xx(z) = ^vv(z) + 5nn(z)*lH(z)1̂  (4.46)

äxd(z) = «nn(z)-H(z_1) (4.47)

where 6xx(z) and <5X(j(z) are the discrete cross-correlation and 

autocorrelation functions defined by (4.22) and (4.23), and <Suu(z),

6vv(z) and 6nn(z) are the discrete crosscorrelation functions for the 

signals u^, Vj and nj. The Wiener solution defined by (4.20) may thus 

be written

W°(z)
6nn(z).H(z_1)

®vv(z ) + ®nn(z ) * | H ( Z) | ^
(4.48)

The performance of the ANC can be conveniently measured by the 

ratio of the SNR at the ANC output, Pout(z), to that at the primary 

Tnput, Ppr-j (z). As the signal spectrum appears in both numerator and 

denominator of this expression it can be neglected, since it is 

unchanged by the filter. The SNR improvement may thus be written
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pout(z) primary input noise 

Ppr j(z) ANC output noise
(4.49)

finn(z) + 5uu(z)

W z) + «vy(z).|W0(z) |2 + 6nn(z).|[l-H(z).W°(z) ] |2

(4.50)

It is convenient to denote the ratio of uncorrelated to correlated noise 

power spectra at the primary and reference inputs by A(z) and B(z) 

respectively, where

A(z) = W z)

W z)
(4.51)

B(z) =
4VV(Z)

6n n ( z M H( z ) l 2
(4.52)

The Wiener response may then be written as

W°(z) =
1

H(z).( B(z) + 1)
(4.53)

These expressions may be substituted into (4.50) to yield

pout(z) ^ ( A(z) + 1 ).( B(z) + 1 )

Ppri(z) A(z) + A(z).B(z) + B(z)
(4.54)

The degree of cancellation may be ascertained from this 

expression. When A(z) and B(z) are large, little cancellation is 

obtained, but increases as they approach zero. Perfect cancellation is 

Predicted in the limit, though in practice this will be limited by 

considerations such as finite filter length and rounding errors. It is 

interesting to note that 1f Vj alone were zero (and hence also 6vv(z) 

and B(z) from (4.50) and (4.52)), the Wiener filter becomes equal to the
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reciprocal of the channel transfer function H(z). This is no longer 

true when B(z) departs significantly from zero, indicating that system 

identification will be subject to bias in these circumstances. In 

practice it can be difficult to obtain an estimate of A(z) and B(z) from 

given data alone. In Appendix C it is shown that an equivalent 

expression can be derived based on the coherence function, shown below. 

As this function is readily estimated from given data, it proves to be a 

more useful method of estimating filter performance in practice.

pout(z) 1

Ppri(z) ^
(4.55)

where |y|2 is the magnitude squared coherence function defined in 

Appendix B. This expression is intuitively reasonable, as the coherence 

is a measure of the degree to which a signal may be obtained by linear 

operations on another signal. When the coherence is near unity, 

indicating highly coherent signals, good cancellation may be expected. 

Similarly if the coherence approaches zero, indicating essentially 

uncorrelated signals, no improvement will occur.

4.4.3 Case II. Signal components present in the reference Input.

Consider fig. 4.11(b) which shows a two-input ANC as before, but 

also incorporating a pathway I(z) for the signal to appear at the 

reference input. The uncorrelated noises Uj and vj will be taken to be 

identically zero for ease of analysis.

as

The unconstrained Wiener solution for this case may be expressed
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W°(z)
«ss(z).I(z_1) + 6nn(z).H(z-1)

(4.56)
6ss(z)-IKz)l2 + 6nn(z)-|H(z) |2

which converges to the solution W°(z) = 1 / H(z) when I(z) approaches 

zero. It is important to know what cancellation performance may be 

achieved in general in order to know what levels of signal may be 

tolerated at the reference input, and what effect this has on the filter 

performance. To do this, it is necessary to find the signal and noise 

spectra at the ANC output. The signal spectrum is

Since the numerator and denominator may be identified as the noise and 

signal spectra at the reference input, this expression may be written

reference input. The output SNR is thus inversely proportional to the

(6ss(z) W  = 5ss(z)-l 1 - I(z).W°(z) |2 (4.57)

and that of the noise is

(5nn(z))out = 5nn(z)• I 1 * H(z).W°(z) |2 (4.58)

These may be used to obtain the output SNR

6nn(z)-|H(z) | 2
(4.59)

1

where pref(z) is the signal to noise power density ratio (SNPDR) at the

reference input SNR at all frequencies when convergence has been 

attained.
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The extent to which the signal Is distorted by partial 

cancellation may be determined as follows. The signal propagation path 

through the transversal filter is

The spectrum of the signal propagated through the filter is thus

The effect upon the primary signal of this component depends on the 

relative phases of these components. Maximum distortion will occur when 

these are completely out of phase. This worst case may be estimated by 

determining the ratio of the signal spectrum at the transversal filter 

output to that at the primary input. This may be denoted by the 

quantity D(z):

It is convenient to express this in terms of the SNR at the primary and 

reference inputs:

- I(z).W°(z) (4.61)

When I(z) is small, this may be approximated by

- I(z) / H(z) (4.62)

«ss(z).| I(z)/H(z) | (4.63)

« s s U M  I(z).W°(z) I2
(4.64)

! I(z).WO(z) |2 (4.65)

I I(z) / H(z) |2 (4.66)

(4.67)
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Indicating that low distortion occurs when the SNR is low at the 

reference input and high at the primary input. Equations (4.60) and 

(4.67) may be applied if a quantitative assessment of the effects of 

signal components in the reference input is required, though this may 

not be necessary if these are considered to be insignificant.

4.5 Previous Applications of Adaptive Filters to Physiological

Signals.

The first application of ANC to biological signals was to the 

removal of mains interference in ECG signals at Stanford University in 

1965 [92]. This was shown to be more effective than a notch filter as 

it can track the signal very closely, and possess an infinite null.

This can be useful if it is known that the interfering signal drifts in 

frequency. When the interference is of the form of a sine wave and a 

reference signal exists, the filter structure can be simplified to a 

two-weight AF (two degrees of freedom being required to compensate for 

gain and phase fluctuations). When there are significant harmonics 

present it may be necessary to use an ATF. While this could be useful 

in EP methodology, it need not be required if adequate screening 

arrangements are employed.

Two other applications to ECG signals have been described.

These are separation of donor and patient ECG signals in heart 

transplant operations [92] and separation of maternal and foetal ECG in 

surface recorded derivations [108]. In the former, an electrode 

inserted into the donor heart provides a reference to enable 

cancellation of the donor ECG during the operation. The foetal ECG 

aPPlication was first described by Widrow and later developed by 

Ferrara. The method requires selection of surface electrode sites that
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will provide predominantly the MECG in one case (from chest sites), and 

both signals in the other (from abdominal sites). Good separation of 

these signals was demonstrated using a time-sequenced filter and 

multiple reference electrodes.

Kentie et al [100] attempted to apply Widrow's LMS ANC to 

electrogastrographic signals, but were unable to isolate a signal-free 

reference. They used a modified AF in which a band-reject filter is 

applied to a recorded signal to artificially produce a suitable 

reference signal. The attenuation of this component causes the filter 

to converge at the other frequencies resulting effectively in a 

band-pass filter. Adaption was halted after acceptable cancellation was 

obtained with minimum signal distortion, and the use of fixed weights 

after this eliminated gradient noise.

Though the results presented appeared to show that the method is 

effective, the methodological basis is questionable. In the first place 

the signal and noise spectra are not overlapping and sufficiently 

separated that digital filtering would seem to be entirely adequate.

The authors state that conventional bandpass filtering was not 

acceptable because of amplitude and phase distortions, and the need to 

track time-varying components of the signal while being relatively 

insensitive to pulse-shaped motion artifacts. However the use of their 

filter subsequent to the adaption phase is essentially the same as a 

fixed FIR filter. The only advantage that may accrue is that the filter 

characteristics are dependent to some extent on the individual signal 

characteristics, but otherwise 1t seems unjustifiable.

The only application of AF to EP data known to the author 1s 

that of Carmon and Friedman [16] [110] who were interested in obtaining
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optimally filtered estimates of single trial responses for pain studies. 

They used a template of the EP as the desired signal and the raw 

responses as their filter input. The aim of this approach was thus to 

form a time-varying Wiener filter to remove non-EP frequency components 

and pass only signal frequency components. The production of a 

noise-free EP template is therefore imperative, and they used W°ody's 

latency correction technique on the raw data to obtain a good average 

EP. The AF was then repeatedly applied to the raw responses to filter 

out components not present 1n the template, though it was not clearly 

stated whether each response or the entire record was repeatedly 

filtered. Note that this is different from the approach considered in 

this thesis which attempts to cancel noise activity in a primary signal 

channel using correlated noise activity present in a reference channel.

While the results seemed initially impressive, at least for 

auditory and some somatosensory EPs, they were not entirely convincing 

for visual EPs. For instance there were peaks of the wrong polarity on 

occasion, and in general it seemed as though only the gross low 

frequency features were being passed. This may be due to excessive 

smoothing of the data, and is a particular hazard of the Wiener 

filtering approach which can yield distorted estimates of the signal 

while still satisfying the MSE criterion. This difficulty is discussed 

by de Weerd et al [113] who recommend that caution be exercised in using 

this approach. A criticism of this method is that it is not capable of 

reproducing detail in individual responses that has been averaged out in 

the template production, as the authors themselves concede, and so it 

must be used with caution in single trial studies. It is also not clear 

that an adaptive solution is necessary, since 1t may be more 

straightforward to compute the optimal least squares filter directly 

from the template and data samples.
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4.6 Summary

In this chapter I have reviewed the concept of adaptive 

filtering with particular regard to FIR adaptive filters employing 

transversal structures. A brief derivation of the Widrow-Hoff LMS 

adaptive algorithm was outlined and the main analytic results governing 

its operation presented. In addition factors relevant to practical 

implementation of this filter, such as choice of parameter values and 

computational cost, were briefly discussed. These show that this 

algorithm is an attractive solution in many situations that require an 

adaptive approach, as it can be made unconditionally stable, has been 

widely studied and applied and is relatively simple to implement. Some 

of the recent trends in adaptive filtering were also briefly reviewed, 

including both modifications and developments of the basic LMS algorithm 

and more sophisticated techniques that attempt to compute the exact 

least squares solution at each sample moment. The latter are more 

demanding computationally and are not as intrinsically stable as the LMS 

algorithm, though they do offer significantly better adaption speed in 

certain circumstances. As it is not clear that any benefit would accrue 

when if these methods were applied to the signals considered in this 

thesis, the investigation was restricted to the use of gradient methods.

The use of AFs to perform noise cancelling has been described, 

and pertinent results presented that indicate the effectiveness of this 

method in different situations. Expressions were derived to predict the 

improvement in SNR when uncorrelated noise is present in either input, 

and these were related to the coherence function. Use of the coherence 

function results in a simpler and more useful expression than those 

previously published. Finally the use of AF in selected previous 

applications was reviewed. Little work has been done with EEG or EP
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signals which form the main application in this thesis, and adaptive 

noise cancelling of EP signals 1s considered to be novel. The results 

of this research will be presented in chapters 6 and 7, but firstly 

methodological aspects of the experimental work will be described.
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CHAPTER FIVE

THE GATED ADAPTIVE FILTER.

5.0 Introduction.

The previous chapter reviewed the concepts and theoretical 

aspects of adaptive filtering with particular reference to adaptive 

transversal filters (ATF) employing the Widrow-Hoff adaptive algorithm. 

Some important developments of the simple ATF were introduced, one of 

these being the time-sequenced adaptive filter (TSAF). In this chapter 

a variant of the basic AF is introduced based on similar notions to the 

TSAF which will be referred to as the gated adaptive filter (GAF). The 

principal feature of this filter is that the weight adaption is 

suspended during peak signal activity, as the presence of a signal 

transient can disturb the adaptive modelling of the cross-channel 

transfer function in noise cancelling applications. It will be shown in 

this chapter that this new filter structure is more appropriate than the 

unmodified adaptive filter or the time-sequenced adaptive filter when 

transient signals in additive noise are to be filtered, especially when 

fast adaption is desired. The reasons for this will be discussed and 

some theoretical aspects governing the gated filter approach will be 

considered. A comparison between the GAF and other adaptive filters is 

described based on a computer study using artificially generated 

signals. The results of this study support the hypothesis that the GAF 

gives superior performance than either the AF or the TSAF in these 

circumstances.
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5.1 The Gated Adaptive Filter: Concepts

This filter structure is based on similar premises to those of 

the TSAF described in chapter 4, but is different in some important 

respects. Briefly, the TSAF was proposed to approximate an optimal 

time-varying filter when the data are not stationary, but can be 

considered as piece-wise stationary. The TSAF employs a set of filter 

weights corresponding to each stationary segment. These are selected by 

an external 'sequencing' signal, so that only one weight set is used at 

any time to generate the filter output and undergo adaption. Each 

weight set thus converges to the optimal solution for each discrete 

stationary segment. A block diagram of the TSAF is presented in 

fig. 4.8.

Gated adaptive filtering also employs an external signal 

synchronous with transient events in the input data. It differs from 

the TSAF in that only one weight set is employed, but the external 

signal controls the manner in which the filter is applied, rather than 

controlling the selection of the different weight sets. The control 

signal can, for example, change the convergence rate or even temporarily 

suspend adaption, during the applied gate period. This is shown 

diagrammatically in fig. 5.3 which compares the weight revision and 

selection operations for a TSAF employing two weight sets, and a GAF 

employing a single weight set whose adaption is suspended during signal 

epochs.

Consider fig. 4.11(a) which shows a common situation where the 

GAF may prove more effective than the ordinary AF, as described in 

section 4.4.2. A primary signal channel contains a periodically 

occurring signal Sj corrupted by noise signals njj and uj. A reference
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signal channel is also available which contains a noise signal Vj + n->j. 

n£j is correlated with n^j such that

nlj = n2j * hk (5-1)

where h^ represents a time-invariant discrete linear process. uj and vj 

represent noise signals uncorrelated with each other and with each of s^ 

or nj. njj, n2j , Uj and Vj are assumed to be stationary, zero mean 

processes and Sj is assumed to have zero mean. In chapter 4 various 

expressions were derived which describe the expected results of adaptive 

noise cancelling in this situation. These are based on the premise that 

the input signals are themselves uncorrelated, i.e. they have zero 

autocorrelation other than for zero lag. In practice random signals 

have some degree of colouration, represented by finite values of the 

autocorrelation function at non-zero lags. Studies suggest that even 

high values of autocorrelation do not significantly affect the 

theoretical results that are based on this assumption other than to 

decrease the convergence time of the filter [94]. This is true when the 

chosen adaption rate is relatively slow, but may no longer be true when 

adaption rate is relatively high or when the signal contains components 

whose energy is large compared with the noise. The reason for this is 

as follows. Let us assume that the filter has essentially converged to 

the Wiener solution. The error signal fluctuates randomly about zero 

due to random gradient estimation noise. A small value of the 

convergence coefficient corresponds to a long integration time in the 

error feedback loop and ensures that these fluctuations do not have much 

effect on the overall converged state, and hence yields a small 

disadjustment noise in the filter output. During the signal epoch, 

however, the signal itself appears in the error output when the filter 

is used in noise canceller mode. If the adaptive time constant is much 

larger than the signal duration the effect of the additional signal upon
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the weights is negligible as the signal is assumed to have zero mean 1n 

this analysis. However if the adaption rate is fast it is possible for 

the weights to be affected by the added signal and result in divergence 

from the optimal solution during the signal epoch. Whether or not this 

will significantly affect filter accuracy is dependent on:

(i) the signal amplitude and waveform

(ii) the value of the convergence parameter u, and 

(111) the mean noise power.

This may be illustrated by means of a simple example. Consider the 

previously described situation and let Sj represent a pulse with 

amplitude a and duration t occurring with repetition period T. Let nj 

be a white noise process with variance a 2. Let h^ be unity for k=0 and 

zero otherwise, such that n^j equals n2j, and let uj and vj be zero.

Optimal filtering will clearly take place when W(z) = 1/H(z),

i.e. W(z) = 1. This is the solution predicted by Wiener's theory, and

given by equation (4.53). It will not however be attained in practice

by an adaptive filter of the form considered up till now. Assuming that

the filter had converged to this solution prior to the occurrence of a

transient signal event, the ANC output e. would be zero, thus ensuring
J

that no further weight revision takes place. The occurrence of the 

signal at time j immediately alters the weight vector by adding the term 

2yaXj to the weight vector, according to the LMS update algorithm

Wj +l s Wj + 2uaX j (5.2)

This disturbance from the optimal solution results in an additional 

error at the next sample moment, and the accumulation of these errors 

leads to divergence from the optimal solution. When the signal



-  116 -

transient dies away the filter relaxes back to the previously attained 

optimal solution. The effect of the additional signal upon the filter 

will clearly be greater when the signal amplitude Is high, when the 

duration of the signal is a significant fraction of the repetition 

period and when u is relatively large. It will also be dependent on the 

signal waveform as high frequency components in the error feedback loop 

are likely to have less cumulative effect than low frequency components. 

The ensuing filter inaccuracies result in less effective cancellation 

and introduce signal distortion. The degree to which this can be 

tolerated will depend on other contributions to filter inaccuracy, such 

as misadjustment noise.

While it would be informative to develop this analysis in detail 

in order to determine how each of these factors affects filter 

performance, this has not been pursued here. Merely characterising the 

resulting errors does not necessarily help overcome the problem, and in 

addition it is difficult to perform this analysis as it will be 

dependent upon the actual signal statistics. Empirical studies were 

therefore undertaken to identify the conditions when these effects are 

likely to be significant in practice.

The obvious way to overcome this difficulty is to 'switch the 

filter off' during the signal epochs using a synchronous gating signal. 

This effectively 'freezes' the weight update procedure during the signal 

epochs and permits optimum cancellation to continue, provided that the 

noise statistics are stationary during this interval. This may be 

stated mathematically as follows:
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ili+1
Wj + 2jie jXj

“J

; g j  = 1

; gj = 0
(5.3)

where gj is a gate signal that arbitrarily takes the value of 0 or 1 to 

control filter adaption.

This suggestion introduces a number of benefits. Firstly it is 

relatively simple to implement when an external gating signal is 

available (such as the stimulus trigger in EP experiments). It even 

introduces slight computational advantages through elimination of the 

weight update calculations during the signal epochs. (This is of little 

benefit to real-time filters which must have the capacity to perform 

filtering at the full data rate, but does yield a slight reduction in 

off-line processing time.) Secondly the theoretical analysis is 

simplified, as there is no need to take the signal into account since

the optimal solution is based purely on the statistics of the

inter-signal epochs. This does not significantly affect the main 

results of chapter 4 except as follows:

a) while the convergence time remains the same during those portions of 

the data when adaption takes place, the periods when adaption is 

suspended obviously result in a net increase in convergence time.

b) the theory in chapter 4 was developed in terms of a zero-mean random

signal. Furthermore the assumption was made that non-white noise 

processes do not significantly affect the results. While this 1s a 

reasonable assumption to make in many cases, later experimental results 

show that it 1s not valid when the signal is of large amplitude or when

the convergence rate is high. The GAF on the other hand allows these

results to be applicable 1n both of these cases and for any conceivable 

transient signal, provided that the moment of occurrence and duration of
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the signal are accurately known and that the signal is essentially zero 

outside this interval. Steady state convergence achieved during 

inter-signal epochs will not be influenced by the occurrence of the 

signal, thus permitting optimal cancellation to take place at all times 

in the signal record.

c) The simplifications are most apparent in section 4.4.3, which 

considers adaptive noise cancelling when signal components are present 

in the reference input. Noise cancellation and distortion expressions 

were derived in that case under the assumption that there is little 

signal present in the reference, so that the optimal filter W°(z) is 

approximately equal to 1/H(z). By setting W°(z) equal to 1/H(z) in the 

analysis, the resulting simplifications permitted approximate 

expressions for the signal distortion to be readily obtained in 

equations (4.62), (4.63), (4.66) and (4.67). In the case of the GAF 

these expressions are no longer approximate but exact, as W°(z) is 

exactly equal to 1/H(z). Furthermore the analysis of this situation 

assumed that uncorrelated noises Uj and vj were zero for simplification. 

This analysis can be extended to include the effects of these when using 

the GAF by substituting the expressions developed in section 4.4.2 for 

the optimal filter solution (4.48),(4.53) into the expressions in 

section 4.4.3 for the output SNR (4.57), (4.58). The resulting analysis 

is now tractable but yields expressions which are rather cumbersome and 

which do not shed further light on the adaption process compared with 

the simple expressions derived in section 4.4.3. They are therefore not 

included in this thesis.

The main disadvantage of the GAF relates to the case when H(z) 

o>" the noise statistics are not time-invariant, so that maintaining the 

weights constant during the signal epoch no longer results in optimum
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cancellation. The filter is not able to track the non-stationary data 

characteristics during the signal epoch and may diverge from the optimum 

solution. The GAF may not be appropriate in this case, though if the 

non-stationarity is a relatively slow process it is likely that the 

resulting errors may well be less than those which are caused by 

adaption of the signal transient. In this situation it may well be 

better to use a slow rate adaption rate to accommodate the changing 

nature of the signal statistics than to suspend adaption altogether. It 

is probable that optimum values exist for y in the two intervals that 

will balance the errors arising from mis-tracking of the nonstationarity 

with those arising from signal adaption, though this has not been 

analysed here, and is left to a future investigation.

Note that the TSAF does not offer any substantial advantage over 

the normal AF in the case of fast adaption of high amplitude transient 

signals as it suffers from the same defects as the normal AF. While 

these effects can be reduced by employing small values of the 

convergence parameter during the signal epoch this results in much 

larger overall convergence times. The signal and non-signal epochs are 

filtered independently by the TSAF and hence convergence proceeds at 

different rates. Transient artifacts can also arise in the filter 

output when the alternate weight sets are selected if they have markedly 

different character. More importantly, no account is taken of signal 

characteristics in the interval when the alternate weight set is 

selected. This means that only slowly occurring non-stationarities can 

be adequately tracked. This point was raised by Ferrara [102] who 

suggested that research was needed to identify a technique which would 

take into account immediately preceding data characteristics. It 

appears that the GAF achieves this for the simple situation of 

repetitive transient signals analysed in this chapter. These assertions



-  120 -

will now be explored by means of a computer study using artificially 

generated data.

5.2 Experimental verification of the GAF.

In this section a study undertaken using computer methods is 

described to provide experimental verification of the assertions made 

concerning the proposed GAF structure. This will be used to aid 

comparison between this and other AF structures and to provide empirical 

results that will be useful in assessing the value of the modified 

filter. The experimental strategy is first described and will then be 

followed by a a discussion of the results obtained. This study was 

performed using the signal processing facility developed in the course 

of this research project, described in the following chapter.

5.2.1 Computer methods.

In this study it was desired to perform a quantitative 

comparison of the GAF with the basic AF and TSAF, using a signal buried 

in noise as the primary input and a correlated noise channel as the 

reference input. A simple signal was used, similar in form to several 

EPs, and a range of noise data were generated having different 

correlation properties. These permitted results to be obtained for a 

range of SNR and coherence conditions in order to assess how appropriate 

each filter method is for each different condition. The analysis was 

performed using two levels of signal amplitude and two adaption speeds 

as it has been previously suggested that these parameters can 

significantly affect normal adaptive filter operation. It was the 

■ntention that this study would provide experimental evidence regarding 

the use of the GAF for general applications, and hence simple forms of
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signals were used rather than an accurate simulation of EP and EEG data.

An arbitrary signal shape was used, chosen to be identically 

zero for half of its duration, corresponding to the relative absence of 

signal activity in the interstimulus interval 1n EP data. An 

experimental record consisted of 64 identical signals in wideband noise, 

with an associated reference channel of equal length containing 

partially correlated wideband noise. Each signal was defined as follows 

over a discrete interval of M samples, with M=64 in this case:

This corresponds to one cycle of a sine wave of period M/4 followed by 

half a sine cycle of period M/2, with a cosine envelope applied to 

smooth out fast transitions at the start and end of the signal 

transient. The signal is depicted in fig. 5.1(a).

A number of artificial noise records were generated and stored 

in files for later use. It was considered desirable to generate 

approximately gaussian white noise in pairs of records comprising a 

range of coherence values. This would be more useful to characterise 

these filters in general, though the results would be expected to be 

relevant to EEG signals also. Specific consideration of these different 

filter methods to EEG data is made in chapter 8.

The procedure used to generate the noise records is now 

described. Three noise records comprising 64 epochs of 64 samples were 

separately generated by adding 12 consecutive random numbers obtained 

using the pseudo-random number generator function RAN supplied with DEC

(  sin ( 8 ttj/M ) . ( 1 - cos ( 4 ttj7 M  ) )/2 ; 0 < j < M/4

Sj = sin ( 4irj/M ) . cos ( 4uj/M ) / 2 

0

; M/4 < j < M/2 

; M/2 < j < M
Eqn. (5.4)
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Fortran IV [114]. This method produces approximately gausslan random 

noise from a uniformly distributed random sequence. An examination of 

the spectral characteristics showed that they were approximately white 

and uncorrelated with each other. Each record had zero mean and 

identical variance. These will be denoted by pj, qj and rj. Pairs of 

composite noise records were produced by linearly combining these, so as 

to have specific spectral characteristics. These are denoted by mj and 

nj, and were generated as follows:

where hk represents the impulse response of a linear transfer function 

H(z) defined later. Fig. 5.1(b) shows the noise generation procedure 

diagrammatically. The coefficients a and p were selected from Table 5.1 

to generate noise having the desired coherence, and were chosen so that 

the variance of the noise sequences mj and nj equalled that of the 

original noise records Pj, qj and rj. The equations describing these 

coefficients will be developed later. A simple form for H(z) was 

desired so that the spectra are similar in both channels, but that more 

than simple subtraction is required to effect cancellation. The 

following response was arbitrarily chosen

whose transfer function is shown in fig. 5.2.

To ensure that the variance of the composite records match those 

of the original records, the following relation must be satisfied:

mj = « Pj + 3 r j

nj = (a Pj + g qj) * hk (5.5)

H(z) = 1 + n . l  (z-4) (5.6)

( a2 + e2 ) = 1 (5.7)

This is easily shown by the following argument. Let the variances of





- 123 -

the sequences Pj, qj and rj be equal to a2« Then the variances of the 

noise sequences and nj are

°m2 = E C mj2 ]

= E [ ( apj + Bqj )2 ]

= a2.E[ Pj2 ] + B2.E[ qj2 ] + 2aB.E[ pj.qj ]

= ( a2 + B2 ) a2 (5«8)

since Pj, qj and rj are independent noise processes. Similarly

<jp2 = ( a2 + B2 ) a2 (5.9)

Expressions for a and b can be derived in terms of the coherence 

function, which is defined by

w n i *  - |G,,n(f)'?
^nin(T).Gnn(Ti

| «2. <j2 |2

( B2 + a2 ) • O2 • ( B2 + a2 ) • °2

1 (5.10)
( 1 + B2/a2 )2

where C^n(f), ^ ( f )  and Gnn(f) are the cross-spectral and autospectral 

intensities of the noise signals mj and nj. Thus

|Y| = ( 1 + B2/«2 H

= ( 1 + B2/l-B2 )-1

= 1 _ p2 (5.11)

Hence

8 . / (i - iT) (5-I2)
and
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(5.13)

These expressions were used to generate the values in Table 5.1

The noise records were used to examine the performance of each 

filter as follows. 64 identical signal records were added to each noise 

record of mj to form the primary signal channel, and nj formed the 

reference channel. The data were filtered by each filter i.e. the GAF, 

AF and TSAF. In the AF one set of weights was used throughout for 

adaptive filtering. In the GAF one set was used, but adaption was 

halted during the initial half of each signal epoch. In the TSAF two 

weight sets were used, corresponding to the signal and non-signal 

epochs. In each case a filter order of 9 was used which is sufficient 

to completely characterise the channel transfer function H(z). This is 

shown diagrammatically in fig. 5.3. (Note that in practice the weight 

set used for the GAF is identical to that used by the TSAF during the 

non-signal epoch, which saves unnecessary computation.) The mean square 

errors (MSE) of each filter output were computed for both signal and 

non-signal epochs to aid quantitative assessment. This procedure was 

repeated for each of the following coherence values: 1.0, 0.9, 0.8, 0.7, 

0.6, 0.5, 0.3, 0.1. In addition results were obtained using two 

different levels of SNR, approximately 5 and 15 dB. Each filter was 

also applied using two values of y', equal to 0.2 and 0.02, to permit the 

effect of adaption speed to be examined.

5.2.2 Results of the computer study.

Figs. 5.4 - 5.6 show typical filter outputs for selected cases.

7 records are shown in each plot, the first being the unfiltered primary 

Input, followed by two groups of 3 records corresponding to the AF, GAF 

and TSAF outputs used with high and low adaption speeds. Figs. 5.7 and
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5.8 show averages of 8 epochs for each filter, adaption rate and 

coherence value for both SNR levels. In each case the dotted curve 

superimposed on the full traces is the original signal. Note that only 

the GAF yields perfect cancellation regardless of SNR or adaption rate 

when used with the high coherence data |y |̂  = 1.0 The TSAF performs 

equivalently to the GAF during inter-signal epochs in this case, but is 

not as effective in removing noise in the signal epoch. It also 

introduces transient step artifacts when the different weights are 

selected, and the individual filtered signals are more variable than 

those in the GAF or AF outputs. This is particularly evident 1n 

fig. 5.4 and 5.6. To aid a quantitative comparison, the MSE during 

signal epochs is plotted against coherence for each condition in 

fig. 5.9. A normalised figure is obtained by scaling the MSE with 

respect to the original noise power. Thus a value of 0.5 represents a 

3 dB noise reduction factor.

The results confirm the suggestion made earlier in this chapter 

that repetitive transient signals embedded in stationary noise can be 

filtered better using a gated adaptive filter, than by either of the 

simple AF or TSAF when fast adaption is required and especially when the 

signal energy is relatively high. The improvement in SNR during the 

signal epoch can be very significant in this circumstance, as evidenced 

by the MSE plots in fig. 5.9, though the GAF performed consistently 

better than the AF and TSAF under all the conditions of SNR, adaption 

rate and coherence considered. Only when low SNR data were filtered 

using a slow adaption speed was the improvement in performance 

insignificant. When fast adaption rate is employed, both the simple AF 

and TSAF appear to be Inappropriate, as the normalised MSE figures are 

in considerable excess of unity in this case indicating that the filters 

introduce substantial noise and degrade the signal quality. This is
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FIGURE 5.8 Comparison of three adaptive filters (AF, GAF and TSAF) 
using high SNR artifical data (SNR = 15dB), two 
adaption speeds and a range of coherence values.

. Averages of 8 records shown in each case.





iTl2 It I a P

0.0 0.0000 0.0000 1.0000

0.1 0.3162 0.5623 0.8269

0.2 0.4472 0.6687 0.7435

0,3 0.5477 0.7401 0.6725

0.4 0.6325 0.7953 0.6063

0.5 0.7071 0.8409 0.5412

0.6 0.7746 0.8801 0.4748

0.7 0.8367 0.9147 0.4042

0.8 0.8944 0.9457 0.3249

0.9 0.9487 0.9740 0.2265

1.0 1.0000 1.0000 0.0000

TABLE 5.1 Table of coefficient values for « and p
used to generate artificial random noise with 
the specified coherence values.
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almost certainly due to misadjustment errors caused by adaption during 

the signal epoch. In contrast the MSE in the GAF records rarely exceeds 

unity and consistently decreases to zero as the coherence approaches 

unity. Perfect cancellation can thus be achieved in this circumstance, 

but is not achieved by either of the AF or TSAF. These results are also 

confirmed by visual examination of the individual filtered records and 

their averages. Examination of these suggests that both bias and 

variance errors are present. The bias is most clearly seen in the 

averages of the AF and TSAF outputs in figs. 5.7 and 5.A, which show a 

larger deviation of the signal estimate from the underlying signal. The 

individual responses appear to be more uniform in the case of the GAF 

filtered records than the others which supports the assertion that the 

variability in the AF and TSAF records is due to incorrectly adjusted 

filter weights caused by adaption during the signal epoch.

5.3 Summary.

A modification to the basic adaptive transversal filter has been 

proposed, which is based on similar premises to the time-sequenced 

adaptive filter. The modified filter, known as a gated adaptive filter, 

uses a synchronous gating signal to suspend adaption (or otherwise alter 

filter operation) when the presence of high amplitude signal components 

would otherwise cause significant disturbance of the filter weights and 

hence result in poor filter performance. It is shown that the GAF is 

more appropriate than the basic AF or TSAF for filtering repetitive 

transient signals when high adaption rates are employed and particularly 

when high energy signal components are present.

An experimental investigation of these proposals was performed 

using computer-generated data of specified characteristics. A wide
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range of conditions were analysed, and encompass high to low 

correlations between the noise records, two levels of SNR and two 

adaption rates. The results of the study confirm the proposal that the 

GAF yields superior cancellation in each of these cases, compared with 

the unmodified AF and the TSAF. This advantage is most significant when 

the coherence, SNR and adaption rate are high, though consistently 

better results are achieved for all values of these parameters 

considered. The GAF was specifically developed to perform fast 

convergence adaptive filtering of EP data using the LMS algorithm, but 

these results have been obtained using a general signal waveform in 

wideband noise, and so are likely to be applicable to a wide range of 

signals. In addition the basic concepts are independent of the actual 

filter strategy, and apply to noise cancelling in general, regardless of 

the filter structure or adaptive algorithm used. A similar improvement 

in filter performance can therefore be expected when lattice adaptive 

filters or the recently developed fast convergence algorithms are 

employed. Before describing the main experimental work of this thesis 

the next chapter will detail the methodology employed in recording, 

analysing and processing EP data. This will form the experimental basis 

for the following chapters which are concerned with the use of adaptive 

noise cancelling in processing EP signals.
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CHAPTER SIX

INSTRUMENTATION AND EXPERIMENTAL METHODOLOGY.

6.0 Introduction.

This chapter describes the experimental methodology applied to 

record EP signals and to perform signal analysis and processing using a 

laboratory minicomputer. The discussion is presented in three sections: 

experimental details of EP recording, followed by separate discussions 

of hardware and software aspects of the data analysis. In the first 

section a number of aspects are considered, such as the method of 

presenting visual stimuli, the geometry and timing of the stimulus, and 

the choice of electrode montage and its relation to the stimulus 

employed. The instrumentation required to record signals and the 

experimental procedure followed is described. The second section 

discusses the computing options available, and describes the 

minicomputer system established to perform this research. The last 

section is concerned with the software facility which was developed in 

order to carry out this work. Some of the possible strategies are 

discussed and existing software packages are surveyed. A preliminary 

review showed that no suitable computer program was available for this 

work and hence required that such a program be developed. The main 

strategies and design goals are described, and a brief account of the 

final solutions presented. This provides the necessary background to 

the experiments described in the following chapters of this thesis.
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6.1 Creation of experimental data base.

6.1.1 Stimulus and electrode details.

The experiments undertaken in the following chapters were 

intended to establish whether improved estimation of VEP signals can be 

obtained through cancellation of activity recorded at other scalp sites, 

and whether adaptive noise cancelling is suitable for this purpose. To 

accomplish this it was necessary to create a suitable data base of EP 

records with which to test these propositions. A discussion of the 

nature of this data base and the manner in which it was created is now 

presented. It was clearly necessary to generate a set of EP records 

representing a range of typical responses from a number of scalp sites. 

In order to reduce the risk of obtaining results too closely tied to a 

particular exoeriment, data were obtained using a variety of stimuli 

from two normal adults. As this study was exploratory in nature this 

was considered adequate to obtain preliminary results regarding this 

approach. A much larger pool of subjects would have been required had 

the intention been to demonstrate the widespread validity and 

reliability of a particular method.

It was considered important to generate large amplitude EPs as 

this facilitates analysis of different processing methods. Patterned 

visual stimuli were used as they are known to produce large amplitude 

VEPs with consistent properties and for this reason are used routinely 

in clinical and research work [3]. A pattern of high contrast isolated 

square elements is particularly effective and was therefore chosen for 

these studies [49]. A description of the stimulus is given later. 

Although VEP amplitudes are generally greater when a large retinal area 

is stimulated, full-field stimulation can sometimes lead to reduced



- 130 -

amplitudes as a result of cancellation of components arising in 

different cortical regions [49]. For this reason half-field stimulation 

was employed, using either the left, right or lower half-fields. These 

arrangements produce EPs whose scalp distributions reflect synchronous 

activity in only one hemisphere or in both. If only one hemisphere is 

stimulated, the evoked potentials will predominate on one side of the 

scalp, but if both hemispheres are stimulated, EP components are likely 

to arise on both sides of the scalp. This enables both of these 

important cases to be analysed. These arrangements have been used 

extensively in the past in the Department of Communication and 

Neuroscience at Keele.

The specific stimulation and recording details for each subject 

are now described. To permit statistically reliable results to be 

obtained, a large number of responses were obtained to each experimental 

condition. Stimuli were presented in experimental runs of 16 

presentations. 16 such runs were obtained for each stimulus condition, 

resulting in a total of 256 responses to each stimulus. 16 trials were 

found to be sufficient to obtain a reasonably noise-free average EP and 

avoids unduly prolonging the experiment. A fairly fast stimulation rate 

(approximately 1 Hz) was employed and so each run did not last much more 

than 16 s. This reduces the possibility of artifacts due to eyeblinks, 

coughing or other disturbances. As about 10 different stimuli were used 

for each subject, a sampling rate of 128 Hz implies a total of more than 

4 million data samples for each subject, and hence necessitated the use 

of magnetic tape storage of the raw data. This symmetric arrangement of 

16 runs and 16 stimulus presentations permits studies to be made in 

terms of either stimulus or experiment rank order, thereby enabling the 

extent of habituation to be monitored if required.
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The stimulus was a high contrast pattern of regularly arranged 

elements, forming a checquerboard or isolated square pattern. The 

element size was typically 1° in a field of about 20° of visual 

subtense. These were presented binocularly for 25 ms, at a rate of 

approximately 1 Hz. This is illustrated in fig. 6.1. The use of short 

duration presentations has been shown to minimise adaptation effects to 

repetitive stimuli, permitting faster stimulation rates and hence 

shorter experiments [49]. Aperiodic stimulation was routinely employed 

as it can prevent synchrony of periodic interference components, such as 

alpha or a.c. mains activity. This was accomplished by inserting a 

random delay into the stimulation period. The advantages of aperiodic 

stimulation rate have been discussed previously in section 3.2.3. The 

stimulation details were similar for each subject though they varied 

slightly. They were based on previous mapping studies of the chosen 

subjects which had indicated whether left or right half-field stimuli 

were more effective in generating large amplitude EPs. The order of the 

stimuli and experimental conditions for each subject are shown in Table

6.1 and 6.2.

An identical electrode montage was employed for each subject. A 

limited number of scalp sites were available for this study in view of 

equipment constraints and the considerable amount of computer processing 

involved; the investigation was therefore restricted to a single row of 

electrodes transversely located over the occipital scalp. A 

longitudinal row was rejected as it does not permit cross-hemispheric 

differences elicited by the different stimuli to be examined. It is 

generally known that the EP waveform does not vary significantly over 

distances of less than 2-3 cm [49] and so to obtain reasonable coverage 

of the transverse scalp distribution 7 electrodes were used having a 

separation of 2.5 cm, on an arc 4 cm above the inion (fig. 6.1). EEG
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Series
Stimulus
Duration

(ms)
Period
(ms)

Field Pattern sequence

A 25 1000 lower Isolated square/blank

B 25 1000 lower Isolated square/outlines

C 25 1000 lower Control (luminance change)

D 25 1000 lower Grating/blank

E 25 1000 lower Checquerboard/bl ank

F 250 1000 lower Checquerboard/bl ank

G 500 1000 lower Checquerboard/blank

H 500 1000 lower Control (luminance change)

I 25 1000 right Checquerboard/blank

J 25 1000 right Control (luminance change)

K 25 1000 right Checquerboard/blank

L 25 1000 right Control (luminance change)

TABLE 6.1. Experimental details of EP recording experiment 
for subject DAJ. Stimuli were presented in runs 
of 16 presentations, and there were 16 runs in 
each series. The stimulus conditions for each 
series are shown here.



Series
Stimul us 
Duration 

(ms)
Period
(ms)

Field Pattern sequence

A 25 1000 1 ower Isolated square/blank

B 25 1000 lower Checquerboard/bl ank

C 25 1000 1 eft Isolated square/blank

° 25 1000 left Checquerboard/bl ank

25 1000 left Control (1uminance change)

F 25 1000 lower/left Isolated square/blank

G 25 1000 lower Control (1uminance change)

H 500 1000 upper Checquerboard/blank

I 500 1000 upper Control (luminance change)

J
L  25

500 left Isolated square/blank

TABLE 6.2. Experimental details of EP recording experiment 
for subject MJM. Stimuli were presented in runs 
of 16 presentations, and there were 16 runs in 
each series. The stimulus conditions for each 
series are shown here.
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signals were obtained using a common reference earlobe electrode. The 

choice of reference site is important as it must be relatively free of 

EP activity. This is frequently difficult to achieve in practice but an 

ear reference is suitable for VEP recordings provided that upper-field 

stimulation is not used [115]. A single ear reference is vulnerable to 

ocular artifact resulting from lateral eye movements but these do not 

occur if visual fixation is maintained.

Experimental details are similar to those used in previous 

studies and described elsewhere [13]. The subject sat in a dimly lit 

room which was electrically and acoustically screened to minimise 

electrical interference and distractions. Visual stimuli were presented 

using a 4-field tachistoscope constructed in the department. This has 4 

fields of approximate diameter 12 cm which are superimposed by an 

arrangement of half-silvered mirrors. Fast switching fluorescent tubes 

are arranged to sequentially illuminate the fields which have pattern 

masks inserted in front of them, so that tachistoscopic presentation of 

isoluminant patterns is possible. Brightness and contrast are manually 

presettable. Stimulus durations and rates were controlled by a 

Digitimer type 3290, preset by the experimenter.

6.1.2 Experimental procedure.

The procedure followed in recording EPs was similar to that 

employed in previous studies [13]. Following a warning tone, the 

subject fixates a mark in the centre of the visual field. An intercom, 

arrangement permitted communication between the experimenter and the 

subject and was used by the subject to indicate that he was ready for 

stimulus presentation. The experimenter was able to monitor 4 selected 

EEG channels which allowed him to initiate the experiment when the EEG
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traces had settled down, and also to repeat the run if significant 

artifacts were detected. Instructions were given to maintain fixation 

throughout each run at the start of the experiment. No facility was 

available to monitor this, but experienced subjects were used who could 

be relied upon to cooperate. Large artifacts such as those caused by 

ocular movement were relatively easy to identify in the monitored EEG 

channels.

The electrode leads are connected to a headboard which routes 

the signals via screened cables to the EEG amplifiers. In these 

experiments a commercial Beckman 1TC-161 EEG amplifier was used, 

providing switched gain and filter combinations. A 150 Hz low pass 

filter was selected so as not to limit later analyses; this was the 

maximum cut-off frequency available on the Beckman EEG amplifiers. The 

amplified signals were recorded on a 14 channel Ampex CR1300A 

instrumentation recorder, along with stimulus timing signals and spoken 

identification records. These were recorded using a tape speed of 1 7/8 

ips and the recorder incorporated a high order filter to attenuate 

frequency components above 300 Hz at this speed. Calibration signals 

derived from the EEG amplifier were also recorded prior to conducting 

the experiment. The overall instrumentation noise was estimated at 

about 2 yV rms.

Standard Ag/AgCl disc cup electrodes were used, attached to the 

scalp by means of collodion and filled with electrode gel after the skin 

had first been thoroughly cleaned with methanol solution to remove 

grease or other contamination. When the electrodes were firmly secured, 

the epidermis was gently abraded with the blunt end of a syringe to 

obtain good electrical contact. In this way impedances of 1-5 kohms 

were regularly obtained between each electrode and the reference
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electrode. As the input impedance of the EEG machine exceeded 1 M ohm 

this ensured that signal loss was negligible [9]. The electrodes were 

removed at the end of the experiment using acetone.

Major artifacts tend to arise from gross body movements or 

movements of the head. It was incumbent upon the subject to adopt a 

comfortable position so as to avoid these during recording. As well as 

avoiding possible movement artifact this minimises subject fatigue, and 

reduces activity from neck and facial muscles which can otherwise 

degrade the quality of the data. Artifacts due to ocular rotation were 

less common, though occasional eyeblinks occurred in spite of the use of 

short duration recordings. These are easily identified in the data and 

can be used to reject contaminated runs if these are considered serious. 

As the experimental facility was well developed and employed adequate 

screening and single point grounding, no extra precautions were required 

to avoid a.c. mains interference.

6.2 Hardware aspects of the signal processing experimental facility.

6.2.1 Computer resources.

At the start of this research program there was no adequate 

computing facility for the requirements of this research. A Computer 

Automation Inc. CAI Alpha minicomputer was available but was routinely 

used in EP experiments and subsequent analysis. It had limited hardware 

and software features, as it supported only Fortran II andassembler 

languages and accessed only 16k RAM storage, which was considered to be 

inadequate for the requirements of this research. Central university 

computing facilities were available but suffered from inadequate data 

sampling capability, fairly heavy day-time use, limited resource
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allocation and unscheduled service interruptions. It was therefore 

decided to set up a separate signal processing facility for use by the 

Device Applications Group in the Physics Department at Keele which had a 

similar requirement to this project. A DEC PDP 11/23 was selected as 

the basis for this for reasons of compatibility with existing 

departmental equipment, sharing of software and hardware experience 

within the department and externally, wide popularity of this range of 

minicomputers in scientific fields and some software support via the 

user group DECUS. A disadvantage of this choice was incompatibility 

with the CAI Alpha minicomputers used in the Department of Communication 

and Neuroscience, where the EP experiments were conducted. As off-line 

processing was likely to be the main activity this was not considered to 

be a serious disadvantage.

The PDP 11/23 was obtained in the following configuration: LSI 

11/23 processor with Memory Management Unit (MMU) and Floating Point 

Option (FPU), 128 kbytes DRAM, twin RX02 floppy disk drives, 16 channel 

multiplexed analogue input to 12 bit ADC, programmable real time clock, 

general purpose digital I/O interface, quad serial line interface and 

ROM bootstrap board. Two RK05 hard disk drives were added later 

providing 5 MB of storage. In addition the peripherals included an LA36 

DecWriter, Uatanabe digital plotter and Televideo 192C VDU, all serviced 

via serial lines. A Gould Colorwriter digital plotter was available 

later to provide additional plotting capability. An analogue output 

card was constructed using the digital interface card to provide 

waveform display facilities. This unit is described in the next

section.
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6.2.2 Display Unit.

This unit was designed to provide 2 analogue output channels, 

suitable for driving an oscilloscope monitor or analogue plotter. To 

maximise display rates it was decided to use the integral oscilloscope 

time base, permitting 2 analogue waveforms to be repetitively displayed, 

synchronised by an external trigger pulse. The digital output port has 

a maximum data rate of 40k words/second which permits a satisfactory 

refresh rate of 20 Hz for a 2k word buffer. The unit was designed to 

permit easy software driving of the display yet with minimal hardware.

As only one 16 bit port was available and 8 bit resolution was 

considered too poor, multiplexing of the 2 channels was necessary.

Rather than setting a control bit or data word bit to designate the 

channel, which would require two instructions per output sample, the 

following solution was adopted. A control signal is used as a combined 

trigger/mode control , with one mode being single channel display and the 

other being dual (chopped) channel display. When the second mode is 

selected the data words are automatically routed to each channel 

alternately, starting with channel 1 to achieve synchrony. 16 bit DACs 

were available and were used for the sake of convenience, though 10 or 

12 bit resolution would have been adequate. A second logic output was 

provided for pen control or trace brightness modulation. A block 

diagram of this unit and corresponding timing diagrams is shown in 

figs. 6.2 and 6.3.

Instrumentation had to be provided to enable the analogue 

signals to be sampled. As the ADC has a range of -5 to +5 volts and the 

instrumentation recorders had maximum outputs of approximately 1 volt 

rms, additional preamplification was provided to make full use of the 

ADC resolution. An 8 channel signal conditioner rack was built using
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FIGURE 6.2 Block diagram of the Display Unit interfaced to the PDP-11 
parallel output port to obtain dual analogue outputs.
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biFET op-amps in standard circuit configurations to achieve this. This 

unit provided switched gain in the range 1-300, anti-aliasing filters 

and d.c. offset controls for each channel.

6.2.3 Digitization of EP data records.

In order to process the EP data using the PDP 11/23, it was 

necessary to sample and store the raw records. To perform this 

efficiently a low sampling rate was needed and chosen to be 128 Hz. It 

is easy to verify that even with this sampling rate, 8 channels of EEG 

and trigger signals generate approximately 1000 samples for each second 

of the record. As a single run of 16 trials generates approximately 

16000 samples, it was clear that higher sampling rates were 

impracticable. To avoid errors in sampling due to aliasing, it is well 

known that significant signal components must not exist above half the 

sampling frequency, known as the Nyquist frequency of the data. As the 

raw data did contain signal components beyond 64 Hz, it was necessary to 

filter the data prior to sampling. Although this bandwidth is a little 

small for all EP components to be accurately represented, it was 

necessary to sacrifice signal bandwidth to permit lower sampling rates 

to be used; examination of the EP waveforms revealed that little 

distortion of major features occurred.

Digitization of the data was performed by oversampling at 512 Hz 

followed by digital filtering and decimation to yield an effective 

sampling rate of 128 Hz. The advantages of this approach are that high 

order filters providing more than 20 dB/octave attenuation are 

relatively easy to implement digitally, and can be designed to have 

linear phase response. It is thus only necessary to employ a simple 

filter in each channel sufficient to prevent aliasing of frequencies
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above 256 Hz, whereas the alternative approach requires high order 

analogue filters to be provided for each channel to attenuate signal 

components above 64 Hz. These are more difficult to design, and are 

more susceptible to phase distortion and inaccuracies arising from 

component tolerances.

Digital filtering and decimation was accomplished using the 

method suggested by Nielsen [116] which employs a 19-weight low pass FIR 

filter and discards every other sample to perform decimation by a factor 

of 2. The magnitude response of this filter is shown in fig. 6.4. This 

is an efficient method of performing this task as approximately half of 

the filter coefficients are zero, the coefficients are symmetric (thus 

halving the multiplications required) and they need only be applied to 

every alternate sample as part of the decimation algorithm. This 

reduces the computations by a factor of approximately 8. Decimation was 

accomplished by two consecutive applications of this algorithm to each 

data record.

6.3 Software aspects of the signal processing experimental facility.

As the main research activity was the development and 

investigation of signal processing methods, a facility to support 

computer studies of this nature was needed. Some care was taken to 

identify the needs of the project so that a suitable system could be 

developed. Interactive operation was considered essential as analysis 

procedures are in general data-dependent, often requiring the results of 

previous operations to determine subsequent operations. Simple 

extension of facilities was important to permit rapid development of new 

procedures. As well as requiring versatile control of processing 

strategy, different applications were likely to vary extensively and so



T R A N S F E R  C H A R A C T E R I S T I C

FIGURE 6.4 Magnitude response of the decimation filter based on a 
19 weight FIR digital filter. Normalised frequency seal
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the facility would have to be general. As the main requirement was for 

a development facility, flexibility of use and ease of extension were 

considered more important than computational speed, which helped resolve 

the speed versus memory conflict in favour of efficient use of the 

latter. Within these general constraints, the specific tasks to be 

performed by the software were data acquisition, display, plotting, 

storage and processing, mainly of multichannel time-series data.

Standard arithmetic manipulations and transformations were required, as 

well as a range of statistical and spectral analyses. Methods of 

generating artificial data and evaluating the results of processing were 

also required.

Although such a facility was considered to be fairly common, 

initial attempts to locate one in the scientific community at large 

proved fruitless, and the decision was made to develop one that would be 

tailored to these needs. Later investigations did reveal some possible 

contenders although by this stage program development was well under 

way, and the availability and delivery time could not be relied upon 

even if they were suitable. Some of these systems will nevertheless be 

included in the following discussion to illustrate some of the 

approaches taken and to provide a background within which the package 

described here may be evaluated.

6.3.1 Strategies in the design of a signal processing program.

There are a number of ways in which this task can be approached, 

and these will now be briefly examined. The first method is to create a 

number of self-contained analysis programs, each acting on some 

nominated data, performing the required operations, and presenting the 

results and/or saving them for later analysis. This would typically
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require that a library of standard functions be constructed for 

input/output, display, etc. which would then be used by each individual 

program as needed. This is the approach taken in LAB-11 [117] and 

initially espoused by Hunter and Kearney [118] and others. It is also 

inherent in conventional high level languages extended to allow 

interaction with laboratory devices, such as CONVLINC [119] and CLASS 

[120].

There are several limitations to this approach. Firstly 

programs are large, as they each contain much code not directly related 

to the primary function of the program in order that they be 

self-contained. This usually necessitates the use of overlay techniques 

and frequently implies that task building becomes complex and 

time-consuming, thus hindering development. Secondly, modification of 

any code stored in the library can mean rebuilding all tasks making use 

of it. As this can occur fairly often in a developing system, 

maintenance of software and documentation can become tedious. The third 

disadvantage stems from the difficulty in achieving the required 

flexibility in general purpose programs of this nature. The dialogue in 

a menu or prompting system can become tiresome, while more sophisticated 

control means large overheads in each procedure. It is also difficult 

to perform automated analyses which have been developed interactively, 

especially when these cross program boundaries.

A better approach is to design a single package which contains a 

wide range of elementary operations which may be called up by the user 

in any sequence required by an analytical task. The immediate gain is 

flexibility, as the user has complete control over the manner in which 

operations are performed. If a number of elementary operations are 

provided, a wide range of possible analyses can be conducted
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interactively. Further, modifying or adding to any of the elemental 

operations takes effect immediately, making available the extended 

functionality to all procedures requiring them. A disadvantage of this 

approach is that a single program containing all possible functions is 

necessarily large and may not be as efficient as a purpose-designed 

program for a given task. Another disadvantage is that in order to be 

applicable to different situations, generalised structures need to be 

employed which again are likely to be suboptimal in many situations and 

necessitate much more careful design. An example of the kind of 

question arising is in determining the proportion of memory allocated to 

data and to code, which will obviously depend on the anticipated usage 

and resources available.

A similar approach which shares many of these advantages is to 

have a suite of separate programs performing the elementary functions, 

called up by a supervisor program to provide interaction with the user. 

This has the advantage that each new function can be installed 

independently without having to be linked each time to the existing 

package. This obviously speeds up development, especially since the 

edit/compi1e/1ink cycle is only applied to the new program. This was 

the solution adopted by Hunter and Kearney [121] after experience with 

several other schemes. Unfortunately their work was proceeding at the 

same time as the author's and so was not available either for direct use 

or for direction in developing the present package. While something of 

this nature had been considered, it was rejected at the time as it was 

thought that providing shared access to common data for each program 

unit would be difficult using standard Fortran, and would possibly 

involve time-consuming file operations between each command. It might 

also be difficult to keep the supervisor resident between each command, 

which would otherwise have to be loaded each time.
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The strategy described previously of having a single program 

containing all the required functions was therefore adopted and is 

similar to packages such as TOY [122] which is specifically for EP 

processing and SPAID [123] which is principally intended for system 

identification. Both of these are designed according to this general 

structure, and permit selection of different operations under keyboard 

control. TOY does not contain all the functionality that is desired for 

this research, and SPAID offers a number of fairly large, self-contained 

procedures rather than a set of basic operations. Unfortunately neither 

was written for a DEC machine and the language implementing TOY was not 

specified. SPAID was written in Fortran II and assembler and acted upon 

data in disk files, so would require considerable modification and 

extension. Neither was therefore suitable as a basis for this research 

work, and the decision was made to develop a suitable software facility 

based on a similar approach, to be implemented on a PDP 11 minicomputer.

6.3.2 Choice of programming language.

The choice of programming language was limited to DEC Fortran 

IV, since this was the only high level language available for the PDP 11 

series of machines at the time of writing. Other high level languages 

would have been preferred and C was considered as particularly useful 

because of its high level structure combined with efficient low level 

access to machine-dependent functions. MACRO-11 was considered to be 

too clumsy and time-consuming to support the implementation of a package 

of this nature, although potentially it offers the fastest and most 

efficient code. One of the main advantages of using Fortran is the wide 

availability of software in this language. In particular the IEEE 

Volume of Programs for Digital Signal Processing [124] formed a useful 

basis for some of the spectral analysis routines as a large number of
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well-documented and carefully tested programs are provided. Efficient 

assembly language FFT routines were available for use within these.

Though these programs tended to be self-contained, it was possible to 

modify them for use within the program developed here. One of the main 

disadvantages of Fortran was its lack of structure compared to other 

languages such as PASCAL and C. Considerable effort was therefore taken 

to avoid the confusing code which could otherwise have resulted, and use 

was made of highly modular structure, clearly written code employing 

adequate comment statements, meaningful variable names, and a standard 

format for all user subroutines. These ideas have been suggested in 

texts by Kreitzberg and Schneiderman [126] and D a y ^ ^ '  DEC extensions 

to standard ANSI Fortran were used whenever this would result in quicker 

program development and execution time, though it is acknowledged that 

this would hinder software portability.

6.3.3 Design requirements of the software.

The facilities that it was considered important to include in 

the proposed software are now described. It was necessary to provide a 

general means of interactive control to permit simple keyboard selection 

of different functions. This was most easily accomplished using 

mnemonic command names which were decoded to identify the function 

desired. Rather than employing a set of prompts for the data items 

(arguments) required by each command, it was convenient to include these 

within the same command line. Brief command mnemonics and argument 

references save unnecessary keyboard input and lessen user fatigue. It 

is common for several subroutines to require the same data items, such 

as sampling or plotting parameters. Rather than entering these each 

time it was convenient to provide global access to these so that they 

need not be changed once they have been assigned a suitable value. In
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order to satisfy a wide range of different analysis situations it was 

considered important to have user-definable data structures since data 

arrays defined in the program are too restrictive and can be inefficient 

in their use of memory. Allowing the user to define these during 

program execution increases the complexity of the program but offers 

very considerable advantages in terms of flexibility and generality.

The facility to define the position in memory and structure of a number 

of data arrays was considered invaluable.

Other facilities that were considered to be useful were the 

ability to store sequences of commands in files exactly as typed at the 

keyboard, for later execution. This can simplify use when common 

command sequences or even an entire analysis procedure is repeatedly 

required. This also permits unattended “batch0 operation when 

time-consuming analyses are required. Logging of console dialogue was 

also considered important, to provide a hard copy listing of an 

experimental session. This also permits results of analyses etc. to be 

made available for later reference. Robustness of the program to 

run-time error conditions was essential, as these can otherwise lead to 

inconvenient interruptions or even loss of data. Each subroutine had 

therefore to be written to trap all possible errors such as floating 

point overflow, and a full range of error messages were needed to 

indicate when these occurred. These requirements are very similar to 

those of a simple interpretive language such as BASIC. To avoid the 

complexity of this approach the simplest possible syntax was devised 

which nevertheless implements the design requirements. More complex 

facilities such as expression evaluation were therefore omitted.
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6.3.4 Implementation of the software.

Several important requirements for the software have been 

outlined in the previous section. A number of considerations in 

implementing these are discussed in this section, and will explain the 

nature of the final package. It has already been stated that minimal 

program size, flexibility of operation and ease of extension are among 

the most important design goals. The following sections show how these 

were achieved.

Efficient processing of data requires that it be resident in 

memory. For the case of multichannel brain recordings this involves 

large data arrays, which conflicts with the large program space required 

by a multi-purpose package. To resolve this it was decided to reserve a 

large data area for efficient operations on the data, and to employ 

overlayed command functions so that a large number of subroutines could 

effectively share a minimal amount of memory. Breaking system and 

command functions into a number of small subroutines has a number 

advantages, which includes modularity of design, avoidance of redundant 

code, clarity of program structure, simpler development and efficient 

use of memory by overlay techniques. These permit very large programs 

to be constructed, which are determined by disk capacity rather than the 

core memory size, as only the code for each command needs to be resident 

at any one time. The disadvantage is a slight reduction in execution 

time as non-resident code must be loaded before it can be used. 

Intelligent structuring of overlay regions is essential so that 

frequently called routines have a higher probability of remaining 

resident while rarely used routines (such as initialization or error 

message code) can be put in overlay regions which are non-resident for 

most of the time. Other techniques used to minimise program memory
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requirements are packing of data by special techniques, use of integer 

or logical variable types whenever possible and storage of large amounts 

of text in files that are read when required (such as error messages or 

help information).

Two main difficulties were encountered in following this 

strategy. The first difficulty is that the PDP-11 family of computers

have a limited addressing range of only 64 kbytes, as the 16 bit address

bus addresses bytes rather than words. To provide access to more memory

it is possible to use a memory management unit (MMU) which maps the 16 

bit logical address space onto an 18 bit physical address space. This 

is required to make use of the 128 kbyte RAM available in our 

configuration. It is unfortunately not completely transparent as the 

user has to declare a variable or array as being of type VIRTUAL in 

Fortran IV if it is to be allocated storage in the extended memory space 

[125]. This is a non-standard Fortran feature which limits the 

portability of the package, and is not compatible with other Fortran IV 

statements, such as EQUIVALENCE and SUBROUTINE statements. A further 

disadvantage of this extension is that it is not efficiently handled by 

the system software, which was later discovered to set up the MMU prior 

to accessing each data item in extended memory, resulting in much slower 

access times. For this reason it was decided to reserve the full 64 

kbyte of extended memory as an integer data area, which is sufficiently 

fast for simple operations. More complex operations would be performed 

by copying data into a real- or complex-valued data buffer in the base 

page memory for efficient processing. If this arrangement was found to 

be inadequate plans were made to modify the system components for 

improved extended memory handling, which promised substantial gains in 

processing speed.
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The second difficulty encountered was that the Fortran compiler 

did not generate efficient argument transmission code to support 

subroutine calls. Not only was the in-line code duplicated for 

identical arguments, but also for identical subroutine calls. A 

calculation revealed that 100 subroutines having 5 arguments each would 

require approximately 15 kbytes of memory just for argument 

transmission. This is comparable with the memory available for the 

proposed package and is clearly excessive even with the use of overlay 

techniques, and so an alternative strategy was sought. As only one 

command subroutine needed to be resident at any one time, it was not 

necessary to have a separate argument transmission area allocated for 

each, as is required if subroutines are to be nested. This enabled 

considerable savings to be made by reserving a special communication 

area in the main keyboard control routine, common to each user 

subroutine. Arguments used by each command as well as globally 

accessible parameters were made available via this area aided by special 

system functions. The code requirements were thus reduced to a simple 

subroutine call for each command, and a communication area of less than 

100 words for the arguments. Further details of this arrangement are 

given in Appendix A5.

Flexibility of use was achieved by supplying a wide range of 

elementary operations and functions. These can be called in the correct 

sequence to perform the desired analysis. Though this is not as 

efficient as purpose-designed code it did offer simpler development of 

new procedures. Flexibility was also achieved by the use of 

user-defined data structures and parameters. To permit easy extension 

of facilities it was decided to impose a formal structure within which 

compatibility of shared resources could be achieved, yet without 

sacrificing flexibility of approach. This was partly achieved through
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the memory allocations and the argument and parameter structures 

described. To facilitate the addition of new commands it was decided to 

employ a fixed naming scheme so that the code to call up to 100 command 

subroutines was provided. This was intended to obviate the edit/compile 

cycle that would otherwise be applied to the main calling routine each 

time a new command was added. To aid in this process a system file was 

used to contain the definition of each command, and read in at the start 

of the program to configure the system tables. A system file containing 

all possible error messages was also used to provide a generalised error 

message handling facility which simplifies each subroutine and minimises 

program space. Adding a new subroutine merely required that it be 

written to use the communication protocol defined and linked to the 

existing object library to create a new task image.

The resulting facility was found to be a useful vehicle for the 

prototyping of different processing algorithms as well as for performing 

routine analyses. The final program exceeded 20,000 lines of source 

code and comprised approximately 150 subroutines. For this reason no 

attempt was made to include a full listing in this thesis. Further 

details may be obtained in Appendix A which contains a brief description 

of the program and includes an extract from the user manual, examples of 

the user dialogue, and various listings to show the features available.

6.4 Sifnmary.

An account of the the experimental methodology in recording and 

analysing evoked potentials has been presented in this chapter.

Equipment employed for this purpose has been described and includes a 

description of the computing facilities available. A large part of this 

chapter has been concerned with the software needs of this research
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programme. A review of currently available software showed that this 

was inadequate for this task. The requirements and design of a suitable 

Fortran program for use with a POP 11/23 minicomputer was presented, 

though further details of this package are contained in Appendix A.

This chapter provides the necessary background for the experimental work 

to be described in the following chapters.
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CHAPTER SEVEN.

PRELIMINARY CONSIDERATIONS REGARDING ADAPTIVE NOISE CANCELLING OF EPS.

7.0 Introduction.

In this chapter the case for using an adaptive filter to process 

EP data is considered. The advantages which can be gained by using 

adaptive filters have already been described. It was shown in chapter 3 

that signal averaging and bandpass filtering of the raw data are the two 

most common signal processing methods applied. These achieve noise 

reduction by removing frequency components which lie outside the signal 

bandwidth, and by enhancing coherent activity with respect to incoherent 

activity. In this chapter experimental work is described which 

establishes the best manner of applying adaptive filters and what 

improvement in signal-to-noise ratio results. The results of applying 

adaptive noise cancelling to EP data are presented in the following 

chapter.

As discussed in Chapter 4, successful noise cancelling by 

adaptive transversal filters requires:

a) a primary input signal source containing the desired signal (in this 

case the EP) which is corrupted by additive uncorrelated noise (in 

this case all other signals including the EEG), and

b) one or more reference sources containing noise components that are 

correlated to some extent with the noise in the primary input but 

which contain little or no primary signal components.
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The purpose of the investigations in this chapter is to determine 

whether or not this situation occurs in scalp-recorded evoked 

potentials, and to what extent the application of this technique is 

justified. In the next section the first of these requirements is 

investigated by considering typical scalp distributions of pattern 

evoked potentials obtained for two subjects using two particular 

stimulus types. This study reveals how well it is possible to identify 

reference electrode sites which are free from signal components. In the 

succeeding section a study is described which seeks to determine whether 

significant correlations are present in the EEG at multiple scalp sites, 

based on a simple linear model of signal relationships. Spectral 

estimation methods and in particular the coherence function will be used 

to characterise the correlations present in different frequency bands 

and to predict the signal improvement factor directly. A discussion of 

the results and their ramifications to the application of ANC are 

presented in conclusion.

7.1.1 Distribution of Evoked Potentials across the scalp.

In order to identify suitable ANC inputs a study was made of the 

scalp distribution of EPs using two normal subjects under two stimulus 

conditions. Had the intention been to identify general population 

characteristics, it would have been necessary to have used a larger pool 

of experimental subjects. As this study was exploratory in nature the 

use of a small number of subjects was considered sufficient to permit 

preliminary conclusions to be made, and to indicate the direction for 

further research.
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7.1.2 Description of Results.

The results presented In this section primarily illustrate known 

spatial distribution characteristics of EPs and do not describe new 

findings. It was considered important to do this study rather than to 

refer to published results, because scalp distributions vary in 

different individuals. It is therefore necessary to determine the 

actual distribution in each experimental subject before new analyses are 

developed. Only those features that are of direct relevance to the aims 

of this thesis will be considered.

Fig. 7.1 shows 2 superimposed averages of 128 responses each, 

for each channel, subject and stimulus. Only the first 1 s is shown, of 

which the first 100 ms is the pre-stimulus epoch. Two averages are 

plotted in each case to indicate the repeatability of the responses.

Three features of particular interest can be identified:

1) The EPs obtained for each subject have quite different morphologies. 

This is consistent with previous studies which conclude that significant 

form differences exist in the VEP for different individuals [25]. The 

superimposed averages support findings that intra-subject variability is 

generally much less than the variability across subjects.

2) While individual EP wave forms vary considerably, it is possible to 

infer characteristics that are more generally obtained. For example in 

figs. 7.1(b) and 7.1(d) both subjects show that the Cl component is 

predominant in the contralateral hemisphere to the one stimulated. This 

would be expected for a pattern presented to either left or right visual 

fields. In the same way, stimulation of the lower field might be 

expected to produce a more symmetric distribution about the midline, and
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- 153 -

this is observed in figs. 7.1(a) and 7.1(c). The time-courses of the 

main components appear to correspond well to the general pattern 

described in chapter 2 section 2.4.2.

3) The scalp distributions are different for each component. Thus in 

fig. 7.1(c) subject MJM shows a decreasing C2 and C3 amplitude as the 

scalp is traversed from electrodes 4 to 7, but an increasing Cl 

amplitude. Subject DAJ exhibits a very different scalp distribution for 

Cl compared with C3 in fig. 7.1(b). The significance of these results 

will be discussed later in this chapter.

7.2 Correlation properties of the EEG over the scalp.

In this section the results of a study will be described that 

characterise the nature of EEG correlations at several scalp sites.

Fig. 7.2 shows typical raw EEG signals obtained at 7 occipital scalp 

sites for one experimental subject. These records were obtained with 

respect to an ear reference as before. From a visual examination of 

plots such as these it is evident that similar low and high frequency 

activity occurs in many of the channels. From inspection it appears 

that this can not be attributed to activity arising from the reference 

site alone. This suggests that there is a great deal of redundancy 

present in the multichannel EEG that conventional unidimensional methods 

such as averaging and filtering do not take into account. Bipolar 

recording does of course attempt to remove common activity present in 

two electrode channels by subtraction. This has the effect of enhancing 

spatial differences and has been used, for example, to locate the 

apparent sources of components. While this is a simple and generally 

effective method of cancelling common activity, there is no reason to 

suggest that simply subtracting EEG channels regardless of possible gain
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and phase relationships will yield maximum signal enhancement. Used 

indiscriminately this can even lead to distorted EP estimates if 

significant EP components are present 1n both channels, which will 

become apparent later.

7.2.1 An EP/EEG signal model.

Fig. 7.3 shows a simple model for multichannel EP and EEG 

signals. It is not intended to represent the generation processes, but 

to be a simple descriptor of the relationship between these signals 

across the scalp. It will be useful in considering adaptive noise 

cancelling of EP data. S represents a train of dirac impulses 

synchronised with the stimuli. These impinge on a set of filters ĥ  

whose impulse responses correspond to the average evoked potential at 

each electrode site. These can be fixed or time-varying to represent 

deterministic or stochastic EP generation processes. G is a random 

noise source that feeds a corresponding set of filters ĝ  to determine 

the nature of the EEG at each electrode. These might well be 

time-varying in general to reflect the changing composition of the EEG 

with time as well as scalp location. In addition there is a set of 

independent noise processes to model activity at each electrode that 

is independent of all other activity. This is to account for local EEG 

activity, electrode noise processes etc. It is apparent that this is an 

elementary linear model to describe EP and EEG signals. It implicitly 

assumes that the two are independent and that they linearly combine at 

each electrode to form the joint process. These assumptions are 

commonly made when modelling EP and EEG signals, and though not strictly 

true they are generally held to be sufficiently good approximations, as 

discussed in chapter 3.



s
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FIGURE 7.3 Simple linear model of signal relationships between
----------  EP and EEG aitivity at several electrode sites.

(See text for an explanation of the symbols.)
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7.2.2 Spectral analysis of the EEG.

The first task has been to determine the spectral properties of 

the EEG at the selected scalp sites. Firstly the auto-spectra of both 

raw responses and average EPs are obtained using the discrete Fourier 

transform (DFT). These indicate the main frequency components that 

describe these signals. The cross-spectra are also computed for all 

electrode pair combinations to indicate the degree of correlated 

activity present in each pair. This information is best represented 

using the coherence function, which permits direct prediction of noise 

cancelling performance. The procedures used will be outlined briefly, 

followed by the results and discussion. Note that the main purpose of 

these analyses was to obtain a general picture of spectral composition, 

sufficient for the identification of gross features. Conventional 

spectral analysis techniques employing the DFT are sufficient for this 

purpose. Finer frequency resolution can often be obtained from short 

time records by modern spectral methods such as autoregressive modelling 

techniques, but it is clear from these results alone that considerable 

spectral overlap exists between the EP and EEG even if the limitations 

of the DFT are taken into account. This is sufficient to show that the 

EP cannot be extracted from the EEG on the basis of spectral occupancy 

alone.

The spectral estimation was performed using the methods 

suggested by Welch [128] and by Carter, Knapp and Nuttal [129], which 

are described in Appendix B. The data record following each stimulus 

was divided into two equal-length epochs, one containing the EP and the 

other essentially unstimulated EEG activity. The EP was considered to 

be approximately contained within the first 500 ms, and this is borne 

out by the averages shown in fig. 7.1. Since it is the correlated EEG
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components that are of chief concern, only the unstimulated epochs were 

analysed, as the presence of the EP in the record following the stimulus 

would have affected the results. Each segment had the d.c. and linear 

trend removed prior to further processing as these can result in 

erroneous spectral estimates. A full cosine Hanning window was applied 

to reduce the effects of spectral leakage. This is necessary to avoid 

errors in the coherence function [135]. The DFT of each segment was 

computed using the fast Fourier transform (FFT) and the average of the 

moduli obtained. The average cross-spectrum was computed using a 

similar procedure though the phase was retained in these calculations. 

Several other spectral functions including the coherence and the 

cross-phase were obtained from these as described in Appendix B. The 

auto-spectral power densities at each electrode are shown for both 

subjects together with the corresponding AEP spectra in fig. 7.4. Each 

plot of the raw EEG spectra is based on an average of 128 spectra, and 

the EP spectrum is based on the average of 128 consecutive EPs.

A number of observations can be made from these data. Firstly 

there are clear differences in the spectral structure of the EEG for 

each subject though these are relatively consistent for each subject. 

There are several distinctive features, e.g. subject DAJ shows a 

pronounced peak in the spectrum at approximately 10 Hz for all 7 

electrode sites, though there is a subsidiary peak at about 3 Hz. 

Activity is reduced in the 16 - 32 Hz band. Subject MJM has a similarly 

bimodal EEG spectrum, but with broader peaks whose relative amplitudes 

change over the scalp. These peaks centred at approximately 3 and 10 Hz 

correspond to the delta and alpha bands respectively. It is possible 

that low frequency artifacts also contribute to this activity, though an 

examination of the spectral power density of test signals recorded on 

the instrumentation recorder failed to reveal significant components in
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the signal bandwidth, so instrumentation noise may be discounted. 

Motion-induced artifacts due to muscle tremor, breathing or pulsing 

blood flow are also unlikely to be significant in the bandwidth 1-3 Hz. 

This indicates that neural activity is primarily responsible for 

activity at these frequencies.

The cross-power spectra are shown in figs. 7.5 and 7.6 for 

subject DAJ and in figs. 7.7 and 7.8 for subject MJM. The corresponding 

cross-phase spectra are also shown in figs. 7.9 - 7.11. The cross-power 

spectrum is a measure of the spectral power at each frequency that is 

due to correlated activity in both channels. The coherence function is 

more useful for determining cross-channel correlations, but it is 

important to compare this function with the constituent spectra to avoid 

errors in interpretation. Note that the cross-phase function is 

approximately zero in general, though significant phase differences are 

present in these data for certain electrode combinations. Studies of 

the phase differences across the scalp have reported these to be higher 

for longitudinal rather than transverse orientations [31] [32] [131] and 

were generally not significant for closely separated occipito-occipital 

sites, which is in accord with these data.

7.2.3 Coherence analysis.

A most useful measure that jointly expresses the auto- and 

cross-spectral information is the magnitude-squared coherence function 

(MSC), which will be referred to as the coherence in the remainder of 

this thesis. It is represented by |y|^, and obtained from the auto- and 

cross-spectral power in the manner described in Appendix B. The 

coherence provides a normalised estimate of the correlation between two 

channels at each frequency on a scale 0 to 1 rather like the correlation
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FIGURE 7.8 Sample EEG cross-spectral intensities for different 
electrode pairings. Subject MJM, stimulus C. 
Arbitrary units of spectral intensity.



FIGURE 7 9 Sample EEG cross-phase functions for different electrode 
~  ’ paifings Subject DAJ, stimulus A. Two plots superimposed

in each case.
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coefficient, and is thus independent of the actual signal powers at each 

frequency and of any linear transformation applied to either data 

channel. Its properties are well-known and described in texts on signal 

analysis such as [132]. The most important of these are briefly 

summarised here. A coherence of unity indicates that the signals in 

each channel are perfectly correlated at that frequency, and a value of 

zero indicates no correlation. Intermediate values are due to a mixture 

of correlated and uncorrelated processes at each input, which can be 

either deterministic or stochastic. These can arise from

a) a non-linear process relating the two inputs (and hence introducing 

non-linearly related components)

b )  other inputs in the system, or

c) extraneous noise.

Further details of the coherence function, its statistical properties 

and methods of estimating it are presented in Appendix B.

Consideration will now be made of the features of interest in 

the coherence function computed for the experimental data shown in 

figs. 7.12 - 7.15. Firstly there is a general trend for the coherence 

to decrease as electrode separation increases. This is consistently 

observed for all the data analysed and indicates that this is a general 

result. The coherence functions computed for electrodes of a given 

separation do not differ widely and can clearly be classified according 

to this criterion. They do however exhibit small variations depending 

on actual scalp location; for example these occur when electrodes are 

placed close to the reference site.



FIGURE 7.12 Sample coherence functions for different electrode pairings. 
~  Subject DAJ, stimulus A. Two plots superimposed.
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FIGURE 7.14 Sample coherence functions for different electrode pairings. 
Subject MJM, stimulus A. Two plots superimposed.



FIGURE 7.15 Sample coherence functions for different electrode pairings. 
Subject MJM, stimulus C.
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An important feature in these data is a significantly reduced 

coherence occurring at and beyond the alpha frequencies (8-15 Hz) for 

all other than the closest electrode separations. This decrease in 

coherence is strongly dependent on electrode separation and is very 

marked for medium to large separations (5 - 15 cm), when it can approach 

zero. The extent of this dip is fairly broad for subject DAJ, whose 

coherence gently rises again in the region 16 - 32 Hz, whereas subject 

MJM exhibits a much narrower dip of width about 6 Hz centred at 10 Hz. 

The coherence is fairly high in the low frequency band 0 - 4 Hz where it 

shows least variation with electrode separation, while the frequencies 

above about 16 Hz show an intermediate dependence of coherence with 

electrode separation. The interpretation of these results will be 

presented in the following section.

7.2.4 Discussion of Results.

The correspondence of the major dip in coherence with the alpha 

band indicates that activity in this band is not well correlated over 

the scalp, even though alpha activity features prominently at all the 

occipital scalp sites considered. This may be seen clearly by comparing 

the cross-spectra with the corresponding autospectra in figs. 7.16 and 

7.17, which shows a gradual attenuation of this component with increased 

electrode separation. This result is in good agreement with the 

assertions of Lopes da Silva and Storm van Leeuwen [133] and others that 

the alpha rhythm is not generated in a central, synchronising source 

(e.g. in the thalamus) but in small aggregates of neurons (networks) 

which are loosely coupled over the cortex. Each network generates 

activity in the alpha frequency band which can influence neighbouring 

networks, but the influence decreases with increasing scalp separation.
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The consistently high coherence values in the frequency range 

0 - 6 Hz suggest that this activity is globally present over the scalp 

sites considered. This may be partly attributable to artifacts caused 

by motion, tape recorder transport irregularities etc. but is more 

likely to be caused by correlated neural activity for the reasons 

previously suggested. The slight decrease in coherence that occurs as 

electrode separation increases indicates a progressive decrease in the 

level of shared activity and/or a relative increase in local EEG or 

random noise activity. At frequencies above about 16 Hz the EEG 

activity is diminishing, and so poorer coherence might be expected due 

to the relatively greater influence of independent random noise. This 

is indeed observed in these results though significant correlations are 

still present at these frequencies.

These results can be used to predict the effectiveness of 

cancelling the correlated activity in different electrode pairs as the 

coherence function permits an assessment of the potential value of 

particular electrode choices; high coherence values indicate that good 

cancellation can be achieved. A coherence value of 0.5 leads to an 

improvement in SNR of 3dB, using expression B.12 in Appendix B. Much 

below this value, the returns are unlikely to justify use of this 

technique, though use of several reference electrodes may yield 

significant improvement even when the coherence is poor [103]. This 

will only occur if the correlated components in each reference are 

themselves relatively uncorrelated with each other, as otherwise there 

is little added information that may be used to gain further noise

reduction.
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7.3 Ramifications for adaptive noise cancelling of EPs.

The results of this study indicate that ANC may yield some 

improvement when applied in the manner originally proposed. Initially 

it had been thought that the EEG was well-correlated over extensive 

scalp areas, which is shown not to be the case. At the separations 

required to obtain an EP-free reference input the correlations are 

moderately good, but tend to be poor at alpha frequencies. Significant 

reduction of this activity may therefore not be possible by this method. 

Useful noise reduction is predicted at other frequencies, particularly 

at frequencies below about 6 Hz, which could lead to effective 

enhancement of low-frequency EP components such as the P300 component, 

though consideration of this or other slow wave phenomena has not been 

pursued in this thesis.

The coherence results restrict the choice of reference inputs to 

those which are relatively closely separated and which have markedly 

different EP contributions. Data from the two subjects indicate that 

this is not always possible and some distortion of the EP may be 

unavoidable. It is usually possible to satisfy these conflicting 

conditions for one or two components, for example left/right half-field 

stimulation appears to produce asymmetric transverse distributions for 

Cl. This suggests that electrode pairs 3/5, 3/6 or 3/7 may be suitable 

for subject DAJ, and electrode pairs 3/7, 4/7 and 5/7 for subject MJM in 

this case. This demonstrates clearly the compromise that has to be made 

between noise reduction and signal distortion. A range of possible 

inputs are indicated in Table 7.1 with the corresponding signal 

improvement factor. Electrode pair 3/5 (DAJ) exhibits fairly high 

coherence at all frequencies, leading to a predicted improvement in SNR 

of 3 - 14 dB, but accompanied by some cancellation of EP components.



Subject/
Stimulus

Electrode
pair

EP
component 

to be 
enhanced

Coherence
Improvement 

in SNR (dB)
approximate 

dynamic rangemin. max. min. max.

DAJ/I 3/5 0.62 0.93 2.6 14.3 21
3/6 Cl 0.40 0.30 1.7 5 9
3/7 0.25 0.75 1.3 6 16

DAJ/A 6/7 0.75 0.95 6 13 15-21
5/7 C2 0.50 0.90 3 10 15-21
4/7 0.35 0.75 1.5 6 15-21

MJM/C 4/7 0.20 0.85 1.3 6.7 15-30
5/7 Cl 0.65 0.90 2.8 10 16-36
3/7 0.10 0.80 1.1 5 16-25

MJM/C 3/6 n 0.15 0.85 1.2 6.7 16-25
4/6 0.45 0.90 1.8 10 15-30

MJM/A 4/6 r  o 0.60 0.90 2.5 10 7
4/1 0.35 0.85 1.5 6.7 18

TABLE 7.1 Possible electrode choices for adaptive noise cancelling of EP
data. The table shows the maximum and minimum coherence estimates 
and hence the expected improvement in SNR. The eigen value spread 
is approximately equal to the dynamic range, which is estimated 
from the spectral intensity plots.



Subject/
Stimulus

Electrode
pair

EP
component 

to be 
enhanced

Coherence
Improvement 

in SNR (dB)
approximate 

dynamic rangemin. max. min. max.

DAJ/I 3/5 0.62 0.93 2.6 14.3 21
3/6 Cl 0.40 0.30 1.7 5 9
3/7 0.25 0.75 1.3 6 16

DAJ/A 6/7 0.75 0.95 6 13 15-21
5/7 C2 0.50 0.90 3 10 15-21
4/7 0.35 0.75 1.5 6 15-21

MJM/C 4/7 0.20 0.85 1.3 6.7 15-30
5/7 Cl 0.65 0.90 2.8 10 16-36
3/7 0.10 0.80 1.1 5 16-25

MJM/C 3/6 n 0.15 0.85 1.2 6.7 16-25
4/6 L> 1 0.45 0.90 1.8 10 15-30

MJM/A 4/6 r o 0.60 0.90 2.5 10 7
4/1

uc 0.35 0.85 1.5 6.7 18

TABLE 7.1 Possible electrode choices for adaptive noise cancelling of EP
data. The table shows the maximum and minimum coherence estimates 
and hence the expected improvement in SNR. The eigen value spread 
is approximately equal to the dynamic range, which is estimated 
from the spectral intensity plots.
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Electrode pairs 3/6 and 3/7 introduce less distortion but offer less 

noise reduction. In the next chapter results will be presented showing 

the application of an ANC using some of these electrode combinations.

7.4 Summary.

In this chapter evidence has been presented that justifies the 

application of adaptive noise cancelling in selected situations to 

evoked potential data. Methods have been described to enable 

identification of suitable electrode sites for this purpose. Studies of 

two subjects have shown that it is difficult to derive reference 

electrodes which simultaneously have high EEG correlations (necessary 

for effective cancellation) and negligible EP contributions (necessary 

for distortion-free cancellation. A compromise must therefore be made 

between noise cancellation and signal fidelity in these cases. The 

application of an ANC to specific EP data records will be pursued in the 

next chapter. This will also consider practical questions regarding the 

proper application of ANC to the data such as the selection of the 

appropriate filter from the alternatives available, selection of 

suitable filter parameters and the procedures necessary to precondition 

the signal. The conclusions regarding the effectiveness of ANC will be 

summarised in the final chapter.
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CHAPTER EIGHT

THE APPLICATION OF ADAPTIVE NOISE CANCELLING TO EVOKED POTENTIAL DATA.

8.0 Introduction

In the previous chapters the case for using an ANC to process EP 

data has been presented. In particular it was demonstrated that signal 

enhancement can be expected provided that electrode choice is made 

carefully on the basis of the scalp topography of the EP to various 

stimuli. In this chapter a series of studies is described that attempts 

to identify the best way of applying this technique in practice.

Firstly consideration is given to the choice of filter to be used from 

the range of alternatives available. This is followed by a discussion 

of filter parameter selection, though a more detailed investigation of 

the effects of different parameter values is presented in a later 

section. As the presence of d.c. offsets in the signal can degrade 

filter performance, a study was made to identify an effective way of 

overcoming this difficulty. Following this a comparison is made of 

gated adaptive filtering (described in chapter 5) with the basic AF 

using EP data. The results support the use of a GAF rather than the 

basic AF for EEG signals when fast adaption is employed.

Having established the best way of applying the ANC, results of 

filtering a wide range of data records are presented. The effectiveness 

of the method is discussed and compared with elementary processing 

operations. Both qualitative and quantitative conclusions are drawn 

which show that considerable improvement in SNR is attained compared 

with the unfiltered records, and especially so when they contain 

sporadic alpha activity. The results are variable when severe
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contamination of alpha activity is present, and the method may require 

further development. The ramifications of this work and recommendations 

regarding adoption of this method in research and clinical settings are 

discussed in the concluding chapter.

8.1 Choice of Adaptive Filter.

Some of the factors governing the choice of AF have already been 

described in Chapter 4. These include the required filter 

characteristics (such as filter order and adaption properties), signal 

properties (such as dynamic range and stationarity) and implementation 

aspects (such as processing speed and cost). They will be referred to 

in the following discussion with little further elaboration.

The LMS AF was used as the basis for these investigations for a 

number of reasons. As discussed previously this algorithm was 

attractive due to its well-established properties such as unconditional 

stability, ease of implementation and computational efficiency. These 

were important in a research project which intended to explore new 

applications and had therefore to employ robust techniques. The 

simplicity of implementation had the advantage of faster development, 

and thus allowed initial results to be obtained more quickly. The 

computational speed is superior to most other methods and this permitted 

faster processing and evaluation. Only the frequency-domain methods are 

faster, but there are restrictions on their use and significant 

computational savings are only achieved for moderate to high filter 

orders. A further consideration regarding the choice of the LMS AF was 

that it is easily implemented in a hardware processor were the 

investigation to support adoption of this technique.
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One of the most important factors influencing filter choice is 

the degree to which the signal statistics are stationary. If the 

time-variation is relatively slow, then it is possible for the adaptive 

filter to track these, albeit with some delay. Previous studies have 

reported that the EEG may be considered to be stationary over short 

intervals of about 12-25 s, as discussed in Chapter 2. While this is 

borne out by visual inspection of these EEG data, it seems clear that 

alpha activity is rather non-stationary as it can appear in spindles or 

bursts of activity that last only a few seconds. In addition it is 

relatively uncorrelated over the scalp, and is best regarded as being 

uncorrelated noise. For these reasons it is not easy to predict how 

well the technique will perform when applied to EEG data, and an 

experimental investigation is required.

For the most useful electrode-stimulus combinations indicated in 

Table 7.1 the dynamic range (defined as the ratio of maximum to minimum 

signal power over the chosen bandwidth) is in the range 10-40, and hence 

the eigenvalue spread for the EEG is in this range also, as noted in 

chapter 7. Though this is a little high for most effective filtering 

using the LMS algorithm, it is nevertheless worth pursuing since 

reasonably fast convergence is still possible. This can be seen by 

considering equation 4.38 and substituting 0.2 for M, which yields 40 

sample periods as the average time constant for a filter of order 32. 

This corresponds to a time constant of about 0.3 s for data sampled at 

128 Hz. Some improvement in adaption speed might be possible through 

the use of faster converging algorithms, though it is not certain that 

significant gains would be achieved if the degree of nonstationarity 

were high. The initial preference therefore lay with the LMS algorithm.
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Having selected this algorithm, a number of choices remained to 

be made. One of these regarded the possible use of FFT procedures to 

obtain faster processing. This was not pursued for two reasons.

Firstly the use of the FFT is only indicated when the filter order is 

moderately large, e.g. N > 32 [99]. This was unlikely to be very 

significant in the current application as later studies showed that 

suitable values for N lay in the range 16 - 64. Secondly, the use of 

FFT procedures implicitly demands that block processing be employed 

(i.e. the filter weights are held constant throughout each block, and 

updated at the end of each block). Though this has been shown to be 

equivalent to continuous adaptive filtering when using stationary data, 

it has not been justified for nonstationary data nor when the ability to 

track time-varying parameters continuously is required. More seriously, 

block processing cannot achieve fast adaption compared with direct 

methods because the stability criterion is more restrictive by a factor 

equal to the block length L (section 4.3.1). Direct computation of the 

transversal filter output and weight update calculations was therefore 

performed.

The remaining choices regarding filter structure are part of the 

study of this thesis. Comparison of ANC performance using AF, TSAF and 

GAF structures are presented in a later section. Some studies are first 

described which were intended to establish the optimum manner of use. 

This included the selection of parameter values and appropriate baseline 

removal methods.

8.2 Initial Selection of Filter Parameter Values.

The factors affecting the settings of the LMS filter parameters 

and the effect of these upon filter performance have been discussed in
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some detail in chapter 4. The two main choices concern the filter order 

N, which must be large enough to filter the lowest frequency components, 

and the convergence parameter u', which must be chosen to obtain 

accurate and fast convergence without the risk of instability arising.

In this section I shall describe how initial values for these parameters 

were chosen. A more detailed consideration of the effects of different 

values is included within the discussion of different filter types in 

sections 8.5.1 and 8.5.2. As the transversal filter implements a moving 

average model of the desired data sequence based on the reference data 

sequence, the filter must be large enough to accommodate all significant 

crosscorrelation coefficients if it is to filter all desired low 

frequency components. This means that the filter order must correspond 

approximately to the effective duration of the cross-correlation 

function.

A useful way to determine the initial value of this parameter is 

to compute the sample transfer function from typical data records, and 

obtain the resulting impulse response from the inverse Fourier 

Transform. The transfer function approximates the Wiener filter 

response for stationary data

W°(f) = | Gxy(f) | / Gxx(f) (8.1)

and may be computed using the procedures described in Appendix B. By 

this method normalised impulse responses corresponding to the 

cross-channel transfer function were obtained for several 1 s records 

for both subjects. These are shown in figs. 8.1 and 8.2 for selected 

electrode combinations. Fig. 8.3 shows the impulse response obtained by 

using averages of 8 spectra. The plots in figs. 8.1 and 8.2 exhibit 

greater statistical variability due to the use of short data records, 

but were obtained to indicate the degree to which the transfer function 

might vary from record to record. In general the individual impulse
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FIGURE 8.1 Normalised impulse responses representing the transfer 
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indicated channels. 8 responses shown, computed for 
each of 8 Is records. Lag times are in units of the 
sampling period T=7.8ms. Subject MJM, stimulus C.
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Normalised impulse responses representing the transfer 
function between the correlated EEG components in the 
indicated channels. 8 responses shown, computed for 
each of 8 Is records. Lag times are in units of the 
sampling period T=7.8ms. Subject DAJ, stimulus I.
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32

Normalised impulse responses representing the transfer 
function between the correlated EEG components in the 
indicated channels. 8 responses shown, computed for 
each of 8 Is records. Lag times are in units of the 
sampling period T=7.8ms. Subject DAJ, stimulus I.
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responses are similar to the average, but occasional differences are 

evident as might be expected. For the purpose of setting the filter 

order it is likely that values of N in the range 32-64 are satisfactory.

The value of y' was also obtained experimentally, as it is 

difficult to determine suitable values in practice using the expressions 

derived in chapter 4. As it was anticipated that fairly rapid 

convergence would be required in order to track time-varying signal 

properties, a fairly high value of y' is needed. Values of the 

normalised convergence parameter y' were chosen in the range 0.2 to 

0.02. The upper value was experimentally found to be the largest that 

could be routinely employed without the risk of instability arising 

during adaption. An order of magnitude range was considered to be 

sufficient to characterise the range of useful values.

8.3 Baseline drift removal.

It has been noted in chapter 4 that d.c. components present in 

either record can seriously affect filter accuracy and can even lead to 

a divergent solution. A number of procedures that can be employed to 

avoid these effects will now be discussed, and results of a quantitative 

comparison presented.

For off-line analysis purposes it is possible to precondition 

the data before applying the AF, (though this is not possible if 

continuous on-line filtering is to be performed). Several methods were 

considered, such as removing the linear trend and mean value from the 

entire record. The latter is only partly effective as it cannot 

satisfactorily deal with a fluctuating baseline, which commonly occurs.

A more effective way of dealing with this eventuality is to remove the
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d.c. component and linear trend from successive short segments of the 

data record. This was attempted using 1 s data segments, and resulted 

in much smaller baseline deviation about the mean. The results are 

considerably better than when no preconditioning measures were used, and 

largely overcame the problem. This method was therefore used in some of 

the early work. Experience has shown however that certain difficulties 

arise through use of this method. Because each data segment is 

processed independently, it is possible for discontinuities to arise at 

the segment boundaries. This is illustrated using an artificial signal 

in fig. 8.4. Not only does this method cause artificial discontinuities 

but it also is not suitable for on-line processing. Another approach 

was therefore pursued.

The solution proposed by Ferrara [96] is to employ an additional 

tap weight in the adaptive filter that adaptively tracks and removes the 

running mean. The bias weight causes the filter to act as a simple 

notch filter at d.c., having the following form:

z - b

The parameter b is related to the convergence coefficient u [92]. The 

magnitude response of this filter is shown in fig. 8.5 for two values of 

the parameter b. Widrow et al [92] reported that effective d.c. removal 

is also obtained when the bias weight is used in combination with the 

other weights, although this has not been rigorously justified. Though 

this modification is simple to apply and involves little extra 

computational overhead, later results show that this is still not the 

most satisfactory solution, primarily because the magnitude response is 

inadequate to effectively remove low frequency baseline components. The 

use of the bias tap should therefore be restricted to cases where it is 

known that the d.c. component does not vary significantly.
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The best solution, (adopted in most of the following studies), 

is to employ a simple recursive high pass filter prior to the AF. This 

has the advantage of being readily incorporated within a continuous 

filter process, and may be configured optimally to the data requirements 

by use of an appropriate filter characteristic. The filter used in 

practice is similar to that described in Lynn [134]. It belongs to a 

class of digital filters of moving-average form that can be implemented 

recursively, with consequent computational savings. A second-order 

low-pass filter was used, having the following transfer function:

G(z)
(1 - z - V

(1 - Z'1)2
(8.3)

This has a simple recurrence relation, which is given by

y (n) = 2y(n-l) - y(n-2) + x(n) - 2x(n-M) + x(n-2M) (8.4)

The high pass output is formed by simply subtracting the low 

pass output from the input signal, with a delay in the input of M 

samples to offset the delay in the moving average filter. The resulting 

filter has zero-phase response. Its magnitude response is shown in 

fig. 8.5 for two values of M. The value of M=33 was experimentally 

found to be effective in removing low frequency baseline components 

without significantly distorting the EP.

Each of these baseline removal methods were applied to 8 data 

records that were subsequently filtered with an ANC (with N=32 and 

u'=0.2). The plots in figs. 8.6 and 8.7 are two records that show the 

worst case differences obtained in this study. In addition averaged 

responses for each record are shown in fig. 8.8 with the grand average 

of 64 subtracted responses superimposed to aid comparison. In figs. 8.6 

and 8.7 the subtracted input signals are paired with the corresponding 

ANC output, and four pairs are plotted in each figure as follows:
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(i) no base!ine removal

(ii) bias tap employed in the adaptive filter

(iii) linear trend removal applied to each 1 s segment of data, and

(iv) second order high pass recursive filter, with M=33

Examination of these yields the following conclusions:

a) baseline fluctuations seriously degrade the effectiveness of 

adaptive noise cancelling. The effect of local d.c. offsets was to 

distort individual EPs and obtain poorer noise cancellation in the 

inter-signal data segments, with the likelihood of artifactual activity 

arising from poorly adapted weights. This is most clearly seen in the 

averaged responses of the filter outputs. The use of some baseline 

removal method was therefore clearly necessary.

b) The different methods that were considered achieve similar 

results, though the use of a bias tap gave poorer results in general.

It was also more susceptible to instability, which occurred in one 

record following an unusually large transient offset.

c) the linear trend removal method was about as effective as the 

recursive notch filter, though the main peaks of the averaged response 

show greater amplitude variations than the recursively filtered averaged 

responses.

The use of the high pass filter thus appeared to give the best 

results most consistently. This was verified by measuring the rms 

disparity between each average response and the grand average, and by 

measuring the rms amplitude of the inter-signal segments for each 

record. These results are shown in Table 8.1 and support the conclusion 

that this method was the best of the alternatives considered.



1

record 1 2 3 4 5 6 7 8
overal1 
average

detrending
method

(A) 60 66 90 44 111 53 71 85 78.4

(B) 46 55 50 34 79 48 64 55 55.3

(C) 41 50 35 32 65 47 55 49 47.8

(D) 40 49 31 33 64 47 54 49 47.0

(b)

record 1 2 3 4 5 6 7 8
overal1 
average

detrendi ng 
method

(A) 132 no 1004 92 116 83 96 135 369.7

(B) 71 80 321 55 75 55 78 74 131.2

(C) 54 64 38 41 79 53 58 59 57.0

(D) 48 63 31 36 72 51 51 55 52.4

TABLE 8.1. RMS values of (a) inter-signal epochs and of (b) 
disparity between single EPs and average EP in 8 
records after adaptive noise cancelling, following the 
use of different detrending methods: (A) no detrending 
(B) bias tap in AF (C) linear detrending of Is 
segments (D) recursive digital filter.

0
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8.4 Comparison of Adaptive Filtering and Gated Adaptive Filtering.

In chapter 5 the rationale for employing a modified filter, 

known as the gated adaptive filter (GAF) was presented. The analysis 

suggested that improved performance is obtained over both the basic AF 

and the time-sequenced AF if the SNR is relatively poor and/or fast 

convergence is required. These proposals were first tested and verified 

using artificial data generated by computer. In this section some 

results are presented of a comparison between AF and GAF using a 

selection of EP data that represent a broad range of activity. Four 

particular classifications of EP activity were considered:

a) high SNR, representing the best quality data obtained, with good EP 

and low-level EEG interference

b) moderate SNR, with levels of interference due to EMG and alpha 

activity representative of typical data records

c) poor SNR, with relatively high EMG activity, and

d) poor SNR, with relatively high alpha activity.

Four randomly selected records having these characteristics were 

processed. The results of the comparison are shown in figs. 8.9 - 8.11. 

In each case N was chosen to be 32 and u‘ to be one of 0.2, 0.05 and 

0.02 respectively. The average EPs for each of these cases are shown in 

fig. 8.12 where the GAF output is shown dotted and the AF output as a 

solid line.

These results confirm the general conclusion that the GAF is 

more suitable than the basic AF when high adaption rates are required. 

Examination of the filtered records in each case reveals that the EP is 

larger in the GAF output than the AF output, particularly for the larger
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values of u1, though the filters perform similarly otherwise. This is 

most clearly seen in the averaged responses shown superimposed for the 

two filters in fig. 8.12. In each case the average EP amplitude is 

smaller using the AF than using the GAF, which supports the hypothesis 

that attenuation of the EP occurs due to adaption in the EP epoch. The 

GAF AEPs on the other hand seem to be relatively unaffected by the value 

of u 1. This is particularly evident in the later components of the EP. 

The activity during the inter-signal segments of the data is very 

similar for both filter types. As well as causing less distortion of 

the individual EPs in the GAF records, it appears that noise 

cancellation can be more effective in the inter-signal interval. This 

is most clearly seen in the first pair of records in fig. 8.9. Similar 

results obtained with subject DAJ also indicate that better overall 

cancellation is obtained using the GAF than the AF.

8.5 Adaptive noise cancelling of EPs using a gated adaptive filter.

In the preceding sections of this chapter it has been 

established that a gated adaptive filter is likely to be more 

appropriate than the basic adaptive filter for cancelling correlated EEG 

signals in EP data. Filtering can be conveniently accomplished using 

the LMS adaptive algorithm, and previous results indicate the 

approximate parameter values to be used. A study identified suitable 

methods of removing undesired baseline trends from the data prior to 

filtering.

In this section the results of filtering several different 

records from each subject are analysed to determine the effectiveness of 

filtering EP data by this means. The study includes a comparison of the 

effects of different parameter values, as these are difficult to specify
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a priori. The results of these approaches are presented for direct 

visual evaluation with corresponding quantitative measures in some 

cases. Two particular cases are investigated in detail. These are:

a) data records from subject DAJ and experiment I, using electrodes 3 

and 5 as the primary and reference inputs respectively, (discussed in 

section 8.6.1) and

b) data records from subject MJM and experiment C, using electrodes 6/4 

and 7/4 (discussed in section 8.6.2).

The data set includes records that encompass a wide range of activity 

types. These cases were selected on the basis of the investigation in 

chapter 7, which suggested the most useful electrode/stimulus 

combinations.

8.5.1 Srtject DAJ.

Early exploratory work showed that good results were obtained 

with a filter order of about 32 and a high value of u'» about 0.2. 

Higher values of u 1 led to the occurrence of instability in the filter 

and this value was considered a safe maximum. Each of these choices is 

now considered in more detail.

8.5.1.1 The effect of u' upon ANC performance

The first study was intended to establish suitable values for 

the convergence parameter y ‘. N was set to 32 and y‘ values of 0.2, 

0.05 and 0.02 were used with a GAF. 8 consecutive data records were 

filtered under each of these conditions and the results for four of 

these are shown in figs. 8.13 - 8.16 with the filter inputs and 

subtracted inputs. D.c. offsets had been removed by the method of
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linear detrending described in section 8.3 prior to filtering. Three 

filter outputs for two 8 s records are shown in each plot corresponding 

to u' values of 0.2, 0.05 and 0.02. The averages of each of 7 records 

are shown in fig. 8.17 with the grand average of all 7 records.

Visual examination of the results suggests that the value of y '  

has little effect upon cancellation other than to provide greater 

cancellation of alpha activity when y '  is large. This is particularly 

evident in fig. 8.16. The other EEG components appear to be little 

affected by this choice. The averages in fig. 8.17 are very similar and 

there is no evidence of significant differences between them, apart from 

the greater alpha attenuation in records 2, 5 and 6 for the case when 

p1=0.2. This indicates that the ANC is not systematically distorting 

the EP signals.

These results show that much EEG activity may indeed be 

considered stationary, and hence justifies the use of the LMS algorithm 

in this application. Alpha activity however is exceptional in that it 

exhibits rapid variations which are not so easily tracked, though 

substantial attenuation of this activity is also achieved when 

sufficiently fast adaption is employed. Better cancellation of this 

activity may take place by using faster converging filters, though this 

will be discussed more fully later.

8.5.1.2 The effect of filter order upon ANC performance.

The second study was initiated to investigate the effect of 

filter order upon filter performance. The same 8 data records were 

filtered using y'=0.2 and using various values of N - 64, 32, 16, 8, and 

4. Typical results may be seen in figs. 8.18 - 8.21. The averages of
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(a)

record 1 2 3 4 5 6 7
overall
average

filter
order

64 94 80 99 92 93 77 80 88.2

32 93 79 99 95 93 77 81 88.5

16 96 80 98 96 94 77 85 89.8

8 96 149 103 104 94 81 87 104.0

(b)

record 1 2 3 4 5 6 7
overal 1 
average

filter
order

64 96 86 87 99 92 86 86 90.5

32 95 86 93 96 90 84 85 90.1

16 94 85 90 96 94 84 84 89.8

8 95 87 92 98 95 94 83 92.3

TABLE 8.2. RMS values of (a) the inter-signal epochs and (b)
----------- disparity between the signal epochs and the average

EP in 7 records following application of a gated 
adaptive filter with u'=0.2 and various values of 
filter order. Subject DAJ, Run I, electrodes 3/5.
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each of 7 records are shown in fig. 8.22. with the grand average of all 

7 records. Note the disappearance of the signal at the end of the 

traces in fig. 8.21 which is due to the delay in the primary input of 

the adaptive filter, and is not a serious artifact. Artifactual high 

frequency activity can however be observed, for example in fig. 8.19 for 

the cases of N=8 and N=4. These are examples of the transient 

instability that can arise when the signal inputs significantly exceed 

their average values, and in this case may have been caused by an 

eyeblink artifact that had not been removed prior to filtering. This 

illustrates that artifact removal must be employed if routine 

application of adaptive noise cancelling is to be undertaken.

Examination of the individual traces shows that there is no 

single value of N that will provide overall best performance for these 

data. In an attempt to quantify these results the rms amplitude was 

computed for the inter-signal epochs, presented in Table 8.2. Figures 

are also presented for the rms deviation between each response and the 

average of 64 responses. These confirm the conclusion drawn from visual 

inspection that no single value of N in the range 16-64 gives optimum 

noise cancellation with minimum signal distortion. The lower values of 

N=4 and N=8 result in a filter which is more susceptible to transient 

instability, as borne out by fig. 8.19, though this was primarily due to 

a large amplitude artifact in the filter inputs as explained previously.

The inability to determine an optimum value of N is not 

completely unexpected, as variation in the statistical properties of the 

signal from record to record clearly occurs. As the differences are not 

very significant, it would seem that any of the values in the range 

16-64 are admissible. In general slightly more smoothing is effected by 

the use of higher values of N, though smaller values have the advantage



of shorter computation times. In each case the average responses are 

not significantly different. These results supported the use of N=32 

for the following ANC studies.

Use of an ANC has been compared in these records with bipolar 

subtraction of the filter inputs, as this is the simplest form of 

canceller possible, and permits a comparison with the general adaptive 

noise canceller. The results indicate that much of the cancellation is 

achieved through removal of coherent activity present in both channels, 

which may be due to common neural sources under each electrode, or 

activity arising at the reference site, or both. This is to be expected 

in the case considered here as the cross-phase plots in fig. 7.10 show 

no significant phase differences existing between correlated activity in 

channels 3 and 5. This would not be true of other electrode pairs which 

could be used to obtain EP enhancement in other situations; in these 

cases subtraction can lead to serious errors due to significant phase 

differences between the correlated activity in each channel. These 

results provide good evidence that the ANC is operating as desired.

Alpha activity was shown in the previous chapter to be poorly 

correlated in these experimental subjects for moderate scalp 

separations. Nevertheless substantially better cancellation of this 

activity is achieved by the ANC than by subtraction when it is present 

in the reference input alone provided that sufficiently fast adaption is 

employed, as shown in fig. 8.19. This is possible because the filter 

attenuates all uncorrelated activity in the reference input to minimise 

the output signal power. This may be seen in fig. 8.15. Note that in 

this case attenuation of activity is not based on cancellation of 

correlated components in each channel, as it is when alpha occurs in 

both inputs. However it is not possible to cancel alpha that is present



in the primary input alone by this method.

8.5.2 Subject MJM.

A more detailed study was performed on MJM/C data. As 

previously described 4 records were selected that typified the range of 

data records, and specifically included low noise data and EMG- and 

alpha-contaminated records. The results of applying a GAF ANC to each 

of these records is shown in figs. 8.23 - 8.26. In each plot the 

subtracted signal and the ANC output are shown for N=16, 32 and 64 and 

for y‘=0.2 and 0.05. In addition the average of each of these signals 

is shown in fig. 8.27, with the grand average response of all 4 records.

The main conclusions drawn in the previous section are generally 

supported by these data. The ANC is clearly effective in enhancing the 

individual EPs in the background EEG and performs similarly to 

subtraction of the inputs in many cases. This is to be expected as the 

cross-phase plots in fig. 7.11 show that insignificant phase differences 

are present between the primary and reference inputs in this case. The 

close similarity between these outputs is apparent in the small 

difference signals that may be seen in fig. 8.29, which indicates that 

the ANC is performing correctly. However the disparity in fig. 8.28 has 

a considerable alpha component suggesting that this activity is 

effectively removed by the ANC. This is significant as it has been 

shown in chapter 7 that EP spectral components lie in the alpha band, 

and removal of this activity could not have been accomplished by 

conventional filtering without seriously distorting the EP. The effect 

of parameter values upon filter performance is also similar to the 

previous study.



5

FI
GU

RE
 8

.2
3 

Ap
pl

ic
at

io
n 

of
 a

n 
AN

C 
to
 
EP
 
da

ta
 
re

pr
es

en
ti

ng
lo

w 
le
ve
l 

EE
G 

ac
ti

vi
ty

. 
(D
at
a 

fr
om

 s
ub

je
ct

 M
JM

/C
; 

N 
= 

64
, 

32
, 

16
; 

fi'
 
= 

0.
2,
 
0.
05
)





FI
GU

RE
 8

.2
5 

Ap
pl

ic
at

io
n 

of
 a

n 
AN

C 
to
 E

P 
da

ta
 
re

pr
es

en
ti

ng
hi

gh
 l
ev
el
 E
MG

 i
nt

er
fe

re
nc

e.
 (

Da
ta
 f
ro

m 
su

bj
ec

t 
MJ

M/
C;



FI
GU

RE
 8

.2
6 

Ap
pl

ic
at

io
n 

of
 a

n 
AN

C 
to
 
EP
 
da

ta
 
re

pr
es

en
ti

ng
se

ve
re

 a
lp

ha
 c
on

ta
mi

na
ti

on
. 

(D
at
a 
fr

om
 s
ub

je
ct

 M
JM

/C
; 

N 
= 

64
, 

32
, 

16
; 

n
‘ 
= 

0.
2,
 
0.
05
)



low moderate high high grand

FIGURE 8.27 Average EPs obtained following application of an ANC with 
different parameter values to 4 data records.



low moderate high high grand

FIGURE 8.27 Average EPs obtained following application of an ANC with 
different parameter values to 4 data records.
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The choice of N does not seem to be very critical in the range 

16-64 when moderate convergence rates are used, though when fast 

convergence is employed slightly better alpha cancellation is achieved 

by use of higher filter orders with less risk of instability. Varying 

the value of y‘ has a greater effect upon canceller performance than 

varying the filter order, though the main result is better cancellation 

of alpha activity when high values of y* are used. Effective 

cancellation is obtained in the first and second records (figs. 8.23 and 

8.24) representing good and moderate signal quality, which clearly shows 

the possibility of extracting single EP responses by this method. The 

results are similar to subtraction of the inputs as expected, though 

there is evidence that better cancellation is obtained than subtraction 

when N>16 and y'=0.2. The results are similar in the third record 

(contaminated by muscle activity), though the average is slightly worse 

than when direct subtraction is performed. This may be due to 

inistracking of the high frequency muscle activity, and may possibly be 

avoided by the use of faster convergence filters. Note the transient 

instability that arises in this case when N=16 and y'=0.2 caused by an 

eyeblink in the data. The other filter outputs do not appear to be 

seriously affected by this artifact.

The fourth record (fig. 8.26) shows an example of particularly 

persistent, large amplitude alpha activity which almost completely 

obscures the individual EPS when subtraction of the two inputs is 

performed. Inspection of the ANC filter outputs shows that significant 

reduction of this activity has taken place, particularly when fast 

adaption is employed, though not all the alpha is removed. From an 

examination of the filter outputs in fig. 8.28 it may be seen that 

cancellation of this activity takes place when it occurs in both inputs 

or in the reference input alone, and that the possibility of detecting
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the individual responses is considerably improved. More careful 

analysis however shows that this may be at the risk of distortion in the 

individual responses. For example in fig. 8.26 there seem to be large 

variations in the filtered single responses. While it is difficult to 

place reliance upon these alone, the plots in fig. 8.27 show some 

distortion in the average response, which is not seen in the first three 

cases, where the averages bear close resemblance to each other. The 

distortion appears to be added rhythmic activity in the averages 

following the main EP transient. This may be due to the suspension of 

weight adaption during the signal epoch which results in filter weights 

incorrectly tracking the input signals if these are changing during this 

period. There are also significant variations in the filter outputs to 

each of the different parameter values, particularly in the case of fast 

adaption. While some variation would be expected, the degree to which 

this occurs suggests that different cancellation models are being used 

at times, and that these depend upon the filter order. These results 

cast some doubt on the value of this method to accurately determine 

response waveshape in the single trials when applied in the manner 

described. Nevertheless it is clear that identification of the single 

responses has been considerably improved, and these difficulties ma> be 

overcome by further development.

8.6 Summary and conclusions.

The initial sections of this chapter were concerned with the 

determination of adaptive filter strategy, which involved selection of a 

suitable adaptive algorithm and associated filter parameters. A 

discussion of these suggested that an initial exploration was 

appropriate using the LMS adaptive algorithm, as frequency domain 

filters are inappropriate for fast adaptive filtering and it was
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uncertain whether there would be any advantage in using other, more 

complex algorithms. This was followed by a consideration of filter 

parameter values as no straightforward means exist at present to specify 

these. It has been suggested that the filter order could be estimated 

from the impulse response representing the transfer function for the 

correlated channels, and this was subsequently validated by experimental 

application of the filter to EP data. Methods of removing fluctuating 

baseline components from the data prior to adaptive filtering were 

discussed. A study of several different methods showed that a simple 

recursive digital filter is adequate and can be readily incorporated 

within an on-line filter. A study was also performed to compare the 

effectiveness of the gated adaptive filter with an ordinary adaptive 

filter when processing EP data. The results confirmed that this 

technique is appropriate for filtering EP data when fast adaption is 

necessary, and this approach was followed in all subsequent work.

It has been shown in this study that the ANC is effective in 

cancelling EEG activity present in one channel using a reference channel 

containing correlated activity. This technique yields enhancement of 

the embedded EPs with no evidence of significant distortion, though EP 

components present in the reference channel are removed from the primary 

channel. Electrode choice was made on the basis of previously obtained 

scalp distributions to minimise the possibility of this occurring. Data 

from two subjects were analysed and gave similar results, though there 

were some differences between them that may be attributed to differences 

in the individuals' EEG. Subject DAJ tended to have a fairly uniform 

EEG characteristic with only occasional short duration, low amplitude 

alpha activity, while subject MJM displayed a much wider range of EP 

signal quality and permitted the effects of these to be studied. In 

every case considered the phase relationship between correlated EEG



-  182 -

activity was not significantly different from zero, and so one would 

expect the ANC to be as effective as direct subtraction of the signal 

channels, provided that there were no amplitude differences between each 

channel. This was indeed observed and provides experimental 

verification for the correct operation of the filter. However in a 

number of records the ANC performed significantly better than 

subtraction and clearly shows the value of the technique. This approach 

is likely to offer substantial improvements when significant amplitude 

or phase differences exist in the data, as shown to exist in chapter 7.

In general ANC performed better than subtraction for subject DAJ, though 

the improvement was small. MJM yielded similar improvement in some 

records (particularly those reflecting moderate EEG activity), but 

performed slightly poorer when high frequency muscle noise was 

significantly present.

Though it was not expected that alpha would be significantly 

removed, as it is poorly correlated over the scalp sites used, 

substantial cancellation did in fact occur. There are two ways in which 

this can occur. When alpha is present in both channels the filter 

assumes these to be correlated and attempts to remove it from the 

primary input in the usual manner. However the filter can also remove 

alpha which is present in the reference lead alone by attenuating all 

uncorrelated activity so that it does not appear in the output. Both of 

these means are used to effect alpha cancellation, though some residual 

alpha activity can be present due to the finite adaption time of the 

ANC. It is not possible to cancel alpha activity that is present in the 

primary input alone. These results are very significant as they 

demonstrate the ability of the noise canceller to remove activity in the 

signal bandwidth without distorting the signal itself. This cannot be 

achieved by conventional filters applied to a single data channel and
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demonstrates the potential value of this technique for EP processing.

While short duration alpha bursts were often effectively removed 

by the ANC, the results were more variable when persistent, large 

amplitude alpha was present. Though a great deal of this activity was 

removed or attenuated, there is evidence that the individual EPs 

suffered distortion. Artifactual activity was present in the averages, 

and the response variability appeared to be higher than for the 

subtracted inputs. These results cast doubt on the reliability of the 

technique as applied in these circumstances, nevertheless individual 

responses are more easily detected by this method. It is possible that 

use of the gated filter structure contributes to unreliable estimation 

of the signal in this case. Disabling the coefficient updates during 

the EP epoch may no longer lead to improved filtering over the ordinary 

AF if the EEG is rapidly changing in character during this interval. It 

is not clear what the difference in performance might be if the ordinary 

AF were used, nor whether distortion of the EP would still be 

unacceptable, but a fuller investigation of this was not pursued due to 

the limited time available. The LMS algorithm was able to provide 

sufficiently fast adaption rates for most EEG components though the 

maximum adaption rate was required to achieve cancellation of alpha 

activity. Use of faster converging algorithms may lead to better 

tracking and hence cancellation of this activity, but with the 

possibility of greater misadjustment and distortion.

The overall conclusion is that ANC has been shown to be very 

useful in obtaining improved estimates of the EP, particularly of the 

single responses, though the average responses have also been enhanced 

in several cases. The method cannot be applied routinely to every EP 

regardless of scalp location and is restricted to situations where
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correlated activity is present in a reference channel that does not 

contain significant EP components. This requires a study to be made of 

scalp distributions prior to filtering. Though these results have been 

obtained using selected VEPs recorded at particular electrode sites, it 

is expected that this technique will also be appropriate when used with 

other electrode sites and stimulus modalities. This possibility is 

discussed further in the next chapter which considers the results of 

this study in the wider context of the aims of signal processing of EPS 

in the research and clinical environments. Some of the methodological 

approaches taken in this investigation are also reviewed, and 

recommendations are made regarding these to aid future investigations. 

The chapter concludes with suggestions for further research in this 

field.



- 185 - 

CHAPTER NINE. 

CONCLUSIONS.

9.1 Sunmary.

In this thesis a study has been described which was performed to 

gauge the suitability of adaptive filters to noise cancelling in EP data 

records. The overall problem was first placed in context by presenting 

a discussion of the nature of EP signals, both in terms of their general 

properties and main applications in assessing sensory pathway function, 

and then in terms of their signal characteristics. The common 

difficulties in deriving noise-free estimates of these signals were 

illustrated. These difficulties are frequently circumvented by the use 

of coherent signal averaging, a procedure which is not always wholly 

applicable. The limitations of signal averaging have been described and 

a discussion of alternative or modified procedures presented. In 

general these do not provide a routine means of enhancing signal 

activity nor do they enable detailed investigation of single trial 

responses for which alternative signal processing strategies must be 

sought.

Adaptive filters were described, based on a transversal filter 

structure operating under the control of the Widrow-Hoff LMS adaptive 

algorithm. The theory of operation of these filters was reviewed and 

pertinent results derived or otherwise presented that describe their 

operating characteristics. A large part of this theory section was 

concerned with the noise cancelling mode of adaptive filtering which is 

of particular relevance to this thesis. Several expressions were 

presented which indicate the potential advantages and which permit an
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assessment to be made of the validity of this approach in individual 

situations. A development of the basic adaptive filter has been 

introduced which carries less risk of distorting transient signals under 

conditions of fast adaption. A theoretical justification for this was 

presented and computer studies were described using artificial signals 

which show that the gated filter approach is better than either the 

basic adaptive filter or time-sequenced adaptive filter when fast 

adaption is required. This study was later extended using EP signals, 

and the results confirmed that routine use of the gated adaptive filter 

was appropriate for filtering the EP signals considered in this thesis.

The experimental work required a general-purpose software 

facility to implement advanced signal anal>sis and processing, and to 

develop new filter strategies. Such a facility was not available at the 

start of this research and had to be developed as part of this research 

project. The hardware and software options available are described in 

detail together with a number of other methodological points prior to 

the main experimental chapters of this thesis.

Experimental investigation of EP signal enhancement by the 

method of adaptive noise cancelling was performed in two stages. The 

first stage was concerned with the justification of this approach, and 

involved a detailed analysis of the properties of a range of EP and EEG 

signals, concentrating in particular upon their scalp distribution 

properties. This confirmed the initial hypothesis that significant 

correlations are present in the EEG scalp record and this justifies the 

use of a canceller based on correlated reference sources. It was 

discovered that the correlation properties over posterior scalp 

locations are not identical in all frequency bands, and in particular 

were poorer for midband EEG frequencies (8-16 Hz). A general decrease
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in correlation was observed with increasing electrode separation, and 

this indicates that the reference sources must be closely spaced to the 

desired site of EP activity for optimum cancellation of the correlated 

EEG activity. A determination of the EP scalp distributions showed that 

it is possible to obtain reference sites close to the primary signal 

source which permit useful noise cancellation to be obtained.

The second stage of the investigation was concerned with the 

experimental validation of this approach using an adaptive noise 

cancelling to process typical EP signals from previously obtained 

recordings. A number of practical aspects of this approach were first 

examined, and included the selection of a suitable adaptive filter and 

the determination of the parameters of the filter - specifically the 

filter order and convergence rate. These are not easily specified a 

priori when the statistics of the signals are unknown. Experimental 

investigation of the effect of these upon filter behaviour was therefore 

an important part of this study, though the results showed that the 

choice of convergence coefficient was more critical to the correct 

operation of the canceller than the filter order. A suitable value for 

the latter lay in the range 16-64, and many studies were based on the 

intermediate value of 32. The convergence parameter is easier to 

determine if the desired convergence rate is known, but this is not 

always possible to specify beforehand and was experimentally derived in 

this study. Fast adaption was found to give best cancellation of 

nonstationary features of EEG activity, and a value of 0.2 was typically 

used for the normalised coefficient. It was necessary to develop an 

effective way of removing baseline fluctuations prior to adaptive 

filtering, and a comparison of several possible methods showed that a 

simple recursive digital filter could accomplish this satisfactorily as 

part of an on-line, continuous filter process.
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The results of applying the ANC to a wide range of EEG activity 

in two experimental subjects showed that very significant reduction of 

activity is obtained by removal of correlated components in reference 

EEG sources, which in many cases permits the individual responses of 

these data to be made available for inspection. The correlated EEG 

activity primarily consists of in-phase components that may be 

attributed to either reference activity or a common EEG substrate for 

the scalp sites used in this study. The results are analysed in detail 

in the previous chapter, though the following discussion summarises the 

main conditions and presents these in the context of the overall 

strategy for EP signal processing.

9.2 Discussion of results.

The experimental results in the previous chapter have 

demonstrated that significant and often very substantial improvements in 

EP recordings can be obtained by using a correlated reference source to 

attenuate background EEG activity. This provides clear evidence that 

this investigation has been well justified. In many of the records the 

individual responses are clearly visible where previously the> were 

hopelessly submerged in background activity. On the basis of these 

results, studies of single response properties are clearly possible, and 

may permit response variability, for example, to be studied in detail. 

While the correlated activity happened to be largely in-phase components 

of both channels in these studies, whether due to reference activity or 

common EEG sources underlying each electrode, this is unlikely to be the 

case for all possible subjects and electrode combinations, and hence the 

technique may prove to be a valuable tool in general EP methodolog>.



- 189 -

There are a number of assumptions that are implicit in the use 

of an ANC which will now be discussed. Foremost among these is the 

basic assumption that the EP signal is additively combined with the 

background (unevoked) EEG. While this assumption has not been 

specifically tested in the course of this investigation, it is clear 

that this method itself provides a useful means of doing so. Inspection 

of the individual records appears to show, in many cases at least, that 

the EPs are fairly consistent in terms of their amplitude and overall 

morphology. Their amplitude is often much larger than the background 

EEG, so it is difficult to reconcile this observation with the assertion 

of Basar et al [73] [130] that the EP is simply due to the stimulus 

acting upon existing EEG activity such that the different frequency 

components are temporarily brought into synchrony. This is particularly 

apparent in fig. 8.23 which shows very large single EPs in low amplitude 

EEG. The individual EPs appear to be consistent in form and bear close 

similarity to the average EP. While this result has of course been 

obtained for the special case of low amplitude EEG activity, it is 

probable that the same generation mechanisms are responsible for the EP 

in the other cases. It appears then that the EP primarily represents an 

additive disturbance component to the ongoing EEG signals, which 

justifies the assumption made earlier in performing this study.

The use of the simple LMS algorithm also appears to have been 

justified from an examination of the filter outputs, as the correlated 

components of different EEG channels exhibit fairly uniform properties 

over time. This is supported by the similarity of results obtained when 

different convergence rates are employed. Apart from nonstationary 

alpha activity, there is little difference between these results. The 

ANC solution also converges to the differential solution in many cases 

which is maintained throughout each record, as shown in fig. 8.29. This
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provides good evidence for the stability of the filter solution in these 

circumstances. Nonstationary alpha activity can present some 

difficulties if it is persistently present and is of large amplitude, 

though episodic alpha activity is generally effectively attenuated.

Fast adaption is necessary to track the rapid variations of alpha signal 

properties. Alpha activity appears to take place fairly independently 

in each channel, and though some cancellation is obtained when 

short-term correlations occur, or when alpha appears in the reference 

source alone, it is not possible to cancel alpha activity that takes 

place in the primary channel alone. Use of several reference sources 

may be useful in this regard as there is greater probability of alpha 

activity occurring in one of these to provide cancellation 

opportunities. The restricted time available for this study prevented 

an exploration of this possibility, though some initial results are 

shown in Appendix D and appear to indicate that this may be a worthwhile 

possibility for a future investigation.

A difficulty with the use of adaptive filters is the lack of a 

clearly defined theoretical framework regarding practical application, 

and the selection of suitable filter values necessitated a heuristic 

approach. The studies in this thesis have shown that successful noise 

cancelling can be accomplished using an estimate of filter order 

obtained by the spectral method suggested in Chapter 8. This is likely 

to be adequate for practical application of these filters, though it may 

not be appropriate if very nonstationary activity is present. Further 

research in this area is clearly desirable.

Adaptive noise cancelling of EP signals has been shown to be 

effective provided that a reference source is available that does not 

contain significant EP components of interest. Application to routine



EP processing is therefore restricted to cases where the scalp 

distributions of EPs are known or can be readily estimated, and may well 

have most value in research applications that involve detailed studies 

using a relatively limited number of long-term subjects. It is 

recomnended that other techniques be routinely employed together with 

ANC, to guard against the possibility of spurious results. Experience 

gained in this study favours the use of dedicated instrumentation to 

perform the filtering operations, as general purpose computing equipment 

is rather slow for routine use, though it does offer the potential of 

detailed analysis of filter performance. Hardware designs are 

relatively straightforward to construct, and can offer real-time 

processing capability without incurring great expense. A discussion of 

hardware implementations is outside the scope of this thesis, and the 

reader is referred to the text by Cowan and Grant [112] for an 

introduction to this topic.

As has been noted in Chapter 8, adaptive filtering under the 

condition of fast adaption can be susceptible to transient instability 

if the data contain significant artifactual components. For routine use 

of the technique it is clearly necessary to employ artifact rejection 

procedures. Detection of these is relatively easy to perform, and can 

be based on amplitude or rate of change criteria. Some artifacts such 

as those due to eye blinks or eye movements can be avoided altogether by 

the use of linear nulling techniques [21] [22]. If this is not possible 

it may be necessary to halt adaptive operations for the duration of the 

detected artifact, much as the gated filter suspends weight revision 

from taking place during the signal epoch. This obviously requires 

further investigation if the technique is to be reliably used in routine

recordi ng.
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9.3 Suggestions for further research.

There are three particular aspects of this investigation which 

could be fruitfully explored further. The first concerns the underlying 

concepts employed in this study, which are the assumptions that EP 

generation processes are independent of the spontaneous unevoked EEG 

activity such that the post-stimulus record can be considered as the 

linear summation of the two, and that EEG activity at multiple scalp 

sites contains components that are related by linear transformations and 

hence permit cancellation of these. While these assumptions may 

reasonably be made in an initial exploration of this approach, a deeper 

study would be desirable. In particular it would be beneficial to to 

know more clearly the properties of the EEG signals, in terms of their 

correlations and higher order functions in order to decide whether 

linear methods alone are likely to offer sufficient improvement of 

signals, or whether nonlinear methods are worth investigating. It would 

also be useful to have a model of the signal in terms of spatial and 

temporal properties to permit the benefits of noise cancelling to be 

assessed.

The second way in which this study could be usefully extended 

would be to increase the range of subjects and stimuli used, and to 

employ a greater number of electrode sites. While this would involve a 

considerable degree of effort, it is clear that routine use of a 

technique such as this must be properly validated under the range of 

different conditions that are likely to be faced. If it were 

contemplated to use this technique in the clinical setting, a study of 

clinical subjects would be required to ensure that the underlying basis 

of the technique was applicable in these subjects also. The extension 

of the study to include a wider range of electrodes and possibly other
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sensory EPs is one that could be fruitfully performed without major 

departure from the strategy followed in this thesis. Investigation of 

the use of multiple-reference adaptive filters in particular may well 

yield profitable results. The linear array of electrodes used in this 

study was not suitable for this, and a two-dimensional array of 

electrodes would ideally be required. A further advantage of this 

arrangement is that it would permit a comparison with methods such as 

the source derivation technique of Hjorth [84]. A difficulty with 

multi-reference adaptive filters is that the theory governing their 

operation is not well developed, and a detailed investigation of their 

performance characteristics would first be required prior to applying 

these. This would be a rewarding area of research as this situation is 

commonly encountered with other physiological signals [48].

The third avenue of further research concerns the use of 

alternative adaptive filter methods, particularly the fast converging 

algorithms [104] [105]. Though noise cancelling using the simple LMS 

algorithm has been shown to be effective, and convergence rates close to 

the maximum attainable have been employed, it may well be that a further 

increase in adaption rate would yield better cancellation of 

nonstationary activity such as alpha or muscle activity. Adaptive 

filtering of nonstationary signals such as speech has been 

satisfactorily accomplished by these methods. Further development of 

the gated adaptive filter approach would be interesting to pursue, 

primarily to establish whether it is suitable in nonstationary 

environments. It would also be interesting to consider the suggestion 

made in Chapter 5 of employing different adaption rates during the 

different phases of the signal record. Other ways of using adaptive 

filters may also be worth investigating, such as the use of the channel 

enhancement mode. This may be beneficial in cases when correlated EP
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signals are present over extensive scalp areas while the EEG itself is 

poorly correlated, and may form a useful complementary technique to 

adaptive noise cancelling when the scalp distributions do not permit use 

of this method. Finally, use of techniques such as these requires an 

investigation of artifact removal methods. These have already been 

developed to some extent to permit routine computer analysis of EEG 

signals, but would need to be evaluated in the context of these 

particular techniques.

In conclusion then, adaptive techniques are a promising 

alternative to traditional techniques of signal enhancement based on 

signal averaging. Some of the possibilities in applying these have been 

demonstrated in this thesis, though further research into their 

application to other sensory EPs and to the development of other filter 

strategies is likely to be promising, in particular the multi-reference 

and fast converging algorithms. It is considered that techniques such 

as these may well hold the key to routine analysis of single trial EPs

in the future.
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APPENDIX Al EXTRACT FROH THE DISPAC USER MANUAL

DISPAC MANUAL 
Introduction

1.0 INTRODUCTION.

This manual describes the DISPAC program (for Digital Signal 

Processing Package) written in the Department of Physics. University of 

Keele. DISPAC is a modular software package which was developed to 

enable rapid evaluation of digital signal processing algorithms using 

one main structured program rather than a number of specific ones which 

often entails duplication, inconvenience and redundancy. It is 

conceived primarily as a development tool and so simple alteration of 
features was considered important. Speed of execution was sacrificed 

where memory savings would result as it was envisaged that a 

multiplicity of function was preferable. Major features are:

* interactive control by simple keyboard commands

* display, plotting and sampling functions available

* disk storage of data files, command files and parameter files
* creation, listing and execution of command files

* 32k integer data array space

* flexible user-definition and referencing of data arrays

* structured for general applications

* easily expanded or altered functions

* comprehensive data analysis and processing functions provided

It is comprised of one main program which communicates with the 

user, accepts simple commands and executes them by calling the 

appropriate subroutines. A number of subroutines are provided but the 
facility to easily add more commands was considered important. The 

basic design allows both system and user functions to be invoked using
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the same command structure.

The implementation is biased towards our specific application and 

the particular constraints imposed by our computing resources, 

nevertheless much consideratiom was given to the generality of the 

solution to allow for wider application. The program is thus suitable 

for many applications requiring interactive control of computing 
operations, but is ideally suited to one involving mathematical 

manipulation of fairly large data records.

The program is written almost entirely in DIGITAL Fortran IV though 

a number of device-dependent routines are written in MACpn-11, the 
DIGITAL macro assembler. No apology is made for the use of non-ANSI 

Fortran IV features, which was dictated by reason of program development 

speed and efficiency of local implementation.

The program was implemented on a PI)P 11/23 minicomputer with 128k 

bytes of memory and was written with the object of reserving the main 

64k for program code, system tables and working space, whilst utilising 

the 64k of memory outside the normal addressing range for large data 

arrays. Peripherals include disk drives, hard copy printer, digital 

plotter, analogue to digital converter, real time clock and digital 

interface, though none of these is a requirement with the possible 

exception of the disk drive.
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2.0 RUNNING DISPAC OH A PDP 11/23

As supplied DISPAC requires a PDP 11/23 minicomputer with 64k words 

of fast access memory running under the RT-11 operating system. At 

least one fast system device is needed such as floppy diskette or disk 

drive, and a console terminal such as a VDU. Additionally a hard copy 

printer, digital plotter, ADC card, digital interface card and second 
disk drive are ideally required.

The main program is called DISPAC.SAV and this should reside on the 

system device with the supporting system data files COKFIL.DAT and 

NESFIL.DAT and a basic RT-11 system (e.g. Single job monitor, SWAP. SYS, 
DIR.SYS, DUP.SYS, EDIT. Data files may be stored on the default device 

DK: which may be a second disk drive or the system device.

The program is started by typing:

R DISPAC

after the monitor prompt . After a short delay the program 

clears the screen and displays the message:

DIGITAL SIGNAL PROCESSING PACKAGE V2.0 JUL 1983 
>

The '>' is the prompt for a command to be typed in, and appears 

whenever further keyboard input is awaited. This will be discussed in 

the next section. If this message does not appear, one of the following
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messages should appear« which indicate an incorrectly prepared system 
disk:

STOP —  No command file C0I1FIL.DAT 

STOP -- No message file MESFIL.DAT 
STOP -- Bad command spec 

KMON-F-Not found

In addition there are a number of system error conditions that may 

occur causing program failure. Insufficient memory is the most likely 
condition resulting in the following messages:

?ERR 62 FORTRAN start fail

?ERR 6A Virtual array initialization failure

If the following message appears, there is some inconsistency in 

COKFIL.DAT which may indicate that some command is improperly defined, 

though the program will proceed ignoring the error:

*** Warning - Bad argument type

DISPAC requires at least one (and preferably two) fast mass-access 

storage devices such as floppy diskette drive. The system device is the 

one containing the program file and system files, and the other is 

useful for storing data records. In the current implementation a VDU is 

used as the interactive console device and a BECwriter is used to obtain 
hard-copy output. For certain commands output may be routed to either, 

depending on the listing device selected. A digital parallel output
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port is used for displaying waveforms on an oscilloscope. When in 

display mode» complete scans are generated repeatedly while the program 
is waiting for a command, and this is disabled while the command is 

executed. This requires special hardware to convert the digital signals 

into analogue form and to trigger the display scope at the start of each 

sweep. A Viatana be digital plotter is serviced via a serial line. The 

plotter comnands controlling the pen motion to plot waveforms, axes etc. 
are generated by subroutines written for the purpose. The program was 

initially written to use the Watanabe DIGI-PLOT, but can also drive the 

Gould Colorwriter. There is provision for sampling up to 16 channels of 

analogue data via the ADC and multiplexer at rates up to 5 kHz, suitable 

for most bio-electric signals. These samples are stored im memory in a 
previously defined array and may be be stored on disk for subsequent 

analysis, or after further processing. All the peripherals require 

certain options to be selected, and these are set up by the appropriate 

parameters. It is incumbent on the user to ensure that these are 

correctly set up, otherwise spurious operation may result, though some 

elementary checks arc performed in some cases.

2.1 COMMAND SYNTAX

Commands are typed following the prompt ’>', though RT-11 permits 

input to be keyed in before it is required, a feature that should be 

used with caution. Characters wrongly typed may be corrected by 

pressing RUBOUT to delete previous characters, or CONTROL+U to delete 

the entire line, though both of these only act on the current line 

before RETURN is pressed which sends the line to the computer.
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Instead of typing a sequence of commands repeatedly» it is possible 

to create a file containing these exactly as would be typed. The disk 

file is given an appropriate name, and has the extension .CUD to 

identify it. This facility is useful when the program is first started 

to select initial options or functions, and for command sequences that 

are repeatedly issued. An error that occurs during execution of such a 

command file will cause further commands to be ignored and return 

control to the direct keyboard mode, unless this option has been 

disabled. Operations that result in an unusual condition for any reason 

cause a message to be displayed on the console. There are 5 classes of 

message:

a) information

b) warning

c) error

d) abort

e) fatal error

- execution continues

- execution continues

- current command failed

- current command was aborted by the user

- program is aborted

If it is desired to suspend output to the console for examination, 

pressing COtITROL+S achieves this. Listing continues by pressing 

COtiTROL+Q. Output to the console during the current command can be 

skipped by pressing C01ITR0L+0 at any time, and normal output will be 

resumed when the prompt for the next command is issued, or by pressing 

COl.'TROL+O again. The program is terminated by the STP command. The 

normal double CONTROL+C abort facility has been disabled to permit 

certain commands only to be aborted, but without stopping the program. 
Most commands can be programmed to make use of this facility.
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Each command is initiated by typing its code name e.g. MAP 

followed by any arguments it may require, followed by RETURN. One or 
more spaces separate the command codes and arguments. The arguments may 

be of different types, depending on the command, and a check is made to 

ensure that a valid argument is entered. At present up to 6 may be 

permitted though some commands may use none. In addition some commands 

allow one or more arguments to be omitted if a specified default is 

acceptable. This can simplify use by minimising key strokes, though 

care must be taken to ensure that the intended action results. A 
warning message is issued whenever default action is taken. The purpose 

of arguments is to link the desired operands to the subroutine. This 

mechanism permits general commands to be written which allow the user to 
provide specific data to be used in each case. Examples will be given 

in succeeding sections to demonstrate usage. There are at present 4 

basic categories of argument to cover most situations. These are as 

follows:

'I' represents an integer (or fixed-point) constant. It can take any 

value

in the range -32766 to 32767. N'o decimal point is permitted, 

e.g. 271

'R' represents a real (or floating-point) constant. It is entered as a

decimal number with an integer and fractional part and can optionally 

include an exponent as in scientific notation, though no embedded 

blanks are permitted e.g. 0.023 or 2.3E-2

'L' represents a literal (or character) string. These are delimited by
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single quotes, e.g. 'EXPERIMENTAL RESULTS'.

Note 1. An error remaining from a previous revision requires that 

3 character command or parameter names which use the RAD50 code 

must not have quotes when used as arguments to the following 

commands: H,AP,SP,LP,DP,INC,DEC,DAC.

In the present version only file names require quotes.

The final quote can be omitted if it is followed by RETURN.

'V' represents a vector or array of vectors

These will be discussed more fully in the next section.

It is important to note the distinction that for arguments of type 
I,R, and L the user supplies a value, be it numerical or literal, 

whereas for V arguments the user references a previously defined array 

or vector.

When the H (Help) command is issued, a list of helpful information 

for each command is produced. Each line_contains:

a) a number (1-99) specifying the subroutine that performs the command

b) a code name which the user types to initiate the command

c) an argument list specifier eg. VIR1
which describes which arguments are required, and

d) a brief help message to aid the user.

The subroutine number is not needed for normal useage, but is 

helpful in identifying which subroutine performs a certain task, or in
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determining which subroutines are free to be added to the system. The 

argument list specifier is important« in that it must be understood for 
correct program use. In many cases the argument type will be obvious, 

and the user will quickly become familiarised with the system without 

having to consult the help information. In this example 3 arguments are 

required: a vector reference, an integer constant and a real constant.

If the argument type is in lower case, this denotes an optional argument 

which may be omitted, such as the literal constant in the previous 

example. The help text will usually explain what default action results 

from omitting an argument, but the exact description of each command 

should be referred to, at least initially. Note that if two optional 

arguments are specified there are three valid entries viz. none, the 
first or both. It is not possible to enter only the second as it will 

be interpreted as the first because of the order of entry, unless the 

subroutine can deduce this in special cases.

Also the symbol *?' is used to denote an unknown argument type 

which cannot be specified explicitly but whose type will be apparent 
from the context. An example of this is_the SP (Set Parameter) command 

which enables the user to assign a new value to a currently defined 

parameter. The format of the command is SP <parameter name> <value> but 

as the command is general, the type of the value will obviously depend 

on the parameter used which cannot be set beforehand. Thus SP has 

argument lict specifier •N?' and two examples of use might be:

>SP NUK 16
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>SP TXT 'PLOT NO. A'

2.2 MEMORY PARTITIONING AND DATA ARRAYS

Central to the design of DISPAC is the capability of handling large 

data records efficiently in core memory. Without dwelling on the issue, 

a brief explanation may prove helpful. There is a finite limit to the 

range of memory that may be directly accessed by any computer. For the 

PDP 11 this is 32k words which is quite adequate for many applications. 

However for the kind of application envisaged, processing is simplified 

if much more memory is available than that available in a 32k word 

system once system and program code are included.

The PDP 11 allows access to memory outside this range via a 'memory 

management unit'» not as efficiently as the basic 32k word store but 
nevertheless much more efficiently than disk. The resultant solution 

was to reserve the basic 32k word store for program code, system tables 
and data arrays used in complex processing where fast access is most 

important, and use another 32k word store primarily as a large 

repository for data during processing, though also available for direct 

manipulation.

Another basic design consideration was flexible data structuring. 

This is because different situations require different sizes, structures 

and numbers of arrays. To avoid having to work within the constraints 

of a predefined structure, the solution devised was to allow the user to 

define his own arrays. The user then decides his own requirements.
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allocates storage for each array he needs and supplies the corresponding 

structure. Currently there is provision for defining up to 26 arrays or 

vectors, using the letters A-Z as a simple reference name. The range of 

each dimension is also specified as is the absolute .starting location in 

data memory. Once defined in this way the user need not be concerned 

with where the data resides in absolute memory, but always refers to the 
data using the letter code.

Because of the intended application, the definition was chosen to 

simplify use. The vector is taken as the basic data structure, and most 

commands operate in terms of notional vectors. This is convenient for 

the digital representation of a time series. Up to 3 dimensions are 
available, but the 3rd is always taken to index the vector elements.

The remaining 2 may be used to define an ensemble or set of ensembles of 

vectors. For instance, the 2nd dimension may be used to index the 

analogue channel source, and the 1st dimension indexes ensembles of 

vectors, perhaps different experimental runs.

The general reference of any element in an array is X<i:><jx.k> 

where angle brackets enclose optional subscripts and

X - represents an array name A-Z

i - represents the subscript of the 1st dimension
j - represents the subscript of the 2nd dimension

k - represents the subscript of the 3rd dimension

If a subscript is omitted it is taken as 1, but if no subscripts

are given the array name references the entire array as one linear
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vector. However if the array letter is followed by an asterisk, this 

denotes that the command must reference each vector consecutively, known 

as 'auto-stepping'. These features allow the user the option of 

treating the array as one large data record or as an ensemble of 

independent vectors. For instance a filter command would properly act 

on each individual vector separately, whereas storing a data array on 

disk might be most conveniently performed using one disk file rather 

than a number of files.

Thus,

Bl:2.3 specifies the 3rd element of the 2nd vector in the 1st ensemble 

B2.3 does the same (subscripts taken to be 1 if omitted)

E2: specifies the subensemble of vectors in the 2nd dimension as

one linear vector
B2 specifies the 2nd vector in the 1st subensemble

B specifies the entire array as one linear vector
B* specifies each vector in the array to be accessed sequentially

Note 1. As well as user-defined arrays A_-Z, there are special 'system 

arrays' called $ and 0. $ spans the entire data memory range, currently

in 256 blocks containing 128 words. It is a useful mechanism for 

referencing any word in memory, and particularly when allocating storage 

to user arrays The notional blocks are a useful aid to managing memory 

allocation. $ should not be deallocated or redefined in any way (unless 
specifically desired), but 0 is free for normal use, though it is likely 
that future revisions will have a special function reserved for it.

Note 2: As indexing in Fortran uses integers, there is a limit of 32767



DISPAC 11AMUAL
Memory and Data Arrays

PACE 13

on the size of an array. This means that the full 32k of memory 

available can not be accessed by this means, and any attempt to do so 

will result in a system error. Although $ is given as spanning this 

region, it also suffers from the same restriction, and accessing beyond 

data item $256,126 is liable to lead to erroneous operation. The TAP, 

command which gives the size of an array has been specially doctored to 

yield 32767 instead of 32766.

Mote 3s Arrays may be allocated overlapping storage, as this can be 

useful when used with care e.g. referencing a particular region of 

memory using differently structured arrays which span the same region, 

or to allow an area of memory to be shared by two different arrays which 

do not conflict in their useage.

Mote 4: The order of subscript progression is the same as that for 

FORTRAN when considering the array storage, i.e. an array defined as 

13:2.4 would be stored in memory in the following order:

11:1.1 11:1.2 11:1.3 11:1.4 11:2.1 11:2.2 11:2.3 11:2.4

12:1.1 12:1.2 12:1.3 12:1.4 12:2.1 12:2.2 12:2.3 12:2.4

13:1.1 13:1.2 13:1.3 13:1.4 13:2.1 13:2.2"13:2.3 13:2.4

Note 5: Care must be taken with commands that operate using two or more

arrays to ensure that the intended operation results 
e.g. for LPF which low pass filters the 1st vector and stores the 

result in the 2nd, the command

>LPF 1* J*
would filter each vector in X and store the output in the corresponding 
vector in J, though this command would fail if there were a different
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number of vectors in I from J. This comnand is powerful as it saves 

typing:

>LPF II J1

>LPF 12 J2

etc.
Tliis operation is quite different from 

>LPF I J

which filters the array I as one linear vector and stores the 

result in J.

2.3 PARAMETERS

Parameters aid the use of DISPAC by allowing user control of 

various data elements that help define the processing environment or 

simplify the execution of commands. They are given a symbolic name and 

may be examined and modified. However they are really auxiliary data as 

they are usually not the main object of processing. Typically they are 

single elements e.g. integer constants or character strings. As with 

arguments, they may be of type V. I. R or L. Their main purpose is to 
communicate with the subroutines performing the various conmands which 

often require subsidiary data in order to function properly. This data 

could be passed using arguments except that:
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a) arguments are intended to be used when the value changes 

frequently and so must be specifiesd each time» whereas parameters 

generally are not subject to frequent change* thus saving unnecessary 

typing.

b) apart from arrays, arguments specify constants used by the command 

and thus only give data to the subroutine, while parameters refer to 

locations in memory that can be used to pass or receive data from 

subrout ines.

c) only 6 arguments are available at present, so there needs to be a 

mechanism to enable more than 6 data items to be passed to the 

subroutine if required.

d) parameters are handled more efficiently since they do not need to 

be decoded as arguments do, and the subroutine operates on them 

directly.

The user has complete freedom in defining arrays and allocating 

storage, but subroutines which require parameters have certain locations 

specifically reserved for their use, and they will use that location 

independently of whether a parameter name has been correctly assigned to 

that location or not. In other words, the user does not have freedom to 

assign parameters as and where he wishes, but is merely setting up a 

mechanism to enable him to interact with the subroutine via a 
pre-defined location. The name is purely for convenience and may be 
chosen at any time to most appropriately describe the parameter, but the 

location, type and range of values is determined by the subroutine. In 

general use, it will only be required to examine and/or modify parameter
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values to suit the needs of the moment.

There are commands to allocate a particular parameter cell a name, 

deallocate it, assign a value, and examine its value. However there are 
another two commands which simplify the use of parameters considerably. 

As it is envisaged that sets of parameters will be required fairly 

routinely, to obviate the need to define each of them explicitly each 

time the program is restarted, which would be tedious, it is possible to 

store an entire set of parameters, both definitions and values in force, 

in a named disk file so that the whole set may be read in at any time. 

This is also useful if the user has a number of different paradigms, 

each of which requires a different set of parameter definitions, as each 
can be read in at any time and replace the current set. These files are 

stored on the system disk in a binary file with a .PAP. extension and 

consequently cannot be examined using the editor, unlike MESF1L.DAT and 

COIFIL.DAT. Alternatively a command file which allocates sets or 

subsets of parameters may be executed if this is more convenient.

3.0 BASIC COMMAND SET

3.1 HELP - H I

This lists a line of help information for the given command or for 

all commands if none is specified. The format is a number (1-99) which
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specifies the subroutine performing the command, the 3-character name 

used to call the command, the arguments expected, and a brief help text 

following a colon. This information appears in the same form as in 

COIIFIL.DAT e.g.

>K H

1 K 1 :List Help information (named command only if specified)

3.2 ALLOCATE ARRAY - AL ??

This command is used to allocate a section of memory to an array 

and to define its structure. The first argument is a general vector 

reference where the subscripts define the maximum permissible range.

The second argument specifies the starting position in memory to be that 

of the given array. A convenient way of doing this is to use the array 

$ which spans memory in blocks of 128 words e.g.

>AL 116:4.128 $10

creates an array of vectors of length 128, with 16 ensembles and 4 

subensembles starting at block 10 i.e. word 1281. It is convenient but 

not necessary to specify a block boundary as the start, e.g. $10.65 

would set the start location in the middle of block 10.

Note 1. Arrays may overlap in storage if this is desired, though 

care should be exercised if this is done.
Mote 2. If the array is already defined, the previous definition will



DISPAC MANUAL 
Basic Command Set

PAGE 18

be replaced by the new one( but a warning message will be issued.

Note 3. The data values spanned by the array are not themselves 

initialised, the command merely imposes a formal structure to reference 

a particular region of memory.

3.3 DEALLOCATE ARRAY - DE V

The definitions in force for the named array are removed, and 

further reference to this array by any command will cause it to fail.

3.4 DATA TABLE - TAB

This command lists the current definitions for all arrays. The 

start location (in words), dimension ranges and size of each array are 

shown, including the special purpose arrays 0 and $. Arrays which are 

not defined have zero entries. Array sizes of 32768 are truncated to 

32767.

3.5 MEMORY MAP - MAP v

A symbolic representation of data memory allocation is presented in 

terms of blocks. The array letter identifies blocks partially 

containing the named array (or all arrays if no argument is given). If 
more than one array is allocated storage in any block this is indicated 

by the symbol '+'. Unused blocks remain blank.
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3.6 ALLOCATE PARAMETER - AP LL1?

This command is used to supply a name (and optionally an initial 

value) for a particular parameter required by a command. The name is 

entered first« then the parameter type, then the location in the 

parameter area optionally followed by an initial value. A null or zero 

value is the default, e.g

>AP 10 I 2 6

names the 2nd integer parameter location 10 and assigns it the 

value 6

Note 1. Several system functions are controlled by parameters, so 

these should not be altered and only unused cells or those used by 

subroutines should be allocated. In particular the 1st 1C integer cells 

are reserved for use by DISPAC.

Note 2. While integer and real constants use 1 parameter cell, 
obviously character strings depend on their length, and so the string 

location should be chosen to avoid overlapping previous strings. Also 

when entering character string values, the maximum possible length 

should not be exceeded as other strings following the desired one may be 

corrupted. This length will be obvious from the context or may be found 

by examining the current parameter definitions e.g. file names are 
restricted to 15 characters which is the largest valid file name. A 

null(O) character is appended at the end of each string so that the 

total length is one greater than the maximum number of characters.

Note 3. Due to the way in which parameters are stored, type V are
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stored in the same area as type I parameters. As these are not often 

required, and anyway should only be allocated in accordance with the 

subroutine requirements, this should not be a problem. See the system 

description for more details of this.

3.7 SET PARAMETER - SP L?

Assign a value to the given parameter. The 1st argument is the 

name and the second is the value, e.g.

>SP 10 7

assigns 7 to 10.

3. f> DEALLOCATE PARAMETER - DP L

The current definition for the named parameter is removed, thus 

freeing that parameter cell for redefinition. This does not affect the 

value of the actual location, which will continue to be used by any 

subroutine accessing it, regardless of whether or not it is defined or 

correctly assigned. This command is useful if a parameter is no longer 

required in the list, or if it is to be renamed.

3.9 LIST PARAMETER - LP L

The current definition, location and value of the given parameter
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is listed. If none is specified, the entire set of parameters is 

listed, e.g.

>LP 10

10 (I 2) = 7

3.10 WRITE PARAMETERS TO DISK - WRP L

The entire set of parameter definitions and values is stored on 
disk in a binary file with the given name and extension .PAR .e.g.

>WRP 'FILES'

Note 1. If a file of the same name exists, it will be overwritten. 

Note 2. The first 20 integer cells are reserved for system use and are 

not stored on disk file, even if they are changed.

3.11 READ PARAMETERS FROM FILE - RDP L

The named file is read and replaces the current definitions and 

values of all parameters e.g.

>RDP 'JOHN'

3.12 EXECUTE COMMAND FILE - EX L

The commands contained in the named ASCII file are executed in
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sequence. Action resulting if an error occurs in this sequence depends 

on the value of the parameter TRP as follows:

TRP = 1 - proceed with the remaining commands 

TRP = 2 ■ abort remaining command stream on file

Note. The display is switched off while these commands are being 

executed.

3.13 CREATE COMMAND FILE - CR L

Allows the user to create a new file with the given name and 
extension .CMD to contain a stream of commands as would be typed on the 

keyboard. These are entered following the prompt '*'» and the file is 

closed when RETURN is pressed immediately after a e.g.

>CR 'DO'
*H

*AL 116.128 $1 
*l'A?

★

Note. If a file of the same name exists it will be overwritten.

3.14 LIST FILE - LF L

Lists the named ASCII file having extension .CMD. This allows the

contents of a command file to be examined e.g
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>LF 'DO'

H
AL 116.128 $1 

MAP

3.15 LIST ARRAY - L v

The named array is listed as one large block of data. If no array 

is specified, the currently displayed vector is listed.

3.16 STOP - STP

This is the normal program exit command. Control returns to the 

monitor

3.17 DISPLAY ARP.AY - D V

This command causes the named vector or array to be displayed on 

the CRO screen. It also defines the default argument for many commands 

which consr.only act on the display.
Note. At present only vectors of size equal to a power of 2 are 

correctly displayed.

3.18 COPY ARRAY - CPY VV
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Copy all the data in the 1st array to the 2nd. The sizes of each 

must agree, e.g.

>CPY I J

3.19 WRITE ARRAY TO DISK - W vl

Store the given array on disk file in binary form using the given 

name. If a name is given, the extension is automatically updated 

following storage and this name is stored in parameter DWF, the default 

write file. If no name is given this default name is used. If no array 

is named the displayed vector is used.

Note 1. Any existing file, or set of files, of the same name is liable 

to be overwritten.

3.20 READ DATA FROM DISK - R VI

The data in the named data file is read into the given array. A 

check is made to ensure that the size agrees with that stored on disk.

If no filename is supplied the default stored in parameter DRF is used. 

The file extension is automatically incremented (if it is numerical with 

3 digits) following successful use of this command.



APPENDIX Aid LIST OF CURRENT DISPAC COMMANDS

S Y S T E M

Il 1 
EX L 
CR L 
LF L 
STP 
DMP
ARG vvirl
VDU
PRI
REM
BEL

:List help information [named command only if specified]
:Execute the commands in the named command file
:Create a command file
:List the named ASCII file
:Stop the program
¡Dump system tables
¡Dump LINK information
:Send all output to the VDU
:Send all output to the printer
:Treat this command as a remark
:Ring the TTY bell

P

AP LLI?
SP L?
DP L
LP 1
WRP L
RDP L
INC Lr
DEC Lr

D

AL ??
DE V
TAB
MAP V

TRA V

S

L V
SAM V
P V
D V
DIS Vi
D2 V
XY ?
DAC VI
AX LII11
G ?
V Vii

V
SC Rvi
SH Iv
AD Vv
SUB Vv
MUL W i
DIV VVi

A R A  M E T E R S

:Allocate a parameter given name. type, location, [value]
:Set the named parameter to the given value 
:Deallocate the named parameter
:List the values of all parameters [or just the named one]
:Write all parameter information to named file (drive 0)
:Read all parameter information from named file (drive 0) 
{Increment named parameter by given constant [default 1] 
{Decrement named parameter by given constant [default 1]

A T A  S T R U C T U R E S

¡Allocate space for named array given dimensions and start 
¡Deallocate storage for the named array
{List the table for data arrays showing dimensions and start 
{List a map of storage allocation [just the named array if given] 
{Transpose the 2D array of vectors in storage and update table

A M P L I N G P L O T T I N G  A N D  D I S P L A Y

¡List the named array 
{Sample ADC and store in array 
¡Plot vector [default display]
¡Display vector on channel 1 (sets default vector)
¡Display vector [section size opt.] using <- -> HOME RETURN 
¡Display vector on channel 2 of display
¡Control the plotter directly using the standard ASCIIcommands 
¡Output vector to DACs once or repetitively [ONE/REP].-C C aborts 
¡Plot axes using T/LIN/LOG, NDX. NDY, [y-axis text], [BOX]
¡Drive the GOULD Colourwriter directly
¡Plot a crude graph on the VDU like D. Optional max/min limits. 

E C T O R  A R I T H M E T I C
¡Scale the vector [default display ] by constant, opt. clip value 
¡Shift the vector [default display] by a constant 
¡Add the let vector to the second [default display vector] 
¡Subtract 1st vector from 2nd vector [default display]
¡Multiply 1st vector by 2nd vector, scaling down by given constant 
¡Divide 1st vector by 2nd vector, scaling up by given constant
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SET VI
FIL
ZER
C V

CPY W
W vl
R VI
NG1 V
SIN VRir
DCM W
SEG VV
REV V

KG 2 Vrri
HG Vrrr

DC V

DT V

WIN V
HST VVi
S vv
SNS VV
SNR W
AV W v

GET V
PUT V
SQR
LOG
LC ii
CLR ii
ST Vi
LD Vi

INI iii
TVF VVv
TF vv
LPF vr
MON Wii
LEV Vvii
GLP RR
PZN vr
MAI W i

:Set all the elements of the vector to the given value 
:Fill memory with random data 
:Zero out virtual memory
:Clear the vector [default display] to zero 
:Copy the 1st array to the 2nd
¡Write the array to disk 1 using the default name if none given 
¡Read array from disk file using the default name if none given 
¡Moise generator. B/width, random D seeds & freq. steps in pararns 
¡Generate sine of given period« [amplitude and phase]
¡Decimate the 1st vector» output to the 2nd (of half size)
¡Segment 1st array into 2nd, no. of segments given by 2nd vector 
¡Reverse the order of the elements in the [display] vector

i ¡Gaussian random (not white) noise. [St. dev, mean, random seeds] 
¡Stationary noise generator given freq range and freq steps in Hz

S I M P L E  S T A T I S T I C A L  O P E R A T I O N S

¡Remove DC mean from vector [default display]
¡Remove linear trend and DC mean from vector [default display]
¡Window the vector using cosine bell [default display]
¡Form frequency histogram of 1st vector in 2nd vector [given range] 
¡Simple statistics - min, max, mean, sum, standard dev, rms power 
¡Signal/noise power ratio given noisy signal and signal vectors 
¡Signal to noise routine, using mse and modified loss function 
¡Form average [and st. dev.] of data array in given vectors

R E A L  B U F F E R
¡Get real and imaginary (scaled) vectors from complex buffer 
¡Put real and imaginary contiguous vectors into complex buffer 
¡Square the complex buffer 
¡Compute the log of the complex buffer
¡List real buffer given size, or start and size [defaults 1,2048] 
¡Clear real buffer given size, or start and size [defaults 1,2048] 
¡Store in the vector the scaled data buffer contents given start 
¡Load the scaled vector into real data buffer given start [=1]

V A R I O U S  F I L T E R S
¡Initialising TVF [given bins, subensembles, smoothing factor]
¡Time Varying Filtering given input, o/p filter [and average] vectors 
¡Transversal filter using same weights (+W0) as AF. Also param N.
¡1st order recursive low-pass filter [given vector and corner freq.]

ii ¡Monostable, given i/p and o/p vectors, [and edge,delay,duration]
Li ¡Level detector, given i/p [A o/p vectors, thresh, hyst. A o/p amp]

¡Generate FIR lowpass coeffs. Need centre and width frequencies 
¡Pole-zero notch filter. Require vector and pole position (E).
¡Moving average recursive LPF. Needs i/p o/p [and filter size]

S P E C T R A L  A R I T H M E T I C

FFT
INV
SPE
SXY Wiill 
LPS Vv 
AC F Vv 
COH Vvvv 
CCF Vv 
NTC VI 
LIP Vvvr 
LIG V

¡Compute forward FFT of complex buffer 
¡Compute inverse FFT of complex buffer 
¡Obtain spectrum of FFT in complex buffer
¡Compute joint spectra for X and Y [size, Zovrlp, window, lin/circ] 
¡Compute log power spectrum[s] for last SXY data 
¡Compute autocorrelation[s] for last SXY data 
¡Compute coherence, [cross-spectrum, phase A Itransfer fn.|] 
¡Compute crosscorrelation [A impulse response] for SXY data 
¡Normalised transformed magnitude coherence. Need no of averages 
¡Get the linear power spectra Gxx, Gyy and Gxy using SCI to scale 
¡Compute eigenvalues of correlation matrix of V and list
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A D A P T I V E  F I L T E R S

TRF :Compute filter output Y given signal and weight vectors
UPD {Update weight vector given E, U, signal and weight vectors
ATF VVVv {Basic LMS adaptive filter given X, D, Y [and E] + parameters 
AF VVVv {Simple adaptive filter« Need X,D,Y,[E] + params N,U,U0,DEL 
TAF VVWvl {Time-sequenced AF given X« D, Y# Control vector, [E], [CON] 
LSL V W V  {Least squares lattice AF, normalized, pre-windowed, X D Y E 
LAT VVVVV1{LSL filter, needs X D, gives e r ex. Use DEB to list all 
KAF VVVVvl{Multichannel AF. Uses X D Y E [C] [CON]. D in array X.

KEY{- 1 - integer constant 
R - real constant 
L - literal string constant 
V - vector
? - unspecified argument type; depends on context

i, r, 1 and v denote optional arguments which if omitted are 
assigned default values.

form
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APPENDIX A3 LIST OF PARAMETERS

Name Type Cell Value
ST1 (I 11) = 1
SZ1 (I 12) = 256
ST 2 (I 13) = 1
SZ2 (I 14) = 1
SWP (I 15) = 256
DM (I 16) = 0
TRP (I 19) = 2
ECH (I 20) = 1
IX (I 21) = 0
IY (I 22) = 2200
LX (I 23) = 3300
HX (I 24) = 2600
XP (I 25) = 256
AP (I 26) = 400
INC (I 27) = 2
SEQ (I 28) = -1
LT (I 29) = 0
AS (I 30) = 10
INX (I 31) = 300
INY (I 32) = -200
ORX (I 33) = 0
ORY (I 34) = 2200
RUN (I 36) = 16
UCH (I 37) = 4
BIN (I 38) = 256
SAM (I 39) = 4000
SM (I 40) = 0
POV (I 41) = 0
NFT (I 42) = 256
LL (I A3) = 0
ISM (I 44) = -1
RSI (I 45) = 0
RS2 (I 46) = 0
NFS (I 47) = 1
PLO (I 48) = 128
PHI (I 49) = 2
RNG (I 50) = 32767
I (I 51) = 0
J (I 52) = 0
K (I 53) = 0
L (I 54) = 0
N (I 55) = 16
DEL (I 56) = 9
KEY (I 57) = 0
SUI (I 58) = 3
nun (I 59) = 256
EDG (I 60) = 100
DLY (I 61) = 0
DUR (I 62) = 1
DAC (I 63) = 0
THR (I 64) = 0
HYS (I 65) = 0
AMP (I 66) = 1000

Function
Start address (1)
Vector size (1)
Start address (2)
Vector size (2)
Sweep size 
Display mode 
Error trap 
Echo/No echo

Initial plot position 

Page limits

Plot limits

Pen increment step 
Automatic plot sequence 
Line type 
Character size

Auto-plot increments 

Auto-plot origin

Used in command 

D D2 D1S

J ex

P AX

No. of runs 
No. of channels 
No. of bins 
Sampling period 
Sampling mode 
% overlap
FFT size (augmented)
No. of subensembles 
Smoothing factor 
Random seed (1)
Random seed(2)
No. of frequency steps 
Period of lowest frequency 
Period of highest frequency-1 
Histoaram amplitude range

□  SXY 

Z ] TVF INI

NG NGl NG2

HST

Loop counters
AF ATF TAF MAF

Filter order 
Delay parameter 
Data protection key 
Detrending switch 
Segment size 
Edge polarity and size 
Output pulse delay 
Output pulse duration 
DAC output control 
Schmitt input threshold 
Hysteresis
Output pulse amplitude

::SXY LPS 
ACF CCF

MON

LIP COH 
NTC
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Name Type Cel 1 Value Function Used in command

YS (R 1) = 0.200000E-01 Plot scale factor P
SCI
SC2

(R
(R

2)
3)

= 1.00000 I
1.00000 J

Scale factors Type conversions

u (R 4) = 0.000000 Convergence coefficient _
Y (R 5) S 0.000000 Filter output sample AF ATF TAF MAFE (R 6) = 0.000000 Error output sample
PWR (R 7) = 0.000000 Input rms value
SKL (R 8) = 0.100000E-29 Smallest real value SXY
FC (R 9) = 50.0000 Cut-off frequency LPF
UO (R 10) = 0.000000 Bias tap convergence AF
SF (R 11) = 1.00000 Spectrum scale factor SXY LIP LPS
LUD (R 12) = 1.00000 Lattice filter parameter LSL
DWF (L101 ) = OUTPUT. 007 Default output file name W RDRF (LI17) s DATA.001 Default input file name
PLT (1100) = 0 Select plotter device P



APPENDIX A4 EXAMPLE OF CONSOLE DIALOGUE 
(User input is underlined)

DIGITAL SIGNAL PROCESSING PACKAGE V2.0 JUL 1983 

>REH - THIS IS AH EXAMPLE OF TYPICAL CONSOLE INTERACTION.

>RDP 'RH 

>ZER

>AL S2.32 $1 

>AL N16.64 $2 

>AL Dlfe.64 $10 

>AL Y16.64 $18 

>AL E16.64 $26 

>MAP

256 Blocks of 128 words

BLOCK 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0+ 1 S N N N N N N N N D D D D D D D D Y Y Y
20+ 1 Y Y Y Y Y E E E E E E E E
40+
60+
80+

100+

120+
140+
160+
180+
200+
220+
240+
>TAB
NAME ADDR DIM1 DIM2 DIK3 SIZE

0 0 0
A 0 0
E 0 0
C 0 0
D 1153 1
E 3201 1
F 0 0
G 0 0
H 0 0
I 0 0
J 0 0
K 0 0
L 0 0
M 0 0

0 0 0
0 0 0
0 0 0
0 0 0
16 64 1024
16 64 1024
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

NAME ADDR DIM1 DIM2 DIM3 SIZE

N 129 1
0 0 0
P 0 0
Q 0 0
R 0 0
S 1 1
T 0 0
U 0 0
V 0 0
W 0 0
X 0 0
Y 2177 1
Z 0 0
$ 1 1

16 64 1024
0 0 0
0 0 0
0 0 0
0 0 0
2 32 64
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
16 64 1024
0 0 0

256 128 32767
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>RE1Î - GEUERATE ARTIFICIAL SIGIIAL AMD NOISE 

>SIN SI 1 6 1000

>NG2 N 500

>L S
382 707 923 1000 923 707 382 0 -382 -707
-923 -1000 -923 -707 -382 0 382 707 923 1000
923 707 382 0 ■382 -707 -923 -1000 -923 -707
-382 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0

>S N
MINIMUM MAXIMUM MEAN SUM STANDARD DEV RMS POWER
-1817 1512 0.611328 626.000 498.261 498.018

>CPY N D 
>AD S D*
>S1!S D* S 
S/N POWER RATIO 
S/N POWER RATIO 
S/N POWER RATIO 
S/N POWER RATIO 
S/N POWER RATIO 
S/N POWER RATIO 
S/N POWER RATIO 
S/N POWER RATIO 
S/N POWER RATIO 
S/N POWER RATIO 
S/N POWER RATIO 
S/N POWER RATIO 
S/N POWER RATIO 
S/N POWER RATIO 
S/N POWER RATIO 
S/K POWER RATIO

0.839339 =-0.760625 DB
1.05321 = 0.225160 DB

0.910180 =-0.408728 DB
0.843725 =-0.737993 DB
0.860628 =-0.651848 DB
1.33198 = 1.24499 DB

0.801855 =-0.959042 DB
0.920236 =-0.361007 DB
1.52875 = 1.84336 DB

0.988969 =-0.481718E-01 DB
1.08067 = 0.336930 DB

0.879942 =-0.555461 DB
1.49436 = 1.74455 DB

0.877833 =-0.565881 DB
1.49294 = 1.74041 DB

0.985145 =-0.649988E-01 DB

>W S » SIGNAL
>W H »REF
W
>D 'PRI
>REi: - NOW PERFORM ADAPTIVE FILTERING OF DATA
>AL 016.64 El.17
>SP N 32 
>SP DEL 16
>SP U .2
>AF N D Y E
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>sns o* s
S/N PO\iER RATIO s 1.21046 = 0.829492 DB
S/N POWER RATIO = 1.61850 = 2.09112 DB
S/N POWER RATIO = 5.34677 r 7.28091 DB
S/N POWER RATIO = 2.83534 = 4.52605 DB
S/N POWER RATIO r 5.47091 s 7.38060 DB
S/N POWER RATIO = 4.71634 s 6.73605 DB
S/N POWER RATIO = 5.16057 = 7.12698 DB
S/K POWER RATIO s 3.71109 = 5.69502 DB
S/N POWER RATIO = 6.87492 = 8.37267 DB
S/K POWER RATIO s 2.86942 = 4.57795 DB
S/N POWER RATIO = 4.50683 = 6.53871 DB
S/N POWER RATIO = 3.93519 = 5.94966 DB
S/N POWER RATIO = 4.00530 = 6.02635 DB
S/N POWER RATIO = 2.90414 = 4.63018 DB
S/N POWER RATIO = 12.1023 = 10.8287 DB
S/K POWER RATIO = 9.12117 s 9.60050 DB

>REK - REPEAT USING A GATED ADAPTIVE FILTER

>REK - CREATE CONTROL VECTOR

>AL C16.64 $41

>AL Z2.32 C

>SET Z1 -1

>SET Z2 1

>CPY Cl C*

>CLR

>C 0

>TAF li D 1 C E

>SUS 0* S
S/N POWER RATIO = 0.927657 =-0.326127 DB
S/K POWER RATIO = 2.53787 = 4.04469 DB
S/N POWER RATIO = 4.17633 = 6.20795 DB
S/N POWER RATIO = 11.6804 = 10.6746 DB
S/N POWER RATIO = 16.6410 = 12.2118 DB
S/N POWER RATIO s 36.6270 = 15.6380 DB
S/N POWER RATIO s 41.6238 = 16.1934 DB
S/N POWER RATIO = 123.602 = 20.9203 DB
S/N POWER RATIO s 187.160 = 22.7221 DB
S/N POWER RATIO s 274.702 = 24.3886 DB
S/N POWER RATIO s 294.321 = 24.6882 DB
S/N POWER RATIO = 827.891 = 29.1797 DB
S/N POWER RATIO s 5388.27 = 37.3145 DB
S/K POWER RATIO = 4975.60 = 36.9685 DB
S/N POWER RATIO s 9501.56 = 39.7780 DB
S/N POWER RATIO = 16876.0 = 42.2727 DB

>W 0 'OUTPUT

>STP

STOP DISPAC



APPENDIX A5. SUBROUTINE CALLS AND ARGUMENT TRANSMISSION.

The block diagrams contained in this Appendix show the basic 

structure of the main DISPAC code, and the form of each subroutine 

implementing a command function. Each command subroutine receives 

coded information pertaining to the arguments that have been entered at 

the keyboard after each command. Because DEC Fortran IV does not 

handle argument transmission to subroutines efficiently, the following 

scheme to do this is implemented. Each subroutine has a COMMON block 

containing variables and arrays used to pass arguments and parameters. 

The main section of DISPAC decodes the typed arguments according to the 

command definition, and after checking these for validity puts them 

into the link variables. The Fortran code for the COMMON block is as 

f ol 1 ows:

VIRTUAL IDATA(32767)
COMMON BLOCK /LINK/ IARG, IERR, NOP, JSUB, IPARM, RPARM, LPARM 
LOGICAL*! LPARM(200)
INTEGER IARG(2,6), IPARM(IOO)
REAL ARG(6), RPARM(25)
EQUIVALENCE (IARG, ARG)

The variables and arrays have the following function:-

IDATA is an integer array that spans the entire 32k words of data

memory. All operations on data arrays must therefore use IDATA.

IARG, ARG, JSUB and NOP are set by the command line decoder to pass 

arguments to the command subroutine.

JSUB is the number of the subroutine that has been called.

NOP is the number of arguments that have actually been supplied,

ARG and IARG are used to pass up to 6 arguments. The n'th argument 1s 

passed as follows: Real constants are stored in ARG(n); Integer 

constants are stored in IARG(l,n); String constants are referred
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APPENDIX A5. SUBROUTINE CALLS AND ARGUMENT TRANSMISSION.

The block diagrams contained in this Appendix show the basic 

structure of the main DISPAC code, and the form of each subroutine 

implementing a command function. Each command subroutine receives 

coded information pertaining to the arguments that have been entered at 

the keyboard after each command. Because DEC Fortran IV does not 

handle argument transmission to subroutines efficiently, the following 

scheme to do this is implemented. Each subroutine has a COMMON block 

containing variables and arrays used to pass arguments and parameters. 

The main section of DISPAC decodes the typed arguments according to the 

command definition, and after checking these for validity puts them 

into the link variables. The Fortran code for the COMMON block is as 

fol1ows:

VIRTUAL IDATA(32767)
COMMON BLOCK /LINK/ IARG, IERR, NOP, JSUB, IPARM, RPARM, LPARM 
LOG I C A L M  LPARM(200)
INTEGER IARG(2,6), IPARM(IOO)
REAL ARG(6), RPARM(25)
EQUIVALENCE (IARG, ARG)

The variables and arrays have the following function:-

IDATA is an integer array that spans the entire 32k words of data

memory. All operations on data arrays must therefore use IDATA.

IARG, ARG, JSUB and NOP are set by the command line decoder to pass 

arguments to the command subroutine.

JSUB is the number of the subroutine that has been called.

NOP is the number of arguments that have actually been supplied,

ARG and IARG are used to pass up to 6 arguments. The n th argument is 

passed as follows: Real constants are stored in ARG(n); Integer 

constants are stored in IARG(l.n); String constants are referred
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to by a pointer IARG(l,n) to denote their position in the command 

line and their size IARG(2,n); Data vectors are referred to by 

their base address in IARG(l,n) and size in IARG(2,n) to denote 

their location in IDATA.

IERR returns an error code to the main calling program on completion of 

the command.

The memory required to transmit arguments is thus limited to 13 words.

Parameters are made available via the arrays IPARM, RPARM and 

LPARM, which can store up to 100 integer parameters, 25 real parameters 

and 200 characters in the current implementation. Each cell is 

allocated to hold a particular parameter, thus ST1 which points to the 

start of the display vector is stored in cell 11 of IPARM. The 

subroutine must access the appropriate parameter cell, and this is 

conveniently done by assigning a local variable to the parameter cell 

using an EQUIVALENCE statement. The subroutine may then use the 

parameter cell as required, either to obtain the parameter value or to 

update it. An example of this useage can be seen in Appendix A6 which 

lists a typical command subroutine.
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BLOCK DIAGRAM OF THE MAIN STRUCTURE OF OISPAC.



GENERAL STRUCTURE OF COMMAND SUBROUTINES.

A. Subroutine t i t le  and in it ia l  description of function.

B. Common blocks to provide access to global variables and arrays.

COMMON BLOCK LINK - tables and variables through which arguments and 

parameters are made available. Present in every subroutine.

COMMON BLOCK DATA - represents the region of memory available to the 

user subroutine for real or complex arithmetic operations. Present 

only in subroutines that require to use this area.

COMMON BLOCK DECARG - contains the results of decoding a particular 

argument. Used only when the subroutine itself must decode an 

argument.

COMMON BLOCK TABLES - contains command definition table, parameter 

definition table, command decoder syntax tables, data definition 

tables. Only present when the subroutine requires access to these 

tables.

COMMON BLOCK LIMITS - contains the current sizes of each table. Only 

present when the subroutine requires these.

C. Fetch the arguments entered at the keyboard; these are either constants 

or pointers to data items in memory. Take default action if any are 

omitted. Check that sufficient arguments have been entered and that 

they are valid. Link local variables to parameter table and check that 

they are valid.

D. Perform the main subroutine code, whether accessing files controlling 

peripherals, altering system tables or manipulating data in memory.
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Set error flag if an error occurs in any of the above procedures. The 

error number indicates both the severity of the error (and hence 

corresponding action) and the message in the error file that is to be 

output.

Return to the main calling program.



APPENDIX A6 EXAMPLE OF A COMMAND SUBROUTINE
--------------  (ADAPTIVT TTLTTRT

SUBROUTINE SUB61(IDATA)
C
c *********************************
c * SUBROUTINE AF *
(J ★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★

C
C LHS adaptive filter subroutine. Simplest and fastest algorithm.
C
C The following statements define the argument qnd parameter
C . link areas. Use EQUIVALENCE statements to refer to parameter
C cells by meaningful names. The COMMON /DATA/ block is the
C real buffer which is used to perform the filter operations.
C Provision is made for up to 512 weights. TDL is the tapped
C delay line and DEL implements the delay in the primary input.
C

VIRTUAL IDATA(32767)
COMMON /LINK/ IARG, IERR, NOP, JSUB, IPARM, RPARM, LPARM 
LOGICAL*1 LPARM(200)
INTEGER IARG(2,6), IPARH(IOO)
REAL ARG(6), RPARM(25)
EQUIVALENCE (ARG.IARG)

C
EQUIVALENCE (IPARM(6),ICC)
EQUIVALENCE (IPARM(51),I). (IPARK(52),J)
EQUIVALENCE (IPARM(55),N), (IPARH(56).IDEL)
EQUIVALENCE (RPARM(7),PWR), (RPARM(10),U0)
EQUIVALENCE (RPARM(A).U), (RPARM(5),Y), (RPARN(6),E)

C
COHNON/DATA/ WO, W, TDL, DEL 
DIMENSION TDL(512). W(512). DEL(512)

C
C Check that at least 3 arguments are entered.
C Set pointers to the start addresses of the data vectors.
C Check the sizes of each to make sure they agree.
C Check validity of parameter values.
C

IF(NOP .LT. 3) GOTO 97 
IX=IARG(1,1)-1 
ID=IARG(1,2)-1 
IY=IARG(1,3)-1 
IE=IARG(1,4)-l 
N1=IARG(2,1)
IF((IARG(2,2) .NE. NI) .OR. (IARG(2,3) .NE. NI) .OR.
0  ((NOP .EQ. 4) .AND. (IARG(2,4) .NE. NI))) GOTO 99 
IF((N .LE. 0) .OR. (IDEL .LT. 0) .OR. (I .LT. 0)
0 .OR. (U0 .LT. 0.0)
O  .OR. (U .GT. 1.0) .OR. (U .LT. 0.0)) GOTO 98 
IF((N .GT. 512) .OR. (IDEL .GE. N)) GOTO 98 

C
C Compute basic constants and power of X vector
C

PWR=0.0
DO 50 I=IX+1,IX+N1 
PWR=PWR+FLOAT(IDATA(I))**2 

50 CONTINUE
PWR=PWR/N1
IF(PWR .EQ. 0) GOTO 96
U1=U0*2.0
U2=U*2.0/(PWR*N)



n
 o

 o

c
C Set the NEXT label to skip storing the E values if not required
C

ASSIGN 400 TO NEXT 
IF(NOP .EQ. 3) ASSIGN 500 TO NEXT 

C
C Nov process the vectors in one loop containing a basic
C transversal filter computation and filter weight update process.
C Implement 2 circular buffers TDL and DEL in real arrays as the
C heart of the process.
C Note that in both these cases the TDL is traversed in the
C opposite direction from W and to implement thi6 efficiently
C 2 loops are used with the first decreasing IT (for TDL) from I
C to 1 and the next from N to 1+1. IW indexes W. I and 12 index
C the output and input samples of DEL.
C

DO 500 J=1,N1 
IF(ICC .NE. 0) GOTO 95 
1=1+1
IF(I .GT. N) 1=1 
IT=I
TDL(I)=IDATA(IX+J)
This is the transversal filter computation for one sample time 

Y=W0
DO 100 IW=1,I 
Y=Y+TDL(IT)*W(IW)
IT=IT-1 

100 CONTINUE
IT=N
IF(I .EQ. N) GOTO 190 
DO 150 IW=I+1.N 
Y=Y+TDL(IT)*W(IW)
IT=IT-1

150 CONTINUE
C
C This is the LMS update algorithm
C
190 I2=I+IDEL

IF(I2 .GT. N) I2=I2-N 
DEL(I2)=IDATA(ID+J)
E=DEL(I)-Y
UE2=U2*E
W0=W0+U1*E
DO 200 IW=1.I
W(IW)=W(IW)+UE2*TDL(IT)
IT=IT-1

200 CONTINUE
IF(I .EQ. N) GOTO 300 
IT=N
DO 250 IW=I+l.N 
W(IW)=W(IW)+UE2*TDL(IT)
IT=IT-1

250 CONTINUE



c
C Mow store the filter output (and error) values
C If integer overflow would occur* truncate the values to a
C magnitude of 32767 and set the error condition appropriately.
C
300 IF(ABS(Y) .LF.. 32767.0) GOTO 310

IERR=“561 
Y=SIGN(32767.0.Y)

310 IDATA(IY+J)=Y
GOTO NEXT

400 IF(ABS(E) .LE. 32767.0) GOTO 320
IERR=”561 
E=SIGU(32767.0.E)

320 IDATA(IE+J)=E
500 CONTINUE

RETURN 
C
C Filtering complete. Return to main calling routine.
C
C Error conditions
C
95 IERR=“743 

RETURN
96 IERR=“612 

RETURN
97 IERR=“12 

RETURN
98 IERR=“322 

RETURN
99 IERR=“422 

RETURN 
END



APPENDIX B.

ESTIMATION OF COHERENCE AND SPECTRAL FUNCTIONS.

The magnitude squared coherence (MSC) function is defined to be

|GXv(f)|2
| r ( f ) l 2 = (B.l)

Gx x (f )-G y y ( ^

where Gxx(f) and Gyy(f) are the autospectra and Gxy(f) the 

cross-spectrum of two zero-mean, stationary stochastic processes x(t) 

and y(t). Current techniques for estimating the MSC generally use the 

FFT to obtain estimates of the spectral functions from a finite data 

record. These are conveniently obtained by segmenting a large record 

into N equal length (overlapping or disjoint) sections, each of which is 

sampled at T equally-spaced time Intervals. The spectra are computed 

for each segment and averaged to obtain smoothed estimates, a procedure 

necessary to reduce the bias [135]. These are used to obtain the 

estimate of the MSC as follows:

K ( f ) l :
|Gx v (f)|2

(B.2),2 _ 1 *r\
fixx(f).Gyy(f)

The advantage of this approach is that 1t may be efficiently performed 

by small general-purpose computers with limited store, as the DFT is not 

taken of the entire record, as would be required if smoothing of the 

spectral estimates was performed by averaging over neighbouring 

frequencies. The alternative approach to spectral estimation, that of 

computing the correlogram and transforming truncated versions of these 

give essentially the same results, but is computationally less

efficient.
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There are several ways of proceeding that depend upon the 

application. Two conflicting requirements are present in estimating the 

spectra of a given data set. Good frequency resolution 1s obtained when 

T is large, but this reduces the number of segments available for 

averaging, resulting in greater bias and variance. Lower bias can be 

achieved by using smaller values of T, but this 1s at the expense of 

frequency resolution.

This conflict can be alleviated to some extent by overlapping 

the segments, which permits more averages to be taken whilst maintaining 

the same frequency resolution. This is only effective up to a point, as 

the computational overheads increase rapidly while the improvement 

declines due to greater correlation between segments. Carter, Knapp and 

Nuttal [129] have shown theoretically and experimentally that for 

Hanning windowed segments there is little point 1n employing overlapping 

beyond about 50%.

The statistical properties of the MSC estimator have been 

described by Carter et al [129] who derived expressions for the bias and 

variance that result from the use of the segmented estimation procedure. 

Two approximations useful for N in the range N > 32 are reproduced here. 

These assume ideal windowing and no overlapping of zero-mean, stationary 

gaussian processes.

Bias B(|y|2) = (1 - M 2 )2 / N

Var V ( M 2) = |
1/N2 ; Iy I2 = o

l2|y |2 . (l - |y |2)2 / N; 0 < M 2 < 1 

These show clearly that the bias and variance of the estimation 

error are dependent on both the number of segments N, and the true MSC 

value. Computed values of these are listed 1n Table B.l for a range of 

coherence values and seament sizes.



(a)

Iy I2 32 64 128

0.0 0.0313 0.0156 0.0078
0.1 0.0253 0.0127 0.0063
0.2 0.0200 0.0100 0.0050
0.3 0.0153 0.0077 0.0038
0.4 0.0112 0.0056 0.0028
0.5 0.0078 0.0039 0.0020
0.6 0.0050 0.0025 0.0012
0.7 0.0028 0.0014 0.0007
0.8 0.0012 0.0006 0.0003
0.9 0.0003 0.0002 0.0001
1.0 0.0000 0.0000 0.0000

(b)

Iy I2 32 64 128

0.0 0.0010 0.0002 0.0001
0.1 0.0051 0.0025 0.0013
0.2 0.0080 0.0040 0.0020
0.3 0.0092 0.0046 0.0023
0.4 0.0090 0.0045 0.0022
0.5 0.0078 0.0039 0.0020
0.6 0.0060 0.0030 0.0015
0.7 0.0039 0.0020 0.0010
0.8 0.0020 0.0010 0.0005
0.9 0.0006 0.0003 0.0001
1.0 0.0000 0.0000 0.0000

TABLE B.l. Computed values of (a) bias and (b) variance for the 
magnitude-squared coherence function for a range of 
coherence values and three different ensemble sizes 
N = 32, 64 and 128. Computations based on the 
approximate expressions given in the text.



Details of the computational procedure will now be related. N

equally spaced samples of data records {Xj} and tyj> , j=0.... N-l, may

be partitioned into K segments of length L, with the starting point of 

each segment separated by D samples. The degree of overlap is then 

given by (1-D/L) X 100%, and the resulting sequences may be denoted by

txi(j)) = tx(j)> j = 0, ... ,L-1 (B.5)
tx^(j)} = (x(j+D)}

ixjjj)} = ix(j+(K-l)D)}

The segment length L must be a power of two for most efficient 

computation of the DFT using the FFT, though each segment can be 

artificially extended to this length by appending zero-valued samples.

It is common practice to multiply each segment by a suitable 

window function, (not including any zero-padded extension), in order to 

reduce 'leakage' of spectral energy into adjacent frequencies. This 

phenomenon is well-known and described in texts on spectral analysis. A 

simple window such as the Hanning window given by

W(j) = 0.5 [ 1 - cos (2nj/L-l) 1 , j = 0, .. ,L-1 (B.6)

reduces the effect of sidelobes in the spectrum that arise from the use 

of a finite time record. The spectrum has to be scaled to counteract 

the energy loss caused by windowing, according to Parseval s Theorem. 

This loss of signal energy may largely be avoided by overlapping the 

segments. The data segments {X|<(j)} are weighted by the window function 

W(j) and the DFT obtained as follows:

Xk(n) = l/L^IoXk(j).W(j).e-2iriJ’n/L (B.7)

where 1 = ✓ (-1). The DFT is obtained similarly for j^ U) and denoted by 

Yk(n):



L-l
Yk(n) = 1/L.I yk(j).W(j).e -2nijn/L (B.8)

The spectral estimate is the average of these periodograms l.e.

is the factor by which the mean signal power is reduced by the window. 

The cross-spectrum may be found using a similar procedure, i.e.

where * indicates the complex conjugate function. These are then 

substituted into equation (B.2) to obtain the estimate of the MSC.

There can be difficulties 1n estimating the cross-spectrum (and 

hence also the coherence) if the data records exhibit a rapid phase 

change with frequency, which corresponds to a time delay between the 

correlated data. This causes the MSC estimate to be significantly 

overestimated. When this is likely to occur it is recommended [136] 

that the data records be pre-allgned in time. Other procedures have 

been suggested to minimise the bias arising from the use of a small 

number of short data records. Thus Stearns [137] recommends averaging 

of the coherences obtained over of the data segments. This procedure 

was first proposed by Tick [138] who suggested several ways 1n which the 

averaging could be performed. Experimental results seem to indicate 

that this is effective when bias is likely to be significant, but

(8.9)

where

fn = n/L ; n = 0 ...... L/2

is the frequency, and

(B.10)

(B.ll)

(8.12)



otherwise can give poorer results. For this reason and because these 

procedures are still under investigation, they are best avoided unless 

clearly necessary.



APPEN)» C.

Use of the Coherence function to predict ANC performance.

It is straightforward to obtain a measure of the SNR improvement 

that can be expected by the use of an adaptive noise canceller (ANC).

In this appendix I shall show that the magnitude squared coherence (MSC) 

is useful in this context. Fig. C.l shows the situation to be 

considered. Let c(t) be a continuous-time random signal which 

represents a correlated signal present in two channels Xj(t) and X2(t). 

In each case c(t) has been passed through a linear filter, (H1(f) and 

H2(f) respectively). Random noise signals ui(t) and u2(t), uncorrelated 

with each other and with c(t), are also present in each signal channel. 

Each of the signals c(t), Uj(t) and u2(t) are assumed to be stationary 

with zero mean, and to have power spectral densities C(f), Uj(f) and 

U2(f) respectively.

Widrow et al [92] have considered the SNR improvement that would 

be expected if an ANC were used to cancel the correlated signal from one 

channel by using the other as a reference. This situation is depicted 

in fig. C.2 and is essentially the same as that described in Chapter 4, 

with the main signal omitted for the purpose of this analysis. This is 

entirely valid as it has previously been shown that a signal present 

only in the primary input appears unmodified at the ANC output, provided 

that it is uncorrelated with each of c(t), u^(t) and u2(t). The SNR can 

then be expressed 1n terms of the ratio of noise power present in the 

ANC output to that 1n the primary input. It has been shown [92] that 

the ratio of the noise powers is:



FIGURE C.l Derivation of two partially correlated signal 
channels x-j(t) and x2(t)

u2(t)

Adaptive Noise Canceller

FIGURE C.2 Cancellation of correlated component in d(t) using 
reference signal x(t)
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Pout(z) C A(z) + 1 ]•[ B(z) + 1 3
(C.l) P(z) = ------- = -------------------------—

Ppri(z) A(z) + A(z).B(z) + B(z)

where A(z) and B(z) are the ratio of the uncorrelated to the correlated 

power densities of each signal channel. Rewriting this expression 1n 

terms of frequency and rearranging gives

1
(C.2) P(f) = -------------------------- — ------ r—

1 - [ ( A(f) + 1 ).( B(f) + 1 ) I"1

Though useful as an analytical result, this expression is 

difficult to apply in practice since A(f) and B(f) are generally unknown 

and not easily estimated. This may be seen by considering these 

functions in terms of the signal spectra:

(C.3) A(f)
Uj(f)

C(f).|H1(f)|2

(C.4) B(f) =
H2(f)

C(f).|H2(f)|2

The spectral functions of each signal channel can be readily obtained, 

viz:

(C.5) Xx(f) = C(f). |H!(f)|2 + U^f)

(C.6) X2(f) = C(f).|H2(f)|2 + U2(f)

and

X12(f) = C(fJ.Hjtf).H2(f)*(C.7)
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It is not possible to estimate A(f) and B(f) from these, without knowing 

some of the underlying signal spectral functions C(f), Uj(f) and U2(f) 

or the filter responses Hj(f) and H2(f). It will now be shown that P(f) 

can be obtained by means of the MSC. From the definition, the coherence 

between the channels x^(t) and ^ ( t )  can be written,

(C.8) M 2(f) =
C(f).|H1(f).H2(f)*|2

[ C(f).|H1(f)|2 + Uj(f) ].[ C(f).|H2(f)|2 + U2(f) ]

Using the definitions of A(f) and B(f) this may be written

C2(f).|H1(f).H2(f)*|2
(C.9)

C2(f).|H1(f)|2 .|H2(f)|2.( 1 + A(f) ).( 1 + B(f) )

1
(C.10)

( 1 + A(f) ).( 1 + B(f) )

Substituting (C.10) into (C.2) yields the result

provided that |y(f)|2 is not equal to unity at any frequency.
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APPENDIX D.

A PRELIMINARY INVESTIGATION OF A MULTIPLE-REFERENCE ANC.

The results obtained in Chapter 8 using a single-reference 

adaptive noise canceller were sufficiently promising to support further 

investigation using multiple reference sources. This approach 

(described in Chapter 4, section 4.3.4) allows better noise cancellation 

to be obtained if each reference source contains activity correlated 

with the primary channel but uncorrelated with each other. As time was 

restricted for this study no attempt was made to analyse the mutual 

correlation properties of the reference channels. It was considered 

that a preliminary exploration of this approach would be sufficient to 

indicate whether further research would be worth pursuing. The 

investigation was therefore limited to two test cases, based on the 

recorded EPs obtained previously.

In case (i) 8 records from subject DAJ/I were filtered using a 

single reference GAF (using each of channels 5 and 6 as reference), and 

a multiple reference GAF (MGAF) (using both channels 5 and 6 as 

reference). The primary input was channel 3 as before, and N was set to 

32 and u' to 0.2. The results of applying each of these filters to two 

records are shown in fig. D.l and compared with simple subtraction of 

the two inputs. The averages of 8 records are shown in fig. D.2, with 

the +1 standard deviation limit shown superimposed as a measure of the 

variability of the individual responses. In case (ii) four records from 

subject MJM/C were filtered using a single reference GAF (with channel 4 

as reference) and a MGAF (with channels 1, 2, 3 and 4 as references).

The primary input was channel 6. N was 32 for the GAF and 16 for the 

MGAF, and u' was 0.2. The results of filtering a typical record are
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M J M / C  2A 2B 3 A 3B

Figure D4

Comparison of multi-reference ANC, single-reference ANC and 
subtracted inputs. Averages of 4 records shown here. Note the 
reduction of general noise activity, and alpha activity in 
particular.
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shown in fig. D.3, and the averages of 4 such records are shown in 

fig. D.4.

The results are encouraging and show that greater cancellation 

of correlated activity is indeed attainable through use of multiple 

reference channels. In the first case, channel 6 by itself does not 

provide as good cancellation of the primary correlated activity as 

channel 5, and might not be expected to provide additional cancellation 

when used with channel 5 in the MGAF. The results however reveal that 

this is not the case and in several records the MGAF performs better 

than either of the single reference ANCs. The averages in fig. D.2 show 

no evidence for distortion of the EP signals through use of the MGAF, 

though there does not appear to have been much improvement compared with 

the alternative approaches, other than some reduction in alpha activity. 

These results are confirmed in the second case though the use of four 

reference channels appears to give better cancellation. Alpha activity 

in particular is markedly reduced in two records (as shown by the 

averages in fig. D.4) though general EEG activity is also attenuated. 

This appears to have been achieved without any signal distortion 

occurring. The results of this preliminary study therefore confirm the 

suggestion made in this thesis that improved signal estimation is made 

possible by the use of adaptive noise cancelling, and it may be 

concluded that the use of multiple reference channels is an important 

extension of the single reference canceller described in this thesis. 

These proposals nevertheless need to be investigated thoroughly using a 

larger number of subjects and stimulus conditions, though it is expected 

that the use of a two-dimensional array of electrodes will lead to even 

better results than those obtained here using a single row of transverse 

electrodes, as reference electrodes can be chosen which have high 

correlations with the primary channel.
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