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Summary

Meta-analysis of individual participant data (IPD) is considered the "gold-standard"
for synthesizing clinical study evidence. However, gaining access to IPD can be a
laborious task (if possible at all) and in practice only summary (aggregate) data are
commonly available. In this work we focus on meta-analytic approaches of compar-
ative studies where aggregate data are available for continuous outcomes measured
at baseline (pre-treatment) and follow-up (post-treatment). We propose a method
for constructing pseudo individual baselines and outcomes based on the aggregate
data. These pseudo IPD can be subsequently analysed using standard analysis of
covariance (ANCOVA) methods.
Pseudo IPD for continuous outcomes reported at two timepoints can be generated
using the sufficient statistics of an ANCOVA model i.e., the mean and standard
deviation at baseline and follow-up per group, together with the correlation of the
baseline and follow-up measurements. Applying the ANCOVA approach, which
crucially adjusts for baseline imbalances and accounts for the correlation between
baseline and change scores, to the pseudo IPD results in identical estimates to the
ones obtained by an ANCOVA on the true IPD. In addition, an interaction term
between baseline and treatment effect can be added. There are several modelling
options available under this approach, which makes it very flexible.
Methods are exemplified using reported data of a previously published IPD meta-
analysis of 10 trials investigating the effect of antihypertensive treatments on systolic
blood pressure, leading to identical results compared with the true IPD analysis and
of a meta-analysis of fewer trials, where baseline imbalance occurred.
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1 INTRODUCTION8

Meta-analysis methods of individual participant data or individual patient data (IPD) are considered the "gold-standard" for9

clinical studies’ evidence synthesis1,2,3,4. IPD meta-analysis has several advantages over the traditional aggregate data (AD)10

meta-analysis approach, which synthesizes summary statistics per study, often retrieved from published sources. For example11

when continuous outcomes are available at baseline and follow-up, IPD meta-analysis enables the meta-analyst to perform12

adjustments for baseline imbalances and detailed explorations of treatment-covariate interactions5,6,7. In addition, it comes with13

a large toolbox of methods and greater flexibility to analyse the data in an one-stage or two-stage approach8,9,10,11.14

There are, however, challenges as access to IPD can be problematic because of time and cost constraints and privacy issues,15

and often it is not feasible to retrieve the IPD of all studies to be synthesized. It is possible to generate/back-calculate IPD16

for different types of AD, such as for binary, ordinal and time to event outcomes12,13,14,15. For aggregate data of continuous17

outcomes reconstructing the original outcome values is not possible. However, we recently proposed an algorithm to construct18

pseudo IPD for an one-stage meta-analysis with one continuous outcome, using the sufficient statistics for linear mixed models19

i.e., group means, standard deviations and sample sizes16. In this way the analysis using the pseudo IPD yields exactly the same20

results as the analysis of the original IPD. The pseudo IPD approach allowed more flexible modeling, using standard linear21

mixed model software, for example enabling common or different residual variances for treatment and control groups in each22

study.23

In this paper we extend the original method of creating pseudo IPD from reported AD to the situation where continuous out-24

comes are reported both at baseline and follow-up. We discuss how pseudo IPD can be derived, taking the correlation between25

baseline and follow-up/final measurements into account, using the summary observed group means, standard deviations at26

baseline and post-treatment, and the group correlation of the baseline and post-treatment values (or equivalently the standard27

deviations of the difference between baseline and post-baseline values in both groups). These summary measures are the suf-28

ficient statistics for an analysis of covariance (ANCOVA) approach under the linear mixed model (LMM) framework. The29

generated pseudo IPD can be analysed using standard software for linear mixed models, and a linear mixed model analysis of30

the pseudo IPD will yield identical results to the ones obtained when it is applied on the original IPD.31

We describe the advantages of this approach, compared with the standard methods to synthesize aggregate baseline and32

follow-up data: using mean follow-up (post-treatment/final) scores, ignoring the baseline values and mean change scores,33

subtracting the follow-up value from the baseline17,18.34

It is possible to perform a meta-analysis in an one-stage or a two-stage approach using the pseudo IPD, using the toolbox of35

available IPD methods8,9,10,11. A plethora of modelling options is available and we discuss several options, assuming stratified36

and random study intercepts and random treatment effect models.37

The flexibility of the linear mixed modelling framework makes it possible to correct for potential baseline imbalances.38

Although imbalance at baseline is not expected in a randomised trial, it can occur by chance, particularly in small trials19 or39

due to flaws in the randomisation process20.40

Treatment effects may also differ between patients, depending on their baseline values. For example, in a trial for hyperten-41

sion, patients with low systolic blood pressure at baseline are expected to experience less improvement after administration of42

treatment, compared with patients having high baseline pressure values. Similarly, severely depressed patients with high val-43

ues on a depression score may profit more from treatment than patients with mild depression. When generating and analysing44

pseudo IPD using an ANCOVA approach we can cope with the correlation between the baseline value and the change score by45

introducing an interaction term between the baseline measurement and the treatment effect. In this way treatment heterogeneity46

depending on the baseline values can be further explored.47

The paper is organized as follows. In Section 2 we introduce two illustrating meta-analysis datasets: one in hypertension48

where group-level AD of systolic blood pressure (SBP) at baseline and at follow-up for anti-hypertensive treatments versus49

placebo/no treatment are available from a previous IPD meta-analysis publication21 and a second example where active versus50

sham treatments in obstructive sleep apnea are compared and baseline imbalance occured between the treatment groups22.51

In Sections 3 and 4, we describe some of the existing modelling options for one-stage and two-stage IPD meta-analyses,52

respectively, including models for treatment-by-baseline interaction. In Section 5, we explain how pseudo IPD baselines and53

outcomes can be generated from the aggregate continuous data in the case of correlated baseline and final measurements. In54

Section 6, we apply our proposed method to the hypertension dataset in/excluding an investigation of the interaction between55

0Abbreviations: AD, aggregate data; CI: confidence interval, IPD, individual patient (participant) data; RCT, randomised controlled trial
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baseline and treatment and compare the results with those obtained when using the original IPD as previously reported in the56

work of Riley et al.21,23 and with standard two-stage methods on the AD. In addition, we apply the pseudo IPD approach on the57

sleep apnea dataset and compare the results of the pseudo IPD ANCOVA models, while varying group-correlations coefficients58

(as sensitivity analysis), with change scores AD meta-analysis. Brief final comments are provided in Section 7.59

2 ILLUSTRATING EXAMPLES60

2.1 Aggregate data from 10 trial in hypertension with baseline imbalance and artificial baseline61

imbalance62

We use the reported aggregate data for studies originally contained in an IPD meta-analysis of Wang et al.24, and subsequently63

analysed by Riley et al.21 investigating the effect of hypertension treatments on systolic blood pressure (SBP). The authors64

included IPD of trials comparing antihypertensive treatments against placebo/no treatment25 26,27,28. A total of 28 851 patients65

from 10 trials were included. Each trial measured blood pressure at baseline and after treatment. The aggregate data for each66

trial, including the mean, standard deviation and correlation of the baseline and the final SBP values (in mmHg) are shown in67

Table 1. Riley et al.21 compared several meta-analytic approaches to estimate the summary treatment effect of antihypertension68

treatments in reducing SBP using the original IPD and compared them to standard AD methods. In this article, we re-analyse69

these data using only the aggregate group means, standard deviations and correlations of the baseline and the final values and70

apply our algorithm to generate pseudo IPD. We also perform standard AD meta-analysis using change scores and provide a71

comparison of the different methods. Riley et al.21 explored the effect of large baseline imbalance by modifying the original72

hypertension dataset. This was achieved by subtracting 5 mmHg from the baseline and final SBP values of patients in the73

treatment group of trials 1 and 2; 20 mmHg of patients in the treatment group of trials 4 and 5 and 10 mmHg of the baseline74

and final values of patients in the treatment group of trial 6 accordingly, such that five studies have lower baseline values in the75

treatment group compared with the control group. We also demonstrate our method on the aggregate version of this modified76

dataset.77



4
TABLE 1 Aggregate data of the 10 hypertension trials included in the meta-analysis of Wang et al.24 as reported by Riley et al.21

Number of subjects SBP baseline (mmHg) SBP final (mmHg) Correlation (SBP baseline, SPB final)
Treatment Control Treatment Control

ID Trial name Treatment Control Mean (SD) Mean (SD) Mean (SD) Mean (SD) Treatment Control

1 ATMH 780 750
152.28
(15.25)

153.05
(15.73)

132.85
(16.72)

139.75
(17.85)

0.265 0.284

2 HEP 150 199
189.94
(16.15)

191.55
(17.64)

165.06
(20.03)

179.89
(22.15)

0.335 0.331

3 EWPHE 90 82
177.33
(15.85)

178.23
(15.06)

156.88
(21.26)

170.45
(26.91)

0.462 0.534

4 HDFP 2427 2370
151.68
(19.83)

151.00
(19.53)

130.09
(19.25)

138.54
(21.26)

0.337 0.408

5 MRC-1 3546 3445
156.60
(16.09)

156.65
(15.96)

135.49
(16.32)

144.25
(17.58)

0.346 0.416

6 MRC-2 1314 1337
182.19
(12.63)

182.13
(12.73)

153.99
(20.13)

164.58
(19.71)

0.178 0.137

7 SHEP 2365 2371
170.49
(9.5)

170.12
(9.24)

145.10
(19.05)

156.24
(20.12)

0.315 0.253

8 STOP 137 131
194.68
(12.21)

194.15
(11.16)

171.46
(19.29)

189.11
(21.9)

0.177 0.414

9 Sy-Chi 1252 1139
170.73
(10.9)

170.25
(11.41)

150.2
(15.84)

156.55
(16.86)

0.199 0.347

10 Sy-Eur 2398 2297
173.75
(9.86)

173.94
(10.07)

154.87
(16.31)

165.24
(16.33)

0.319 0.431

ATMH: Australian Trial in Mild Hypertension, HDFP: Hypertension Detection and Follow-up Programme, EWPHE: European Working Party on High Blood Pressure in the Elderly, MRC: Medical Research Council, SBP: systolic blood pressure, SD: standard deviation, SHEP: Systolic Hypertension in the Elderly
Programme, STOP: Swedish Trial in Old Patients with Hypertension, Sy-Chi: Systolic Hypertension in China, Sy-Eur: Systolic Hypertension in Europe
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2.2 Aggregate data from 8 trials in obstructive sleep apnea with baseline imbalance78

Aggregate data from a review of treatments for obstructive sleep apnea in adults22 were used. We focus on a meta-analysis79

summarising the treatment effect of an active continuous positive airway pressure (CPAP) device versus a sham CPAP. Eight80

studies, of in total 311 patients, recorded the apnea-hypopnea index (AHI), which is defined as the number of apnea and81

hypoapnea events divided by the total hours of sleep, at baseline and follow-up. The authors22 estimated a statistically significant82

mean difference in change scores of AHI between active CPAP and sham, favoring CPAP (difference -46 events/hour 95% CI:83

[-57, -36]; blue/triangle, Figure 1). We re-analysed these data, taking into account the considerable baseline imbalance which84

occured between the treatment groups (difference of 5 events/hour, 95% CI [0, 11]– the subjects randomised in the active CPAP85

arm suffered more severely from sleep apnea; red/circle, Figure 1), and explored whether patients with higher AHI at baseline86

benefitted more from treatment. For comparison purposes, we have additionally included the summary estimates of the final87

values analysis, which is not preferred due to baseline imbalance (green/square, Figure 1).88

FIGURE 1 Obstructive sleep apnea meta-analysis example: forest plot of three different summary measures : a) difference in
final values between mean AHI in the active CPAP group and mean AHI in the sham CPAP group (green/square); b) between
groups difference in mean change from baseline (blue/triangle); c) between groups difference in mean AHI score at baseline
(red/circle). The lowest line gives the results from a standard random effects meta-analysis.

3 ONE-STAGE IPD META-ANALYSIS USING LINEAR MIXED MODELS (LMM)89

In this section, we introduce notation and modelling options, for an one-stage meta-analysis of IPD of studies measuring90

continuous outcomes ast baseline and follow-up. The data we consider have the following format: let YBij denote the continuous91

outcome of interest ( i.e., SBP) at baseline/pre-treatment of patient j in study i(1, ..., N) and YF ij the outcome, of each patient92

post-treatment (at follow-up). Also, let Xij be a dummy variable to indicate the treatment group; Xij=1 for patients in the93

treatment group and 0 for patients in the control group, respectively. There are many IPD meta-analysis ANCOVA type model94

options. A number of them are presented in this section; a similar description of the ANCOVA model can be found in Burke et95

al.8
96
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3.1 Analysis of covariance (ANCOVA)97

3.1.1 Stratified study model98

An analysis of covariance (ANCOVA) model, with study-specific stratified intercepts and stratified adjustment terms for
baseline measurements may be written as follows:

YF ij = �0i + (�1 + b1i)Xij + �2i(YBij − ȲBi) + �ij , (1)

where �0i is the mean outcome in the control group in study i for individuals with the mean baseline value, �1 the summary99

(average) treatment effect and �2i is the study-specific adjustment term for baseline values. A random effect b1i is added to100

the overall treatment effect, which is assumed to be normally distributed with mean 0 and between-study variance equal to101

�21 . Although a random treatment effect is preferred, one can assume a common (fixed) treatment effect by constraining �21=0.102

There are several modelling options for the variance of the within-study residuals, �ij , on which we elaborate later on.103

3.1.2 Random study model104

An alternative approach to using stratified study intercepts and slopes is to assume a random intercept and a random baseline
adjustment effect, resulting in the following ANCOVA model:

YF ij = (�0 + b0i) + (�1 + b1i)Xij + (�2 + b2i)(YBij − ȲBi) + �ij , (2)
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Parameters are as in Equation (1), except for a random intercept and baseline adjustment coefficient; with �21 denoting the105

between-study variance of the treatment effect. In the literature, is it often assumed that the random effects are independent (i.e,106

�ij = 0 for i ≠ j), although under the LMM it is possible to estimate their covariances.107

3.2 Analysis of covariance (ANCOVA) including treatment-by-baseline interaction108

To investigate potential treatment effect modification by the baseline value, the equations (1) and (2) can be extended by109

including the interaction term between baseline and treatment effect. The stratified study model (1) incorporating the ”treatment-110

covariate interaction” is as follows:111

YF ij = �0i + (�1 + b1i)Xij + �2i(YBij − ȲBi) + (�3 + b3i)[(YBij − ȲBi)Xij] + �4i(ȲBiXij) + �ij (3)

While the other parameters are as in Equation (1), �3 denotes the mean increase in treatment effect for a one-unit increase112

in the baseline values and the random effect b3i allows for between studies heterogeneity in the treatment-covariate interaction.113

This estimate reflects the within-trial interaction effect and �4i estimates the increase in the treatment effect associated with a114

one-unit increase between the mean baseline of two studies, which reflects the across-trial interaction. Centering the baseline115

values and appropriately separating within- and across trial-associations avoids ecological bias, a phenomenon where the asso-116

ciations are erroneously equated29. Note that if the �4i(ȲBiXij) is omitted from model (4), then the interaction term will reflect117

a weighed average of �3 and the magnitude of the ecological bias30.118

Similarly, equation (2) can be extended yielding a random study ANCOVA model allowing for the interaction between119

baseline and treatment, which is formulated as follows:120

YF ij = (�0 + b0i) + (�1 + b1i)Xij + (�2 + b2i)(YBij − ȲBi) + (�3 + b3i)[(YBij − ȲBi)Xij] + �4i(ȲBiXij) + �ij (4)

This model has four random effects (b0i, b1i, b2i, b3i), the covariance matrix of which may either be completely unspecified121

or may be modelled, for example by assuming independence of the different random effects.122

Although, many other modelling specifications are possible, in this work we consider models (1) to (4).123
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3.3 Within-study residual variances124

The within-study residuals �ij are assumed to follow a normal distribution with mean 0. The within-study residual variance �2ik125

may depend on the study i and group k. We explore four structures for modelling �2ik: all variances assumed different (arm- and126

study-specific): �ik ∼ N(0, �2ik), study-specific variances: �2ik = �2i., one variance for control and one variance for treated group127

�2ik = �2.k, which are the same for all studies and one overall variance: �2ik = �2.128

4 TWO-STAGE IPD META-ANALYSIS APPROACH129

Instead of modelling all IPD in one model, in practice it may be more convenient to use a two-step approach. In the first stage,
a separate ANCOVA is fitted in each of the studies i = 1 to N .

YF ij = �0i + �1iXij + �2iYBij + �ij (5)

This yields N treatment effects �̂1i with standard errors sei.130

At the second stage a common (fixed)-effect or random-effects meta-analysis is run on the estimated study-specific �1is.131

In principle, the one-stage and two-stage approaches produce very similar results yet minor differences may arise as the132

former estimates the within-study residual variances simultaneously with �1i and �21 while under the two-stage approach the133

within-study residual variances are estimated separately as seen in Eq (5) and independently of �1i and �21 in the second stage. In134

particular, the stratified study one-stage model (1) and two-stage IPD meta-analysis approaches will yield very similar results,135

under the same underlying (modelling) assumptions, for example equal variance for treatment and control within studies8.136

For small sample sizes the results may deviate slightly. Equation (5) can also be extended to estimate the interaction between137

baseline values and treatement effect by introducing the interaction term similar to term �3 from Eq (3).138

5 CONSTRUCTION OF PSEUDO IPD FROM AGGREGATE DATA139

In our previous work we developed a method to generate pseudo IPD for a single continuous outcome per subject without140

baseline values16. The method generates data with the same observed means, standard deviations and sample sizes, the so-141

called pseudo IPD. Because the means and standard deviations are the sufficient statistics, the likelihood function for the IPD,142

using the linear mixed model is identical to the likelihood of the unknown true IPD. This means that analysing the pseudo IPD143

with LMM will yield identical results to the analysis of the true IPD.144

In this article we extend our method to creating pseudo IPD from available aggregate data for a continuous outcome, reported145

at two timepoints, at baseline and follow-up. Appropriate sufficient statistics for an analysis of covariance (ANCOVA) approach146

are, for each study separately, the means and standard deviations of the continuous outcome at baseline and follow-up in each147

group, together with the group correlation of the baseline and follow-up values. Our premise is to create pseudo IPD that148

have exactly these sample means, standard deviations, and correlations, so that the subsequent pseudo IPD meta-analysis will149

produce the same results as if the original IPD were available.150

The algorithm to construct for each of the studies and groups pseudo data with exactly the same mean, standard deviation151

and group correlation between baseline and follow-up measurement is as follows: let in a certain study arm, ȲB , sdB and ȲF ,152

sdF be the observed means and SDs at baseline and follow-up, respectively and let r be the correlation between baseline and153

follow-up measurement, and let n be the sample size. Then for each group in each study separately, execute the following steps:154

1. Simulate two samples Y ∗
i1(i = 1, ..., n) and Y ∗

i2(i = 1, ..., n), from a certain distribution, for example a standard normal155

distribution.156

2. Standardise both samples to obtain Ȳ ∗
1 = 0 and Ȳ ∗

2 = 0, and sd∗1 = sd∗2 = 1 and calculate the correlation r∗ between Y ∗
i1157

and Y ∗
i2.158

3. Regress Y ∗
i2 on Y ∗

i1 and keep the regression coefficients �̂ and the residuals �̂i. Note that since sd∗1 = sd∗2 = 1, it follows159

that �̂i = r∗ and �̂i = Y ∗
i2 − r

∗Y ∗
i1. Also note that the residuals are uncorrelated to Y ∗

i1 and have variance 1 − r∗2.160

4. Generate Y ∗
i3 = Y ∗

i1r + �̂i
√

1 − r2[
√

1 − r∗2]−1. Note that var(Y ∗
i3) = 1 and its correlation with Y ∗

i1 is r.161
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5. Generate the pseudo baseline as follows: YBi = Y ∗
i1sdB + ȲB .162

One can immediately verify that the pseudo baseline measurements have mean ȲB and standard deviation sdB .163

6. Generate the pseudo follow-up outcome as follows: YF i = Y ∗
i3sdF + ȲF .164

Similarly, the pseudo follow-up outcomes have mean ȲF and standard deviation sdF and cor(YBi, YF i) = r.165

This algorithm can be easily carried out in standard statistical software. In the Supplementary material we show how this166

algorithm can be carried out in R31 and SAS32. The pseudo IPD can now be analysed using the LMM methods for IPD of167

Sections 3 and 4.168

In practice, the group correlations are rarely reported. However, the mean change from baseline, with the standard deviation
or standard error are more often provided. When the standard deviation at baseline, at follow-up and the change from baseline
sdCℎange are reported, the group correlation can be directly calculated as follows:

r =
sd2B + sd2F − sd2Cℎangescores

2sdBsdF
(6)

For more details see the Cochrane Handbook33, Chapter 16. Alternatively, if the standard error of the difference between groups169

in mean change scores is provided and the pre/post correlations are assumed to be equal between the two groups; the correlation170

can be calculated as:171

r =
sd2BT ∕nT + sd2FT ∕nT + sd2BC∕nC + sd2FC∕nC − se2difCℎangescores

2sdBT sdFT ∕nT + 2sdBCsdFC∕nC
(7)

where T and C are the indexes for treatment and control group, respectively21. When the group correlation cannot be derived172

from the available data, one could resort to imputation methods34,35,36.173

6 APPLICATION OF THE METHODS TO THE DATA174

We generated pseudo IPD baselines and outcomes for the aggregate hypertension data of Table 1, the aggregate hypertension175

dataset with artificial baseline imbalance and the AD of the obstructive sleep apnea example (given in the Supplementary176

material). Using these pseudo IPD we subsequently fitted the LMM models (1) to (4) discussed in Section 3; stratified study177

models and random study models, both with and without the interaction between treatment and baseline measurements. For178

the stratified models including the interaction term of baseline with the treatment effect, we assumed an unstructured variance-179

covariance matrix for the two random effects. For the random study models, we centered the groups when specifying the180

random effects, and assumed independent random effects due to memory issues. The parameters in the models were estimated181

using restricted maximum likelihood (REML37).182

We fitted all models using the LMM program of SAS, PROC MIXED because SAS has explicit options for modelling the183

within-study residual variances and allows for additional flexibility using different methods to calculate the degrees of freedom184

and hence confidence intervals of the treatment effect. We used two different approaches, the default method where the degrees185

of freedom are calculated using the “between within" method in SAS, as it was the method also used in our previous work and186

also the Satterthwaite approximation method38, following the recommendations of Legha et al.11, who performed an extensive187

simulation study comparing the models in Section 3 under different CI derivations options.188

In the Supplementary material we provide details on the SAS code and on how to fit the same models in R using nlme39. For189

comparison purposes with the results of Riley et al.21, we only show the CIs derived using the between-within method.190

6.1 Results of the hypertension example with baseline balance191

Results of the analyses using the pseudo IPD generated from the aggregate data on hypertension were compared with the two-192

stage IPD meta-analysis results of Riley et al.21, who (unlike us) had access to the original IPD. As mentioned a two-stage193

IPD meta-analysis is very similar to the stratified study model of Equation (1) assuming equal residual variances between the194

treatment and the control group per study, i.e study-specific variances: �2ik = �2i.. We also performed a two-stage ANCOVA195

using the pseudo IPD. For completeness we also present the results of an AD meta-analysis using the change scores.196
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The results for the baseline balanced example are shown in the top two rows of Table 2. Across all competing models, the197

treatment effect estimates were negative indicating that the hypertension treatment reduced systolic blood pressure values.198

The estimated treatment effect and corresponding standard error of the one-stage pseudo IPD ANCOVA analysis assuming199

study-specific residual variances, were identical to the results based on the analysis of the true IPD by Riley et al.21; -10.17200

(SE=0.93) vs -10.17 (SE=0.93). There are slight differences in the 95% CIs as they were derived by different methods; under201

the Satterthwaite correction method were slightly wider. In addiiton, a two-stage analysis on the pseudo IPD assuming study-202

specific residual variances yielded identical results to model (1) and the analysis of the true IPD21: a summary treatment effect203

of -10.17, SE= 0.93.204

We compared the AIC values40 of different within-study residual variance structures for the stratified study models and205

for the random study models. In both model blocks the lowest value was found for the assuming all within-study residual206

variances to be free (arm-specific and study specific; 243387.2), although AIC values were found to be very similar across the207

different within-study variance options, suggesting that one could potentially adopt a simpler model when opting for a more208

parsimonious model. The study stratified model assuming within-study variances to be study-specific had the second lowest209

AIC value (243411.9) in that model block and was adopted as the final model. This model showed a summary treatment effect210

of -10.17 [95% CI: (-12.27, -8.06)], indicating that on average antihypertension treatments have a positive effect on SBP levels,211

reducing them by 10.17 mmHg more compared with control/no treatment.212

The last column of Table 2 shows the results of the standard AD analysis following a change scores approach; a summary213

treatment effect -10.10 [95% CI: (-12.33, -7.87)], slightly lower than the ANCOVA estimate using one-stage or two-stage214

pseudo IPD.215

6.2 Results of the hypertension example with baseline imbalance216

For the aggregate data with baseline imbalance, the effect of the active hypertension treatments compared with control is more217

pronounced (bottom rows of Table 2). We adopt the stratified study model as the final model which produces a summary218

treatment effect of -14.55 [95% CI: (-18.31, -10.80)], identical to the ANCOVA result of the true IPD presented in Riley et al.21
219

Using a two-stage analysis of the pseudo IPD assuming study-specific residual variances resulted also in a summary treatment220

effect of -14.55 [95% CI: (-18.30, -10.80)].221

The results of the pseudo IPD analysis were substantially different from the standard AD meta-analysis of change scores,222

because of the induced baseline imbalance.223
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TABLE 2 Meta-analysis results of summary treatment effect using the pseudo IPD approach compared with the true IPD and standard AD modelling approaches of Riley et
al.21

pseudo IPD meta-analysis true IPD meta-analysis AD meta-analysis

one-stage ANCOVA
ANCOVA model results as
described in Riley et al.21 Change scores

Dataset Model Results �2ik �2i. �2.k �2 �2i.

Hypertension
(balanced)

Stratified study (Eq. 1)

�̂1 -10.17 -10.17 -10.34 -10.34 -10.17 -10.10
SE 0.93 0.93 0.98 0.98 0.93 0.99

95% CI (-11.99, -8.34) (-12.27, -8.06) (-12.26, -8.43) (-12.26, -8.43) (-12.28, -8.05) (-12.33, -7.87)
�21 7.12 7.11 8.17 8.17 7.15 6.56

Random study (Eq. 2)

�̂1 -10.45 -10.46 10.56 -10.56
SE 0.99 0.99 1.01 1.01

95% CI (-12.39, -8.52) (-12.39, -8.53) (-12.53, -8.58) (-12.54, -8.59)
�21 8.61 8.62 9.13 9.16

Hypertension
(imbalanced)

Stratified study (Eq. 1)

�̂1 -14.57 -14.55 -14.58 -14.57 -14.55 -10.10
SE 1.65 1.66 1.64 1.65 1.66 0.99

95 % CI (-17.81, -11.33) (-18.31, -10.80) (-17.80, -11.36) (-17.78, -11.36) (-18.30, -10.80) (-12.33, -7.87)
�21 25.28 25.47 25.30 25.19 25.43 6.56

Random study (Eq. 2)

�̂1 -14.45 -14.46 -14.49 -14.48
SE 1.65 1.65 1.63 1.63

95% CI (-17.69, -11.20) (-17.67, -11.20) (-17.69, -11.29) (-17.68, -11.29)
�21 25.34 25.23 25.10 24.99

CI: Confidence Interval, SE: standard error, �2ik : study- and arm-specific variances, �2i. : study-specific variances, �2.k : two variance parameters; one for control and one for treatment, �2 : one overall variance
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6.3 Including the interaction between baseline and treatment effect224

To investigate potential treatment-by-baseline modification, we included the interaction term �3 between baseline and treatment225

effect in the pseudo IPD LMM models. We compared the pseudo IPD models (3) and (4) with the two-stage IPD meta-analysis226

of Riley et al.21 with interaction, and with a random-effects meta-regression of the final values on the mean baseline of the227

treatment group. The estimate obtained from the AD meta-regression is actually comparable to the �4 term, which quantifies tha228

across-trial interaction. In the results we focus on the within-trial interaction estimate �3 which reflects the treatment-by-baseline229

interaction.230

In the balanced example case, the derived pseudo IPD ANCOVA interaction term under the stratified study model assuming231

all within-study residual variances to be free was equal to -0.09 [95% CI: (-0.17, -0.01)], providing some evidence that the232

treatment effect is slightly higher for the more severe hypertensive patients at baseline with higher SBP baseline values (top233

row of Table 3). In addition, the result from model (3) assuming study-specific residual variances was found to be identical to234

the two-stage model fitted in Riley et al.21, -0.09 (SE:0.038). Using a two-stage analysis of the pseudo IPD assuming study-235

specific residual variances in SAS yielded a summary treatment-by-baseline interaction effect of -0.09 [95% CI: (-0.18, -0.00)].236

We also replicated the two-stage analysis in STATA using the DerSimonian-Laird method41 to combine the effects, where the237

results were found identical to the analysis in Riley et al21.238

The meta-regression results using the mean baseline value of the treatment group were higher compared with the pseudo IPD239

ANCOVA model (-0.16 vs -0.09).240

The estimates of the interaction effect in the imbalanced baseline dataset using the pseudo IPD were found to be very similar241

to the ones in the balanced case. However, the meta-regression estimate was in the opposite direction of the effect compared with242

the ANCOVA pseudo IPD results. The across-trial interaction as estimated from a standard AD meta-analysis can differ from243

the within-trial interaction, i.e. the difference in treatment effect of two patients in the same study differing one unit at baseline,244

as estimated from a true IPD or pseudo IPD meta-analysis. The assumption that they are the same is often not plausible due to245

the fact that across-trial interaction can suffer from confounding5. This phenomenon is called ecological or aggregation bias.246

Therefore the across-trials interaction should be carefully interpreted. Also note that the statistical power for the estimation of247

the within-trial interaction is usually much larger than for the across-trials interaction, as reflected by the standard errors (Table248

3).249
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TABLE 3 Meta-analysis results of interaction of baseline with treament using the pseudo IPD approach compared with the true IPD and standard AD modelling
approaches of Riley et al.21

pseudo IPD meta-analysis true IPD meta-analysis AD meta-analysis
one-stage ANCOVA: including the

interaction
between baseline and treatment

ANCOVA model results as
described in Riley et al.21 Meta-regression

Dataset Model Results �2ik �2i. �2.k �2 �2i. Using ȲBT i

Hypertension
(balanced)

Stratified study (Eq. 3)

�̂3 -0.09 -0.09 -0.10 -0.10 -0.09 -0.16
SE 0.04 0.04 0.04 0.04 0.03 0.05

95% CI (-0.17, -0.01) (-0.17, -0.01) (-0.18, -0.01) (-0.18, -0.01) (-0.16, -0.03) (-0.28, -0.04)
�23 0.01 0.01 0.01 0.01 0.01 3.16

Random study (Eq. 4)

�̂3 -0.09 -0.09 -0.10 -0.10
SE 0.04 0.04 0.04 0.04

95% CI (-0.17, -0.01) (-0.17, -0.01) (-0.18, -0.01) (-0.17, -0.02)
�23 0.01 0.01 0.01 0.01

Hypertension
(imbalanced)

Stratified study (Eq. 3)

�̂3 -0.09 -0.09 -0.10 -0.10 -0.09 0.20
SE 0.04 0.04 0.04 0.04 0.03 0.11

95% CI (-0.17, -0.01) (-0.17, -0.01) (-0.18, -0.01) (-0.18, -0.01) (-0.16, -0.03) (-0.76, 0.50)
�23 0.01 0.01 0.01 0.01 0.01 47.85

Random study (Eq. 4)

�̂3 -0.09 -0.09 -0.10 -0.11
SE 0.04 0.04 0.04 0.0

95% CI (-0.17, -0.01) (-0.17, -0.01) (-0.18, -0.01) (-0.19, -0.02)
�23 0.010 0.011 0.012 0.012

CI: Confidence Interval, SE: standard error, ȲBT i : mean baseline SBP value of the treated group per trial, �2ik : study- and arm-specific variances, �2i. : study-specific variances, �2.k : two variance parameters; one for control and one for treatment, �2 : one overall variance
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6.4 Results of the obstructive sleep apnea example250

In this second example, it was possible to calculate the group correlations (assumed to be equal between active and sham) using251

Equation (7); the derived correlations values varied slightly across studies [median: 0.498, IQR: 0.496-0.503]. We additionally252

performed sensitivity analyses by imputing three values of r (0.5, 0.6 and 0.7), to simulate cases where deriving the correlations253

from available data would not be possible. The R package ggplot242 was used to visualise the results of the competing models.254

Figure 2 shows the results of the one-stage stratified study model assuming different options for the within-study residual255

variances. Results consistently showed that CPAP statistically significantly reduces AHI compared with the sham device (∼ 41256

events/hour). When r was calculated from the summary data (blue line/circle estimate), the point estimates across competing257

models vary slightly between 41 and 42 less events per hour in favor of active CPAP. The lowest AIC value was found for the258

most flexible model assuming arm and study residual variances to be free (AIC = 2273). Overall, AIC values did not differ259

greatly across the models hence simpler structures can also be adopted, e.g., study-specific within-study residual variances260

model.261

The point estimates and 95% CIs were found to vary little across the imputed values of r, and the differences were not deemed262

to be clinically significant. The differences within the blocks of the more flexible modelling options (study- and arm- specific,263

and study-specific within-study residual variables) were more pronounced compared with the results of the more restricted264

models (group specific and one overall variance). Overall, the results based on the different imputed values within the same265

model block and across models did not seem to materially differ.266

For this example, no direct comparison is feasible with the true IPD, thus we present the results of the one- and two-267

stage pseudo IPD analysis (using the calculated r value) and the original meta-analysis22, and compare them with each other268

(Table 4). The one-stage stratified study model and the two-stage ANCOVA model, which form a natural comparison with one269

anoother, produced identical results when rounded in two decimal places (rows 3-4, Table 4). The point estimate of the standard270

AD change score analysis was larger compared with the ANCOVA results of the pseudo IPD, which may be explained by the271

negative correlation of the change scores with the baseline scores and the worse baseline of the subjects randomised in the272

active group. Generating the pseudo IPD enabled us to explore the interaction of baseline values with the treatment effect which273

in this example was found to be statistically significant (last two rows of Table 4), suggesting that the treatment effect is higher274

for the patients randomised in the active CPAP arm who were found to suffer more at baseline compared to the control patients.275

FIGURE 2 Obstructive sleep apnea meta-analysis results: estimates of overall mean difference of active CPAP vs sham and
95% CI in AHI across different residual variance models and varying group correlation coefficients between baseline and
follow-up values.
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TABLE 4 Meta-analysis results of summary treatment effect and interaction effect using the pseudo IPD approach compared
with standard change score AD methods.

Approach Method Estimate Standard Error 95% CI

standard AD Difference in Change
scores as in Balk et al.22 -46.39 5.39 (-56.97, -35.81)

pseudo IPD

One-stage ANCOVA*†
Eq. (1)

-42.41 5.23 (-54.77, -30.05)

Two-stage ANCOVA
Eq. (5)

-42.41 5.23 (-54.77, -30.04)

One-stage ANCOVA
interaction effect

Eq. (3)
-0.40 0.07 (-0.54, -0.25)

Two-stage ANCOVA
interaction effect

-0.40 0.07 (-0.54, -0.25)

CI: Confidence Interval, †Assumed rCPAP = rsℎam = 0.5, *A study-stratified model with study specific variances was used, ȲBT i : mean baseline AHI values of the treated group per trial

7 DISCUSSION276

We have shown how aggregate data from comparative studies of continuous outcomes measured at baseline and follow-up can277

be analysed by generating pseudo IPD. These pseudo IPD enable us to use the complete palette of techniques available for IPD278

meta analyses. In particular, we are able to (1) perform an ANCOVA, where we can adjust for baseline imbalances between279

treatment and control groups and to (2) explore interactions between baseline values and treatment effects. Different modelling280

approaches of increasing complexity can be applied by using the linear mixed model (LMM) framework. Since the LMM281

analyses are likelihood-based, one-stage and two-stage results derived using the pseudo IPD baseline and follow-up outcomes282

are identical to the ones of the original IPD. The proposed methods can be applied in any standard statistical software therefore283

eliminating the need for training on a special purpose meta-analytic software.284

In this article we have described modelling situations of comparing two treatment groups using the follow-up and baselines285

values. However, the LMM is a broad framework which offers rather staightfoward extensions of this work; the algorithm is286

directly generalisable to repeated measures meta-analysis and to multiple-treatments meta-analysis. Extension of the method for287

meta-analysis of cross-over trials is also applicable with some modifications albeit beyond the scope of this work. In addition,288

incorporation of non-linear covariates or non-linear interactions of treatment with continuous covariates could be a topic of289

future research as in this work we included the baseline (our covariate of interest) as a linear term in the ANCOVA model.290

Our algorithm could be extended to incorporate other covariates than only the baseline if the required summary statistics are291

available, in this case the variance-covariance matrix per group. These summaries are practically never reported however it is292

much easier to request them from the authors compared to the true IPD, as no privacy issues are involved. Bonofiglio and authors293

recently proposed a similar approach under distributed computing setting framework using only IPD summaries to recreate the294

marginal distributions of the original IPD considering eight baseline predictors in a multivariable logistic regression model43.295

The proposed approach successfully addresses the problem of IPD disclosure which is seldom possible due to various reasons296

with respect to data privacy and data security. In the case of continuous outcomes measured at baseline and follow-up often297

the sufficient aggregate data may be only partially available; for example often only means and standard deviations at baseline298

and mean change from baseline scores with the respective standard deviation or standard error are reported. Less frequently299

the mean and the standard deviation values at follow-up are provided. In that case, we could resort to algebraic calculations300

or imputation methods36,34. In principle, the minimally required set of aggregate data is the means and standard deviations301

at baseline and follow-up and also the standard deviation of the change from baseline. If these three standard deviations are302

provided, the correlation coefficient of baseline and follow-up can be calculated33. If one of these standard deviations are303

missing, they can potentially be algebraically extracted by other commonly reported summary statistics, e.g., confidence interval304

of mean difference, standard error of mean difference, paired t-test or a p-value from a paired t-test44,45,46. In cases where305

the post-baseline standard deviation is missing, it is common practice to assume it equal to the standard deviation at baseline306

and thus enable the calculation of the within-group correlation. Another commonly used approach is to impute the missing307
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SDs at post-baseline from other similar studies, with respect to study and patient characteristics, included in the meta-analysis.308

Recently, Weir and colleagues36 proposed fifteen methods for addressing missing standard deviations (and by extension group309

correlations) in continuous data meta-analysis, building on the empirical review of Wiebe and colleagues in 200634. Interested310

readers are referred to these reviews as a lengthy description of available methods for calculating or imputing the missing311

summary data is beyond the scope of this work. We also encourage contacting the authors of the original studies to provide the312

aggregate data also at follow-up, when confidentiality issues prohibit the direct provision of IPD.313

We compared our pseudo IPD approach to standard meta-analytic approaches for aggregate data: random effects meta-314

analysis using change scores and meta-regression of the final scores on the baseline values of the treatment group to compare315

their performance with the pseudo IPD models. In case of imbalanced baseline values, the AD methods based on change scores316

tend to provide biased treatment and interaction effect estimates compared with the pseudo IPD ANCOVA methods.317

Another advantage of the pseudo IPD approach is that it allows us to make more realistic and flexible assumptions regarding318

the within-study residual variances. In the absence of computational or estimations issues, we propose to use a realistic structure319

of the within-study residual variance. This flexibility is not possible in the standard AD analysis. Moreover, the standard AD320

assumes the standard errors of the treatment effects to be fixed and known, while using pseudo IPD ANCOVA methods may321

account for the fact that these are estimated.322

When the appropriate AD are available (i.e., two means, standard deviations and correlation per group), we strongly323

recommend our proposed methodology to construct the pseudo IPD and perform an ANCOVA, if needed including the324

treatment-by-baseline interaction term. The advantage of our method is highlighted particularly in the case of baseline imbal-325

ance and in the case of treatment-baseline interaction, as the standard AD methods for interaction are known to suffer from low326

power and the potential of ecological-bias.327

HIGHLIGHTS328

What is already known?329

The meta-analysis of IPD has been advocated as the "gold-standard" of evidence synthesis for many years. The generally330

preferred method to analyse IPD with continuous measurements at baseline and follow-up is linear mixed effects ANCOVA331

model. However access to IPD is often impossible. Researchers thus resort in an AD meta-analysis where in case of baseline332

imbalances, the treatment effects, derived by other methods than ANCOVA, may be biased.333

What is new?334

We provide an algorithm which makes use of summary reported AD of continuous measurements at baseline and follow up for335

to construct pseudo IPD. These pseudo IPD can be analysed in the same way as the original IPD using ANCOVA, producing336

identical results. Therefore we can adjust for baseline imbalances between treatment and control groups and explore interactions337

between baseline values and treatment effects. In the example dataset where the true IPD have been synthesized, the results of338

our analysis were identical to the true original IPD results.339

What is the potential impact for RSM readers outside the author’s field?340

To enable reproducibility and dissemination of the method, we have provided implementation code of the algorithm both in R341

and SAS. Meta-analysis is a statistical technique undertaken by researchers from various fields and thus being able to use the342

provided code in easily accessible free and commercial software can only improve the quality of their work.343
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TABLE S1 Aggregate data of the 8 trials included in the meta-analysis of Balk et al.22

Number of subjects AHI index at baseline AHI index at follow-up Reported
correlation

Calculated correlation
using Eq. (7)

Treatment Control Treatment Control
Equal between treatment

and control groups
ID Trial name Treatment Control Mean (SD) Mean (SD) Mean (SD) Mean (SD)
1 Egea 2008 27 29 43.7 (22.9) 35.3 (16.7) 10.8 (11.4) 28.0 (24.8) - 0.4979
2 Haensel 2007 25 25 65.9 (28.6) 57.5 (32.1) 3.5 (3.4) 53.4 (32.9) - 0.4981
3 Loredo 1999 23 18 56.4 (24.1) 44.2 (25.3) 3.3 (3.8) 28.3 (22.7) - 0.4442
4 Mills 2006 17 16 65.0 (34.0) 61.2 (41.0) 2.6 (2.4) 57.3 (41.0) - 0.4969
5 Loredo 2006 22 19 65.9 (28.6) 57.5 (32.1) 3.0 (4.7) 52.5 (37.5) - 0.5704
6 Norman 2006 18 15 66.1 (29.1) 53.9 (29.8) 3.4 (3.0) 50.1 (32.1) - 0.4967
7 Becker 2003 16 16 62.5 (17.8) 65.0 (26.7) 3.4 (3.1) 33.4 (29.2) - 0.5025
8 Spicuzza 2006 15 10 55.3 (11.9) 59.2 (17.3) 2.1 (0.3) 57.0 (8.6) - 0.5052

AHI: Apnea-hypopnea index, SD: standard deviation
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SUPPORTING INFORMATION447

The following supporting information is available as part of the online article:448

dataWang. Data of meta-analysis of Wang et al.24 used in the application.449

dataSleepApnea. Data of review of Balk et al.22 used in the application.450

pseudo IPD SAScode. Implementation of the algorithm and model fitting in SAS using proc mixed.451

pseudo IPD Rcode. Implementation of the algorithm and model fitting in R using nlme.452

How to cite this article: Papadimitropoulou K., T. Stijnen, R.D Riley, O.M. Dekkers, and S. le Cessie (2020), Meta-analysis
of continuous outcomes: using pseudo IPD created from aggregate data to adjust for baseline imbalance and assess treatment-
by-baseline modification, Research Synthesis Methods.453
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