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Abstract

The drainage and thinning of liquid films are important in a variety of applications,

such as in liquid and solid foam networks, relevant in the manufacture of metallic and

ceramic foams, the food industry, processing in the petro-chemical industry, and the

biological and life sciences. In a liquid foam network, there are gas bubbles separated

by thin liquid lamellae. If one is interested in predicting the lifetime of a foam or

its overall stability then, as a starting point, understanding the drainage within the

lamella is important.

Motivated by the above, in this thesis, we consider a two-dimensional model system to

investigate the draining and thinning of the lamella relevant to metallic and polymeric

melts. Lubrication theory is employed to derive two master Partial Differential Equa-

tions (PDEs) for a generalised Newtonian liquid describing the evolution of the film

thickness and the extensional flow speed. The PDEs include the effects due to gravity,

extensional viscous and surface tension forces. We use the non-Newtonian (Power-law

and Carreau) and viscoplastic (Bingham and Herschel-Bulkley) constitutive laws to

describe the flow rheology.

We first describe the evolution of a Newtonian liquid film in the limit of large Capillary

number, Ca = ρ?g?L?
2
/(εγ?) � 1. We derive early and late-time similarity solutions

for the draining and thinning of the lamella. A new power law thinning rate of t−2.25

in the lamella is identified at late times. This is in comparison to a thinning rate of



ii

t−2 predicted for a Newtonian film without gravity, suggesting a weak-dependence on

gravity.

Next, we perform numerical simulations to investigate the influence of non-Newtonian

and viscoplastic effects by varying the power-law index and the yield stress. We observe

that the power law index and the yield stress affects the time scale of the thinning, but

has weak dependence on the late-time thinning rate relative to the Newtonian thinning

rate. We identify the limitations of the power-law model when the shear rate is low

and how these can be resolved using the Carreau model.

We extend the Newtonian model to include non-isothermal effects, such as temperature-

dependent viscosity and surface tension. We perform numerical simulations to describe

the evolution for a variety of parameter values, such as the reduced Péclet number and

those related to the exponential viscosity-temperature model and the linear surface

tension-temperature model.

Our results indicate that the resulting temperature drop in the film due to cooling

from the free surface, particularly in the lamella, and the corresponding viscosity and

surface tension contrast, significantly influence the draining and thinning of the film.

Preliminary results show that the viscosity variation has greater influence compared to

surface tension variations; however additional work is required to confirm this.

The new knowledge will enhance the current understanding to a wider class of thin

liquid film draining flows associated with metallic and polymeric melts.
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Chapter 1

Introduction

1.1 Motivation

The draining, thinning and break-up of liquid films that intertwine a network of gas

bubbles play an important role in the manufacturing and stability of foams, and in

predicting their lifetime [11, 59, 76]. A foam is a two-phase system formed by trapping

gas bubbles in a liquid or molten solid [75, 11]. Some examples of liquid foam are

the head of a glass of beer and soap foam bubbles (see Fig. 1.1(a)). Foams are a

common occurrence in everyday life, such as when applying shaving gel or foam to your

face before shaving and when using washing-up liquid to wash and rinse dishes. It is

fascinating to observe foams changing their shape and structure constantly throughout

their lifetime, as if trying to reach a stable state or at least a metastable state [75].

A nice book detailing the beauty and physics of foams is by Denis Weaire and Stefan

1
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Hutzler - The Physics of Foams.

Due to their dispersed nature, foams are used in a wide variety of important indus-

trial processes and applications [66, 20]. The property of gas-liquid foams of having

very high surface area is exploited in fire retardant foam, such as those produced by

fire extinguishers to blanket fires, in chemical engineering processes of distillation and

froth flotation used in recovering minerals, and in oil recovery. Foams made with aque-

ous surfactant solutions are widely used in cosmetic applications and for detergency

purposes, such as in creams, soaps, shaving foam and washing-up liquids, while foams

made with protein solutions are the base of many food products, such as in bread dough

[74]. Solid foams made by foaming and solidifying melts, referred to as cellular solids

[5], are used in the manufacturing industry due to their superior mechanical properties,

e.g., lightweight and low thermal conductivity or heat resistivity. Solid foams include

polymeric foams, such as polystyrene and polyurethane, with applications as insula-

tion panels in the construction industry and as packing and cushioning materials, in

metal foams used in the car and space industries [11, 6], and in ceramic foams used in

thermal and acoustic insulation. Biomedical foams are a new class of materials, which

are increasingly being used in bone tissue engineering applications [51].

What are foams?

A foam exists in the form of a dispersed two-phase medium consisting of gas bubbles

(which may be of different sizes) separated by a network of liquid regions which can
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Figure 1.1: (a) snapshot of a soap foam, and (b) schematic showing gas bubbles, lamella
and Plateau borders.

form thin films of variable orientation - referred to as lamella (see Fig. 1.1(b)). The

lamella connect in groups of three and radiate outward from the connection points,

known as Plateau borders [54] (see Fig. 1.1(b)).

Liquid foams can be either dry (when the liquid fraction is very low) or wet otherwise.

The liquid fraction can vary between 0 (dry limit)-35% (wet limit) (Weaire et al. [76]).

The bubbles are generally polygonal in structure in dry foams and more rounded in

wet foams (Weaire & Hutzler [75]). The geometrical arrangement of dry foams can

be described by mathematical problems related to minimal surfaces while Plateau’s

laws describe the structure of soap films based on the assumption that soap films are

made of smooth surfaces and the geometrical laws governing the mean curvature of the

surfaces and the angles at which the surfaces meet at a vertex and edge (Douglas et



4

al. [56]). The fluid dynamical effects in wet foams, particularly in the lamella, play an

essential role in the overall behaviour of the foam (Weaire et al. [76]). This will form

the basis of the PhD research.

A foam in general is a multi-scale system. It can be analysed as distinct inter-related

structural elements - bubbles, thin liquid films (lamella), Plateau borders and junctions

(Weaire et al. [59]) - see Fig. 1(a).

(i) Bubbles: they consist of gas and can be of variable diameter and pressure. Their

diameters are usually a few millimetres in length scale.

(ii) Films: The bubbles which are pressed with each other to make thin films with

different orientations separate the foam. Their length scales vary between a few

nanometres (in dry foams) to a few micrometres (in wet foam). Foams can

collapse because of film rupture.

(iii) Plateau borders: Where the thin films meet along a line or curve, there is a

liquid-filled channel called a Plateau border. Their length scale is bigger than

that of the thin films but much smaller than the bubble size - usually a few

hundred micrometres.

(iv) Junctions: Where some Plateau borders join to make an interconnected network,

they do so at a junction.

The stability of foams is crucial in order to keep the foam from collapsing. Liquid

foams go through a series of transient states and change their shape and structure
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constantly throughout their lifetime. They are hardly ever stable, usually metastable.

While some of the rapid changes in a foam are an essential part of the process, others

are damaging and limit the applicability of foam technology. The forces acting on a

foam are: gravity, external atmospheric and internal gas pressures, mechanical forces,

surface tension and their gradients, etc. Any change in the balance of these forces will

lead to motion within the foam. Changes in foam shape and structure can be due to:

(i) The movement of bubbles concerning each other caused either by external forces

or changes in the internal gas pressure, e.g., during the foam production process.

(ii) Drainage is the fluid flow from the lamella into the Plateau borders due to the

change in curvature of the gas-liquid interface moving from the flat lamellar region

into a curved Plateau border region, and also due to gravity. The fluid flowing

from the lamella into the Plateau borders results in thinning of the lamella.

(iii) Rupture (or coalescence) is a sudden instability in a film leading to its disap-

pearance. This might be caused by the rupture of the thin liquid films resulting

in the bubbles coalescing and the foam collapsing. Long-range attractive and

repulsive molecular forces, such as van der Waals attractions (Sheludko [64]) and

repulsive forces between surfactant molecules become important when the film

is ultra-thin and close to rupture. Competition between the two can result in

stable black films. The film is so thin that it does not reflect light so is black in

colour in interferometric images.

(iii) Coarsening (or Ostwald ripening) is slow diffusion of gas from smaller bubbles to
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bigger ones driven by a pressure difference.

We note that the effects described are not independent. Bubble flow during growth

of a foam can result in rupture. Thinning of the lamella due to drainage of fluid into

the Plateau borders can lead to lamellar rupture and the coalescence of neighbouring

bubbles.

The process of liquid drainage and thinning of the lamella is well-studied in aqueous

foams, e.g., (Weaire et al. [76]). In aqueous foams, surface active chemicals, such as

surfactants, are required to stabilize foams. They not only lower the surface tension

but also create surface tension gradients that can counteract the downward flow due to

gravity and curvature effects (the so-called Marangoni effect). Surfactants can signif-

icantly reduce the drainage or film thinning rate and surfactant-stabilized foams have

very long lifetimes in the order of several hours, e.g., soap foam bubbles in the bathtub

last for several hours.

In pure molten metal and polymeric foams, the drainage and thinning of the lamella

is rapid and rupture can happen in the order of milliseconds. Surfactants are not

available to affect the surface tension of metallic foams. Therefore, particles are often

added to metallic foam to increase the effective liquid viscosity and to slow down the

drainage, thinning and rupture time [11, 80]. Safouane et al. [57] have performed forced

drainage experiments in shear-thinning (non-Newtonian behaviour) foam solutions.

Their results showed that the dynamics of liquid drainage in a foam with a shear-

thinning liquid solution is identical to the drainage of foam having a Newtonian liquid
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if an effective viscosity based on an estimated shear rate within the foam is used. This

implies that the drainage dynamics in foams appears to occur in a narrow range of

shear rates.

Most solid foams, such as metal and ceramic foams, originate from a liquid (e.g., metal

foams originate from molten liquid metal and ceramic foams from polymer melts),

so that a solid foam is usually the frozen or solidified form of the liquid foam. One

would then require the solidification or cooling timescale of the lamella to be much

faster than its draining and thinning timescale so as to delay or even prevent rupture

and maintaining the overall stability of the solid foam. Studies in solid foams are

difficult due to their high temperature [11, 6]. Such films display non-Newtonian and

viscoplastic behaviour, such as shear-thinning and yield stress. Therefore, theoretical

investigations on the fluid dynamics in the lamella of molten metal and polymeric melts

are important under both isothermal and non-isothermal conditions in order to better

understand their thinning behaviour and its overall influence on foam stability.

1.2 Theoretical models related to the thinning, drainage

and rupture of thin free liquid films

There are numerous theoretical investigations focussing on the thinning and rupture of

thin liquid films on a substrate. These studies take advantage of the slender geometry,

i.e., the ratio of the film thickness to its length - its aspect ratio - is small. Lubrication
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or long-wavelength theory is then used to simplify the Navier-Stokes equations and the

boundary conditions at the free surface to an evolution equation for the film thickness

(or free surface shape). The underlying shear flow and the free surface evolution equa-

tion includes the physics considered relevant to the problem at leading order in the

aspect ratio, e.g., Newtonian, non-Newtonian and viscoelastic effects, surface tension,

surface tension gradients due to surfactants, gravity, intermolecular forces, van der

Waals forces and other physical effects due to electric field, for example. A nice review

of these can be found in the review papers by Oron, Davis & Bankoff [53] and Craster

& Matar [24].

In contrast to the above, there are relatively fewer studies of thin free films, relevant

to the drainage, thinning and rupture of soap films and foams. Unlike films on a sub-

strate, for free films, however, the leading-order evolution equation is not completely

determined from the linearised Navier-Stokes equations using the lubrication approxi-

mation. For example, consider a two-dimensional flow in a Cartesian coordinate system

(x, z). At leading order, the flow speed u (say) in the longitudinal direction x satisfies

uzz = 0, with zero shear stress boundary conditions, uz = 0, at the two free surfaces

(or at z = 0, if centreline symmetry is assumed). Hence, u = u(x), implying a purely

extensional or plug flow through the film at leading order. An equation for u is derived

at the next order through a compatability condition and physically represents the bal-

ance of forces at the free surface (see Erneux & Davis [29]). The kinematic boundary

condition at the free surface along with the continuity equation, then provides the
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evolution equation of the free surface due the liquid flux of the extensional flow u. We

note the difference with the above scenario of a shear flow between the free surface

and the substrate; the zero shear at the free surface along with the no-slip boundary

condition at the substrate allow for u to be determined at leading order.

Many researchers have made assumptions, such as assuming the interface to act as

a no-slip but deformable interface valid in the presence of surfactants or any other

physical effect resulting in a nonzero shear stress at the free surface, which makes the

flow a combination of plug and shear flow. This allows a complete description of the

flow, and hence the evolution of the free surface, at leading order (see Schwartz & Roy

[62]).

The purely extensional flow and the combination of extensional and shear flow frame-

work have been used by several researchers to investigate the draining, thinning and

rupture of thin free liquid films, including Newtonian and non-Newtonian rheology, vis-

coelastic effects, under both isothermal and non-isothermal conditions. These studies

are described below, with the focus on the ones relevant to the drainage, thinning and

rupture of liquid and aqueous or soap films.

The model system used to mimic the draining of liquid films is based on two configura-

tions: either a liquid film supported within a wire frame or between two rigid supports

[47, 62], or a liquid film partially drawn out of a bath of liquid using a wire frame, so

it is supported on three sides by the wire frame or by a rigid support at the top and

connects directly onto the surface of the liquid bath [22, 49, 48, 50, 14]. These two
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configurations mimic the fluid dynamics associated with the draining of a lamella into

a Plateau border. The latter configuration also allows investigation of the speed at

which the wire frame is drawn out of the bath, and its influence on the stability of the

draining film [22]. Other related configurations considered in the literature depending

on the application being investigated include, the thinning and break-up of free-falling

liquid jets [70, 2, 3], viscous threads [23] and sheets [35, 72, 13].

The now classical experimental investigation by Mysels, Shinoda & Frankel [47] us-

ing soap films attached to wire frames gave the first comprehensive description of the

draining and thinning of soap films. Subsequently, this has spurred several theoret-

ical studies investigating the thinning and drainage of liquid films using the model

systems described above for Newtonian liquids under isothermal conditions. Schwartz

and Princen [61] assumed that the interfaces contain sufficient surfactant to become

immobile and used quasi-static asymptotic analysis to predict the flow rate to and from

films and Plateau borders within a foam that is in periodic deformation. Koehler et

al. [39] modelled the interaction between gravity, viscous forces and surface tension

analytically using a one-dimensional nonlinear PDE called the foam drainage equation.

Similarity solutions are described in every case and compared with numerical solutions

and available experimental data. Schwartz & Roy [62] present a simplified mathemat-

ical model of two-dimensional vertical soap films with an insoluble surfactant bounded

between stationary wire frames that captures many of the physical features observed in

the experiments of Mysels et al [47]. They showed that the drainage rate related to film
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thinning was reduced when surfactants are present due to a combination of lowering

surface tension and the Marangoni effect. The limit of an immobile interface was ob-

served when the surfactant concentration was large and the thinning rate of the lamella

scales like t1/2, where t is time. Breward [15] and Breward & Howell [16] have devel-

oped and analysed models describing surfactant free and surfactant-stabilized drainage

of a foam lamella. Their solution procedure involves dividing the liquid domain into

a capillary-static Plateau border, a time-dependent thinning film and a quasi-steady

transition region between the two. They use matched asymptotic analysis to describe

the evolution of each region, which is then used to derive the thinning rates with and

without surfactant. They determined that the lamella drains or the film thins as t−2

for a surfactant-free film. They found that surfactants can reduce the draining of the

lamella and greatly increase its lifetime. Naire and co-workers [48, 49, 50, 14] intro-

duce surface shear viscosity (surface analogue of the bulk shear viscosity) due to an

insoluble surfactant and consider the lamella draining into the Plateau borders in both

one and two dimensions. They show that in the limit of large surface viscosity, the

immobile t1/2 thinning rate is recovered; in the limit of low surface viscosity, the mo-

bile thinning rate of t−1 is calculated. Brush & Davis [17] derive the thinning rate of a

surfactant-free lamella in a gas-liquid foam using matched asymptotic analysis, in the

spirit of Breward [15] and Breward & Howell [16]. Two limiting cases were identified at

small Capillary number (dimensionless number comparing viscous and surface tension

forces): the wet and the dry foam. They found that the lamellar thinning rates in both

cases to be t−2 power-law behaviour at long times even though the foam liquid area
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fractions have different orders of magnitude in Capillary number; the dynamics and

rupture times, though, were distinct for both foam types.

The influence of gravitational forces on the drainage of surfactant-stabilised aqueous

foams has been widely studied, in particular its influence in the drainage, thinning and

rupture of the lamella (see for example the studies by Schwartz & Roy [62] and Naire

and co-workers [48, 49, 50, 14]). However, the gravitational drainage of surfactant-free

foams is relatively understudied. To the best of our knowledge, the only study to have

examined the role of gravity in the drainage and thinning of flow from the lamella

into the Plateau border is by Davis et al. [26]. They combine numerical simulations

and asymptotic analysis (based on the domain decomposition procedure proposed by

Breward & Howell [16] and also used by Brush & Davis [17]) to demonstrate how

gravitational effects strongly modify the shape of the Plateau border interfaces and

enhance the drainage flow in the liquid films. The lamella thins non-uniformly with

exponential decay of the minimum film thickness, which is significantly faster than the

t−2 power-law thinning predicted when gravitational effects are negligible [15, 16, 17].

Motivated by this study, we focus on the scenario when the liquid films are initially

thick (on the order of microns) so that the liquid flow driven by gravitational forces is

non-negligible, and could significantly influence the overall foam stability.

There have been numerous studies investigating the rupture of the lamella alone for a

Newtonian fluid under isothermal conditions. Prevost & Gallez [55] derived a nonlin-

ear PDE based on the assumption that the interfaces are immobilized or tangentially
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immobile (that is the component of the fluid velocity tangential to the interface is

zero), making them no-slip but deformable interfaces. This model was used to study

the rupture of the lamella. Erneux & Davis [29] derive asymptotically the governing

equations without making the above assumption. Two evolution equations for the free

surface evolution and the longitudinal extensional or plug flow speed were derived and

the rupture of the free film is analysed. These studies have been extended to include

long-range attractive and repulsive molecular forces via a disjoining pressure (Deryagin

[28]). Repulsive forces, e.g., between surfactant molecules, can result in a disjoining

pressure (repulsive force between the two faces of a film) which opposes further thin-

ning. The film thickness at which equilibrium is achieved is determined by the balance

between the disjoining pressure and the bulk pressure gradient of the liquid. Surfac-

tant effects mentioned previously have also been included for mobile films (where the

film is no longer considered to be tangentially immobile). De Wit et al. [27] consider

the dynamics of a free-liquid film with insoluble surfactants and consider film rupture

using a model based on three nonlinear evolution equations for the film thickness, the

surfactant concentration and the tangential velocity of the fluid in the film. They show

that rupture times can be significantly reduced in the presence of surfactants. More

recently, Thete et al. [71] described the self-similar behaviour during rupture of a free

film under the competing influences of inertia, viscous stress, van der Waals pressure,

and capillary pressure.

Anderson et al. [4] investigate the spontaneous rupture of a free film in two dimensions
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due to an instability associated with van der Waals forces. A linear stability analysis

of the thinning film shows that the rupture occurs once the film has thinned to tens

of nanometres, while for a static film with a constant and uniform thickness, rupture

happens when the thickness is hundreds of nanometres. Plateau borders and flow are

shown to be involved in the stabilization for the former case. Champougny et al. [22]

derive a lubrication model to describe the non-stationary free liquid film that is created

when a vertical film is pulled out of a liquid bath at a given speed, Including extensional

flow and van der Waals interaction between the interfaces, they were able to predict

the time and location of rupture, which are shown to compare favourably with their

film draining experiments.

There are also a few models that consider the overall behaviour of the foam as a

network. Stewart et al. [67] formulate a large-scale network model for the dynamics

and stability of a planar (gas - liquid) foam with low liquid fraction and composed

of approximately polygonal gas bubbles. The model explicitly combines the coupling

between the pressure of bubbles and its area, surface tension forces on the gas–liquid

interfaces and extensional flows in the liquid films. The model also accounts for van

der Waals instabilities that lead to rupture of the liquid film, once it is sufficiently thin,

leading to bubble coalescence and hence coarsening of the foam. Initially, the foam is

made up of regular polygonal bubbles with the same pressure, but the first film rupture

initiates a dynamic coalescence process where the mean bubble area increases rapidly.

Numerical simulations explain the large-scale topological rearrangement as the foam
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coarsens. This work has been extended to include the accumulation of liquid at the

bubble vertices (Plateau borders) as dynamic nodes and the liquid bridges separating

the bubbles as uniformly thinning free films (Stewart et al. [68]) and fracturing of a

surfactant-laden aqueous foam under an applied driving pressure (Stewart et al. [69]).

Few models have considered the influence of non-Newtonian rheology, such as shear-

thinning and viscoplastic behaviour, relevant in metallic, polymeric and ceramic foams.

Brush & Roper [18] extend their two-dimensional small Capillary number matched

asymptotic analysis for Newtonian liquids [17] to determine the thinning rates of liq-

uid films in surfactant-free, non-Newtonian gas–liquid foams. The liquid viscosity is

modelled as a power-law function of the shear rate and by the Ellis law [45]. They

observed that the Ellis model is more realistic than the power law model at a low

shear rate, where the viscosity is well behaved in the Ellis model while it diverges to

infinity in the power law model. They observed the thinning rate to be t−2 for both

models, which is the same as that for a Newtonian liquid. They reasoned that the

non-Newtonian behaiour influences the time to rupture without affecting the thinning

rate. Many researchers have also investigated non-Newtonian behaviour in other con-

texts, such as in the thinning and rupture of viscous liquid threads and sheets [42, 10].

Studies have also investigated the influence of viscoelastic effects in liquid jets, threads

and sheets [2, 3, 12, 82]. In this thesis, we only investigate non-Newtonian behaviour

and viscoelastic effects are not considered. This will be considered as future work.

All of the above studies assume isothermal (constant temperature) conditions, and do
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not explicitly consider the liquid properties, such as viscosity and surface tension, vary-

ing with temperature. Non-isothermal effects are important when there exists a strong

coupling between the flow and the temperature field due to a strong dependence of the

liquid properties on the temperature. The viscosity of most materials decreases with

temperature. Some materials, such as glass, metallic and polymeric melts, can exhibit

dramatic changes in their viscosity due to variations in temperature, e.g., cooling and

solidification of silicate (or glass-like) lava flows [33]. For glasses and polymers, the sur-

face tension can also vary with temperature (surface tension in most liquids decreases

with increase in temperature), perhaps not as dramatic as the variation in viscosity.

In the context of liquid foams, the heat transfer between the hot liquid within the

lamella and Plateau borders and the cooler surrounding gas bubbles via the free surface,

could result in the lamella cooling down considerably and rapidly in some situations.

The resulting thermoviscous (viscosity variations with temperature) and thermocap-

illary effects (surface tension variations with temperature) could have a significant

influence on film drainage and thinning.

Most non-isothermal mathematical models for thin liquid films assume that, within

the lubrication approximation, the diffusion of heat across the film thickness is much

faster than heat transfer due to convection along the film length. This results in

the temperature being uniform across the film thickness in the asymptotic limit of

the reduced Péclet number, Per = ε2Pe � 1, where ε is the aspect ratio and Pe

is Péclet number which is the ratio of the convective to the diffusive heat transport.



17

This is referred to as the diffusion-dominated scenario of heat transport (also referred

to as isothermal or well-mixed heat transport along the thickness of the film). That

enables reduction of the temperature field to vary only along the length of the film and

time, incorporating the boundary conditions at the free surfaces. Many researchers

have employed the Per � 1 limit to investigate various aspects of thin film flow due to

thermocapillary and thermoviscous effects. It is worth noting here that most polymeric

and metallic melts have very large Péclet numbers, so the small reduced Péclet number

limit may not be applicable in these flows. One would need to consider the variation

in temperature both along the length as well as the thickness of the film, coupled to

the flow. Balmforth et al. [8] have investigated the spreading of molten liquid domes

for Per = O(1) and larger, and show that variations in viscosity across the thickness

of the dome could significantly affect the spreading dynamics of the flow.

There is a large body of work that have investigated surface wave instability associated

with thin liquid film flows or falling films over a heated and inclined substrate, for both

thermocapillary and thermoviscous effects (see, e.g., [37, 58, 43, 60, 32, 25, 30, 31,

36]). Several studies have investigted thermoviscous flows associated with spreading of

viscous gravity currents, relevant to flow of lava and nuclear material [9, 7, 38, 77, 78],

and with phase-transition due to solidification [19, 46, 81]. The role of thermoviscous

and thermocapillary effects have also been investigated by several researchers in the

extensional flow associated with the drawing of viscous threads, with focus on the

stretching and pinching of the threads (see, e.g., [79, 34]. The rupture of thin viscous
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fluid sheets has been studied by Tilley & Bowen [72]. They investigate the influence

of thermocapillary effects on the evolution of a thin viscous sheet to show how the

Marangoni-induced shear stresses (caused by surface tension gradients due to variations

in temperature), if comparable to the inertial effects, can control the location and the

time to rupture. In a subsequent study [13], they show how thermally induced van der

Walls forces could rupture thin viscous fluid sheets. Recently, Shah et al. [63] have

investigated the influence of thermal fluctuations on the drainage, thinning and rupture

of liquid films. They show that thickness variations due to thermal fluctuations at the

free surface (originating from random thermal motion of molecules) can compete with

the curvature-induced drainage at the Plateau borders. In particular, if the drainage

is weak, then the film ruptures at a random location due to spontaneous growth of

fluctuations originating from thermal fluctuations. This is in contrast to a scenario

where the drainage is strong, resulting in the film rupturing at a local depression -

so-called dimple - between the lamella and the Plateau border.

We can conclude from the above literature review that the main emphasis of the re-

search in this area has been primarily on aqueous or soap-like films that exhibit New-

tonian rheological characteristics. Moreover, most of the studies are under isothermal

conditions where the liquid properties, such as the liquid viscosity and surface tension,

are held constant. Very few studies have investigated non-Newtonian and viscoplastic

effects, and the coupling between the draining flow and cooling, and their influence on

the draining characteristics. Investigating these effects will enhance the current under-



19

standing to a wider class of thin liquid film draining flows associated with metallic and

polymeric melts.

1.3 Preliminary background

In this section, we will describe the Newtonian and non-Newtonian rheological mod-

els investigated in this thesis. We will also introduce the energy equation and the

temperature-dependent models for the viscosity and surface tension that we will use in

this thesis.

1.3.1 Constitutive Laws

We can write the constitutive equation for the viscosity as a function of the shear rate

for a generalized Newtonian liquid as [44]:

τ ∗ = µ(γ̇?)γ̇?, (1.1)

where µ(γ̇?) is the shear rate-dependent viscosity and γ̇? =
[

1
2
Trace (γ̇? · γ̇?)

]1/2
, is the

second invariant of the shear rate tensor. γ̇? is the shear rate or rate of strain tensor.
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Power law fluid

The Power-law model is the the most widely used model of a non-Newtonian liquid

where the viscosity in the power-law model can be written in the form:

µ(γ̇?) = K?(γ̇?
2

)
n−1
2 , (1.2)

where K? is a consistency index and n is a power law index. When n < 1 the fluid

classified as shear thinning; for n = 1 we recover the Newtonian fluid: n > 1 the fluid

is shear thickening (see Myers [45]). The power-law model might not accurately reflect

the dynamics of flows where the shear is low [45]. Moreover, the viscosity becomes

infinite when the shear rate approaches zero, which is not physical.

Carreau model

The Carreau model is another model of a non-Newtonian liquid. The Carreau model

of the viscosity is given by:

µ(γ̇?) = µ?∞ + (1− µ?∞)[1 + (λ?
2

γ̇?
2

)](n−1)/2, (1.3)

where µ?∞ and µ?∞ are the limiting viscosities at high and low shear rates, and λ? is a

relaxation time [45]. The Carreau model is well behaved at low shear rates, unlike the

power-law model.
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Herschel-Bulkley Model

This is a more general non-Newtonian model for liquids that have a yield stress, i.e.,

a threshold stress that needs to be exceeded for fluid motion to start. For this model,

the viscosity related to the shear rate can be written as [10]:

µ(γ̇?) = K?(γ̇?)n−1 +
τ ?p
γ̇?
, if τ ? > τp, (1.4)

where τ ? =
[

1
2
Trace (τ ? · τ ?)

]1/2
, is the second invariant of the stress tensor and τ ?p is

the yield stress. If the power law index n = 1 and τ ?p 6= 0 then the fluid is referred to

as a Bingham liquid, and if τ ?p = 0, then we recover the power-law model.

1.3.2 The heat energy equation

In non-isothermal problems, we require an additional equation to describe the transport

of heat energy due to heat conduction and convection due to the flow. In some scenarios,

if the shear rate is sufficiently large, this can result in significant heat generation due

to the so-called viscous heating. Wylie et al. [79] have shown viscous heating to play a

significant role during the stretching of viscous threads by an external force applied at

one end of the thread. In this thesis, we do not consider viscous heating. If the density

and specific heat of the material are both assumed constant, the heat energy equation
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can be wtitten in a Cartesian coordinate system as (see Carslaw & Jaeger [21]):

ρ?c?p(T
?
t? + u?T ?x? + w?T ?z?) = κ? [T ?x?x? + T ?z?z? ] , (1.5)

in a material with density, ρ?, specific heat, c?p, thermal conductivity, κ? and thermal

diffusivity, κ?d = κ?/(ρ?c?p). Here, T ? is the temperature.

We use the following type of heat transfer boundary condition for Eq.(1.5),

−κ?n? · ∇T ? = F ?(T ?), (1.6)

where n? is the outward pointing normal to the boundary, F ? is the heat flux. We use

Newton’s law of cooling to model F ? which can be written as:

a?m(T ? − T ?a ), (1.7)

where a?m is a heat transfer coefficient (assumed constant) and T ?a is the ambient tem-

perature (assumed constant). This assumes that the heat flux is proportional to the

temperature difference across this boundary (see, e.g., Balmforth et al. [9, 8]).
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1.3.3 Temperature-dependent viscosity and surface tension

constitutive relationships

We describe the relationship between the temperature and viscosity following the

widely used exponential decay constitutive law written as [41, 40]:

µ?(T ?) = µ?0e
−α?(T ?−T ?

a ), (1.8)

where T ? is the temperature, T ?a is a reference temperature, α? > 0 is a decay constant

and µ?0 is the viscosity at the reference temperature T ?a . The temperature-dependent

constitutive law for surface tension assumes a linear relation given by [72, 34]:

γ?(T ?) = γ?0 [1− β?(T ? − T ?a )], (1.9)

where γ?0 is the surface tension at the reference temperature T ?a and β? is a positive

constant.

1.4 Thesis aims and objectives

The main aim of this thesis is to develop a theoretical framework for the draining of a

vertically-aligned free liquid film, incorporating gravity, extensional viscous and surface

tension forces - the key physical effects that are essential in describing the drainage

and evolution of the lamella and Plateau borders in liquid foam films.
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Next, this underlying theoretical framework will be used to investigate the influence of

non-Newtonian effects, such as shear thinning, and viscoplastic effects, such as yield

stress. These are relevant in understanding the drainage and thinning of metallic and

polymeric melt films.

The final aim of this thesis is to investigate the coupling between the fluid flow and

cooling of the film due to heat transfer at the film’s free surface. We incorporate non-

isothermal effects, such as a temperature-dependent viscosity and surface tension to

understand the influence of variation in viscosity and surface tension due to cooling on

the draining and evolution of liquid films. We will only investigate the cooling of the

film without any phase transition due to solidification.

The focus of the PhD project is in understanding the drainage and thinning of the

lamella based on the above project aims. The main objective is to determine the

thinning rates of the lamella which characterise the dynamics of this process. While

the literature review highlights the main theoretical works that have investigated the

drainage and thinning of the lamella, the role of gravity in influencing the dynamics

remains largely unexplored. We believe that if the lamella is initially sufficiently thick

(thickness in the order of a few tens of microns), then gravity will have a strong influence

in the subsequent drainage and thinning process. The new contribution of this thesis

is to include the effect of gravity in the theoretical framework and to investigate its

influence combined with extensional viscous, surface tension, non-Newtonian and non-

isothermal effects on the drainage and thinning of the lamellae. The influence of
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non-Newtonian effects on the draining and thinning of sufficiently thin films (much

less than the micron thickness) has been investigated by Brush and Roper [18]. To the

best of our knowledge, our work will be the first to consider non-Newtonian effects in

thicker films where the additional influence of gravity may result in larger shear rates

contributing to more enhanced non-Newtonian behaviour displayed by the draining

films. To the best of our knowledge, the influence of non-isothermal effects has never

been investigated in the setting of draining and thinning films.

This new knowledge will enhance the current understanding to a wider class of thin

liquid film draining flows associated with metallic and polymeric melts. This is relevant

in a wide variety of important industrial processes and applications involving metallic,

polymeric and ceramic foams.

1.5 Thesis outline

In chapter 2, we present a two-dimensional mathematical model of a vertically-aligned

thin liquid film draining under gravity. We use lubrication theory to simplify the gov-

erning equations and boundary conditions. Focussing on the main physical balance

between the extensional viscous stresses and gravity, we derive, at leading order, the

master Partial Differential Equations (PDEs) for a generalised Newtonian liquid de-

scribing the time-evolution of the film’s free surface and the extensional flow speed,

represented by a coupled fourth-order and second-order parabolic PDE in the spatial
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coordinate, respectively. The master equations incorporate the key physics, includ-

ing gravity, surface tension, extensional viscous stresses and a shear-rate dependent

viscosity.

In chapter 3, we explore the solutions to the master PDEs for a Newtonian liquid under

isothermal conditions, both numerically and analytically. We focus our attention on

solutions in the asymptotic limit when the rescaled Capillary number, Ca =
ρ?g?L?

2

εγ?
�

1, where ρ? and γ? are the liquid density and surface tension, respectively, L? is a

characteristic film length and ε is the film’s aspect ratio. For Ca� 1, we identify both

early and late-time similarity solutions, and determine the film’s thinning rate at late

times. The similarity solutions are validated with the numerical solutions.

In chapter 4, we use the master PDEs to investigate the influence of non-Newtonian

effects, such as a shear rate-dependent viscosity and yield stress. We use the Power-

law and Carreau models to describe the shear-thinning and thickening behaviour, and

the Herschel-Bulkley and Bingham model to describe the influence of the yield stress.

We use numerical simulations to conduct a parameter study in order to determine

the influence of the film’s evolution, its drainage and its late-time thinning rate on

key parameters, such as the consistency index, the power-law exponent and the yield

stress. The validity of the power-law model is verified and comparisons made with the

Carreau model.

In chapter 5, we extend the model for a Newtonian liquid to incorporate non-isothermal

effects, in particular, a temperature-dependent viscosity and temperature-dependent
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surface tension. For the reduced Péclet number, Per = O(1), the one-dimensional evo-

lution equations for the film’s free surface and the extensional flow speed are coupled to

a two-dimensional (across the film’s thickness and along its length) advection-diffusion

equation for the temperature. We perform numerical simulations to describe the evo-

lution of the free surface shapes, the extensional flow speeds, and temperature fields

for a variety of parameter values, such as the reduced Péclet number, Per, and those

related to the exponential viscosity-temperature model and the linear surface tension-

temperature model.

In chapter 6, we focus on the asymptotic limit of the reduced Péclet number Per =

ε2Pe� 1 (ε is the aspect ratio and Pe is the Péclet number), which enables the two-

dimensional temperature field to be reduced to a one-dimensional evolution equation for

the temperature. We use numerical simulations to describe the evolution of the film’s

free surface, the extensional flow speed and the temperature, in different parameter

regimes. We are able to show that the one-dimensional temperature solutions obtained

in this chapter for small Per are in good agreement with their corresponding parameter

values in chapter 5.

Finally, in chapter 7, we make some final conclusions and describe the future work.



Chapter 2

Gravity-driven draining of a

vertically-aligned thin liquid free

film: The master PDEs

2.1 Introduction

This chapter investigates the evolution of a vertically-aligned liquid free film as it drains

due to gravity and surface tension forces. The fluid flow configuration considered here

(and in the rest of the thesis) involves a thin liquid film supported between wire frames

(Figure 2.1 shows a cross-sectional view of this configuration). This configuration

has been considered by Schwartz & Roy [62] for investigating the draining of mobile

and immobile soap films supported within a wire frame in the presence of surfactants.

28
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Another configuration investigated by several researchers involves lifting the wire frame

out of a bath of liquid resulting in a liquid film that connects onto the bath at its lower

end (for example, see Champougny et al. [22] and Naire et al [49, 48, 50, 14]). The

former configuration is the simplest model of a draining free liquid film, and it is

relatively straightforward to prescribe the no flux boundary conditions at both ends

of the film. This is in comparison to the latter configuration where one needs to

approximate the boundary conditions for the film to match onto the bath [49, 48, 50,

14, 22].

The focus of this chapter is in deriving the master PDEs for a generalised Newtonian

liquid under isothermal conditions. Chapters 3 and 4 investigate the flow behaviour

for specific fluid rheologies representing a Newtonian, and generalised non-Newtonian,

and visco-plastic liquid, respectively. In §2.2, we formulate the two-dimensional mathe-

matical problem in a Cartesian coordinate system, which provides the governing equa-

tions and boundary conditions for the flow. We then non-dimensionalise the governing

equations and boundary conditions in §2.3, focussing on the scenario where gravity

and extensional viscous effects dominate, and surface tension is comparatively smaller.

The lubrication approximation is used in §2.4 to simplify the non-dimensional gov-

erning equations and boundary conditions to two PDEs for the evolution of the one-

dimensional film’s free surface shape and the speed of the extensional draining flow.

Eqs. (2.42) and (2.44) represent the master PDEs for a generalised Newtonian liquid,

which along with the boundary conditions given in Eqs.(2.45) and (2.46) describe the
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flow configuration shown in Figure 2.1.

2.2 Mathematical formulation

We consider the two-dimensional flow due to the draining of a liquid in a vertically-

aligned thin film with two free surfaces (see Figure 2.1). The draining flow evolves

due to the effects of gravity, viscous forces and surface tension. We make the following

assumptions: The liquid is assumed to be a generalised Newtonian liquid with a shear

rate-dependent viscosity. The liquid is assumed incompressible, so its density is con-

stant. We assume isothermal conditions, so the liquid properties are independent of

variations in temperature. Temperature-dependent variation of liquid properties will

be considered in chapter 5. The liquid film is supported by solid frames at the top and

bottom (see Figure 2.1). This is a simple idealisation of the physical situation, but it

should not influence the drainage in the middle section of the film which is our main

focus. We assume symmetry about the film’s centre line. We assume the film to be

vertically aligned with gravity acting downwards (see Figure 2.1).

We consider a liquid film suspended between two horizontal frames, as shown in Figure

2.1. We consider a two-dimensional Cartesian coordinate system (x?, z?) with the z?-

axis in the horizontal direction and along the film’s thickness and the x?-axis in the

vertical direction pointing downwards in the direction of the film length. The horizontal

frames are separated by a distance L? and are of width 2H?
0 . Gravity is acting vertically
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downwards. The two free surfaces of the film are represented by z? = ±h?(x?, t?) with

centre line at z? = 0. Using left-right symmetry, we only consider half of the film

between z? = 0 and z? = h?(x?, t?). Figure 2.1 shows a schematic of the geometry

considered.

Figure 2.1: (A) Schematic of a vertically-aligned free liquid film draining under gravity
between two rigid wire frames, and (B) late-time film shape after the liquid in the film
drains under the influence of gravity.
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2.2.1 Governing equations

The flow is described by the Navier-Stokes equations (Ascheson[1] and Ockendon [52]).

The density ρ? is constant (due to the incompressibility assumption), so reduces the

continuity equation to

u?x? + w?z? = 0. (2.1)

In the above, v? = (u?, w?) are the flow speeds in the x? and z? directions, respectively,

and the subscript denotes differentiation with respect to the subscript variable. The

momentum equations can be written as

ρ? (u?t? + u?u?x? + w?u?z?) = −p?x? + τ ?x
?x?

x? + τ ∗xzz? + ρ?g?, (2.2a)

ρ? (w?t? + u?w?x? + w?w?z?) = −p?z? + τ ?x
?z?

x? + τ ?z
?z?

z? . (2.2b)

Here p? is the liquid pressure, τ ?x
?x? and τ ?z

?z? are the extensional viscous stresses in

the x? and z? directions, respectively, τ ?x
?z? is the viscous shear stress and and g? is

the acceleration due to the gravity.

We require a constitutive law relating the viscous stress τ with the shear rate γ̇?, where

τ ? =

 τ ?x
?x? τ ?x?z

?

τ ?x
?z? τ ?z

?z?

 , (2.3)
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and

γ̇? =

 γ?x
?x? γ?x

?z?

γ∗x
?z? γ?z

?z?

 =

 2u?x? u?z? + w?x?

u?z? + w?x? 2w?z?

 . (2.4)

We use a constitutive law for a generalised Newtonian liquid of the form

τ ? = µ?(γ̇?)γ̇?, (2.5)

where µ?(γ̇?) is the shear rate-dependent viscosity and

γ̇? =
[

1
2
Trace

(
γ̇? · γ̇?

)]1/2
=
[
2(u?x?

2 + w?z?
2) + (u?z? + w?x?)2

]1/2
, is the second invariant

of the shear rate tensor.

2.2.2 Boundary conditions

Symmetry along the center line z? = 0 is imposed through the boundary conditions:

w? = u?z? = τ ∗x
?z? = 0, at z? = 0. (2.6)

At the free surface, z? = h?(x?, t?), we have the following boundary conditions. The

normal stress boundary condition balances the jump in the total normal stress (be-

tween the outside air and the liquid) with the product of the surface tension times the
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curvature of the free surface,

n? · [σ?
air − σ?] · n? = − γ?h?x?x?(

1 + h?x?
2
) 3

2

at z? = h?(x?, t?),

σ? =

 −p? + τ ?x
?x? τ ?x

?z?

τ?x?z? −p? + τ ∗z
?z?

 , σ?air = −p?airI, (2.7)

where σ? and σ?
air are the stress tensors in the fluid and air, respectively, I is the

2 × 2 identity matrix, γ? is the surface tension (assumed constant),
h?x?x?(

1 + h?x?
2
) 3

2

is

the surface curvature, p?air is the atmospheric pressure (assumed constant). n? =

1√
1 + h?x?

2
(−h?x? , 1) and t? =

1√
1 + h?x?

2
(1, h?x?) are the unit outward-facing normal

and tangent to the free surface, respectively (see Figure 2.1). Without loss of generality,

we take p?air = 0 and the liquid pressure p? is now relative to the atmospheric pressure.

The normal stress boundary condition can be written as

−p? +
1

1 + h?x?
2

[
h?x?

2τ ?x
?x? − 2h?x?τ

∗x?z? + τ ∗z
?z?
]

=
γ?h?x?x?(

1 + h?x?
2
) 3

2

. (2.8)

The tangential stress boundary condition imposes continuity of stress at the free sur-

face, t? ·σ? ·n? = τ ?(x?, t?), where τ ? is the stress applied in the outside air phase. Since

there are no physical effects due to surfactants, electric field, temperature variations,

etc., τ ? = 0. This equation can then be written as

(1− h?x?
2)τ ∗x

?z? + h?x?
(
τ ∗z

?z? − τ ∗x?x?
)

= 0, at z? = h?(x?, t?). (2.9)
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Finally, the kinematic boundary condition at the free surface is given by

h?t? = w? − u?h?x? , at z? = h?(x?, t?). (2.10)

At the top and bottom boundary, x = 0, L, respectively, we fix the film thickness and

impose no slip,

h? = H?
0 and v? = 0, at x? = 0, L. (2.11)

Here, H?
0 is a prescribed film thickness.

Using the continuity equation, Eq. (2.1), and Leibniz’s rule, one can re-write the

kinematic boundary condition, Eq. (2.10), as

h?t? +Q?
x? = 0, Q? =

∫ h?

0

u?(x?, z?, t?)dz?, (2.12)

where Q?(x?, t?) is the liquid flux at any location x? along the length of the film. This

partial differential equation represents the evolution of the film thickness, h?(x?, t?).
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2.3 Nondimensionalization of the governing equa-

tions and boundary conditions

The governing equations, Eqs. (2.1)-(2.2b), (2.12) and boundary conditions, Eqs. (2.6)-

(2.11), are nondimensionalised using

x? = L?x, (z?, h?) = H?
0 (z, h?), u? = U?u, w? = W ?w,

(p?, τ ?x
?x? , τ ?z

?z? , τ ?x
?z?) = (P ?p, T ?τxx, T ?τ zz,

T ?

ε
τxz),

(γ?x
?x? , γ?z

?z? , γ?x
?z?) = µ0(

U?

L?
γxx,

U?

L?
γzz,

U?

εL?
γxz), t? =

L?

U?
t, Q? = U?H?

0Q
, (2.13)

where H?
0 and L? are length scales associated with the width and length of the film, µ?0

is a reference viscosity of the liquid and U?, W ?, P ? and T ? are characteristic speeds,

pressure and stress, respectively. The ratio of the two length scales is denoted by

ε =
H?

0

L?
, which is typically much less than one. We are interested in deriving the thin

film equations in the asymptotic limit ε → 0. Here we focus on the scenario where

the flow is primarily extensional (or plug flow) with a uniform velocity in the direction

transverse to the film [35]. Extensional film flow corresponds mathematically to a

distinguished limit, as described by Breward [15] and Breward & Howell [16], in which

extensional viscous stresses balance all other forces along the film such as inertia,

surface tension, gravity and van der Waals forces. Our focus here is on a balance

between extensional viscous stresses and gravity to describe the draining regime of

film thinning. In this case, the downward pressure gradient (p?x?) is comparable to the



37

gradient of the extensional viscous stress (τ ?x
?x?

x? ) in the x? component of the momentum

equation, Eq. (2.2a). So, p?x? ∼ τ ?x
?x?

x? which implies that the stress scale T ? = P ?.

Now, from the x? component of the momentum equation, Eq. (2.2a), we also demand

that the downward pressure gradient (px) is comparable to the force due to gravity

(ρ?g?), hence the characteristic pressure scale P ? = ρ?g?L?, so the characteristic stress

scale T ? = ρ?g?L?. The extensional flow speed U? will be determined later on based

on a distinguished limit. The continuity equation, Eq. (2.1), implies ux ∼ wz which

gives W = εU .

Table 2.1 provides the values of the dimensional quantities which are based on those

reported for polymeric liquids, such as Polystyrene, Aluminium soap and Hydroxylethy-

cellulose (see Table 1 in Myers [45]). Their viscosities at zero shear rate (µ?0) show a

wide variation, from 4 × 106 for Polystyrene, 89.6 Pa s for Aluminium soap to 0.2

Pa s for Hydroxylethycellulose. A typical lengthscale is about 1cm and film thickness

scale is about 50 micrometres. We consider relatively thicker films and far away from

rupture. Substituting the non-dimensional variables in Eq. (2.13) into the governing

equations, Eqs. (2.1)-(2.2a)-(2.2b), boundary conditions, Eqs. (2.6)-(2.11) and Eq.



38

Dimensional quantities Values
density, ρ? 103kg/m3

viscosity, µ?0 10Pa s
surface tension, σ? 42mN/m

length, L? 10−2m
width, H?

0 50µm

characteristic speed, U? =
ρ?g?L?2

µ?0
0.1m/s

characteristic pressure, p? = ρ?g?L? 103N/m2

characteristic time, t? =
L?

U?
0.1s

Table 2.1: Values of the dimensional quantities, assuming that the liquid is represen-
tative of a polymeric liquid.

(2.12), gives the following non-dimensionalized system:

ux + wz = 0, (2.14)

ε2Re (ut + uux + wuz) = −ε2px + ε2τxxx + τxzz + ε2B, (2.15)

ε2Re (wt + uwx + wwz) = −pz + τxzx + τ zzz , (2.16)

w = uz = τxz = 0, at z = 0, (2.17)

ε

Ĉa

hxx

(1 + ε2h2
x)

3
2

= −p+
1

1 + ε2h2
x

[
ε2h2

xτ
xx − 2hxτ

xz + τ zz
]
,

at z = h(x, t), (2.18)

(1− ε2h2
x)τ

xz + ε2hx(τ
zz − τxx) = 0, at z = h(x, t), (2.19)

h = 1 and u = w = 0, at x = 0, 1, (2.20)

ht +Qx = 0, Q =

∫ h

0

u(x, z, t) dz. (2.21)
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The nondimensional constitutive law, Eq. (2.5), can be written as

 τxx τxz

τxz τ zz

 = µ(γ̇)

 2ux uz + ε2wx

uz + ε2wx 2wz

 , (2.22)

where the dimensionless form of the function µ(γ̇) depends on the constitutive law

used, e.g., for a Newtonian liquid, µ(γ̇) = 1. In the above, the dimensionless number

B =
ρ?g?L?2

µ?0U
?

compares gravity and extensional viscous forces, Re =
ρ?U?2/L?

µ?0U
?/L?2

is the

Reynolds number (compares inertial and extensional viscous forces) and Ĉa =
µ?0U

?

γ?
is

the Capillary number (compares extensional viscous and surface tension forces). There

are 2 distinguished limits to be considered here based mainly on the order of magnitude

of B and Re. We also note a third distinguished limit which is not the focus of this

work.

(i) Balancing extensional viscous forces and gravity, B ∼ 1. This gives a characteris-

tic speed U? ∼ ρ?g?L?2

µ?0
∼ 0.1m/s. The intertial forces are smaller in comparison,

with corresponding Re ∼ 0.1. This balance has been investigated by Schwartz &

Roy [62] and Champougny et al. [22].

(ii) Balancing extensional viscous forces and inertia, Re ∼ 1. This gives a character-

istic speed U? ∼ µ?

ρ?L?
∼ 1m/s. The force due to gravity is smaller in comparison,

with corresponding B ∼ 0.1. This balance has been investigated by Erneux &

Davis [29].

(iii) If B ∼ 1/ε2, i.e., corresponding U? ∼ ε2, then the leading order balance is between
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viscous shear forces and gravity (see, for example, Naire et al [49, 48, 50, 14]).

Our work focusses on the balance between extensional viscous forces and gravity, hence

we set B = 1, which sets the characteristic speed U =
ρ?g?L?2

µ?0
∼ 0.1m/s. The

corresponding Reynolds number Re = 0.1. We assume that the Capillary number,

Ĉa = O(1). We will see later on, that surface tension effects will be important over

smaller lengthscales, so in anticipation of this we define a rescaled Capillary number,

Ca =
µ?0U

?

εγ?
, and retain the surface tension term at leading order in Eq. (2.18).

Estimates of the dimensionless parameters are provided in Table 1.2.

Dimensional quantities Values
ε = H?

0/L
? 10−2

B =
ρ?g?L?2

µ?0U
1

Re =
ρ?U?L?

µ?U?
0.1

Ĉa =
µ?0U

?

γ?
25

Ca =
Ĉa

ε
2.5× 103

Table 2.2: Estimates of the dimensionless parameters.

2.4 The lubrication (long-wavelength) approxima-

tion

We can now exploit the fact that ε =
H?

0

L?
� 1 and expand each of the unknowns

variables (u,w, p, τxx, τ zz, τxz, h) as a power series in ε2 since the terms appearing in
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the equations and boundary conditions are all powers of ε2. We write:

(u,w, p, τxx, τ zz, τxz, h) = (u,w, p, τxx, τ zz, τxz, h)0(x, z, t)

+ ε2(u,w, p,τxx, τ zz, τxz, h)1(x, z, t) +O(ε4). (2.23)

Substituting the above into Eqs. (2.14)-(2.21), we obtain at leading order:

u0x + w0z = 0, (2.24)

τxz0z = 0, (2.25)

− p0z + τxz0x + τ zz0z = 0, (2.26)

w0 = u0z = τxz0 = 0, at z = 0, (2.27)

− p0 + τ zz0 − 2h0xτ
xz
0 =

1

Ca

h0xx

(1 + ε2h2
0x)

3/2
, at z = h0 (2.28)

τxz0 = 0, at z = h0. (2.29)

Eqs. (2.25), (2.27), (2.29) implies that

τxz0 (x, z, t) = 0. (2.30)

Now, we can integrate Eq.(2.26) with respect to z and using Eqs. (2.27) and (2.28),

we obtain

p0 = τ zz0 −
1

Ca
h0xx. (2.31)
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To determine τxx,zz0 , we need to analyse the O(ε2) equations. Before we do this, we

note the following: u0z = 0, so u0 = u0(x, t) (i.e., the leading order extensional flow

speed is independent of the transverse coordinate z; see Howell [35]), using τxz0 = 0

and the constitutive law, Eq. (2.22), at leading order. In addition, τ zz0 = −τxx0 , using

the continuity equation, Eq. (2.24) in the constitutive law, Eq. (2.22). Eq. (2.24) also

gives w0z = −u0x, which on intergrating with respect to z and using w0 = 0 at z = 0,

gives w0(x, z, t) = −u0xz. At O(ε2), we have

Re(u0t + u0u0x + w0u0z) = −p0x + τxx0x + τxz1z + 1, (2.32)

Re(w0t + u0w0x + w0w0z) = −p1z + τxz1x + τ zz1z , (2.33)

w1 = u1z = τxz1z = 0, at z = 0, (2.34)

− p1 + h2
0xτ

xx
0 + 2h3

0xτ
xz
0 − τ zz0 h2

0x − 2h0xτ
xz
1 + τ zz1 = −3

2

1

Ca
h2

0xh0xx, at z = h0,

(2.35)

τxz1 + h2
0xτ

xz
0 + h0x(τ

zz
0 − τxx0 ) = 0, at z = h0. (2.36)

Integrating Eq. (2.32) with respect to z and using Eq. (2.34), we obtain

τxz1 = −
[
2τxx0x +

1

Ca
h0xxx + 1−Re(u0t + u0u0x)

]
z. (2.37)

Substituting this into Eq. (2.36) gives

2(h0τ
xx
0 )x + h0[

1

Ca
h0xxx + 1)]−Re h0(u0t + u0u0x) = 0. (2.38)
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Eq. (2.38) represents the force balance at the free surface of the extensional stress (rep-

resented by the first term), surface tension (represented by the second term), gravity

(represented by the third term) and inertia (represented by the last term).

To determine the evolution equation of h0 using Eq. (2.21), we also need to determine

u0 and the O(ε2) correction u1. We use the constitutive law to determine these. From

Eq. (2.22), we obtain

u0x =
1

2µ(γ̇0)
τxx0 , (2.39)

u1z + w0x =
1

µ(γ̇0)
τxz1 , ⇒ u1z =

1

µ(γ̇0)
τxz1 − w0x =

1

µ(γ̇0)
τxz1 + u0xxz, (2.40)

where γ̇0 = |u0x|, is the leading order second invariant of the shear rate tensor. Inte-

grating Eq. (2.37) and using the boundary condition u1 = 0 at z = h0 gives

u1(x, z, t) =
1

2

[
− 1

µ(|u0x|)

(
2τxx0x +

1

Ca
h0xxx + 1−Re(u0t + u0u0x)

)
+ u0xx

]
(z2 − h2

0).

(2.41)

We note here that Champougny et al. [22] have used the boundary condition

∫ h

0

u1 dz = 0.

Finally, the evolution equation for h0 can be obtained from Eq. (2.21) as

h0t +Q0x + ε2Q1x = 0, (2.42)

Q0 = u0h0, Q1 =
1

3
h3

0

[
1

µ(|u0x|)

(
2τxx0x +

1

Ca
h0xxx + 1−Re(u0t + u0u0x)

)
− u0xx

]
.

(2.43)
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Hence, Eqs. (2.42), (2.43), (2.38) and (2.39) provide a coupled system of three PDEs

for the film’s free surface evolution, h0(x, t), the extensional stress, τxx0 (x, t) and the

extensional flow speed u0(x, t). In practise, it is more instructive to combine Eqs.

(2.38) and (2.39) to write a single evolution equation for u0. This can be written as:

−Re h(u0t + u0u0x) + 4(h0µ(|u0x|)u0x)x + h0[
1

Ca
h0xxx + 1] = 0. (2.44)

The factor of 4 in the extensional viscosity term in Eq. (2.44) is the so-called Trouton

viscosity [73]. The boundary conditions for Eqs. (2.42) and (2.44) are prescribed as

follows:

h0(0, t) = h0(1, t) = 1, Q(0, t) = Q(1, t) = 0; (2.45)

the film is pinned at the top and bottom, and there is no flux through the boundaries.

Q(0, t) = Q(1, t) = 0 ⇒ u0(0, t) = u0(1, t) = 0,
1

Ca
h0xxx(0, t) =

1

Ca
h0xxx(1, t) = −1.

(2.46)

The third and fourth boundary conditions describe no-slip at the ends while the last

two describe the balance between capillary flow (represented by the third derivative)

and gravity. Eqs. (2.45) and (2.46) provide the six boundary conditions required in

total for Eqs. (2.42) and (2.44). In the film thickness equation, the contribution from

the shear flow is O(ε2) smaller than the extensional component. Hence, to leading order

in ε, the PDE is hyperbolic. We include the O(ε2) terms since they are important near

the upper and lower boundary and for the boundary conditions in Eq. (2.46) to be
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satisfied.

The master system of PDEs and boundary conditions for the evolution of the film’s

free surface h(x, t) and the extensional flow speed u(x, t) (dropping the subscript 0) for

the configuration shown in Fig. 2.1 are given by:

ht +Qx = 0, Q = uh+ ε2
h3

3

[
1

µ(|ux|)

(
4(µ(|ux|)ux)x +

1

Ca
hxxx + 1−Re(ut + uux)

)
− u0xx

]
,

(2.47a)

−Re h(ut + uux) + 4(hµ(|ux|)ux)x + h[
1

Ca
hxxx + 1] = 0, (2.47b)

h(0, t) = h(1, t) = 1, hxxx(0, t) = hxxx(1, t) = −Ca, u(0, t) = u(1, t) = 0. (2.47c)

Similar equations have been derived by Brush & Roper [18], without the O(ε2) regular-

isation terms, and not including the effect of gravity. Eq. (2.47) is parametrised by the

parameters Re and Ca. Our focus is on investigating the draining flow for Re� 1 and

Ca � 1. In the subsequent chapters, we consider various functional forms of µ(|ux|)

corresponding to a Newtonian liquid (in chapter 3) and liquids displaying generalised

non-Newtonian and visco-plastic behaviour (in chapter 4).



Chapter 3

Gravity-driven draining of a

vertically-aligned thin Newtonian

liquid free film

3.1 Introduction

This chapter investigates the evolution of a vertically aligned Newtonian liquid free

film as it drains due to gravity and surface tension between two rigid supports (Figure

2.1 shows this configuration). This problem is the simplest model of a draining free

liquid film. We use similarity and numerical solutions to characterise the early and

late-time evolution of the free surface for a scenario where gravity and viscous effects

dominate, and surface tension is comparatively smaller.

46
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The outline of this chapter is as follows. In §3.2, we write down the evolution equations

for the film’s free surface h(x, t) and the extensional flow speed u(x, t) for a Newtonian

liquid. §3.3 describes the spatial discretisation using the finite-difference scheme and

the Method of Lines to solve the discretised system of PDEs. In §3.4, we perform

numerical simulations of the evolution equations to determine the free surface shapes

and extensional flow speeds, varying the parameter values. In §3.5 we derive early and

late-time similarity solutions for the evolution of the free surface and the extensional

flow speed. In §3.6 we discuss the main results.

3.2 Governing Equations

For a Newtonian liquid µ(|ux|) = 1. Substituting this in Eqs. (2.47), we obtain the

evolution equations for the film’s free surface h(x, t) and the extensional flow speed

u(x, t) for a Newtonian liquid, given by:

ht +Qx = 0, Q = uh+ ε2
h3

3

[
3uxx +

1

Ca
hxxx + 1−Re(ut + uux)

]
, (3.1a)

−Re h(ut + uux) + 4(hux)x + h[
1

Ca
hxxx + 1] = 0, (3.1b)

h(0, t) = h(1, t) = 1, hxxx(0, t) = hxxx(1, t) = −Ca, u(0, t) = u(1, t) = 0. (3.1c)

The above equations and boundary conditions are parametrised by the Capillary num-

ber Ca and the Reynold’s number Re. We seek solutions of Eq. (3.1) for Ca � 1

and Re� 1, which corresponds to much weaker surface tension and inertial effects in
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comparison to gravity, respectively. Eq. 3.1, including the boundary conditions are

the same as those derived Schwartz & Roy [62], except that the free films investigated

in this thesis do not include surfactants or surfactant-related effects. Similar evolution

equations have also been derived focussing on particular balance of physical effects,

e.g., Erneux & Davis [29] (extensional flow balancing inertia, not including gravity),

Champougny et al. [22] (extensional flow balancing gravity and van der Waals forces)

and Breward [15, 16], Brush & Davis [17] (balancing extensional flow with surface ten-

sion effects, not including gravity) and Davis et al. [26] (balancing extensional flow

with surface tension effects, including gravity).

We first seek a numerical solution of Eq. (3.1) for varying Ca and Re using the finite

difference method and the method of lines, outlined in §3.3.

3.3 Numerical solution using the finite difference

method

We discretize the spatial derivatives in Eq. (3.1) using the finite difference method,

but keep the time derivative continuous. The domain [0, 1] is split into N + 1 discrete

points, 0 = x1 < x2 < x3, . . . < xN < xN+1 = 1, such that xi+1 − xi = ∆x and

the corresponding (h, u)i = (h, u)(xi, t). We approximate a first, second and third
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derivatives for an arbitrary function f(x) as follows:

fx(x) ≈ fx,i =
fi+1 − fi

∆x
+O(∆x), fx(x) ≈ fx̄,i =

fi − fi−1

∆x
+O(∆x),

fx(x) ≈ fi+1 − fi−1

2∆x
+O(∆x2), (3.2a)

fxx(x) ≈ fx̄x,i =
fi+1 − 2fi + fi−1

∆x2
+O(∆x2), (3.2b)

fxxx(x) ≈ fxxx,i =
fi+2 − 2fi+1 + 2fi−1 − fi−2

2∆x3
+O(∆x2). (3.2c)

Using the above approximations, Eq. (3.1) is discretised as follows (keeping the time

derivative continuous):

ht,i +
Qi+1 −Qi−1

2∆x
= 0, Qi = (uh)i + ε2

h3
i

3

[
3uxx,i +

1

Ca
hxxx,i + 1−Re(ut,i + ui(

ui − ui−1

∆x
))

]
,

(3.3a)

−Rehi(ut,i + ui(
ui − ui−1

∆x
)) + 4(

hi+1 − hi−1

2∆x
)(
ui+1 − ui−1

2∆x
) + 4hi(

ui+1 − 2ui + ui−1

∆x2
)

+ hi[
1

Ca
hxxx,i + 1] = 0, (3.3b)

h1 = hN+1 = 1, u1 = uN+1 = 0, Q1 = QN+1 = 0. (3.3c)

The second term in equation (3.1b) was obtained by applying the product rule,

(hux)x = hxux + huxx ≈ (
hi+1 − hi−1

2∆x
)(
ui+1 − ui−1

2∆x
) + hi(

ui+1 − 2ui + ui−1

∆x2
). (3.4)
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To evaluate hxxx,i at i = 2, N we used the following finite difference approximations

hxxx,i =
hi+2 − 2hi+1 + 2hi−1 − hi−2

2∆x3
. (3.5)

Expressions for the fictitious endpoints h0 and hN+2, which are outside the domain,

are found using one-sided finite differences, and the boundary conditions at x = 0, 1

given by hxxx,1 = hxxx,N+1 = −Ca. These can be written as:

h0 =
1

3
(2 Ca ∆x3 + 10h1 − 12h2 + 6h3 − h4) (3.6)

hN+2 =
1

3
(−2 Ca ∆x3 + 10hN+1 − 12hN + 6hN−1 − hN−2). (3.7)

Eq. (3.3) represents a system of differential-algebraic equations (DAEs) which are

solved using the method of lines [65]. We use the implicit solver ode15i in MAT-

LAB (MATLAB 6.1, The MathWorks Inc., Natick, MA, 2000) for our numerical

simulations. This solves a system of equations of the form f(t, y, y′) = 0, for the

dependent variable y. The unknowns hi and ui are numbered according to y =

(h1, u1, h2, u2, ..., hN+1, uN+1). This enables the Jacobian matrix to have a much smaller

bandwidth which accelerates the computations, compared to a numbering system, for

example, y = (h1, h2, . . . , hN+1, u1, u2, . . . , uN+1), which has a much bigger bandwidth.
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3.4 Numerical results

In the numerical results to follow we investigate the evolution of varying the Capillary

number Ca � 1 on the evolution of the film thickness h(x, t) and extensional flow

speed u(x, t). Results not reported here have shown that varying the Reynolds number

Re � 1 has no significant influence on the evolution of the film and the extensional

speed, hence for all the results to follow we choose Re = 0. The initial condition is

h(x, 0) = 1, and the corresponding initial condition for the extensional flow speed is

u(x, 0) =
x(1− x)

8
(by solving Eq. (3.1b) with h = 1). In all the results to follow we

choose ∆x = 5× 10−4 for convergence to be achieved and the solutions to be accurate.

Figure 3.1(a, b, c) show the evolution of h(x, t) (h(x, t) is plotted on a logarithmic scale

in (b)) and u(x, t), respectively, for varying t = 0 to t = 103, with Ca = 103. At

early times, the fluid has begun to flow vertically downwards (Fig. 3.1(c)) leading to

thinning of the film in the upper region and a thickening in the lower region, and the

film shape is concave-out (Fig. 3.1(a)). At late times, the fluid has drained significantly

towards the lower end of the domain forming a quasi-static pendant drop there, leaving

a very thin and almost flat film film in the middle region, and a quasi-static capillary

meniscus at the upper end (Fig. 3.1(a)). This late-time behaviour can be clearly

observed using a logarithmic scale for h(x, t) shown in Fig. 3.1(b). This shows the

thinning middle section of the film connecting onto quasi-static curves at the top and

bottom represented by the capillary meniscus and the pendant drop, respectively. In

§3.5, we develop asymptotic solutions describing the late-time behaviour of the above
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Figure 3.1: The evolution of (a), (b) the film thickness h(x, t) (b plots h(x, t) on a
logarithmic scale), and (c) the extensional flow speed u(x, t), for varying t = 0 to
t = 103. The Capillary number Ca = 103, and ∆x = 5× 10−4.

long lengthscale structures, namely, the capillary meniscus, the middle section and the

pendant drop, for Ca � 1. The maximum flow speeds are in the middle section of

the film (Fig. 3.1(c)) which causes the film thickness to decrease severely there. It

appears that the extensional flow approaches a steady profile for very large times (see

Fig. 3.1(c)). The flow speed is zero near the top in the capillary meniscus region, and

at the bottom in the pendant drop region.

We now describe the characteristic late-time flow behaviour and film evolution in re-

gions of very small width of O(1/Ca) near the top (where the upper meniscus meets

the thin film section) and bottom ends (where the thin film meets the pendant drop)

of the film. Figure 3.2(a − c) show the evolution of the film thickness h(x, t), the ex-

tensional flow speed u(x, t) and the stress balance given by Eq. (3.1b) near the bottom
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end, respectively, for t = (5, 6, 7, 8, 9, 10)× 102 and Ca = 103. We observe a similarity

solution behaviour in the evolution of h and u. The similarity solution behaviour of h

(see Fig. 3.2(a)) shows a family of solutions gradually thinning in time at its upstream

end; at the downstream end, each solution connects onto a single quasi-static curve

(represented by the pendant drop) at different locations (see Fig. 3.2(a)). The simi-

larity solution behaviour of u shows a characteristic jump (or shock-like behaviour) in

u at its downstream end (see Fig. 3.2(b)). This sudden deceleration of the flow is due

to the sudden increase in film curvature (from almost zero in the flat draining film to

Ca� 1 as the film connects onto the pendant drop). Indeed, the stress balance shown

in Fig. 3.2(c) shows that the dominant contribution to the downward flow is due to

the surface tension-related term,
1

Ca
hhxxx shown by the black solid lines (dominant

compared to the contribution to the downward flow due to gravity in this region) which

is balanced by the resistive (in this scenario) extensional stress term, 4(hux)x, shown

by the blue dashed lines. The resistive extensional stress results in the sudden decel-

eration of the flow. Figure 3.2(d− f) show the evolution of the film thickness h(x, t),

the extensional flow speed u(x, t) and the stress balance given by Eq. (3.1b) near the

upper end, respectively, for t = (5, 6, 7, 8, 9, 10) × 102 and Ca = 103. We also observe

a similarity solution behaviour in the evolution of h and u. The similarity solution

behaviour of h (see Fig. 3.2(d)) shows a family of solutions gradually thinning in time

at its downstream end (much more severe thinning compared to that shown in Fig.

3.2(a)); at the upstream end, each solution connects onto a single quasi-static curve

(represented by the capillary meniscus) at different locations. The similarity solution
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Figure 3.2: The evolution of the film thickness h(x, t), the extensional flow speed u(x, t)

and the stress balance given by Eq. (3.1b) (the solid black lines represent
1

Ca
hhxxx and

the blue dashed lines represent 4(hux)x) near the bottom end (a, b and c, respectively)
and the upper end (d, e and f , respectively), for t = (5, 6, 7, 8, 9, 10) × 102. The
Capillary number Ca = 103, and ∆x = 5× 10−4.
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behaviour of u shows a region where the flow is in the upward direction (see Fig. 3.2(e))

where u < 0). This reversal of the flow is due to the sudden increase in film curva-

ture (from almost zero in the flat draining film to Ca � 1 as the film connects onto

the upper capillary meniscus). Indeed, the stress balance shown in Fig. 3.2(f) shows

that the contribution due to the surface tension-related term,
1

Ca
hhxxx (shown by the

black solid lines) dominates that due to gravity in this region. Moreover,
1

Ca
hhxxx is

negative resulting in flow being sucked into the capillary meniscus leading to the rever-

sal in flow, however, the extensional stress term, 4(hux)x (shown by the blue dashed

lines) is positive, and resists this upward flow. However, at the downstream end of this

region the contribution of
1

Ca
hhxxx is negligible in comparison to gravity, resulting in

downward flow (see Fig. 3.2(e)). In §3.5, we develop asymptotic solutions describing

the late-time behaviour of the above structures of O(1/Ca) lengthscale where surface

tension or curvature effects influence the evolution characteristics, for Ca� 1.

Figure 3.3(a, b) show the effect of increasing the Capillary number, Ca = 102, 103, 104,

on h(x, tf ) and u(x, t), respectively. Here tf is a fixed time for purposes of comparison,

which is taken to be 103 for Ca = 102, 103; tf = 339 for Ca = 104, as the film thins

rapidly for very large values of Ca. We observe from Fig. 3.3(a) that as the Ca

increases the film thins more rapidly and the middle section becomes much longer with

a corresponding increase in the liquid collecting in the pendant drop at the bottom.

As Ca increases, the effect of surface tension decreases in relation to gravity, thereby

draining the film further. We also observe that the flow speed is much higher for larger
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Figure 3.3: (a) Film thickness h(x, t = tf ), and (b) extensional flow speed u(x, tf ), for
varying Capillary number, Ca = 102, 103, 104, for ∆x = 5 × 10−4 and tf = 103 for
Ca = 102, 103; tf = 339 for Ca = 104.

values of Ca (Fig. 3.3(b)), resulting in faster drainage, and hence the film thins rapidly.

Figure 3.4 tracks hmin, the global minimum in h(x, t), as a function of time t, for

fixed Ca = 103. hmin(t) is attained precisely where u(x, t) has a global maximum, and

Figure 3.4: The global minimum hmin as a function of time t, for Ca = 103. The
corresponding thinning rates is estimated to be t−2.25, for the range of times where
hmin reaches 1− 10% of its initial value.

this is in the middle section of the film. After an initial transient, the film evolution

displays power-law behaviour at large times. We estimate the film’s thinning rate to

be t−2.25, for the range of times where hmin reaches 1 − 10% of its initial value. One
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would expect this power-law behaviour to continue until the film becomes sufficiently

thin and close to rupture, where other physical effects, such as van der Waals forces,

need to be taken into account. We observe from Fig. 3.4, that for hmin much less

than 1% of its initial value, the thinning rate appears to diverge from this estimated

power-law thinning behaviour. The numerical solution when the film thickness reaches

such small values may not be reliable for the value of ∆x = 5× 10−4 used. One would

need smaller values of ∆x for the solution to be reliable in its accuracy and convergence

at these values, which is not considered here. We have also confirmed that the same

power-law behaviour is observed as long as the Ca � 1; in our numerical solutions,

this is observed for Ca > 102.

In the next section, we investigate the early and late-time self-similar evolution be-

haviour displayed by the film and the extensional flow speed as seen in the numerical

simulations shown in Fig. 3.1.

3.5 Early and late-time similarity solutions of the

film evolution and extensional flow

3.5.1 Early-time similarity solution

At early times, the majority of the film exhibits a characteristic concave-out form. This

is due to the dominating extensional viscous flow, with the effect of surface tension



58

confined to boundary layers near the ends (see Fig. 3.5(a)). The early-time similarity

solution was identified by Schwartz & Roy [62].

The early-time similarity solution for this section of the film is determined primarily

by the simplified equations for the film thickness, h, and extensional flow speed, u,

namely,

ht + (uh)x = 0, (3.8)

(hux)x = −1

4
h. (3.9)

Integrating Eq. (3.9) with respect to x, we obtain

hux|xx1(t) = hux = −1

4

∫ x

x1(t)

h dx, (3.10)

where x1(t) is the location at which ux(x1(t)) = 0. Applying the method of character-

istics to Eq. (3.8), we obtain

dh

dt
= −uxh =

1

4

∫ x

x1(t)

h dx, (3.11)

dx

dt
= u(x, t), (3.12)

along the characteristics given by x = x(ξ, t).

Conservation of liquid mass along the characteristics (which is valid at least at early

times), implies h dx = h0 dξ, where h0 = h(ξ, t = 0). We take h0 equal to a constant
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which in our simulations is h0 = 1. Using this, we have

∫ x

x1(t)

h dx = h0

∫ ξ

ξ1(t)

dξ = h0(ξ − ξ1(t)),

where x1(t) = x(ξ1(t)). Hence,

dh

dt
=

1

4
h0(ξ − ξ1(t)). (3.13)

Integrating with respect to t and using the initial condition, h(ξ, t = 0) = h0, we obtain

h(x(ξ, t), t) = h0

[
1 +

1

4
(ξt−

∫ t

0

ξ1 dt)

]
. (3.14)

Now, we have h(x(ξ, t), t) = h0
dξ
dx

(using mass conservation along a characteristic).

Hence,

dξ

dx
= 1 +

1

4
(ξt−

∫ t

0

ξ1 dt), or
dξ

dx
− 1

4
ξt = 1− 1

4

∫ t

0

ξ1 dt. (3.15)

The solution for this using the boundary condition, x(ξ = 0, t) = 0 (or ξ(x = 0, t) = 0),

is

ξ(x, t) = −4

[
1− ext/4

]
t

[
1− 1

4

∫ t

0

ξ1 dt

]
. (3.16)

Using this, Eq. (3.14) can be written as

h(x(ξ, t), t) = h0e
xt/4

[
1− 1

4

∫ t

0

ξ1 dt

]
. (3.17)

Using Eq. (3.10) and the above relations, we obtain

ux = −
[
1− e−xt/4

]
t

. (3.18)
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Integrating this and using the boundary condition, u(x = 0, t) = 0, gives

u(x, t) = −x
t
− 4

t2
[
e(x1−x)t/4 − ex1t/4

]
. (3.19)

Using the boundary condition, x(ξ = 1, t) = 1 (or ξ(x = 1, t) = 1), in Eq. (3.16) gives

1− 1

4

∫ t

0

ξ1 dt =
1

4

t

[et/4 − 1]
. (3.20)

Hence,

h(x(ξ, t), t) =
1

4
h0

text/4

[et/4 − 1]
. (3.21)

Using the boundary condition, u(x = 1, t) = 0, we can solve for x1(t) as:

x1(t) =
4

t
log

(
t

4 [1− e−t/4]

)
. (3.22)

Figure 3.5(a, b) show a comparison between the numerical solution and the early-time

similarity solution for h and u, respectively, for times t = 1, 2, 3, 4, 5, 6, 7. Good agree-

ment is observed at early time for h, except for the surface tension boundary layers

near the top and bottom supports. As t increases, the agreement is not so good.

Good agreement is also observed at early time for u, except that the similarity solution

slightly overestimates the corresponding numerical solution. This might be due to the

influence of the boundary layers near the top and the bottom supports.
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Figure 3.5: Computed film thickness profiles, h, (a) and extensional flow speeds, u, (b)
(solid lines) and the corresponding early-time similarity solution (dashed lines) given
by Eqs. (3.19,3.21), for times, t = 1, 2, 3, 4, 5, 6, 7.

3.5.2 Late-time similarity solution

Based on the observation from the numerical solutions shown previously for Capillary

number, Ca� 1, we postulate a self-similar structure of the late-time evolution which

can be divided into 5 regions (see Fig. 3.6), namely,

(i) Region I: a quasi-static capillary meniscus in 0 ≤ x ≤ x1(t) where gravity and

surface tension forces balance.

(ii) Region II: an almost flat draining section of the film between x1(t) ≤ x ≤ x2(t),

where gravity and extensional viscous forces balance, and surface tension is neg-

ligible.

(iii) Region III: a quasi-static pendant drop in x2(t) ≤ x ≤ 1 where gravity and

surface tension forces balance.

(iv) Region A: a short transition region of width O(1/Ca) between regions I and II,
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Figure 3.6: Late-time self-similar spatial structure of the film thickness h, showing
Region I, the capillary meniscus, Region II, the almost flat draining section, Region
III, the pendant drop and two transition regions, A and B. The characteristic variables,
x1,2(t), h1,2 and hmin(t) are explained in the sections describing each region.
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where extensional viscous and surface tension forces balance.

(iv) Region B: a short transition region of width O(1/Ca) between regions II and III

where extensional viscous and surface tension forces balance.

The film evolution process is characterised by the key variables: x1(t), representing the

location of the leading edge of the capillary meniscus in Region I; h1(t) the film thickness

at x1(t); x2(t), representing the location of the leading edge of the pendant drop in

Region III; h2(t) the film thickness at x2(t), and hmin(t), the minimum film thickness

in Region II. We also define x{1,2}1(t), representing the location corresponding to the

minimum and maximum in the change in curvature hxxx(t) in the transition regions

A and B, respectively, and x{1,2}∞ = limt→∞ x{1,2}1 to be their limiting values. The

quantities x{1,2}∞ characterise the final state (say) separating Region I, with volume V1,

and Region III, with volume V2 = 1− V1 by a film of negligible thickness in Region II.

We will show below that the closure conditions, that will enable us to fully describe the

asymptotics of the evolution, assumes that the locus of points (x1,2, h1,2) will lie along

the final state of Regions I and III, respectively. Their evolution will be determined by

the change in volume in each of these regions due to flux entering or leaving the thin

film in Region II.

Figure 3.7 (solid lines) shows the time evolution of x1,2 and x{1,2}1 (Fig. 3.7(a)), and

h1,2,min (Fig. 3.7(b)) determined from the numerical solution of the PDEs for time

t = 5× 102− 103, with Ca = 103 and Re = 0. These are computed from the numerical

solution as follows: x1 is the location corresponding to the endpoint of the interval
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near the top of the film where hxxx + Ca differs from zero for the first time (> 10−6,

in practice; these quantities are necessarily equal to zero for x < x1 and non-zero for

x > x1), with corresponding film thickness h1; x2 is the location corresponding to the

starting point of the interval near the bottom of the film where hxxx + Ca is equal to

zero for the first time (< 10−6, in practice; these quantities are necessarily equal to

zero for x > x2 and non-zero for x < x2), with corresponding film thickness h2; x11

is the location corresponding to the minimum value of hxxx near the top of the film

where hxxx < 0 (note that x1 < x11); x21 is the location corresponding to the maximum

value of hxxx near the bottom of the film where hxxx > 0 (note that x2 > x21); hmin

is the minimum film thickness in Region II, corresponding to the location where the

extensional flow speed u is maximum.

We note from Fig. 3.7(a) that x{1,2}1 are almost constant in time, with x1∞ =

limt→∞ x1 ≈ 0.13464 (corresponding to V1 ≈ 0.04) and x2∞ = limt→∞ x2 ≈ 0.511

(corresponding to V2 ≈ 0.96). The evolution of the characteristic variables shown in

Fig. 3.7(a) suggests that the late-time evolution is characterised by two quasi-static

regions, regions I and III, and region II connects onto these two regions via a family

of solutions representing the transition regions A and B. The family of solutions in the

transition regions emanate from the two quasi-static regions at x1,2(t). Figure 3.7(b)

shows that the late-time thinning is severest in the film’s middle section followed by

less severe thinning near the top and then near the bottom.

We now describe each region in turn.
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Figure 3.7: Evolution of the characteristic variables: (a) x1,2 and x{1,2}1 , and (b) h1,2

and hmin, for time t = 5× 102− 103 from the numerical solution (solid curves) and the
asymptotic model (dashed curves). The parameter values are Ca = 103 and Re = 0.

Region I: the capillary meniscus

This region lies between 0 ≤ x ≤ x1, and is quasi static with u = 0. The evolution is

determined by balancing gravity and surface tension.

hxxx = −Ca. (3.23)

Integrating thrice with respect to x and applying the boundary condition, h(x = 0) = 1,

the solution is given by

h(x) = −Ca
6
x3 +

Cx2

2
+Dx+ 1, (3.24)

where C and D are constants of integration that need to be determined. To determine

C and D we assume that the long-time behaviour of the meniscus is such that it meets

the centreline z = 0 at the location x = x1∞ with zero effective contact angle, i.e.,

with zero slope, hx = 0. So, we prescribe h(x1∞) = hx(x1∞) = 0. Applying these
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two boundary conditions at x = x1∞ gives two simultaneous equations for C and D,

namely,

h(x = x1∞) = −Ca
6
x3

1∞ +
Cx2

1∞

2
+Dx1∞ + 1 = 0,

hx(x = x1∞) = −Ca
2
x2

1∞ + Cx1∞ +D = 0. (3.25)

Solving the above equations simultaneously, we obtain

C =
2

x2
1∞

+
2Cax1∞

3
,

D = −
(

2

x1∞

+
Cax2

1∞

6

)
. (3.26)

Hence,

h(x, t) = −Ca
6
x3 +

Cx2

2
+Dx+ 1, (3.27)

with C and D given by the above expressions depending on the capillary number Ca

and x1∞ . The unknown quantity x1∞ is determined by imposing that the volume of

this region is V1. Hence,

∫ x1∞

0

h dx = V1. Using this, we obtain:

Cax4
1∞ − 8

[
1

x2
1∞

+
Cax1∞

3

]
x3

1∞ + 12

[
2

x1∞

+
Cax2

1∞

6

]
Cax2

1∞ + 24(V1 − x1∞) = 0.

(3.28)

Equation (3.28) is a quartic equation for x1∞ for a given value of Ca and V1.

Figure 3.8 plots h versus x−x1∞ (black curves) for t = 5×102−103 using the numerical

solution shown in Fig, for Ca = 103. The red dashed line shows the corresponding
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late-time asymptotic solution given by Eq. (3.27), using V1 = 0.04 (corresponding

x1∞ = 0.13464). We observe that the asymptotic solution agrees very well with the

scaled numerical solution.

Figure 3.8: Evolution of h in region I using data shown in Fig. for time t = 5×102−103

(solid black curves) for Ca = 103. The red dashed line shows the corresponding
late-time asymptotic solution given by Eq. (3.27), using V1 = 0.04 (corresponding
x1∞ = 0.13464).

Region II - the middle draining section

Extensional viscous forces control the film evolution in this region between x1 ≤ x ≤ x2.

The film is almost flat, so surface tension effects are negligible. The flow in this region

is controlled by competing extensional viscous forces and gravity.

ht + (uh)x = 0, (3.29)

(hux)x = −1

4
h. (3.30)
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Integrating Eq. (3.29) with respect to x, we obtain

(uh)(x, t) = (uh)(x1)−
∫ x

x1

ht dx, or Q = Q1(t)−
∫ x

x1

ht dx, (3.31)

where Q = uh and Q1(t) = (uh)(x = x1(t)). Hence,

h(x, t) =
Q1(t)−

∫ x
x1
ht dx

u(x, t)
. (3.32)

Also, using Eq. (3.31), we can write

Q2(t) = Q1(t)−
∫ x2

x1

ht dx, (3.33)

where Q2(t) = (uh)(x = x2(t)). Using Eq. (3.32), we can rewrite Eq. (3.30) in terms

of u as: ([
Q1(t)−

∫ x

x1

ht dx

]
ux
u

)
x

= −1

4

[
Q1(t)−

∫ x
x1
ht dx

]
u

. (3.34)

We are unable to determine the solution of Eqs. (3.32,3.34) analytically. However, it

will be useful to determine the behaviour of h and u near x1,2 to match with regions

A and B, respectively. We rewrite Eq. (3.34) as

Q(x, t)[uuxx − u2
x] +Qx(x, t)uux +

1

4
Qu = 0, (3.35)

where Q(x, t) is defined in Eq. (3.31). We seek the behaviour of u subject to the

boundary conditions, u(x1,2, t) = ux(x1,2, t) = 0. We expand u in a Taylor’s series
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about x = x1,2:

u(x, t) = u(2)(x1,2, t)
(x− x1,2)2

2
+ u(3)(x1,2, t)

(x− x1,2)3

6
+ u(4)(x1,2, t)

(x− x1,2)4

24
+ . . .. Here

the superscript represents a higher order derivative with respect to x. We also expand

Q(x, t) in a Taylor’s series about x = x1,2:

Q(x, t) = Q1,2(t) +Q(1)(x1,2, t)(x− x1,2) +Q(2)(x1,2, t)
(x− x1,2)2

2
+ . . .. Substituting the

above in Eq. (3.35), we obtain the following sequence of problems. At O((x− x1,2)2),

we have u(2)(x1,2, t) =
1

4
. At O((x− x1,2)3), we obtain:

−Q1,2u
(2)(x1,2)u(3)(x1,2)−Q(1)(x1,2, t)[u

(2)(x1,2)]2 +
2

3
Q1,2u

(2)(x1,2)u(3)(x1,2)

+Q(1)(x1,2, t)[u
(2)(x1,2)]2+[

1

24
Q1,2u

(3)(x1,2) +
1

8
Q(1)(x1,2, t)u

(2)(x1,2)

]
= 0. (3.36)

Using u(2)(x1,2) = 1/4, we obtain u(3)(x1,2) =
3

4

Q(1)(x1,2, t)

Q1,2

. The solutions for u and h

about x = x1,2 are then given by

u(x, t) =
1

8
[x− x1,2(t)]2

[
1 +

Q(1)(x1,2, t)

Q1,2

(x− x1,2)

]
+O((x− x1,2)4), (3.37)

h(x, t) =
8Q1,2(t)

[x− x1,2(t)]2
, (3.38)

near x = x1,2, respectively. We approximate Q(1)(x1, t) as follows. We approxi-

mate Q = Q1(t)−
∫ x

x1

ht dx near x = x1 as Q = Q1(t)− h1t(t)(x− x1) +O((x− x1)2).
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Hence, Q(1)(x1, t) ≈ −h1t(t), so the solution of u and h near x = x1 can be written as

u(x, t) =
1

8
[x− x1(t)]2

[
1− h1t(t)

Q1

(x− x1)

]
+O((x− x1)4), (3.39)

h(x, t) =
8Q1(t)

[x− x1(t)]2
, (3.40)

respectively. Similarly, we approximate Q = Q1(t)−
∫ x

x1

ht dx = Q2(t) +

∫ x2

x

ht dx

near x = x2 asQ = Q2(t)− h2t(t)(x− x2) +O((x− x2)2). Hence, Q(1)(x2, t) ≈ −h2t(t),

so the solution of u and h near x = x2 can be written as

u(x, t) =
1

8
[x− x2(t)]2

[
1− h2t(t)

Q2

(x− x2)

]
+O((x− x2)4), (3.41)

h(x, t) =
8Q2(t)

[x− x2(t)]2
, (3.42)

respectively.

In order to make analytical progress we resort to making some meaningful approxima-

tions, particularly, to the unsteady term ht. The accuracy of the solution based on

these approximations will be tested against corresponding numerical solutions.

Quasi-steady approximation ht ≈ 0 (Q1 = Q2 = Q)

Eq. (3.34) can then be written as:

(
ux
u

)x = − 1

4u
, or uuxx − u2

x +
1

4
u = 0, (3.43)
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subject to the boundary conditions, u(x1(t)) = u(x2(t)) = 0. This has solution

u(x) =

[
(x2(t)− x1(t))2

8π2

]
sin2

(
π

[
x− x1(t)

x2(t)− x1(t)

])
. Hence, the approximate solution

in this region is given by:

h(x, t) =

[
8π2Q(t)

(x2(t)− x1(t))2

]
1

sin2
(
π
[

x−x1(t)
x2(t)−x1(t)

]) , (3.44)

u(x, t) =

[
(x2(t)− x1(t))2

8π2

]
sin2

(
π

[
x− x1(t)

x2(t)− x1(t)

])
, (3.45)

where Q(t) is a constant flux in this region. The maximum extensional flow speed,

umax(t) and minimum film thickness, hmin(t), in this region is at x = x1(t) + (x2(t)−

x1(t))/2 and is given by

hmin(t) =
8π2Q(t)

[x2(t)− x1(t)]2
, (3.46)

umax(t) =
[x2(t)− x1(t)]2

8π2
. (3.47)

The unknown flux Q(t) and the evolution of x1(t) and x2(t) will be determined from

the transition regions A and B. Figure 3.9 shows the family of solutions characterised

by x1,2 for the extensional flow speed u(x, t) versus (x − x1(t))/(x2(t) − x1(t)) for

t = 5 × 102 − 103 using the numerical solution shown in Fig. The blue, green and

red dashed curves show particular solutions of Eq. (3.45) for x1,2 evaluated from the

numerical solution at t = 5× 102, 8× 102, 103, respectively. We observe that although

the quasi-steady approximation captures the general trends, assuming a constant flux

of liquid through this region does not work very well in describing its evolution. This
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suggests the important contribution of the unsteady term ht in this region.

Figure 3.9: Evolution of u in region II using data shown in Fig. for time t = 5×102−103.
The blue, green and red dashed curves show the solution of Eq. (3.45) for x1,2 evaluated
from the numerical solution at t = 5× 102, 8× 102, 103, respectively.

Approximation ht ≈ hmin,t

A simple approximation of the unsteady term ht is to assume it to be constant, ht ≈

hmin,t (say), where hmin is the minimum film thickness of the middle section of the film.

Using this approximation, Eqs. (3.32,3.34) can be simplified to

h(x, t) =
Q1(t)− hmin,t(x− x1)

u(x, t)
, (3.48)(

[Q1(t)− hmin,t(x− x1)]
ux
u

)
x

= −1

4

[Q1(t)− hmin,t(x− x1)]

u
. (3.49)
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We are unable to solve Eq. (3.49) for the solution of u analytically. Using the approx-

imation ht ≈ hmin,t in Eq. (3.33), we obtain

Q2(t) = Q1(t)− hmin,t(x2 − x1), ⇒ hmin,t =
[Q1(t)−Q2(t)]

[x2(t)− x1(t)]
, (3.50)

which provides an evolution equation for hmin. Also, using this approximation, h1,2t ≈

hmin,t, hence u and h near x = x1,2 can be written as:

u(x, t) =
1

8
[x− x1(t)]2

[
1− hmin,t(t)

Q1

(x− x1)

]
+O((x− x1)4), (3.51)

h(x, t) =
8Q1(t)

[x− x1(t)]2
, (3.52)

u(x, t) =
1

8
[x− x2(t)]2

[
1− hmin,t(t)

Q2

(x− x2)

]
+O((x− x2)4), (3.53)

h(x, t) =
8Q2(t)

[x− x2(t)]2
, (3.54)

respectively.

Comparison with numerical solutions.

Region III - the pendant drop

This region lies between x2 ≤ x ≤ 1, and is quasi static with u = 0. The evolution is

determined by balancing gravity and surface tension.

hxxx = −Ca, (3.55)
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which on integrating thrice with respect to x and using the boundary condition, h(1) =

1, gives

h(x) = −Ca
6

(x− 1)3 + C
(x− 1)2

2
+D(x− 1) + 1, (3.56)

where C and D are constants of integration that need to be determined. To determine

C and D we assume that the long-time behaviour of the pendant drop is such that it

meets the centreline z = 0 at the location x = x2∞ with zero effective contact angle,

i.e., with zero slope, hx = 0. So, we prescribe h(x2∞) = hx(x2∞) = 0. Applying these

two boundary conditions at x = x2∞ gives two simultaneous equations for C and D,

namely,

C =
2

(x2∞ − 1)2
+

2Ca(x2∞ − 1)

3
,

D = −
(

2

(x2∞ − 1)
+
Ca(x2∞ − 1)2

6

)
, (3.57)

to give

h(x, t) = −Ca
6

(x− 1)3 +
C(x− 1)2

2
+D(x− 1) + 1, (3.58)

with C and D given by the above expressions, depending on the capillary number Ca

and x2∞ . The unknown quantity x2∞ is determined by imposing that the volume of



75

this region is V2 = 1− V1. Hence,

∫ 1

x2∞

h dx = V2. Using this, we obtain:

Ca(x2∞ − 1)4 − 8

[
1

(x2∞ − 1)2
+
Ca(x2∞ − 1)

3

]
(x2∞ − 1)3

+ 12

[
2

(x2∞ − 1)
+
Ca(x2∞ − 1)2

6

]
(x2∞ − 1)2 + 24(V2 − x2∞ + 1) = 0. (3.59)

Equation (3.59) is a quartic equation for x2∞ for a given value of Ca and V2.

Figure 3.10 plots h versus x−x2∞ (black curves) for t = 5×102−103 using the numerical

solution shown in Fig, for Ca = 103. The red dashed line shows the corresponding late-

time asymptotic solution given by Eq. (3.58), using V2 = 1−0.04 = 0.96 (corresponding

x2∞ = 0.511). We observe that the asymptotic solution agrees very well with the scaled

numerical solution.

Figure 3.10: Evolution of h in region III using data shown in Fig. for time t = 5×102−
103 (solid black curves) for Ca = 103. The red dashed line shows the corresponding late-
time asymptotic solution given by Eq. (3.58), using V2 = 1−0.04 = 0.96 (corresponding
x2∞ = 0.511).
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Region B: the transition region between regions II and III

This region around x = x21 is characterised by a large change in the curvature hxxx

(see Fig. 3.2(c)). Hence, surface tension due to changes in curvature is the primary

mechanism driving a downward flow into the pendant drop in region III with gravity

playing a secondary role further contributing to the downward flow; this flow is resisted

by the extensional viscous forces. The lengthscale of this region based on balancing

surface tension and extensional viscous forces is of O(1/Ca). Letting x = x21+(1/Ca)ξ,

we can write the evolution equations for h and u as:

1

Ca
ht − x21t

hξ + (uh)ξ = 0, (3.60)

4(huξ)ξ + h(hξξξ +
1

Ca2
) = 0. (3.61)

For Ca� 1, Eq. (3.60) can be written at leading order in 1/Ca as: −x21t
hξ + (uh)ξ = 0.

We assume that any changes to the flux in the moving frame of reference are negligible,

hence Eq. (3.60) simplifies to (uh)ξ = 0. Integrating gives uh = Q2(t), where Q2(t) is

the flux out of this region into region III. Substituting u = Q2(t)/h into Eq. (3.61)
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gives the following boundary-value problem for h:

− 4Q2(t)

[
1

h
hξ

]
ξ

+ h(hξξξ +
1

Ca2
) = 0, (3.62a)

subject to the boundary conditions

h→ 8Q2Ca
2

(ξ − ξ2)2
, ξ → −∞, ξ2 = Ca(x2 − x21) > 0, (3.62b)

h→ − 1

6Ca2
(ξ − ξ1)3 +

C(ξ − ξ1)2

2Ca2
+

D

Ca
(ξ − ξ1) + 1, ξ →∞,

where ξ1 = Ca(1− x21) > 0, (3.62c)

with C and D defined in region III above. Note that we leave the
1

Ca2
h term in Eq.

(3.62a) so that we can match with regions II and III. The boundary conditions in Eqs.

(3.62b, c) are obtained by taking the limit as x→ x−2 in Eq. (3.38) and x→ x+
2 in Eq.

(3.58), respectively.

In principle, we can use a shooting method to solve for the eigenvalue Q2 in order to

determine the numerical solution for the boundary value problem in Eq. (3.62). For

a given Ca � 1, x2, x2∞ and V2 (these quantities are evaluated at some time t), we

start with the boundary condition at the downstream end, Eq. (3.62c) (evaluated at

ξ = ξ2 = Ca(x2 − x21), where ξ2 � 1 and ξ2 < ξ1), choosing Q2 as the shooting

parameter until the boundary condition at the upstream end, Eq. (3.62b), is satisfied

(evaluated at ξ = −ξ22 , where ξ22 � 1). In practice, we shoot with Q2 to satisfy

uξξ = Q2

[
2
h2
ξ

h3
− hξξ
h2

]
→ 1

4Ca2
as ξ → −∞.

Figure 3.11 compares the computed solution of h and u (solid lines) with the sim-
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Figure 3.11: Computed film thickness profiles, h, (a) plotted on a semi-logarithmic
axis and the extensional flow speed, u, (b) (solid lines) using the similarity coordinate
ξ = Ca(x− x21(t)) for t = (5, 6, 7, 8)× 102. The dashed lines show the corresponding
late-time similarity solution given by Eqs. (3.60,3.62). The dotted curve in (a) shows
the quasi-static solution of region III given by Eq. (3.58) in the similarity variable ξ
for 0 ≤ ξ ≤ ξ1. The parameter values are Ca = 103, Re = 0 and x2∞ = 0.510583.
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ilarity solution given by Eqs. (3.60,3.62), using the similarity coordinate ξ for t =

(5, 6, 7, 8) × 102. The values of Q2 computed using the shooting method are Q2 =

(2.70, 1.38, 0.426, 0.174)× 10−7, for t = (5, 6, 7, 8)× 102, respectively. We use values of

x2 computed from the numerical solution shown in Fig. 3.7(a) at the given times, and

x21(t) = x2∞ = 0.510583. We observe that the similarity solution clearly captures the

qualitative characteristics of the quasi-static evolution, namely, the family of solutions

of h (see solid lines (numerical solution) and dashed lines (similarity solution) in Fig.

3.11(a)) emanating from the quasi-static solution of region III given by Eq. (3.58)

in the similarity variable ξ for 0 ≤ ξ ≤ ξ1 (see dotted line in Fig. 3.11(a)), and the

sudden deceleration of the flow u resulting in a shock-like discontinuity near ξ = 0

(Fig. 3.11(b)). Although the quantitative match is not perfect, the similarity solution

given by Eqs. (3.62,3.60) capture very well the dynamics in this transition region.

Region A: the transition region between regions I and II

This region lies around x11 , and is also characterised by a large change in the curvature

hxxx (see Fig. 3.2(f)). Hence, surface tension due to changes in curvature is the primary

mechanism driving an upward flow against gravity (see Fig. 3.2(e) for u in this region).

In the upstream part of this region, although, changes in curvature are negligible in

comparison to gravity, and the flow changes direction to a downward gravity-driven

flow (see Fig. 3.2(e) for u in the upstream part of this region). Below we describe the

evolution of h and u this region based on the above observations. The lengthscale of
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this region by balancing surface tension and extensional viscous forces is of O(1/Ca).

Letting x = x11 + (1/Ca)ξ, we can write the evolution equations for h and u as:

1

Ca
ht − x11t

hξ + (uh)ξ = 0, (3.63)

4(huξ)ξ + h(hξξξ +
1

Ca2
) = 0. (3.64)

For Ca� 1, Eq. (3.63) at leading order in O(1/Ca) can be written as:

−x11t
hξ + (uh)ξ = 0. We assume that any changes to the flux in the moving frame of

reference are negligible, hence Eq. (3.63) simplifies to (uh)ξ = 0. Integrating gives

uh = −Q1(t) for ξ < 0− and uh = Q1(t) for ξ > 0+. We assume that the flux

changes sign over a much smaller lengthscale, and the flux is of the same magnitude

but opposite sign on either side of ξ = 0. The numerical solutions suggest this, and

also that Q1 is small (Q1 � Q2), so this approximation is reasonable. Using this, we

obtain

u =
−Q1

h
, if ξ < 0;u =

Q1

h
, if ξ > 0. (3.65)
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Substituting Eq. (3.65) into Eq. (3.64) gives the following boundary-value problem for

h:

− 4

[
H(Q)

1

h
hξ

]
ξ

+ h(hξξξ +
1

Ca2
) = 0, (3.66a)

subject to the boundary conditions

h→ − 1

6Ca2
(ξ1 + ξ)3 +

C(ξ1 + ξ)2

2Ca2
+

D

Ca
(ξ1 + ξ) + 1, ξ → −∞,

where ξ1 = Cax11 > 0, (3.66b)

h→ 8Q1Ca
2

(ξ − ξ1)2
, ξ →∞, ξ1 = Ca(x1 − x11) < 0, (3.66c)

where the piecewise constant function H(Q) = −Q1 if ξ < 0 and Q1 if ξ > 0; C and D

are defined in region I above. The boundary conditions in Eqs. (3.66b, c) are obtained

by taking the limit as x → x−1 in Eq. (3.27) and x → x+
1 in Eq. (3.38), respectively.

Similar to region B, we use a shooting method to determine the numerical solution

of the boundary value problem in Eq. (3.66) using Q1 as the shooting parameter. In

practice, we use a regularised form of the function H = Q1 tanh[Aξ], where A > 0

(A = 1 in the solutions shown in Fig. 3.12). For a given Ca, x1, x1∞ and V1 (these

quantities are evaluated at some time t), we start with the boundary condition at the

upstream end, Eq. (3.66b) (evaluated at ξ = ξ1 = Ca(x1 − x11) < 0, where |ξ1| � 1

and |ξ1| < ξ1), choosing Q1 as the shooting parameter until the boundary condition at

the downstream end, Eq. (3.66c), is satisfied (evaluated at ξ = ξ12 , where ξ12 � 1). In

practice, we shoot with Q1 to satisfy uξξ = Q1

[
2
h2
ξ

h3
− hξξ
h2

]
→ 1

4Ca2
as ξ →∞.
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Figure 3.12 compares the computed solution of h and u (solid lines) with the sim-

ilarity solution given by Eqs. (3.63,3.66), using the similarity coordinate ξ for t =

(5, 6, 7, 8) × 102. The values of Q1 computed using the shooting method are Q1 =

(2, 0.05, 0.001, 0.0001)×10−9, for t = (5, 6, 7, 8)×102, respectively (Note that Q2 � Q1,

as observed from the numerical solutions). We use values of x1 computed from the nu-

Figure 3.12: Computed film thickness profiles, h, (a) plotted on a semi-logarithmic
axis, and the extensional flow speed, u, (b) (solid lines) using the similarity coordinate
ξ = Ca(x− x11(t)) for t = (5, 6, 7, 8)× 102. The dashed lines show the corresponding
late-time similarity solution given by Eqs. (3.63,3.66). The dotted curve in (a) shows
the quasi-static solution of region I given by Eq. (3.27) in the similarity variable ξ for
−Cax11 ≤ ξ ≤ 0. The parameter values are Ca = 103, Re = 0 and x1∞ = 0.13464.

merical solution shown in Fig. 3.7(a) at the given times, and x11(t) = x1∞ = 0.13464.
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We observe that the similarity solution clearly captures the qualitative characteristics

of the quasi-static evolution, namely, the family of solutions of h (see solid lines (nu-

merical solution) and dashed lines (similarity solution) in Fig. 3.12(a)) emanating from

the quasi-static solution of region I given by Eq. (3.27) in the similarity variable ξ for

−Cax11 ≤ ξ ≤ 0 (see dotted line in Fig. 3.11(a)), and the reversal of the flow u near

ξ = 0 (Fig. 3.12(b)). Although the quantitative match is not perfect, the similarity

solution given by Eqs. (3.62,3.60) capture very well the dynamics in this transition

region.

Closure relationships to determine evolution of characteristic variables

The solution of the boundary value problems given by Eqs. (3.62,3.66) depend on the

values of Ca and the characteristic quantities, x1,2 and Q1,2, at any instant of time

starting from some initial conditions x
(0)
1,2. Note that x{1,2}1(t) is almost constant (see

Fig. 3.12(a)), and we assume that x11(t) = x1∞ = 0.13464 and x21(t) = x2∞ = 0.511.

The solution to the boundary value problem in Eq. (3.62) provides the flux Q2 as a

function of x2, at any instant of time. Similarly, the solution to the boundary value

problem in Eq. (3.66) provides the flux Q1 as a function of x1, at any instant of time.

We determine the late-time evolution of x1,2 using volume conservation in regions I and

II,
dV1

dt
= Q1 and

dV2

dt
= Q2, respectively. The algorithm to obtain the time evolution

of x1,2, and the corresponding family of solutions of Eqs. (3.62,3.66) is as follows:

1. Start with initial conditions x
(0)
1,2 at some time t = t(0). Compute the correspond-
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ing volume V
(0)

1 =
∫ x(0)1

0
h dx and V

(0)
2 =

∫ 1

x
(0)
2
h dx.

2. Solve the boundary value problems in Eqs. (3.62,3.66) to obtain the initial flux,

Q
(0)
1,2.

3. Determine the values of x
(1)
1,2 at some time t = t(0) + ∆t (where ∆t is a small

increment in time), using the updated volume V
(1)

1 ≈ V
(0)

1 +Q
(0)
1 ∆t =

∫ x(1)1

0
h dx

and V
(1)

2 ≈ V
(0)

2 + Q
(0)
2 ∆t =

∫ 1

x
(1)
2
h dx. Using the expressions for h in region

I (given by Eq. (3.27)) and that in region II (given by Eq. (3.58)), these are

quartic equations in x
(1)
1,2 which need to be solved to get the updated values of

x1,2 (similar to Eqs. (3.28,3.59) for x{1,2}∞ , respectively).

4. Use x
(1)
1,2 to solve the boundary value problem in Eq. (3.62,3.66) to obtain the

flux, Q
(1)
1,2 at time t(1).

5. Now repeat steps 3 and 4 to obtain the solution and characteristic variables at

time t(n) = t(0) + n∆t.

6. Use Eq. (3.50) to numerically solve for hmin, e.g., using a forward Euler time-

stepping scheme, hmin(t(n)) = hmin(t(n−1)) + ∆t
[Q

(n−1)
1 (t)−Q(n−1)

2 (t)]

[x
(n−1)
2 (t)− x(n−1)

1 (t)]
.

7. Plot the characteristic variables and the family of solutions as a function of time.
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3.6 Conclusions

In this chapter, we investigated the draining of a vertically-aligned free Newtonian liq-

uid film between two rigid supports due to the combined effects of extensional viscous,

gravity and surface tension forces. Our numerical simulations and asymptotic analysis

have focussed on the case when the rescaled Capillary number Ca = Ĉa/ε� 1, where

the Capillary number Ĉa = µ?U?/γ? = O(1). This limit recreated the decomposi-

tion of the liquid domain into a thin lamella connecting onto Plateau borders, which

replicates the drainage due to gravity in liquid foams [15, 16, 17].

We focussed on the dominant balance between the extensional viscous and gravity

forces, which is shown to control the drainage and thinning within the long, flat mid-

dle section of the film (Figs. 3.1(a, c) and Region II in §3.5.2). The balance of sur-

face tension forces and gravity resulted in the development of a Plateau border (or a

capillary-static meniscus) region near the top support (Figs. 3.1(a, c) and Region I

in §3.5.2), while the liquid collects near the bottom support, forming a pendant drop

region (Figs. 3.1(a, c) and Region III in §3.5.2). The middle region is shown to connect

to the upper and lower regions via short-lengthscale transition regions, where exten-

sional viscous, surface tension and gravity all balance to control the flux out or into

the middle region (Figs. 3.2(a− f) and Regions A and B in §3.5.2).

We performed numerical simulations to reveal the influence of varying the Capillary

number on the evolution of the film’s free surface, its long-time thinning rate and the

draining of liquid from the film. Larger the value of Ca, the faster was the extensional
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flow speed, resulting in faster drainage of liquid out of the film, consequently leading

to severe thinning of the film and its eventual rupture. For Ca � 1, we observed

power-law behaviour in the thinning rate of the flat middle section of the film, which

is estimated as t−2.25. This is in comparison to previous studies by Breward [15, 16]

and Brush & Davis [17] who derive a t−2 power-law behaviour. The new thinning rate

reported here is due to the additional influence of gravity, which was not considered in

these studies. This suggests the importance of gravity in enhancing the draining of the

lamella, and accelerating its thinning rate, hence needs to be included in liquid foam

models. Our predictions of power-law thinning behaviour is in contrast to a similar

study by Davis et al. [26]. They demonstrated that the lamella thins non-uniformly

with exponential decay of the minimum film thickness, which is significantly faster

than the t−2 power-law thinning predicted when gravitational effects are negligible

[15, 16, 17], and the t−2.25 predicted here. This is due to their asymptotic analysis

based on the assumption of capillary static Plateau Borders, the existence of which is

restricted to liquid volume fractions that cannot exceed a threshold value. Moreover,

this threshold liquid fraction decreases significantly as the Bond number (compares the

force due to gravity relative to surface tension forces) of the system increases, indicating

that gravitational effects reduce the stability of the Plateau Borders. Due to this, the

analysis of Davis et al. [26] is restricted to initial film thicknesses that are much

smaller than ours. We have no such restrictions on the liquid volume fraction since we

do not assume that the Plateau Borders are capillary static and the initial film can

be sufficiently thick. Therefore, their minimum film thickness decays exponentially for
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long times, in accordance with our early-time solution behaviour described in Section

3.5.1 - there is a close resemblance in the form of both solutions.

The late-time self-similar solution structure in the limit Ca � 1 in §3.5.2 revealed

the relationship between Q1,2, the fluxes from the lamella (Region II) to the upper

Plateau border (Region I) and the lower Plateau border region (upstream part of

Region III), respectively, and x2 − x1, the width of the lamellar region. The fluxes

Q1,2 are shown to contribute to increasing the volume of the Plateau border regions;

the increased volume reduces the width x2 − x1, which in turn influences Q1,2 via

the dynamics in the transition regions (Regions A and B). Indeed, an approximate

analysis of the lamella showed that its minimum thickness hmin ∼ Q2/(x2 − x1)2,

while the corresponding maximum in extensional flow speed umax ∼ (x2 − x1)2. We

have developed an algorithm to determine the relationship between Q2 and x2 − x1

numerically, however, we were unable to derive an analytical relationship to determine

a power-law thinning rate analytically using the above relationships for (h, u)min, and

comparing with our numerical prediction of t−2.25. It is worth noting here that the

theoretical analysis by Breward [15, 16] and Brush & Davis [17] is based on determining

the functional relationship Q2(hmin). In their analysis, without including gravity, Eq.

(3.61) in Region B can be integrated, and the relationship Q2(hmin) is obtained using

the boundary conditions. Moreover, without the inclusion of gravity, the extensional

flow in the lamellar region (Region I) is linear, hence the film thickness h in this region

is a time-dependent constant. One can then solve the differential equation in Eq. (3.29)
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to obtain the t−2 thinning rate. However, the inclusion of gravity does not allow such

analytical calculations.

We have also identified a novel boundary-value problem in §3.5.2 that captures the

dynamics in Region A. A step function is employed to describe the spatial dependence

of Q1 such that it is negative upstream of this region (due to dominance of surface

tension over gravity here that sucks liquid against the direction of gravity) and positive

at its downstream end (surface tension is negligible here and the flow is due to gravity).

The existence of a solution to this boundary-value problem is shown, which captures

the qualitative features of the numerical solutions. Although Q1 is negligible compared

to Q2 and does not affect the overall draining and thinning of the film, the analysis of

this region is still essential to complete the overall understanding of the film’s evolution.

Figure 3.2(c) showed the strong deceleration of the flow as the lamella connects onto

the lower plateau border region. The extensional shear rate ux could be quite large in

this region for non-Newtonian effects to play a significant role. In the next chapter, we

investigate the influence of non-Newtonian effects, such as shear-thinning, and visco-

plastic effects, such as yield stress, on the draining and thinning of the lamella.



Chapter 4

Gravity-driven draining of a

vertically-aligned thin

non-Newtonian liquid free film

4.1 Introduction

Motivated by the observations in the previous chapter where the shear rate can be

large, especially in the transition region, in this chapter, we extend the two-dimensional

Newtonian liquid model to incorporate non-Newtonian effects, such as apparent or

shear rate-dependent viscosity and yield stress, exhibited by the bulk liquid in the

film. The constitutive relations between the liquid stress and its shear rate for a

generalised Newtonian and viscoplastic liquid described in Chapter 1 are considered.

89
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We use numerical solutions to characterise the evolution of the free surface for a range

of parameter values associated with non-Newtonian and viscoplastic effects, along with

the Capillary number, Ca.

The outline of this chapter is as follows. In §4.2, we write down the evolution equations

for the film’s free surface h(x, t) and the extensional flow speed u(x, t) for a generalised

Newtonian liquid, whose apparent or effective viscosity is a function of its shear rate.

In §4.3, we consider four commonly used non-Newtonian and viscoplastic constitutive

relations for a Power Law and Carreau fluid (characterising generalised Newtonian rhe-

ology), and Bingham and Herschel-Bulkley fluid (representing viscoplastic rheology).

We regularise the Power Law and Herschel-Bulkley constitutive models at low shear

rates. These regularisations are also tested for their accuracy at shear rates close to

zero and their practical implementation in solving the evolution equations. In §4.4, we

perform numerical simulations of the evolution equations to determine the free surface

shapes and extensional flow speeds, varying the parameter values, in particular, the

Power Law index and the yield stress. In §4.5 we discuss the main results.

4.2 Governing Equations

The evolution equations for the film’s free surface h(x, t) and the extensional flow speed

u(x, t) for a generalised Newtonian liquid, is given by (Eq. (2.47) derived in Chapter
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2):

ht +Qx = 0, Q = uh+ ε2
h3

3

[
1

µ(|ux|)

(
4(µ(|ux|)ux)x +

1

Ca
hxxx + 1

)
− u0xx

]
,

(4.1a)

4(hµ(|ux|)ux)x + h[
1

Ca
hxxx + 1] = 0, (4.1b)

h(0, t) = h(1, t) = 1, hxxx(0, t) = hxxx(1, t) = −Ca, u(0, t) = u(1, t) = 0. (4.1c)

Note that we have assumed Re = 0 based on the results for the Newtonian liquid case.

The above equations and boundary conditions are parametrised by the parameters

describing the particular constitutive relationship for µ(|ux|), and the Capillary number

Ca. We seek solutions of Eq. (4.1) for Ca � 1, which corresponds to much weaker

surface tension in comparison to gravity.

4.3 Non-Newtonian and viscoplastic constitutive mod-

els

We now consider different forms of the dimensionless function µ(|ux|) in Eq. (4.1) corre-

sponding to constitutive relationships for a Power Law, Herschel-Bulkley and Carreau
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liquid.

µ(|ux|) = K|ux|n−1, (Power Law model), (4.2a)

µ(|ux|) = K|ux|n−1 +
τp
|ux|

, if τxx > τp, otherwise ux = 0, (Herschel-Bulkley model),

(4.2b)

µ(|ux|) = µ∞ + (µ1 − µ∞)[1 + (λ|ux|)2](n−1)/2, (Carreau model), (4.2c)

where K = (K?/µ?0)(U?/L?)n−1, is a dimensionless liquid consistency index, n is the

Power Law index (for n < 1, the fluid is shear thinning; n > 1 the fluid is shear

thickening; n = 1 is the Newtonian case), τp =
τ ?p

µ?0U
?/L?

is the Bingham number which

compares the liquid yield stress to the extensional viscous stress, µ1,∞ = µ?1,∞/µ
?
0 are

the viscosities in the limit of zero and large shear rate, respectively, and λ = λ?U?/L?.

We will make appropriate choices for the reference viscosity µ?0 based on the parameter

variation investigated in the results section.

We note that the first term in Eq. (4.1b) involving µ(ux) has a singularity when ux = 0

for n < 1, which occur near the top and bottom of the draining film, and where the

flow attains its maximum value (see Fig. 3.1(b), for example). In practise, we relieve

this singularity by regularising the Power Law and Herschel Bulkley models by adding
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a sufficiently small positive number, δ, to ux, namely,

µ(|ux|) = K[
√
u2
x + δ2]

n−1
, (regularised Power Law model), (4.3a)

µ(|ux|) = K[
√
u2
x + δ2]

n−1
+

τp√
u2
x + δ2

. (regularised Herschel-Bulkley model),

(4.3b)

The effect of regularisation on the Herschel-Bulkley model is that at low shear rates,

the fluid becomes weakly yielding when τxx < τp (Balmforth et al. [8]).

In practise, the appropriate value of δ is selected based on solving a simplified version

of the governing equations in which h = 1. For this case, Eq. (4.1b) simplifies to

4(hµ(|ux|ux)x = −1. (4.4)

This has an analytical solution for a Power Law constitutive model, as shown below. We

then numerically solve this simplified equation using the regularised Power Law model,

and choose the value of the regularisation parameter δ so that the error between the

numerical and analytical solutions is less than a specified tolerance. In the case when

n = 1, the analytical solution of Eq. (4.4) is

u(x, 0) =
x

8
(1− x). (4.5)

When n 6= 1, we split the domain into two regions defined by ux < 0 and ux > 0. We

denote the x coordinate where ux = 0 by L. For ux < 0 (L < x ≤ 1; see Fig. 3.1(b)),
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Eq. (4.4) can be written as:

4
(
K(−ux)n−1ux

)
x

= −4 (K(−ux)n)x = −1. (4.6)

Integrating with respect to x yields

(−ux)n =
x

4K
+ C, (4.7)

where C is some constant. We ascertain the value of c using ux = 0 at x = L, so

C = − L

4K
. (4.8)

With this value of C, the shear rate can be expressed as

(−ux)n =
1

4K
(x− L) , or ux = −

[
1

4K
(x− L)

]1/n

. (4.9)

A further integration results in

u(x) = − 4Kn

n+ 1

[
1

4K
(x− L)

]n+1
n

+D, (4.10)

and the constant of integration, D, can be obtained from the boundary condition on
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u(x = 1) = 0, so

D =
4Kn

n+ 1

[
1

4K
(1− L)

]n+1
n

. (4.11)

Hence, we obtain

u(x) =
4Kn

n+ 1

[[
1

4K
(1− L)

]n+1
n

−
[

1

4K
(x− L)

]n+1
n

]
, for L ≤ x ≤ 1. (4.12)

For ux > 0 (0 ≤ x < L; see Fig. 3.1(b)), Eq. (4.4) can be written as:

4
(
K(ux)

n−1ux
)
x

= 4 (K(ux)
n)x = −1. (4.13)

Integrating with respect to x yields

(ux)
n = − x

4K
+ C, (4.14)

where C is some constant. We ascertain the value of c using ux = 0 at x = L, so

C =
L

4K
. (4.15)

With this value of C, the shear rate can be expressed as

(ux)
n =

1

4K
(L− x) , or ux =

[
1

4K
(L− x)

]1/n

. (4.16)
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A further integration results in

u(x) = − 4Kn

n+ 1

[
1

4K
(L− x)

]n+1
n

+D, (4.17)

and the constant of integration, D, can be obtained from the boundary condition on

u(x = 0) = 0, so

D =
4Kn

n+ 1

[
1

4K
L

]n+1
n

. (4.18)

Hence, we obtain

u(x) =
4Kn

n+ 1

[[
1

4K
L

]n+1
n

−
[

1

4K
(L− x)

]n+1
n

]
, for 0 ≤ x ≤ L. (4.19)

Finally, the position of the turning point in the velocity field, x = L, can be obtained

by continuity of the above 2 solutions at x = L,

4Kn

n+ 1

[
1

4K
(1− L)

]n+1
n

=
4Kn

n+ 1

[
L

4K

]n+1
n

, (4.20)

resulting in L = 1
2
. The value of δ can be obtained by comparing the numerical solution

of Eq. (4.4) using the regularised Power Law model and the analytical solution given

by Eqs. (4.12,4.19). The table below shows the resulting error (measured in the max

norm) as the value of δ decreases, and allows us to pick an appropriate δ to restrict the

error to a desired range. As n decreases, the singularity in µ(|ux|) becomes more severe
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δ n Error

10−1 0.75 10−1

1.2 7× 10−2

10−2 0.75 5× 10−3

1.2 10−3

10−3 0.75 1× 10−4

1.2 5× 10−6

Table 4.1: The error measured in the max norm of the numerical solution of Eq.
(4.4) using the regularised Power Law model and the analytical solution given by Eqs.
(4.12,4.19), as a function of the regularization parameter δ.

near ux = 0, and a larger value of δ is required to regularise the solution. However,

the accuracy of the solution is compromised. Due to this, we are unable to compute

solutions for n < 0.6.

4.4 Numerical results

We discretize the spatial derivatives in Eq. (4.1) using the finite difference method, but

keep the time derivative continuous. The spatial discretization is the same as for the

Newtonian case, except for the functional form of µ(|ux|) (described by the regularised

Power Law and Herschel Bulkley, and the Carreau models), and is described in §3.3, in

Chapter 3. The resulting system of system of differential-algebraic equations (DAEs)

are again solved using the method of lines [65]. We use the implicit solver ode15i in

MATLAB (MATLAB 6.1, The MathWorks Inc., Natick, MA, 2000) for our numerical

simulations.

In the numerical results to follow we mainly focus on investigating the influence of the
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liquid consistency parameter, K, the Power Law index, n, and the yield stress, τp, on

the evolution of the film thickness h(x, t) and extensional flow speed u(x, t). We also

investigate the influence of the more realistic Carreau model and the corresponding

index n. The parameter values used are based on those reported for polymeric liquids,

Polystyrene, Aluminium soap and Hydroxylethycellulose, in Table 1 in Myers [45]. For

Polystyrene, n = 0.39 (power law model), K? = 3.5 × 105 Pa sn, n = 0.4 (Carreau

model), µ?1 = 4×106 Pa s and λ? = 46.4s−1. This corresponds to K = 12 and λ = 10−3,

assuming the reference viscosity µ?0 = µ?1. For Aluminium soap, n = 0.2 (power law

model), K? = 68.07 Pa sn, n = 0.2 (Carreau model), µ?1 = 89.6 Pa s and λ? = 1.41s−1.

This corresponds to K = 0.7 and λ = 1, assuming the reference viscosity µ?0 = µ?1.

For Hydroxylethycellulose, n ≈ 0.51 (power law model), K? = 0.84 Pa sn, n ≈ 0.51

(Carreau model), µ?1 = 0.22 Pa s and λ? ≈ 0.067s−1. This corresponds to K ≈ 0.1

and λ ≈ 30, assuming the reference viscosity µ?0 = µ?1. We were unable to compute

the solutions for n < 0.6, as mentioned previously. The regularization parameter,

δ = 10−3, is chosen based on Table 4.1. The Capillary number, Ca = 103, is fixed

for all simulations to follow, based on the results in chapter 3. In all the results to

follow we choose ∆x = 5× 10−4 for convergence to be achieved and the solutions to be

accurate. The initial condition is h(x, 0) = 1, and the corresponding initial condition

for the extensional flow speed, u(x, 0), is given by Eqs. (4.12,4.19), with L = 1/2, for

the value of n chosen.

In the first set of results, we show the influence of varying the consistency parameter
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K (or dimensional K?), for fixed Power Law index n. This can also be obtained by

choosing µ?0 = K?

(
U?

L?

)n−1

, soK = 1. The characteristic speed and time of draining of

the flow and thinning of the film can then be shown to scale with K? as U? ∼ 1

K?1/n
and

t? ∼ K?1/n , respectively. Figure 4.1(a, b, c) show the effect of varying the consistency

parameter K, for fixed n = 0.9 and fixed Ca = 103 on h(x, t = 30), u(x, t = 30)

and hmin, the global minimum in h(x, t), as a function of time t, respectively. We

Figure 4.1: (a) Film thickness h(x, t = 30), and (b) extensional flow speed u(x, t = 30),
and (c) the global minimum hmin as a function of time t, for varying consistency
parameter K, for fixed Power Law index, n = 0.9 and Ca = 103.

observe that the film thins more rapidly as K decreases (Fig. 4.1(a)) due to the

faster extensional flow speed as K decreases (Fig. 4.1(b)). Reducing K leads to lower

viscosities, resulting in much faster drainage (note that u ∼ 1/K1/n). Figure 4.1(c)
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tracks hmin, the global minimum in h(x, t), as a function of time t. We observe that the

film thins more rapidly as K decreases, in line with the observations in Fig. 4.1(a, b).

We also note that the time scale for thinning scales like t ∼ K1/n. We chose not to

scale K out of the results shown here by using the scalings (u, t) ∼ (1/K1/n, K1/n)

in order to explicitly investigate its influence. This will be useful in the results to

follow. To better understand the above described variations in K, we plot key outputs,

h(x, t = 30), u(x, t = 30), the shear-rate ux(x, t = 30) and the shear-rate dependent

viscosity µ(|ux|) for K = 0.02 (corresponding to a liquid of a very low consistency

index) in Fig. 4.2(a), K = 0.1 (corresponding to a liquid of a low consistency index) in

Fig. 4.2(b), K = 1 (corresponding to a liquid of an intermediate consistency index) in

Fig. 4.2(c) and K = 10 (corresponding to a liquid of a high consistency index) in Fig.

4.2(d), for fixed n = 0.9 and Ca = 103. We observe that the magnitude of shear rate |ux|

is larger for the lower values of K (Fig. 4.2(a, b)), in comparison to the higher values of

K (Fig. 4.2(c, d)). We also observe a sharp peak in ux for K = 0.02 concentrated in the

transition region where the thin middle section of the film connects onto the pendant

drop region near the bottom (Fig. 4.2(a)), which progressively becomes smaller as K

increases (Fig. 4.2(b−e)). This results in lower viscosities for smaller K (Fig. 4.2(a, b))

and higher viscosities as K increases (Fig. 4.2(c, d)).

Next, we show the influence of varying the Power Law index n, for fixed consistency

parameter K?. We choose µ?0 = K? (choosing n = 1 or a Newtonian liquid reference

viscosity). Then K(n) =

(
U?

L?

)n−1

=

(
ρ?g?L?

K?

)n−1

= Kn−1
0 . Figure 4.3(a, b, c) show
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Figure 4.2: The film thickness h(x, t = 30) (black curve), the extensional flow speed
u(x, t = 30) (blue curve), the shear-rate ux(x, t = 30) (red curve) and the shear-
rate dependent viscosity µ(|ux|) (green curve) for (a) K = 0.02 (corresponding to a
liquid of a very low consistency index), (b) K = 0.1 (corresponding to a liquid of a low
consistency index), (c) K = 1 (corresponding to a liquid of an intermediate consistency
index) and (d) K = 10 (corresponding to a liquid of a high consistency index), for fixed
n = 0.9 and Ca = 103.
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the effect of varying the Power Law index, n = 0.75, 1, 1.2, for fixed K0 = 1 and

Ca = 103 on h(x, t = 360), u(x, t = 360) and hmin, the global minimum in h(x, t),

as a function of time t, respectively. We observe that the film thins more rapidly

as n increases (Fig. 4.3(a)) due to the faster extensional flow speed as n increases

(Fig. 4.3(b)). Figure 4.3(c) tracks hmin, the global minimum in h(x, t), as a function

Figure 4.3: (a) Film thickness h(x, t = 360), and (b) extensional flow speed u(x, t =
360), and (c) the global minimum hmin as a function of time t, for varying Power
Law index, n = 0.6, 0.65, 0.75, 0.85, 1, 1.1, 1.2, for fixed K0 = 1 and Ca = 103. The
corresponding thinning rates are t−2 for n < 1 and t−2.25 for n ≥ 1.

of time t, for n = 0.6, 0.65, 0.75, 0.85, 1, 1.1, 1.2. We observe that the film thins more

rapidly as n increases, in line with the observations in Fig. 4.3(a, b). We estimate the

thinning rates to be t−2 when n < 1, t−2.25 when n ≥ 1, suggesting a weak dependence

of the thinning rate on n. This Power Law estimate is at best valid near n = 1 as
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shown in Fig. 4.3(c), where the range of Power Law behaviour reduces as n moves

further away from one. We now describe the characteristic late-time flow behaviour

and film evolution in regions of very small width of O(1/Ca) near the top (where the

upper meniscus meets the thin film section) and bottom ends (where the thin film

meets the pendant drop) of the film. Figure 4.4(d − f) show the evolution of the

film thickness h(x, t = 360), the extensional flow speed u(x, t = 360) and the stress

balance given by Eq. (4.1b) near the bottom end, respectively, for n = 0.75, 1, 1.2,

K0 = 1 and Ca = 103. We observe similar behaviour to that of a Newtonian liquid,

as described in chapter 3, except that for the larger value of n = 1.2, the flow is much

more mobile (Fig. 4.4(b)) and the film thickness is relatively thinner (Fig. 4.4(a)) in

comparison to n = 0.75. This is due to the fact that the shear rates are less than

unity (not only in this region, but also over the entire flow domain - see Fig. 4.5 for

the shear-rates at these values of the Power Law index n), so at n = 1.2 the effective

viscosity is much less than that at n = 1 (see Fig. 4.5(a, b) for comparison between

the effective viscosities). Figure 4.4(a − c) show the evolution of the film thickness

h(x, t = 360), the extensional flow speed u(x, t = 360) and the stress balance given

by Eq. (4.1b) near the upper end, respectively, for n = 0.75, 1, 1.2 and Ca = 103.

Again the qualitative behaviour is similar to the Newtonian case, except that the flow

is more mobile and the film is thicker for n = 0.75 in comparison to n = 0.75, 1 due

to the lower effective viscosity. To better understand the above described variations in

n, we plot key outputs, h(x, t = 360), u(x, t = 360), the shear-rate ux(x, t = 360) and

the shear-rate dependent viscosity µ(|ux|) for n = 0.75 (corresponding to the shear-
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Figure 4.4: The film thickness h(x, t = 360), the extensional flow speed u(x, t) and

the stress balance given by Eq. (4.1b) (the dashed lines represent h(
1

Ca
hhxxx + 1) and

the solid lines represent 4(hux)x) near the bottom end (a, b and c, respectively) and
the upper end (d, e and f , respectively), for n = 0.75, 1, 1.2, K0 = 1, Ca = 103 and
∆x = 5× 10−4.
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thinning fluid case) in Fig. 4.5(a), n = 1 (corresponding to the Newtonian fluid case)

in Fig. 4.5(b) and n = 1.25 (corresponding to the shear thickening fluid case) in Fig.

4.5(c), for fixed Ca = 103. We observe that the shear rate ux � 1 across the entire film,

and throughout the evolution process, for the value of K0 (K?) investigated here. This

results in higher viscosities for n < 1 (Fig. 4.5(a)) and lower viscosities for n ≥ 1 (Fig.

4.5(b, c)). Moreover, we observe from Fig. 4.5(a) that the spatial profile of viscosity for

n < 1 is maximum near the top, bottom and central region of the film where the shear

rate ux = 0. The opposite happens for n > 1 (Fig. 4.5(c)), with a spike in viscosity

corresponding to a change in shear rate observed where the flat middle region of the

film connects onto the pendant drop near the bottom of the film (see Fig. 4.4(b)). We

note here that Power Law model is not accurate at very low shear rates (see Myers

[45]) as observed here, hence we need to be careful in interpreting the above results.

We will compare the results here with that obtained from the Carreau model below.

In order to further investigate the influence of varying n, we consider a much higher

value of K0 = 30 (which corresponds to smaller consistency index K?). The resulting

flow is of similar mobility and the shear rates are also similar to the previous case

with K0=1. Moreover, K(n) = Kn−1
0 , depends on n, which was not the case before

for K0 = 1. So, the influence on n will now come from µ(|ux| = Kn−1
0 |ux|n−1. So,

if the shear rates are low and n < 1, then the higher value of |ux|n−1 could be offset

by the lower value of Kn−1
0 (which is approximately 0.5 for n = 0.9), resulting in a

lower viscosity µ(|ux|). In contrast for n > 1, then |ux|n−1 is small, but Kn−1
0 is large

(which is approximately 2 for n = 1.2), which could result in a higher viscosity µ(|ux|).
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Figure 4.5: The film thickness h(x, t = 360) (black curve), the extensional flow speed
u(x, t = 360) (blue curve), the shear-rate ux(x, t = 360) (red curve) and the shear-
rate dependent viscosity µ(|ux|) (green curve) for (a) n = 0.75 (corresponding to the
shear-thinning fluid case), (b) n = 1 (corresponding to the Newtonian fluid case), and
n = 1.25 (corresponding to the shear-thickening fluid case), and fixed K0 = 1 and
Ca = 103.
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An illustration of this behaviour is observed in Fig. 4.6, which plots hmin versus t for

K0 = 30, and n = 0.9, 1, 1.2. We observe that at early to intermediate times during the

Figure 4.6: The global minimum hmin as a function of time t, for varying Power Law
index, n = 0.9, 1, 1.2, for fixed K0 = 30 and Ca = 103.

draining process, hmin thins faster for n = 0.9 compared to n = 1.2. This is due to the

faster drainage for n < 1 at the given value of K0 = 30, in comparison to a relatively

slower drainage for n > 1 (results not shown). At later times, the roles are reversed

and the thinning behaviour is similar to the case corresponding to K0 = 1. This is

due to the fact that the shear rates have become very small, so that the Kn−1
0 can no

longer offset the |ux|n−1 term, which is very large for n < 1 and very small for n > 1.

If we were to further increase K0, then the thinning behaviour observed at early and

intermediate times would persist for much longer times.

We now consider the effects of varying the yield stress τp on the evolution using the

regularised Herschel-Bulkley constitutive model. The values of τp chosen are informed

based on the absolute value of the extensional stress profile |τxxx| = |unx| determined
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from the initial shear rate ux(x, t = 0) corresponding to the initial profile of u given by

Eqs. (4.12,4.19), for the value of n chosen. An example is shown in Fig. 4.7, where we

plot |τxxx(x, t = 0)| for n = 1. The maximum value of the initial stress τxxx then provides

Figure 4.7: The absolute value of the initial extensional stress |τxxx(x, t = 0)| for n = 1.

the maximum value of τp; the flow will not yield from its initial state for any value

of τp greater than this maximum value; any value of τp less than this maximum value

will result in sections of the flow yielding while others do not yield (weakly yielding

for the regularised form of the Herschel-Bulkley constitutive model). We explore this

below for different Power Law index n. Figure 4.8(a, b, c) show the effect of varying

the yield stress τp = 10−4, 5× 10−3, 10−2, 2× 10−2, for n = 0.75, K0 = 1 and Ca = 103,

on h(x, t = 103), u(x, t = 103), and the global minimum hmin as a function of time t,

respectively. We observe in Fig. 4.8(b) that increasing the yield stress τp slows u and

exhibits weakly yielding behaviour for large τp. This results in the central region of the

film to be much thicker near the top and the bottom as τp is increased, as observed

in Fig. 4.8(a). There is a slight difference in the thickness of the film’s middle section
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Figure 4.8: (a) Film thickness h(x, t = 103), and (b) extensional flow speed u(x, t =
103), and (c) the global minimum hmin as a function of time t, for varying yield stress
τp = 10−4, 5× 10−3, 10−2, 2× 10−2, 4× 10−2, for n = 0.75, K0 = 1 and Ca = 103. The
corresponding thinning rates are t−2 for τp = 10−4 and t−1.8 for τp = 2× 10−2.
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as τp is increased, where u is maximum, and is not distinguishable from Fig. 4.8(a).

Indeed, Fig. 4.8(c) shows that the film’s minimum thickness hmin increases slightly as

τp increases, for any given time t. We estimate the thinning rates to be t−2 for τp = 10−4

and t−1.8 for τp = 2×10−2. This suggests that the thinning rate decreases as τp increases.

A weak dependence of the yield stress on the thinning rate is observed when measured

against the zero yield stress thinning rate of t−2 for n = 0.75. Figure 4.9(a, b, c) show

the effect of varying the yield stress τp = 2 × 10−2, 10−2, 5 × 10−3, 10−4, for n = 1,

K0 = 1 and Ca = 103, on h(x, t = 103), u(x, t = 103), and the global minimum hmin as

a function of time t, respectively. Figures 4.9(a, b, c) show similar behaviour and trends

as in the previous case for n = 0.75, except that u (and the corresponding shear rate ux

and stress τ) are larger as n increases (note that the maximum u is much higher than

that for n = 0.75, and at later time). We estimate the thinning rates to be t−2.25 for

τp = 10−4 and t−1.7 for τp = 2 × 10−2. This suggests that the thinning rate decreases

as τp increases. A weak dependence of the yield stress on the thinning rate is observed

when measured against the zero yield stress thinning rate of t−2.25 for n = 1. Figure

4.10(a, b, c) show the effect of varying the yield stress τp = 10−2, 4 × 10−3, 10−4, 10−5,

for n = 1.2, K0 = 1 and Ca = 103, on h(x, t = 500), u(x, t = 360), and the global

minimum hmin as a function of time t, respectively. Figures 4.10(a, b, c) again show

similar behaviour and trends as in the previous two cases for n = 0.75, 1, except that

u (and the corresponding shear rate ux and stress τ) are much larger as n increases.

In figure 4.10 (c), we estimate the thinning rates to be t−2.35 for τp = 10−4 and t−2 for

τp = 1.6×10−2. This suggests that the thinning rate decreases as τp increases. A weak



111

Figure 4.9: (a) Film thickness h(x, t = 1000), and (b) extensional flow speed u(x, t =),
and (c) the global minimum hmin as a function of time t, for varying yield stress
τp = 2×10−2, 10−2, 5×10−3, 10−4, for n = 1, K0 = 1 and Ca = 103. The corresponding
thinning rates are t−2.25 for τp = 10−4 and t−1.7 for τp = 2× 10−2.
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Figure 4.10: (a) Film thickness h(x, t = 360), and (b) extensional flow speed u(x, t =
360), and (c) the global minimum hmin as a function of time t, for varying yield stress
τp = 1.6 × 10−2, 10−2, 5 × 10−3, 10−4, for n = 1.2, K0 = 1 and Ca = 103. The
corresponding thinning rates are t−2.35 for τp = 10−4 and t−2 for τp = 1.6× 10−2.
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dependence of the yield stress on the thinning rate is observed when measured against

the zero yield stress thinning rate of t−2.35 for n = 1.2.

The Power Law model might not accurately reflect the dynamics of the low shear rate

cases [45]. In this section, we investigate the Carreau model which is well behaved at

low shear rates. Moreover, no regularisation is required at low shear rates for n < 1

either, unlike in the Power Law model. In the simulations to follow, we investigate the

Carreau model for varying n, with µ1 = 1 (so the reference viscosity is chosen to be

the zero shear rate viscosity), Ca = 103, λ = 100 (λ? = 10s) and µ∞ = 0 fixed. (Note

that µ∞ � 1.) Figure 4.11(a, b, c) show the effect of varying the Power Law index,

n = 0.75, 1, 1.2, for Ca = 103, on h(x, t = 800), u(x, t = 800) and hmin, the global

minimum in h(x, t), as a function of time t, respectively. We observe that the film thins

more rapidly as n decreases (Fig. 4.11(a)) due to the faster extensional flow speed as n

decreases (Fig. 4.11(b)). Note Fig. 4.11(a) only shows the central regions as the upper

and lower parts of the film are not significantly affected by varying n. The low flow

shear rates during the evolution result in lower viscosities for n < 1 (shear thinning)

and higher viscosities for n > 1 (shear thickening), resulting in much slower drainage

for n > 1. Figure 4.11(c) tracks hmin, the global minimum in h(x, t), as a function

of time t, for n = 0.6, 0.65, 0.75, 0.85, 1, 1.1, 1.2. We observe that the film thins more

rapidly as n decreases, in line with the observations in Fig. 4.11(a, b). We estimate the

thinning rate to be t−2.25 for n ≥ 1 and n < 1. To better understand the variations in

n, we plot key outputs, h(x, t = 800), u(x, t = 800), the shear-rate ux(x, t = 800) and
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Figure 4.11: (a) Film thickness h(x, t = 800), (b) extensional flow speed u(x, t = 800)
and (c) the global minimum hmin as a function of time t, for the Carreau model with
n = 0.6, 0.65, 0.75, 0.85, 1, 1.1, 1.2, µ1 = 1, Ca = 103, λ = 100 (λ? = 10s) and µ∞ = 0
fixed. We estimate the thinning rate to be t−2.25 for n < 1 and n ≥ 1 .
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the shear-rate dependent viscosity µ(|ux|) for n = 0.75 (corresponding to the shear-

thinning fluid case) in Fig. 4.12(a), and n = 1.2 (corresponding to the shear thickening

fluid case) in Fig. 4.12(b). We observe that the shear rate ux � 1 across the entire

Figure 4.12: The film thickness h(x, t = 800) (black curve), the extensional flow speed
u(x, t = 800) (blue curve), the shear-rate ux(x, t = 800) (red curve) and the shear-rate
dependent viscosity µ(|ux|) (green curve) for (a) n = 0.75 (corresponding to the shear-
thinning fluid case), and (b) n = 1.2 (corresponding to the shear-thickening fluid case),
for fixed µ1 = 1, Ca = 103, λ = 100 (λ? = 10s) and µ∞ = 0.

film, and throughout the evolution process. This results in lower viscosities for n < 1

(Fig. 4.10(a)) and higher viscosities for n ≥ 1 (Fig. 4.12(b)). Moreover, we observe

from Fig. 4.12(a) that the spatial profile of viscosity for n < 1 is less than 1 near where

the shear rate ux 6= 0. The opposite happens for n > 1 (Fig. 4.12(b)), with a spike in

viscosity corresponding to a change in shear rate observed where the flat middle region

of the film connects onto the pendant drop near the bottom of the film.

4.5 Conclusions

In this chapter, we investigated the draining of a vertically-aligned free film contain-

ing a non-Newtonian liquid between two rigid supports due to the combined effects of
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extensional viscous, gravity and surface tension forces. We assumed isothermal condi-

tions, so the liquid properties are independent of variations in temperature. A study

of the system parameters, mainly, the liquid consistency index K, the Power Law in-

dex, n, and the liquid yield stress, τp, was undertaken using a regularised Power Law

model and regularised Herschel-Bulkley model of viscoplastic flow. The regularization

was required since where the shear rate is zero, the Power Law model predicts infinite

viscosity when n < 1, and the Power Law model predicts zero viscosity when n > 1

resulting in the stress balance equation becomes singular in this limit. Their influence

on the evolution of the film’s free surface, its long-time thinning rate and the draining

of liquid from the film were investigated.

For fixed n, we observed that as K (K?) was reduced (reducing liquid resistance), the

film thinned more rapidly due to the faster extensional flow leading to severe thinning

of the film and its eventual rupture (Fig. 4.1(c)). When n was varied for fixed K?,

we observed that the dynamics could depend on the relative magnitudes of the two

terms in the Power Law model representing the dependence of K on n,

(
ρ?g?L?

K?

)n−1

,

and the shear-rate-dependent term, |ux|n−1. For large values of K?, the two terms are

of similar magnitude for the low shear rates observed in these cases. As a result, the

effective fluid viscosity µ(|ux|) was lower for n > 1 compared to n < 1, for |ux| < 1.

Due to this the film thinned more rapidly for n > 1 due to the faster extensional flow

leading to severe thinning of the film and its eventual rupture. The opposite happened

for n < 1, where an increase in viscosity at low shear rates results in an increase in
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the liquid viscosity slowing down the drainage within the film and its thinning. We

observed weak dependence of n on the Power Law thinning rate, with t−2 thinning

rate for n < 1 and t−2.25 for n ≥ 1 (Fig. 4.3(c)). For low and intermediate values

of K?, the dependence of K on n dominates the shear rate dependence on n, for low

shear rates, resulting in slower extensional flows and reduced thinning of the film for

n > 1 compared to n < 1, at least for early and intermediate times (Fig. 4.6). This

behaviour persists for much longer times if K? is further reduced.

The draining and thinning behaviour was close to that of a Newtonian film for small

values of τp. When τp was increased, the flow exhibited weakly yielding behaviour

primarily in a region around the maximum in the extensional flow (corresponding to

the minimum in the film thickness); the width of this weakly yielding region increased as

the value of τp increases. The weakly yielding region slowed down the extensional flow

speed in the lamellar region leading to a relatively thicker middle section in comparison

to a film with zero yield stress at any given instant of time. We observed a noticeable

decrease in the film’s thinning rate as τp was increased, with a t−2 thinning rate for

n > 1 (in comparison to t−2.25 for τp = 0) and t−1.7 thinning rate for n = 1 (in

comparison to t−2.25 for τp = 0). For n < 1, the dependence was weak with t−1.8

thinning rate (in comparison to t−2 for τp = 0).

It is known that Power Law fluids are inappropriate for certain low-shear rate flows

(Myers [45]). Therefore, in the absence of any experimental evidence, our thinning

rate predictions for the low shear rates are questionable. Our results identified the
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parameter, K = (K?/µ?0)(U?/L?)n−1 (a dimensionless liquid consistency index), to

play a key role in the draining and thinning dynamics. Decreasing K for fixed n

increased the extensional flow speed and corresponding shear rates (which scaled like

1/K1/n, resulting in the film thinning very rapidly on a timescale which scaled like

K1/n (Fig. 4.1,4.2). Moreover, this also indicated that for small values of K, the

highest shear rates and severest thinning rates would be for n < 1. For large values of

K, the film drains and thins faster for n > 1 compared to n < 1. Experimental data

for polymeric fluids show that K ≈ (10−2 − 20) (see Table 1 in Myers [45]). For the

smaller range of values of K, the shear rate would be significantly larger and in the

range of validity of the Power Law model for the film thinning rate predictions to be

more reliable. However, for these values of K the thinning of the film is very rapid for

any Power Law behaviour to be observed.

We also investigated the Carreau model which is well behaved at low shear rates [45].

We had to choose a large value of λ? ≈ 10s (dimensionless λ = 100; although not

unrealistic, e.g., experimental data for polystryrene liquid showed that λ? ≈ 46 [45]) to

observe variation in the viscosity from the Newtonian case. We observed thet the film

drains and thins more rapidly for n < 1, compared to n > 1, unlike the Power Law

model (compare Figs. 4.3 and 4.11 for Power Law and Carreau models, respectively).

The thinning rates appeared to be less dependent on n, with a thinning rate estimated

to be t−2.25, similar to the Newtonian case. The disparity in the results between

the Power Law models and the Carreau model highlights the inappropriateness of
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applying the Power Law fluid model at low shear rates. At higher shear rates, one

would need to compare both models by choosing appropriate values for K and λ.

Such comparisons can be made, for example, in the shear thinning region by choosing

K? = µ?0λ
?n−1

(or dimensionless K = λn−1). [45, 18]. Figure 4.13(a, b) shows hmin

versus t for 2 different liquids, Polystyrene and Hydroxylethycellulose, respectively,

using the Power Law and Carreau models. The parameter values used are based on

Figure 4.13: Comparison between the Power Law and Carreau models for two differ-
ent liquids, (a) Polystyrene (n,K, λ) = (0.8, 4, 0.001), and (b) Hydroxylethycellulose
(n,K, λ) = (0.8, 0.51, 30).

those reported for these liquids in Table 1 in Myers [45], except the value of n = 0.8

is chosen for both liquids, while their reported values are n = 0.4, 0.5 for Polystyrene

and Hydroxylethycellulose, respectively [45]. We were unable to compute the solutions

for low values of n, as mentioned previously. We note here that the comparison for

Polystryene was done using experimentally reported values for K and λ, while these

values for Hydroxylethycellulose were obtained by comparing the two models in the

shear thinning region, as explained above. We observe from Fig. 4.13(a), that the

comparison is not good for Polystyrene, but the two models are in good agreement for

Hydroxylethycellulose. This is consistent with the results shown in §4.4. The Power
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Law model predicts low shear rates for large values of K resulting in a large effective

viscosity and slower thinning of the film. For smaller values of K, even though the

shear rates could be low, this is offset by the lower value of K, resulting in a lower

effective viscosity and quicker thinning of the film.

We conclude by making some comparisons with a similar study done by Brush & Roper

[18], who investigated the draining of a non-Newtonian liquid film without the influence

of gravity. In the limit of Ca� 1, they were able to extend the asymptotic framework

of Breward [15, 16] for a Newtonian liquid to a Power Law liquid. They analytically

predicted the film’s thinning rate to be t−2 and independent of the Power Law exponent

n, which is the same as that for a Newtonian liquid. They concluded that the effect

of n was to shift the hmin versus t curve, without affecting the thinning rate. Our

numerical results shown in Fig. 4.3(c) are broadly similar to theirs, except for a weak

dependence of the thinning rate on n. We were unable to validate our predictions

using the asymptotic framework described in chapter 3 due to not being able to solve

the equations analytically, although the asymptotic framework could be extended for

a generalised Newtonian liquid (not done here).

In this chapter and chapters 2, 3, we investigated the draining and thinning of a

Newtonian and generalised Newtonian liquid film under isothermal conditions. In

the next two chapters, we will include the effects due to changes in temperature, in

particular, temperature-dependent viscosity and surface tension. These are important

in foams manufactured using polymeric melts [11].



Chapter 5

Gravity-driven draining of a

vertically-aligned thin Newtonian

and non-isothermal liquid free film

with temperature-dependent

viscosity and surface tension

5.1 Introduction

In the previous chapters, the draining problem was investigated under isothermal con-

ditions. In this chapter, we extend the model for a Newtonian liquid to include non-

121
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isothermal effects, in particular, a temperature-dependent viscosity and surface tension,

which provides the coupling between the temperature field and the flow, and cooling

effects due to heat transfer at the film’s free surface, and the top and bottom surfaces

of the wire frame.

The outline of this chapter is as follows. We formulate the two-dimensional mathemat-

ical problem in §5.2 which provides the governing equations and boundary conditions

for the flow and the temperature field. The lubrication approximation, allows simplifi-

cation of the governing equations and boundary conditions to a system of three coupled

PDEs for the evolution of the one-dimensional free surface shape and the extensional

flow speed, and the two-dimensional temperature field. In §5.4, we perform numerical

simulations of the evolution equations to determine the free surface shapes, the exten-

sional flow speeds and temperature fields for a variety of parameter values related to

the exponential viscosity-temperature model and a linear surface tension-temperature

model. In §5.5, we discuss the main results.

5.2 Mathematical Formulation

The fluid flow problem is the same as that described in §2.2. A vertically-aligned thin

liquid film supported by two rigid supports at the top and the bottom drains under

the influence of gravity (see Fig. 2.1 for a schematic). The liquid in the film is hot

compared to its surroundings, and assumed to be Newtonian with constant properties,
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except, the liquid viscosity and surface tension are dependent on the temperature.

The liquid loses its heat via the cooler free surface at z? = h?(x?, t?), and the top and

bottom supports at x? = 0, L?.

5.3 Governing equations

The governing equations for the flow are given by the conservation of mass and mo-

mentum, Eqs. (2.1,2.2). The two-dimensional governing equation for the temperature,

T ? in Cartesian coordinates, (x?, z?) is given by

ρ?c?p(T
?
t? + u?T ?x? + w?T ?z?) = κ? [T ?x?x? + T ?z?z? ] , (5.1)

in a material with density, ρ?, specific heat, c?p, thermal conductivity, κ? and ther-

mal diffusivity, κ?d = κ?/(ρ?c?p). We neglect the contribution from viscous dissipation.

(u?, w?) are the flow speeds in the x? and z? directions, respectively. The constitutive

relation between the liquid stress and its rate of strain for a Newtonian liquid with

temperature-dependent viscosity is written as:

τ ? = µ?(T ?)γ̇?, (5.2)

where µ?(T ?) is the temperature-dependent liquid viscosity and γ̇? is the rate of strain

tensor given by Eq. (2.4).
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The boundary conditions for the flow are given by Eqs. (2.6-2.11). The boundary

conditions for the temperature, T ? are as follows. We impose the symmetry boundary

condition along the center line z? = 0 for the temperature:

T ?z? = 0. (5.3)

At the free surface, z? = h?(x?, t?), we impose a heat flux boundary condition:

−κ?n? · ∇T ? = a?m(T ? − T ?a ), (5.4)

where a?m is a heat transfer coefficient (assumed constant) and T ?a is the ambient tem-

perature (assumed constant), and n? =
1√

1 + h?2x?
(−h?x? , 1) is the outward-pointing

normal vector to the free surface. This assumes that the heat flux is proportional to

the temperature difference across this boundary, referred to as Newton’s law of cooling.

We can write Eq. (5.4) as:

κ?
(
1 + h?2x?

)− 1
2 (T ?z? − h?x?T ?x?) = −a?m(T ? − T ?a ). (5.5)
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At x? = 0, L? we impose the following heat flux boundary condition:

−κ?n? · ∇T ? = b?s(T
? − T ?s ), (5.6)

κ?T ?x? = b?s(T
? − T ?s ), at x? = 0,

−κ?T ?x? = b?s(T
? − T ?s ), at x? = L?,

(5.7)

where b?s is a heat transfer coefficient at the wire frames (assumed constant) and T ?s is

the temperature there (assumed constant). In the above, we have used the fact that

n? = (−1, 0) at x? = 0 and n? = (1, 0) at x? = L?.

The non-dimensionalisation of the flow variables are the same as in §2.3 in chapter 2.

We define: T ? = T ?a + ∆?T ?θ (0 ≤ θ ≤ 1), ∆?T ? = T ?i − T ?a . Note: θ = 0, implies

T ? = T ?a and θ = 1, implies T ? = T ?i , where T ?i is an initial temperature of the liquid

within the film, and T ?i > T ?a . Using this, Eqs. (5.1,5.3,5.5,5.6) in dimensionless form

are:

Per[θt + uθx + wθz) =
[
ε2θxx + θzz

]
, (5.8a)

θz = 0, at z = 0, (5.8b)

θz = ε2hxθx − aε2θ
√

1 + ε2h2
x, at z = h(x, t), (5.8c)

θx = ε2b(θ − θs), at x = 0, (5.8d)

θx = −ε2b(θ − θs), at x = 1. (5.8e)

Here the reduced Péclet number, Per = ε2Pe (assumed to beO(1)), Pe = (ρ?c?pU
?L?)/κ? =
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U?L?/κ?d, is the Péclet number (compares convective to diffusive heat transport),

a = a?mH
?/(ε2κ?) and b = b?sH

?/(ε2κ?) are the heat transfer coefficients at the free

surface and substrate, respectively, and θs = (T ?s − T ?a )/(T ?i − T ?a ).

Our starting point in deriving the evolution equation for h is from Eq. (2.32). Inte-

grating Eq. (2.32) with respect to z and applying the boundary condition Eq. (2.34),

we have

τxz1 = −2

∫ z

0

τxx0x dz − 1

Ca

∫ z

0

(γ(θ)hxx)x dz − z[1−Re(u0t + u0u0x)]. (5.9)

Note that τxx0 = µ(θ(x, z, t))u0x. Unlike the isothermal case where there is no tangential

stress at the free surface, the tangential stress at the free surface for the non-isothermal

case is driven by gradients in surface tension due to variations in temperature (the so-

called Marangoni stress). The tangential stress boundary condition at z? = h?(x?, t?)

is now written as t? · σ? · n? = ∇?γ? · t?. Hence, Eq.(2.9) becomes

(1− h?x?
2)τ ∗x

?z? + h?x?
(
τ ∗z

?z? − τ ∗x?x?
)

= [γ?x?(θ?) + h?x?γ
?
z?(θ?)]

√
1 + h?x?

2, at z? = h?(x?, t?).

(5.10)

The nondimensionalised form of Eq. (5.10) can be written as:

(1− ε2h2
x)τ

xz + ε2hx(τ
zz − τxx) =

1

Ca
[γx(θ) + hxγz(θ)]

√
1 + ε2h2

x, at z = h(x, t),

(5.11)
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Assuming that any gradients in surface tension arise only at O(ε2), Eq.(2.36) can be

written as:

τxz1 + h2
0xτ

xz
0 + h0x(τ

zz
0 − τxx0 ) =

1

Ca
[γx(θ) + h0xγz(θ)], at z = h0. (5.12)

On substituting Eq.(5.12) into Eq. (5.9), we obtain the stress balance equation at

z = h(x, t) (given by Eq. (2.38)), which can be written as:

4

[
µ(θ)hxu0x +

∫ h

0

(µ(θ)u0x)x dz

]
+

1

Ca

∫ h

0

(γ(θ)hxx)x dz

+ h[1−Re(u0t + u0u0x)] =
1

Ca
[γx(θ) + hxγz(θ)]. (5.13)

Using Eq. (2.40) and the expression for τxz1 in Eq. (5.9), we obtain

u1z = − 1

µ(θ)

[
4

∫ z

0

(µ(θ)u0x)x dz +
1

Ca

∫ z

0

(γ(θ)hxx)x dz + z[1−Re(u0t + u0u0x)]

]
+ u0xxz.

(5.14)

Using the boundary condition u1 = 0 at z = h, we can write the O(ε2) correction to

the flux Q as:

Q1 =

∫ h

0

u1dz = −
∫ h

0

z u1zdz, (5.15)
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which, using equation Eq. (5.14), gives

Q1 =

∫ h

0

4z

µ(θ)

[∫ z

0

(µ(θ) u0x)x dz
′
]
dz +

1

Ca

∫ h

0

z

µ(θ)

[∫ z

0

(γ(θ)hxx)x dz
′
]
dz

+ [1−Re(u0t + u0u0x)]

∫ h

0

z2

µ(θ)
dz − h3

3
u0xx. (5.16)

Hence, using Q0 = u0h and the above expression for Q1, we can write the evolution

equation for h(x, t) as:

ht +Q0x +Q1x = 0. (5.17)

In order to solve Eqs. (5.8,5.13,5.17) numerically, it is instructive to map (x, z) ∈

[0, 1] × [0, h] to a rectangular domain (x, z) ∈ [0, 1] × [0, 1]. We apply the following

change of variables:

x̄ = x, z̄ =
z

h(x, t)
, t̄ = t. (5.18)

Using the chain rule, we can write

∂

∂x
=

∂

∂x̄
− z̄hx̄

h

∂

∂z̄
,

∂

∂z
=

1

h

∂

∂z̄
,

∂

∂t
=

∂

∂t̄
− z̄ht̄

h

∂

∂z̄
. (5.19)

Applying the above change of variables to Eq. (5.8), we obtain the transformed evolu-
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tion equation for θ(x̄, z̄, t̄) given by

Per

[
θt̄ + u0θx̄ + (w0 − z̄u0hx̄ − z̄ht̄)

1

h
θz̄

]
=

1

h2
θz̄z̄

+ ε2
[
θx̄x̄ − z̄

(
hx̄
h

)
x̄

θz̄ −
z̄hx̄
h

(
2θx̄z̄ −

(
z̄hx̄
h
θz̄

)
z̄

)]
, (x̄, z̄) ∈ [0, 1]× [0, 1], (5.20a)

θz̄ = 0, at z̄ = 0,∀x̄, (5.20b)

θz̄ =
ε2hhx̄θx̄

1 + ε2z̄hx̄2
− ahθ

1 + ε2z̄hx̄2
, at z̄ = 1,∀x̄, (5.20c)

θx̄ = ε2b(θ − θs) +
z̄hx̄
h
θz̄, at x̄ = 0, ∀z̄ (5.20d)

θx̄ = −ε2b(θ − θs) +
z̄hx̄
h
θz̄, at x̄ = 1,∀z̄. (5.20e)

The film thickness evolution equation Eq. (5.17) in the transformed coordinates be-

comes,

ht̄ +
(
Q0 + ε2Q1

)
x̄

= 0, (5.21a)

Q0 = u0h, (5.21b)

Q1 = 4

∫ 1

0

h3z̄

µ(θ)

[∫ z̄

0

(µ(θ)u0x̄)x̄ dz̄
′
]
dz̄ − 4

∫ 1

0

h3z̄

µ(θ)

[∫ z̄

0

z̄hx̄
h

(µ(θ)u0x̄)z̄ dz̄
′
]
dz̄

+
1

Ca

∫ 1

0

h3z̄

µ(θ)

[∫ z̄

0

(γ(θ)hx̄x̄)x̄ dz̄
′
]
dz̄ − 1

Ca

∫ 1

0

h3z̄

µ(θ)

[∫ z̄

0

z̄hx̄
h

(γ(θ)hx̄x̄)z̄ dz̄
′
]
dz̄

+

∫ 1

0

h3 z̄2

µ(θ)
dz̄ [1−Re(u0t + u0u0x)]−

h3

3
u0x̄x̄. (5.21c)

The stress balance equation at z = h(x, t), Eq. (5.13), in transformed variables can be
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written as:

4

[
µ(θ)hx̄u0x̄ +

∫ 1

0

(µ(θ)u0x̄)x̄ dz̄ −
∫ 1

0

z̄hx̄
h

(µ(θ)u0x̄)z̄ dz̄

]
+

1

Ca

[∫ 1

0

(γ(θ)hx̄x̄)x̄ dz̄ −
∫ 1

0

z̄hx̄
h

(γ(θ)hx̄x̄)z̄ dz̄

]
+ [1−Re(u0t + u0u0x)]h =

1

Ca
[γx̄ +

hx̄
h

(1− h)γz̄(z = h(x, t))]. (5.22)

Equations (5.21,5.22) are subject to the boundary conditions:

h(0, t) = h(1, t) = 1, (γ(θ)hx̄x̄)x̄(0, t) = (γ(θ)hx̄x̄)x̄(1, t) = −Ca, u(0, t) = u(1, t) = 0.

(5.23)

In the third and fourth boundary condition above, we assume that θ is uniform in

z at x = 0, 1. The viscosity-temperature relationship, µ(θ), is given by the non-

dimensionalised form of Eqs. (1.8) in chapter 1,

µ(θ) = e−αθ. (5.24a)

Here, α = α?(T ?i − T ?a ). The surface tension-temperature, γ(θ) is given by the non-

dimensionalised form of Eq. (1.9) in chapter 1,

γ(θ) = 1− βθ, (5.25)

where β = β?(T ?i − T ?a ) = O(ε2). This is to ensure that surface tension gradients arise
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only at O(ε2) as required in the above analysis.

5.4 Numerical results

In this section, we seek the numerical solution of Eqs. (5.20a,5.21,5.22) using the

boundary conditions given in Eqs. (5.20b-5.20e,5.23). Equations (5.20a,5.21,5.22) are

solved numerically using finite difference method on a two-dimensional rectangular

mesh for θ(x, z, t) and one-dimensional mesh for [h, u](x, t), and the method of lines.

We use the implicit solver ode15i in MATLAB (MATLAB 6.1, The MathWorks Inc.,

Natick, MA, 2000) for our numerical simulations. The discretisation for the film’s

thickness (Eq. (5.21)) and the extensional flow speed (Eq. (5.22)) are the same as

explained in Chapter 3. The only difference is the term (γ(θ)hxx)x, that appears in

Eqs. (5.21,5.22,5.23). We write this term in the form γ′(θ)θxhxx + γ(θ)hxxx, and

use a second-order centered difference scheme to discretise γ(θ)x, θx and hxx. We

discretize hxxx in the same way as shown in §3.3. All other terms in Eqs. (5.21,5.22)

are discretized as previously discussed. The integrals that appear in Eq. (5.21) (in

the flux terms) and Eq. (5.22) are approximated using the trapezium rule. For the

inner indefinite integrals, we used MATLAB’s inbuilt cumtrapz function and the outer

definite integrals were evaluated using MATLAB’s trapz function.

We discretize Eq. (5.20a) for θ(x, z, t) using second-order centered differences as follows
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(keeping the time derivative continuous):

Per

[
[θt,i,j + u0i

(
θi+1,j − θi−1,j

2∆x

)
+ (w0i − j∆zu0i

(
hi+1 − hi−1

2∆x

)
− j∆zht,i)

1

hi

(
θi,j+1 − θi,j−1

2∆z

)]
(5.26)

=
1

h2
i

(
θi,j+1 − 2θi,j + θi,j−1

∆z2

)
+ ε2

(
θi+1,j − 2θi,j + θi−1,j

∆x2

)
, i = 1, . . . , N + 1, j = 1, . . . ,M + 1.

Note that we only retain the θxx term in the regularization of Eq. (5.20a). We use the

boundary conditions at x = 0, 1, θx = 0, Eqs. (5.20d,5.20e) to determine the fictitious

points θ0,j = θ2,j, ∀j = 1, . . . ,M + 1 and θN+2,j = θN,j, ∀j = 1, . . . ,M + 1. We assume

here that θ is uniform in z at x = 0, 1, so θz = 0. Note b = 0 in all the results shown.

Similarly, we use the boundary conditions at z = 0, 1 given by Eqs. (5.20b,5.20c)

to determine the fictitious points θi,0 = θi,2, ∀i = 1, . . . , N + 1 and θi,M+2 = θi,M ,

∀i = 1, . . . , N + 1. Here, N + 1,M + 1 are the number of mesh points in the x and z

directions, respectively, and ∆(x, z) are the corresponding mesh widths.

The focus of this chapter is the evolution of the film’s thickness h(x, t), the exten-

sional flow speed u(x, t), and the temperature θ(x, z, t). We will vary the key param-

eters related to the non-isothermal conditions: the reduced Péclet number Per, the

heat transfer coefficient at the free surface a, the decay constant α in the exponential

viscosity-temperature relationship, and β in the surface tension-temperature relation-

ship. In all the results shown below, we choose the heat transfer coefficient at the

substrate b = 0 and the Reynold’s number Re = 0. The initial conditions for h, θ and

u are chosen as: h(x, 0) = θ(x, z, 0) = 1 and u(x, 0) = x(1− x)/8. In all the results in
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this chapter, we fix the Capillary number Ca = 103, ∆(x, z) = 10−3 in all the numerical

simulations, to achieve convergence within a prescribed tolerance.

In the first set of results shown below, we investigate the influence of viscosity varying

with temperature, and take the surface tension to be constant (so, β = 0). Figures

5.1(a− j) show the contour plot for θ(x, z, t) at times

t = 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, respectively, with Per = 0.1, a = 0.02, α = 2

and θs = 0. The temperature profiles are superimposed on the corresponding free

surface shape h. We clearly observe that the heat loss at the free surface results in the

temperature dropping from its initial value θ = 1 (T = Ti) to its equilibrium value,

θ = 0 (T = Ta), very quickly. At small values of Per, the diffusion of temperature across

the thickness of the film dominates, i.e., θzz, resulting in the film cooling uniformly.

Figures 5.2(a− j) show the contour plot for θ(x, z, t) at times

t = 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, respectively, with Per = 1, a = 0.02, α = 2 and

θs = 0. The temperature profiles are superimposed on the corresponding free surface

shape h. The slower diffusion rate at Per = 1 compared to the previous case with Per =

0.1 results in less rapid cooling but still uniform along the free surface. Figures 5.3(a−j)

show the contour plot for θ(x, z, t) at times t = 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, re-

spectively, with Per = 10, a = 0.02, α = 2 and θs = 0. The temperature profiles are

superimposed on the corresponding free surface shape h. We observe that at this value

of Per, the diffusion rate is even slower, and is less dominant in suppressing spatial vari-

ations in temperature due to non-uniform cooling both along the film as well as within
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Figure 5.1: The contour plot for (a) θ(x, z, t = 10), (b) θ(x, z, t = 20), (c) θ(x, z, t = 30),
(d) θ(x, z, t = 40), (e) θ(x, z, t = 50), (f) θ(x, z, t = 60), (g) θ(x, z, t = 70), (h)
θ(x, z, t = 80), (i) θ(x, z, t = 90), and (j) θ(x, z, t = 100) (the temperature profiles are
superimposed on the corresponding free surface shape h), with Per = 0.1, a = 0.02,
α = 2, θs = 0.
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Figure 5.2: The contour plot for (a) θ(x, z, t = 10), (b) θ(x, z, t = 20), (c) θ(x, z, t = 30),
(d) θ(x, z, t = 40), (e) θ(x, z, t = 50), (f) θ(x, z, t = 60), (g) θ(x, z, t = 70), (h)
θ(x, z, t = 80), (i) θ(x, z, t = 90), and (j) θ(x, z, t = 100) (the temperature profiles
are superimposed on the corresponding free surface shape h), with Per = 1, a = 0.02,
α = 2, θs = 0.
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Figure 5.3: The contour plot for (a) θ(x, z, t = 10), (b) θ(x, z, t = 20), (c) θ(x, z, t = 30),
(d) θ(x, z, t = 40), (e) θ(x, z, t = 50), (f) θ(x, z, t = 60), (g) θ(x, z, t = 70), (h)
θ(x, z, t = 80), (i) θ(x, z, t = 90), and (j) θ(x, z, t = 100) (the temperature profiles are
superimposed on the corresponding free surface shape h), with Per = 10, a = 0.02,
α = 2, θs = 0.
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the film. This results in more pronounced cooling in the middle section of the film where

h is much smaller, compared to near the ends where h is comparatively larger. This

non-uniformity in the cooling is due to the rate of heat loss being inversely proportional

to h - the thicker regions of the film retain their heat more compared to the thinner

regions, which lose their heat and therefore cool relatively quickly. Figures 5.4(a − j)

show the contour plot for θ(x, z, t) at times t = 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, re-

spectively, with Per = 102, a = 0.02, α = 2 and θs = 0. The temperature profiles are

superimposed on the corresponding free surface shape h. For larger Per, the spatial

variations in θ are much more pronounced, with cooling in the middle section of the film

where h is much smaller, compared to near the ends where h is comparatively larger.

At the early times, we also observe variations in θ within the film (Fig. 5.4(a, b)),

with the film slowly cooling from the free surface. At later times, it appears that θ

is uniform across the film. Figures 5.5(a − j) show the contour plot for θ(x, z, t) at

times t = 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, respectively, with Per = 103, a = 0.02,

α = 2 and θs = 0. The temperature profiles are superimposed on the corresponding

free surface shape h. We clearly observe that the majority of the cooling is in the

middle section of the film, where the film is very thin; the upper capillary meniscus

and the pendant drop region at the bottom remain almost insulated at its initial tem-

perature from the cooler middle section and a thin cooler boundary layer near the free

surface (Fig. 5.5(a, b) where the boundary layer is clearly visible; in Fig. 5.3(c− j) the

boundary layer is very thin and not resolved here). Figure 5.6(a, b, c) show the effect

of varying Per = 0.1, 1, 10, 102, 103, on h(x, t = 100), u(x, t = 100) and hmin(t) (the
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Figure 5.4: The contour plot for (a) θ(x, z, t = 10), (b) θ(x, z, t = 20), (c) θ(x, z, t = 30),
(d) θ(x, z, t = 40), (e) θ(x, z, t = 50), (f) θ(x, z, t = 60), (g) θ(x, z, t = 70), (h)
θ(x, z, t = 80), (i) θ(x, z, t = 90), and (j) θ(x, z, t = 100) (the temperature profiles are
superimposed on the corresponding free surface shape h), with Per = 102, a = 0.02,
α = 2, θs = 0.
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Figure 5.5: The contour plot for (a) θ(x, z, t = 10), (b) θ(x, z, t = 20), (c) θ(x, z, t = 30),
(d) θ(x, z, t = 40), (e) θ(x, z, t = 50), (f) θ(x, z, t = 60), (g) θ(x, z, t = 70), (h)
θ(x, z, t = 80), (i) θ(x, z, t = 90), and (j) θ(x, z, t = 100) (the temperature profiles are
superimposed on the corresponding free surface shape h), with Per = 103, a = 0.02,
α = 2, θs = 0.



140

global minimum in h(x, t)), respectively. Figure 5.6(d) shows the influence of varying

Per on the rupture time, trupt. We define trupt as the time taken for the film to drain

to a prescribed thickness. In practise, we estimate trupt to be the time taken until hmin

reduces to 10−2 of its initial thickness. We observe that the film thins more rapidly as

Figure 5.6: (a) Film thickness h(x, t = 50), (b) extensional flow speed u(x, t = 50), and
(c) the global minimum hmin(t), for varying Per = 0.1, 1, 10, 102, 103 the rupture time
trupt as a function of Per. The parameter values are: α = 2, a = 0.2 and β = 0.

Per increases (Fig. 5.6(a)) due to the faster extensional flow speed as Per increases

(Fig. 5.6(b)). Note that Fig. 5.6(a) only shows the central regions as the upper and

lower parts of the film are not significantly affected by varying Per. The faster flow

speed at larger Per is due to the slower and non-uniform cooling of the free surface

(see Figs. 5.4,5.5, for example), resulting in lower viscosities. This is in comparison to

smaller Per where the cooling is more rapid and uniform (see Fig. 5.1-5.3, for exam-
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ple), resulting in larger viscosities, hence slowing down the flow. Figure 5.6(c) shows

the increased thinning of the minimum film thickness, hmin(t), as Per increases. We

observe isothermal thinning, i.e., approximately t−2.25 thinning rate, when Per is either

very large or very small. Figure 5.6(d) shows that as Per increases the fluid drains

more quickly which causes the middle section to become thinner sooner, therefore more

likely to rupture at earlier times.

In Figs. 5.7-5.10, we investigate the influence of varying the heat transfer coefficient

a, for fixed Per = 103, α = 2 and θs = 0. For larger values of a, the cooling rate due

to heat radiating from the film’s surface is relatively quicker across and along the film

compared to smaller values of a (compare Figs. 5.9,5.10 for a = 2, 5, respectively, to

Figs. 5.7,5.8 for a = 0.2, 1, respectively). This is due to the rate of heat loss being

proportional to a (see second term on the right-hand-side of the boundary condition

for θ at z = h(x, t) given by Eq. (5.20d)). Figure 5.11(a, b, c) shows the effect of

varying a = 0.2, 1, 2, 5, on h(x, t = 48), u(x, t = 48) and hmin(t), respectively. Figure

5.11(d) shows the influence of varying a on the rupture time, trupt. We observe that the

the film thins more slowly as a increases (Fig. 5.11(a)) due to the slower extensional

flow speed as a increases (Fig. 5.11(b)). The faster flow speed at lower a is due to

the slower and non-uniform cooling of the free surface (see Fig. 5.7,5.8, for example),

resulting in lower viscosities. This is in comparison to larger a where although the

cooling is non-uniform, it is relatively quicker (see Fig. 5.9,5.10, for example), resulting

in larger viscosities, hence slowing down the flow. Figure 5.11(c) shows the increased
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Figure 5.7: The contour plot for (a) θ(x, z, t = 10), (b) θ(x, z, t = 20), (c) θ(x, z, t = 30),
(d) θ(x, z, t = 40), (e) θ(x, z, t = 50), (f) θ(x, z, t = 60), (g) θ(x, z, t = 70), (h)
θ(x, z, t = 80), (i) θ(x, z, t = 90), and (j) θ(x, z, t = 100) (the temperature profiles are
superimposed on the corresponding free surface shape h), with Per = 103, a = 0.2,
α = 2, θs = 0.
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Figure 5.8: The contour plot for (a) θ(x, z, t = 10), (b) θ(x, z, t = 20), (c) θ(x, z, t = 30),
(d) θ(x, z, t = 40), (e) θ(x, z, t = 50), (f) θ(x, z, t = 60), (g) θ(x, z, t = 70), (h)
θ(x, z, t = 80), (i) θ(x, z, t = 90), and (j) θ(x, z, t = 100) (the temperature profiles
are superimposed on the corresponding free surface shape h), with Per = 103, a = 1,
α = 2, θs = 0.
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Figure 5.9: The contour plot for (a) θ(x, z, t = 10), (b) θ(x, z, t = 20), (c) θ(x, z, t = 30),
(d) θ(x, z, t = 40), (e) θ(x, z, t = 50), (f) θ(x, z, t = 60), (g) θ(x, z, t = 70), (h)
θ(x, z, t = 80), (i) θ(x, z, t = 90), and (j) θ(x, z, t = 100) (the temperature profiles
are superimposed on the corresponding free surface shape h), with Per = 103, a = 2,
α = 2, θs = 0.
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Figure 5.10: The contour plot for (a) θ(x, z, t = 10), (b) θ(x, z, t = 20), (c) θ(x, z, t =
30), (d) θ(x, z, t = 40), (e) θ(x, z, t = 50), (f) θ(x, z, t = 60), (g) θ(x, z, t = 70), (h)
θ(x, z, t = 80), (i) θ(x, z, t = 90), and (j) θ(x, z, t = 100) (the temperature profiles
are superimposed on the corresponding free surface shape h), with Per = 103, a = 5,
α = 2, θs = 0.
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Figure 5.11: (a) Film thickness h(x, t = 48), (b) extensional flow speed u(x, t = 48),
and (c) the global minimum hmin(t), for varying a = 0.02, 0.2, 1, 2, 5 the rupture time
trupt as a function of a. The parameter values are: α = 2, Per = 103 and β = 0.
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thinning of the minimum film thickness, hmin(t), as a decreases. We observe isothermal

thinning, with t−2.25 thinning rate, when a is very small. Figure 5.11(d) shows that as

a increases the fluid drains more slowly which slows down the thinning of the middle

section, therefore delaying the rupture times.

Figures 5.12-5.14 investigate the influence of varying the viscosity-temperature decay

constant α = 1, 3, 5, respectively, while keeping Per = 103, a = 0.02, b = 0 fixed.

Figures 5.12-5.14 show that θ is not very sensitive to variations in α, with the slight

reduction in θ observed as α increases. This may be due to convestion effects transfer-

ring the cooler liquid in the middle region to the bottom pendant drop region. Figure

5.15(a, b, c) shows the effect of varying α, on h(x, t = 43), u(x, t = 43) and hmin(t),

respectively. Figure 5.15(d) shows the influence of varying α on the rupture time, trupt.

We observe that the the film thins faster as α increases (Fig. 5.15(a)) due to the faster

extensional flow speed as α increases (Fig. 5.15(b)). The faster flow speed at higher

values of α is due to larger reduction in viscosity as α increases Figure 5.15(c) shows

the increased thinning of the minimum film thickness, hmin(t), as α increases. Figure

5.15(d) shows that as α increases the fluid drains more rapidly (due to the larger re-

duction in viscosity) which accelerates the the thinning of the middle section, therefore

increasing the rupture times.

In the next set of results presented below, we study the influence of surface tension

varying with temperature via the parameter β and take the viscosity to be constant

(so, α = 0). The temperature profiles are not sensitive to variations in β and behave
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Figure 5.12: The contour plot for (a) θ(x, z, t = 10), (b) θ(x, z, t = 20), (c) θ(x, z, t =
30), (d) θ(x, z, t = 40), (e) θ(x, z, t = 50), (f) θ(x, z, t = 60), (g) θ(x, z, t = 70), (h)
θ(x, z, t = 80), (i) θ(x, z, t = 90), and (j) θ(x, z, t = 100) (the temperature profiles are
superimposed on the corresponding free surface shape h), with Per = 103, a = 0.02,
α = 1, θs = 0.)
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Figure 5.13: The contour plot for (a) θ(x, z, t = 10), (b) θ(x, z, t = 20), (c) θ(x, z, t =
30), (d) θ(x, z, t = 40), (e) θ(x, z, t = 50), (f) θ(x, z, t = 60), (g) θ(x, z, t = 70), (h)
θ(x, z, t = 80), (i) θ(x, z, t = 90), and (j) θ(x, z, t = 100) (the temperature profiles are
superimposed on the corresponding free surface shape h), with Per = 103, a = 0.02,
α = 3, θs = 0.
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Figure 5.14: The contour plot for (a) θ(x, z, t = 10), (b) θ(x, z, t = 20), (c) θ(x, z, t =
30), (d) θ(x, z, t = 40), (e) θ(x, z, t = 50), (f) θ(x, z, t = 60), (g) θ(x, z, t = 70), (h)
θ(x, z, t = 80), (i) θ(x, z, t = 90), and (j) θ(x, z, t = 100) (the temperature profiles are
superimposed on the corresponding free surface shape h), with Per = 103, a = 0.02,
α = 5, θs = 0.
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Figure 5.15: (a) Film thickness h(x, t = 43), (b) extensional flow speed u(x, t = 43),
and (c) the global minimum hmin(t), for varying α = 1, 2, 3, 5 the rupture time trupt as
a function of α. The parameter values are: Per = 103, a = 0.02, β = 0.
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similar to the previous results; hence we do not show them in the results to follow.

Figure 5.16(a, b, c) show the effect of varying Per = 10−1, 1, 10, 102, 103, respectively,

on h(x, t = 43), u(x, t = 43) and hmin(t) (the global minimum in h(x, t)), respectively.

Figure 5.16(d) shows the influence of varying Per on the rupture time, trupt. For

Figure 5.16: (a) Film thickness h(x, t = 43), (b) extensional flow speed u(x, t = 43),
and (c) the global minimum hmin(t), for varying Per = 10−1, 1, 10, 102, 103 the rupture
time trupt as a function of Per. The parameter values are: β = 0.5, a = 0.02 and α = 0.

larger Per, the temperature in the upper capillary meniscus and lower pendant drop

regions is much higher compared to that at low Per (similar to Fig. 5.1-5.5). The

effect of the elevated temperature is to decrease the surface tension in these regions,

which is also where the curvature of the film is most pronounced. As a result, the

capillary force acting on the fluid is decreased in comparison to gravity, resulting in

a longer and flatter middle section of the film (Fig. 5.16(a)), as well as more liquid

collecting in the pendant drop region making it thicker. Since surface tension decreases
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with temperature, the effective Capillary number, Ca, increases which results in the

lengthening and flattening of the film’s middle section (similar to Fig. 3.3 in chapter

3. The extensional flow speed u(x, t) increases as Pe increases (Fig. 5.16(b)), which

results in the film draining and thinning faster (Fig. 5.16(c)), consequently rupturing

quickly (Fig. 6.7(d)). We note a slight non-monotonicity in trupt at intermediate Pe,

which results in a minimum in the rupture time at Pe ≈ 10 (Fig. 6.7(d)).

We are not able to show any results for α, β > 0, corresponding to changes in both

viscosity and surface tension with respect to temperature, due to some numerical diffi-

culties and the long computational time taken to simulate such cases. In chapter 6, we

investigate the influence of α, β > 0 in the limit of Per � 1, which reduces the tem-

perature field from two-dimensional to one-dimensional making it less computationally

intensive,

5.5 Conclusions

In this chapter we coupled the thin-film flow equations to a two-dimensional advection-

diffusion equation for the temperature field and investigated the draining and thinning

of a cooling vertically-aligned hot Newtonian liquid film for the reduced Péclet number,

Per = O(1). We considered non-isothermal conditions which included a temperature-

dependent viscosity and surface tension, and heat loss due to cooling at the free surface.

An extensive parameter study revealed the influence of the system parameters on this
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cooling, particularly, the reduced Péclet number, Per, the decay constant in the expo-

nential viscosity-temperature model, α, the heat transfer coefficient, a, and the slope of

the surface tension-temperature model, β. The resulting temperature and correspond-

ing viscosity and surface tension contrast arising due to the cooling near the film’s free

surface significantly influenced the draining and subsequent thinning of the film.

Our results highlighted a very important feature during the draining and thinning

process which is the cooling of the film’s middle section where the rate of heat loss is

maximum due to its much smaller thickness compared to the top and bottom regions

of the film. The extent of this cooling was dependent on the parameter values and

ranged from

(i) a draining collar of colder liquid sandwiched between two much hotter regions,

which were almost insulated from the cooler middle section and a thin cooler

boundary layer near the free surface (Fig. 5.5), for intermediate and large Per,

(ii) to small Per, where the temperature isotherms became almost vertical across the

film and the film cooled uniformly (Fig. 5.1).

We observed that the cooling rate could be enhanced by increasing the heat transfer

coefficient a which slowed down the draining and thinning of the film (Fig. 5.11(c)).

Moreover, a rapid drop in the viscosity with temperature controlled by the parameter α

increased the draining flow and the subsequent thinning of the film (Fig. 5.15(c)). The

low Per limit is preferable in polymeric melt films since the hot liquid in the film cools

uniformly and rapidly, consequently the liquid viscosity increases uniformly within the
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film, resulting in slower drainage and thinning of the film. This can be achieved if the

Péclet number, Pe = U?L?/κ?d, is small (or the heat diffusivity for the liquid, κ?d is

large) or the aspect ratio, ε is small. Polymeric melts generally have low conductivity

(e.g., the thermal conductivity of Polystyrene, κ? ≈ 0.04), so one would need very thin

films for the low Per results to be achieved. Alternatively, one could increase the melt’s

conductivity, if that is feasible. Another method to sufficiently reduce the drainage so

that cooling can occur, is to disperse particles within the melt that can increase its

effective viscosity, e.g., alumina particles are dispersed in aluminium foam to increase

the viscosity (Yang & Nakae [80]).

While we have extensively investigated the influence of viscosity variation with temper-

ature, we have not fully investigated the influence of temperature variations on surface

tension. Our preliminary investigations showed that the reduction in surface tension

due to an increase in temperature, controlled by the parameter β, is analogous to in-

creasing the effective Capillary number, Ca. Consequently this increased curvature of

the pendant drop region in order to accommodate more liquid accumulating at the

bottom due to the relative increase in gravity in comparison to capillary forces (Fig.

5.16(a)). We would need to do further investigations to investigate the combined effect

of variations in surface tension and viscosity with temperature. This will be investi-

gated in the next chapter, where we consider a reduced model which will allow us to

overcome some of the numerical difficulties and long computational times faced here.

Results for low Per showed that the temperature isotherms became vertical across
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the film suggesting the independence of temperature across the film thickness for these

values, i.e., θ = θ(x, t). This so-called vertical isothermal theory valid in the asymptotic

limit of Per � 1 will be investigated in the next chapter.



Chapter 6

Gravity-driven draining of a

vertically-aligned thin Newtonian

and non-isothermal liquid free film:

the small reduced Péclet number

limit

6.1 Introduction

In this chapter, we investigate the asymptotic limit of the reduced Péclet number,

Per = ε2Pe � 1, where the Péclet number, Pe = O(1), the so-called diffusion-

157
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dominated scenario of heat transport (also referred to as isothermal or well-mixed heat

transport along the thickness of the film). This enables the non-isothermal problem to

be reduced from a two-dimensional temperature field θ(x, z, t) to a one-dimensional

evolution equation for the temperature, θ(x, t), coupled with the evolution of the

free surface, h(x, t) via a temperature-dependent viscosity, µ(θ(x, t)) and temperature-

dependent surface tension, γ(θ(x, t)).

The outline of this chapter is as follows. In §6.2, the assumption of the reduced Péclet

number, Per � 1, allows simplification of the governing equations and boundary

conditions derived in chapter 5 to a system of three coupled PDEs for the evolution of

the one-dimensional free surface shape, the extensional flow speed and the temperature

field. In §6.3, we perform numerical simulations of the evolution equations to determine

the free surface shapes, the extensional flow speeds and temperature fields for a variety

of parameter values related to the exponential viscosity-temperature model and a linear

surface tension-temperature model. In §6.4, we discuss the main results.

6.2 Asymptotic limit of small reduced reduced Péclet

number, Per = ε2Pe� 1

We now consider the asymptotic limit of small reduced reduced Péclet number, Per =

ε2Pe � 1, where the Péclet number Pe is assumed to be O(1). This is the so-called

diffusion-dominated scenario of heat transport (also referred to as isothermal or well-
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mixed heat transport along the thickness of the film). We expand the scaled tem-

perature field θ(x, z, t) in powers of ε2. Let θ(x, z, t) = θ0(x, z, t) + ε2θ1(x, z, t) + . . ..

Substituting into Eq. (5.8) gives to leading order in ε:

θ0zz = 0, θ0z = 0, at z = 0, h(x, t), θ0x = 0, at x = 0, 1. (6.1)

Integrating and applying the boundary conditions gives θ0(x, z, t) = θ0(x, t). At O(ε2),

we obtain:

θ0t + u0θ0x =
1

Pe
[θ0xx + θ1zz ] , (6.2a)

θ1z = 0, at z = 0, (6.2b)

θ1z = h0xθ0x − aθ0, at z = h(x, t), (6.2c)

θ1x = b(θ0 − θ0s), at x = 0, (6.2d)

θ1x = −b(θ0 − θ0s) at x = 1. (6.2e)

After rearranging Eq. (6.2a) and integrating with respect to z from z = 0 to h, together

with the boundary conditions, Eqs.(6.2b,6.2c), we obtain

h0xθ0x − aθ0 = Pe(h0θ0t + θ0xh0u0)− h0θ0xx, (6.3)
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where h0u0 = Q0 is the leading order extensional liquid flux, and u0 is the extensional

flow speed. Dropping the subscripts, the leading order temperature field θ is given by

θt +

[
u− hx

hPe

]
θx =

1

Pe
θxx −

a

hPe
θ, (6.4a)

θx = 0, at x = 0, 1. (6.4b)

Proceeding in the same way as in chapter 5, and noting that the integrals with respect

to z in Eqs. (5.13,5.16) can be evaluated analytically when θ = θ(x, t), we can write

the evolution equations for h0, u0 and θ0 as (dropping the subscript “0”):

ht +Qx = 0, Q = uh+ ε2
h3

3

[
1

µ(θ)

{
4(µ(θ)ux)x +

(
1

Ca
γ(θ)hxx

)
x

+ 1

}
− uxx

]
,

(6.5a)

4(hµ(θ)ux)x + h

[(
1

Ca
γ(θ)hxx

)
x

+ 1

]
=

1

Ca
γx(θ), (6.5b)

θt +

[
u− hx

hPe

]
θx =

1

Pe
θxx −

a

hPe
θ, (6.5c)

subject to the boundary conditions

h(0, t) = h(1, t) = 1, (γ(θ)hxx)x(0, t) = (γ(θ)hxx)x(1, t) = −Ca, u(0, t) = u(1, t) = 0,

θx(0, t) = θx(1, t) = 0. (6.5d)

The viscosity-temperature relationship, µ(θ), and surface tension-temperature relation-

ship, γ(θ), are given in chapter 5, and are represented by Eqs. (5.24,5.25). respectively.



161

6.3 Numerical results

In this section, we seek the numerical solution of Eq. (6.5) for varying parameters

related to the non-isothermal conditions: the Péclet number Pe, the heat transfer co-

efficient a, the decay constant α in the exponential viscosity-temperature relationship,

and β in the surface tension-temperature relationship. In all the results shown below,

we choose the heat transfer coefficient at the substrate b = 0 and the Reynold’s number

Re = 0. The initial conditions for h, θ and u are chosen as: h(x, 0) = θ(x, 0) = 1 and

u(x, 0) = x(1− x)/8.

Equations (6.5) are solved numerically using finite difference method and the method of

lines. We use the implicit solver ode15i in MATLAB (MATLAB 6.1, The MathWorks

Inc., Natick, MA, 2000) for our numerical simulations. The discretisation for the film’s

thickness (Eq. (6.5a)) and the extensional flow speed (Eq. (6.5b)) are the same as

explained in chapter 3. The only difference is the term (γ(θ)hxx)x, that appears in

Eqs. (6.5a,6.5b,6.5d). We write this term in the form γ′(θ)θxhxx + γ(θ)hxxx, and use a

second-order centered difference scheme to discretise γ(θ)x, θx and hxx. We discretize

hxxx in the same way as shown in §3.3. All other terms in Eqs. (6.5) are discretized as

previously discussed. We discretize Eq. (6.5c) for θ(x, t) using second-order centered
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differences as follows (keeping the time derivative continuous):

θt,i +

[
ui +

1

Pehi

(
hi+1 − hi−1

2∆x

)](
θi+1 − θi−1

2∆x

)
=

1

Pe

θi+1 − 2θi + θi−1

∆x2
− a

Pehi
θi,

i = 1, . . . , N + 1. (6.6)

We use the boundary conditions at x = 0, 1, θx = 0 to determine the fictitious points

θ0 = θ2 and θN+2 = θN . In all the results shown below, we fix Ca = 103, and

∆x = 5 × 10−4 in all the numerical simulations, to achieve convergence within a

prescribed tolerance.

In the first set of results shown below, we investigate the influence of viscosity varying

with temperature, and take the surface tension to be constant (so, β = 0). Figure

6.1(a, b, c) shows the evolution of h(x, t), u(x, t) and θ(x, t), respectively, for Pe = 10−2

(Per = 10−4), α = 2, a = 0.2 and β = 0. The times shown range between t = 0− 103.

We observe that when Pe is small, the heat loss at the free surface is rapidly diffused

along the free surface. Consequently, the free surface cools uniformly to θ = 0 (T = Ta)

very rapidly from its initial temperature θ = 1 (T = Ti) (see Fig. (6.1(c)). The

evolution of h(x, t) and u(x, t) shown in Fig. (6.1(a, b)) is similar to the isothermal

case with constant viscosity µ = 1 (corresponding to θ = 0 or T = Ta).

Figure (6.2)(a−e) shows θ(x, t) for varying Pe(Per) = 0.1(10−3), 1(10−2), 10(10−1), 102(1), 103(10),

respectively. The times shown range from t = 0−500, except (e) where t = 0−340. The

parameter values are: α = 2, a = 0.2 and β = 0. For small Pe, diffusion of temperature
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Figure 6.1: (a) The film thickness h(x, t), (b) extensional flow speed u(x, t), and (c)
temperature θ(x, t) for t = 0− 103, with Pe = 10−2 (Per = 10−4), α = 2, a = 0.2 and
β = 0.
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Figure 6.2: The temperature profile θ(x, t) for varying Pe(Per) =
(a)0.1(10−3), (b)1(10−2), (c)10(10−1), (d)102(1), (e)103(10), and t = 0 − 500, ex-
cept (e) where t = 0 − 340. The parameter values are: α = 2, a = 0.2 and
β = 0.
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dominates, suppressing any spatial variations in temperature due to non-uniform cool-

ing, which results in a uniform and rapidly cooling temperature profile, as seen in (Fig-

ure 6.2(a) for Pe = 0.1). As Pe increases, the slower diffusion rate results in less rapid

cooling but still uniform along the free surface (Figure 6.2(b) for Pe = 1). For larger Pe,

the diffusion rate is even slower, and is less dominant in suppressing spatial variations

in temperature due to non-uniform cooling. This results in more pronounced cooling

in the middle section of the film where h is much smaller, compared to near the ends

where h is comparatively larger (Figs. 6.2(c, d, e)) for Pe = 10, 102, 103, respectively.

This non-uniformity in the cooling is due to the rate of heat loss being inversely pro-

portional to h (see second term on the right-hand-side of Eq. (6.5c)). Figure 6.3(a, b, c)

show the effect of varying Pe(Per) = 0.1(10−3), 1(10−2), 10(10−1), 102(1), 103(10), re-

spectively, on h(x, t = 300), u(x, t = 300) and hmin(t) (the global minimum in h(x, t)),

respectively. Figure 6.3(d) shows the influence of varying Pe on the rupture time, trupt.

We define trupt as the time taken for the film to drain to a prescribed thickness. In

practise, we estimate trupt to be the time taken until hmin reduces to 10−2 of its initial

thickness. We observe that the film thins more rapidly as Pe increases (Fig. 6.3(a))

due to the faster extensional flow speed as Pe increases (Fig. 6.3(b)). Note that Fig.

6.3(a) only shows the central regions as the upper and lower parts of the film are not

significantly affected by varying Pe. The faster flow speed at larger Pe is due to the

slower and non-uniform cooling of the free surface (see Fig. 6.2(e), for example), result-

ing in lower viscosities. This is in comparison to smaller Pe where the cooling is more

rapid and uniform (see Fig. 6.2(a), for example), resulting in larger viscosities, hence
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Figure 6.3: (a) Film thickness h(x, t = 300), (b) extensional flow speed
u(x, t = 300), and (c) the global minimum hmin(t), for varying Pe(Per) =
0.1(10−3), 1(10−2), 10(10−1), 102(1), 103(10), and (d) the rupture time trupt as a function
of Pe. The parameter values are: α = 2, a = 0.2 and β = 0.
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slowing down the flow. Figure 6.3(c) shows the increased thinning of the minimum film

thickness, hmin(t), as Pe increases. We observe isothermal thinning, i.e., approximately

t−2.25 thinning rate, when Pe is either very large or very small. Figure 6.3(d) shows

that as Pe increases the fluid drains more quickly which causes the middle section

to become thinner sooner, therefore more likely to rupture at earlier times. Figure

6.4(a− e) shows the effect of varying the heat transfer coefficient a = 0.1, 0.5, 1.5, 2, 5,

respectively, while keeping Pe = 103 fixed. For larger values of a, the cooling rate due

to heat radiating from the film’s surface is much quicker across the film compared to

smaller values of a (compare Figs. 6.4(a, e) for a = 0.1, 5, respectively). This is due to

the rate of heat loss being proportional to a (see second term on the right-hand-side

of Eq. (6.5c)). Figure 6.5(a, b, c) shows the effect of varying a = 0.1, 0.5, 1.5, 2, 5, on

h(x, t = 50), u(x, t = 50) and hmin(t), respectively. Figure 6.5(d) shows the influence

of varying a on the rupture time, trupt. We observe that the the film thins more slowly

as a increases (Fig. 6.5(a)) due to the slower extensional flow speed as a increases (Fig.

6.5(b)). The faster flow speed at lower a is due to the slower and non-uniform cooling of

the free surface (see Fig. 6.4(a), for example), resulting in lower viscosities. This is in

comparison to larger a where although the cooling is non-uniform, it is more rapid (see

Fig. 6.2(e), for example), resulting in larger viscosities, hence slowing down the flow.

Figure 6.5(c) shows the increased thinning of the minimum film thickness, hmin(t), as

a decreases. We observe isothermal thinning, i.e., approximately t−2.25 thinning rate,

when a is either very large or very small. Figure 6.5(d) shows that as a increases the

fluid drains more slowly which slows down the thinning of the middle section, therefore
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Figure 6.4: The temperature profile θ(x, t) for varying a = 0.1, 0.5, 1.5, 2, 5 and t =
0 − 300, respectively. The parameter values are: Pe = 103 (Per = 10), α = 2 and
β = 0.
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Figure 6.5: (a) Film thickness h(x, t = 50), (b) extensional flow speed u(x, t = 50), and
(c) the global minimum hmin(t), for varying a = 0.1, 0.5, 1.5, 2, 5, and (d) the rupture
time trupt as a function of a. The parameter values are: Pe(Per) = 103(10), α = 2 and
β = 0.
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delaying the rupture times. Figure 6.6(a− d) shows the effect of varying the viscosity-

temperature decay constant α = 0.1, 3, 5, 10, respectively, while keeping Pe = 10 and

a = 0.2 fixed. We note here that θ is not sensitive to variations in α (results not

shown). Equation (6.5c) for θ does not depend on α directly; the influence of α on θ is

via convection due the flow, which does not play a significant role in the evolution of

the temperature field. Figure 6.6(a, b, c) shows the effect of varying α, on h(x, t = 45),

u(x, t = 45) and hmin(t), respectively. Figure 6.6(d) shows the influence of varying α

on the rupture time, trupt. We observe that the the film thins faster as α increases

-

0.6in

Figure 6.6: (a) Film thickness h(x, t = 45), (b) extensional flow speed u(x, t = 45), and
(c) the global minimum hmin(t), for varying α = 0.1, 3, 5, 10, and (d) the rupture time
trupt as a function of α. The parameter values are: Pe(Per) = 10(10−1), a = 0.2 and
β = 0.

(Fig. 6.6(a)) due to the faster extensional flow speed as α increases (Fig. 6.6(b)).
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The faster flow speed at higher values of α is due to larger reduction in viscosity as

α increases Figure 6.6(c) shows the increased thinning of the minimum film thickness,

hmin(t), as α increases. Figure 6.6(d) shows that as α increases the fluid drains more

rapidly which accelerates the the thinning of the middle section, therefore increasing

the rupture times.

In the next set of results shown below, we investigate the influence of surface tension

varying with temperature via the parameter β, and take the viscosity to be constant (so,

α = 0). The temperature profiles are not sensitive to variations in β and behave similar

to the previous results, hence we do not show them in the results to follow. Figure

6.7(a, b, c) show the effect of varying Pe(Per) = 10−1(10−3), 1(10−2), 10(10−1), 102(1), 103(10),

respectively, on h(x, t = 68), u(x, t = 68) and hmin(t) (the global minimum in h(x, t)),

respectively. Figure 6.7(d) shows the influence of varying Pe on the rupture time, trupt.

For larger Pe, the temperature in the upper capillary meniscus and lower pendant drop

regions is much higher compared to that at low Pe (similar to Fig. 6.2). The effect of

the elevated temperature is to decrease the surface tension in these regions, which is

also where the curvature of the film is most pronounced. As a result, the capillary force

acting on the fluid is decreased in comparison to gravity, resulting in a longer and flatter

middle section of the film (Fig. 6.7(a)), as well as more liquid collecting in the pendant

drop region making it thicker (not shown here). Since surface tension decreases with

temperature the Capillary number, Ca, will increase. which results in the lengthening

and flattening of the film’s middle section. This is analogous to the behaviour observed
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Figure 6.7: (a) Film thickness h(x, t = 68), (b) extensional flow speed
u(x, t = 68), and (c) the global minimum hmin(t), for varying Pe(Per) =
10−1(10−3), 1(10−2), 10(10−1), 102(1), 103(10), and (d) the rupture time trupt as a func-
tion of Pe. The parameter values are: α = 0, a = 0.2 and β = 0.5.
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in chapter 3 (see Fig. 3.2). The extensional flow speed u(x, t) increases as Pe increases,

which results in the film draining and thinning faster (Fig. 6.7(d))), consequently rup-

turing quickly (Fig. 6.7(d)). We note a slight non-monotonicity in the evolution of h

and u at intermediate Pe, which results in a minimum in the rupture time at Pe ≈ 10.

In Figure 6.8 we further vary the value of β, for fixed Pe(Per) = 103(10), α = 0 and

a = 0.2. Larger values of β increase the sensitivity of surface tension to temperature.

Increasing β reduces the surface tension more rapidly, hence increasing Ca. As Ca

increases, the film thins more rapidly and the middle section becomes much longer

with a corresponding increase in the liquid collecting in the pendant drop at the bot-

tom (Fig. 6.8(a)). As Ca increases, the effect of surface tension decreases in relation

to gravity, thereby draining the film further (Fig. 6.8(c)), and reducing rupture times

(Fig. 6.8(d)). We also observe that the flow speed increases as β increases (Fig. 6.8(b)),

resulting in faster drainage, and hence the film thins rapidly (Fig. 6.8(c, d)). We now

consider the combined effect of temperature-dependent viscosity and surface tension,

so both α and β positive. We compare this with the previous results of α > 0 and

β = 0, and β > 0 and α = 0. We fix Pe = 103, α = 2, β = 0.8 and a = 0.2. We clearly

observe that the combined contribution of variable viscosity and surface tension is to

drain and thin the film faster (Fig. 6.9(a, c)), due to the increased flow speed (Fig.

6.9(b)). In comparison, at least for the values of α and β chosen here, it appears that

the case with surface tension varying with temperature alone (β = 0.8, α = 0) drains

and thins slower compared to the case with with viscosity varying with temperature

alone (α = 2, β = 0.8). This is due to the bigger decrease in the viscosity with tem-
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Figure 6.8: (a) Film thickness h(x, t = 50), (b) extensional flow speed u(x, t = 50), and
(c) the global minimum hmin(t), for varying β = 0.1, 0.5, 0.9, and (d) the rupture time
trupt as a function of β. The parameter values are: Pe(Per) = 103(10), a = 0.2 and
α = 0.
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Figure 6.9: (a) Film thickness h(x, t = 40), (b) extensional flow speed u(x, t = 40),
and (c) the global minimum hmin(t), for varying α and β. The parameters values are:
Pe = 103 and a = 0.2.
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perature (note that an exponential decay is used to model this variation) compared to

the smaller decrease in surface tension with temperature (note that the surface tension

is assumed to decrease linearly with temperature). To further investigate the influence

of variable viscosity and surface tension with temperature, we map the time taken to

rupture, trupt, in (Pe, β, α) parameter space. Figure 6.10(a− c) shows the colormap of

the rupture times for varying Pe(Per) = 1(10−2), 10(10−1), 102(1), respectively. The

rupture time is based on the minimum film thickness, hmin, decreasing to 10−2 of its

initial thickness. We observe that the rupture time is independent of α and β for

Figure 6.10: Map of the rupture time trupt as a function of α and β, for Pe(Per) (a)
10−2(10−4) , (b) 1(10−2), (c) 10(10−1), and (d) 102(1). The parameter value a = 0.2.

Pe < 1. The quicker diffusion timescale in uniformly cooling the film offsets any varia-

tions in viscosity or surface tension, so the film evolution behaves almost isothermal for
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all (α, β). As Pe increases, we observe that the range of (α, β) of the highest rupture

times shrinks sequentially (Fig. 6.10(b, c)). For large Pe, the highest rupture times

are for α and β close to zero (Fig. 6.10(d)). At larger Pe, diffusion is not sufficiently

strong to distribute the cooling effects uniformly in the film, hence viscosity and surface

tension variations with temperature via α and β have a much stronger influence on the

film evolution and rupture time.

6.4 Conclusions

In this chapter we coupled the thin-film flow equations to a one-dimensional advection-

diffusion equation for the temperature field and investigated the draining and thinning

of a cooling vertically-aligned hot Newtonian liquid film in the asymptotic limit of the

reduced Péclet number, Per =� 1. The key flow features related to the draining and

thinning of the film, obtained in chapter 5 for small and intermediate values of Per

are also reproduced here using the approximate theory valid for Pe = ε2Per � 1,

where Pe is the Péclet number. Although we have not made a direct comparison

between both sets of results, based on the nearly vertical isotherms observed in the

temperature profiles for this parameter range, we can be confident about the validity

of the approximate theory.

In this chapter, we have fully investigated the influence of variations in surface tension

due to temperature via the parameter β, which we were unable to do in the Per = O(1)
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theory presented in chapter 5. This allowed us to map the draining and thinning of the

film in (Per, α, β, a) parameter space via the rupture times, trupt, which estimated the

time taken by the film to reach a small prescribed thickness of 1% of its initial thickness

(Fig. 6.10). This result showed that the optimal operational conditions would be for

low Per, where for a large range of (α, β), the rupture times are almost uniform.

However, as mentioned in the §5.5 in chapter 5, polymeric melts generally have a large

Péclet number Pe, therefore the low Per regime can be achieved if ε is very small. At

such small film thickness, other physical effects, such as Van der Waal’s forces would

need to be taken into account, and the applicability of the current results would be

questionable. Nevertheless, the non-isothermal study conducted in this thesis provides

a first step towards the understanding of the draining and thinning of free films when

the properties of the liquid are dependent on variations in temperature.



Chapter 7

Conclusions and future work

In this thesis, the draining of a vertically-aligned free Newtonian liquid film between two

rigid supports due to the combined effects of extensional viscous, gravity and surface

tension forces has been modelled. The focus has been on the case where the rescaled

Capillary number Ca = Ĉa/ε � 1, where the Capillary number Ĉa = µ?U?/γ? =

O(1). This limit decomposes the liquid domain into a thin lamella (where extensional

viscous forces compete with gravity) connecting onto Plateau borders (where surface

tension forces balance gravity), with a transition region in between (where surface

tension, extensional viscous and gravity forces compete), therefore allowing to replicate

the drainage and thinning of the lamella into the Plateau borders in liquid foams

[15, 16, 17, 26].

Our model incorporated the effects due to non-Newtonian and viscoplastic behaviour

(shear-thinning and a yield stress), a temperature-dependent viscosity and surface ten-
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sion, and heat transfer boundary conditions at the film’s free surface. These key in-

gredients are essential to capture the strong coupling between the flow and cooling

inherent in metallic, polymeric and ceramic melt flows. A variety of non-Newtonian

and viscoplastic constitutive relationships, such as power-law, Carreau and Herschel-

Bulkley, are investigated to model the apparent viscosity and the yield stress. An

exponential model and a linear model are applied to describe the thermoviscous and

thermocapillary coupling, respectively. We used numerical simulations to perform an

extensive parameter study on the influence of key parameters on the evolution of the

film’s free surface and draining and thinning behaviour, such as the apparent viscos-

ity, yield stress, Péclet number, temperature-viscosity coupling constant, slope of the

temperature-surface tension constitutive relationship and the free surface heat transfer

coefficient.

The influence of non-Newtonian effects, such as shear thinning, in the context of this

problem have been previously studied by Brush & Roper [18], without including gravity.

They have shown that shear thinning does not change the power-law thinning rate of t−2

predicted for a lamella of Newtonian liquid film. However, we showed that the power-

law thinning rate of the lamella is weakly dependent on shear thinning, as a consequence

of including gravity. To the best of our knowledge, the influence of viscoplastic effects,

such as a yield stress, have not been previously investigated in thin liquid film draining

flows associated with metallic and polymeric melts using this flow configuration. Our

new findings provide the basis to advance the current understanding to a wider class
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of liquid film draining flows related to foams.

Our results for the non-isothermal draining of a vertically-aligned free Newtonian liquid

film provided some new insights into the important physical mechanisms that are not

accessible from previous isothermal studies. Our results highlighted a key feature dur-

ing the draining and thinning process which was the spatial variability in the cooling,

resulting in the lamella losing heat quickly and hence cooling down quickly compared

to the Plateau borders. The extent of this cooling was shown to depend strongly on

the parameter values. Consequently, the increase in viscosity due to cooling of the

lamella reduces the drainage within it and hence its thinning rate. This information

could be potentially useful to experimentalists in developing strategies for reducing the

drainage and thinning and in delaying the rupture of the liquid melt films.

The work undertaken in this thesis opens up a number of avenues for future research.

These are listed as follows:

1. Extending the framework proposed here to investigate the rupture of thin liq-

uid films in foams. We would need to include long-range attractive molecular

forces, such as van der Waals attractions (Sheludko [64]) which are important

near rupture.

2. A limitation of the current study is the assumption of a pre-formed liquid film

of specified length and thickness (used as an initial condition) before we use

the model to investigate its drainage and thinning. In experiments, the film is

gradually drawn out of a bath of liquid and whether a film of specified length and
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thickness can be reached will depend on the speed at which it is drawn out. This

speed also significantly influences the stability of the draining film [22]. We would

need to incorporate this into our model by adapting the boundary conditions at

the upper boundary via a no-slip boundary condition, so u(x = 0, t) is equal to

the speed at which the film is drawn.

3. The fluid flow configuration considered in this thesis involves a thin liquid film

supported between wire frames (Figure 2.1). While this setup mimicks the thin-

ning of the lamella in liquid foam films, the supported ends (the bottom end, in

particular) are not a true replication of the Plateau borders. We would need to

consider another configuration which involves lifting the wire frame completely

out of a bath of liquid resulting in a liquid film that connects onto the bath

at its lower end (for example, see Champougny et al. [22] and Naire et al

[49, 48, 50, 14]). The bottom end of the film connecting onto the bath’s sur-

face is representative of the Plateau border region. The current framework is still

applicable, except that one needs to apply the boundary conditions for the film

to match onto the bath [49, 48, 50, 14, 22].

4. The theoretical framework proposed in this thesis can be readily adapted to model

the drainage and thinning of viscoelastic liquid films, under both isothermal

and non-isothermal conditions. Indeed, one can use the form of the evolution

equations written in terms of the extensional stresses, τxx, τzz and the shear

stress τxz, and use a constitutive model appropriate for a viscoelastic liquid, e.g.,
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Oldroyd-B model [2, 3] to relate these stresses to their corresponding shear rates.

5. Incorporating the results from the extensional flows in non-Newtonian, viscoplas-

tic and viscoelastic liquid films to investigate the overall behaviour of the cor-

responding foam as a network using the framework proposed by Stewart et al.

[67].

There are limitations to this study which are listed below.

1. One of the key limitations of this study (also mentioned above) is related to the

assumption of a pre-formed film of a specified length and thickness used as the

initial condition. The existence of this would depend on the speed at which the

film is drawn out. This drawing out speed would need to be incorporated and its

influence on the drainage and thinning of the film investigated

2. Our non-Newtonian and viscoplastic study is under isothermal conditions. In

reality, the yield stress (and to some extent the power law index) strongly depend

on temperature. As part of future work, we would need to extend our model

to include temperature-dependent non-Newtonian effects and their influence on

cooling.

3. Probably more than temperature-dependent non-Newtonian effects, a key ingre-

dient missing in this work is phase transition due to solidification. It is likely

that the results reported here might not be applicable when solidification by the

formation of a surface crust is taken into account. We would need to include
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solidification effects into any future extensions of our model.

4. As in most thin film flow studies one would need to be careful when employing

the lubrication approximation, particularly, where there are steep changes in the

film thickness. To test the validity of our results full numerical simulations of the

Navier-Stokes equations and boundary conditions would need to be undertaken

using, for example, boundary element or finite element methods.

In conclusion, the thesis provides new theoretical insight into the influence of non-

Newtonian and viscoelastic behaviour in draining flows, and the flow-cooling coupling

mechanism that is inherent in draining of hot flows undergoing cooling. This insight

would form the basis for future developments of this model to incorporate additional ef-

fects mentioned above and to transfer knowledge to experimentalists interested in char-

acterising metallic and polymeric liquid melt films for applications involving foams.
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