

This work is protected by copyright and other intellectual property rights and
duplication or sale of all or part is not permitted, except that material may be
duplicated by you for research, private study, criticism/review or educational

purposes. Electronic or print copies are for your own personal, non-
commercial use and shall not be passed to any other individual. No quotation
may be published without proper acknowledgement. For any other use, or to

quote extensively from the work, permission must be obtained from the
copyright holder/s.

This work is protected by copyright and other intellectual property rights and
duplication or sale of all or part is not permitted, except that material may be
duplicated by you for research, private study, criticism/review or educational

purposes. Electronic or print copies are for your own personal, noncommercial use
and shall not be passed to any other individual. No quotation may be published

without proper acknowledgement. For any other use, or to quote extensively from the
work, permission must be obtained from the copyright holder/s.

Evolving developmental, recurrent and
convolutional neural networks for deliberate

motion planning in sparse reward tasks

Benjamin Paul Jolley

A thesis presented for the degree of
Doctor of Philosophy

Submitted for the degree of
Doctor of Philosophy

June 2020
Keele University

Acknowledgements

I would first like to express my appreciation to the numerous people that have been

supportive throughout this journey. The list would be bountiful but know that any

help, advice, discussion or simply being present during this period was fully appreci-

ated. My PhD supervisor, Dr. Alastair Channon, has provided a wealth of knowledge

throughout whether that be academic or personal. His guidance created a riveting

and enjoyable exploration of the research field and his optimistic perspective of my

endeavours allowed me to get through moments of dismay when they inevitably arose.

I have been incredibly fortunate to have him. My gratitude to Dr. James Borg who

steered me on this path as my undergraduate dissertation supervisor. It was those

early seeds which led me here and I’m sure without his recommendation this would not

have been a possibility. James also had the misfortune of being a co-author on my first

paper during my academic writing infancy; I commend his patience. Shout out to Ben

Jackson for the shared PhD experience, we got to simultaneously participate in the

daunting, but brilliant, time this can be. The whole artificial life community provides

an incredibly interesting and fulfilling research area, it has been a pleasure to be a

part of and meeting the people within it. I would like to thank my examiners, Prof.

Peter Andras and Dr. Julian Miller, who provided fair and constructive comments and

criticisms which resulted in an overall stronger body of work. I would also like to thank

the staff and students I have encountered at Keele University, it has been gratifying to

be around such insightful people. Finally, my parents are owed the utmost praise for

everything was not possible without them. They have provided nothing but love and

support and I greatly appreciate them.

i

Abstract

Motion planning algorithms have seen a diverse set of approaches in a variety of

disciplines. In the domain of artificial evolutionary systems, motion planning has been

included in models to achieve sophisticated deliberate behaviours. These algorithms

rely on fixed rules or little evolutionary influence which compels behaviours to con-

form within those specific policies, rather than allowing the model to establish its

own specialised behaviour. In order to further these models, the constraints imposed

by planning algorithms must be removed to grant greater evolutionary control over

behaviours. That is the focus of this thesis.

An examination of prevailing neuroevolution methods led to the use of two distinct

approaches, NEAT and HyperNEAT. Both were used to gain an understanding of the

components necessary to create neuroevolution planning. The findings accumulated

in the formation of a novel convolutional neural network architecture with a recurrent

convolution process. The architecture’s goal was to iteratively disperse local activa-

tions to greater regions of the feature space. Experimentation showed significantly

improved robustness over contemporary neuroevolution techniques as well as an effi-

ciency increase over a static rule set. Greater evolutionary responsibility is given to

the model with multiple network combinations; all of which continually demonstrated

the necessary behaviours. In comparison, these behaviours were shown to be difficult

to achieve in a state-of-the-art deep convolutional network.

Finally, the unique use of recurrent convolution is relocated to a larger convolutional

architecture on an established benchmarking platform. Performance improvements are

seen on a number of domains which illustrates that this recurrent mechanism can be

exploited in alternative areas outside of planning. By presenting a viable neuroevolu-

tion method for motion planning a potential emerges for further systems to adopt and

examine the capability of this work in prospective domains, as well as further avenues

of experimentation in convolutional architectures.

ii

Contents

1 Introduction 1

1.1 Overview . 1

1.2 Structure of Thesis . 5

2 Neuroevolution 8

2.1 Direct Encoding . 10

2.1.1 Structured Genetic Algorithm (sGA) 11

2.1.2 GeNeralized Acquisition of Recurrent Links (GNARL) 13

2.1.3 Symbiotic Adaptive NeuroEvolution (SANE) 14

2.1.4 Enforced SubPopulations (ESP) 17

2.1.5 NeuroEvolution of Augmenting Topologies (NEAT) 18

2.1.6 NeuroEvolutionary Algorithm (NevA) 26

2.1.7 Cooperative Synapse NeuroEvolution (CoSyNE) 27

2.2 Indirect & Development Encoding . 30

2.2.1 Lindenmayer systems (L-system) 31

2.2.2 Cellular Encoding (CE) . 32

2.2.3 Analog Genetic Encoding (AGE) 34

2.2.4 Cartesian Genetic programming (CGP) 35

2.2.5 Compositional Pattern Producing Networks (CPPN) 38

2.2.6 Hypercube-based NEAT (HyperNEAT) 40

iii

Contents

2.2.7 Deep Neuroevolution . 45

2.3 Diversity . 50

2.3.1 Crowding . 51

2.3.2 Fitness sharing . 52

2.3.3 Incremental Evolution . 53

2.3.4 Multi-objective evolutionary algorithms (MOEAs) 56

2.3.5 Novelty Search (NS) . 59

2.3.6 Quality Diversity (QD) . 60

2.4 Discussion . 64

3 Experiment Domains 67

3.1 Overview . 67

3.2 River Crossing Task (RC Task) . 68

3.2.1 The Decision Network (DN) . 70

3.2.2 The Shunting Model (SM) . 72

3.3 Arcade Learning Environment (ALE) 75

4 Evaluating Scalable Motion Planning with Direct and Indirect

Encoding 77

4.1 Introduction . 77

4.2 Experiment #1 . 79

4.2.1 Experiment Setup . 80

4.2.2 Results . 89

4.2.3 Discussion . 93

4.3 Experiment #2 . 94

4.3.1 Results . 95

4.3.2 Discussion . 101

iv

Contents

4.4 Conclusion . 104

5 Evaluating Motion Planning with a Recurrent Convolutional

Network 106

5.1 Introduction . 106

5.2 Experimental Setup . 108

5.2.1 RC Task . 108

5.2.2 Network Architecture . 108

5.2.3 Genetic Algorithm (GA) . 111

5.3 Results . 113

5.4 Discussion . 116

5.5 Conclusions . 118

6 Generalised Neural Network Architecture for Long-Term Planning

with Sparse Rewards 121

6.1 Introduction . 121

6.2 Generalised Neural Network Architecture 123

6.2.1 Generalised Decision Network 123

6.2.2 Generalised Activity Network 124

6.2.3 Generalised Movement Network 126

6.2.4 Genetic Algorithm . 126

6.3 Results . 128

6.3.1 Decision Network Results and Analysis 130

6.3.2 Activity Network Results and Analysis 134

6.3.3 Movement Network Results and Analysis 134

6.3.4 Full Network Results and Analysis 135

6.3.5 Further Analysis . 136

v

Contents

6.4 Discussion . 140

6.4.1 Successes and Failures Decision Network 140

6.4.2 Successes and Failures Activity Network 141

6.4.3 Successes and Failures Movement Network 141

6.5 Deep Neuroevolution Comparison . 143

6.5.1 Convolutional Neural Architecture 144

6.5.2 Results . 147

6.5.3 Discussion . 148

6.6 Conclusion . 151

7 Applying Recurrent Convolution with Deep Neuroevolution 153

7.1 Introduction . 153

7.2 Experiment Setup . 154

7.2.1 Neural Architecture . 155

7.2.2 ALE Environments . 156

7.3 Results . 157

7.4 Discussion . 165

7.5 Conclusion . 171

8 Conclusions 173

8.1 Summary of Conclusions . 173

8.2 Contribution of this work . 175

8.3 Limitations & Future Work . 177

Acronyms 179

Bibliography 181

vi

List of Figures

2.1 A two-level sGA representing a neural network 11

2.2 Sample of an initial GNARL network 13

2.3 SANE’s evolutionary process . 15

2.4 ESP’s evolutionary process . 17

2.5 A genotype to phenotype mapping example in NEAT 20

2.6 Matching innovation numbers for different network topologies 24

2.7 NevA’s genetic representation of ANN 26

2.8 The CoSyNE method for neuroevolution 28

2.9 Development of 2-2-1 XOR network with L-systems 30

2.10 Cellular Encoding of a neural net for XOR 32

2.11 AGE development process . 35

2.12 CGP graph representation . 36

2.13 CPPN encoding . 38

2.14 A CPPN connectivity example for HyperNEAT 40

2.15 Visual representation of the Deep GA encoding method 46

2.16 Illustration of SAGA space . 54

2.17 NSGA-II procedure . 56

2.18 Novelty and objective fitness based search examples 59

2.19 Search technique comparisons of connection cost and modularity 61

vii

List of Figures

3.1 RC World environment with activity landscape 68

3.2 Neural Architecture for the RC Task 70

3.3 Illustration of the relationship between the RC Task and neural network 71

3.4 Visual of activity landscape from iteration 1 to 50 74

3.5 Schematic illustration of the ConvNet for DQN in ALE 76

4.1 Illustration of the sandwich substrate 83

4.2 Visual example NEAT & HyperNEAT’s topology for various RC world

sizes . 86

4.3 Neural architecture for NEAT and HyperNEAT on the RC Task 87

4.4 NEAT, HyperNEAT, and Random fitness on various RC world sizes . . 89

4.5 Mean fitness from 25 evolutionary runs of the RC Task 96

4.6 Representation of HyperNEAT’s distribution with differing fitness scores 98

4.7 Robustness in RC Task with HyperNEAT 98

4.8 RC Task Robustness Test at most difficult task with HyperNEAT . . . 99

4.9 RC worlds with their corresponding activity landscapes 100

4.10 Illustration of a highly robust CPPN for the RC Task 102

5.1 Neural architecture for the RC Task with recurrent ConvNet 109

5.2 A visual example of the recurrent convolution process. 112

5.3 Completion of Robustness Test across all strategies 114

5.4 Average age of success agents in the Robustness Test 115

5.5 RC world with the corresponding activity landscapes for each strategy . 119

6.1 Neural modular architecture with generalised neural networks 127

6.2 Training data for each network combination on the RC Task. 131

6.3 Completion rates in the Robustness Test for each network 132

6.4 Efficiency in the Robustness Test, for each network 133

viii

List of Figures

6.5 Relation between agent’s death and completion on the Robustness Test 137

6.6 Distribution of fittest agent’s deaths on the Robustness Test 138

6.7 Robustness data where gradient ascent replaces the evolvable movement 139

6.8 Training data for all networks with deep GA on the RC Task 147

6.9 Visualisation of the convolution network for RC Task 149

7.1 Illustration of the recurrent convolutional neural network 156

7.2 Performance over generations on Atari 2600 games between networks . 159

7.3 Activation visual of the recurrent model on Seaquest and Crazy Climber 165

7.4 Activation visual of the recurrent model on Asteroids and Aliens 167

7.5 Activation visual for the recurrent convolutional iteration process . . . 168

ix

1| Introduction

1.1 Overview

This thesis examines various neuroevolutionary approaches for motion planning in

an artificial neuroevolutionary system to exhibit robust, deliberate, and efficient be-

haviour. The objective of this thesis is to explore cutting edge neuroevolutionary

techniques and contribute to our understanding of current obstacles for evolved mo-

tion planning, as well as providing working examples to overcome them. Throughout

the thesis, there will be a focus on abstracting away from specialised models that

demand significant domain expertise in favour of general-purpose solutions that may

adapt across a variety of domains.

The phrase ‘motion planning’, or ‘planning algorithms’, encompass terms from

robotics [30, 125], control theory [110, 3], computer graphics [25, 120] and more [126].

Thus for clarity, motion planning in this work is framed from an artificial life per-

spective where simulated animals or autonomous robots convert high-level specifica-

tions into low-level descriptions of how to move. The goal in this work is to explore

evolvable motion planning techniques to find collision-free paths to multiple desirable

points within a varying environment. Work with autonomous robots has provided a

1

1.1. Overview

great number of literature for motion planning techniques and often is divided into

three approaches; probabilistic roadmaps, cell decomposition and artificial potential

[125]. Each approach uses the concept of a configuration space where physical space

is translated to a finite virtual space. Probabilistic roadmaps create a line segment

between every vertex of every object in the configuration space, excluding those which

enter the interior of another object [113]. As a result, many unbroken paths should be

found to the objective, further algorithms can be used to find a specific type of path.

Cell Decomposition subdivides the free space of the configuration space into smaller

regions called cells [255]. A connectivity graph is then created which represents the

adjacency relations between cells. Through this, an unbroken path can be created

from starting position to end goal. This is the basic implementation and does not

cover extended works like approximate or quad-tree decomposition. Artificial poten-

tial, the technique this particular thesis is interested in, creates potential fields around

objects in the environment [117, 247]. Desirable objects produce attractive potential

and obstacles generate a repulsive potential. With the combination of these two rules

robots aim to approach the goal while avoiding the obstacles. This particular ap-

proach has shown its effectiveness in real time navigation due to little pre-computation

[148, 30], as well as being a practical application in 2D and 3D artificial life environ-

ments [192, 20, 222, 223, 109, 21]. Despite the abilities of each approach, each method’s

behaviour is dictated by a static set of rules. To become more in line with artificial life

concepts we would have to remove this static behaviour in favour of a neuroevolutionary

approach. There have been many examples of evolutionary involvement with motion

2

1.1. Overview

planning but mainly these are constrained to highly guided environments, in which

either; the fitness value contains the path’s euclidean distance; multiple fitness func-

tions are used for a highly optimal path; the path is already established between object

and destination; evolution is used as a parameter optimisation tool with established

static models [205, 136, 29, 259, 261, 269, 262, 53, 240, 240]. It is the goal of this work

to remove restraints for expanded neuroevolutionary freedom in the creation of viable

motion planning solutions. Further, experiments will not be manufactured to guide

evolution to a particular behaviour and instead use previously validated environments

and tasks. The predominant focus will be on tasks with sparse rewards.

The accepted definition of a sparse reward task is one which gives little to no

reward during simulation; as, a precise sequence of events are required in order to

receive rewards. As a result, sparse reward tasks are difficult as there are no clear

gradients to the desired end goal and therefore greater overall exploration is required.

Arguably, the most researched type of problem has been in the Reinforcement learning

(RL) field with the Atari video games Montezuma’s Revenge and Pitfall and is still

a contemporary problem to solve [12, 171, 230, 84, 143, 173, 24, 193, 176, 224, 57].

Sparse reward domains are ideal for seeking general-purpose solutions as there should

be no inherent bias to steer evolution towards an engineered desired result. This will

then focus the research towards intrinsic behaviours in the neuroevolutionary process,

whether that be in the architecture, population or both.

As mentioned previous, the work intends to frame itself from an artificial life per-

spective. A typical intended goal for artificial life systems is the use of tools to study

3

1.1. Overview

the foundations of life and evolution in a setting other than natural biology [124]. Pos-

sibly the most infamous quote associated with artificial life is by one of the founders,

Chris Langton, who encompasses this vision in the following excerpt.

“Artificial Life is the study of man-made systems that exhibit behaviors charac-

teristic of natural living systems. It complements the traditional biological sciences

concerned with the analysis of living organisms by attempting to synthesize life-like

behaviors within computers and other artificial media. By extending the empirical

foundation upon which biology is based beyond the carbon-chain life that has evolved on

Earth, Artificial Life can contribute to theoretical biology by locating life-as-we-know-it

within the larger picture of life-as-it-could-be.” [123]

Focusing the research area specifically on motion planning may appear as an engi-

neering challenge as opposed to a natural biological phenomena to observe. Yet, static

motion planning is a constraint on any complex system that utilises it. Constraints

make certain behaviours achievable but they limit the creativity and ability to gen-

erate novel behaviours [134]. Achieving more sophisticated behaviours, and models,

requires the removal of constraints. Take for example different types of animal locomo-

tion (i.e. terrestrial, aquatic, aerial, etc) which can then be broken down into greater

sub-categories (i.e. bipedalism, quadrupedalism, jet propulsion, anguilliform, gliding,

powered flight). Each would require its own motion planning strategy to account for

their unique locomotion interaction with the environment.

4

1.2. Structure of Thesis

1.2 Structure of Thesis

• Chapter 2 contains a literature review of neuroevolution, non-neural and non-

evolutionary techniques relevant to this thesis. Three subsections are presented;

direct encoding, indirect encoding and maintaining diversity. Each section builds

a historical narrative from early to state-of-the-art techniques. Each technique

will receive; an explanation, example application/s and commentary on successes

or shortcomings. A discussion is provided in the final section. This expresses the

author’s views for the function of these techniques for the thesis goal.

• Chapter 3 presents the two domains and networks that will be utilised throughout

the rest of the thesis. Firstly, a hierarchical domain where high-level deliberative

and reactive behaviours are produced by a modular neural architecture. This sec-

tion introduces the static motion planning network which future chapters aim to

replace with an evolvable solution. Secondly, a common benchmarking platform,

with a variety of domain types, for evaluating the general-purpose competence of

an agent.

• Chapter 4 presents the first contributions to the research. Two methodologies are

taken from chapter 2. Each is evaluated on their motion planning abilities within

the domain introduced in chapter 3. This chapter first examines the complication

of scalable motion planning tasks and focuses on agent’s ability to scale. The

domain is scaled to the smallest possible size before scaling up to the original

5

1.2. Structure of Thesis

size. Then, the second experimentation examines the qualitative results of the

produced solutions; including training, robustness, and efficiency. The work in

this chapter has been presented at IEEE Symposium Series on Computational

Intelligence 2017 (Honolulu, Hawaii) and published in Jolley and Channon [107].

• Chapter 5 demonstrates a novel network design to overcome the shortcomings

in previous chapters. For this, a convolutional neural network is used with a

recurrent convolution process. This method showed a significant improvement

in robustness over previous techniques. The efficiency of paths rivals that of a

static approach. The implication of this chapter is that a novel use of the existing

convolutional neural network architecture can produce robust and efficient motion

planning that is unattainable by current known neuroevolution methods. The

work in this chapter has been presented at The Conference on Artificial Life

2018 (Tokyo, Japan) and published in Jolley and Channon [108].

• Chapter 6 extends the validity of the findings in Chapter 5. The same recur-

rent convolutional neural network is evolved in combination with other networks.

The aim is to move from a strict planning problem to a domain which requires

multiple behaviours; one of which is motion planning. The end result would be

an evolvable model that can show long term deliberate behaviours in a sparse

reward task. The additional networks are stripped of domain-specific behaviour

to contribute to the difficulty. The findings show that high levels of robustness

and efficiency, in completing the task domain, are still achievable, despite the

6

1.2. Structure of Thesis

increased evolutionary difficulty. This achievement is further highlighted with a

comparison with a current state-of-the-art general game player; it also attempts

the task domain, with no success.

• Chapter 7 expands the recurrent convolution process to conventional convolu-

tional architectures. The aim is to observe whether recurrency provides benefits

to other domains. For this, a common benchmarking platform is used which

provides 12 diverse environments. The results demonstrate that recurrency is

not restricted to small scale networks. Improvements were seen on multiple do-

mains in the benchmarks. As well as, outperforming other learning techniques

and architectures.

• Finally, Chapter 8 provides an overview of the thesis. Each chapter is examined

and the implications of the findings are discussed and related to the broader

research field. Future work is also considered.

7

2| Neuroevolution

In the pursuit of artificial general intelligence, researchers have taken inspiration from

the natural world and adapted them in silco. Through this process, core components

have been established as being functional abstractions such as neural networks; com-

putational structures modelled from rough abstractions of animal brains [95]. Beyond

this, research fields work coincide using different paradigms to achieve the overarching

goal of intelligence. One particular strategy to create intelligent models is to utilise

a learning process that is human-engineered. This requires human expertise and is

specific to the task; learning methods such as supervised learning and model-based

reinforcement learning. Supervised learning requires human insight to appropriately

label input data to achieve a corresponding output. This method of learning is conven-

tionally paired with backpropagation [250]; which calculates the loss function gradient

and when used in combination with Stochastic Gradient Descent (SGD) the network

weights are modified to reduce the loss. Model-based reinforcement is able to take

a model’s state and action to predict the next state and the next reward. This is

achieved through a predefined function which can be leveraged before learning to pro-

duce an effective advantage (i.e knowing the mechanics of a domain prior). As a result,

8

the model can consider possible future situations before they are actually experienced.

Another approach is to utilise algorithms that purely learn from trial-and-error ex-

perience. Methods such as; model-free reinforcement learning to either optimise an

action-value function [156] or policy directly [158]; Evolutionary Strategies uses a pop-

ulation of policy parameters, created from an initial parameter set, then a standard

deviation of noise is applied. The population continually moves to higher expected

fitness [254]. These methods can be considered gradient-based as they all calculate

or approximate gradients and optimise those parameters via stochastic gradient de-

scent/ascent. Instead, the work in this thesis focuses on a gradient-free optimisation

technique inspired by biological evolution, Neuroevolution (NE).

NE trains models with Evolutionary Algorithms (EAs) [159, 266]. EAs mimic the

biological process of evolution whereby a population of genomes are bred to be fitter

by mutation and recombination of the genetic code [49]. The genome itself could rep-

resent many aspects of the evolutionary process, including; network weights, activation

functions, network topology, etc. However, the Conventional NeuroEvolution (CNE)

approach is a fixed topology and simply evolves the network weights. Due to the low

dimensionality of these initial neural networks, NE was prone to premature convergence

at local optimums. So, new methodologies were established to encourage greater com-

plexity. CNE is classified as direct encoding, with a clear relationship from genotype to

phenotype (ANN). This umbrella term also includes: GAs which support plasticity in

the genotype and neuron level optimisation. Indirect and/or developmental encodings

allows information in the genome to be reused to affect many parts of the phenotype

9

2.1. Direct Encoding

[217]; this allows EAs to exploit regularities and scalability. Populations that diversify

genetically or behaviourally encourages greater coverage of the search space to discover

new promising gradients. The remainder of this chapter will expand the details in this

overview.

Finally, a brief section of notable NE contributions from a spectrum of research

fields. In robotics, NE has a close relation to evolving controllers for embodied robots

[144]. A notable use of a GA was the optimisation of the gait for the Sony AIBO robot

[102]. Gaits were simulated with the on board hardware and produced gaits faster

than those created by hand. The success of this research saw a commercial release

of the robot. Work in Lipson and Pollack demonstrated that with neural control and

mechanics simulated concurrently, robots could be 3D-printed to achieve functional

movement in the real world [138]. In particle physics, NE produced the most accurate

mass estimation models of the top quark [1, 2]. In medical research, GAs have been

used in prediction models for; melanoma [206], lung cancer [106], critically ill patients

[56]; and computer support diagnosis of skin tumours [87].

2.1 Direct Encoding

Direct encoding involves the genotype having a one-to-one mapping with the pheno-

type. These NE methods write weights, or weights/topology, to a bit string which

then translates to the network architecture. Direct encoding provides the advantage

of having a clear understanding of how the network constructs from the genotype rep-

10

2.1. Direct Encoding

resentation. Yet, the size of the network has a direct correlation to the size of the

genotype representation and causes issues at scale; greater computation time is nec-

essary as the genotypes grow. This could be considered especially a problem with

Topology and Weight Evolving Artificial Neural Network (TWEANN) methods, as the

topology and connections grow unbounded. This issue became especially clear in the

first TWEANN technique to be published, Structured Genetic Algorithm (sGA).

2.1.1 Structured Genetic Algorithm (sGA)

Figure 2.1: A two-level sGA representing a neural network. Figure adapted
from [45].

sGA combines both structure and weights of the network into a bit string genotype.

This approach looks to avoid the ‘trial-and-error’ processes to find near-optimal network

architectures by evolving the topology and weights [47]. To achieve structural mutation,

11

2.1. Direct Encoding

sGA uses a multi-level genetic structure, corresponding to those like a directed graph

or tree; the preliminary work focused on two-level structures. The gene levels have

a hierarchical relationship to each other, where a number of lower level nodes have a

connection to higher level nodes. This is due to the addition of genes becoming active

or passive in mutation. High level genes activate or deactivate sets of lower level genes.

Therefore, single changes at higher levels can produce multiple changes at lower levels in

terms of genes which are active. During recombination, genes stay within the genotype

in a redundant form for potential use in future generations. The hierarchical structure

allows both long jumps in mutations and precise low-level mutations depending which

level mutates.

A =< S1, S2 > (2.1)

A formal mathematical definition of sGA’s genome type can be seen at equation

2.1 and is taken from Dasgupta and McGregor [46]; where A represents an ordered set

which consists of two strings S1 and S2; the length of S2 is a multiple of the length of

S1 (i.e |S1 | = s and |S2 | = sq).

Initial use of sGA showed good results in small scale tasks such as producing an

XOR gate [45] but inefficient at scaling due to the connectivity matrix size being the

square of the number of nodes. As a result, representation can become huge with

greater nodes. Further, the bit string has a fixed length, which limits connection

possibilities. For optimal bit string length a trial-and-error process is then necessary

12

2.1. Direct Encoding

and this ultimately is against the purpose of sGA. The next major method at evolving

topology and weights was GeNeralized Acquisition of Recurrent Links (GNARL).

2.1.2 GeNeralized Acquisition of Recurrent Links (GNARL)

Figure 2.2: Sample of an initial GNARL network. Figure adapted from [196].

GNARL is a NE method that non-monotonically constructs recurrent networks

to solve task domains [196]. Initially, only the inputs and outputs are present in

the network but disconnected. GNARL then defines the connections via the genome.

GNARL’s genome contains a user defined range of disconnected hidden nodes. Ran-

dom weights with random values are then added. Connections are restricted to an

output node and from an input node. Mutations allow the reuse or removal of nodes

and connections; as well as change in connection weights. Removal of neurons also

removes the attached connections. New nodes initialise as unconnected and new con-

nections initialise at weight 0.0. GNARL introduces a temperature value which cal-

culates the performance of a network which in turn determines the mutation rate; a

13

2.1. Direct Encoding

concept inspired by simulated annealing [22]. Network’s temperature is calculated via

the following [4]:

T (η) = 1 −
f (η)

fmax
(2.2)

where fmax is the maximum fitness for a given task and η is the given network.

High temperature indicates poor performance and mutates the network at greater

severity. Low temperatures therefore, indicates good performance and mutates slightly.

Criticism of GNARL relates to genetic bloat; in which nodes in the network do not

contribute to the overall result. GNARL can produce instances in which neither the

input or output layer connect to any other neurons [215].

2.1.3 Symbiotic Adaptive NeuroEvolution (SANE)

SANE evolves feed-forward neural networks with constrained topology evolving ele-

ments [162, 160]. As opposed to a genotype of weight matrices, SANE evolves indi-

vidual neurons. The genotype is comprised of connections and the weights of those

connections. SANE employs a symbiotic evolution approach; each member of the pop-

ulation is only a partial solution. In combination with other members, full solutions

are achievable. For this to be effective, neurons must develop a symbiotic relationship

where they do not diminish the performance of other neurons. Networks construct by

selecting a set number of random neurons from the population. Networks are then

attempted on a task domain, receiving a fitness value. Each participating neuron in

14

2.1. Direct Encoding

Figure 2.3: SANE’s evolutionary process. SANE maintains a population of neu-
rons and evaluates each in conjunction with other neurons. Step 1 (the evaluation
step) in SANE is broken into three sub-steps. Neurons are continually combined with
each other and the resulting networks are evaluated in the task. Each neuron receives
a normalised fitness based on the performance the networks in which it participates.
Figure adapted from [71].

the network is assigned the fitness score. This process continues until all neurons have

been visited a minimum number of times. The neuron’s final fitness is calculated by

taking an average of fitnesses achieved. Once obtained, a random individual from the

top quarter of the population is paired with a random individual with equal or higher

average fitness. Mutation is then applied. Mutation rates are set low to introduce

genetic material that was not in the initial population or lost during crossover. SANE

aims to maintain diversity without expensive operations or high degree of randomness;

which high mutation would cause. The offspring replaces the worst-performing neurons

in the population. This process repeats until a new population is created.

Problems are prevalent in SANE’s initial introduction, as pointed out by the authors

[163]. First, fit neurons may crossover with neurons which do not work well together.

Thus, a good neuron may be lost due to ineffective crossover. The second, network

15

2.1. Direct Encoding

fitness varies greatly throughout evolution. During early generations, this promotes

exploration of the search space. Yet, later generations are unable to focus on optimising

the best networks. SANE’s inconsistent networks often stall the search and prevent

the global optima from being located. These problems only become clear in those

task domains which demand high precision within the solution space. So, the original

authors extended SANE’s functionality.

Hierarchical SANE (HSANE) combines the advantages of network level and unit

level evolution. HSANE keeps two populations, one for the units, and another for

network blueprints. The network blueprints organise neurons into workable groups.

With the additional information, better-performing neurons are assigned a greater

number of trials. By keeping a ‘memory’ of network combinations, explorative search

can continue to exploit the best neuron combinations. As opposed to SANE, where

desirable combinations are lost. HSANE has been demonstrated on tasks like Go [183]

and avoidance in a Robot Arm [161].

SANE and HSANE suffer from being only a part evolving topology method, as both

are bound to predetermined parameters. Such as; the number of layers, the number

of hidden-nodes and the total number of connections made to the input and output

layers. These constraints are not placed upon other TWEANN methods. Although

inferior on benchmarks such as pole balancing tasks [216], there are examples of SANE

outperforming other NE methods, such as NEAT (section 2.1.5) [204]. But, the ex-

tended work for Enforced SubPopulations (ESP), while having the same limitations,

provides superior performance [72, 204].

16

2.1. Direct Encoding

2.1.4 Enforced SubPopulations (ESP)

Figure 2.4: ESP’s evolutionary process. The population of neurons is segregated
into sub-populations, shown here as clusters of circles. The network is formed by
randomly selection one neuron from each sub-population. Figure adapted from [71].

ESP follows the same methodology of SANE. But, ESP uses speciation to separate

each neuron into its own subpopulation [71]. Crossover takes place between neurons

of the same subpopulation; the offspring remains in their parents’ subpopulation. The

full network architecture is constructed by taking a neuron from each subpopulation.

This creates an evolutionary pressure for each subpopulation to specialise to a niche.

Although the pressure to specialise does apply to SANE at later generations, ESP

accelerates the process. ESP’s progressive specialisation is not burdened by recombi-

nation across one population, in which two individuals can be behaviourally different.

As seen in benchmarks, ESP takes substantially less generations to achieve solutions

compared to SANE [75, 77, 73]. Next, ESP allows for more effective evolution of recur-

rent connections. Recurrent connections behaviour is dependent upon the neurons to

which it is connected. SANE’s recombination of neurons are selected randomly from a

17

2.1. Direct Encoding

single population, so similar neuron combinations are unlikely to be persistent across

generations. This also affects HSANE as crossover across one population could still

produce a neuron with vastly different behaviour. With subpopulations, neurons will

depend on the behaviour of a subpopulation rather than random neurons. This allows

recurrence to evolve with the high assumption of receiving a particular behaviour. This

has allowed ESP to evolve Long short-term Memory (LSTM) cells [71, 78, 199, 200].

ESP has found success in traditional task domains such as RoboCup soccer [251] and

pursuit-evasion games [267]. As well as novel ones, such as active rocket guidance [77].

ESP continually outperforms other direct NE methods on each pole balancing task,

including NEAT and SANE [75, 76, 73, 74]. Although, ESP appears to be consistently

bested by CoSyNE (section 2.1.7).

2.1.5 NeuroEvolution of Augmenting Topologies (NEAT)

The seminal work for direct encoding TWEANN methods was with the introduction

of NEAT [219]. Across the literature, NEAT has been successfully applied to various

task domains; robot duel [151], crash warning system [212], the board game Go [218].

The initial population are small, simple networks. Then, over generations those struc-

tures complexify. Leading to increasingly sophisticated behaviours, above optimisation.

Crossover, speciation, and complexification are the core elements of NEAT. Each were

assessed via a knockout tournament on the pole balancing task without velocity. All

were shown to have a statistical significance on NEATs performance [215]. NEAT’s

18

2.1. Direct Encoding

novel introduction of historical markings makes these elements possible.

Historical Markings & Crossover

Previously, crossover was not utilised in other topology evolving methods as there was

a belief in the competing conventions ideology. Competing conventions means having

more than one way to express a solution to a weight optimisation problem with a

neural network. Genomes representing the same solution may not share the same

encoding. Crossover would likely produce damaged offspring as a result [215]. In the

introduction of GNARL this issue is highlighted; citing the three forms of deception

that would prevent crossover from being effective [4].

1. Two such networks need not have the same bit string representation.

2. Identical topologies but greatly different weights.

3. Parents differ topologically, suggesting the complexity of an appropriate inter-

pretation function will more than rival the complexity of the original learning

problem.

These considerations are addressed with historical markings; a unique inheritable

identifier. Each structural element in the genome is assigned a historical marking.

Genes with the same historical markings can be aligned and compared. Those with the

same historical markings can generate valid offspring. This avoids complex topological

comparisons. Parents with different topologies can match with common ancestors; i.e

genomes that share common structural elements. Offsprings randomly select genes

19

2.1. Direct Encoding

Figure 2.5: A genotype to phenotype mapping example in NEAT. A genotype is
depicted that produces the shown phenotype. Notice that the second gene is disabled,
so the connection that it specifies (between nodes 2 and 4) is not expressed in the
phenotype. Figure duplicated from [219].

from either parent where the historical markings match. Non matching genes (disjoint

and excesses) are taken from the fittest parent.

Before NEAT, competing conventions were cited in other literature as an issue.

During the knockout challenge, crossover saw less impact than the other aspects of

NEAT. Yet, it still produced a statistically significant performance benefit. This sug-

gests that ideas about crossover being detrimental are unwarranted. Crossover is still

an avoided process in other TWEANN methods like; EPNET, COVNET, EANT. So,

this brings into question why competing conventions are cited as an issue. The two

works most attributed to competing conventions are Radcliffe and Xin Yao. Radcliffe

claimed a solution for the competing conventions problem would be a ‘Holy Grail’ to

the field [181]. Xin Yao states “One of the major advantages of using mutation-based

20

2.1. Direct Encoding

EA’s is that they can reduce the negative impact of the permutation problem (competing

conventions). Hence the evolutionary process can be more efficient.” [264]. Yet, both

provide no empirical evidence. It seems, even at the time, work had been conducted to

debunk these claims. Hancock stating that “... the permutation problem is not serious

in practice” [86]. Hancock attributes the population size and selection pressures as

adequate solutions for a GA to overcome the issue. But seemingly, these initial works

swayed research into techniques into avoiding crossover as a result. Yet, a change in

structure can initially decrease the fitness of the network. If unaccounted for in the

evolutionary process, these potentially beneficial structures are lost to fitter suboptimal

structures. Which is why speciation is used.

Speciation

Speciation, also known as niching, is a nature inspired approach to diversify a popula-

tion and stop convergence on local optimums. Organisms separate into niches in which

they compete, as opposed to the entire population. In NEAT, structural innovations

are protected within new niches, where they have time to optimise their structure [215].

NEATs implementation of speciation is autonomous. Other uses of speciation have a

set amount of species from the offset. This was attributed to the difficulty in comparing

topology and weight configurations and how they differed. But, this dilemma is solved

with historical markings. The number of excess and disjoint genes between a pair of

genomes is a natural measure of their compatibility. The more disjoint two genomes

21

2.1. Direct Encoding

are, the less evolutionary history they share, and thus the less compatible they are.

NEAT uses a compatibility distance (δ) calculated via the following [215]:

δ =
c1E

N
+
c2D

N
+ c3 · W̄ (2.3)

where E represents excess and D represents disjoint genes. W̄ is the average weight

differences of matching genes. The coefficients (c1, c2, c3) adjust the importance of the

three factors, and the factor N , the number of genes in the larger genome, normalises

for genome size.

There has been criticism of NEAT’s implementation of speciation. The concept of

speciation is to functionally diverse a set of solutions for a particular problem. Whereas,

diversity in topology allows differing structures while achieving the same behavioural

functionality [159]. Alternative uses of speciation have been used previously such as age

[100, 201] and fitness [103]. But, a tangible example in NEAT is behaviour-speciation

[231]. In which, species are established via a behavioural metric. The results show this

allowed more diversity, leading to greater robust solutions in unknown environments.

However, the behaviour signature is specific to the problem domain. It requires initial

testing in order to find optimal structure for the signatures. Both seem counter-intuitive

to the idea of evolving an ANN, which uses evolution as the optimiser.

Briefly touched upon was speciation’s relation to bloat, suggesting speciation pre-

vents bloat [215]. Bloat being program growth without (significant) return in fitness

[177]; an issue intertwined with genetic programming. An in-depth analysis concluded

22

2.1. Direct Encoding

that NEAT does run bloat free but dependent on the speciation’s configuration [232].

So, Bloat-free NEAT (BF-NEAT) was developed to ingrained this into NEAT. In BF-

NEAT, species have a higher probability of survival and all species are protected re-

gardless of performance. The result showed an ability to maintain smaller genomes

during search, without a substantial decrease in performance.

Complexification

Like the many other concepts in evolutionary computation, complexification is rooted in

natural evolution [142]. NEAT not only performs the optimising function of evolution,

but also a complexifying function, allowing solutions to become incrementally more

complex at the same time as they become more optimal. There are two forms of

structural mutation in NEAT which allow complexification. The addition of a node

and an addition of a connection. A connection simply connects two nodes which were

previously unconnected. New nodes replace the connection between two other nodes

with an intermediary node. This is so the introduction of a node affects the network,

as opposed to being unconnected. Connections that the node replaces are disabled in

the genome. Depending on NEAT’s parameters, disabled links have a chance to be

re-enabled during crossover. The initial population connects all input to output nodes

to avoid genetic bloat. This was a criticism with GNARL’s ascertain nodes not being

associated with either the input or output nodes. By starting with small, minimal

structures and limiting the amount of connections through mutations, NEAT aims to

23

2.1. Direct Encoding

bias the search results to find compact network topologies.

Figure 2.6: Matching up genomes for different network topologies using in-
novation numbers. Although Parent 1 and Parent 2 look different, their innovation
numbers (shown at the top of each gene) tell us which genes match up with which.
Even without any topological analysis, a new structure that combines the overlapping
parts of the two parents as well as their different parts can be created. In this case
the parents are equally fit and the genes are inherited from both parents. Otherwise,
the offspring inherit only the disjoint and excess genes of the most fit parent. Figure
duplicated from [219].

24

2.1. Direct Encoding

Extensions

Crossover, Speciation, and Complexification have all proved significant to the perfor-

mance of NEAT and due to their lenient implementation NEAT is able to be modified to

suit the task domain. An extension which shows this potential is a real time version of

NEAT (rtNEAT) which accounts for user interaction. This particular feature is suited

to games in which behaviours can evolve during play, unbeknownst to the player, to

adapt to unique play styles. This was demonstrated in Neuro Evolving Robotic Opera-

tives (NERO) [220]. rtNEAT controls the behaviour of the game’s opponents. Through

the interaction with the environment, opponents learn to navigate mazes, avoid fire and

combinations of these approaches. For real-time feasibility rtNEAT changes include; a

steady state algorithm, Offspring producing at regular intervals and a fixed number of

species. rtNEAT works particularly well in NERO which was credited to an appropri-

ate amount of player interaction with a decent population size of 50. However, some

game designs would not meet this prerequisite. Which was shown with Globulation

2, an open-source real time strategy game. With a population size of 7 and limited

user interactions, rtNEAT failed to construct efficient controllers within the first 50

generations [172].

A workaround for Globulation 2 was to bootstrap the population with existing,

successful controllers. This was also seen in another real time strategy game approach

with rtNEAT [64]. The phenotype saves to a database once it exceeds a certain fitness.

Bootstrapping the population if evolution doesn’t deliver any meaningful progress. But,

25

2.1. Direct Encoding

bootstrapping can bias the search space and leave potentially interesting behaviours

unobtainable. Despite these criticisms, if the game design can provide a satisfactory

player interaction with opponents rtNEAT is a viable option; in genres such as, first

person shooters, fighting games or 2D action games [172]. Games and NE algorithm

still have a budding relationship [91, 26, 189, 94] and approaches like rtNEAT could

allow enhanced experiences.

2.1.6 NeuroEvolutionary Algorithm (NevA)

Figure 2.7: NevA’s genetic representation of ANN. Figure adapted from [233].

NevA directly encodes the connection weights and topology of feed forward and

recurrent networks [233]. Each gene in the genome contains the start and finishing

neuron and the connection weight. Crossover chooses two parents above average fitness

and produces two offspring. Both offspring share common neurons and connections

for both parents. The weights of the connections are decided via a 2-point binary

crossover. Each connection that differs is randomly chosen to give to an offspring.

The initial population of organisms connects all inputs to outputs without hidden

26

2.1. Direct Encoding

nodes. Network weights are initialised randomly in range [−0.5, 0.5]. During evolution,

the genomes grow structurally to produce more complex behaviour. Mutations can

add/remove connections/nodes and set connection weights to random values. Removal

or additional connections are either added or removed from the genome. Removal of a

neuron requires each instance of the neuron’s reference to be removed from the genome.

The addition of a connection requires a random starting and random ending neuron.

Each generation the fittest is carried to the next without any mutation. Structurally,

NevA is similar to NEAT and performs similar on benchmarks. Without speciation,

NevA can achieve these results without a large population size. However, NevA has

not gained the traction and scrutiny that NEAT has in the literature. So, it is difficult

to know if NevA excels past NEAT in other areas.

2.1.7 Cooperative Synapse NeuroEvolution (CoSyNE)

CoSyNE is an encoding scheme in which each network connection has a sub-population.

This is in opposition to other cooperative neuroevolutionary methods (e.g. ESP,

SANE) which typically use neurons. But, like neuron-level optimisation methods, one

member from each sub-population is used in a predefined network topology. So, the

number of sub-populations depends on the number of weights and biases. Each sub-

population initialises with real numbers, as well as index positions. The given index in

each sub-population combine to form the chromosome. Each generation establishes a

fitness for all chromosome combinations via a task domain. The population then sorts

27

2.1. Direct Encoding

Figure 2.8: The CoSyNE method for neuroevolution. On the left, the fig-
ure shows an example population consisting of six subpopulations, each containing
m weight values. On the right is the neural network with weights mapped to their
corresponding synapses. Figure duplicated from [74].

via fitness. In each sub-population, parents are chosen from the top quarter of fittest

individuals. Offspring generate via recombination with crossover and mutation. Re-

combination produces a pool of new network genes that replace the least fittest in the

population. Co-evolving synaptic weights requires rearrangement (permuted) of the

sub-populations. So, each weight forms part of a potentially different network in the

next generation. Permutation performs probabilistically among their sub-population.

How the weights permute are user defined. A sophisticated approach could see dis-

rupting the network proportional to relative fitness. For example, less fit individuals

having a higher probability of being permuted. This forces their constituents to search

28

2.1. Direct Encoding

for new complete solutions. This process is expressed in pseudocode below:

Algorithm CoSyNE (n,m,Ψ)
Initialize P = {P1, . . . , Pn}
repeat

for j = 1 to m do
xj ⇐

(
x1j, . . . , xnj

)
Evaluate

(
xj,Ψ

)
O ⇐ Recombine (P)
for k = 1 to l do

xi,m−k ⇐ oik

for i = 1 to n do
permute (Pi)

until solution is found.

In benchmarking domains, CoSyNE demonstrates greater performance than neuron-

based sub-populations on the two pole balancing problem without velocity information

[74]. However, neuron-based sub-population methods succeed in other domains over

CoSyNE, such as pattern recognition [28, 27].

29

2.2. Indirect & Development Encoding

2.2 Indirect & Development Encoding

Indirect and development representations are inspired by biological genes; in particular

DNA where a foundation of limited instructions can produce a complex output. [19].

These encodings aim to find the right level of abstraction of biological development

to capture its essential properties. Research for these encoding in-silco can be found

in early experiments with pattern formation [234, 137]. Developmental and in-direct

systems are grounded in the belief that smaller sections make up the larger network.

The assumption was that the human brain has to have some modular structure in a

similar way that most computer programs use modularity. “Each procedure is defined

a single time and can be called many times” [81]. The following sections will give an

in-depth look at the major contributions to Indirect and development encoding.

Figure 2.9: Development of 2-2-1 XOR network with L-systems . Figure
adapted from [35].

30

2.2. Indirect & Development Encoding

2.2.1 Lindenmayer systems (L-system)

L-systems are a parallel string rewriting mechanism [137]. They provide a model and a

mathematical theory of plant development; yet, L-systems can replicate many biological

processes. Formal grammars are the basis of L-systems. By continuously replacing

parts of an initial simple object (axiom) complex objects can form. Productions are

the rewrite rules which iteratively rewrite an axiom. Each production rule describes

how a certain character, or string, should be rewritten into other characters. L-systems

apply all production rules in parallel to form a new string. This is counter to other

grammar production rules which apply rules one-by-one. Notable uses of evolution of

L-systems are architectural structures [35], robot morphology [101] and modular neural

networks [119, 239, 16].

In the creation of neural networks, the GAs population consists of binary strings.

Each string includes one or more production rules for an L-system. Production rules

apply to an axiom a number of iterations or until the string contains only terminals.

The resulting string converts into a structural specification for a network. Back prop-

agation then applies to the network for a given task domain. A sum of the squares of

the errors then acts as the fitness function for the evolutionary process. The example

used in early works was that of an XOR gate.

In both Boers et al. and Kitano the L-system was only concerned with topology, as

opposed to also evolving the weights. Further work did incorporate weights to L-system

but at a rudimentary level (i.e binary weights) [82]. These works inspired others to use

31

2.2. Indirect & Development Encoding

properties of L-system while incorporating greater robustness for topology and weight

evolution; Cellular Encoding (CE) is an example of one of those approaches.

2.2.2 Cellular Encoding (CE)

Figure 2.10: Cellular Encoding of a neural net for XOR. Figure adapted from
[83].

CE takes inspiration from cell division in living organisms [81, 83]. Like L-system,

the network is representing a set of directions for its construction, rather than as a

direct specification. The philosophy of the approach is to imitate the interactions that

occur among proteins and cells in a developing embryo. A grammar tree represents

the developmental process. The process starts with a single node. Then, by the use of

cell division, the tree branches out, adding new cells. Cell types dictate how the neural

network constructs. By curating cell types, restriction in the structure can leverage

domain exploits; in which specific network topologies are beneficial in a domain. The

cell types below were those in the original work:

32

2.2. Indirect & Development Encoding

• A division cell - which creates two cells from one, further rules can be applied

to the relationship the mother cell has to offspring.

• A value cell - modifies the link in the link register to +1 or −1, which then

moves the pointer.

• An unary cell - which deletes the link stored in the link register.

• The waiting cell - which makes the cell wait for its next rewriting step.

• The end cell - which makes a neuron from the current cell and stops rewriting.

Crossover and mutation operation apply according to the common genetic pro-

gramming paradigm. Mutation takes a random node on the tree and replaces it with a

different instruction. Then, crossover cuts a subtree from one parent tree and replaces

a subtree from the other parent tree; the result is an offspring tree. The subtrees

exchanged during recombination are randomly selected.

Introductory work showed how cellular encoding could replicate an XOR gate. But

since then it has been shown that CE does not compete when compared to other NE

methods in bench marking tasks; including direct encoding [75, 55]. AGE is among

those which beat out CE. Like CE, AGE takes inspiration from gene regulatory net-

works; the networks formed by genes that send signals back and forth through their

protein products.

33

2.2. Indirect & Development Encoding

2.2.3 Analog Genetic Encoding (AGE)

AGE is an implicit method derived from the observation of biological genetic regula-

tory networks [83, 55]. First, AGE relies on an explicit range of characters to construct

the chromosome. Commonly, the ASCII alphabet is used for this range. Chromosomes

represent the genome of a neural network. Genome’s size is a variable defined before

run time. For example, in Dürr et al. [55] the initial genome was sized between 500

and 800 characters, with each character being a possible of 26 unique characters of

the ASCII uppercase alphabet. Within the chromosomes there are distinct sequences

of characters called tokens. The token characters are defined before run time. Each

token defines a neuron (neuron token) or type of neural connection (terminal token).

Characters between a neuron token and the first terminal token, as well as those be-

tween each terminal token, are terminal sequences. Terminal sequences influence the

neural connection relationships. Characters between the final neural connection and a

new neuron token are non coding characters (i.e are not used in the phenotype).

During phenotype construction, the genome is sequentially inspected. Each neuron

token creates the appropriate neuron in the network. Terminal sequences group in

sequential pairs and their similarity recorded; this is the alignment score. Via a specified

threshold, the alignment score determines whether the paired nodes connect. Provided

a successful connection takes place, the alignment score determines connection weight.

Although it can be specified, the first sequence following a neuron token is the neuron

output and the second sequence the neuron input.

34

2.2. Indirect & Development Encoding

Figure 2.11: AGE development process. Figure duplicated from [55].

AGE was benchmarked on the double pole balancing problem with no velocity,

beating NEAT and establishing a new state-of-the-art result at the time [55]. As well

as finding success in other areas like electronic circuits [145, 146]. Despite this, AGE

is restricted to low dimensionality domains. As with direct encoding, the genome type

length is tied to the size of the network. Task domains with greater complexity will

require larger inputs and, for this method, a large genome.

2.2.4 Cartesian Genetic programming (CGP)

CGP is a popular and efficient graph based form of Genetic Programming [154]. A

powerful aspect of CGP is its representation of graphs coupled with a high degree

of genetic redundancy. These graphs are represented as a two-dimensional grid of

computational nodes where user’s define the number of columns and rows. In the

35

2.2. Indirect & Development Encoding

0

1

1

2

0

2

0

1

0

1

0

0

2

3

0

1

1

3

4

4

4

4
5

5

6

7

2

5

7

3

0 0 1 1 0 0 1 3 1 2 0 1 0 4 4 2 5 40 0 1 1 0 0 1 3 1 2 0 1 0 4 4 2 5 40 0 1 1 0 0 1 3 1 2 0 1 0 4 4 2 5 4 2 5 7 3

(2) Encoding of graph as a list of intergers (i.e. the genotype)

0 + Add the data presented to inputs
1 - Subtract the data presented to inputs
2 * Mult iply data presented to inputs
3 / Divide data presented to inputs (protected)

(3) Function Genes

(1) Graph

Figure 2.12: CGP graph representation. Figure adapted from [153].

genotype, each gene contains their input, output, and action within the graph. Each

action is user defined and placed into a function look-up table. The associated integer

values to those functions are called function genes. The input and output integers

are called connection genes. The genotype is a fixed length; however, the amount of

computational nodes can vary from zero to the number of nodes defined in the graph.

When decomposing the genotype to phenotype, some nodes may be ignored. This

occurs when the node’s outputs do not contribute to the output data; these are ‘non-

coding’ genes. The phenotype is the graph representation. Each node’s maximum

amount of inputs is relative to total inputs of the graph (arity). Each node contains

an integer address for their output.

36

2.2. Indirect & Development Encoding

Each address sequentially follows on from the number of inputs. Nodes in the same

columns cannot be connected to each other. In the classic implementation, the graphs

are feed forward, therefore nodes may only have its inputs connected to either input

data or the output of a node in a previous column. However, there is a level-back

parameter which controls how many columns back a node can connect from. CGP’s

initial implementation was associated with digital circuit design [155, 236]. However,

the graph structure allows a simple transition to ANN, as seen in Cartesian Genetic

Programming of Artificial Neural Networks (CGPANN) [116, 235]. The function genes

are swapped for activation functions, such as sigmoid or hyperbolic tangent; the selec-

tion of which can have significant impact on the task [237]. Additional genes are added

for weights. Switch genes are added as binary gates to whether the connection is active.

During mutation, weights are replaced by a new random real number. Switch genes

change to the opposite activation. Therefore, topological features can be added and re-

moved by mutating functions, connections, weights, switches, and outputs. CGPANN

has been extended to allow for recurrent connections (RCGPANN) to be effective on

tasks that require recurrency (i.e the double pole balancing task without velocity [116]

and forecasting [238]). CGP has proven competitive on standard benchmarks [235] and

general game playing [256], as well as versatile in tasks such as Wumpus [115], checkers

[114] and maze solving [88].

37

2.2. Indirect & Development Encoding

Figure 2.13: CPPN encoding. (a) The function f takes arguments x and y, which
are coordinates in a two-dimensional space. When all the coordinates are drawn with
an intensity corresponding to the output of f , the result is a spatial pattern, which
can be viewed as a phenotype whose genotype is f . (b) The CPPN is a graph that
determines which functions are connected. The connections are weighted such that
the output of a function is multiplied by the weight of its outgoing connection. Figure
adapted from [43].

2.2.5 Compositional Pattern Producing Networks (CPPN)

CPPN aims to achieve development encoding without development [211]. CPPN’s

structure is near-identical to that of a neural network, the difference being in activation

functions. CPPN uses a variety of evolvable activation functions rather than limited to

Sigmoid and Gaussian. With only the activation functions to consider, previous direct

encoding integrates seamlessly. This is why NEAT is the default method for CPPNs

[43, 203, 91, 34].

Each activation function replicates a biological representation; symmetry (e.g Gaus-

sian function), repetition (e.g sine function), Imperfect Symmetry etc [214]. By restrict-

38

2.2. Indirect & Development Encoding

ing activation functions the CPPN can bias towards desired patterns. For example, the

use of polar coordinates and sine functions (repetition) flower patterns can form [191].

The most notable example of CPPN’s ability to generate procedural nature inspired

content is PicBreeder [203].

Picbreeder is an online service that allows users to collaborate on the formulation

of images via a CPPN. Each generation, fifteen images are produced and presented to

the user. Then, the user selects one or more images as parents for the next generation,

as well as a mutation rate. Users can also evolve other user’s outputs; essentially pig-

gybacking off their evolutionary exploration. Picbreeder is the visual affirmation that

CPPN replicates natural biological patterns by creating human recognisable structures

from random initial images. Examples of these structures include: cars, planets, and

skulls.

A point of contention is the validity of these images as natural structures as the

result is subjective to each user. However, various PicBreeder images have been recog-

nised and sensibly classified by pre-trained deep neural networks (DNNs) for the classi-

fication of real world objects [60]. This result suggests the patterns CPPN generates do

accurately replicate forms of natural biological phenomenons. Picbreeder benefits from

the exploitative nature of human selection. Without curated evolution, and instead a

fitness function of similarity to Google images, images become more akin to genetic

art than recognisable natural evolutionary structures [7]. Objective based algorithms

were also examined in PicBreeder. When the target output were previously generated

PicBreeder images, all runs either failed or took substantially longer than its interac-

39

2.2. Indirect & Development Encoding

tive evolutionary counterpart [258]. There have been implementations in which less

explicit techniques are used to allow interactive evolution, such as in Galactic Arms

Race (GAR). New weapons in GAR generate based on user preference, which is how

long a user spends using that weapon [91].

2.2.6 Hypercube-based NEAT (HyperNEAT)

Figure 2.14: A CPPN connectivity example for HyperNEAT. A grid of nodes,
called the ANN substrate, is assigned coordinates. (1) Every connection between layers
in the substrate is queried by the CPPN to determine its weight; the line connecting
layers in the substrate represents a sample such connection. (2) For each such query,
the CPPN inputs the coordinates of the two endpoints, which are highlighted on the
input and output layers of the substrate. (3) The weight between them is output by
the CPPN. Thus, CPPNs, whose internal topology and connection weights are evolved
by HyperNEAT, can generate regular patterns of connections. Figure duplicated from
[245].

HyperNEAT exploits geometric regularity in task domains via the use of CPPN to

encode weight matrices [221]. The results have shown good performance on a wide va-

riety of problems; multi-agent solutions [44], simulated locomotion [32, 33, 31], physical

40

2.2. Indirect & Development Encoding

locomotion [130], autonomous robot cars [54], checkers [66] etc.

HyperNEAT uses two networks, a CPPN and a substrate. The CPPN encodes

the connectivity pattern of the substrate. The substrate is an ANN whose nodes sim-

ulate a coordinate system to represent the topology. The name was chosen to be

verbally distinguished from the CPPN which has its own topology [65], With the use

of the CPPN, HyperNEAT can exploit geometric properties, such as regularity and

repetition. As such, the substrate includes information to allow the CPPN to be geo-

metrically aware. So, the substrate configuration is dependent on the task domain. For

example, the state-space sandwich is the configuration used in checkers and quadruped

locomotion. This is a single two dimensional sheet of neurons fully-connected to an-

other two-dimensional sheet. Another quadruped substrate divides each control of a leg

into substrate modules [188]. HyperNEAT is still able to encode traditional ANNs (i.e

two-dimensional substrates) [42], as well as nontraditional evolutionary networks like a

Convolutional Neural Network (ConvNet) [244, 202]. Each layer has Y representative

and each node has a X representative. This allows connective CPPNS to use spatial

information.

In Hausknecht et al. [94], HyperNEAT was assessed on general game playing with

atari 2600 games. Three different state representations were used; object, seeded noise

and pixel. In the comparison with other top direct encoding methods, HyperNEAT

was the only approach to exploit the relationship of the game with raw pixel colours.

Although Deep Mind made a larger impact on this task later, HyperNEAT was the

first system for which direct pixel-to-action atari results were reported.

41

2.2. Indirect & Development Encoding

Though, the direct encoding methods did out perform HyperNEAT on those other

representations. Yet, this is due to the low dimensionality of the representation; which

direct encodings are superior at. Still, it is a testament to HyperNEAT’s ability to

adapt to general-purpose problems.

Due to the separation of CPPN and substrate, the underlying mathematical rela-

tionships can be retained even when the substrate changes. This allows the substrate

resolution to fluctuate to appropriate tasks without further evolution, as seen in exam-

ples in which the substrate was scaled [65, 246]. Therefore, HyperNEAT can generalise

significantly more effectively [66].

HyperNEAT has a weakness for irregular task domains. Clune et al., [34] demon-

strates how HyperNEAT reacts to solving problems as the task irregularity decreases.

The conclusion is that performance decreased as problem regularity decreased. Direct

encoding (P-NEAT) out performed HyperNEAT but only when the task is relatively

irregular. This issue, among others, has caused numerous extensions to HyperNEAT.

Extensions

Due to HyperNEAT’s popularity it has been used as a foundation to build extensions

that incorporate new and old ideas, while leveraging HyperNEATs proven versatility

and performance. For example, Hybridized Indirect and Direct encoding (HybrID)

takes the already established benefits of direct encoding and combines them with indi-

rect encoding. Indirect encoding exploits available regularities, then switches to direct

42

2.2. Indirect & Development Encoding

encoding to account for irregularities. The encoding switches after a number of gen-

erations. In testing domains, HybrID outperformed HyperNEAT in every run [34].

However, the significance is only apparent when the problem domain has a certain

amount of regularity. Also, pathways bias the exploration to what indirect encoding

finds initially desirable. A potential solution to this is R-HybrID [207]. The switch

from indirect to direct encoding are under evolutionary control. In three benchmark

tasks R-HybrID outperformed HyperNEAT, NEAT, and HybrID. An issue to consider

is how direct encoding scales to large substrates. It may be too computationally in-

tensive for current machines to individually change each weight. Future work may see

techniques to incorporate direct encoding into an abstracted set of parameters, without

dealing with each individually.

Adaptive HyperNEAT employs lifetime learning into the CPPN to encourage the

discovery of local learning rules. The vague formulation of local learning requires (1)

learning to depend on local information associated with the pre and post-synaptic neu-

rons; and (2) learning ought to depend on the correlation between the activities of

these neurons, yielding a spectrum of possibilities on how these correlations are com-

puted and used to change the synaptic weights [9]. This is inspired by how biological

brains can adapt and learn from past experience. Three models are proposed in this

work. The iterated model provides inputs for activation of the pre-synaptic and post-

synaptic neuron, and the current weight as input. The ABC Model produces three

CPPN outputs that each control synaptic plasticity during the lifetime of the agent, as

well as a learning rate. Finally, Plain Hebb which only includes the learning rate as in

43

2.2. Indirect & Development Encoding

output. The iterated and ABC model was able to solve a task with Nonlinear Reward

Signature, where Plain Hebb failed. We can deduce then that a standard HyperNEAT

configuration would not be adequate to the task. In the Iterated model, the CPPN is

required at every clock tick to update the ANN weights as the inputs are needed to

affect plasticity. However, it is acknowledged, this is a more computationally intensive

ask. The substrate used in this work was only a few neurons in a two layer network.

But, an appeal of HyperNEAT is the large structures that can efficiently be encoded.

This method may not be practical for those tasks.

Evolvable-substrate HyperNEAT (ES-HyperNEAT) allows the substrate design to

be dynamic through the evolutionary process, like NEAT before it. In the original

HyperNEAT implementation the placement of nodes in a substrate is decided by the

user and these placements play an important role in the ability to exploit geometric

symmetry in a task domain. Therefore, HyperNEAT asks the user to choose an appro-

priate substrate to best fit the environment, however this may not be a clear choice.

The example used for ES-HyperNEAT is the difficulty defining the best placement for

sensors and effectors to relate to a domain geometry as well as the appropriate num-

ber of hidden nodes. Rather, ES-HyperNEAT leaves the substrate undefined prior to

evolution, only the inputs and outputs are defined. The placement of nodes is then

the responsibility of the CPPN. Based on implicit information in an infinite-resolution

pattern of weights, the CPPN is able to produce patterns of possible connections, in-

cluding node positions. Nodes which contribute to the overall results (i. connect in

some form to an input are output) remain in the substrate, while the other connections

44

2.2. Indirect & Development Encoding

are pruned. A new important factor introduced with ES-HyperNEAT is representing

regions of varying density in the substrate which cluster due to the CPPN’s node geo-

metric position. As pointed out this is an abstracted feature of neurons in the brain.

As the architecture is connected to the CPPN the substrate is able to exploit complex

regular patterns. This approach was demonstrated to be more efficient than the origi-

nal HyperNEAT at solving a maze navigation task and a task that required switching

sensors [185, 186]. These extensions can also be stacked together, see ES-HyperNEAT

and Adaptive HyperNEAT [187].

2.2.7 Deep Neuroevolution

Deep neuroevolution refers to the evolution of deep neural networks, which typically

have (many) more than two hidden layers. Due to the large number of parameters it

is infeasible for direct encoding. Deep neuroevolution uses a simple random number

generator for weight parameters and a genome of seed values for the number gener-

ator. Generating the vector of parameters can be achieved by applying each seed in

chronological order. Then, a conventional evolutionary process can take place on the

population (i.e mutation, elitism). Each mutation, a new seed is added to the end of

the sequence. A formal mathematical definition can be seen at figure 2.15.

So, the genome can only grow as long as the number of generations and, as demon-

strated, can feasibly generate up to 4 million parameters. Elitism is employed to retain

the E most fit individual(s) into the next generation, un-mutated. Parents are selected

45

2.2. Indirect & Development Encoding

Figure 2.15: Visual representation of the Deep GA encoding method. From
a randomly initialised parameter vector θ0 (produced by an initialisation function ϕ
seeded by τ0), the mutation function ψ (seeded by τ1) applies a mutation that results in
θ1 . The final parameter vector θд is the result of a series of such mutations. Recreating
θд can be done by applying the mutation steps in the same order. Thus, knowing the
series of seeds τ0 . . .τд that produced this series of mutations is enough information
to reconstruct θд (the initialisation and mutation functions are deterministic). Figure
duplicated from [226]

uniformly at random from the T most fit individuals in a generation and mutation ap-

plied to create new offspring; this process repeats until the next generation’s population

is filled.

Deep ConvNets have predominantly been trained by SGD, achieving state of the

art results. NE has aided in topology building [152, 263, 244] and feature extraction

[202, 10] but, until recently, showed little promise in training very large neural networks.

Such et al. [226] and Salimans et al. [194] demonstrated that genetic algorithms and

evolutionary strategies are competitive alternatives for training large neural networks,

including deep ConvNets, on RL tasks. Both have been used on RL benchmarks using

the Arcade Learning Environment (ALE) and MuJoCo, producing competitive and

state-of-the-art results. Such et al. [226] used a very simple GA, with no recombination.

46

2.2. Indirect & Development Encoding

Their results gave a proof of concept and suggested that techniques such as crossover

[62], exploiting regularities [34] and diversity mechanisms [167, 165] should be explored

in future extensions. Due to deep neuroevolution utilising ConvNets to achieve state-of-

the-art results in its introductory paper [226], the next subsection will cover ConvNets

and how it differs from the conventional feed forward discussed up until now.

Convolutional Neural Network (ConvNet)

ConvNets were originally proposed in LeCun et al. [129] for handwritten digit recog-

nition. They proved successful also in speech recognition [128], object detection in

natural images [241] and face recognition [127]. The basis of the modern ConvNet ar-

chitecture was introduced in Yann et al. [265] with LeNet-5. LeNet-5’s success comes

from deriving higher-level features from identified lower-level ones; this is achieved via

local connections, shared weights, pooling, and the use of layers. ConvNet can consist

of convolution layers, pooling layers, non-linearity and a fully-connected layer.

Kernel convolution is a process where a small matrix of numbers (kernel) passes

through a matrix or tensor and transforms it depending on the weights within the

kernel. Convolution extracts spatial or temporal features and many kernels can be

used to extract various features from an image. The following equation expresses

kernel convolution:

G[m,n] =
∑
j

∑
k

h[j,k]f [m + j,n + k] (2.4)

where f represents the input, h the kernel, m the rows and n the columns of the

47

2.2. Indirect & Development Encoding

result matrix. Once transformed, a non-linear activation function is applied to the out-

puts. It is then common for ConvNet’s to use pooling layers which create an invariance

to small shifts and distortions, pooling reduces the size of the tensor by down-sampling.

How pooling down samples can be tuned to the task domain; for example, average pool-

ing calculates the average for each kernel patch of the feature and is used when data

retention is necessary over multiple layers, whereas max pooling, carries through the

largest value in each kernel patch of the feature and therefore retains only the most

present feature in the patch. After multiple sequences of convolution, non-linearity and

pooling layers, the rows and length of features reduce while the layer size increase; this

can be calculated with the following:

[n,n,nc] ∗ [f , f ,nc] =

[⌊
n + 2p − f

s
+ 1

⌋
,

⌊
n + 2p − f

s
+ 1

⌋
,n f

]
(2.5)

where n represents tensor input length or height, f represents filter size, nc number

of layers in input tensor, p is padding, s is stride, n f the number of kernels. The

final fully connected layer represents a traditional ANN, where the tensor is flattened

to a one dimensional matrix and fully connected to an output layer or layers. In a

classification task, for example, the fully-connected section will determine how features

in the previous layer contribute to each class.

Despite these initial successes, ConvNets’ greater popularity only came to fruition

with advances made in core computing systems. The use of graphical processing units

allowed AlexNet [121] to train a deeper and wider ConvNet. In the challenging Ima-

48

2.2. Indirect & Development Encoding

geNet competition, AlexNet achieved state of the art results. Various other advances

were introduced in this architecture, including the use of dropout to reduce overfitting

and the Rectified Linear Unit (ReLU) to improve training times. Since then, ConvNets

have been structured in many different ways. The work in Mnih et al. [157] omitted the

pooling layers to retain spatial information. Residual Networks (ResNets) have em-

ployed more than 100 layers to improve performance on visual recognition tasks [96].

GoogLeNet’s Inception module uses multiple kernels, at different sizes, on the same

input, to abstract features from different scales [229]. DenseNet connects each layer

to every other layer in a feed-forward fashion which strengthens feature propagation

[104].

49

2.3. Diversity

2.3 Diversity

The basis of CNE selection pressure is to produce fitter solutions while discarding

those with lower fitness; as a result, populations converge in the search space. Then,

solutions may stall as GAs struggles to effectively explore the search space. These

types of problems can be expressed as bootstrap or deception [208]. Consequently,

fitness functions may not provide a selection pressure in a task domain. This makes

solutions too difficult for the evolutionary system to discover directly [71]. Individuals

may perform poorly and drift in an uninteresting region of the search space (i.e the

bootstrap problem). Or, promising initial performance leads the population to a local

optima, (i.e deception) [253]. However, by preserving diversity within a population,

evolution can benefit from greater exploration. It is one of the most common methods

to improve the behaviour of GAs with demanding fitness functions [168]. Diversity

also promotes quick exploration of the search space. If a population converges, the

mutation operator is the only viable solution to continue exploration; this progresses

very slowly [163]. Yet, a diverse population can utilise the crossover operation to make

larger traversal strides in a short amount of time. Long have techniques been devised

to introduce diversity into NE [70, 141]. The following sections will examine the most

popular types.

50

2.3. Diversity

2.3.1 Crowding

Crowding promotes diversity by replacing existing individuals with new genetically

similar ones [48]. Each generation, selections of the population are evaluated to discover

parents. With the production of an offspring, another sub-population is defined by the

Crowding Factor. The offspring replaces the most genetically similar individual in

the sub-population. Deterministic Crowding improves upon the original by allowing

competition between parent and child of identical sub-populations [140]. If offspring

are in a genetically similar range to their parents and have a higher fitness, the offspring

replaces the parent. Therefore, two sets of tournaments between both parents and both

offspring are possible. The following pseudocode describes this:

Algorithm Deterministic Crowding
for д ∈ G do . Repeat for G generations

Select 2 parents, p1 and p2, randomly, no replacement
Cross them, yielding c1 and c2
Apply mutation / etc., yielding c′1 and c′2 (optional)
if

[
d

(
p1, c

′
1

)
+ d

(
p2, c

′
2

)]
≤

[
d

(
p1, c

′
2

)
+ d

(
p2, c

′
1

)]
then

if f
(
c′1

)
> f (p1) then

replace p1 with c′1
if f

(
c′2

)
> f (p2) then

replace p2 with c′2
else

if f
(
c′2

)
> f (p1) then

replace p1 with c′2
if then

replace p2 with c′1

Another extension is probabilistic crowding [150], where fitter individuals do not

necessarily win over weaker individuals. The winning individuals is proportional to

51

2.3. Diversity

their fitness based on a probabilistic formula [140]:

px = p(x) =
f (x)

f (x) + f (y)
(2.6)

where f is the fitness function and x and y are two similar individuals that have

been picked to compete. The original crowding implementation has shown to be limited

in multimodal function optimisation. Crowding fails to consistently maintain more

than two peaks of a multimodal function [141]. This was attributed to stochastic

errors in the replacement causing genetic drift; the loss of alternative solutions due to

random fluctuation. Deterministic Crowding reduced the replacement error, which in

turn, allowed maintenance of multiple peaks. Further studies showed that deterministic

crowding aided in locating superior single solutions [92, 175]. By maintaining many sub

solutions, greater exploration of the search space is promoted. Probabilistic Crowding

furthers this idea by the exploration of less fit solutions.

2.3.2 Fitness sharing

Fitness sharing arranges the population into sections in the search space based on a

metric of similarity and penalises those in higher clustered areas, thus forcing the GA to

maintain diversity within the population [70]. This method is used to attempt to find

all maximas in a given multimodal function. The inspiration for this method is species

in nature occupy the same environment and therefore have to share resources. But,

those individuals in the environment may want to spread out to seek more resources

52

2.3. Diversity

and higher rewards; thus the devaluation of fitness in close individuals. Similarity of

individuals can be established via the genotype, phenotype or a combination of the

two; the original work focused on the phenotype. To determine fitness sharing, two

parameters are needed; the objective fitness and the niche count. The objective fitness

is calculated via Goldberg’s ranking [69] which provides equal reproductive potential

for non dominated individuals. This method separates individuals in the population

into layers and ranks them depending on their dominance in the search space. The

least dominant are assigned rank 0 then removed from contention. The next set of

non-dominant individuals are found to be given rank 1 etc. This is repeated until

the population is suitably ranked. Next, the niche count provides an estimate to

crowd together individuals into a niche. This requires a user defined niche radius to

estimate the expected minimum separation between solutions. This particular function

has been criticised for being domain specific, requiring prior knowledge [180, 112]. A

simple approach to calculate an individual’s shared fitness is [70]:

f ′i =
fi
mi

(2.7)

where fi is the shared fitness of an individual (i) and mi is the niche count.

2.3.3 Incremental Evolution

Incremental evolution is a term that describes a change in environment or reward func-

tion to incrementally guide evolution through increasingly more difficult tasks. The

53

2.3. Diversity

Figure 2.16: Illustration of SAGA space. The progress of the always compact
course of a species the z axis indicates both time and the loosely correlated number
of dimensions of the current search space The x and y axes represent just two of the
current number of dimensions The possibility of splitting into separate species and of
extinction are indicated in the sketch.. Figure duplicated from [89].

first inspirations for this technique were laid out in Inman Harvey’s Species Adapta-

tion Genetic Algorithms (SAGA) framework [89, 90]. The framework came from the

observation that in nature evolving populations are highly converged genetically and

this would be true at every point in history. So, for 4 billion years there has been the

pathway of a population changing from a single cell to complex creatures. Therefore,

complex individuals are linked via a continuous chain of viable ancestors to the origin.

In an artificial evolutionary example, solutions may be unattainable due to lack of vi-

able pathways from the origin. Therefore, incremental evolution breaks the task down

into simpler tasks and, once solved, moves individuals into more challenging tasks until

it is tasked with the goal itself; guiding individuals through the search space.

Gomez demonstrated the effectiveness of incremental evolution in a pursuit-evasion

54

2.3. Diversity

simulation by gradually increasing the speed of prey when the ANN controlled the

predators [71]. Within this implementation, an agent is placed in the centre of the grid

world and the prey is placed in a random position just within the agent’s sensor range.

The agent and prey alternate in taking an action at each time step until either the

prey has been captured or a maximum number of time steps has been reached. The

population first evolved on the task E0.00 (i.e., capturing a stationary prey within its

sensory range). Next, an evolutionary process takes place based on the successful indi-

vidual’s genotype (∆). After each successful run of the task the environment increases

the number of steps the prey can take (0 − 4) and at what speed (0.0 to 1.0 in four

steps). This sequence forces the agent first to develop its memory and then to learn to

deal with a fast-moving prey. This is expressed via [71]:

E0.00

∆
−→ E0.02

∆
−→ E0.03

∆
−→ E0.04

∆
−→ E0.34

∆
−→ E0.64

∆
−→ E0.84

∆
−→ E1.04 (2.8)

Other examples include, work from Bongard which demonstrated how robots that

grow from anguilliform into legged robots then lose the anguilliform body later in evo-

lution, performed more rapidly and more robustly than robots without this transition

[18]. Paired Open-Ended Trailblazer (POET) [248] trains 2D bipedal walkers on an

indefinite environment of increasing complexity. POET achieves behaviours that were

unreachable in any conventional way.

55

2.3. Diversity

Figure 2.17: NSGA-II procedure. Figure duplicated from [51].

2.3.4 Multi-objective evolutionary algorithms (MOEAs)

MOEAs are designed for multi-objective domains in which a solution may require

trade-offs. When in a domain that has multiple objectives, this causes multiple op-

timal solutions (known as pareto-optimal solutions), as opposed to a single solution.

Without a leaning to any one solution, no solution can be superior to another, therefore

it is evolution’s role to find many pareto-optimal solutions within a single run. MOEAs

have two ideal goals: (1) converge on a set of solutions which lies on the pareto-optimal

front and (2) diversify enough to represent the entire range of the pareto-optimal front

[50]. The first practical algorithm was Shaffer’s Vector Evaluated Genetic Algorithm

(VEGA) [197]. VEGA ran independent selection cycles according to each objective.

Each objective is carried out on parts of the population to fill a mating area. Then, via

crossover and mutation the population gains offspring from different subgroups. VEGA

suffers from biases towards certain pareto-optimal solutions, which in turn converges

56

2.3. Diversity

the entire population towards the individual optimum regions after a large number of

generations. Goldberg provided suggestions based on a non dominated sorting pro-

cedure to improve upon Schaer’s ideas. Non-dominated sorting ranks individuals in

how they dominate others; for an individual to dominate another they have to (1) not

be objectively worse in any objective than the other and (2) at least one objective

is superior over other individuals. This repeats until all non-dominated individuals

have been ranked. This is detailed in pseudocode on the next page. Non Dominated

Sorting Genetic Algorithm (NSGA) [210] implements Goldberg’s suggestion. NSGA

showed an ability to maintain a stable and uniform reproductive potential across non

dominated individuals, overcoming VEGA’s shortcomings. The next major iteration

to this set of algorithms was the inclusion of elitism; the most popular of which is

NSGA-II [51]. Before the non-dominated sorting, NSGA-II creates an offspring pop-

ulation with the previous population as parents. Usual genetic operators are applied,

then the two populations are merged to be double the size of the original population.

Next, non-dominated sorting applies. Due to the larger population size, those below

the original population size are discarded; with those in the final ranking sorted via

highest diversity before discarding the remaining individuals. A real-world example

of an application is spacecraft trajectory optimisation with objectives such as; max-

imising the delivered payload; minimise the time of flight and maximising heliocentric

revolutions [37].

57

2.3. Diversity

Algorithm fast-non-dominated-sort(P)
for all p ∈ P do

Sp = ∅
np = 0
for all q ∈ P do

if (p ≺ q) then . If p dominates q
Sp = Sp ∪ {q} . Add q to the set of solutions dominated by p

else if (q ≺ p) then
np = np + 1 . Increment the domination counter of p

if np = 0 then
prank = 1
F1 = F1 ∪ {p}

i = 1 . Initialise the front counter
while Fi , ∅ do

Q = ∅ . Used to store the members of the next front
for all p ∈ Fi do

for all q ∈ Sp do
nq = nq − 1
if nq= 0 then

qrank = i + 1
Q= Q ∪ {q}

i = i + 1
Fi = Q

58

2.3. Diversity

2.3.5 Novelty Search (NS)

Figure 2.18: Novelty and objective fitness based search on medium and hard
maze environments. Each maze depicts a typical run, stopping at either 250, 000
evaluations or when a solution is found. Each point represents the end location of a
robot evaluated during the run. Novelty search is more evenly distributed because it
is not deceived. Figure adapted from [190].

NS was conceived for deceptive domains in which reward-based optimisation mech-

anisms converge to local optima; this has been demonstrated in maze tasks [166],

but also less obvious applications like bipedal walking [131]. NS exploits the observa-

tion that in non-human populations diversity in behaviours provides greater success

in problem-solving [15]. NS ignores the reward function during evolution and instead

focuses on agents performing new, unseen behaviours. To assess what is a novel be-

haviour, a novelty metric is required; good behaviour characterisation has shown to be

essential to NS’s success [118, 169]. In the hard maze task, the objective fitness would

favour bots that end up closer to the goal. With NS, the novelty metric behaviour is

defined by the cartesian location of the robot in the maze. Then, the novelty metric

calculates the average distance between it and its k-nearest neighbours; where k is a

fixed parameter that is determined experimentally. The nearest neighbours calculation

takes into consideration individuals from the current population and from the perma-

59

2.3. Diversity

nent archive of novel individuals. The archive consists of past individuals with highly

novel behaviours, that is, those above some minimal threshold p min of novelty. The

archive also mitigated backtracking to previously discovered behaviours. The following

equation expresses the behaviour metric [166]:

ρ(x) =
1

k

k∑
j=0

db
(
x, µj

)
(2.9)

where k is a user-defined parameter and j is the j-th nearest neighbor of x with respect

to the distance db . NS was first demonstrated with NEAT which continually ascends to

new levels of complexity, which in turn allows more novelty. Yet, novelty can be used

in place of any NE method which already uses an objective fitness function; notable

examples are HyperNEAT [164] and Deep Convolutional Networks [36]. NS has inspired

implied extensions; Surprise Search [79] rewards exploration and divergence from the

expected behaviour, and Evolvability Search [149] selects individuals with a greater

potential for diversity, rather than diversity itself. Search based on pure novelty has

shown not to scale well in tasks with large feature spaces [132, 38] which is addressed

in Quality Diversity (QD) algorithms.

2.3.6 Quality Diversity (QD)

Quality Diversity (QD) extends the early divergent search algorithms, like NS, by

continuing to utilise diverging behaviours but also promoting an objective quality of

those behaviours. QD differs from MOEAs as they are still ultimately driven toward

60

2.3. Diversity

Figure 2.19: Map-Elite heat map comparison of connection cost and modu-
larity with other search techniques. The x-axis is connection cost, the y-axis is
modularity, and heat map colours indicate normalised performance. These maps show
that MAP-Elites illuminates more of the feature space, revealing the fitness potential
of each area. Figure adapted from [165].

specific objectives, which is intrinsically convergent. QD avoids the use of global fitness

values as it pushes search to higher performing niches. Instead, QD aims to find all

possible behavioural niches and present the most qualified candidate/s from that niche.

The first implementation of this type was NS with local competition [133]. This im-

plementation uses NS to explore the search space based on sheer novelty, then species

are formed depending on how close the species are. These individuals are then eval-

uated on a global fitness measure. The idea is to explore the merits of each niche

rather than to exploit greedily only the best niches. Individuals are compared to their

nearest neighbours in a niche and given a local competition score based on how many

neighbours it outperforms. It is believed that this implementation produces more

natural evolutionary dynamics through a gradual accumulation of functionally-diverse

well-adapted individuals.

Later, Map-Elites [165, 39] was introduced which called itself a ‘illumination algo-

61

2.3. Diversity

rithm’. MAP-Elites establishes a performance measure, which is a global fitness. Next,

a user can add any number of variations of interest that define a feature space. Each

dimension of feature variation is discretised based on user preference. MAP-Elites will

then search for solutions for the highest performance measure with a variation of each

interest. For example, if MAP-Elites was tasked with finding the morphology for a fast

robot and the interests were size, weight, and energy consumption. MAP-Elites will

search for the fastest robot that is tall, heavy, and efficient; the fastest robot that is

tall, heavy, and inefficient, the fastest robot that is tall, light, and efficient, etc. The

interests could be established directly in the genotype or may require evaluation in the

phenotype while it performs. MAP-Elites describes the accumulation of interests as

features, and each feature has a cell. Cells allow individuals to compete in niches to

gain occupancy of the cell. There is no guarantee that all cells in the feature space will

be filled, as individuals may not be found during search or they may not be possible.

The pseudocode for Map-Elites can be found on the next page.

Like with previous divergent search algorithms, quality of solutions is dependant on

the behaviour characterisation; how behaviours are calculated and compared. Studies

on behaviour characterisation quality misalignment have shown that in simple domains

the solution discovery is slower with passable solutions but in much more complex

domains QD breaks down without the appropriate behaviour characterisation [178,

179].

62

2.3. Diversity

Algorithm MAP-Elites Algorithm (Simple, Default Version)
(P ← ∅,X ← ∅) . Create an empty, N -dimensional map

of elites: {solutions X and their perfor-
mances P}

for iter = 1→ I do . Repeat for I iterations

if iter < G then . Initialise by generating G random solu-
tions

x′← random_solution()

else . All subsequent solutions are generated
from elites in the map

x← random_selection(X) . Randomly select an elite x from the map X

x← random_variation(x) . Create x′, a randomly modified copy of x
(via mutation and/or crossover)

b′← feature_descriptor (x′) . Simulate the candidate solution x′ and
record its feature descriptor b′

p′← performance (x′) . Record the performance p′ of x′

if P (b′) = ∅ or P (b′) < p′ then . If the appropriate cell is empty or its
occupants’s performance is ≤ p′,then

P (b′) ← p′ . Store the performance of x′ in the map of
elites according to its feature descriptor
b′

X (b′) ← x′ . Store the solution x′ in the map of elites
according to its feature descriptor b′

return feature-performance map (P and X)

63

2.4. Discussion

2.4 Discussion

The preceding sections provide an overview of all the relevant techniques that were

reviewed and considered for this work. The following section will discuss ideas on

how these findings affect work related to motion planning. It has been identified

that indirect and developmental encoding are most effective in high-dimensional task

domains, while direct encodings are ideal for low dimensional domains. For motion

planning, the dimensional size will be decided by the architecture and implementation.

Artificial potential field implementations map the real space into a configuration space,

a mapping of the geometry into discrete positions. This space is then transformed for

robots to interact with. The obvious configuration space in a NE approach will be

the representation of discrete spaces as neurons in an ANN. Next, the topology of this

network.

To accommodate unknown and unforeseen future tasks, and also to refrain from bi-

asing the search space, the motion planning network should be a versatile architecture.

This means accommodating for; reactive behaviours, in which agents are navigating

objects in a local space; deliberative behaviours, in which agents must traverse a long

distance to obtain the goal; and a combination of the two. From an ANN perspective,

each neuron in the environment should have a relationship with each other to achieve

this range of behaviours. But, this would produce high dimensional search spaces as

environment sizes increase. However, as Fekiac identifies, exactly how the network

size contributes to solving a problem is not known when comparing between direct

64

2.4. Discussion

and indirect encoding; instead, putting greater emphasis on the regular and modular

architectures [61]. Therefore, we do not yet have a grasp on how large of an envi-

ronment direct encoding could accommodate or whether it is even suitable for small

environments. For this reason, the initial experiments will focus on the scalability of

each approach.

For the initial experiments NEAT and HyperNEAT have been chosen to cover

direct and indirect encoding methodologies. It was established that on benchmark

tasks, that if an appropriate topology was previously known, a fixed topology method

would outperform NEAT, as was seen with SANE, ESP, CoSyNE on the double pole

balancing task. However, benchmarks have been criticised by Stanley stating

"The problem is that benchmark performance may not correlate to the long-term goal

of the field, which is to discover encoding with the expressive capacity demonstrated by

the complexity of natural organisms" [214].

With this in mind, NEAT and other TWEANN methods provide the unique trait

of further abstracting the human experimenter from the task in the aspiration that

evolution alone is capable of finding an appropriate solution. HyperNEAT has proven

itself in a great number of varied domains, including the desirable trait of scaling up

to domains which would require workarounds with NEAT, such as in Go. Both share

many similarities in terms of the evolutionary process due to NEAT being used in the

construction of the CPPN. The connection between the two allows changes in the task

domain or evolutionary process to have reasonably similar effects. Both, also, have a

65

2.4. Discussion

wide array of valuable extensions which provide avenues of further exploration.

Genetic diversity shows a great variety of ways in which evolution’s outcomes can

be enhanced with simple changes to the evolutionary process; with many compatible

with each other. However, each will not necessarily be a direct and effortless solution

to a problem. Take for instance NS, this would not be effective in an environment

that already provides a clear gradient to the result. Encoding techniques may also

include diversity mechanisms as part of their established benefit; such as concepts

outlined in crowding and fitness sharing are seen in speciation within ESP, NEAT,

HyperNEAT etc. The section provides resourceful methods and means to overcome

common problems in NE if they become evident during experimentation; but, at this

stage would disturb results which could already be achieved with a simple GA.

66

3| Experiment Domains

3.1 Overview

Simulations in evolutionary computing allow researchers to evolve and study behaviours

through observable periods of evolution in an achievable and realistic time frame. These

types of simulations can range from coevolution [267, 27], morphological evolution

[8, 18], predator and prey behaviours [71] etc. Computer models may not represent the

biological reality with sufficient fidelity and it is unclear whether conclusions drawn,

in silico, can be transferred to the carbon-based biological medium; yet, evolutionary

computing can still provide an understanding of how things work [58]. In the case of this

thesis, the predominant focus is creating an evolvable motion planning network that

reproduces the behaviours of artificial potential fields; used prominently in evolutionary

robotics [247, 240]. Motion planning may appear as an engineering challenge, however,

when combined with other networks, motion planning can produce agents with life-like

responses in a physics-based environment; a natural biological phenomena to observe

[222]. A simplified version of this domain will be used for this work known as the

River Crossing Task (RC Task) (section 3.2). The RC Task has been used numerous

times as a test domain and the discoveries from this research are instantly applicable

67

3.2. River Crossing Task (RC Task)

to those works, and other domains like it. Later in the thesis, a common multi-domain

benchmarking platform known as the Arcade Learning Environment (ALE) (section

3.3) is utilised. This provides a variety of domain types and is useful for evaluating

the general-purpose competence of evolvable solutions; allowing researchers to compare

and contrast performance.

Resource

River

Stone

Trap

Animat

Figure 3.1: RC World environment (left) with the corresponding activity
landscape (right) produced via Shunting Model (SM). Activity from desirable
states propagates through the network to create an activity landscape. The dynamic
activity landscape is used to determine where the next robot position is. Red is the
highest activation value; Blue is the lowest. Clustered desirable objects cause greater
areas of activity (see stones compared to resource).

3.2 River Crossing Task (RC Task)

The RC Task is a hierarchical task where higher-level decisions require the use of

lower-level skills. It was devised in Robinson et al. [192] to demonstrate high-level

deliberative and reactive behaviours produced by a modular neural architecture. The

neural architecture consists of a Shunting Model (SM) (section 3.2.2) with static weights

68

3.2. River Crossing Task (RC Task)

and a Decision Network (DN) (section 3.2.1) with evolvable weights. The DN’s weights

were evolved via a steady-state genetic algorithm. Fitness is based upon animat’s

ability to locate a resource in a 20x20 discrete world. Then, tournament selection was

used for each iteration, with three animats evaluated and the worst performer replaced

by a new offspring created from a combination of the other two. The goal of an agent

is to navigate to the target resource in each two-dimensional RC world, within 100

time-steps, while avoiding harmful objects. Once the resource is obtained, the agent

proceeds to the next RC World. Each world increases in complexity via an expanding

river obstruction between agent and resource. Agents must evolve to move randomly

positioned ‘stones’ to build bridges to cross the river, in order to complete the more

challenging RC World environments.

RC worlds are constructed on a 20x20 bounded grid in which each cell contains

zero or one of each of four object types: stone, trap, water, and resource. A cell

containing none of these four object types is deemed to contain grass. Stones and

traps are initially placed into each environment at random while water is positioned

deterministically. Moving on to a trap or water kills an agent. Stones are movable

objects: they can be picked up and dropped on grass or water. If one is dropped on

water then the water object is converted into a grass object. Complexity is enforced

by water placed across the world, creating a river obstacle between the agent’s starting

position and the resource. When placed on water, stones can be used to build a bridge.

Fitness is a discrete value from 0 to 4, determined by the number of RC worlds in

which the agent reaches the resource. Hence rewards are sparse, with no contribution

69

3.2. River Crossing Task (RC Task)

to fitness from partly completing an environment by moving nearer to the resource or

building part of a bridge. Agents are evaluated first in a world with river width 0 (no

river), then 1, 2, and 3, stopping at first failure.

Figure 3.2: Neural Architecture for the RC Task. On the left, the decision
network controller. The output neurons are P = pick up/put down; R = resource; S
= stone; W = water; T = trap. The input neurons are G = grass; R = resource; S
= stone; W = water; T = trap. On the right, the shunting model a motion planning
model. Each neuron represents a possible state of the system and is connected to
a subset of it’s Moore neighbourhood; this subset is called the receptive field, and
represents all the states that are reachable from the current state.

3.2.1 The Decision Network (DN)

The DN is a standard feed-forward neural network. Topology consists of six inputs,

four hidden nodes and five outputs. Five inputs are binary to represent the presence

or absence of each object type (including one for grass) on the current agent’s position.

70

3.2. River Crossing Task (RC Task)

Figure 3.3: Illustration of the relationship between the RC Task and neural
network. Attributes at the agent’s position determine inputs to the Decision Network.
Attributes of the RC World are converted to iota values via the Decision Network
outputs and mapped to the corresponding position of the attributes (2). This is a
static pre-processing stage to prepare the inputs for the Shunting Model. A 20x20
matrix of iotas are passed to the Shunting Model and activated (3). The activity
landscape is a visual representation of Shunting Model’s output after completion.

71

3.2. River Crossing Task (RC Task)

The sixth input represents whether or not the agent is carrying a stone. Four outputs

correspond to the desirability of each object type and the fifth determines whether

the agent should pick up (positive output) or put down (negative output) a stone; the

architecture can be seen at figure 3.2. All hidden and output neurons use a hyperbolic

tangent activation function. Output values that are below, within, and above the range

[−0.3, 0.3] are converted to −1, 0, and 1 respectively. The normalised output values

from the DN are multiplied by 15 to supply numbers that indicate the desirability to

the agent of objects in each cell of the environment. We refer to these desirabilities

as iota values. Desirable objects refer to those that agents would like to traverse to,

undesirable objects are one in which agents seek to avoid.

3.2.2 The Shunting Model (SM)

The SM is a topographically-ordered neural network; mapping the environment domain

to discrete neuron positions in the network. The function is to produce a collision-free

trajectory between two positions in a dynamic two-dimensional environment. The

trajectory being a varying path that changes as the environment does. By following a

steepest gradient ascent rule, agents can maneuver to desirable locations while avoiding

undesirable objects. Each neuron in the neural network has only local connections to

its Moore neighbourhood. The trajectory is generated without explicitly optimising

any cost functions and without any learning processes.

First used in Meng and Yang [148], the SM was applied to real-time robotics to

solve maze-type problems by mapping the physical environment to positional neurons.

72

3.2. River Crossing Task (RC Task)

Activity from desirable states propagates through the network to create an activity

landscape. The dynamic activity landscape is used to determine where the next robot

position is. Peaks form at objectives and troughs at undesirable positions. In the RC

Task, the input for the SM are the objects iota values produced via the DN and placed

in positions that topographically correlate to the RC world’s object positions. The

activity values are then produced by diffusing iota values via the following equation:

xnewi = min

(
1

8

∑
j∈Ni

[
xj

]+
+ Ii,max I

)
(3.1)

where xnewi is the activation of neuron i; Ii is the external input determined by the

iota value of the object present in cell i; Ni is the receptive field of i and maxi is the

maximum iota value (15). The receptive field represents all the states that are reachable

from the current state, in this case the cells in its Moore neighbourhood. Usually, the

receptive field is eight cells but boundary cells vary from three to five cells. Equation

3.1 is iterated fifty times to allow activity to propagate and stabilise across the 20x20

array of SM neurons, as shown in figure 3.4; the amount of times equation 3.1 is iterated

is dependent on the size of the RC World/configuration space. Agents move to the

neighbouring cell with highest activation (gradient ascent). Early RC implementations

of the SM used a real-time (differential) form of this update equation but in more recent

work the implementation has changed for simplicity and clarity while maintaining the

desired behaviour [222, 223]. This implementation keeps all weights static at 1
8 .

73

3.2. River Crossing Task (RC Task)

Figure 3.4: Visual of activity landscape from iteration 1 to 50. From left to
right, vertically down, a snapshot is taken of the activity landscape at various iterations
of equation 3.1. Activity from desirable states propagates through the network to create
an activity landscape. Peaks form at objectives and troughs at undesirable positions.

74

3.3. Arcade Learning Environment (ALE)

3.3 Arcade Learning Environment (ALE)

ALE is an evaluation platform that poses the challenge of building AI agents with

general-purpose competency across Atari 2600 games. Originally introduced by Belle-

mare et al. [13], ALE provides a standard interface in which agents provided with

raw pixel information choose an allowed action. Agents are provided no game-specific

information. The challenge is to find policies through a high-dimensional state rep-

resentation on a variety of tasks; evaluating the general-purpose competence of an

agent. As each game requires a different strategy, agents are able to be compared

and contrasted in where they excel or exhibit a weakness. For example, APE-X vastly

outperforms a majority of any counterpart strategies [99]. But, DQN [157], A3C [158]

Deep Neuroevolution [226], HyperNEAT [94], Evolutionary strategies [194] etc clash

from game to game for superior results. Atari games are free from experimenter’s bias,

in which a task has been constructed to demonstrate a specific behaviour. Instead,

the creation was intended as a human challenge, which in turn provides an interesting

comparison to human performance.

HyperNEAT was one of the first major successes in utilising the ALE platform.

This was later supplanted by the highly publicised DQN. DQN was the first algorithm

to achieve human-level control in a large fraction of Atari 2600 games; this architecture

can be seen in figure 3.5. Beyond this point, research remained largely with reinforce-

ment algorithms with a broad array of techniques, such as Gorila DQN [170], DDQN

[243], Prioritised DDQN [198], Dueling DDQN [249], A3C [158], NoisyNet [63], Dis-

75

3.3. Arcade Learning Environment (ALE)

tributional DQN [14], QR-DQN [40], Rainbow [98], APE-X [99], IQN [41] etc. But,

with the introduction of deep neuroevolution and evolutionary strategies there was a

renewed interest in pursuing evolutionary techniques with large ConvNets. Especially

considering deep neuroevolution was achieved using a simple GA and not implementing

the breadth of performance improving techniques developed over the decades in low

dimensional NE domains, see chapter 2.

Figure 3.5: Schematic illustration of the convolutional neural network for
DQN in ALE. The input to the neural network consists of an 84x84x4 image produced
by the pre-processing mapw, followed by three convolutional layers (note: snaking blue
line symbolises sliding of each filter across input image) and two fully connected layers
with a single output for each valid action. Each hidden layer is followed by a rectifier
non linearity (that is, max(0, x)).

76

4| Evaluating Scalable Motion Planning with

Direct and Indirect Encoding

4.1 Introduction

This chapter examines the practicality of using NEAT and HyperNEAT as a solution for

motion planning at scalable environment sizes; in this specific instance, the replication

of SM behaviour (section 3.2.2). The RC Task has shown that when a hybrid neural

architecture is tasked with completing a sparse reward challenge, it is able to do so

while exhibiting difficult reactive and deliberate behaviours. This hybrid model relies

heavily on its motion planning system (the SM) with its behaviours produced via a

static equation. Therefore, the motion planning system is unaffected by an evolutionary

process and ultimately restrains the model to this specific domain, or tasks similar to

it. Yet, the behaviours produced via this model are desirable for other architectures,

and domains which require greater long term planning. The goal of this chapter is

to replace the static motion planning network with an evolvable solution (NEAT and

HyperNEAT) that can change the path planning behaviours to the domain. This will

be split into two sections, first scalability.

77

4.1. Introduction

Motion planning approaches like the SM (artificial potential fields) convert the

task environment, or physical space, into a configuration space, a finite virtual space.

This requires the utilisation of the entire environment for paths to be created between

any two points. For the RC Task, this will mean that the RC world will be the

configuration space and will be the input for the evolvable solutions. The output is

the same dimensionality as the input and creates a two dimensional space of gradients,

with peaks and valleys; this is referred to as the activity landscape. As a result, the size

of the RC world will be a contributing factor in the difficulty of this task; potentially

larger genomes and a need for greater deliberate path planning. Scalability focuses on

whether evolvable solutions can utilise an increasing input size to produce adequate

path planning to complete the task. In the original RC task, the world was a 20x20

discrete matrix, but before attempting this large input size, the task domain will be

reduced in complexity. The simplest possible RC world instance will be evaluated and

incrementally increased; all while monitoring agent’s performance. This will assess

whether our chosen methods (NEAT, HyperNEAT) are capable at scaling.

Next, the quality of the solutions will be an important consideration. If evolv-

able approaches are not meeting similar, or equal, standards compared to the static

approach they would not be adequate as replacements. The factors that will be con-

sidered are efficiency, training, and robustness. Training will be a comparison between

approaches as the SM does not undergo training, but both efficiency and robustness

can be compared to the static solution. Efficiency will express to what quality were the

motion planning solutions producing the shortest possible paths to complete the task

78

4.2. Experiment #1

in the same environment. For a successful RC Task solution, multiple different paths

are needed at various stages, especially during the bridge creation stage. Robustness

will express how successful each motion planning solution is on a variety of different

RC worlds. For an evolvable solution to be applicable both of these will be important

traits.

4.2 Experiment #1

In this initial work, NEAT and HyperNEAT will participate in an evolutionary process

to achieve motion planning behaviour that could be effective in a task that requires

long term deliberative planning (RC Task). The focus of these experiments is to assess

if either could scale a configuration space (input) to the original RC world size (20x20)

while still being effective at motion planning. NEAT and HyperNEAT evolve networks

that receive input as a representation of the current world state and output an activity

landscape; an identically sized space with gradients of peaks and valleys. The RC

Task is executed as laid out in section 3.2 and follows a gradient ascent rule on the

network’s output. Restrictions on the RC Task are laid out below; including how the

task world is able to scale and exclusion of the DN in the evolutionary process. To

be successful, networks must be able to create motion planning rules that complete

the RC world at its highest difficulty, in this case, building a connecting river of three

stones and reaching the resource. The evolutionary process of NEAT and HyperNEAT

remain the same as laid out in sections 2.1.5 and 2.2.6, respectively. Although, both

79

4.2. Experiment #1

have their own independent parameters which are explained in the sections below and

justifications for the parameters chosen for this experiment setup. Experiments have

10 evolutionary runs each for 200 generations, or until the highest fitness is achieved

(4.0).

4.2.1 Experiment Setup

RC Task

The focus of this experiment is replacing the SM from the RC Task; that is, a network

able to create pathways to desirable objects in a stochastic environment. For this

to be the focus, aspects of the RC Task are restricted. First, the DN will not be

included in the evolutionary process, instead, it will evolved to the fittest behaviour

with the original SM and remain at that state while NEAT and HyperNEAT evolve;

this is referred to as the pre-evolved DN. This is necessary as the DN dictates what

is desirable and undesirable in the environment. The correct iota values are necessary

for a motion planning network to complete the task domain. If they were to evolve

concurrently then focus is taken away from strictly motion planning, which is why only

the motion planning network (NEAT and HyperNEAT) will be evolved.

Next, the SM has the ability of obstacle avoidance but this is not a feature of this

network, instead, the focus is purely on the rudimentary behaviour of creating pathways

to desirable objects. As opposed to completely removing traps from the environment

they are mitigated. This has been decided for two reasons. First, the rudimentary

80

4.2. Experiment #1

behaviour of deliberate traversal to activity peaks is not yet known and should be the

focus before adding to task complexity. Secondly, both NEAT and HyperNEAT would

need further network considerations, such as topology or activation function changes.

(1) Activation functions would have to change to ReLU, which is not a common function

with standard NEAT and HyperNEAT approaches and (2) HyperNEAT would require

an addition of a hidden layer or separate inputs for negative and positive values. This

appears to be future consideration and out of the scope for this chapter. To mitigate

traps, a negative iota (−1) value will be applied to the activity landscape (the output

of NEAT and HyperNEAT) at the position of traps.

RC world size is the next contributing factor to performance. Each input of both

NEAT and HyperNEAT will be the configuration space of the RC world; configuration

space being the physical space translated to a finite virtual space. Each input cell

will map to discrete positions in the RC World. So, inputs are represented as two-

dimensional planes of two discrete integers (4x4,5x5,6x6 etc). The values passed to

the networks will be the iota values of each object in the environment, leaving a two-

dimensional matrix of 1s, 0s, and −1s. Direct encoding will see a square growth in the

initial genome size as the RC world grows. This is due to the genome containing each

weight for the network and connection size will grow by the square of input, this is

clearly illustrated in figure 4.2. Whereas, the genome in the indirect encoding method

will not scale; only the substrate size will require changing. To target this for analysis

the world will be incrementally scaled. Starting at the smallest possible size (4x4)

the world will increase towards the original size (20x20); Traps and Stones scale also.

81

4.2. Experiment #1

Agents will follow the highest activation neighbour in their Moore neighbourhood with

radius 1. This remains the same from the conventional RC Task and other HyperNEAT

implementations [93].

Fitness Function

The original fitness function used by Robinson et al. [192] (i.e. the number of RC worlds

in which the agent reaches the resource) is not a good assessment of the agent’s general

performance. As this work aims to find an SM replacement, general performance is a

core aim. Rather than the original fitness function (the number of RC worlds solved)

for greater granular feedback, the new fitness function uses the mean performance score

from 10 RC Task runs. Agents will have to consistently build bridges in different en-

vironments to survive. From a biological perspective, the task is now taking place in

a larger RC environment; with the 10 RC worlds being interactions within the larger

world. Also, greater fitness granularity allows the evolutionary process to exploit spe-

ciation; which both approaches use. By allowing 41 discrete fitness values, as opposed

to 5, individuals are able to form in species (section 2.1.5) which represent their general

performance and allow greater diversity in the population.

NEAT

Stanley et al. (2002) established the importance of an initial population of small fully

connected networks using NEAT. However, as the RC world sizes grow, there will

82

4.2. Experiment #1

Figure 4.1: Illustration of the sandwich substrate. A single two-dimensional
sheet of neurons fully-connected to another two-dimensional sheet. Used as a common
HyperNEAT substrate.

be no apparent way to keep network size and connections size down. Other works

explored networks with no initial links, requiring mutations to form the network [252].

However, as the RC world increases, a non-connected network would require greater

link mutations in order for every cell to comprehensively communicate. So, for this

model, the initial population will continue to be fully connected. In some ways, this

approach is closer to a static ANN and does not exploit the properties of TWEANN.

However, NEAT has shown an ability to perform as a static ANN solution over standard

direct encoding methods. The topology will consist of a fully connected single layer,

including recursive links depending on the parameters chosen.

NEAT, and HyperNEAT, has over 30 parameters to adjust the evolutionary process.

These parameters encompass; all possible mutations; various crossover approaches and

83

4.2. Experiment #1

speciation options, such as threshold percentages. To rule out the possibility that

NEAT’s parameters are tuned incorrectly for this experiment, a broad set of four NEAT

parameters sets were chosen across the NEAT package suite, which have shown success

in other challenging tasks. Each includes unique traits. Around 60% of the parameters

in each set are equal, notably producing identical parameters for crossover, though the

sets differ in their approach to topology mutation, weight mutation, speciation, and

population size. Below are the key differences between each strategy:

• NEAT01 - Small population. A focus on weight optimisation rather than topol-

ogy.

• NEAT02 - Large population with large number of species.

• NEAT03 - Large population with small number of species.

• NEAT04 - Small population. Small Mutation Rates. Significantly smaller drop-

off age than NEAT01.

Above highlights the main comparative differences between the data sets. The

full list of parameters differences can be seen in table 4.1 with an explanation of the

parameter’s function.

HyperNEAT

HyperNEAT uses two networks, a CPPN and a substrate. The CPPN encodes the

connectivity pattern of the substrate. The substrate is an ANN whose nodes simulate

84

4.2. Experiment #1

NEAT Parameters 01 02 03 04 Explanation
weigh_power 2.5 1.8 1 1 Power of a link weight mutation
mutdiff_ coeff 2 3 7 2 Coefficient for mutation differ-

ences for speciation
compat_ thresh 3 4 9 3 Threshold for the genotypes the

same species based on the com-
patibility number

survival _thresh .2 .4 .4 .2 Percentage of a species popula-
tion that reproduce

mutate_link_weights .9 .8 .8 .8 Probability to mutate link
weights

mutate_toggle_enable 0 .1 0 0 Probability to toggle genes on or
off

mutate_gene_reenable 0 .05 0 0 Probability to find the first dis-
abled gene and enable it

mutate_add_node .0025 .01 .01 .0025 Probability to mutate genome by
adding a node

mutate_add_link .1 .3 .3 .1 Probability to mutate the
genome by adding a new link
between two random Nodes

recur .2 .05 .05 .05 Convert a link to a recurrent link
interspecies_mate_rate .05 .001 .01 .001 Probability to mate outside of

species, with a bias towards bet-
ter species

pop_size 256 1000 1000 256 Population Size
dropoff_age 1000 15 15 15 Dropoff age dictates when stag-

nation has taken place in the pop-
ulation by comparing the number
of generations since the previous
fittest individual. If beyond this
parameter species are consisered
dying and offspring will not be
given to that species.

Table 4.1: Parameter differences for each NEAT experiment set. Each param-
eter is explained on the right hand column.

85

4.2. Experiment #1

Figure 4.2: Visual example NEAT & HyperNEAT’s topology for various
RC world sizes. NEAT’s topology may change throughout the evolutionary
process.

a coordinate system to represent the topology. The substrate design is important to

the performance of HyperNEAT, but general-purpose substrate designs have proven

successful in a variety of different task domains [32]. The sandwich substrate is one

highlighted in existing literature; this is a single two dimensional sheet of neurons

fully-connected to another two-dimensional sheet; can be seen at figure 4.1. It has

been used successfully in locomotion tasks in which there is no obvious geometric

relationship between sensor positions and substrate inputs [32, 130]. To avoid the bias

of expert domain knowledge, this work uses the sandwich substrate with 20x20 input

and output layers. Additionally, links with weight values less than 0.2 or greater than

-0.2 are retained to allow greater nuances in the encoding pattern; previously these

were discarded.

HyperNEAT’s parameters have been found vital for tuning [213]; however, the pa-

rameters within the original package for Checkers, Go, and Robot Arm remain similar

with only the topological mutation rate and population size deviating for each experi-

86

4.2. Experiment #1

Figure 4.3: Neural architecture for experiment #1 & #2. Attributes at the
agent’s position determine inputs to the Decision Network. Attributes of the RC
World are converted to iota values via the Decision Network outputs and mapped
to the corresponding position of the attributes (2). This is a static pre-processing
stage to prepare the inputs for the NEAT/HyperNEAT. A 20x20 matrix of iotas are
passed to the NEAT/HyperNEAT and activated (3). The activity landscape is a visual
representation of NEAT/HyperNEAT’s output after completion.

87

4.2. Experiment #1

ment. These experiments are distinctively different in what they are trying to achieve

in their task domain. The robot arm experiment models the kinematics and dynam-

ics of a two-dimensional muscular hydrostat as a chain of quadrilateral polygons with

fixed area connected to a fixed base [257]. Inputs are provided via sensors that infer

the position of each segment relative to a target. The goal is to reduce the distance to

the target; with training reaching the smallest distance within 3000 generations and

16 arm segments. Checkers [66] and Go [67] both share an identical substrate, yet

are both able to adapt to each domains rules. Go, winning 8 out of 10 games on a

5x5 board, and 6 out of 10 on 7x7 after 100 generations. And Checkers, achieving an

average of 60% of wins on a 8x8 board. Each experiment has found success in their

domains and therefore, without specialist knowledge on tuning parameters, the default

parameters should offer no resistance in HyperNEAT achieving a general close repre-

sentation of what it can achieve overall. As tasks become more complex, the original

packages seem to favour a lower than average topological mutation rate (0.05%) and a

large population size (1000); these changes will be used in this work.

Finally, HyperNEAT is used in this work over the more advanced HybrID and

ES-HyperNEAT, due to this task’s requirements. Until recent extensions to HybrID,

which uses both direct and indirect encoding, a pre-known evolutionary generation

was required to switch encoding strategy once performance had plateaued [97]; domain

specific knowledge, such as this, will be avoided in this work. ES-HyperNEAT is only

applicable for networks with hidden layers, which this task does not require, due to

the theoretical simplicity of a successful encoding pattern.

88

4.2. Experiment #1

Table 4.2: Possible activation functions
Type Equation
Sigmoid f (x) = 1

1+e−x

Sinusoid f (x) = sin(x)

Gaussian f (x) = ae
−
(x−b)2

2c2 a, b, and c are constants
Identity f (x) = (x)

Figure 4.4: NEAT, HyperNEAT, and Random mean fitness on various RC
world sizes. Fitness is taken from fittest individuals from twenty-five evolutionary
runs of the RC Task. Error bars represent standard deviations. Fitness is the mean
score over 10 RC Task worlds.

4.2.2 Results

Figure 4.4 compares the fittest individuals of all approaches obtained from twenty-five

evolutionary runs. The scores show the mean fitness of the fittest individuals in each

89

4.2. Experiment #1

run. The results shown are taken from RC world 4x4 to 10x10. A negative correlation

can be seen in all NEAT approaches as the world size increases. Using a Two-Sample

t-test (P < 0.001) between NEAT and Random, all NEAT parameters achieve a sta-

tistically significant difference in smaller world sizes (4x4 and 5x5). However, as the

world size increases, each NEAT parameter set becomes indistinguishable from Ran-

dom. This persists until 10x10 in which Random then takes a statistical advantage.

In contrast, HyperNEAT was able to consistently find a behaviour that could achieve

the highest fitness in every run on each world size up to 20x20, not displayed in Figure

4.4.

To analyse the most successful networks further, training continued on 4x4 until

there were 10 successfully trained networks that were able to complete RC world at river

width 3; the results can be seen in table 4.3. The features of the evolutionary process are

captured as mean averages and all sets of 10 runs undergo a two sample t-test. When

referring to significance the p value between sets were below 0.05. Observing the data

in table 4.3 and the parameter differences at table 4.1, ‘dropoff_age’ and ‘pop_size’

appear to have the most impact on how evolutionary features appear. First, the focus

will be on topological growth, which is additional topology features added after the

initial genome (node and links).

Each parameter set saw no significant difference in additional links created; all av-

eraging around 26-38 per successful solution. It might be expected for NEAT02 and

NEAT03 to produce a greater amount of links due to the higher ‘mutate_add_link’

variable. The lack of significant difference is likely tied to the statistical similarity of the

90

4.2. Experiment #1

Mean Average P Value
NEAT 1 2 3 4 Node
Node 1 2.4 3.3 1.6 1 2 3 4
Links 30.9 30.7 37.9 26.2 1 0.031429 0.000954 0.000954
Age 335.7 7.1 9.2 12 2 0.031429 0.286801 0.250205
Generations 474.1 93.7 129 118.9 3 0.000954 0.286801 0.013225
Species Num 180.8 793.3 523.1 243.1 4 0.000954 0.250205 0.013225

Links
1 2 3 4

1 0.972788 0.207682 0.347504
2 0.972788 0.332344 0.521124
3 0.207682 0.332344 0.089649
4 0.347504 0.521124 0.089649

Age
1 2 3 4

1 <.00001 <.00001 <.00001
2 <.00001 0.433538 0.099622
3 <.00001 0.433538 0.291547
4 <.00001 0.099622 0.291547

Generations
1 2 3 4

1 <.00001 <.00001 <.00001
2 <.00001 0.117403 0.298518
3 <.00001 0.117403 0.660978
4 <.00001 0.298518 0.660978

Species
1 2 3 4

1 <.00001 <.00001 0.041188
2 <.00001 0.003748 <.00001
3 <.00001 0.003748 0.000449
4 0.041188 <.00001 0.000449

Table 4.3: Table consists of 10 RC world runs at 4x4 size with each NEAT parameter
set. The first table shows the mean of successful network solutions and their evolu-
tionary features. This consists of; the number of additional nodes added; additional
links added; the age of the species the network was within; a number of generations it
took to obtain a solution and the number of species recorded through the evolutionary
process. The remaining tables show p-values from comparisons of each parameter set’s
evolutionary features. Those in bold are statistically significant (p <0.05).

91

4.2. Experiment #1

number of generations between NEAT02, NEAT03, NEAT03 not allowing enough evo-

lutionary time to see divergent topologies. This, however, does not apply to NEAT01

which saw a statistically higher number of generations to find successful solutions. This

is linked to NEAT01s much higher parameter for ‘dropoff_age’ ; which dictates when

stagnation has taken place in the population by comparing the number of generations

since the previous fittest individual. As a result, NEAT01’s initial species are extremely

improbable to die out due to the high drop off age being 1000 and generations to find

a successful solution averaging around 474.1. Coupled with a much higher likelihood

to have an inter-species crossover (interspecies_mate_rate) topologies similar to the

original will propagate throughout the evolutionary process. NEAT01 leaning towards

topologies with fewer nodes can also be explained by the bias towards weight optimisa-

tion in the parameter set; with the highest parameter value for ‘mutate_link_weights’

and having the lowest for parameters which would cause topological mutation; ‘mu-

tate_add_node’, ‘mutate_add_link’ and ‘recur’.

The number of species generated sums the amount of new species created through

the evolutionary process. Counting species is a loose metric of how diverse the popu-

lation was through evolutionary training; the metric is loose as each set has different

parameters for ‘compat_thresh’ and ‘mutdiff_coef ’ which would affect how each set

defines a species. Each parameter set saw a statistical difference to species generated

compared to each other. A factor to take into account, with repeated runs of the same

parameter, a correlation emerges between greater generations and greater numbers of

species generated. So, comparing parameter sets is not a direct relationship, however,

92

4.2. Experiment #1

we can find some interesting observations. NEAT01 has a significantly lower number

of new species despite having a significantly higher average generation count compared

to other approaches. This again is due to the higher ‘dropoff_age’ and reinforces what

was stated earlier about a lack of diversity in the evolutionary process. NEAT02 and

NEAT03 see a much higher sum of species due to the greater population of nearly four

times that of NEAT01, NEAT04. The larger ‘compat_thresh’ in NEAT03 seems to

explain the difference between the two sets as this would allow much larger differences

in genotypes being part of the same species. NEAT04 displays, again, how a smaller

population size creates less opportunities for diversity in the population. Yet, NEAT04

produced the best results of the parameters sets for worlds 4x4, 5x5, and 6x6. For this

particular experiment, a reduced age drop off and reduced population appear to be the

apt approach. This can only be deduced for smaller RC world sizes and beyond that

direct encoding does not seem appropriate for this task.

4.2.3 Discussion

This chapter found that NEAT was unable to produce the fittest behaviour in the RC

task consistently, even at the smallest world size. As world sizes increased the fitness

decreased until agents could not make it past the first RC world. On the other hand,

HyperNEAT was successful for all RC sizes and did so consistently. The scalability

of indirect encoding is a known benefit but due to the success of smaller world sizes

also suggests that HyperNEAT inherently has greater beneficial attributes for motion

planning. This will be analysed in greater detail in the next chapter.

93

4.3. Experiment #2

Scalability is already a known issue with fully connected direct encoding methods.

There could be a suggestion that the incorrect architecture was used here. For example,

with the game Go, NEAT used a roving eye technique which would limit inputs to a

specific section instead of the entire board [218]. However, something like a roving eye

creates behaviours that would focus only on the immediate neighbourhood. Although

this may be a flexible solution for the agent to show reactive behaviour (i.e moving

away from traps), agents wouldn’t be aware of objects at a distance (i.e. the resource).

Furthermore, NEAT was unable to produce appropriate motion planning at relatively

small world sizes of 12 maximum cell positions, where HyperNEAT was successful.

So rather than just scalability, NEAT’s problem with motion planning may be due

to the lack of weight patterns that exploit regularity and repetition. It could also be

attributed that mutations would take generations to exhibit meaningful change, as it

would be based on a node by node basis. A change in the CPPN in HyperNEAT allows

a dramatically different weight matrix on the substrate via single mutation.

4.3 Experiment #2

The following experiment will be similar to the previous section (section 4.2) with four

key changes:

1. The size of the RC world will remain at the original 20x20 as in Robinson et al..

2. The original and updated fitness function (section 4.2) will be evaluated together.

Originally being the fitness over 4 RC Task worlds, the fitness modification being

94

4.3. Experiment #2

the mean of 40 RC worlds.

3. Agents that achieve the highest fitness will be simulated through a Robustness

Test; which simulates agents through 104 static RC world configurations with all

river width sizes. This task assesses the agent’s general performance.

4. Two CPPN input variations will be simulated. Standard CPPN inputs for the

majority of HyperNEAT experiments include x1, x2, y1, y2, and a bias. The x

and y positions are referencing the position in a 2-D plane of the input neuron and

output neuron in the substrate. The input for these neurons are the normalised

value of each neuron’s position in the substrate. Delta inputs (x1 - x2) (y1 - y2)

are included in certain experiments which allow patterns to emerge from relative

distances. Delta may aid in the SM’s reliance on relative patterns, as activity

values degrade greater the further away from a desirable object they are.

A comparison between delta and non-delta will reveal whether distance informa-

tion yields benefits in this task, or if absolute inputs can achieve the same quality

results, as seen in other work [65].

4.3.1 Results

For each HyperNEAT approach, twenty-five evolutionary runs for 200 generations were

carried out on the RC Task. Each approach is separated with the use of a fitness

modifier and delta inputs. Each method is named as follows:

• F-D: Fitness Modification with Delta inputs

95

4.3. Experiment #2

• F-nD: Fitness Modification without Delta inputs

• nF-D: No Fitness Modification with Delta inputs

• nF-nD: No Fitness Modification without Delta inputs

The goal is to assess performance of each approach comparatively and against the

SM with a focus on general-purpose performance. Figure 4.6 demonstrates this with an

overview of a population’s performance over generations using the original RC fitness

function and the fitness modification (section 4.2).

Scores for the fittest individuals from all the evolutionary runs were collected and

aggregated, as shown in figure 4.5. From this graph every run was able to solve the

highest level of difficulty the RC Task requires, and maintain it. Each delta counterpart

saw some statistical advantage in early generations over the non-delta inputs (p <

Figure 4.5: Mean fitness of the fittest individuals from twenty-five evolution-
ary runs of the RC Task. Error bars can be seen at each point of fitness and
represents standard deviations; some error bars are obscured by the data points.

96

4.3. Experiment #2

0.05), but this fluctuated each generation and by the 123rd generation there was no

statistically significant difference between strategies.

The fittest agents from each run were evaluated in the Robustness Test:

д(G,n) =

104∑
i=1

f (Ein,G)

104
(4.1)

where д represents the fitness function of the robustness test, taking a genotype

(G) to evaluate and river size (n). f is the fitness function of the task, which takes RC

world (E) with appropriate river size (n). 104 is for the static RC world configurations.

Comparing figure 4.5 and 4.7, it demonstrates that training performance does not

translate to general-purpose performance. RC worlds with river width 0 and 1 achieved

a consistent completion (93-94%) with the fitness modification, with and without delta.

Whereas, the original fitness function’s performance saw a larger deviation and spread

across a lower completion range (80-87%). Then, RC worlds with river width 2 see

a drop in performance on all approaches, and a subsequent drop at river width 3.

Table 4.3.1 displays the p values from a two sample t-test between delta and non delta

approaches. When using the fitness modification, delta inputs provide a significantly

higher completion percentage during the more complicated RC worlds (river width

2 & 3). All approaches with the fitness modification saw a statistically significant

advantage, compared to their counterparts without.

Evolutionary runs were extended to higher generations to assess if fitness had

plateaued in general-purpose performance. This is due to the fact that in figure 4.5

97

4.3. Experiment #2

(a) Original RC Fitness Function (b) Fitness Modification

Figure 4.6: Representation of HyperNEAT’s fitness score in a population
without (a) and with (b) the fitness modification.. The fitness modification
being the mean of 10 RC world runs. Simulated over 200 generations, a maximum
fitness of 4 and population size of 1000.

Figure 4.7: Completion rates of Robustness Test, using each HyperNEAT
approach. Individuals simulated are the fittest at generation 200 from all runs, twenty-
five evolutionary runs, per approach, per river width. Error bars represent standard
deviations.

we see fitness maintaining a high level of consistency in training to achieve fitness 4,

however figure 4.7 shows this does not translate to general performance. By extending

the runs, gains may be achieved in general performance that is not visible in training

98

4.3. Experiment #2

Figure 4.8: Completion rates of Robustness Test at river width 3 using Hy-
perNEAT with and without the fitness modification. Twenty-five evolutionary
runs, per approach, for 500 generations. Error bars represent standard deviations.

Two Sample T-Test (p values)
River 0 River 1 River 2 River 3

F-D
F-nD 0.8902 0.809 0.01796 0.002184

nF-D
nF-nD 0.01862 0.806 0.5363 0.3156

Table 4.4: p values from two sample t-tests between CPPN delta and non-
delta approaches in RC Robustness Test. The original fitness function and fitness
modification are used. Individuals simulated are the fittest at generations 200.

performance. Figure 4.8 displays the mean completion in the Robustness Test at river

width 3 with an extension to 500 generations. Performance for each fitness function ap-

pears to stay relatively consistent with results achieved at the original generation 200.

However, the fittest individual achieved its highest performing completion at genera-

tion 356 and after 300+ generations the performance appears less volatile than in the

preceding generations. The original fitness function appears noisy in general-purpose

99

4.3. Experiment #2

performance. In contrast, the fitness modification can produce greater consistency at

a higher completion rate and in turn produced the fittest individual.

Individuals with high completion percentages in the Robustness Test produced sim-

ilar functioning activity landscapes. However, none resembled the SM. Figure 4.9 shows

an example of activity landscapes produced by an individual with a 95.9% completion

on the Robustness Test at river width 3. Agents which require stones are directed south

of the river by the activity landscape. Once a stone is carried, agents are directed to

the furthest north position with a peak at the resource’s location. This forces the agent

north until interaction with the river, at which point the stone is placed upon the river.

Agents will then again return south to acquire stones, and continue until a bridge is

complete.

(a) RC World (b) Holding Stone (c) Stones Only (d) Resource only

Shunting Model

HyperNEAT

Figure 4.9: RC worlds (below) with their corresponding activity landscapes
(above). Each activity landscape is produced by the fittest individual in the Robust-
ness Test with the Shunting Model and HyperNEAT.

100

4.3. Experiment #2

4.3.2 Discussion

No HyperNEAT implementation could produce the same quality of deliberate, robust

motion planning when compared to the SM at any river size. Solutions at river width

0 and 1 produce relatively consistent results, but a performance degradation occurs at

river width 2 and there is a further drop at river width 3. Beyond river width 1 the task

requires new behaviours: such as; the deliberate movement from river to stone after a

stone placement and constructing a connecting bridge. Each increment in river width

correlates to the need for greater sophistication in both these behaviours. Therefore,

the drop in performance suggests HyperNEAT solutions lack these deliberate plan-

ning skills. However, practical HyperNEAT implementations are possible. Individuals

with the fitness modification and delta inputs were found achieving 90%+ RC world

completions on the most difficult tasks.

Figures 4.7 and 4.8 shows that the fitness modification provides superior general-

purpose performance. The modification allows the obvious benefit of multi-performance

feedback. Figure 4.6 also shows the benefit during training. In comparison, the original

RC fitness function only provides five fitness states for diversity to occupy. A relatively

large amount of the population then remains at fitness 0 throughout. The fitness modi-

fier provides a larger impact overall when compared to the delta counterpart. However,

when used in combination there is a statistical advantage in the more difficult tasks.

Delta inputs and the fitness modification show an advantage at river width 2 and

3, as seen in table 4.3.1. At these river widths, agents require greater deliberative

101

4.3. Experiment #2

behaviour. The benefits of deltas may be related to creating relational patterns around

activated inputs, therefore providing contextual awareness of nearby objects such as

stones. Figure 4.10 shows how a highly robust CPPN utilised the delta inputs. Absolute

inputs could theoretically also achieve these patterns, albeit at greater difficulty and

evolutionary cost. However, just how deltas provide an advantage is not clear from

observing successful activity landscapes, as solutions appear to rely on linear patterns.

B X1Y1

X2

Y2

DX

DY

O

Figure 4.10: Illustration of a highly robust CPPN for the RC Task. Where
X1,X2,Y1 and Y2 represent their appropriate inputs; DX and DY represent deltas for
x and y, respectively; B represents the bias and O is the output. Activation functions
include sigmoid, sinusoid, gaussian, and identity.

Successful HyperNEAT solutions exhibit a ‘funnelling’ type behaviour that was

proven reliable for general-purpose performance on the Robustness Test, as shown in

102

4.3. Experiment #2

figure 4.9. At the simplest interpretation, an agent will move north or south depending

on whether a stone is being held. Figure 4.9 (a and c) shows that when stones are

desirable evolution has discovered being south of the river is beneficial for locating

stones. The highest activation points are those furthest south. Once a stone is placed

on the river and another has to be collected, the further south an agent moves the

greater its likelihood of interacting with another stone. Figures 4.9 (b and d) show

how an agent will traverse to the resource once a stone is obtained. Despite positive

general-purpose results on river widths 0 and 1, there is a problem in practice, as agents’

movement lack the compelling behaviours of believable, deliberate motion planning

required for robust performance on wider rivers.

Agents take complex, longer paths to stones in the RC world while ignoring those

in their immediate neighbourhood. This can lower agents’ success due to their 100

steps limit, but more importantly it appears to show a lack of intelligent or deliberate

decision-making. This is most common after the completion of a bridge, since agents

will proceed back to a stone before obtaining the resource. In comparison, the SM

produces a local activity field around the resource that allows agents to proceed toward

it once the bridge is complete. Agents from the RC 3D simulation in Stanton and

Channon are able to exhibit life-like responses, due to their reaction to the activity

space [222], which observers have described as resembling surprise, confusion, and even

happiness. HyperNEAT’s fittest model may lose these subtle behaviours if it were to

replace the SM in the RC 3D system.

103

4.4. Conclusion

4.4 Conclusion

This chapter demonstrates HyperNEAT’s capability to produce feasible deliberate and

robust motion planning, but, for this task, not to the quality of a pre-designed solution.

The chapter’s preliminary experiment was designed to examine the performance of both

direct and indirect encoding on producing scalable motion planning using a form of

artificial potential fields. NEAT was shown that in any form, it would not be capable

of producing the motion planning this task requires. This is apparent by NEAT losing

statistical significance to a random matrix of values as the world size increased. Also,

NEAT was achieving inconsistent results at very small environment sizes (4x4). So,

NEAT will not be utilised further and did not make it to experiments on the original

RC world size (20x20). However, HyperNEAT showed promise by achieving the highest

possible fitness in all RC world sizes consistently; including the original RC world size.

A new experiment setup was established to further analyse HyperNEAT’s per-

formance in producing motion planning. These further results were achieved using

a general-purpose HyperNEAT configuration with no problem-specific aspects of the

network design. The performance maintained a great level of consistency (90%+) in lo-

cating the resource and simple bridge-building with a multi-evaluation fitness function,

shown in figure 4.7. Mean performance drops to a respectable level (80%) at the most

difficult deliberate task, but individuals can still be found 3-4% below the performance

of the SM, as shown in figure 4.8. This chapter also demonstrates the importance of

relative distance information in producing greater general-purpose solutions at more

104

4.4. Conclusion

difficult deliberate tasks.

However, HyperNEAT contains caveats which means that it will no longer be pur-

sued for the RC task. Firstly, HyperNEAT is dropping a noticeable percentage in ro-

bustness before the introduction of more significant challenges such as; the avoidance

of traps and training the DN simultaneously. Next, due to the way the genome creates

weights for the substrate, a second evolutionary process would be needed to simply

evolve the DN. Although it would be ideal to solve the task with a single network, at

this stage, we do not see an obvious solution. Therefore, we shall incrementally move

towards the goal. Incremental changes require the use of the DN, as a replacement SM

only operates with the pre-processing stage of the DN. So instead, a solution which

utilises a single genome which controls all networks will be advantageous at this stage.

The next chapter will introduce a novel use of recurrency in a convolution network in

an attempt to overcome these hurdles.

105

5| Evaluating Motion Planning with

a Recurrent Convolutional Network

5.1 Introduction

In this chapter, a new solution is conceived to overcome the issues experienced in mo-

tion planning with HyperNEAT. Although HyperNEAT was able to produce a motion

planning system that could complete the RC task at its most difficult challenge, it was

not as robust as the original static solution (the SM); robustness being how well the

solution adapts to general environments. This is before the more difficult task of in-

cluding the DN into the evolutionary process. As a result, HyperNEAT does not seem

suitable as a replacement for the SM. Instead, this chapter will introduce a novel sys-

tem using ConvNet; taking inspiration from deep ConvNets, which in recent years have

demonstrated that advanced behaviours are obtainable without careful engineering and

considerable domain expertise.

ConvNet’s kernel focuses on local areas of an input feature and mimics the SM’s

reliance on local connections. The ConvNet architecture presented here is unorthodox

as instead of multiple layers of convolution, this architecture aims to achieve this in

106

5.1. Introduction

one layer with the use of recurrent links. Convolution applies as in any other standard

ConvNet, but the original feature will continually be incorporated back into the result

with the use of the recurrent links. So, the only evolvable aspect of the model is the

kernel weights. The kernel iteratively scans across the input multiple times and the

output represents an activity landscape for the RC Task. A reason that kernels are a

beneficial aspect of ConvNets is that it condenses the genotype to a small static value

which would not increase with the input layer size; which is an issue with a standard

ANN (section 4.2.2). Further, the use of a single kernel shares a single rule on how

values in the input disperse from local areas which is similar to the SM with its localised

static connections.

Finally, the output of the ConvNet is required to keep the same spatial size as the

input, by using a single layer with recurrent connections it is not necessary to create

multiple layers of same spatially sized convolutional layers. This would cause a greater

number of kernels, which in turn causes a larger genotype and potentially conflicting

rules in the way kernels create pathways in the activity landscape. In this chapter,

reactive behaviour is incorporated into motion planning by allowing obstacle avoidance;

this was averted in previous models due to the complexity. Obstacle avoidance is an

agent’s ability to avoid harmful objects in the environment while traversing to positive

ones. This will be evaluated with a simple GA, not utilising the more complex and

beneficial diversity mechanisms that was discussed in chapter 2.

107

5.2. Experimental Setup

5.2 Experimental Setup

In these experiments, the functionality of the traditional shunting equation was re-

placed with a shallow ConvNet architecture; in which a single layer and single kernel

are used. As in the last chapter, this network will replace the SM to produce an output

that forms an activity landscape that an agent can traverse to achieve long term de-

liberate motion planning. Two sets of experiments were carried out for 100 runs. The

first evolved the DN while the SM remains static. Next, the ConvNet-SM was evolved

with a static DN; the static DN was pre-evolved to achieve the highest fitness on the

RC Task with the original SM [192].

5.2.1 RC Task

The RC Task contains the same alterations in previous chapters [107]. So, fitness ag-

gregates over 10 RC Task attempts and successful agents are subject to the Robustness

Test. This simulates agents through 104 static RC world configurations with a river

width of 3, the most difficult type of world this task offers.

5.2.2 Network Architecture

The architecture introduced in this chapter replaces the SM from Robinson et al. [192]

with a single layer ConvNet with recurrent connections, see figure 5.1. The ConvNet

uses a 3x3 kernel with a stride of 1 and padding of 1, to synchronously update activities

in the same layer. After each convolution iteration ReLU applies across the layer. ReLU

108

5.2. Experimental Setup

Figure 5.1: Neural architecture for the RC Task with recurrent ConvNet.
Attributes at the agent’s position (g=grass, r=resource, s=stone, w=water, t=trap,
c=carrying) determine inputs to the Decision Network. Attributes of the RC World
are converted to iota values via the Decision Network outputs and mapped to the
corresponding position of the attributes. This is a static pre-processing stage to prepare
the inputs for the ConvNet. A 20x20 array of iotas are passed to the ConvNet layer. A
3x3 kernel is passed across the layer to perform recurrent convolution, synchronously
updating activities in the same layer. The network is activated a fixed number of
times. At each activation the kernel appends the previous output from the kernel to
the current DN output. The activity landscape is a visual representation of the output
after completion. Links in red represent evolvable weights.

109

5.2. Experimental Setup

typically learns much faster in networks with many layers, shown in [68], which is not

relevant due to our networks size. However for this experiment, the ReLU has the

added benefit of replicating the shunting equation’s ability to propagate only positive

values. Each update, the original iota values at iteration 0 are incorporated back into

the 20x20 output of the ConvNet via an identity kernel passthrough. This retains the

positions of the original iota values, while propagating activity values across the layer

via multiple activations. The input values are referred to as iotas, but after activation,

the output values are referred to as activity values; to represent the activity landscape

the values represent.

The activity landscape can only function if the ConvNet’s output resembles the

same dimensions as the input. Thus, the lack of pooling and use of padding is necessary

in order for the output to remain the same spatial size. At each time-step the network

incorporates the current agent cell to inform the desirable and undesirable objects in

the landscape. The network initialises each world step and then activates multiple times

via a fixed iteration number. The RC world size instructs the iteration number value;

for this work the value is 50. The ConvNet output represents the activity landscape.

In the landscape, an agent follows the activation of its highest surrounding neighbour

(gradient ascent). The genotype sizes for the DN and ConvNet-SM configurations

are 44 and 9 respectively. The DN’s topology is described in section 3.2.1, and the

ConvNet-SM evolvable weights are each position in the 3x3 kernel. All weights are

bound between −1 to 1. This process can be described in the following equations:

In terms of activities:

110

5.2. Experimental Setup

Gnew [m,n] =
∑
j

∑
k

(д[j,k]e(I [m + j,n + k]) + h[j,k]f (G[m + j,n + k))

regular
convolution

recurrent
convolution

(5.1)

In terms of output o and p:

o[x,y] = e(I [x,y]) pnew [x,y] = f (G[x,y])

pnew [x,y] = f (
∑
j

∑
k

(д[j,k]o(m + j,n + k) + h[j,k]p[m + j,n + k])) (5.2)

where I and G are activity values, I from input and G being the recurrent layer; e

and f activation functions, Identity and ReLU respectively; e(I) and f (G) are output

values (i.e the activity values after activation functions are applied), and stored in o

and p; д and h are kernels, where h is the kernel with evolvable weights and д is the

identity kernel (i.e. all values 0, except the centre value of 1); j and k being the row

and column of the filter size; m, n, x and y are row and column values. A visualisation

of this process can be seen in Figure 5.2. The inputs for the kernel are unbounded (i.e

(−∞,∞)).

5.2.3 Genetic Algorithm (GA)

This model uses an extremely simple GA with a population of 100 individuals, rep-

resenting neural network weights. In each generation, every individual’s performance

on the RC Task is assigned a fitness value. Elitism is applied, storing 10% of the

fittest individuals for the next generation. The remaining population is generated via

111

5.2. Experimental Setup

single-point crossover and mutation, with parents selected at random from the previous

generation. Each off springs genome has a 25% chance of mutating a single parameter

with an additive Gaussian noise value. Once the highest fitness has been achieved

evolution is stopped and the agent is evaluated on the Robustness Test. If an agent

does not achieve the highest fitness it is considered a failed attempt.

Figure 5.2: A visual example of the recurrent convolution process. The input
to the network consists of an 1 x 6 x 6 image followed by a recurrent convolutional
layer containing a 3 x 3 kernel. At each iteration the kernel is applied to each cell in
the input (a stride of 1 and padding are used to match the input to output). Each
iteration, the original iota values at iteration 0 are incorporated back into the 20x20
output of the ConvNet via an identity kernel passthrough.

112

5.3. Results

5.3 Results

100 runs for 104 generations were carried out with each strategy on the RC Task.

During training, if agents were unable to complete all 10 RC Tasks to its most difficult

behaviour they failed the run.

• Static-SM - where the DN evolves and the SM follows the shunting equation.

• ConvNet-SM - where the DN is pre-evolved and the SM evolves via the kernel

of the ConvNet. The static DN was pre-evolved to achieve the highest fitness on

the RC Task with the original SM [192].

Set Best Worst Mean Stdev Success
Static-SM 1 138 43.58 30.73 100%

ConvNet-SM 43 4146 845.59 845.11 100%

Table 5.1: Best, worst, and mean number of generations required to complete
the RC Task. Completion is defined by any agent’s ability to complete the RC Task
at the hardest difficulty 10 times.

Table 5.1 demonstrates that every strategy was able to complete the RC Task

to the highest level of difficulty. As previously established, Static-SM achieved the

highest standard of reactive and deliberative behaviours in all runs, this is also true for

ConvNet-SM; both achieve 100% success in every run. However, all evolvable motion

planning strategies on average took more generations to find a successful solution.

Agents that achieved completion during each run were evaluated in the Robust-

ness Test with river width 3. This simulates agents through 104 static RC world

113

5.3. Results

configurations. Agents performance on this test represents their ability to adapt to

general-purpose environments. Figure 5.3 presents these results as well as those from

the HyperNEAT architecture used in the previous chapter [107]. HyperNEAT and

ConvNet-SM both utilise the same pre-evolved DN for direct comparison.

All strategies are statistically distinguishable from each other in their general-

purpose completion ratings, established via a two-sample t-test with p values less than

0.05. Static-SM still provides the most consistent results. ConvNet-SM provides com-

parable results with only a slight increase in mid-spread and a slightly lower average

of 98.97% vs the 99.96% of Static-SM. In the same task ConvNet-SM exhibits greater

performance compared to HyperNEAT.

Another appealing aspect of the shunting equation is the efficiency of agents’ move-

60

70

80

90

100

Static−SM ConvNet−SM HyperNEAT
Experiment Sets

C
om

pl
et

io
n

(%
)

Figure 5.3: Completion percentage of Robustness Test across all strategies
aggregated over 100 runs each.
(Static-SM = static shunting model. ConvNet-SM = evolvable shunting model.)

114

5.3. Results

ment, wherein agents move to the closest desirable object. As established previously,

without efficient movement the actions of agents can seem undeliberate and unintelli-

gent. So, the new architecture has to be evaluated in this area. The age of an agent

after completion of an RC world is a good metric for judging how efficient an agent

traverses the environment. Figure 5.4 aggregates the average age of agents after the

completion of an RC world on the Robustness Test. Results are limited to those that

achieved 98% or above on the RC Robustness Test. Restricting to high completions

provides an accurate comparison between results. HyperNEAT was not included as no

runs achieved a completion percentage above 98%. As seen in figure 5.4, the Static-SM

stays consistent with an average age of 45.2. Yet, the ConvNet-SM is able to produce

a lower average of 43.43. Via a two-sample t-test, results show a statistical significance

of ConvNetSM over the Static-SM (p < 0.05) in their ages on the Robustness test.

40

50

60

Static−SM ConvNet−SM
Experiment Sets

A
ge

Figure 5.4: Mean age of agents after a successful RC world completion in the
Robustness Test. All strategies are showing results from agents with 98% completion
or higher in the Robustness Test.
(Static-SM = static shunting model. ConvNet-SM = evolvable shunting model.)

115

5.4. Discussion

ConvNet-SM also has a lower spread than the Static-SM but only the Static-SM was

able to achieve the lowest average age of 33.05.

Figure 5.5 provides a representation of the activity landscapes of Static-SM and

ConvNet-SM on the same RC world. An example was purposely chosen in which the

ConvNet-SM has an age advantage over the Static-SM; this was done to provide context

to the improved average age. Viewing the RC world after completion of the Static-SM

shows two attempts at a connecting bridge. In motion, agents using Static-SM locate

stones close to the river and prematurely place the stone while traversing forward. This

is due to the shunting equation forcing agents forward without enough room to return

to the centre of the river. If stones are further from the river agents funnel to the centre,

as can be seen in the activity landscape when an agent is holding the stone. This is

evident again when comparing stone locations from Static-SM to ConvNet-SM; those

closest to the river in Static-SM have been used to attempt an unsuccessful bridge.

5.4 Discussion

Compared to static-SM, ConvNet-SM was able to produce equally deliberate and ro-

bust motion planning in even the most difficult RC worlds, while on average achieving

more efficient planning. The static-SM still provides superior reliability in completion.

Although, ConvNet-SM is an inherently more difficult task and degradation to com-

pletion average is minimal. In comparison to HyperNEAT, the average ConvNet-SM

completion was higher than HyperNEAT’s fittest agent. Further, ConvNet-SM in this

116

5.4. Discussion

experiment did not dismiss negative iota values like in the HyperNEAT architecture.

ConvNet-SM benefits from using a ReLU to avoid the propagation of negative values.

Thus, ConvNet-SM is capable of replicating the shunting equation’s functionality.

The evolvable SM demonstrated an unforeseen, novel advantage over a purpose-

built system. When compared to the shunting equation, agents trained with ConvNet-

SM achieved instances of the highest completion rate as well as a superior average age

on the Robustness Test. Analysis of the static-SM shows RC worlds with stones close

to the river forced agents to create bridges in an unstructured manner. By contrast,

ConvNet-SM created deliberate bridge designs despite the location of the stones, see

figure 5.5. Both evolvable strategies have activity landscapes which are difficult to

interpret, thus the kernel weights were examined. ConvNet-SM creates pathways to

positive values via diagonal paths, whereby the corners are the most dominant of the

3x3 kernel. In motion, agents do not suffer from the long and questionable choices in

the movement which appears with HyperNEAT. This is quantified when comparing

ages in the robustness test from the fittest ConvNet-SM (43.74885) and fittest Hyper-

NEAT approach (68.7384) being significantly different (p < 2.2e-16); while ConvNet-

SM achieves greater competition performance (99.98% vs 95.9%). A highly pre-evolved

ConvNet-SM could replace the SM in models that use it. This would allow superior

motion planning without changing the network architecture or training.

For future work, there are established working examples of greater general-purpose

architectures this work can adapt. Currently, agents follow the highest surrounding iota

in the activity landscape. Work in Stanton and Channon [222] used a fully connected

117

5.5. Conclusions

feed forward neural network to allow evolution to discover the relationships between

iota values and movement; then, the outputs provide direct control over the agent’s

movement. Work in Borg and Channon [21] generalised the DN to use RGB values as

inputs, allowing greater abstraction from task-specific interactions. This also allows a

fixed DN despite a varying number of object types in the world. As these considerations

are addressed, the network may adapt to more complex scenarios and environments.

5.5 Conclusions

This chapter has shown that a shallow ConvNet, with a novel recurrent process, is

capable of producing deliberate and robust motion planning to the quality of a pre-

designed solution, with greater efficiency; these results were achieved with an extremely

simple GA. Individuals were exposed to a task of scaling complexity and were required

to complete the task at its most difficult behaviour multiple times. The use of a multi-

evaluation fitness function in training, as a stopping criteria, encourages the evolution

of motion planning that is adaptable to a variety of different world combinations.

Compared to a static motion planning variation (the SM), the single layer ConvNet

can achieve an average general completion that is within 3% on a difficult deliberate

task. This architecture could seemingly adapt to other tasks designed in the same

manner; or a replacement for a motion planning system that uses an artificial potential

field. The main benefit of this approach was the superior deliberate bridge building

achieved in the RC Task. This results shows a potential for further unforeseen, novel

118

5.5. Conclusions

RC World

Static-SM ConvNet-SM
Age : 60 Age : 37

(a) Not holding Stone

(b) Holding Stone

(c) RC World after Completion

(d) Heatmap of Movement

Figure 5.5: RC world with the corresponding activity landscapes for each
strategy. Each strategy is labelled and given the age of the agent after completion.
Each strategy has a completion of 98+% in the Robustness Test.

119

5.5. Conclusions

benefits when removing model restrictions.

This thesis can now continue the theme of removing task-specific aspects in the

RC Task, in favour of greater control from the network. Due to the positive increase

in motion planning efficiency, the removal of more task-specific aspects may result in

additional benefits, as well as an architecture that can adapt to greater tasks. The

next chapter, will use the recurrent ConvNet in combination with the DN, as well as

new networks which aim to further remove domain specific information.

120

6| Generalised Neural Network Architecture

for Long-Term Planning with Sparse

Rewards

6.1 Introduction

An aim of the work in this thesis has been to retain the long term deliberate planning

in the RC task’s architecture, while continually generalising it. Chapter 5 has now

established that a recurrent ConvNet can produce effective evolvable motion planning

in the RC Task with greater efficiency than a static implementation. Evolvable motion

planning removed a static behaviour constraint, but now, it has to be validated whether

it can integrate into models of greater evolutionary complexity; so, now greater exper-

imentation can take place. Two of the main constraints on the previous model have

been the DN as it was (1) pre-evolved and (2) domain-specific.

The pre-evolved DN was evolved with the static SM until the best behaviour for

the RC task was found. This allowed the previous experiments to purely assess motion

planning capabilities, but now the DN has to be incorporated back into the evolution-

ary process to examine whether both networks can evolve simultaneously. However,

121

6.1. Introduction

the DN’s topology has to be changed to remove the domain-specific elements; this is

referring to the inputs for the DN (section 3.2.1) are predefined based on the objects in

the RC Task world. As a result, the network architecture is constrained to this specific

task and if it were to change in a simple way, such as an additional object, the architec-

ture would also have to change (i.e. an additional input and output). This makes the

current DN unrealistic to deploy in general two-dimensional environments as drastic

topology changes will also require changes in the mutation rates. This would cause a

trial-and-error process and each environment will require its own considerations. So,

in this chapter a DN is proposed which uses pixel data for inputs, so the topology no

longer changes when the environment does.

Another aspect that has remained static in the RC Task is the gradient ascent rule,

in which agents follow the steepest gradient in their Moore’s neighbourhood. Although

there is no inherent benefit to replacing this behaviour in this current task, the three-

dimensional implementation of the RC task has found success in not dictating where the

animat should move but instead passing activity values via sensory information. In a

three-dimensional environment with continuous space, as opposed to discrete positions,

a rule like gradient ascent can not easily be applied. But, removing the rule at this

stage, in favour of a traditional ANN, greater evolutionary complexity is put on the

model to find the appropriate long term deliberate planning behaviours; and, as a

result, the network architecture becomes more generalised.

The experiment setup remains the same as detailed in 5.2, with only the neural

network architecture being modified. Incremental steps will be made towards the fully

122

6.2. Generalised Neural Network Architecture

generalised architecture, as a result, the new and old network topologies will be paired

with each other in a modular setup to allow the strengths and weaknesses of each

approach to be evaluated. The proceeding sections will detail these changes.

6.2 Generalised Neural Network Architecture

This experiment removes domain-specific designs (features) from each sub-network in

the modular architecture. For clarity, domain-specific designs are those which tailor

the network to the RC Task. When removed, the revised architecture should be suited

to general-purpose 2D environments. The two sub-networks are the Decision Network

and the Activity Network. In addition, we introduce a new neural network, called

the Movement Network whose role is to decide how the agent will move based on

the normalised activities of the cells in its neighbourhood (Figure 6.2.3). Modified

designs are proposed for each while explaining the previous limitations and how the

modifications address them.

6.2.1 Generalised Decision Network

Each object in the environment has a discrete representation in the Decision Network

for both input and output. This is advantageous as it allows a direct relationship to

the significance of an object. However, for a general-purpose network this would not be

possible as (1) objects in the environment may be unknown at run-time (i.e. emulators)

and (2) having very many objects would result in an overly large network unsuitable

123

6.2. Generalised Neural Network Architecture

for direct evolution. Other techniques could be utilised here such as automatic object

detection but the approach in this chapter is to use pixel data for inputs. The environ-

ment has been modified to allow cells to have colour and the agent’s decision network

now can read the red, green, and blue values from the cells. The network topology

uses 4 inputs, a first hidden layer of size 10, a second hidden layer of size 8 and 2

outputs. 3 inputs are from the pixel colour channels. The final input is for additional

environmental information. For example, in this chapter, it is whether the agent is

holding an object. One output is the iota value. This is no longer limited to 3 discrete

values but is instead continuous from −1 to 1. The other output is an action output;

in this chapter, whether an agent should pick up or put down an object. The topology

of the DN was chosen by trying out various topologies and seeing which topology gave

performance matching the pre-evolved decision network discussed in earlier chapters.

This Pixel Decision Network operates differently to the previous implementation. Ob-

jects in the environment now hold a colour value. The colour of a cell is determined by

the colour of the object residing in the cell. Each cell is visited and its colour value is

fed through the network. An iota value is generated and is stored in a separate 20x20

matrix of iota values. The x and y position of the iota replicates the object’s x and y

position in the RC World. The grid of iota values are passed to the Activity Network.

6.2.2 Generalised Activity Network

The Shunting Model uses a static equation to disperse activity values across a land-

scape, which creates predictable and consistent motion planning no matter the envi-

124

6.2. Generalised Neural Network Architecture

ronment. However, this behaviour may not be suited to all tasks. Instead, evolution

should dictate the appropriate motion planning behaviour. To make this possible, a

solution is needed that can adapt to variable and relatively large input sizes. In the RC

Task, for example, a fully-connected 20x20 network could not be feasibly evolved due

to the number of connections. Instead, a ConvNet with recurrent connections is used.

ConvNets have been proven useful on a wide array of computer vision tasks and can

be encoded on small genomes, as only kernels need to be represented. In this chapter,

recurrency refers to kernels taking inputs from the same layer that they output to.

Each iteration, the original iota values at iteration 0 are incorporated back into the

20x20 output of the ConvNet via an identity kernel passthrough. The idea behind this

is to retain the features of the original input and focus on the propagation of values,

rather than on creating new features. After many iterations, values propagate across

the landscape from the original iota positions.

The ConvNet uses a 3x3 kernel with a stride of 1 and padding of 1. Updates

apply synchronously in the same layer. After each iteration, ReLU applies to outputs

and therefore only propagates positive values. The activity landscape has the same

dimensions as the RC world. So, pooling is removed and padding is necessary to

retain spatial size. In this chapter, 50 iterations of recurrent convolution are carried

out for each update of the Activity Network. Previously, an agent would move to

the neighbouring cell with the highest activation. Now, the activity values of the

neighbouring cells (those surrounding the animat) are given to the Movement Network.

125

6.2. Generalised Neural Network Architecture

6.2.3 Generalised Movement Network

Previously, an agent moved to the cell with the highest activity value in their neigh-

bourhood. Intrinsically, this behaviour requires the Activity Network to create paths

to desirable objects. But, with the evolvable Activity Network, the function should be

malleable to allow new behaviours. Thus, an evolvable Movement Network is needed to

remove preconceptions of the Activity Network’s role. The topology has 8 inputs and

8 outputs. Inputs are the normalised activities of neighbouring cells from the Activity

Network. The agent’s occupying cell is not included as there is no benefit to remaining

and a cell. Further, as the DN inputs will remain the same, the same behaviour will

continue each world step, so a loop occurs in which the agent will not move until death

from age occurs. A MAX operation is applied to the outputs; this leaves a single ac-

tive output cell. Outputs correspond to movement directions; the agent moves in the

direction of the highest-activity output.

6.2.4 Genetic Algorithm

This experiment uses an extremely simple GA. An individual’s genome consists of neu-

ral network weights. The population size is 1000. In each generation, each individual

is evaluated on the RC Task 10 times and assigned the mean performance over these

runs as its fitness score. Elitism applies to the population, retaining the top 10%

fittest individuals. Random individuals are then taken from the full population range

to generate offspring. Offspring are produced via single-point crossover and mutation.

126

6.2. Generalised Neural Network Architecture

Figure 6.1: Neural architecture. The Decision Network takes the agent’s position
(1) (g=grass, r=resource, s=stone, w=water, t=trap, c=carrying flag) or an object’s
colours (r=red, g=green, b=blue, a=action flag). The output are iota values for each
object (1,4). An array of iotas are passed to the activity network as a matrix input. (2)
Uses the stated equation and (5) uses a 3x3 kernel to perform recurrent convolution on
input, synchronously updating activities in the same layer; the network is activated a
fixed number of times. The activity network’s output constructs an activity landscape,
a dynamic landscape used to determine agent’s next position. The movement network
uses the agent’s neighbourhood values to produce an output. (3) uses the stated
equation and (6) is a standard fully connected network. Links in red represent evolvable
weights.

127

6.3. Results

Each offspringś genome has a 20% mutation rate. Mutation involves a Gaussian noise

value replacing a single parameter. This process continues until the remaining 90% are

generated.

Decision Network Object As detailed in section 3.2.1
Pixel As detailed in section 6.2.1

Activity Network Static As detailed in section 3.2.2
CNN As detailed in section 6.2.2

Movement Network Static As detailed in section 3.2.2
Mov As detailed in section 6.2.3

Table 6.1: Labelling for the sub-networks in the modular architecture.

6.3 Results

Model (0-4] (1-4] (2-4] (3-4]
Pixel - Static - Static 100% 100% 100% 100%
Pixel - CNN - Static 100% 100% 80% 80%
Pixel - Static - Mov 100% 100% 100% 70%

CNN Only 100% 100% 100% 100%
Object - CNN - Static 100% 100% 100% 100%
Pixel - CNN - Static 100% 100% 80% 80%
Object - CNN - Mov 100% 100% 30% 25%

Mov Only 100% 100% 100% 100%
Pixel - Static - Mov 100% 100% 100% 75%
Object - Static - Mov 100% 100% 100% 70%
Object - CNN - Mov 100% 100% 30% 25%
Object - Static - Static 100% 100% 100% 100%
Pixel - CNN - Mov 100% 100% 15% 15%

[4]
100%
75%
60%
100%
100%
75%
25%

100%
60%
60%
25%
100%
10%

Table 6.2: Distribution of final-generation fitnesses, taken over twenty runs
for each of the ten neural network combinations. Three combinations are shown
twice each, for ease of comparison.

The experiments carried out were designed to provide direct comparisons between

128

6.3. Results

the new general-purpose (generalised) neural network designs and the previous domain-

specific designs. Each of the three sub-networks has two designs (old domain-specific

and new general-purpose), giving eight (23) combinations i.e. full network designs. For

brevity we use the labels shown in table 6.1 for the six (3 ∗ 2) sub-network designs.

Each of the eight combinations (full network designs) is named according to its deci-

sion, activity, and movement sub-network designs. Object-Static-Static represents the

previous domain-specific network, in which just the domain-specific Object Decision

Network’s weights are evolved. Pixel-CNN-Mov represents the full new general-purpose

network, in which all three general-purpose sub-networks’ weights are evolved.

In each of the eight combinations (full network designs) above, all non-static weights

are evolved. In the Pixel-Static-Static full-network design, only the Pixel sub-networks

weights are evolved as the other two sub-networks are static designs. To the eight

combinations we add ‘CNN Only’, in which the full network uses a pre-evolved Object

Decision Network and the Static Movement Network, such that only the CNN Activity

Network weights are evolved; and ‘Mov Only’, in which the full network uses a pre-

evolved Object Decision Network and the Static Activity Network such that only the

Mov Movement Network weights are evolved.

Twenty runs were carried out for each of the ten combinations. Figure 6.2 shows fit-

ness results over evolutionary time. Table 6.2 shows the distribution of final-generation

fitnesses, taken over 20 runs for each of the ten neural network combinations.

After achieving maximum fitness (4), agents are evaluated in a Robustness Test.

In this, each agent is evaluated in 104 deterministic RC world configurations (identical

129

6.3. Results

each run) with a river width of 3 (the most difficult width used during evolution).

Performance on this test represents an agent’s ability to perform in general RC envi-

ronments, rather than just the 40 it was previously last evaluated in. Figure 6.3 shows

completion rates in the Robustness Test, for each interchangeable network combina-

tion, with higher values demonstrating a greater quantity of robust agent controllers.

Figure 6.4 shows agent age at completion in the Robustness Test, for each interchange-

able network combination, with lower values demonstrating better quality (greater

efficiency) in the behaviours of the agent controllers. These results are also covered in

detail below, first for each sub-network individually and then for the full network.

6.3.1 Decision Network Results and Analysis

Other than the full Pixel-CNN-Mov network, all combinations with the Pixel Decision

Network were able to achieve the highest fitness reliably, as shown in figure 6.2 and

table 6.2. When compared to the Object Decision Network, equal robustness is seen

when using the static activity and Movement Networks, shown in 6.3 but there is a

sizeable drop in robustness when the CNN (recurrent ConvNet) Activity Network is

used; indeed, the resulting robustness is lower than that in the full Pixel-CNN-Mov

network, indicating that the static Movement Network is not well suited here and

validating the approach of enabling an evolvable motion network. Finally, in all three

comparisons, the Pixel Decision Network performed statistically worse than its Object

counterpart in terms of efficiency, as shown in figure 6.4. Overall, the general-purpose

Pixel Decision Network is still capable of long-term deliberative planning but with

130

6.3. Results

Figure 6.2: Training data for each interchangeable network combination. The
solid line represents the mean fitness of the fittest individuals from 20 runs of the RC
Task. Each dot represents an agent’s fitness. The radius of the dot is increased when
agents occupy the same fitness. Each combination is labelled above its corresponding
graph.

131

6.3. Results

Figure 6.3: Completion rates in the Robustness Test, for each interchange-
able network combination. In the Robustness Test, successfully evolved agents are
evaluated in 104 RC world’s at river width 3. Each pair or result sets was evaluated
on the Mann-Whitney U test, with p-values given in each graph.

132

6.3. Results

Figure 6.4: Efficiency in the Robustness Test, for each interchangeable net-
work combination. In the Robustness Test, successfully evolved agents are evalu-
ated in 104 RC world’s at river width 3. Final ages are included only for those RC
worlds (of the 104) in which all runs for both network designs were successful, allowing
performance to be compared directly. Each pair or result sets was evaluated on the
Mann-Whitney U test, with p-values given in each graph.

133

6.3. Results

inferior robustness and efficiency results when compared to its domain-specific Object

counterpart.

6.3.2 Activity Network Results and Analysis

All combinations with the CNN (recurrent ConvNet) Activity Network were able to

achieve the highest level of fitness, as shown in figure 6.2 and table 6.2. However,

when combined with the evolvable Movement Network, there is a sizeable drop in both

fitness and robustness, with successful evolution dropping from 100% to 30% at RC

worlds with river width two. This suggests that something about the task (locating

stones, avoiding traps, bridge building, etc.) is difficult for evolvable motion planning

when combined with evolvable movement. Combining CNN with the Pixel Decision

Network also led to a sizeable drop in robustness. In terms of efficiency, the evolved

robust networks containing the general-purpose CNN Activity Network were a little

less efficient than those with the Static counterpart on average (median) but resulted

in fewer inefficient outliers, a potentially important benefit.

6.3.3 Movement Network Results and Analysis

All combinations with the evolvable Movement Network were able to achieve the highest

level of fitness, as shown in figure 6.2 and table 6.2. When static motion planning (Ac-

tivity Network) is used (with either Decision Network design) 100% success is achieved

up to river width 1 (fitness 2.0); past that performance drops. To achieve fitness 3.0,

agents must build a connecting bridge design by locating and correctly moving multiple

134

6.3. Results

stones. To achieve fitness 4.0, agents must be able to do this same behaviour consis-

tently, which the current Movement Network struggles with. No combination without

the evolvable Movement Network exhibits this problem to this extent. It may be that

a deeper Movement Network (with at least one hidden layer) would perform better.

All evolvable Movement Network combinations also have statistically inferior robust-

ness. The combinations with Static movement have a relatively consistent median of

97%-100% robustness, whereas the medians for the evolvable-movement combinations

are between 55% and 88%. Object-CNN-Mov provided statistical superior efficiency

over its counterpart; this again gives credence to the ability to achieve more efficient

movement when motion planning and movement are evolved together. To conclude,

the evolvable Movement Network has a sizeable negative effect on robustness but can

result in more efficient movement when motion planning and movement are evolved

together.

6.3.4 Full Network Results and Analysis

When all general-purpose evolvable networks are used, this architecture still retains

long-term deliberative planning, as shown in table 6.2. However, this combination

produces the largest drop in agents achieving maximum fitness. Figure 6.2 shows that

a majority of the agents stay between fitness 1-2. So, agents are successful at locating

the resource but struggle to consistently locate stones and place them on the single-cell

river. The limited proportion of successful agents could, in turn, be responsible for the

relatively high robustness score.

135

6.3. Results

While a number of the incomplete general-purpose networks have medians with

robustness in the 50%-60% range of completion, the full network produces a consis-

tent 73% median completion rate on the 104 RC Worlds. In terms of efficiency, the

full general-purpose network sees a statistical advantage over the domain-specific full

network, with the age of the agents being very slightly (0.05) lower than the original

and, potentially important, there being fewer inefficient outliers. Overall, these re-

sults show that maximum fitness, robustness, and efficiency can be achieved without

domain-specific designs.

6.3.5 Further Analysis

This section is to achieve an understanding of the questions raised during results gath-

ering. Firstly, fitness is an aggregation of 10 RC runs. To achieve fitness 4.0 agents

would have to successfully complete 40 RC worlds. So, why might agents fail signif-

icantly in the Robustness Test despite being able to achieve high fitness in training.

Figure 6.5 offers some insight, it shows the distribution of deaths in relation to agents’

robustness scores. The graph suggests highly robust agents primarily avoid harmful

objects and fail by not reaching the resource in the allocated time. This is seen in the

rise of age deaths and the fall in traps and water deaths when robustness reaches 100%.

Age is when the agent is unable to obtain the resource within 150 time steps. Traps

always kill and water will only kill if the agent does not place a stone down on that cell.

As robustness lowers to 80%, age deaths decline; traps increase to represent half of all

deaths; water matches the distribution of age. Below 80% robustness, deaths are gen-

136

6.3. Results

Figure 6.5: Scatterplot showing the relationship between the cause of agents
deaths and the completion achieved during a Robustness Test. The line
represents the conditional mean of the two data points.

erally equally distributed with no inherent cause being the dominant factor. Together

these results provide important insights into desirable strategies. Those highly robust

strategies are those which fundamentally avoid harmful objects. Water is a necessary

interaction for bridge building but traps are not. A possible reason for such a higher

distribution of trap deaths is training not accounting for the negative traits of traps.

Hence why the distribution of trap deaths rises as robustness is lowered. Understand-

ing this brings some insight in Figure 6.6; this isolates the cause of death distributions

to each network combination.

An interesting observation is the rise of water deaths when using the evolvable

Movement Network. To compare, Static movement sees agents with very low number

of deaths due to water (less than 5%) or none at all. Due to our understanding

that water deaths are rare among highly robust individuals, this offers an explanation

137

6.3. Results

Figure 6.6: Distribution of deaths from the fittest agents through 104 RC
worlds seen during the Robustness Test. All network combinations are shown.
Age deaths are agents who were unable to find the resource under 150 time steps. Trap
deaths are caused by entering into trap objects. Water deaths are caused by entering
into water objects without placing a stone.

into the evolvable movement’s influence on robustness. Yet, the evolvable Movement

Network can replicate the static behaviour but appears not to. To analyse further,

each successful evolvable Movement Network combination was simulated again on the

Robustness Test, but the evolvable Movement Network was replaced for the static

behaviours. It is important to note, these agents were not trained to operate with the

static movement behaviours previously.

Figure 6.7 shows two graphs. The top section compares the robustness of the two

sets of data. The bottom shows if any of the 104 worlds both produce the exact

same movement. Interestingly, the evolvable Movement Network was able to find

strategies outside of static rules despite all other networks being pre-evolved to that

138

6.3. Results

ruleset. This network restriction would theoretically lead the evolvable Movement

Network to the same behaviour as a static movement. Yet, under half the runs showed

new movement strategies when presented with the same RC world. Turning now to

the evolvable network combinations. In Pixel-Static-Mov and Object-CNN-Mov, both

their counterparts produced statistically superior robustness. This is interesting as

both prosper with behaviour they were not trained for. Object-Static-Static produces

a higher median but a large range; yet statistically indistinguishable. Overall, despite

the static movement behaviour being a superior strategy evolution does not replicate

it during training.

Figure 6.7: Completion rates in the Robustness Test, for each interchange-
able network combination that has been successfully trained with the evolv-
able Movement Network and replacing those with the static Movement Net-
work. In the Robustness Test, successfully evolved agents are evaluated in 104 RC
world’s at river width 3. Each pair of result sets were evaluated on the Mann-Whitney
U test, with p-values given in each graph.

139

6.4. Discussion

6.4 Discussion

A goal of this chapter was to identify if the modular architecture could maintain success

with the removal of domain specific features. By achieving fitness 4.0 in the RC Task

with the full network architecture (Pixel-CNN-Mov) in multiple runs this proves it is

possible. Achieved with a simple GA with a standard mutation rate, it is reasonable to

assume tweaks to the evolutionary process could improve training performance. The

next sections will delve into each generalised network’s performance.

6.4.1 Successes and Failures Decision Network

The success of a Pixel representation achieving the highest fitness in all network combi-

nations, suggests two restrictions can be removed from the previous architecture. The

first may be the clearest, the removal of binary inputs. This prevents the Decision

Network from having domain specific knowledge before run time. Secondly, allowing

continuous outputs, and therefore allowing hierarchy in item desirability. The Object

Decision Network’s output iota defaults to three states; undesirable (−1), neutral (0)

and desirable (1). Instead, the Pixel’s output uses a continuous number from −1 to

1. This allows nuance in the importance of items. This feature does not benefit this

particular task as only one item is desirable at a time (If an agent is not holding a

stone, a stone is desirable; if an agent is holding a stone, the river is desirable). But,

there is potential for tasks where many items have different levels of importance at one

time. Despite the positive result, the quality of the Pixel representation’s solutions is

140

6.4. Discussion

less than the object counterpart in all aspects; especially when used with the recurrent

ConvNet.

6.4.2 Successes and Failures Activity Network

Recurrent ConvNet achieving success in all combinations is of great significance. By

replacing static behaviours with an evolutionary process, it allows future implementa-

tions to remove the static constraint. Especially considering the results of Object-CNN-

Static which saw all runs reaching the highest fitness while achieving robustness close

to the original. In comparison to HyperNEAT, the indirect motion planning method

provided some success; but, had restrictions and was only capable while behaviours

were pre-evolved and static [107]. To conclude, the use of a recurrent ConvNet does

produce a feasible motion planning network and a replacement for the static shunting

model. In the future, it may be worth investigating Leaky ReLU. This would allow

negative values from the Decision Network to have a greater significance of a region of

local areas, rather than a specific cell.

6.4.3 Successes and Failures Movement Network

The evolvable Movement Network’s biggest potential criticism is the formatting of

inputs. The inputs take a binary activation of the highest surrounding activity value.

This removes the responsibility from the Movement Network to discover the behaviour

through training. This was a purposeful choice as the responsibility of activity values is

already held by the Activity Network. It seems unnecessary for the evolvable Movement

141

6.4. Discussion

Network to learn this behaviour also. Yet, this could bias the results to achieve the

same behaviour as the static Movement Network; which in turn, would remain a domain

specific network. However, as we have seen in figure 6.7 this does not happen. Instead,

less than 10% of 104 runs saw identical movement between the static and evolvable

Movement Network, when evolved with additional networks. Even when all networks

are pre-evolved, the evolvable Movement Network still found novel ways to use the

input. This assures that this network configuration can exhibit different behaviours to

the static approach. This is especially true with the CNN (Recurrent ConvNet) where

together the efficiency results rival their static counterparts.

The inclusion of evolvable movement saw the largest impact on training and robust-

ness. Further analysis suggests the reduction in quality is due to the behaviours the

Movement Network adopts; in which traps and water deaths become more common.

Theoretically, the evolvable Movement Network is provided all the information to avoid

both traps and water. If trained correctly, the Decision Network produces negative ac-

tivity values for the corresponding cells. When paired with the static motion planning,

water, and traps will always represent the lowest surrounding cell. But as shown, the

Movement Network rarely adopts the strategy to follow the highest activation. So, the

model may benefit from additional information to aid in identifying objects to avoid.

Such as, a negative binary value to state the lowest activation, and the inclusion of

hidden layers.

142

6.5. Deep Neuroevolution Comparison

6.5 Deep Neuroevolution Comparison

To further emphasise the results of the previous section, a direct comparison will be

made with another general architecture that has achieved state-of-the-art results in

ALE; deep neuroevolution with deep ConvNets. Currently, deep ConvNets play a

vital role in achieving state-of-the-art results across a broad array of machine learning

domains. Including; computer vision [105, 228], robotics [111, 147], self-driving cars

[17], sound [242, 6, 174], art [85, 139] and others. These architectures have historically

been utilised with Reinforcement learning (RL), but recently it has been shown that

Neuroevolution (NE) can achieve comparable performance; setting its own state-of-the-

art results [226, 256]. Yet, each of these techniques has suffered in environments which

require long-term planning. Pitfall and Montezuma’s Revenge are the most researched

of these types of environments. Very recently, Go-Explore established an RL algorithm

which performs well on these tasks [57]. Yet, NE’s leading method is yet to complete

either challenge.

Instead of focusing on these complex examples (Montezuma’s Revenge and Pitfall),

the RC Task acts as a similar benchmark; this is due to the similarity in the task

domain with reduced complexity. The fundamental objective of Montezuma’s Revenge

and Pitfall is to traverse multiple scenes before receiving rewards, all while avoiding

lethal objects. For example, the first scene of Montezuma’s Revenge requires the agent

to reach the bottom of the scene; traverse a ladder; collect a key; traverse to the

opposite side of the screen; unlock the door; while avoiding a lethal moving object.

143

6.5. Deep Neuroevolution Comparison

Agents will also fail if they fall from a great height. Collecting the key and unlocking

the door provides a reward of 100 and 300, respectively. Despite achieving a reward for

collecting the key many approaches are unable to proceed past the reward score 0 on

the task, including; deep neuroevolution [226] and DQN [14]. The RC Task is simplified

in three ways; all information necessary to complete the task is available in one screen;

the task is incremental and focuses agents on specific behaviours at a time; there are

only four objects in the environment. The analysis of deep neuroevolution on the RC

Task is to assess whether simplifying the domain allows evolution to overcome issues

associated with sparse reward tasks which require long term deliberative planning. As

the previous section showed a NE general-purpose model which can overcome the issue

of sparse rewards.

6.5.1 Convolutional Neural Architecture

A comparable experiment setup is required to compare deep neuroevolution’s perfor-

mance to the Pixel-CNN-Mov (section 6.3); Pixel-CNN-Mov being the architecture

that removed the greatest number of constraints in the previous section. Firstly, there

is a common architecture for ALE used across RL and NE which was first established

with Deep Q Networks (DQN); the RL algorithm utilising deep Q-learning [157]. As

DQN was the first algorithm to achieve human-level control in a large fraction of Atari

2600 games, the topology has become a standard to compare various algorithms to one

another. As this architecture has been successful in a majority of games, across dif-

ferent learning strategies, it will be used here on the RC Task; however, some changes

144

6.5. Deep Neuroevolution Comparison

will be necessary. The original ALE DQN architecture comprises of; 84x84x4 tensor

input; three convolutional layers; two fully connected layers; with a single output for

each valid action. DQN pre-processes the ALE pixel input to greyscale and downsam-

ples the last 4 frames to an 84x84x4 tensor. Whereas, the Pixel decision network uses

colours as inputs. For a fair comparison, both greyscale and RGB are used. The RC

Task’s input would be 20x20, which is already significantly lower than the down-scaled

ALE screen input. So, the input size will remain the same but the remaining architec-

ture may prove too large for a reduced input. So, two architectures are used. First,

the original DQN architecture with a 20x20 adapted input. Second, a smaller DQN is

provided in the deep neuroevolution code. This reduces; size of layers; kernel sizes; the

number of filters and strides; Table 6.3 shows the specifics. There are 18 outputs, as

there usually are with ALE games. Half of the outputs represent a movement position

in the agent’s Moore neighbourhood. Then, the next half is the same positional move-

ments, but with the addition of the agent’s ‘action’; in this domain, it will be agent’s

ability to pick up and put down items. The output with the highest activation will

dictate to the agent where to move and what action to do.

Large-DeepNeuro Small-DeepNeuro
Layer Size Filters Kernel Stride Size Filters Kernel Stride
Conv #1 - 32 8 4 - 16 8 4
Conv #2 - 64 4 2 - 32 4 2
Conv #3 - 64 3 1 - - - -
FC 512 - - - 256 - - -

Table 6.3: Topology specifications for ConvNet used on the RC Task with
deep neuroevolution. (FC = Flattened Layer, Conv = Convolution Layer)

145

6.5. Deep Neuroevolution Comparison

Next, training times for ALE are reported in frames processed and time steps

but, for an apt comparison, this work will show results in the number of generations.

Populations size and elitism remain the same at 1000 and 10%. The mutation rate is

0.002, which remains the same as the ALE work in deep neuroevolution.

Finally, The RC Task will incorporate a visual change for when an agent is holding

a stone. Previously, this information was not a visual component and passed to the

network as a boolean variable. In this type of topology, there is not an obvious way

to incorporate this. Instead, when observing ALE games, and the networks which

successfully play them, games incorporate visual changes to indicate a change in domain

state. Alien and Ms Pac-Man change the colour of enemies when they can be consumed;

Amidar changes the colour of paths that agents traverse and rectangular portions of

the board are filled when a connecting path has been achieved; Frostbite sees pieces of

ice change from white to blue when the agent jumps on them, all need to be jumped

on to progress. Therefore, the agent will change colour when holding a stone.

In ALE and the hard maze task, deep neuroevolution included the three previous

frames in the input to provide temporal information. In the RC Task there are only

400 discrete positions an agent can traverse to. Atari games were designed as a visual

experience, so agents may take many frames to reach a discrete position or agents have

greater discrete positions; this provides the user with a sense of motion. However,

the RC Task does not provide frame intervals between discrete positions. So, it is a

question whether this should be included. Although not a direct comparison, AlphaGo

Zero also implements past frames of Go as a history of players moves [209]; Go is

146

6.5. Deep Neuroevolution Comparison

a board game of limited discrete positions. In order to provide the RC Task with

adequate information, the previous three frames will also be included.

6.5.2 Results

Figure 6.8: Training data for all network combinations for deep neuroevolu-
tion on the RC Task. Solid line represents the mean fitness of the fittest individuals
from 20 runs of the RC Task. Each dot represents an agents fitness. Radius of dot is
increased when agents occupy the same fitness. Each network combination is labelled
above its corresponding graph.

As figure 6.8 shows, no approach achieves long term deliberative planning in the RC

Task. The most successful agents achieved fitness 2.0; attributed to the greyscale input.

As previous results have shown, fitness beyond 2.0 is difficult due to the behaviours

required. RGB inputs were detrimental to the performance in both network sizes;

with none achieving higher than fitness 1.0. Greyscale appears superior in two ways,

(1) the input dimensions are reduced to 1/3 and (2) the different scales of luminance

per colour channel still allows objects to be distinguishable. Despite the larger size,

147

6.5. Deep Neuroevolution Comparison

Large-DeepNeuro performed just as well as Small-DeepNeuro; both inputs exhibited

seemingly identical performance. A visual of the large ConvNet is shown in figure 6.9

for greater comprehension of the network.

6.5.3 Discussion

This section interprets why deep neuroevolution could not achieve long term delibera-

tive planning in this domain. The first and second RC worlds require fairly rudimentary

behaviours to complete. The first RC world requires agents to locate a deterministic

resource location. As this resource position is static the behaviour becomes simple to

converge once achieved. The second RC world requires stones to be placed on the water

to create a 1 cell bridge. Stones have stochastic placement so agents can not simply

remember a specific motion pattern to retrieve them. But, stones have a chance to be

aimlessly picked up and put down while traversing to the resource; then, this behaviour

remains in the population by receiving a reward and surviving the selection process.

As the population is heavily focused around fitness 2.0 it shows they are achieving this

behaviour consistently and not by chance.

RC worlds three and four require agents to go back and forth between stone and

river. As stated, previous necessary behaviours could be stumbled upon and reinforced

via the population converging on that area in the search space. But now, traversing

back to a stone requires greater deliberate behaviour which is difficult to discover ran-

domly; especially since the population remains in a search space area that establishes

moving forward to the resource is desirable behaviour. The fitness function does not

148

6.5. Deep Neuroevolution Comparison

Figure 6.9: Visualisation of the (large) convolution network for River Cross-
ing Task (RC Task) in greyscale representation. From top to bottom on the
right are: the processed observations, and then the activations for the convolutional
layers, the fully connected layer, and finally, the movement outputs. Brighter activation
indicates higher value. Atari Zoo was adapted for this visualisation. [227]

149

6.5. Deep Neuroevolution Comparison

provide granular feedback, such as a negative reward for dying via water or traps or

that putting stones on the river is positive. As a result, there is no mechanism for the

population to diversify greatly from the already established positive behaviours of RC

worlds one and two. With the architecture laid out in section 6.2, sub-goals are active

within the architecture during this problem. The change in Decision Network will pro-

duce a dramatically different Activity landscape, which in turn causes the Movement

Network to produce new behaviours. But, ConvNets see little change in their input

activations to expect a dramatic change in behaviours after a stone is placed on the

river; shown in figure 6.9.

A suggestion could be the inclusion of diversity mechanisms into the evolutionary

process such as; speciation, fitness sharing, crowding. This may provide an avenue for

agents to uncover different behaviours for picking up stones and reaching the resource;

one of which is beneficial at later stages. However, this could also be said for the

architecture in chapter 6. A diversity method that should be avoided is a change in

the fitness function, such as; novelty search, multi-objective evolutionary algorithms;

quality diversity, etc. This then focuses the challenge away from sparse rewards. For

example, a common use case for novelty search is a hard maze task in which objective

fitness becomes trapped at local optima when trying to solve the maze. But, when the

reward is changed to finding novel positions, each run, the maze is able to be solved.

So, a novelty search method for the RC Task could be devised which focuses on the

placement of stones and creating unique placements. This can then be extended in

works like quality diversity which sees different types of specific bridges being created

150

6.6. Conclusion

(widest, longest, most stones used, etc). This would inevitably lead to a search space

in which a solution to solving the RC Task, with a 3 stone connecting bridge, is much

more achievable. But, in the process, the task would change into something much

simpler to exploit.

Additionally, this task is not inherently deceptive which these methods are usually

targeted towards. Rewards are not luring agents into a local optimum to increase

the objective reward. Both traversals to the resource and picking up stones are both

behaviours that agents need to progress. It is the lack of discovery of new behaviours

which plateaus the model’s performance.

6.6 Conclusion

The contributions of this chapter are: (1) Further validating the use of a recurrent

ConvNet, which distributes activations across neighbouring neurons to create path-

ways for motion planning. In all network combinations, the ConvNet still achieved

the most difficult behaviours required. And, when paired with an evolvable movement

network, efficiency could increase over the static implementations. (2) Demonstrated

the effectiveness of a general-purpose, modular, hierarchical architecture for long-term

planning in domains with sparse rewards. The network contained no domain-specific

aspects and although became a more difficult task for evolution, retained a high amount

of robustness in stochastic environments. (3) Demonstrated an issue with the current

state-of-the-art neuroevolution game player on a sparse reward task focusing on long-

151

6.6. Conclusion

term deliberative planning. Deep neuroevolution becomes trapped at a local optima

during training and is not able to produce the same behaviours the general-purpose,

modular architecture is able to. For future work, it should be investigated whether

aspects of the generalised modular network could be adapted to more proven tech-

niques. This work limited the recurrent ConvNet to a specialised role. However, the

distribution of high activating neurons to its neighbours could provide supplementary

information during activation; especially in environments where the variation of input

data at each activation is minimal. This will be investigated in the next chapter where

the recurrent ConvNet is paired with a conventional ConvNet architecture and trained

with deep neuroevolution.

152

7| Applying Recurrent Convolution with

Deep Neuroevolution

7.1 Introduction

With the emergence of deep neuroevolution (section 2.2.7) opportunities have emerged

using GAs in domains that have largely been subjected to experimentation by RL;

due to GAs achieving state-of-the-art performance with large ConvNets [226]. These

results were achieved with a simple GA that only employed elitism and mutation, and

not utilising established neuroevolutionary techniques such as crossover, exploiting

regularities and a range of diversity mechanisms (section 2.3). This allows ample

future exploitation in evolutionary experiments and a wide range of RL domains still

to explore. So, deep neuroevolution offers a promising foundation and therefore, this

chapter will start experimentation with deep neuroevolution as it is of greater benefit

to the research community. The novel architectural contribution of this thesis has been

the recurrent ConvNet and its ability to produce robust motion planning. Now, this

chapter will assess the possibility of using the same recurrent ConvNet as part of a

much larger conventional ConvNet architecture.

153

7.2. Experiment Setup

A theme seen in ConvNet and deep neuroevolution is taking established, working,

techniques and, with advances in computation power, scale them to greater challenges;

ConvNets were proposed in 1990 before the major success of AlexNet [121] in 2012

and GAs have been around since the 1970s but have not been scaled to 4M parameters

until deep neuroevolution in 2018 [5]. The previous chapters have shown how well

a recurrent ConvNet has worked on a single 20x20 input with a single 3x3 kernel for

producing motion planning landscapes that, with simple rules, could produce long term

deliberative planning. Although conventional ConvNets could not use the recurrent

layer for motion planning, the resulting feature is still unique and would be difficult to

create in a conventional convolutional layer. So, the question being assessed is does the

recurrent layer produce benefits that a conventional ConvNet can not. This research

question will be investigated on the multi-environment platform, the Arcade Learning

Environment (ALE). ALE is shared with many RL algorithms as well as evolutionary

ones, allowing a comparison not just with a GA but many different learning approaches.

7.2 Experiment Setup

Experiments use the open source code for deep neuroevolution1, with additional meth-

ods to achieve recurrent convolution with Tensorflow. The following presents the details

and rationale of the recurrent model. The evolutionary process evaluates each individ-

ual in the population each generation, producing a fitness score for each. The top 20%

of the population become parents for the next generation and the fittest individual is
1https://eng.uber.com/accelerated-neuroevolution/

154

7.2. Experiment Setup

copied to the next generation unmodified. No crossover is used in deep neuroevolution,

just mutation. So, a parent is selected uniformly at random and is mutated by apply-

ing additive Gaussian noise to the genome; this continues until the new population is

generated. The new population is then evaluated and the process repeats for a defined

number of generations or until some other stopping criterion is met. For ALE, the

stopping criterion is evaluating 4e9 frames.

7.2.1 Neural Architecture

The implementation of recurrent links to a conventional ConvNet could be done in a

number of ways. In the previous chapters, the recurrent links acted as a single kernel on

a single feature. The obvious equivalent to that is applying recurrent links at the input

layer. However in the previous works, recurrent convolution is applied after objects in

the environment have been considered desirable or undesirable. A similar process takes

place at the first convolution layer, where kernels extract specific features in which

to retain. So, adding recurrency at this layer should mimic the process of previous

implementations, as can be seen in figure 7.1.

This implementation of recurrent links requires an iteration parameter; this param-

eter dictates how often convolution is applied to the same layer. At each iteration,

the original values at iteration 0 are incorporated back into the iteration x output via

an identity kernel passthrough. Previously, this value would be chosen by the exper-

imenter, but in this work the size of a feature is dynamic depending on the previous

layer. This would make it difficult to have a parameter that fits a variety of network

155

7.2. Experiment Setup

sizes. Therefore, the chosen iteration parameter is the width of the feature. A charac-

teristic that has been important for this recurrent ConvNet to work previously, is the

ability for an activation value from one corner of the feature to reach the corresponding

corner. The iteration value being the width of the feature allows this to take place,

it is then evolution’s role to find the appropriate weights to not saturate the feature

space.

Figure 7.1: Illustration of the recurrent convolutional neural network. The
input to the neural network consists of an 84x84x4 image, followed by one convolutional
layer, one recurrent layer, then two convolutional layers and two fully connected layers
with a single output for each valid action. The recurrent layer provides a 3x3 kernel
per feature and applies convolution (as a convolutional neural network) then the new
feature is combined with the original feature. This is an iterative process and is repeated
until a certain number of times (for this work 21).

7.2.2 ALE Environments

Bellemare et al. [12], and later clarified in Ostrovski et al. [173], created a taxonomy of

ALE games for agent behaviours and environmental rewards. Instead of simulating the

recurrent ConvNet on each game, three are taken from each category in an attempt to

see an overview of performance. This was necessary to overcome a resource restriction

156

7.3. Results

on the researcher’s part. The original deep neuroevolution code was simulated on

720 cores for 6 to 24 hours to achieve 6 billion frames for each run. The code was

later updated to allow pipe-lined CPU and GPU commands to speed up the code

base. However, with 10 cores of an Intel Xeon E5-2680 with 2 Nividia 1080 GPUs

runs could still range from 5-7 days with 6 billion frames simulated, on the original

ConvNet architecture. By choosing games from each category this work aims to give

a perception of performance across different domains, without testing every domain.

Frames are also limited to 4 billion as it appears from the data in Such et al. [226] that

after this point performance gains are minimal.

• ‘Human-Optimal’ refers to games in which agents have achieved human-level, or

higher, performance but demonstrated behaviours as a human would.

• ‘Score Exploit’ refers to games in which agents have achieved human-level, or

higher, performance without demonstrating behaviours as a human would.

• ‘Sparse’ and ‘Dense’ rewards are qualitative descriptors of the game’s reward

structure.

7.3 Results

Table 7.2 shows the final score of the elite (fittest) individual of each set of 5 runs.

The elite’s score is calculated via 30 independent episodes, using the same genome,

and provides the mean; this is to account for the robustness of a given solution. As

157

7.3. Results

Easy Exploration Hard Exploration
Human-Optimal Score Exploit Dense Reward Sparse Reward
Asteroids Kangaroo Alien Solaris

Crazy Climber Seaquest Amidar Private Eye

Skiing Krull Frostbite Venture

Table 7.1: Atari 2600 games and their taxonomy selected for these experi-
ments. The taxonomy is based on the games exploration difficulty found in Ostrovski
et al. [173].

Standard Recurrent Difference (%) p Value
Frames 4B 4B

Asteroids 2120 3690 54 (+) 2.506e-07
Crazy Climber 68600 84600 21 (+) 6.255e-05
Skiing -5540 -5540 0 1.0

Kangaroo 11300 14500 24 (+) 2.2e-16
Seaquest 1500 1760 16 (+) .03286
Krull 10900 9500 13 (-) .0005632

Alien 3070 4090 29 (+) 2.2e-16
Amidar 418 462 10 (+) 2.2e-16
Frostbite 8640 8510 2 (-) 6.704e-14

Solaris 5460 5360 2 (-) .371
Private Eye 15200 15100 1 (-) 3.978e-05
Venture 1410 1340 5 (-) 0.00614

Table 7.2: Results on 12 Atari games with a conventional and recurrent
convolutional networks with a simple genetic algorithm. Results represent the
mean score of the elite (fittest) seed over 30 no-op independent episodes. The scores
shown are the highest achieved over the 5 trained runs for 4 billion frames. The p
values are taken from a two sample t-tests between the 30 scores achieved in the no-op
independent episodes by the elite seeds. Those in bold are statistically significant (p
< 0.05).

158

7.3. Results

Figure 7.2: Original and Recurrent model’s performance across generations
on Atari 2600 games. Highest scores achieved by both are plotted as dashed lines.
The median is plot with a solid line and 95% bootstrapped confidence intervals of the
median across 5 experiments of the current elite per run, where the score for each elite
is a mean of 30 no-op independent episodes.

159

7.3. Results

shown, human-optimal, score exploit and dense reward categories each saw some pos-

itive benefit to the overall results using a recurrent convolutional layer. However, not

all games experienced a positive end result. The category of Sparse Rewards saw either

no change or a slight degradation to performance with the use of a recurrent convo-

lutional layer. Skiing saw no additional benefit. Frostbite saw a small degradation in

performance. Krull saw a comparably large percentage difference.

Figure 7.2 provides complementary information to table 7.2, it provides the elite’s

score through each stage of the 4 billion frames run. Also providing dashed lines for the

highest achieved score from both approaches. These results are in interesting contrast

to those presented in table 7.2. The evolutionary process uses a mutation rate not pre-

optimised for the task and as a result certain games see a high level of volatility in score

performance; (see crazy climber and alien). To ensure the results are not inaccurate to

the overall performance the highest score is also recorded and not just the end score

where agents could be in a stage of degradation. It’s important to provide context

for each result, the difference in scores is only notable if a deviation from one score to

another is a results of multiple meaningful changes, as opposed to a minimal change

but with huge performance gains. Therefore each result with a notable percentage

difference (above 10%) and a statistically significant (p < 0.05) difference, is examined.

Everything discussed here can be followed along with video examples from the Atari

Zoo platform2. A description of the game and the scoring system is provided.

Asteroids is a human-optimal environment which saw the greatest positive change

2https://eng.uber.com/atari-zoo-deep-reinforcement-learning/

160

7.3. Results

from the inclusion of a recurrent convolutional layer; with a 54% increase in elite score.

The aim of asteroids is to avoid obstacles while also firing projectiles to destroy them.

To obtain a greater score agents must destroy the obstacles. The score associated with

each obstacle depends on their size. Scores range from 20 to 100 at these early stages.

So, with a score deviation of 1570 agents, at a minimum, would require destroying 16

additional obstacles over the standard architecture. In motion, it is difficult to pin-

point the exact behavioural change. Both adopt a strategy of remaining stationary

while turning in either a clockwise or anti-clockwise direction while firing. This in-

tern provides more opportunity to strike obstacles, although neither show any sign of

deliberate motion to avoid obstacles.

Crazy Climber is also a human-optimal task which produced a higher final score

with the use of a recurrent layer, but figure 7.2 shows how the recurrent model produced

consistently greater scores in this environment. The environment tasks an agent to

climb to the top of four skyscrapers while avoiding multiple obstacles; the challenge

comes from avoiding objects being dropped and obstacles which require timing, at least

at early stages. Each floor the agent passes receives 100 points and each skyscraper is

160 floors high. A bonus is received if the agent reaches the top of the skyscraper and

enters the helicopter (104 multiplied by skyscrapers level); which requires the agent to

be in the correct position. The bonus reduces in value every 10 seconds that the agent

spends traversing the building. A score difference of 16000 suggests the recurrent model

is achieving one skyscraper further than the standard model on average. Though it

can not exactly be quantified, due to the bonus being dependent on the time spent per

161

7.3. Results

skyscraper, the recurrent model is avoiding a greater number of obstacles and finding

greater appropriate paths to progress upwards. In figure 7.2, it shows that with crazy

climber the recurrent network sees a surge in score performance deviation at 3 billion

frames. With this knowledge, the suggestion is that at this stage a number of runs

are achieving performance to the third skyscraper. But, the standard architecture’s

highest score suggests at some point it also achieved the third skyscraper but did not

keep that behaviour consistent.

Kangaroo is a score exploit environment and saw a 24% greater end score with

the recurrent model. Kangaroo’s evolution process sees the medium producing com-

parable results to that of the standard model, but with a wider deviation into greater

and worse performance. In the environment, there are four floors in which the agent

must traverse upwards to reach the top floor while avoiding the enemies throwing pro-

jectiles. Sometimes projectiles are thrown and must be jumped over and sometimes

they are thrown so that the agent must duck. Enemies traverse to the agent and when

killed provide a score. This aspect is the reason this is considered a scoring exploiting

environment. A majority of reinforcement learning and this approach exhibit the be-

haviour of punching enemies as they get close. Punching enemies grants a 200 score

increase and also a 200 score increase for avoiding projectiles. As behaviours are lim-

ited to 200 score increments per desirable action, the score difference of 3200 indicates

16 additional desirable moves were taken by the recurrent convolutional network. An

interesting behaviour emerged in 2 recurrent runs, in which after punching an enemy

they would jump backwards and then duck. Though it did not seem to affect the score

162

7.3. Results

(all the scores were achieved by punching the enemies) it could have been a beneficial

trait to avoid the projectiles dropped. This is notable as it is not seen in any of the

standard architecture runs.

Seaquest is an environment set underwater in which an agent has to save divers and

shoot enemies while maintaining the oxygen supply. When oxygen runs low, agents

should manoeuvre to the top of the environment to replenish oxygen, but if they have

not collected a diver then agents lose a life. If oxygen runs out agents lose a life. Agents

have three lifes. Each diver collected is worth 100 points and each enemy killed is worth

20 points. The difference between the two scores implies that 13 more enemies were

killed over the original architecture or one additional diver was rescued with 3 enemies

killed. Previously, Seaquest has seen to work poorly with GAs due to a sub optimal

behaviour. This behaviour keeps agents at the bottom of the ocean until they run out

of oxygen [227]. However, both the standard and recurrent architecture did exhibit

the behaviour of surfacing for oxygen in our runs. This can be seen in the jump at 2.5

billion frames from a score of sub 1000 to instantly jumping above it.

Krull is the only environment in which the standard model has a noticeable im-

provement over the recurrent model. This can be seen in table 7.2 but also in figure

7.2, the recurrent model is consistently below the standard model after 2 billion frames.

Krull takes place on four separate screens, each with opportunities to receive points.

However, agents usually stay on the second screen called the ‘lair of the Widow of the

Web’ in which agents avoid an enemy while traversing through a webbed environment.

Every movement in the webs give agents a varying score but can be as much as 99

163

7.3. Results

points per movement. Many strategies, including GAs, exploit this sequence by con-

tinually moving within the webs instead of progressing in the game. As a result, it is

difficult to deduct the differences in behaviours that make the standard model superior

in this task. A common strategy was to leave the screen via either the left or right and

this would restart the section; if the agent was in the environment too long then the

enemy would pursue them aggressively. Leaving the scene and returning prevents this

and allows the score exploit to continue.

Alien is the only hard exploration task that saw a sizeable delta in the performance

of the two models. Alien is a maze type environment in which the agent must collect

all the dots in a stage while avoiding three enemies to continually progress. Each dot

scores the agent 10 points. There is a bonus item in the same position each game

worth 50 points. A power dot can be picked up which allows a temporary ability to

kill enemies; this provides 1000 points if enemies are killed. The majority of strategies

found by both the standard and recurrent is to collect the power dot and kill enemies

to maximise points; neither deliberately pick up dots. The score difference of 1020

suggests that the recurrent model picks up 2 extra dots and kills an extra enemy. In

motion, both learn the significance of traversing to the top of the maze to access the

power cell. This usefully leads to two enemies being killed at that stage as agents stay

in their corners as the enemies come to them and receive the points bonus. Where

the recurrent model seems to adjust is, with certain runs, the agents proceed to the

bottom left corner where the power cell re-emerges and this is where further enemies

are killed.

164

7.4. Discussion

7.4 Discussion

Figure 7.3: Activation visualisation of the recurrent model on Seaquest and
Crazy Climber. The figure shows a still video frame from trained recurrent model
agents. The observation layer shows the processed inputs from the environment. The
next layer shows the activation features for the convolutional layer. Then, the activa-
tion features for the recurrent convolutional layer.

In terms of score, the results section shows the recurrent model demonstrated:

5 beneficial score effects (over 10% improvement); 5 indifferent score effects (0-9%

change) and 1 detrimental score effect (over 10% decrease). The recurrent model

produced no notable change in sparse reward tasks and only 1 within dense reward.

Therefore, it appears the recurrent model does not aid in traversal in hard exploration

tasks. However, 5 of the 6 easy exploration saw a significant change. To further

investigate, this section utilises the Atari Zoo platform to visualise real-time features

165

7.4. Discussion

within the recurrent layer; as well as inspecting the behaviours of agents.

Figure 7.3 demonstrates a recurrent layer on the Seaquest and Crazy Climber game.

In relation to traditional image processing, features in the recurrent layer (figure 7.3)

resemble typical blurring/smoothing where image detail and noise are reduced via a

low-pass filter. There are different types of blurs, all of which standard convolution

can achieve, with the correct filter. Though it is not exact, the blurring may bias to

Gaussian-like blurs; where each pixel is a result of a weighted average of its neighbours,

and farther pixels have decreasing weight. The recurrent implementation (see equation

5.1) uses an identity kernel passthrough from iteration 0, so the centre activation

biases towards the largest activation during convolution, like a Gaussian blur. So,

objects will not lose their spatial location in the feature space; this can be seen in

Seaquest with the river bed and the building in Crazy Climber. The spread of a blur is

dependent on the kernel size; however, blurring an image multiple times with a small

width Gaussian-kernel is equivalent to blurring once with a larger width Gaussian-

kernel [268]. This could be a potential benefit recurrency offers, as a larger kernel

requires a greater number of weights to correctly fit the kernel blur pattern. Visually,

in Crazy Climber, the gaps for the windows are still present, seen via the horizontal

changes in patterns, but the building itself becomes a greater activation area. During

playback, when objects are dropped by enemies, a greater number of cells are active

surrounding the object. This could provide feedback to influence behaviours, as slight

blurs have shown to lead to noticeably different activations in later layers compared to

an un-blurred input [52]. Also, it is not uncommon to pre-process images with blurs

166

7.4. Discussion

for edge detection purposes [135, 184].

Figure 7.4: Activation visualisation of the recurrent model on Asteroids and
Aliens. The figure shows a still video frame from trained recurrent model agents. The
observation layer shows the processed inputs from the environment. The next layer
shows the activation features for the convolutional layer. Then, the activation features
for the recurrent convolutional layer. Superior results were achieved over the standard
model.

Figure 7.4 shows the recurrent layer within Asteroids and Alien, two environments

which produce clear benefits with recurrency. The visualisation of the recurrency layer

seems to suggest Gabor-like feature outputs. Gabor filters are linear filters that have

long been associated with image processing for feature extraction, texture segmenta-

tion and texture analysis. A convolutional Gabor filter is a product of a Gaussian

kernel function modulated by a sinusoidal plane wave. By adjusting Gabor filters at

specific frequencies and directions, these filters can offer the desirable properties of spa-

167

7.4. Discussion

Figure 7.5: Activation visualisation for the recurrent convolutional process.
The features are produced on Alien with an agent trained to 4 billion frames. The top
layer are features taken from the convolutional layer. Each layer down is the visuali-
sation of the same features after a number of iterations on the recurrent convolutional
layer. This shows how features can be ’flooded’ with repeated convolution.

tial locality and orientational selectivity [80]; and have been used across various image

processing domains, such as face recognition [225, 11] and text extraction [182]. Gabor

filters have been used in convolutional neural networks previously as fixed weight ker-

nels to extract intrinsic features [195], or as a pre-processing stage [23, 122]. Even when

the kernels weights are controlled via supervised learning, Krizhevsky et al. showed that

168

7.4. Discussion

deep ConvNet’s, trained on real-life images, tend to populate mostly Gabor-like filters

in the first convolutional layer [121]. So, it would not be uncommon to see these results.

However, in Such et al.’s Atari zoo work, it shows that kernels for evolutionary

algorithms appear less regular (and even random) than their gradient-based counter-

parts, which often have spatial structure and sometimes resemble edge detectors [227].

Further, figure 7.5 shows the impact of the iterative process of recurrent convolution

on the features, from iteration 0 to 21. A feature set that starts unique becomes fairly

homogeneous towards the end. It is for these reasons the production of Gabor-like

features are unlikely and instead the feature space is becoming saturated. In Meng

and Yang’s work with the shunting equation, the inspiration for recurrent convolution,

the discussion of parameter sensitivity for the ‘passive decay rate’ shows that if too

low, the neuron activity saturates quickly and the activity space is flooded. For the

recurrent convolutional process, the ‘iteration parameter’ would produce the same im-

pact; enough iterations and the feature space becomes saturated. Comparing figure

7.3 and 7.4, it is clear that this does not affect every game environment and the iter-

ation parameter would need to be tuned game to game. Therefore, incorporating this

parameter into the evolutionary process may allow each model to choose the parame-

ters which suits it best; which may involve turning off the recurrent layer due to the

statistical negative result on some games. Despite not fully understanding the purpose

recurrency offers for Asteroids and Alien, the results offer a significant improvement.

Table 7.3 shows the max scores taken from multiple domains and plotted against

comparable strategies, that also achieved scores from 30 independent no-op episodes.

169

7.4. Discussion

Crazy Climber
Scores

GA Standard 68600
Gorila DQN [170] 85919.16
DDQN [243] 101874
GA Recurrent 108000

Kangroo
Scores

GA Standard 11300
C51 [14] 12853
Distributional DQN [98] 12853
Reactor ND [84] 13349
DDQN [243] 13651
GA Recurrent 14500

Seaquest
Scores

GA Standard 1600
IMPALA (shallow) [59] 1716.9
A3C [63] 1744
IMPALA (deep) [59] 1753.2
A2C [260] 1754
ACKTR [260] 1776
GA Recurrent 2080

Asteroids
Scores

GA Standard 3130
NoisyNet DQN [63] 3455
IMPALA (shallow) [59] 3508.1
Reactor [84] 3726.1
QR-DQN-1 [40] 4226
GA Recurrent 4380

Alien
Scores

GA Standard 3670
DDQN [14] 3747.7
PDD DQN [249] 3941
Distributional DQN [98] 4055.8
Reactor ND [84] 4199.4
GA Recurrent 4350

Table 7.3: Comparing performance between algorithms and architectures on
multiple ALE games. Only the games that the recurrent model produced a notice-
able performance benefit are shown. Bold indicates the GA standard and recurrent
models. Scores are arranged in ascending order. Each learning style has a citation to
the original source.

No-op starts have a non-deterministic starting position where the agent selects the “do

nothing” action for up to 30 times at the start of an episode. The recurrent model would

be an improvement on a number of established architectures and learning techniques.

170

7.5. Conclusion

7.5 Conclusion

This chapter implemented a novel recurrent convolutional layer to a conventional Con-

vNet and was able to produce performance improvements on a number of domains in

ALE using deep neuroevolution. 12 Atari game environments were trained for 4 billion

frames on 5 evolutionary runs. 6 produced a statistically improved score, 4 produced a

statistically negative impact on score and the remaining 2 produced no change. How-

ever, the largest difference in negative score was 13% vs the largest improvement of 54%

increase in performance. Benefits were seen across all easy exploration tasks and on

hard exploration dense reward tasks. No benefits were seen on the selection of sparse

reward tasks, and 2 of the 3 saw a negative impact on score. Of the games that were

visually analysed, a majority produced a noticeable difference in agent’s behaviour that

was seen across many evolutionary runs when compared to the conventional ConvNet

architecture. Due to computational constraints, only 12, of the possible 54, games were

analysed and the maximum frames were limited to 4 billion instead of the original 6

billion. So, there is still an avenue to investigate on the ALE platform; however, this

chapter has implications outside of ALE. Firstly, recurrent convolution is not solely

restricted to producing motion planning landscapes. It can now be explored in the

many other environments which benefit from large ConvNets. Secondly, the recurrent

convolution process is not tied to neuroevolution and is an architectural change; this

allows any other learning style to adapt to this same architecture. This may be par-

ticularly interesting as, with the recurrent layer, other established learning styles and

171

7.5. Conclusion

architectures were outperformed in 5 environments. Finally, the recurrent convolu-

tional layer allows flexibility in its implementation. An aspect which was discovered

during the analysis of the ConvNet’s features show that recurrency, in certain game

environments, causes uniformity across the features. It was speculated that the iter-

ation parameter was the main factor and investigating further could offer an insight

into how this parameter should be tuned. In a similar vein, features like dropout could

be incorporated to prevent the convergence of features, allowing the previous layer to

pass through without recurrency applied. This is to show that there is still room to

further experiment with this architecture and those above provide a few ideas.

172

8| Conclusions

8.1 Summary of Conclusions

The goal of the thesis was to examine the evolution of motion planning systems that

exhibit robust, deliberate, and efficient behaviour for use in artificial evolutionary sys-

tems. Throughout the thesis, there is a focus on moving away from domain-specific

architectures, as well as investigating these solutions on sparse reward tasks in an at-

tempt to eliminate innate bias towards explicit desirable solutions. This study presents

its findings from an artificial life simulation model and a standard multi-environment

platform.

Chapter 4 applies our sophisticated neuroevolution understandings to a strict mo-

tion planning task within an artificial life simulation model. Both chapters investigate

the scalability and quality of motion planning solutions via direct and indirect en-

coding. The belief was that direct encoding would not be suitable due to the high

dimensionality of the domain problem. Whereas, indirect encoding could produce the

repeatable and scalable patterns necessary for motion planning. Agents must con-

verge on multiple locations in an efficient manner to be successful. The results confirm

173

8.1. Summary of Conclusions

that direct encoding would not be suitable, with even the smallest domain receiving

inconsistent outcomes. Indirect encoding did provide adequate solutions at the orig-

inal domain size but declined in the quality of movement when compared to static

solutions. Thus, chapter 4 indicates that within neuroevolution there is a lack of dis-

tinguished approaches for motion planning that compete with static artificial potential

field methods.

Chapter 5 uses the results of the previous chapter to construct a novel use of con-

volutional neural networks to overcome the issues in neuroevolution planning. This

chapter uses the same domain and task as in chapters 4. With a simple genetic al-

gorithm and the novel architecture, results show greater behaviour in all categories

(robustness, deliberateness, and efficiency) over previous results. In comparison to the

static model, there is a slight reduction in robustness but greater efficiency. A key

component of the model’s success relies on the fixed genome size. This restricts the

domain to a low dimensional space. While still spreading activations from local areas

to span the greater landscape.

Chapter 6 extends the work presented in chapter 5 by assessing if motion plan-

ning can evolve with various network combinations. Previous chapters restrict the

task domain with static networks. With greater evolutionary freedom the task domain

presents greater difficulty. Further, the network designs are adjusted to remove inherent

domain-specific influence. The chapters focus was on how/if evolved motion planning

could operate successfully in domains with greater evolutionary difficulty. The outcome

confirms that evolved motion planning, with a simple GA, can adapt to many different

174

8.2. Contribution of this work

evolutionary scenarios of different complexity including the most ambitious combina-

tion which strips the majority of domain influence without fundamentally changing

the architecture. A state-of-the-art neuroevolution general game player is presented to

the task domain as a comparison. These results show that it is difficult to achieve the

same behaviour presented without the use of explicit motion planning.

Finally, Chapter 7 addresses whether the recurrent convolutional neural network is

restricted to the task domain this thesis has been positioned around. To investigate

this, a prominent multi-environment platform is used for evaluation. The platform has

commonly been utilised with convolutional neural network architectures. The recurrent

convolutional neural network is simulated in twelve diverse environments. Results show

that recurrent convolution can expand to other environments. Five of the environments

show an improved end score with the recurrent model. Behaviours ranged from unno-

ticeable to observable strategy differences. The best results, per domain, are compared

to alternative learning strategies and architectures. The recurrent convolutional neural

network has an improved score on several different approaches.

8.2 Contribution of this work

• Provides a new neuroevolution approach for adopting motion planning in arti-

ficial evolutionary systems (Chapters 4). The model allows unbounded growth

of the configuration space. This is counter to those with static implementations

or tight evolutionary bounds. The implementation uses an indirect encoding

175

8.2. Contribution of this work

configuration. By achieving deliberate motion in an artificial life domain, it

proved unconstrained motion planning is possible with current neuroevolution

techniques.

• Implemented a novel extension to a convolutional neural network with the use of

recurrent convolution to target motion planning (Chapter 5). In the domain, the

model saw greater robustness than any previous neuroevolutionary approach; and

greater efficiency than any static or neuroevolutionary precedent. This demon-

strates that the unique architecture provides a notable improvement in motion

planning. This was achieved with a standard conventional genetic algorithm.

• Establishes the advantage of a motion planning component in a general-purpose

network when compared to a state-of-the-art deep convolutional network (Chap-

ters 6). The domain presented requires long term deliberative planning to suc-

ceed, while providing sparse rewards. The deep convolutional network could

not achieve the long term behaviours. When the convolution planning network

is utilised with other networks the deliberative behaviour becomes obtainable.

This was even shown to be true when removing a majority of its domain-specific

network elements. Thus demonstrating the capability of the architecture as well

as assuring motion planning versatility with greater task difficulty.

• Demonstrates that recurrent convolution within a deep convolutional network

can outperform other learning techniques and architectures on multiple domains

(Chapter 7). This illustrates how recurrent convolution can aid in scenarios

176

8.3. Limitations & Future Work

which are not restricted to, but not excluding, motion planning in a variety of

task domains. This was achieved on a standard benchmarking platform.

8.3 Limitations & Future Work

Throughout the thesis, different learning styles and architectures are compared di-

rectly. The author sought to create a fair comparison when this arises. However,

experimentation is the judgement of this author and could cause unintentional over-

sight. When comparing HyperNEAT, recurrent ConvNets, and Large ConvNets there

are greater factors to consider. Each has many parameters and different dimension-

alities. Therefore, each could require vastly different considerations to achieve their

optimal performance. To overcome this issue, each section seeks to provide a variety

of parameters and configurations. This aims to cover a diverse set of particular be-

haviours. The reasoning for each choice is explained in each chapter. But, it can not

be said that one approach could not achieve a specific behaviour unequivocally. For

example, chapter 2 provides many ways to improve the evolutionary search. Yet, the

majority of this work utilises a simple GA. By improving evolutionary search, results

could improve across all strategies. This, however, is not the scope of this thesis and

can be seen as future work.

Future work can also be done for motion planning in alternative artificial life do-

mains. Those models which utilise artificial potential field type motion planning can

simply implement the recurrent ConvNet from this work. Additionally, the domain

177

8.3. Limitations & Future Work

used for the majority of this thesis has proven to be a difficult task for general systems.

Further investigation could be made about what methods could be taken from the

general hybrid model and be lifted to greater established networks, as this work did in

chapter 7. Finally, the positive results of recurrent convolution on multiple ALE games

allows opportunities to evaluate alternative learning techniques such as RL. As well as

applying this process to domains which have already drawn success from conventional

ConvNets.

178

Acronyms

A3C Asynchronous Advantage Actor-Critic. 75

AGE Analog Genetic Encoding. iii, 33–35

ALE Arcade Learning Environment. iv, viii, 46, 68, 75, 76, 143–146, 154, 155, 170,

171, 178

ANN Artificial Neural Networks. vii, 22, 26, 37, 40, 41, 48, 64, 83

BF-NEAT Bloat-free NEAT. 23

CE Cellular Encoding. iii, 32, 33

CGP Cartesian Genetic programming. iii, vii, 35–37

CGPANN Cartesian Genetic Programming of Artificial Neural Networks. 37

CNE Conventional NeuroEvolution. 9, 50

ConvNet Convolutional Neural Network. viii, 41, 46–49, 76, 106–110, 112, 118, 120,

125, 130, 134, 141–143, 145, 148, 150–157, 169, 171, 172

CoSyNE Cooperative Synapse NeuroEvolution. iii, vii, 18, 27–29, 65

CPPN Compositional Pattern Producing Networks. iii, vii, 38–45, 65, 84, 94, 95, 99,

102

DDQN Double DQN. 75

179

Acronyms

DN Decision Network. iv, 69, 70, 72, 73, 79, 80, 105, 106, 108–110, 113, 114, 118,

120–122, 124, 126

DQN Deep Q Networks. viii, 75, 76, 144, 145

EAs Evolutionary Algorithms. 9, 10

ES-HyperNEAT Evolvable-substrate HyperNEAT. 44, 45

ESP Enforced SubPopulations. iii, 16–18, 27, 65, 66

GA Genetic Algorithm. v, 9, 10, 21, 31, 50, 52, 76, 107, 111, 118, 153, 154, 163, 164

GAR Galactic Arms Race. 40

GNARL GeNeralized Acquisition of Recurrent Links. iii, vii, 13, 14, 19, 23

HSANE Hierarchical SANE. 16, 18

HybrID Hybridized Indirect and Direct encoding. 42, 43, 88

HyperNEAT Hypercube-based NEAT. iii, vii, viii, 40–45, 60, 65, 66, 75, 77–82, 84,

86, 88, 90, 93–95, 98, 99, 101–106, 114–117

L-system Lindenmayer systems. iii, vii, 30–32

LSTM Long short-term Memory. 18

MOEAs Multi-objective evolutionary algorithms. iv, 56, 60

NE Neuroevolution. 9, 10, 13, 16, 18, 26, 33, 46, 50, 60, 64, 66, 76, 143, 144

NEAT NeuroEvolution of Augmenting Topologies. iii, vii, viii, 16, 18, 20–23, 25, 27,

35, 38, 43, 44, 60, 65, 66, 77–86, 90, 91, 93, 94, 104

NERO Neuro Evolving Robotic Operatives. 25

180

Acronyms

NevA NeuroEvolutionary Algorithm. iii, 26, 27

NS Novelty Search. iv, 59–61

NSGA Non Dominated Sorting Genetic Algorithm. 57

NSGA-II Non Dominated Sorting Genetic Algorithm-II. 57

QD Quality Diversity. iv, 60–62

RC Task River Crossing Task. iv, v, viii, ix, 67–74, 77–80, 82, 89, 94–96, 102, 108,

111, 113, 118, 120, 123, 125, 126, 131, 140, 143–147, 149–151

RCGPANN Recurrent Cartesian Genetic Programming of Artificial Neural Networks.

37

ReLU Rectified Linear Unit. 49, 81, 108, 110, 111, 117, 125, 141

ResNets Residual Networks. 49

RL Reinforcement learning. 3, 46, 143, 144, 153, 154, 178

rtNEAT Real-Time NEAT. 25, 26

SAGA Species Adaptation Genetic Algorithms. 54

SANE Symbiotic Adaptive NeuroEvolution. iii, 14–18, 27, 65

sGA Structured Genetic Algorithm. iii, vii, 11–13

SGD Stochastic Gradient Descent. 8, 46

SM Shunting Model. iv, 68, 72, 73, 77, 78, 80, 82, 95, 96, 100, 101, 103–108, 110, 113,

117, 118, 121

TWEANN Weight Evolving Artificial Neural Network. 11, 16, 18, 20, 65, 83

VEGA Shaffer’s Vector Evaluated Genetic Algorithm. 56, 57

181

Bibliography

[1] T. Aaltonen, J. Adelman, T. Akimoto, M. Albrow, B. A. González, S. Amerio,

D. Amidei, A. Anastassov, A. Annovi, J. Antos, et al. Measurement of the top-

quark mass with dilepton events selected using neuroevolution at cdf. Physical

review letters, 102:152001, 2009.

[2] V. Abazov, B. Abbott, M. Abolins, B. Acharya, M. Adams, T. Adams, E. Aguilo,

M. Ahsan, G. Alexeev, G. Alkhazov, et al. Observation of single top-quark

production. Physical Review Letters, 103:92001, 2009.

[3] A. A. Agrachev and Y. Sachkov. Control theory from the geometric viewpoint.

Springer Science & Business Media, 2013.

[4] P. J. Angeline, G. M. Saunders, and J. B. Pollack. An evolutionary algorithm that

constructs recurrent neural networks. IEEE transactions on Neural Networks, 5:

54–65, 1994.

[5] M. S. Arun Kumar Sangaiah and Z. Zhang. Computational Intelligence for Mul-

timedia Big Data on the Cloud with Engineering Applications. Elsevier, 2018.

[6] Y. M. Assael, B. Shillingford, S. Whiteson, and N. de Freitas. LipNet: Sentence-

level Lipreading. CoRR, abs/1611.01599, 2016.

[7] J. E. Auerbach. Automated evolution of interesting images. Technical report,

MIT Press, 2012.

182

Bibliography

[8] J. E. Auerbach and J. C. Bongard. Evolving complete robots with cppn-neat:

the utility of recurrent connections. In Proceedings of the 13th annual conference

on Genetic and evolutionary computation, pages 1475–1482. ACM, 2011.

[9] P. Baldi and P. Sadowski. A theory of local learning, the learning channel, and

the optimality of backpropagation. Neural Networks, 83:51–74, 2016.

[10] A. Baldominos, Y. Saez, and P. Isasi. Hybridizing evolutionary computation and

deep neural networks: An approach to handwriting recognition using committees

and transfer learning. Complexity, 2019, 2019.

[11] T. Barbu. Gabor filter-based face recognition technique. Proceedings of the

Romanian Academy, 11(3):277–283, 2010.

[12] M. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul, D. Saxton, and R. Munos.

Unifying count-based exploration and intrinsic motivation. In Advances in Neural

Information Processing Systems, pages 1471–1479, 2016.

[13] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The Arcade Learning

Environment: An evaluation Platform for General Agents. Journal of Artificial

Intelligence Research, 47:253–279, 2013.

[14] M. G. Bellemare, W. Dabney, and R. Munos. A Distributional Perspective on

Reinforcement Learning. In Proceedings of the 34th International Conference on

Machine Learning-Volume 70, pages 449–458. JMLR. org, 2017.

[15] S. Benson-Amram and K. E. Holekamp. Innovative problem solving by wild

spotted hyenas. Proceedings of the Royal Society B: Biological Sciences, 279:

4087–4095, 2012.

[16] E. J. W. Boers, H. Kuiper, B. L. M. Happel, and I. G. Sprinkhuizen-Kuyper. Bio-

logical Metaphors In Designing Modular Artificial Neural Networks. In S. Gielen

183

Bibliography

and B. Kappen, editors, ICANN ’93, pages 780–780. Springer London, 1993.

ISBN 978-1-4471-2063-6.

[17] M. Bojarski, D. D. Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D.

Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao, and K. Zieba. End

to End Learning for Self-Driving Cars. CoRR, abs/1604.07316, 2016.

[18] J. Bongard. Morphological change in machines accelerates the evolution of robust

behavior. Proceedings of the National Academy of Sciences, 108:1234–1239, 2011.

[19] J. C. Bongard and R. Pfeifer. Repeated structure and dissociation of genotypic

and phenotypic complexity in artificial ontogeny. In Proceedings of the 3rd Annual

Conference on Genetic and Evolutionary Computation, pages 829–836. Morgan

Kaufmann Publishers Inc., 2001.

[20] J. Borg, A. Channon, and C. Day. Discovering and Maintaining Behaviours

Inaccessible to Incremental Genetic Evolution Through Transcription Errors and

Cultural Transmission. In Advances in Artificial Life, ECAL 2011: Proceedings

of the Eleventh European Conference on the Synthesis and Simulation of Living

Systems, pages 101–108. MIT Press, 2013.

[21] J. M. Borg and A. Channon. Evolutionary adaptation to social information use

without learning. In Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),

volume 10199 LNCS, pages 837–852. Springer, 2017.

[22] S. P. Brooks and B. J. T. Morgan. Optimization Using Simulated Annealing.

The Statistician, 44:241, 2006.

[23] G. S. Budhi, R. Adipranata, and F. J. Hartono. The use of gabor filter and

back-propagation neural network for the automobile types recognition. In 2nd

International Conference SIIT 2010, 2010.

184

Bibliography

[24] Y. Burda, H. Edwards, A. J. Storkey, and O. Klimov. Exploration by Random

Network Distillation. CoRR, abs/1810.12894, 2018.

[25] N. Burtnyk and M. Wein. Computer-generated key-frame animation. Journal of

the SMPTE, 80:149–153, 1971.

[26] L. Cardamone, D. Loiacono, and P. L. Lanzi. Evolving competitive car con-

trollers for racing games with neuroevolution. In Proceedings of the 11th Annual

conference on Genetic and evolutionary computation, page 1179. ACM, 2009.

[27] R. Chandra, M. Frean, and M. Zhang. An encoding scheme for cooperative

coevolutionary feedforward neural networks. In Australasian Joint Conference

on Artificial Intelligence, pages 253–262. Springer, 2010.

[28] R. Chandra, M. Frean, M. Zhang, and C. W. Omlin. Encoding subcomponents

in cooperative co-evolutionary recurrent neural networks. Neurocomputing, 74:

3223–3234, 2011.

[29] T.-Y. Chang, S.-W. Kuo, and J.-J. Hsu. A two-phase navigation system for

mobile robots in dynamic environments. In Proceedings of IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems (IROS’94), volume 1, pages

306–313. IEEE, 1994.

[30] H. M. Choset, S. Hutchinson, K. M. Lynch, G. Kantor, W. Burgard, L. E.

Kavraki, and S. Thrun. Principles of robot motion: theory, algorithms, and

implementation. MIT press, 2005.

[31] J. Clune, B. E. Beckmann, C. Ofria, and R. T. Pennock. Evolving coordi-

nated quadruped gaits with the HyperNEAT generative encoding. In 2009 IEEE

Congress on Evolutionary Computation, CEC 2009, pages 2764–2771. IEEE,

2009.

185

Bibliography

[32] J. Clune, C. Ofria, and R. T. Pennock. The sensitivity of HyperNEAT to different

geometric representations of a problem. In the 11th Annual conference, page 675.

ACM Press, 2009.

[33] J. Clune, B. E. Beckmann, R. T. Pennock, and C. Ofria. HybrID: A hybridization

of indirect and direct encodings for evolutionary computation. In Lecture Notes in

Computer Science (including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics), volume 5778 LNAI, pages 134–141. Springer

Berlin Heidelberg, Berlin, Heidelberg, 9 2011.

[34] J. Clune, K. O. Stanley, R. T. Pennock, and C. Ofria. On the performance

of indirect encoding across the continuum of regularity. IEEE Transactions on

Evolutionary Computation, 15:346–367, 2011.

[35] P. Coates, T. Broughton, and H. Jackson. Exploring three-dimensional design

worlds using lindenmayer systems and genetic programming. Evolutionary design

by computers, pages 323–341, 1999.

[36] E. Conti, V. Madhavan, F. P. Such, J. Lehman, K. Stanley, and J. Clune. Im-

proving exploration in evolution strategies for deep reinforcement learning via a

population of novelty-seeking agents. In Advances in Neural Information Pro-

cessing Systems, pages 5027–5038, 2018.

[37] V. Coverstone-Carroll, J. Hartmann, and W. Mason. Optimal multi-objective

low-thrust spacecraft trajectories. Computer methods in applied mechanics and

engineering, 186:387–402, 2000.

[38] G. Cuccu and F. Gomez. When novelty is not enough. In Lecture Notes in

Computer Science (including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics), volume 6624 LNCS, pages 234–243. Springer

Berlin Heidelberg, Berlin, Heidelberg, Apr. 2011.

186

Bibliography

[39] A. Cully, J. Clune, D. Tarapore, and J.-B. Mouret. Robots that can adapt like

animals. Nature, 521:503–529, 2015.

[40] W. Dabney, M. Rowland, M. G. Bellemare, and R. Munos. Distributional rein-

forcement learning with quantile regression. CoRR, abs/1710.10044, 2017.

[41] W. Dabney, G. Ostrovski, D. Silver, and R. Munos. Implicit Quantile Networks

for Distributional Reinforcement Learning. CoRR, abs/1806.06923, 2018.

[42] D. D’Ambrosio, J. Lehman, S. Risi, and K. O. Stanley. Evolving Policy Geom-

etry for Scalable Multiagent Learning. In Proceedings of the 9th International

Conference on Autonomous Agents and Multiagent Systems: volume 1-Volume 1,

pages 731–738. International Foundation for Autonomous Agents and Multiagent

Systems, 2010.

[43] D. B. D’Ambrosio and K. O. Stanley. A novel generative encoding for exploiting

neural network sensor and output geometry. In Proceedings of the 9th annual

conference on Genetic and evolutionary computation, pages 974–981. ACM, 2007.

[44] D. B. D’Ambrosio and K. O. Stanley. Scalable multiagent learning through

indirect encoding of policy geometry. Evolutionary Intelligence, 6:1–26, 2013.

[45] D. Dasgupta and D. R. McGregor. Designing application-specific neural networks

using the structured genetic algorithm. In [Proceedings] COGANN-92: Interna-

tional Workshop on Combinations of Genetic Algorithms and Neural Networks,

pages 87–96. IEEE, 1992.

[46] D. Dasgupta and D. R. McGregor. Nonstationary Function Optimization using

the Structured Genetic Algorithm. In PPSN, pages 145–154. Citeseer, 1992.

[47] D. Dasgupta and D. R. McGregor. sGA: a structured genetic algorithm. Citeseer,

1993.

187

Bibliography

[48] K. A. De Jong. An Analysis of the Behavior of a Class of Genetic Adaptive

Systems. PhD thesis, University of Michigan, 1975.

[49] K. A. De Jong. Evolutionary computation: a unified approach. MIT press, 2006.

[50] K. Deb. Multi-objective evolutionary algorithms. In Springer Handbook of Com-

putational Intelligence, pages 995–1015. Springer, 2015.

[51] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiob-

jective genetic algorithm: NSGA-II. IEEE transactions on evolutionary compu-

tation, 6:182–197, 2002.

[52] S. Dodge and L. Karam. Understanding how image quality affects deep neu-

ral networks. In 2016 eighth international conference on quality of multimedia

experience (QoMEX), pages 1–6. IEEE, 2016.

[53] G. Dozier, S. McCullough, A. Homaifar, E. Tunstel, and L. Moore. Multiobjec-

tive evolutionary path planning via fuzzy tournament selection. In 1998 IEEE

International Conference on Evolutionary Computation Proceedings. IEEE World

Congress on Computational Intelligence (Cat. No. 98TH8360), pages 684–689.

IEEE, 1998.

[54] J. Drchal, J. Koutnik, and M. Snorek. HyperNEAT controlled robots learn how to

drive on roads in simulated environment. In 2009 IEEE Congress on Evolutionary

Computation, pages 1087–1092, 2009.

[55] P. Dürr, C. Mattiussi, and D. Floreano. Neuroevolution with Analog Genetic

Encoding. In Parallel Problem Solving from Nature - PPSN IX, pages 671–680.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

[56] R. Dybowski, V. Gant, P. Weller, and R. Chang. Prediction of outcome in criti-

cally ill patients using artificial neural network synthesised by genetic algorithm.

The Lancet, 347:1146–1150, 1996.

188

Bibliography

[57] A. Ecoffet, J. Huizinga, J. Lehman, K. O. Stanley, and J. Clune. Go-Explore: a

New Approach for Hard-Exploration Problems. CoRR, abs/1901.10995, 2019.

[58] A. E. Eiben, J. E. Smith, et al. Introduction to evolutionary computing. Springer,

2003.

[59] L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih, T. Ward, Y. Doron,

V. Firoiu, T. Harley, I. Dunning, S. Legg, and K. Kavukcuoglu. IMPALA: scal-

able distributed deep-rl with importance weighted actor-learner architectures.

CoRR, abs/1802.01561, 2018.

[60] J. Euchner. Innovation Engines. In Research-Technology Management, volume 58

of Automated Creativity and Improved Stochastic Optimization via Deep Learn-

ing, pages 9–10. ACM, 2015.

[61] J. Fekiač, I. Zelinka, and J. C. Burguillo. A review of methods for encoding

neural network topologies in evolutionary computation. In Proceedings of 25th

European Conference on Modeling and Simulation ECMS, pages 410–416, 2011.

[62] D. B. Fogel and L. C. Stayton. On the effectiveness of crossover in simulated

evolutionary optimization. BioSystems, 32:171–182, 1994.

[63] M. Fortunato, M. G. Azar, B. Piot, J. Menick, I. Osband, A. Graves, V. Mnih,

R. Munos, D. Hassabis, O. Pietquin, C. Blundell, and S. Legg. Noisy Networks

for Exploration. CoRR, abs/1706.10295, 2017.

[64] I. Gabriel, V. Negru, and D. Zaharie. Neuroevolution based multi-agent system

for micromanagement in real-time strategy games. In Proceedings of the Fifth

Balkan Conference in Informatics, page 32. ACM, ACM, 2012.

[65] J. Gauci and K. Stanley. Generating large-scale neural networks through dis-

covering geometric regularities. In Proceedings of the 9th annual conference on

Genetic and evolutionary computation, pages 997–1004. ACM, 2007.

189

Bibliography

[66] J. Gauci and K. O. Stanley. A Case Study on the Critical Role of Geometric

Regularity in Machine Learning. Artificial Intelligence, pages 628–633, 2008.

[67] J. Gauci and K. O. Stanley. Indirect encoding of neural networks for scalable

go. In International Conference on Parallel Problem Solving from Nature, pages

354–363. Springer, 2010.

[68] X. Glorot, A. Bordes, and Y. Bengio. Deep sparse rectifier neural networks. In

Proceedings of the Fourteenth International Conference on Artificial Intelligence

and Statistics, volume 15 of Proceedings of Machine Learning Research, pages

315–323. PMLR, 2011.

[69] D. E. Goldberg and J. H. Holland. Genetic algorithms and machine learning.

Machine learning, 3:95–99, 1988.

[70] D. E. Goldberg, J. Richardson, et al. Genetic algorithms with sharing for multi-

modal function optimization. In Genetic algorithms and their applications: Pro-

ceedings of the Second International Conference on Genetic Algorithms, pages

41–49. Hillsdale, NJ: Lawrence Erlbaum, 1987.

[71] F. Gomez and R. Miikkulainen. Incremental evolution of complex general be-

havior. Adaptive Behavior, 5:317–342, 1997.

[72] F. Gomez and R. Miikkulainen. 2D pole balancing with recurrent evolutionary

networks. In International Conference on Artificial Neural Networks, pages 425–

430. Springer, 1998.

[73] F. Gomez, J. Schmidhuber, and R. Miikkulainen. Efficient Non-linear Control

Through Neuroevolution. In Journal of Machine Learning Research JMLR, vol-

ume 9, pages 654–662. Journal of Machine Learning Research JMLR, Berlin,

Heidelberg, 9 2006.

190

Bibliography

[74] F. Gomez, J. Schmidhuber, and R. Miikkulainen. Accelerated neural evolution

through cooperatively coevolved synapses. Journal of Machine Learning Re-

search, 9:937–965, 2008.

[75] F. J. Gomez and R. Miikkulainen. Solving non-markovian control tasks with

neuroevolution. In IJCAI, volume 99, pages 1356–1361, 1999.

[76] F. J. Gomez and R. Miikkulainen. Robust Non-linear Control through Neuroevo-

lution. PhD thesis, The University of Texas at Austin, 2003.

[77] F. J. Gomez and R. Miikkulainen. Active Guidance for a Finless Rocket Using

Neuroevolution. In Genetic and Evolutionary Computation GECCO 2003, pages

2084–2095. Springer Berlin Heidelberg, Berlin, Heidelberg, 7 2007.

[78] F. J. Gomez and J. Schmidhuber. Co-evolving recurrent neurons learn deep

memory pomdps. In Proceedings of the 7th annual conference on Genetic and

evolutionary computation, pages 491–498. ACM, 2005.

[79] D. Gravina, A. Liapis, and G. Yannakakis. Surprise search: Beyond objectives

and novelty. In Proceedings of the Genetic and Evolutionary Computation Con-

ference 2016, pages 677–684. ACM, 2016.

[80] S. E. Grigorescu, N. Petkov, and P. Kruizinga. Comparison of texture features

based on gabor filters. IEEE Transactions on Image processing, 11(10):1160–

1167, 2002.

[81] F. Gruau. Automatic Definition of Modular Neural Networks. Adaptive Behavior,

3:151–183, 1994.

[82] F. Gruau. Genetic synthesis of Boolean neural networks with a cell rewriting de-

velopmental process. In [Proceedings] COGANN-92: International Workshop on

Combinations of Genetic Algorithms and Neural Networks, pages 55–74. IEEE,

2003.

191

Bibliography

[83] F. Gruau, D. Whitley, and L. Pyeatt. A Comparison Between Cellular Encoding

and Direct Encoding for Genetic Neural Networks. In Proceedings of the 1st

Annual Conference on Genetic Programming, pages 81—-89. MIT press, MIT

press, 1996.

[84] A. Gruslys, M. G. Azar, M. G. Bellemare, and R. Munos. The Reactor: A

fast and sample-efficient Actor-Critic agent for Reinforcement Learning. CoRR,

abs/1704.04651, 2017.

[85] V. Gupta, R. Sadana, and S. Moudgil. Image style transfer using convolutional

neural networks based on transfer learning. In International Journal of Com-

putational Systems Engineering, volume 5, pages 53–60. Inderscience Publishers

(IEL), 2019.

[86] P. J. Hancock. Genetic algorithms and permutation problems: A comparison of

recombination operators for neural net structure specification. In [Proceedings]

COGANN-92: International Workshop on Combinations of Genetic Algorithms

and Neural Networks, pages 108–122. IEEE, 1992.

[87] H. Handels, T. Roß, J. Kreusch, H. H. Wolff, and S. J. Poeppl. Feature selec-

tion for optimized skin tumor recognition using genetic algorithms. Artificial

Intelligence in Medicine, 16:283–297, 1999.

[88] S. Harding and J. F. Miller. Evolution of robot controller using cartesian genetic

programming. In Genetic Programming, pages 62–73. Springer Berlin Heidelberg,

2005.

[89] I. Harvey. Species adaptation genetic algorithms: A basis for a continuing SAGA.

In Toward a Practice of Autonomous Systems: Proceedings of the First European

Conference on Artificial Life, pages 346–354. MIT Press, 1992.

192

Bibliography

[90] I. Harvey. Artificial Evolution for Real Problems. In Evolutionary Robotics: From

Intelligent Robots to Artificial Life (ER’97). Proceedings of the 5th International

Symposium on Evolutionary Robotics, Tokyo, pages 1–23. AAI Books, 1997.

[91] E. J. Hastings, R. K. Guha, and K. O. Stanley. Evolving content in the galactic

arms race video game. In CIG2009 - 2009 IEEE Symposium on Computational

Intelligence and Games, pages 241–248. IEEE, 2009.

[92] A. T. Hatjimihail. Genetic algorithms-based design and optimization of statistical

quality-control procedures. Clinical Chemistry, 39:1972–1978, 1993.

[93] M. Hausknecht, P. Khandelwal, R. Miikkulainen, and P. Stone. HyperNEAT-

GGP: A HyperNEAT-based Atari General Game Player. In Proceedings of the

fourteenth international conference on Genetic and evolutionary computation

conference, pages 217–224. ACM, 2012.

[94] M. Hausknecht, J. Lehman, R. Miikkulainen, and P. Stone. A neuroevolution

approach to general atari game playing. IEEE Transactions on Computational

Intelligence and AI in Games, 6:355–366, 2014.

[95] S. Haykin. Neural networks: a comprehensive foundation. Prentice Hall PTR,

1994.

[96] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recog-

nition. In CVPR, pages 770–778, 2015.

[97] L. Helms and J. Clune. Improving HybrID: How to best combine indirect and

direct encoding in evolutionary algorithms. PLoS ONE, 12:1–35, 2017.

[98] M. Hessel, J. Modayil, H. van Hasselt, T. Schaul, G. Ostrovski, W. Dabney,

D. Horgan, B. Piot, M. G. Azar, and D. Silver. Rainbow: Combining improve-

ments in deep reinforcement learning. CoRR, abs/1710.02298, 2017.

193

Bibliography

[99] D. Horgan, J. Quan, D. Budden, G. Barth-Maron, M. Hessel, H. van Hasselt,

and D. Silver. Distributed prioritized experience replay. CoRR, abs/1803.00933,

2018.

[100] G. S. Hornby. ALPS: the age-layered population structure for reducing the prob-

lem of premature convergence. In Proceedings of the 8th annual conference on

Genetic and evolutionary computation, pages 815–822. ACM, 2006.

[101] G. S. Hornby and J. B. Pollack. Creating high-level components with a generative

representation for body-brain evolution. Artificial life, 8:223–246, 2002.

[102] G. S. Hornby, S. Takamura, J. Yokono, O. Hanagata, T. Yamamoto, and M. Fu-

jita. Evolving robust gaits with AIBO. In Proceedings 2000 ICRA. Millennium

Conference. IEEE International Conference on Robotics and Automation. Sym-

posia Proceedings (Cat. No.00CH37065), volume 3, pages 3040–3045. IEEE, 2000.

[103] M. Hutter and S. Legg. Fitness uniform optimization. IEEE Transactions on

Evolutionary Computation, 10:568–589, 2006.

[104] F. N. Iandola, M. W. Moskewicz, S. Karayev, R. B. Girshick, T. Darrell, and

K. Keutzer. DenseNet: Implementing Efficient ConvNet Descriptor Pyramids.

CoRR, abs/1404.1869, 2014.

[105] S. Iizuka, E. Simo-Serra, and H. Ishikawa. Let there be color!: Joint End-to-end

Learning of Global and Local Image Priors for Automatic Image Colorization

with Simultaneous Classificatio. ACM Transactions on Graphics, 35:1–11, 2016.

[106] M. F. Jefferson, N. Pendleton, S. B. Lucas, and M. A. Horan. Comparison of a

genetic algorithm neural network with logistic regression for predicting outcome

after surgery for patients with nonsmall cell lung carcinoma. Cancer: Interdis-

ciplinary International Journal of the American Cancer Society, 79:1338–1342,

1997.

194

Bibliography

[107] B. Jolley and A. Channon. Toward Evolving Robust, Deliberate Motion Planning

with HyperNEAT. In 2017 IEEE Symposium Series on Computational Intelli-

gence, SSCI 2017 - Proceedings, volume 2018-January, pages 1–8. IEEE, 2018.

[108] B. Jolley and A. Channon. Evolving Robust, Deliberate Motion Planning With a

Shallow Convolutional Neural Network. In Artificial Life Conference Proceedings,

pages 536–543. MIT Press, 2018.

[109] B. P. Jolley, J. M. Borg, and A. Channon. Analysis of social learning strategies

when discovering and maintaining behaviours inaccessible to incremental genetic

evolution. In Lecture Notes in Computer Science, volume 9825 LNCS, pages

293–304. Springer, 2016.

[110] V. Jurdjevic, J. Velimir, and V. Ðurđević. Geometric control theory. Cambridge

university press, 1997.

[111] G. Kahn, A. Villaflor, B. Ding, P. Abbeel, and S. Levine. Self-supervised Deep

Reinforcement Learning with Generalized Computation Graphs for Robot Nav-

igation. In 2018 IEEE International Conference on Robotics and Automation

(ICRA), pages 1–8. IEEE, 2017.

[112] S. Kalra, S. Rahnamayan, and K. Deb. Enhancing clearing-based niching method

using delaunay triangulation. In 2017 IEEE Congress on Evolutionary Compu-

tation (CEC), pages 2328–2337. IEEE, 2017.

[113] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars. Probabilistic

roadmaps for path planning in high-dimensional configuration spaces. IEEE

transactions on Robotics and Automation, 12:566–580, 1996.

[114] G. M. Khan, J. F. Miller, and D. M. Halliday. Developing neural structure of two

agents that play checkers using cartesian genetic programming. In Proceedings of

195

Bibliography

the 10th annual conference companion on Genetic and evolutionary computation,

pages 2169–2174. ACM, 2008.

[115] G. M. Khan, J. F. Miller, and D. M. Halliday. Evolution of cartesian genetic pro-

grams for development of learning neural architecture. Evolutionary computation,

19:469–523, 2011.

[116] M. M. Khan, A. M. Ahmad, G. M. Khan, and J. F. Miller. Fast learning neural

networks using cartesian genetic programming. Neurocomputing, 121:274–289,

2013.

[117] O. Khatib. Real-time obstacle avoidance for manipulators and mobile robots. In

Autonomous robot vehicles, pages 396–404. Springer, 1986.

[118] S. Kistemaker and S. Whiteson. Critical factors in the performance of novelty

search. In Proceedings of the 13th annual conference on Genetic and evolutionary

computation, pages 965–972. ACM, ACM, 2011.

[119] H. Kitano. Designing Neural Networks using GAs with Graph Generation Sys-

tem. Complex Systems, 4:461–476, 1990.

[120] Y. Koga, K. Kondo, J. Kuffner, and J.-C. Latombe. Planning motions with

intentions. In Proceedings of the 21st annual conference on Computer graphics

and interactive techniques, pages 395–408. ACM, 1994.

[121] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet Classification with Deep

Convolutional Neural Networks. In ImageNet Classification with Deep Convolu-

tional Neural Networks, pages 1097–1105, 2012.

[122] B. Kwolek. Face detection using convolutional neural networks and gabor fil-

ters. In International Conference on Artificial Neural Networks, pages 551–556.

Springer, 2005.

196

Bibliography

[123] C. G. Langton. Artificial life: the proceedings of an interdisciplinary workshop

on the synthesis and simulation of living systems, held september, 1987. Los

Alamos, New Mexico, 6, 1989.

[124] C. G. Langton. Artificial life: An overview. MIT press, 1997.

[125] J.-C. Latombe. Robot motion planning. Springer Science & Business Media,

1991.

[126] S. M. LaValle. Planning algorithms. Cambridge university press, 2006.

[127] S. Lawrence, C. L. Giles, A. C. Tsoi, and A. D. Back. Face recognition: A

convolutional neural-network approach. IEEE Transactions on Neural Networks,

8:98–113, 1997.

[128] Y. LeCun and Y. Bengio. Convolutional Networks for Images, Speech, and Time-

Series. The Handbook of Brain Theory and Neural Networks, 3361:255–258, 1995.

[129] Y. LeCun, B. Boser, J. S. Denker, R. E. Howard, W. Habbard, and L. D. Jackel.

Handwritten Digit Recognition with a Back-Propagation Network. In Advances

in Neural Information Processing Systems, pages 396–404, 1990.

[130] S. Lee, J. Yosinski, K. Glette, H. Lipson, and J. Clune. Evolving gaits for physical

robots with the HyperNEAT generative encoding: The benefits of simulation. In

Lecture Notes in Computer Science (including subseries Lecture Notes in Artifi-

cial Intelligence and Lecture Notes in Bioinformatics), volume 7835 LNCS, pages

540–549. Springer Berlin Heidelberg, Berlin, Heidelberg, 4 2013.

[131] J. Lehman and K. O. Stanley. Exploiting open-endedness to solve problems

through the search for novelty. Artificial Life, 11:329–336, 2008.

[132] J. Lehman and K. O. Stanley. Revising the evolutionary computation abstraction:

minimal criteria novelty search. In Proceedings of the 12th annual conference on

Genetic and evolutionary computation, pages 103–110. ACM, 2010.

197

Bibliography

[133] J. Lehman and K. O. Stanley. Evolving a diversity of virtual creatures through

novelty search and local competition. In Proceedings of the 13th annual conference

on Genetic and evolutionary computation, pages 211–218. ACM, ACM, 2011.

[134] J. Lehman, J. Clune, D. Misevic, C. Adami, L. Altenberg, J. Beaulieu, P. J. Bent-

ley, S. Bernard, G. Beslon, D. M. Bryson, P. Chrabaszcz, N. Cheney, A. Cully,

S. Doncieux, F. C. Dyer, K. O. Ellefsen, R. Feldt, S. Fischer, S. Forrest, A. Frénoy,

C. Gagné, L. K. L. Goff, L. M. Grabowski, B. Hodjat, F. Hutter, L. Keller,

C. Knibbe, P. Krcah, R. E. Lenski, H. Lipson, R. MacCurdy, C. Maestre, R. Mi-

ikkulainen, S. Mitri, D. E. Moriarty, J. Mouret, A. Nguyen, C. Ofria, M. Parizeau,

D. P. Parsons, R. T. Pennock, W. F. Punch, T. S. Ray, M. Schoenauer, E. Shulte,

K. Sims, K. O. Stanley, F. Taddei, D. Tarapore, S. Thibault, W. Weimer, R. Wat-

son, and J. Yosinksi. The surprising creativity of digital evolution: A collection

of anecdotes from the evolutionary computation and artificial life research com-

munities. CoRR, abs/1803.03453, 2018.

[135] Y. Li, B. Sun, T. Wu, and Y. Wang. Face detection with end-to-end integration

of a convnet and a 3d model. In European Conference on Computer Vision, pages

420–436. Springer, 2016.

[136] H.-S. Lin, J. Xiao, and Z. Michalewicz. Evolutionary algorithm for path planning

in mobile robot environment. In Proceedings of the First IEEE Conference on

Evolutionary Computation. IEEE World Congress on Computational Intelligence,

pages 211–216. IEEE, 1994.

[137] A. Lindenmayer. Mathematical models for cellular interactions in development.

Biol, 18:300–3, 1968.

[138] H. Lipson and J. B. Pollack. Automatic design and manufacture of robotic

lifeforms. Nature, 406:974, 2000.

198

Bibliography

[139] F. Luan, S. Paris, E. Shechtman, and K. Bala. Deep Photo Style Transfer. CoRR,

abs/1703.07511, 2017.

[140] S. W. Mahfoud. Crossover interactions among niches. In Proceedings of the

First IEEE Conference on Evolutionary Computation. IEEE World Congress on

Computational Intelligence, pages 188–193. IEEE, 1994.

[141] S. W. Mahfoud. Niching methods for genetic algorithms. PhD thesis, University

of Illinois at Urbana Champaign, 1995.

[142] Martin. Increasing Genomic Complexity by Gene Duplication and the Origin of

Vertebrates. The American Naturalist, 154:111–128, 2017.

[143] J. Martin, S. N. Sasikumar, T. Everitt, and M. Hutter. Count-Based Exploration

in Feature Space for Reinforcement Learning. CoRR, abs/1706.08090, 2017.

[144] M. Matarić and D. Cliff. Challenges in evolving controllers for physical robots.

Robotics and autonomous systems, 19:67–83, 1996.

[145] C. Mattiussi. Evolutionary synthesis of analog networks. Technical report, EPFL,

2005.

[146] C. Mattiussi and D. Floreano. Analog genetic encoding for the evolution of

circuits and networks. IEEE Transactions on evolutionary computation, 11:596–

607, 2007.

[147] R. Memmesheimer, I. Mykhalchyshyna, V. Seib, N. Theisen, and D. Paulus.

Markerless Visual Robot Programming by Demonstration. CoRR,

abs/1807.11541, 2018.

[148] M. Meng and X. Yang. A neural network approach to real-time trajectory gen-

eration [mobile robots]. In Proceedings. 1998 IEEE International Conference on

Robotics and Automation (Cat. No. 98CH36146), volume 2, pages 1725–1730.

IEEE, 1998.

199

Bibliography

[149] H. Mengistu, J. Lehman, and J. Clune. Evolvability search: directly selecting for

evolvability in order to study and produce it. In Proceedings of the Genetic and

Evolutionary Computation Conference 2016, pages 141–148. ACM, 2016.

[150] O. J. Mengshoel and D. E. Goldberg. Probabilistic crowding: Deterministic

crowding with probabilisitic replacement. In Proceedings of the Genetic and Evo-

lutionary Computation Conference, volume 1, pages 409–416. Morgan Kaufmann,

1999.

[151] R. Miikkulainen and K. O. Stanley. Competitive Coevolution through Evolu-

tionary Complexification. Journal Of Artificial Intelligence Research, 21:63–100,

2011.

[152] R. Miikkulainen, J. Liang, E. Meyerson, A. Rawal, D. Fink, O. Francon, B. Raju,

H. Shahrzad, A. Navruzyan, N. Duffy, et al. Evolving deep neural networks. In

Artificial Intelligence in the Age of Neural Networks and Brain Computing, pages

293–312. Elsevier, 2019.

[153] J. F. Miller. Gecco 2013 tutorial: Cartesian genetic programming. In Proceedings

of the 15th annual conference companion on Genetic and evolutionary computa-

tion, pages 715–740. ACM, 2013.

[154] J. F. Miller, P. Thomson, and T. Fogarty. Designing electronic circuits using

evolutionary algorithms. arithmetic circuits: A case study. Genetic algorithms

and evolution strategies in engineering and computer science, 8, 1997.

[155] J. F. Miller, D. Job, and V. K. Vassilev. Principles in the evolutionary design

of digital circuits—part ii. Genetic Programming and Evolvable Machines, 1:

259–288, 2000.

[156] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and

200

Bibliography

M. Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint

arXiv:1312.5602, 2013.

[157] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,

A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beat-

tie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and

D. Hassabis. Human-level control through deep reinforcement learning. Nature,

518:529–33, 2015.

[158] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver,

and K. Kavukcuoglu. Asynchronous Methods for Deep Reinforcement Learning.

In International Conference on Machine Learning, pages 1928–1937, 2016.

[159] D. J. Montana and L. Davis. Training feedforward neural networks using ge-

netic algorithms. Proceedings of the International Joint Conference on Artificial

Intelligence, pages 762–767, 1989.

[160] D. Moriarty and R. Miikkulainen. Efficient Reinforcement Learning Through

Symbiotic Evolution. Machine Learning, 22:11–32, 1995.

[161] D. E. Moriarty and R. Miikkulainen. Evolving obstacle avoidance behavior in a

robot arm. In Proceedings of the Fourth International Conference on Simulation

of Adaptive Behavior, pages 468–475. MIT Press Cambridge, MA, 1996.

[162] D. E. Moriarty and R. Miikkulainen. Forming neural networks through efficient

and adaptive coevolution. Evolutionary Computation, 5:373–399, 1997.

[163] D. E. Moriarty and R. Miikkulainen. Hierarchical evolution of neural networks.

In 1998 IEEE International Conference on Evolutionary Computation Proceed-

ings. IEEE World Congress on Computational Intelligence (Cat. No. 98TH8360),

pages 428–433. IEEE, 1998.

201

Bibliography

[164] G. Morse, S. Risi, C. R. Snyder, and K. O. Stanley. Single-unit pattern genera-

tors for quadruped locomotion. In Proceedings of the 15th annual conference on

Genetic and evolutionary computation, pages 719–726. ACM, 2013.

[165] J. Mouret and J. Clune. Illuminating search spaces by mapping elites. CoRR,

abs/1504.04909, 2015.

[166] J. B. Mouret. Novelty-based multiobjectivization. In Studies in Computational

Intelligence, volume 341, pages 139–154. Springer Berlin Heidelberg, Berlin, Hei-

delberg, 2011.

[167] J.-B. Mouret and S. Doncieux. Overcoming the bootstrap problem in evolution-

ary robotics using behavioral diversity. In 2009 IEEE Congress on Evolutionary

Computation, pages 1161–1168. IEEE, 2009.

[168] J.-B. Mouret and S. Doncieux. Using behavioral exploration objectives to solve

deceptive problems in neuro-evolution. In Proceedings of the 11th Annual con-

ference on Genetic and evolutionary computation, pages 627–634. ACM, 2009.

[169] J.-B. Mouret and S. Doncieux. Encouraging behavioral diversity in evolutionary

robotics: an empirical study. Evolutionary computation, 20:91–133, 2012.

[170] A. Nair, P. Srinivasan, S. Blackwell, C. Alcicek, R. Fearon, A. D. Maria,

V. Panneershelvam, M. Suleyman, C. Beattie, S. Petersen, S. Legg, V. Mnih,

K. Kavukcuoglu, and D. Silver. Massively Parallel Methods for Deep Reinforce-

ment Learning. CoRR, abs/1507.04296, 2015.

[171] B. O’Donoghue, I. Osband, R. Munos, and V. Mnih. The Uncertainty Bellman

Equation and Exploration. CoRR, abs/1709.05380, 2017.

[172] J. K. Olesen, G. N. Yannakakis, and J. Hallam. Real-time challenge balance

in an RTS game using rtNEAT. In 2008 IEEE Symposium on Computational

Intelligence and Games, CIG 2008, pages 87–94. IEEE, 2008.

202

Bibliography

[173] G. Ostrovski, M. G. Bellemare, A. van den Oord, and R. Munos. Count-based

exploration with neural density models. In Proceedings of the 34th International

Conference on Machine Learning-Volume 70, pages 2721–2730. JMLR. org, 2017.

[174] A. Owens, P. Isola, J. McDermott, A. Torralba, E. H. Adelson, and W. T. Free-

man. Visually Indicated Sounds. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 2405–2413, 2015.

[175] K. F. Pál. Selection schemes with spatial isolation for genetic optimization. In

International Conference on Parallel Problem Solving from Nature, pages 169–

179. Springer, 1994.

[176] T. Pohlen, B. Piot, T. Hester, M. G. Azar, D. Horgan, D. Budden, G. Barth-

Maron, H. van Hasselt, J. Quan, M. Vecerík, M. Hessel, R. Munos, and

O. Pietquin. Observe and Look Further: Achieving Consistent Performance on

Atari. CoRR, abs/1805.11593, 2018.

[177] R. Poli, W. B. Langdon, N. F. McPhee, and J. R. Koza. A field guide to genetic

programming. Lulu, 2008.

[178] J. K. Pugh, L. B. Soros, P. A. Szerlip, and K. O. Stanley. Confronting the

Challenge of Quality Diversity. In Proceedings of the 2015 Annual Conference

on Genetic and Evolutionary Computation, pages 967–974. ACM, 2015.

[179] J. K. Pugh, L. B. Soros, and K. O. Stanley. Quality diversity: A new frontier for

evolutionary computation. Frontiers in Robotics and AI, 3:40, 2016.

[180] L. Qing, W. Gang, Y. Zaiyue, and W. Qiuping. Crowding clustering genetic

algorithm for multimodal function optimization. Applied Soft Computing, 8:88–

95, 2008.

[181] N. J. Radcliffe. Genetic set recombination and its application to neural network

topology optimisation. Neural Computing & Applications, 1:67–90, 1993.

203

Bibliography

[182] S. S. Raju, P. B. Pati, and A. Ramakrishnan. Text localization and extraction

from complex color images. In International Symposium on Visual Computing,

pages 486–493. Springer, 2005.

[183] N. Richards, D. E. Moriarty, and R. Miikkulainen. Evolving neural networks to

play go. Applied Intelligence, 8:85–96, 1998.

[184] D. Richmond, A. P.-T. Jost, T. Lambert, J. Waters, and H. Elliott. DeadNet:

Identifying Phototoxicity from Label-free Microscopy Images of Cells using Deep

ConvNets. ArXiv, abs/1701.06109, 2017.

[185] S. Risi and K. O. Stanley. Enhancing ES-HyperNEAT to evolve more complex

regular neural networks. In Proceedings of the 13th annual conference on Genetic

and evolutionary computation, pages 1539–1546. ACM, ACM, 2011.

[186] S. Risi and K. O. Stanley. An enhanced hypercube-based encoding for evolving

the placement, density, and connectivity of neurons. Artificial Life, 18:331–363,

2012.

[187] S. Risi and K. O. Stanley. A unified approach to evolving plasticity and neural

geometry. Proceedings of the International Joint Conference on Neural Networks,

pages 1–8, 2012.

[188] S. Risi and K. O. Stanley. Confronting the challenge of learning a flexible neural

controller for a diversity of morphologies. In Proceedings of the 15th annual

conference on Genetic and evolutionary computation, pages 255–262. ACM, 2013.

[189] S. Risi and J. Togelius. Neuroevolution in Games: State of the Art and Open

Challenges. IEEE Transactions on Computational Intelligence and AI in Games,

9:25–41, 2014.

[190] S. Risi, S. D. Vanderbleek, C. E. Hughes, and K. O. Stanley. How novelty search

204

Bibliography

escapes the deceptive trap of learning to learn. In Proceedings of the 11th Annual

conference on Genetic and evolutionary computation, pages 153–160. ACM, 2009.

[191] S. Risi, J. Lehman, D. B. D. Ambrosio, and K. O. Stanley. Automatically Cate-

gorizing Procedurally Generated Content for Collecting Games. In Proceedings of

the Workshop on Procedural Content Generation in Games (PCG) at the 9th In-

ternational Conference on the Foundations of Digital Games (FDG-2014)., 2014.

[192] E. Robinson, T. Ellis, and A. Channon. Neuroevolution of Agents Capable of

Reactive and Deliberative Behaviours in Novel and Dynamic Environments. In

Advances in Artificial Life, pages 345–354, 2007.

[193] T. Salimans and R. Chen. Learning Montezuma’s Revenge from a Single Demon-

stration. CoRR, abs/1812.03381, 2018.

[194] T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever. Evolution strategies as

a scalable alternative to reinforcement learning. CoRR, abs/1703.03864, 2017.

[195] S. S. Sarwar, P. Panda, and K. Roy. Gabor filter assisted energy efficient fast

learning convolutional neural networks. In 2017 IEEE/ACM International Sym-

posium on Low Power Electronics and Design (ISLPED), pages 1–6. IEEE, 2017.

[196] G. M. Saunders, P. J. Angeline, and J. B. Pollack. Structural and behavioral

evolution of recurrent networks. In Advances in Neural Information Processing

Systems, pages 88–95, 1994.

[197] J. D. Schaffer. Some Experiments in Machine Learning Using Vector Evaluated

Genetic Algorithms. PhD thesis, Vanderbilt University, 1986.

[198] T. Schaul, J. Quan, I. Antonoglou, and D. Silver. Prioritized experience replay.

In International Conference on Learning Representations (ICLR)., pages 1–21,

2015.

205

Bibliography

[199] J. Schmidhuber, M. Gagliolo, D. Wierstra, and F. Gomez. Recurrent Support

Vector Machines. Technical report, Technical Report, no. IDSIA 19-05, 2005.

[200] J. Schmidhuber, D. Wierstra, M. Gagliolo, and F. Gomez. Training recurrent

networks by evolino. Neural computation, 19:757–779, 2007.

[201] M. Schmidt and H. Lipson. Age-fitness pareto optimization. In Genetic program-

ming theory and practice VIII, pages 129–146. Springer, 2011.

[202] J. Schrum. Evolving indirectly encoded convolutional neural networks to play

tetris with low-level features. In Proceedings of the Genetic and Evolutionary

Computation Conference, pages 205–212. ACM, 2018.

[203] J. Secretan and N. Beato. Picbreeder: evolving pictures collaboratively online. In

Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,

pages 1759–1768. ACM Press, 2008.

[204] M. Shi. An empirical comparison of evolution and coevolution for designing arti-

ficial neural network game players. In Proceedings of the 10th annual conference

on Genetic and evolutionary computation, pages 379–386. ACM, 2008.

[205] T. Shibata and T. Fukuda. Intelligent motion planning by genetic algorithm with

fuzzy critic. In Proceedings of 8th IEEE International Symposium on Intelligent

Control, pages 565–570. IEEE, 1993.

[206] B. Sierra and P. Larranaga. Predicting survival in malignant skin melanoma using

bayesian networks automatically induced by genetic algorithms. an empirical

comparison between different approaches. Artificial Intelligence in Medicine, 14:

215–230, 1998.

[207] F. Silva, L. Correia, and A. L. Christensen. R-HybrID: Evolution of Agent Con-

trollers with a Hybridisation of Indirect and Direct Encodings. In Proceedings

of the International Conference on Autonomous and Multiagent Systems, pages

206

Bibliography

735–744. International Foundation for Autonomous Agents and Multiagent Sys-

tems, 2015.

[208] F. Silva, M. Duarte, L. Correia, S. M. Oliveira, and A. L. Christensen. Open

issues in evolutionary robotics. Evolutionary Computation, 24:205–236, 2016.

[209] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driess-

che, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Diele-

man, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach,

K. Kavukcuoglu, T. Graepel, and D. Hassabis. Mastering the game of Go with

deep neural networks and tree search. Nature, 529:484–9, 2016.

[210] N. Srinivas and K. Deb. Muiltiobjective optimization using nondominated sorting

in genetic algorithms. Evolutionary computation, 2:221–248, 1994.

[211] K. Stanley. Exploiting regularity without development. In Proceedings of the

AAAI Fall Symposium on Developmental Systems, 2006.

[212] K. Stanley, N. Kohl, R. Sherony, and R. Miikkulainen. Neuroevolution of an

automobile crash warning system. In Proceedings of the 7th annual conference

on Genetic and evolutionary computation, pages 1977–1984. ACM, 2005.

[213] K. Stanley, J. Clune, and D. D’Ambrosio. CPPNs Effectively Encode Fracture:

A Response to Critical Factors in the Performance of HyperNEAT. Citeseer, 2:

1–37, 2013.

[214] K. O. Stanley. Comparing artificial phenotypes with natural biological pat-

terns. In Proceedings of the Genetic and Evolutionary Computation Conference

(GECCO), pages 8–9, 2006.

[215] K. O. Stanley and R. Miikkulainen. Efficient evolution of neural network topolo-

gies. In Proceedings of the 2002 Congress on Evolutionary Computation, CEC

2002, volume 2, pages 1757–1762. IEEE, 2002.

207

Bibliography

[216] K. O. Stanley and R. Miikkulainen. Efficient reinforcement learning through

evolving neural network topologies. In Proceedings of the 4th Annual Conference

on Genetic and Evolutionary Computation, pages 569–577. Morgan Kaufmann

Publishers Inc., 2002.

[217] K. O. Stanley and R. Miikkulainen. A taxonomy for artificial embryogeny. Ar-

tificial Life, 9:93–130, 2003.

[218] K. O. Stanley and R. Miikkulainen. Evolving a Roving Eye for Go. In Genetic and

Evolutionary Computation Conference, pages 1226–1238. Springer Berlin Heidel-

berg, Berlin, Heidelberg, 6 2010.

[219] K. O. Stanley, R. Miikkulainen, S. K.O., M. R., K. O. Stanley, and R. Miikku-

lainen. Evolving neural networks through augmenting topologies. Evolutionary

Computation, 10:99–127, 2002.

[220] K. O. Stanley, B. D. Bryant, and R. Miikkulainen. Real-time neuroevolution

in the NERO video game. IEEE Transactions on Evolutionary Computation, 9:

653–668, 2005.

[221] K. O. Stanley, D. B. D’Ambrosio, and J. Gauci. A Hypercube-Based Indirect

Encoding for Evolving Large-Scale Neural Networks. Artificial life, 15:185–212,

2009.

[222] A. Stanton and A. Channon. Incremental Neuroevolution of Reactive and Delib-

erative 3D Agents. In Proceedings of the European Conference on Artificial Life

13, pages 341–348. MIT Press, 2015.

[223] A. Stanton and A. Channon. Neuroevolution of Feedback Control for Object

Manipulation by 3D Agents. Artificial Life, 2016:144–151, 2016.

[224] C. Stanton and J. Clune. Deep Curiosity Search: Intra-Life Exploration Improves

208

Bibliography

Performance on Challenging Deep Reinforcement Learning Problems. CoRR,

abs/1806.00553, 2018.

[225] V. Štruc, N. Pavešić, et al. Principal gabor filters for face recognition. In 2009

IEEE 3rd International Conference on Biometrics: Theory, Applications, and

Systems, pages 1–6. IEEE, 2009.

[226] F. P. Such, V. Madhavan, E. Conti, J. Lehman, K. O. Stanley, and J. Clune. Deep

Neuroevolution: Genetic Algorithms Are a Competitive Alternative for Training

Deep Neural Networks for Reinforcement Learning. CoRR, abs/1712.06567, 2017.

[227] F. P. Such, V. Madhavan, R. Liu, R. Wang, P. S. Castro, Y. Li, L. Schubert,

M. G. Bellemare, J. Clune, and J. Lehman. An Atari Model Zoo for Analyz-

ing, Visualizing, and Comparing Deep Reinforcement Learning Agents. CoRR,

abs/1812.07069, 2018.

[228] S. Suwajanakorn, S. M. Seitz, and I. Kemelmacher-Shlizerman. Synthesizing

obama: learning lip sync from audio. ACM Transactions on Graphics (TOG),

36:95, 2017.

[229] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,

V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. Proceed-

ings of the IEEE Computer Society Conference on Computer Vision and Pattern

Recognition, 07-12-June-2015:1–9, 2015.

[230] H. Tang, R. Houthooft, D. Foote, A. Stooke, O. X. Chen, Y. Duan, J. Schulman,

F. DeTurck, and P. Abbeel. # exploration: A study of count-based exploration

for deep reinforcement learning. In Advances in neural information processing

systems, pages 2753–2762, 2017.

[231] L. Trujillo, G. Olague, E. Lutton, F. Fernández De Vega, L. Dozal, and

E. Clemente. Speciation in behavioral space for evolutionary robotics. Jour-

209

Bibliography

nal of Intelligent and Robotic Systems: Theory and Applications, 64:323–351,

2011.

[232] L. Trujillo, L. Muñoz, E. Galván-López, and S. Silva. Neat Genetic Programming:

Controlling bloat naturally. Information Sciences, 333:21–43, 2016.

[233] Y. R. Tsoy and V. G. Spitsyn. Using genetic algorithm with adaptive muta-

tion mechanism for neural networks design and training. In Proceedings - 9th

Russian-Korean International Symposium on Science and Technology, KORUS-

2005, volume 1, pages 709–714. IEEE, 2005.

[234] A. M. Turing. The chemical basis of morphogenesis. Bulletin of mathematical

biology, 52:153–197, 1952.

[235] A. J. Turner and J. F. Miller. Cartesian genetic programming encoded artificial

neural networks. In Proceedings of the 15th Annual Conference on Genetic and

Evolutionary Computation, a comparison using three benchmarks, page 1005.

ACM, ACM, 2013.

[236] A. J. Turner and J. F. Miller. Cartesian genetic programming: Why no bloat?

In Genetic Programming, pages 222–233. Springer Berlin Heidelberg, 2014.

[237] A. J. Turner and J. F. Miller. Neuroevolution: evolving heterogeneous artificial

neural networks. Evolutionary Intelligence, 7:135–154, 2014.

[238] A. J. Turner and J. F. Miller. Recurrent cartesian genetic programming of artifi-

cial neural networks. Genetic Programming and Evolvable Machines, 18:185–212,

2017.

[239] J. Vaario, S. Ohsuga, and K. Hori. Connectionist Modeling Using Lindenmayer

Systems. In Information Modeling and Knowledge Bases: Foundations, Theory,

and Applications, pages 496–510. Citeseer, 1991.

210

Bibliography

[240] P. Vadakkepat, K. C. Tan, and W. Ming-Liang. Evolutionary artificial potential

fields and their application in real time robot path planning. In Proceedings of

the 2000 congress on evolutionary computation. CEC00 (Cat. No. 00TH8512),

volume 1, pages 256–263. IEEE, 2000.

[241] R. Vaillant, C. Monrocq, and Y. Le Cun. Original approach for the localisation

of objects in images. IEE Proceedings - Vision, Image, and Signal Processing,

141:245–250, 2002.

[242] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves,

N. Kalchbrenner, A. W. Senior, and K. Kavukcuoglu. WaveNet: A Generative

Model for Raw Audio. CoRR, abs/1609.03499, 2016.

[243] H. Van Hasselt, A. Guez, and D. Silver. Deep Reinforcement Learning with

Double Q-learning. In Thirtieth AAAI conference on artificial intelligence, 2016.

[244] P. Verbancsics and J. Harguess. Image classification using generative neuro evo-

lution for deep learning. In 2015 IEEE winter conference on applications of

computer vision, pages 488–493. IEEE, 2015.

[245] P. Verbancsics and K. O. Stanley. Evolving Static Representations for Task

Transfer. Journal of Machine Learning Research, 11:1737–1769, 2010.

[246] R. Vierlinger. Towards AI Drawing Agents. In Modelling Behaviour, pages 357–

369. Springer International Publishing, Cham, 2015.

[247] R. Volpe and P. Khosla. Manipulator control with superquadric artificial poten-

tial functions: Theory and experiments. IEEE Transactions on Systems, Man,

and Cybernetics, 20:1423–1436, 1990.

[248] R. Wang, J. Lehman, J. Clune, and K. O. Stanley. Paired open-ended trail-

blazer (POET): endlessly generating increasingly complex and diverse learning

environments and their solutions. CoRR, abs/1901.01753:1–28, 2019.

211

Bibliography

[249] Z. Wang, N. de Freitas, and M. Lanctot. Dueling Network Architectures for Deep

Reinforcement Learning. CoRR, abs/1511.06581, 2015.

[250] P. Werbos. Beyond Regression: New Tools for Prediction and Analysis in the

Behavioral Sciences. PhD thesis, Harvard Universityn, 1974.

[251] S. Whiteson, N. Kohl, R. Miikkulainen, and P. Stone. Evolving keepaway soccer

players through task decomposition. In Genetic and Evolutionary Computation

Conference, pages 356–368. Springer, 2003.

[252] S. Whiteson, P. Stone, K. O. Stanley, R. Miikkulainen, and N. Kohl. Automatic

feature selection in neuroevolution. In Proceedings of the 7th annual conference

on Genetic and evolutionary computation, pages 1225–1232. ACM, 2005.

[253] L. D. Whitley. Fundamental principles of deception in genetic search. In Foun-

dations of genetic algorithms, volume 1, pages 221–241. Elsevier, 1991.

[254] D. Wierstra, T. Schaul, J. Peters, and J. Schmidhuber. Natural evolution

strategies. In 2008 IEEE Congress on Evolutionary Computation (IEEE World

Congress on Computational Intelligence), pages 3381–3387. IEEE, 2008.

[255] G. Wilfong. Motion planning in the presence of movable obstacles. Annals of

Mathematics and Artificial Intelligence, 3:131–150, 1991.

[256] D. G. Wilson, S. Cussat-Blanc, H. Luga, and J. F. Miller. Evolving simple

programs for playing atari games. In Proceedings of the Genetic and Evolutionary

Computation Conference, pages 229–236. ACM, 2018.

[257] B. G. Woolley and K. O. Stanley. Evolving a single scalable controller for an

octopus arm with a variable number of segments. In International Conference

on Parallel Problem Solving from Nature, pages 270–279. Springer, 2010.

212

Bibliography

[258] B. G. Woolley and K. O. Stanley. On the deleterious effects of a priori objectives

on evolution and representation. In Proceedings of the 13th annual conference on

Genetic and evolutionary computation, pages 957–964. ACM, 2011.

[259] K. H. Wu, C. H. Chen, and J. Der Lee. Genetic-based adaptive fuzzy controller

for robot path planning. In Proceedings of IEEE 5th International Fuzzy Systems,

volume 3, pages 1687–1692. IEEE, 1996.

[260] Y. Wu, E. Mansimov, R. B. Grosse, S. Liao, and J. Ba. Scalable trust-region

method for deep reinforcement learning using kronecker-factored approximation.

In Advances in neural information processing systems, pages 5279–5288, 2017.

[261] J. Xiao, Z. Michalewicz, and L. Zhang. Evolutionary planner/navigator: Opera-

tor performance and self-tuning. In Proceedings of IEEE International Conference

on Evolutionary Computation, pages 366–371. IEEE, 1996.

[262] J. Xiao, Z. Michalewicz, L. Zhang, and K. Trojanowski. Adaptive evolutionary

planner/navigator for mobile robots. IEEE transactions on evolutionary compu-

tation, 1:18–28, 1997.

[263] L. Xie and A. Yuille. Genetic CNN. In Proceedings of the IEEE International

Conference on Computer Vision, pages 1379–1388, 2017.

[264] Xin Yao. Evolving artificial neural networks. Proceedings of the IEEE, 87:1423–

1447, 1999.

[265] L. Yann, B. Leon, B. Yoshua, and H. Patrick. Gradient-Based Learning Applied

to Document Recognition. Proceedings of the IEEE, 86:2278–2324, 1998.

[266] X. Yao. Evolving artificial neural networks. Proceedings of the IEEE, 87:1423–

1447, 1999.

213

Bibliography

[267] C. H. Yong and R. Miikkulainen. Cooperative coevolution of multi-agent systems.

Technical report, Department of Computer Sciences, The University of Texas at

Austin, 2001.

[268] J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, and H. Lipson. Understanding neural

networks through deep visualization. arXiv preprint arXiv:1506.06579, 2015.

[269] B.-T. Zhang and S.-H. Kim. An evolutionary method for active learning of mobile

robot path planning. In Proceedings 1997 IEEE International Symposium on

Computational Intelligence in Robotics and Automation CIRA’97.’Towards New

Computational Principles for Robotics and Automation’, pages 312–317. IEEE,

1997.

214

	etheses coversheet.pdf
	Jolley PhD 2020.pdf
	Introduction
	Overview
	Structure of Thesis

	Neuroevolution
	Direct Encoding
	sga
	gnarl
	sane
	esp
	neat
	neva
	cosyne

	Indirect & Development Encoding
	lsystem
	ce
	age
	gcp
	cppn
	hyperneat
	Deep Neuroevolution

	Diversity
	Crowding
	Fitness sharing
	Incremental Evolution
	moea
	ns
	qd

	Discussion

	Experiment Domains
	Overview
	rc
	The Decision Network (dn)
	The Shunting Model (sm)

	ale

	Evaluating Scalable Motion Planning with Direct and Indirect Encoding
	Introduction
	Experiment #1
	Experiment Setup
	Results
	Discussion

	Experiment #2
	Results
	Discussion

	Conclusion

	Evaluating Motion Planning with a Recurrent Convolutional Network
	Introduction
	Experimental Setup
	rc
	Network Architecture
	ga

	Results
	Discussion
	Conclusions

	Generalised Neural Network Architecture for Long-Term Planning with Sparse Rewards
	Introduction
	Generalised Neural Network Architecture
	Generalised Decision Network
	Generalised Activity Network
	Generalised Movement Network
	Genetic Algorithm

	Results
	Decision Network Results and Analysis
	Activity Network Results and Analysis
	Movement Network Results and Analysis
	Full Network Results and Analysis
	Further Analysis

	Discussion
	Successes and Failures Decision Network
	Successes and Failures Activity Network
	Successes and Failures Movement Network

	Deep Neuroevolution Comparison
	Convolutional Neural Architecture
	Results
	Discussion

	Conclusion

	Applying Recurrent Convolution with Deep Neuroevolution
	Introduction
	Experiment Setup
	Neural Architecture
	ALE Environments

	Results
	Discussion
	Conclusion

	Conclusions
	Summary of Conclusions
	Contribution of this work
	Limitations & Future Work

	Acronyms
	Bibliography

