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Abstract

With the rise in autonomous systems being integrated into the world around

us, it has become increasingly important that theses systems have functions

that allow the navigation of environments. One of the key functions is the

recognition of the environment in which the system resides. This thesis seeks

to contribute to methods that a given system can use to recognise an envi-

ronment. To do this, an omni-directional camera is used to produce images

of locations which contain sharp edges that lay at certain angles. By count-

ing the pixels on these sharp edges and putting them into histograms based

on the corresponding angles, a data structure can be formed to describe the

location depicted in the image. This data is taken from multiple images

over two locations and then compared to one another. These comparisons

show that a system can differentiate between images of locations with this

data structure showing a significant difference between two locations. Know-

ing this, it was then analysed how the differentiating ability of this kind of

system developed as the amount of locations increased. This was done by

increasing the amount of locations and having the system make a decision as



to whether two images belong to the same location. This is then compared

to how a human participant performed with the exact same image set. This

experiment needs to be performed on a larger data set for any kind of sta-

tistical significance, however these initial results show that there is a steady

decline in the ability to differentiate between images with this system. How-

ever the system had a very high false positive rate which is something that

should be studied in more detail.
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Definitions

Definition 1. For the duration of this thesis, an alternative definition of

position and location are used. Position will refer to an exact measure of

where the robot is (this is analogous to exact coordinates x,y). Pose define the

position (x,y) and orientation (theta) of the robot. Location will refer to a set

of positions that share the same contextual name, for example the kitchen or

the lab. This coarse localisation will attempt to differentiate between locations

as opposed to positions.

Definition 2. Simultaneous localisation and mapping (SLAM) refers to a

problem within robotic navigation wherein a robot or agent of some descrip-

tion must simultaneously create a map of an unknown environment whilst

also estimating its own position within that environment[18].

Definition 3. Features in the context of this thesis refer to something distinct

and prominent about the input information. This could be something like the

the distribution of colour in the image or a list of corners and their positions

and sizes.
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Definition 4. Features within an image can be broadly classified into global

features and local features[14]1. Local features, within the context of an image,

are features that are located at specific positions within the image. Examples

of a local feature may be the positions of corners their orientation and their

size. Global features on the other hand describe very broadly the whole image

with some metric. An example of a global feature may be the distribution

of brightness across the image. Global features tend to be much faster to

compute but are much more generalised and hence contain less information.

Local features are much harder to find and compute as there are usually many

of these features per image but the benefit is that they contain a lot more

information.

1Although it is worth mentioning that some researchers also break local features down
into 2 more types of features which are block based local features and region based local
features [43].
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Assumptions

Assumption 1. The information provided by the simple geometric shapes

such as edges and corners will provide enough information to be used in the

process of localisation. It is known that this information alone is not used

within the neurological processes of animals to perform the task of localisation.

This work extrapolates the importance of this information in order to produce

a model of how it may be used in the process of localising.

Assumption 2. Each location will have a unique edge gradient distribution.

Assumption 3. A human participant would be able to determine whether

two images were from the same location regardless of the perspective provided

the two images are from the same perspective.
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Chapter 1

Introduction

1.1 Motivation

As technology such as sensors and high performance low power processors

becomes more affordable and advanced, the usage of ever more complicated

systems has become much more common in our lives. For example, the use

of autonomous systems for road vehicles has started to become a point of

interest for technology companies and vehicle manufactures[35]. The sensors

and processors have allowed these functions have become more accessible

over the years and can add to the convenience of the driver as well as making

driving a much safer endeavour. These systems range from integrating low
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risk manoeuvres (Level 1&2) such as cruise control and parallel parking the

vehicle, all the way to automated driving on well known roads such as motor-

ways (level 4)[35]1. In the home, automated systems such as small vacuum

robots like the Dyson 360 eye[21] and social robots such as pepper[45] are

beginning to be integrated into peoples lives. This again is happening to the

increase of the availability of the systems that underpin these devices and the

convenience that it provides the consumer. All these autonomous systems

need the ability to self navigate in their respective environments. In the case

of autonomous vehicles, the use of GPS and pre-built maps allows them to

navigate[35]. For indoor robots however, the accuracy required can be on the

order of centimetres and although GPS can provide an accuracy up to the

centimetre range, the typical accuracy in a medium density city is on average

2m[40]. In these situations, the use of systems that implement simultaneous

localisation and mapping (SLAM)[20, 6] could be used to produce a map of

the internal environment and navigate using this constructed map. The map

is built while exploring an environment. To do this the robot must compare

the relative positions of landmarks that are currently visible to the set of

1The levels of autonomy are a taxonomy of the differing capabilities that a vehicle may
have in terms of autonomous driving. This particular taxonomy is defined by the society of
automotive engineers (SAE) at the following website https://www.sae.org/standards/

content/j3016_201806/
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past locations landmarks, if a match is not found then a position is added

to the map. If the robot recognises this position then it checks whether it is

connected to the last visited location, if it is, nothing changes, if it is not,

then a connection is made. Theoretically, this problem has been solved and

we know how to perform this task, but there are issues in the practicality

of the implementations[44]. These issues lay in the usage of long term in-

formation, the scaling of the map as new areas are explored, the association

of data from different sensors to common origins, and robustness to adverse

conditions[12, 27]. The issues of long term data usage, data association, and

scalability are linked problems. These issues are bound by the quadratic

scaling of required computation with the amount of landmarks in a map[44].

This limits the size of environments that SLAM systems can function in real

time. The issue of robustness refers to the ability of the robot to consistently

detect the correct position in differing environmental conditions and minor

changes in the positions of objects in the location that the position is in. For

example, if the lighting conditions are different due to the time of day. This

will affect what features (such as land marks) are extracted from the robot’s

immediate environment, if enough of the mapped features are not identified

or if to many non mapped features are extracted then the robot will not
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always get the correct position.

1.2 Literature

Navigation can be broken down into three distinct tasks, localisation,

mapping, and path finding[1] and there are two ways to approach robot

navigation: human conceived methods and biologically inspired methods.

Human conceived methods include examples such as those described in[2, 4].

These methods have come a long way in producing reliable results for nav-

igation but they often produce a lot of data and high fidelity maps which

then require optimisation before they can be used efficiently (see[2]). This

means that these methods have a high demand for memory and computa-

tional power. In contrast animals seem to do the same tasks without high

fidelity maps, using primarily visual stimuli.

By taking inspiration from the way nature has solved problems we are

provided with a stepping stone to be able to model and solve complex prob-

lems such as, minimising distances in networks with the use of ant colony

optimisation[19] and searching for close fitting parameters for problems with

numerous variables for a desired result using a genetic algorithm[32]. Some of
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these tasks can be completed from simple rule sets that, when used in com-

bination can result in more complex behaviours; emergent behaviours[10].

Examples of emergent behaviours can be seem in many places in nature; a

good example can be shown in the hunting strategies of wolves[41]. Here it

is shown that by using two simple rules, the behaviour of a hunting pack

of wolves can be reproduced. There are two categories that biologically in-

spired computational methods can be split into[33], ’top-down’ and ’bottom

up’. Top-down methods stem from observations of how humans and animals

behave. These methods may often produce fewer more simple rules but the

quality of these rules may be subject to the interpretations of the observer,

who may miss or misunderstand some of the behaviours. The research in-

vestigating the behaviour of wolf packs is a good example of a top-down

approach to modelling natural systems. Bottom-up methods however make

use of observations about the components of a natural system produce a given

behaviour. A group of neurons and how they may respond to certain stimuli.

A good example of this bottom-up approach is provided by[33], which looks

at simulating the behaviour of head direction cells within the brain that aid

in modelling the orientation of an agent within an environment. Another

example of the bottom up approach is one where the place cells of rats are
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used as a basis to produce a SLAM system known as Rat-SLAM[38]. In the

hippocampus of the mammalian brain, the place cells are used to model the

probability of the position. Rat-SLAM models these place cells as a com-

petitive attractor network. The research describes this network as having

excitatory connections to neurons that are close and inhibitory connections

to neurons that are more distant. This causes the network to converge to a

stable point based on the inputs into it. The behaviours that the bottom-

up approach produces tend represent what seems like a simplistic mechanic

behind a behaviour when compared to the whole behaviour of hunting of

wolves, but being able to understand and reproduce these more fundamental

systems will lead to more complicated systems and behaviours that can be

reproduced by building upon this work layer by layer via abstraction.

Cameras are a commonly used type of sensor for any kind of robot due

to the rich source of data, low cost, and small physical footprint. A lot of

the information given from a camera may not be useful for a given task. To

filter out the useless information, features are extracted from the images,

this is analogous to how a brain may filter information. Features can consist

of simple structures such as corners and edges, to more complex structures

such as whole objects. However, one of the issues that can arise, due to
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the use of visual information is the different lighting conditions in an envi-

ronment may change as time passes. This can affect the features that are

extracted from the environment in some algorithms due to over-saturation or

under-saturation of light that makes strong features such as edges harder to

see. Although many feature extraction algorithms do not explicitly consider

colour information, they do rely on the contrast between regions in the im-

age. This issue can be alleviated by looking into the research area of colour

constancy, this area attempts to provide methods of making images invariant

to changes in lighting conditions.

SLAM systems use comparisons between recent and past key points of

information. In visual SLAM these points of information are part of the

images received from the camera. This then raises the question of how might

a system compare two images to measure similarity. Some methods look for

common landmarks between two images using local features such as corners

and objects that appear to have similar spacial relations to each other. Other

methods look for global features such as distributions of the colour values

across the images. These comparison methods need to be performed in real

time whilst also being robust to perspective changes if they are to be used

as an identifier for a location. Local features take longer to compute but
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can provide a more detailed description of the location. Global features

on the other hand are much faster to compute but give a more generalised

description of a location.

The literature explored describes different methods of image comparison,

colour constancy, localisation, and simultaneous localisation and mapping

(SLAM). This literature informs decisions made throughout the experiments

performed and is relevant to the use of computer vision as a primary sense

for the localisation method. There are 2 experiments that were performed

during the course of this thesis. The first experiment explored whether the

use of a global feature that is composed of the angles of the edges in the room

contains enough information to distinguish between two separate locations.

A second experiment was then performed to test what the limit is on the

amount of locations that can be differentiated using this feature.

The work in this thesis will be primarily based around the use of visual

information as a key input into the task of localisation. There are some pieces

of literature that perform these tasks without using visual information but

these implementations can be limited in their feats. For example, I Ashokaraj

et-al[5] use a combination of an inertial measurement unit, wheel encoders,

gyroscopes, and ultrasonic sensors to estimate the robot’s position on a 2
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dimensional map. This process involved an extended Kalman filter[22, 29].

Other such methods are mentioned in a review of localisation systems by

Deak et-al[17]. In the survey, it is mentioned that there are 2 broad categories

of localisation: active and passive. Active localisation requires some form of

artificial salient feature such as a tag to be added into the world for a system

to be able to localise. This limits the available environments that an active

localisation system can navigate. Passive localisation does not require any

alterations to the external world meaning that it will need to extract salient

features from the environment. Features in the context of this thesis refer to

something distinct and prominent about the input information. This could

be something like the the distribution of colour in the image or a list of

corners and their positions and sizes.

The next few sections will be dedicated to issues faced within the use of

camera systems and how you might use them to identify locations. Images are

a very rich source of information[13] and so it is quite difficult to compare

between images for similarities and differences without first transforming

the image so that it can be represented by a collection of features. The

transformation process can introduce extra salient feature such as borders

and corners of shadows, these features are not stable due to the fact that
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shadows can be influenced by the direction, the intensity, the position of the

light source(s) and the number of light sources. Some of these issues can

be tackled by looking into how an image can be altered into an illumination

invariant form prior to feature extraction.

When beginning to look at image based localisation methods, it was nec-

essary to investigate a few issues related to the how the images were to be

used. These were, shall it use colour information or grey scale, and what

kinds of features will be extracted from the image to help identify a location.

Initially the distribution of colours within the scene was used as a starting

feature to extract and identify a location. Very quickly it became apparent

that there would be an issue due to the varying lighting conditions. An alter-

ation in lighting conditions can cause a scene to look drastically different as

the objects within it are perceived as being a different colour. This is because

an image recorded by a camera is dependant on three things: the content

of the scene, the illumination of the content, and the camera properties[7].

Before deciding to use grey scale images a brief investigation was performed

to check whether it was a problem that could be overcome. There are varying

methods and assumptions that can help make a scene invariant to changes

in illumination. Some methods are relatively simple and reply on statistical
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techniques and assumptions; techniques like the grey world method[11]. Al-

though praised for being simple to implement, it only performs as well as the

initial parameters and it assumes a spatially uniform light source[23] making

it unreliable in circumstances where there are multiple illuminates. Other

methods are much more complicated to implement and use neural networks

to predict the error in the hue values for small regions of images[9, 47]. The

conclusion reached following the investigation of colour constancy is that, al-

though there are methods to reduce the variance due to differences in lighting,

the methods are either not reliable due to the assumptions made or are to

resource intensive for real-time operation. This lead to the decision to use

grey scale images for the feature extraction and the decision not to use colour

distribution as the defining feature.

The next issue that is faced is determining what features to extract. There

are a number of metrics that can be used to differentiate and compare be-

tween images taken of objects and locations. There are two types of features

that can be extracted from an image; global features and local features[14]

.Global features are pieces of information that broadly describe the whole

image[34]. A good example of a global feature may be the colour distribu-

tion, which was mentioned earlier. Colour distribution is good at describing
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an image whilst dealing with slight changes in the pose of the camera, but

this feature also disregards a lot of other useful information such as spacial

and texture information[42]. This leads to cases where two images that look

very different being identified as being similar due to the similar distribu-

tion of colour. On the contrary, local features are a set of features that

describe multiple points in an image. This makes them much more robust

to changes to positioning of the contents and any occlusions. However, They

require specialised classification techniques that can handle variable amounts

of features[34]. A good example of a method used to extract local features is

called SIFT (scale invariant feature transform). Sift is a popular method for

feature extraction[26] as the features that are produced are scale invariant

(can be recognised regardless of how much of the image it takes up). Local

features tend to tackle issues such as scale, rotation, viewpoint or illumina-

tion variances, but with the increase in generalisation comes a higher demand

for computational resources[26].

Both global and local features have their pros and cons and are usually

used together, examples of such work can be seen here[14, 50]. Due to the

time taken to implement and perform this study, only a global feature was

used. The reason features extracted are extracted from an image is to re-
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duce the dimensionality of the information collected (lower the amount of

data that needs to be compared whilst keeping as much of the meaning as

possible). Reducing the dimentionality of the data means that systems do

not need to store as much data or use as much processing time searching

and comparing that data. This process of reducing the dimentionality of

the data also happens within nature. Take for instance reasearch by Anzai

et al[3] which investigates the visual system of monkeys. This study shows

how the information that is provided to the visual systems of monkeys is

processed in layers. These layers feed into each other and begin to describe

more and more abstract ideas. The research showed how neurons within the

first two layers of the monkey visual cortex respond highly to simple geomet-

ric shapes such as lines, edges and curves. This information has been used

and extrapolated in such a way as to provide an idea for the global feature

that is used for this work. The feature that has been chosen for this thesis is

information about the edges in the scene, specifically the orientations of the

edges. It is assumed that despite the low level abstraction of the raw image

that there is enough useful information to distinguish between any two given

locations.

Research by Kosecka et-al[30] looks at using image comparison to localise
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a device using a similar method to that used in this research. Kosecka et-al

uses the gradients of edges as a feature but uses a standard limited perspective

digital camera to take images. This means that one location may be given

two or more separate labels. The clustering algorithm Kosecka et-al uses

is known as learning vector quantisation. It is used to produce prototype

histograms to represent classifications, in this case location. To compare

these histograms the Chi-squared[24] statistic is used to compute a difference

metric between a current histogram (from the query image) to all prototype

histograms (the classes or locations). A confidence level is then produced by

looking at the ratio of the smallest and second smallest Chi-squared value

of this set. If confidence levels rise above 1.6 the classification is considered

to be accurate. If the classification is achieved with a low confidence, it is

refined by dividing the current image into sub images. These 5 images are

then used in the same process to attempt to find a higher confidence match.

There are 5 sub images in total. Four in the corners and 1 in the centre. The

sub image comparison addition mentioned in this research is not clear about

the exact method however.
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1.3 Aim

There is a clear problem with the use of SLAM systems due to the large

and complex data sets required for the navigation of large environments.

This thesis explores a method to determine the location of a robot with a

coarse localisation method. This could be as a preliminary step to limit the

search space for high resource algorithms such as SLAM. Although there are

implementations that refer to methods of coarse localisation, for instance

work by Milford et al[39], they are usually refering to more coarse grids. In

contrast to using whole locations that are defined by a system.

This thesis will explore the usage of the global feature of edge gradi-

ents/angles in a coarse localisation strategy. To do this, the feature must

first be tested for robustness to small displacements in position and whether

it can differentiate between two locations. If it can differenciate between

two locations then how the distrimintion ability changes as the amount of

locations increases.
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1.4 Hypotheses

It is hypothesised that changes in position and orientation within the

same location will produce no significant difference to the distribution. How-

ever it is also hypothesised that there will be a significant difference between

changes due to position and changes due orientation; where changes in posi-

tion will give higher differences than changes due to orientation. That is to

say for any in pose within one location, the resulting change in the orientation

distribution will have a lager component due to changes in position than for

changes in orientation. It is also hypothesised that there will be a significant

difference in the gradient distribution extracted between two locations, but

that the ability for the system to differentiate locations will diminish as the

amount of locations is increased. It is hypothesised that the accuracy will

diminish as the amount of locations increases due to an increased chance of

two locations having a similar enough descriptor that the system will not be

able to separate them without the system
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Chapter 2

Orientation of edge gradients as

a global feature for image

comparison.

There have been studies that use edges and gradient information from

images to compute image similarity[36, 28] and localise[31, 30]. However

there is a lack of information about how this kind of information changes with

respect to the pose of the camera and whether or not it can be used as a stand-

alone method to differentiate between locations in the navigable environment.

Before the edge gradients can be used as a feature for localisation, the method
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must be tested to see whether it produces a useful set of data that can be

used to differentiate between locations whilst being robust to small changes

in position and orientation.

By looking at images such as those in Figure 2.1, there should be a greater

difference in the gradient histograms due to changes in position than there

will be due to changes in the orientation because the changing the orientation

will not effect the angles of edges or the amount of edges. Changes in position

seems to cause a greater distortion as this can affect how much of the image

is taken up by a given edge (as it comes closer it takes up a larger portion

of the image and visa versa). Also there should be a significant difference

between the histograms of gradients between two different locations (between

Figs. 2.1&2.4) that could be utilised as a determinant of location.
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(a) Reference position image for empirical analysis.

(b) Image after moving camera forward 80cm showing an apparent distortion on
the tables.

(c) Image after rotation the reference image by 60 degrees.

Figure 2.1: These photographs show the unwrapped omnidirectional images
taken at two different positions in the same room. At first glance it seems
that there is a greater apparent change in the images between the change in
position compared to the change in orientation

22



2.1 Experimental setup and methodology

Figure 2.2: This image shows the camera with 360 degree lens attachment
mounted with velcro on the back of an RC car.

A Sony Bloggie 1 camera with a 360 lens attachment, as shown in Fig-

ure 2.2, was used to capture all the images that were used in this study. A

limited perspective camera was not used due to the fact that locations would

require the capture of multiple views from which to be identified. Many an-

imals benefit from wide fields of views that allow them to be aware of more

of their environment without having to move around a lot to do so, this aids

in hunting and detecting predators. An omnidirectional camera can handle

this issue better as all possible views of a position are incorporated into a

single image. The room where a majority of the images were captured (GR)

1https://www.sony.co.uk/electronics/support/webbie-hd-bloggie-cameras-mhspm-
series/mhs-pm5 Last accessed: 1/05/2018
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conveniently had a floor of tiled equilateral triangles as shown in Figures 2.3a

& 2.3b. This room was chosen for this reason to ensure that distances and

angles between images during tests were constant. Initially, to check if there

was any inherent time dependant error due to the hardware, software, or the

environment, multiple images were taken from the same pose (Figure 2.3b

centre point at 0 degrees). Images taken from this one pose were used to

compute the minimum difference in the distribution that could be attributed

to temporal error. The positions that images were taken from are also de-

scribed in Figure 2.3b, which shows the 7 positions and the various angles

at which the images were taken for a total of 24 images for the GR. The

centre point has smaller angle intervals as this is used primarily to test for

changes due to orientation at the same position. Whereas points 1-6 are used

to test for changes due to position, and changes due to different positions

and orientations.
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(a)

(b)

Figure 2.3: (a) Shows the GR and its convenient tiled flooring. (b) Shows a
partial layout of the first room images were taken with all the positions and
orientations marked. Length of triangle sides are 40cm.

For future comparison, another set of images was taken from a different
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room (TR), see Figure 2.4 using the same angle increments as the centre

point in the GR. The angular increments were kept constant with the use

of a regular hexagon template. This is also another point of comparison for

how changes in orientation alter the edge gradient distribution.

Figure 2.4: This is an image of the TR from which images were used to
distinguish the viability of this method as one that would be suitable to
distinguish between different locations.

2.1.1 Image Processing

To process the images the OpenCV 2 library was used in conjunction

with the Sony Playmemory Home software. Playmemory Home was used

to unwrap the raw images into a panorama like image. OpenCV was then

used to extract the gradient information from the image. To do this, Sobel

operators [48] in the x and y direction were used to get two gradient images.

These images were then input for a method that combined these images to

produce two new images. One of the resulting images being the image where

each pixel value represents an angular value between 0 and 360 which is also

2https://opencv.org/ Last accessed: 1/05/2018
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the direction of the edge as shown in Figure 2.5c. The other image being

a magnitude image where each pixel value is the magnitude of the gradient

as shown in Figure 2.5b. The magnitude image was altered via a binary

threshold where the cut off point was one fifth the maximum magnitude.

This threshold was empirically chosen. The chosen threshold appeared to be

a good value where prominent and mostly continuous edges persist whilst

artifacts due to low magnitude edges such as textures were removed. The

resultant binary image was used as a mask to remove noisy gradients with low

magnitudes that do not provide any useful information in this context. Once

the gradient image had been masked the value of every non zero pixel was

used to produce histograms for comparison against other image histograms.
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(a)

(b)

(c)

(d)
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(e)

Figure 2.5: (a) Unwrapped image before processing. (b) Full magnitude im-
age of the initial unwrapped image. This shows the magnitude in the change
of intensities between pixels. (c) Full angle image of the initial unwrapped
image. In this image each pixel represents an angle that corresponds to the
gradient of the change of pixel intensity, no filter has been applied to remove
noise information. (d) Binary threshold of magnitude image. Here is mask
produced by only allowing edges with a sufficiently high difference in pixel
intensity to be available. (e) Angle image after being masked with the binary
threshold. This shows the location and direction of edges in degrees where
each pixel value maps to a value between 0 and 360 degrees. This figure
shows intermediate image processing steps. Images (b) and (c) are obtained
from (a). Image (d) is obtained via a binary threshold applied to image (b).
Image (d) is used to select important information from image (c). Image (e)
is the final product used to produce the gradient distribution

2.1.2 Data Representation

The edge information from the collected images was used to produce

histograms that describe the gradient distribution at each of the sampled

positions in the two locations used. These histograms were then compared

using openCV’s compHist method. The compHist method has four different

tests it can use to compare the similarity of the histograms. The one that

was chosen to compare the histograms was the chi-squared test [24] where
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big values of the test statistic (chi-square) mean big differences (in terms of

edge distribution) in any two images being compared, This was the prefered

choice as it is more analogous to a distance. Figures. 2.6a and 2.6b illustrate

how the chi-squared value represents a distance between the histograms of

seemingly similar and different places.

(a)

(b)

Figure 2.6: (a) This Figure shows how two seemingly similar places look
when their histograms are overlaid. This would give a very small chi-squared
metric as there is a small difference between the lines at any point. (b) This
Figure shows how two seemingly different places look when their histograms
are overlaid. This would give a large chi-squared metric as there is a large
difference between the lines at many points. The x axis of the histograms are
values that gradients can take in the image. The y axis is how many times a
given gradient occurs.
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2.2 Results

The check for temporal errors resulted in some low level differences across

different frames taken from the same pose. The mean chi-squared distance

from images at the same position and orientation was 860.8 ± 98.8. This

information gives an estimate of how much error there may be within any

other results due purely to external factors, e.g: camera auto exposure cali-

bration (no camera option to disable), light changes due to flickering lights,

and sensor noise on the camera.

The main aim of this work was to check whether changes in pose are more de-

pendant on position or orientation, therefore a comparison of the image data

where only the position and only the orientation was changed was performed.

To do this, for every image recorded the histogram generated from it was com-

pared to that of the other images, resulting in a table of chi-squared results

that could be used to easily visualise any relationships between the different

poses from which the images were captured. The table in Figure 2.7 is illus-

trated visually (using grey-scale to represent the chi-square value) . A t-test

was performed to check whether there was a significant difference between

images where only position was changed and images where only orientation

was changed, this was done using images from both the GR and the TR.
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To do this all the data points that are the result of positional changes only

were averaged and data points that are the result of changes in orientation

only were also averaged. These averages were used to perform the T-test.

The average chi-squared distance due to changes in position was 1947±1448

whereas the average chi-squared distance due to changes in orientation only

was 1851 ± 1005. A rejection of the leading hypothesis is attained showing

that there is no significant difference between the means (p = 0.393 > 0.05).
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Figure 2.7: This image shows how every image was compared to all other im-
age. Each pixel represents a chi-squared value, resulting from a comparison
of two rooms which can be found on the axis. It highlights the distinction
between similar and dissimilar rooms where low values-dark correspond to
comparisons of images captured at different poses in the same room (GR)
and high values-light correspond to comparisons of images taken in different
rooms (GR&TR). The axes of this illustration refer to the position and ori-
entation of the corresponding image; e.g Point 1 60 is the image taken from
Point 1 at 60 degrees as shown in Figure 2.3b.

Again the t-test was used to compare all the data points from the Fig-

ure 2.7 that corresponded to comparisons of between different rooms (i.e the

light regions). These values were averaged and compared to the average value

from same room comparisons (i.e the dark regions). The mean difference be-

tween comparisons from the same room was 1917.8 ± 1062 and the mean
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from comparisons of different rooms was 13574.1 ± 2920. Due to this data,

the alternate hypothesis, that there will be a significant difference between

the histograms of differing rooms, fails to be rejected as there is a significant

difference between the means of the two sets of data (p = 2.6×10−95 < 0.05).
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Chapter 3

Accuracy decay Experiment

The above experiment supports the usage of the edge gradient distribution

as feature that can be used to differentiate between two locations. This then

raises the question of how one might expand on this and differentiate between

more than two locations. How might the differentiating ability change as the

number of locations stored increases. First of all there must be some system

that can utilise and expand upon the work mentioned so far. As it was shown

previously, comparisons from images of like locations have a lower chi squared

distance than comparisons from images of unlike locations. This leads to

the idea that positions from the same location would cluster together. The

histogram data obtained from the images could be used as a high dimensional
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data point. These data points could then be clustered using an algorithm

such as K-means [25]. The reason for clustering the data points is so that

images of like locations can be used to describe the actual location for future

classification. This is a form of unsupervised learning, the system ’teaches’

itself given some set of data which sets of images belong to the same location.

This does however require that the value of K is hard coded for more simple

implementations. This becomes an issue when a system is designed to be

autonomous and ’make its own mind up’ about what constitutes a location.

What if the amount of locations presented to the system is more or less than

the value of k. One slight alteration to the openCV K means implementation

was made. The k-means algorithm assigns clusters a centroid value which

does not have any corresponding images to act as a prototype. To allow for a

real representation of the centre, the setting of the centre point of the cluster

was set nearest neighbour of the centroid, this modification is often refereed

to as k median.

For this experiment, it was hypothesised that as the amount of locations

presented increases, the reliability of the system to differentiate between them

will decrease. This hypothesis is based on the idea that as you increase the
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amount of locations being actively1 compared against, there is an increased

chance that miss-classifications due to perceptual aliasing (different locations

that look the same to one method of perception) will become more frequent.

3.1 Data Collection

To test how the accuracy may decay, a lager set of data was created for

training and testing purposes. This data set was comprised of images from

14 locations (rooms) within the computer science department at Keele Uni-

versity. For each of these locations the camera setup mentioned in Figure 2.2

was placed in 10 separate positions where images were taken, with the ex-

ception of the much lager computer lab which had 25 images taken. This

data set was then split so that 70 percent of the images were used to train

the system and 30 percent of the images were used for testing the system.

1When mentioning actively comparing locations, this is in reference to the idea that in
a system like this you would not necessarily have to look at every location you have ever
been to, you may only need look at the N nearest neighbours.
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3.2 Preparing Data

The Images taken from the 14 rooms were then duplicated in such a way

as to have four sets of images that contained the contents of either 4, 7,

10 and 14 rooms. This was done so that there was a linear increase in the

amount of rooms for each test. Next, the ideal number for K needed to be

determined for each set. To do this, it must consider why we might not use

the number of rooms as the value of K. Due to the different perspective that

the robot may take in this scenario, certain items appear larger whilst other

objects surfaces and other such salient features may be occluded. This can be

seen in Figure 3.1. As an analogy, if you imagine what a human may consider

as a room, like a small office. If you were to place a rodent on the table, the

rodent may not perceive this office as a single location but multiple locations:

i.e on top of the desk, under the desk etc. Another interesting point is how

humans assign more complicated semantics to a location via its contents or

regular usage, we as humans may put a higher precedence on the semantic

use of a location than the geometric properties and relations. To this end

it is not assumed that the perspective given to this robot will result in the

same location labels that a person might assign. However, as mentioned

in assumption 3, we would assume that when presented with images from
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this perspective that a human participant would be able to agree or disagree

about whether the two pictures depict the same location.

(a) (b)

Figure 3.1: Both the images in (a) and (b) are taken whilst standing in the
exact same position. The only difference here is the perspective due to a
change in height. In (a), it would be reasonable to consider the underneath
of the desk a separate traversable location to on top of the desk. However
in (b) one could not reasonably consider the underneath of the desk is a
separate traversable location without first shifting to a lower perspective.
This could be explained by the difference in the scale of objects and salient
features relative to each other and the way that they may occlude each other.

To find the optimal value for K for each number of rooms a method

known as silhouette analysis is used[46]. Silhouette analysis is a method

used to rank how well a data point fits in its assigned cluster. This is done

by comparing the average distance of a datum to all other points within the

assigned cluster to the average distance to all other data points within the

nearest neighbouring cluster. This returns a value between -1 and 1, where
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-1 means that the data point fits perfectly in the second nearest cluster that

it was not assigned to and 1 means that the data point fits perfectly in its

currently assigned cluster. The formulae used for the silhouette analysis can

be seen here.

a(i) =

∑
j∈Ci,i 6=j

d(i, j)

|Ci| − 1

d(i, j) is the distance between a point i and a point j and where Ci the cluster

that point belongs to.

b(i) = min
i 6=k

∑
j∈Ck

d(i, j)

|Ck|

Ck is another cluster that the dissimilarity is being compared to. The cluster

that provides the smallest dissimilarity will be used for this value

s(i) =
b(i)− a(i)

max a(i), b(i)
if |Ci| > 1

s(i) is the silhouette value for point i.

By averaging the silhouette values across all the data points over differing

values of K you can find which value of K gives the largest average silhouette

value. A higher value of the average silhouette value means that there was a
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better categorisation of the data and hence the locations. This works well so

long as the range of K isn’t too close to the number of data points in the set.

This is because when K = the number of data points the silhouette value

becomes 0 for each data point. Once the optimal value of K has been found

for each set of rooms the images are assigned to clusters using the value of

K determined by the silhouette values.

3.3 Confirmation

As K-means method is an unsupervised learning strategy it is difficult to

test and compare performance in any way that is meaningful. It is difficult

to test due to the fact that there is no exact ground truth to compare the

outputs of this system too. Assumsion 3 was required to provide some proxy

for a ground truth. Using this assumption, a test was performed to compare

the results from the K-means system to a humans perception of location, this

will provide a measure of accuracy. To perform this test a set of images was

put together for the participant to look through. This set contained pairs of

images that the K-means + edge gradient system believed belonged to the

same location, this made up half the set. Secondly, pairs of images that the
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system believed were from different locations, this made up the other half

of the set. When the participant was presented with the set there was a

random order as to whether the current pair on display was grouped as the

same location to the K-means system or not from the same location. The

participant was asked to simply provide a yes or no answer to whether the 2

images present on the screen belonged to the same location.

3.4 Results

First we look at the values of the average silhouette values for each set

of rooms for each value of K. The maximum value of K used for each set is

different due to the amount of data points for each set. It was decided that

to avoid getting high values of the silhouette values (due to single data points

making up a cluster) that the maximum value of K would be half the total

amount of data points for each set. As can be seen in figure 3.2, there is a

general tendency in the silhouette values to increase as K increases (which

is expected) but there is a lot of variance between subsequent values. The

rest of the graphs can be viewed in appendix A.1. The peak of the silhouette

values are marked on graphs along with the value for the amount of rooms
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as defined by the data set. There is a debate to be had about whether or not

the peak values alone are a good indicator of how well the clusters are laid

out but with the information acquired at this point in time this is a good

initial measure of optimal number for K.

Figure 3.2: This figure shows how the silhouette value changes with respect to
the values of K set for the K-means algorithm. The blue line is the raw data,
the orange line is the rolling average and the green and red line represent the
amount of rooms as a person may describe it and the amount of locations as
the system describes it respectively.

The silhouette graphs were used to inform a decision of the optimal value

of K. Once this had been decided then the clusters were formed using this

K value. These clusters were then used by the system to provide a location
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to the images from the testing set. The images from the test set which

have now been assigned to a cluster (which can be thought of as a location),

were provided to the human participant as mentioned in the method for this

experiment. The results from this experiment were displayed in confusion

matrices. These matrices can be found in Figure 3.3 and appendix A.2.

Figure 3.3: This Graph shows the comparison between the human partici-
pants answers and the computer systems answers to whether two images are
from the same location. The participants answers are the true label and the
computers answers are the predicted label.

The matrices were analysed using common statistics such as accuracy,

recall, prevalence, and false positive rate. These statistics are important as
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they give a base line for how to judge the success or failure of the system.

Figure 3.4 is a graph that shows how accuracy, recall, false positive rate, and

prevalence change with of K. It can be seen that the recall rate stays high

throught the values of K, this may seem good alone but coupled with the

rapidly decreasing prevalence rate means that there are increasingly fewer

overall positives that could be agreed upon. The false positive rate sees a

sharp increase with k showing that there is overall a disagreement between

the human participant and the system as to whether any two images belong

to the same location. These statistics show that there is overall an issue with

the underlaying assumptions that the human could be used as a ground truth

observer, that the system is performing poorly or that the data set provided

was not large and diverse enough to provide any useful analysis. It is still

however interesting that the accuracy stays as high as it does. The system

and the human participant seem to regularly agree on the assignment of two

images not belonging to the same location.

45



Figure 3.4: This graph depicts how the accuracy, recall, prevalence, and false
positive value change with respect to K.
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Chapter 4

Discussion & Conclusion

4.1 Discussion

The first experiment conducted shows that there is enough information

within the edge gradient feature that was extracted from the images of rooms

to feasibly differentiate between 2 locations. The issue with this experiment

is that there was no follow up to make sure the results were repeatable in

different pairs of locations. Although there is a statistical significance be-

tween the two chosen locations in the feature, this only shows that this is the

case for only these two locations. A reasonable follow up would be to have

repeated the experiment within many differing pairs of locations to confirm
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whether this statistical significance is observable across many kinds of loca-

tions. This is not to say that this invalidates the results of experiment 1.

The very low p value provided by the t test shows that there is definitely cir-

cumstances where this feature can discriminate well even if it is just between

these two rooms.

The second experiment has a few short failings that should be looked

at in a bit more detail. As well as completing the repeats of experiment 1

there should be some further though into whether or not an unsupervised

method such as k-means is appropriate for this global feature. The feature

itself is very high dimensional meaning that any distances calculated will

appear very large. The large dimensionality paired with the small data set

used for this experiment have meant that the data was likley overfitted to the

corresponding clusters. For the prior reasons there could be no statistically

analysis of experiment two due to the lack of data. However that isnt to say

nothing was gained from this experiment. It has shown that the underlaying

assumption about a human participant being able to identifying a location

based on an image taken from a different perspective may not have been

correct. It has also shown that there is an issue with trying to use the

silhouette analysis to automatically determine the ideal value for the number
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of clusters may not be appropriate either. The results may have been more

stable if instead a supervised method was used to cluster the data. If the

data clustering had been supervised then salient parts of the feature could

be identified which could improve results.

The dimentionality of this feature could easily be reduced with two meth-

ods. One method would be to look at the symmetry of the angles themselves.

As this system looks at the difference in brightness values to get the angle

of an edge there could be two possible values for the edge. Lets take a flat

surface and say that its value is 90 degrees when the light is coming from the

top. If the light source were to be moved below, the recorded value would

become 270 degrees. This is something that could pose a real issue of the

system were to ever be used out doors over a long time as the sun moves

from the east the west. To account for this, all values could be modulated

by 180 degrees and have the remainder be the value that is used to form

the feature, in a way negating the difference due to light directionality. The

second method to reduce the dimensionality would be to bin the angles into

larger regions of 5 degrees rather than in 1 degree bins.

Another interesting point that was brought up during this work was what

actually defines the boundaries of a location. Can a location be defined purely
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by its geometric properties or are they defined by the contextual information

that is provided by the objects in the location and their functions? Do all

locations have hard boundaries like we may expect from a building passing

between doors. Can boundaries between locations in more open environments

be more fuzzy or could a system still argue that they were in location one but

give reference to their sub location within in that location ie ”I’m in location

A to the right of landmark 1”. Work by Zeil, Jochen and Hofmann[49] look at

the concept of catchment areas. These are areas where as you move towards

or away from a reference point the difference between the reference point and

the current point, decreases or increases respectively. These catchment areas

could prove to be useful in the definition of the difference between adjacent

or open locations. This could be used over time to make certain locations

more probable of being entered and hence possibly further limiting a search

area. In locations where there may be a more clearly defined change between

locations, such as at a door, one might wonder whether it would alternate

between 2 locations depending on which one is more prominent. This is

something that must be tested in the future. However, it may be hypothesised

that the doorway, which is a transition between two locations, may be seen

as a separate location in and of it self. Treating typical boundaries in such a
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way may allow smoother transitions between all locations similar to the idea

of catchment areas.

A system that uses this feature could also benefit from the use of video

footage that could provide multiple images per second, and hence a degree

of temporal information, to compare to the reference images stored with the

K-means. This would allow for a better confidence of the suggested location

as there will be more data and information for comparisons. An error metric

could be used to filter out any erroneous data that comes in. Allowing this

system to access video footage and therefore a history of the places visited

in the recent past would also provide some other benefits. These include

being able to ignore any transient features such as a new object coming into

and out of the location and being able to update the K-means clusters, the

reference image and future beliefs of the system.

Neither experiment looks at the posibility of objects or structures in the

location being moved or rotated. For instance, if you were in an office and

the desk and chair had been moved to lay against another wall. This scenario

should not pose a problem to this system as the edge gradient feature used

does not rely on the topological features of the location that it is in. That

is to say an angle on the left hand side of the location is indifferent to an
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angle with the same value on the right hand side of the room. Moving

things within a location would still be a significant to test. Translating

an object within the location will likely yield insignificant changes in the

edge gradient distribution, but rotations of objects in the room may yield a

noticeable difference, especially on objects with rotational asymmetry, such

as elongated structures. It could be hypothesised that rotational differences

of the objects would be small unless a large proportion of the objects were

elongated and rotated. Although this could also look sufficiently different for

a human participant also. Occlusion of prominent structures could also be

an issue with this feature but this would be much harder to test. This would

require knowing ahead of time due to a lack of topological information

A system using the edge gradient from images could be shadows in a

scene. Hard shadows may be picked up by this system as an edge. In well lit

environments like indoors where there is ample lighting in most directions,

any shadows that might be cast wont be dark enough to be picked up by this

system. In outdoor conditions shadows will not only be picked up by the

system due to only having one primary light source, but as the position of

the sun changes, so does the direction, scale, and skew of the shadows change.

There is a very specific kind of colour constancy that looks at the problem
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of making images shadow invariant[15]. This could be used in an outdoor

setting to aid in the recall of locations by removing the shadows from the

images. Though this process does change the image into a grayscale image,

this wouldn’t be an issue for the edge detection algorithm.

A similar feature that looks at the gradient distributions in images ex-

ists, however it is a local/grid feature. This is known as the histogram of

orientated gradients (HOG)[37, 16]. This feature uses small chunks of the

image and produces histograms of the gradients within each chunk. These

histograms all together form the feature as a set of vectors that describes

the image. This method is good at finding local features such as objects

and classifying them but would not suit an entire panoramic view of a room.

Rotations of the view, which causes the rolling of the image, will cause the

HOG feature set to be different in such a way as to cause miss-classification;

although this is something that should be tested also. In a preliminary test

of speed, the method used through out this research (i.e the edge gradient

distribution) was briefly compared to the HOG feature in the speed of cre-

ating the feature. The edge gradient performed faster in this small test but

this would require more robust and thorough testing. If this result were to be

reproducible, then it could be explained by the overhead required for HOG
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to divide the image up into a regular grid and calculate the histogram of

gradients for each cell.

Another avenue that could be explored within this coarse localisation is

the use of contextual information about the location via object detection. An

interesting paper by Betancourt etal[8] uses egocentric video footage and an

unsupervised learning method to identify types of location. Their research

is designed to give contextual actions to other systems but if the type of

location can be discerned from the video footage it could prove to be a useful

way to potentially differentiate between locations that may have otherwise

been classified as the same location using the edge gradient feature. This

is also an example where other individual systems could be used in tandem

with the edge gradient feature where each system can function individually

but pool their results for greater accuracy. This would require a large amount

of testing to discover what combinations of systems would be both quick to

function using existing data but also provide useful outputs.
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4.2 Conclusion

In conclusion this study has shown that the edge gradient histogram can

be used to differentiate between two separate locations whilst being robust to

small changes of pose within said locations. The hypothesis that there will be

no significant difference between the Chi-Squared distances between images

in the same location was confirmed. However the hypothesis that there would

be a significant difference between Chi-Squared distances due to position and

Chi-Squared distances due to orientation was rejected. This was a favourable

result. The hypothesis that the differentiating ability of the system will

decay as the amount of locations increases was neither confirmed or rejected

because there is not enough data to suggest whether this is definitely the

case. However, the initial study seems to imply that this is the case. More

tests with more locations and images are required to show whether there is

any statistical significance to the drop in accuracy. This research has also

brought to light how one might use such a feature to differentiate between

more than two locations. More work could be done to look at how this

method is performed such as looking at how the value of K is set. This system

could also benefit from exploring other clustering techniques and perhaps

dimensionality reductions techniques to reduce the size of the features. More
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work needs to be done to look at the useful applications of this edge gradient

feature as well as looking at what conditions it works better in.
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Appendix A

A.1 Silhouette vs K Graphs

Figure A.1
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Figure A.2
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Figure A.3
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A.2 Confusion Matrices

Figure A.4
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Figure A.5
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Figure A.6
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