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ABSTRACT

This thesis is primarily a study of the separation 

method for solving nonlinear partial differential 

equations, which is a generalisation of the classical 

separation approach as applied to linear equations. The 

method is of Importance since it produces physically 

useful solutions, such as travelling wave and soliton 

solutions, to the interesting nonlinear equations of 

current interest in a simple and economical way.

This work is also concerned with the relationships 

between this method and the other standard systematic 

methods for solving nonlinear partial differential 

equations. As a start In this direction, a prellmina'v 

investigation of the correspondence of separable ai ** 

similarity solutions is carried out. The thesis also ises 

the separation technique to study the non-solvability -of 

equations by 1ST assuming that the Ablowitz conjecture 

is true.

The thesis commences with a general Introduction 

which includes the standard sys .ematic methods for solving 

nonlinear partial differential equations. Chapters two 

and three deal with the properties and applications of the 

separation technique and extend existing results.

Chapters four and five use the separation technique in the 

Painlev^ test and the final chapter concerns the 

connection between similarity solutions and separable 

solutions.
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CHAPTER ONE

Introduction

1.1 Linear and Nonlinear Partial Differential Equations

The theory of partial differential equations 

(p.d.e.'s) has becomeone of the most important fields of 

study in mathematical analysis, mainly due to the frequent 

occurence of such equations in many branches of physics, 

engineering and other sciences. In fact, we can say that 

every problem that can be formulated in mathematical 

physics involves the solution of a p.d.e. There are 

problems which require only the solution of an ordinary 

differential equation, but these are usually obtained by 

introducing simplifying assumptions into a more general 

problem governed by a p.d.e.

A p.d.e. (tdiich is any equation involving a function 

of several variables and its partial derivatives) is said 

to be linear if it is linear in the unicnown function and 

all its derivatives, with coefficients depending only on 

the independent variables.

Linear equations are so much easier to deal with than 

nonlinear equations. Hence they produced a plentiful 

harvest of results when they were first investigated. In 

a linear system, the analyst may formulate the problem of 

finding an unknown function of a p.d.e. satisfying



appropriate initial or boundary conditions before 

proceeding to the solution development, using the 

principle of superposition. This was essentially 

responsible for the great success of constructing 

effective theories for linearized physical phenomena - any 

particular solutions can be combined to yield useful, more 

general solutions. The fact that such a superposition 

principle holds for linear equations means that Fourier- 

type analysis can be applied - often, an interesting 

solution of an equation l.e., one which fits physically 

reasonable Inltial/boundary conditions, can be expressed 

as a series of functions which are simple solutions of the 

equation.

The problem is especially tractable if the "simple 

solutions" are the solutions of the boundary value problem

d L - q(x)y + Xw(x)y : 0 , (1.1- 1)

where a < x £ b, and y(x) satisfies the boundary conditions

a^y(a) + e^y'(a) * 0

( 1 . 1- 2 )

which is Icnown as the Sturm-Liouville problem obtained by 

applying the separation of variables technique to the 

linear p.d.e.

The set of solutions to (1.1-1) and (1,1-2), (♦j^(x)}, 

h « 1, 2, ..., for all possible values of X are orthogonal 

where the inner product of any two functions $^(x) and



fb
(♦i» ij) • J P(x)*j^(x)$j(x)dx,

for some weight function p(x) where p(x) > 0  for a < x ( b. 

Thus any separable solution of the original p.d.e. which 

satisfies (1.1->2) can be expressed as a Fourier series of 

the eigenfunctions k » 1, 2, ...,[101].

Examination of the Cauchy problem [ 83 ] ~ the 

appropriate generalization of the initial value problem 

for linear p.d.e. *s to higher dimensions - gives rise to a 

natural classification of second order linear equations 

which is based upon the possibilities of reducing the 

equation

i + Fu » G (1.1-3)

where the coefficients are functions of x and y, by a 

coordinate transformation to canonical or standard forms, 

namely, hyperbolic, parabolic and e l l i p t according to 

whether (B^ - 4AC) is positive, zero or negative in a 

domain. In the case of two Independent variables, a 

transformation can always be found to reduce the given 

equation to the canonical form using the (so called), 

characteristic equation. There is a decisive distinction 

between the three canonical forms, of which shows an 

entirely different behaviour regarding properties and 

construction of solutions ( 74 ].





Each term Is a function of only one of the 

independent variables. Hence if the equation is to hold 

for all values x, y, t each term must be constant, and 

every expression of the form

AexpU{i,x + my - nt)},

where A, m, n are constants, and 

solution and so is any sum of expressions of this form. 

The complex exponentials can evidently be replaced by 

cosines and sines. Using Fourier analysis to sum up 

solutions we get that

- 5 -

U(x, y, t) = I I sinügiíAj cos nt . „
1*1 m=1

sin nt),

with n * IT “j ® solution for the rectangular
[a^ b^j

membrane problem whose corners are at (0, 0), (a, 0),

(0, b), (a, b) [ 45 ].

If the initial values of u and are known, then

they are expandable in a double Fourier sine series and

comparison of coefficients determines A. and B. . Thus
r,m i,m

the solution is found.

Although most of the hardest physical problems are 

non-linear, there has recently been a revival of interest 

in these problems, the phenomena being modelled by 

nonlinear partial differential equations - equations which 

are not linear. This is due to several reasons. One



Important reason Is that many equations have solutions 

which posses a number of common properties such as 

"sollton" behaviour. The term soliton was recently coined 

to describe a pulselike nonlinear wave (solitary wave) 

which emerges from a collision with a similar pulse having 

unchanged shape and speed. The concept of a solitary wave 

was Introduced well over a century ago by J. Scott-Russell

[ 7 9  3 -

In the physical sciences, the development of precise 

instruments for measurements, has induced extensive study 

of nonlinear models which, in turn, requires mathematical 

methods for nonlinear partial differential equations.

Nonlinear evolution equations are the most Important 

equations in mathematical physics of current interest and 

these include the Korteweg-de Vries (KdV), the modified 

KdV, the sine-Gordon (sG) and cubic Schrödinger equations. 

These equations have been extensively studied for the past 

20 years according to many common properties of these 

equations, in particular, soliton behaviour; and according 

to the development of many major methods of solution such 

as, similarity methods, inverse scattering transform, 

Backlund transformation and other methods.

The Korteweg*de Vries (KdV) Equation

- 6 -

The most extensively studied nonlinear p.d.e., is the 

KdV equation. In 1895 Kortweg and de Vries provided a 

simple analytic foundation for the study of solitary waves 

by developing an equation for shallow water waves. This





Clearly, if ♦ is a solution of (1.1-10), then u defined by 

(1.1-11) is a solution to the KdV equation.

The Burgers Equation

The well )cnown equation

where 5 is a constant, which is called the Burgers 

equation and occurs in viscosity dominated systems [ 25 ], 

is a famous equation for including nonlinearity and 

dissipation together in the simplest form and because it 

can be linearized through the Hopf-Cole transformation [25]

u = a ^ d o g  F)

to give the linear equation.

(1.1-13)

(1.1-14)

where c(t) is "constant" of integration. Eq. (1.1-14) 

reduces to the heat equation when c » 0.

Transformations similar to (1.1-13) has been applied 

by many authors to the KdV equation, hoping to linearize 

it, but this transformation with a = 1, gives the 

homogeneous equation [ 25 ],

This means that the Burgers equation has a nonlinear 

superposition principle whereas it seems as though the KdV 

has not.



The Sine-Gordon Equation

Much attention has been paid recently to the sine- 

Gordon (sG) equation,

♦xx «i«' ♦ (1.1-15)

where m Is a constant, because It appears In several 

Important physical problems [ 9 ]. In particular It Is of 

use In the theory of plane or cylindrical Josephson 

junctions which requires the solutions of SG equation 

In space dimensions and in the theory of solltons where the 

solutions in one spatial and one time coordinates are of 

Interest.

Solitary wave solutions of the sG equation

^ * 4tan”^exp[mY(x - vt) + 6], (1.1-16)

Recently, Ablowltz et al. [ 3 ] have solved the 

initial value problem for the transformed sG equation:

« sin ♦. (1.1-17)

Separable solutions have been developed by many 

authors [56], [69]. Similarity solutions ( 55 ], as well 

as, Backlund transformations [ 9 ] have been found for the 

sG equation.

Comparing theories of linear and nonlinear equations, 

we see that while linear equations have that special 

property, which greatly facilitates their treatment.



namely^ the superposition principle, the treatment is much 

less comprehensive. Nevertheless, for some special non-

linear equation there are nonlinear superposition 

principles.

Example (1.1-2) [ 8 )

Consider the linear equation,

a(x, y)Uj^ + b(x, y)Uy » c(x, y)u. (1.1-18)

Setting u - f(v(x, y)), eq. (1.1-18) becomes

(1.1-19)
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Since eq. (1.1-18) is linear, U « T u. is a solution
i«1 ^

if the u^, 1 » 1, 2, ..., k are solutions. However if 

Uf » f (Vj^), i * 1, ..., )c, and V » f  ̂(U), then.

f’ '[f(V )̂ + fiVj) + ... + f(v^)] ( 1 . 1- 20 )

is a solution to eq. (1.1-19). This implies that eq. 

(1.1-19) has a superposition principle.

Thus for some nonlinear equations there are nonlinear 

superposition principles [8, 12, 13], but in these 

cases any Fourier series-type analysis would be a lot more 

difficult than in the linear case due to many reasons.

One important reason is the lac)c of orthogonality of any 

"simple solutions" in most cases.

The earliest and most obvious classification of



linear p.d.e.'s into the three types, hyperbolic, elliptic 

and parabolic was made on a formal basis. However, there 

is still more Important principles by which linear p.d.e.'s 

may classified [30 ]. In contrast, nonlinear equations 

can't be easily classified according to their forms. The 

available classifications are related to the solutions or 

techniques of solution of the equations.

1.2 Nonlinear Equations: Methods of Solution

The theory of linear p.d.e.'s has been studied deeply 

and extensively for the past 200 years, and is fairly 

complete. However, very little of a general nature is 

known about nonlinear equations. We survey some of the 

central ideas and methods of this subject here.

The "old fashioned" techniques for nonlinear p.d.e.'s 

which find the general solution seem nowadays, to be not 

practical in most cases especially in physical sciences. 

Nevertheless, it would be unfair if we did not at least 

make a passing mention of some of the work done on 

nonlinear p.d.e.'s at the turn of this century.

1.2-1 The general method:

We shall begin our discussion by defining the various 

types of integrals possessedky nonlinear p.d.e.'s.

A nonlinear equation of the first order, involving 

two independent variables x and y and a dependent variable 

z will be denoted by,
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F(x, y, z, p, q) ■ 0, ( 1 . 2 - 1 )



where p = jj, and q = jj.

A complete integral of eq. (1.2-1) is any solution 

containing two arbitrary constants, say a and 6, and this 

will be denoted by,

f(x, y, z, a, 6) ( 1 . 2 - 2 )

If the arbitrary constants a and 3 In (1.2-2) are not 

independent l.e.,

6 = ii(a)

for some function <|), equation (1.2-2) represents a one- 

parameter family of surfaces,

y» 2, a, (Ma) ] = 0. (1.2-3)

For each choice of the function <̂ , we get, in general, 

a distinct family, the envelope of which is found by 

eliminating a between (1.2-3) and the equation obtained by 

differentiating (1.2-3) partially with respect to o. The 

totality of all such envelopes, derived from the equations

£ (x, y, z, a, (a)) * 0, » 0

for all possible choices of is known as the general 

integral of the p.d.e. (1.2-1).

For the nonlinear p.d.e. (1.2-1), there are at least 

three methods for obtaining the complete solutions. These 

methods are: Cauchy's method of characteristics, Jacobi's 

method and Charpit's method.





One of these ways is Monge's method, £Uiother method is 

associated with the name of Boole [32].

The method devised by Ampère deals with equations of 

the second order with no assumption of the existence of an 

intermediate integral. The method will be illustrated by 

the following example:

Example (1.2-1)

Ampère's method is based upon a transformation of the 

independent variables.

Consider the Borne Infeld (BI) equation,
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(1.2-6) can be written as,

f(x, y, z, p, q, s, r, t) ■ (1 - q^)r + 2pqs - (1 + p^)t

-  0,

using the notation above.

Let new independent variables a and 6 be Introduced; 

they are not determinated until the effect of the 

transformation is being considered. These variables may 

be functions of both variables x and y.

The equation for the arguments (see [ 32]) is

This equation has equal roots if and only if.





(1 -  q^ly '^  -  2pqy' -  (1 + P^) «  0 

z ' »  p ♦ qy ’ .

From (1.2-8) we get,

y '  = (pq t  / l  + p^ -  q ^ ) / ( 1  -  q^) i f  q ^ 1.
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Since 0 * 6 »  suppose that 1 + p^ - q^ » w^, say (w ^ 0).

Hence»

y' • (pq - W)/(1 - q^)» (a)

p' * q'(-pq - W)/(1 - q^)» (b)

z' » (p - qw)/(1 - q2), (c)

( 1 . 2 - 10 )

being the system when a is constant; and

y' - (pq + w)/(l - q^)» (a)

p' . q'(-pq + w)/(1 - q^)» (b)

z' * (p ♦ qw)/(1 - q^)» (c)

( 1 . 2- 11)

being the system when 6 is constant. We need an integral 

equation for each system.

Let us solve (1.2-10(b)), i.e.»

p'(1 - q^) - q'(-pq - /l + p^ - q^) - 0.

This equation can be expressed as a Clairaut equation 

[ 32]/ and its integral is

(-pq ♦ w)/(1 - q^) • K/













More recently, systematic methods which lead to 

solutions of p.d.e.'s of physical interest and 

significance have been employed. These major methods, 

namely, similarity and inverse scattering methods will be 

discussed separately in the following sections.

1.3 The Inverse Scattering Transform

Ever since the Cole-Hopf solution of the Burgers 

equation, countless people must have tried similar 'tricks' 

to solve the KdV equation, but the eventual method of 

solution needs much more than a simple 'trick'.

The soliton was discovered (and named) in 1965 by 

Zabusky and Kruskal in numerical calculations. It was 

observed that two distinct solitary waves, i.e., with 

distinct amplitudes, interact nonlinearly but emerge from 

the interaction unchanged. This resemblance of these 

solitary waves to particles led to the name "solitons", 

yet the real breakthrough occurred in 1967, when the idea 

of the inverse scattering transform (1ST) method, as a 

tool for solving p.d.e.'s, was first discovered by 

Gardner, Greene, Kruskal, and Miura (GGKM) . They showed 

that associated with the KdV equation,

(1.3-1)
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is a linear eigenvalue problem, 

V - (u(x, t) - X)v « 0, (1.3-2)



where u(x, t) Is a solution of equation (1.3-1), so that 

v(x, t) and X(t) depend parametrically on t. The equation 

(1.3-2) Is the well known Schrodinger eigenvalue problem 

with u(x, t) playing the role of a potential.

Some major questions still remain, the answers to 

which are only partially understood. One question is why 

Is the Schrodinger equation the appropriate linear 

eigenvalue problem for the KdV equation?

Historically the conservation laws have played an 

important role in the development of 1ST. Indeed It was 

the Miura transformation
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-(w + w ), (1.3-3)

where w is a solution for the mkdV equation which led GGKM 

to the choice of Schrodinger equation. This may be 

viewed as a Rlccati equation for w in terms of u; the well 

known transformation w = v /v linearizes (1.3-3) yielding

0 .

Since the KdV equation is Galilean-Invariant, and in 

order to be as general as possible, GGKM considered 

(1.3-2).

It turns out that (1.3-2) provides an implicit 

linearization of the KdV equation.

Soon afterwards. Lax Indicated how this approach 

could be applied to general class of evolution equations. 

Then Zakharov and Shabat demonstrated the applicability of



this method to the (so called) nonlinear Schrödinger 

equation,

Iq^ix, t) + t) + c|q(x, t)|^q(x, t) = 0. (1.3-4)
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The way was thereby opened to the search and discovery 

of many other nonlinear p.d.e.'s solvable by the same 

technique.

The technique of 1ST can be regarded as an extension 

of the Fourier transform method as applied to linear 

equations. The approach consists of first defining a 

formal "scattering problem", or eigenvalue problem. In 

which the solution, u, of the original p.d.e. plays the 

role of a "potential".

He now outline the conceptual steps (shown In 

figure (1.3-1)) In order to obtain the solution of the KdV 

equation (1.3-1) [ 4 }, when the Initial data u(x, 0) Is 

given and u(x, t) 0 sufficiently rapidly as |x| **'

Associate with (1.3-1) the linear eigenvalue problem 

(1.3-2), as before, with x c (-<», "). The eigenvalues of 

(1.3-2) may be computed. The Schrödinger equation (1.3-2) 

will have a finite number of negative energy bound states 

(E s -k^, n - 1, 2, ..., N) and a continuous spectrum for 

2
positive E (E » k , k real). For fixed t, scattering 

solutions of (1.3-2) are defined by the boundary 

conditions:

(1) For X = k^, k is real.



X, t) T(k, t)e as X -► “®.

These relations serve to define the reflection 

coefficient R(k, t) and the transmission coefficient 

T(k, t), which can be shown to satisfy ¡r 1̂  + |t |̂  * 1. 

(ii) For X s ik^, the bound states solution is defined by 

the boundary conditions:

«i-nik, X, t)

iji (k, X, t) -*■ C (t)e as X

The spectrum of the Schrödinger equation, together 

with the coefficients C^(t), R(k, t), T(k, t) are called 

the scattering data of a given potential u(x, t). The 

problem of finding scattering data is called the direct 

problem.

We now turn to the inverse scattering problem, which 

consists of determining the potential u from its 

scattering data. It has been found that the initial 

scattering data is determined by the potential u(x, 0), 

evolve according to these formulas: k (t) » k (0);

3.

R(k, t) * exp(8ik^t)R(k, 0). This stage of the technique 

is called time evolution of the scattering data.

u(x, t) is obtained from the scattering data, through 

the use of Gel'fand-Levitan integral equation,



K(x, y, t) + B(x + y, t) + I B(z + Y, t)K(x, z, t)dz »0, 
^x

Y > x (1.3-5)
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with,

B(5, t) = l c U t ) e  * ^
n=1

R(k, t)e*''‘̂ dk. (1.3-6)

u(x, t) = 12^K(x, X, t), (1.3-7)

The 1ST is the nonlinear analogue of transform 

methods used for solving linear equations which arise 

naturally from Fourier analysis. This tends to imply that 

there exists a method of separation for nonlinear 

equations which is a generalization of the linear 

technique. In the 1ST one maps the initial data into the 

scattering data, follows the evolution of the set of 

scattering data at any desired time, and inverts the 

mapping with (1.3-5), thereby recovering the solution 

u(x, t) to the partial differential eq. (1.3-1). We may 

summarize the situation schematically as follows:









u(x, t) * i/eU log A

Aj * Aj (O)exp(-n^x + 4Hj'^Ut).

The method Is quite powerful as it is used to produce 

specific solutions (solitons or stationary waves), but is 

also quite specialized [ 2 ]. Certainly, not all 

nonlinear evolution equations can be solved by this 

method. In particular, the method deals with evolution 

equations, by which we mean that the equation describes 

how a particular quantity evolves in time from a special 

Initial state [4 ]. Some of the equations solvable by 

1ST, directly or indirectly, are the KdV, sG, nOcdV, 

Boussinesq, and cylindrical KdV equations [1, 6, 63, 55] 

The 1ST has to date not been applied to the Zakharov 

equations, governing the sonic-Langmuir soliton dynamics 

in a two-component plasma, and Indeed there is 

disagreement among mathematicians about the very 

possibility of doing this [ 36 ].

The equations then that can be solved by 1ST are



known to be very special and one of the major outstanding 

problems In the field Is to characterize these equations 

[ 80 ].

It has been noticed for some time that, when an 

equation which Is solvable by 1ST - any such equation Is 

called of 1ST type - (the mKdV equation for Instance) Is 

reduced, the resulting o.d.e. has the "Palnlev^ property". 

To explain what we mean by the Palnlev^ property or 

(P-property) we must look at the fundeunental work done, at 

the turn of the century, by Palnlev^ and Gambler, who 

studied ordinary differential equations of the form.

- 31 -

(1.3-21)

where F Is analytic In z, algebraic In w, and rational In

The problem proposed by Painlevé and Gambler was to 

establish conditions under which the critical points of 

any solution of (1.3-21), l.e., branch points and 

essential singularities, would be fixed points Instead of 

movable points. Thus any function which was the solution 

of an equation In this class would have only poles as 

movable singularities.

The Investigation resulted in the discovery of 50 

canonical types of equations with the desired property.

Of these, all but 6 were found to be Integrable In terms 

of elementary or classical functions, or transcendents 

defined by linear equations. But the remaining 6



equations required the Introduction of new transcendental 

functions for their solutions. The functions are called 

Painlevd transcendents [44]» [24].

The Boussinesq equation [1 ],

“tt
(1.3-22)

was linearized exactly with 1ST. It can be reduced to the 

defining equation for the first Painlev^ transcendent,

d w ¿ 2  
^  « 6w .

It is an example to demonstrate that there is a close 

connection between these nonlinear ordinary differential 

equations without movable critical points and nonlinear 

partial differential equations that can be linearized 

exactly by an inverse scattering transform [l, 5, 6, 80] 

Hence Ablowltz et al. [ 5 ] state their conjecture:

"Every nonlinear o.d.e. obtained by direct reduction 

of a nonlinear p.d.e. solvable by some inverse 

scattering transform has the Painlevd property."

This relation can be used to investigate either the

o.d.e.'s or the p.d.e.'s. If, however, an o.d.e., 

obtainable by an exact reduction of a p.d.e., fails to 

possess the P-property then the conjecture (if it is true) 

states that the p.d.e. is not solvable by 1ST. On the 

other hand, passing the Painlevd test does not guarantee 

that the original p.d.e. is solvable by 1ST; to our



knowledge, there is no aystematlc way to obtain all the 

possible o.d.e.'s obtainable from a p.d.e.

Another point about the conjecture, Is that It 

relates to o.d.e.'s obtained from equations solved 

directly by 1ST. There are many ex2unples of equations 

solved only indirectly by 1ST; the slne-Gordon equation Is 

perhaps the best known example [ 6 ].

This conjecture has been verified In various specific 

cases [49, 50, 66, 87, 88].

One consequence of this conjecture is an explicit 

algorithm for necessary, but not sufficient, conditions to 

determine whether an o.d.e. meets the P-property. This 

algorithm is given by Ablowltz, Ramani, and Segur [ 6 ].

Another consequence of the conjecture Is the 

Investigation of a "Palnlevd property* for partial 

differential equations. Weiss et al. [ 93 ] have, 

recently, introduced the P-property for p.d.e.'s and Its 

relation with the Integrablllty behaviour. The definition 

Is, briefly, that a partial differential equation has the 

P-property when the solutions of the p.d.e. are single 

valued about the movable, singularity manifold and the 

singularity manifold is noncharacteristic. This 

definition of the PalnlevS property allows the Ablowltz 

conjecture to be stated directly for the p.d.e. Instead of 

the o.d.e. [ 94].

Since Weiss et al.'s paper, several papers 

appearing, recently, have concerned the Palnlevd property 

of a partial differential equation and its Integrablllty

- 33 -



[22, 37, 41, 77, 84, 94, 95 But Goldstein and Infeld 

[ 36 ] have shown that having Painlev^ property for a

p.d.e. Is not equivalent to complete Integrabllity.

1.4 Lie’s Similarity Method

The original similarity method was developed about 

hundred years ago by the mathematician Lie and his 

followers. Using the "group properties" of ordinary 

differential equations, he achieved two Important results 

Involving:

(1) how to construct an Integrating factor for a first 

order o.d.e.,

and,

(2) how to reduce a second order differential equation to 

a first order equation by a change of variables.

These two results are all the more important, because 

they do not require the equation to be linear.

A group property of a system of differential 

equations is defined as a property of the system which 

remains unchanged when the Independent and dependent 

variables are subjected to certain groups of 

transformations [ 73 ].

It has sho%m [ 44 ], that when a first order equation 

is Invariant under a known group, an integrating factor 

may, at least theoretically, be found and the equation 

integrated by quadrature. For higher order equations or 

systems, a reduction to lower order plus a suitable number



of quadratures can be carried out for a definite class of 

problems [ 11].

The practical application of one-parameter continuous 

transformation groups to the solution of differential 

equations is given below.

Consider the family of transformations
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y; air yi ■ y* a) (1.4-1)

where a is a parameter vdiich can vary continuously over a 

given range. Several simple examples of basic 

transformations, wliich must have group properties are of 

the types:

(a) The group of translations, defined by

X, « X + a. ^1
(1.4-2)

This is of fundamental importance, since any 

transformation of the type (1.4-1) is equivalent, by a 

change of variables, to a translation group [ 21 ].

(b) The group of rotations, defined by

*1
' X cos a - y sin a, y< * x sin a + y cos a.

(c) The affine group, defined by 

y^ • y, 0 < 0 < «.
*1

(1.4-3)

(1.4-4)

And lastly,

(d) The stretched group, defined by















The method of continuous (Lie) transformation groups 

c:an be extended to partial differential equations. It can 

be shown that the fact that a given p.d.e. is Invariant 

under a given group of transformations can be used to 

reduce the nximber of Independent variables [11]. The 

resulting solutions are usually termed "similarity 

solutions".

Attention was called, to the method "similarity" for 

solving nonlinear p.d.e.'s, by Birkhoff in 1950. Using 

the algebraic symmetry of the p.d.e., he showed how 

solutions can be found merely by solving a related o.d.e. 

Morgan showed that the determination of the similarity 

solutions for a p.d.e. is equivalent to determination of 

the invariant solutions of these equations under a group 

of transformation [ 66 ] .

After Birkhoff's and Morgan's work, similarity 

solutions were found for many physical problems [ 8 ]. 

Several attempts have been made to ease or remove some 

limitation of the method.

Example (1.4-3)

To show the particular features of the method, 

consider the linear dlffussion equation

(1.4-23)

which is invariant [ 29 ] to the group of transformations,





riables X, t. u be ta)(en as

X, = X, (X, t, u; el

•̂1 = ‘l(X, t. u; e)

(X, t. u;

applied In the analysis of finding similarity solutions.

Consider a second-order p.d.e. with one dependent 

variable u and two Independent variables x and t:

H(x, t, u, u,, u ^ ,  . 0. n.4-28)

Let a one-parameter (e) group of tremsformations of the

(1.4-29)

which maps the (u, x, t) space into itself. More 

specifically, we now consider the following infinitesimal 

transformations,

= X ♦ e Ç(x , t, u) ♦ 0(e^)l

t, = t * ET(x, t, u) ♦ 0(E^)|,. (1.4-30)

= U + En(x, tf u) + O(E^)

The infinitesimal form of invariance condition of the

solution surface becomes, with eqs. (1.4-30),

0[x + eÇ, t ♦ et] • 0(x, t) + cn(x, t, u) ♦ O(e^).

(1.4-31)

Upon expanding the left-hand side of eq. (1.4-31), it is 

found.



U x ,  t, 0)|| + t (x , t, 9)|| » n(x, t, 6). {1.4-32)

[The characteristic (Lagrange) equations resulting from eq. 

(1.4-32) are,

de (1.4-33)

I These are solvable In principle. The general solution of 

I this equation will involve two arbitrary constants of 
I which one constant takes the role of similarity varléü>le, 
Isay s, and the other say f(s), which plays the role of a 

I dependent variable.
Thus, finally, the similarity form of solutions Is 

I obtained as,

u(x, t) « f (x , t, 8, f (s)].

By substituting this relation In eq. (1.4-26) we can 

obtain an o.d.e. for f.

The classical method to determine the infinitesimal 

transformations Ç, n« T stems from the invariance fact. 

This provides, usually a large number of simultaneous 

p.d.e.'s to solve, which at best is very tedious, and the 

most general transformations are difficult to deal with as 

it will be shown in the following example.

Example (1.4-4)

The Infinitesimal transformations of the Lie group of 

transformations leaving invariant the equation.



u » u u.

are [ 11 1,

i(x, t. u) - * 1) -

t (x , t, u) » a + 2Bt ♦

n(x, t. u) * k ♦ 6t ♦ 6u ♦

where {a, 6, y, 6, k, X} are arbitrary constants and 

g(u, t) satisfies«

n -

Note that, finding the general solution to the Lagrange's 

equations (1.4-33), in this case, is very difficult, if it 

is not impossible.

In spite of the limitation of the method, at present, 

there is a revival of interest in the group theoretic 

analysis of nonlinear p.d.e.'s. The main reason behind 

that is the so called "Painlevé conjecture* (see II.3).

In the early stages in the study of solitons, it was 

shown [ 81 ], that the similarity solution of KdV eq.

(1.4-34)

satisfies a third order nonlinear o.d.e. Using special 

values of infinitesimal, it was found that, the similarity 

variables are



J/38 . - 3a(at + 6) + 6(a6 - a«))/(at + 6)

(1.4-35)

I and,

f(8) . (at . 6)2/3[„ - §au)|a^/3 (1.4-36)

while, we have found that, the correct forms for s and 

f(8) are given by replacing |a®^^ in (1.4-36) by ^

Lakshmanan and Kaliappan [55], present the result of 

investigation of invariance properties of a large class of 

nonlinear evolution equations under a one-parameter 

continuous (Lie) group of transformations. Many examples 

of similarity solution can be found in the literature (see 

ch. 6).

1.5 Other Methods for Producing Solutions to Nonlinear

P.d.e.*8

In addition to the major methods mentioned in the 

previous sections, there are many other techniques, idiich 

play a very important role in the study of nonlinear 

p.d.e.'s.

The Backlund transformation first appeared in 1875 

and was introduced by the Swedish mathematician, Backlund, 

when he was considering a problem in differential geometry 

involving the theory of surfaces of constant negative 

curvature [ 25 ]. It is a powerful method for constructing 

new solutions out of known ones. A Backlund
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transforaation can be considered as a type of 

generalization of the superposition principle for linear 

p.d.e.*8.

There is no generally accepted definition of a 

Backlund transformation [26], To describe it in some 

cases» consider a second order p.d.e. The Backlund 

transformation consists of a pair of first order p.d.e. s 

relating a solution of the given second order equation to 

another solution of the same equation - in this case it is 

called an auto-Backlund transformation - or to a solution 

of another equation.

Indeed, the Miura transformation (1.1-11) constitutes 

[25], [28] one half of a Backlund transformation. The 

other half of the transformation is obtained by repeatedly 

substituting (1.1-11) into (1.1-10) until all the x 

derivatives of ♦ have been eliminated. The complete 

Backlund transformation so obtained consists of the pair 

of coupled p.d.e.*8,

t (ou ")

ie^^u + u.
(6e)M-*

XX (¥j
(1.5-1)

The reduction of Burgers equation 

\  * ''“ xx "  (V > 0)

to the heat equation.

(1.5-2)







(here X is an arbitrary parameter. Differentiating 

(1.5-13) witli respect to v, (1.5-14) wit)i respect to u and 

using eq. (1.5-13,14) gives,

♦u' - * 2X8in[i^T^)

♦v' ’ ■♦v *

(1.5-13)

(1.5-14)

^ ' s sin 4* (1.5-15)

Thus, (1.5-13, 14) is an auto-Backlund transformation 

[or (1.5-12). Consider now the solution 4 • 4q » where 

tp ■ 0 is the trivial solution of (1.5-12). Another 

solution is found by application of (1.5-13, 14), to be 

given by,

-Va 1̂ *̂1 2 , ’l
‘ 2Xsin^, -5̂  - (1.5-16)

iXu • 21n

Solving these relations, separately, gives,

|tanj»,j • f(v)

|tanj4,j ♦ g(u),

where f and g are constants of integration. It can easily 

be shown that the solution is the solitary wave one, i.e..

f
♦1 f. v1 ! X - Ut

tan-^ ■ cexp ’̂Xu ♦ yj * c^xpj— - (1.5-17)



This method may be repeated, so that generates a 

new solution, ^2 * Is the Perrlng-Skyrme result for

two interacting solitary waves. The technique may be 

repeated further to find solutions representing the 

interaction of many solitons.

During the last decade, much work has been carried 

out on Backlund transformations especially for nonlinear 

evolution equations. The technique is Intimately 

connected with the applicability of 1ST [ 26 , 28 ], 

similarity solutions [ 57 , 13 ], the existence of soliton 

solutions [ 98 ].

Backlund trcmsformatlons have been applied in 

different ways by several authors. A chain of Backlund 

transformation for the KdV equation [ 61 ], a generalized 

Backlund transformation [62], and a class of parabolic 

equations that admit Backlund transformations [ 64 ] have 

been found.

In trying to solve the KdV equation, (1.1-8) which 

can be reduced to the equation,

F [ F ^ + F  1 - F f F ^  + F ] + 3 f P  ^ - F F  1 » 0
^  t XXX-'X x'' t XXX-*  ̂XX X xxx-*

(1.5-18)

(see 11.1), we firstly look at a solution of the form,

n_(n) (1.5-19)





u(x, t) ■ --ylog F(x, t)
3x^

F(x, t> ■ 1 ♦ exp(e^) + exp(62) + Aexp(6^ + 82) 

^2
A » ((a^ - a2)/(a^ + 82))

(1.5-20)

This method of reducing the KdV equation to one or 

more bilinear equations has become known as Hirota's 

direct method. Hirota's technique has been described by 

Jimbo and Hiwa [ 25 ] as it has a deep theoretical 

significance. Hirota describes it as a direct and 

systematic way of finding exact solutions of certain 

nonlinear evolution equations [ 26 ]. Its principle 

drawback [ 20 ] (apart from the guesswork element) is that 

it gives only soliton solutions.

With the basic symbol D, which is defined [ 20 ] as,

Dj "̂*Dt"(a.b) l L  -  ̂
lax " ajp*

[j_ 3 V
(at JU\

a(x, t)b(x', t')

and which has certain properties [26], the nonlinear 

equation will transform into bilinear differential 

equations of the following special form.

(̂4 - ^ 0.







« a{1, 2)exp(e^ + 02>

vhere

(1.5-29)

1 - k^kj

2) « f - r e T T
* r 2

1*̂ 2 ■ 12

Again all other terms can be chosen to be zero which gives.

♦(x, t) * -4tan“

where

k, ♦ k2 cosh'j(0^' " ®2* ̂

w^ - W2 sinhj(e.j' + 62')
(1.5-31)

1 1 A I

Solutions for higher numbers of kinks can be found in 

a similar way.

There are many individual techniques which solve 

nonlinear p.d.e.'s, but which are less general and 

Important than the methods mentioned before. The Toda 

technique, for Instance, has been used in some situations, 

[ 28 , 96 ].

1.6 Separation of variables

Historically, the theory of variables separation of 

partial differential equations has been developed and 

proved most useful for linear p.d.e.'s especially when it



is used together with Fourier analysis to give useful 

solutions for boundary value problems.

However, it is quite natural to try this method on 

nonlinear p.d.e.'s, as some nonlinear problems are 

solvable, under special conditions, by familiar “linear" 

■ethods. One of familiar linear methods is the Fourier 

transform, »rtiich is analogous to the inverse scattering 

transform for nonlinear p.d.e.'s.

The major advantage of using variables separation for 

computation of explicit solutions of p.d.e.'s is that the 

problem is reduced to solving ordinary differential 

equations (the separation equations).

Basically, a partial differential equation is
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separable in the independent variables , 

equation admits a nontrivial solution of the form

x^ if the

u(x,
n , j»

X ) ■ n s' '(x ). One can also talk about 
^ i»1 i

additive separation v(x,, ..., x„) » I  t '^'(x.) (which is 
1 ” 1-1 ^

equivalent to the product separation above by using 

dependent variaole transformation v > In u).

Several examples of direct separation (additive or 

multiplication) for nonlinear p.d.e.'s can be found in 

the literature.

Oplinger's problem [ 7 ] of solving the hyperbolic 

equation

tL 2 ^
1 + 0  u„^dxlu„

io  * 0 , ( 1 .6 - 1 )



where c, a, L are constants, can be solved by trying the 

solution

u s F(x)G(t)

which separates eq. (1.6-1) into the following o.d.e.'s, 

P" ♦ v^P ■ 0 

G" ♦ v^c^d + aIG^)G * 0

where is the separation constant, and I • ^ dx.

Solutions of physical problems possessing symmetry 

with respect to a group can usually be given a simplified 

mathematical form by the Introduction of suitable 

variables associated with this group. Birkhoff [ 10 ] has 

shown how such substitution lead to "separation of 

variables" of equations occurring in fluid mechanics.

Recently, Cosgrove [ 23 ], has formulated Einstein's 

equations for the stationary axisymmetric vaccum 

gravitational field. In this case, y, is the basic field 

variable which satisfies a field equation which is fourth- 

order p.d.e. This equation has been solved by separation 

of variables in the form y • y ^Cp ) + where y^(P) is

either zero or a very simple function and Y2( )̂ satisfies 

an ordinary differential equation of the fourth order.

Johnson and Thompson [ 46 ] have shown that the method 

of separation of variables can be used to solve the 

appropriate scalar Gel'fand-Levltan equation - which is



occur in 1ST technique. This produces many new solutions 

(with soliton interactions) and in particular. Introduces 

a new rational exponential soliton.

As might be expected the classical method of simple 

separation can be generalixed, and separable solutions of 

nonlinear equations can be achieved by dependent or 

Independent variable transformations.

In illustration of the idea, consider the sine-Gordon 

equation

- « sin ♦. ( 1 . 6 - 2 )

Eq. (1.6-2) is not separable in the classical sense. Lamb 

[ 56 ] has shown that sG equation admits a solution of the 

form

4 tan (1.6-3)

Upon substitution (1.6-3) into the sG equation it can 

be shown that X and T must satisfy

(T')^ ■ -kT^ * (m - 1)T^ - n,

where k, ra, and n are arbitrary constants. This 

generalized notation of a separable solution will be fully 

investigated in the next two chapters.

1.7 Contributions of this Research

AS mentioned before, this study is devoted to the



separation of variables method applied to nonlinear 

partial differential equations. It Is divided In two 

parts.

Part 1/ which is represented by chapters 2 and 3, Is 

devoted to the separation technique Itself. We start this 

part by giving a brief general description of the 

classical separability method for linear equations. He 

then list the definitions (as found in the literature) of 

the concept of "separation of variables” for linear and 

nonlinear equations. He show that In some cases, the 

classical linear technique can be applied directly to 

nonlinear equations. The historical background to the 

general nonlinear technique represented by the separable 

solutions of sG equation Is then given. He give, for the 

rest of the two chapters, a full description of the 

separation of variables technique Including notations, 

definitions, remarks, examples and theorems. He shall 

distinguish between two types of separability; "simple" 

and "implicit". Simple separability, defined roughly as 

the equation Is separable as it stands, Is studied 

extensively in chapter 2 vdiich ends with an introductory 

description about implicit separability, vdiich means that 

the equation is separable by a transformation. In chapter 

3, we carry on describing implicit separability by using 

different transformations and restrictions.

Part II, which is represented by chapters 4, 5 and 6, 

is devoted to the connection between the separation of 

variables method and other known methods.
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In chapter 4, we use the relation between the 

I painlevi property and the separation method to derive sets 
of second order equations which are not solvable by the 

inverse scattering transform (1ST), according to the 

I Ablowitz conjecture.
In chapter 5, the analysis for finding sets of 

I equations, not solvable by 1ST is extended to higher order 
I p.d.e.'s.

A comparison of the similarity and separation methods 

through examples and theorems is shown in chapter 6. We 

have found, in general that there are close ties between 

I the methods since they both can be considered as methods 

I of reduction a p.d.e. to an o.d.e.



CHAPTER TWO

Separation of Variables I 

2.1 Direct Separation of Variables

The classical method of separation of variables is 

one of the powerful systematic methods, of solving linear 

partial differential equations (p.d.e.*s). In this 

method, the p.d.e. is broken down into ordinary 

differential equations (o.d.e.'s) by direct separation of 

variables and the final solution is built up from 

particular solutions of these o.d.e.'s. The basic idea is 

to assume that a solution, $(x, t> of a given p.d.e. in 

two independent variables x and t, is of the form.

<((x, t) « X(x)T(x), <2 . 1- 1)

where X is a function of x only, and T is a function of t

alone. More generally, if the independent variables are

X., x... .... X in the p.d.e. then a solution can be taken 
1' 2' ' n ^

♦<x., ..., x„) n X. ( x j .
i-1 ^ ^

(2.1-1)■

The purpose of this assumption is to simplify the 

problem from one of solving a p.d.e. to that of solving an 

o.d.e. This method has been shown to provide solutions 

for the standard equations of mathematical physics, in



many coordínate systems/ and with many given boundary 

conditions (see S1.1). More specifically/ separation of 

variables may be used to solve initial boundary value 

problems (IBVP's) and applied to problems «dvere the 

p.d.e./ with constant or variable coefficients, is linear 

and homogeneous and the boundary conditions are of the 

form, [3l]t

a*j^(0, t) ♦ ßtiO, t) » 0 

Y* (1/ t) ♦ ¿♦(I, t) ■ 0
(2 . 1- 2 )

where a, 6, y, and 5 are constants. The general idea for 

the method is to find an infinite number of solutions

t) « *n*^*^n**^*' final solution is the sum

of these solutions according to the superposition 

principle which is applied to linear equations.

The method is most easily explained by considering 

the following second order p.d.e.:

■ ®*‘**tt *

(2.1-3)

Substituting i(x, t) • x(x)T(x), in the equation and 

divising by XT, yields the following identity:

A(x)i^ ♦ C(x)^ * E(x) - B(t)^ * D(t)^ ♦ F(t).

This identity is true if both sides are equated to a 

constant (-X say) vdiich gives.



A(X)X" + C(x)X’ ♦ (E(x) ♦ X)X i 

B(t)T" + D(t)T' ♦ (F(t) ♦ X)T ^
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(2.1-4)

If C(x)r(x) - (A(x)r(x))' and D(t)s(t) - (B{t)s(t))* 

for some functions, r and s, then each equation Is called 

a Sturm-Llouvllle equation In the honour of the German 

mathematician Sturm (1603-1855) and French mathematician 

Llouvllle (1809-1887) who, Independently, were the first 

to formulate the equation. The boundary value problem, 

(2.1-4) with boundary conditions of the type (2.1-2) Is 

called a Sturm-Llouvllle problem. Each value of X for 

which the problem has non-trlvlal solutions Is called an 

eigenvalue for the problem. Each non-trlvlal solution Is 

called an eigenfunction for the problem.

Theorem (2.1-1) [151

Suppose that the Sturm-Llouvllle problem (2.1-4) and 

(2.1-2) Is given. Then

(1) There exists a countably infinite set of eigenvalues. 

The eigenvalues may be placed In an Increasing sequence 

n e Z* (i.e. < X„,).

For each n, let $ĵ (x) denote an eigenfunction 

corresponding to X^, then

(11) the sequence of eigenfunctions ($|^(x)} Is orthogonal, 

(ill) for each n, ^„(x) Is uniquely determined up to a 

non-zero factor,

(Iv) If f^(x) Is Integrable on (a, b), then the set of 

partial sums of Its Fourier series with respect to



eigenfunctions of the system converges in the mean to 

f(x). □

proof of this theorem can be found, for example in 

[90]. ■

Example (2.1-2)

Let us start with an equation with variable 

coefficients,

„ + In + -lrU„- + W^U ■ 0 (2.1-5)

where w Is a constant. Eq. (2.1-5) is derived from 

Helmoltz equation ♦ w \  ■ 0, when using polar

coordinates.

Suppose that u(r, 0) - f(r)g(0), not identically 

zero, then for some X, f and g satisfy the o.d.e.'s,

2_2 _ ,2,
r^f"(r) ♦ rf'(r) + (w^r^ - X )f(r) » 0 (2 .1-6 )

g"(0) + X^g(0) « 0. (2.1-7)

The general solutions of the o.d.e.'s (2.1-6,7) are, 

f(r) ■ a^Jj^(wr) ♦ 02J.;^(wr)

g(9) -

where and are Bessel functions of the first kind.

which are orthogonal [10t).
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if(D)X . ^(D')T,

where f(D), g(D'( are quadratic functions of D • ^  and 

D' « respectively.

In [78] a necessary condition for the previous 

definition is stated as follows:

Theorem (2.1-5)

The p.d.e. (2.1-11) can be reduced to two o.d.e.'s of

second order both containing an arbitrary constant by 

separation, if there exists a transformation,

4 -  C(x, t) 

fi » n(x , t)
Six, t

. * 0

so that the resulting equation,

* '̂22“nn * ' *01^A ,n “ r * » 0 l “ n * *^00“  ' (2 . 1- 12 )

does not contain a term of the type u^^ and if there 

exists a function B(5, n) so that A^,/B » C,,, A^g/B • 

are functions of £ only and ^ 22^^ “ ^22' *01^® “ *̂01' 

functions of n only, and if Aq q /B can be split up into a 

function of C and a function of t as

W “ • =00' " ' i '  * D

A more general definition, applicable to any order 

p.d.e. is,





,(k),{X) ♦ ...» X(x), X, a) • 0

T***(t) ♦ ..., T(tl, t, a) • 0

for some k and I, both equations jointly depending in an 

analytic way on the cc»plex parameter a, such that the 

function

u(x, t) « X(x)T(tJ 

is a solution of (2.1-14).

The basic idea of separation is the same in all these 

apparently different definitions. The "definition" often 

depends on the authors and their aims. For instance, 

additive separability, may be taken as the basic 

definition for separability [47], [58]. On the other hand 

additive separability can be regarded as a special case of 

multiplicative separability if dependent variable 

transformations are allowed to play a role in the 

definitions.

One of the characteristics of separation of variables 

for linear p.d.e.'s is that the range of practical 

applications is greatly increased by the introduction of 

additional coordinate systems. In this connection, 

however, the Stackel matrix is the fundamental mechanism 

for variables separation [39, 47, 48, 59],

In a number of papers, several people have used the 

ordinary separation of variables technique (additive or 

multiplicative) to obtain solutions of specified nonlinear 

p.d.e.'s. A good example of an equation which the





have solutions of the form,

(2 . 2- 2 )

♦(X, t) « ±4tan"'(X(x)T(t)) + (1 «>3

provided that X(x), T(t) satisfy the o.d.e.'s,

2 4 2 ^
(X')^ » pX^ + 6mX* + q

c(T')^ = qT^ + 6(1 - m)T^ +

where 6 » ±1 and p, q, m are arbitrary constants.

For the sG equation (2.2-1) and its elliptic variant 

(2.2-2) the analysis above shows that they are "separable" 

not in terms of the original dependent variable but in 

terms of a new dependent vari4d)le i)', where

<ti(x, t) s tan • (2.2-3)

and for which the equation takes the form,

(1 + * ^ ^ t t*  "  -  ii-(1 -  t|i^).

(2.2-4)

This raises the question of finding more dependent 

variable transformations which lead to a separable 

equation for 4i(x, t), and of finding a mathematical tool 

for analysing the separability of the various other 

nonlinear p.d.e.'s, i.e., of modifying the classical 

method so that it can be applied to nonlinear p.d.e.'s.



In this connection, Osborne and Stuart [69] have found a 

general class of dependent variable transforaations under 

which the sG equation is separable, and that the most 

general transformation which does this is.

(2.2-5)

where ^ is the new dependent variable and 

a, B, )( e K  - {0} with k i 1 and sn is a Jacobian 

elliptic function with sine amplitude of modulus k. 

Putting k • 1, and 8 ■ -n, (2.2-5) reduces to,

which is a two parameter generalization of (2.2-3). It 

can be shown that the final solution of (2.2-1) is 

independent of choice of a and n.

The existence of this general transformation means, 

of course that there are several classes of separable 

solutions. In this connection, Bryan et al. [17], have 

classified a set of separable solutions of the slne-Gordon 

equation in one space and one dimension and of its 

Laplacian or elliptic variant. They have found three 

structural groupss a) a one-soliton sector containing the 

single soliton and antisoliton, b) a two-soliton sector 

which includes the doublet solutions and c) general sector 

in which the solutions are products of Jacobian elliptic 

functions with coupled periods.

Hudak [43] has obtained a vortex solution to the





obtaining a general transformation for s6 equation, is 

used to obtain solutions of several important wave 

equations including KdV, Purgers, and Fisher's equations.

2.3 Definitions of the Separability of Nonlinear 

Equations

In their paper [69], Osborne and Stuart, in 

attempting to obtain the dependent variable 

transformation, used by Lamb [56] and Zagrodzlnskl [100], 

to separate the sine-Gordon (sG) equation, studied in some 

details, the existence of separable solutions of the sG 

equation and similar quasllinear p.d.e.'s. The algorithm 

they used is to first assume a dependent-variable 

transformation which reduces the original equation to a 

separable form, and then expand the derivatives of the 

separating functions, as power series, in terms of the 

functions themselves. As a consequence of recurrence 

relations v^ich occur when equating coefficients, an 

ordinary differential equations appears, whose solutions 

are the transformations which separate these equations 

into two o.d.e.'s. The authors have found a general set 

of dependent-variable transformations, which lead to 

separable forms of the sG equation. One particular 

transformation in this general class is Lamb's 

transformation.

In the following paper [71] separability of the sG 

equation was studied using combination of independent and 

dependent-variable transformation.
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Although, the separability of the sG equation and 

other equations was, successfully, examined by Osborne and 

Stuart [69, 70, 71, 72], and mathematical algorithms were 

devised, a definition of a "separable equation* was absent 

from their work. However, in this section, an attempt is 

made to overcome this problem. Basic definitions 

Involving separation of variables, which may meet the 

requirements of separation of a large class of nonlinear 

p.d.e.'s will be stated. These definitions cover the sG 

equation and other important equations, studied by Osborne 

and Stuart. An interesting feature of these definitions 

is that they are flexible and general, so that they can be 

applied to nonlinear and linear p.d.e.'s as well as 

o.d.e.'s. Moreover, ordinary separation of variables for 

linear equations will be a special case of these 

definitions (see §2.4).

Let

H(4>(x, t)) (2.3-1)

be a general real partial differential equation of the 

dependent variable and two independent variables x and t.

For the following definitions and remarks, we will 

use the series of functions of x (or t) that has the form.

I a„xlx) 
n»0

n+X

and call it a "power series in X" if a^ is constant Vn, and 

a "generalized (q.) power series in X" if aj such that aj







y > a^x + ^2^ * * “  '

convergent for [x| < r, the function y * f(x) thereby 

determined is reversible in the neighbourhood of the 

origin, under the sole hypothesis that a^ * 0; there then 

exists one and only one function x ■ ^(y) which is 

expressible by a power series, convergent in a certain 

neighbourhood of the origin, of the form

X « b^y + b2Y^ + ...

and for which, in that neighbourhood, we have

f(<fiy)) = y.

Moreover » 1/a^. Q 

Remark (2.3-7)

It is easy to see that a simply separable equation, 

is an implicitly separable one.

Remark (2.3-6)

The requirement of the first derivative in (2.3-2) is 

not very stringent, but just for convenience. The 

apparently more general case of (2.3-2) is.

. I a.ixjx" (2.3-3(a))

. I b (t)T"*'’ 
n.O "

(2.3-3(b))





Remark (2.3-11)

The definitions can be easily extended to equations 

consisting of one dependent variable and several 

independent variables.

Remark (2.3-12)

In case of equations with no explicit dependence on 

the independent variables x or t, (2.3>2) might be 

simplified by taking the functions and to be

constants Vn. This enables us to solve a system of 

algebraic equations rather than system of differential 

equations.

The disadvantage of this choice is that some 

solutions may be lost. The following result illustrates 

the fact that, in at least some cases, no solutions are 

lost. One must Impose the following conditions on X and 

T; (they will be illustrated for X only):

(i) X ■ £(x) and F(x) ■ f(x)/x have Taylor series with 

F'(0) * 0.

By the reversion theorem for power series [52], the 

above condition implies that there exists one and only one 

function g(X), such that x * g(X), with g(X)/X » G(X) 

expressible as a Taylor series and G ' (0) * 0 

(GMO) - 1/FMO)).

(ii) X ■ 0 in (2.3-2(a)) or X is a positive integer.

Then the following theorem will hold;



Theorem (2.3-13)

If the coefficients, a^, in (2.3-2(aM are analytic 

in X, and conditions (i) and (ii) hold, then â  ̂ is 

constant Vn, without loss of generality, p

Proof Lemma (2.3-5) implies that (2.3-2(a)) can be 

written as.

n«0lm«0

for some constants where J for
m*0

each n. Therefore

(2.3-4)

where is constructed from the coefficients of x in the 

Taylor series for a^ and x” , for each n, so that each 

is constant.

Applying reversion theorem now to X(x), and 

substituting the result in (2.3-4) gives, by the above 

lemmas.

(X ' )^  = I $_x'
n»0

n+X
* 0,

where 6 's are constants, l.e., the coefficients in n

(2.3-2(a)) are constants without loss of generality. |

In general, it seems reasonable to suppose that vrtien



applying the definitions to equations with no explicit 

(X, t)-dependence â  ̂and in (2.3-2) can be taken to be 

constants Vn without loss of generality. Unfortunately, 

it is difficult to prove any result which is more general 

than theorem (2.3-13) due to the lack of results 

concerning reversion of 9« series*

If in any case, â  ̂and b̂  ̂are not constants for all 

n, and at least one of series (2.3-2) is not finite, then 

there is the added difficulty of showing that the series 

is uniformly convergent if it is pointwise convergent. Of 

course any convergent power series is automatically 

uniformly convergent.

The following result concerns the choice of the real 

numbers r and s in (2.3-2).

Theorem (2.3-14)

Suppose that the conditions of theorem (2.3-13) are 

satisfied. If the powers of all the x-derivatives,

(4> n: n c D ) , in a simply separable equation.

H(«Mx, t)) » 0 (2.3-1)

are positive, then the reciprocal of the L.c.m. of the 

denominator of all these powers, is the value of the 

constant r in (2.3-2) without loss of generality provided 

that the powers of ♦ n, n > 1 are integers. Q

Proof Since the p.d.e. (2.3-1) is simply separable 

(Hx, t) » X(x)T(t) where X and T satisfy (2.3-2).





p,/q,
common factors. For this value of 1, (X') has no

power series expansion. Thus, 1/r «

1/r = L.c.m.iq., ...» q„ ), without loss of generality.
1

Since (X*) has a power series expansion, by the 

differentiation lemma (2.3-4), X^"^ has a power series 

expansion Vn > 1.

Thus, by lemma (2.3-6) each term of the form

. . m.
( X ^  ) which is derived from a term of the form (iĵ n)

in (2.3-1), has a power series expansion, as required. •

A similar theorem holds for the t-derlvatlves of ^ .

Given any p.d.e., as it stands, if we assume that it

has separable solutions as in definition (2.3-1) then this

assumption will lead to recurrence relations for the

coefficients a.'s and b^'s. If these relations are 
n n

inconsistent or only have trivial solutions then original 

assumption is false and the equation has no separable 

solutions of the given form. If recurrence relations are 

solved then separable solutions are produced.

2.4 Applications of the Definition

In this section we will show that the definition of a 

simply separable equation can be applied to linear 

p.d.e.'s as well as o.d.e.'s.

Linear p.d.e.'s

To establish the relationship between the technique 

for nonlinear equations as in the previous section and



the classical linear technique, let us restrict ourselves 

to general second order linear equation
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11 »X, » «i2\

B2 (x , t)u^ + C(x, t)u

«22»

(2.4-1)

The separability of this equation has been studied by 

many authors. To be precise, let us take Koornwinder's 

theorem, for the necessary and sufficient conditions for 

(2.4-1) to be separable by the classical linear technique.

Theorem (2.4-1) [53]

Eq. (2.4-1) must take the following form:

Cjitlu) * 0, (2.4-2)

if It is separable. Furthermore, if u has the form 

u * X(x)T(t) and if u is not identically zero, then u is a 

solution of eq. (2.4-2) if and only if, the functions X 

and T are solutions of the o.d.e.'s

«1»

T"(t) + P2(t)T' + Q2(t)T

(2.4-3(a))

(2.4-3(b))

where and are analytic functions of b^ and c^ and 

the separetblllty constant a, for each 1 ■ 1, 2. a 

The following theorem proves that the o.d.e. 

(2.4-3(a)) can be represented as a g. power series for X*



as in definition (2.3-1). (Similarly for (2.4-3(b)).) 

Theorem (2.4-2)

Eq. (2.4-1) is separable in the sense of theorem 

(2.4-1) if and only if it is separable by the series 

technique, i.e. it is implicitly separable.

Proof (i) Eq. (2.4-1) is separable by the classical 

linear technique means that it is reducible to eq. 

(2.4-2), which gives eq.'s (2.4-3) as the separating 

o.d.e.'s. Without loss of generality, let us prove that 

eq. (2.4-2) is simply separable, which implies that eq. 

(2.4-1) is implicitly separable.

Consider the following equation,

X" (x) + P(x)X' + Q(x)X « 0,

which represents eq. (2.4-3(a)) or (2.4-3(b)). 

Let

(2.4-4)

0 ”  0 "
(2.4-5)

where P^^'s &nd q^^'s are constants, since P(x) and Q(x) are 

analytic by theorem (2.4-1). This equation is solvable by 

Frobenius method which suggests solution of the form,

X(x) » ya x'
n+X

where X is a real constant to be determined, and Sq * 0, 

without loss of generality.















The separation technique, applied on an o.d.e., can 

be used in example (2.4-4) to solve eq. (2.4-13(a)).

2.5 Simple Separability

The simplest version of 'separability' is simple 

separability which is in fact the trivial case of implicit 

separability. As might be expected not every equation is 

simply separable. The sine-Gordon equation is an example 

of an equation which is not simply separable [71], On the 

other hand every separable solution ^ » X(x)T(t) is a 

solution for the equation
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To see if there are some classes of equations which 

are non-trivially simply separable, it is sufficient to 

find equations which have at least one non-trivlal 

separable solution. (By a trivial solution we mean a 

solution which is a function of one independent variable 

only.) Dealing with equations with no explicit dependence 

on the independent variables x, t malee the task much 

easier. Thus the conditions of theorem (2.3-13) will be 

assumed here for simplicity.

Second order linear equations

Theorem (2.5-1)

Any second order constant coefficient linear equation 

is simply separeU>le. Q



Proof Consider the second order linear equation#
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(2.5-1)

where all the coefficients are constants. Substitution 

the separable solution $ * X(x)T(t), where X' » aX,

T' ■ bT, and a and b are constants, in (2.5-1) gives,

Aa^ + Bab + Cb^ + Da ♦ Eb + F » 0. (2.5-2)

This algebraic relation between the constants a and b, 

means that there are an infinite number of solutions for 

(2.5-1), of the given form, so that any second order 

linear equation is simply separable. |

Second order quasilinear equations

A more general equation than (2.5-1) is the 

quasilinear p.d.e. of second order with constant 

coefficients:

f($). (2.5-3)

Theorem (2.5-2) [71 ]

If f(4>) » or A » C s D * E * 0 and f(^) »

X e 1R, where y ia a constant, then eq. (2.5-3) is simply 

separable. Otherwise it is not. Q

Second order general quasilinear equations

Consider the p.d.e.,





- 9S

■ 2 
a *10 *20 *30 *40 *50 *61 ■

ab *21 *31 *41 *51 *62

b'
, F *

a

b

(

/ in *2N *3N *4N *5N *6,N»1_

then eq. (2.5-5) is simply separable. □

Proof This result can be easily proved when it is assumed 

that ♦ « XT, X' * aX, T ’ = bT, which implies that

Thus if (2.5-7) has a nontrivial solution then eq. (2.5-5) 

is simply separable, g

Second order polynomial equations

Eq. (2.5-4) is of polynomial class if the function F 

is a polynomial in all its arguments. Then it may be 

written as,

? /oi * 1i * 2i .
J ^ “i ♦ ♦x ♦t '̂ x

“3i “4i , “5i

(2.5-8)

where a^'s are constants, and a^^ (J ■ 0, ..., 5) are
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nontrivial solution (a * 0, b 0) for the system.

0, j » 1* n, □ (2.5-12)

Proof Substituting (2.5-9) as in theorem (2.5-3), in eq. 

(2.5-8), the problem is reduced to that of solving the 

equation

N B.
I A. (a, b)(>  ̂

i»1 ^

(2.5-11) gives the system (2.5-12). g

Theorems (2.5-1,3,4) and the first part of theorem 

(2.5-2) can be easily extended to higher order equations 

or equations involving more than two independent 

variables.

The second part of theorem (2.5-2) may be extended as 

follows:

Theorem (2.5-5)

The equation.

‘1

where y and \ are constants, r^ e is simply separable. Q  

In the following example, we demonstrate that (2.3-2) 

can be true power series, as opposed to finite sums.





This Is a symmetric relation between the a's and b's and 

it gives.

a, 11^ 3>3
(2.5-16(a))

“1

b, 2b

 V -
(2.5-16(b))

Substitution of (2.5-16) back Into (2.5-14) Implies the 

following infinite series for X and T,

,px, ...

' * (t "1 *

where p « a.|/aQ.

It is clear that the first series converges to 2ajje*'

(-4/p)T
VX and the second series converges to 2bQe ^ , VT.

In the general case, (2.3-2) is likely to be a true 

power series and the Investigation of convergence of such 

a series may be difficult.

The flexibility of the definitions of separable 

equations enables us to have, in some cases, more than one 

choice of derivative for the power series. Without loss 

of generality a power series for X' and T' is one choice. 

If there is another power of another derivative of X which 

will ensure that all other derivatives will be power



series too, then it may be useful to use It Instead of X' 

(similarly for T(t)). For Instance, for the sine-Gordon 

equation [70], there are two choices of power series, one 

for X* and one for x'^ (similarly for T' and T'^). The 

first choice gives an Infinite series while the second 

choice gives a finite sure. For theoretical purposes it 

may be an advantage to have an infinite series, while for 

calculation purposes it may be better to have finite sum.

As another example of such equations besides the sG oquatlon 

consider the following example.

Example (2.5-7)

In this example we will illustrate the possibility of 

many choices for the power series involving X and T. 

Furthermore, we will show that applying the separation 

technique to some p.d.e.'s reduces the problem to that of 

solving an o.d.e.

Consider the second order equation,

^^'^xx * ^tt " * ^t^ ” (2.5-17)

The substitution ^ » X(x)T(t) and division by X gives, 

XT^X" ♦ T" - 2T^X^’ + XT^' « 2(T ♦ XT^ - X^T^).

(2.5-18)

First, let us assume that T' ■ \ leaving X's
n*0

derivatives undefined at the moment. Rewriting (2.5-10) 

in terms of powers of T, we get



Xt \ ’ ♦ (bj ♦ b,T ♦ bjT^ ♦ ...) (b, ♦ 2bjT ♦ 3bjT * ...I 

- 2T^X'^ * X(bj ♦ b,T ♦ bjT^ ♦ ...Hbj ♦ b,T ♦ bjT^ * ...I

Comparing coafflcients of X, T and r  given that bj - 0,

» /I and b2 ■ 0 respectively.

Now it can be easily proved, by induction that ■ 0 

Vn i 2. Suppose that b2 ■ ■ bĵ  ■ 0 > 2. To

prove that bĵ ^̂  « 0, consider the coefficient of 

This is

V x . 2  * * '■2‘>X V 2  ♦ » X . l » !  * ‘'k.2‘>0 " “

Since bjj ■ b2 • » b^ • 0 then bĵ ^̂  • 0. Thus we have,

/ I t . (2.5-19)

This result for T(t) shows that there is no need to have 

another choice for T. Let us now substitute (2.5-19) back 

into (2.5-18) which leads to the following o.d.e.

(2.5-20)

There are three choices here. Either (2.5-20) may be 

solved by ordinary methods, or it may be solved by the 

separation technique with two different choices of power 

series involving X.

Let







p(x)y' ♦ q(x)y » 0. (2.5-24)

The method of Probenius see)(8 a aolution of (2.5-24) in 

the form

y(x) • x“ J c^x" - I c„x"** (Cj » 0) 
n*0 n*0

where s is left completely undetermined. This power 

series is capable of describing [19]

(a) analytic functions that do not vanish at the origin 

(a « 0),

(b) analytic functions with a zero of order m at the 

origin (s > m, positive Integer ),

(c) functions with a pole of order m at the origin 

(8 « -m, a negative Integer),

(d) functions with certain types of branch points at the 

origin (s noninteger).

For partial differential equations, when dealing with

the assumptions X* ■ J T* ■ J where a
n=0 " n»0

and b are constants Yn, it is reasonable to investigate
n

whether these power series can be reduced to Taylor or 

Laurent series in X or T.

The assumption that Sq * 0 and bp * 0 will be used

since nothing is gained by talcing aQ ■ 0 as this would 

• .
simply mean that the series \ a X would start with the 

n»0

term a^x'*^ or, if a^ « 0, the term SjX^*^ and so on. 

Suppose the first non-zero term is a a^x"*^i this is



equivalent to using the series with X replaced by X * m 

and a,, replaced by aj. (Similarly for the series of T'.)

Quasillnear eauations

There are two cases« In which eq. (2.5-3) is simply 

separable: (see theorem (2.5-2)).

Case (i) A ■ C • D 

Lemma (2.5-8)

; » 0 or f (♦) • \i, Y e m.

For case (i), the constants X and p for the power 

series for X(x)« T(t) satisfy

X y  □

Proof Substituting 0 « XT and comparing terms in X' 

T**^ gives

.n+X

, (vx''̂t '̂ if n « m
a b .
” ■ [o otherwise.

Since agbp * 0« hence X « p * y ; Y is zero of a 

positive integer then the series are Taylor series; if Y 

is a negative integer then the series are Laurent series. |

Case (ii) f(i) ■ Fi; hence we have the linear equation

* ®*xt * ‘̂♦tt * °*x * '̂ ♦t ■ (2.5-25)

Without loss of generality. , .









The coefficient of X T will be 

C.+E. D.+P. E. F.

V o  »0 "  P “  i f  \  < Aj ( ° i  < Bj)

'’k
V j » 1 ,  j * k .  Hence \ p » 0 as required, g

It is difficult to determine the explicit character 

of p and X in the case of the general nonlinear eq.

(2.5-4) .

2.6 The Effects of a Dependent Variable Transformation on 

a P.d.e.

To obtain more separable solutions of simply 

separable equations and separable solutions of non-simply 

separable equations, a transformation is sought such that 

the resulting equation is simply separable. In other 

words, implicitly s^ r a b l e  solutions are sought. In this 

section, we will restrict ourselves to simple dependent- 

variable transformations. This )clnd of transformation has 

Iseen used by Osborne and Stuart (see §2.2) to find 

separable sets for the sG equation and other equations.

We shall only consider p.d.e.'s of the form,

I Fix, t, ♦) n ♦ ^ » Fq (x , t, ♦). (2.6-1)
n»1 " i»1 / i  t^i

Such equations will be transformed to the possibly simply 

separable equation of a dependent variable and the 

independent variables x and t:

L(*(x, t)) • 0, (2 .6 - 2 )



using the dependent variable transformation, 

(Mx, t) ■ giiiiix, t)).

Lemma (2.6-1)
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(2.6-3)

Any travelling wave solution, $ ■ f(x - pt), where p 

is a constant, is an implicitly separable solution.

Conversely, the implicitly separable solution 

^ > gii)*)/ 4* ■ exp (ax * 6t * y), where a, S and y 

constants includes any travelling wave solution as a 

special case, g

Proof (First part)

f ( x  -  p t )  » f d n ( e * . e ‘ ^*')) = g(i|.),

where g ■ f o In end i|i • X(x)T(t), X « e*, T * e 

Hence the travelling wave solutions are implicitly 

separable.

(Second part) To prove the converse, it is easily seen 

that

^ « f(ax ♦ 0t ♦ y )

where f » g o  exp. I f a * 1 , 6 » - p » Y * 0  then 

$ s f(x - pt) as required, p 

Theorem (2.6-2)

Eq. (2.6-2) has the following properties if eq. 

(2.6-1) does:







In the case of higher derivatives, applying the 

binomial theorem many times to eq. (6) gives that all the 

Integer powers of the r.h.s. of eq. (6) contain only 

Integer powers of i{'̂ a. (Similarly for |

In practice If eq. (2.6-4) Is transformed by the use 

of a dependent-variable transformation $ - g(4')f the 

resulting equation is simply separable If g Is a non 

constant solution of an ordinary differential equation. 

Letting 4>(x, t) * g(i|i(x, t)) In eq. (2.6-4) the following 

identity for i(> and g Is obtained:

[ F (g) n 
1*1 j-1

0. b(n)
f a n  1i„ajg 

n«1 *

(b(n))

M 1

I F.2(g) n
1=1 j»i

J b(n) 
I o n  a 

n=1 i»1 *
(2 .6-8)

where the constants are as defined In lemma (2) and Its 

simplification.

Theorem (2.6-4)

The Identity (2.6-8) is an ordinary differential 

equation in and g if ■ X(x)T(t) and X' * k^X^,

T' » )i2T®» for some constants r, s, , k2« q

Proof Identity (2.6-8) can be written in the form,

' k a. "1 I b
I G (gl n ♦ n .  I  G (g) ni|, n “ . F . ( g )  

1-1 F' n-1 *  i -1  n=1 '  "

(2.6-9)







relations if (2.6-10) is to be a function of ijij
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. . .  X «̂ 2 *•

... - a^^ikr - k * ^), (i « 1, .... M,) .

(2.6-12)

Which may be solved to give that r « s ■ 1, or just a 

relation between r and s. Note however, that the system 

always has one solution that being r * s « 1.

Case (ii) (N̂  > 2)

(N - 1) relations

ail " 8^2 ♦ ••• * * a^2(2r - 1) +

â ĵ ikr - k + 1) . a,, ‘ »,2 * ... . - â ,:

a^2<2r - 1) - ... - a„^(kr - k + 1), (1 - 2

(2.6-13)

together with the above relations (2.6-12). One 

solution is always r « 1 which implies that a > 0 and 

8 " 1- ■

The following result follows easily from the previous 

theorem:

Corollary (2.6-5)

Eq. (2.6-4) is implicitly separable if there exists a 

non-constant solution to the o.d.e. (2.6-8). q



Corollary (2.6-5) provides us with guaranteed 

implicitly separable solutions for eq. (2.6-4). One 

solution of the transformed p.d.e. is always,

(x, t) « exp(QX + 8t ♦ Y)»

where a, B and y are arbitrary constants (see proof of 

theorem (2.6-4).

Other solutions, if they exist, are of the form
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iii(x, t) - (k^x + c^)  ̂(k2t t C2> ^

where )ĉ , c^, (i = 1, 2) are arbitrary constants

1 ^  1 • '
A. » -5-- -, 0 * 1
^ “ [s 1 • 2

Note that from proof of theorem (2.6-4), if r » 1 

then 8 s 1 and conversely, so that there are no guaranteed 

solution of the form.

*1
ii)(x, t) ■ (k^x + c^) exp(6t + Y)

for Instance.

The question now arises "Does every p.d.e. have an 

implicitly separable solution using (2.6-3)?". The answer 

to this question is no. Consider the p.d.e.,

(2.6-14)

where f(4)
[1 if 4 c m/Q

lo if 4 e Q



Applying (2.6-3) to (2.6-14), where i> » XT,

X' » T* * IC2T® gives the o.d.e.,

( ) t ^ V  �  ) t 2 V ® ) g "  + * f i g ) .

(2.6-15)

Clearly (2.6-15) has no solution, hence (2.6-14) has no 

implicitly separable solution.

Some p.d.e.'s are implicitly separable using (2.6-3) 

only if g(i)i) » ^ or g > constant. The following p.d.e. is 

an example of this case:

Now, to generalize theorem (2.6-4), let

♦ (x, t) * X(x)T(t) in eq. (2.6-4) and expand X'(x), T ’ (t)

as series of X and T as in definitions, where the

constants r and s are ta)cen to be one according to

theorems (2.6-3) and (2.3-14). The coefficients a^^ix),

b (t) are taken to be constants, X and p may be taken zero 
n

for simplicity.

Eq. (2.6-4) is separable if the coefficient of 

(X(x)) ̂ (T(t)) ̂  for all i, j in (2.6-8) as an Identity in 

X(x)T(t) in this identity are consistent. This leads to 

an ordinary differential equation which we will call it a 

general o.d.e. to recognize it fran the above o.d.e. (in 

the guaranteed case) which is called a guaranteed o.d.e. 

Clearly the guaranteed o.d.e. is a special case of the 

general o.d.e.





I n(a x" ♦ b t" ^X)ig' ♦ 
n-1 ”
n*2 ^

f 2(a x "t  ̂ + bĵ T”x^) 
n*0

(2 .6-20)

It follows, therefore that a necessary condition for 

(2.6-16) to be implicitly separable that there exists a 

non-constant solution for (2.6-19). These conditions are 

sufficient to have the guaranteed separable solution 

(ii> » K expi/HjX ♦ /3B2t)). To seek other solutions, g ’ 

and g" must be expanded as power series in 4*.

Consider the solution for (2.6-19);

2cos k }. ( 2 .6 - 21 )

where a, k non-zero constants with k < 1, 6^ - 2(a2 + b2> 

and sn is a Jacobian elliptic function sine amplitude of 

modulo k.

To get the subclass of non elliptic transformation 

[for in the general elliptic case, g' and g" can not be 

expanded in power series], put k * 1. Then if 6 » -n then 

(2.6-21) reduces to

g s 4tan  ̂(aip)

Substitution g' and g" in (2.6-20) gives that,

(T*■)^ - 0^^"qfT^ ♦ (1 - m)T^ *











Hence two solutions to Burgers equation are 

obtainable using (2.7-8) and (2.7-9).

Case (11) (The general case.)

In this case, the constants r and s in (2.7-4) can be 

talcen to be unity without loss of generality, by theorem 

(2.3-14). Substituting (2.7-4) with r » s * 1 and (2.7-3) 

into (2.7-2) gives,

I T̂g" 2 I a x"^MTgg' *

[ i(n . I  a„x"*4 . f I  b„l'l n = 0  "  J l n » 0  ”  J [ n = 0  ”

where a^, bQ ^ 0 without loss of generality.

Division by gg' is possible for nontrivial solutions; 

Assuming that \ is not a nonnegative integer gives that 

the coefficient of X^T equal to zero (i.e., aQ * 0) which 

is a contradiction. Hence X e Z  i 0.

To prove that p is a nonnegative integer, divide by 

g'. If p is not a nonnegative integer then bQ » 0 which 

is a contradiction. Thus A « o « 0 without loss of 

generality. Thus, (2.7-10) can be written as.

I a x "  g" * 2T I a x" gg' 
ln»0 ” ln*0 ^

I na X' 
n=0 ”

.n-1

g' = 0.





case (1) (Aj * ■

Even If q, as a solution to (2.7-12), seems to be 

arbitrary In this case, yet It has to satisfy the Identity 

(2.7-13). One special value to g Is g(4i) > i(i which gives 

that Burgers equation is simply separable. To see If 

there are other values for g which satisfy (2.7-13), we 

need to assume that g(i|;) has a power series expansion of 

the form

g(») = I
n*0

(2.7-14)

where a e IR Is a constant, c^ « 0.

Substitution of (2.7-14) into (2.7-13) gives,

l An*" 
n=0 "

h ^ ( n  .  a ) ( n  .  a -

I “n*" 
nio "
n^l

I  c
ln»0

I (n ♦ u)c 
n*0

■*

T I
n*0

♦ x l ‘>nT" 
n=0 "

y (n . a)o 
[n-0 "

.. n*1 n.1

(2.7-15)

Terms in are terms in Tx"x®T®, Iff

m + r ■ 1 ■«' s and r'*^1 » n ^ s i h n r r r n ,  s e Z > 0 .  Thus 

m ' f n a  2; a s m , n e Z  1 O m  must be less than or equal to 

2, Hence















CHAPTER THREE 

Separation of Variables II

3.1 Introduction

In the previous chapter, we Investigated simple 

separability of nonlinear p.d.e.'s, and Implicit 

separability of nonlinear p.d.e.'s using dependent- 

variable transformations. We found that, using dependent 

variable transformations we can work In two directions: 

one is to transform the p.d.e. to a separable one (which 

Is the aim of the method) and the second direction is to 

reduce the p.d.e. to a nonlinear o.d.e. (which Is a tool 

to find the transformation).

Transformations in general are, perhaps the most 

powerful general analytic tool available in solving non-

linear p.d.e.'s. Some of these transformations linearize 

the equation, or transform It to a more simple p.d.e. (for 

instance, the Hopf-Cole transformation [42], the 

inverse scattering method, and Backlund transformations), 

while other transformations reduce the p.d.e. to a 

nonlinear o.d.e. (for example the similarity 

transformation (see 11.6) and some other Individuals' 

work [18]).

3.2 Extensions of the Dependent-Variable Transformation 

To get possibly more separable solutions to
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nonlinear p.d.e.'s, It seems reasonable to extend the 

dependent-variable transformation, used In the previous 

chapter, so that solutions provided by the separation 

technique will tie up with solutions provided by other 

known techniques.

An "obvious" extended transformation to reduce the 

general p.d.e.,

H(*(x, t)) (3.2-1)

to a simply seperable one is the affine transformation in

g

(})(x, t) * u(x, t)g(ii/) + h(x, t), (3.2-2)

where ijj(x, t) * X(x)T(t) is a solution of the transformed 

p.d.e. Clearly ♦ ■ giî ) is a special case of (3.2-2). 

(The choice of (3.2-2) is justified in a later section.)

In this chapter, a complete description of our new 

transformation (3.2-2) will be given as theorems and 

comments for the p.d.e.'s with no explicit dependence on 

the independent variables, x and t. The method will be 

sketched out for other p.d.e.'s.

Once again, the main objective of the method is to 

reduce a given p.d.e. to an o.d.e. for g. Using all the 

details of the definitions (2.3-1,2), with unknown u and 

h, the problem turns into a complicated one. Hence 

some simplifying conditions here seems to be necessary.

We will concentrate here on equations of polynomial 

class and investigate the properties of the functions u



and h, using one term 'series' X ’(x) ■ ax” , T'(t) ■ bT® 

for some n, m c IR« to reduce the original p.d.e. to an 

o.d.e. For nonpolynomial equations, where a 

transcendental function term exists, (3.2-2) reduces to 

simpler form where u = 1 or h = 0. For sine-Gordon 

equation, for instemce, u must be 1, while for the 

equation h roust be zero at once.

Lemma (3.2-1)
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In (3.2-2), if u is a product of the function and 

its derivatives and X' ■ ax”, T' ■ bT® then u » (or X*̂ ) 

for some q e IR. Q

Proof It can be easily seen that if X' » ax” , T' * bT® 

for some n and m, then any derivative of is for

some a, 6 and y. Therefore, if u is a product of ip and 

its derivatives then u « for some a, 6, y which is

equivalent to u • (or x“'®*®).

Substituting this result into (3.2-2) gives.

4> = T^g(ip) + h(x, t), 

where q   S - a;  or

^ ■ X*^g( )̂ + h(x, t)

where q • a - 6* (And where the notation has been changed 

slightly.) ||

In what follows, we take u ■ without loss of 

generality. (The case u > X^ is implicitly included. In



practice, one form of u may have an advantage over the 

other for purposes of calculating derivatives of $ which 

occur In a particular equation.)

Consider the following p.d.e.
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n=1 " x" t"-*^ 0
(3.2-3)

(where r and s denote the highest x and t derivatives 

respectively, (1 > 0, ..., r + s) are non-negative 

integers, and are constants Vn e Z  ^ 0).

Many famous equations are Included in (3.2-3) as 

special cases: The generalized KdV, KdV-Burgers, Fishers, 

Harry-Oym and other equations.

Assume that 3j e {x: x » 1, ..., r) such that

(Vi = 1, . 

following:

j - 1, j + 1, .. s). Then we have the

Theorem (3.2-2)

Suppose that (3.2-3) reduces to an o.d.e. in g(il̂ ), 

using (3.2-2). Then u » T̂  ̂for some q if one of the 

following statements Is true:

(1) r > s and j * r 

(11) r < s

(ill) r ■ 8 and * M^. □

Proof Clearly we can choose « 1 Vi ■ 0, ..., r + s in 

(3.2-3) without loss of generality.

Substituting (3.2-2) Into (3.2-3) and using lemma (3)





q, by lemma (3.2-1).

Case (b) r < s

"a (s)
The choice of the coefficient of g g will be 

convenient here to show that u is a product of i|> and its 

derivatives which means again that u > for some q, as 

in case (a).

Case (c) r » s

In this case, if then we will choose the

maximum of and and this case will be reduced to case 

(a) if ^ reduced to case (b) if

H < H . I
r s ■

Following the proof above, one can easily calculate 

the value of q in each case.

Lemma (3.2-3)

In (3.2-2), if h(x, t) « u(x, t)f(^) then h • 0 

without loss of generality. Q  

The proof is obvious, g

Theorem (3.2-4)

If 3j e (xi X = 1, ..., r) such that M^-1 >

(Vi » 1 ,  . . . , r + s )  and if eq. (3.2-3)

reduces to an o.d.e., using (3.2-1) then h « 0. Q

Proof Consider the coefficients in (3.2-4) after a

M +1 .
aivision by u ■' In particular the coefficient of



M -1 ...
g  ̂ which is M^h/u must be a function of lii {say

f(i )̂). Thus,

h > u(x, t)f(il')

which gives that h * 0 without loss of generality by lemma 

{3.2-4). I

Similar results to theorems (3.2-2) and (3.2-4) can 

be achieved if j e (x: x > r + 1 , ...,r-»^s}.

He consider now the XdV-type equation,

$*̂ 4 + 4, s 0 (3.2-5)

where k e K. As it is well known, r « 2 and k « 1 in eq. 

(3.2-5) gives the Burgers equation; r ■ 3 and k « 1 gives 

the KdV equation; r s 3 and k « 2 gives the modified KdV 

equation and r * 3 and k % 2 gives a generalized KdV 

equation.

Examining the properties of the functions u and h in 

(3.2-2) when it is applied to (3.2-5) we see by theorem 

(3.2-2) that u » T*̂ , where q » -  ̂(1 - n) if k > 1,

while h > 0 if k > 2, by theorem (3.2-4). We now examine 

the case when k > 1 separately. The following result 

shows, once again, that h ■ 0 without loss of generality.

Theorem (3.2-5)

Applying the transformation.

♦ = T‘’g(*) ♦ h(x, t) (3.2-6)



to eq. (3.2-5), where k « 1 yields that h 5 0 without loss 

of generality if n » 1 and r * 2. □

Proof Substituting (3.2-6) in (3.2-5) gives the following 

identity:

(u* ^g^^^ + + uij/ a' + h ^) ♦ (ug + h) (ui)! g' + h ) +
* ^ X X

(uij(̂ g' + u^g + h^) » 0, (3.2-7)

where u « T^, and F^, as defined in appendix, lemma (4).

After division by (which is non-zero for

non-trivial solutions), eq. (3.2-7) becomes an o.d.e. in 

g(4>) iff all the coefficients are functions of ((>. In 

particular the coefficient of g', using lemma (5) is given

by»

Ul|l h u ip ^  + Ul(i.
'n(2n - 1)

((r - 1)n - (r - t J

where J * ^ necessary a function of i(i. We have

here two possibilities:

Either, J ' 0 i.e., h « "t ® \

Or, J is a function of which implies that h ■ for

some 8 c Z  ) 0.

In the second case, h » T̂ i|;® which implies that h « 0 

without loss of generality by lemma (3.2-3).







which can be written as,

N, I [q*i(1-n)]at,

I  T ^ “ ° I F,
k«N,+l

(3.2-10)

where the functions, F|j*'s are constructed from Fĵ ’s or

In this stage an o.d.e. can be easily achieved, If

-q I 
1=0

•d-n) I la.. 
1»0

eq. (3.2-10) Is multiplies by T 

well as the linear homogeneous equations (3.2-9). |

(3.2-9) Is a system of homogeneous linear equations

In the un)cnowns q, 1 n, 1 - I if ; ) 2. The equations

always have the zero solution, q = 1 - n « 1 - m = 0 l n  

which case, the transformation Is * ?(’(')> where i(> Is the 

travelling wave solution, which we dealt with In the 

previous chapter. Here we are interested In non-trlvlal 

solutions, In particular where q is not zero. If the 

number of equations is less than 3, the equations have a 

non-trivlal solution (because of that, multiplication of

the whole eq. (3.2-10) by T  ̂ in theorem

(3.2-6) Is useful). Hence In the case of the Burgers and 

the KdV equations, non-trlvlal solutions can be achieved, 

while In the case of the Bousslnesq equation, where the 

number of equations is 3 they have the trivial solution 

only.

















We have many possibilities for J<

(1) If r + n - 1 • 8 « 0, then J • 0. In this case, 

h « 0 in contrast to previous equations.

(li) l f r + n - 1 * 0, 8 * 0  then r » s - q, which 

implies that h « X®“**?* or h * 0 without loss of 

generality, as

» T‘̂ g(i(').

(iii) If r ♦ n - 1 * 0, but s = 0, then r ■ s - q and 

h « 0 without loss of generality as in case (11).

(iv) If r + n - 1 * 0, a * 0, then r « s - q and h * 0.

In all these above cases. It can be easily seen that 

eq. (3.2-22) does not vary since J « 0 for all the cases, 

and It will be written as.

(3.2-23)





$(x, t) ■ Uq(x, t) ♦ u^(x, t)g(iii) + Ujix, t)g (4>)

then we need to find some extra relations for u^ îx, t)

(i » 0, 1, 2) so that Vi can be found and such that 

g(tii) satisfies an ordinary differential equation. Hence 

generalizing (3.2-2) means that introducing many un)cnown 

functions of x and t or many functions of

g , which in fact, make the problem tooi)i; g
V

complicated. However, in what follows an attempt is made 

to Indicate the most generalized form of (3.2-2), under a 

restricted hypothesis.

Consider, the general dependent and independent 

variable transformation

$ ( x ,  t) - G (x ,  t, 4/^(x, t), t), ..., 1'nix» t)).

Clearly it is not practical to choose n > 1 for the 

resulting equation will be more complicated, and one needs 

n functions for each i » 1, ..., n. Thus, we consider the 

transformation,

<{t(x, t) » G(x, t, 1)1 ), (3.3-1)

where i)î denotes any derivative of i)< with respect to x or 

t, applied on the p.d.e. (3.2-1) such that the transformed 

p.d.e. in i)( » X(x)T(t) is simply separable. If X* = aX*', 

T* ■ bT*** for some constants n, m, a and b, then it can be 

easily proved that every derivative of ^ with respect to x 

or t is of the form for some constants a, 6 and y as

follows:





Although (3.3-4) seems to be a more general 

transformation of it is very difficult to deal with in 

practice, as it involves many un)cnown functions u^(X, T), 

which have to be identified to construct the o.d.e.'s for 

the g^. Two un)cnown functions in (3.3-4) seems to be a 

reasonable assumption, as we had shown in the previous 

section.

3.4 P.d.e.'s with Explicit Dependence on x or t, and the 

Separation Technique

In applying the separation technique directly to 

equations with no explicit dependence on the independent 

variables x or t, we have indicated that, using constants 

coefficient Infinite series for X'(x) and T*(t) is a 

reasonable approach for finding solutions although some of 

the solutions for that case might be lost. However for 

equations with explicit dependence on x or t, clearly the 

variable coefficients infinite series must not be modified. 

This severer condition gives rise to many difficulties in 

solving such equations, by the separation technique. For 

Instance, the following p.d.e. is not directly separable 

unless it satisfies a special condition:

Consider
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♦ A(x, t)4 ♦ B(x, t)i 0 . (3.4-1)

Substituting $ = X(x)T(t), X' • J a„(x)x” 
n«0









The basic point above is that, for equations with 

explicit dependence on the independent variables, because 

comparing coefficients of x V "  is not the only possibility 

for providing solutions, the problem is a lot more 

complicated than in the case where no explicit dependence 

on X or t occurs. Given a large number of different 

alternatives for finding solutions, it is difficult to 

find any hard and fast rules for determining which 

alternative is the best to use etc. This is not only the 

difficulty in this case; using comparing coefficient to 

find the solution, the recurrence relations for â  ̂and b̂  ̂

are, in general, differential equations, rather than 

algebraic equations. For eq. (3.4-2) letting X' ■ ,

T" s gives bg ■ b^ ■ ••• * 0  and the following

differential equations:

- 0“ 1 ’  “ 0

a(2aQS2 + a^^ + â ') + bb̂  «0

* >2' • “

(n + 1)a.a„ ... + a^a.

M o r e o v e r ,  i f  a  ( o r  b . . )  a r e  n o t  c o n s t a n t  t h e n  u n i f o r m  n  n
convergence of Infinite power series is not guaranteed.



















CHAPTER FOUR

Classes of Equations, not Solvable by the 

Inverse Scattering Transform

4»1 Introduction

In this chapter, we report on some general classes of 

nonlinear p.d.e.'s and point out that these equations 

cannot be solved by the inverse scattering transform 

(1ST). These classes are obtained, on the basis that the 

Ablowitz, Ramani and Segur (ARS) conjecture is true. 

Several years ago, Ablowitz, Raraani and Segur conjectured 

that every nonlinear p.d.e., solvable by 1ST is directly 

reducible to a Painlev^ type o.d.e., (i.e., if a p.d.e. is 

directly reducible to an o.d.e. which is not of a Painlevd 

type then the p.d.e. is not solvable by 1ST).

An o.d.e. is said to be of the Painlevd type (P-type) 

if all its solutions possess the Painlevd property. The 

so called P-property of an o.d.e. (P for Painlevd) which 

becomes a condition on whether a given p.d.e. is not 

solvable by 1ST, is the property that the solutions have 

no movable critical points (critical points meaning branch 

points or essential singularities) and this indicates that 

the only movable singularities of all the solutions are 

poles [44]. All linear o.d.e.'s have the P-property as 

all solutions have fixed singularities. The only first



order P-type nonlinear o.d.e. is the generalized Ricatti 

equation [27, 51 ]

- 173 -

^  •  P 0 ( 2 )  �  P , ( 2 ) W  �  P j l z l W ^ .

For the second order o.d.e., it is known that there are 

fifty canonical P-type equations including the defining 

equations for the six Painlev€ transcendents [24]. 

Recently, Ablowitz, Ramani and Segur presented an explicit 

algorithm to test whether a given o.d.e., satisfies 

certain necessary conditions for it to be of a P-type 

[ 6 ]. This algorithm has the advantage of applying to an

o. d.e. of any order in contrast to the procedure explained 

in [44].

In the following sections, the implicit separation 

technique will be used to obtain classes of second order 

polynomial type p.d.e.'s with constant coefficients, which 

are not solvable by 1ST, from their obtainable o.d.e. *s 

which are not of P-type. For higher order p.d.e.'s we 

apply the Ablowitz algorithm to test whether KdV-type

p. d.e.'s are solvable by 1ST in the next chapter.

We first obtain the general form of a second order 

p.d.e. of polynomial type, which can be analyzed to give 

the general Painlev^ o.d.e..

L(4*, g)g'i'̂  g)g' + N(i|i, g ) , (4.1-1)

which represents the first condition [44] for a second 

order o.d.e. to have fixed critical points.
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To O b t a i n  t h e  g e n e r a l  p . d . e .  f o r  ♦(x, t )  which ie 

r e d u c e d  t o  eq. (4.1-1), w e  u s e  t h e  s i m p l e  s e p a r a t i o n  

t r a n s f o r m a t i o n  �  *  g(^), v r t i e r e  ♦ ■ X(x)T(t), X' ■ aX,

T' ■ bT, a and b are constants. Since the Ablowitz 

conjecture needs one direct transformation to disprove 

nonsolvability of a p.d.e., there is no benefit to 

consider a more general transformation than ^ » g(4>), or 

to consider a more general case than the 'guaranteed' case 

above.

We will use the facts:

1

(4.1-2)

Ij; ■ a'I'g' (a). ♦xx ■
♦ ,^g") (c)

■ b*g' (b). ♦tt ■
b^(»g’ * ilî g") (d)

♦xt ■
ab(*g' ♦ , V ) (e)

which can be easily proved. [It is clear that any 

derivative of ♦ in (4.1-2) can be mapped to («♦ ♦ 6**), 

where ♦ ■ iig', ♦* • a and 0 are constants.]

Therefore the general second order p.d.e., with no 

explicit (x, t) dependence,

“ '♦xx' »Xt- »tt- »X' *t' ♦' ■ “ 

is mapped to the o.d.e. in g('l’)» 

H(4, ♦*, g) ■ 0,

(4.1-3)

(4.1-4)

by the transformation ^ ■ gi*).

Now, if eq. (4.1-4) is of P-type, it is necessarily





2ai .  * 20j + .  6. (a)

* h * ^1 ' * *
(b)

“ i Yi ' “ j  * *
(c)

* ' i  ' * (d)

Ic

I f i  1=1 ^(♦) = 0. a (e)

Proof Trivial, g

So we consider (4.1-5) as F + G ■ 0, where F 

satisfies (4.1-9) and G does not. Then any property of 

the equation G ■ 0 in the sense of a property of the 

resulting o.d.e. will be a property of the p.d.e.,

F + G = 0, (i.e., if G » 0 is not solvable by 1ST, then 

neither is F + G * 0).

Now, without loss of generality, we can take P^, 

Si, Y^/ and not to satisfy (4.1-9) for each i for

the eq. (4.1-5). Then we have the following lemmas

Let

A, = a, * Y.

Lemma (4.1-2)

Eq. (4.1-5) is not solvable by 1ST if there exists j, 

j * 1, ..., n such that





P l ( * ) * x x  ♦ *

P g ( ^ )  �  0* � (4.2-1)

P r o o f  By the p r o o f  o f  lemma (4.1-2), it is necessary that 

+ Bf + Yf - 1 with “ 0* - 0

and < 1, Vi in eq. (4.1-5).

Relabelling, this is precisely an equation of the 

form (4.2-1). §

Thus, in this case we consider p.d.e.'s of the form 

(4.2-1). The method to be adopted for investigating 

whether (4.2-1) is solvable by 1ST, brealts up into many 

distinct stages. The procedure follows from the technique 

of the Painlev^ test for an o.d.e., explained in [44]. At 

every stage, a set of equations which do not satisfy a 

necessary condition is derived and then excluded from the 

whole set (4.2-1). This procedure does not imply that the 

final remaining set of equations are solvable by 1ST. In 

fact, the conditions which have been derived are to 

identify the sets of equations which fail in any stage of 

the test, i.e., to find sets of equations which are not 

solvable by 1ST according to Ablowitz et al conjecture.

In this case the basic general o.d.e., we consider, 

is eq. (4.1-1) where L(i(», g) is identically zero. We will 

explain in detail how the first condition for the p.d.e. 

(4.2-1) will be derived according to the necessary 

conditions of the P-test for the o.d.e. (4.1-1) (with 

L s 0). The investigation has thus to be continued to 

further stages.

























k » 0, k j ^ O ,  k j ^ i ,  then the equation is not solvable 

by 1ST if 6  ̂ * 0 or 62 0 where and Bj are defined in

(4.2-27). p

4.3 Special Nonlinear Equations

The p.d.e.'s which are now to be dealt with, may be 

directly reducible to the o.d.e., (4.1-1), where L is not 

zero. Most of these are of the form,

(4.3-1)

1, *2 “ ^3 = ♦x ’xt'

♦5 ‘ 'i'tt' U» j = 0, 1, .../ 5) are polynomials.

Applying the transformation ̂  » g('(')* as before and using 

(4.1-2) gives the o.d.e..

» * ^ 3 ( 9 ) 9 " ^  �  ( » ^ p 2 ( 9 ) 9 '  �  �

(glg'^ * ♦P4(g)g' * Pjlgl) =
(4.3-2)

P3 - P3
, 2

* P1I * abp,2 * b^P22>

► a^bp,4
,2

* ab p,5 ♦ a^bpj3 * ab^P24 + b P25>

4
a P33 * a^bp34 . a^b2p35 .

2 2
“ P44

+ ab^p^j + b^pj5

‘“Poi * ‘>P02> *

2
“ P03 ’ abp„4 * '>̂ P05







theorems/ we assume that ?2 ■ Pj ■ 0 in eq. (4.3-2) for 

some constants a and b.)

The first step towards investigating the Palnleve 

property of eq. (4.3-2) is the decomposition of 1(g) into 

partial fractions:

Theorem (4.3-3)

Eq. (4.3-1) is not solvable by 1ST If
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P,(i) 4 m

“ -p jT iy '
(4.3-8)

for some constants a, b, where the ĵ '̂s are constant and 

the m^ can only have the values listed in [44] p.323. □  

Suppose now, that (4.3-6) Is not satisfied for each 

constant a and b. Suppose that 1(g) has one pole a.,, 

i.e.. Kg) * -— where 6 is a constant. Then for 

absence of movable critical points eq. (4.3-7) must 

transform to the equation

L(w)w'^ + M(i)i, w)w' ♦ N(i|»/ w) (4.3-9)

L(w)

using the transformation g ■ - + a^. This yields that
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Having applied (4.3-16) to eq. (4.3-14) we get« 

2 - e - al
w - l i  * * v'^

. M M
ÎIV’

(4.3-17)

[where • • •

Let u8 now specify the constants a and 6 end lool( for 

necessary conditions for eq. (4.3-17) to be one of the 

canonical forms. For the general canonical forms, we will 

write or to denote functions of Z.

Case (i) (a - f  6 - j]

The general canonical form is,

+ (w - 1) 7 5  * 7 5

w(z).

(w - 1) (W - 1)

(4.3-18)

Theorem (4.3-1Q)

Eq. (4.3-1) is not solvable by 1ST if eq. (4.3-17) is 

not reducible to eq. (4.3-18), where and represent 

the coefficients for the canonical types XXXVll, XXXVIII, 

XXXIX and XL. q















an o.d.e. by letting t) ■ X(x)T(t), X* « k^(x)x” ,

T* ~ ^2 * some constants n and n.

Following the same techniques used in [68 ] and 

section 3.5, It is found that eq. (5.1-1) reduces to the 

o.d.e.,

♦ [ b j * “'’"  * A i in jg '  ♦ B(i|i)g

* yg"g' . 0 (5.1-10)

if u|x, t) ■ for some constant q.

- 212 -

In (5.1-10), » k -(2 - qN) + 6k^, and

B3 * j[2 - qN)(1 - qN)k^‘ + 6k (̂1 - qN). (Note that q » 0 

if B » 0.)

The functions A(ij;) and B(i)>) are constructed from the 

functions a(x, t) and b(x, t) according to the value of q 

and the term of i|i.

We illustrate this relation in table (5.1-1) below.

For the integrable cases of eq. (5.1-10) we have 

adopted the Ince procedure to investigate the Painleve 

property (see ch. 4). We have analyzed eq. (5.1-10) if it 

is not integrable by following the method, given by 

Ablowitz, Ramanl and Segur [6 ] (see S5.3).

From table (5.1-1), we can state the following 

theorems, which will be useful for the next section.

Theorem (5.1-1)

If a(x, t) ■ b(x, t) • 0 and N « 2 in eq. (5.1-1)





then A'('I') ■ BíiJ») in eq. (5.1-10). g

Proof From table (5.1-1), a(x, t) • b(x, t) » 0 implies 

that U ’i') * n('j') * 0.

i.e., A(i|i) »
*̂1

B(i(<)

Clearly A* (i|f) « B(i)>).

Theorem (5.1-2)

If a(x, t) » b(x, t) ■ 0 and 6 * 0 in eq. (5. 1-1) 

then A'(ij») » B(iji) in eq. (5.1-10). q

The proof follows from the fact that B * 0 implies

q ■ 0, which yields A((l<) * while B(i(») = 0, as 
*̂1

a(x, t) s b(x, t) s 0 ^ 5('i') • n(i(') - 0 as above, g

5.2 The inteqrabillty of Eq. (5.1-10)

In this section, we will investigate the cases, where 

eq. (5.1-10) is directly integrable. It turns out that, a 

necessary and sufficient condition for eq. (5.1-10) to be 

integrable is

A' (i|i) = B(i|;) . (5.2-1)

This implies that in the case of the KdV equation, eq. 

(5.1-10) is integrable only if q • 0, which is the value 

of q giving the travelling wave solutions, while for the 

mKdV equation and KdVB equation for instance, eq. (5.1-10) 

is integrable for all q, by theorems (5.1-1) and (5.1-2).



The first integral of eq. (5.1-10), if (5.2-1) is 

satisfied is

^ - qN) + 6k̂ )|ii' + A(iJ/)g +

¡rhf«''*' = K- (5.2-2)

where K is a constant of Integration.

Eq. (5.1-10) is not of a Painlev^ type if eq. (5.2-2) 

is not, for some K. Clearly the converse is not true 

(i.e., if eq. (5.2-2) is of a Painlevd type for some K, 

that does not imply that eq. (5.1-10) is of a Painlevfi 

type). However, following the procedure outlined in Ince 

[44] as in previous chapter gives the following results:

Case (i) (N > 2)

It can be easily seen that eq. (5.2-2) is not of 

Painlevd type if N > 2. (This result will also be 

achieved when we apply Ablowitz algorithm for eq. (5.1-10) 

in the next section.)

The close connection between Painlev^ property and 

1ST according to the Ablowitz conjecture gives that the 

GKdV equation is not solvable by 1ST,

Case (ii) (N = 2)

For q s 0, eq. (5.2-2) will be

♦ ()t,̂  t Bit,)«' ♦ A(i|,)g ♦ . K.



We make the independent transformation ij/ ■ e® to give
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(where a dot denotes differentiation with respect to s). 

Making a scale transformation g ■ we get, the

defining equation for the second Painlev6 transcendent if 

g = 0 and A{((() s -k̂ l̂nijj. If A(iJ;) is a constant then eq. 

(5.2-3) has elliptic function solutions» (6 ■ 0),

For q * 0, it can be shown that q » 1 without loss of 

generality. (If q * 0, then the transformation z = 

gives the same result as in the case q = 1.)

For example, the analysis above shows that the 

Ablowitz conjecture seems to be true for the mKdV equation 

since, in this case, A(i)i) is constant in eq. (5.2-3). For 

q * 0, a second Painlev^ transcendent equation can be 

obtained (see previous result).

Case (ili) (N = 1)

In this case, the Ince procedure shows that, eq. 

(5.2-2) is free from movable critical points if A(4i) is a 

solution to the following equation (5.2-3), for each 

possible q and K.

* R4»‘3"̂  ♦ A"J

(5.2-3(a))





former constant is a function of the arbitrary constant K. 

Hence eq. (5.2-2) has movable critical points in general,

l.e., the KdVB equation is not solvable by 1ST. For the

Jc
KdV equation (if q » 0) A(i)j) = and the LHS of

(5.2-3(a)) is a constant. Thus eq. (5.2-2) is of Painlev4 

type. This supports the Ablowitz conjecture.

5.3 The Ablowitz-Ramani-Sequr Algorithm

We present here the method as developed in [ 6 ]» and 

we will illustrate it on the variable coefficient eq. 

(5.1-10).

At this point, one has to notice that this algorithm 

does not identify essential singularities and provides 

only necessary conditions for an equation to be of the 

Painleve type. There are three steps in the algorithm:

Step 1; Find the dominant behaviour.

We assume that the solution becomes infinite at the 

singularity and look for a solution of the form,

g ■ aC with Rek < 0 , (5.3-1)

where a, k, and i|<q are constants. Substituting (5.3-1) 

into (5.1-10) we get,





(Note here that this agrees with result found in S5.2 

If eq. (5.1-10) is integreüsle.)

Now we have two cases:
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Case (1) |n  - 2 => k - -1, by (5.3-4)

Step 2 : Find the resonances:

For every negative integer value of k, the solution 

of eq. (5.1-10) has an expression in the form of a Laurent 

series. The resonances are the powers of (ip - ((«q ) at 

I which the different arbitrary constants enter in this 

expansion. To find them, one substitutes the following 

form of g:

(5.3-5)

into the equation composed of the leading terms, «dtich is,

• o. (5.3-6)

To leading order in B, this equation reduces to,

Q(r)6(i|' - * 0 »  p > k  + r - 1 .  (5.3-7)

The roots of Q(r) (a polynomial in r) determine the 

resonances, and one can note that:

(i) One root is always -1.

(11) If a is arbitrary, then 0 is always a root.

(ill) A root with Rer < 0 is ignorable.













CHAPTER SIX

The Connection between Similarity and Separation Methods

6»1 Introduction

In this chapter, we consider the problem of 

investigating the connection between the similarity and 

separation methods for solving p.d.e.'s with no explicit 

dependence on the independent variables.

It is well known that the mathematical Interpretation 

of the "general similarity" is a transformation of 

Independent and dependent variables occurring in the 

equation such that a reduction in the number of 

independent variables is achieved. This similarity 

transformation will reduce a problem in two independent 

variables from a p.d.e. to an o.d.e. The Interesting 

relation between the PainlevS type o.d.e.'s having no 

movable critical points and the solvability of evolution 

equations by 1ST seems to be shown through similarity 

solutions.

Using independent and dependent transformations, a 

p.d.e. may be transformed to a simply separable equation 

(see the previous chapters). The procedure can be 

considered to transform the p.d.e. into an o.d.e. for the 

transformation, as we explained previously. Hence the 

separation transformation is similar to the similarity 

transform for both of them involve the reduction of a
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p.d.e. to an o.d.e.

For this reason and other reasons (given later) we 

study the relationship between the two methods.

The plan of this chapter is as follows: In order that 

the chapter is self contained, we give a brief outline of 

the precise versions, we have adopted for comparison of 

the similarity and separation methods in §6.2. In §6.3-5 

we look for possible connections between the two methods 

through some lemmas, illustrations and examples involving 

certain nonlinear p.d.e.'s which are being intensively 

studied at present in theoretical physics and applied 

mathematics, through the use of the similarity method. In 

§6.6, we present our comparison results in tabular form 

for the equations that we have analyzed and many other 

equations. In §6.7, we give a brief discussion of our 

results and their implications.

6.2 Lie's Transformation and the Separation Transformation

In recent years, modern algebraic similarity methods 

have been developed with the aid of group theory. The 

Invariance conditions enable one to find the infinitesimal 

transformations, associated with a given differential 

equation. In practice, to use Infinitesimal 

transformations to obtain similarity solutions of a given 

p.d.e. is to first to seek the largest set of infinitesimal 

transformations leaving invariant the governing p.d.e. The 

infinitesimal transformations satisfy a set of "determining 

equations" which are of such a number that they seem to be 

solvable in closed form [11].

Having found the infinitesimal transformations



(1,4-22) and solving Lagrange's equation (1.4-25) (see 

§1.4) the similarity solutions of the equation are given 

by
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u ■ F(x, t, 8, f(s)) ( 6 . 2- 1)

where s is called the similarity variable and f(s) becomes 

the new dependent variable. The dependence of F on 

(x, t, s, f(s)) is )cnown explicitly and by substituting 

(6.2-1) into the given p.d.e. we obtain an o.d.e. for 

f (s).

What we mean by the precise version of the separation 

method is to use the dependent variable transformation 

explained and applied in previous chapters as,

(Hx, t) - u(x, t)g(ii<(x, t))) + h(x, t), i(f « X(x)T(t)

( 6 . 2- 2 )

where is the dependent variable for the p.d.e., X* and 

T' are one term series, u and h are initially unknovm 

functions of x and t, and i|̂ and g are the independent and 

dependent variables respectively of the obtainable o.d.e.

6.3 Travelling Wave Solutions

In loo)iing for possible connections between 

similarity and separable solutions, let SM, SP denote the 

sets of all possible similarity and separable solutions 

respectively. Thus the possible connections between the 

two methods can be Illustrated by the following figures;



Ul)(i)

(Ui)

Fig. (6.3-1)

We claim that, the situation (iv) in fig. (6.3-1) is 

not possible for constant coefficient equations since the 

two methods both provide travelling wave solutions. This 

is supported by the following results.

It is rather difficult to prove either situations (i) 

or (iii). This is due to the nonexistence of the general 

similarity or separation transformations.

To compare the two methods according to the available 

solutions, one can see that, for instance, in case of sG 

equation SP is more general than SM, while for the Burgers 

equation the opposite is true.

Most material in the rest of this chapter, therefore 

will concentrate on situation (11).

Lemma (6.3-1)

The p.d.e.

F(4, ♦ , i ♦..!.) ■ 0 (6.3-1)







k^V*g"’ + - q)K-’ "V  + - 2 “ (2 -  q ) ( i  -  q ) 4'"^

g' + *11^**^^ ^9 ♦ 6gg' “ 0 (6.4-2)

irtiich is directly integrable if and only if q ■ 0. In 

this case, the travelling wave solution is obtained. 

For q * 0, the guaranteed separable solution is

♦ ■ (■'2 -  ¥ ^ 2 ‘ ) (■'l * f “ ! * )  -  ¥^2*^)

The similarity solution for the KdV equation is 

obtained by substitution q « 2 in (6.4-3) and the 

obtainable o.d.e. in this case can be reduced to the 

defining equation for the second Painlevd transcendent 

[55].

Now, let z ■ h(z) ■ g(4i) and

R(x) a » S(t) » IKj
1-1/3

2 *̂ 2^
Thus

^ a S^(t)h(z), z « R(x)S(t). This implies that ^ > T g(4*) 

without loss of generality. Therefore q * 2 (vrtiich 

provides the similarity solution) represents all the 

nonzero values of q for the guaranteed solutions, l.e., 

q « 0 ^ q  a 2 without loss of generality. Fig. (6.4-1) 

shows the connection between the sets SM and SP for the 

KdV equation:



B. The mKdV equation

The guaranteed separable solution for the mKdV 

equation

(6.4-4)

when q « 0 is

♦ - (Kj - 3qk2t)'^\[(qk,x . K,)'̂ 'J(Kj - Sqkjt)’̂ “̂’]

and the similarity solution Is obtained by substituting 

q « 1 In (6.4-5) where the o.d.e. for g Is

9” - - V '  - 4 * 9  *
^  k,^ k,2

With K as the constant of Integration. Clearly (6.4-6) Is 

the defining equation for the second Painlev^ transcendent 

after a scale transformation.

Applying the independent transformation z > to



(6.4-5) gives that 4 « Tg(*), i.e., q « 1 represents all 

the non-zero values of q for the mKdV equation. Fig. 

(6.4-1) again shows the connection between SM and SP in 

the case of the mKdV equation.

For the above equations^ the analysis shows:

Property (6.4-1)

The guaranteed separable solutions are only given by.
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9i (4*)
q*» a

where q* is any value of q * 0 (say q* * 1, without loss 

of generality). This property can be proved as above for 

any equation of KdV type (3.2-5).

Property (6.4-2)

The above guaranteed separable solutions are 

similarity solutions.

In the following section, we will discuss the 

question of whether the properties (6.4-1,2) are satisfied 

by any other equations.

6.5 The Class of Equations With No Mixed Derivatives

It is naturally reasonable to see if the properties 

(6.4-1,2) are applicable to wider class of equations.

In this section, therefore, we study, firstly the 

properties that the KdV type equations possess such that 

property (6.4-1) is satisfied and we derive a wider class



of equations with this property; secondly, an attempt will 

be made to prove property (6.4-2) for that class of 

equations or even a subclass of it.

For equations with no dependence on (x, t), we note 

(see a previous section) that the travelling wave solution

is given by ♦ ■ g(4')« 4» ■ Ke , where K, and JC2

are arbitrary constants.

Now, if the guaranteed separable solution is assumed 

to be $ • T%(i(i) for some constant q and 4; ■ T(x)T(t),

X' » Iĉ x” and T' » kjT“ , then we have the following 

result:

Lemma (6.5-1)

The constants n and m are necessarily of the forms, 

n ■ 1 + w(q), m » 1 + v(q) (6.5-1)

i^ere q « 0 implies p = v i 0. Q

Proof To provide a travelling wave solution, it is 

necessary that q * 0 implies that n • m » 1. Hence n and 

ffl can be considered as functions of q, say n ■

m * v^(q) where « v, » 1 if q - 0. Rewriting n^(q) and 

v^(q) as

U^(q) » 1 ♦ U(q)» v^(q) • 1 ♦ v(q)

proves the result, g

Let us now study the properties of m and v if 

property (6.4-1) is satisfied; in more precisely, to see





























unknown function of x and t which turns to be zero in many 

cases (KdV, mKdV, GKdV).

On the other hand, we list the similarity solutions 

which are available in the literature.

The guaranteed separable solution turns out to be the 

travelling wave solution in some cases. However, this 

does not indicate that the similarity solutions are more 

general than the separable ones. For instance, the sG 

equation has a travelling wave solution as the guaranteed 

separable one, yet the general separable solution is more 

complicated (see previous chapters). As another example 

is the KdVB equation which has similarity solutions 

obtainable from the separation technique by assuming that:
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and u » g(î ) + hit). (6.7-1)

One type of similarity solution for the Boussinesq 

equation is tied up with guaranteed separable solution, 

while the other can be achieved by changing the assumption 

to (6.7-1).

For the similarity solution of the Burgers equation, 

the author has made the use of the assumption a^ * 0. For 

a^ ■ 0, we found that the similarity variable s will be

8 ■ (a, + a,t)

which is a separable function of x and t only if 

a. « a. ” 0. This leads to the similarity solution



(a, . a2t)"'/^f(8).

Finally, we want to mention that In spite of the 

differences between the two solutions, one can notice, 

from the table, In general that both solutions relate to 

each other In one way or another. To our knowledge, this 

is due to simplifying the infinitesimal transformations (to 

obtain similarity solutions In practice) which leads In 

most cases to separation assumptions. Consider for 

example the following lemma, written as a problem In [11] 

p. 152.

Lemma (6.7-1)

If C T are Independent of u and n depends 

linearly on u then the general solution of (1.4-33) Is of 

the form

u « P(x, t) f (s),

where f is an arbitrary function of s, s and F are known 

functions x and t. Q

The following lemma shows precisely, which situations 

lead to separable solutions:

Lemma (6.7-2)

If ^ is a separable function of x and t and n depends 

linearly on u then the general solution of (1.4-33) Is of 

the form





CHAPTER SEVEN

Conclusions and Speculations

In this thesis, we have tried to give a rigorous 

treatment of the separation method as applied to nonlinear 

partial differential equations. We have also made a 

preliminary investigation into the connections between 

this approach and the other major systematic methods of 

solution.

As far as the method itself is concerned there are, 

naturally, a large number of unanswered questions and 

unexplored avenues. The problem of convergence of the 

generalized power series in the definition of simple 

separability has not been fully studied. Also, as stated 

in chapter two, the lack of theorems available on 

reversion of generalized power series makes the proof of 

general theorems concerning the definition difficult.

There is also a lot of work still to be done 

concerning implicitly separable solutions. As in the case 

of the sine-Gordon equation, problems arise in finding 

such solutions when the dependent variable transformation 

has non-isolated singular points and cannot be expanded in 

a generalized power series about such points. The 

relationship between the general and the guaranteed 

implicitly separable solutions also needs more 

investigation.

Refering now to the content of chapter three, there
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Is still work to be done on the most general 

transformation possible which produces separable 

solutions. There are also many problems involved with 

equations with mixed derivatives or explicit dependence on 

the independent variables.

Although a thorough comparison of the separation and 

similarity techniques has been given in chapter six, a 

lot more work in the form of general theorems needs to be 

completed. There does appear to be a very close 

connection between these techniques and in a number of 

cases, known similarity solutions turn out to be 

guaranteed implicitly separable solutions which are simpler 

to obtain. It may be that a large number of similarity 

solutions which are expressible in closed form in some 

sense are obtainable via the separation procedure.

Of course the major drawback in applying the 

separation technique to nonlinear equations is that there 

is no general superposition principle for such equations 

in contrast to linear equations. However, by using the 

separation procedure together with particular nonlinear 

superposition principles (such as Backlund 

transformations), for classes of equations, useful 

solutions may be obtained.

























second differentiation of ♦ with respect to t gives
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, ♦ (q t (m -
’tt • '3t'

• ' 95̂  J"'
b ( q  t  , m -

b ( q  + IB “

Hence the formula Is true for p - 2. Suppose that the

formula Is true for p - 1, 2..... X: we will prove it Is

true for p » k ♦ 1:

dG,

♦ - h(q t X.m - t V

. h(q * X,m - ^

♦ t ( i  * * ••• * 55TO "̂'*'’ )°k

^ ^qt(Xt1)(m-l) j'bfq , k(m - l))G,j *

‘>4^  * *     ’

Thus,

.  „ q * ( k t 1 ) ( m - 1 ) ( ;
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