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ABSTRACT 

The work involved the determination of excess thermodynamic functions 

of binary liquid mixtures by experimental and theoretical means. 

Experimentally, excess Gibbs functions(GE), and excess volumes(VE) were 

determined. The theoretical work involved these functions as well as excess 

E enthalpies(H ). 

E G values were determined experimentally by the dew point-bubble 

point method(DPBP). The work involved development of a previously designed 

apparatus. A new procedure was realised and adopted. In the new procedure, 

fixed quantities of material were used for obtaining required dew point 

pressures and bubble point pressures. As a complementary part of measuring 

GE, a computer program was developed. Two systems were subjected to 

experiment. One of them, benzene+cyclohexane, produced results which 

compared well with published data. The system benzene+hexane produced 

results which were a marked improvement on previous DPBP work. After a 

discussion of the results, improvements on apparatus design were suggested. 

Excess volumes were meassured by batch dilatomet.ry. Four systems were 

used for testing the procedure. Then measurements on binary systems that 

have not been measured previously were made. 

Theoretical aspects of the work involved applying various theories of 

fluids to the prediction of excess functions. One group of these theories 

was based on the principle of corresponding states. Experimental data of a 

number of pure substances were analysed to produce some universal 

relations. The other group of theories was based on equations of state 

which are analyt.ical in essence. The main new feature in this part of the 

work was the way in which various combining rules were used in conjunction 

with the different equations of state. Computer programs were developed so 

that a mUltiplicity of combinations was available for predicting excess 

functions. 
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D1TRODUCTIOR AND 00"1'LDIB 

1 • 1 DITRODUC".rI:OR 

The main parts of this work involved 

(1) the development of the method of obtaining excess Gibbs functions 

from measured dew point pressures and bubble point pressures, 

(2) the testing of various theories by applying them to the prediction 

of excess functions, and 

(3) the measurement, of excess volumes of mixing. 

The dew point,-bubb1e point(DPBP) method is unique in the following 

respect. The composition of a mixture need not, and is not, measured 

accurately prior to the measurement of the pressures. In all other methods 

for det,ermining excess Gibbs functions, the compsitions of either the 

liquid phase or the vapour phase, or both, are measured in addition to the 

vapour pressures. In the DPBP method, compositions and GE values are 

calculated from the measured vapour pressures. A subsidiary part of this 

work involved the development of a computer program for calculating GE 

values from the pressures. 

Various theories have been applied in the prediction of excess 

functions and their predictive capacities have been compared against 

experiment. The main points of this part of the work involved: 

(a) discussing the principle of corresponding states of fluids and its 

extension to fluid mixtures, 

(b) applying the Van der Waals equation of state and the Guggenheim 

equation of state to the prediction of excess functions, 

(c) developing computer programs which were versatile enough to 

accommodate a number of combining rules, and 
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(d) comparing the performance of various theoretical combinations in their 

capacity to predict excess functions. 

The measurement of excess volumes of mixing was almost incidental in 

nature. Small quantities of material were used throughout the series of 

measuements. The author has to confess that small quantities were used 

purely out of interest. However, results from the test systems compared 

well with published data and it was felt that. the procedure was sound 

enough to be applied in the measurement of excess molar volumes of new 

binary systems. 

1 .2 OU'l'LDIE 

The DPBP work has been developed so that, for a given quantity of 

material, pressure and volume measurements can be taken right from being in 

the vapour phase to an extent whereby most of the material is in the liquid 

phase. Reasons for adopting this procedure whereby a fixed quantity of 

material is used are given in Section 3.6. The new procedure is described 

in detail in Section 3.7.3. Part of the DPBP work involved the development 

E of a computer program for calculating G values and phase compositions from 

t.he measured pressures. An advancement on the previously existing 

program(F.A. Hewitt, Ph.D. Thesis, University of Keele,1976) involved the 

use of algebraic relations in order to evaluate partial derivatives which 

formed part of the analYSis of the dew point and bubble point pressures. 

Previously, the partial derivatives were evaluated graphically. Although 

the algebraic approach may appear awkward at first glance(see Section 3.2), 

it is considered to be a better approach than the graphical one. The main 

drawback with the graphical approach is that one has to have an approximate 

idea about the nature of the pressure-composition phase diagram before 

calculations commence. From the current work, lack of knowledge of the 

phase diagram does not appear to be a drawback. 
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As indicated in Section 1.1, the prediction of excess functions of 

binary mixtures was based on 

(a) the principle of corresponding states(p.c.s), and 

(b) equations of state of the Van der Waals type. 

In applying the p.c.s, critical temperatures, critical volumes and critical 

pressures were the bases for formulating the p.c.s theories. However, the 

universal functions that were developed were based on two parameters, say 

the reduced temperatures and the reduced pressures. The third parameter was 

involved in so far as there is a relation amongst the three properties. A 

new feature of the p.c.s work was the manner of evaluating the critical 

parameters of the hypothetical fluids. This new procedure was termed the 

"randomisation of the Van der Waals constants"(see Section 5.4.1). 

Previously, the quantitative description of hypothetical fluids was 

generally done via the use of a potential model, say the application of the 

Lennard-Jones 12-6 potential. Some of the previous approaches are also 

incorporated in the study. 

It was realised that relations of the Van der Waals and the 

Guggenheim equations of state could expressed in a general relation. From 

this general relation, two equations of state were proposed. [More 

equations of state could be proposed from this general relation - see 

equation (6.6).] The four equations of state were then applied in the 

prediction of excess functions. Critical volumes and critical temperatures 

were the basis of the application of these equations of state. 

An interesting feature of the work on prediction involved the 

incorporation of a number of combining rules for the purposes of evaluating 

cross-term parameters like T:
2

• This increased greatly the scope of 

prediction. As a result large quantities of calculated data could be 

obtained. In fact, the vastness of the data necessitated that, as a first 

step, the analysis of results was to be limited to mere comparisons 

amongst the various combinations that were available. 
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Work on excess volumes is described in Chapter 4. Nothing more need 

be said about it at this juncture. 

The main computer programs which were used for various aspects of 

this work are listed in the appendices. All the programs are written in 

FORTRAN. 



CRAPrBR· 2 

IlETBODS FOR MEAStJRICMEN'r OF El:CESS GIBBS PUHCTIONS 

2.1 IRTRODUCTION 

The measurement of the excess Gibbs function of a given binary 

mixture depends in the main on the determination of the mole fraction of 

component 2 in the liquid phase x, the mole fraction of component 2 in the 

vapour phase y, the vapour pressure of the co-existing liquid and vapour 

phases Pm' and the vapour pressures of the pure components, namely pT and 

p~. The quantities Pm' pf and P~ are obtained at the same temperature. 

In discussing methods for the experimental determination of excess 

Gibbs functions, it is customary to refer only to the quantities Pm' x and 

y. There are, however, other significant data. These include: 

(a) v1 and vi - the molar volumes of the pure liquids 1 and 2, 

(b) B11 and B22 - the second virial coefficients, and 

(c) B12 - the second virial coefficient associated with unlike 

interactions. 

All these parameters are experimentally accessible quantities although it 

is seldom necessary to measure each of them every time excess Gibbs 

functions are to be determined experimentally. This is because data may be 

available through the literature. Whatever their source, the quantities in 

(a) to (c) above must be obtained or determined at T, the temperature at 

which the pressures Pm' pf, and pi are measured. 

At this point it is appropriate to give relationships between the 

excess Gibbs function of a given binary mixture and the other measurable 

quantities that have been mentioned. When an external pressure p acts on a 

given binary system, it may be shown that(1) 
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••• (2.1) 

and 

••• (2.2) 

where ~1E(T,p,X) and ~2E(T,p,x) are the excess chemical potentials for 

components 1 and 2, respectively, and V1 and V2 are the partial molar 

volumes. The quantity 012 is given by 

••• (2.3) 

In the derivation of equations (2.1) and (2.2), two main assumptions are 

made: 

(i) the vapour pressure of the mixture, Pm' is considered to be low enough 

so that, in the equation of state for the gas, higher virial coefficients 

than the second are neglected, and 

(ii) /p - Pmf is considered small enough so that it may be assumed that 

the partial molar volumes V1 and V2 in the liquid phase are independent of 

pressure. 

The excess chemical potentials are related to the excess Gibbs function 

thus: 

E E = (1-x ) ~ 1 ( T , P , x ) + x~ 2 ( T , P , x ) ••• (2.4) 

where GmE(T,p,X) is the excess molar Gibbs function. The combination of 

equation (2.4) with equations (2.1) and (2.2) leads to 



7 

GmE(T,p,x) = (1-x)RTln{Pm(1-y)![p~(1-x)]} + xRTln[pmY!(p~x)] 

+ (1-x)(B11 - Vf)(Pm - p~) + X(B22 - V;) (Pm - pi) 

+ Pm612{(1-x)y2 + x(1-y)2} 

+ VmE(T,x).(P - Pm) ••• (2.5) 

where VmE(T,X), the excess molar volume, is given by 

If /p - Pm/ < 100 kPa, the excess molar Gibbs function and the excess 

chemical potentials are effectively independent of pressure p. Hence 

equation (2.5) becomes 

GmE(T,X) = (1-x)RTln{Pm(1-y)![p;(1-x)]} + xRTln{PmY!(p~x)} 

+ (1-x)(B11 - V~)(pm - pf) + X(B22 - V;) (Pm - pi) 

+ Pm612{(1-x)y2 + x(1-y)2) (2.7) 

The use of equation (2.7), having measured Pm' x and y, has been the 

usual method of determining excess molar Gibbs functions. However, from the 

phase rule, it is clear that it is an overdetermination to obtain 

experimentally all of the quantities Pm' x and y. A determination of Pm and 

either of the phase compositions is sufficient in furnishing the required 

thermodynamic information. The phase composition that is not obtained 

experimentally can be calculated through the use of the constant 

temperature-constant pressure Gibbs-Duhem equation of which equation (2.8) 

is one such form. 

(1-x)dlnt 1 + xdlnf2 = 0 ••• (2.8) 



where f1 and f2 are the activity coefficients for components 1 and 2, and 

are related to the excess chemical potentials thus: 

RTlnf 1(T,x) ~1E(T,X) 

RTlnf2(T,x) = ~2E(T,X) 

••• 

... 
(2.9) 

(2.10) 

Once the solution for the non-measured phase composition has been obtained, 

equation (2.7) may then be used to obtain values for GmE(T,X). 

An alternative approach to solving for the non-measured phase 

composition involves the use of a convenient analytical form for the 

variation of excess molar Gibbs functions with composition. An example of 

such an analytical form is the Redlich-Kister equation(2): 

1 = x( 1-x) .1: A
J
' (1 - 2x) j-1 

J =-1 
••• (2.11) 

where t is the number of Aj coefficients sufficient to give a good 

correlation between the data and the equation. Again the Gibbs-Duhem 

equation finds usage, for through using it, one obtains, from equation 

(2.4) 

E E 
= -lJ 1 ( T , x) + lJ 2 ( T , x ) ••• (2.12) 

The combination of equations (2.4) and (2.12) leads to 

••• (2.13) 

E E E 
~2 (T,x) = Gm (T,x) + (1-x)3Gm (T,x)/3x ••• (2.14) 



The combination of equation (2.11) with each of equations (2.13) and (2.14) 

yields 

and, 

E 1 2 j-2 
~2 (T,x)/RT = .E A·(1-x) (1 - 2x) (1 - 2jx) 

J=I J 

••• (2.15) 

••• (2.16) 

Equations (2.15) and (2.16) are then equated to equations (2.1) and (2.2), 

respectively - assuming non-dependence of excess chemical potentials on 

external pressure - to give 

Pm = p01{(1-X)/(1-y)}exp{.~ A.x2 (1 - 2x)j-2[2j(1-x) - 1] 
J=I J 

- [(B 11 - V~)(pm - pi) + Pm~12y2]/RT} ••• (2.17) 

and, 

••• (2.18) 

Thus if Pm and x, or Pm and y, are measured for n mixtures, then relations 

of the nature of equations (2.17) and (2.18) provide 2n equations in n + 1 

unknowns. A solution for the n unknown phase compositions and 1 

coefficients is possible if n ~ 1. 

The Redlich-Kister equation may not be a suitable form for the 

experimental data under consideration. In such an eventuality, it is 

advisable to adopt an analytical form which is compatible with the data. 

The Myers-Scott equation(3) and the Wilson equation(4), equations (2.19) 

and (2.20), respectively, may be such analytical forms. 

t. = x(1-x){1 - k(1 - 2x)}.1: Aj(1 - 2x)j-1 J.' ••• (2.19) 
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xln{1 - A12 (1-x)} ••• (2.20) 

A number of other analytical forms have been proposed. Hala, et al(5) 

discussed some of these equations. These equations include 

(i) the Wohl equation, 

(ii) the Scatchard-Hamer equation, 

(iii) the van Laar equation, and 

(iv) the Margules equation. 

This group of equations has been used less frequently recently - at any 

rate on binary liquid mixtures involving non-polar or slightly polar 

molecules. 

There is another approach in the determination of excess Gibbs 

functions. This method requires no measurement of either of the phase 

compositions. Instead, equilibrium vapour pressures at the dew point and 

the bubble point are measured. From this, and in combination with the use 

of a suitable analytical form, the phase compositions and the excess Gibbs 

functions are calculated. A detailed discussion of the method is given in 

Chapter 3. 

2.2 ME'l'HODS 

There are various methods for the determination of excess Gibbs 

functions of binary liquid mixtures. The methods may be classified as 

follows: 

( i) dynamic methods, and 

(ii) static methods. 

There are other methods, for example those based on transpiration and 

chromatographic techniques, but they are not usually applied to organic 

liquids of interest in relation to this work. The following discussion is 

limited to those methods mentioned in (i) and (ii) above. The common 

feature in such methods is the measurement of vapour pressure under 

equilibrium conditions. In all such methods, therefore, good control and 



" accurate measurement of temperature are essential requirements. 

2.2.1 Dynamic methods 

The use of recirculating stills or related modes of apparatus is a 

distinguishing feature in the determination of excess Gibbs functions by 

dynamic methods. Another feature is that Pm' x and yare determined 

experimentally, and relations of the type of equation (2.7) are then used 

for evaluating excess Gibbs functions. 

There are various ways of introducing known amounts of the pure 

components into recirculating stills. The use of ampoules is one such 

technique. The liquid mixture is then boiled and the resulting vapour is 

condensed and trapped at some other point in the apparatus. The design of 

the apparatus is such that some of the trapped condensate flows back to the 

boiling liquid. The boiling-and-trapping process is continued until a 

steady state is considered to have been achieved. However, it is now known, 

and has been known for sometime, that the attainment of equilibrium via the 

use of recirculating stills is a notoriously difficult process. The 

experimenter hopes that the steady state situation is as near to the 

equilibrium position as possible(1,6). The vapour pressure is then 

measured. The composition of the trapped condensate, which in effect is the 

composition of the vapour phase, y, is determined by withdrawing some of 

the condensate and then obtaining some measurable physical quantity which 

can be related to composition. The material that is in the boiler section 

constitutes the liquid phase under steady state conditions. The composition 

x is determined in similar fashion to y. 

Besides the difficulty of obtaining the true equilibrium state in 

recirculating stills, there are other difficulties which are inherent in 

dynamic methods. The boiling process of the mixture must be such that 

'flash' boiling is avoided so that droplets, however small, of the boiling 

liquid are not entrained to the condensing region. There are also 

difficulties associated with analysis of the phase compositions. The 
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relationship between the measurable physical quantity and composition must 

be well established. This may not be easy as, for example, there may be a 

temperature dependence in the physical quantity under consideration. There 

is also the difficulty of achieving a uniform temperature throughout the 

apparatus. However, careful design can minimise the effects of such 

problems. All being said and done, the main advantage with obtaining Pm' x 

and y is the ease of evaluating excess Gibbs functions from using equation 

(2.7). In addition, Pm' x and y information can be used for carrying out 

thermodynamic consistency tests. The common procedure for such tests 

involves the use of an integrated form of the Gibbs-Duhem equation(2,7). 

Care should be taken with regards to consistency tests based on the 

integrated form of the Gibbs-Duhem equation. Marsh(S) and MoG1ashan(1) 

point out the limitations of such consistency tests. However, given the 

experimental difficulties associated with the use of recirculating stills, 

such tests serve a purpose in indicating inconsistency. 

There are a number of examples in the literature regarding 

vapour-liquid equilibria studies by use of recirculating stills. One of the 

earlier examples of high precision work involving the use of recirculating 

stills is that of Scatchard and co-workers(6). The design of the still was 

primarily for the purpose of minimising errors associated with the use of 

recirculating stills. The still was tested on the ethanol+trichloromethane 

system(9). The compositions of the mixtures were determined from density 

measurements. A further difficulty encountered was loss of material through 

the condenser. The consequences with regards to compositional changes, 

especially if the ratios of the vapour pressures of the pure components are 

high, cannot be overemphasised in the event of encountering material loss. 

However, under their operational conditions, the work was considered as 

satisfactory. 
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Scatchard, Wood and Mochel did a series of other experiments in which 

Pm' x and y were measured. The design of the apparatus was essentially an 

improvement of that in the earlier work(6). THe binary systems studied 

included tetrachloromethane+cyclohexane(10), benzene+ cyclohexane(11), 

benzene+tetrachloromethane(12), benzene+methanol(13), and 

methanol+tetrachloromethane(14). Quite apart from obtaining thermodynamic 

information on these systems, the data were used in deriving equations for 

the ternary system benzene+cyclohexane+tetrachloromethane(12). 

Other research groups were also working on the determination of 

excess Gibbs functions using recirculating stills. Kretschmer, et al(15) 

obtained equilibria data on the binary system 

ethanol+2,2,4-trimethylpentane as part of a systematic study to determine 

some of the physical properties of ethanol+hydrocarbon systems. McGlashan, 

et al(16) obtained data for the tetrachloromethane+trichloromethane system. 

Their recirculating still was tested on the benzene+tetrachloromethane 

system, since this had been studied previously(12). 
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2.2.2 Static methods 

There are a number of features which distinguish static methods from 

dynamic methods. The following is an outline of such distinguishing 

features. 

(1) In general, Pm' x and yare measured when dealing with dynamic 

methods. In the case of static methods, Pm and the total composition are 

measured7 x and yare then calculated. [In the rest this chapter, the 

symbol (Pm'x) will be used to indicate the measurement of vapour pressure 

and liquid phase composition. For the measurement of vapour pressure and 

vapour phase composition, (Pm'y) will be used.] 

(2) In dynamic methods, Pm is measured after the attainment of steady 

state conditions between the material in the boiler section and the 

condensing region. In static methods, however, Pm is measured after the 

attainment of equilibrium between the liquid and vapour phases within the 

vapour pressure cell. 

(3) Thorough degassing of the liquid components is of absolute importance 

when using static methods whereas it is of peripheral interest in the case 

of dynamic methods. 

(4) In dynamic methods, the determination of the phase compositions 

requires prior analyses of the properties of mixtures of accurately known 

compositions. Such a procedure is avoided when determining excess Gibbs 

functions by static methods. The only necessary step is the initial 

measurement of amounts introduced into the vapour pressure cell. 

(5) Generally, smaller amounts of liquid substances are needed, and much 

shorter times are required due to less cumbersome experimentation, when 

dealing with static methods than when dealing with dynamic methods. 

(6) In the analysis of experimental data, calculations are easier when 

using dynamic methods than otherwise. However, the availability of powerful 

computers has eclipsed this advantage which dynamic methods have over 

static methods. 
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The work by Redlich and Kister(17) is an example of the earlier 

studies on equilibria of mixtures by static methods. A (Pm'x) method was 

employed. The apparatus was designed so that there was restriction of 

vapour space over the liquid. Thus the liquid phase composition under 

equilibrium conditions was considered to be the same as the initial 

composition. The calculation of activity coefficients was effected through 

the use of approximate forms of the Margules relations which are given by 

••• (2.21) 

where A is a constant. 

The contribution by Barker(18) may be considered as the first 

detailed attempt for obtaining a procedure for the systematic analysis of 

thermodynamic data via static methods. The experimental work involved the 

measurement of vapour pressures and liquid phase compositions of given 

mixtures. The Redlich-Kister equation was adopted as an explicit form for 

the variation of excess molar Gibbs functions with composition. The method 

of calculation, which was developed for use with hand calculators, has been 

adopted for computers and is now used commonly. 

Since the work by Barker(18), static methods have become more 

fashionable than dynamic methods as means of acquiring excess molar Gibbs 

(8) functions. Marsh has written a review which traces the development of 

experimental techniques associated with measurement of excess functions of 

organic liquids. A study of the literature shows that earlier studies 

involved mixtures in which one of the components is relatively involatile. 

Thus, under operating conditions, the vapour phase composition was taken to 

be virtually unity in mole fraction of the volatile component. An example 

is the work by McGlashan and williamson(19) which involved equilibria 

studies of n-hexane+n-hexadecane by (Pm'x) measurements. Having measured 

initially the overall composition, they calculated the liquid phase 

compositions by making allowance for some ~-hexane evaporating into the 
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vapour space. In contrast, for situations where the volatilities of the 

components are somewhat similar, the work is more involved since - as is 

usually the case - both equilibrium phase compositions have to be 

calculated. For example, Scatchard and Satkiewicz(20) studied liquid-vapour 

equilibria of ethanol+cyclohexane mixtures using an apparatus designed by 

Scatchard, et al(21). Having measured initially the overall composition and 

having measured the equilibrium vapour pressure, they calculated, by an 

iterative method, both x and y. They adopted the Wilson equation(4) -

equation (2.20) - as the analytical form for the dependence of excess molar 

Gibbs functions on composition. 

Gaw and Swinton(22) - employing a differential manometer in which 

benzene was used as the standard - obtained excess molar Gibbs functions of 

mixtures of hexafluorobenzene+cyclohexane. They used a modified version of 

the Barker method to solve for x and y. The procedure involved using the 

predetermined overall composition as the initial value of x. The Barker 

method was then used to compute a value for y. The computed value was then 

used for furnishing a better value of x, making use of the knowledge of the 

volume of the apparatus covered by the vapour and allowance being made for 

non-ideal behaviour. The iterations were carried out until the values of x 

and y were self-consistent and did not change significantly with additional 

cycling. 

At this point, it is appropriate to comment on some of the design 

aspects of manometers. Manometers may be of a nulling, a differential, or 

an absolute type. The drawback with nulling manometers is the tendency of 

the zero points to shift position. This necessitates the determination of 

the zero point for each pressure measurement(21). Differential manometers 

are feasible if the thermodynamic properties of the reference substance are 

well established. Thus in order to lessen experimental burden by dispensing 

with problems associated with the points just mentioned, it is desirable to 

use techniques in which the measurement of pressure is more or less direct. 

Manometers of the absolute type are useful in this respect. 
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In addition to the development of absolute manometers, there has been 

a number of improvements in other aspects of design of apparata for 

measurement of excess Gibbs functions. Marsh(23), in the study of the 

binary systems involving octamethylcyclotetrasiloxane (OMCTS) mixtures with 

benzene and with tetrachloromethane, designed an apparatus with a single 

"cut-off" manometer. An interesting feature of the design is the mounting 

of the vacuum section on a vertically moveable frame so that the manometer 

and the vapour pressure cell could be removed from the thermostat bath if 

the need arose. Harris and Dunlop(3) employed an apparatus with a mercury 

manometer as the pressure measuring device. In later stages of the project, 

a quartz spiral Bourdon gauge replaced the rather cumbersome mercury 

manometer. In the study of OMCTS+cyclohexane mixtures, Tomlins and 

Marsh(24) designed an apparatus which featured an automatic pressure 

controller as well as a capacitance manometer which was used as a null 

device to isolate the liquid and vapour phases. A precision mercury 

manometer was used for measuring the equilibrium vapour pressures. Another 

important feature was the incorporation of the continuous dilution 

technique for sample introduction. The entire composition range could be 

covered in two runs. The authors(24) compared the results from the 

continuous dilution technique with the results from the technique involving 

the measurement of overall compositions by use of ampoules. They concluded 

that the latter technique, although cumbersome, offers a small advantage in 

accuracy. In later research projects, improvements were made which resulted 

in only one run being necessary to cover the entire composition 

(25),(26) range • 

Young, et al(27) also designed an apparatus with piston injectors so 

that successive volumetric additions of one of the components could be made 

after each pressure measurement. A pressure transducer was used as a null 

device to isolate the equilibrium cell from the pressure gauge. The 

pressure in the cell was measured with a quartz Bourdon gauge. Improvements 

(28) 
on the cell were made by Mentzer, et al • The most notable improvement 



involved the construction of the equilibrium cell from stainless steel, 

with the presence of a copper gasket for providing a leak-tight seal. Also, 

pure liquids were introduced through the sides of the cell, rather than 

through the top, to ensure good mixing. In some cases, however, earlier 

designs are still maintained. For example, Rubio, et al(29), in their study 

of benzene+n-pentadecane mixtures, used an apparatus based on the design by 

McGlashan and Williamson(19). The modification was that, in the later 

work(29), all valves and taps that could come into contact with the organic 

liquids were greaseless. 

All the literature cited so far is connected with the determination 

of excess Gibbs functions via (Pm'x) methods. Compared to (Pm'x) methods, 

there have been fewer attempts at obtaining excess Gibbs functions by 

(Pm'Y) methods. An example of a (Pm'Y) method is the work by Christian, et 

al(30). They developed a technique for obtaining activity coefficients of 

components in liquid binary mixtures from measured total vapour pressures 

and vapour densities. Four systems were studied and a comparison of the 

results of one of the systems - namely, benzene+tetrachloromethane - with 

previously published results(12) indicated that the technique lacked high 

precision. 

High precision work for the determination of excess molar Gibbs 

functions from (Pm'Y) methods has been done by Brewster and 

McGlashan(31),(32). The earlier work(31) involved the development of the 

method, and it was tested by obtaining GmE(T,X) values for 

benzene+cyclohexane at 313.15 K. Pressure was measured with the aid of a 

precision mercury manometer. The method involved determining dew pressures 

of gaseous binary mixtures of known compositions at temperature T. In 

outline, dew pressures were determined from sharp discontinuities which 

occurred along carefully measured pressure and volume readings. The other 

study involved the determination of excess molar Gibbs functions of binary 

mixtures formed from tetramethylmethane(CMe4)' tetramethylsilane(SiMe4)' 

(32) 
and tetramethylstannane(SnMe4) • There was lack of success, however, for 
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the CMe4 + SnMe4 system. This is because the (Pm'Y) method is unsuitable 

for mixtures consisting of components with high ratios in the vapour 

pressures of the pure components. 
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CIIAP".l'ER 3 

IIEASURBM.BNT OF DCBSS MOLAR GIBBS FORCTIORS: 

'.rHB DEW PODft'-BUBBLB PODft' MB'l'BOD 

3.1 IR'l'RODUCTIOR 

The dew point-bubble point method - which will be referred to as the 

DPBP method - is a special case of a static method. This method is unique 

in that no attempt is made whatsoever to measure accurately the composition 

of a given mixture. Instead, the dew point pressure Pd and the bubble point 

pressure Pb of a mixture are measured. The phase compositions are then 

calculated from these pressure measurements. 

The DPBP method, the theory of which was advanced by Dixon and 

McGlashan(1), was verified experimentally by Dixon and Hewitt(2). In the 

present work, interest is centred on two areas. The first area is the 

development of an experimental procedure which eliminates some of the 

problems encountered in the earlier work(2),(3). The other point of 

interest concerns the computer program for analyzing the DPBP data. The 

present program differs from the previous one(3) in that algebraic 

relations are used in order to evaluate partial derivatives(see Section 

3.2). previously, the partial derivatives were evaluated numerically. 

Before presenting an account of these facets of the DPBP method, a summary 

of the theoretical aspects is given. 

Consider a pressure-composition phase diagram of a binary system as 

indicated in Figure 3.1. The equilibrium vapour pressure of a given mixture 

is related to the phase compositions and other quantities as given by 

equations (2.17) and (2.18). Now, for a mixture of overall composition X 

with Pd and ~ as the dew point pressure and the bubble point pressure, 

respectively, there is a special relationship between the liquid phase and 

vapour phase compositions. It can be seen from Figure 3.1 that these 

special relationships are given by equations (3.1) to (3.3). 
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f 

o z x y 1·0 

mole fraction of component 2 

Figure 3.1 A pressure-composition phase diagram of a binary system. L 
and V represent the liquid and vapour phases, respectively. The other 
symbols are described in the text. 
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x = xb = Yd (3.1) 

y = Yb (3.2) ••• 

z xd ... (3.3) 

In the above equations, x and yare the mole fractions of component 2 in 

the liquid phase and vapour phase, respectively, whereas the subscripts b 

and d refer to the bubble point and dew point, respectively. Relations 

given by equations (2.17) and (2.18) are then applied to bubble point and 

dew point conditions so that one has 

o I. 2 . 2 P1{(1 - X)/(1 - y)}exp{.r AjX (1 - 2X)J- [2j(1 - X) - 1] 
J xl 

- [(B 11 - V1)(Pb - pf) + Pb012l]/RT} ••• (3.4) 

= p02(x/Y)exp{.~ Aj(1 - X)2(1 - 2X)j-2(1 - 2jX) 
J=I 

- [(B22 - V;)(Pb - pi) + Pbo12(1 - y)2]/RT} ••• (3.5) 

Pd = pf{(1 - Z)/(1 - x)}exp{.~ AJ·z
2 (1 - 2Z)j-2[2j(1 - Z) - 1] 

')./ 

= P2(Z/X)exp{.~ AJ'(1 - Z)2(1 - 2Z)j-2(1 - 2jZ) 
..)~I 

- [(B22 - Vi)(Pd - p~) + Pdo12(1 - X)2]/RT} 

••• (3.6) 

••• (3.7) 

Thus for a mixture whose Pd and Pb have been measured, there are 4 

equations in which X, Y, Z and t - the number of Aj coefficients - are 

unknowns. Therefore, if pressure measurements are carried out on n mixtures 

of a given binary system, then there are 4n equations in 3n + t unknowns. A 

solution for the unknowns is possible if n ) t. If the second virial 

coefficients are not known, then they may also be treated as parameters. 

Hence one may have 4n equations in 3n + t + v unknowns, where v is the 

number of unknown virial coefficients, namely any of B11 , B22 and B12. 
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3.2 COMPUTATION 

The 4n equations in 3n + ~ + v unknowns are transcendental functions. 

Hence a numerical method which involves iteration is required. The method 

that was adopted involves the use of a non-linear least squares technique. 

The implementation of this procedure requires the formulation of partial 

derivatives of the vapour pressures with respect to the unknowns and then 

setting up an appropriate Jacobian matrix. Table 3.1 contains a listing of 

the partial derivatives that can be obtained from equations 3.4 to 3.7.[An 

explanation on the adopted nomenclature is given shortly.] Figure 3.2 is a 

representation of the Jacobian matrix. 

~ 3.1 A listing of the various partial derivatives. 

Group A 1 (3Pb/3X) 2(3Pb/3X) 1 <3Pd/3Z) 2(3Pd/3Z) 

Group B 1 ( 3Pb/3Y) 2<3Pb/3Y) 1<3Pd/3X) 2(3Pd/3X) 

Group C 1 <3Pb/3Aj) 2<3Pb/3Aj ) 1 <3Pd/3Aj ) 2 < 3Pd13Aj ) 

Group D 1<3Pb/3B 11 ) 2(3Pb/3B 11 ) 1<3Pd/3B 11 ) 2(3Pd/3B 11 ) 

Group E 1<3Pb/3B22) 2(3Pb/3B22 ) 1<3Pd/3B22 ) 2(3Pd/3B22) 

Group F 1 < 3Pb/3B12) 2(3Pb/3B12) 1<3Pd/3B12) 2(3Pd/3B12) 
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Before proceeding with the analysis, it is worthwhile explaining the 

nomenclature regarding the partial derivatives. The element l<aPb/ax) is 

taken as an example. What is within the brackets is self-explanatory; it is 

the partial derivative of the bubble point pressure with respect to the 

mole fraction of the second component in the liquid phase. The 

'superscript', namely 1, refers to the first pair of DPBP measurements. 

[The pairs are arranged in order of increasing values of mole fractions of 

the second component.] The 'subscript' 1 refers to the fact that the 

relationship under consideration relates Pb with the vapour pressure of 

o component 1, P1. It is quite clear, therefore, that the relations for 

~<aPb/ax) - where n is any pair of the DPBP measurements - are similar in 

format. Thus, for convenience, n may be omitted when reference is made 

regarding relations for the various partial derivatives. This is exactly 

what was done when Table 3.1 was drawn up. 

3.2.1 The genera1isations of the partia1 derivatives 

From Table 3.1, it can be appreciated that there is a large number of 

partial derivatives to be dealt with. It may be appreciated also that most 

of the expressions for the partial derivatives are rather involved. In 

order to write a compact computer program, it was necessary to classify the 

derivatives into groups so that general expressions could be used for 

representing derivatives whose relations are similar in structure. In fact, 

the initial step in classification is as indicated in Table 3.1. The 

classification into mentioned groups is based on differentiating the vapour 

pressures with respect to 

A. liquid phase compositions, 

B. vapour phase compositions, 

c. Redlich-Kister coefficients, 



D. second virial coefficient of component 1, 

E. second virial coefficient of component 2, and 

F. cross-term second virial coefficient. 

The first phase of the generalisation within each of the groups is 

now presented. 

Group A 

It can be seen from equations (3.4) and (3.6) that the format for 1(3Pb/3X) 

is the same as that of 1(3Pd/3Z). The study of equations (3.5) and (3.7) 

reveals that the situation is similar for the pair 2(3Pb/3X) and 2(3Pd/3Z). 

Hence Pd and Pb can be represented by the general symbol p. The liquid 

phase compositions are also generalised so that x symbolises the liquid 

phase composition at either the dew point or the bubble point pressure. 

Similarly, the generalised symbol for the vapour phase compositions is y. 

Thus 

1(3p/3x) 

and 

Group B 

t. ' 3 
= ~1.[-1/(1-x) + 2.r AJ,X(1-2x)J- {2j - 1 - 2j(1+j)x(1-x)}] 

J=I 

••• (3.8) 

••• (3.Ba) 

1. ' 3 = ~2.[1/x - 2.r A,(1-x)(1-2x)J- {2j - 1 - 2j(1+j)x(1-x)}] 
J=I J 

... (3.9) 

••• (3.9a) 

The relations for the pair of derivatives 1 (3Pb/3Y) and 1(3P
d

/3X) are 

identical in format. This is also the case with 2(3Pb/3Y) and 2(3Pd/3X). 

The symbols are generalised so that one has 



••• (3.10) 

••• (3.11) 

Group C 

formats. Hence 

••• (3.12) 

••• (3.13) 

Gronp 0 

1(3p/3B11 ) = p( py2 - P + p~)/{RT + p(B 11 - Vf) + P&12y2} ••• (3.14) 

Gronp E 

1 (3p/3B22) = p2y2/{RT + p(B11 - Vf> + P&12y2} ••• (3.16) 

••• (3.17) 

Gronp F 

1(3p/3B12) - 2p2y 2/{RT + p(B11 - Vf> + P&12y2} ••• (3.18) 

The relations given by equations (3.14) to (3.19) have been written in 

full. That is, the terms ~1 and ~2' which are defined in equations (3.8a) 

and (3.9a), have not been used. This is an attempt at projecting the visual 

similarity, or otherwise, of the relations in question. 
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More general expressions could be obtained by further algebraic 

manipulation of the relations given by equations (3.8) to (3.19). Although 

the resulting relations may be manipulated further still, it is convenient 

to obtain expressions that bear resemblance to the expressions for the 

various differential coefficients. Also, there are other ways of 

generalising the expressions. The form of analysis that was adopted is now 

presented. The Group A relations serve as an example in illustrating how 

relations with common features could be reduced further. 

A convenient starting point is the grouping or classification of 

terms with identical structures from within each of equations (3.8) and 

(3.9). A detailed study of those equations shows that three classes of 

factors or terms may be obtained. The classification is illustrated in 

Table 3.2. 

Table 3.2 Classification of terms in equations (3.8) and (3.9). 

Class I 

class II 

Class III 

Terms from (3.8) Terms from (3.9) 

P7 RT7 612 ; (as in equation (3.8». 

2 {Aj (1 - 2x)j-3{2j - 1 - 2j(1 + j)x(1 - x)} 

1(ap/ax) 

1/(1 - x) 

(B 11 - V~) 

y in p6 12y2 

x in 2 {AjX ••• } 

2(ap/ax) 

l/x 

(B22 - V~) 

(1 - y) in p6 12 (1 _ y)2 

(1 - x) in 2 {A j (1 - x) ••• } 
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It can be seen from Table 3.2 that the terms in Class I are common to 

both equations. The terms in Class II are expressed as functions of the 

properties of one of the pure components whereas the Class III terms 

pertain to the properties of the other component. As an example, the 

expression {p(B11 - Vi) + P~12Y2} in equation (3.8) contains (B11 - Vf) 

which clearly is a property of component 1; it also contains y which is the 

mole fraction of the second component. In the present analysis, therefore, 

(B11 - V~) is a class II factor whereas y is a class III factor. The 

corresponding situation in equation (3.9) is that (B22 - V2) is in class II 

and (1 - y) is in class III. Having classified the terms, equations (3.8) 

and (3.9) are reduced into a general equation. In this general equation, 

the terms in class I are clearly common. The class II terms are generalised 

by a process of subscription so that they can fit either of the equations 

by adjusting the value of the subscript. Class III terms are rather awkward 

to deal with. Algebraic manipulation is required so that the resultant 

terms are then functions of the properties of the component under 

consideration. In other words, algebraic manipulation is required to 

convert class III terms into class II terms. This is accomplished by 

designating the liquid phase compositions as (k - 1 - x) and the vapour 

phase compositions as (k - 1 - y), where k is either 1 or 2. Examination 

shows that the phase compositions have negative values when k = 1. However, 

this apparent impediment is easily overcome. For the liquid phase 

compositions, the sign on the other terms in the expression is altered 

accordingly so that the effective sign on the compositions is positive. As 

far as the vapour phase compositions are concerned, the negative sign is 

superfluous since the terms are squared. It is also helpful to mention that 

the class II terms 1/(1 - x) and 1/x have been written in generalised form. 

This is given by 1/(k - 2 + x), where k = 1 or 2. From the foregoing 

information, the general relation from equations (3.8) and (3.9) is given 

by 
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k (3p/3x) = ~k.[1/(k-2+x) - 2.l A
J
o(k-1-X)(1-2x)j-3.{2j-1-2j(1+j)X(1-X)}] 

J:::I 

(3.20) 

... (3.20a) 

Similar procedures are used to reduce the pairs of relations, as 

given by equations (3.10) to (3.19), to five other general equations. The 

pairs of equations under consideration lie within the groups as specified 

above. The exceptions are in groups D and E. In these groups, there is a 

'cross-over' in that the form of equation (3.14) is similar to that of 

equation (3.17) whereas the forms of equations (3.15) and (3.16) are 

similar. The general relationships are now given. 

From equations (3.10) and (3.11), 

k(3p/3y) = ~k. [1/(2 - k - y) + {2p6 12 (k - 1 - y)/RT}] ••• (3.21) 

From equations (3.12) and (3.13), 

From equations (3.14) and (3.17), 

••• (3.23) 

From equations (3.15) and (3.16), 

In equation (3.24), when i = 1, k = 2 and vice versa. 

Finally, from equations (3.18) and (3.19), one obtains 

••• (3.25) 

Equations (3.20) to (3.25) are the generalised relations for the various 

partial derivatives. Each of them represents four specific relations. This 

is because, in each case, p could be either Pb or Pd and k has a value of 1 

or 2. The computer programme contains algorithms for the generalised 
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relations. 

3.3 THB APPARATUS 

The apparatus used in this work was an improved version of the one 

used by Dixon and Hewitt(2). It consisted mainly of a glass still part of 

which was maintained, during experimentation, in a temperature-regulated 

water bath. The following constitute what may be regarded as the main 

components of the still: 

(1) the detachable reservoir DR, 

(2) the storage reservoirs SR1 and SR2, 

(3) the volume metering tubes VMT1 and VMT2, 

(4) the gas-mixing vessel GMV, and 

(5) the vapour pressure measurement system VPMS. 

The pressure controlling system PCS and the vacuum pumping systems VPS1 and 

VPS2 are associated but essential parts of the still. 

The largest structural alteration or improvement of the still 

involved the incorporation of the detachable reservoir DR(see Figure 3.3). 

Apart from carrying out initial degassing in it, DR served as a means of 

introducing material into the apparatus. Also, once material had been 

transferred to the required storage reservoir, DR could be detached and 

cleaned without interferring with the progress of an experiment. Another 

significant alteration to the design involved the storage reservoirs. Their 

shapes were altered from being tubular all along to being spherical at the 

bottom. This was an attempt at increasing the efficiency of degasing of the 

components by providing larger surface areas per unit volume for the 

components. In addition, molecular sieves were dispensed with. All the 

other changes - most of which involved the incorporation of more WRotaflo" 

glass-to-polytetrafluoroethene taps - were concerned mainly with making the 

still safer and/or easier to operate. The increase in the number of 

"Rotaflon taps provided more sections on the apparatus. Hence effects of 

structural damage, due to whatever circumstances, could be minimised. Such 
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Figure 3.3 The detachable reservoir. 
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Figure 3.4 A diagram illustrating the arrangement of the storage 
reservoirs , volume-metering tUbes and gas mixing vessel . 
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changes should not be viewed merely in terms of avoiding or minimising 

structural damage to the apparatus. In some respects, the changes had 

positive aspects about them. For example, the air-inlet bounded by 

"Rotaflo" tap T26(see Figure 3.-4) was inserted to provide a means of 

allowing air into the apparatus without having to switch off the vacuum 

pumping system VPS1. 

Each component of the still was used for implementing one or more of 

the following functions: 

(1) degassing of liquid samples, 

(2) storage of the degassed liquid samples, 

(3) preparation of binary mixtures, 

(4) measurement of vapour pressures, and 

(5) 'cleaning' of the apparatus in readiness for subsequent experimental 

runs. 

Table 3.3 is a summary of the various components and their associated 

functions. The functions are indicated by numbers identified above. 

~ABLB 3.3 Various components of the still and asociated functions. 

components Functions 

DR 1 

SR1 and SR2 1,2 

VMT1 and VMT2 1,3 

GMV 3 

VPMS 4 

PCS 4 

VPS1 and VPS2 5 

The experimental details associated with the functioning of the various 

components are in section 3.7. However, it is in order, at this juncture, 

ive structural descriptions of these components. 
to CJ 
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Figure 3.5 The pressure control system and the vapour pressure measuring 
system. 
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Reference to DR has been made already. Each of SR1 and SR2 comprised 

of two arms. This facility enabled thorough degassing by vacuum 

sublimation. The volume metering tubes VMT1 and VMT2, which were graduated 

to 10-2 em3 , enabled the preparation of mixtures of approximately known 

compositions. The metered components were mixed in the gas-mixing vessel 

GMV. This comprised a bulb of ca. 930 em3 which was equipped with a 

magnetically driven propeller stirrer. Two manometers, M1 and M2, and the 

cell C(see Figure 3.5) constituted the vapour pressure measurement system 

VPMS. Each of the manometers was made of 20 mm precision bore tubing and a 

large bulb at the bottom which acted as a mercury reservoir. The smaller 

manometer, M1, was attached to C. The combination of cell C and any space 

above the mercury meniscus on the left-hand arm of M1 constituted the 

vapour pressure cell(VPC). The pressure controlling system PCS consisted of 

a gas ballast which was connected to the VPMS via two-way taps(TT1 and TT2) 

and needle valves(NV1 and NV2). Each of the vacuum pumping systems 

consisted of a diffusion pump and a rotary pump. Although "Rotaflon taps 

T12 and T15 could serve as a way of connecting the two pumping systems, 

VPS1 and VPS2 were made to operate independent of each other. VPS2 served 

the PCS whilst VPS1 was arranged to serve the rest of the apparatus. 

The vapour pressure measurement system was housed in a thermostatted 

tank, designed by Hewitt(3), in which the short-term control of temperature 

was well within ±0.002 K. The tank, of dimensions 1.2 m x 0.6 m x 0.6 m, 

consisted of a single-iron frame and bracing, as well as iron-plating and a 

9.5 mm thick glass plate window. The iron-plating was coated with 

polyurethane paint. Stirring of the water was effected through four 

four-bladed propellers, of 10 em diameter, which rotated at 300 rpm. The 

blades were designed so that they caused circulatory motion of tank water 

in a vertical mode. The tank was insulated with expanded polystyrene of 5 

cm thickness. Further insulation was provided by placing polystyrene chips 



on top of the water. 

Temperature control was by means of a mercury-toluene regulator. The 

regulator consisted of a long cylindrical copper tube which was attached to 

a head made of a combination of glass and metal(see Figure 3.6). The 

regulator was coupled to a diac-triac device. This device, which was 

combined with an adjustable switched power input, gave an adjustable 

constant power input to a maximum of 3 kW. The level of the power input 

was, to an extent, dependent on the amount of insulation provided. It was 

found convenient to use as low a power input as possible. This was 

determined by manipulating manually the control dials. Infrequently, it was 

found necessary to alter the controls during an experimental run. The 

circuit diagram of the electronic relay and power controller is illustrated 

in Figure 3.7. Temperature was measured with the aid of a Hewlett-Packard 

Model 2804A quartz thermometer. In order to record temperatures, the 

thermometer was connected to a Servo-scribe chart recorder. 

A frequent, and quite unpredictable, problem was the sudden shift in 

temperature to an extent of 0.003 K at most. Since no reasonable 

explanation which could have accounted for the phenomenon was forthcoming, 

it was resolved eventually to obtain vapour pressure data even though this 

problem kept recurring. This necessitated the recording of vapour pressures 

as well as temperatures so that, in extreme cases, approximate temperature 

corrections could be made. However, approximate calculations indicated that 

the errors in the vapour pressures arising from this effect were ca. 3 Pa. 



Figure 3.6 A diagram of the mercury-toluene regulator head. 
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Figure 3 . 7 Circuit diagram of the electronic relay and power controller. 
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3.5 DPBRDIBR'DL APPROAOI IN TBB PRBVl:OUS won 

In the previous work(2),(3), the components were metered in the 

volume-metering tubes. The amounts were pre-calculated so that if both 

components had been transferred to the GMV, the resultant mixture would be 

in gaseous phase. However, instead of passing the metered amounts into the 

GMV, the samples were transferred directly into the "finger" of the vapour 

pressure cell. The level of mercury had been pre-arranged so that there was 

as little of the vapour space as the geometry of the cell would allow. The 

components were then thoroughly mixed with the aid of a magnetic stirrer. 

After about 30 minutes, the first of the pressure/volume readings was 

taken. Four or five more pressure/volume readings, at intervals of about 15 

minutes, were taken. The bubble-point pressure of the mixture was then 

determined by plotting pressure against volume and then extrapolating the 

resulting line to obtain a pressure value at zero volume of the vapour 

phase. 

The determination of the dew-point pressure then ensued. All of the 

material was transferred from the vapour pressure cell to the GMV. The 

gaseous mixture was then stirred for an hour. The manometer was set ready 

by raising the mercury to a desired level. After mixing, all the taps 

between the GMV and the manometer were opened so that some of the mixture 

vapour entered the vapour pressure cell. A series of compression 

pressure/volume readings was then taken until an approximate linear 

relationship between pressure and volume was obtained. Material was then 

condensed into the "finger". Simultaneously, the level of mercury was 

raised. A number of expansion pressure/volume readings was then taken. The 

dew-point pressure was the intersection of the compression series and the 

expansion series. For the benzene+cyclohexane system, the compression 

technique was employed in both the single-phase region and the two-phase 

region. This was because clear dew points could be obtained. 
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3.6 A CRITIQUE OP 'l'IIJ!: APPROACH m THE PREVIOUS won 

The principal point to note about the experimental approach in the 

previous work is that variable quantities of material were used for 

obtaining dew-point and bubble-point pressures. It is suggested that, in 

such a procedure, there are possibilities of compositional changes in 

moving from the dew point or to the bubble point pressure, or vice versa. 

Some of the factors that could give rise to compositional changes are 

presented. 

If it is assumed that the components of the mixture retain in part 

some of their characteristics, then there may be variations in composition 

between the various sections of the apparatus since the diffusion 

coefficients of the components are likely to be different. Also, 

preferential transfer of one component over the other could be a function 

of the vapour pressures of the pure components. It is envisaged that this 

factor may be crucial in instances where there are relatively large 

differences in the vapour pressures of the components. An additional hazard 

associated with material transfer is condensation along connecting tubes. 

And since the adsorptivities on glass of the components may be different, 

mixture composition may be affected. McGlashan(4) suggested minimisation of 

the condensation problem by installing controlled heating systems along the 

connecting tubes. A similar heating system on the DPBP apparatus was, as 

now, not incorporated. 

The above-mentioned factors should not be seen as operating in a 

mutually exclusive manner. Furthermore, they should not be taken to be 

exhaustive. As the design of the apparatus stands, there are no prospects 

of verifying experimentally the extent to which these factors affect 

changes in composition. Conjectures can only be made to account for the 

previous variable success on GmE(T,X) determinations by the DPBP method. 

For example, at 313.15 K the vapour pressures of pure benzene and pure 

cyclohexane are quite similar whereas the vapour pressures of pure benzene 

and pure hexane are relatively disparate at 298.15 K. This may be a reason 



why the binary system benzene+cyclohexane produced satisfactory results 

whilst the binary system benzene+hexane gave results which were at variance 

with those of other workers(S),(6). Since the experimental verification of 

the effects by the above-mentioned, and any other, factors was outside the 

scope of this work, it was necessary to develop a procedure which minimises 

or eliminates the part played those factors. The procedure described in 

Section 3.7.3 is a step towards that goal. 

3.7 BD'BIUMDITAL 

The main aspects regarding the measurement of excess molar Gibbs 

functions by the DPBP method are: 

(1) preparation and storage of liquid samples, 

(2) making up of mixtures, and 

(3) measurement of dew-point and bubble-point pressures. 

3.7. 1 Preparati.on. and storage of liquid sallp1es 

Pure liquids, which had been dried previously over phosphorus(V) 

oxide, were transferred into the detachable reservoir DR(see Fig.3.3). In 

this reservoir, initial degassing was carried out using the 

freeze-pump-thaw technique. After a satisfactory level of initial 

degassing, material was transferred to either of the double-limbed storage 

reservoirs SR1 and SR2. It was in these vessels that thorough degassing was 

carried out. This involved the use of liquid nitrogen as a means of 

producing a thermal gradient across the two limbs. Material was transferred 

across the thermal gradient. When all the material had turned to solid, a 

rotary pump was used to pump away the vapour above the solid phase. 

Occasionally, the freeze-pump-thaw technique was employed. During the 

pumping of the sublimed phase, a liquid nitrogen cold trap was provided. 

This was an attempt at isolating the sublimed material from any untoward 

volatile material within the apparatus. 



From experience, it was observed that thorough degassing was 

accomplished by transferring some of the liquid sample from the storage 

vessels to the volume-metering tubes and then carrying out degassing within 

these tubes. Briefly, the degassing procedure within either VMT1 or VMT2 

involved freezing the material with liquid nitrogen and pumping over the 

solid phase. On thawing, gas bubbles were invariably liberated. The 

freezing, pumping and thawing of the material was carried out repeatedly 

until there was no liberation of gases on thawing. To ensure thorough 

degassing, the cycle involving the non-appearance of bubbles was carried 

out at least three times. This was taken as a sign of sufficient degassing 

of material. Material treated in the above manner was then used for 

obtaining dew-point pressures and bubble-point pressures. Small differences 

between Pd and Pb values of the pure components were regarded as 

confirmation of sufficient degassing. 

Cyclohexane was found to be a particularly difficult substance to 

degas. After having discounted the presence of impurity to account for 

large differences between Pd and Pb values, it was evident that a variation 

of the degassing procedure was necessary. The procedure that was eventually 

adopted involved cooling the cyclohexane within the VMT just sufficiently 

for it to remain transparent in the solid phase. previously, it had been 

solidified until it had a white appearance. Using the procedure that was 

adopted eventually, it was observed that on thawing there were still gas 

bubbles that were being liberated. If the same sample was solified to 

whiteness, no bubbles were liberated on thawing. This effect was 

reproducible. It was evident that prolonged cooling resulted in 

co-dissolution during the thawing process. Using the other technique, the 

gases and cyclohexane separated according to their boiling points. As a 

result of this work on cyclohexane, the technique was extended to other 

substances. 
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3.7.2 Preparation of bJ.nary mb:turea 

The binary mixtures were prepared by transferring calculated amounts 

from the volume-metering tubes to the gas-mixing vessel. The quantity of 

material transferred was such that the mixture was in the vapour phase 

within the GMV. In order to determine the requisite amounts, the relation 

given by equation (3.26) could have been used. 

pV = n{RT + B(T)p} • •• (3.26) 

In equation (3.26), p is about 85 per cent of the estimated dew-point 

pressure of a given mixture, V is the volume of the gas-mixing vessel, B(T) 

is the estimated second virial coefficient of the mixture, and n is the 

total amount of substance in the mixture. However, since p was an estimate, 

calculations were carried out on the basis that the mixture vapour behaved 

as an ideal gas. That is, the relation given by equation (3.27) was the 

basis for determining the amounts that were transferred into the GMV • 

pV = nRT ••• (3.27) 

The application of the latter relation was further justified by the fact 

that n could not be obtained precisely. In preparing the mixtures, the 

overriding concern was that the material would be in vapour phase once it 

was in the GMV. It was important that approximate compositions of the 

mixtures were known. This was useful in that it facilitated the estimation 

of initial values of the compositions which were required for the iterative 

solutions for the unknown variables. The mixtures were then stirred within 

the GMV for at least four hours before measurements on dew-point pressures 

and bubble-point pressures were taken. 



3.7.3 Measurement of dew poi.nt and babb1e point pressures 

Figure 3.8 is a schematic diagram of the apparatus for measuring dew 

point and bubble point pressures. After thorough evacuation of the 

apparatus, the following operations were carried out in order to measure 

the dew point and bubble point pressures: 

(1) the determination of the volume of the vapour pressure cell VPC by 

the nitrogen compression method, 

(2) the measurement of approximate amounts of the components within 

the volume-metering tubes VMT1 and VMT2, 

(3) the transfer of the metered components into the gas mixing vessel 

GMV, 

(4) the adjustment of the mercury levels within either manometer M1 

or both M1 and M2 before introducing material into the VPC, 

(5) the transfer of some of the gaseous material from the GMV to VPC, 

(6) the measurement of mercury heights within the arms of the 

manometers in order to obtain pressure/volume isotherms, 

(7) the adjustment of mercury levels in order to obtain the bubble 

point pressure or the dew point pressure(depending on what 

had been measured initially), 

(8) the pumping away of excess material as mercury heights 

measurements were taken, and 

(9) the measurement of the liquid volume of the material whose dew 

point and bubble point pressure had been measured. 

DeteDI1Dation of the vo11J1Mt of VPC 

The volume of the vapour pressure cell VPC was determined by the 

nitrogen compression method. The technique involved the introduction of dry 

pure nitrogen into the VPC and obtaining a series of pressure/volume 

readings which were then analysed in order to give the volume of the cell. 
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on top of the water. 

Temperature control was by means of a mercury-toluene regulator. The 

regulator consisted of a long cylindrical copper tube which was attached to 

a head made of a combination of glass and metal(see Figure 3.6). The 

regulator was coupled to a diac-triac device. This device, which was 

combined with an adjustable switched power input, gave an adjustable 

constant power input to a maximum of 3 kW. The level of the power input 

was, to an extent, dependent on the amount of insulation provided. It was 

found convenient to use as low a power input as possible. This was 

determined by manipulating manually the control dials. Infrequently, it was 

found necessary to alter the controls during an experimental run. The 

circuit diagram of the electronic relay and power controller is illustrated 

in Figure 3.7. Temperature was measured with the aid of a Hewlett-Packard 

Model 2804A quartz thermometer. In order to record temperatures, the 

thermometer was connected to a Servo-scribe chart recorder. 

A frequent, and quite unpredictable, problem was the sudden shift in 

temperature to an extent of 0.003 K at most. Since no reasonable 

explanation which could have accounted for the phenomenon was forthcoming, 

it was resolved eventually to obtain vapour pressure data even though this 

problem kept recurring. This necessitated the recording of vapour pressures 

as well as temperatures so that, in extreme cases, approximate temperature 

corrections could be made. However, approximate calculations indicated that 

the errors in the vapour pressures arising from this effect were ca. 3 Pa. 
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Figure 3.6 A diagram of the mercury-toluene regulator head. 
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Figure 3.7 Circuit diagram of the electronic relay and power controller . 
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3.5 EXPBRDIEH'.l'AL APPROACH IN TIIB PRJNIOUS WORlt 

In the previous work(2),(3), the components were metered in the 

volume-metering tubes. The amounts were pre-calculated so that if both 

components had been transferred to the GMV, the resultant mixture would be 

in gaseous phase. However, instead of passing the metered amounts into the 

GMV, the samples were transferred directly into the "finger" of the vapour 

pressure cell. The level of mercury had been pre-arranged so that there was 

as little of the vapour space as the geometry of the cell would allow. The 

components were then thoroughly mixed with the aid of a magnetic stirrer. 

After about 30 minutes, the first of the pressure/volume readings was 

taken. Four or five more pressure/volume readings, at intervals of about 15 

minutes, were taken. The bubble-point pressure of the mixture was then 

determined by plotting pressure against volume and then extrapolating the 

resulting line to obtain a pressure value at zero volume of the vapour 

phase. 

The determination of the dew-point pressure then ensued. All of the 

material was transferred from the vapour pressure cell to the GMV. The 

gaseous mixture was then stirred for an hour. The manometer was set ready 

by raising the mercury to a desired level. After mixing, all the taps 

between the GMV and the manometer were opened so that some of the mixture 

vapour entered the vapour pressure cell. A series of compression 

pressure/volume readings was then taken until an approximate linear 

relationship between pressure and volume was obtained. Material was then 

condensed into the "finger". Simultaneously, the level of mercury was 

raised. A number of expansion pressure/volume readings was then taken. The 

dew-point pressure was the intersection of the compression series and the 

expansion series. For the benzene+cyclohexane system, the compression 

technique was employed in both the single-phase region and the two-phase 

region. This was because clear dew points could be obtained. 
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3.6 A CRITIQUE OP 'l'RB APPROACH IN 'l'RB PREVIOUS liCK 

The principal point to note about the experimental approach in the 

previous work is that variable quantities of material were used for 

obtaining dew-point and bubble-point pressures. It is suggested that, in 

such a procedure, there are possibilities of compositional changes in 

moving from the dew point or to the bubble point pressure, or vice versa. 

Some of the factors that could give rise to compositional changes are 

presented. 

If it is assumed that the components of the mixture retain in part 

some of their characteristics, then there may be variations in composition 

between the various sections of the apparatus since the diffusion 

coefficients of the components are likely to be different. Also, 

preferential transfer of one component over the other could be a function 

of the vapour pressures of the pure components. It is envisaged that this 

factor may be crucial in instances where there are relatively large 

differences in the vapour pressures of the components. An additional hazard 

associated with material transfer is condensation along connecting tubes. 

And since the adsorptivities on glass of the components may be different, 

mixture composition may be affected. McGlashan(4) suggested minimisation of 

the condensation problem by installing controlled heating systems along the 

connecting tubes. A similar heating system on the DPBP apparatus was, as 

now, not incorporated. 

The above-mentioned factors should not be seen as operating in a 

mutually exclusive manner. Furthermore, they should not be taken to be 

exhaustive. As the design of the apparatus stands, there are no prospects 

of verifying experimentally the extent to which these factors affect 

changes in composition. Conjectures can only be made to account for the 

previous variable success on GmE(T,X) determinations by the DPBP method. 

For example, at 313.15 K the vapour pressures of pure benzene and pure 

cyclohexane are quite similar whereas the vapour pressures of pure benzene 

and pure hexane are relatively disparate at 298.15 K. This may be a reason 



why the binary system benzene+cyclohexane produced satisfactory results 

whilst the binary system benzene+hexane gave results which were at variance 

with those of other workers(5),(6). Since the experimental verification of 

the effects by the above-mentioned, and any other, factors was outside the 

scope of this work, it was necessary to develop a procedure which minimises 

or eliminates the part played those factors. The procedure described in 

section 3.7.3 is a step towards that goal. 

3.7 DPBlUMBHTAL 

The main aspects regarding the measurement of excess molar Gibbs 

functions by the DPBP method are: 

(1) preparation and storage of liquid samples, 

(2) making up of mixtures, and 

(3) measurement of dew-point and bubble-point pressures. 

3.7.1 Preparation and storage of liquJ.d sa.p1es 

Pure liquids, which had been dried previously over phosphorus(V) 

oxide, were transferred into the detachable reservoir DR(see Fig.3.3). In 

this reservoir, initial degassing was carried out using the 

freeze-pump-thaw technique. After a satisfactory level of initial 

degassing, material was transferred to either of the double-limbed storage 

reservoirs SR1 and SR2. It was in these vessels that thorough degassing was 

carried out. This involved the use of liquid nitrogen as a means of 

producing a thermal gradient across the two limbs. Material was transferred 

across the thermal gradient. When all the material had turned to solid, a 

rotary pump was used to pump away the vapour above the solid phase. 

Occasionally, the freeze-pump-thaw technique was employed. During the 

pumping of the sublimed phase, a liquid nitrogen cold trap was provided. 

This was an attempt at isolating the sublimed material from any untoward 

volatile material within the apparatus. 
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From experience, it was observed that thorough degassing was 

accomplished by transferring some of the liquid sample from the storage 

vessels to the volume-metering tubes and then carrying out degassing within 

these tubes. Briefly, the degassing procedure within either VMT1 or VMT2 

involved freezing the material with liquid nitrogen and pumping over the 

solid phase. On thawing, gas bubbles were invariably liberated. The 

freezing, pumping and thawing of the material was carried out repeatedly 

until there was no liberation of gases on thawing. To ensure thorough 

degassing, the cycle involving the non-appearance of bubbles was carried 

out at least three times. This was taken as a sign of sufficient degassing 

of material. Material treated in the above manner was then used for 

obtaining dew-point pressures and bubble-point pressures. Small differences 

between Pd and Pb values of the pure components were regarded as 

confirmation of sufficient degassing. 

Cyclohexane was found to be a particularly difficult substance to 

degas. After having discounted the presence of impurity to account for 

large differences between Pd and Pb values, it was evident that a variation 

of the degassing procedure was necessary. The procedure that was eventually 

adopted involved cooling the cyclohexane within the VMT just sufficiently 

for it to remain transparent in the solid phase. previously, it had been 

solidified until it had a white appearance. Using the procedure that was 

adopted eventually, it was observed that on thawing there were still gas 

bubbles that were being liberated. If the same sample was solified to 

whiteness, no bubbles were liberated on thawing. This effect was 

reproducible. It was evident that prolonged cooling resulted in 

co-dissolution during the thawing process. Using the other technique, the 

gases and cyclohexane separated according to their boiling points. As a 

result of this work on cyclohexane, the technique was extended to other 

substances. 



3.7.2 preparation of binary mUd:ures 

The binary mixtures were prepared by transferring calculated amounts 

from the volume-metering tubes to the gas-mixing vessel. The quantity of 

material transferred was such that the mixture was in the vapour phase 

within the GMV. In order to determine the requisite amounts, the relation 

given by equation (3.26) could have been used. 

pV = n{RT + B(T)p} • •• (3.26) 

In equation (3.26), p is about 85 per cent of the estimated dew-point 

pressure of a given mixture, V is the volume of the gas-mixing vessel, B(T) 

is the estimated second virial coefficient of the mixture, and n is the 

total amount of substance in the mixture. However, since p was an estimate, 

calculations were carried out on the basis that the mixture vapour behaved 

as an ideal gas. That is, the relation given by equation (3.27) was the 

basis for determining the amounts that were transferred into the GMV • 

pV = nRT ••• (3.27) 

The application of the latter relation was further justified by the fact 

that n could not be obtained precisely. In preparing the mixtures, the 

overriding concern was that the material would be in vapour phase once it 

was in the GMV. It was important that approximate compositions of the 

mixtures were known. This was useful in that it facilitated the estimation 

of initial values of the compositions which were required for the iterative 

solutions for the unknown variables. The mixtures were then stirred within 

the GMV for at least four hours before measurements on dew-point pressures 

and bubble-point pressures were taken. 
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3.7.3 Measurement of dew point and babble point pressures 

Figure 3.8 is a schematic diagram of the apparatus for measuring dew 

point and bubble point pressures. After thorough evacuation of the 

apparatus, the following operations were carried out in order to measure 

the dew point and bubble point pressures: 

(1) the determination of the volume of the vapour pressure cell VPC by 

the nitrogen compression method, 

(2) the measurement of approximate amounts of the components within 

the volume-metering tubes VMT1 and VMT2, 

(3) the transfer of the metered components into the gas mixing vessel 

GMV, 

(4) the adjustment of the mercury levels within either manometer M1 

or both M1 and M2 before introducing material into the VPC, 

(5) the transfer of some of the gaseous material from the GMV to VPC, 

(6) the measurement of mercury heights within the arms of the 

manometers in order to obtain pressure/volume isotherms, 

(7) the adjustment of mercury levels in order to obtain the bubble 

point pressure or the dew point pressure(depending on what 

had been measured initially), 

(8) the pumping away of excess material as mercury heights 

measurements were taken, and 

(9) the measurement of the liquid volume of the material whose dew 

point and bubble point pressure had been measured. 

J)et.eE1dnatiOll of the vo11Dl8 of VPC 

The volume of the vapour pressure cell VPC was determined by the 

nitrogen compression method. The technique involved the introduction of dry 

pure nitrogen into the VPC and obtaining a series of pressure/volume 

readings which were then analysed in order to give the volume of the cell. 
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Figure 3.8 A schematic diagram of the apparatus for measuring dew point 
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Before carryi~g out the operation, all taps associated with the 

manometers were closed. Then after filling the ballast vessel with dry 

nitrogen, mercury was raised to about three-quarters of the way in the 

U-bend of manometer1(M1). In manometer 2(M2) mercury was raised to about 

halfway, generally, above the U-bend. By opening taps T15 and T12, some 

nitrogen was admitted into both arms of M1 and the left arm of M2. In order 

to ensure that this operation was carried out smoothly, the following steps 

were taken. 

(a) Nitrogen was allowed into the section bounded by taps T15 

and T12. 

(b) With tap T15 closed, some nitrogen was allowed into the 

manometers by opening T12 cautiously. 

(c) Whilst step (b) was carried out, the mercury level in the 

u-bend of M1 was maintained roughly using needle valve 1(NV1). 

(d) The steps (a) to (c) were repeated until there was a 

reasonable height difference in the mercury levels in the arms 

of M2. 

When sufficient nitrogen had been admitted into the manometers, the mercury 

levels in both manometers were raised slowly, using NV1 and NV2, to heights 

which permitted easy use of the cathetometer. The system was then left for 

an hour to allow for equilibration. By raising the mercury in M1, a series 

of compression pressure/volume readings were taken. 

lIea~t· of c::oq»OIlent8 wi tbJ.n Vll'r1 and/or VII'.l'2 

For components to be metered within VMT1 and/or VMT2, they had to be 

transferred from the storage reservoirs SR1 and SR2, respectively. To 

transfer material from SR1 to VMT1, the following steps were taken. Taps 

T4, T5 and T24 were closed and then taps T6 and T9 were opened. Then VMT1 

was cooled with liquid nitrogen contained in a Dewar vessel. VMT1 was 

dipped in such a manner that the level of transferred and condensing 

material was always just above the level of the liquid nitrogen. When about 
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0.1 em3 of the material had been transferred, tap T9 was closed to isolate 

SR1. Tap T6 was closed and tap T24 was opened. After thawing, the material 

within VMTl was degassed as described in Section 3.7.1. More material was 

transferred, in 0.1 em3 portions, and degassed until there was an excess of 

about 0.05 em3• Then, if necessary, further degassing was carried out. 

The transfer of material from SR2 into VMT2 involved similar steps to 

those involved in the transfer from SRl to VMT1. The difference was that, 

in the former case, taps T5 and T7 were manouvred in place of taps T6 and 

T9, respectively, and vice versa. 

Transfer of caaponents into the GMV 

Before the transfer of pure components from VMT1 or VMT2 to GMV, taps 

T2 and T24 were closed. Depending on whether material was to be transferred 

from VMTl or VMT2, tap T6 or T5 was opened as appropriate. Also, tap T4 was 

opened. The finger of GMV was then cooled with liquid nitrogen so that 

material condensed within the gas-mixing vessel. After ensuring that all 

the material had been transferred into GMV, tap T3 was closed and taps T2 

and T24 were opened. 

In the case of mixtures, the components were first mixed in one of 

volume-metering tubes before transfer into the GMV. For convenience, the 

more volatile component was transferred into the VMT holding the less 

volatile component. This process required that taps T4 and T24 be closed 

before the transfer across the volume-metering tubes. This transfer, 

although not necessary, was convenient in that one of the VMT's could be 

cleaned by evacuation in readiness for subsequent material transfer from 

the corresponding storage vessel. The mixture was then transferred to GMV 

using the same method as described for the transfer of pure components. 
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Pre-adjustlleDt of mercury leve1s in M1 and/or M2 

The transfer of material into VPC was preceded by the raising of the 

mercury levels within the arms of the manometers M1 and/or M2. Taps T12, 

T14 and T15, as well as two-way taps TT1 and TT2 and needle valves NV1 and 

NV2, were closed. Then dry nitrogen was passed into the ballast via tap 

T17. TT1 and TT2, and NV1 and NV2, were then opened in order to raise 

slowly the mercury levels within M1 and M2. In M1, mercury was raised to 

about 10 em above the U-bend of the manometer whereas in M2, it was raised 

to about 55 em. Taps T1, T2 and T11 were then closed. When the expected 

pressure values were sufficiently low, only M1 was used. In this case, the 

procedure was similar except that TT2 and NV2 were not opened. 

orransfer of material from GMV into VPC 

The initial step in this transfer was the closure of tap T4. Taps T3 

and T1 were then opened. Tap T2 was then opened slowly in order to lessen 

the mechanical shock due to the movement of mercury within M1. The magnetic 

stirrer in GMV was then switched on and the apparatus was left in this mode 

for at least an hour. Tap T1 was then closed and the excess material was 

pumped away via taps T4, T24 and T25. 

lIea~t of heiCJhts of the mercury leve1s 

The measurement of heights of the mercury levels enabled one to 

obtain pressure/volume isotherms from which dew point pressures and bubble 

point pressures could be determined. Although it is of little or no 

consequence whether dew point pressures or bubble point pressures are 

measured first, it was found convenient to measure the latter first. In 

fact, in the earlier stages of the work, dew point pressures were measured 

first in some instances. 
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Figure 3.9 The submersible cold trap. 
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The measurement of bubble point pressures was accomplished thus. 

Using an ice-salt mixture contained in a vessel as shown in Figure 3.9, 

material within VPC was condensed in cell C(see Figure 3.5). Whilst this 

was proceeding, some nitrogen from the ballast was introduced into and 

contained within the section bounded by taps T12 and T15. As soon as the 

upward movement of mercury within the left arm of M1 could not be detected 

by eye, TT1 was closed temporarily and NV1 was opened cautiously. 

Immediately, tap T12 was opened cautiously. Often, it was necessary to 

adjust the mercury levels in M2 by temporary closure of TT2 and cautious 

opening of NV2. In order to introduce more nitrogen into the controlling 

system, the following steps were taken. The needle valves were closed as 

well as tap T12. The two-way taps TT1 and TT2, as well as T15, were opened 

and then re-closed. Then any of NV1, NV2, and T12 could be re-opened as 

required. When the mercury level approached the top end of the left arm of 

M1, NV2 and T12, if they were open, were closed. The vessel containing the 

ice-salt mixture was then slid down slowly. This was done in such a manner 

that the mercury level either was maintained or moved up slowly. The 

complete withdrawal of the ice-salt vessel was followed by the immediate 

closure of NV1. TT1 and TT2 were then opened, and closed, to allow more 

nitrogen within the sections bounded by the two-way taps and needle valves. 

-) Tap T15 was opened and then the nitrogen was pumped away. After at least 30 
r 

minutes, the first set of heights of the mercury levels in all arms of M1 

and M2 were measured. A cathetometer, with a precision of 10-3 em, was used 

for this purpose. The measurement of subsequent sets of heights was carried 

out after successive expansions of the volume of the vapour pressure cell. 

This was accomplished thus. Tap T15 was closed and then tap T12 was opened 

cautiously. Once the mercury level in the left arm of M1 had dropped to the 

required height, tap T12 was closed and tap T15 was opened. Then the liquid 

material in cell C was stirred. The stirring was accomplished by using a 

small hand magnet to move two glass-encapsulated wire pieces within C. 

After 30-40 minutes of re-equilibration, height measurements were taken. 
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Usually, five sets of pressure/volume readings were required. 

Mercury levels within the manometers were adjusted so that dew point 

pressures could be determined. The procedure that was adopted eventually 

was regarded as the least cumbersome route towards the measurement of dew 

point pressures. Initially, an approximate height of the mercury level in 

the left arm of M1 at which all material vaporised was estimated. A number 

of approximate pressure/volume po;~ts were then taken to check this 

region experimentally. Once this was confirmed, detailed measurement of dew 

point pressures was embarked upon. 

The mercury level was lowered such that all the material in VPC was 

in vapour phase. This was accomplished by any combination of the following 

steps: 

(a) TT1 and NV1 were opened so that nitrogen was pumped away, 

(b) TT2 and NV2 were opened to pump away the nitrogen, and 

(c) T15 was opened and, after pumping away of nitrogen and re-closure 

of T15, T12 was opened cautiously. 

As soon as mercury had reached the required level, the needle valves, T12 

and T15 were closed. Nitrogen was then re-introduced into the ballast and 

TT1 and TT2 were then closed. After a period of equilibration, the first of 

the pressure/volume isotherms were measured. More of the isotherms were 

obtained, by compression, until the two-phase region was reached. 

Compression was achieved by use of NV1. Occasionally, it was necessary to 

open, and close, TT1 during this series of measurements. After reaching the 

two-phase region, nitrogen was pumped away from the ballast. The volume of 

VPC was re-expanded, using the procedure described above, until all the 

material was in vapour phase. Nitrogen was re-introduced into the ballast 

and an ice-salt mixture was used to move the mercury level in VPC to a 

height above the dew point height. Five or six pressure/volume poiotS 

were then obtained by expansion in a fashion similar to the determination 

of the bubble point pressure. 
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Jleasurement of liquid volume of the· material 

The volume of the vapour pressure cell was expanded to ensure that 

all material was in the vapour phase. Also, it was found convenient to pump 

away, via T12 and T15, the nitrogen above the mercury levels in the right 

arm of M1 and the left arm of M2. With tap T24 closed, one of the 

volume-metering tubes was then cooled with liquid nitrogen and the material 

from the VPC was allowed to condense within the tube. The volume of the 

liquid material was thus obtained. 

DetenliDation of P cl and Pia from isothenas 

Figure 3.10 is an example of a plot of pressure/volume readings which 

were used to determine the dew point pressure. The bubble point pressure 

example is illustrated in Figure 3.11. Although plotting the graphs 

manually would probably suffice in the accurate determination of Pd and Pb 

of a given component or mixture, it was found expeqient to resort to 

mathematical anlyses. It was assumed that, in the regions of phase change, 

the relationships between pressure and volume were linear. Hence 

p = a + bV ••• (3.28) 

where p is the pressure, V is the volume of VPC, and a and b are constants. 

Linear least-squares methods were used for evaluating a and b. When 

computing for Pb , the pressure/volume isotherm is extrapolated to a value 

of V when the volume of the vapour phase is zero. 
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determination of the dew point pressure of (1-x)-benzene + x-hexane at 
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results led to a value of 19739 Fa . 
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Fi gur e 3.11 An example of the pressure/volume results for the 
determination of the bubble point pressure of benzene+hexane at 298.25 K. 
The overall mole fraction of hexane was 0.7. Computation of results led 
to a value of 20007 Pa . 
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3.8 RESULTS AND DISCUSSION 

The DPBP apparatus was used for obtaining excess Gibbs functions of 

the binary systems 

(a) (1-x)-benzene + x-cyclohexane, and 

(b) (1-x)-benzene + x-hexane. 

Both these systems were studied previously by the DPBP method(2),(3). The 

results of the first system were in good agreement with literature 

resqtts(7). However, the results of the benzene+hexane system did not 

compare well with published data(5),(6). The systems were thus studied as a 

means of testing the new procedure as described in Section 3.7.3. 

The materials were obtained commercially. Benzene was Research 

grade(BDH Chemicals Limited), with a stated purity of 99.9%. The 

cyclohexane was spectrograde reagent(Fisons). Gas chromatographic analyses 

of both reagents did not indicate significant levelsof impurity. The hexane 

sample used had a stated purity of 99%(Aldrich). The hexane was shaken, in 

the cold, with mercury to remove any traces of sulphur. As it did not 

discolour the mercury, it was decided that it was good enough to use 

without further purification. All these liquids were dried with phosphorus 

(V) oxide; the minimum drying duration was five days. 

3.8.1 BeDZene+cyc1ohexane 

Dew point and bubble point pressures of this system were measured at 

313.18 K. The vapour pressures of pure benzene and pure cyclohexane were 

found to be 24431 Pa and 24709 Pa, respectively. In analysing the dew point 

and the bubble point pressures, the following values of virial coefficients 

and liquid molar volumes were used(2): 

B11 = -1276 em3 mol- 1 , B22 = -1456 em3 mol- 1, 

B12 = -1324 em3 mol-" 



3 -1 = 91 em mol , 

The analysis was accomplished with the aid of a computer progam. The 

results are displayed in Tables 3.4 and 3.5. Table 3.4 gives the calculated 

compositions X, Y and Z(see equations 3.1 to 3.3). The Redlich-Kister 

equation obtained was 

GE/J mol- 1 = 1204.44x(1 - x) ••• (3.29) 

This equation compared favourably with the work carried out previously in 

this laboratory(2). The equation produced a root-mean-square of the 

pressure residuals of 48 Pa. Although this was rather large, it was decided 

that the results were satisfactory. Furthermore, the results from the 

smoothed equation compare well with those from the work of Brewster and 

McGlashan(7). Table 3.6 shows the comparison between the two sets of 

results. Table 3.5 shows the pressure residuals for the three sets of dew 

point and bubble point pressure measurements. 

Also shown in Table 3.4 are the four values of GE associated with 

each mixture. XPXSGX represents the experimental GE from Pb measurement and 

is calculated from equation (2.7) with Pm = Pb' x = X and y = Y. XPXSGZ is 

the corresponding GE value for the dew point pressure. In this case p = m 

P
d

, x = Z and y = X. CAXSGX and CAXSGZ are the calculated GE values form 

the bubble point and dew point, respectively. These are evaluated using 

equation (3.29) with x = X for bubble point and x Z for the dew point. 

The first dew point and bubble point set in Table 3.4 indicates that 

measurements were carried out at or very near the azeotrope. At this point, 

all values of GE must be equivalent. The slight deviations, both in 

compositions and in GE values, reflect the scatter of the results. 
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~ABLB 3.4 Results of the binary system benzene+cyclohexane. The 

column headings are explained in the text. 

Measurements were carried out at 313.18 K. 

Redlich-Kister coefficient 1 = 0.46255 

Pb/pa Pdlpa X Y Z ~fXS~~ ~AXS~l XPXS!:Z~1 CAXSG~1 
J mol J mol J mol J mol 

27528 27528 0.5953 0.5767 0.6187 287.6 290.2 285.8 284.1 

27243 26977 0.7117 0.6726 0.7556 250.0 247.2 220.1 222.4 

26931 26628 0.7689 0.7242 0.8148 214.5 214.0 181. 3 181.7 

Root-mean-square value of XPXSGX - CAXSGX 2.7 J mol -1 

Root-mean-square value of XPXSGZ - CAXSGZ 2.0 
-1 

= J mol 

Standard deviation of the pressures = 47.6 Pa 
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'.rULE 3.5 Comparison of calculated pressure values using the 

results from analysing the measured dew-point and bubble-point 

pressures. 

(1-x)-benzene + x-cyclohexane at 313.18 K. 

Equation number Calculated pressure/Pa Presure residual/Pa 

1 27550.4 -22.4 

2 27558.5 -30.5 

3 27515.4 12.6 

4 27507.7 20.3 

5 27225.7 17.3 

6 27207.6 35.4 

7 26986.4 -9.4 

8 27005.9 -28.9 

9 26929. 1 19.9 

10 26925.9 5.2 

11 26629.5 -1.1 

12 26633.2 -4.8 
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TABLE 3.6 A comparison between current results and those of Brewster and 

McGlashan(7) for the binary system (1-x)-benzene+x-cyclohexane. In both 

cases, smoothed equations were used to yield values of excess Gibbs 

functions at rounded mole fractions. 

E -1 E -1 
x G /J mol (current) G /J mol (literature) 

O. 1 108.4 114.4 

0.2 192.7 199.2 

0.3 252.9 256.8 

0.4 289.1 289.0 

0.5 301. 1 297.2 

0.6 289.1 282.6 

0.7 252.9 245.6 

0.8 192.7 186.4 

0.9 108.4 104.8 
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3.8.2 Benzene+hezane 

Dew point and bubble point pressures were measured at 298.25 K. The 

vapour pressures of pure benzene and pure hexane were found to be 12758 Pa 

and 20240 Pa, respectively. These values compared favourably with 

literature values (8). In analysing the measured pressures, the following 

values of virial coefficients and liquid molar volumes were used(5): 

-1490 3 mol- 1, 3 -1 
B11 = em B22 = -1984 em mol , 

B12 -1737 em3 mol- 1, 

V, = 89.41 em3 mo1- 1, V = 2 131.61 em3 mol- 1• 

The results are displayed in Tables 3.7 and 3.8, with calculated 

compositions and GE values in the former table; the latter table shows the 

pressure residuals. The notation used is identical to that described in 

Section 3.8.1. 

The Redlich-Kister equation obtained was 

GE/J mol- 1 = x(1-x){1565.38 + 90.8837(1-2x) - 130.138(1-2x)2} ••• (3.30) 

The root-mean-square(RMS) values of the GE residuals and pressure residuals 

are also in the tables. The RMS value of the pressure residuals is very 

much greater than most of the individual residuals. This is partly due to a 

limited number of the degrees of freedom. However, the RMS values of the GE 

residuals, 1.2 J mol-' in both cases, indicate that the results are 

internally consistent. 

The comparison between current results and those of Murray and 

Martin(6) is shown in Table 3.9. Compared to the previous effort carried 

out in this laboratory(3), there is considerable improvement. The 

dependence of GE on mole fraction is illustrated in Figure 3.12. The two 

plots are for current measurements and those of Murray and Martin(6). 
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~ABLB 3.7 Results of the binary system benzene+hexane. The column headings 
are explained in the text. Measurements were carried at 298.25 K. 

Redlich-Kister coefficient 1 
Redlich-Kister coefficient 2 
Redlich-Kister coefficient 3 

x y 

15895 14182 0.1547 0.3107 

17089 15093 0.2395 0.4107 

17912 15903 0.3126 0.4771 

19297 18202 0.5020 0.6088 

19824 19288 0.6069 0.6749 

20007 19739 0.6637 0.7117 

20163 20041 0.7181 0.7492 

= 0.63126 
0.03665 

= -0.05248 

Z 

0.0626 

0.1080 

0.1560 

0.3441 

0.4985 

0.5893 

0.6731 

XPXS!i~ 
J 'lOO1 -1' 

205.3 

286.5 

341.1 

389.5 

369.2 

339.2 

303.8 

CAXS!i~ 
J mol 

204.8 

287.3 

339.8 

391.2 

367.4 

339.6 

303.9 

Root-mean-square value of XPXSGX - CAXSGX = 1.2 J mol- 1 

Root-mean-square value of XPXSGZ - CAXSGZ = 1.2 J mol- 1 

Standard deviation of the pressures = 19.0 Pa 

XPXS!i~ CAXS2~ 
J mol J 'lOO1 

89.5 90.7 

151.6 150.0 

204.5 206.2 

357.6 356.8 

390.6 391.4 

374.1 373.9 

334.1 334.1 
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~LB 3.8 Comparison of calculated pressure values using the results from 
analysing the measured dew-point and bubble-point pressures. 

(1-x)-benzene + x-hexane at 298.25 K. 

Equation number Calculated pressure/Pa Presure residual/Pa 

1 15893.6 1.4 

2 15895.8 -0.8 

3 14184.3 -2.3 

4 14181. 7 0.3 

5 17096.7 -7.3 

6 17095.3 -5.9 

7 15080.6 12.7 

8 15093.0 0.3 

9 17901.6 10.4 

10 17903.1 8.9 

11 15917.0 -13.6 

12 15907.2 -3.8 

13 19306.6 -9.4 

14 19312.5 -15.3 

15 18194.1 7.8 

16 18198.1 3.8 

17 19815.5 8.5 

18 19805.6 18.4 

19 19294.2 -6.5 

20 19293.5 -5.8 

21 20010.0 -2.6 

22 20012.9 -5.5 

23 19737.7 1 • 1 

24 19736.2 2.6 

25 20163.9 -0.9 

26 20165.0 -2.0 

27 20041.0 O. 1 

28 20039.9 1.2 
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TABLE 3.9 A comparison between current result.s and those of Murray and 

Martin(6) for the binary system (1-x)-benzene+x-hexane. In both cases, 

smoothed equations were used to yield values of excess Gibbs functions at 

rounded mole fractions. 

E -1 E -1 
x G /J mol (current) G /J mol (literature) 

O. 1 139.9 164.5 

0.2 251.7 278.8 

0.3 332.0 349.9 

0.4 378.8 383.4 

0.5 391.3 384.2 

0.6 370.1 355.9 

0.7 316.7 301.5 

0.8 234.2 223.1 

0.9 126.8 122.3 
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Figure 3. 12 Excess Gibbs functions as a function of composition for the 
binary system benzene+hexane. The full line represents the results from 
this work(at 298.25(~1· The dotted line represents the work of Murray and 
Martin(at 298.15 K) • 



3.8.3 Discussion 

Having decided on the current procedure for the DPBP method, the work 

on benzene+cyclohexane was purely diagnostic. The real test lay with the 

benzene+hexane system. The results of this system indicate that there is 

still room for improvement. The likely causes for the difference in the 

results are now discussed and suggestions for further work are given in 

section 3.9. 

In the current work, gravitational condensation was observed in both 

systems. That is, some of the liquid material in cell C vaporised and 

condensed on top of the mercury meniscus in the left arm of manometer 

M1(see Figure 3.5). This phenomenon was observed even when bubble point 

pressures were being measured. That is, even when the mercury meniscus was 

near the top of the left arm of M1, condensation occurred. Given that the 

total quantity of material used for each run was of the order of GC3 

cm3(liquid phase), it is likely that pressure values were affected. In 

addition, the situation could not be rectified quantitatively, say by 

developing relevant mathematical relations, since it was not easy to 

measure the actual volumes of the liquid material in both parts of the 

apparatus. In contrast, the other research groups used larger quatities of 

material. Any condensation that may have occurred would have had minimal 

effect on pressure values. This is because vapour compositions would have 

changed only very slightly. 

A recurring problem was related to the difficulty of thorough 

degassing of liquid samples. This difficulty was solved eventually(see 

section 3.7.1). In fact, it was discovered after prolonged experimentation 

that about 0.3 em3 of liquid within a VMT was the maximum quantity that 

could be degassed successfully. Thus at high mole fractions of one of the 

components, degassing had to carried out in a stepwise fashion. However, 

the pressure/volume isotherms for Pb measurements indicated that trace 

amounts of air had minimal effect. 
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3.9 SUGGBS'l':IONS FOR FUR'l'BBR WORlC 

From the discussion, it can be seen that the results are not 

sufficiently accurate yet they are not entirely hopeless. With such a state 

of affairs, it is not unreasonable to suggest ways that may improve 

results. It is thought that results are not sufficiently accurate due 

mainly to deficiencies associated with the design of the vapour pressure 

cell(VPC). The present design is somewhat difficult to improve on for the 

following reasons. 

(1) There are large volume changes associated with converting a fixed 

quantity of material from being entirely in the liquid phase to being 

entirely in the vapour phase, or vice versa. Even if the presence of 

mercury allows room for manouvrability in altering the volume of VPC, the 

total permissible volume is still not large enough to work with larger 

quantities of material. 

(2) The measurement of Pb requires that the vapour space in between 

above the surface of the liquid phase in C and the top of the mercury 

meniscus in the left arm of M1 must be as small as possible. This is 

because it is necessary to minimise the extrapolation of the 

pressure/volume isotherms to zero vapour volumes. However, there are 

structural distortions above certain levels of the left arm of M1. These 

distortions are a result of glass-blowing work of C to the rest of the 

manometer. This is a constraint on the reduction of the vapour space. 

It is suggested, therefore, that improvements on VPC design can take place 

along the following lines. A cylindrical form of the vapour pressure cell 

is suggested. At the base of this cylinder, there would be a "finger" into 

which, under suitable conditions, liquid phase material would be lodged. 

The volume of the VPC would be altered by use of a piston with a leak-proof 

piston washer. [Details regarding materials for constructing this section of 

the apparatus can only be sorted out at the time of construction.] 

Material, in vapour form, would be introduced near to the top end of the 

cylinder. 
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Figure 3.13 A diagram of the suggested vapour pressure cell . 
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Figure 3.13 is a diagram of the suggested vapour pressure cell. 

Material would be introduced into VPC with the piston washer just above the 

inlet at the side. Pressure/volume measurements would then be obtained by 

compression. Pressure would be measured with the aid of a 

pressure-sensoring device such as a pressure transducer. The pressure 

device would be located near to the base of VPC. It should be noted from 

Figure 3.13 that the base wall of the VPC would have a slight slope. This 

would ensure that, on compression, all of the liquid material would collect 

in the "finger". Liquid material would be stirred by moving the 

glass-encapsulated iron piece with an external magnet. 

The initial difficulty with the suggested design would be the 

calibration of volume of VPC. However, this would be compensated for with 

the relative ease of measuring pressures. Also, it should be realised that 

the suggested design would not eliminate shortcomoings associated with the 

use of small quantities of material and extrapolations to zero vapour 

volumes. However, problems related to gravitational condensation would be 

eliminated entirely. 

As for the rest of the DPBP apparatus, it is not visualised presently 

that design improvement would necessarily lead to improved results. Any 

changes would have to be related to personal tendencies. On a general note, 

it may be desirable to redesign the storage section so that one could 

circumvent stepwise degassing when quantities greater than 0.3 em3 are 

required. This could be done, for example, by having more volume-metering 

tubes. 
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CIIAPTBR 4 

IIBAStJRBMBRT OP SOME EXCESS VOLOMBS OP KIXIRG 

4. 1 DESIGN PBA'l'URBS 

The main design features in connection with this work are: 

(a) the dilatometer, 

(b) the preparation and storage of liquid samples, and 

(c) temperature control. 

4.1.1 The di1atc.eter 

A batch-type dilatometer of similar design to the one used by 

Hewitt(1) was employed in the determination of excess volumes of mixing. 

The only modification was the length of the precision bore capillary stem 

which, in this case, was shorter. Figure 4.1 is a diagram of the assembly. 

The diameter of the capillary bore was specified by the manufacturers 

to be 0.086 em. The radius of the capillary bore was calibrated by 

determining changes in the heights of the mercury meniscus levels which 

corresponded with given changes in mass of mercury. In this determination, 

a thimble-shaped attachment (see Figure 4.1) replaced the dilatometer body. 

This attachment was designed to have as low an internal volume as possible. 

This was an attempt at reducing the weight of the whole calibration 

assembly. The following is an outline of the procedure that was adopted in 

determining the radius of the capillary bore. 

(1) The apparatus was weighed when empty. 

(2) Mercury was introduced into the apparatus and the mass of mercury, 

m11 was obtained. 

(3) The assembly was left to equilibrate for at least an hour after which 
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the mercury meniscus level relative to a reference point was 

determined. This was designated as h1• 

(4) Using a syringe with a fine needle attached to it, some of the mercury 

was removed from the capillary bore. The assembly was weighed again. 

Thus ~, the mass of mercury left in the apparatus, was obtained. 

(5) Height h2 was obtained by repeating step (3). 

(6) The radius of the capillary bore was thus calculated from mass 

changes and corresponding height changes. 

(7) Steps (2) to (6) were repeated a number of times and the mean value of 

the radius was obtained. 

From the experimental determination, the radius of the capillary bore was 

found to be 0.0428 em, with a standard deviation of 0.0001 em. This method 

of determining the radius was also found to be an effective way of checking 

the uniformity of the capillary bore along the stem. Mention must be made 

of the fact that none of the determinations were treated with allowance for 

volume changes due to compressibility as successive height changes were not 

large enough to distinguish between compressibility effects and the 

experimental margin of error arising from determinations of height changes. 

4.1.2 sa-ple preparation and storage 

Figure 4.2 is a diagram of the apparatus for degassing of the liquid 

samples. The same apparatus was used for filling evacuated dilatometer 

bodies with mercury. Samples were obtained at purity levels such that 

further purification was deemed unnecessary. (See Section 4.2.2 for 

details. ) 

Before undergoing degassing, samples were dried by contacting with 

anhydrous phosphorus pentoxide for at least a week. Portions of the liquid 

samples were then transferred, under dry nitrogen conditions, to oven-dried 

round-bottomed flasks with B14 sockets. The flasks were then attached to 

point RD as depicted in Figure 4.2. The storage vessel, of a special form, 

was attached to point DS. The original design by Hewitt(1) was found to be 
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Figure 4.2 Diagram of the liquid degassing and mercury-filling rig . 
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(b) is the modified version. 
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inappropriate especially when small quantities of material were available. 

Hence it was modified so that the lower bulb was tappered at the top. The 

comparison in the designs is indicated in Figure 4.3. 

Using liquid nitrogen as a way of effecting a thermal gradient, some 

of the liquid was passed from point RD across tap Tl to point OS, where the 

liquid was thoroughly degassed using the freeze-pUMp-thaw procedure. In the 

meantime, the freeze-pump-thaw procedure was carried out on the bulk sample 

at point RO, tap T4 being used as the exit. Then more of the liquid was 

passed from RO to OS, the accumulating sample being thoroughly degassed at 

OS. The process was repeated many times until the required amount of liquid 

had been accumulated in the storage vessel. The degassed sample was then 

sandwiched between layers of mercury as shown in Figure 4.3. 

The procedure described above was not appropriate for liquids of 

relatively high boiling points because the transfer across the established 

thermal gradients was not fast enough, unless if the liquids were heated at 

point RO. The alternative procedure involved having all of the liquid in 

the storage vessel. The degassing was then accomplished by the usual 

freeze-pUMp-thaw technique. In latter stages of the work all samples were 

treated in this manner. The exception was tetramethy1si1ane, for it was 

more efficient to degas it using the method of collecting minor portions at 

a time • 

... 1.3 Tellperature control and measur..ant 

The experiments involving the measurement of excess volumes of mixing 

were carried out in a thermostatted water bath with a short-term control in 

temperature of within ±O.OOl K. The thermostatted system consisted of a 

cylindrical tank of 40 em diameter and 34 em height. It was surrounded with 

expanded polystyrene of 5 em thickness, with a layer of polystyrene chips 

covering the top section. A stirrer, which operated continuously, was 

employed. Agitation of the water was enhanced by attaching a baffle which 

was positioned in such a way that it acted counter to the rotation of the 
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F i gure 4.5 A circuit diagram of the electronic relay for controlling a 
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stirrer. A tap-water cooling coil was also installed. It was used when 

ambient temperatures were within one Kelvin of the temperature at which the 

excess volumes were being determined. For fine temperature control, the 

heating device consisted of Nichrome wire supported on glass tubing and 

protected with insulating varnish. The resistance of the heater was 7.1 

ohm. Fig. 4.4 is a circuit diagram of the electronic relay for controlling 

the heater. In fact, this was a dropper resistor. The original design 

catered for a heater with a resistance of 22 ohm. Figure 4.5 is a circuit 

diagram of the electronic relay for the original design(1). However, the 

original relay was retained because the corresponding heater proved to be 

convenient as a booster heater. The 7.1 ohm heater, as well as the dropper 

resistor, would then replace the booster heater so that fine temperature 

control could be achieved. The regulation of temperature was achieved with 

the use of a mercury-toluene regulator. Figure 4.6 is a schematic diagram 

of the arrangement of the apparatus for the regulation of temperature. 

After considerable experimentation, it was found that temperature 

regulation was improved by the almost total immersion of the regulator in 

the thermostatted bath. In the short term, temperature control improved 

from fO.002S K to well within fO.001 K. In the long term, the control 

improved from ±O.010 K to ±O.OOS K. The temperature was measured with the 

use of a Hewlett-Packard Model 2804 A quartz thermometer. In order to 

record temperatures the thermometer was connected to a Servo-scribe chart 

recorder. This arrangement was convenient in that the experimenter obtained 

a quick visual image of the level of control, as well as a permanent record 

of temperature over an extended period. The quartz thermometer was 

calibrated regularly against a standard platinum resistance thermometer. 
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4.2 MEAStJRiMiih't' OP EXCESS VOLIJIIES OP MDDIG 

The experimental procedure for the determination of excess volumes of 

mixing is in the main similar to the method that was adopted in an earlier 

work in this laboratory(1),(2). However, due to the fact that the 

quantities used were rather smaller than those used in the earlier work, 

there were variations in procedure in some features. For example, the 

measuring of amounts of the components was by weight rather than, as was 

the case in the earlier work, by volume. A number of binary systems on 

which work has been done previously were used as test cases before 

proceeding to new systems. 

4.2.1 Bxperbental procedure 

In determining excess volumes of mixing by batch dilatometry, two 

simple procedures are available for the purposes of measuring the 

compositions of mixtures. They are measurement by weight or by volume. 

After initial tests, it was concluded that measurement by weight was more 

reliable and easier than measurement by volume. A number of disadvantages 

are immediately apparent in the method of determining compositions by 

volume. The relationships between temperature and volume of pure substances 

have to be known precisely. Even if such information is available, it is 

fairly difficult, if not impossible, to have an exact knowledge of the 

temperature during the transfer of material from one vessel to another. The 

problem of knowing the exact temperature of materials and measuring volumes 

was compounded, in this work, by the fact that materials and apparatus were 

kept under different conditions. The micrometer syringes and associated 

apparatus were kept at ambient temperatures whereas tetramethylsilane was 

kept in the cold room. Furthermore, initial attempts at measuring amounts 

by volume were exposed as totally unreliable especially with regard to 

tetramethylsilane. When tetramethylsilane was transferred from a micrometer 

syringe to a dilatometer, it was observed that as the syringe piston was 

pushed down, however slowly, some of the liquid was moving up the walls of 
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the syringe shaft. Even if this process could be lessened by 'pre-washing'* 

the syringe with tetramethylsilane, it was fairly difficult to eliminate it 

completely. [* , pre-washing' is a technique which involves wetting the whole 

of the syringe with a small quantity of liquid and then expelling excess 

liquid before refilling it.] Experimental evidence for the process by which 

some of the tetramethylsilane moved up the shaft as the piston was pushed 

down was borne out by simple density measurements which furnished results 

that did not correlate with those in the literature(3); the density values 

were always lower than the published values. The effect was less marked for 

other pure substances. Besides, there were small but significant variations 

in density values even in situations where due care had been taken by 

'pre-washing' the syringes. Coupled with problems of temperature control, 

it was decided that the weighing method was superior to the volumetric 

method. 

A Model 62 FM Qertling balance, with a pan capacity of 200 grams, was 

used for weighing. Small flat wooden blocks with clips fastened to them 

were used as supports for holding dilatometer bodies securely on the 

balance pans. The components were transferred to the different arms of the 

mercury-filled dilatometer body with the aid of syringe needles attached to 

the micrometer syringes. The needles were bent accordingly so that, prior 

to mixing, a given component would always be lodged into one arm of the 

dilatometer body. In order to withdraw liquid components successfully from 

the storage vessels, pieces of glass tubing of an appropriate length and 

with capillary bore were used as conduits for facilitating the insertion of 

the bent but flexible needles. 

For a given binary mixture, some considerations were taken into 

account when deciding the amounts of material to be used. Based on one or 

more test measurements, the amounts were calculated so that the change in 

height of the mercury meniscus levels accompanying a mixing process would 

be less than 1 em. However, caution is essential. Small changes in height 

accompanying a mixing process are not desirable because the significance of 
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errors increases with decreasing height changes. Although the radius of the 

oapillary bore of the dilatometer stem was determined along most of the 

stem, it was preferable that changes in height of the mercury meniscus 

levels were made to occur on a particular section of the stem. A section of 

about 2.5 em in length was used1 this gave enough room for flexibility. 

There were advantages to be gained by adopting this procedure. Corrections 

for effects due to compressibility could be, and were, ignored. Errors due 

to, in principle and possibly in practice, inherent minute variations of 

the radius with sections of the capillary bore were thus lessened in a 

systematic manner. 

After transferring the required amounts of pure components into the 

dilatometer body, the dilatometer stem was fitted into the greaseless 

ground joint and held tightly in place using springs hooked on lugs (see 

Figure 4.1). The level of mercury in the dilatometer was such that there 

was allowance for the expansion of mercury which invariably occurred as the 

dilatometer was placed into the thermostat bath. Before securing the 

springs on lugs, some thick grease was smeared onto the crevices of the 

ground joints so that water was kept out of the dilatometer. For binary 

mixtures in which tetramethylsilane is one of the components, some pure 

tetramethylsilane was placed in the 'finger' at the top of the dilatometer 

stem. This was found to be useful in preventing tetramethylsilane from 

'bubbling' during an experimental run. The precaution was definitely 

worthwhile in situations where minor amounts of tetramethylsilane were 

injected into the dilatometer body. The assembled dilatometer was then 

plaoed into the thermostat bath and allowed to reach thermal equilibrium. 

Using a cathetometer of 10-3 em precision, the difference in height 

between the level of top of the mercury meniscus and the reference mark was 

measured and termed hb • The room temperature reading Tb was obtained as hb 

was being measured. The dilatometer was then taken out of the thermostat 

bath and mixing was carried out manually before replacing the dilatometer 

into the thermostat bath. After thermal equilibrium had been attained h , a' 
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the difference in height between the new mercury meniscus level and the 

reference mark, was measured. Concurrently, the room temperature Twas 
a 

obtained. Thus the height change accompanying a mixing process, 6h, is 

qiven by the relation 

••• (4.1) 

where a is the coefficient of thermal expansion of the cathetometer. T and 
a 

Tb are the room temperatures after and before mixing, respectively. The 

excess molar volume of mixing, vm
E, is obtained using the relation 

••• (4.2) 

where nt is the total amount of substance involved in the mixing. 

4.2.2 Test syateu 

It has already been stated(see Chapter 1) that the quantities of 

material used in this work are rather minute in comparison with those used 

by other workers. Hence it was necessary to test the feasibility of using 

the technique in the production of precise and accurate results. The 

testinq was accomplished by carrying out a study on four binary mixtures. 

For the selected systems, measurements on excess volumes of mixing have 

been carried out by other workers. The selected systems are: 

(1) benzene + cyclohexane, 

(2) tetramethylsilane + cyclohexane, 

(3) cyclooctane + cyclopentane, and 

(4) cycloheptane + cyclopentane. 

For all the systems, the excess volumes were determined at 298.15 K. 

Benzene+cyclohexane is a recommended system for testing new 

experimental arrangements designed for furnishinq data on excess volumes of 

mixinq(4). In the present study on this system, the determination of mole 

fractions of the components was, as in the previous study in this 
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laboratory(1),(2), by accurate measurements of volumes of the pure 

components. For all the other mixtures, the measurement of mass was used as 

a basis for determining amounts. The advantages of relying on the 

measurement of mass, instead of volume, for the determination of amounts 

are discussed in section 4.2.1. The study on tetramethylsilane+cyclohexane 

was important in that two variations from the work by Dixon and Hewitt(2), 

namely the quantities used and the manner of determining amounts of 

substance, were introduced. The cyclooctane+cyclopentane and the 

cycloheptane+cyclopentane mixtures were selected for study because: 

(a) there was a need to compare the results of this study with those 

obtained by a different technique, and 

(b) the components that make up the mixtures were to be used in new 

studies on tetramethylsilane mixtures. 

The mentioned cycloalkane binary systems have been studied using dilution 

dilatometry(S),(6). 

All the substances were obtained commercially. Besides drying over 

anhydrous phosphorus pentoxide and degassing, no further purification was 

carried out. Analysis by gas chromatographic techniques was carried out on 

benzene and the cycloalkanes. In all these substances, impurity levels were 

considered as insignificant. Tetramethylsilane, of spectroscopic grade and 

purity levels quoted to be greater than 99.8 per cent, was not subjected to 

any analysis. 

For each of the binary systems, the data on excess molar volumes of 

mixing as functions of compOsition were fitted into an equation - known as 

the Redlich-Kister equation(7) - of the type 

V E{x(1_x)}-1/cm3 mol- 1 - .~ Aj(1-2X)j-1 ••• (4.3) 
m J=I 
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where vm
E is the excess molar volume of mixing, x is the mole fraction of 

the second component, Aj is the jth coefficient, and ~ is the number of 

Redlich-Kister coefficients required to obtain a good fit from a linear 

least squares analysis of the experimental data. The level of scatter of 

the data is indicated by a which is defined as 

••• (4.4) 

where i is the ith observation at a given composition and n is the number 

of observations. Equation (4.5) gives the definition of dvm
E for each 

observation. 

~V E == V E(expt) m m ••• (4.5) 

vmE(expt) and VmE(calc) are, respectively, the experimental values and 

those values calculated from the fitting equation. 

The results, including comparison with published data, are summarised 

in Tables 4.1 to 4.3. Table 4.1 depicts the results from the present work. 

Experimental values of the excess molar volumes of mixing and calculated 

values obtained by employing equations of the form of equation (4.3), as 

well as differences between the two sets of values, are shown as functions 

of the experimentally determined mole fractions. Table 4.2 is a summary of 

the Redlich-Kister coefficients and a values for particular binary systems. 

Included in the table are the corresponding data from published work. The 

coefficients tabulated in Table 4.2 are then used in relations of the 

nature of equation (4.3) in order to obtain smoothed values for excess 

volumes of mixing as functions of composition. The result of such calcula-

tions is displayed in Table 4.3, and it may be seen that there is 

favourable agreement between this work and that of other workers. The level 

of agreement was considered good enough for the technique to be employed in 

determining excess volumes for systems that have not been studied before. 
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~ 4.1 Excess molar volumes of mixing as functions of composition. 

Test systems. 

x Vm
E (expt)/cm3 mol- 1 Vm

E (calc)/cm3 mol- 1 oV E/cm3 mol- 1 
m 

(1-x)-benzene + x-cyclohexane at 298.15 K 

0.4718 0.6400 0.6398 0.0002 

0.6493 0.5921 0.5947 -0.0026 

0.7117 0.5423 0.5390 0.0033 

0.8045 0.4159 0.4168 -0.0009 

(1-x)-tetramethylsilane + x-cyclohexane at 298.15 K 

0.1955 -0.7512 -0.7512 0.0000 

0.4840 -1.0936 -1.0938 0.0002 

0.5953 -1.0294 -1.0290 -0.0004 

0.6976 -0.8844 -0.8845 0.0001 

(1-x)-cyclooctane + x-cyclopentane at 298.15 K 

0.4058 -0.2556 -0.2568 0.0012 

0.5030 -0.2862 -0.2835 -0.0027 

0.6340 -0.2853 -0.2873 0.0020 

0.6345 -0.2876 -0.2872 -0.0004 

0.7027 -0.2708 -0.2712 0.0004 

0.8041 -0.2200 -0.2196 -0.0004 

(1-x)-cycloheptane + x-cyclopentane at 298.15 K 

0.2399 -0.0632 -0.0624 -0.0008 

0.3097 -0.0766 -0.0791 0.0025 

0.3956 -0.0988 -0.0965 -0.0023 

0.4897 -0.1090 -0.1098 0.0008 



~ 4.2 Aj coefficients and a values for the test systems 

at 298.15 K. 

System Reference A1 A2 A3 

(1) (a) 2.5744 -0.1240 

(1) (b) 2.5730 -0.1105 

(2) (a) -4.3626 -0.5281 -0.2506 

(2) (b) -4.3778 -0.5444 

(3) (a) -1.1316 0.3708 -0.0987 

A4 

(3) (c) -1.131 0.434 0.016 0.019 

(4) (a) -0.4431 0.1872 

(4) (d) -0.4519 0.2089 

Key to Table 4.2: 

(1) 

(2) 

(3) 

(4) 

( a) 

(b) 

( c) 

(d) 

(1-x)-benzene + x-cyclohexane 

(1-x)-tetramethylsilane + x-cyclohexane 

(1-x)-cyclooctane + x-cyclopentane 

(1-x)-cycloheptane + x-cyclopentane 

this work 

Dixon and Hewitt(2) 

Ewing, et al(5) 

Ewing and Marsh(6) 

0.0131 

0.0223 

a 

0.0030 

0.0030 

0.0005 

0.0040 

0.0021 

0.0036 



~ 4.3 Comparison of results from this work with those of other 

workers. 

x VmE(this work)/cm3 mol- 1 Vm
E(literature)/cm3 mol- 1 

(1-x)-benzene + x-cyclohexane at 298.15 K(2) 

0.4718 0.6398 0.6397 

0.6493 0.5947 0.5934 

0.7117 0.5390 0.5375 

0.8045 0.4168 0.4153 

(1-x)-tetramethylsilane + x-cyclohexane at 298.15 K( 2) 

0.1955 -0.7512 -0.7407 

0.4840 -1.0938 -1.0977 

0.5953 -1.0290 -1.0297 

0.6976 -0.8845 -0.8781 

(1-x)-cyclooctane + x-cyclopentane at 298.15 K(5) 

0.4058 -0.2568 -0.2528 

0.5030 -0.2835 -0.2834 

0.6340 -0.2873 -0.2893 

0.6345 -0.2872 -0.2892 

0.7027 -0.2712 -0.2728 

0.8041 -0.2198 -0.2196 

(1-x)-cycloheptane + cyclopentane at 298.15 K(6) 

0.2399 -0.0624 -0.0615 

0.3097 -0.0791 -0.0789 

0.3956 -0.0965 -0.0974 

0.4897 -0.1098 -0.1118 

NOTE: The numbers - in parentheses - placed against each system refer to 

the cited literature. 



4.2.3 New binary systells 

As part of a continuing effort in providing thermodynamic information 

on binary liquid mixtures, excess volumes of mixing were determined for the 

following systems: 

(1) tetramethylsilane + cyclopentane, 

(2) tetramethy1silane + cycloheptane, and 

(3) tetramethylsilane + cyclooctane. 

The measurements were carried out at 298.15 K. Tables 4.4 and 4.5 are a 

summary of the results. In the former table, experimental values for excess 

molar volumes and the excess molar volume values calculated from fitting 

equations are displayed. In addition, the deviations between the two sets 

of values are indicated. Table 4.5 shows the coefficients of equations of 

the type of equation (4.3) which give good fits to the experimental data. 

Also, a values are given. The analyses, by the method of linear least 

squares, were carried out without weighting of the data. The results are 

also given in diagrammatic form in Figure 4.7. 

An exploratory study was also carried out on the binary system 

(1-x)-tetramethy1stannane + x-cyclohexane at 298.15 K. The results are 

given in Table 4.6. A linear least squares analysis gave the relation given 

3 -1 by equation (4.6), with 0.0076 em mol as the standard deviation of the 

results. 

E -1 3 -1 V {x(1-x)} lem mol = 0.1581 - 0.0170(1 - 2x) m ••• (4.6) 



~ 4.4 Excess molar volumes of mixing as functions of composition. 

New binary systems. 

x VmECexpt)/cm3 mol- 1 Vm
ECcalc)/cm3 mol- 1 oV E/cm3 mol- 1 

m 

(1-x)-tetramethylsilane + x-cyclopentane at 298.15 K 

0.1947 -0.5695 -0.5708 0.0013 

0.2963 -0.7691 -0.7665 -0.0026 

0.3999 -0.8888 -0.8897 0.0009 

0.5052 -0.9342 -0.9329 -0.0013 

0.7009 -0.7862 -0.7887 0.0025 

0.8054 -0.5912 -0.5907 -0.0005 

0.8825 -0.3912 -0.3908 -0.0004 

(1-x)-tetramethylsilane + x-cycloheptane at 298.15 K 

0.2913 -1.5623 -1.5587 -0.0036 

0.3954 -1.7292 -1.7372 0.0080 

0.5012 -1.7463 -1.7477 0.0014 

0.5876 -1.6506 -1.6419 -0.0087 

0.6873 -1.4024 -1.4049 0.0025 

0.7931 -1.0325 -1.0330 0.0005 

(1-x)-tetramethylsilane + x-cyclooctane at 298.15 K 

0.2025 -1.6587 -1.6615 0.0028 

0.3093 -2.1127 -2.0996 -0.0131 

0.3605 -2.2020 -2.2092 0.0072 

0.4440 -2.2586 -2.2628 0.0042 

0.5098 -2.2116 -2.2092 -0.0024 

0.5824 -2.0586 -2.0669 0.0083 

0.6945 -1.7184 -1.7078 -0.0106 

0.7848 -1.3123 -1.3158 0.0035 



..aLE 4.5 Aj coefficients and a values for the new systems(298.15 K). 

System 

( 1 ) 

(2) 

(3 ) 

A1 

-3.7311 

-6.9940 

-8.8881 

KEY TO TABLE 4.5: 

A2 

0.1054 

-1.2736 

-2.4524 

A3 

0.0708 

-0.1403 

-0.3907 

(1) (1-x)-tetramethylsilane + x-cyclopentane 

(2) (1-x)-tetramethylsilane + x-cycloheptane 

(3) (1-x)-tetramethylsilane + x-cyclooctane 

0.9360 

a/em3 moC 1 

0.0021 

0.0073 

0.0106 

~BLB 4.6 Excess molar volumes of mixing. 

(1-x)-tetramethylstannane + x-cyclohexane at 298.15 K. 

vm
ECexpt)/em3 -1 vm

ECCalc)/em3 -1 ovm
E/em3 mol- 1 x mol mol 

0.4865 0.0332 0.0394 -0.0062 

0.4981 0.0471 0.0395 0.0076 

0.6038 0.0349 0.0387 -0.0038 

0.6354 0.0400 0.0377 0.0023 
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Pigure 4.7 Excess molar volumes of mixing of (1-x)-tetramethylsilane + 
x-cycloalkane as a function of composition at 298.15 K. The cycloalkanes in 
mixtures (a), (b) and (c) are cyclopentane, cycloheptane and cyclooctane, 
respectively. 
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PRJa)IC'l'IOR OF DCBSS FmlC'I'IORS: 

ftB PRDCIPLB OF CORRBSPORDDlG STA'l'BS 

5.1 B&SIS OF TIIB TIIBORY 

The foundations of the form of the principle of corresponding states, 

as used in this work, are based on formulations by Pitzer(1). In its most 

qeneral sense, the principle of corresponding states(p.c.s) as thus 

formulated states that thermodynamic properties of fluids are universal 

functions of the reduced pressure, the reduced volume and the reduced 

temperature. The reduced parameters are defined thus: 

pr .. PIPc 

Vr - VIVc 

Tr - T/Tc 

••• 

••• 

••• 

(5.1) 

(5.2) 

(5.3) 

where P, V, and T are the pressure, molar volume, and temperature, 

respectively. The superscripts c and r refer to the critical parameters and 

reduced parameters, respectively. 

The assumptions for the p.c.s were enunciated by Pitzer(1), and they 

were subsequently discussed by Guggenheim(2). These may be summarised as 

follows: 

(1) Classical statistical mechanics are employed. 

(2) Molecules are considered to be spherically symmetrical, either 

actually or by virtue of rapid and free rotation. 

(3) Intramolecular vibrations are considered similar whether the 



material is in the vapour state or is in the liquid state. 

(4) The potential energy of an assembly of molecules is taken to be a 

function only of the various intermolecular distances. 

(5) The potential energy of a pair of molecules is given by 

u(r)!£ = ~(r!r*) ••• (5.4) 

where • is a universal function for all the substances which belong to a 

set that obeys the principle of corresponding states, r is the 

intermolecular separation, u(r) is the potential energy as a function of r, 

and £ and r* are the energy and intermolecular separation co-ordinates at 

the minimum of u(r) and are characteristic of the substance. Figure 5.1 is 

a representation of the relation given by equation (5.4). 

The soundness of any theory is the extent to which it holds when 

tested against experimental evidence. The p.c.s has been applied both to 

pure fluids(2) and to fluid mixtures(3). In the former work(2), properties 

such as the critical compressibility factor, the second virial virial 

coefficient, the Boyle point, and the coefficient of thermal expansion of a 

liquid - to name a few - were studied. It was shown that argon, krypton, 

and xenon follow the principle to a high degree of accuracy. Accuracy was 

less pronounced in the case of neon. Nitrogen, oxygen, carbon monoxide and 

methane were shown to follow the p.c.s with fair accuracy as liquids and as 

vapours, but not as solids. [Discussion on the application of the p.c.s to 

solids is beyond the scope of this work.] In the work by Guggenheim and 

McGlashan(3), the principle was extended for use in the calculation of 

second virial coefficients for gaseous mixtures. The agreement between 

calculated and experimental values was nearly always to within 1 em3 mol- 1• 

In the light of this success, the present work extends the p.c.s to 

the evaluation of excess volumes, excess enthalpies, and excess Gibbs 

functions of some liquid binary mixtures. The objective is to calculate 

excess functions from a knowledge of the critical parameters of the pure 



Figure 5.1 Potential energy as a function of intermolecular separation. 
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fluids. It is argued that if experimental thermodynamic quantities of pure 

substances adjudged to belong to a set can be represented by universal 

functions of which the reduced parameters are variables, then the 

corresponding thermodynamic quantities of the mixtures of that set can be 

represented by the same universal functions. A study on the use of the 

p.c.s as an evaluation procedure for excess functions of liquid mixtures 

involving neopentane, tetramethylsilane, and tetramethylstannane was 

carried out by Dixon(4). However, the work was hampered by a lack of data 

on critical parameters of the pure substances. 

5.2 '1'RB APPLICA'fi(M OF 'l'IIB P.C.S TO PORE PLUmS 

The main assumption regarding the principle of corresponding states 

is that any substance which is a member of a given set must meet the 

condition given by equation (5.4). Thus if substances a and e belong to a 

set, then 

uaa(r)/£aa - ~(r/r~a) 

••• (5.5) 

u8B(r)/£BB - ~(r/r8B) 

The pair-interaction energies for such substances are said to be conformal. 

• is a universal function for the set of substances. Its exact nature need 

not be knownl the main requirement is its universality. Assuming that the 

condition demanded by equation (5.5) is met, the partition function Q for 

any substance of a set consisting of N molecules occupying a volume V at 

temperature T is, taking a as as example, given by(5) 

Qa(T,V,N) - (2wmakT!h2)3N/2.(VN/NI){ja(T)}N.{O(kT/£aa' V/[N(r~a)3])}N 

••• (5.6) 
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where k is the Boltzmann constant, h is the Planck's constant, ma is the 

mass of a molecule a, and ja is the partition function for the 

intermolecular degrees of freedom and is taken to be independent of VINe n 

is a universal function for all the substances of the set. The term 

O(kT/£aa' V/[N(r~a)31) allows for interactions between molecules. Since the 

terms (2~makT/h2)3N/2 and {ja(T)}N are functions of temperature, they 

shall, for convenience, be replaced by a composite term {fa(T)}N. Also, if 

N is sufficiently large, then, by Stirling's approximation, 1/NI = (N-l e )N. 

Then equation (5.6) becomes 

••• (5.7) 

The parameters £aa and r:a are related to the critical quantities 

thus(6). 

£aa/kT~ - ~ 

L( r~a) 3 /V~ - av 

£aa~.r~a ~ == ap 

••• (5.8) 

(5.9) 

••• (5.10) 

where L is the Avogadro number, and ~, 8v' and ~ are universal constants. 

From equations (5.8) to (5.10), it follows that 

••• (5.11) 

where R is the universal gas constant, and az is the universal 

compressibility factor. It can be shown, from equation (5.7) and in 

combination with equations (5.8) and (5.9), that 



'02 

••• (5.12) 

Prom equations (5.11) and (5.12), it follows that 

••• (5.13) 

Equation (5.13) is thus an expression which states that ~2 is a universal 

function for all the members of a set obeying the p.c.s. This universal 

function contains as variables the reduced pressure, the reduced volume, 

and the reduced temperature. The equation is known as the reduced equation 

of state. 

In addition to those consequences that have been discussed, namely 

equations (5.8) to (5.13), there are a number of other consequences of the 

principle of corresponding states. No derivation of these consequences 

shall be given, they will only be listed. The listing reflects, in large 

measure, the usefulness of such consequences for the purposes of evaluating 

excess molar volumes, excess molar enthalpies and excess molar Gibbs 

functions. The list is as follows: 

••• (5.14) 

••• (5.15) 

••• (5.16) 

••• (5.17) 

••• (5.18) 
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where, P 0 
a is the saturated vapour pressure of the liquid 1 

Baa is the second virial coefficient of the gas; 

V 10 
a is the molar volume of the orthobaric liquid; 

V go 
a is the molar volume of the gas phase at pressure P o. 

a ' 

and, l1eHa is the molar enthalpy of evaporation. 

Other consequences of the p.c.s are manifested in what are known as 

residual functions. It is from these residual functions that excess 

functions are derived. Thus it is important to dwell on the experimental 

determination of residual functions, as well as expressing such functions 

in terms of universal functions for which reduced parameters are variables. 

5.2.1 RBSDXJAL !'UIIC!'IORS 

A residual function is defined as the excess of a thermodynamic 

function for a pure fluid over that for the fluid behaving as a perfect gas 

at the same temperature and volume, or at the same temperature and 

pressure. Mathematically, the definition for the value of a residual 

function is given by(7) 

••• (5.19) 

where X is a given thermodynamic quantity. The discussion is devoted to 

temperature-pressure relationships as this is the domain in which most of 

experimental thermodynamics takes place. Since interest in this work 

involves the experimental and theoretical determination of thermodynamic 

functions of binary mixtures in the liquid phase, we shall use the relation 

qiven by equation (5.20) as the definition for residual functions. 



10'1-

XPg(T,P) ••• (5.20) 

X may be the molar Gibbs function, the molar enthalpy, or the molar volume, 

and the superscripts I and pg refer to liquid phase and perfect gas, 

respectively. The expansion of the right-hand-side of equation (5.20) 

affords a pathway for the experimental determination of residual molar 

G~bbs functions or residual molar enthalpies. Thus 

XresCT,p) = {XICT,P) - XI(T,po)} + {XI(T,po) - Xg(T,po)} 

+ {Xg(T,po) - XPg(T,po)} + {XPgCT,po) - XPgCT,P)} 

••• (5.21) 

where the superscripts ° and g refer to the orthobaric and the gas states, 

respectively. Before writing out the formulae for GresCT,p) and Hres(T,p), 

a relation for the equation of state of a gas is required. This is given by 

pvg - RT + B(T)p + ••• • •• (5.22) 

where p is the pressure of the gas of molar volume Vg• B(T) is the second 

v~rial coefficient and is a function of temperature only. In equation 

(5.22), terms higher than the second have been neglected on the assumption 

that values of p are not appreciably greater than 105 Pa. From equations 

(5.21) and (5.22), it can be shown that the residual molar Gibbs function 

is given by 

p 
= f (Vl/RT)dP pr + {B(T)pO/RT + ••• } + 

••• (5.23) 

NOW, if P is not very much greater than 105 Pa, then VI may be assumed to 

be equal to vlo with little loss of accuracy in subsequent calculations. 

Thus the integration in equation (5.23) may be carried out, so that one 

obtains 
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••• 

• •• (5.24) 

where it is to be understood that B is in fact B(T). The residual molar 

enthalpy may be shown to be 

••• (5.25) 

s~ilar assumptions to those used in obtaining equation (5.24) are used. 

Hence, 

••• (5.26) 

Anticipating that there may be a dearth of data for 6 eH(T,pO), especially 

with respect to measurements at various temperatures, it is best to use the 

equation (5.26) becomes 

••• (5.27) 

The formula for the residual molar volume is obtained directly from 

equation (5.20). This is given by equation (5.28). 
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RT/P ••• (5.28) 

Equations (5.24), (5.27), and (5.28) give relations for the 

experimental determination of residual molar Gibbs functions, residual 

molar enthalpies, and residual molar volumes, respectively. Now, the 

objective is to attempt the application of the principle of corresponding 

states so that the residual functions may be expressed in terms of 

experimentally established forms for given universal functions. A study of 

the terms appearing on the right-hand sides of equations (5.24), (5.27), 

and (5.28) indicates that the use of the universal functions ~3(Tr), 

+4(Tr ), and '5(Tr ) as defined in equations (5.14) to (5.16), is probably 

the best choice in the application of p.c.s to the residual functions under 

consideration. Before doing so, it is instructive to show that the residual 

functions may be expressed in terms of universal functions of the reduced 

parameters. That is, they are consequences of the principle of 

corresponding states. Relating statistical mechanics and thermodynamics, 

one has 

A - - kTlnQ ••• (5.29) 

where A is the Helmholtz function and Q is the partition function. Hence, 

from equation (5.7), one obtains 

••• (5.30) 

The reduced parameters Tr and vr have replaced the terms kT/e and V/(Nr*3) 

via the use of relations (5.8) and (5.9), respectively. From thermodynamic 

relations and in combination with equation (5.13), it can be deduced that 
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••• (5.31) 

••• (5.32) 

••• (5.33) 

Finally, for substance a belonging to a set, the residual 

are expressed to obtain: 

(a) from equation (5.24) 

Gares(T,p)/RT = '9(Tar , Par) 

= In(Pao/P~) + az.(T~/T).(PaO/P~).{(Baa/V~) - (ValO/ V~)} 

+ az·(T;tT).(P/P~).(ValO/Va) 

= In'3 + az·(T~/T)·'3·('4 - '5) + 

az.(T~/T).(P/P~).'5 In(P/P~) 

(b) from equation (5.27) 

In(P/p~) 

••• (5.34) 

aZ.'3.('4 - '5)·(aln'3/3Ta r ) 

aZ.'3.{3('4 - '5)/aTa
r } 

••• (5.35) 

and, (c) from equation (5.28) 
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Va res(T,p) RT/P ••• (5.36) 

In equations (5.34) to (5.36), az is as defined by equation (5.11), and, 

for the sake of clarity of presentation, it is to be understood that the 

universal functions ~3' ~4' and ~5 are functions of the reduced 

temperature. Equation (5.35) can be obtained alternatively by applying the 

Gibbs-Helmholtz relation on equation (5.34). That is 

Hares(T,p)/RT = - T.a{Gares(T,p)/RT}/aT 

= - Tar. a {Gares(T,p)/RT}/aTar ••• (5.37) 

5.3 TBB Brl"BRSl:OIf OP TBB P.C.S TO Ll:QUID IUXTURBS 

Let a,S, ••• be substances that belong to a set which obeys the 

principle of corresponding states. It has been seen that one of the 

assumptions of the p.c.s is the conformality of pair-interaction energies 

for like pairs. In order to extend the p.c.s to liquid mixtures, a further 

assumption is required; the pair-interaction energies for unlike pairs are 

assumed to be conformal. That is, they are of the same form as equation 

(5.4). Thus, for a binary mixture made up of substances a and a, we have 

••• (5.38) 

Thus the universal function ~ is the same whether like or unlike 

interactions are considered. Hence relations given by equations (5.39) to 

(5.42) are obtained. 

• •• (5.39) 
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••• (5.40) 

••• (5.41) 

••• (5.42) 

It would be ideal if the cross-term critical parameters were obtained 

from experiment. However, there are only a few systems for which such data, 

or some of such data, are available. Hence there is a need for developing 

theoretical means of evaluating T~, V~S' and P~S. They are evaluated 

through what are known as combining rules. Amongst the earliest 

pronouncements on such rules are the Lorentz-Berthelot combining rules(8). 

These rules state that 

••• (5.43) 

••• (5.44) 

Thus E
aS

' the pair-interaction energy associated with unlike interactions, 

is a geometric mean of the pair-interaction energies for like interactions 

whereas raS' the intermolecular separation parameter, is an arithmetic 

mean. Equation (5.43) is a good approximation for systems in which the 

major contribution to £aB is due to central forces of the type known as 

London dispersion forces(9). Equation (5.44) holds if molecules of 

substances a and S are considered to be, or behave as, spheres with 

." . 
diameters proportional to raa and rSS' respectively. Assuming that the 

conditions as specified by equations (5.43) and (5.44) hold, then the 

appropriate combination of these equations with equations (5.8) to (5.11) 

yields the critical parameters for unlike interactions. 
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••• (5.45) 

• •• (5.47) 

However, it may be appreciated that only a few substances, if any, will 

satisfy the requirements for the application of the Lorentz-Berthelot 

rules. Hence a number of other combining rules have been proposed(see 

section 5.6). 

In this work, excess functions are determined by relating residual 

functions of mixtures to residual functions of the pure components. [It 

will be seen how this is done in Sections 5.4 and 5.5.] However, the 

computation of residual functions of mixtures requires that theories 

concerning the nature of liquid mixtures be formulated. Various theories 

have been proposed. This work will be restricted to what are known as 

"one-fluid" and "two-fluid" theories(10). 
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5." '.l'IDI: -ORB-n.um- '!'lIBORY OP MIXTURES 

In this theory, the mixture is treated as though it were a pure fluid 

• which is conformal with the pure substances a and e, especially as far as 

residual functions are concerned. This pure fluid is hypothetical. Since ~ 

is conformal with a, e, and any other members belonging to a set, then 

••• (5.48) 

where ~.(r) is the pair-interaction energy of the hypothetical fluid, and 

e,. and r$~ are the molecular parameters of the hypothetical fluid. Now, if 

T;, v; and ~ are the critical parameters of the hypothetical fluid, then 

••• (5.49) 

••• (5.50) 

••• (5.51) 

••• (5.52) 

The consequence of this is that 

••• (5.53) 

Thus the same universal functions for the pure component residual 

properties are used for obtaining corresponding residual properties of the 

hypothetical fluid. Excess functions are then obtained using the relations: 



= 

G reS(T,p)/RT 

'" +9(T",r, p",r) 

(1-x)G reseT P)/RT 
a ' xGareS(T,p)/RT 

X+9(Tar , Par) 

••• (5.54) 

••• (5.55) 

••• (5.56) 

function, the excess molar enthalpy and the excess molar volume, 

respectively, and x is the mole fraction of a. 

It may be seen from equations (5.54) to (5.56) that if the three 

excess functions are known at a given composition, then there are three 

equations in three unknowns. The unknowns are T~, p$ and v$. Hence a 

solution for the critical parameters of the hypothetical fluid exists. Thus 

an immediate check can be made between theory and experiment. This may be 

done by using the relation P~V~/RT$ - the critical quantities being a 

result of the simultaneous solution of equations (5.54) to (5.56) - and 

comparing the result to az• However, interest in this work is centred on 

the determination of excess functions of mixtures from a knowledge only of 

the properties of the pure substances. To that end it is necessary to make 

assumptions regarding the critical parameters of the hypothetical fluid. 

The assumptions relate the critical parameters of the hypothetical fluid to 

the critical parameters of the pure substances as well as compositions of 

the mixture. 
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A model known as the random mixing approximation(11) will be used for 

the evaluation of p$, v$ and T~. In using this model, two approaches are 

adopted. The first approach is the traditional one in which random mixing 

is assumed for the purposes of calculating the pair potential for the 

hypothetical fluid. We refer to this approach as the randomisation of the 

pair potentials, and abbreviate it as RPP. 

According to the RPP approach, therefore, 

+ 2x ( 1-x) uaa ( r) + ••• (5.57) 

Equation (5.57), in combination with appropriate relations of the type of 

equation (5.5), leads to 

£~~.+(r/r~~) = (1-x)2£aa.+(r/r~a) + 2x(1-x)£aa.+(r/raa) 

+ x 2 £aa.+(r/raa) ••• (5.58) 

Brown(12) has shown that +(r/r*) is consistent with a mathematical function 

popularly known as the Lennard-Jones(13) n-m potential. This n-m potential 

is qiven by 

+(r/r*) - {m/(n - m)}.(r*/r)n + {n/(m - n)}.(r*/r)m ••• (5.59) 

Using relations given by equations (5.8) to (5.11) in combination with 

equations (5.58) and (5.59), one obtains, after equating coefficients and 

taking the roots, 

••• (5.60) 
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••• (5.61) 

P~ = [AP1N] (3+m)/(m-n).[AP1M] (3+n)/(n-m) ••• (5.62) 

where 

A1N + + 

A1M + + 

AP1N = (1_x)2(T~)(3+n)/3(pc)-n/3 
a a + 2x(1-x)(TC )(3+n)/3(p' )-n/3 aa aa 

+ x2(T~)(3+n)/3(Pa)-n/3 

and AP1M is a relation whose structure is identical to that of AP1N; the 

difference is that n, wherever it appears, is replaced by m. Equations 

(5.60) to (5.62) represent relations for critical parameters of the 

hypothetical fluid in terms of critical parameters of the pure substances, 

taking composition into account. There is now enough information to enable 

one to calculate excess functions from a knowledge only of the critical 

parameters of the pure fluids. [A summary of the procedure for calculating 

excess functions using the principle of corresponding states is given in 

section 5.7.] However, calculations by Dixon(4) and from this work show 

that when values for nand m (the Lennard-Jones indices) are raised, and/or 

when values for n/m ratios increase, values for the excess functions 

increase. This is even more of the case when the ratios of the critical 

volumes of the components become larger. For example, when the widely used 

Lennard-Jones 12-6 potential is applied, for the calculation of excess 

functions of the neopentane+TMS system, where TMS is tetramethylsilane, 

there are large discrepancies between calculated and experimental results. 

There is improvement when, say, the 6-4 potential is used. 
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Evidently, one of the ways of improving the predictive capacity of 

the p.c.s method involves finding a general relation which effectively 

reduces the n-m values, or ratios thereof, in equations relating P~, v~ and 

Tt with critical parameters of the pure fluids. In view of this, we propose 

to use the van der Waals prescription as a basis for relating P$, v$, and 

Tt with the critical parameters of the pure fluids. This procedure, which 

we call the randomisation of the van der Waals constants(RVC), gives the 

following relations: 

+ 2x( 1-X)T~BV~ + ••• (5.63) 

G 2vc V'" = (1-x) a + + 2V Co x B ••• (5.64) 

The formula for T",G is obtained by combining equations (5.63) and (5.64). 

T: - [(1-x)2T~V& + 2x(1-x)T~BV~B + x2TaVBl 

x [( 1-x) 2v~ + 2x( 1-x)V&a + x2v,n-1 ••• (5.65) 

p$ is evaluated by making use of the relation given by equation (5.52) so 

that one has 

• •• (5.66) 

5.5 TIIB -'l"IIO-l'LUm- 'l'IIBORY OF MDTORBS 

In this theory, as far as residual properties are concerned, the 

mixture is regarded as though it consists of two fluids each conformal with 

one another, and each conformal with both of the pure components a and B. 

The two hypothetical fluids, 1jIa and ",a, are in the same proportions as a 

and B are. Then the pair-interaction energies, ~a(r) and U1jIs(r), are given 

by 



~a(r)/€,pa = ~ (r/r~a) 

~a(r)/£~a = ~(r/r~a) 

,'6 
... (5.67) 

••• (5.68) 

The parameters £~a' £~a, rfa and r$a are related to the critical properties 

of the hypothetical fluids thus: 

• •• (5.69) 

••• (5.70) 

••• (5.71) 

••• (5.72) 

V
, (". , ,~ <-

where ~a' V~a, P~a' P~a, T~a and T~a are critical properties of the 

hypothetical fluids. Thus residual properties of the hypothetical fluids 

may be calculated using relations of the types given by equations (5.34) to 

(5.36). Consequently, excess functions are evaluated using relations given 

by equations (5.73) to (5.75). 

GmE(T,P,X)/RT = (1-X)[~9(T~ar, P~ar) - ~9(Tar, Par)] 

+ X[~9(T~ar, P~ar) - ~9(Tar, Par)] ••• (5.73) 

HmE(T,P,X)/RT = (1-X)[~10(T~ar, P~ar) - ~10(Tar, Par)] 

+ X['10(T~ar, p~ar) - '10CTar, Par)] ••• (5.74) 

VmECT,P,X) = (1-x) [V$a.'5 CT1jIa
r

) - V~.'5CTar)] 

+ X[V:a.~5(T~ar) - v8.~5(Tar)] ••• (5.75) 
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However, before evaluating excess functions, relations for V;a, v;a, 

Tga l T;BI p$a and P$B in terms of the corresponding critical quantities of 

the pure components, as well as mixture composition, are required. Certain 

assumptions have to be made. These assumptions relate to the manner in 

which a real mixture, made of pure liquids a and a, has to be viewed in 

terms of the two hypothetical fluids wa and wB. A cell model is adopted. 

Each hypothetical fluid is envisaged as a cell containing a central 

molecule of either a or B, and the environment around the central molecule 

is taken to be random. 

Just as in the case for the "one-f1uidn model, two approaches are 

used. Thus according to the RPP approach, one obtains 

~a(r) = (l-x)uaa(r) + xUaB(r) ••• (5.76) 

UWB(r) = (1-x)uaB(r) + xuBB(r) • •• (5.77) 

From the RPP approach, relations for the critical parameters of the two 

hypothetical fluids in terms of critical parameters of a and Bare 

obtained. These are given by equations (5.78) to (5.83): 

••• (5.78) 

••• (5.79) 

••• (5.80) 

••• (5.81) 
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P~a = [APN](3+m)/(m-n).[APM](3+n)/(n-m) 

P~S = [BPN] (3+m)/(m-n). [BPM] (3+n)/(n-m) 

where 

+ 

+ 

xT C (Ve, )n/3 
as as 

+ 

BPN - (1-x)(T' )(3+n)/3(pc )-n/3 
as as + 

••• (5.82) 

••• (5.83) 

The relations for AM, 8M, APM, and BPM are similar in structure to the 

relations for AN, BN, APN, and BPN, respectively. The differences are due 

to the fact that, in each of the relations, n is replaced by m. The picture 

is completed by giving relations obtained via the RVC approach. 

Co to VljIa - (1-x)Va + ••• (5.84) 

+ XV~ ••• (5.85) 

••• (5.86) 

••• (5.87) 

••• (5.88) 



"9 
... (5.89) 

5.6 '1'IIB USB OF VARIOUS COIIBDlntG ROLES 

It has been mentioned earlier that the application of the 

Lorentz-Berthelot rules could not concti.vably cover all types of molecules. 

In order to account for variation in molecular behaviour, various combining 

rules have been proposed. Some of these were selected and applied in this 

work. 

However, in some cases, different workers have necessarily used 

different sets of variables. In this work, we have reduced the various 

relations[for the combining rules] to approximations that are, as far as 

possible, functions of identical sets of variables. [We shall see shortly 

that the final expressions are given in terms of critical temperatures 

and/or critical volumes.] The reasons for adopting this approach are 

two-fold, mainly. Firstly, there is a scarcity of experimental data 

regarding the various parameters that are used in the various combining 

rules. Secondly, it is considered advisable to assess the results of 

calculations which are based on as few variations of data input as 

possible. Of course, we do not claim that the expressions used as a result 

of approximations give superior results. Nor do we presume that other 

parameters - those that are neglected - have little or no effect on values 

of excess functions. It is just that, in the first instance, we are 

limitting the number of variables in order to facilitate comparisons 

between various calculating procedures. Also, the selected combining rules 

affect directly only the evaluation of T~8. That is, whereas V~a will be 

furnished from equation (5.46) only, there are a number of relations which 

are used for the evaluation of T~. P~a, if required, is evaluated from the 

relation 
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••• (5.90) 

where AZ is input as a datum in the calculations. 

The following, with the accompanying relations, is the selected list 

of the combining rules that are used in this study. 

Hudson-Mccoubrey(14): 

••• (5.91) 

where Ia and IS are the ionisation potentials of a and S, respectively. The 

p.c.s is applied so that the quantities E and r* are replaced by critical 

parameters. Equation (5.91) thus becomes 

••• (5.92) 

In the absence of data for ionisation potentials, the assumption that Ia = 

IS is made. The application of this assumption in combination with equation 

( 5 .46) gi ves 

••• (5.93) 

Equation (5.93) is thus taken to be the Hudson-McCoubrey combining rule. 

wormald and co-workers(15): 
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••• (5.94) 

Kirkwood-Muller(16): 

The Kirkwood-Muller rules for evaluating EaS are given by the relation 

••• (5.95) 

where Xa and Xa are the diamagnetic susceptibilities of a and a, 

respectively. In a work involving the study of second virial coefficients 

of argon and krypton and of mixtures of these substances, Fender and 

Halsey(16) simplified the Kirkwood-Muller rules by assuming that raa = raB 

and Xa = XS. This gives rise to the expression 

••• (5.96) 

In our proposal, we only assume that Xa = xa. Hence we obtain 

••• (5.97) 

Combining equations (5.96) and (5.97) with appropriate equations from 

equations (5.8) and (5.9), one obtains 

••• (5.98) 

2T~T~fi~(V~vt) 1/~/{ (V~) 1/3 

~. T~(V~)2 + ••• (5.99) 
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The combination of equations (5.99) and (5.46) gives 

••• (5.100) 

The relation given by equation (5.98) is thus the Fender-Halsey version of 

the Kirkwood-Muller rules whereas that given by equation (5.100) is our 

version of those rules. 

Hicks-Young(17): 

••• (5.101) 
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5.7 caLCULA'l':IOR OP DCBSS FUHCT:IONS: PROCBDURB 

In order to calculate excess functions via the p.c.s using equations 

that have been discussed in this chapter, the following procedure is 

adopted. 

1. After collecting sufficient data, universal functions are developed 

using equations (5.14), (5.15) and (5.16). 

2. Combining rules are selected in order to evaluate V~e' T~e' and P~e. V~e 

is evaluated using equation (5.46) whilst T~e is obtained from any of 

equations (5.45), (5.93), (5.94), (5.98), (5.100) and (5.101). P~e is 

obtained from equation (5.17) when the Lorentz-Berthelot combining rules 

are used. Otherwise it is obtained from equation (5.90). 

3. The critical parameters of the hypothetical fluids are then calculated. 

A fluid theory, as well as the approach to be used, is selected. For the 

"one-fluid" theory in which the RPP approach is used, equations (5.60), 

(5.61) and (5.62) are used to calculate V~, T$ and ~, respectively. In the 

"one-fluid"-RVC approach, equation (5.64), (5.65) and (5.66) are used to 

calculate v;, T; and P~, respectively. 

In the "two-fluid"-RPP approach, equations (5.78) to (5.83) are used 

to calculate, respectively, V;a' V;e' T~a' T~e' P;a and P~I3. The 

corresponding quantities are obtained via the "two-fluid"-RVC approach from 

equations (5.84) to (5.89). 

4. Universal functions, which are obtained by analytical fitting of data to 

equations (5.14) to (5.16), are applied in order to calculate residual 

functions. The relations for the residual functions are given by equations 

(5.34), (5.35) and (5.36). 

5. The excess functions, according to the "one-fluid" theory, are then 

calculated using equations (5.54) to (5.56). Equations (5.73) to (5.75) 

give excess functions according to the "two-fluid" theory. 
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CBAP'.rBR 6 

PRBDI:C'rI:OR OP aCBSS PURCTI:ONS: 

USB OP EQUA'l':I:ONS OP STAR 

6.1 Dft'RODUC'I'I:OH AIm SCOPE 

In Chapter 5, an experimental basis for formulating a theory for the 

prediction of excess functions was used. It is now the intention to use 

equations of state as models for viewing or accounting for the physical 

nature of liquids. Equations of state have been applied previously in the 

prediction of excess functions of binary mixtures(1)-(3). The present work 

is an extension of previous efforts. Two equations of state, namely the van 

der Waals and the Guggenheim equations of state, are applied to a number of 

binary systems of interest. The expressions for these equations of state 

are then generalised. Thus a number of other equations of state may be 

proposed. In the present work, two equations are proposed and subjected to 

analysis. 

In the past, it was usually the case that excess functions were 

calculated from equations of state in combination with a few - usually one 

or two - combining rules. It is thought that the combination of given 

equations of state with various combining rules sheds more light on the 

predictive capacity of the equations of state. Evidently, this entails a 

lot of work. However, a systematic approach to the problem ought to lessen 

the burden of the workload. The approach which has been made in this study 

involves the development of a computer program which consists of algorithms 

for various equations of state and various combining rules. To date, the 

proqram consists of nine equations of state and eight combininq rules. 

Although any of the equations of state may be used in conjunction with any 

of the combining rules, only four equations of state and six combining 

rules are used for detailed study. A summary for the basis of selecting the 

four equations of state is now presented. 
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Equations of state can be subdivided into two groups. This 

subdivision is based on the mathematical form of the relations. Of the 

equations of state in the computer program , the relations are expressed 

either as series forms or as non-series forms. The four equations of state 

which are studied in detail are given by relations which are expressed in 

non-series forms. They are,: 

(a) the van der Waals equation of state, 

(b) the Guggenheim equation of state, and 

(c) two equations of state which we have proposed. 

McGlashan(1) and Hewitt(4), for example, have used the van der Waals and 

the Guggenheim equations of state in non-series forms. 

A number of authors have used equations of state expressed in series 

form(2),(3),(S). Such equations include those proposed by Frisch and 

co-workers (6) and by Thiele(7). They are represented by a general relation 

which is given by 

PVm/RT - ~ (y) - a/R'l'Vm ••• (6.1) 

where p is the pressure of the fluid, Vm is the molar volume, and ~(y) is a 

series function in y. If the fluid particles are assumed to be 

non-interacting hard spheres, then 

y - b/4Vm ••• (6.2) 

In equations (6.1) and (6.2) the parameters a and b are constants which 

have values characteristic of a given substance. However, the values vary 

with different equations of state. The term ~(y), which is an infinite 

convergence series, may be expanded binomially to give approximations of 

the type 
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••• (6.3) 

where Aj is the jth coefficient and t is the number of coefficients which, 

for a given equation of state, is considered suitable for furnishing 

results of the desired level of accuracy. 

Now, the evaluation of excess molar functions of liquid binary 

mixtures via an equation of state depends on obtaining the relevant root 

for molar volume Vm at zero pressure. The predicted or calculated excess 

functions are dependent on, and quite sensitive to, these values of V • It 
m 

may be seen therefore that, for equations of state expressed in series 

form, the values for Vm depend on the number of coefficients used in the 

expansion of the ~(y) terms. The possibility that the termination in the 

number of coefficients may be premature, with consequent loss of predictive 

potential, renders this approach unappealing. Although it is possible to 

check that a sufficient number of coefficients is used, this may be 

tedious. For example, in the van der Waals case, calculations have shown 

that convergence to the required value of Vm is relatively slow(this work). 

The use of series forms, however, does have some advantages. The main 

advantage is that a number of equations of state are represented by a 

general relation with a common structure. In this respect, computer 

programming is simplified. On the other hand, the use of equations of state 

in non-series forms ensures the securement of accurate values of Vm• 

computer programming is marginally more cumbersome. However, such a 

disadvantage becomes virtually insignificant when one is assured of 

accuracy. 
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6.2 "1'IIB SBLIICl'BD IllQUAfiORS OP S'1'A'rB 

The van der Waals equation of state for a pure fluid is given by(1) 

p = RT/(Vm - b) ••• (6.4) 

The Guggenheim equation of state can be written as(5) 

P 
_ RTV 3/(V _ b)4 

m m 
a/V 2 m ••• (6.5) 

Relations given by equations (6.4) and (6.5) are expressed in a general 

form thus 

P = RTV (n-1)/(V _ b)n 
m m a/V 2 

m ••• (6.6) 

where n = 1 for the van der Waals case and n = 4 for the Guggenheim case. 

From the generalisation as expressed by equation (6.6), we propose two 

equations of state. These are given by corresponding relations for n = 2 

and n - 3. Thus we obtain: 

proposed equation of state (I) 

a/V 2 m 

proposed equation of state(II) 

2 3 P - RTVm /(Vm - b) 

••• (6.7) 

••• (6.8) 

The equation of state for a fluid mixture, which is given by equation 

(6.9), is obtained by extending the relations for pure fluids. Hence 



a(x)/{V (x)}2 m ••• (6.9) 

where p is the pressure of the fluid mixture and x is the mole fraction of 

second component. Vm(x), a(x) and b(x) are the mixture quantities which are 

defined in corresponding fashion as the pure component quantities Vm, a and 

b. In order to facilitate nomenclature, a(x) and b(x) shall, with reference 

to the four equations of state under discussion, be termed as VDWTP, which 

is an abbreviation for van der Waals type parameters. 

There are a number of methods for obtaining a solution for V (x) at m 

zero pressure. The Newton-Raphson method was adopted. Hence 

••• (6.10) 

where Vr is the trial value of Vm(x) and Vr+1 is the improved value of 

Vm(x) on successive iterations of equation (6.10). In that equation, it is 

to be understood that a and b are in fact a(x) and b(x), respectively. Due 

care must be taken in order to obtain the relevant root of Vm(x). The 

relevant root is obtained when the following requirements are met: 

Vm(x) > b(x) 

3p/{3Vm(x)} < 0 

••• (6.11) 

••• (6.12) 

In addition to the trial value of Vm(x), the evaluation of the 

relation given by equation (6.10) requires the assumption of model(s) for 

the fluid mixture so that expressions for VDWTP in terms of the 

corresponding parameters of the pure fluids may be formulated. As in 

Chapter 5, the "one-fluid" and the "two-fluid" theories are adopted. Hence, 

for the "one-fluid" theory, one has(1),(2) 
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+ 2x( 1-x)a12 + ••• (6.13) 

+ 2x( 1-x)b12 + ••• (6.14) 

Por the -two-fluid- theory, the relations are(2) 

a 1 (x) = (1-x)a11 + xa12 • •• (6.15) 

a 2 (x) = (1-x)a12 + xa22 · .. (6.16) 

b 1 (x) = (1-x)b11 + xb12 · .. (6.17) 

b2 (x) - (1-x)b12 + xb22 · .. (6.18) 

The quantities aii and bii' where i = 1 or 2, are proportional to TiCVic 

and ViC' respectively. Tic and ViC are the critical temperature and 

critical molar volume for component i. Correspondingly, the cross-term 

quantities, namely a 12 and b 12 , are proportional to T12 CV12c and V12c, 

respectively. For the evaluation of T12
c and v12c, the same combining rules 

as used in Chapter 5 are applied. Thus the VDWTP are expressed in terms of 

the critical parameters of the pure substances. 

6.3.1 Tbe espreasioas for aii and bii 

At the critical point, 

••• (6.19) 

Using the generalised equation of state as given by equation (6.6), one has 

••• (6.20) 
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(a2p/3V 2) __ [RTV n-3/(V - b)n+2] [2V 2 + 4b(n-1)V + (n-1)(n-2)b2] 
m T m m m m 

6a/Vm
4 

••• (6.21) 

Critical conditions are adopted and equations (6.20) and (6.21) are solved 

simultaneously to give 

••• (6.22) 

••• (6.23) 

where, 

••• (6.24) 

and ••• (6.25) 

It may be seen that ca and ~ are evaluated by merely substituting for n in 

equations (6.24) and (6.25). For the four equations of state under 

discussion, the values of ca and ~ are displayed in Table 6.1. 
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~ 6.1 The values of ca and ~ for the equations of state. 

VALUE OF n CONSTANTS FOR EVALUATING aii AND bii 

C (ca )-1 ~ (Cb)-1 a 

1 0.8888889 1.1250 3.00 0.3333333 

2 0.7953485 1.2573105 4.6457513 0.2152504 

3 0.7573645 1.3203682 6.2749172 0.1593647 

4 0.7366895 1.3574236 7.8989795 0.1265986 
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6.4 EVALUATION OF g.RSS POI1C'.l'IONS 

Equations (6.26) and (6.27) are relations for any excess molar 

function ~E(T,P,X) according to the "one-fluid" theory and "two-fluid" 

theory, respectively. 

XmE(T,P,X) c Xmres{T,p,x,a(x),b(x)} 

~ E (T , P , x) ,.. (1-x) [~res {T, P , x, a 1 (x) , b 1 ( x) } 

+ x[~reS{T,p,x,a2(x),b2(x)} 

••• (6.26) 

Xmres(T,P,O,a11,b11)] 

XmreS(T,p,1,a22,b22)] 

••• (6.27) 

where P is the external pressure, and ~ may be the molar Gibbs function, 

the molar enthalpy or the molar volume. The quantities ~res { ••• } or 

Xmres ( ••• ) are the residual molar functions; the former corresponds to the 

hypothetical fluid of a given "n-fluid" theory whilst the latter 

corresponds to the pure fluids. 

It is now instructive to give relations for the various residual 

functions derived from the application of the equations of state. It may be 

shown that the residual molar Gibbs function Gmres(T,p) of a pure fluid is 

given by 

••• (6.28) 

where AmreS(T,V) is the residual molar Helmholtz function(see Appendix 

6.1). But, by definition, 

~ 
A reseT V) - - 1 (p 
""111 ' • 

••• (6.29) 



where p is the pressure of the pure fluid and is defined according to 

equation (6.6). Thus the use of equations (6.28) and (6.29) in combination 

with equation (6.6) leads to 

••• (6.30) 

From equation (6.30), the relations for residual molar Gibbs functions 

associated with the selected equations of state - see Section 6.2 - are 

qiven by equations (6.31) to (6.34). 

For n - 1(van der Waals): 

GmreS(T,p)/RT = - In{(Vm - b)P/RT} - a/RTVm ••• (6.31) 

For n = 2(proposal I): 

GmreS(T,p)/RT = - In{(Vm - b)P/RT} + b/(Vm - b) - a/RTVm 

For n - 3(proposal II): 

+ 2b/(Vm - b) 

For n = 4(Guggenheim): 

+ 

In{(Vm - b)P/RT} 

3b2/{2(V - b)2} 
m 

a/RTVm 

+ b 3/{3(Vm _ b)3} 

+ 3b/(V - b) 
m 

••• (6.32) 

••• (6.33) 

... (6.34) 

Now, the relations for the corresponding residual molar enthalpies 

are obtained by applying the Gibbs-Helmholtz relation to each of equations 

(6.31) to (6.34). The resulting relations are identical in format and are 

represented by equation (6.35). 
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HmreS(T,p) = - a/Vm RT + constant ••• (6.35) 

The relations for the residual molar volumes are also identical in format. 

They are represented by equation (6.36). 

• •• (6.36) 
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6.5 CALCOLA'I'ION OP BCZSS PURC'l'IONS: PROCEDURE 

In order to calculte excess functions of bin~ry mixtures, critical 

temperatures and critical volumes of both components are required. The 

calculation is accomplished by adopting the following procedure. 

1. The equation of state to be used is selected. This is done by 

substituting for n in equation (6.6), where n takes the integer values of 1 

to 4. 

2. The constants ca and ~ are calculated via the use of equations (6.24) 

and (6.25). Hence the quantities a11' a22 , b11 and b22 can then be 

calculated using equations (6.22) and (6.23). 

3. Combining rules are used to calculate the critical quantities for unlike 

interactions, Tf2 and Vf2. In all cases, V~2 is calculated via equation 

(5.46). T;2 is obtained from any of equations (5.45), (5.93), (5.94), 

(5.98), (5.100) and (5.101). 

4. The cross-term Van der Waals type parameters, a12 and b 12 , are then 

calculated in similar fashion as that used in step 2. 

5. Adopting the "one-fluid" model, the quantities a(x) and b(x) are 

calculated using equations (6.13) and (6.14), respectively. For the 

"two-fluid" model, equations (6.15) to (6.18) are used to furnish a1(x), 

6. Equation (6.10) is then used to give values of the molar volumes for: 

(a) both pure fluids, 

(b) mixture fluid according to the "one-fluid" model, and 

(c) mixture fluids according to the "two-fluid" model. 

7. The molar volumes are then used for obtaining the following: 

res b) id 1 1 titi (a) x~ (T,p,O,a11' 11 - res ua mo ar quan es of component 1, 

res b) id 1 mol titi f (b) X~ (T,p,1,a22' 22 - res ua ar quan es 0 component 2, 

(c) X~es{T,p,x,a(x),b(X)} - residual molar quantities of hypothetical fluid 

according to the "one-fluid" model, 
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(d) X~es{T,p,x,ai(x),bi(x)} - residual molar quantities of hypothetical 

fluid i acoording to the "two-fluid" model~ i takes the value of 1 or 2. 

X may be G, H or V. The corresponding G values are calculated from any of 

equations (6.31) to (6.34), depending on the selected equation of state. H 

and V are obtained via the use of equations (6.35) and (6.36), 

respectively, irrespective of the equation of state. 

E 
8. The excess functions, X;(T,P,x), are then obtained from equations (6.26) 

and (6.27) in accordance with the un-fluid" theory. 
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C-H APT E R 7: PJUa)IC'!'IOR OP D:CBSS FORC'!'IONS:' RESULTS 

7. 1 IIft'RODUC'l'XOR 

The results of the predictionsbq;ed on stated theories are presented 

and compared to experimental results. The equations of state that have been 

used belong to two classes, namely, 

(a) experimental equations of state, and 

(b) analytical equations of state. 

The former class of equations are based on the principle of corresponding 

states as described in Chapter 5 and these are subdivided further depending 

on the approach(see p.1I3 and p.tlS for descriptions of RPP and RVC 

approaches). The following experimental equations of state, with 

abbreviated names as well, were studied: 

(1) principle of corresponding states using the 12-6 potential, 

PCS ( 12,6), 

(2) principle of corresponding states using the 6-4 potential, 

PCS(6,4" 

(3) principle of corresponding states using the 3-2 potential, 

PCS(3,2), and 

(4) principle of corresponding states using the RVC approach, 

PCS(RVC) • 

The analytical equations of state are those that are described in Chapter 

6. They are: 

(1) Van der Waals equation of state, VdW, 

(2) Guggenheim equation of state, G, 

(3) Proposed equation of atate(l), P1, and 

(4) Proposed equation of atate(ll), P2. 

Each equation of state is studied in conjunction with six combining 

rules, namely: 



(1) Lorentz-Berthelot, LB, 

(2) Hudson-McCoubrey, HMI 

(3) Wormald and co-workers, W, 

(4) Fender-Halsey, FBI 

(5) Hicks-Young, HYI and 

(6) proposed combining rules, Pro 
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In Chapters 5 and 6, it is stated that fluid mixtures may be 

visualised as consisting of n fluids, where n is an integral number. In 

particular, the one-fluid and two-fluid mixtures are considered. Thus for a 

given equation of state which is combined with one of the combining rules, 

the predicted excess thermodynamic functions are obtainable in terms of the 

adopted n-fluid model. Taking into account the foregoing details, 96 

combinations are available for predicting a given excess function. For the 

purposes of discussion, each of these combinations is termed a theory. 

Also, the nomenclature has been facilitated by use of abbreviations. For 

example, the theory involving the use of the Van der Waals equation of 

state in conjunction with Lorentz-Berthelot combining rules in which the 

one-fluid model of a mixture is adopted is given the abbreviation 

VdW-LB( 1F). 

Faced with such quantities of information, selected results are 

presented. However, the analysis of results and formulation of general 

remarks about the predictive capacities of the various theories are based 

on presented and unpresented results. 

7.2 sm..::'l'l:OR OF POD SUB8'DIICBS ABD Ml:rruRBS 

For substances to be considered to be suitable for theory testing, 

certain a priori assumptions were made about the nature of such substances. 

The main assumptions were: 
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(1) the substances are non-polar or slightly polar, 

(2) they are spherical or pseudo-spherical, and 

(3) they have a reasonably high degree of symmetry. 

The properties of such substances were then subjected to tests to see if 

the substances belonged to a conformal set. In doing so, the assumptions of 

the principle of corresponding states were adopted. Equations (5.14) to 

(5.16) were used as bases for analyses and plots of 

In(P'PC) against TC/T, 

B/Vc against T/Tc, and 

v~/Vc against T/TC 

were made. As a result of such plots, it was decided that the following 

substances were conformal: benzene, tetramethylmethane, tetramethylsilane, 

cyclopentane and cyclohexane. The data on these substances were compiled 

and analysed. The following relations were obtained: 

••• (7.1) 

B/VC - - 48.72 + 154.72Tr - 175.29(Tr)2 + 68.08(Tr)3 ••• (7.2) 

v~;VC - 0.526 - 0.876Tr + 1.026(Tr)2 ••• (7.3) 

where ~ is the reduced temperature. The data for the critical quantities 

were obtained from a compilation by Ambrose(1). Second virial coefficients 

were obtained from Dymond and Smith(2). Vapour pressures and molar volumes 

at saturation vapour pressure were obtained from a variety of 

sources(3)-(6). 

From the above group of substances, binary mixtures were selected for 

testing the predictive capacities of the various theories. The selection of 

combinations of mixtures was dictated by the availability of experimental 

data on excess functions. The selected mixtures are: 
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(1) tetramethylmethane+tetramethylsilane, 

(2) benzene+cyclohexane, 

(3) cyclopentane+cyclohexane, 

(4) tetramethylmethane+cyclohexane, and 

(5) tetramethylsilane+cyclohexane. 

For the first three mixtures, experimental information is available on 

excess Gibbs functions, excess enthalpies, and excess volumes. For the 

other two mixtures, excess Gibbs functions have not yet been obtained 

experimentally. The grid below indicates the sources of excess data on the 

mixtures. 

thermodynamic function 

System GE HE vE 

tetramethylmethane+tetramethylsilane Ref.7 Ref.6 Ref.6 

benzene+cyclohexane Ref.8 Ref.9 Ref .10 

cyclopentane+cyclohexane Ref.4 Ref .4 Ref.4 

tetramethylmethane+cyclohexane Ref.10 Ref. 10 

tetramethylsilane+cyclohexane Ref.10 Ref .10 

7.3 RBSUL'l'8: P1CI:8II:IIrA 'rJ:OR AND ADLYS:IS 

Procedures for the calculation of excess functions are given in 

Sections 5.7 and 6.5. For each binary mixture, preliminary studies were 

made. This involved comparison between experimental and theoretical results 

across the whole composition range. This information was then summarised 

into tables of the form of Tables 7.1 to 7.8. This group of tables gives 

information on tetramethylmethane(TMC)+tetramethylsilane(TMS). Each of the 

tables shows the prediction of excess functions by a particular equation of 

state in conjunction with various combining rules as well as employing the 

one-fluid and two-fluid models. Excess functions are given at mole 

fractions of 0.3, 0.5 and 0.7. This was done so that comparison between 

experiment and theory could be made on actual values and also on skewness. 



TABLE 7.1 Prediction of excess functions via the van der Waals equation 
of state. 
(1-x)-tetramethylmethane + x-tetramethylsilane at 283.15 K 

8ORB-PIDm· 'l'IIBORY 

Combining rule: LB HM W FH HY Pr 
Value of ~ 1.000 0.99737 0.99868 0.99986 0.99998 0.97875 

][ Bltpt. values calcul.ated va1ues usinq various cc.bininq rules 

Excess Gibbs functions/J mol- 1 

0.30 5.9 -10.1 0.5 -4.8 -9.5 -10.0 74.6 
0.50 7.0 -11.8 0.4 -5.7 -11.1 -11.7 85.8 
0.70 5.9 -9.7 0.2 -4.8 -9.2 -9.6 69.8 

Excess enthalpies/J mol- 1 

0.30 19.8 -9.1 7.0 -1.0 -8.2 -9.0 121.3 
0.50 22.3 -10.6 7.9 -1.3 -9.6 -10.4 138.7 
0.70 17.7 -8.6 6.3 -1.2 -7.9 -8.6 111.9 

Excess volumes/em3 mol- 1 

0.30 0.0484 -0.1544 -0.0659 -0.1102 -0.1497 -0.1538 0.5731 
0.50 0.0513 -0.1833 -0.0810 -0.1320 -0.1776 -0.1824 0.6582 
0.70 0.0378 -0.1531 -0.0701 -0.1116 -0.1487 -0.1526 0.5289 

8'ftfO-PIDm· 'l'IIBORr 

Excess Gibbs functions/J mol- 1 

0.30 5.9 -5.3 5.1 -0.1 -4.7 -5.2 78.1 
0.50 7.0 -6.2 6.0 -0.1 -5.5 -6.1 91.5 
0.70 5.9 -5.1 4.9 -0.1 -4.5 -5.0 75.7 

Excess enthalpies/J mol- 1 

0.30 19.8 -4.4 11.5 3.6 -3.5 -4.3 123.8 
0.50 22.3 -5.1 13.4 4.2 -4.1 -4.9 144.5 
0.70 17.7 -4.1 11. 1 3.5 -3.3 -4.0 119.1 

Excess volumes/em3 mol- 1 

0.30 0.0484 -0.1435 -0.0561 -0.0998 -0.1388 -0.1429 0.5765 
0.50 0.0513 -0.1704 -0.0680 -0.1193 -0.1649 -0.1697 0.6735 
0.70 0.0378 -0.1429 -0.0582 -0.1005 -0.1383 -0.1423 0.5557 

NOTE: The experimental values for the excess molar Gibbs functions were 
obtained at 279.95 K. 
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TABLE 7.2 Prediction of excess functions via the Guggenheim equation of 
state. 
(1-x)-tetramethylmethane + x-tetramethylsilane at 283.15 K 

·~FLUm· 'l'IIBORY 

Combining rule: LB HM W FH HY Pr 
Value of ~ 1.000 0.99737 0.99868 0.99999 0.99998 0.97875 

• BJEpt • val.uea calculated val.ues using various ccabining rul.es 

Excess Gibbs functions/J mol- 1 

0.30 5.9 -12.2 4.0 -4.1 -11.3 -12.1 111.4 
0.50 7.0 -14.3 4.5 -4.9 -13.3 -14.1 136.5 
0.70 5.9 -11.8 3.5 -4.1 -10.9 -11.7 111.2 

Excess enthalEies/J mol- 1 

0.30 19.8 -15.4 13.8 -0.8 -13.8 -15.2 220.2 
0.50 22.3 -17.9 15.6 -1.1 -16.0 -17.6 252.3 
0.70 17.7 -14.6 12.5 -1.1 -13.2 -14.4 204.1 

Excess volumes/em3 mol- 1 

0.30 0.0484 -0.1093 -0.0059 -0.0576 -0.1036 -0.1085 0.7370 
0.50 0.0513 -0.1294 -0.0098 -0.0696 -0.1230 -0.1286 0.8532 
0.70 0.0378 -0.1082 -0.0103 -0.0593 -0.1030 -0.1074 0.6925 

.'1'WO-FLUm· 'l'IIJI)RY 

Excess Gibbs functions/J mol- 1 

0.30 5.9 -6.0 10.0 2.0 -5.1 -5.9 122.7 
0.50 7.0 -7.0 11.8 2.4 -6.0 -6.9 143.9 
0.70 5.9 -5.8 9.8 2.0 -4.9 -5.7 119.1 

Excess enthaleies/J mol- 1 

0.30 19.8 -7.1 21.6 7.3 -5.5 -6.9 224.6 
0.50 22.3 -8.2 25.3 8.6 -6.4 -8.0 262.5 
0.70 17.7 -6.7 21.0 7.1 -5.2 -6.5 216.6 

Excess volumes/em3 mol- 1 

0.30 0.0484 -0.0984 0.0038 -0.0472 -0.0928 -0.0976 0.7404 
0.50 0.0513 -0.1167 0.0032 -0.0567 -0.1102 -0.1158 0.8685 
0.70 0.0378 -0.0977 0.0017 -0.0480 -0.0924 -0.0971 0.7194 

NOTE: The experimental values for the excess molar Gibbs functions were 
obtained at 279.95 K. 
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TABLE 7.3 Prediction of excess functions via the proposed equation 
of state (I) • 
(1-x)-tetramethylmethane + x-tetramethylsilane at 283.15 K 

'ORE-FLUID' TBmRY 

Combining rule: LB HM W FH HY Pr 
Value of F; 1.000 0.99737 0.99868 0.99986 0.99998 0.97875 

z Bzpt. va1.-s C&1cul.atec1 values usinCJ various cc.bininCJ rules 

Excess Gibbs functions/J mol- 1 

0.30 5.9 -11.2 2.3 -4.4 -10.5 -11.1 97.8 
0.50 7.0 -13.1 2.5 -5.3 -12.3 -13.0 112.7 
0.70 5.9 -10.8 1.9 -4.4 -10.1 -10.7 91.7 

Excess enthalpies/J mol- 1 

0.30 19.8 -12.4 10.4 -1.0 -11.1 -12.2 171.7 
0.50 22.3 -14.4 11.8 -1.3 -13 .0 -14.2 196.5 
0.70 17.7 -11.8 9.4 -1.2 -10.1 -11.6 158.8 

Excess volumes/em3 mol- 1 

0.30 0.0484 -0.1264 -0.0286 -0.0776 -0.1212 -0.1258 0.6768 
0.50 0.0513 -0.1499 -0.0366 -0.0933 -0.1438 -0.1491 0.7817 
0.70 0.0378 -0.1254 -0.0328 -0.0792 -0.1204 -0.1248 0.6325 

''!IIO-FLUID' TIIBORY 

Excess Gibbs functions/J mol- 1 

0.30 5.9 -5.7 7.7 1.0 -5.0 -5.6 101.8 
0.50 7.0 -6.6 9.0 1.2 -5.8 -6.5 119.3 
0.70 5.9 -5.5 7.5 1.0 -4.8 -5.4 98.7 

Excess enthalpies/J mol- 1 

0.30 19.8 -5.8 16.6 5.4 -4.6 -5.6 175.2 
0.50 22.3 -6.7 19.4 6.3 -5.3 -6.6 204.7 
0.70 17.7 -5.5 16.1 5.3 -4.3 -5.4 168.8 

Excess volumes/em3 mol- 1 

0.30 0.0484 -0.1156 -0.0188 -0.0673 -0.1104 -0.1150 0.6802 
0.50 0.0513 -0.1373 -0.0237 -0.0806 -0.1312 -0.1365 0.7969 
0.70 0.0378 -0.1151 -0.0209 -0.0681 -0.1100 -0.1145 0.6592 

~: The experimental values for the excess molar Gibbs functions were 
obtained at 279.95 K. 
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TABLE 7.4 Prediction of excess functions via the proposed equation of 
state(II). 
(1-x)-tetramethylmethane + x-tetramethylsilane at 283.15 K 

lORE-PLUm' 'l'BJIIORY 

Combining rule: LB HM W FH HY Pr 
Value of E; 1.000 0.99737 0.99868 0.99986 0.99998 0.97875 

K Bxpt. values calculated values usinq various a.bininq rules 

Excess Gibbs functions/J mol- 1 

0.30 5.9 -11.8 3.4 -4.2 -11.0 -11.8 110.5 
0.50 7.0 -13.4 3.7 -5.0 -12.9 -13.7 127.3 
0.70 5.9 -11.4 2.9 -4.2 -10.6 -11.3 103.7 

Excess enthalpies/J mol- 1 

0.30 19.8 -14.2 12.5 -0.9 -12.8 -14.0 201.0 
0.50 22.3 -16.5 14.1 -1.2 -14.9 -16.3 230.3 
0.70 17.7 -13.5 11.2 -1.1 -12.2 -13.4 186.3 

Excess volumes/em3 mol- 1 

0.30 0.0484 -0.1153 -0.0139 -0.0646 -0.1099 -0.1147 0.7163 
0.50 0.0513 -0.1366 -0.0192 -0.0779 -0.1304 -0.1358 0.8287 
0.70 0.0378 -0.1142 -0.0182 -0.0663 -0.1091 -0.1136 0.6720 

I'1'WO-PLUm' 'l'BJIIORY 

Excess Gibbs functions/J mol- 1 

0.30 5.9 -5.9 9.1 1.6 -5.1 -5.8 114.7 
0.50 7.0 -6.9 10.7 1.9 -5.9 -6.8 134.4 
0.70 5.9 -5.7 8.9 1.6 -5.0 -5.6 111.2 

Excess enthaleies/J mol- 1 

0.30 19.8 -6.6 19.6 6.5 -5.2 -6.4 205.2 
0.50 22.3 -7.6 23.0 7.7 -6.0 -7.4 239.8 
0.70 17.7 -6.2 19.0 6.4 -4.9 -6.1 197.8 

Excess volumes/em3 mol- 1 

0.30 0.0484 -0.1044 -0.0040 -0.0542 -0.0990 -0.1037 0.7198 
0.50 0.0513 -0.1239 -0.0061 -0.0651 -0.1176 -0.1231 0.8440 
0.70 0.0378 -0.1038 -0.0062 -0.0550 -0.0986 -0.1032 0.6988 

NOTE: The experimental values for the excess molar Gibbs functions were 
obtained at 279.95 K. 
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TABLE 7.5 Prediction of excess functions via the principle of 
corresponding states. 
The 12-6 Brown parameters are used and calculations are based 
on critical temperatures and critical pressures. 
(1-x)-tetramethylmethane + x-tetramethylsilane at 283.15 K 

-OlD-PLUm - TBBORY 

combining rule: LB liM W FH HY Pr 
Value of t 1.000 0.99788 0.99894 0.99986 0.99998 0.98259 

x BJIpt. values calculated values using various oc.bining rules 

Excess Gibbs functions/J mol- 1 

0.30 5.9 245.0 265.6 255.5 246.3 244.9 415.7 
0.50 7.0 270.9 295.6 283.2 272.3 270.8 474.2 
0.70 5.9 212.9 233.6 223.2 214.3 212.9 382.9 

Excess enthaleies/J mol- 1 

0.30 19.8 374.8 405.8 390.6 377.0 374.8 634.1 
0.50 22.3 403.0 439.2 421.1 405.1 403.0 706.4 
0.70 17.7 305.4 334.7 320.1 307.5 305.4 549.1 

Excess volumes/em3 mol- 1 

0.30 0.0484 2.0522 2.1410 2.0983 2.0602 2.0560 2.7927 
0.50 0.0513 2.2958 2.4069 2.3544 2.3041 2.2998 3.2272 
0.70 0.0378 1.8074 1.9033 1.8564 1.8157 1.8116 2.5990 

-'ftfO-PLUm- 'rIIBORY 

Excess Gibbs functions/J mol- 1 

0.30 5.9 123.6 144.3 133.9 125.1 123.9 293.8 
0.50 7.0 136.8 161.5 149.2 138.8 136.9 339.4 
0.70 5.9 107.4 128.0 117.9 109.0 107.5 277 .6 

Excess enthaleies/J mol- 1 

0.30 19.8 183.8 213.8 198.7 185.9 184.3 433.5 
0.50 22.3 197.2 232.6 215.0 200.0 197.5 491.7 
0.70 17.7 149.5 178.4 164.3 151.7 149.7 392.6 

Excess volumes/em3 mol- 1 

0.30 0.0484 0.9762 1.0647 1.0224 0.9838 0.9809 1.7010 
0.50 0.0513 1.0887 1.1950 1.1437 1.0960 1.0925 1.9722 
0.70 0.0378 0.8569 0.9457 0.9038 0.8623 0.8606 1.6068 

NOTE: The experimental values for the excess molar Gibbs functions were 
obtained at 279.95 K. 



TABLE 7.6 Prediction of excess functions via the principle of 
corresponding states. 
The 6-4 Brown parameters are used and calculations are based 
on critical temperatures and critical pressures. 
(l-x)-tetramethylmethane + x-tetramethylsilane at 283.15 K 

·ORB-rLUm· TIIBORY 

Combining rule: 
Value of t 

LB 
1.000 

8M W FH HY Pr 
0.99788 0.99894 0.99986 0.99998 0.98259 

z Bxpt. va1aes ca1cal.atecl va1uea ua:lnCJ various cc.b:ln:lnCJ ru1es 

Excess Gibbs functions/J mol- 1 

0.30 5.9 77.0 97.7 87.2 78.2 77 .3 248.4 
0.50 7.0 87.2 112.0 99.7 89.0 87.5 291.5 
0.70 5.9 70.1 91.0 80.7 71.6 70.7 241.7 

Excess enthal~ies/J 11101- 1 

0.30 19.8 113.6 143.6 128.4 115.3 113.9 365.3 
0.50 22.3 124.5 159.7 142.1 126.9 124.8 418.5 
0.70 17.7 96.6 125.3 111.0 98.5 97.1 335.9 

Excess volumes/em3 mol- 1 

0.30 0.0484 0.7857 0.8699 0.8250 0.7900 0.7816 1.4875 
0.50 0.0513 0.9048 1.0102 0.9533 0.9083 0.8984 1.7834 
0.70 0.0378 0.7313 0.8225 0.7727 0.7332 0.7265 1.4893 

·'.lWO-PLUm· 'l'IIBORY 

Excess Gibbs functions/J mol -1 

0.30 5.9 39.3 60.2 49.9 40.7 39.4 210.8 
0.50 7.0 44.6 69.5 57.2 46.2 44.9 248.9 
0.70 5.9 35.9 57.0 46.4 37.2 36.3 207.4 

Excess entha1fies/J mo1- 1 

0.30 19.8 54.4 84.2 69.3 56.4 54.5 301.9 
0.50 22.3 59.5 94.5 77 .0 61.7 59.8 351.1 
0.70 17.7 46.0 75.2 60.4 47.8 46.4 287.6 

Excess vo1umes/em3 mol- 1 

0.30 0.0484 0.3459 0.4310 0.3841 0.3504 0.3414 1.0514 
0.50 0.0513 0.3975 0.5009 0.4447 0.4022 0.3922 1.2578 
0.70 0.0378 0.3172 0.4050 0.3593 0.3226 0.3135 1.0526 

NOTE: The experimental values for the excess molar Gibbs functions were 
obtained at 279.95 K. 



TABLE 7.7 Prediction of excess functions via the principle of 
corresponding states. 
The 3-2 Brown parameters are used and calculations are based 
on critical temperatures and critical pressures. 
(1-x)-tetramethylmethane + x-tetramethylsilane at 283.15 K 

IOIIB-n.uml 'l'IIBORY 

Combining rule: LB 11M W FH HY Pr 
Value of C 1.000 0.99788 0.99894 0.99986 0.99998 0.98259 

lit BJtpt. va1uea ca1cul.atecl va1ues us:ing various ccabining ra1es 

Excess Gibbs functions/J mol- 1 

0.30 5.9 16.2 37.1 26.6 17.6 16.3 188.1 
0.50 7.0 18.8 43.7 31.2 20.4 18.9 223.3 
0.70 5.9 15.4 36.3 25.8 16.8 15.5 187.2 

Excess entha12ies/J mol- 1 

0.30 19.8 18.3 48.2 33.2 20.2 18.5 267.8 
0.50 22.3 20.1 54.9 37.4 22.3 20.3 310.7 
0.70 17,.7 15.4 44.0 29.6 17.3 15.7 252.8 

Excess volumes/em3 mol- 1 

0.30 0.0484 0.2235 0.3066 0.2652 0.2291 0.2242 0.9156 
0.50 0.0513 0.2603 0.3640 0.3124 0.2671 0.2613 1.1258 
0.70 0.0378 0.2156 0.3054 0.2597 0.2215 0.2159 0.9666 

1'!IfO-n.um I 'l'IIBORY 

Exces,s Gibbs functions/J mol- 1 

0.30 5.9 8.5 29.5 19.0 9.9 8.7 180.4 
0.50 7.0 9.9 34.8 22.4 11.6 10.1 214.5 
0.70 5.9 8.1 29.1 18.6 9.6 8.3 179.9 

Excess enthaleies/J mol- 1 

0.30 19.8 6.6 36.1 21.3 8.5 6.8 253.2 
0.50 22.3 7.0 41.8 24.3 9.3 7.2 297.1 
0.70 17.7 5.2 34.1 19.6 7.1 5.4 245.9 

Excess volumes/em3 mol- 1 

0.30 0.0484 0.0708 0.1551 0.1129 0.0764 0.0718 0.7762 
0.50 0.0513 0.0812 0.1841 0.1324 0.0875 0.0822 0.9394 
0.70 0.0378 0.0668 0.1551 0.1103 0.0724 0.0671 0.8017 

~: The experimental values for the excess molar Gibbs functions were 
obtained at 279.95 K. 
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TABLE 7.8 Prediction of excess functions via the principle of 
corresponding states. 
The Van der Waals parameters are used and calculations are 
based on critical temperatures and critical pressures. 
(1-x)-tetramethylmethane + x-tetramethylsilane at 283.15 K 

'ORB-PIDm' THBORY 

Combining rule: LB HM W FH HY Pr 
Value of t 1.000 0.99788 0.99894 0.99986 0.99998 0.98259 

K BKpt. values calculated values usinq various oa.bininq rules 

Excess Gibbs functions/J mol- 1 

0.30 5.9 -15.2 6.4 -4.4 -13.9 -15.0 161.8 
0.50 7.0 -17.8 7.1 -5.3 -16.1 -17.6 186.8 
0.70 5.9 -14.7 5.6 -4.5 -13.3 -14.5 152.3 

Excess enthal~ies/J mol- 1 

0.30 19.8 -31.6 -0.8 -16.2 -29.7 -31.4 224.5 
0.50 22.3 -36.5 -1.9 -19.2 -34.3 -36.2 251.9 
0.70 17.7 -29.8 -2.3 -16.0 -27.9 -29.5 198.7 

Excess volumes/em3 mol- 1 

0.30 0.0484 -0.1127 -0.0244 -0.0686 -0.1068 -0.1120 0.6249 
0.50 0.0513 -0.1335 -0.0319 -0.0827 -0.1267 -0.1327 0.7180 
0.70 0.0378 -0.1117 -0.0292 -0.0705 -0.1063 -0.1111 0.5779 

'ftO-PLUm' 'l'IIBORY 

Excess Gibbs functions/J mol- 1 

0.30 5.9 -7.1 14.1 3.5 -5.7 -6.9 167.4 
0.50 7.0 -8.3 16.6 4.1 -6.7 -8.1 196.4 
0.70 5.9 -6.9 13.8 3.4 -5.5 -6.7 162.6 

Excess enthalpies/J mol- 1 

0.30 19.8 -18.4 11.6 -3.4 -16.4 -18.2 232.1 
0.50 22.3 -21.4 13.4 -3.9 -19.1 -21.1 268.5 
0.70 17.7 -17.5 10.9 -3.3 -15.6 -17 .2 219.5 

Excess volumes/em3 mol- 1 

0.30 0.0484 -0.0985 -0.0114 -0.0549 -0.0926 -0.0977 0.6307 
0.50 0.0513 -0.1169 -0.0150 -0.0659 -0.1101 -0.1160 0.7369 
0.70 0.0378 -0.0981 -0.0139 -0.0560 -0.0925 -0.0975 0.6078 

NOTE: The experimental values for the excess molar Gibbs functions were 
---- obtained at 279.95 K. 
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TABLE 7.9 Selection and ranking of theories which compare best with 
experiment. The binary system is TfYl C. + Tms . The excess function 
values are for x - 0.5. 

Method 

GE/J mol- 1(at 279.95 K) 
Exprimemental 
PCS(RVC)-HM(1F) 
VdW-HM(2F) 
P1-HM(2F) 
G-HM( 1F) 
PCS(RVC)-W(2F) 
PCS(3,2)-LB(2F) 
PCS(3,2)-HY(2F) 
P2-HM( 1F) 

E -1 H /J mol (at 283.15 K) 
Experimental 
PCS(3,2)-FH(1F) 
P2-HM(2F) 
PCS(3,2)-HY(1F) 
PCS(3,2)-W(2F) 
PCS(3,2)-LB(1F) 
P1-HM(2F) 
G-HM(2F) 
G-HM( 1F) 
P2-HM( 1F) 

~/cm3 mol-'(at 283. 15K) 
Experimental 
PCS(3,2)-LB(2F) 
PCS(3,2)-HY(2F) 
PCS(3,2)-FH(2F) 
G-HM(2F) 
P2-HM(2F) 
G-HM( 1F) 
PCS(RVC)-HM(2F) 
P2-HM( 1F) 
P1-HM(2F) 

Value 

7.0 
7.1 
6.0 
9.0 
4.5 
4.1 
9.9 

10. 1 
3.7 

22.3 
22.3 
23.0 
20.3 
24.3 
20.1 
19.4 
25.3 
15.6 
14. , 

0.0513 
0.0812 
0.0822 
0.0875 
0.0032 

-0.0061 
-0.0098 
-0.0150 
-0.0192 
-0.0237 

IDeviation/ 

o 
O. 1 
1.0 
2.0 
2.5 
2.9 
2.9 
3. 1 
3.3 

o 
o 

0.7 
2.0 
2.0 
2.2 
2.9 
3.0 
6.7 
8.2 

o 
0.0299 
0.0309 
0.0362 
0.0481 
0.0574 
0.0611 
0.0663 
0.0705 
0.0750 
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TABLE 7.10 Selection and ranking of theories which compare best with 
experiment. The binary system is benzene+cyclohexane. The excess function 
values are for x - 0.5. 

Method Value IDeviation/ 

GE/J -1 mol (at 313.15 K) 

Experimental 300.5 0 
PCS(6,4)-Pr(2F) 295.6 4.9 
PCS(3,2)-Pr(1F) 259.8 40.9 
PCS(3,2)-Pr(2F) 245.1 55.4 
PCS(6,4)-Pr(1F) 360.6 60.1 
PCS(12,6)-HM(2F) 236.3 64.2 
PCS(RVC)-Pr(1F) 235.7 64.8 
PCS (RVC )-pr( 2F) 233.4 67.1 
PCS(12,6)-W(2F) 218.5 82.0 

E -1 H /J mol (at 298.15 K) 

Experimental 799.3 0 
PCS (12,6 )-Pr (1F) 569.4 229.9 
PCS(12,6)-HM(1F) 398.6 400.7 
PCS(12,6)-Pr(2F) 383.3 416.0 
PCS ( 1 2 , 6 ) -W ( 1 F ) 383.2 416.1 
PCS( 12,6 )-FH (1F) 367.8 431.5 
PCS(12,6)-LB(1F) 367.4 431.9 
PCS ( 12, 6 ) -HY ( 1 F) 367.4 431.9 
PCS(6,4)-Pr(1F) 323.3 476.0 

~ 3 -1 /om mol (at 298.15 K) 
Experimental 0.6432 0 
PCS(6,4)-Pr(lF) 0.6869 0.0437 
PCS(12,6)-HM(2F) 0.5917 0.0515 
PCS(12,6)-W(2F) 0.5690 0.0742 
PCS(12,6)-FH(2F) 0.5479 0.0953 
PCS(12,6)-LB(2F) 0.5476 0.0956 
PCS(12,6)-HY(2F) 0.5458 0.0974 
PCS(12,6)-Pr(2F) 0.8356 O. 1924 
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TABLE 7.11 Selection and ranking of theories which compare best with 
experiment. The binary system is cyclopentane+cyclohexane. The excess 
function values are for x = 0.5. 

Method 

GE/J mol- 1 (at 298.15 K) 
Experimental 
VdW-HM( 1F) 
G-HY(2F) 
P2-HY(2F) 
G-LB(2F) 
P1-HY(2F 
P2-LB(2F) 
VdW-HY(2F) 
VdW-FH(2F) 
P1-LB(2F) 
VdW-LB(2F) 
P1-HM( 1F) 
PCS(RVC) - Welt) 

E -1 H /J mol (at 298.15 K) 
Experimental 
PCS ( 3 , 2 ) -W ( 1 F ) 
G-HM(2F) 
PCS(3,2)-HM(2F) 
P2-HM(2F) 
PCS(3,2)-FH(1F) 
PCS(3,2)-W(2F) 
P1-HM(2F) 
PCS(3,2)-HM(1F) 
PCS(3,2)-FH(2F) 
VdW-HM(2F) 
PCS(3,2)-HY(1F) 
PCS(3,2)-LB(1F) 

VE/cm3 mol- 1(at 298.15 K) 
Experimental 
PCS(3,2)-HY(2F) 
PCS(3,2)-LB(2F) 
PCS(3,2)-FH(2F) 
PCS(3,2)-W(2F) 
PCS(3,2)-HM(2F) 
G-HM(2F) 
P2-HM(2F) 
P1-HM(2F) 

Value 

-4.0 
-3.6 
-4.7 
-5.0 
-5.5 
-5.5 
-5.8 
-6.0 
-1.9 
-6.1 
-6.5 
-1.2 
-0.4 

27.8 
25.8 
22.6 
35.6 
19.8 
18.0 
17.6 
15.8 
43.7 
9.8 
9.6 
9.0 
7.8 

0.0412 
0.0347 
0.0328 
0.0503 
0.0634 
0.0943 

-0.0324 
-0.0405 
-0.0558 

(Deviation( 

0 
0.4 
0.7 
1.0 
1.5 
1.5 
1.8 
2.0 
2. 1 
2. 1 
2.5 
2.8 
3.6 

0 
2.0 
5.2 
7.8 
8.0 
9.8 

10.2 
12.0 
15.9 
18.0 
18.2 
18.8 
20.0 

0 
0.0065 
0.0084 
0.0091 
0.0222 
0.0531 
0.0736 
0.0817 
0.0970 
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TABLE 7.12 Selection and ranking of theories which compare best experiment. 
The binary system is tetramethylmethane+cyclohexane at 298.15 K. The excess 
function values are for x = 0.5. 

Method Value IDeviationl 

HE/J mol 
-1 

Experimental 97.7 0 
VdW-Pr(2F) 89.4 B.3 
P1-FH( 1F) 111.4 13.7 
G-HM(2F) 81.6 16. 1 
G-W(2F) 81.4 16.3 
G-LB(2F) 81.2 16.5 
P2-HY(2F) 77.1 20.6 
VdW-Pr( 1F) 74.0 23.7 
VdW-FH(2F) 73.2 24.5 
G-HM( 1F) 69.9 27.8 
G-W( 1F) 69.B 27.9 
G-LB( 1F) 69.6 2B.1 
P1-FH(2F) 126.3 28.6 
P2-HM(2F) 66.9 30.8 
P2-W(2F) 66.7 31.0 
P2-LB(2F) 66.5 31.2 

vE/em3 Il101-
1 

Experimental -1.3306 0 
G-Pr ( 1F) -1.3581 0.0275 
P2-Pr( 1F) -1.3604 0.0298 
p1-Pr( 1F) -1. 3676 0.0370 
VdW-Pr( 1F) -1.4003 0.0697 
P1-FH( 1F) -1.4394 0.1016 
G-FH( 1F) -1.4346 0.1040 
P2-FH( 1F) -1.4353 0.1047 
VdW-LB(2F) -1.2189 0.1117 
VdW-W(2F) -1.2185 0.1121 
VdW-HM(2F) -1.2181 O. 1125 
G-LB(2F) -1.2144 0.1162 
G-W(2F) -1.2140 0.1166 
G-HM(2F) -1.2135 0.1171 
P2-LB(2F) -1. 2128 O. 1178 
P2-W(2F) -1.2123 0.1183 
P2-HM(2F) -1.2119 0.1187 
P1-LB(2F) -1.2117 O. 1189 
P1-W-(2F) -1.2112 0.1194 
P1-HM(2F) -1.2108 0.1198 
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TABLE 7.13 Selection and ranking of theories which compare best with 
experiment. The binary system is tetramethylsilane+cyclohexane at 298.15 K. 
The excess function values are for x = 0.5. 

Method Value I Deviation! 

HE/J mol -1 

Experimental 191. 1 0 
P2-HM( 1F) 191.9 0.8 
P1-FH( 1F) 189.2 1.9 
G-LB( 1F) 187.9 3.2 
G-HY( 1F) 196.6 5.5 
P2-FH(2F) 184.6 6.5 
G-Pr(2F) 184.1 7.0 
G-W( 1F) 203.4 12.3 
P2-W( 1F) 177.9 13.2 
G-FH(2F) 208.8 17.7 
P2-HY( 1F) 171.7 19.4 

VE/cm3 mol-
1 

Experimental -1.0944 0 
P1-FH(2F) -1.1666 0.0722 
P2-FH(2F) -1.1670 0.0726 
G-FH(2F) -1.1677 0.0733 
VdW-FH(2F) -1.1692 0.0748 
VdW-Pr(2F) -1.2251 0.1307 
P1-Pr(2F) -1. 230 1 0.1357 
P2-Pr(2F) -1.2333 0.1389 
G-Pr(2F) -1. 2354 O. 1410 
VdW-HM(2F) -1.2763 0.1819 
P1-HM(2F) -1.2883 0.1939 
P2-HM(2F) -1. 2940 0.1996 
G-HM(2F) -1. 2974 0.2030 
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Although excess Gibbs functions were obtained at 279.95 K, the calculations 

were carried out using 283.15 K as the temperature. The difference between 

GE values at these temperatures is not significant and the general 

conclusions are not affected. 

The function ~ must be mentioned at this point. This is defined in 

the manner 

••• (7.4) 

and its value is obtained from relations which define the various combining 

rules. ~ affects values of excess functions quite markedly and this 

explains the number of decimal places which appear in the tables. 

The compilation of tables of the nature 7.1 to 7.8 facilitated the 

analysis of comparison between experimental and theoretical values. Having 

observed that the skewness of experimental and theoretical values was the 

same in most instances, it was decided to use values at mole fraction of 

0.5 as the basis of comparison. The theories which gave the best match 

between experiment and theory were then extracted. A rank order for such 

theories was made. Tables 7.9 to 7.13 show the ranked results of the 

mixtures that were studied. 
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7.4 COlICLUSIORS 

From this work it is inadvisable to make definite statements 

regarding theories which give the best predictions for mixtues. This is 

because it is considered that the number of systems is too few to warrant 

conlusions of that nature. It is considered more fruitful to discuss the 

binary systems separately. 

(1-z)-tetr_thyt.8thaDe + x-tetr_thylsi.lane 

From experimental data, this binary system deviates slightly from 

ideal behaviour. Thus it may be argued that the system offers a rigorous 

test to the various theories. From the outset, it is reported that theories 

based on PCS(12,6) and PCS(6,4) give values that are extremely large 

compared to experimental data. This applies to all the excess functions. 

The two-fluid based theories generally give better predictions than their 

one-fluid counterparts. This is even the case in those situations where the 

predicted values are wayward. 

From Table 7.9, the excess functions are predicted well especially if 

one takes into account the relative slight deviation of the system from 

ideality. The HM combining rules feature prominently particularly in those 

theories which are based on analytical equations of state. Also, if the 

same set of theories is considered, it can be seen that values of excess 

functions increase as the value of n is raised in those equations of state 

represented by equation (6.6). This is for both the one-fluid and the 

two-fluid models. For example, VdW-HM(2F) predicts GE to be 6.0 J mol- 1 and 

P1-HM(2F) gives 9.0 J mol- 1 as the predicted GE value. This pattern is 

followed in all the other combining rules1 the exception are the LB set of 

rules. 

(1-z)-benaene + x-c::xclohenDe 

It can be seen from Table 7.10 that the analytical equations of state 

do not feature amongst those which give better predictions. They produce 

values which are very much lower than experimental values. With regards to 

p.c.s based theories, the following points can be made. For all the excess 
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functions, the values from the one-fluid model are greater than those from 

the two-fluid model. In the case of GE, the values from the one-fluid model 

in which the PCS(12,6) equation of state is used are considerably greater 

than experiment. In the case of PCS(6,4), they are of moderate magnitude 

but lower than the experimental value. 

A recurring feature of the work on prediction was the magnitude of 

excess functions obtained when the Pr combining rules were employed. 

Generally, relatively large values were obtained. Thus when other combining 

rules would give low GE values with PCS(6,4) theories for the two-fluid 

model, the Pr based values are large enough. In part, this explains the 

relative position of PCS(6,4)-Pr(2F) in Table 7.10. A similar argument 

could be used to account for PCS(3,2)-PR(1F) and PCS(3,2)-Pr(2F). The 

relative positions of PCS(12,6)-HM(2F) and PCS(12,6)-W(2F) could be 

explained in terms of being hybrid situations of the following 

considerations: 

(a) PCS(12,6) renders predicted values to be large, 

(b) the two-fluid based theories give low values for this binary 

system, and 

(c) all combining rules, other than Pr, give low values. 

Excess enthalpies are predicted poorly. The values are low compared 

to experiment. This is the case even with PCS(12,6}. The picture is 

somewhat different with respect to excess volumes. Values obtained from 1F 

theories of the PCS(12,6) variety are quite large, values of greater than 

1.2 em3 mol- 1 being common. The 2F theories based on PCS(12,6) furnish 

results which compare fairly well with experiment. Values predicted by 

PCS(6,4), PCS(3,2) and PCS(RVC) are low. The exception is PCS(6,4)-Pr(1F)i 

this is line with the observation that theories in which Pr combining rules 

are used produce relatively large values. 



( 1-z)-c::yc1opentane+r-cyc1ohexane 

This binary system, like the tetramethylmethane+tetramethysilane 

system, shows slight deviation from ideality. The general impression from 

Table 7.11 is of a good comparison between experiment and theoretical 

predictions. GE seems to be predicted best by the analytical equations of 

state whereas HE and VE are predicted better by the p.c.s. 

With respect to ~ prediction, the p.c.s results give poor 

comparison. The values obtained are extremely large. Only a few PCS(RVC) 

combinations give reasonable predictions. From the table, theories based on 

the two-fluid model give better predictions than their one-fluid 

counterparts. However, the latter give reasonable predictions as well. If 

theories based on VdW equation of state are considered, it is found that, 

with the exception of Pr theories, the worst deviation is 13.7 J mol- 1• 

When Pr combining rules are used, the predicted values are considerably 

larger than experimental values. 

HE is predicted reasonably by PCS(3,2) theories. Values obtained from 

PCS(12,6) and PCS(6,4) are rather large and those from PCS(RVC) are rather 

loW. Values from the analytical equations of state are moderate in 

magnitude but tend to be lower than the experimental values. The prediction 

of VE does not seem to be as impressive as for the other themodYnamic 

functions. The prediction pattern follows the same trend as HE prediction 

with respect to the various equations of state. 

( 1-z)-tetr_thyblet:lume+2-cyc1oheKaDe 

It can be seen from Table 7.12 that thoeries based on the p.c.s do 

not feature in the prediction of HE and VEe This is because values obtained 

from such theories are generally much lower than experimental values. The 

HE values are excessively negative; the most positive has a value of -302 

J mol- 1, and is obtained from PCS(12,6)-Pr(2F). vE values from p.c.s 

theories are also negative, with those obtained from one-fluid theories 

being much more negative than those from two-fluid theories. It must be 

pointed out, however, that the prediction of vE is moderately good. For 
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example, quite a number of theories which do not appear in the table 

produce values which deviate by about 0.22 cm3 mol- 1• An interesting 

feature of the predictions is that, for HE and VE, two-fluid theories 

produce values which are greater than those from one-fluid theories whereas 

the situation is reversed in the prediction of GE. Unfortunately, lack of 

experimental QE data precludes any meaningful discussion. 

( 1-z)-t:etr_thy18il.ane+z-cycl.ohexane 

As in the previous system, theories based on p.c.s do not feature 

prominently in the prediction of HE and VEe Values obtained from these 

theories are very low. However, some PCS(12,6) combinations produce 

moderate values. This is particularly the case with VE prediction. The 

theories depicted in Table 7.13 give very good predictions of HE and fair 

predictions for VEe There does not seem to be a pattern in HE prediction. 

The VE prediction is dominated by the two-fluid model in which the 

combining rules FH, Pr, and HM play an active role. 
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APPENDICES: LISTINGS OF COMPUTER PROGRAMS 

APPENDIX 1 

The program is a general program for solution of linear equations by 

least squares. The routine for matrix inversion was adopted from a book by 

T.R. Mccalla. [The reference is given in SUBROUTINE MATNVS of the program 

listed in Appendix 5. Also, all matrix inversions routines are based on 

that source.] 



C PROGRAM GENERAL 
C THIS IS A GENERAL FITTING ROUTINE 

REAL JCB,EPS 
DIMENSION Z(40),X(40),W(40),JCB(40,40),TRSJCB(40,40),P(40), 

1WTN(40,40),ZET(40,10),WTNZ(40,10),TRWTNZ(40,10),WTNJCB(40,40), 
2TRWTJC(40,40),COLVEC(40,10),REMAT(40,40),A(10),B(10),ZC(40) 
3,ZDEV(40) 

WRITE(4,*) 
WRITE(4,*)"TYPE IN ~LUE OF J1." 
WRITE(4,*)"J1 IS A SWITCH W.R.T. STATISTICAL WEIGHTING OF DATA" 
WRITE(4,*)"FOR NON-WEIGHTED ANALYSIS, J1 = 1." 
WRITE(4,*)"FOR WEIGHTED ANALYSIS, J1 = 2." 
WRITE(4,*) 
READ(3,*)J1 
WRITE(4,*) 
WRITE(4,*)J1 
WRITE(4,*) 
WRITE (4, *) "TYPE IN NUMBER OF Pl'S. & COEFFS & CONST" 
WRITE(4,*) 
READ(3,*)N,M,EPS 
WRITE(4,*) 
WRITE (4, *) "TYPE IN Z & X VALUES & WTS" 
WRITE(4,*) 
READ(3,*)(Z(I),X(I),W(I),I=1,N) 
WRITE(4,*) 
CALL MAINP(Z,P,X,W,JCB,TRSJCB,WTN,ZET,WTNZ,TRWTNZ,WTNJCB,TRWTJC, 

1 REMAT,N,M,L,EPS,COLVEC,M1,A,B,ZC,STDEV,J1,ZDEV) 
STOP 
END 

SUBROUTINE MAINP(Z,P,X,W,JCB,TRSJCB,WTN,ZET,WTNZ,TRWTNZ,WTNJCB, 
1 TRWTJC,REMAT,N,M,L,EPS,COLVEC,M1,A,B,ZC,STDEV,J1,ZDEV) 
REAL JCB 
DIMENSION Z(N),X(N),W(N),JCB(N,M),TRSJCB(M,N),WTN(N,N),ZET(N,M), 

1 WTNZ(N,M),TRWTNZ(N,M),WTNJCB(N,M),TRWTJC(M,M),REMAT(M,M) 
2,COLVEC(M,M),P(N),A(M),B(M),ZC(N),ZDEV(N) 

IF (J1.EQ.1) GO TO 4 
MP1 - M + 1 
DO 40 M1 = 1,MP1 

4 CONTINUE 

C SET UP A JACOBIAN MATRIX,JCB 
DO 5 I - 1,N 
DO 5 J :0: 1,M 
A(J) :0: X(I)**(J-1) 
B(J) = A(J) 

5 JCB(I,J) - B(J) 
6 CONTINUE 

C GENERATE TRANSPOSE OF THE JACOBIAN MATRIX,TRSJCB 
DO 10 J - 1,M 
DO 10 I - 1,N 
TRSJCB(J,I) - JCB(I,J) 

10 CONTINUE 



C GENERATE THE WEIGHTING MATRIX WTN--A DIAGONAL MATRIX 
IF (J1.EQ.1) GO TO 11 
IF (M1.EQ.1) GO TO 11 
CALL EQUFIT(COLVEC,P,Z,X,A,B,N,M,ZC,STDEV,ZDEV) 

11 DO 15 I = 1, N 
DO 15 K = 1,N 
IF (J1.EQ.1) GO TO 12 
IF (Ml.EQ.l) GO TO 12 
IF (Jl.NE.1) GO TO 13 

12 WTN(I,K) = WeI) 
GO TO 14 

13 WTN(I,K) = W(I)/(STDEV**2) 
14 IF (K.NE.I) WTN(I,K) = 0.0 
15 CONTINUE 

C GENERATE THE EXPERIMENTAL DATA COLUMN VECTOR ZET 
DO 20 I =l,N 
P(I) = Z(I) 
ZET(I,l) - P(I) 

20 CONTINUE 

C DO THE PRODUCT OF THE MATRICES WTN(W) AND ZET(Z) TO OBTAIN WTNZ 
CALL MATMUL(WTN,ZET,WTNZ,N,N,1) 

c DO THE PROUCT OF THE MATRICES TRSJCB(JT) AND WTNZ(WZ) TO OBTAIN 
C TRWTNZ. 

CALL MATMUL(TRSJCB,WTNZ,TRWTNZ,M,N,1) 
C DO THE PRODUCT OF THE MATRICES WTN(W) AND JCB(J) TO OBTAIN WTNJCB 

CALL MATMUL(WTN,JCB,WTNJCB,N,N,M) 
C DO THE PRODUCT OF THE MATRICES TRSJCB(JT) WTNJCB(WJ) TO OBTAIN 
C TRWTJC. 

CALL MATMUL(TRSJCB,WTNJCB,TRWTJC,M,N,M) 
C INVERT THE RESULTING MATRIX TRWTJC(MXM) 

IFAIL = 0 
CALL MATNVS(TRWTJC,REMAT,M,EPS,IFAIL) 
IF (IFAIL.EQ.1) GO TO 29 

C THE COLUMN VECTOR,COLVEC,IS THEN OBTAINED BY PREMULTIPLYING 
C THE MATRIX TRWTN2 (JT. W. Z ) BY THE INVERSE OF TRWTJC ( JT • W. J) , 
c WHICH WE CALL REMAT. 

CALL MATMUL(REMAT,TRWTNZ,COLVEC,M,M,1) 
WRITE(4,*) 

40 CONTINUE 
WRITE(4,*) 
DO 25 J = 1,M 
WRITE(4,*) "COEFFICIENT",J, "=", COLVEC(J,1) 

25 CONTINUE 
WRITE(4,*) 
CALL EQUFIT(COLVEC,Z,P,X,A,B,N,M,ZC,STDEV,ZDEV) 
WRITE(4,*) 
WRITE(4,270) 
DO 27 I = 1,N 
WRITE(4,280)X(I),Z(I),ZC(I),ZDEV(I) 

27 CONTINUE 
WRITE(4,290) 
WRITE(4,300)STDEV 

270 FORMAT(5X,66H RTPLUSBPDIVP EXPT DV VALUE 
1 DIFFERENCE ,II) 

280 FORMAT(6X,E13.6,4X,E13.6,4X,E13.6,5X,E13.6/) 
290 FORMAT(/10X,10H STD.DEV.-) 
300 FORMAT(22X,E13.6) 

CALC DV VALUE 



29 CONTINUE 
RETURN 
END 

SUBROUTINE MATMUL(A,B,C,N,L,M) 
C THIS IS AN F.A.HEWITT VERSION 

DOUBLE PRECISION MAT 
DIMENSION A(N,L),B(L,M),C(N,M) 
DO 50 I = 1,N 
DO 50 K = 1,M 
MAT = 0.0 
00 45 J = 1,L 
MAT = A(I,J)*B(J,K) + MAT 

45 CONTINUE 
C(I,K) = MAT 

50 CONTINUE 
RETURN 
END 

SUBROUTINE MATNVS(A,B,M,EPS,IFAIL) 
REAL EPS 
DIMENSION A(M,M),B(M,M) 
DOUBLE PRECISION DET 

C CONSTRUCT AN IDENTITY MATRIX B(I,J) = I 
DO 68 I = 1,M 
DO 66 J = 1,M 
IF (I-J) 64,62,64 

62 B(I,J) = 1.0 
GO TO 66 

64 B(I,J) = 0.0 
66 CONTINUE 
68 CONTINUE 

C LOCATE MAXIMUM MAGNITUDE A(I,K) ON OR BELOW MAIN DIAGGONAL 
DET = 1.0 
00 100 K - 1,M 
IF (K-M) 70,86,86 

70 IMAX = K 
AMAX - ABS(A(K,K» 
KP1 = K + 1 
DO 76 1= KP1,M 
IF (AMAX-ABS(A(I,K») 72,76,76 

72 IMAX = I 
AMAX = ABS(A(I,K» 

76 CONTINUE 
C INTERCHANGE ROWS !MAX AND K IF !MAX IS NOT EQUAL TO K 

IF (IMAX-K) 78,86,78 
78 00 80 J = 1,M 

ATMP = A(IMAX,J) 
A(IMAX,J) = A(K,J) 
A(K,J) = ATMP 
BTMP = B(IMAX,J) 
B(IMAX,J) = B(K,J) 

80 B(K,J) = BTMP 
DET = -DET 

86 CONTINUE 
C TEST FOR SINGULAR MATRIX 

IF (ABS(A(K,K»-EPS) 104,104,88 
88 DET = A(K,K)*DET 



C DIVIDE PIVOT ROW BY ITS MAIN DIAGONAL ELEMENT 
DIV = A(K,K) 
00 90 J = 1,M 
A(K,J) :: A(K,J)/DIV 

90 B(K,J) = B(K,J)/DIV 
c REPLACE EACH ROW BY LINEAR COMBINATION WITH PIVOT ROW 

DO 98 I = 1,M 
AMULT = A(I,K) 
IF (I-K) 92,98,92 

92 00 96 J = 1,M 
A(I,J) :: A(I,J)-AMULT*A(K,J) 

96 B(I,J) = B(I,J)-AMULT*B(K,J) 
98 CONTINUE 

100 CONTINUE 
GO TO 112 

104 WRITE(4,110) K 
IFAIL == 1 
GO TO 112 

110 FORMAT(25H SINGULAR MATRIX FOR K =,12) 
112 RETURN 

END 

SUBROUTINE EQUFIT(COLVEC,P,Z,X,A,B,N,M,ZC,STDEV,ZDEV) 
DIMENSION OOLVEC(M,1),Z(N),X(N),A(M),B(M),P(N),ZC(N) 

1,ZDEV(N) 
SUMSQ = 0.0 
DO 35 I =1,N 
ZCALC == 0.0 
DO 32 J == 1,M 
A(J) = X(I)**(J-1) 
B(J) = A(J) 
SUM = COLVEC(J,1)*B(J) 

32 ZCALC == ZCALC + SUM 
ZC( I) == ZCALC 
ZDEV(I) == Z(I) - ZC(I) 

35 SUMSQ E SUMSQ + ZDEV(I)**2 
STDEV = SQRT(SUMSQ/(N-M» 
RETURN 
END 



A·2 
APPENDIX 2 

This program was used for converting heights of mercury in the DPBP 

manometers into pressure and volume readings. Corrections for 

(a) expansivity of cathetometer, 

(b) mercury density, and 

(c) acceleration due to local gravity are taken into account. 



C PROGRAM • PEEVEE 

C PROGRAM FOR CALCULATING PRESSURE-VOLUME ISOTHERMS USING 
C DATA FROM CATHETOMETER READINGS 

REAL LOCALG 
DIMENSION H1(40),H2(40),H3(40),H4(40),RMT(40),VHT(40), 

1PHT(40),DELTAV(40),VOLUME(40),PRESHA(40) 
WRlTE(4,*) 
WRlTE(4,*)"TYPE IN NO. OF PTS; PI; AND REF. VOL" 
WRITE(4,*)"S.06670, the value for REFVOL, was calculated using" 
WRlTE(4,*)"71.248 em as the reference height. Thus volumes have" 
WRITE(4,*) "to be readjusted if different reference mark heights" 
WRITE(4,*)"are used." 
WRlTE(4,*) 
READ(3,*)N,PI,REFVOL 
WRITE(4,*) 
WRITE (4, *) "TYPE IN VALUE FOR REFERENCE MARK HEIGHT, HR" 
WRITE(4,*) 
READ(3,*)HR 
WRlTE(4,*) 
WRlTE(4,*)"TYPE IN STD. ROOM TEMP. AND BATH TEMP" 
WRITE(4,*) 
READ(3,*)SRMT,TMT 
WRITE(4,*) 
WRlTE(4,*)"TYPE IN ALPHA AND BETA" 
WRlTE(4,*) 
READ(3,*)ALPHA,BETA 
WRITE(4,*) 
WRITE(4,*)"TYPE IN DENSITY OF HG AT 20 AND LOCAL G VALUE" 
WRITE(4,*) 
READ(3,*)ROHG20,LOCALG 
WRlTE(4,*) 
WRITE(4,*)"TYPE IN ROOM TEMP,HT1,HT2,HT3,AND HT4" 
WRITE (4, * ) "THE REAL THING--KNOW WHAT I MEAN" 
WRlTE(4,*) 
READ(3,*)(RMT(I),H1(I),H2(I),H3(I),H4(I),I=1,N) 
WRlTE(4,*) 
WRlTE(4,*) 
WRITE (4, *) " VOLUME/ cu. cm PRESSURE/Pa" 
WRlTE(4,*) 
DELVOL - (71.248 - HR)*PI 
ADJVOL - REFVOL + DELVOL 
DO 20 I - 1,N 
VRT(I) - (HR-H1(I»*(1.0+ALPHA*(RMT(I)-SRMT» 
PHT(I) - (H2(I)-H1(I)+H4(I)-H3(I»*(1.0+ALPHA*(RMT(I)-SRMT» 
DELTAV(I) - PI*VHT(I) 
VOLUME (I) - ADJVOL + DELTAV (I) 
PRESHA(I) - ROHG20*LOCALG*PHT(I)/(100.0*(1.0+BETA*(TMT-SRMT») 
WRlTE(4,15)VOLUME(I),PRESHA(I) 

15 FORMAT(3X,E15.6,9X,E13.6/) 
20 CONTINUE 

STOP 
END 



,4.3 

APPENDIX 3 

This is the program for the dew point-bubble point method. 



C THIS PROGRAM DEALS WITH DATA ANALYSIS FROM THE PD-PB 
C EXPERIMENT. 
C PR(J),J-1 OR 2 - VAPOUR PRESSURE OF EITHER OOMPT AT T 
C PB ( I, 1) .. EXPERIMENTAL BUBBLE POINT PRESSURE 
C PO ( I, 1) = EXPERIMENTAL DEW POINT PRESSURE 
C P ( I , 1) = EST. OR CALC. BUBBLE POINT PRESSURE 
C P ( I , 2) .. EST. OR CALC. DEW POINT PRESSURE 
C XL(I,l) :I: X(I) ••• LIQUID COMPOSITION AT P(I,1) 
C XL(I,2) .. Z(I) ••• LIQUID COMPOSITION AT P(I,2) 
C XV(I,1) II: Y(I) ••• VAPOUR COMPOSITION AT P(I,1) 
C XV(I,2) = X(I) ••• VAPOUR COMPOSITION AT P(I,2) 
C PC(R, 1) .. THIS !:'yANTITY REPRESENTS CALCULATED 
C BUBBLE OR DEW POINT PRESSURES; USING TRIAL VALUES OF 
C X, Y ,Z, AND A(L). 

C XL(I,1),XL(I,2);XV(I,1);XV(I,2) ••• MOLE FRACTIONS OF 
C COMPONENT 2. THEY ARE TRIAL VALUES WHICH ARE USED IN 
C THE FIRST CYCLE OF THE CALCULATION. PROGRAM 
C .PHASDIAG(SEE ELSEWHERE) IS USED IN THE ESTIMATION 
C OF THE MOLE FRACTIONS AND THE PRESSURES. 
C LIQUID COMPOSITION AT THE BUBBLE POINT = VAPOUR 
C COMPOSITION AT THE DEW POINT. 

C A(L),L=1,M ••• REDLICH-KISTER COEFFICIENTS. 
C AIMP(L),L=l,M ••• IMPROVED REDLICH-KISTER COEFFICIENTS 

COMHON/PDDATA/P(40,2),XL(40,2),XV(40,2),CJB(40,40),PR(4) 
COMHON/PDEXT/A(10),V(4),B(4) 
COMMON/LOOPVL/N,M1,MMAX,NCYMAX 
COMMON/LOOPVR/B11,B22,B12,T,EPS,RC 
INTEGER R,Q 
REAL JCB, EPS 
DIMENSION PC(40,4),PB(40,4),PD(40,4),X(40,2),Y(40,2), 

1Z(40,2),W(40),JCB(40,40),TRSJCB(40,40),WTN(40,40), 
2ZET(40,4),WTNZ(40,40),TRWTNZ(40,40),WTNJCB(40,40), 
3TRWTJC(40,40),REMAT(40,40),COLVEC(40,4),AIMP(10),CAXSGX(40), 
4CAXSGZ(40),XMFRSM(10),ZMFRSM(10),XSMU1(10),XSMU2(10), 
5XSG(40),XPXSGX(40),XPXSGZ(40),DFXSGX(40),DFXSGZ(40) 

WRITE(4,*) 
WRITE(4,*) 
WRITE(4,*) 
WRITE(4,*)"TYPE IN N,M1,EPS,NCYMAX, AND MMAX" 
WRITE(4,*)"Ml .. 1, IF VIRIAL COEFFS ARE KNOWN" 
WRITE(4,*) 
READ(3,*)N,M1,EPS,NCYMAX,MMAX 
WRITE(4,*) 
WRITE(4,*)"TYPE IN P1 AND P2 AND DESIRED STD.DEV " 
WRITE(4,*) 
READ(3,*)P1,P2,STDDEV 
WRITE(4,*) 
WRITE ( 4 , *) "TYPE IN EXPERIMENTAL PB AND PO VALUES" 
WRITE(4,*) 
DO 1 I 11& 1,N 
READ(3,*)PB(I,1),PD(I,1) 
CONTINUE 
WRITE(4,*) 
WRITE(4,*)"TYPE IN VAP. PRESS. OF PURE SUBS" 
WRITE(4,*) 
READ(3,*)(PR(K),K-l,2) 
WRITE(4,*) 



WRITE(4,*)"TYPE IN LIQUID MOLAR VOLUMES" 
WRITE(4,*) 
READ ( 3 , * ) (V ( K) , K= 1 , 2 ) 
WRITE(4,*) 
WRITE (4, * ) "TYPE IN VIRIAL COEFFS OF PURE SUBS" 
WRITE(4,*) 
READ(3,*)(B(K),K=1,2) 
WRITE(4,*) 
WRITE (4, *) "TYPE IN THE VIRIAL COEFFICIENTS" 
WRITE(4,*) 
READ(3,*)B11,B22,B12 
WRITE(4,*) 
WRITE(4,*)"TYPE IN TEMPERATURE AND GAS CONSTANT" 
WRITE(4,*) 
READ(3,*)T,RC 
WRITE(4,*) 
WRITE(4,*)"TYPE IN PB,PD,X,Y,Z,X" 
WRITE(4,*) 
DO 2 I - 1,N 
READ(3,*)P(I, 1),P(I,2),XL(I, 1),XV(I, 1),XL(I,2),XV(I,2) 

2 CONTINUE 
WRITE(4,*) 
WRITE(4,*)"TYPE IN MMAX VALUES OF A(L)" 
WRITE(4,*) 
READ(3,*) (A(L),L=1,MMAX) 
WRITE(4,*) 
WRITE(4,*)"TYPE IN THE WEIGHTS" 
WRITE(4,*) 
READ(3,*)(W(I),I-1,4*N) 
WRITE(4,*) 
WRITE(4,*) 
CALL MAINP(PB,PD,X,Y,Z,I,K,J,L,STDDEV,COLVEC,R,Q,JCB,TRSJCB, 

1WTN,PC,ZET,W,WTNZ,TRWTNZ,WTNJCB,TRWTJC,REMAT, 
2NT4,NT3PM,AIMP,CAXSGX,CAXSGZ,XMFRSM,ZMFRSM,XSMU1,XSMU2,XSG, 
3XPXSGX,XPXSGZ,DFXSGX,DFXSGZ) 

STOP 
END 

SUBROUTINE MAINP(PB,PD,X,Y,Z,I,K,J,L,STDDEV,COLVEC,R,Q,JCB, 
1TRSJCB,WTN,PC,ZET,W,WTNZ,TRWTNZ,WTNJCB,TRWTJC,REMAT, 
2NT4,NT3PM,AIMP,CAXSGX,CAXSGZ,XMFRSM,ZMFRSM,XSMU1,XSMU2,XSG, 
3XPXSGX,XPXSGZ,DFXSGX,DFXSGZ) 

REAL JCB 
INTEGER R,Q 
CQMMON/PDDATA/P(40,2),XL(40,2),XV(40,2),CJB(40,40),PR(4) 
COMMON/PDEXT/A(10),V(4),B(4) 
CQMMON/LOOPVL/N,M1,MMAX,NCYMAX 
COMMON/LOOPVR/B11,B22,B12,T,EPS,RC 
DIMENSION PC(40,4),PB(40,4),PD(40,4),X(40,2), 

1Y(40,2),Z(40,2),W(40),JCB(40,40),TRSJCB(40, 
240),WTN(40,40),ZET(40,4),WTNZ(40,4),TRWTNZ 
3(40,40),WTNJCB(40,40),TRWTJC(40,40), 
4REMAT(40,40),COLVEC(40,4),AIMP(10),CAXSGX(40), 
SCAXSGZ(40),XMFRSM(10),ZMFRSM(10),XSMU1(10),XSMU2(10),XSG(40), 
6XPXSGX(40),XPXSGZ(40),DFXSGX(40),DFXSGZ(40) 

DO 42 M - 1,MMAX 
DO 40 NCY - 1, NCYMAX 
IF (NCY.EQ.l) GO TO 3 
DO 38 I - l,N 



XL(I,1) = X(I,1) 
XV(I,1) '"' Y(I,1) 
XL(I,2) '"' Z(I,1) 
XV(I,2) .. XCI, 1) 

38 CONTINUE 
DO 39 L ... 1,M 
A(L) '" AIMP(L) 

39 CONTINUE 

3 M2'" M1 - 1 
NT3PM = 3*N + M2 + M 
NT4 - 4*N 

C SET UP THE JACOBIAN MATRIX 
6 CALL PARDEV(M,N,M1,B11,B22,B12,T,R,Q,JCB) 
5 CONTINUE 

C GENERATE TRANSPOSE OF THE JACOBIAN MATRIX,TRSJCB 
DO 10 Q = 1,NT3PM 
DO 10 R = 1,NT4 
TRSJCB(Q,R) ... JCB(R,Q) 

10 CONTINUE 

C GENERATE THE WEIGHTING MATRIX WTN--A DIAGONAL MATRIX 
DO 15 11 ... 1,NT4 
DO 15 K1 = 1,NT4 
WTN(I1,K1) ... W(I1) 
IF (K1.NE.I1) Wl'N(I1,K1) = 0.0 

15 CONTINUE 

C GENERATE THE EXPERIMENTAL DATA COLUMN VECTOR ZET 

CALL PCALC(M,PC,ZET) 

C DO THE PRODUCT OF THE MATRICES WTN(W) AND ZET(Z) TO OBTAIN WTNZ 
CALL MATMUL(WTN,ZET,WTNZ,NT4,NT4,1) 

c 00 THE PROUCT OF THE MATRICES TRSJCB(JT) AND WTNZ(WZ) TO OBTAIN 
C TRWTNZ. 

CALL MATMUL(TRSJCB,WTNZ,TRWTNZ,NT3PM,NT4, 1) 
c DO THE PRODUCT OF THE MATRICES WTN(W) AND JCB(J) TO OBTAIN WTNJCB 

CALL MATMUL(WTN,JCB,WTNJCB,NT4,NT4,NT3PM) 
C 00 THE PRODUCT OF THE MATRICES TRSJCB(JT) WTNJCB(WJ) TO OBTAIN 
c TRWTJC. 

CALL MATMUL(TRSJCB,WTNJCB,TRWTJC,NT3PM,NT4,NT3PM) 
C INVERT THE RESULTING MATRIX TRWTJC(MXM) 

IFAIL - 0 
CALL MATNVS(TRWTJC,REMAT,NT3PM,EPS,IFAIL) 
IF (IFAIL.EQ.1) GO TO 29 

C THE COLUMN VECTOR,COLVEC,IS THEN OBTAINED BY PREMULTIPLYING 
C THE MATRIX TRWTNZ(JT.W.Z) BY THE INVERSE OF TRWTJC(JT.W.J), 
C WHICH WE CALL REMAT. 

CALL MATMUL(REMAT,TRWTNZ,COLVEC,NT3PM,NT3PM,1) 
SMXSGX '"' 0.0 
SMXSGZ ... 0.0 
DO 18 I - 1,N 
Q - 3*(1-1) 
X(I,1) - XL(I,1) + COLVEC(Q+1,1) 
Y(I,1) - XV(I,1) + COLVEC(Q+2,1) 
Z(I,1) - XL(I,2) + COLVEC(Q+3,1) 



RlCXSUM = 0.0 

RICZSUM = 0.0 
DO 7 L = 1,M 

Q = 3*N + L 
AIMP(L) - A(L) + OOLVEC(Q,1) 
XMFRSM(L) = AIMP(L)*(1.0-2.0*X(I,1»**(L-1) 
ZMFRSM(L) = AIMP(L)*(1.0-2.0*Z(I,1»**(L-1) 
RlCXSUM = XMFRSM (L) + RKXSUM 
RICZSUM = ZMFRSM(L) + RKZSUM 

7 CONTINUE 
CAXSGX(I) = RC*T*X(I,1)*(1.0-X(I,1»*RKXSUM 
CAXSGZ(I) - RC*T*Z(I,1)*(1.0-Z(I,1»*RKZSUM 
X(I,1) 0: X(I,1) 
X(I,2) = Z(I,1) 
Y(I,1) = Y(I,1) 
Y(I,2) = X(I,1) 
DO 27 J - 1,2 
XSMU1(J) = RC*T*ALOG(P(I,J)*(1.0-Y(I,J»/(PR(1)*(1.0-X(I,J»» 

1+ (B(1)-V(1»*(P(I,J)-PR(1» + P(I,J)*Y(I,J)**2* 
2(2.0*B12 - B11 - B22) 

XSMU2(J) = RC*T*ALOG(P(I,J)*Y(I,J)/(PR(2)*X(I,J») 
1+ (B(2)-V(2»*(P(I,J)-PR(2» + P(I,J)*(1.0-Y(I,J»**2* 
2(2.0*B12 - B11 - B22) 

XSG(J) = (1.0-X(I,J»*XSMU1(J) + X(I,J)*XSMU2(J) 
27 CONTINUE 

XPXSGX(I) = XSG(1) 
XPXSGZ(I) - XSG(2) 
DFXSGX(I) - (XPXSGX(I)-CAXSGX(I»**2 
DFXSGZ(I) = (XPXSGZ(I)-CAXSGZ(I»**2 
SMXSGX = DFXSGX(I) + SMXSGX 
SMXSGZ - DFXSGZ(I) + SMXSGZ 

18 CONTINUE 
RMXSGX = SQRT(SMXSGX/FLOAT(N-1» 
RMXSGZ = SQRT(SMXSGZ/FLOAT(N-1» 
CALL SIGMAP(STDZP,M,PC,ZET) 
IF (STDZP.GE.STDDEV) GO TO 40 
NCYMAX = NCY 
MMAX = M 

40 CONTINUE 
42 CONTINUE 

WRITE(4,*) 
WRITE(4,*) 
WRITE(4,*)"SOLUTION TO THE EQUATIONS" 
WRITE(4,*) 

WRITE(4,*) 
00 23 L = 1,M 
WRITE(4,*)"REDLICH-KISTER COEFFICIENT",L, AIMP(L) 

23 CONTINUE 
WRITE(4,*) 
WRITE(4,*) 
WRITE(4,22) 

22 FORMAT(6X,90H BUBBLE PT. DEW POINT XL(I,1) XV(I,1) 
1 XPXSGX CAXSGX XPXSGZ CAXSGZ /) 

DO 28 I = 1,N 
WRITE(4,*) 
WRITE(4,24)PB(I,1),PD(I,1),X(I,1),Y(I,1),Z(I,1),XPXSGX(I), 

1CAXSGX(I),XPXSGZ(I),CAXSGZ(I) 

XL(I,2) 

24 FORMAT(5X,F10.1,3X,F10.1,3X,F7.4,3X,F7.4,3X,F7.4,4X,F6.1,3X,F6.1, 
13X,F6.1,3X,F6.1/) 

28 CONTINUE 



WRITE(4,*) 
WRITE(4,*) 
WRITE(4,*)"ROOT-MEAN-SQUARE VALUE OF XSG(PB,X) 
WRITE(4,*) 
WRITE(4,*)"ROOT-MEAN-SQUARE VALUE OF XSG(PD,Z) 
WRITE(4,*) 
WRITE(4,*) 
WRITE(4,*)"STD.DEV. OF THE PRESSURES =", 
WRITE(4,*) 
WRITE(4,*) 
WRITE(4,11) 

_II - , 

=", 

STDZP 

11 FORMAT(3X,63H EQUATION NUMBER CALC.PRESSURE/Pa 

12 
14 

29 

1ATION/Pa /) 
00 14 R = 1,NT4 
WRITE(4,12)R,PC(R,1),ZET(R,1) 
FORMAT(11X,I3,12X,F7.1,15X,F6.2/) 
CONTINUE 
WRITE(4,*) 
WRITE(4,*) 
CONTINUE 
RETURN 
END 

SUBROUTINE MATMUL(A,B,C,N,L,M) 
C THIS IS AN F.A.HEWITT VERSION 

DOUBLE PRECISION MAT 
DIMENSION A(40,L),B(40,M),C(40,M) 
DO 50 I = 1,N 
DO 50 K = 1,M 
MAT = 0.0 
DO 45 J :z 1,L 
MAT = A(I,J)*B(J,K) + MAT 

45 CONTINUE 
C(I,K) = MAT 

50 CONTINUE 
RETURN 
END 

SUBROUTINE MATNVS(A,B,M,EPS,IFAIL) 
REAL EPS 
DIMENSION A(40,40),B(40,40) 
DOUBLE PRECISION DET 

C CONSTRUCT AN IDENTITY MATRIX B(I,J) = I 
DO 68 I = 1,M 
DO 66 J - 1,M 
IF (I-J) 64,62,64 

62 B(I,J) = 1.0 
GO TO 66 

64 B ( I , J) ... O. 0 
66 CONTINUE 
68 CONTINUE 

RMXSGX 

RMXSGZ 

PRESSURE DEVI 

C LOCATE MAXIMUM MAGNITUDE A(I,K) ON OR BELOW MAIN DIAGGONAL 
DET = 1.0 
DO 100 K = 1,M 
IF (K-M) 70,86,86 

70 IMAX" K 
AMAX - ABS(A(K,K» 
KP1 = K + 1 
DO 76 I - KP 1 ,M 
IF (AMAX-ABS(A(I,K») 72,76,76 



72 IMAX = I 
AMAX = ABS(A(I,K» 

76 CONTINUE 
C INTERCHANGE ROWS !MAX AND K IF IMAX IS NOT EQUAL TO K 

IF (IMAX-K) 78,86,78 
78 DO 80 J = 1,M 

ATMP - A(IMAX,J) 
A(IMAX,J) = A(K,J) 
A(K,J) = ATMP 
BTMP = B(IMAX,J) 
B(IMAX,J) = B(K,J) 

80 B(K,J) - BTMP 
DET - -DET 

86 CONTINUE 
C TEST FOR SINGULAR MATRIX 

IF (ABS(A(K,K»-EPS) 104,104,88 
88 DET - A(K,K)*DET 

C DIVIDE PIVOT ROW BY ITS MAIN DIAGONAL ELEMENT 
DIV = A(K,K) 
DO 90 J - 1,M 
A(K,J) = A(K,J)/DIV 

90 B(K,J) = B(K,J)/DIV 
c REPLACE EACH ROW BY LINEAR COMBINATION WITH PIVOT ROW 

DO 98 I - 1,M 
AMULT == A(I,K) 
IF (I-K) 92,98,92 

92 DO 96 J == 1,M 
A(I,J) = A(I,J)-AMULT*A(K,J) 

96 B(I,J)'" B(I,J)-AMULT*B(K,J) 
98 CONTINUE 

100 CONTINUE 
GO TO 112 

104 WRITE(4,110) K 
IFAIL = 1 
GO TO 112 

110 FORMAT(25H SINGULAR MATRIX FOR K =,12) 
112 RETURN 

END 

SUBROUTINE PCALC(M,PC,ZET) 
INTEGER R 
COMMON/PDDATA/P(40,2),XL(40,2),XV(40,2),CJB(40,40),PR(4) 
COMMON/PDEXT/A(10),V(4),B(4) 
COMMON/LOOPVL/N,M1,MMAX,NCYMAX 
COMMON/LOOPVR/B11,B22,B12,T,EPS,RC 
DIMENSION ZET(40,4),PC(40,4),PB(40,4),PD(40,4) 
DO 20 I ... 1,N 
DO 20 J = 1,2 
DO 20 K ... 1,2 
R - 4*(1-1) + 2*(J-1) + K 
K2 - 2 - K 
RK == 0.0 
DO 16 L = 1,M 
XLI - FLOAT(2*L*K2+2*K) - 3.0 - FLOAT(2*L)*XL(I,J) 
SUM ~ A(L)*(FLOAT(K-1)-XL(I,J»**2*(1.0-2.0*XL(I,J»**(L-2)* 

1 XLI 
RK-SUM+RK 

16 CONTINUE 
VBP ... (V(K)-B(K»*(PR(K)-P(I,J» 
PDEL ... P(I,J)*(2.0*B12-B11-B22)*(FLOAT(K-1)-XV(I,J»**2 



VBPRT = (VBP + PDEL)/(RC*T) 
XPFUN = EXP(RK - VBPRT) 
PC1 = PR(K)*(FLOAT(K2)-XL(I,J»*XPFUN/(FLOAT(K2)-XV(I,J» 
PC(R,1) = PC1 
ZET1 = P(I,J) - PC(R,1) 
ZET(R, 1) = ZET1 

20 CONTINUE 
RETURN 
END 

SUBROUTINE SIGMAP(STDZP,M,PC,ZET) 
REAL STDZP 
INTEGER R 
COMMON/PDDATA/P(40,2),XL(40,2),XV(40,2),CJB(40,40),PR(4) 
COMMON/PDEXT/A(10),V(4),B(4) 
COMMON/LOOPVL/N,M1,MMAX,NCYMAX 
COMMON/LOOPVR/B11,B22,B12,T,EPS,RC 
DIMENSION ZET(40,4),PC(40,4) 
M2 so M1 - 1 
NT4 == 4*N 
NT3PM = 3*N +- M2 + M 
CALL PCALC(M,PC,ZET) 
SUMZSQ .. 0.0 
DO 10 R =1,NT4 
SUMZSQ = SUMZSQ + ZET(R,1)**2 

10 CONTINUE 
STDZP == SQRT(SUMZSQ/FLOAT(NT4-NT3PM» 
RETURN 
END 

SUBROUTINE PARDEV(M,N,M1,B11,B22,B12,T,R,Q,JCB) 

C THIS ROUTINE EVALUATES APPROXIMATE PARTIAL DERIVATIVES OF 
C BUBBLE AND DEW PRESSURES W.R.T. R-K COEFFS, VAPOUR AND 
C LIQUID COMPOSITIONS,AND VIRIAL COEFFICIENTS(IF UNKNOWN) 
C FUNCTIONS ARE MADE USE OF 

REAL JCB 
INTEGER R,Q 
DIMENSION JCB(40,40) 
COMMON/PDDATA/P(40,2),XL(40,2),XV(40,2),CJB(40,40),PR(4) 
COMMON/PDEXT/A(10),V(4),B(4) 
DO 210 Q - 1,40 
DO 210 R .. 1,40 
CJB(R,Q) III: 0.0 

2 1 0 CONTINUE 
DO 280 I ... 1,N 
DO 280 J .. 1,2 
DO 280 K .. 1,2 
R - 4*(1-1) + 2*(J-1) + K 
DO 220 L = 1,M 
Q - L + 3*N 
CJB(R,Q) .. PRKF(P(I,J),XL(I,J),L,K,B11,B22,B12,T,XV(I,J» 

220 CONTINUE 
M2 .. M1 - 1 
IF(M2.EQ.0) GO TO 260 
Q - M2 + M + 3*N 



CJB(R,Q) - PVIRT(P(I,J),XV(I,J),K,B11,B22,B12,T) 
230 CONTINUE 

Q = (3*N-1) + M2 
IF (K.EQ.2) GO TO 240 
CJB(R,Q) ... PVIRO(P(I,J),PR(1),XV(I,J),K,B11,B22,B12,T,V(1),B(1» 
CJB(R,Q+1) - PVIRX(P(I,J),XV(I,J),K,B11,B22,B12,T,V(1),B(1» 
GO TO 250 

240 CJB(R,Q) = PVIRX(P(I,J),XV(I,J),2,B11,B22,B12,T,V(2),B(2» 
CJB(R,Q+1)=PVIRO(P(I,J),PR(2),XV(I,J),2,B11,B22,B12,T,V(2),B(2» 

250 CONTINUE 
260 Q = 3*(1-1) 

IF (J.EQ.2) GO TO 270 
CJB(R,Q+1) = PLIQ(P(I,1),XL(I,1),K,M,B11,B22,B12,T,XV(I,1» 
CJB(R,Q+2) = PVAP(P(I,1),XV(I,1),K,Bll,B22,B12,T) 
GO TO 280 

270 CJB(R,Q+3) - PLIQ(P(I,2),XL(I,2),K,M,B11,B22,B12,T,XV(I,2» 
CJB(R,Q+l) = PVAP(P(I,2),XV(I,2),K,B11,B22,B12,T) 

280 CONTINUE 
NT3PM = N*3 + M2 + M 
NT4 - N*4 
00 300 R ... 1,NT4 
DO 300 Q = 1,NT3PM 
JCB(R,Q) ... CJB(R,Q) 

300 CONTINUE 
RETURN 
END 

REAL FUNCTION PLIQ(P,X,K,M,Bll,B22,B12,T,Y) 
REAL P,X,B1l,B22,B12,T,Y 
INTEGER K,M 
COMMON/PDEXT/A(10),V(4),B(4) 
SUM = 1.0/(X+FLOAT(K-2» 
DO 330 L = 1,M 
SUM = SUM-2.0*A(L)*(FLOAT(K-1)-X)*(1.0-2.0*X)**(L-3)* 

1«FLOAT(2*L-l»-FLOAT(2*L*(L+1»*X*(1.0-X» 
330 CONTINUE 

DEL - 2.0*B12 - Bll - B22 
PDENT = 8.31441*T + P*(B(K)-V(K» + P*DEL*(FLOAT(K-l)-Y)**2 
PLIQ - 8.31441*T*P*SUM/PDENT 
RETURN 
END 

REAL FUNCTION PVAP(P,Y,K,B1l,B22,B12,T) 
REAL P,Y,Bll,B22,B12,T 
INTEGER K 
COMMON/PDEXT/A(10),V(4),B(4) 
DEL - 2.0*B12 - Bl1 - B22 
PNUMT = P/(FLOAT(2-K)-Y) + 2.0*(FLOAT(K-l)-Y)*DEL*P**2/(S.31441*T) 
PDENT = 8.31441*T + P*(B(K)-V(K» + P*DEL*(FLOAT(K-l)-Y)**2 
PVAP - S.3144l*T*PNUMT/PDENT 
RETURN 
END 

REAL FUNCTION PRKF(P,X,L,K,Bll,B22,B12,T,Y) 
REAL P,X,B11,B22,B12,T,Y 
INTEGER L,K 
COMMON/PDEXT/A(10),V(4),B(4) 
DEL - 2.0*B12 - B1l - B22 
PDENT - 8.31441*T + P*(B(K)-V(K» + P*DEL*(FLOAT(K-l)-Y)**2 
PRKF = P*(FLOAT(K-l)-X)**2*(1.0-2.0*X)**(L-2)*(FLOAT(2*L*(2-



1K)+2*K-3)-FLOAT(2*L)*X)*8.31441*T/PDENT 
RETURN 

END 

REAL FUNCTION PVIRO(P,PR,Y,K,B11,B22,B12,T,V,B) 
REAL P,PR,Y,B11,B22,B12,T,V,B 
INTEGER K 
PNUMT = P*(PR + P*(FLOAT(K-1)-Y)**2 - P) 
DEL = 2.0*B12 - B11 - B22 
PDENT = 8.31441*T + P*(B-V) + P*DEL*(FLOAT(K-1)-Y)**2 
PVIRO - PNUMT/PDENT 
RETURN 
END 

REAL FUNCTION PVIRX(P,Y,K,B11,B22,B12,T,V,B) 
REAL P,Y,B11,B22,B12,T,V,B 
INTEGER K 
DEL - 2.0*B12 - B11 - B22 
PDENT = 8.31441*T + P*(B-V) + P*DEL*(FLOAT(K-1)-Y)**2 
PVIRX = P**2*(FLOAT(K-1)-Y)**2/PDENT 
RETURN 
END 

REAL FUNCTION PVIRT(P,Y,K,B11,B22,B12,T) 
REAL P,Y,B11,B22,B12,T 
INTEGER K 
COMMON/PDEXT/A(10),V(4),B(4) 
DEL = 2.0*B12 - B11 - B22 
PDENT = 8.31441*T + P*(B(K)-V(K» + P*DEL*(FLOAT(K-1)-Y)**2 
PVIRT - -2.0*P**2*(FLOAT(K-1)-Y)**2/PDENT 
RETURN 
END 



~.4 

APPENDIX 4 

This program was used for comparing excess functions obtained from this 

work with published work. It assumes the use of the Redlich-Kister equation 

as the analytical form. 



C PROGRAM • COMPXSF 

C THIS PROGRAM IS USED FOR COMPARING RESULTS OF VARIOUS 
C WORICERS IN THE FIELD.THE PRINCIPAL AIM IS TO COMPARE 
C RESULTS USING THE REDLICH-KISTER EQUATION AS A BASIS. 
C ALSO, THERE IS AN OPTION FOR OBTAINING VALUES FOR 
C EXCESS FUNCTIONS AT ANY REQUIRED MOLE FRACTION VALUES. 

C A(L) - REDLICH-KISTER COEFFS FROM THE LITERATURE 
C AV(LV) - R-lC COEFFS FROM MY RESULTS,OR FROM PUBLISHED 
C WORlC,GENERATED FROM PROGRAM .MAINPROG 
c X(I) - MOLE FRACTIONS, HOPEFULLY OF COMPONENT 2 
C PXSF - XS FUNCTIONS OBTAINED USING A(L) 
C VXSF - XS FUNCTIONS OBTAINED USING AV{LV) 

C RC AND T ,GAS CONST. AND TEMP,RESP., ARE TAKEN AS UNITY 
C WHEN CALCULATING XS VOLS. AND WHEN XS ENTHALPIES AND 
C XS GIBBS FUNCTIONS HAVE BEEN DIVIDED BY RC*T PRIOR TO 
C THE ANALYSIS FOR DATA FITTING. 

DIMENSION A(10),AV(10),X(40),VXSF(40),PXSF(40),DIFF(40) 
WRITE(4,*) 
WRITE(4,*)"TYPE IN N,M, AND MV" 
WRITE{4,*)"N IS THE NUMBER OF XCI) POINTS:" 
WRITE(4,*)"M IS THE NUMBER OF A(L) COEFFICIENTS. THAT IS THE" 
WRITE(4,*)"COEFFICIENTS FROM THE LITERATURE." 
WRITB(4,*)"MV IS THE NUMBER OF AV(LV) COEFFICIENTS - THAT IS THE" 
WRITE(4,*)"SET FROM THE ANALYSIS USING .MAINPROG" 
WRITE{4,*) 
READ(3,*)N,M,MV 
WRITE(4,*) 
WRITE(4,*)"TYPE IN R-lC COEFFS FROM THE LITERATURE-A(M)" 
WRITE{4,*) 
READ{3,*)(A(L),L-1,M) 
WRITE(4,*) 
WRITE(4,*)(A(L),L-1,M) 
WRITE(4,*) 
WRITE(4,*)"TYPE IN R-lC COEFFS FROM .MAINPROG-AV(MV)" 
WRITE(4,*) 
READ(3,*)(AV(LV),LV-1,MV) 
WRITE(4,*) 
WRITE(4,*)(AV(LV),LV-1,MV) 
WRITE(4,*) 
WRITE(4,*)"TYPE IN N MOLE FRACTIONS" 
WRITE(4,*) 
READ(3,*)(X(I),I-1,N) 
WRITE(4,*) 
WRITE(4,*)"TYPE IN GAS CONST. AND TEMP AND TEMPV" 
WRITE(4,*)"TEMP,T, IS FROM LITERATURE" 
WRITE (4, * ) "TEMPV, TV, I S FROM CURRENT WORK" 
WRITE (4, *) "RC, T AND TV ARE UNITY WHEN CALCULATING XS VOLS" 
WRITE(4,*) "AND WHEN XS ENTHALPIES AND XS GIBBS FUNCTIONS" 
WRITE(4,*)"ARE NOT TAKEN AS HE/RT AND GE/RT IN DATA ANALYSIS" 
WRITE(4,*)"FOR THE REDLICH-KISTER COEFFICIENTS." 
WRITE(4,*) 
READ(3,*)RC,T,TV 
WRITE(4,*) 
WRITE(4,*)"TYPE IN ISWXSF. ISWXSF IS AN INDICATOR OF THE" 
WRlTE(4,*)"EXCESS FUNCTION UNDER CONSIDERATION. HERE IS An 
WRITE(4,*)"LIST SHOWING ISWXSF VALUES WITH CORRESPONDING" 



WRITE(4,*)"EXCESS FUNCTIONS:" 
WRITE(4,*)"ISWXSF - 17 FOR EXCESS MOLAR GIBBS FUNCTIONS." 
WRITE(4,*)"ISWXSF - 27 FOR EXCESS MOLAR ENTHALPIES." 
WRITE(4,*)"ISWXSF - 3, FOR EXCESS MOLAR VOLUMES." 
WRITE(4,*) 
WRlTE(4,*) "NOW TYPE IN THE REQUIRED VALUE OF ISWXSF." 
WRITE(4,*) 
READ(3,*)ISWXSF 
WRITE(4,*) 
WRlTE(4,*)"TYPE IN THE VALUE ISW" 
WRITE(4,*)"ISW is the switch for either making a comparison" 
WRlTE(4,*) "between experimental and literature data or its" 
WRITE(4,*)"use is in direct calculations of excess functions" 
WRITE(4,*) "from any source without the need for comparison." 
WRITE(4,*)"ISW = 17 for comparison" 
WRITE(4,*)"ISW = 27 for direct calculation" 
WRITE(4,*)"NOTE: THIS IS LAST PIECE OF DATUM. After this," 
WRITE(4,*)"wait for the computer to do the calculation." 
WRITE(4,*) "NOW TYPE IN THE THE VALUE OF ISW." 
WRITE(4,*) 
READ(3, * )ISW 
WRlTE(4,*) 
WRITE(4,*) 
WRITE(4,*)"(1-X)-BENZENE + X-HEXANE AT 298.15 K:" 
WRITE(4,*) 
WRITE(4,*) 
IF (ISWXSF.EQ.1) GO TO 2 
IF (ISWXSF.EQ.2) GO TO 3 
IF (ISWXSF.EQ.3) GO TO 4 

2 WRITE(4,*)"EXCESS MOLAR GIBBS FUNCTIONS:" 
GO TO 5 

3 WRITE(4,*)"EXCESS MOLAR ENTHALPIES:" 
GO TO 5 

4 WRITE(4,*) "EXCESS MOLAR VOLUMES:" 
5 CONTINUE 

WRITE(4,*) 
WRITE(4,*) 
DO 15 I - 1,N 
PXSF(I) - 0.0 
VXSF(I) - 0.0 
00 6 L - 1,M 
PSUM - RC*T*X(I)*(1.0-X(I»*(A(L)*(1.0-2.0*X(I»**(L-1» 

6 PXSF(I) - PXSF(I) + PSUM 
DO 10 LV - 1,MV 
VSUM - RC*TV*X(I)*(1.0-X(I»*(AV(LV)*(1.0-2.0*X(I»**(LV-1» 

10 VXSF(I) - VXSF(I) + VSUM 
DIFF(I) - VXSF(I) - PXSF(I) 

15 CONTINUE 
IF (ISW.EQ.2) GO TO 28 
WRITE(4,20) 

20 FORMAT(5X,57H MOLE FRACTION EXPT.XS.FUNC. LITE.XS.FUNC. DIFFERE 
1NCE If) 

DO 26 I - 1,N 
WRITE(4,25)X(I),VXSF(I),PXSF(I),DIFF(I) 

25 FORMAT(9X,F6.4,2X,E13.5,2X,E13.5,2X,E14.5/) 
26 CONTINUE 

IF (ISW.EQ.1) GO TO 40 
28 WRITE(4,30) 
30 FORMAT(5X,30H MOLE FRACTION LITE.XS.FUNC. II) 

00 36 I - 1,N 



WRITE(4,35)X(I),PXSF(I) 
35 FORMAT(9X,F6.4,2X,E13.5/) 
36 CONTINUE 
40 CONTINUE 

STOP 
END 



APPENDIX 5 

This program was used for obtabining excess volumes from the mass 

readings obtained by weighing of the components. 



C PROGRAM .MAINPROG 

C THIS PROGRAM CARRIES OUT ANALYSIS FOR EXCESS VOLUMES OF MIXING. 
C EXCESS MOLAR VOLUME VALUES ARE CALCULATED FROM HEIGHT AND MASS 
C MEASUREMENTS. THE RESULTS ARE THEN ANALYSED BY LINEAR LEAST 
C SQUARES METHODS TO OBTAIN VALUES FOR COEFFICIENTS OF THE FITTING 
C EQUATIONS(REDLICH-KISTER EQUATIONS). 
C THE PROGRAM MAY ALSO BE USED FOR ANALYSING FOR REDLICH-KISTER 
C COEFFICIENTS FROM GIVEN VALUES OF THE EXCESS MOLAR FUNCTIONS -
C VOLUMES, ENTHALPIES, AND GIBBS FUNCTIONS - PROVIDED SUCH VALUES 
C ARE INPUT AS DATA. 

REAL JCB, EPS 
DIMENSION Z(40),X(40),W(40),JCB(40,40),TRSJCB(40,40),XSF(40), 

1WTN(40,40),ZET(40,10),WTNZ(40,10),TRWTNZ(40,10),WTNJCB(40,40), 
2TRWTJC(40,40),COLVEC(40,10),REMAT(40,40),W1(40),W2(40),HTA(40), 
3HTB(40),TA(40),TB(40),AMT1(40),AMT2(40),TAMT(40),CORHTA(40), 
4CORHTB(40),DELTAH(40),XSVOL(40) 

COMMON/COMDAT/RMM1,RMM2,ALPHA,PI,RAD,DB1,DB2,DA,DS 
WRITE ( 4, *) 
WRITE(4,*) 
WRITE(4,*)"TYPE IN THE FOLLOWING DATA:" 
WRITE(4,*) 
WRITE(4,*) 
WRITE(4,*)" N, M, AND EPS" 
WRITE(4,*) 
WRITE(4,*)"N IS THE NUMBER OF EXPERIMENTAL POINTS" 
WRITE(4,*)"M IS THE NUMBER OF REDLICH-KISTER COEFFICIENTS" 
WRITE(4,*)"EPS IS A CONSTANT WHICH FINDS USAGE IN THE" 
WRITE (4, * ) "MATRIX INVERSION ROUTINE. THE RECOMMENDED" 
WRITE(4,*)"VALUE IS 1.00E-20 - IT'S A FIGURE I CONJURED UP!" 
WRITE(4,*) 
WRITE(4,*) 
READ(3,*)N,M,EPS 
WRITE(4,*) 
WRITE(4,*) 
WRITE(4,*) "THE TYPE OF DATA TO BE INPUT DEPENDS ON WHETHER" 
WRITE(4,*)"USER HAS RAW OR REFINED DATA. HERE, RAW DATA IS" 
WRITE(4,*)"DEFINED AS HAVING THE AMOUNTS OF THE COMPONENTS" 
WRITE(4,*)"IN THE FORM OF MASSES/GRAM AS WELL AS HEIGHT" 
WRITE(4,*)"READINGS FROM THE CATHETOMETER WITH THE" 
WRITE(4,*)"TEMPERATURE READINGS THAT GO WITH THEM. REFINED" 
WRITE(4,*) "DATA ARE IN THE FORM OF EXCESS VOLUMES/CU.CM" 
WRITE(4,*)"AND CORRESPONDING MOLE FRACTIONS." 
WRITE(4,*)" DEPENDING ON THE FORM OF THE USER'S DATA, AN" 
WRITE(4,*)"OPTION IS AVAILABLE VIA THE USE OF THE PARAMETER" 
WRITE(4,*)"ISW. ISW = 1 FOR REFINED DATA; OTHERWISE ISW = 2" 
WRITE(4,*)"(THE PROGRAM MAY ALSO BE USED FOR ANALYSING OTHER" 
WRITE(4,*)"EXCESS FUNCTIONS. HOWEVER, AT PRESENT, THE" 
WRITE(4,*)"ANALYSIS OF OTHER FUNCTIONS MAY ONLY BE DONE BY" 
WRITE(4,*)"USING ISW-1 OPTION.)" 
WRITE(4,*) 
WRITE(4,*) "NOW TYPE THE DESIRED(II) VALUE OF ISW" 
WRITE(4,*) 
READ(3,*)ISW 
WRITE(4,*) 
IF (ISW.EQ.2) GO TO 1 
WRITE(4,*) 
WRITE(4,*)"TYPE IN EXCESS VOLUMES, MOLE FRACTIONS, AND WEIGHTS" 
WRITE(4,*)"MOLE FRACTIONS ARE THOSE OF THE SECOND COMPONENT;" 



WRITE(4,*) "WEIGHTS, IN THIS CONTEXT, REFERS TO STATISTICAL" 
WRITE(4,*)"WEIGHTING OF THE DATA. FOR NON-WEIGHTED DATA, USE" 
WRITE(4,*)"VALUES OF 1.0 FOR EACH CASE." 
WRITE(4,*)" THE LAYOUT OF THE DATA MUST BE OF THE FORM" 
WRITE(4,*)"EXCESS VOLUMES,MOLE FRACTIONS,WEIGHTS" 
WRITE(4,*)"AND ONE MUST HAVE N(THE EXPERIMENTAL NO. OF POINTS)" 
WRITE(4,*)"LINES. FOR EXAMPLE, FOR TWO EXPERIMENTAL POINTS, " 
WRITE(4,*)"ONE HAS:" 
WRITE(4,*)"-0.7S26,0.S739,1.0" 
WRITE(4,*)"-0.7018,0.6917,1.0" 
WRITE(4,*) "COMPRENEZ?" 
WRITE(4,*) 
READ(3,*)(XSF(I),X(I),W(I),I=1,N) 
WRITE(4, *) 
WRITE(4,*) 
IF (ISW.EQ.1) GO TO 2 

1 CONTINUE 
WRITE(4,*) 
WRITE(4,*)"THE RELATIVE MOLAR MASSES FOR COMPONENTS 1 AND 2" 
WRITE(4,*)" - IN THAT ORDER" 
WRITE(4, *) 
READ(3,*)RMM1,RMM2 
WRITE(4,*) 
WRITE(4,*)"TYPE IN THE DENSITIES FOR COMPONENTS 1 AND 2 - DB1" 
WRITE(4,*)"AND DB2 - RESPECTIVELY. ALSO TYPE IN DA AND OS, THE" 
WRITE(4,*) "DENSITY VALUES FOR AIR AND STEEL, RESPECTIVELY. These" 
WRITE(4,*) "density values are required so as to enable for" 
WRITE(4,*)"buoyancy corrections. Although variation of density" 
WRITE(4,*)"with temperature will be taken into account for liquid" 
WRITE(4,*)"components - as much as possible - such effects will" 
WRITE(4,*)"be considered as negligible so far as calculated" 
WRITE(4,*)"values are concerned, unless measurements are carried" 
WRITE(4,*)"out at temperatures far lower or higher than usual" 
WRITE(4,*)"room temperature conditions." 
WRITE(4,*)"Use DA = 0.0012~ OS = 8.0" 
WRITE(4,*)"NOW TYPE IN DB1,DB2,DA,DS." 
WRITE(4,*) 
READ(3,*)DB1,DB2,DA,DS 
WRITE(4,*) 
WRITE(4,*)"TYPE IN N VALUES OF MASS FOR COMPONENT 1" 
WRITE(4,*) 
READ(3,*)(W1(I),I=1,N) 
WRITE(4,*) 
WRITE(4,*)"TYPE IN N VALUES OF MASS FOR COMPONENT 2 - THE" 
WRITE(4,*) "ORDER MUST BE SUCH THAT THEY CORRESPOND WITH THE" 
WRITE(4,*)"SEQUENCE IN MASSES FOR COMPONENT 1 SO AS TO OBTAIN" 
WRITE(4,*)"THE APPROPRIATE MOLE FRACTIONS." 
WRITE(4,*) 
READ(3,*)(W2(I),I=1,N) 
WRITE(4,*) 
WRITE(4,*)"THE HEIGHT READINGS REQUIRED IN THIS SECTION ARE" 
WRITE(4,*)"THE DIFFERENCES IN HEIGHT BETWEEN THE LEVEL OF THE" 
WRITE(4,*)"MERCURY MENISCUS AND THE REFERENCE MARK ON THE" 
WRITE(4,*)"DILATOMETER - FOR EACH MEASUREMENT. NORMALLY, ROOM" 
WRITE(4,*)"TEMPERATURE MEASUREMENTS ARE TAKEN AS THESE HEIGHT" 
WRITE(4,*)"DIFFERENCES ARE MEASURED." 
WRITE(4,*) 
WRITE(4,*)"TYPE IN N VALUES OF HEIGHT DIFFERENCES WHICH ARE TAKEN" 
WRITE(4,*)"BEFORE MIXING. - STICK IN AS MANY VALUES ON ONE LINE" 
WRITE(4,*)" AS POSSIBLE - THEY SHOULD BE SEPARATED BY COMMAS." 



WRITE(4,*) 
READ(3,*)(HTB(I),I=1,N) 
WRITE(4,*) 
WRITE(4,*)"SIMILARLY, TYPE IN N VALUES OF HEIGHT DIFFERENCES" 
WRITE(4,*)"WHICH ARE TAKEN AFTER MIXING." 
WRITE(4, *) 
READ(3,*)(HTA(I),I=1,N) 
WRITE(4,*) 
WRITE(4,*)"TYPE IN ROOM TEMPERATURE READINGS WHICH ARE OBTAINED" 
WRITE(4,*)"AS HEIGHT DIFFERENCES ARE MEASURED BEFORE MIXING - USE" 
WRITE(4,*)"THE UNIT OF KELVIN. " 
WRITE(4,*) 
READ(3,*)(TB(I),I=1,N) 
WRITE(4,*) 
WRITE(4,*)"SIMILARLY, ENTER THE TEMPERATURES READINGS OBTAINED" 
WRITE(4,*) "AFTER MIXING." 
WRITE(4, *) 
READ(3,*)(TA(I),I=1,N) 
WRITE(4,*) 
WRITE(4,*)"TYPE IN THE WEIGHTS(STATISTICAL) - FOR NON-WEIGHTED" 
WRITE(4,*)"ANALYSIS USE VALUES OF 1.0 FOR EACH CASE. N SUCH" 
WRITE(4,*)"VALUES ARE REQUIRED." 
WRITE(4,*) 
READ(3,*)(W(I),I=1,N) 
WRITE(4,*) 
WRITE(4,*)"TYPE IN THE RADIUS OF THE CAPILLARY BORE, THE VALUE" 
WRITE(4,*)"PI(=3.1415927), & THE COEFFICIENT OF THERMAL EXPANSION" 
WRITE(4,*) "FOR THE CATHETOMETER - USE 1.84E-05 FOR THIS" 
WRITE(4,*) "COEFFICIENT." 
WRITE(4,*)"After typing in values for the radius and pi and the" 
WRITE(4,*)"other coefficient, just relax. WAIT FOR THE OUTPUT!" 
WRITE(4,*) 
READ(3,*)RAD,PI,ALPHA 
WRITE(4,*) 

2 CONTINUE 
WRITE(4,*) 
WRITE(4,*) 
WRITE(4,*) 
WRITE(4,*) 
WRITE(4,*)"(1-X)-NEOPENTANE + X-TETRAMETHYLSILANE AT 283.15 K:" 
WRITE(4,*) 
WRITE(4,*) 
CALL MAINP(XSF,X,W,JCB,TRSJCB,WTN,ZET,WTNZ,TRWTNZ,WTNJCB,TRWTJC, 

1 REMAT,N,M,L,EPS,COLVEC,M1,ISW,W1,W2,AMT1,AMT2,TAMT,HTA, 
2 HTB,TA,TB,CORHTA,CORHTB,DELTAH,XSVOL) 

STOP 
END 

SUBROUTINE MAINP(XSF,X,W,JCB,TRSJCB,WTN,ZET,WTNZ,TRWTNZ,WTNJCB, 
1 TRWTJC,REMAT,N,M,L,EPS,COLVEC,M1,ISW,W1,W2,AMT1,AMT2,TAMT, 
2 HTA,HTB,TA,TB,CORHTA,CORHTB,DELTAH,XSVOL) 

REAL JCB 
DIMENSION X(N),W(N),JCB(N,M),TRSJCB(M,N),WTN(N,N),ZET(N,M), 

1 WTNZ(N,M),TRWTNZ(N,M),WTNJCB(N,M),TRWTJC(M,M),REMAT(M,M) 
2,COLVEC(M,M),XSF(N),W1(N),W2(N),AMT1(N),AMT2(N),TAMT(N),HTA(N), 
3HTB(N),TA(N),TB(N),CORHTA(N),CORHTB(N),DELTAH(N),XSVOL(N) 

COMMON/COMDAT/RMM1,RMM2,ALPHA,PI,RAD,DB1,DB2,DA,DS 

IF (ISW.EQ.1) GO TO 4 
BC1 = (DS*DB1 + DA*(DS-DB1»/(DS*DB1) 



BC2 = (DS*DB2 + DA*(DS-DB2»/(DS*DB2) 
D03I=1,N 
AMT1(I) - BC1*W1(I)/RMM1 
AMT2(I) - BC2*W2(I)/RMM2 
TAMT(I) '"' AMT1(I) + AMT2(I) 
XCI) - AMT2(I)/TAMT(I) 
CORHTA(I) = HTA(I)*(1.0 + ALPHA*(TA(I) - 293.15» 
CORHTB(I) - HTB(I)*(1.0 + ALPHA*(TB(I) - 293.15» 
DELTAH(I) - CORHTA(I) - CORHTB(I) 
XSVOL(I) = PI*(RAD**2)*DELTAH(I)/TAMT(I) 
XSF(I) .. XSVOL(I) 

3 CONTINUE 
4 CONTINUE 

C SET UP THE JACOBIAN MATRIX, JCB 
DO 5 I ... 1,N 
DO 5 J == 1,M 
JCB(I,J) - (1.0-2.0*X(I»**(J-1) 

5 CONTINUE 

C GENERATE TRANSPOSE OF THE JACOBIAN MATRIX,TRSJCB 
DO 10 J - 1,M 
DO 10 I ::z 1,N 
TRSJCB(J,I) ... JCB(I,J) 

10 CONTINUE 

C GENERATE THE WEIGHTING MATRIX WTN--A DIAGONAL MATRIX 
DO 15 I - 1,N 
DO 15 K .. 1,N 
WTN(I,K) .. WeI) 
IF (K.NE.I) WTN(I,K) = 0.0 

15 CONTINUE 

C GENERATE THE EXPERIMENTAL DATA COLUMN VECTOR ZET 
DO 20 I -1,N 
ZET(I,1) - XSF(I)/(X(I)*(1.0-X(I») 

20 CONTINUE 

C DO THE PRODUCT OF THE MATRICES WTN(W) AND ZET(Z) TO OBTAIN WTNZ 
CALL MATMUL(WTN,ZET,WTNZ,N,N,1) 

C DO THE PROUCT OF THE MATRICES TRSJCB(JT) AND WTNZ(WZ) TO OBTAIN 
C TRWTNZ. 

CALL MATMUL(TRSJCB,WTNZ,TRWTNZ,M,N,1) 
C DO THE PRODUCT OF THE MATRICES WTN(W) AND JCB(J) TO OBTAIN WTNJCB 

CALL MATMUL(WTN,JCB,WTNJCB,N,N,M) 
C DO THE PRODUCT OF THE MATRICES TRSJCB(JT) WTNJCB(WJ) TO OBTAIN 
C TRWTJC. 

CALL MATMUL(TRSJCB,WTNJCB,TRWTJC,M,N,M) 
C INVERT THE RESULTING MATRIX TRWTJC(MXM) 

IFAIL - 0 
CALL MATNVS(TRWTJC,REMAT,M,EPS,IFAIL) 
IF (IFAIL.EQ.1) GO TO 29 

C THE COLUMN VECTOR,COLVEC,IS THEN OBTAINED BY PREMULTIPLYING 
C THE MATRIX TRWTNZ(JT.W.Z) BY THE INVERSE OF TRWTJC(JT.W.J), 
C WHICH WE CALL REMAT. 

CALL MATMUL(REMAT,TRWTNZ,COLVEC,M,M,1) 
WRITE(4,*) 



CALL EQUFIT(COLVEC,XSF,X,N,M) 
WRITE(4,*) 
DO 25 J .. 1,M 
WRITE(4, *) "REDLICH-KISTER COEFFICIENT ",J, "=" ,COLVEC(J, 1) 

25 CONTINUE 
WRITE(4,*) 

29 CONTINUE 
RETURN 
END 

SUBROUTINE MATMUL(A,B,C,N,L,M) 
C THIS IS AN F.A.HEWITT VERSION 

DOUBLE PRECISION MAT 
DIMENSION A(N,L),B(L,M),C(N,M) 
DO 50 I ,.. 1,N 
DO 50 K = 1,M 
MAT .. 0.0 
DO 45 J = 1,L 
MAT .. A(I,J)*B(J,K) + MAT 

45 CONTINUE 
C(I,K) .. MAT 

50 CONTINUE 
RETURN 
END 

SUBROUTINE MATNVS(A,B,M,EPS,IFAIL) 
C THIS SUBROUTINE WAS ADOPTED FROM A BOOK BY 
C McCALLA,T.R. "Introduction to Numerical Methods and FORTRAN 
C Proqramminq",J.Wiley & Sons, Inc., 1967. 

REAL EPS 
DIMENSION A(M,M),B(M,M) 
DOUBLE PRECISION DET 

C CONSTRUCT AN IDENTITY MATRIX B(I,J) = I 
DO 68 I ,. 1,M 
00 66 J = 1,M 
IF (I-J) 64,62,64 

62 B(I,J) = 1.0 
GO TO 66 

64 B(I,J)" 0.0 
66 CONTINUE 
68 CONTINUE 

C LOCATE MAXIMUM MAGNITUDE A(I,K) ON OR BELOW MAIN DIAGGONAL 
DET .. 1.0 
DO 100 K .. 1,M 
IF (K-M) 70,86,86 

70 IMAX" K 
AMAX .. ABS(A(K,K» 
KPl - K + 1 
00 76 I .. KPl,M 
IF (AMAX-ABS(A(I,K») 72,76,76 

72 IMAX" I 
AMAX .. ABS(A(I,K» 

76 CONTINUE 
C INTERCHANGE ROWS IMAX AND K IF IMAX IS NOT EQUAL TO K 

IF (IMAX-K) 78,86,78 
78 00 80 J - 1,M 

ATMP - A(IMAX,J) 
A(IMAX,J) .. A(K,J) 
A(K,J) - ATMP 
BTMP = B(IMAX,J) 



B(IMAX,J) = B(K,J) 
80 B(K,J) = BTMP 

DET = -DET 
86 CONTINUE 

C TEST FOR SINGULAR MATRIX 
IF (ABS(A(K,K»-EPS) 104,104,88 

88 DET = A(K,K)*DET 
C DIVIDE PIVOT ROW BY ITS MAIN DIAGONAL ELEMENT 

DIV = A(K,K) 
DO 90 J = 1,M 
A(K,J) = A(K,J)/DIV 

90 B(K,J) = B(K,J)/DIV 
C REPLACE EACH ROW BY LINEAR COMBINATION WITH PIVOT ROW 

DO 98 I = 1,M 
AMULT = A(I,K) 
IF (I-K) 92,98,92 

92 DO 96 J = 1,M 
A(I,J) = A(I,J)-AMULT*A(K,J) 

96 B(I,J) = B(I,J)-AMULT*B(K,J) 
98 CONTINUE 

100 CONTINUE 
GO TO 112 

104 WRITE(4,110) K 
IFAIL = 1 
GO TO 112 

110 FORMAT(25H SINGULAR MATRIX FOR K =,12) 
112 RETURN 

END 

SUBROUTINE EQUFIT(COLVEC,XSF,X,N,M) 
DIMENSION COLVEC(M,l),XSF(N),X(N) 
WRITE(4,270) 
SUMSQ = 0.0 
DO 35 I =1,N 
ZCALC = 0.0 
DO 32 J = 1,M 
SUM = COLVEC(J,1)*(1.0-2.0*X(I»**(J-1) 

3 2 ZCALC = ZCALC + SUM 
XSFC = ZCALC*X(I)*(1.0-X(I» 
XSFDEV = XSF(I) - XSFC 
WRITE(4,280)X(I),XSF(I),XSFC,XSFDEV 

35 SUMSQ - SUMSQ + XSFDEV**2 
STDEV = SQRT(SUMSQ/(N-M» 
WRITE(4,290) 

40 WRITE(4,300)STDEV 
270 FORMAT(5X,57H MOLE FRACTION EXPT.XS.FUNC. CALC.XS.FUNC. 

1NCE ,II> 
280 FORMAT(9X,F6.4,6X,F9.4,6X,F9.4,6X,F10.4/) 
290 FORMAT(/10X,10H STD.DEV.=) 
300 FORMAT(22X,F6.4) 

RETURN 
END 

DIFFERE 



APPENDIX 6 

This program calculates excess functions by application of the principle 

of corresponding states. 



C THE PRINCIPLE OF CORRESPONDING STATES IS USED AS A BASIS FOR 
C THE PREDICTION OF EXCESS THERMODYNAMIC FUNCTIONS. A NUMBER OF 
C COMBINING RULES ARE USED AND THUS COMPARISONS ARE MADE 
C BETWEEN THE RESULTS FROM THE USE OF THESE VARIOUS RULES. 

REAL N,M 
COMMON/CRITIC/CT1,CT2,CV1,CV2,CP1,CP2,AZ 
COMMON/LOOPNM/N,M 
COMMON/RTPDAT/R,T,P 
COMMON/PTNSWI/NPTS,ISWCR,ISWHCP,ISWST 
COMMON/XSDATA/X2(40),XPGE(40),XPHE(40),XPVE(40) 
COMMON/CFDATA/AP( 10),AB ( 10) ,AV( 10) ,APD ( 10) ,ABD( 10) ,AVO ( 10) 
COMMON/NUMCFS/JPM,JBM,JVM,JPMD,JBMD,JVMD 
COMMON/MOLSEP/RINTM1,RINTM2,PI1,PI2,ISWVOL,ISWVC 
COMMON/POLDMS/POL1,POL2,DMS1,DMS2 
DIMENSION X1(40),CAGE1(40),CAGE2(40),CAHE1(40),CAHE2(40), 

1CAVE1(40),CAVE2(40),DEVGE1(40),DEVGE2(40),DEVHE1(40),DEVHE2(40), 
2DEVVE1(40),DEVVE2(40) 

WRITE(4,*) 
WRITE(4,*) 
WRITE(4,*)"TYPE IN THE FOLLOWING DATA :" 
WRITE(4,*) 
WRITE(4,*) 
WRITE(4,*)"CRITICAL TEMP,CRIT.VOL., AND CRIT.PRESS. FOR COMPT.1" 
WRITE(4,*) 
READ(3,*)CT1,CV1,CP1 
WRITE(4,*) 
WRITE(4,*)CT1,CV1,CP1 
WRITE(4,*) 
WRITE(4,*)"CRITICAL TEMP,CRIT.VOL., AND CRIT.PRESS. FOR COMPT.2" 
WRITE(4,*) 
READ(3,*)CT2,CV2,CP2 
WRITE(4,*) 
WRITE(4,*)CT2,CV2,CP2 
WRITE(4,*) 
WRITE(4,*)"THE IONISATION POTENTIALS FOR COMPONENTS 1 AND 2" 
WRITE(4,*) 
READ(3,*)PI1,PI2 
WRITE(4,*) 
WRITE(4,*)PI1,PI2 
WRITE(4,*) 
WRITE(4,*)"ISWVC - THIS IS A SWITCH USED FOR THE SELECTION OF" 
WRITE(4,*)"THE PAIRS OF CRITICAL PARAMETERS TO BE USED IN THE" 
WRITE(4,*) "CALCULATIONS. " 
WRITE(4,*)"ISWVC - 11 WHEN USING CRIT. TEMPS AND CRIT. VOLUMES:" 
WRITE(4,*)"ISWVC - 21 WHEN USING CRIT. TEMPS AND CRIT. PRESS.:" 
WRITE(4,*) 
READ(3,*)ISWVC 
WRITE(4,*) 
WRITE(4,*) ISWVC 
WRITE(4,*) 
WRITE(4,*)"THE POLARISABILITIES FOR COMPONENTS 1 AND 2" 
WRITE(4,*) 
REAC(3,*)POL1,POL2 
WRITE(4,*) 
WRITE(4,*)POL1,POL2 
WRITE(4,*) 
WRITE ( 4, * ) "THE DIAMAGNETIC SUSCEPTIBILITIES FOR COMPTS. 1 AND 2" 
WRITE(4,*) 
READ(3,*)DMS1,DMS2 



WRITE(4,*) 
WRlTE(4,*)DMS1,DMS2 
WRITE(4,*) 
WRITE (4, *)"THE INTERMOLECULAR SEPARATION PARAMETERS FOR 1 AND 2" 
WRITE(4,*) 
READ(3,*)RINTM1,RINTM2 
WRITE(4,*) 
WRITE(4,*)RINTM1,RINTM2 
WRlTE(4,*) 
WRITE(4,*)"ISWVOL--THIS IS A SWITCH! ITS USE DEPENDS ON THE" 
WRlTE(4,*) "AVAILABILITY, OR THEIR rACK, OF DATA ON INTERMOLECULAR" 
WRITE(4,*)"SEPARATION PARAMETERS. USE ISWVOL=1 IF DATA ARE AVAIL-" 
WRITE (4, * ) "ABLE 1 OTHERWISE USE A VALUE OF 2." 
WRITE(4,*) 
READ(3,*) ISWVOL 
WRITE(4,*) 
WRITE(4,*)ISWVOL 
WRITE(4,*) 
WRITE (4, *) "THE GAS CONSTANT, TEMPERATURE, AND PRESSURE" 
WRITE(4,*) 
READ(3,*)R,T,P 
WRITE(4,*) 
WRITE(4,*)R,T,P 
WRITE(4,*) 
WRITE(4,*)"THE CRITICAL COMPRESSIBILITY FACTOR, AZ" 
WRITE(4,*) 
READ(3,*)AZ 
WRITE(4,*) 
WRITE(4,*)AZ 
WRITE(4,*) 
WRITE (4, * ) "NUMBER OF POINTS 1 AND THE HIGHER AND LOWER INDICES" 
WRITE(4,*)"OF THE LENNARD-JONES POTENTIAL" 
WRITE(4,*) 
READ(3,*)NPTS,N,M 
WRITE(4,*) 
WRITE(4,*)NPTS,N,M 
WRITE(4,*) 
WRITE(4,*)"NPTS MOLE FRACTIONS OF THE SECOND COMPONENT" 
WRITE(4,*) 
READ(3,*)(X2(I),I=1,NPTS) 
WRITE(4,*) 
WRlTE(4,*)(X2(I),I-1,NPTS) 
WRITE(4,*) 
WRITE(4,*)"THE NUMBER OF COEFFICIENTS FOR THE UNIVERSAL FUNCTIONS" 
WRITE(4,*) "JPM: NUMBER OF COEFFICIENTS FOR Ln(P/PC) = PHI1(T/TC)" 
WRITE(4,*)"JBM: THE NUMBER OF COEFFICIENTS FOR B/VC = PHI2(T/TC)" 
WRlTE(4,*)"JVM: THE NUMBER OF COEFFICEINTS FOR V/VC = PHI3(T/TC)" 
WRITE(4,*) 
READ(3,*)JPM,JBM,JVM 
WRITE(4,*) 
WRlTE(4,*)JPM,JBM,JVM 
WRlTE(4,*) 
WRITE(4,*)"THE NUMBER OF COEFFICIENTS FOR THE DERIVATIVE FORMS OF" 
WRITE(4,*)"THE UNIVERSAL FUNCTIONS" 
WRlTE(4,*) "JPMD: NO. OF COEFFS FOR dLn(P/PC)/d(T/TC)" 
WRITE(4,*) "JBMD: NO. OF COEFFS FOR d(B/VC)/d(T/TC)" 
WRITE(4,*)"JYMD: NO. OF COEFFS FOR d(V/VC)/d(T/TC)" 
WRITE(4,*) 
READ(3,*)JPMD,JBMD,JVMD 
WRITE(4,*) 



WRITE (4,*)JPMD,JBMD,JVMD 
WlUTE(4,*) 
WRITE(4,*)"THE COEFFICIENTS, AP(JP), FOR PHI1(T/TC)" 
WRITE(4,*) 
READ(3,*) (AP(JP),JP-1,JPM) 
WRITE(4,*) 
WRITE(4,*) (AP(JP),JP-1,JPM) 
WRITE(4,*) 
WRITE(4,*)"THE COEFFICIENTS, AB(JB), FOR PHI2(T/TC)" 
WRITE(4,*) 
READ(3,*)(AB(JB),JB~1,JBM) 

WlUTE(4,*) 
WRITE(4,*) (AB(JB),JB-1,JBM) 
WRITE(4,*) 
WRITE(4,*)"THE COEFFICIENTS, AV(JV), FOR PHI3(T/TC)" 
WRITE(4,*) 
READ(3,*)(AV(JV),JV=1,JVM) 
WRITE(4,*) 
WRITE(4,*)(AV(JV),JV=1,JVM) 
WlUTE(4,*) 
WRITE(4,*)"THE COEFFICIENTS FOR THE DERIVATIVES-APD,ABD,AVO" 
WRITE(4,*) 
READ(3,*)(APD(JPD),JPD=1,JPMD) 
WlUTE(4,*) 
WRITE(4,*) (APD(JPD),JPD=1,JPMD) 
WRITE(4,*) 
READ(3,*)(ABD(JBD),JBD=1,JBMD) 
WRITE(4,*) 
WRITE(4,*) (ABD(JBD),JBD=1,JBMD) 
WRITE(4,*) 
READ(3,*) (AVD(JVD),JVD=1,JVMD) 
WRITE(4,*) 
WRITE(4,*)(AVD(JVD),JVD=1,JVMD) 
WRITE(4,*) 
WRITE(4,*)"CHOICE OF OF N-FLUID MODEL" 
WRITE(4,*)"THIS IS DONE BY USING THE IDENTIFIER ISWHCP." 
WRITE(4,*)"ISWHCP = 1, FOR THE ONE-FLUID MODEL ONLY." 
WRITE(4,*)"ISWHCP = 2, FOR THE TWO-FLUID MODEL ONLY." 
WRITE(4,*)"ISWHCP ... 3, FOR BOTH MODELS." 
WRITE(4,*) 
READ(3,*) ISWHCP 
WRITE(4,*) 
WRITE(4,*) ISWHCP 
WRITE(4,*) 
WRITE(4,*)"ISWST - THE VALUE FOR SELECTING THE PROCEDURE FOR" 
WRITE(4,*)"CALCULATING CRITICAL PARAMETERS OF THE HYPOTHETICAL" 
WRITE(4,*) "FLUIDS. " 
WRITE(4,*)"Two procedures are available:" 
WRITE(4,*)"(i) Randomisation of the Van der Waals parameters," 
WRITE(4,*)"(ii) Randomisation of the pair-interacton energies." 
WRITE(4,*)"ISWST ~ 1, FOR (i)" 
WlUTE(4,*)"ISWST - 2, FOR (ii)" 
WlUTE(4,*)"NOW TYPE IN ISWST" 
WRITE(4,*) 
READ(3,*) ISWST 
WRITE(4,*) 
WRITE(4,*) ISWST 
WRITE(4,*) 
WRITE(4,*)"CHOICE OF COMBINING RULES." 
WRITE(4,*)"THE IDENTIFIER ISWCR IS USED FOR THIS PURPOSE." 



WRITE(4,*)"HERE IS A LIST OF ISWCR VALUES WITH CORRESPONDING" 
WRITE(4,*)"SETS OF COMBINING RULES:" 
WRITE(4,*)"ISWCR = 11 LORENTZ-BERTHELOT" 
WRITE(4,*)"ISWCR = 2; HUDSON-McCOUBREY" 
WRITE ( 4 , * ) "ISWCR = 3; WORMALD, et al (Mk I)" 
WRITE ( 4 , * ) "ISWCR = 41 WORMALD, et al ( Mk II)" 
WRITE(4,*) " ISWCR 5; MUNN" 
WRITE(4,*)"ISWCR - 6, FENDER-HALSEY" 
WRITE(4,*)"ISWCR = 71 this work" 
WRITE(4,*)"ISWCR = 8; HICKS-YOUNG" 
WRITE (4, * ) "NOW TYPE IN THE REQUIRED VALUE OF ISWCR" 
WRITE(4,*) 
READ(3,*)ISWCR 
WRITE(4,*) 
WRITE(4,*) ISWCR 
WRITE(4,*) 
WRITE(4,*)"EXCESS FUNCTIONS-FROM PUBLISHED ANALYTICAL EQTNS" 
WRITE(4,*) 
WRITE(4,*) 
WRITE(4,*)"NPTS VALUES OF EXCESS GIBBS FUNCTIONS" 
WRITE(4,*) 
READ(3,*) (XPGE(I),I=1,NPTS) 
WRITE(4,*) 
WRITE(4,*)(XPGE(I),I=1,NPTS) 
WRITE(4,*) 
WRITE(4,*)"NPTS VALUES OF EXCESS ENTHALPIES" 
WRITE(4,*) 
READ(3,*) (XPHE(I),I-1,NPTS) 
WRITE(4,*) 
WRITE(4,*) (XPHE(I),I=1,NPTS) 
WRITE(4,*) 
WRITE(4,*)"NPTS VALUES OF EXCESS VOLUMES" 
WRITE (4, *) "This is the last set of data to be input. After" 
WRITE(4,*)"insertinq the excess volume values, sit and relax" 
WRITE(4,*)"and let the computer work for a whilel" 
WRITE(4,*) 
READ(3,*)(XPVE(I),I-1,NPTS) 
WRITE(4,*) 
WRITE(4,*)(XPVE(I),I-1,NPTS) 
WRITE(4,*) 
WRITE(4,*) 
WRITE(4,*) 
WRITE(4,*)"DETERMINATION OF EXCESS FUNCTIONS VIA THE P.C.S" 
WRITE(4,*) 
WRITE(4,*) 
WRITE(4,*) 

1 WRITE(4,*)"(1-X)-NEOPENTANE + X-TETRAMETHYLSILANE AT 283.15 K" 
WRITE(4,*) 
WRITE(4,*) 
IF (ISWCR.EQ.1) GO TO 10 
IF (ISWCR.EQ.2) GO TO 12 
IF (ISWCR.EQ.3) GO TO 14 
IF (ISWCR.EQ.4) GO TO 16 
IF (ISWCR.EQ.5) GO TO 18 
IF (ISWCR.EQ.6) GO TO 20 
IF (ISWCR. EQ. 7) GO TO 22 
IF (ISWCR.EQ.8) GO TO 24 

10 WRITE(4,*)"COMBINING RULES USED: LORENTZ-BERTHELOT" 
GO TO 80 

12 WRITE(4,*)"COMBINING RULES USED: HUDSON-McCOUBREY" 



GO TO 80 
14 WRITE(4,*) "COMBINING RULES USED: WORMALD, et al (Mk I)" 

GO TO 80 
16 WRITE(4,*) "COMBINING RULES USED: WORMALD, et al (Mk II)" 

GO TO 80 
18 WRITE(4,*) "COMBINING RULES USED: MUNN" 

GO TO 80 
20 WRITE(4,*) "COMBINING RULES USED: FENDER-HALSEY" 

GO TO 80 
22 WRITE(4,*) "COMBINING RULES USED: this work" 

GO TO 80 
24 WRITE(4,*) "COMBINING RULES USED: HICKS-YOUNG" 
80 CONTINUE 

WRITE(4,*) 
WRITE(4,*) 
IF (ISWST.EQ.l) GO TO 84 
IF (ISWST.EQ.2) GO TO 88 

84 WRITE(4,*) "RANDOMISATION OF VAN DER WAALS PARAMETERS:" 
GO TO 90 

88 WRITE (4, *) "TYPE OF N-M POTENTIAL USED:", IFIX (N) , IFIX (M) 
90 CONTINUE 

WRITE(4,*) 
WRITE(4,*) 
IF (ISWVC.EQ.l) GO TO 92 
IF (ISWVC.EQ.2) GO TO 96 

92 WRITE(4,*)"USE OF CRITICAL TEMPERATURES AND VOLUMES:" 
GO TO 100 

96 WRITE(4,*)"USE OF CRITICAL TEMPERATURES AND PRESSURES:" 
1 00 CONTINUE 

WRITE(4,*) 
WRITE(4,*) 
WRITE(4,*) 
CALL MAIN(CAGE1,CAHE1 ,CAVE1,CAGE2 ,CAHE2,CAVE2) 
STOP 
END 

SUBROUTINE MAIN(CAGE1,CAHE1,CAVE1,CAGE2,CAHE2,CAVE2) 
C EXCESS FUNCTIONS ARE CALCULATED IN THIS SECTION. 
C THERE IS AN OPTION FOR OBTAINING CALCULATED QUANTITIES 
C FROM EITHER am OR BOTH OF THE "N-FLUID" MODELS. IN EITHER 
C CASE, THOUGH, ONE OBTAINS INFORMATION ON EXCESS GIBBS 
C FUNCTIONS, EXCESS ENTHALPIES, AND EXCESS VOLUMES. 

REAL N,M 
COMMON/CRITIC/CT1,CT2,CV1,CV2,CP1,CP2,AZ 
COMMON/LOOPNM/N ,M 
COMMON/RTPDAT/R,T,P 
COMMON/PTNSWI/NPTS,ISWCR,ISWHCP,ISWST 
COMMON/XSDATA/X2(40),XPGE(40),XPHE(40),XPVE(40) 
COMMON/CFDATA/AP(10),AB(10),AV(10),APD(10),ABD(10),AVD(10) 
COMMON/NUMCFS/JPM,JBM,JVM,JPMD,JBMD,JVMD 
COMMON/MOLSEP/RINTM1,RINTM2,Pll,PI2,ISWVOL,ISWVC 
COMMON/POLDMS/POL1,POL2,DMS1,DMS2 
DIMENSION Xl(40),CAGE1(40),CAGE2(40),CAHE1(40),CAHE2(40), 

1CAVE1(40),CAVE2(40),DEVGE1(40),DEVGE2(40),DEVHE1(40),DEVHE2(40), 
2DEVVE1(40),DEVVE2(40) 

IF (ISWCR.EQ.l) GO TO 110 
GO TO 120 

110 CALL CRLB(CT12,CV12,CP12,VXI) 
GO TO 170 

120 CALL NOTHER(CT12,CV12,CP12,VXI) 



170 CONTINUE 
DO 210 I .. 1,NPTS 
X1(I) = 1.0 - X2(I) 
IF (ISWHCP.EQ.2) GO TO 180 
CALL PCQ1(CT1F,CV1F,CP1F,CT12,CV12,CP12,X2(I» 
IF (ISWHCP.EQ.3) GO TO 180 
GO TO 190 

180 CALL PCQ2(CT2F1,CT2F2,CV2F1,CV2F2,CP2F1,CP2F2,CT12,CV12, 
1CP12,X2(I» 

190 CONTINUE 
ISWNF - ISWHCP 
IF (ISWNF.EQ.2) GO TO 200 
CALL XRES (CT 1 ,CV1 ,CP1 ,GRESA,HRESA, VRESA) 
CALL XRES(CT2,CV2,CP2,GRESB,HRESB,VRESB) 
CALL XRES(CT1F,CV1F,CP1F,GRESY,HRESY,VRESY) 
CAGE1(I) - R*T*(GRESY - X1(I)*GRESA -X2(I)*GRESB) 
CAHE1(I) - R*T*(HRESY - X1(I)*HRESA - X2(I)*HRESB) 
CAVE1(I) = (1.0E06)*(VRESY-X1(I)*VRESA-X2(I)*VRESB) 
DEVGE1(I) = XPGE(I) - CAGE1(I) 
DEVHE1(I) = XPHE(I) - CAHE1(I) 
DEVVE1(I) = XPVE(I) - CAVE 1 (I) 
IF (ISWNF.EQ.3) GO TO 200 
GO TO 210 

200 CALL XRES(CT2F1,CV2F1,CP2F1,GRESYA,HRESYA,VRESYA) 
CALL XRES (CT 1 , CV1 , CP 1 , GRESA, HRESA, VRESA ) 
CALL XRES(CT2F2,CV2F2,CP2F2,GRESYB,HRESYB,VRESYB) 
CALL XRES(CT2,CV2,CP2,GRESB,HRESB,VRESB) 
CAGE2(I) - R*T*(X1(I)*(GRESYA-GRESA) + X2(I)*(GRESYB-GRESB» 
CAHE2(I) .. R*T*(X1(I)*(HRESYA-HRESA) + X2(I)*(HRESYB-HRESB» 
CAVE2(I) = (1.0E6)*(X1(I)*(VRESYA-VRESA)+X2(I)*(VRESYB-VRESB» 
DEVGE2(I) - XPGE(I) - CAGE2(I) 
DEVHE2(I) - XPHE(I) - CAHE2(I) 
DEVVE2(I) - XPVE(I) - CAVE2(I) 

210 CONTINUE 
WRITE(4,*) 
WRITE(4,*) 
WRITE(4,*)"THE ~LUE OF XI FOR THE GIVEN COMBINING RULES" 
WRITE(4,*) 
WRITE ( 4 , * ) "VALUE OF XI =", VXI 
WRITE(4,*) 
WRITE(4,*) 
WRITE(4,*) 
IF (ISWNF.EQ.1) GO TO 212 
IF (ISWNF .EQ. 2) GO TO 260 
IF (ISWNF.EQ.3) GO TO 705 

212 WRITE(4,*)"THE 'ONE-FLUID' MODEL" 
WRITE(4,*) 
WRlTE(4,*) 
WRlTE(4,*)"MOLAR EXCESS GIBBS FUNCTIONS" 
WRITE(4,*) 
WRITE(4,215) 

215 FORMAT(5X,57H MOLE FRACTION CALC.XSG EXPT.XSG DIFFERE 
1NCE ,I) 

DO 225 I - 1,NPTS 
WRITE(4,220)X2(I),CAGE1(I),XPGE(I),DEVGE1(I) 

220 FORMAT(9X,F6.4,3X,E12.5,3X,E12.5,3X,E13.6/) 
225 CONTINUE 

WRITE(4,*) 
WRITE(4,*) 
WRITE(4,*)"MOLAR EXCESS ENTHALPIES" 



WRITE(4,*) 
WRITE(4,230) 

230 FORMAT(5X,57H MJLE FRACTION CALC.XSH EXPT.XSH DIFFERE 
1NCE ,I) 

DO 240 I - 1,NPTS 
WRITE(4,235)X2(I),CAHE1(I),XPHE(I),DEVHE1(I) 

235 FORMAT(9X,F6.4,3X,E12.5,3X,E12.5,3X,E13.6/) 
240 CONTINUE 

WRITE(4,*) 
WRITE(4,*) 
WRITE(4,*) "MOLAR EXCESS VOLUMES" 
WRITE(4,*) 
WRITE(4,245) 

245 FORMAT(5X,57H MJLE FRACTION CALC.XSV EXPT.XSV DIFFERE 
1NCE ,I) 

DO 255 I - 1,NPTS 
WRITE(4,250)X2(I),CAVE1(I),XPVE(I),DEVVE1(I) 

250 FORMAT(9X,F6.4,3X,E12.5,3X,E12.5,3X,E13.6/) 
255 CONTINUE 

WRITE(4,*) 
WRITE(4,*) 
GO TO 740 

260 WRITE(4,*)"THE TWO-FLUID MODEL" 
WRITE(4,*) 
WRITE(4,*) 
WRITE(4,*) "MOLAR EXCESS GIBBS FUNCTIONS" 
WRITE(4,*) 
WRITE(4,265) 

265 FORMAT(5X,57H MJLE FRACTION CALC.XSG EXPT.XSG DIFFERE 
1NCE ,I) 

DO 275 I - 1,NPTS 
WRITE(4,270)X2(I),CAGE2(I),XPGE(I),DEVGE2(I) 

270 FORMAT(9X,F6.4,3X,E12.5,3X,E12.5,3X,E13.6/) 
275 CONTINUE 

WRITE(4,*) 
WRITE(4,*) 
WRITE(4,*) "MOLAR EXCESS ENTHALPIES" 
WRITE(4,*) 
WRITE(4,280) 

280 FORMAT(5X,57H MJLE FRACTION CALC.XSH EXPT.XSH DIFFERE 
1NCE ,I) 

DO 290 I - 1,NPTS 
WRITE(4,285)X2(I),CAHE2(I),XPHE(I),DEVHE2(I) 

285 FORMAT(9X,F6.4,3X,E12.5,3X,E12.5,3X,E13.6/) 
290 CONTINUE 

WRITE(4,*) 
WRlTE(4,*) 
WRITE(4,*) "MOLAR EXCESS VOLUMES" 
WRITE(4,*) 
WRITE(4,295) 

295 FORMAT(5X,57H MOLE FRACTION CALC.XSV EXPT.XSV DIFFERE 
1NCE ,I) 

DO 305 I - 1,NPTS 
WRITE(4,300)X2(I),CAVE2(I),XPVE(I),DEVVE2(I) 

300 FORMAT(9X,F6.4,3X,E12.5,3X,E12.5,3X,E13.6/) 
305 CONTINUE 

WRITE(4,*) 
WRITE(4,*) 
GO TO 740 

705 WRlTE(4,*)"1. SlftDi:" 



WRITE(4,*)"2. 
WRITE(4,*)" 
WRITE(4,*)"3. 
WRITE(4,*)" 
WRITE(4,*) 
WRITE(4,*)" 

1 E 
WRITE(4,*) 

MBfllOD OP CALCULATION:" 
8appl-.mtaEy notes:" 
Sft OF COIBDfDIG ROLES:" 
Va1ae of 11:", VXI 

A 
F" 

B 

WRITE(4,*)"Ca BS8 GIBBS ~IONS" 
WRITE(4,*) 

C D 

DO 715 I - 1,NPTS 
WRITE(4,710)X2(I),XPGE(I),CAGE1(I),CAGE2(I),DEVGE1(I),DEVGE2(I) 

710 FORMAT(2X,F4.2,7X,FS.2,5X,FS.2,5X,FS.2,5X,FS.2,5X,FS.2) 
715 CONTINUE 

WRITE(4,*) 
WRITE(4,*)"REDLICH-KISTER COEFFICIENTS:" 
WRITE(4,*)"(a) EXPERIMENTAL :" 
WRITE(4,*)"(b) ONE-FLUID MODEL:" 
WRITE(4,*)"(c) TWO-FLUID MODEL:" 
WRITE(4,*) 
WRITE ( 4 , * ) "a pee BlftllALPIBS" 
WRITE(4,*) 
DO 725 I - 1,NPTS 
WRITE(4,720)X2(I),XPHE(I),CAHE1(I),CAHE2(I),DEVHE1(I),DEVHE2(I) 

720 FORMAT(2X,F4.2,7X,FS.2,5X,FS.2,5X,FS.2,5X,FS.2,5X,FS.2) 
725 CONTINUE 

WRITE(4,*) 
WRITE(4,*)"REDLICH-KISTER COEFFICIENTS:" 
WRITE(4,*)"(a) EXPERIMENTAL :" 
WRITE(4,*)"(b) ONE-FLUID MODEL:" 
WRITE(4,*)"(c) TWO-FLUID MODEL:" 
WRITE(4,*) 
WRITE(4,*)"a0BS8 VOLDRPS" 
WRITE(4,*) 
DO 735 I - 1,NPTS 
WRITE(4,730)X2(I),XPVE(I),CAVE1(I),CAVE2(I),DEVVE1(I),DEVVE2(I) 

730 FORMAT(2X,F4.2,8X,F7.4,6X,F7.4,6X,F7.4,6X,F7.4,6X,F7.4) 
735 CONTINUE 

WRITE(4,*) 
WRITE(4,*)"REDLICH-KISTER COEFFICIENTS:" 
WRITE(4,*)"(a) EXPERIMENTAL :" 
WRITE(4,*)"(b) ONE-FLUID MODEL:" 
WRITE(4,*)"(c) TWO-FLUID MODEL:" 

740 CONTINUE 
RETURN 
END 

SUBROUTINE CRLB(CT12,CV12,CP12,VXI) 
C THIS SUBROUTINE IS FOR OBTAINING CRITICAL PARAMETERS DUE TO 
C UNLIKE INTERACTIONS BY USE OF THE LORENTZ-BERTHELOT COMBINING 
C RULES. 

COMMON/RTPDAT/R,T,P 
COMMON/CRITIC/CT1,CT2,CV1,CV2,CP1,CP2,AZ 
COMMON/MOLSEP/RINTM1,RINTM2,PI1,PI2,ISWVOL,ISWVC 
IF (ISWVC.EQ.1) GO TO 307 
CV1 - AZ*R*CT1/CP1 
CV2 - AZ*R*CT2/CP2 

307 CONTINUE 



CT12 = (CT1*CT2)**(1.0/2.0) 
CVNUM = CV1**(1.0/3.0) + CV2**(1.0/3.0) 
CV12 = CVNUM**3/8.0 
CPNUM = CT1**(1.0/3.0)*(CP1**(-1.0/3.0» + CT2**(1.0/3.0)* 

1(CP2**(-1.0/3.0» 
CP12 = 8.0*«CT1*CT2)**(1.0/2.0»*(CPNUM**(-3» 
VXI = ISWVC/ISWVC 
RETURN 
END 

SUBROUTINE NOTHER(CT12,CV12,CP12,VXI) 
C THIS SUBROUTINE IS FOR OBTAINING CRITICAL PARAMETERS DUE TO 
C UNLIKE INTERACTIONS USING COMBINING RULES OTHER THAN THE 
C LORENTZ-BERTHELOT RULES. THE IDENTIFIER ISWCR(for ISWCR 
C greater than 1) IS USED FOR SELECTING THE REQUIRED RULES. 

COMMON/CRITIC/CT1,CT2,CV1,CV2,CP1,CP2,AZ 
COMMON/RTPDAT/R,T,P 
COMMON/CFDATA/AP(10),AB(10),AV(10),APD(10),ABD(10),AVD(10) 
COMMON/NUMCFS/JPM,JBM,JVM,JPMD,JBMD,JVMD 
COMMON/MOLSEP/RINTM1,RINTM2,PI1,PI2,ISWVOL,ISWVC 
COMMON/PTNSWI/NPTS,ISWCR,ISWHCP,ISWST 
COMMON/POLDMS/POL1,POL2,DMS1,DMS2 
IF (ISWVC.EQ.1) GO TO 309 
CV1 = AZ*R*CT1/CP1 
CV2 - AZ*R*CT2/CP2 

309 CONTINUE 
PRODIP - 2.0*(PI1*PI2)**(O.5)/(PI1+PI2) 
PRODR - (RINTM1**3)*(RINTM2**3)/(RINTM1+RINTM2)**6 
VC12 = (CV1**(1.0/3.0) + CV2**(1.0/3.0»**3/8.0 
QUOTV = (CV1**(1.0/3.0) + CV2**(1.0/3.0»**6 
IF (ISWCR.EQ.2) GO TO 310 
IF (ISWCR.EQ.3) GO TO 325 
IF (ISWCR.EQ.4) GO TO 330 
IF (ISWCR.EQ.5) GO TO 335 
IF (ISWCR.EQ.6) GO TO 340 
IF (ISWCR.EQ.7) GO TO 345 
IF (ISWCR.EQ.8) GO TO 350 

310 IF (ISWVOL.EQ.2) GO TO 315 
CT12 - (2.0**6)*PRODR*PRODIP*(CT1*CT2)**(0.5) 
IF (ISWVOL.EQ.1) GO TO 320 

315 CT12 - (2.0**6)*CV1*CV2*PRODIP*(CT1*CT2)**(O.5)/QUOTV 
320 CONTINUE 

GO TO 375 
325 CT12 - (CT1*CT2)**(1.0/2.0)*(CV1*CV2)**(1.0/2.0)/VC12 

GO TO 375 
330 CT12 - PRODIP*(CT1*CT2)**(1.0/2.0)*(CV1*CV2)**(1.0/2.0)/VC12 

GO TO 375 
335 CT12 - 2.0*CT1*CT2*(CV1*CV2)**2*VC12**(-2)*POL1*POL2/(CT1*(CV1* 

1 POL2)**2 + CT2*(CV2*POL1)**2) 
GO TO 375 

340 CT12 - 2.0*CT1*CT2/(CT1 + CT2) 
GO TO 375 

345 CT12 - 2.0*CT1*CT2*2.0**6*(CV1*CV2)**2/(QUOTV*(CT1*CV1**2 + CT2* 
1 CV2**2» 

GO TO 375 
350 CT12 - 2.0*(CT1*CT2)**(2.0/3.0)/(CT1**(1.0/3.0) + CT2**(1.0/3.0» 
375 CONTINUE 



CV12 - VC12 
CP12 - AZ*R*CT12/CV12 
VXI - CT12/«CT1*CT2)**(1.0/2.0» 
RETURN 

END 

SUBROUTINE PCQ1(CT1F,CV1F,CP1F,CT12,CV12,CP12,X2) 
C THIS SUBROUTINE FURNISHES THE CRITICAL PARAMETERS OF THE 
C HYPOTHETICAL FLUID,NAMELY,TEMPERATURE(CT1F),VOLUME(CV1F), 
c AND PRESSURE(CP1F) .THE MIXTURE IS TAKEN TO BE "ONE-FLUID". 

REAL N,M 
COMMON/RTPDAT/R,T,P 
COMMON/CRITIC/CT1,CT2,CV1,CV2,CP1,CP2,AZ 
COMMON/LOOPNM/N,M 
COMMON/PTNSWI/NPTS, ISWCR, ISWHCP,ISWST 
COMMON/MOLSEP/RINTM1,RINTM2,PI1,PI2,ISWVOL,ISWVC 
IF (ISWVC.EQ.1) GO TO 400 
CV1 - AZ*R*CT1/CP1 
CV2 - AZ*R*CT2/CP2 

400 CONTINUE 
IF (ISWCR.EQ.1) GO TO 410 
GO TO 420 

410 CALL CRLB(CT12,CV12,CP12,VXI) 
GO TO 430 

420 CALL NOTHER(CT12,CV12,CP12,VXI) 
430 CONTINUE 

X1 - 1.0 - X2 
IF (ISWST. EQ. 1) GO TO 440 
GO TO 450 

440 CV1F - X1**2*CV1 + 2.0*X1*X2*CV12 + X2**2*CV2 
CT1F = (X1**2*CT1*CV1+2.0*X1*X2*CT12*CV12+X2**2*CT2*CV2)/CV1F 
CP1F - AZ*R*CT1F/CV1F 
GO TO 460 

450 CONTINUE 
CTVNUM = X1**2*CT1*(CV1**(N/3.0»+2.0*X1*X2*CT12*(CV12**(N/3.0» 

1 + X2**2*CT2*(CV2**(N/3.0» 
CTVDEN = X1**2*CT1*(CV1**(M/3.0»+2.0*X1*X2*CT12*(CV12**(M/3.0» 

1 + X2**2*CT2*(CV2**(M/3.0» 
CTPNUM = X1**2*(CT1**«3.0+N)/3.0»*(CP1**(-N/3.0» + 

12.0*X1*X2*(CT12**«3.0+N)/3.0»*(CP12**(-N/3.0» + 
2X2**2*(CT2**«3.0+N)/3.0»*(CP2**(-N/3.0» 

CTPDEN = X1**2*(CT1**«3.0+M)/3.0»*(CP1**(-M/3.0» + 
12.0*X1*X2*(CT12**«3.0+M)/3.0»*(CP12**(-M/3.0» + 
2X2**2*(CT2**«3.0+M)/3.0»*(CP2**(-M/3.0» 

CT1F - CTVNUM**(M/(M-N»*(CTVDEN**(N/(N-M») 
CV1F - CTVNUM**(3.0/(N-M»*(CTVDEN**(3.0/(M-N») 
CP1F - CTPNUM**«3.0+M)/(M-N»*(CTPDEN**«3.0+N)/(N-M») 

460 CONTINUE 
RETURN 
END 

SUBROUTINE PCQ2(CT2F1,CT2F2,CV2F1,CV2F2,CP2F1,CP2F2,CT12,CV12 
1 ,CP12 ,X2) 

C THE FUNCTION OF THIS SUBROUTINE IS SIMILAR TO THAT OF PCQ1. 
C THE DIFFERENCE IS THAT, IN THIS CASE, THE MIXTURE IS TAKEN AS 
C "TWO-FLUID". 

REAL N,M 



COMMON/RTPDAT/R,T,P 
COMMON/CRITIC/CT1,CT2,CV1,CV2,CP1,CP2,AZ 
COMMON/LOOPNM/N,M 
COMMON/PTNSWI/NPTS,ISWCR,ISWHCP,ISWST 
COMMON/MOLSEP/RINTM1,RINTM2,PI1,PI2,ISWVOL,ISWVC 
IF (ISWVC.EQ.1) GO TO 500 
CV1 - AZ*R*CT1/CP1 
CV2 - AZ*R*CT2/CP2 

500 CONTINUE 
IF (ISWCR.EQ.1) GO TO 510 
GO TO 520 

510 CALL CRLB(CT12,CV12,CP12,VXI) 
GO TO 530 

520 CALL NOTHER(CT12,CV12,CP12,VXI) 
530 CONTINUE 

X1 - 1.0 - X2 
IF (ISWST.EQ.1) GO TO 540 
GO TO 550 

540 CV2F1 - X1*CV1 + X2*CV12 
CV2F2 = X2*CV2 + X1*CV12 
CT2F1 = (X1*CT1*CV1 + X2*CT12*CV12)/CV2F1 
CT2F2 = (X2*CT2*CV2 + X1*CT12*CV12)/CV2F2 
CP2F1 - AZ*R*CT2F1/CV2F1 
CP2F2 - AZ*R*CT2F2/CV2F2 
GO TO 560 

550 CONTINUE 
CTVN1 = X1*CT1*(CV1**(N/3.0» + X2*CT12*(CV12**(N/3.0» 
CTVN2 - X2*CT2*(CV2**(N/3.0» + X1*CT12*(CV12**(N/3.0» 
CTVM1 = X1*CT1*(CV1**(M/3.0» + X2*CT12*(CV12**(M/3.0» 
CTVM2 - X2*CT2*(CV2**(M/3.0» + X1*CT12*(CV12**(M/3.0» 
CTPN1 - X1*(CT1**«3.0+N)/3.0»*(CP1**(-N/3.0» + 

1 X2*(CT12**«3.0+N)/3.0»*(CP12**(-N/3.0» 
CTPN2 - X2*(CT2**«3.0+N)/3.0»*(CP2**(-N/3.0» + 

1 X1*(CT12**«3.0+N)/3.0»*(CP12**(-N/3.0» 
CTPM1 - X1*(CT1**«3.0+M)/3.0»*(CP1**(-M/3.0» + 

1 X2*(CT12**«3.0+M)/3.0»*(CP12**(-M/3.0» 
CTPM2 - X2*(CT2**«3.0+M)/3.0»*(CP2**(-M/3.0» + 

1 X1*(CT12**«3.0+M)/3.0»*(CP12**(-M/3.0» 
CT2F1 = CTVN1**(M/(M-N»*(CTVM1**(N/(N-M») 
CT2F2 = CTVN2**(M/(M-N»*(CTVM2**(N/(N-M») 
CV2F1 = CTVN1**(3.0/(N-M»*(CTVM1**(3.0/(M-N») 
CV2F2 - CTVN2**(3.0/(N-M»*(CTVM2**(3.0/(M-N») 
CP2F1 - CTPN1**«3.0+M)/(M-N»*(CTPM1**«3.0+N)/(N-M») 
CP2F2 = CTPN2**«3.0+M)/(M-N»*(CTPM2**«3.0+N)/(N-M») 

560 CONTINUE 
RETURN 
END 

SUBROUTINE XRES (TC, VC, PC, GRES 1 , HRES 1 , VRES 1 ) 
C THIS SUBROUTINE PROVIDES THE RESIDUAL FUNCTIONS IN AN 
C ANALYTICAL FORM THAT IS A UNIVERSAL FUNCTION OF A GROUP OF 
C SUBSTANCES. A POWER SERIES IN THE REDUCED TEMPERATURE IS ADOPTED 
C AS A BASIS FOR THE CALCULATIONS. 

COMMON/CRITIC/CT1,CT2,CV1,CV2,CP1,CP2,AZ 
COMMON/RTPDAT/R,T,P 
COMMON/CFDATA/AP( 10) ,AB( 10) ,AV( 10) ,APD( 10) ,ABD( 10) ,AVD( 10) 
COMMON/NUMCFS/JPM,JBM,JVM,JPMD,JBMD,JVMD 



COMMON/MOLSEP/RINTM1,RINTM2,PI1,PI2,ISWVOL,ISWVC 
REAL ~REDP 
IF (ISWVC.EQ.l) GO TO 630 
VC .. AZ*R*TC/PC 

630 CONTINUE 
LNREDP - 0.0 
DO 640 JP = 1,JPM 
SUMLNP = AP(JP)*(TC/T)**(JP-l) 

640 LNREDP = SUMLNP + LNREDP 
REDP = EXP(LNREDP) 
REDBV >II 0.0 
DO 650 JB = 1,JBM 
SUMRBV .. AB(JB)*(TC/T)**(JB-1) 

650 REDBV = SUMRBV + REDBV 
REDV - 0.0 
DO 660 JV = 1,JVM 
SUMRV = AV(JV)*(T/TC)**(JV-1) 

660 REDV = SUMRV + REDV 
DLNPDT - 0.0 
DO 670 JPD = 1,JPMD 
SMDLNP - APD(JPD)*(TC/T)**(JPD+1) 

670 DLNPDT - SMDLNP + DLNPDT 
DREDV - 0.0 
DO 680 JVD - 1,JVMD 
SMDRVD z AVD(JVD)*(T/TC)**(JVD-l) 

680 DREDV = SMDRVD + DREDV 
DIFFBV - REDBV - REDV 
DDBVDT - 0.0 
DO 690 JBD .. 1, JBMD 
SMDBVD z ABD(JBD)*(TC/T)**(JBD+l) 

690 DDBVDT - SMDBVD + DDBVDT 
DDFBDT - DDBVDT - DREDV 
GRES1 - LNREDP + AZ*(TC/T)*(REDP*DIFFBV+REDV*(P*VC/(AZ*R*TC») 

1 + ALOG (AZ*R*TC/VC) 
HRESl - -(T/TC)*DLNPDT - AZ*DIFFBV*REDP*(DLNPDT-(TC/T» 

1 - AZ*REDP*DDFBDT + (P*VC/(R*TC»*«TC/T)*REDV - DREDV) 
VRES 1 - VC*REDV 
RETURN 
END 



APPENDIX 7 

This proqram calculates excess functions by use of equations of state, 

such as the Van der Waals equation of state. 



C PROGRAM .STEQTN 
C PROGRAM 'EQUATIONS OF STATE'. 

C THIS PROGRAM IS USED FOR FURNISHING DATA ON EXCESS FUNCTIONS FOR 
C SUITABLE OR SELECTED BINARY LIQUID MIXTURES BY EMPLOYING A NUMBER 
C OF EQUATIONS OF STATE. 
C THE EVALUATION OF THE EXCESS FUNCTIONS DEPENDS ON SOLVING FOR 
C THE MOLAR VOLUME AT ZERO PRESSURE. THE PROGRAM IS VERSATILE IN 
C ITS APPROACH TO THE SOLUTION FOR MOLAR VOLUME. THE ALTERNATIVES 
C MAY BE GROUPED THUS: 
C (i) The van der Waals and Guggenheim equations of state are 
C in their original forms. However, a general equation for 
C these two equations is used, the choice of equation being 
C determined by the appropriate selection for NEQST which is 
C index of the (V - B) term. 
C Also,the use of NEQST has facilitated the proposal of 
C other equations of state(see text). 
C (ii) A general equation, in series form,is available. This 
C represents all the equations of state to be discussed, 
C including the two mentioned above. The equations can be 
C distinguished by varying the values of the coefficients. 
C IN ALL APPROACHES, THE NEWTON-RAPHSON ITERATIVE METHOD IS USED. 

COMMON/COMPSN/X(40),XPGE(40),XPHE(40),XPVE(40) 
COMMON/CRITIC/CT1,CT2,CV1,CV2,CA,CB 
CQMMON/RTPDAT/R,T,CONST,E 
COMMON/CFDATA/A(20),M,N 
COMMON/SWITCH/ISWEQS,ISWCR,NFLUID,MOLSW,NEQST,VFACT 
COMMON/MOLSEP/RINTM1,RINTM2,PI1,PI2,ISWVOL 
COMMON/POLDMS/POL1,POL2,DMS1,DMS2 
DIMENSION CAGE1(40),CAGE2(40),CAHE1(40),CAHE2(40), 

1CAVE1(40),CAVE2(40),DEVGE1(40),DEVGE2(40),DEVHE1(40),DEVHE2(40), 
2DEVVE1(40),DEVVE2(40),AX(40),BX(40),A1X(40),A2X(40), 
3B1X(40),B2X(40),A1(40),A2(40),B1(40),B2(40) 

WRITE(4,*) 
WRITE(4,*) 
WRITE(4,*)"TYPE IN GAS CONSTANT AND TEMPERATURE" 
WRITE(4,*) 
READ(3,*)R,T 
WRITE(4,*) 
WRITE (4, *) "TYPE IN THE CRITICAL TEMPS AND VOLS FOR BOTH COMPTS." 
WRITE(4,*) 
READ(3,*)CT1,CT2,CV1,CV2 
WRITE(4,*) 
WRITE(4,*)CT1,CT2,CV1,CV2 
WRlTE(4,*) 
WRITE(4,*)"TYPE IN THE CONSTANTS CA AND CB - THESE ARE FOR" 
WRITE (4, *) "CALCULATION OF A 11 AND B 11, etc." 
WRlTE(4,*) 
READ(3,*)CA,CB 
WRITE(4,*) 
WRITE(4,*)"TYPE IN THE IONISATION POTENTIALS FOR COMPONENTS" 
WRITE(4,*)"1 AND 2" 
WRITE(4,*) 
READ(3,*)PI1,PI2 
WRITE(4,*) 
WRITE(4,*)"TYPE IN THE INTERMOLECULAR SEPARATION PARAMETERS" 
WRITE ( 4 , * ) "FOR COMPTS. 1 AND 2" 
WRlTE(4,*) 
READ(3,*)RINTM1,RINTM2 



WRITE(4,*) 
WRITE(4,*)"TYPE IN THE POLARISABILITIES FOR COMPTS. 1 AND 2" 
WRITE(4,*) 
READ(3,*)POL1,POL2 
WRITE(4,*) 
WRITE(4,*)"TYPE IN THE DIAMAGNETIC SUSCEPTIBILITIES FOR COMPTS." 
WRITE(4,*)"1 AND 2" 
WRITE(4,*) 
READ(3,*)DMS1,DMS2 
WRITE(4,*) 
WRITE (4, * ) "TYPE IN ISWVOL. This is a switch 1 IT DEPENDS ON THE" 
WRITE(4,*) "AVAILABILITY, OR LACK, OF DATA ON INTERMOLECULAR" 
WRITE (4, * ) "SEPARATION PARAMETERS. USE ISWVOL 1 IF DATA ARE" 
WRITE(4,*) "AVAILABLE; OTHERWISE USE A VALUE OF 2." 
WRITE(4,*) 
READ(3,*) ISWVOL 
WRITE(4,*) 
WRITE ( 4, * ) "TYPE IN N - THE NUMBER OF POINTS" 
WRITE(4,*) 
READ(3,*)N 
WRITE(4,*) 
WRITE(4,*)"TYPE IN N MOLE FRACTION VALUES" 
WRITE(4, *) 
READ(3,*)(X(I),I=1,N) 
WRITE(4,*) 
WRITE(4,*)"TYPE IN N EXPERIMENTAL EXCESS GIBBS FUNCTION VALUES" 
WRITE(4,*) 
READ(3,*)(XPGE(I),I=1,N) 
WRITE(4,*) 
WRITE(4,*)(XPGE(I),I=1,N) 
WRITE(4,*) 
WRITE(4,*)"TYPE IN N EXPERIMENTAL EXCESS ENTHALPY VALUES" 
WRITE(4,*) 
READ(3,*) (XPHE(I),I=1,N) 
WRITE(4,*) 
WRITE(4,*) (XPHE(I),I=1,N) 
WRITE(4,*) 
WRITE(4,*)"TYPE IN N EXCESS VOLUME VALUES" 
WRITE(4,*) 
READ(3,*)(XPVE(I),I=1,N) 
WRITE(4,*) 
WRITE(4,*) (XPVE(I),I=1,N) 
WRITE(4,*) 
WRITE(4,*)"TYPE IN MOLSW. This is the value for selecting" 
WRITE(4,*)"whether equations of state will be used in exact" 
WRITE(4,*)"forms or in series forms." 
WRITE(4,*)"MOLSW = 1; EXACT FORM OF THE GENERALISED EQUATION" 
WRITE ( 4 , * ) "IN WHICH NEQST IS VARIABLE." 
WRITE(4,*) "MOLSW = 2; SERIES FORM OF ANY EQUATION OF STATE." 
WRITE (4, *) "NOW TYPE IN THE REQUIRED VALUE FOR MOLSW" 
WRITE(4,*) 
READ(3,*)MOLSW 
WRITE(4,*) 
WRITE(4,*)"If exact forms are to be used, which of the" 
WRlTE(4,*)"equations is required? The selection is via" 
WRITE (4 , * ) "the use of NEQST. II 
WRITE (4, * ) "NEQST - 11 FOR VAN DER WAALS EQUATION. II 

WRITE(4,*)"NEQST - 21 FOR PROPOSED STATE EQUATION(I)." 
WRITE(4,*)"NEQST - 3, FOR PROPOSED STATE EQUATION(II)." 
WRITE(4,*)"NEQST - 4; FOR GUGGENHEIM EQUATION." 



WRITE(4,*)"NOW TYPE IN THE REQUIRED VALUE OF NEQST." 
WRITE(4,*) 
READ(3,*)NEQST 
WRITE(4,*) 
WRITE(4,*)"TYPE IN VFACT - THIS IS A FACTOR USED FOR OBTAINING" 
WRITE(4,*)"THE TRIAL VALUE OF MOLAR VOLUME." 
WRITE (4, *) "WHEN DEALING WITH EQUATIONS IN WHICH NEQST IS A" 
WRITE(4,*)"VARIABLE, THE RECOMMENDED VALUES FOR VFACT ARE AS" 
WRITE(4,*)"FOLLOWS:(NOTE - This is not lawl)" 
WRITE(4,*)"FOR NEQST = 1, VFACT = 1.10" 
WRITE (4, *) "FOR NEQST - 2, VFACT = 1.80" 
WRITE(4,*)"FOR NEQST .. 3, VFACT = 2.30" 
WRITE(4,*)"FOR NEQST .. 4, VFACT = 2.50" 
WRITE (4, *) "FOR Ol'HER EQUATIONS OF STATE, USE INTELLIGENT GUESSES" 
WRITE(4,*) 
READ(3,*)VFACT 
WRITE(4,*) 
WRITE(4,*)VFACT 
WRITE(4,*) 
WRITE (4, *) "TYPE IN THE VALUE FOR XI (SQUIGGLY' E VALUE)" 
WRITE ( 4 , * ) "USE A VALUE OF 1 IN ALL CASES, EXCEPT WHERE THE" 
WRITE ( 4 , * ) "VALUE OF XI HAS BEEN DETERMINED EXPERIMENTALLY;" 
WRITE(4,*)"AND IF THAT IS THE CASE, THEN ONLY THE LORENTZ-" 
WRITE(4,*)"BERTHELOT COMBINING RULES ARE TO BE USED." 
WRITE(4,*) 
READ(3,*)E 
WRITE(4,*) 
WRITE(4,*)"TYPE IN THE VALUE FOR CONST" 
WRlTE(4,*)"(This is the second term in R.H.S. of the equation" 
WRITE(4,*)"which defines the residual volume.)" 
WRITE(4,*) 
READ(3,*)CONST 
WRITE(4,*) 
WRITE(4,*)"TYPE IN M - THE NUMBER OF COEFFICIENTS FOR THE SERIES" 
WRITE(4,*)"FORM OF A GIVEN EQUATION OF STATE" 
WRITE(4,*) 
READ(3,*)M 
WRITE(4,*) 
WRITE(4,*)"TYPE IN THE COEFFICIENTS - M OF THEM" 
WRITE(4,*) 
READ(3,*)(A(L),L-1,M) 
WRITE(4,*) 
WRITE(4,*) "INDICATE 
WRITE(4,*)"BOTH ARE 
WRITE(4,*)"NFLUID ~ 
WRITE(4,*)"NFLUID = 
WRITE(4,*)"NFLUID = 
WRITE(4,*)"NOW TYPE 
WRITE(4,*) 
READ(3,*)NFLUID 
WRITE(4,*) 

WHICH 'N-FLUID' THEORY IS TO 
TO BE USED, BY TYPING IN THE 
1; FOR 'ONE-FLUID' THEORY." 
2; FOR 'TWO-FLUID' THEORY." 
3, IF BOTH MODELS ARE TO BE 
IN THE VALUE FOR NFLUID" 

BE USED, OR, IF" 
VALUE FOR NFLUID" 

USED." 

WRITE(4,*)"THE FOLLOWING SECTION IS FOR SELECTING THE EQUATION" 
WRITE(4,*)"OF STATE TO BE USED. THIS IS DONE BY USING A SWITCH" 
WRITE ( 4 , * )" WHICH SHALL BE CALLED ISWEQS. THE FOLLOWING IS A" 
WRITE(4,*)"LIST OF ISWEQS VALUES WITH THE CORRESPONDING" 
WRITE(4,*)"EQUATIONS OF STATE:" 
WRITE(4,*)"1 - THE VIRIAL EQUATION OF STATE" 
WRITE(4,*)"2 - THE VAN DER WAALS EQUATION OF STATE" 
WRITE(4,*)"3 - THE GUGGENHEIM EQUATION OF STATE" 
WRITE(4,*)"4 - THE FRISCH et al EQUATION OF STATE" 



WRITE(4,*)"S - THE THIELE EQUATON OF STATE" 
WRITE(4,*)"6 - THE SCOTT(1) EQUATION OF STATE" 
WRITE(4,*)"7 - THE SCOTT(2) EQUATION OF STATE" 
WRITE(4,*)"a - THE PROPOSED EQUATION OF STATE(I)" 
WRITE(4,*)"9 - THE PROPOSED EQUATION OF STATE(II)" 
WRITE (4, *) "TYPE IN THE VALUE OF ISWEQS WHICH GOES WITH THE" 
WRITE (4, *) "DESIRED EQUATION OF STATE." 
WRITE(4,*) 
READ(3,*) ISWEQS 
WRITE(4,*) 
WRITE(4,*)"NOW WE NEED A SWITCH VALUE FOR THE SET OF COMBINING" 
WRITE(4,*)"RULES TO BE USED IN THIS CALCULATION - ISWCR." 
WRITE(4,*)"(By the way, this is the last bit of datum required" 
WRITE(4,*)"for this calculation. After typing in the value for" 
WRITE(4,*)"ISWCR just relax and let the computer do its thingl)" 
WRITE(4,*)"HERE IS A LIST OF ISWCR VALUES WITH CORRESPONDING" 
WRITE(4,*)"SETS OF COMBINING RULES:" 
WRITE(4,*)"1 - FOR THE LORENTZ-BERTHELOT COMBINING RULES" 
WRITE(4,*)"2 - FOR THE HUDSON-McCOUBREY COMBINING RULES" 
WRITE(4,*)"3 - \«)RMALD, et al(Mk I) COMBINING RULES" 
WRITE (4, * ) "4 - \«)RMALD, et al (Mk II) COMBINING RULES" 
WRITE ( 4 , * ) "5 - MUNN COMB INING RULES" 
WRITE(4,*)"6 - FENDER-HALSEY COMBINING RULES" 
WRITE(4,*)"7 - this work" 
WRITE(4,*)"a - HICKS-YOUNG COMBINING RULES" 
WRITE(4,*) 
WRITE(4,*)"NOW TYPE IN THE VALUE FOR ISWCR." 
WRITE(4,*) 
READ(3,*) ISWCR 
WRITE(4,*) 
WRITE(4,*) 
WRITE(4,*) 

1 WRITE(4,*)"(1-X)-NEOPENTANE + X-TETRAMETHYLSILANE AT 283.15 K:" 
WRITE(4,*) 
WRITE(4,*) 
IF (ISWEQS.EQ.1) GO TO 2 
IF (ISWEQS.EQ.2) GO TO 4 
IF (ISWEQS.EQ.3) GO TO 6 
IF (ISWEQS.EQ.4) GO TO 8 
IF (ISWEQS.EQ.5) GO TO 10 
IF (ISWEQS.EQ.6) GO TO 12 
IF (ISWEQS.EQ.7) GO TO 14 
IF (ISWEQS.EQ.a) GO TO 16 
IF (ISWEQS.EQ.9) GO TO 1a 

2 WRITE (4, *) "THE VIRIAL EQUATION OF STATE:" 
GO TO 20 

4 WRITE (4, *)"THE VAN DER WAALS EQUATION OF STATE:" 
GO TO 20 

6 WRITE(4,*)"THE GUGGENHEIM EQUATION OF STATE:" 
GO TO 20 

8 WRITE(4,*)"THE FRISCH et al EQUATION OF STATE:" 
GO TO 20 

10 WRITE (4, * )"THE THIELE EQUATION OF STATE:" 
GO TO 20 

12 WRITE(4,*)"THE SCOTT(1) EQUATION OF STATE:" 
GO TO 20 

14 WRITE(4,*)"THE SCOTT(2) EQUATION OF STATE:" 
GO TO 20 

16 WRITE(4,*)"THE PROPOSED EQUATION OF STATE(I)" 
GO TO 20 



18 WRITE(4,*) "THE PROPOSED EQUATION OF STATE ( II ) II 
20 CONTINUE 

WRITE(4,*) 
WRITE(4,*) 
IF (ISWCR.EQ.1) GO TO 22 
IF (ISWCR.EQ.2) GO TO 24 
IF (ISWCR.EQ.3) GO TO 26 
IF (ISWCR.EQ.4) GO TO 28 
IF (ISWCR.EQ.5) GO TO 30 
IF (ISWCR.EQ.6) GO TO 32 
IF (ISWCR.EQ.7) GO TO 34 
IF (ISWCR.EQ.8) GO TO 36 

22 WRITE(4,*)"THE LORENTZ-BERTHELOT COMBINING RULES:" 
GO TO 40 

24 WRITE(4,*) "THE HUDSON-McCOUBREY COMBINING RULES:" 
GO TO 40 

26 WRITE(4,*) "THE WORMALD, et al(Mk I) COMBINING RULES:" 
GO TO 40 

28 WRITE(4,*) "THE WORMALD, et al(Mk II) COMBINING RULES:" 
GO TO 40 

30 WRITE(4,*) "THE MUNN COMBINING RULES:" 
GO TO 40 

32 WRITE(4,*) "THE FENDER-HALSEY COMBINING RULES:" 
GO TO 40 

34 WRITE(4,*)"COMBINING RULES USED: this work." 
GO TO 40 

36 WRITE(4,*)"THE HICKS-YOUNG COMBINING RULES:" 
40 CONTINUE 

WRITE(4,*) 
WRITE(4,*) 
CALL MAIN (CAGE 1 , CAHE 1 , CAVE 1 , CAGE2 , CAHE 2 , CAVE 2 ) 
WRITE(4,*) 
WRITE(4,*) 
STOP 
END 

SUBROUTINE MAIN(CAGE1,CAHE1,CAVE1,CAGE2,CAHE2,CAVE2) 
C EXCESS FUNCTIONS ARE CALCULATED IN THIS SECTION. 
C THERE IS AN OPTION FOR OBTAINING CALCULATED QUANTITIES 
C FROM EITHER am OR BOTH OF THE "N-FLUID" MODELS. 

COMMON/COMPSN/X(40),XPGE(40),XPHE(40),XPVE(40) 
COMMON/CRITIC/CT1,CT2,CV1,CV2,CA,CB 
COMMON/RTPDAT/R,T,CONST,E 
COMMON/CFDATA/A(20),M,N 
COMMON/SWITCH/ISWEQS,ISWCR,NFLUID,MOLSW,NEQST,VFACT 
COMMON/MOLSEP/RINTM1,RINTM2,PI1,PI2,ISWVOL 
COMMON/POLDMS/POL1,POL2,DMS1,DMS2 
DIMENSION CAGE1(40),CAGE2(40),CAHE1(40),CAHE2(40), 

1CAVE1(40),CAVE2(40),DEVGE1(40),DEVGE2(40),DEVHE1(40),DEVHE2(40), 
2DEVVE1(40),DEVVE2(40),AX(40),BX(40),A1X(40),A2X(40), 
3B1X(40),B2X(40),A1(40),A2(40),B1(40),B2(40) 
IF (ISWCR.EQ.1) GO TO 110 
GO TO 120 

110 CALL CRLB(A12,B12,VXI) 
GO TO 150 

120 CALL NOTHER(A12,B21,VXI) 
150 CONTINUE 

DO 210 I - 1,N 



CALL PCQ1(X(I),A11,A22,B11,B22,AX(I),BX(I» 
160 CALL PCQ2«1.0-X(I»,X(I),A1X(I),B1X(I),CT1,CV1) 

CALL PCQ2(X(I),(1.0-X(I»,A2X(I),B2X(I),CT2,CV2) 
170 CONTINUE 

IF (MOLSW.EQ.1) GO TO 175 
IF (MOLSW.EQ.2) GO TO 190 

175 CALL RESVDW( A 11 ,B 11, VMNP 1 ,GRES 1 , HRES 1, VRES 1 ) 
CALL RESVDW(A22,B22,VMNP2,GRES2,HRES2,VRES2) 
CALL RESVDW(AX(I),BX(I),VMNPY,GRESY,HRESY,VRESY) 
IF (NFLUID.EQ.2) GO TO 176 
CAGE1(I) - GRESY - (1.0-X(I»*GRES1 - X(I)*GRES2 
CAHE1(I) = HRESY - (1.0-X(I»*HRES1 - X(I)*HRES2 
CAVE1(I) - 1.0E06*(VRESY - (1.0-X(I»*VRES1 - X(I)*VRES2) 
DEVGE1(I) - XPGE(I) - CAGE1(I) 
DEVHE1(I) - XPHE(I) - CAHE1(I) 
DEWE1(I) - XPVE(I) - CAVEl(I) 
IF (NFLUID.EQ.3) GO TO 176 
GO TO 210 

176 CALL RESVDW(A1X(I),B1X(I),VMNPY1,GRESY1,HRESY1,VRESY1) 
CALL RESVDW(A2X(I),B2X(I),VMNPY2,GRESY2,HRESY2,VRESY2) 
CAGE 2 (I) - (1.0-X(I»*(GRESY1-GRES1) + X(I)*(GRESY2-GRES2) 
CAHE2(I) - (1.0-X(I»*(HRESY1-HRES1) + X(I)*(HRESY2-HRES2) 
CAVE 2 (I) - 1.0E06*«1.0-X(I»*(VRESY1-VRES1)+X(I)*(VRESY2-VRES2» 
DEVGE2(I) - XPGE(I) - CAGE2(I) 
DEVHE2(I) - XPHE(I) - CAHE2(I) 
DEVVE2 (I) - XPVE( I) - CAVE2 (I) 
GO TO 210 

190 CALL K>LVOL(A 11,B 11, VMNP1) 
CALL MOLVOL(A22,B22,VMNP2) 
CALL MOLVOL(AX(I),BX(I),VMNPY) 
CALL XRES ( A 11 , B 11 , VMNP 1 , GRES 1 , HRES 1 , VRES 1 ) 
CALL XRES(A22,B22,VMNP2,GRES2,HRES2,VRES2) 
IF (NFLUID.EQ.2) GO TO 200 
CALL XRES(AX(I),BX(I),VMNPY,GRESY,HRESY,VRESY) 
CAGE1(I) - GRESY - (1.0-X(I»*GRES1 - X(I)*GRES2 
CAHE1(I) - HRESY - (1.0-X(I»*HRES1 - X(I)*HRES2 
CAVE1(I) - 1.0E06*(VRESY - (1.0-X(I»*VRES1 - X(I)*VRES2) 
DEVGE1(I) - XPGE(I) - CAGE1(I) 
DEVHE1(I) - XPHE(I) - CAHE1(I) 
DEVVE1(I) - XPVE(I) - CAVE 1 (I) 
IF (NFLUID.EQ.3) GO TO 200 
GO TO 210 

200 CALL MOLVOL(A1X(I),B1X(I),VMNPY1) 
CALL K>LVOL(A2X(I),B2X(I),VMNPY2) 
CALL XRES(A1X(I),B1X(I),VMNPY1,GRESY1,HRESY1,VRESY1) 
CALL XRES(A2X(I),B2X(I),VMNPY2,GRESY2,HRESY2,VRESY2) 
CAGE2(I) - (1.0-X(I»*(GRESY1-GRES1) + X(I)*(GRESY2-GRES2) 
CAHE2(I) - (1.0-X(I»*(HRESY1-HRES1) + X(I)*(HRESY2-HRES2) 
CAVE2(I) - 1.0E06*«1.0-X(I»*(VRESY1-VRES1)+X(I)*(VRESY2-VRES2» 
DEVGE2(I) - XPGE(I) - CAGE2(I) 
DEVHE2(I) - XPHE(I) - CAHE2(I) 
DEVVE2(I) - XPVE(I) - CAVE2(I) 

210 CONTINUE 
WRlTE(4,*) 
WRITE(4,*) 
WRlTE(4,*)"THE ~UE OF XI FOR THE GIVEN COMBINING RULES" 
WRITE(4,*) 
WRlTE(4,*)"VALUE OF XI a", VXI 
WRITE(4,*) 
WRITE(4,*) 



WRITE(4,*) 
IF (NFLUID.EQ.1) GO TO 212 
IF (NFLUID.EQ.2) GO TO 260 
IF (NFLUID.EQ.3) GO TO 805 

212 WRITE(4,*) "THE 'ONE-FLUID' MODEL" 
WRITE(4,*) 
WRITE(4,*) 
WRITE(4,*) "MOLAR EXCESS GIBBS FUNCTIONS" 
WRITE(4,*) 
WRITE(4,215) 

215 FORMAT(5X,57H MOLE FRACTION CALC.XSG EXPT.XSG DIFFERE 
1NCE ,I) 

DO 225 I ... 1,N 
WRITE(4,220)X(I),CAGE1(I),XPGE(I),DEVGE1(I) 

220 FORMAT(9X,F6.4,3X,E12.5,3X,E12.5,3X,E13.6/) 
225 CONTINUE 

WRITE(4,*) 
WRITE(4,*) 
WRITE(4,*) "MOLAR EXCESS ENTHALPIES" 
WRITE(4,*) 
WRITE(4,230) 

230 FORMAT(5X,57H MOLE FRACTION CALC.XSH EXPT.XSH DIFFERE 
1NCE ,I) 

DO 240 I "" 1,N 
WRITE(4,235)X(I),CAHE1(I),XPHE(I),DEVHE1(I) 

235 FORMAT(9X,F6.4,3X,E12.5,3X,E12.5,3X,E13.6/) 
240 CONTINUE 

WRITE(4,*) 
WRITE(4,*) 
WRITE(4,*) "MOLAR EXCESS VOLUMES" 
WRITE(4,*) 
WRITE(4,245) 

245 FORMAT(5X,57H MOLE FRACTION CALC.XSV EXPT.XSV DIFFERE 
1NCE ,I) 

DO 255 I "" 1,N 
WRITE(4,250)X(I),CAVE1(I),XPVE(I),DEVVE1(I) 

250 FORMAT(9X,F6.4,3X,E12.5,3X,E12.5,3X,E13.6/) 
255 CONTINUE 

WRITE(4,*) 
WRITE(4,*) 
GO TO 840 

260 WRITE(4,*)"THE 'TWO-FLUID' MODEL" 
WRITE(4,*) 
WRITE(4,*) 
WRlTE(4,*) "MOLAR EXCESS GIBBS FUNCTIONS" 
WRITE(4,*) 
WRITE(4,265) 

265 FORMAT(5X,57H MOLE FRACTION CALC.XSG EXPT.XSG DIFFERE 
1NCE ,I) 

DO 275 I - 1,N 
WRITE(4,270)X(I),CAGE2(I),XPGE(I),DEVGE2(I) 

270 FORMAT(9X,F6.4,3X,E12.5,3X,E12.5,3X,E13.6/) 
275 CONTINUE 

WRITE(4,*) 
WRlTE(4,*) 
WRITE(4,*) "MOLAR EXCESS ENTHALPIES" 
WRITE(4,*) 
WRITE(4,280) 

280 FORMAT(5X,57H MOLE FRACTION CALC.XSH EXPT.XSH DIFFERE 
lNCE ,I) 



DO 290 I :z: 1,N 
WRITE(4,285)X(I),CAHE2(I),XPHE(I),DEVHE2(I) 

285 FORMAT(9X,F6.4,lX,E12.5,lX,E12.5,lX,Ell.6/) 
290 CONTINUE 

WRITE(4,*) 
WRITE(4,*) 
WRITE(4,*)"MOLAR EXCESS VOLUMES" 
WRITE(4,*) 
WRITE(4,295) 

295 FORMAT(5X,57H MOLE FRACTION CALC.XSV EXPT.XSV 
lNCE ,/) 

DO 305 I - 1,N 
WRITE(4,lOO)X(I),CAVE2(I),XPVE(I),DEVVE2(I) 

lOO FORMAT(9X,F6.4,lX,E12.5,lX,E12.5,lX,Ell.6/) 
lOS CONTINUE 

WRITE(4,*) 
WRITE(4,*) 
GO TO 840 

805 WRITE(4,*)"1. SrSTBM:" 
WRITE (4 , * ) "2. MB!'IIOD OP CALCULATION: II 
WRITE(4,*)" Bappl..antary notes:" 
WRITE (4, *) "3. SB'I' OP COIBDIDIG RIJLBS:" 
WRITE (4, * ) " Value of II -" , VXI, "VPAC"l' =", VFACT 
WRITE(4,*) 
WRITE(4,*)" ABC D 

1 E F" 
WRITE(4,*) 
WRITE (4, * ) "s» as GIBBS PUIIC'l'IONS" 
WRITE(4,*) 

DIFFERE 

DO 815 I - 1,N 
WRITE(4,8l0)X(I),XPGE(I),CAGE1(I),CAGE2(I),DEVGE1(I),DEVGE2(1) 

810 FORMAT(2X,F4.2,7X,F8.2,5X,F8.2,5X,FS.2,5X,FS.2,5X,FS.2) 
S15 CONTINUE 

WRITE(4,*) 
WRITE(4,*)"REDLICH-KISTER COEFFICIENTS:" 
WRITEC4,*)"(a) EXPERIMENTAL :" 
WRITE(4,*)"Cb) ONE-FLUID MODEL:" 
WRITEC4,*)"Cc) TWO-FLUID MODEL:" 
WRITEC4,*) 
WRITE C 4, * ) "s» 'SS BlftllALPIBS" 
WRITE(4,*) 
DO 825 I - 1,N 
WRITE(4,820)XCI),XPHE(I),CAHE1(I),CAHE2(I),DEVHE1(I),DEVHE2(1) 

820 FORMATC2X,F4.2,7X,FS.2,5X,FS.2,5X,F8.2,5X,FS.2,5X,F8.2) 
825 CONTINUE 

WRITEC4,*) 
WRITE(4,*)"REDLICH-KISTER COEFFICIENTS:" 
WRITE(4,*)"Ca) EXPERIMENTAL :" 
WRITE(4,*)"Cb) ONE-FLUID MODEL:" 
WRITE(4,*)"(c) TWO-FLUID MODEL:" 
WRITE(4,*) 
WRITE C 4 , * ) ".» as VOLmIBB" 
WRITE(4,*) 
DO 835 I - 1,N 
WRITE(4,8l0)XCI),XPVE(I),CAVE1(I),CAVE2(I),DEVVE1(I),DEVVE2(I) 

S30 FORMAT(2X,F4.2,8X,F7.4,6X,F7.4,6X,F7.4,6X,F7.4,6X,F7.4) 
835 CONTINUE 

WRITE(4,*) 
WRITE(4,*)"REDLICH-KISTER COEFFICIENTS:" 
WRITE(4,*)"(a) EXPERIMENTAL :" 



WRITE(4,*)"(b) ONE-FLUID MODEL:" 
WRITE(4,*)"(c) TWO-FLUID MODEL:" 

840 CONTINUE 
RETURN 
END 

SUBROUTINE MOLVOL(AX,BX, VMNP1) 
C IN THIS SUBROUTINE, THE RELEVANT ROOT FOR THE MOLAR VOLUME OF A 
C MIXTURE, AS DESCRIBED BY A GIVEN EQUATION OF STATE, IS 
C ESTIMATED USING THE NEWTON-RAPHSON METHOD OF NUMERICAL ANALYSIS. 

COMMON/CRITIC/CT1,CT2,CV1,CV2,CA,CB 
COMMON/RTPDAT/R,T,CONST,E 
COMMON/CFDATA/A(20),M,N 
COMMON/SWITCH/ISWEQS,ISWCR,NFLUID,NEQST,VFACT 
VMN - VFACT*BX 
GO '1'0 360 

340 VMN - VMNP1 
360 SUMNUM - 0.0 

SUMDEN - 0.0 
DO 370 J - 1,M 
A8VNUM - A(J)*(BX/4.0)**(J-1)*(VMN)**(1-J) 
A8VDEN - (1-J)*A(J)*(BX/4.0)**(J-1)*(VMN)**(-J) 
SUMNUM - ABVNUM + SUMNUM 
SUMDEN - ABVDEN + SUMDEN 

370 CONTINUE 
VNUM - SUMNUM - (AX/(R*T*VMN» 
VDEN - SUMDEN + (AX/(R*T»*(VMN)**(-2) 
VMNP1 - VMN - (VNUM/VDEN) 
DVMN • VMNP1 - VMN 
IF (ABS(DVMN).LE.5.0E-11) GO TO 400 
GO '1'0 340 

400 CONTINUE 
RETURN 
END 

SUBROUTINE RESVDW(AX,BX,VMNP1,GRES,HRES,VRES) 
C THIS SUBROUTINE IS FOR EVALUATION OF RESIDUAL FUNCTIONS USING 
C THE EXACT FORMS OF THE EQUATIONS OF STATE. 

COMMON/CRITIC/CT1,CT2,CV1,CV2,CA,CB 
COMMON/RTPDAT/R,T,CONST,E 
COMMON/CFDATA/A(20),M,N 
COMMON/SWITCH/ISWEQS,ISWCR,NFLUID,MOLSW,NEQST,VFACT 
VMN • VFACT*BX 
GO '1'0 420 

410 VMN· VMNP1 
420 CONTINUE 

VNUM - R*T*VMN**(NEQST-1)/(VMN-BX)**NEQST - AX/VMN**2 
VDEN - -R*T*VMN**(NEQST-2)*(VMN+(NEQST-1)*BX)/(VMN-BX)**(NEQST+1) 

1 + 2.0*AX/VMN**3 
VMNP1 • VMN - (VNUM/VDEN) 
DVMN • VMNP1 - VMN 
IF (ABS(DVMN).LE.5.00E-11) GO TO 430 
GO '1'0 410 

430 CONTINUE 
IF (NEQST.EQ.1) GO TO 450 
II" (NEQST.EQ.2) GO '1'0 455 
IF (NEQST.EQ.3) GO '1'0 460 
IF (NEQST.EQ.4) GO TO 470 

450 GRES - -R*T*ALOG(VMNP1 - BX) - (AX!VMNP1) 
GO TO 480 



455 GRES'" -R*T*ALOGeVMNPl - BX) - AX/VMNPl + R*T*BX/(VMNP1-BX) 
GO TO 480 

460 GRES - -R*T*ALOGeVMNPl - BX) - AX/VMNPl + 2.0*R*T*BX/(VMNP1-BX) 
1 + R*T*BX**2/(2.0*eVMNPl - BX)**2) 
GO TO 480 

470 CONSTl - 3.0*BX/(VMNP1-BX) 
CONST2 a 3.0*BX**2/e2.0*eVMNP1-BX)**2) 
CONST3 = BX**3/e3.0*(VMNP1-BX)**3) 
GRES = -R*T*ALOG(VMNP1-BX) + R*T*eCONST1+CONST2+CONST3) - AX/VMNP1 

480 CONTINUE 
HRES ,.. - eAX/VMNP1) 
VRES ,.. VMNP 1 + CONST 
RETURN 
END 

SUBROUTINE XREseAX,BX,VMNP1,GRES,HRES,VRES) 
C THE RESIDUAL FUNCTIONSeGIBBS FUNCTIONS, ENTHALPIES, AND VOLUMES) 
C ARE CALCULATED IN THIS SUBROUTINE. 
C THE VALUES FOR THE MOLAR VOLUMES HAVE BEEN OBTAINED VIA THE 
C SERIES FORMS OF THE EQUATIONS OF STATE. 

COMMON/CRITIC/CT1,CT2,CV1,CV2,CA,CB 
COMMON/RTPDAT/R,T,CONST,E 
COMMON/CFDATA/A(20),M,N 
COMMON/SWITCH/ISWEQS,ISWCR,NFLUID,MOLSW,NEQST,VFACT 
SUMGR - 0.0 
DO 500 J = 2,M 
GRABV - AeJ)*eBX/(4.0*VMNP1»**eJ-1)/(J-1) 

500 SUMGR - GRABV + SUMGR 
GRES - R*T*SUMGR - (AX!VMNP1) 
HRES - - (AX/VMNp 1 ) 
VRES .. VMNP 1 + CONST 
RETURN 
END 

SUBROUTINE PCQ1ex,Al1,A22,B11,B22,AX,BX) 
C THIS SUBROUTINE IS FOR ANLYSIS BY THE 'ONE-FLUID' MODEL 

COMMON/CRITIC/CT1,CT2,CV1,CV2,CA,CB 
COMMON/RTPDAT/R,T,CONST,E 
COMMON/SWITCH/ISWEQS,ISWCR,NFLUID,MOLSW,NEQST,VFACT 
COMMON/MOLSEP/RINTM1,RINTM2,PI1,PI2,ISWVOL 
CQMMON/pOLDMS/POL1,POL2,DMS1,DMS2 
IF eISWCR.EQ.1) GO TO 510 
GO TO 520 

510 CALL CRLB(A12,B12,VXI) 
GO TO 550 

520 CALL NOTHER(A12,B12,VXI) 
550 All = CA*R*CT1*CVl 

A22 = CA*R*CT2*CV2 
B11 = CB*CV1 
B22 = CB*CV2 
AX = (1.0-X)**2*All + 2.0*X*(1.0-X)*A12 + X**2*A22 
BX = (1.0-X)**2*Bl1 + 2.0*X*(1.0-X)*B12 + X**2*B22 
RETURN 
END 

SUBROUTINE pcQ2eXl,X2,AX,BX,CT,CV) 
C THIS SUBROUTINE IS FOR ANALYSIS BY THE 'TWO-FLUID' MODEL 



, 

COMMON/CRITIC/CT1,CT2,CV1,CV2,CA,CB 
COMMON/RTPDAT/R,T,CONST,E 
COMMON/SWITCH/ISWEQS,ISWCR,NFLUID,MOLSW,NEQST,VFACT 
COMMON/MOLSEP/RINTM1,RINTM2,PI1,PI2,ISWVOL 
COMMON/POLDMS/POL1,POL2,DMS1,DMS2 
IF (ISWCR.EQ.1) GO TO 610 
GO TO 620 

610 CALL CRLB(A12,B12,VXI) 
GO TO 650 

620 CALL NOTHER(A12,B12,VXI) 
650 CONTINUE 

AX = X1*CT*CV*CA*R + X2*A12 
BX = X1*CV*CB + X2*B12 
RETURN 
END 

SUBROUTINE CRLB(A12,B12,VXI) 
C THE LORENTZ-BERTHELOT COMBINING RULES 

COMMON/CRITIC/CT1,CT2,CV1,CV2,CA,CB 
COMMON/RTPDAT/R,T,CONST,E 
CV12 - (CV1**(1.0/3.0) + CV2**(1.0/3.0»**3/8.0 
B 12 - CB*CV12 
FIXNUM = (CT1*CT2*CV1*CV2)**(1.0/2.0) 
FIXDEN = (CV12**2/(CV1*CV2»**(1.0/2.0) 
A12 = E*FIXNUM*FIXDEN*CA*R 
VXI = E 
RETURN 
END 

SUBROUTINE NOTHER(A12,B12,VXI) 
C THIS SUBROUTINE IS FOR OBTAINING THE CRITICAL TEMPERATURE DUE TO 
C UNLIKE INTERACTIONS USING COMBINING RULES OTHER THAN THE 
C LORENTZ-BERTHELOT RULES. THE IDENTIFIER ISWCR(for ISWCR 
C greater than 1) IS UESD FOR SELECTING THE REQUIRED RULES. 

COMMON/CRITIC/CT1,CT2,CV1,CV2,CA,CB 
COMMON/RTPDAT/R,T,CONST,E 
COMMON/SWITCH/ISWEQS,ISWCR,NFLUID,MOLSW,NEQST,VFACT 
COMMON/MOLSEP/RINTM1,RINTM2,PI1,PI2,ISWVOL 
COMMON/POLDMS/POL1,POL2,DMS1,DMS2 
CV12 - (CV1**(1.0/3.0) + CV2**(1.0/3.0»**3/8.0 
B 12 - CB*CV12 
PRODIP = 2.0*(PI1*PI2)**(1.0/2.0)/(PI1+PI2) 
PRODR = (RINTM1**3)*(RINTM2**3)/(RINTM1 + RINTM2)**6 
QUOTV - (CV1**(1.0/3.0) + CV2**(1.0/3.0»**6 
IF (ISWCR.EQ.2) GO TO 710 
IF (ISWCR.EQ.3) GO TO 725 
IF (ISWCR.EQ.4) GO TO 730 
IF (ISWCR.EQ.5) GO TO 735 
IF (ISWCR.EQ.6) GO TO 740 
IF (ISWCR.EQ.7) GO TO 745 
IF (ISWCR.EQ.8) GO TO 750 

710 IF (ISWVOL.EQ.2) GO TO 715 
CT12 = 2.0**6*PRODR*PRODIP*(CT1*CT2)**(1.0/2.0) 
A12 = CV12*CT12*R*CA 
IF (ISWVOL.EQ.1) GO TO 720 

715 CT12 - 2.0**6*CV1*CV2*PRODIP*(CT1*CT2)**(1.0/2.0)/QUOTV 
A12 = CV12*CT12*CA*R 

720 CONTINUE 
GO TO 775 

725 CT12 - (CT1*CT2*CV1*CV2)**(1.0/2.0)/CV12 



A12 = CV12*CT12*R*CA 
GO TO 775 

730 CT12 = PRODIP*(CT1*CT2*CV1*CV2)**(1.0/2.0)/CV12 
A12 = CV12*CT12*R*CA 
GO TO 775 

735 CT12 = 2.0*CT1*CT2*(CV1*CV2)**2*CV12**(-2)*POL1*POL2/(CT1*(CV1* 
1 POL2)**2 + CT2*(CV2*POL1)**2) 
A12 = CV12*CT12*R*CA 
GO TO 775 

740 CT12 = 2.0*CT1*CT2/(CT1 + CT2) 
A12 - CV12*CT12*R*CA 
GO TO 775 

745 CT12 - 2.0*CT1*CT2*2.0**6*(CV1*CV2)**2/(QUOTV*(CT1*CV1**2 + CT2* 
1 CV2**2) ) 
A12 - CV12*CT12*R*CA 
GO TO 775 

750 CT12 = 2.0*(CT1*CT2)**(2.0/3.0)/(CT1**(1.0/3.0) + CT2**(1.0/3.0» 
A12 - CV12*CT12*R*CA 

775 CONTINUE 
VXI = CT12/«CT1*CT2)**(1.0/2.0» 

780 CONTINUE 
RETURN 
END 



A·8 
APPENDIX 8 

The program was used for compiling calculated data so that it came in 

the form of tables shown in TABLES 7.1 to 7.8 



C This program tabulates the results of calculations of 
C excess functions using a given theoretical model and 
C various combining rules. Experimental data are also 
C included. 

10 

20 

30 

INTEGER N 
DIMENSION X(10),XPGE(10),XPHE(10),XPVE(10),GELB1(10), 

1GELB2(10),HELB1(10),HELB2(10),VELB1(10),VELB2(10),GEHM1(10), 
2GEHM2 ( 10) , HEHM 1( 10) , HEHM2 ( 10 ) , VEHM 1( 10 ) , VEHM2 ( 10) , GEWO 1 ( 10 ) , 
3GEW02(10),HEW01(10),HEW02(10),VEW01(10),VEW02(10),GEFH1(10), 
4GEFH2(10),HEFH1(10),HEFH2(10),VEFH1(10),VEFH2(10),GEHY1(10), 
SGEHY2(10),HEHY1(10),HEHY2(10),VEHY1(10),VEHY2(10),GEPR1(10), 
6GEPR2(10),HEPR1(10),HEPR2(10),VEPR1(10),VEPR2(10) 

READ(3,*)VLB,VHM,VW1,VFH,VHY,VPR 
READ(3,*)N 
READ(3,*)(X(I),I=1,N) 
READ(3,*)(XPGE(I),XPHE(I),XPVE(I),I=1,N) 
READ(3,*)(GELB1(I),HELB1(I),VELB1(I),I=1,N) 
READ(3,*)(GELB2(I),HELB2(I),VELB2(I),I=1,N) 
READ(3,*)(GEHM1(I),HEHM1(I),VEHM1(I),I=1,N) 
READ(3,*)(GEHM2(I),HEHM2(I),VEHM2(I),I=1,N) 
READ(3,*)(GEW01(I),HEW01(I),VEW01(I),I=1,N) 
READ(3,*)(GEW02(I),HEW02(I),VEW02(I),I=1,N) 
READ(3,*)(GEFH1(I),HEFH1(I),VEFH1(I),I=1,N) 
READ(3,*)(GEFH2(I),HEFH2(I),VEFH2(I),I=1,N) 
READ(3,*)(GEHY1(I),HEHY1(I),VEHY1(I),1=1,N) 
READ(3,*)(GEHY2(1),HEHY2(I),VEHY2(1),1=1,N) 
READ(3,*)(GEPR1(1),HEPR1(1),VEPR1(1),I=1,N) 
READ(3,*)(GEPR2(1),HEPR2(1),VEPR2(I) 1=1 N) 
WRITE(4,*) , , 

WRITE(4,*)"TABLE 7.1 Prediction of excess functions via the" 
WRITE(4,*)" equation of state(1) " 
WR1TE(4,*)"(1-x)-neopentane + x-tetrameth;lsilane at 283.1S K" 
WR1TE(4,*) 
WRITE(4,*) 
WRITE (4, *)" .ag..I'UJD). 'l'IIBORY" 
WRITE(4,*) 
WR1TE(4,*)"Combining rule: 

1 HY present" 
LB 

WRITE(4,10)VLB,VHM,VW1,VFH,VHY,VPR 

HM WeI) FH 

FORMAT(1X,10HValue of u,10X,FS.3,3X,F7.S,2X,F7.S,2X,F7.S,2X,F7.S, 
12X,F7.5) 
WRITE(4,*) 
WRITE(4,*)" x Expt. values Calculated values using various c 

10mbining rules" 
WR1TE(4,*) 
WRITE(4,*)"Excess Gibbs functions/J mol- 1" 
WRITE(4,*) 
DO 30 I = 1,N 
WRITE(4,20)X(1),XPGE(1),GELB1(1),GEHM1(1),GEW01(1),GEFH1(I), 

1GEHY1(1),GEPR1(I) 
FORMAT(4X,F4.2,2X,F7.1,2X,F7.1,2X,F7.1,2X,F7.1,2X,F7.1,2X,F7.1,2X, 

1F7.1) 
CONTINUE 
WRITE(4,*) 
WR1TE(4,*)"Excess enthalpies/J mol- 1" 
WRITE(4,*) 
DO 50 I = 1,N 
WRITE(4,40)X(I),XPHE(I),HELB1(1),HEHM1(I),HEW01(1),HEFH1(1), 



1HEHY1(I),HEPR1(I) 
40 FORMAT(4X,F4.2,2X,F7.1,2X,F7.1,2X,F7.1,2X,F7.1,2X,F7.1,2X,F7.1,2X, 

1F7. 1 ) 
50 CONTINUE 

WRITE(4,*) 
WRITE(4,*)"Exeess volumes/em3 mol- 1" 
WRITE(4,*) 
DO 70 I = 1,N 
WRITE(4,60)X(I),XPVE(I),VELB1(I),VEHM1(I),VEW01(I),VEFH1(I), 

1VEHY1(I),VEPR1(I) 
60 FORMAT(4X,F4.2,2X,F7.4,2X,F7.4,2X,F7.4,2X,F7.4,2X,F7.4,2X,F7.4,2X, 

1F7.4) 
70 CONTINUE 

WRITE(4,*) 
WRITE(4,*) 
WRITE(4,*) 
WRITE(4,*)"8'l'11O-PLUIDI TBBORY" 
WRITE(4,*) 
WRITE(4,*)"Exeess Gibbs functions/J mol- 1" 
WRITE(4,*) 
DO 90 I = 1,N 
WRITE(4,80)X(I),XPGE(I),GELB2(I),GEHM2(I),GEW02(I),GEFH2(I), 

1GEHY2(I),GEPR2(I) 
80 FORMAT(4X,F4.2,2X,F7.1,2X,F7.1,2X,F7.1,2X,F7.1,2X,F7.1,2X,F7.1,2X, 

1F7.1) 
90 CONTINUE 

WRITE(4,*) 
WRITE(4,*)"Exeess enthalpies/J mol- 1" 
WRITE(4,*) 
DO 110 I .. 1,N 

WRITE(4,100)X(I),XPHE(I),HELB2(I),HEHM2(I),HEW02(I),HEFH2(I), 
1HEHY2(I),HEPR2(I) 

100 FORMAT(4X,F4.2,2X,F7.1,2X,F7.1,2X,F7.1,2X,F7.1,2X,F7.1,2X,F7.1,2X, 
1F7.1) 

110 CONTINUE 
WRITE(4,*) 
WRITE(4,*)"Exeess volumes/em3 mol-'" 
WRITE(4,*) 
DO 130 I = 1,N 
WRITE(4,120)X(I),XPVE(I),VELB2(I),VEHM2(I),VEW02(I),VEFH2(I), 

1VEHY2(I),VEPR2(I) 
120 FORMAT(4X,F4.2,2X,F7.4,2X,F7.4,2X,F7.4,2X,F7.4,2X,F7.4,2X,F7.4,2X, 

1F7.4) 
130 CONTINUE 

WRITE(4,*) 
STOP 
END 
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