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Summary

Meta-analysis of individual participant data (IPD) is considered the "gold-standard"
for synthesizing clinical study evidence. However, gaining access to IPD can be a
laborious task (if possible at all) and in practice only summary (aggregate) data are
commonly available. In this work we focus on meta-analytic approaches of compar-
ative studies where aggregate data are available for continuous outcomes measured
at baseline (pre-treatment) and follow-up (post-treatment). We propose a method
for constructing pseudo individual baselines and outcomes based on the aggregate
data. These pseudo IPD can be subsequently analysed using standard analysis of
covariance (ANCOVA) methods.

Pseudo IPD for continuous outcomes reported at two timepoints can be generated
using the sufficient statistics of an ANCOVA model i.e., the mean and standard
deviation at baseline and follow-up per group, together with the correlation of the
baseline and follow-up measurements. Applying the ANCOVA approach, which
crucially adjusts for baseline imbalances and accounts for the correlation between
baseline and change scores, to the pseudo IPD results in identical estimates to the
ones obtained by an ANCOVA on the true IPD. In addition, an interaction term
between baseline and treatment effect can be added. There are several modelling
options available under this approach, which makes it very flexible.

Methods are exemplified using reported data of a previously published IPD meta-
analysis of 10 trials investigating the effect of antihypertensive treatments on systolic
blood pressure, leading to identical results compared with the true IPD analysis and

of a meta-analysis of fewer trials, where baseline imbalance occurred.

KEYWORDS:
meta-analysis, pseudo individual participant data, ANCOVA, sufficient statistics
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1 | INTRODUCTION

Meta-analysis methods of individual participant data or individual patient data (IPD) are considered the "gold-standard" for
clinical studies’ evidence synthesis“?**, [PD meta-analysis has several advantages over the traditional aggregate data (AD)
meta-analysis approach, which synthesizes summary statistics per study, often retrieved from published sources. For example
when continuous outcomes are available at baseline and follow-up, IPD meta-analysis enables the meta-analyst to perform
adjustments for baseline imbalances and detailed explorations of treatment-covariate interactions>°7. In addition, it comes with
a large toolbox of methods and greater flexibility to analyse the data in an one-stage or two-stage approachS2HOLL

There are, however, challenges as access to IPD can be problematic because of time and cost constraints and privacy issues,
and often it is not feasible to retrieve the IPD of all studies to be synthesized. It is possible to generate/back-calculate IPD
for different types of AD, such as for binary, ordinal and time to event outcomes’#3!1415 For aggregate data of continuous
outcomes reconstructing the original outcome values is not possible. However, we recently proposed an algorithm to construct
pseudo IPD for an one-stage meta-analysis with one continuous outcome, using the sufficient statistics for linear mixed models
i.e., group means, standard deviations and sample sizes'. In this way the analysis using the pseudo IPD yields exactly the same
results as the analysis of the original IPD. The pseudo IPD approach allowed more flexible modeling, using standard linear
mixed model software, for example enabling common or different residual variances for treatment and control groups in each
study.

In this paper we extend the original method of creating pseudo IPD from reported AD to the situation where continuous out-
comes are reported both at baseline and follow-up. We discuss how pseudo IPD can be derived, taking the correlation between
baseline and follow-up/final measurements into account, using the summary observed group means, standard deviations at
baseline and post-treatment, and the group correlation of the baseline and post-treatment values (or equivalently the standard
deviations of the difference between baseline and post-baseline values in both groups). These summary measures are the suf-
ficient statistics for an analysis of covariance (ANCOVA) approach under the linear mixed model (LMM) framework. The
generated pseudo IPD can be analysed using standard software for linear mixed models, and a linear mixed model analysis of
the pseudo IPD will yield identical results to the ones obtained when it is applied on the original IPD.

We describe the advantages of this approach, compared with the standard methods to synthesize aggregate baseline and
follow-up data: using mean follow-up (post-treatment/final) scores, ignoring the baseline values and mean change scores,
subtracting the follow-up value from the baseline!! 718,

It is possible to perform a meta-analysis in an one-stage or a two-stage approach using the pseudo IPD, using the toolbox of
available IPD methods®®1%M A plethora of modelling options is available and we discuss several options, assuming stratified
and random study intercepts and random treatment effect models.

The flexibility of the linear mixed modelling framework makes it possible to correct for potential baseline imbalances.
Although imbalance at baseline is not expected in a randomised trial, it can occur by chance, particularly in small trials'® or
due to flaws in the randomisation process?,

Treatment effects may also differ between patients, depending on their baseline values. For example, in a trial for hyperten-
sion, patients with low systolic blood pressure at baseline are expected to experience less improvement after administration of
treatment, compared with patients having high baseline pressure values. Similarly, severely depressed patients with high val-
ues on a depression score may profit more from treatment than patients with mild depression. When generating and analysing
pseudo IPD using an ANCOVA approach we can cope with the correlation between the baseline value and the change score by
introducing an interaction term between the baseline measurement and the treatment effect. In this way treatment heterogeneity
depending on the baseline values can be further explored.

The paper is organized as follows. In Section 2 we introduce two illustrating meta-analysis datasets: one in hypertension
where group-level AD of systolic blood pressure (SBP) at baseline and at follow-up for anti-hypertensive treatments versus
placebo/no treatment are available from a previous IPD meta-analysis publication?!' and a second example where active versus
sham treatments in obstructive sleep apnea are compared and baseline imbalance occured between the treatment groups2Z,
In Sections 3 and 4, we describe some of the existing modelling options for one-stage and two-stage IPD meta-analyses,
respectively, including models for treatment-by-baseline interaction. In Section 5, we explain how pseudo IPD baselines and
outcomes can be generated from the aggregate continuous data in the case of correlated baseline and final measurements. In
Section 6, we apply our proposed method to the hypertension dataset in/excluding an investigation of the interaction between

0Abbreviations: AD, aggregate data; CI: confidence interval, IPD, individual patient (participant) data; RCT, randomised controlled trial
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baseline and treatment and compare the results with those obtained when using the original IPD as previously reported in the
work of Riley et al.?12% and with standard two-stage methods on the AD. In addition, we apply the pseudo IPD approach on the
sleep apnea dataset and compare the results of the pseudo IPD ANCOVA models, while varying group-correlations coefficients
(as sensitivity analysis), with change scores AD meta-analysis. Brief final comments are provided in Section 7.

2 | ILLUSTRATING EXAMPLES

2.1 | Aggregate data from 10 trial in hypertension with baseline imbalance and artificial baseline
imbalance

We use the reported aggregate data for studies originally contained in an IPD meta-analysis of Wang et al.*%, and subsequently
analysed by Riley et al.2! investigating the effect of hypertension treatments on systolic blood pressure (SBP). The authors
included IPD of trials comparing antihypertensive treatments against placebo/no treatment>202728 A total of 28 851 patients
from 10 trials were included. Each trial measured blood pressure at baseline and after treatment. The aggregate data for each
trial, including the mean, standard deviation and correlation of the baseline and the final SBP values (in mmHg) are shown in
Table 1. Riley et al.”!' compared several meta-analytic approaches to estimate the summary treatment effect of antihypertension
treatments in reducing SBP using the original IPD and compared them to standard AD methods. In this article, we re-analyse
these data using only the aggregate group means, standard deviations and correlations of the baseline and the final values and
apply our algorithm to generate pseudo IPD. We also perform standard AD meta-analysis using change scores and provide a
comparison of the different methods. Riley et al.*!' explored the effect of large baseline imbalance by modifying the original
hypertension dataset. This was achieved by subtracting 5 mmHg from the baseline and final SBP values of patients in the
treatment group of trials 1 and 2; 20 mmHg of patients in the treatment group of trials 4 and 5 and 10 mmHg of the baseline
and final values of patients in the treatment group of trial 6 accordingly, such that five studies have lower baseline values in the
treatment group compared with the control group. We also demonstrate our method on the aggregate version of this modified
dataset.



TABLE 1 Aggregate data of the 10 hypertension trials included in the meta-analysis of Wang et al.** as reported by Riley et al.%!
Number of subjects SBP baseline (mmHg) SBP final (mmHg) Correlation (SBP baseline, SPB final)
Treatment Control Treatment Control
ID Trial name Treatment Control Mean (SD) Mean (SD) Mean (SD) Mean (SD) Treatment Control
o e 2B MEImE 0284
T T L S L, NP o33
3  EWPHE 90 82 (11757.;53) (1]758 0263) (125 162868) (127609415) 0.462 0.534
cowom a0 amo o moeo s o4
5  MRC-1 3546 3445 (115 66.6690) (11556 9665) (11365,;‘29) (lfj 525) 0.346 0416
6  MRC-2 1314 1337 (11822.6139) (118227133) (1253]939) (116;7518) 0.178 0.137
7  SHEP 2365 2371 12995439 (197341)2 (114950150) (125(?12;) 0.315 0.253
T S S S LT 0a1s
9  Sy-Chi 1252 1139 1(78;)3 (117]04215) (11550824) (11566;65) 0.199 0.347
10  Sy-Eur 2398 2297 1(;382)5 (1175374) (11533817) (1166532; 0.319 0.431

ATMH: Australian Trial in Mild Hypertension, HDFP: Hypertension Detection and Follow-up Programme, EWPHE: European Working Party on High Blood Pressure in the Elderly, MRC: Medical Research Council, SBP: systolic blood pressure, SD: standard deviation, SHEP: Systolic Hypertension in the Elderly
Programme, STOP: Swedish Trial in Old Patients with Hypertension, Sy-Chi: Systolic Hypertension in China, Sy-Eur: Systolic Hypertension in Europe
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2.2 | Aggregate data from 8 trials in obstructive sleep apnea with baseline imbalance

Aggregate data from a review of treatments for obstructive sleep apnea in adults?? were used. We focus on a meta-analysis
summarising the treatment effect of an active continuous positive airway pressure (CPAP) device versus a sham CPAP. Eight
studies, of in total 311 patients, recorded the apnea-hypopnea index (AHI), which is defined as the number of apnea and
hypoapnea events divided by the total hours of sleep, at baseline and follow-up. The authors22 estimated a statistically significant
mean difference in change scores of AHI between active CPAP and sham, favoring CPAP (difference -46 events/hour 95% CI:
[-57, -36]; blue/triangle, Figure 1). We re-analysed these data, taking into account the considerable baseline imbalance which
occured between the treatment groups (difference of 5 events/hour, 95% CI [0, 11]- the subjects randomised in the active CPAP
arm suffered more severely from sleep apnea; red/circle, Figure 1), and explored whether patients with higher AHI at baseline
benefitted more from treatment. For comparison purposes, we have additionally included the summary estimates of the final
values analysis, which is not preferred due to baseline imbalance (green/square, Figure 1).
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FIGURE 1 Obstructive sleep apnea meta-analysis example: forest plot of three different summary measures : a) difference in
final values between mean AHI in the active CPAP group and mean AHI in the sham CPAP group (green/square); b) between
groups difference in mean change from baseline (blue/triangle); c) between groups difference in mean AHI score at baseline
(red/circle). The lowest line gives the results from a standard random effects meta-analysis.

3 | ONE-STAGE IPD META-ANALYSIS USING LINEAR MIXED MODELS (LMM)

In this section, we introduce notation and modelling options, for an one-stage meta-analysis of IPD of studies measuring
continuous outcomes ast baseline and follow-up. The data we consider have the following format: let Yg,; denote the continuous
outcome of interest ( 1.e., SBP) at baseline/pre-treatment of patient j in study i(1, ..., N) and Yg,; the outcome, of each patient
post-treatment (at follow-up). Also, let X;; be a dummy variable to indicate the treatment group; X,;=1 for patients in the
treatment group and O for patients in the control group, respectively. There are many IPD meta-analysis ANCOVA type model
options. A number of them are presented in this section; a similar description of the ANCOVA model can be found in Burke et
al®
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3.1 | Analysis of covariance (ANCOVA)
3.1.1 | Stratified study model

An analysis of covariance (ANCOVA) model, with study-specific stratified intercepts and stratified adjustment terms for
baseline measurements may be written as follows:

YFij =B+ (B + bli)Xij + ﬂ2i(YBij - ?Bi) + €, (D

where f; is the mean outcome in the control group in study i for individuals with the mean baseline value, §; the summary
(average) treatment effect and f,; is the study-specific adjustment term for baseline values. A random effect b,; is added to
the overall treatment effect, which is assumed to be normally distributed with mean 0 and between-study variance equal to
112. Although a random treatment effect is preferred, one can assume a common (fixed) treatment effect by constraining 112=0.
There are several modelling options for the variance of the within-study residuals, €

;j» on which we elaborate later on.
3.1.2 | Random study model

An alternative approach to using stratified study intercepts and slopes is to assume a random intercept and a random baseline
adjustment effect, resulting in the following ANCOVA model:

Yy = By +boy) + (By + by) Xy + (By + by) (Y, — V) + €y 2
by, 0 13 To1 To2
where| b, |~ MV N]|0|,] 7y 112 Tio

2
i 0) [t 712 =

2

Parameters are as in Equation (1), except for a random intercept and baseline adjustment coefficient; with 1-12 denoting the
between-study variance of the treatment effect. In the literature, is it often assumed that the random effects are independent (i.e,
7;; = 0 fori # j), although under the LMM it is possible to estimate their covariances.

3.2 | Analysis of covariance (ANCOVA) including treatment-by-baseline interaction

To investigate potential treatment effect modification by the baseline value, the equations (1) and (2) can be extended by
including the interaction term between baseline and treatment effect. The stratified study model (1) incorporating the ”treatment-
covariate interaction” is as follows:

Yiij = Boi + (B + b1) X + By (Y — Yp,) + (B; + b3p)[(Yp;; — YBi)Xij] + ﬁ4i(YBiXij) +e€; (3)
While the other parameters are as in Equation (1), f; denotes the mean increase in treatment effect for a one-unit increase
in the baseline values and the random effect b;; allows for between studies heterogeneity in the treatment-covariate interaction.
This estimate reflects the within-trial interaction effect and f,; estimates the increase in the treatment effect associated with a
one-unit increase between the mean baseline of two studies, which reflects the across-trial interaction. Centering the baseline
values and appropriately separating within- and across trial-associations avoids ecological bias, a phenomenon where the asso-
ciations are erroneously equated?”. Note that if the f,,(Yp; X, ;) is omitted from model (4), then the interaction term will reflect
a weighed average of f; and the magnitude of the ecological bias=?.,
Similarly, equation (2) can be extended yielding a random study ANCOVA model allowing for the interaction between
baseline and treatment, which is formulated as follows:

Ypi; = (Bo + bo) + (By + b,1) X + (By + bo) (Vi — Vi) + (B + b3 (Vg — Vi) X1 + Bu (Y, X)) + € )
This model has four random effects (by;, by;, b,;, b3;), the covariance matrix of which may either be completely unspecified
or may be modelled, for example by assuming independence of the different random effects.
Although, many other modelling specifications are possible, in this work we consider models (1) to (4).
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3.3 | Within-study residual variances

The within-study residuals ¢;; are assumed to follow a normal distribution with mean 0. The within-study residual variance aizk

may depend on the study i and group k. We explore four structures for modelling al.zk: all variances assumed different (arm- and
study-specific): €;, ~ N (0, aizk), study-specific variances: aizk = af, one variance for control and one variance for treated group
2 2

oy = azk, which are the same for all studies and one overall variance: al.zk =0"-.

4 | TWO-STAGE IPD META-ANALYSIS APPROACH

Instead of modelling all IPD in one model, in practice it may be more convenient to use a two-step approach. In the first stage,
a separate ANCOVA is fitted in each of the studies i = 1 to N.

Yiiy = Boi + PuiXij + o ¥pi; + € ®

This yields N treatment effects f,; with standard errors se;.
At the second stage a common (fixed)-effect or random-effects meta-analysis is run on the estimated study-specific ;.

In principle, the one-stage and two-stage approaches produce very similar results yet minor differences may arise as the
former estimates the within-study residual variances simultaneously with ;; and 112 while under the two-stage approach the
within-study residual variances are estimated separately as seen in Eq (5) and independently of f,; and 1'12 in the second stage. In
particular, the stratified study one-stage model (1) and two-stage IPD meta-analysis approaches will yield very similar results,
under the same underlying (modelling) assumptions, for example equal variance for treatment and control within studies®.
For small sample sizes the results may deviate slightly. Equation (5) can also be extended to estimate the interaction between
baseline values and treatement effect by introducing the interaction term similar to term f; from Eq (3).

S | CONSTRUCTION OF PSEUDO IPD FROM AGGREGATE DATA

In our previous work we developed a method to generate pseudo IPD for a single continuous outcome per subject without
baseline values'®. The method generates data with the same observed means, standard deviations and sample sizes, the so-
called pseudo IPD. Because the means and standard deviations are the sufficient statistics, the likelihood function for the IPD,
using the linear mixed model is identical to the likelihood of the unknown true IPD. This means that analysing the pseudo IPD
with LMM will yield identical results to the analysis of the true IPD.

In this article we extend our method to creating pseudo IPD from available aggregate data for a continuous outcome, reported
at two timepoints, at baseline and follow-up. Appropriate sufficient statistics for an analysis of covariance (ANCOVA) approach
are, for each study separately, the means and standard deviations of the continuous outcome at baseline and follow-up in each
group, together with the group correlation of the baseline and follow-up values. Our premise is to create pseudo IPD that
have exactly these sample means, standard deviations, and correlations, so that the subsequent pseudo IPD meta-analysis will
produce the same results as if the original IPD were available.

The algorithm to construct for each of the studies and groups pseudo data with exactly the same mean, standard deviation
and group correlation between baseline and follow-up measurement is as follows: let in a certain study arm, Y, sdp and Y,
sdy be the observed means and SDs at baseline and follow-up, respectively and let r be the correlation between baseline and
follow-up measurement, and let n be the sample size. Then for each group in each study separately, execute the following steps:

1. Simulate two samples Ylf;‘(i =1,...,n) and Yl;(i = 1,...,,n), from a certain distribution, for example a standard normal
distribution.

2. Standardise both samples to obtain Y1* =(0and 172* =0, and sd ;‘ = sd; = 1 and calculate the correlation r* between Yl"l‘
and Y*.
i

3. Regress Y] on Y| and keep the regression coefficients f and the residuals ¢,. Note that since sd = sd; =1, it follows
that f, = r* and é, = Y — r*Y;]. Also note that the residuals are uncorrelated to Y] and have variance 1 — re2,

4. Generate Y; =Y r+ V1 - r2[V1 — r*2]7!. Note that var(Y};) = 1 and its correlation with Y] is r.
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5. Generate the pseudo baseline as follows: Yp; = Y,{sdp + Y.

One can immediately verify that the pseudo baseline measurements have mean Y, and standard deviation sd .

6. Generate the pseudo follow-up outcome as follows: Yp; = Y sdp + Y.

Similarly, the pseudo follow-up outcomes have mean Y, and standard deviation sd and cor(Yp;, Y;) = r.

This algorithm can be easily carried out in standard statistical software. In the Supplementary material we show how this
algorithm can be carried out in R®! and SAS“2. The pseudo IPD can now be analysed using the LMM methods for IPD of
Sections 3 and 4.

In practice, the group correlations are rarely reported. However, the mean change from baseline, with the standard deviation
or standard error are more often provided. When the standard deviation at baseline, at follow-up and the change from baseline
8dcpange are reported, the group correlation can be directly calculated as follows:

2 2 2
r = SdB + SdF - SdChangescores (6)
B 2sdgsdy

For more details see the Cochrane Handbook3, Chapter 16. Alternatively, if the standard error of the difference between groups
in mean change scores is provided and the pre/post correlations are assumed to be equal between the two groups; the correlation
can be calculated as:

2 2 2 2 2
e sdpy[ny + sdpp[nr + sdp[/ne + sdp.[nc — S€ 4i fChangescores )
2sdgrpsdpr /np + 2sdgesdpe [ne
where T and C are the indexes for treatment and control group, respectively”l. When the group correlation cannot be derived

from the available data, one could resort to imputation methods 3435156

6 | APPLICATION OF THE METHODS TO THE DATA

We generated pseudo IPD baselines and outcomes for the aggregate hypertension data of Table 1, the aggregate hypertension
dataset with artificial baseline imbalance and the AD of the obstructive sleep apnea example (given in the Supplementary
material). Using these pseudo IPD we subsequently fitted the LMM models (1) to (4) discussed in Section 3; stratified study
models and random study models, both with and without the interaction between treatment and baseline measurements. For
the stratified models including the interaction term of baseline with the treatment effect, we assumed an unstructured variance-
covariance matrix for the two random effects. For the random study models, we centered the groups when specifying the
random effects, and assumed independent random effects due to memory issues. The parameters in the models were estimated
using restricted maximum likelihood (REML-%),

We fitted all models using the LMM program of SAS, PROC MIXED because SAS has explicit options for modelling the
within-study residual variances and allows for additional flexibility using different methods to calculate the degrees of freedom
and hence confidence intervals of the treatment effect. We used two different approaches, the default method where the degrees
of freedom are calculated using the “between within" method in SAS, as it was the method also used in our previous work and
also the Satterthwaite approximation method=%, following the recommendations of Legha et al.', who performed an extensive
simulation study comparing the models in Section 3 under different CI derivations options.

In the Supplementary material we provide details on the SAS code and on how to fit the same models in R using nlme?. For
comparison purposes with the results of Riley ef al.2Y, we only show the Cls derived using the between-within method.

6.1 | Results of the hypertension example with baseline balance

Results of the analyses using the pseudo IPD generated from the aggregate data on hypertension were compared with the two-
stage IPD meta-analysis results of Riley et al.2l, who (unlike us) had access to the original IPD. As mentioned a two-stage
IPD meta-analysis is very similar to the stratified study model of Equation (1) assuming equal residual variances between the
treatment and the control group per study, i.e study-specific variances: 6i2k = o-iz_. We also performed a two-stage ANCOVA
using the pseudo IPD. For completeness we also present the results of an AD meta-analysis using the change scores.
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The results for the baseline balanced example are shown in the top two rows of Table 2. Across all competing models, the
treatment effect estimates were negative indicating that the hypertension treatment reduced systolic blood pressure values.

The estimated treatment effect and corresponding standard error of the one-stage pseudo IPD ANCOVA analysis assuming
study-specific residual variances, were identical to the results based on the analysis of the true IPD by Riley er al.?!; -10.17
(SE=0.93) vs -10.17 (SE=0.93). There are slight differences in the 95% ClIs as they were derived by different methods; under
the Satterthwaite correction method were slightly wider. In addiiton, a two-stage analysis on the pseudo IPD assuming study-
specific residual variances yielded identical results to model (1) and the analysis of the true IPD?: a summary treatment effect
of -10.17, SE= 0.93.

We compared the AIC values® of different within-study residual variance structures for the stratified study models and
for the random study models. In both model blocks the lowest value was found for the assuming all within-study residual
variances to be free (arm-specific and study specific; 243387.2), although AIC values were found to be very similar across the
different within-study variance options, suggesting that one could potentially adopt a simpler model when opting for a more
parsimonious model. The study stratified model assuming within-study variances to be study-specific had the second lowest
AIC value (243411.9) in that model block and was adopted as the final model. This model showed a summary treatment effect
of -10.17 [95% CI: (-12.27, -8.06)], indicating that on average antihypertension treatments have a positive effect on SBP levels,
reducing them by 10.17 mmHg more compared with control/no treatment.

The last column of Table 2 shows the results of the standard AD analysis following a change scores approach; a summary
treatment effect -10.10 [95% CI: (-12.33, -7.87)], slightly lower than the ANCOVA estimate using one-stage or two-stage
pseudo IPD.

6.2 | Results of the hypertension example with baseline imbalance

For the aggregate data with baseline imbalance, the effect of the active hypertension treatments compared with control is more
pronounced (bottom rows of Table 2). We adopt the stratified study model as the final model which produces a summary
treatment effect of -14.55 [95% CI: (-18.31, -10.80)], identical to the ANCOVA result of the true IPD presented in Riley ef al. 21
Using a two-stage analysis of the pseudo IPD assuming study-specific residual variances resulted also in a summary treatment
effect of -14.55 [95% CI: (-18.30, -10.80)].

The results of the pseudo IPD analysis were substantially different from the standard AD meta-analysis of change scores,
because of the induced baseline imbalance.
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TABLE 2 Meta-analysis results of summary treatment effect using the pseudo IPD approach compared with the true IPD and standard AD modelling approaches of Riley et
al.”?!
pseudo IPD meta-analysis true IPD meta-analysis AD meta-analysis
ANCOVA model results as
one-stage ANCOVA described in Riley ef al.2 Change score$
Dataset Model Results o o’ o c? o’
ﬂAl -10.17 -10.17 -10.34 -10.34 -10.17 -10.10
. SE 0.93 0.93 0.98 0.98 0.93 0.99
Stratified study (BQ- 1) o500 1 (11,99, 8.34)  (-12.27.-8.06) (-12.26,-8.43) (-12.26. -8.43) (-12.28, -8.05) (-12.33, -7.87
Hypertension 112 7.12 7.11 8.17 8.17 7.15 6.56
(balanced)
ﬁl -10.45 -10.46 10.56 -10.56
SE 0.99 0.99 1.01 1.01
Randomstudy (Eq-2) 50 o1 (1230, 852) (112.39,-8.53) (-12.53,-8.58) (-12.54, -8.59)
T12 8.61 8.62 9.13 9.16
ﬂAl -14.57 -14.55 -14.58 -14.57 -14.55 -10.10
. SE 1.65 1.66 1.64 1.65 1.66 0.99
Stratified study (Bq- 1) g5 0 o1 (17.81,-11.33) (18.31,-10.80) (-17.80, -11.36) (-17.78. -11.36) (-18.30, -10.80) (-12.33,-7.87
Hypertension le 25.28 25.47 25.30 25.19 25.43 6.56
(imbalanced)
ﬂAl -14.45 -14.46 -14.49 -14.48
SE 1.65 1.65 1.63 1.63
Random study (Bq-2) 50 o1 (17,60, -11.20) (-17.67.-11.20) (-17.69, -11.29) (-17.68. -11.29)
72 25.34 25.23 25.10 24.99

CI: Confidence Interval, SE: standard error, gizk: study- and arm-specific variances, rxlz: study-specific variances, uzk: two variance parameters; one for control and one for treatment, 2 one overall variance
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6.3 | Including the interaction between baseline and treatment effect

To investigate potential treatment-by-baseline modification, we included the interaction term f; between baseline and treatment
effect in the pseudo IPD LMM models. We compared the pseudo IPD models (3) and (4) with the two-stage IPD meta-analysis
of Riley et al.*!' with interaction, and with a random-effects meta-regression of the final values on the mean baseline of the
trea<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>