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Abstract 

Mining activities can leave a legacy of contamination with the potential to threaten the wider 

environment and human health. This is particularly so with historic mines that pre-date modern 

restoration and environmental protection measures. This study aimed to characterise mine spoil 

materials from five historic abandoned mine sites around the UK and assess them for risks they 

might pose. The sites were Glendinning, Wanlockhead, and Greendykes Bing in Scotland, 

Nenthead in England and Parys Mountain in Wales. Characterisation of elemental contents was 

achieved using different analytical techniques, including non-destructive methods of 

SEM/EDX, XRD and XRF techniques, as well as destructive techniques of digestions in 

mineral acid followed by ICP-OES analysis. Mobility and internal distribution (partitioning) of 

these elements was determined via single (CaCl2 solution) and sequential (BCR) extraction 

methods. Human health risk aspects were assessed by exposing the finest size fraction of the 

spoils to simulated lung fluid (Gamble’s solution) to estimate how readily elements from dusts 

could be assimilated into the body.  Finally, this present study assessed remediation potential 

of the spoil heaps by assessing whether incorporation of rice husk and wheat straw biochar 

could promote plant growth (ryegrass, Lolium perenne) and thus reduce risks of erosion, 

leaching and redistribution of spoil materials into the wider environment.   

SEM results indicate Si, Fe and Al were dominant elements across all spoils and this was 

supported by XRD results indicating mineral forms. Glendinning, Wanlockhead, and Parys 

Mountain were each dominated by muscovite and quartz even though the main target for 

extraction (Sb, Pb/Zn and Cu, respectively) was quite different at the locations. In contrast to 

SEM/EDX, XRF and digestion followed by ICP-OES/MS analysis quantified more elements. 

Nenthead, Glendinning and Wanlockhead showed particularly high concentrations of Ba, Cd, 

Mg, Mn, Ni, Pb, Zn, As and Sb. The ICP methods (OES and MS) were very efficient at 

detecting and quantifying elements in mine spoil digests. The ability to detect very low 

concentrations and a wide range of elements is one of important characterisation of these 

techniques for example ICP-MS can detect 10-50 ppt of Ag, Be, Cd and Au. However, the 

preparation for these methods, which includes multiple steps and using strong acidic solutions, 

is a factor to consider when selecting a method to use. 

The CaCl2 extractions revealed that when pH is decreased to low level (≤2), elements in the 

spoils are readily mobilised. BCR results revealed that all elements had the highest 

concentrations in the residual phase, with the exception of the following: Al, Mg, Zn in the 

reducible fraction (BCR2) at Greendykes Bing; Mn, Ni on the exchangeable fraction (BCR1) 



 

in Nenthead and Parys Mountain; and finally, Sb on the exchangeable fraction in Glendinning, 

Wanlockhead and Greendykes Bing. Bioaccessible As was very low at 24 h of simulated 

exposure of Gamble’s solution, but rose greatly at 72 h in the case of Glendinning (>1800 

mg/kg), Wanlockhead (>1300 mg/kg) and Greendykes (~600 mg/kg). Addition of biochar 

decreased element (As, Cd, Cr, Pb, Sb and Zn) mobility in porewater and assimilation into 

plants and increased plant growth, indicating potential for using biochar in spoil stabilisation 

and remediation. 

The study provides a basis for selecting an analytical approach to characterising elemental and 

mineral structures of mine spoils (e.g. for purposes of environmental risk assessment or 

resource recovery potential). It shows that if subjected to acidic inputs the spoils examined can 

readily leach potentially toxic elements (PTEs) to the wider environment but that otherwise 

their potential to leach PTEs in neutral solutions is much more limited. The study found that 

dust release from 3 of the examined spoils could potentially disperse lung bioaccessible forms 

of PTEs and therefore, together with their capacity to leach PTEs, remediation via covering 

with vegetation growth would be advisable. The study demonstrated that vegetation growth can 

be enhanced on the spoils through incorporation of biochar and therefore this should be 

considered as a low-cost management option.            
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1. Introduction 
The products of mining have significant global benefits, with many countries relying on mining 

for their main source of national income. All countries rely on metals and related products for 

vital infrastructure and commonly used items, from pots and pans to cars (ICMM, 2012a). 

However, the extraction of metals and metalloids from mines generates large amounts of spoil 

and waste, which are increasing over time due to increasing demand for the products. The major 

problem generated by mine spoil accumulation is potentially high concentrations of toxic 

metals. These high concentrations can transfer into the environment and have effects on both 

animal and human life. Large scale mine waste and associated problems has prompted increased 

research efforts into mine spoil characterisation and assessment (ICMM, 2012a). 

The industrial processes of metal extraction have caused many problems for the environment. 

One of these issues is acid mine drainage. This can lead to an increase in sediment containing 

a heavy metal content, which can pose a significant threat to fish and other aquatic life 

(Robinson et al., 2008). Many studies have also discussed heavy metal accumulation in soil due 

to mining activities. Alloway and Davies (1971) found that lead mining in Wales increased the 

metal content in the soil to toxic levels in the plants which were examined. Also, Abrahams and 

Thornton (1994) discovered that mining led to soil contamination due to weathering of spoil 

tips and mine water drainage. This caused the metal content to be high in the surrounding 

agricultural soil. Many deformities of new-born calves and lambs were reported in districts with 

historic lead mining, caused by ingestion of lead-contaminated food or drinking highly polluted 

water. Mine waste also has an impact on air quality through smelter smoke, fumes and dust, 

and this can affect human health. 

To understand the connection between mine waste and contamination in surrounding 

environments (e.g. in soil), the heavy metal and potential toxic element (PTE) content of the 

spoils and surrounds should be measured. Their forms and mobility should also be determined. 

Mine site remediation is a challenging task, requiring those performing it to have a range of 

skills and knowledge. These skills include hydrology, chemistry, geology, geochemistry, 

biology, microbiology, mining and environmental/civil engineering. Knowledge of all these 

subjects is necessary to build an effective programme of mine remediation, so a 

multidisciplinary team is required to plan and apply the successful remediation. Another 
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multidisciplinary team is required to monitor the programme application and provide scientific 

advice when needed (Nordstrom et al., 2015). The characterisation of mine spoils and 

assessment of environmental risks they might pose therefore requires a multidisciplinary 

approach.  

This project takes a multidisciplinary approach to characterise the composition of mine spoils 

in five different locations (three in Scotland, one in England and one in Wales) by using various 

analytical methods and instruments such as XRD, XRF, SEM/EDX and ICP-OES/MS. To 

enable selection of best options from a technical and practical perspective, it also assesses the 

relative benefits and limitations of these different characterisation methods. In addition, the 

study examines environmental risks posed by the spoils by assessing their potential to act as a 

source of PTEs release; this includes single and sequential extraction, porewater monitoring, 

assimilation by plants and lung bioaccessibility of PTEs in the finest fractions. Finally, the study 

also examined remediation of the spoils via the low-cost approach of biochar incorporation. 

This thesis is comprises seven chapters, with the first and second chapters providing the 

introduction and literature review respectively. These cover the importance of mining, the risks 

mines and mine wastes pose to the environment and human health, the processes and pathways 

behind these risks, the techniques that can be used to characterise and assess mining wastes, 

and remediation options. The third chapter provides the necessary information to understand 

the mineralogy of the five studied mine site locations. The fourth chapter details the qualitative 

methods used to investigate the contents of the mine spoils (XRD, XRF, SEM), while chapter 

five presents the work on chemical methods used to determine the total, extractable, and 

bioaccessible concentrations of elements in spoils. Chapter six presents an evaluation of the 

different methods employed to examine the spoils and their contents, to identify the 

circumstances in which each technique is appropriate to use. Finally, chapter seven reports a 

trial in which biochar of different types was used to remediate the spoil materials to a point 

where plant cover (phytostabilisation) could be achieved to minimise mobility of PTEs. 

The novelty of this study is in three main aspects:  the first is that the study utilises a wide range 

of quantitative and qualitative methods to chemically and physically analyse and assess mine 

spoils from a range of mine types and locations, facilitating an assessment of the benefits and 

limitations of different methods for characterising mine spoils and identifying circumstances in 

which they are most appropriate. The second aspect of novelty is in the use of different methods for 

assessing the bioavailability / potential toxicity of mine spoils, with the most novel aspect of this 
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being the assessment of potential toxicity of inhaled mine spoil particles into the lungs using 

Gamble’s solution which has not been done previously to any great extent. The third aspect of 

novelty is in investigating the effectiveness of biochar for remediating mine spoil materials, which 

has particular application possibilities because of the low cost and ready access of biochar. 

 

1.2 Aims and Objectives 

Analytical chemistry techniques are continually being developed, refined and applied in new 

fields of investigation. One area that needs attention is the characterisation of mine spoils and 

the analysis of metal-bearing leachate from mine spoils and how the environmental impacts of 

these can be quantified and minimised. Rain and flood waters leach out metals and metalloids 

such as lead, arsenic, antimony, zinc and cadmium from mine spoil heaps and these can 

contaminate surrounding soils and receiving waters. Dusts from spoils (or atmospheric 

dispersion of the finer fractions) can also spread spoil components through the environment and 

possibly cause harm to lungs. This project will conduct laboratory experiments on mine spoils 

from UK sites, using a variety of analytical techniques to determine the quantity and forms of 

metals and metalloids they contain and which they might release to the wider environment. 

Moreover, it will trial biochars as amendment materials to evaluate their capacity for 

immobilizing metals/metalloids in place and thereby minimising the spread of contamination 

from mine spoils. 

The study aimed to address the following questions: 

• What are the elemental contents of the mine spoils and are the elements potentially 

mobile thereby threatening the surrounding environment?   

• Which characterisation techniques are most appropriate to employ when assessing mine 

spoils? 

• What risks do the spoils pose to humans in terms of dust generation? 

• Can the spoils be remediated using the low-cost approach of biochar incorporation? 

Specifically, the study aimed to assess mine spoils collected from 5 locations across the UK for 

their elemental contents using non-destructive (XRF, XRD, SEM) and destructive (acid 

digestion and ICP analysis) techniques to enable comparisons and selection of most appropriate 

methods for different circumstances. To assess risks to the wider environment, the study aimed 

to determine the leachability of the elements from the spoils using single solution extractions 
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and to determine the associations of the constituent elements within spoil components using a 

sequential extraction approach. A further aim was to assess potential human health risks from 

dusts generated from the spoils through a lung fluid bioaccessibility study on the finest spoil 

fractions using Gamble’s solution. A final aim was to assess the feasibility of using biochar, a 

low cost and readily available material, to remediate spoil heaps and enable plant stabilisation.      
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2. Literature Review 
2.1 Economic Importance of mining 

Mining activities have played a major role in the economy (ICMM, 2012a). Throughout the 

world, mines provide countries with many benefits in different sectors. More than half of 

foreign direct investment (FDI) comes from mines and mining activities in some countries (e.g. 

Brazil, Tanzania and Ghana) and sharing FDI is very important in countries with low income. 

In addition, increasing foreign investment is related to foreign exchange earnings. Mining 

activities can be a large proportion of the total national investment and have been a major driver 

for infrastructure development in many countries (e.g. roads, rail and communications). Also, 

government revenues increase because of mining and related economic activity due to 

increasing investment and taxes. Some studies have indicated that government revenues 

increase, and economic growth rises by 7–8% following the start of major mining activity. 

Mining often has positive effects on employment rates and wages. In Brazil, about 1.5% of the 

total national employment is directly or indirectly related to mining activities (ICMM, 2012a). 

Human society depends on metals and minerals that are extracted and produced from mines. 

The growth of civilisation and rising incomes and expectations leads to an increase in demand 

for metals and minerals, which in turn leads to increased production (ICMM, 2012b). The high 

demand for metal products and increased value of most metals has encouraged the expansion 

of global mining industries. The most commonly extracted metals, ores and resources globally 

are shown in Figure 2.1. Iron has the highest global production value (37%), followed by gold 

(16%) and copper (13%). 
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Figure 2.1: Global production of materials value in 2011 (ICMM, 2012b) 

2.2 Environmental and health impacts of mining 

Although it is a fact that mines provide many benefits to modern society, the damage caused to 

environmental resources by mine waste and smelter fallout is undeniable (Figure 2.2). This 

section will discuss the effect on water, air, soil and human health. 

  

 

 

 

  

 

 

 

 

Figure 2.2: Summary concept diagram of mining activities impact pathways on the environment and human 

health 
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2.2.1 Introduction to impacts on water quality  

All life on earth depends on water. Water enters cell structures carrying nutrients, oxygen and 

waste. Also, it keeps the temperature of the body stable. Water quality is critical for humans 

and other forms of life. In recent years, the management of mines and associated practices have 

significantly improved, but the effects on the environment remain. Some of the worst effects 

come from mining waste, particularly after mine closure (SDWF, 2016).  

The influence is different from one area to another according to circumstance, for example the 

type of mining technology applied to the site, the combination of metals that have been mined, 

the commitment of the company to environmental principles, and the ability to manage and 

monitor mine waste according to environmental regulations (SDWF, 2016). 

2.2.2 Types of mining impacts on water quality 

2.2.2.1 Acid mine drainage 

Acid mine drainage (AMD) is a process that can be simply described as the production of 

sulfuric acid from mine waste (or exposed ore) containing sulfides. Exposed mine waste or 

smelter slag containing high concentrations of sulfide compounds reacts with water and oxygen 

to produce sulfuric acid (Akcil and Koldas, 2006). Due to the low pH resulting from AMD 

processes, heavy and toxic metals may be dissolved and contaminate surface waters and soils 

(Peppas et al., 2000). Knowledge and understanding of this environmental process is 

particularly important for mining site management and to decrease its effects (Morrissey, 2003).  

Typically, three essential ingredients are required for AMD processes to occur. The first 

important factor is the presence of sulfide minerals, the most common of which is iron sulfide. 

The second ingredient is a humid atmosphere or the presence of water. Finally, an oxidant factor 

is necessary, which will usually be atmospheric oxygen or oxygen produced by other chemical 

reactions at the site (Akcil and Koldas, 2006).  

2.2.2.1.1 Mechanism of Acid mine drainage  

Akcil and Koldas (2006) explained the reactions of AMD by examining the oxidation of one of 

the most common sulfide minerals, pyrite (FeS2). The reaction is oxidation of the S in FeS2, 

releasing soluble iron and sulfate ions to solution (Equation 2.1). 

FeS2 + 7/2 O2 + H2O                 Fe2+ + 2SO4
2- + 2H+   ……… (Eq. 2.1) 
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Depending on availability of oxygen and bacteria, more ferrous ions will be oxidised to ferric 

ions according to Eq. 2.2. 

Fe2+ + ¼ O2 + H+                 Fe3+ + ½ H2O …………. (Eq. 2.2) 

In the pH value range 2.3 - 3.5, ferric ion occurs as Fe(OH)3 precipitate, this step will reduce 

pH (Eq. 2.3).  

Fe3+ + 3H2O                 Fe(OH)3 solid + 3H+ ………….. (Eq. 2.3) 

Any ferric ions from equation (2) that do not precipitate from solution through equation (3) may 

be used to oxidise additional pyrite, according to Eq. 2.4: 

FeS2 + 14Fe3+ + 8H2O         15Fe2+ + 2SO4
2- + 16H+ ……….. (Eq. 2.4) 

According to the previous equations (1-3), acid generation can occur when iron precipitates 

under these circumstances as Fe(OH)3 (Eq. 2.5): 

FeS2 + 15/4 O2 + 7/2 H2O                 Fe(OH)3 + 2SO4
2- + 4H+ …………. (Eq. 2.5) 

The overall process can be summarised as follows (Eq. 2.6): 

FeS2 + 15/8 O2 + 13/2 Fe3+ + 17/4 H2O                 15/2Fe2+ + 2SO4
2- + 17/2H+ … (Eq. 2.6) 

In the above equations sulfides were represented as pyrite and the oxidative agent as oxygen, 

but there are many sulfide minerals, such as pyrrhotite (FeS) and chalcocite (Cu2S), which will 

also produce acids in similar oxidation processes but via different reaction pathways that are 

currently less well described (Akcil and Koldas, 2006). 

Akcil and Koldas (2006) identified various primary factors that affect acid formation rate in 

relation to AMD including: pH, temperature, oxygen content in gas or water phases, chemical 

activity of Fe3+, surface area of exposed metal sulfide and bacterial activity.  

From study of the Pourbaix diagram (Figure 2.3), O’Keeke (2001) showed that when pH = 2 or 

lower, Fe2(SO4)3 dissolves to release Fe3+ and Fe2+ which remain in solution. In AMD with this 

degree of acidity, water can appear very clear but may contain high concentrations of dissolved 

metals. When AMD meets oxidised surface water with acid neutralizing compounds, both pH 

and dissolved oxygen levels rise and the Fe ions precipitate to form Fe(OH)3 which gives the 

characteristic orange ochre deposits often associated with mine drainage.   



 

10 

 

 

Figure 2.3: Pourbaix diagram for iron behaviour (Ning et al., 2015) 

2.2.2.1.2 Effects of acid mine drainage  

1. Ecological Effects 

As mentioned above, AMD lowers the pH of rivers (or other receiving water) and can increase 

concentrations of heavy metals to high levels. Aquatic species have pH tolerance levels, and 

when the pH of the water exceeds these levels, species will leave the river/water body or simply 

die. Moreover, river sediments impacted by AMD can contain significant concentrations of 

precipitated heavy metals, and these can be a significant threat to aquatic life (Scottish 

Environment Protection Agency (SEPA), 2011). Robinson et al. (2008) examined brown trout 

from the Logan Water in Scotland, a river that had been impacted by metal inputs, to assess 

contamination levels following reported fish deaths. They found large concentrations of heavy 

metals such as Mn and As in muscle tissue and Cu, Co, As, and Cd in kidney tissue that 

exceeded toxic limits in some cases. 

2. Biological effects 

Berry et al. (2003) discuss the effect of water turbidity, which is often elevated by ochre 

formation and other precipitation following AMD, and time on fish behaviour responses, as 

shown in Figure 2.4. The Figure illustrates that the fish showed signs of stress when turbidity 

levels rose to 100 NTUs after hours of exposure. Continued exposure and/or exposure to higher 

levels of turbidity resulted in the fish showing moderate to severe behaviour changes such as 

reduced feeding rates and avoiding behaviour (Figure 2.4). After weeks of exposure, severe 
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effects appeared such as reduced growth rates and delayed hatching periods. Finally, the fish 

died if exposure continued for months. 

 

Figure 2.4: The effects of turbidity levels and time on some fish behaviours (Berry et al., 2003) 

2.3 Impacts of mining activities on soil quality 

Soil is an important part of terrestrial ecosystems as many bioecological activities such as 

decomposition and primary production occur within it (Bridges and Oldeman, 1999; DeJong et 

al., 2011).  

Many human activities depend on soil such as agriculture, construction, industry and tourism 

(Saviour, 2012). Metals accumulate in the soil by natural or artificial processes. Natural 

processes involve the chemical and physical weathering of rocks (Jung, 2008), while artificial 

processes include deposition from mining and smelting activities. The chemical, physical and 

microbiological properties of soil are dramatically changed by mining works (Sendlein et al., 

1983).  

Mining has caused many problems in soils such as heavy metal contamination, with associated 

effects on soil fertility and reduced plant growth, which will be discussed in later sections. 

2.3.1 Effects of mining activities on soil content of heavy metals 

Many studies have discussed heavy metal accumulation in soil caused by mining activities. 

Alloway and Davies (1971) found that lead (Pb) mining in Wales increased the concentration 

of Pb to high levels in surface soil; for example, they found a Pb concentration of 1,419 mg/kg, 
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a Zn concentration of 455 mg/kg, a Cu concentration of 30 mg/kg and a Cd concentration of 

2.3 mg/kg. In addition, Abrahams and Thornton (1994) mention that mining can cause soil 

contamination due to weathering of spoil tips or mine water drainage, which can lead to 

accumulation of heavy metals in agricultural soils.  

2.3.2 Mining effects on fertility of agricultural soil 

One of the most important uses of soil is in agriculture. Chenery et al. (2012) emphasise that 

contamination of agricultural lands due to mining-related activities is becoming a global 

problem. Many researchers have reported incidents of newborn calves and lambs suffering from 

metal toxicity after ingesting Pb-contaminated forage or drinking highly polluted water in 

districts historically associated with Pb mining (Thornton and Abrahams, 1983; Aslibekian and 

Moles, 2003; Smith et al., 2010). Primarily, accumulation of Pb occurs in the bones and can 

cause many symptoms such as immunity suppression, neurological dysfunction, decreased 

reproduction and even mortality (Kendall et al., 1996; Thomas et al., 2009). 

Smith et al. (2009) investigated the presence of heavy metals (Pb, Zn) in grazing plants in 

mining-contaminated floodplain pastures and found that the studied metals transferred from the 

contaminated soil to the grazing plants and reached high levels in some samples of up to 1,350, 

350 and 49 µg/g for Pb, Zn and Cu, respectively. Moreover, Jung (2008) measured the soil 

content of heavy metals in and around copper mine in southeast Korea. He investigated the 

content of heavy metals in many plants such as corn, jujube, perilla leaves, pepper, soybean 

leaves and spring onion in the same region and found that previous mining had led to 

concentrations of Cd, Cu, Pb and Zn increasing to 1.88, 26.4, 4.23 and 256.0 µg/g, respectively, 

in spring onion in the mining area compared with the control area, which had 0.77, 18.3, 3.02 

and 47.4 µg/g. 

2.4 Impacts of mining activities on air quality 

Mining activities also cause many problems with respect to air quality. One such issue is the 

dust emitted from mining sites (Ghose and Majee, 2000), which can cause many health 

conditions in humans such as asthma and irritation of the lung and bronchial passages (Saviour, 

2012). In addition, high levels of dust inhalation have caused widespread pneumoconiosis, 

which is considered an occupational disease in China (Xue et al., 2014; Nie et al., 2014; Nie et 

al., 2016). Previous studies have reported that 23,152 cases of pneumoconiosis were diagnosed 



 

13 

 

by the National Health and Family Planning Commission of the People’s Republic of China in 

2013, and that ~90% of cases were related to coal mines and associated industry.  

Since the nineteenth century, emissions from smelters have been a significant issue for the 

mining industry (Pérez Cebada, 2016). There are three types of smelter emission: flue dust has 

small particles of flux, fuel or ore; fumes usually have very small grains produced by the 

chemical reactions in furnaces such as arsenious oxide, lead compounds, elemental sulfur and 

Zn oxide; and smelter smoke is made up of diverse gases that are formed by the chemical 

processes associated with burning fuel such as carbon monoxide and dioxide, water vapour and 

nitrogen, and sulfur dioxide (and sulfur trioxide) (Peters, 1911; Fulton,1915, cited in Pérez 

Cebada, 2016). 

Since antiquity, the negative effects of mining activities have been well known; however, the 

level of risk in the mining industry increased substantially during the Industrial Revolution. 

Mining activities were the main cause of occupational diseases (Bayer, 1998). Acid rain and 

other pollution problems caused by ore refining and coal burning in power stations are examples 

of the effects of smelter smoke moving from the work environment into the atmosphere to cause 

pollution (Milici, 2000; Copeland, 2015).  

2.5 Metals of particular concern (in relation to mine spoils examined)  

In this section, information is presented on the properties, benefits, uses and environmental and 

health effects of metals of particular concern in relation to mining. 

2.5.1 Lead 

Pb is a metallic element in group IV A of the periodic table. The atomic number of Pb is 82 and 

its relative atomic mass is 207.2 (UNEP, 2010). Smith (1984) describes Pb as ‘a ubiquitous and 

versatile metal’. Uses of Pb date from prehistoric periods. Its high malleability makes it a very 

valuable metal and allows easy shaping, casting and joining of Pb artides (Thornton et al., 

2001). 

Pb can be emitted into the atmosphere by both natural and artificial sources. Pb emission to air 

from 1983 to the mid-1990s decreased significantly due to the decreasing use of leaded fuel. 

Annual emissions of Pb amounted to 330,000 tons in 1983, falling to 120,000 tons in the mid-

1990s (UNEP, 2010). The Pb cycle on Earth has been dramatically affected by human activity; 
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for example, the amount of Pb extracted from the land was approximately 3.15 million tons in 

2004 (UNEP, 2010). 

Generally, Pb can be easily extracted by mining, and the process of extraction is not particularly 

difficult or expensive compared to that for other non-ferrous metals due to its extreme 

malleability, low strength and low melting temperature (Tong et al., 2000; Thornton et al., 

2001). Pb is or has been used in more than 50 industrial applications, including batteries, 

ammunition, petrol additives and cable sheathing (Thornton et al., 2001; UNEP, 2010). Figure 

2.5 shows the percentage of Pb end-use, with the most significant usage in the battery industry 

(80%). 

  

Figure 2.5: International consumption of lead by different end-uses (ILZSG, 2020) 

Thornton et al. (2001) mention that Pb is used in many domestic products such as window 

frames, roofing, and kitchen and tableware, and that it has been used ornamentally for many 

centuries.  

Health issues linked to Pb exposure have been known for a long time, with records dating back 

to the Roman period (Thornton et al., 2001). Thornton et al. (2001) mention that the main 

pathway of human exposure to Pb may be food contaminated through the deposition of airborne 
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particles or soil with high Pb content. Cui et al. (2004) reported that both soil and vegetables 

cultivated near a Pb-production smelter were highly polluted with Pb in the Nanning suburb, 

the Guangxi Province capital in southern China. Another important source of human intake of 

Pb is old water pipes in houses, which can release Pb into the water at varying levels depending 

on several factors such as the water’s dissolved oxygen level, temperature, pH and softness 

(Schock, 1989, 1990, cited in World Health Organization (WHO), 2011). The United Nations 

WHO reported that water with <10 µg Pb/L may be considered safe to drink (Thornton et al., 

2001). Air can be a considerable source of human exposure to Pb, through direct inhalation 

within short distances of sources. Air Pb levels in Europe have decreased due to bans on leaded 

petrol; however, reasonable to high levels of Pb are still detected in industrial areas. Another 

important source of human exposure to Pb is dust generated from leaded paint in old dwellings. 

This has been shown to be the primary source of exposure for children living in such houses in 

the US (Thornton et al., 2001).  

Exposure to Pb is considered a major contributor to, or an outright cause of, many human health 

problems. Chronic exposure (i.e. exposure to Pb for a long period) can cause various kidney 

and nervous system issues such as hypertension and dysfunction in adults and mental and 

physical development delay in children, as well as decreased intelligence quotient (Canfield et 

al., 2003; Paoliello and De Capitani, 2005; Golub et al., 2010; Cory-Slechta et al., 2012). 

Ettinger et al. (2010) reported that Pb levels in blood may be used as an indicator to monitor Pb 

poisoning caused by environmental exposure. For children, exposure to Pb can occur through 

playing with soil and hand-to-mouth actions (taking objects from the ground and putting them 

in the mouth). Children’s high susceptibility to Pb poisoning makes this a priority in many 

studies (Lin et al., 2011; Yabe et al., 2015).  

Cory-Slechta et al. (2013) and Grönqvist et al. (2014) mention that acceptable Pb levels in blood 

vary between countries; the acceptable level in the US is 50 μg/L, while in the UK it is 20 μg/L. 

The main reason for threshold stems from the neurobehavioural problems that Pb can cause in 

children, even at very low concentrations of Pb exposure (Gilbert and Weiss, 2006). Moreover, 

Lanphear et al. (2005) reported that the effects of low levels of Pb exposure on the nervous 

system can make the determination of a safe level of Pb very difficult, which explains why the 

acceptable levels thresholds varies among different countries. 
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Bello et al. (2016) investigated the concentrations of Pb in the blood of children and adults near 

a Pb/Zn mine site in Nigeria. They found that Pb levels in 11% of the collected blood samples 

exceeded the permissible level of Pb exposure for children (which was 5 μg/dL in this study). 

Furthermore, there was a significant positive correlation between Pb concentrations in water 

and in the adults’ blood. The results of this study refer to the direct harmful effects of mining 

activity at the studies site. The same authors found that Pb levels were still higher than 

recommended approximately 10–12 km from the mine site, showing that the effects are not 

only local. 

Sun et al. (2010) investigated the environmental pollution and health issues caused by Pb and 

cadmium (Cd) around mining deposits from the Chatian mercury mine in western Hunan 

Province, China. They found that Pb pollution caused many health issues in local residents. The 

average Pb concentration from rice and drinking water consumption was high, at 0.139 mg/L 

in drinking water (compared with the maximum limit of 0.01 mg/L recommended by WHO) 

and 1.63 µg/g in rice (compared with the maximum limit of 0.20 µg/g recommended by the 

Sanitation Criterion for Food, China).  

2.5.2 Arsenic 

Arsenic (As) is a naturally occurring element that is widely distributed in the Earth’s crust 

(HHS, 2007). The atomic number of As is 33 and its relative atomic mass is 74.92. Arsenic is 

in group VA of the periodic table. The chemical and physical properties of As are intermediate 

between the metal and non-metal elements, which means that, chemically, it is classified as a 

metalloid, but in most cases it is considered a metal (WHO, 2001; IARC, 2004; HHS, 2007). 

The IARC (2004) listed the fields in which As compounds are used. Arsenic has been used 

since the 1970s in medicine and pharmaceutical applications, with inorganic As being used to 

treat chronic bronchial asthma, leukaemia and psoriasis. Antibiotics have been manufactured 

from organic As compounds and used to cure diseases caused by protozoa and spirochaetal 

microorganisms. In addition, inorganic As compounds have been employed widely as 

antifungal wood preservatives in chromated copper arsenate treatments; however, this use has 

now been banned in many countries because of health and environmental concerns; for 

example, in Canada and the US, its use as a wood preservative has been banned in residential 

units since 2003 (IARC, 2004). The use of As compounds in agricultural industry has a long 

history; these compounds have contributed to many applications such as insecticides, 



 

17 

 

herbicides, soil sterilisers, defoliants and cotton desiccants. Some organic As compounds (e.g. 

arsanilic acid) are employed widely as feed additives for swine and poultry to improve feed 

efficiency, increase weight gain rates, and treat diseases and pigmentation (EPA, 2000, 2006). 

Furthermore, As is used for many industrial purposes such as alloy manufacture, pigments, 

poisoning bites and as a leather preservative (IARC, 2004). 

Arsenic occurs naturally as a sulfide in various minerals consisting of Pb, copper, silver, 

antimony (Sb), cobalt, nickel and iron. In air, As emanates into the atmosphere from both 

artificial and natural sources. The most significant anthropogenic sources of As are estimated 

to emit 24,000 tonnes per year into the atmosphere; these sources are mining and smelting 

activity and agricultural pesticide use (WHO, 2001). 

Contamination of water and the distribution of As via water is an important environmental 

issue. Arsenic transported by water depends on many factors, including the water’s oxygen 

concentration, the degree of biological activity, the type of water source and the distance 

between the water source and natural or anthropogenic sources of As (WHO, 2001). Arsenic 

levels vary between affected and unaffected areas; in affected areas, As concentrations may 

range between 10-1000s of ug/L while As concentrations in unaffected locations are determined 

by only a few ug/L (IARC, 2004).  

Soil can become polluted with As from artificial sources such as mining activities, smelting 

waste and As pesticides used in agricultural processes. Concentrations of As in contaminated 

soil may reach several grams per kg in some countries (Chakraborti et al., 2002; Smedley and 

Kinniburgh, 2002, cited in IARC, 2004), while sediments in anthropogenic areas may achieve 

As concentrations of 5–3,000 mg/kg (WHO, 2001). 

In addition to contamination of the environment and the ecological consequences that may have, 

human exposure to As is also an area of concern linked to mining and smelting. The main 

pathways of human exposure to As are through contaminated food and water (WHO 2001), but 

another important exposure pathway is inhalation of dust containing As, particularly for 

workers in mines or other related sites such as smelters. However, outside of mining and 

smelting areas this type of exposure is considered to be a minor pathway for the general 

population because daily As intake by inhalation is typically very low (reaching a maximum of 

400–600 ng). Many cases of As exposure have occurred in connection with the non-ferrous-
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metal smelting industry, battery assembly, coal-fired power stations and glass manufacturing 

(IARC, 2004). 

Exposure to inorganic As compounds in particular is recorded as the main cause of many health 

issues such as hyperkeratinisation and hyperpigmentation of the skin, increased blood pressure 

and circulatory problems (HHS, 2007). Human exposure to inorganic As compounds may also 

result in vomiting, nausea and diarrhoea, which are considered to be common signs of As 

exposure. 

It is well known that As exposure through air (inhalation) or food and water (oral) for a long 

period can cause cancer such as lung and bladder (HHS, 2007; IARC, 2004). 

2.5.3 Antimony 

Sb belongs to group VA in period 5 of the periodic table. It has an atomic number of 51 and a 

relative atomic weight of 121.75. Sb is described as a metalloid because it has both metal and 

non-metal properties (WHO, 2003; Butterman and Carlin, 2004). Because of Sb’s relative 

inflexibility, it is used in the production of infrared detectors, diodes and semiconductors. 

Furthermore, Sb has uses in many industries, such as solder and bearing manufacture, Pb 

storage batteries, casting and pewter production. Sb compounds are also used in many 

applications, such as fire-retardant formulation for paints and rubber, and the manufacture of 

pigments and explosives (WHO, 2003; Butterman and Carlin, 2004; Sundar and Chakravarty, 

2010; Anderson, 2012). In addition, Sb has been used in medicines since the fourteenth century, 

mainly in the treatment of leishmaniosis and schistosomiasis (McCallum, 1999). 

The WHO (2003) reported that the main sources of human exposure to Sb are anthropogenic. 

People who work in metal mining, refining and smelting, refuse incineration and coal-fired 

power stations are exposed to this element in different ways through their work, but principally 

via inhalation (Sundar and Chakravarty, 2010). Another exposure pathway to Sb is via drinking 

water. A report by the EPA (2001, cited in Butterman and Carlin, 2004) recorded that 34% of 

released Sb in surface water came from petroleum refineries, while 8% came from synthetic 

fibre manufacturing and 5% came from the smelting of non-ferrous metals. In addition, the 

WHO (2003) reported that the amount of Sb in food is very low because it is not a bio-

accumulated element (meaning that it does not move readily through the food chain). Sb is 

present in food, including vegetables grown in Sb-contaminated soils, mostly in the low µg/kg 
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wet weight range or less. Concentrations of Sb in groundwater and surface water are normally 

in the range of 0.1–0.2 µg/Litre (Bowen, 1979). 

The attribution of health problems exclusively to Sb, particularly respiratory issues, is difficult 

because workers are commonly co-exposed to other compounds such as iron oxide, As oxide 

and sodium hydroxide (Cooper et al., 1968; Potkonjak and Pavlovich, 1983, cited in Sundar 

and Chakravarty, 2010). Sb exposure can cause pneumoconiosis, inactive tuberculosis, chronic 

bronchitis, respiratory irritation (characterised by chronic coughing, wheezing and upper 

airway inflammation), chronic emphysema and pleural adhesions (Sundar and Chakravarty, 

2010). Furthermore, exposure to Sb has been known to cause an increase in blood pressure and 

dermal issues known as antimony spots, which tend to develop in hot weather. Cases have also 

been reported of female workers at Sb metallurgical plants suffering miscarriages linked to Sb 

exposure (WHO, 2003). In addition, there is enough evidence to suggest that exposure to Sb 

may lead to the development of tumours in the lungs, but not other organs (Elinder and Friberg, 

1986, cited in WHO, 2003; Sundar and Chakravarty, 2010). 

2.5.4 Cadmium 

According to the EPA National Priorities List (NPL) (HazDat, 2007), Cd has been found in at 

least 1,014 dangerous mining waste sites in the US alone. Cd is a metal, and it has an atomic 

number of 48 and a relative atomic mass of 112.41. It belongs to group IIB in the periodic table 

(IARC, 1993). Cd is involved in many industrial applications due to specific properties such as 

its low melting temperature (321.1ºC), high thermal and electrical conductivity, high ductility 

and excellent corrosion resistance (National Resources Canada, 2007, cited in ASTDR, 2008). 

The USGS report (2008) mentions that the main uses of Cd in 2007 in the US were as follows: 

83% used in nickel-cadmium batteries, 8% in pigments, 7% in plating and coating, 1.2% in 

plastic stabilisers and 0.8% in other industries such as photovoltaic and semiconductor devices.  

Cd can be released into the environment from many natural and anthropogenic sources; natural 

sources include rock weathering and volcanic events, while artificial release stems from human 

activity such as the production of non-ferrous metals and fossil fuel combustion, as well as the 

production of ferrous metals, waste incineration and cement production (ATSDR, 2008; UNEP, 

2008, 2010). 

Reports by the IARC (1993), ATSDR (2008) and UNEP (2008) explain that many 

anthropogenic activities ultimately lead to the addition of Cd to water; such activities include 
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planting operations, sewage treatment, phosphate fertilisers use, mining and smelting of non-

ferrous metals, and waste and/or drainage water from these. 

When deposited in soil, Cd can create environmental and health problems, particularly via 

uptake into cultivated plants and then into the food chain. There are several factors that affect 

the transport of Cd in terrestrial environments, including the pH of the soil, the type of soil and 

plants, the availability of organic matter, the addition of fertilisers to the soil, deposition rates 

and the presence of other elements such as Zn that can compete for uptake (WHO, 2000; UNEP, 

2008). 

Other important sources of Cd exposure for humans include smoking. Tobacco plants naturally 

accumulate Cd, which means that the daily intake of Cd from smoking can exceed the intake 

from food and water. Significant concentrations of Cd can also be found in the kidneys due to 

cigarette smoke (WHO, 2010). Concentrations of Cd in fruit, meat and vegetables are usually 

below 10 µg/kg; in cereals, concentrations are approximately 25 µg/kg wet weight. In 1980–

1988, the average Cd level in fish was 20 µg/kg wet weight, concentrations of Cd in liver were 

10–100 µg/kg and in kidney 100–1000 µg/kg. High levels were found in shellfish at 200–1000 

µg/kg (Galal-Gorchev, 1991). 

The effects of Cd exposure on human health were recorded by the IPCS (1992). Straif et al. 

(2009) cited in WHO (2010) describe several health issues resulting from exposure to Cd, 

stating that the organs principally affected by Cd exposure are the kidneys. In humans, the 

biological half-life of Cd is in the range of 10–35 years. The accumulation of Cd may cause 

dysfunction of the renal tubes due to increased low molecular weight protein excretion in the 

urine. A report by the WHO (2010) states that a high intake of Cd affects the metabolism and 

distribution of calcium in the body, which can lead to kidney stones. In Japan, itai-itai disease 

has spread widely in women over the age of 50 who live in areas where soil has been polluted 

with Cd from Zn/Pb mines. This disease causes painful bone fractures, osteoporosis, kidney 

dysfunction and osteomalacia (WHO, 2010). Acute pneumonitis occurs in the case of high 

inhalation of Cd; this symptom may occur alongside pulmonary oedema, which can lead to 

death. Lung changes and obstructive airway disease are considered the major symptoms of 

occupational exposure to Cd. There is sufficient evidence to suggest that Cd is carcinogenic to 

humans, particularly after long exposure under occupational conditions. Cd fumes are 

understood to have led to lung cancer in exposed workers (WHO, 2010). 
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2.5.5 Zinc 

Zn is a metal, and it has an atomic number of 30 and a relative atomic weight of 65.37. It 

belongs to group IIB in the periodic table (Fosmire, 1990; Kaur et al., 2014). The HHS (2005) 

reported that Zn is an important element in the human body and that it can be found in many 

nutritional supplements; however, high exposure to Zn can impact health significantly. Plum et 

al. (2010) mention that Zn is a harmless element compared to several other similar metal ions, 

with a lethal dose value of 50% (LD50), which is four times higher than other elements such as 

Cd or mercury. More than 300 enzymes and many more proteins require Zn to form or function. 

Furthermore, cell division, protein metabolism and cell function depend significantly on Zn 

content in the body (Vallee and Falchuk, 1993). 

Zn is used in many industrial applications, but galvanisation is the major field in which Zn is 

used, to prevent rusting of other metals such as iron. Galvanised steel is used for lampposts, car 

bodies, suspension bridges and safety barriers. Moreover, Zn is used widely in the production 

of die-castings, which are important in the hardware, automobile and electrical industries. In 

addition, Zn in used in the manufacture of alloys such as nickel silver, aluminium solder and 

brass, and also in the rubber, pharmaceutical and cosmetics industries (Kołodziejczak-

Radzimska and Jesionowski, 2014). Zn compounds such as Zn oxide are also used significantly 

in products such as paints, plastics, soaps, inks, batteries, textiles and electrical equipment. Zn 

sulfide is used in the production of luminous paints, x-ray screens and fluorescent lights (Royal 

Society of Chemistry, 2016).  

The HHS (2005) reported that both natural and anthropogenic sources release Zn into the 

environment, and that human activity accounts for the majority of Zn released, for example, via 

steel production, mining activities, purification of Pb, Cd and Zn, and the burning of waste and 

coal. These activities can release Zn into the air, water and soil. On the other hand, disposal of 

Zn waste from industries of metal productions, fertilisers and sludge can increase Zn 

concentration in soil (HHS, 2005). Human exposure to Zn can be via food and drinking water, 

but Zn can also enter the lungs through inhalation of welding or smelting fumes (HHS, 2005; 

Kaur et al., 2014). These sources usually expose individuals to small amounts of Zn, but 

repeated and frequent exposure can cause many health problems, such as metal fume fever (a 

short-term disease resulting from inhalation of large amounts of Zn), nausea, vomiting and 

stomach cramps.  
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Protein-rich foods such as meat and marine organisms contain high concentrations of Zn (10–

50 mg/kg wet weight), whereas grains, vegetables and fruit are low in Zn (usually <5 mg/kg). 

Values of 5–22 mg have been reported in studies on the average daily intake of Zn in different 

areas (Elinder, 1986). 

On the other hand, Zn deficiency can cause many health issues such as decreased immune 

function, appetite loss, skin sores and slow wound healing. Zn deficiency can also cause birth 

defects in pregnant women (HHS, 2005; Kaur et al., 2014). 

2.6 Conclusions 

The information presented in this chapter has highlighted the many issues caused by mining 

and post-mining activities such as smelting. Most of these problems have a serious and 

widespread effect on the environment, plants, animals and human life. IN relation to mine 

spoils, the most notable problems for the environment are caused by mine spoils that contain 

high concentrations of potential toxic elements (PTEs) that could be released to the wider 

environment and result in significant harm. These elements can transfer to water sources 

through AMD or rain run-off and leaching. In addition, these elements can transfer to the soil, 

either through contaminated water leachate, aerial dispersion of fines or through spreading, 

deposition and incorporation of solid materials into agricultural soils. Such processes can lead 

to dramatic increases in the concentration of PTEs in soil. When the land is then cultivated, 

PTEs will reach humans and animals through the plants they eat. Other important sources of 

human exposure to PTEs stem from occupational exposure, which occurs when workers come 

into contact with ores throughout the extraction and processing of targeted minerals from mines. 

Many studies confirm that such pathways lead to increase the concentration of PTEs in soil and 

water, which need to be managed and remediated using the best available methods to avoid 

environmental problems and human health impacts.  
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Chapter 3 Site background and characterisation of studied spoils  
 3.1 Mine spoil material collection locations 

Mine spoil materials were collected by Dr Ian Oliver from five locations within the UK (Figure 

3.1). Spoil materials were collected by first scraping away the top few centimetres of surface 

material (as this was likely to have been exposed to wind and rain much more than the 

underlying materials and so may not have been representative of the bulk of the material), then 

digging out samples using a trowel. Photos of the extraction points are shown in Figure 3.2. 

The materials were sealed in plastic containers (~3-5 L capacity) for transportation to the 

laboratory. The five locations were specifically selected because they represented a range of 

different mine and ore/resource types, and because they were accessible. Information about 

each location is provided in the following sections and an overall summary is presented in Table 

3.1. 

Table 3.1: Summary of spoil material collection locations 

Name of site 
Geographical 

location 
Main 

mineral 
Source of spoils 

Main type of 
mining 

Period of operation 

Glendinning NY 31200 96500 Antimony 

Ore extraction 
and ore 

refinement 
processes 

Underground 1793-1945 

Wanlockhead NS 871129 Lead 
Ore refinement 

processes 
Underground 1850-1920 

Greendykes 
Bing 

NT 08768 73502 Shale-oil 
Burning of the 

rock to extract oil 
Underground 19th century -1925 

Nenthead NY 78420 43300 Lead and 
zinc 

Mine smelting 
processes 

Underground 1700-1970 

Parys 
Mountain 

SH 442903 
Copper, 

lead, zinc 
and gold 

Mining ore 
extraction and 

smelter processes 
Underground 18th century-1879 
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Figure 3.1: The location of spoil collection sites 
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(A) (B) 

  

(C) (D) 

 
(E) 

Figure 3.2: The samples collection sites: (A): Glendinning, Scotland,  

(B): Wanlockhead, Scotland, (C): Greendykes Bing, Scotland, (D), Nenthead, England,  

(E) Parys Mountain, Wales (images had been taken by Dr Ian Oliver). 
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3.2 The studied locations 

3.2.1 Glendinning mine, Scotland 

The main mine in Glendinning is the Louisa Mine, located in southern Scotland, approximately 

25 km southwest of Hawick and 13 km northwest of Langholm. The Louisa Mine produced 

primarily Sb in the period 1793–1798, and in 1881–1891 the mine produced about 200 tonnes 

of Sb (Gallagher et al., 1983). Work at the mine continued less intensively until it stopped in 

1945 after World War II. Smelters and waste from mining activities (including spoil heaps) are 

still identifiable at the site and are spread approximately 1 km around the surrounding area, 

close to Jamestown (Gallagher et al., 1983). 

In terms of the underlying geology, the Glendinning area diverted from the Southern Uplands 

and lies on a strip of Silurian strata. The most common surface/near-surface rock forms are 

siltstone and fine greywacke. Boreholes drilled here for geological exploration revealed that 

this area contains intraformational breccia horizons with a muddy matrix of clast set in fine 

siltstones. Carbonate and quartz veins cut through the breccia in some cases. These veins may 

have formed from the movement of surface deposits to the intraformational breccia (Gallagher 

et al., 1983). Figure 3.3 summarises the topography and geology of the Glendinning mine area 

and illustrates the concentration of Sb previously found in this area. 
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Figure 3.3: The area around Glendinning mine’s geology and topography, indicating antimony (Sb) 

concentration in the overburden (Gallagher et al., 1983). 

Early attempts to investigate the ore mineralogy of the Glendinning mine had been made by 

Smith (1919) and Dewey (1920) (both cited in Gallagher et al., 1983), who recorded Pb–Sb 

sulfide semseyite and Sb oxide valentinite. However, there were five main groups of ore 

mineralogy in the Glendinning mines: sulfides, carbonates, oxides, silicates and sulfates 

(Gallagher et al., 1983). The main minerals in the sulfide group were pyrite, arsenopyrite, 

galena, sphalerite, semseyite, chalcopyrite, bournonite, stibnite, tetrahedrite and tennantite. The 

carbonate group consisted of dolomite, calcite and aragonite. The minerals in the oxide group 

were hematite and goethite. The silicate group consisted of many minerals, including quartz, 

plagioclase, biotite, potassic feldspar, muscovite, sericite, illite, zircon, tourmaline and dickite. 

Baryte was the only recorded mineral found in the sulfate group (Gallagher et al., 1983). Gal et 

al. (2007) studied the mineralogy of the Glendinning mine area using bulk XRD methods; they 

found that the main components of the samples were quartz, muscovite [KAl3Si3O10(F,OH)2], 
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albite [NaAlSi3O8], illite [K(Al,Fe,Mg)3(Si,Al)4O10(OH)2] and chlorite 

[(Mg,Fe,Al)6(Si,Al)4O10(OH)8]. The only sulfide mineral detected in the soil samples was 

arsenopyrite. The secondary minerals detected using the bulk XRD technique in their study 

were hematite, calcite, goethite, valentinite (SbO2) and clay minerals (kaolinite and 

montmorillonite) (Gal et al., 2007). A further ore detected in this area was stibnite (Gallagher 

et al., 1983). 

The effect of abandoned mine spoils in the Glendinning area on soil biota have been studied to 

some degree by Gal et al. (2007). In their study, the bioavailability and mobility of As and Sb 

were investigated, and the accumulation of these elements was determined in soil, plants and 

earthworms. In addition, the risk levels of Sb and As were estimated. The results showed that 

the maximum levels of Sb and As in the soil were 1,200 and 17,400 mg/kg, respectively. In 

addition, the maximum concentration of these elements in earthworms reached 27 and 960 

mg/kg, respectively, which can be considered very high compared to background 

concentrations of these elements (e.g. 0.2–50.0 µg/kg for Sb and <1 mg/kg for As). In addition, 

biological samples from fern leaves and grass samples showed high As concentrations of 44 

and 195 mg/kg, respectively. 

MacGregor et al. (2015) mention the mobility of Sb, As and Pb at the former mines in 

Glendinning, with concentrations in spoil materials in the ranges of 174–302, 74–85 and 873–

1,020 mg/kg, respectively. They also found high concentrations of As and Pb in the colloidal 

components of the soil solutions of nearby soils (which were extracted and isolated from bulk 

soil porewater as ultrafilter retentate), as well as high levels of Sb in the non-colloidal dissolved 

fractions of the soil solutions. The earlier studies indicate that Sb and other elements can and 

do leach from the spoil materials and therefore can have a potential impact on the surrounding 

environment. 

3.2.2 Wanlockhead mine, Scotland 

Mighall et al. (2014) mention that Wanlockhead was a former mine for Pb, silver, gold, copper 

and Zn ores. Wanlockhead is the highest (most elevated) village in southern Scotland, situated 

on the Lanarkshire and Dumfriesshire border (Figure 3.4). Pb and gold mining in this region is 

believed to date back to the thirteenth century, with peak extraction between 1600 and 1930 

(Mighall et al., 2014; Pickin, 2004).  
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A report for the British Geological Survey prepared by McIntosh et al. (2004) provides detailed 

information on the mineralogy of the Wanlockhead mine; the most abundant ores found in this 

area are galena (lead sulfide), calcite crystal (calcium carbonate), hemimorphite (hydrated 

silicate of zinc), aragonite (gangue minerals), calcite on zinc blende (Zn sulfide), aragonite on 

galena (consisting of CaCO3 and pertaining to the orthorhombic crystal system), plumbonacrite 

on galena (a hydrated carbonate of lead), pyromorphite on galena (lead chlorophosphate and 

lead chloroarsenate), and witherite (barium carbonate). Figure 3.4 illustrates the Wanlockhead 

mineralisation. 

 

Figure 3.4: Map of mineralisation mineralization riles draining the area around Wanlockhead  

(Pickin, 2004) 

Mighall et al. (2014) determined the concentration of heavy metals in the post-mining area of 

Leadhills/Wanlockhead, in southwest Scotland, using ICP-OES. They found that the highest 

concentrations of Pb and As were present in the upper depths of the soil (top 10 cm, at 

concentrations of 950 and 25 µg/g, respectively), while the deepest levels (below 35 cm) 
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showed low concentrations of these elements (e.g. <10 and 9.5 µg/g, respectively). On the other 

hand, concentrations of Zn fluctuated at the deep levels of the soil profiles (from base to 80 

cm); for example, the concentration of Zn was around 8 µg/g at a depth of 8 cm, decreasing to 

2 µg/g at 8 cm, then increasing again to 6 µg/g at 50 cm. Other studies in the region have 

similarly revealed that the levels of Pb contamination in some of the soils near the mining area 

are extremely high, reaching >22,000 mg/kg (e.g. Towers et al., 2006; Coal Authority, 2011). 

A study by Patrick and Farmer (2007) involved the use of sycamore tree rings as a historical 

biomonitoring agent to investigate the concentration of Pb in three areas of Scotland: Loch 

Lomond, Tyndrum and Wanlockhead. They found that concentrations of Pb decreased at 

greater distances from Wanlockhead, ranging from 28.5–244.0 mg/kg in Wanlockhead 

cemetery to 51–979 mg/kg in Wanlockhead village (Patrick and Farmer, 2007). Pb and Zn 

contamination of nearby waterbodies has also been recorded. Indeed, Glengonnar Water (which 

runs near Wanlockhead; see Figure 3.4) is one of the few rivers in Scotland to fail 

environmental quality standards for metal contamination in the water (SEPA, 2011); in 1984, 

it was noted as having trout with visibly blackened tails, which is an indicator of Pb pollution. 

Wanlock Water has been monitored less intensively by environmental regulators, but 

preliminary investigations have indicated that this river would also fail environmental quality 

standards for Pb, Cd and Zn (SEPA, 2011). Public health questions have also been raised 

periodically regarding metal concentrations in the wider area, including a review commissioned 

by the National Health Service (NHS, UK) in 2012 of Pb levels in Glengonnar Water. These 

studies confirm that leachate or other discharge from the old mine works and remaining spoil 

materials in the area are significant environmental issues that require investigation. 
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3.2.3 Greendykes Bing, Lothian, Scotland 

Oil shale deposits in the Lothian region of central Scotland are a product of the area’s geological 

history. In the period 410–360 million years ago, volcanic activity was frequent. This was 

followed by the Carboniferous Period (360–285 million years ago) when the area had a tropical 

climate (at this point, the landmass now recognised as Scotland was near the equator). During 

these periods, warm sea water occupied large areas of what is now the central valley of 

Scotland, and this led to organic debris being deposited here along with fine silt layers. To 

summarise briefly, this led to the geological development of the area of West Lothian such that 

the following bands formed and are now present (from east to west): sandstone, limestone, oil 

shale, limestone, sandstone, cement limestone, fireclay and coal (Harvie, 2005). Figure 3.5 

illustrates the geology of the West Lothian area (Harvie, 2005). 

Figure 3.5: Map depicting the West Lothian area geology (Harvie, 2005) 

The region of West Lothian was important because oil was produced by retorting mineral oil 

from deep-mined carboniferous shale beds during the nineteenth and early twentieth centuries. 

At the time, Scotland was the dominant oil-producing nation in the world, producing and 

refining >3 million Litres per year by 1866. The peak production year was 1913, when 27.5 

million barrels of crude oil were produced (Harvie, 2005). In addition to sale and export as 

crude oil, shale oil was refined as paraffin oil, which was used in many products such as 
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lubricant, paint, lighting gas, mothballs, fertiliser, sulfuric acid and candles. The oil industry 

directly employed many thousands of workers across Midlothian, resulting in town populations 

increasing dramatically; for example, the population of Broxburn increased from 660 in 1861 

to 5,898 in 1891. However, the shale oil extraction process generated large volumes of waste 

that has a physical and chemical structure unlike coal spoils or any other type of industrial 

waste. In terms of the amount generated, it is estimated that the production of 10 barrels of oil 

produces 7 tonnes of burnt shale waste. In 1963, when production ceased due to the inability of 

shale oil to compete economically with oil produced in the Middle East, there were 27 ‘bings’ 

(large heaps of burnt oil shale). The waste material has value in construction (e.g. road 

building), which meant that several bings were used and levelled. However, there are still 19 

bings in the area (Figure 3.6), with Greendykes being the largest (Table 3.2). The 19 remaining 

bings cover 186 ha, with some being extracted for construction materials (e.g. Drumshoreland 

north and south, and the Clapperton and Niddry bings), while others are scheduled as cultural 

and historic monuments (Five Sisters, the north part of Greendykes, and Faucheldean). They 

have cultural and historical significance and, because of their unusual physical properties, offer 

habitats unavailable elsewhere (Harvie, 2005). 

Some basic chemical evaluations of the bing materials have been conducted, but these have 

been limited to measuring the pH (5.72–8.72) and the leachability of plant nutrients including 

nitrogen, phosphorus and potassium (Harvie, 2005). Therefore, further examination of the 

leaching potential of these bings is warranted. In terms of soils in the area, MacGregor (2004) 

states that the main components of this area’s soil are quartz-dolerite and dykes, which are 

linked to the region’s rocks. On the other hand, a report for West Lothian Council prepared by 

Hayward and McDonald (2004) states that the soil type in this area is comprised of glacial tills, 

which are generally formed from silt, clay, sand and gravel in a heterogeneous mixture. There 

is no specific study of element concentration in the Greendykes Bing area, but Paterson et al. 

(2003) determined the element concentrations at different sites across the Lothian region and 

have thus provide a background; the elements, measured in soil surface horizons, had maximum 

values of Cd, Cu, Cr, Pb, Ni and Zn of 0.29, 30.9, 74.7, 108.0, 49.0 and 100.0 mg/kg, 

respectively. 
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Figure 3.6: Map of the Midlothian Bings (Harvie, 2005). 
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Table 3.2. Bing height above local ground level, summit altitude above sea level and oil shale mine closure date 

(Harvie, 2005) 

Site name Closure date Bing height Summit altitude 
Addiewell north 1932 9m 180m 
Addiewell south 1932 30m 210m 

Greendykes 1925 95m 185m 
Drumshoreland north* 1925 61m 180m 

Clapperton* 1925 38m 160m 
Drumshoreland south* 1925 61m 180m 

Oakbank* 1932 46m 175m 
Mid Breich 1915 12m 145m 
Five Sisters 1962 91m 240m 
Faucheldean 1925 31m 120m 

Niddry* 1961 61m 150m 
Albyn 1925 46m 135m 

Green Bing* 1920 61m 160m 
Stankards* 1920 61m 160m 
Seafield* 1932 53m 200m 

Deans 1946 76m 175m 
Philpstoun north 1932 30m 100m 
Philpstoun south 1932 53m 125m 

Bridgend 1932 24m 125m 
     *: Bings where the height and altitude measurements are from pre-management records. 

3.2.4 Nenthead mine, England  

Nenthead is a former Pb and Zn mine and processing area (and also the name of the nearby 

town) located in the North Pennines ore field in northern England, covering approximately 25 

km2 (Figure 3.1). Town (2014) and Critchley (1984) have described the geology of the 

Nenthead mine area; it is within the Alston Block, which also includes many areas of the North 

Pennine ore field. Sediment from the Palaeozoic period forms the basement of the Alston Block. 

During the Carboniferous period, this area was covered with sediments from shallow water, 

with synchronous hinge lines formed from the southern and northern margins. The deposition 

of sediments was accompanied by rhythmic and gentle subsidence, and this pattern of 

subsidence and deposition led to the formation of repeated geological units called cyclothems 

(due to the cyclic succession of the deposition of sediments). The primary components of full 

cyclothems here are, from top to bottom, coal, seat earth, sandstone, siltstone, mudstone and 

limestone (Critchley, 1984; Town, 2014). Figure 3.7 illustrates the main metal veins at Alston 

Moor. 
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An initial analysis of the spoils collected from this area was conducted in 1940, which showed 

the following proportions: Pb was 0.4 wt% and Zn was 3.5 wt%, while gravel (consisting of 

quartz) was 50–60 wt%, and ankerite (consisting of carbonate) was 25–30 wt%; siderite, barite, 

fluorite, sandstone, limestone, witherite and shale were also present (Dunham, 1990, cited in 

Sneddon et al., 2008). 

The peak period of ore extraction in this area was in the eighteenth and nineteenth centuries, 

although the mining activity in Nenthead is believed to date back to the twelfth century. Around 

1700, Pb mining was limited to small underground pits and surface works, and in 1690, the 

Rampgill vein was the first vein mined at Nenthead. By 1745, the London Lead Company 

(which was the largest mining company in the area) had established mining on a much greater 

scale. The company modernised the mining process by increasing the infrastructure to improve 

the mining activities. It also worked to improve the smelting and metal-recovery processes by 

employing chemists and mining engineers. Other mining-related investment in the Nenthead 

area was soon made, with examples including the Nenthead and Tynedale Lead and Zinc 

Company in 1882 and the Vielle Montagne Zinc Company of Belgium in 1896The latter is 

recorded as having produced 87,235 tons of Zn ore, 8,135 tons of Pb ore and 48,215 ounces of 

silver in the period 1897–1913. After the end of World War II, the former assets of the Vielle 

Montagne Zinc Company bought the Imperial Smelting Corporation Limited, and in 1961, the 

Rampgill Mine Company sold its smelting mill. Finally, the British Steel Corporation rented 

the whole area of Alston Moor for fluorspar excavation (Critchley, 1984; Town, 2014). 

As mentioned above, the main minerals extracted from the Nenthead mine throughout its 

history were iron, Pb, Zn and a very low concentration of copper. Silver had also been found in 

trace amounts with the Pb ore at approximately 250 ppm (Town, 2014). The most common ores 

found in the Nenthead mine area deposits were galena (0.2%), pyrite, chalcopyrite, fluorite 

(2%), calcite (1.3%), quartz (35%), dolomite, ankerite (calcium, iron, magnesium and 

manganese carbonate) (2.2%) and sphalerite (0.7%) (Clarke, 2007; Sneddon et al., 2008). On 

the other hand, in a field study at Nenthead, Sneddon et al. (2008) found concentrations of the 

heavy elements of Zn, Ni, Cu, Pb, Cd, Al and Fe in the surrounding soils of 32,300, 50, 130, 

8,900, 60, 27,400 and 47,100 µg/g, respectively. 

Nuttall and Younger (2002) conducted a study focusing on pollutant metals produced from 

secondary minerals in the Nenthead mining area. They found that the primary source of Zn at 
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Nenthead is sphalerite (ZnS), and that many secondary minerals such as smithsonite, 

hemimorphite and hydrozincite were present in the same area. 
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Figure 3.7: Alston Moor’s main ore veins (Bulman, 2004 cited in Town, 2014). 
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3.2.5 Parys Mountain, Wales  

The Parys Mountain area is located on the island of Anglesey, Wales, in a region considered to 

have the most diverse geological background in the whole of the UK. The geology ranges 

between simple to complex forms and the ages of formation range from the Precambrian to the 

Palaeozoic. Cooper et al. (1989) explain that there are three primary components of the geology 

of the area: the Mona complex, Ordovician rock and igneous intrusions. The Mona complex 

dates to the Precambrian, and the Cambrian to the Ordovician, and is typically represented by 

gneisses. The Ordovician rock can be described as mostly sedimentary with one or two horizons 

of volcanic tuff. The primary types of these rocks include mudstone, conglomerates and 

sandstone, breccia beds, siltstone and slate, vitric tuff and ironstone. In terms of age, these rocks 

date from the Caradoc or Llanvirn periods. The igneous intrusions consist of sills, dolerite 

dykes, boss-like bodies and irregularly shaped bodies, and in the northeast of this area, 

hornblende picrate dykes have been recognised. In terms of age, these rocks date from the 

Silurian tectonism period (Cooper et al., 1989). The main surficial deposits covering the island 

of Anglesey are of glacial origin, incorporating boulders, sand, gravels and clay, and also 

marine and non-marine alluvium deposits (Cooper et al., 1989). 

The Parys Mountain area itself is described by Marsay (2016) as having rock types consisting 

of: basalt and rhyolite (i.e. igneous rocks with small crystals in their composition, formed during 

fast cooling, with the difference between these rocks being their content of silica: typically 

basalt at 44–52% and rhyolite >66%); silt beds featuring shale and similar sedimentary rock 

(with mudstone and shale forming white rock and the Carreg-Y-Doll zone); schist (which is a 

metamorphic rock originally formed from mud rock); and gneiss and sandstone (which together 

produced the Nebo Inlier). Figure 3.8 illustrates this complex geology and how all of these 

formations feature in the geology of Parys Mountain. 
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Figure 3.8: Geological map of Parys Mountain area. (Marsay, 2016) 
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According to Cooper et al. (1989), the ores found at Parys Mountain include pyrite (FeS2), 

galena (PbS), chalcopyrite (CuFeS2), sphalerite (ZnFeS), quartz (SiO2), anglesite (PbSO4), 

gypsum (CaSO4), malachite [Cu2CO3(OH)2], dolomite [CaMg(CO3)2], azorite 

[Cu3(CO3)2(OH)2], and goethite [FeO(OH)]. Their analysis of rock samples revealed the 

concentration of Fe at 14% by mass, with Cu, Zn and Pb at 8,600, 3,660, 10,000 mg/kg, 

respectively. Copper was the main metal extracted and refined at Parys Mountain, and the 

mining activities here are believed to date back to the Bronze Age; however, the bulk of the 

extraction occurred during the eighteenth century, during which Parys Mountain was 

considered the richest copper mine in Europe (Palumbo-Roe and Colman, 2010). Production 

reached 130,000 tonnes/year of copper and the mine’s outputs dominated global copper prices 

for at least two decades (Cooper et al., 1989; Palumbo-Roe and Colman, 2010).  

Mine activities at Parys Mountain had stopped by the end of the nineteenth century (Manning, 

1959, cited in Cooper et al., 1989). Since then, there have been many plans to restart mining 

activity (e.g. the 1988 plans) at Parys Mountain, aimed at excavating the remaining estimated 

5.3 million tonnes of exploitable metal ores, which are distributed as follows: Zn 6.04%, Pb 

3.03%, copper 1.49%, gold 0.013 ounces/tonnes, and silver 2.02 troy ounces/tonnes (Cooper et 

al., 1989). Thomas (1972, cited in Cooper et al., 1989) states that there are 30 million tonnes of 

ore containing 0.76% copper at a depth of 250–650 m below the surface. However, the mining 

activities at Parys Mountain have led to environmental damage in the surrounding area. Cooper 

et al. (1989) also studied the soil and found that the concentration of heavy metals exceeded the 

critical levels they used for comparison; the maximum observed soil concentrations of Pb, Cu 

and Zn were 1,800, 530 and 720 mg/kg, respectively, while the critical thresholds they were 

compared to were 71, 51 and 101 mg/kg, respectively. Wilson and Pyatt (2007) also studied the 

persistence, dispersion and bioaccumulation of heavy metals in the Parys Mountain area. The 

results of their study indicated that heavy metal concentration (copper, Zn and Pb) was recorded 

at significant values around the Parys Mountain area and in Amlwch Harbour, where the mine 

production outputs were transported to and shipped from; here, the mean concentrations of Cu, 

Zn and Pb in soil were 1,569.9, 2,374.6 and 11.9 mg/kg, respectively.  

AMD has been identified as a significant problem in the area, with some surface waters in the 

immediate vicinity of Parys Mountain exhibiting acidic pH (i.e. pH 1) (Keele University, 

unpublished data). This, as well as the soil contamination problem, has prompted evaluation 

studies and some remediation efforts. A study was designed by Rìos et al. (2008) to examine 
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the role of the natural clinker, synthetic zeolites and coal fly ash on heavy metal removal from 

AMD in the Parys Mountain area. The results showed that using these materials increased the 

pH from a starting point of 1.96 to 2.66 24 h after coal fly ash treatment and to 2.86 24 h after 

treatment with natural clinker. 

Khan and Jones (2009) studied the role of lime, green waste compost (GC), GC+30% sewage 

sludge (GCS) and diammonium phosphate (DAP) on heavy metal bioavailability in the 

contaminated soils of the Parys Mountain area. The bioavailability of the elements Zn, Fe and 

Cu showed significant decreases when applied with lime and DAP, while Pb bioavailability and 

extractability lowered when DAP was added to experimental soil units. All elements (except 

Zn) showed significant decreases in extractability and bioavailability over time after treatment 

with amendments. 

Farrell et al. (2010) similarly studied the effect of two types of compost (green-waste-derived 

compost (GWC) and municipal-sewage-derived compost (MSWC)) on heavy metal migration 

in Parys Mountain soil. The results emphasised the potential role of these composts in 

immobilising heavy metals in soil (results summarised in Table 3.3). 

Table 3.3: Effect of using two type of mobilisation compounds (GWC and MSWC) on concentration of elements 

(mg/kg) in Parys Mountain soil (Farrell et al., 2010) 

Elements 
Concentration of elements (mg/kg) 

Control GWC MSWC 
As 106 13 22 
Cd 0.82 0.28 0.24 
Co 21.3 10.5 11.2 
Cr 6.35 2.81 3.14 
Cu 922 125 213 
Mo 9.21 10.1 18.7 
Ni 9.84 5.22 5.22 
Pb 40434 409 660 
Zn 86.4 55.8 90.7 

 

These studies confirm that metal pollution and the consequences of contamination from 

historical mining works remain significant issues that require scientific investigation in the 

locations mentioned and others like them.  
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Chapter Four: XRD, XRF and SEM/SDX examination of spoil material 

mineralogy 
4.1 Introduction 

This chapter aims to characterise the spoil materials in terms of their mineralogy and elemental 

composition and employs the use of XRF, XRD and SEM/EDX to understand the minerology 

and elements of studied spoils. Generally, XRF illustrates the concentrations of elements and 

materials in spoils (Young et al., 2016), while the XRD technique provides swift clarification 

of clays, particulate materials and minerals. It produces exhaustive information about the 

crystallographic structure of samples, which can be used in phase identification. XRD is useful 

specifically for identifying fine-grained phases that are difficult to characterise using other 

methods such as optical microscopy. This technique has also been used to identify types of ore 

(Bunaciu et al., 2015). The SEM technique can provide data such as crystallographic 

information (how the particles are organised in the object) and topography (the surface 

topographies of an object), and the structure of elements and compounds. SEM is one of the 

most widely used instruments for many reasons, including ease of observation, large depth of 

focus, high magnification and good resolution (Vernon-Parry, 2000). It is used to understand 

the structure of each spoil and to detect the types of ore in the spoils. Moreover, the spoils are 

examined across different size fractions, obtained by wet sieving, to identify whether a 

particular size fraction shows the highest concentration of PTEs and/or whether the materials 

are homogenous across size fractions. Understanding the mineralogy and element composition 

of the spoil materials enables inferences to be drawn about potential environmental risks linked 

to PTEs.   

4.1.1 XRD principles and applications 

XRD is a technique used to investigate the mineralogy and structure of a sample, and it has 

been applied in many fields, including analytical chemistry, environmental science, 

mineralogy, pharmaceuticals, forensic science and the glass industry (Causin et al., 2010; 

Higashi et al., 2010; Ivanisevic et al., 2010; Kishi, 2011; Eunice et al., 2013; Sadiki et al., 2010 

all cited in Bunaciu et al., 2015). Moreover, it is widely used to determine atomic spacing and 

crystal structure (Bunaciu et al., 2015). The principle of the technique is based on the interaction 

between the emitted X-ray and the electron clouds for the atoms that form the structure of the 

sample under examination (Figure 4.1). The X-rays are produced by a cathode ray tube and 

then pass through the sample to create diffracted rays that are assembled as information. The 
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alteration of the diffraction peaks to d-spacing enables the mineral to be described, i.e. mineral 

crystal structures have a set of unique d-spacing patterns. Normally, this is managed by 

comparing between standard reference patterns and measured d-spacing (Bunaciu et al., 2015). 

 
Figure 4.1: Diagram explain the mechanism of XRD (Busse et al., 2002) 

4.1.2 XRF principles and applications 

XRF is widely used in different fields. For example, it is considered a useful technique in 

geology to evaluate important elements such as Ca, K, Si and Ti in geological samples (Young 

et al., 2016). In agriculture, Maschowski et al. (2016) used XRF techniques to determine the 

concentration of elements such as calcium in a substance intended as a calcium fertiliser derived 

from wood ash. They also used the technique to assess the concentration of contaminants such 

as Pb, which in this case was ~0.03-21.1 mg/kg. In addition, they were able to show that the 

concentrations of Cu, Zn, Ni, Cd and As were lower than the detection limit and therefore not 

a concern in terms of adding contamination. When employing XRF, the most important point 

is to ensure that the samples are finely ground. The principle of working in this technique 

(Figure 4.2) concerns the application of a primary X-ray to the prepared sample, then the 

measurement of the displacement of the ‘inner shell’ electrons. From this process, the electron 

from an outer shell will fill the gap that results from the effect of X-ray radiation on electron 

excitation. From this transformation, X-ray fluorescence will be produced, which is then 

measured using the detector (Shackley, 2011). 
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Figure 4.2: Diagram explain the mechanism of XRF (Melcher et al., 2009) 

4.1.3 SEM principles and applications 

SEM is an analytical instrumental method that can generate information on studied specimens 

down to a size of 1 µm; the information generated can include the structure of the crystalline 

surface topography and chemical composition (Vernon-Parry, 2000). It is considered a useful 

technique in many studies. Liu et al. (2010) used SEM in their study on the morphology and 

microstructure of Cu-, Nb- and Zn-based substances. Xiao and Gao (2012) mention many 

studies that used SEM in agricultural science, such as the study of the microstructure of material 

surfaces before and after drying plant tissues. In addition, there are many applications for SEM 

in ecology and environmental science studies, such as that by Miler and Gosar (2009), which 

used the SEM to conduct qualitative and semi-quantitative analyses of heavy metals in the 

sediments of the Meža River and the Ljubljana urban snow deposits in Slovenia. The principles 

of this technique rely on the use of an electron beam, released from an electron gun, directed at 

the sample, which may interact in different ways with the sample surfaces (Figure 4.3); the 

electron can be absorbed, reflected or cause the release of a secondary electron. These three 

types of electron interaction can be measured using different detectors and interpreted via the 

CPU unit of the device to construct an image of the sample under study. SEM can provide 

images for a variety of samples such as rocks, soils, insects and leaves (Thornton, 1968).  
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Figure 4.3: Diagram to explain the mechanism of SEM (Krzuyzanek et al., 2012) 

4.2 Methods 

4.2.1 Sample Preparation 

The collected samples were air dried in the laboratory for 3-4 days, ground by hand using a 

mortar and pestle, sieved to 2 mm size and stored in sealed plastic containers awaiting further 

processing and/or analysis. 

4.2.2 XRD 

The XRD technique used in the present study employed a PANaNalytical Empyrean instrument 

with a high dynamic range hybrid detector PIXcel3D and GaliPIX3(D), 4 kW generator 

supporting, 240 mm radius, with a maximum usable range -111°˂ 2ө <168°, and angular 

resolution 0.026° FWHM. The instrument is based at the University of Wolverhampton. 

Sample preparation for XRD analysis was conducted by weighing 50 g of finely ground <2 mm 

spoil and powderising it in an agate ring mill. It was noted that the effectiveness of the grinding 

depends on the amount of sample in the mill and thus it was important not to exceed the 

recommended weight. Emptying and filling of the ring mill was completed under the dust fume 

hood. Handling of the agate mill was done recognising that it is fragile and thus great care must 

be taken when using it. The general procedure for using the agate ring mill was as follows: 

a) Distribute amongst the rings a minimum of 30 g and maximum 50 g material. This 

should be as fine as you can get by pre grinding. 

b) Place the mill on the shaking platform and set it spinning for 3 min. 
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c) After that, the fine powder collected by using small brush in labelled sealed bags for 

XRD and XRF analysis. 

4.2.3 XRF 

The XRF instrument that was used in this study was a PANalytical Epsilon 3 XLE, having a 

Silicon drift detector SD(D) with 135eV@Mn-Ka, max count rate of 1500000 conts/s at 50% 

dead time and was based at the University of Wolverhampton. 

4.2.3.1 Pellet Preparation for XRF 

A polyvinylpyrrolidone (PVP) reagent was used in this analysis which was previously prepared 

by adding 35g PVP to 175 ml ethanol and stirring vigorously until all dissolved to form a yellow 

solution. The spoil material and reagent were then mixed to prepare the pallet according to the 

method of Watson (1996), which comprised the following: 

1- Clean an agate pestle and mortar with ethanol. 

2- Weigh out approximately 8 g of powered spoil (produced as explained in 4.2.2) and 

transfer to the mortar. 

3- Add up to 1 ml of PVP solution and mix in using the pestle.  

4- Clean the platens and die with an alcohol. 

5- Transfer the powder to the die and press to 10 tons for 20 sec. 

6- Release the pressure and remove the pellet by inverting the die, removing the baseplate, 

inserting the aluminium spacer cap and pushing out the pellet using the press. In cases 

where the surface of the disc cracked, the disc was ground to a powder and preparation 

was continued from step 3, adding a few more drops of PVP solution. 

7- Write the sample number on the outer of the edge of the pellet. 

8- Place the pellets on a wire support and dry in an oven at 110 ⁰C, preferably overnight. 

4.2.4 Size fractionation by wet sieving 

This method starts by preparing 0.16 M calgon solution sodium hexametaphosphate as a 

dispersant. Samples were then treated as follows: 

• Weigh out 50 g of each material into a large plastic pot. 

• Add 150 mL water (ordinary water from the tap) + 20 mL of the 0.16 M Calgon solution. 

• Add more water if necessary, so that the entire material is covered with a head of 

solution above it.  
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• Stir thoroughly for 5 minutes. 

• Leave to soak for three days. 

After soaking, samples were wet sieved through a series of sieve sizes to separate the particles 

to different sizes from 2 mm to < 63 µm. The resulting size fraction samples were transferred 

to an oven at 50 ºC for 24 hours to dry. After 24 hours, the dry samples were collected in tubes 

in order to prepare thin section slides (the thin sections were prepared by Mr Peter Greatbatch 

and Mr David Wilde, School of Geography, Geology and Environment, Keele University, see 

next section). 

4.2.5 Thin section preparation 

Thin sections were prepared for each of the spoils, from each of the size fractions separated 

by the wet sieving process. The thin section preparation procedure follows industry standards 

and is described as follows: 

1. A plastic mould is used to mount the grains. 

2. Double sided tape is put into the base of the plastic mould to stop the individual grains 

from rising to the surface when the mould is filled with resin; the tape keeps the grains 

on a level plane and makes grinding the sample easier. 

3. The resin used is met prep epo Flo and is mixed at a ratio of 100 parts resin to 30 parts 

hardeners by weight. The resin is cold setting and takes approximately 24 hours to set. 

The resin block is then removed from the mould and the surface with grains on can then 

be ground using diamond discs to expose the grains and leave a surface ready for 

mounting on a glass slide 28×48mm. 

4. Most of the resin block can then be cut off using a petro thin machine to leave 

approximately 100 µm of sample on the glass slide. It is then lapped down to 

approximately 50 µm by lapping on the same machine. The sample then ground down 

to 30 µm on a 1200 µm diamond disc. 

5. It is then transferred to a Buehler polishing machine where the grains are polished to a 

high standard ready for analysis.  

The prepared thin section slides were scanned using consistent settings selected to suit the size 

fraction methods on recommendation of mineralogists in GGE school. Three SEM images and 

three EDX plots were selected for each size fraction. The settings were selected depending on 
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areas in the thin section slides most likely to enable mineral identification (bright areas which 

represents the minerals), with more than 100 scans for each size fraction of each spoil and 

choosing the magnification depending on how clear the image details were. The concentration 

of each examined element was then determined (see corresponding Figures for each spoil for 

magnification details).   

4.2.6 Examination by SEM 

The instrument used here for semi-quantitative analyses and construction of element maps was 

a Hitachi TM-3000 scanning electron microscope equipped with a Bruker Quantax 70 energy-

dispersive system, with beam voltage 15 kV. 

 

4.3 Results 

4.3.1 XRD Mineralogy Analysis on fine powder spoils 

4.3.1.1 Glendinning  

Figure 4.1 illustrated the XRD analysis of Glendinning area spoil. The results showed that the 

spoil mineralogy can be described as comprising mainly Muscovites KAl2Si3AlO10(OH)2, a 

common mineral in the mica group at 60%, followed by Quartz (SiO2) at 39%.  A small amount 

(1%) of Sodium Nickel (III) Dinickel (IV) Oxide Hydrate was also noted.  

 

Figure 4.1: Glendinning spoil components analysis by XRD technique 

Sodium Nickel (III) 
Dinickel (IV) Oxide 

Hydrate, 1%

Quartz low, 39%
Muscovite 2M1, 60%
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4.3.1.2 Wanlockhead 

The XRD analysis of Wanlockhead indicated that the material had approximately equal 

percentages (~40%) of Muscovite and quartz. Magnesium calcite formed a substantial portion 

at around 20%. Other minerals identified included Strontium Calcium Sulfide (3%) and 

Mercury Digallium Tetratelluride with 1% (Figure 4.2). 

 

Figure 4.2: Wanlockhead spoil components analysis by XRD technique 

4.3.1.3 Greendykes Bings 

In Figure 4.3, the analysis of XRD for Greendykes Bing spoil revealed that there are two types 

of ores identifiable. Quartz, which occupied 67% and Hematite (Fe2O3, one of the most 

abundant minerals on earth) with 31%. 

Quartz low, 39%

Strontium Calcium 
Sulfide(.75/.25/1), 

3%Magnesium calcite, 
17%

Mercury Digallium 
Tetratelluride -

Alpha, 1%

Muscovite 2M1, 
chromain, 40%
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Figure 4.3: Greendykes Bing spoil components analysis by XRD technique 

4.3.1.4 Nenthead 

Figure 4.4 shows that XRD analysis revealed the two most prominent minerals in Nenthead 

spoil are quartz (54%) and dolomite CaMg(CO3)2 (44%). A small amount (2%) of dicopper (I), 

cobalt tin (IV). sulfide was also identified.  

 

Figure 4.4: Nenthead spoil components analysis by XRD technique 

4.3.1.5 Parys Mountain  

Fig 4.5 shows XRD results for Parys Mountain, indicating that Muscovite with (55%) and 

Quartz (43%) were the dominant minerals. Hematite, at ~2%, was also identified. 

Quartz, 69%

Hematite-proto, 
31%

Quartz, 54%

Dicopper (II) Cobalt 
Tin (IV) Sulfide, 2%

Dolomite, 44%
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Figure 4.5: Parys Mountain spoil components analysis by XRD technique 

 

4.3.2 XRF Analysis of fine powder spoils 

Table 4.1 displays the percentages of elements and compounds by mass (w/w) determined by 

XRF of the finely powdered spoils and shows that the most abundant substance in all spoils 

was silica (SiO2), ranging from its highest percentage of 68.624 for Parys Mountain down to 

the lowest percentage of 57.745 for Nenthead. Alumina (Al2O3) was also an important 

component in all spoils, from 8.714% for Nenthead to around 30% for both Glendinning and 

Parys Mountain. Hematite (Fe2O3) also represented a sizeable percentage, at around 16% for 

Parys Mountain and down to 7% for Wanlockhead. For Ti, masses were 0.156% for Parys 

Mountain and around 0.7% for both Glendinning and Greendykes Bings. According to XRF 

analysis the percentage of Pb in Greendykes Bing approximated 0.011% while the results 

showed there is 0% detectable in Glendinning. In the other spoils XRF indicated Pb masses of 

3.499% in Wanlockhead, 1.832% in Nenthead, and 0.158% in Parys Mountain. 

  

Quartz low, 43%

Hematite (Ti-
bearing), 2%

Muscovite 3T, 55%
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Table 4.1: the percentage (n = 3, %±SE) of Elements and compounds determined by using XRF technique in 

different mine spoils. 

Elements and 

Compounds 

Locations 

Glendinning Wanlockhead 
Greendykes 

Bings 
Nenthead 

Parys 

Mountain 

Na2O <LoD 0.508±0.025 1.607±0.080 <LoD 0.84±0.042 

MgO 4.075±0.204 4.644±0.232 3.389±0.169 4.763±0.238 0.836±0.040 

Al2O3 30.72±1.536 20.453±1.023 29.542±1.477 8.714±0.436 30.121±1.506 

SiO2 66.077±3.304 59.294±2.965 62.159±3.108 57.745±2.887 68.624±3.431 

P2O5 0.135±0.007 <LoD 0.517±0.025 <LoD <LoD 

SO3 1.112±0.056 1.919±0.096 2.58±0.129 2.727±0.136 3.133±0.157 

K2O 5.814±0.291 4.153±0.208 3.121±0.156 1.352±0.068 6.398±0.320 

CaO 2.679±0.134 17.185±0.859 5.363±0.268 20.069±1.003 <LoD 

Ti 0.734±0.037 0.487±0.024 0.709±0.035 0.156±0.008 0.272±0.014 

Fe2O3 10.155±0.508 7.525±0.376 14.753±0.738 10.47±0.524 16.386±0.819 

Pb <LoD 3.499±0.175 0.011±0.001 1.832±0.092 0.158±0.008 

* <LOD: Below limit of detection 

The concentrations of other elements are shown in units of mg/kg in Table 4.2. The 

concentration of Zn shown in Glendinning was 851.9 mg/kg, and 19960 mg/kg in 

Wanlockhead, 50880 mg/kg in Nenthead, 243.8 mg/kg in Parys Mountain and 144 mg/kg in 

Greendykes Bing. The largest concentration of As was found in Glendinning (13160 mg/kg), 

while it was 379.1 mg/kg in Parys Mountain and 0 mg/kg (i.e. below detection) in other spoils. 

The concentration of Sb was 459.3 mg/kg, 69.8 mg/kg, 58.5 mg/kg and 0 mg/kg in Glendinning, 

Parys Mountain, Wanlockhead, Greendykes Bing and Nenthead, respectively. The 

concentration of Cd is 120.6 mg/kg in Nenthead and 79.9 mg/kg in Wanlockhead, while no 

detectable Cd appeared in the others. Substantial concentrations of Cu were identified, i.e.  

576.1 mg/kg, 353.3 mg/kg and 252.8 mg/kg in Parys Mountain, Nenthead and Wanlockhead, 

respectively, while lower concentrations of 43.6 mg/kg and 84.8 mg/kg were noted in 

Glendinning and Greendykes Bing respectively. Other elements such as V, Cr, Cl, Ga, Rb, Sr 

and Y also showed varying concentrations within the various spoils.  
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Table 4.2: the concentration (mg/kg) of Elements and compounds (n = 3, mean ± SE) determined by using XRF 

technique in different mine spoils. 

Elements and 

Compounds 

Locations 

Glendinning Wanlockhead 
Greendykes 

Bings 
Nenthead Parys Mountain 

V 215.5±90.56 130.4±52.22 302.4±96.2 36.8±9.37 45.8±10.3 

Cr 232.9±88.15 144.4±46.32 232.8±84.44 61.1±13.87 138.9±34.77 

Cl 157.6±34.23 221.9±87.4 294.2±76.98 645.2±104.4 51.1±17.42 

Ni 75.8±22.54 <LoD 115.6±48.23 <LoD <LoD 

Cu 43.6±11.45 252.8±55.21 84.8±13.98 353.3±75.23 576.1±172.2 

Zn 851.9±154.6 19960±320.1 144±36.92 50880±682.1 243.8±89.2 

Ga 1.4±0.54 5.5±0.96 18.9±1.30 115.2±61.2 8.4±1.32 

As 13160±237.4 <LoD <LoD <LoD 379.1±98.4 

Rb 174.1±35.44 110.9±54.45 145.9±39.67 49.9±48.03 134.9±79.3 

Sr 78.6±24.34 202.1±79.03 329.3±99.19 128.5±48.29 22±9.45 

Y 50.0±10.10 <LoD 36.5±21.47 <LoD 41.9±6.94 

Zr 210±78.93 86.1±32.12 211±68.98 47.9±12.12 241.3±49.3 

Nb 22.7±4.91 <LoD 24±7.69 <LoD 27.7±8.45 

Sb 459.3±111.8 58.5±10.33 <LoD <LoD 69.8±25.32 

Ba 165.8±52.12 2510±165.87 418.3±102.3 <LoD 296.6±94.54 

Yb 29.4±4.56 <LoD <LoD 350±129.2 <LoD 

Ir 116.5±39.01 <LoD <LoD <LoD 23.4±9.32 

Te <LoD 70.9±11.65 50.2±11.26 <LoD <LoD 

Eu <LoD 1010±126.2 669.8±289.1 977.1±119.2 <LoD 

Re <LoD <LoD 4.3±0.26 <LoD 13.6±3.35 

Cd <LoD 79.9±31.54 <LoD 120.6±50.28 <LoD 

Nd <LoD <LoD <LoD <LoD 125.5±76.6 

Th <LoD 52.2±21.1 <LoD <LoD <LoD 

Se <LoD <LoD <LoD <LoD 10.9±2.79 

Sn <LoD <LoD <LoD 78.7±16.87 63.1±11.48 

* <LoD: Below limit of detection 
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4.3.3 SEM/EDX of spoil from Glendinning, Scotland  

4.3.3.1 Spoils with size fraction of > 2 mm 

SEM images and EDX scans of the >2mm fraction of Glendinning spoil thin sections are shown 

in Figure 4.6, with the latter indicating mean element percentages by mass (w/w). Element 

weight percentages in Table 4.3 reveal that silicon represents the greatest proportion at 40.72%, 

followed by aluminium 9.91%. calcium, iron and potassium represented between 3-5%. sulfur 

is the lowest mass percentage of the major elements, representing 0.79%. Figure 4.7 shows the 

thin section prepared for each of the size fractions for Glendinning. 

   

(A) (B) (C) 

   

(D) (E) (F) 

Figure 4.6: SEM images of Glendinning spoil at > 2 mm size fraction at 60X magnifying power panels (A-C) 

and EDX of each examined section panels (D-F). The y axis units for EDX plots are count per second/electron 

volt (cps/eV). 
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Table 4.3: Mean (n =3 ± SE) of elements weight percentage examined by EDX technique in Glendinning spoil at 

> 2 mm size fraction  

Elements Elements weight percentage (%) 

Silicon 40.72±15.95 

Aluminium 9.91±3.26 

Calcium 4.85±3.31 

Iron 3.98±1.47 

Potassium 3.17±0.74 

Magnesium 1.56±0.81 

Sulfur 0.79±0.00 

 

 

Figure 4.7: Thin section of different size fractions for Glendinning spoils 

4.3.3.2 Spoils with size fraction of 1-2 mm 

Table 4.4 and Figure 4.8 present the SEM/EDX results of spoils of Glendinning at 1-2 mm size 

fraction, with SEM image for these spoils magnifying to 200X. In Table 4.4, the results again 

indicate that silicon represents the largest percentage of elements at 27.09%, followed by iron 

at 8.22%. calcium and magnesium had the lowest percentages of the measured elements, with 

just 1.54% and 1.63% respectively.  
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(A) (B) (C) 

   

(D) (E) (F) 

Figure 4.8: The SEM images of spoil at 1-2 mm size fraction (A-C) and EDX of each examined section (D-F) at 

200X magnifying power in Glendinning area. EDX plots are count per second/electron volt (cps/eV). 

 

Table 4.4: Mean (n = 3, mean ± SE) of elements weight percentage examined by EDX technique in Glendinning 
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Elements Elements weight percentage (%) 

Silicon 27.09±2.78 

Aluminium 6.87±0.94 

Calcium 1.54±0.40 

Iron 8.22±4.19 

Potassium 2.69±0.40 

Magnesium 1.63±0.60 

Sulfur 4.47±3.22 
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4.3.3.3 Spoils with size fraction of 0.5-1 mm 

Figure 4.9 and Table 4.5 report the percentage weight values of elements in the 0.5-1 mm size 

fraction of spoils from the Glendinning area and SEM image for these spoils magnifying to 

600X. Table 4.5 indicates that silicon occupied the largest percentage at 25.44%, followed by 

iron and aluminium which were 8.83% and 8.07% respectively. calcium recorded the lowest 

value of the measured elements with 0.99%.  

   

(A) (B) (C) 

   

(D) (E) (F) 

Figure 4.9: The SEM images of spoil at 0.5-1 mm size fraction (A-C) and EDX of each examined section (D-F) 

at 600X magnifying power in Glendinning area. EDX plots are count per second/electron volt (cps/eV). 
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Table 4.5: Mean (n = 3, mean± SE) of elements weight percentage examined by EDX technique in Glendinning 

spoil at 0.5-1 mm size fraction 

Elements Elements weight percentage (%) 

Silicon 25.44±3.15 

Aluminium 8.07±2.81 

Calcium 0.99±0.33 

Iron 8.83±2.13 

Potassium 2.34±1.94 

Magnesium 2.92±0.90 

Sulfur 3.91±1.74 

 

4.3.3.4 Spoils with size fraction of 0.25 - 0.5 mm 

Table 4.6 and Figure 4.10 provide the weight percentage of each element for the 0.25-0.5 mm 

size fraction at 1000X magnifying power. Silicon again had largest percentage at 25.01%, 

followed by Al at 8.91%. Titanium and calcium both approximated 2.8%. magnesium and 

phosphorus 1.36% and 0.60%, respectively, were the lowest element percentage values 

recorded.  

   

(A) (B) (C) 
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(D) (E) (F) 

Figure 4.10: The SEM images of spoil at 0.25-0.5 mm size fraction (A-C) and EDX of each examined section 

(D-F) at 1000X magnifying power in Glendinning area. EDX plots are count per second/electron volt (cps/eV). 

 

Table 4.6: Mean (n = 3, mean± SE) of elements weight percentage examined by EDX technique in Glendinning 

spoil at 0.25-0.5 mm size fraction 

Elements Elements weight percentage (%) 

Silicon 25.01±1.10 

Aluminium 8.91±0.4 

Calcium 2.83±0.2 

Iron 4.44±0.1 

Potassium 3.79±0.1 

Magnesium 1.36±0.1 

Titanium 2.83±0.1 

Phosphorus 0.60±0.0 

 

4.3.3.5 Spoils with size fraction of 0.125-0.25 mm 

SEM images of 0.125-0.25 mm size fractions and the element percentage masses observed are 

shown in Table 4.7 and Figure 4.11. Silicon formed the greatest percentage of any element at 

32.30%, followed by aluminium at 10.03% and iron at 9.66%. sulfur and potassium have nearly 

the same percentage at around 2%. Titanium and phosphorus represented the smallest 

percentages of the measurable elements, at 0.54% and 0.81% respectively. 
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(A) (B) (C) 

   

(D) (E) (F) 

Figure 4.11: The SEM images of spoil at 0.125-0.25 mm size fraction (A-C) and EDX of each examined section 

(D-F) at 1800X magnifying power in Glendinning area. EDX plots are count per second/electron volt (cps/eV). 

Table 4.7: Mean (n = 3, mean± SE) of elements weight percentage examined by EDX technique in Glendinning 

spoil at 0.125-0.25 mm size fraction 

Elements Elements weight percentage (%) 

Silicon 32.30±5.16 

Aluminium 10.03±4.11 

Calcium 3.68±2.43 

Iron 9.66±8.91 

Potassium 2.72±0.88 

Magnesium 4.23±4.55 

Sulfur 2.85±1.53 

Titanium 0.81±0.47 

Phosphorus 0.54±0.06 

1
2

3
4

5
6

keV

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

 cps/eV

  M
g 

  A
l 

  S
i 

  K
 

  
 

  Fe 
  Fe 

  Ti 
  

 
  C

a 

  
 

  P 

1
2

3
4

5
6

keV

0.0

0.5

1.0

1.5

2.0

2.5

 cps/eV

  M
g 

  Al 
  Si 

  S 
  

 
  K 

  
 

  C
a 

  
 

  Fe 
  Fe 

  Ti 
  

 

1
2

3
4

5
6

keV

0.0

0.5

1.0

1.5

2.0

2.5

 cps/eV

  M
g 

  Al 
  Si 

  S 
  

 
  K 

  
 

  C
a 

  
 

  Fe 
  Fe 

  P 
  Ti 

  
 



 

71 

 

4.3.3.6 Spoils with size fraction of 0.063 - 0.125 mm 

Table 4.8 and Figure 4.12 illustrate results for the 0.063-0.125 mm size fraction generated at 

2500X magnifying power. Silicon was again the most abundant element (24.32%), followed by 

iron with 8.39%. Meanwhile, titanium and magnesium recorded the lowest percentage of 

element weight which were 1.54% and 1.84% respectively.  

   

(A) (B) (C) 

   

(D) (E) (F) 

Figure 4.12: The SEM images of spoil at 0.063-0.125 mm size fraction (A-C) and EDX of each examined 

section (D-F) at 2500X magnifying power in Glendinning area. EDX plots are count per second/electron volt 

(cps/eV). 
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Table 4.8: Mean (n = 3, mean± SE) of elements weight percentage examined by EDX technique in Glendinning 

spoil at 0.063-0.125 mm size fraction 

Elements Elements weight percentage (%) 

Silicon 24.32±4.54 

Aluminium 5.42±1.58 

Calcium 4.70±3.93 

Iron 8.39±0.01 

Potassium 2.37±1.28 

Magnesium 1.84±1.47 

Sulfur 2.68±2.13 

Titanium 1.54±1.46 

 

4.3.3.7 Spoils with size fraction of < 63 µm 

The <63 µm size fraction was scanned at 4000X magnifying power. As can be seen from Table 

4.9, silicon has the largest weight percentage at 21.28%, with the second most abundant element 

is Al with 8.41%. Meanwhile, calcium, phosphorus, titanium, sulfur and sodium were < 1%.       

 

   

(A) (B) (C) 
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(D) (E) (F) 

Figure 4.13: The SEM images of spoil at < 63 µm size fraction (A-C) and EDX of each examined section (D-F) 

at 4000X magnifying power in Glendinning area. EDX plots are count per second/electron volt (cps/eV). 

 

Table 4.9: Mean (n = 3, mean± SE) of elements weight percentage examined by EDX technique in Glendinning 

spoil at < 63 µm size fraction 

Elements Elements weight percentage (%) 

Silicon 21.28±7.40 

Aluminium 8.41±0.45 

Calcium 0.90±0.01 

Iron 3.63±2.20 

Potassium 3.71±0.94 

Magnesium 1.12±0.57 

Sulfur 0.51±0.26 

Titanium 0.65±0.17 

Phosphorus 0.75±0.50 

Sodium 0.30±0.21 
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4.3.3.8 Element percentages comparisons across size fractions for Glendinning spoil 

Collating all of the data for the various size fractions allows a direct comparison of any changes 

in elements contents between the fractions. Figure 4.14 shows the element concentration for 

different size fractions for Glendinning. The Figure shows that silicon dominated in all size 

fractions with an almost steady proportion of about 25%, with minor exceptions in the ˃ 2 mm 

and 0.125-0.25 mm fractions where it was even larger (>30%). The percentage weight of Al 

and Fe was notable in all sizes, each varying from ~4% -10% across fractions. Meanwhile, 

potassium and calcium showed the lowest mass percentages, at consistently < 5%.      

 

Figure 4.14: Comparison between determined mean elements percentages by mass across sample size fractions 

for Glendinning spoil. Error bars indicate standard error of samples. 

 

4.3.4 SEM/EDX of spoil in Wanlockhead, Scotland  

4.3.4.1 Spoils with size fraction of > 2 mm 

Figure 4.15 and the data in Table 4.10 indicate element weight percentages by mass (w/w) for 

the > 2 mm size fraction of spoils from Wanlockhead. Silicon occupied the largest percentage 

(24.79%), followed by iron, calcium and sulfur which were at 11.96%, 10.27% and 9.54% 
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respectively. Magnesium and potassium showed nearly the same percentage, which was 1.8%.  

Titanium represented the lowest percentage of the measurable elements (0.27%). Figure 4.15 

presents the thin sections of different size fractions for Wanlockhead. 

   

(A) (B) (C) 

   

(D) (E) (F) 

Figure 4.15: The SEM images of spoil at > 2mm size fraction (A-C) and EDX of each examined section (D-F) at 

60X magnifying power in Wanlockhead area. EDX plots are count per second/electron volt (cps/eV). 
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Table 4.10: Mean (n = 3, mean±SE) of elements weight percentage examined by EDX technique in 

Wanlockhead spoil at > 2 mm size fraction 

Elements Elements weight percentage (%) 

Silicon 24.79±9.87 

Aluminium 1.38±0.89 

Calcium 10.27±9.14 

Iron 11.96±6.92 

Potassium 1.81±0.01 

Magnesium 1.80±1.55 

Sulfur 9.54±7.82 

Titanium 0.27±0.01 

Manganese 1.65±0.01 

 

 

Figure 4.16: The thin section of different size fractions for Wanlockhead. 
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The Table 4.11 and Figure 4.17 illustrate measurements conducted on the 1-2 mm size 
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detected by SEM/EDX; the percentage of this element is 23.78% followed by 10.69% 
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for calcium and 6.02% for aluminium. Titanium was the smallest percentage identified 

for the measurable elements, recorded as 0.51%. 

   

(A) (B) (C) 

   

(D) (E) (F) 

Figure 4.17: The SEM images of spoil at 1-2 mm size fraction (A-C) and EDX of each examined section (D-F) 

at 200X magnifying power in Wanlockhead area. EDX plots are count per second/electron volt (cps/eV). 
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Table 4.11: Mean (n = 3, mean±SE) of elements weight percentage examined by EDX technique in 

Wanlockhead spoil at < 1-2 mm size fraction 

Elements Elements weight percentage (%) 

Silicon 23.78±7.14 

Aluminium 6.02±1.92 

Calcium 10.69±3.35 

Iron 3.86±1.61 

Potassium 2.51±0.95 

Magnesium 0.87±0.78 

Sulfur 3.44±0.01 

Sodium 0.54±0.54 

Titanium 0.51±0.01 

 

4.3.4.3 Spoils with size fraction of 0.5-1 mm 

Table 4.12 and Figure 4.18 provide the SEM image and data of the 0.5-1 mm size fraction of 

Wanlockhead spoils. Iron was the largest percentage of all the elements detected by SEM/EDX 

technique (32.57%) followed by silicon (20.48%) and sulfur (17.77%). The element 

representing the lowest percentage of those measurable was magnesium, at just 0.70%.  

   

(A) (B) (C) 
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(D) (E) (F) 

Figure 4.18: the SEM images of spoil at 0.5-1 mm size fraction (A-C) and EDX of each examined section (D-F) 

at 600X magnifying power in Wanlockhead area. EDX plots are count per second/electron volt (cps/eV). 

 

Table 4.12: Mean (n = 3, mean±SE) of elements weight percentage examined by EDX technique in 

Wanlockhead spoil at 0.5-1 mm size fraction 

Elements Elements weight percentage (%) 

Silicon 20.48±9.44 

Aluminium 2.77±2.20 

Calcium 1.78±0.01 

Iron 32.57±0.01 

Potassium 1.41±0.01 

Magnesium 0.70±0.01 

Sulfur 17.77±8.56 

Sodium 8.93±8.19 
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4.3.4.4 Spoils with size fraction of 0.25-0.5 mm 

Table 4.13 and Figure 4.19 show the percentages of elements in Wanlockhead spoils at size 

fraction of 0.25-0.5 mm. Iron was the most abundant at 33.44%, followed by sulfur at 28.76%. 

Magnesium and chlorine were the lowest abundant of the measurable elements with 0.73% and 

0.96% respectively. The percentages of aluminium and potassium are < 3%.  

   

(A) (B) (C) 

   

(D) (E) (F) 

Figure 4.19. The SEM images of spoil at 0.25-0.5 mm size fraction (A-C) and EDX of each examined section 

(D-F) at 1000X magnifying power in Wanlockhead area. EDX plots are count per second/electron volt (cps/eV). 
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Table 4.13: Mean (n = 3, mean±SE) of elements weight percentage examined by EDX technique in 

Wanlockhead spoil at 0.25-0.5 mm size fraction 

Elements Elements weight percentage (%) 

Silicon 4.41±4.24 

Aluminium 2.59±2.46 

Iron 33.44±3.19 

Potassium 2.42±0.01 

Magnesium 0.73±0.01 

Sulfur 28.76±10.83 

Chlorine 0.96±0.01 

 

4.3.4.5 Spoils with size fraction of 0.125-0.25 mm 

Table 4.14 and Figure 4.20 illustrate the weight percentage of each element in the 0.125-0.25 

mm size fraction of Wanlockhead. Sulfur has the largest percentage with 13.85%, followed by 

the 10.66% for calcium. Meanwhile the lowest percentages were recorded for sodium, 

phosphorus and magnesium which were < 1%. Aluminium and chlorine were also < 2%.  

   

(A) (B) (C) 
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(D) (E) (F) 

Figure 4.20: The SEM images of spoil at 0.125-0.25 mm size fraction (A-C) and EDX of each examined section 

(D-F) at 1800X magnifying power in Wanlockhead area. EDX plots are count per second/electron volt (cps/eV). 
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4.3.4.6 Spoils with size fraction of 0.063-0.125 mm 

The 0.063-0.125 mm size fraction results for Wanlockhead spoils are shown in Figure 4.21 and 

Table 4.15. Iron has the largest percentage of elements detected by this technique, with 15.32%, 

followed by sulfur and silicon at 11.82% and 11.62% respectively. Meanwhile, the lowest 

percentages were for phosphorus, magnesium and calcium, which recorded 0.89%, 0.89% and 

0.94% respectively. Potassium and sodium were < 2% 

   

(A) (B) (C) 

   

(D) (E) (D) 

Figure 4.21 The SEM images of spoil at 0.063-0.125 mm size fraction (A-C) and EDX of each examined section 

(D-F) at 2500X magnifying power in Wanlockhead area. EDX plots are count per second/electron volt (cps/eV). 

 

  

1
2

3
4

5
6

keV

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
 cps/eV

  S
i 

  S
 

  
 

  A
l 

  Ti 
  

 
  C

a 

  
 

  K
 

  
 

  M
g 

  N
a 

  Fe 
  Fe 

1
2

3
4

5
6

keV

0 1 2 3 4 5 6

 cps/eV

  S
i 

  S
 

  
 

  A
l 

  C
a 

  
 

1
2

3
4

5
6

keV

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

 cps/eV

  S
i 

  S
 

  
 

  A
l 

  C
a 

  
 

  Fe 
  Fe 

  N
a 



 

84 

 

Table 4.15: Mean (n = 3, mean±SE) of elements weight percentage examined by EDX technique in 

Wanlockhead spoil at 0.063-0.125 mm size fraction 

Elements Elements weight percentage (%) 

Silicon 11.62±3.98 

Aluminium 2.18±0.01 

Calcium 0.94±0.37 

Iron 15.32±1.90 

Potassium 1.77±0.01 

Magnesium 0.96±0.01 

Sulfur 11.82±7.80 

Phosphorus 0.89±0.01 

Sodium 1.25±0.10 

 

4.3.4.7 Spoils with size fraction of < 63 µm 

Table 4.16 and Figure 4.22 illustrate the elements by weight percentage in the < 63 µm size 

fraction of Wanlockhead spoils. Results showed that silicon had the largest percentage of 

10.22%, followed by 5.62% for sulfur, 4.59% and 4.35% for sodium and calcium respectively. 

Meanwhile the lowest percentage was recorded for potassium; which was 0.69%. The other 

elements of phosphorus, magnesium, iron and aluminium had percentages between 1-2.5 %.   

 

   

(A) (B) (C) 
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(D) (E) (F) 

Figure 4.22: The SEM images of spoil at < 63 µm size fraction (A-C) and EDX of each examined section (D-F) 

at 4000X magnifying power in Wanlockhead area. EDX plots are count per second/electron volt (cps/eV). 

 

Table 4.16: Mean (n = 3, mean±SE) of elements weight percentage examined by EDX technique in 
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Elements Elements weight percentage (%) 

Silicon 10.22±6.90 
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Sulfur 5.62±3.26 

Phosphorus 1.19±0.12 

Sodium 4.59±1.24 

 

1
2

3
4

5
6

k
e
V

0 2 4 6 8

1
0

1
2

1
4

 cp
s/e

V

  S
i 

  S
 

  
 

  A
l 

1
2

3
4

5
6

keV

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

 cps/eV

  S
i 

  S
 

  
 

  A
l 

  N
a 

  M
g 

  C
a 

  
 

  K
 

  
 

  P 
  Fe 

  Fe 

1
2

3
4

5
6

k
e
V

0 1 2 3 4 5 6

 cp
s/e

V

  S
i 

  A
l 

  C
a
 

  
 

  M
g
 

  P
 

  N
a
 

  K
 

  
 



 

86 

 

4.3.4.8 Comparison between determined elements concentrations across sample size 

fractions at Wanlockhead location  

The results obtained from the SEM analysis be summarised in Figure 4.23. The Figure displays 

the element concentrations in percentage within the various size fractions. It indicates that 

silicon, iron, sulfur and calcium all vary across different size fractions. The data in the Figure 

shows that Fe accounted for <5% in the 1-2 mm, 0.125-0.25 mm and <63 um fractions, but it 

rose to >30% in the 0.5-1 mm and 0.25-0.5 mm fractions. The maximum percentage for sulfur 

in size 0.25-0.5 mm was above 25%. Silicon was most dominant in the two largest fractions, at 

~25%, and remained a major component in smaller fractions. The percentages of aluminium, 

magnesium and potassium were steady and minor in all size fractions.  

 

Figure 4.23: Comparison between determined mean elements concentrations (mass percentages) across sample 

size fractiona at Wanlockhead location. Error bars indicate standard error of samples. 
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abundant element with 20.97% w/w, followed by aluminium with 9.47% and iron with 6.17%. 

Meanwhile, magnesium, sodium, titanium and calcium were found the lowest percentages of 

the measurable elements, all with < 1% w/w. Figure 4.23 shows the thin sections of the various 

size fractions of Greendykes Bing spoil. 

   

(A) (B) (C) 

   

(D) (E) (F) 

Figure 4.24: The SEM images of spoil at > 2 mm size fraction (A-C) and EDX of each examined section (D-F) 

at 60X magnifying power in Greendykes Bing area. EDX plots are count per second/electron volt (cps/eV). 
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Table 4.17: Mean (n = 3, mean±SE) of elements weight percentage examined by EDX technique in Greendykes 

Bing spoil at > 2 mm size fraction 

Elements Elements weight percentage (%) 

Silicon 20.97±0.85 

Aluminium 9.47±0.44 

Calcium 0.72±0.09 

Iron 6.17±1.76 

Potassium 2.64±0.30 

Magnesium 0.51±0.32 

Titanium 0.64±0.06 

Sodium 0.56±0.30 

 

 

Figure 4.25: different size fraction thin section of Greendykes Bing spoils 

 

4.3.5.2 Spoils with size fraction of 1-2 mm 

Figure 4.26 and Table 4.18 present an overview of the element mass percentages for the 1-2 
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representing 15.25% and 12.40% w/w respectively, followed by aluminium and iron with 
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8.97% and 6.73% respectively. Phosphorus, titanium, sodium and sulfur formed the lowest 

percentages with < 1%. 

   

(A) (B) (C) 

   

(D) (E) (F) 

Figure 4.26: The SEM images of spoil at 1-2 mm size fraction (A-C) and EDX of each examined section (D-F) 

at 200X magnifying power in Greendykes Bing area. EDX plots are count per second/electron volt (cps/eV). 
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Table 4.18: Mean (n = 3, mean±SE) of elements weight percentage examined by EDX technique in Greendykes 

Bing spoil at 1-2 mm size fraction 

Elements Elements weight percentage (%) 

Silicon 15.25±8.56 

Aluminium 8.97±2.36 

Calcium 12.40±1.40 

Iron 6.73±2.16 

Potassium 1.67±1.09 

Magnesium 1.29±0.59 

Sulfur 0.47±0.01 

Sodium 0.40±0.24 

Titanium 0.68±0.01 

Phosphorus 0.34±0.01 

 

4.3.5.3 Spoils with size fraction of 0.5-1 mm 

Table 4.19 and Figure 4.27 present the experimental data of element mass percentages in 

Greendykes Bing spoil at 0.5-1 mm size fraction as determined by using EDX, iron was the 

most abundant element forming 25.62% w/w. Silicon was the second most abundant with 

13.09%. Meanwhile, calcium, potassium and magnesium appeared with 1-2%.  Many elements 

were in low percentages by mass for this size fraction, e.g. < 1% w/w was determined for sulfur, 

titanium, sodium, manganese and phosphorus.  

   

(A) (B) (C) 



 

91 

 

   

(D) (E) (F) 

Figure 4.27: The SEM images of spoil at 0.5-1 mm size fraction (A-C) and EDX of each examined section (D-F) 

at 600X magnifying power in Greendykes Bing area. EDX plots are count per second/electron volt (cps/eV). 

Table 4.19: Mean (n = 3, mean±SE) of elements weight percentage examined by EDX technique in Greendykes 

Bing spoil at 0.5-1 mm size fraction 

Elements Elements weight percentage (%) 

Silicon 13.09±3.53 

Aluminium 7.13±0.70 

Calcium 1.55±0.05 

Iron 25.62±14.37 

Potassium 1.01±0.60 

Magnesium 2.10±1.26 

Sulfur 0.23±0.01 

Titanium 0.65±0.01 

Sodium 0.75±0.21 

Manganese 0.98±0.01 

Phosphorus 0.42±0.01 
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4.3.5.4 Spoils with size fraction of 0.25-0.5 mm 

The SEM/EDX analyses of the 0.25-0.5 mm size fraction of Greendykes Bing spoils are 

presented in Table 4.20 and Figure 4.28 and show that silicon was the most abundant element 

with a value of 22.59% w/w followed by aluminium with 9.51% The mass abundance of 

calcium, iron and magnesium are between 2-5%. Titanium, phosphorus and sodium were all 

present at less than 1%. 

   

(A) (B) (C) 

   

(D) (E) (F) 

Figure 4.28: The SEM images of spoil at 0.25-0.5 mm size fraction (A-C) and EDX of each examined section 

(D-F) at 1000X magnifying power in Greendykes Bing area. EDX plots are count per second/electron volt 

(cps/eV). 
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Table 4.20: Mean (n = 3, mean±SE) of elements weight percentage examined by EDX technique in Greendykes 

Bing spoil at 0.25-0.5 mm size fraction 

Elements Elements weight percentage (%) 

Silicon 22.59±1.28 

Aluminium 9.51±0.94 

Calcium 2.14±0.80 

Iron 4.68±2.80 

Potassium 3.16±1.44 

Magnesium 1.00±0.27 

Titanium 0.57±0.01 

Phosphorus 0.28±0.01 

Sodium 0.88±0.16 

 

4.3.5.5 Spoils with size fraction of 0.125-0.25 mm 

It can be seen from the data in Table 4.21 and Figure 4.29 that, for the Greendykes Bing spoil 

at 0.125-0.25 mm size fraction, silicon dominated and formed 20.79% w/w, followed by 

aluminium (9.11%) and iron (8.02%). Sodium, magnesium, potassium and calcium appeared 

between 1-2.5% w/w. Chlorine, titanium and sulfur show the lowest percentage which are < 

1%.  
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(D) (E) (F) 

Figure 4.29: The SEM images of spoil at 0.125-0.25 mm size fraction (A-C) and EDX of each examined section 

(D-F) at 1800X magnifying power in Greendykes Bing area. EDX plots are count per second/electron volt 

(cps/eV). 

 

 

Table 4.21: Mean (n = 3, mean±SE) of elements weight percentage examined by EDX technique in Greendykes 

Bing spoil at 0.125-0.25 mm size fraction 

Elements Elements weight percentage (%) 

Silicon 20.79±1.88 

Aluminium 9.11±0.67 

Calcium 2.59±2.14 

Iron 8.02±2.54 

Potassium 1.79±0.18 

Magnesium 1.01±0.50 

Sulfur 0.92±0.01 

Titanium 0.61±0.01 

Sodium 1.03±0.25 

Chlorine 0.12±0.01 
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4.3.5.6 Spoils with size fraction of 0.063-0.125 mm 

Greendykes Bing spoils at size fraction of 0.063-0.125 mm were dominated by iron, represented 

26.59%, followed by silicon and aluminium which were 11.55% and 5.39% respectively (Table 

4.22 and Figure 4.30). In comparison, chlorine, phosphorus and potassium were all present at 

< 1% w/w.  

   

(A) (B) (C) 

   

(D) (E) (F) 

Figure 4.30: The SEM images of spoil at 0.063-0.125 mm size fraction (A-C) and EDX of each examined 

section (D-F) at 2500X magnifying power in Greendykes Bing area. EDX plots are count per second/electron 

volt (cps/eV). 
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Table 4.22: Mean (n = 3, mean±SE) of elements weight percentage examined by EDX technique in Greendykes 

Bing spoil at 0.063-0.125 mm size fraction 

Elements Elements weight percentage (%) 

Silicon 11.55±7.33 

Aluminium 5.39±2.63 

Calcium 1.32±0.97 

Iron 26.59±17.29 

Potassium 0.85±0.29 

Magnesium 1.72±1.95 

Phosphorus 0.74±0.01 

Sodium 2.19±0.01 

Manganese 1.88±0.33 

Chlorine 0.22±0.01 

 

4.3.5.7 Spoils with size fraction of < 63 µm 

Table 4.23 and Figure 4.31 illustrate results of the SEM imaging and EDX analysis of the < 63 

µm size fraction of Greendykes Bing spoils. Silicon was the most abundant element with 

13.51% w/w followed by aluminium (7.79%). Calcium, iron and magnesium were between 3-

4.5% w/w. The lowest abundances were determined for chlorine and titanium, which were 

recorded 0.41% and 0.80% respectively.  
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(D) (E) (F) 

Figure 4.31: The SEM images of spoil at < 63 µm size fraction (A-C) and EDX of each examined section (D-F) 

at 4000X magnifying power in Greendykes Bing area. EDX plots are count per second/electron volt (cps/eV). 

 

Table 4.23: Mean (n = 3, mean±SE) of elements weight percentage examined by EDX technique in Greendykes 

Bing spoil at < 63 µm size fraction 

Elements Elements weight percentage (%) 

Silicon 13.51±1.02 

Aluminium 7.79±1.10 

Calcium 3.95±1.58 

Iron 4.34±0.60 

Potassium 1.29±0.36 

Magnesium 1.25±0.44 

Phosphorus 3.45±2.00 

Sodium 1.08±0.46 

Titanium 0.80±0.33 

Chlorine 0.41±0.01 
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4.3.5.8 Comparison between determined elements concentrations across sample size 

fractions at Greendykes Bing location 

Collating all the data for the various size fractions allows a direct comparison of any changes 

in elements contents. Figure 4.32 shows the element concentration for different size fractions 

for Greendykes Bing. The Figure shows that there is competition in concentration between 

silicon and iron in various size fractions in terms of being the most abundant element. For 

example, iron was the most abundant element in the 0.5-1mm and 0.063-0.125 mm fractions, 

accounting for approximately 25%, yet in the 0.25-0.5 mm and <0.63 µm size fractions it 

comprised just ~5%. Silicon was most abundant in sizes 0.25-0.5 mm, 0.125-0.25 mm and ˃2 

mm. Also, the Figure shows that the percentage of the concentration for aluminium and 

potassium do not vary in different size fractions but were rather constant across the sizes.  

 

Figure 4.32: Comparison among determined elements concentrations (mass percentages) across sample size 

fractions at Greendykes Bing location. Error bars indicate standard error of samples. 
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4.3.6 SEM/EDX of spoil from Nenthead, England 

4.3.6.1 Spoils with size fraction of > 2 mm 

Table 4.24 and Figure 4.33 illustrate the element weight percentages in the > 2 mm size fraction 

of Nenthead spoils (determined at 60X magnifying power). Silicon was the most abundant of 

the elements with 31.34% w/w, followed by iron with 7.84%. Aluminium, calcium, sulfur and 

sodium were between 1-2% w/w. The elements with the lowest measurable mass percentages 

were magnesium and potassium, with 0.28% and 0.82% respectively. Figure 4.34 shows the 

thin sections of the different size fractions of Nenthead spoil. 

   

(A) (B) (C) 

   

(D) (E) (F) 

Figure 4.33: The SEM images of spoil at > 2 mm size fraction (A-C) and EDX of each examined section (D-F) 

at 60X magnifying power in Nenthead area. EDX plots are count per second/electron volt (cps/eV). 
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Table 4.24: Mean (n = 3, mean±SE) of elements weight percentage examined by EDX technique in Nenthead 

spoil at > 2 mm size fraction 

Elements Elements weight percentage (%) 

Silicon 31.34±2.30 

Aluminium 1.61±0.75 

Calcium 1.97±1.69 

Iron 7.84±5.44 

Potassium 0.82±0.01 

Magnesium 0.28±0.08 

Sulfur 1.32±0.44 

Sodium 1.16±0.65 

 

 

Figure 4.34: The thin section of different size fraction of Nenthead spoil.  

4.3.6.2 Spoils with size fraction of 1-2 mm 

Table 4.25 and Figure 4.35 show the results of element mass percentage in Nenthead spoil at 

1-2 mm size fraction (using EDX technique with 200X magnifying power). Iron was the most 

abundant element with 22.77% w/w, followed by silicon with 12.09% and sulfur with 5.34%. 

Al and Mn were both presented at around 3%. Meanwhile, magnesium, chlorine and 

phosphorus were present at 0.5% w/w or less. 
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(A) (B) (C) 

   

(D) (E) (F) 

Figure 4.35: The SEM images of spoil at 1-2 mm size fraction (A-C) and EDX of each examined section (D-F) 

at 200X magnifying power in Nenthead area. EDX plots are count per second/electron volt (cps/eV). 
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Table 4.25: Mean (n = 3, mean±SE) of elements weight percentage examined by EDX technique in Nenthead 

spoil at 1-2 mm size fraction 

Elements Elements weight percentage (%) 

Silicon 12.09±7.90 

Aluminium 3.62±2.90 

Calcium 1.08±0.84 

Iron 22.77±15.09 

Potassium 1.49±0.82 

Magnesium 0.46±0.21 

Sulfur 5.34±4.19 

Sodium 1.51±0.97 

Phosphorus 0.50±0.01 

Chlorine 0.49±0.01 

Manganese 3.43±0.01 

 

4.3.6.3 Spoils with size fraction of 0.5-1 mm 

Table 4.26 and Figure 4.36 illustrate the element mass percentages in the 0.5-1 mm size fraction 

of Nenthead spoils (determined at 600X magnifying power). Zinc was present in greater 

abundance than silicon in this size fraction, with 31.09% compared with 19.84%. Sulfur was 

presented at 7.06% w/w meanwhile, iron and sodium were present at < 5%, moreover, 

magnesium, chlorine and potassium concentration were less than 1%. 
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(D) (E) (F) 

Figure 4.36: The SEM images of spoil at 0.5-1 mm size fraction (A-C) and EDX of each examined section (D-F) 

at 600X magnifying power in Nenthead area. EDX plots are count per second/electron volt (cps/eV). 
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4.3.6.4 Spoils with size fraction of 0.25-0.5 mm 

Figure 4.37 and Table 4.27 report the values of element mass percentages determined for the 

0.25-0.5 mm size fraction of Nenthead spoil (1000X mag.). Silicon occupied the largest 

percentage among the elements at 28.49%, followed by zinc with 8.17% and calcium with 

5.17% w/w. Aluminium, magnesium, sodium, and manganese were all between 1-2%. Other 

elements were lower than abundances; sulfur, potassium and phosphorus with 0.75%, 0.97% 

and 0.39% respectively.  

   

(A) (B) (C) 

   

(D) (E) (F) 

Figure 4.37: The SEM images of spoil at 0.25-0.5 mm size fraction (A-C) and EDX of each examined section 

(D-F) at 1000X magnifying power in Nenthead area. EDX plots are count per second/electron volt (cps/eV). 
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Table 4.27: Mean (n = 3, mean±SE) of elements weight percentage examined by EDX technique in Nenthead 

spoil at 0.25-0.5 mm size fraction 

Elements Elements weight percentage (%) 

Silicon 28.49±8.44 

Aluminium 1.80±1.29 

Calcium 5.17±4.96 

Iron 4.51±3.69 

Potassium 0.97±0.59 

Magnesium 1.15±0.97 

Sulfur 0.75±0.34 

Phosphorus 0.39±0.01 

Sodium 1.47±0.60 

Zinc 8.17±3.48 

Manganese 1.95±0.01 

 

4.3.6.5 Spoils with size fraction of 0.125-0.25 mm 

Table 4.28 and Figure 4.38 present the results obtained for the 0.125-0.25 mm size fraction 

(1800X mag.). Zinc was the most abundant representing 9.59% w/w. Silicon was showed at 

9.56% and iron at 8.57%. Calcium and sodium also each present a significant presence with 

6.61% and 5.99% respectively. Meanwhile, phosphorus and potassium were only 0.58% and 

0.39% respectively.  

   

(A) (B) (C) 
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(D) (E) (F) 

Figure 4.38: The SEM images of spoil at 0.125-0.25 mm size fraction (A-C) and EDX of each examined section 

(D-F) at 1800X magnifying power in Nenthead area. EDX plots are count per second/electron volt (cps/eV). 

 

Table 4.28: Mean (n = 3, mean±SE) of elements weight percentage examined by EDX technique in Nenthead 
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Elements Elements weight percentage (%) 

Silicon 9.56±4.03 
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4.3.6.6 Spoils with size fraction of 0.063-0.125 mm 

Table 4.29 and Figure 4.39 show results for the Nenthead area spoil at 0.063-0.125 mm size 

fraction. Silicon was the most abundant at 15.54%, followed by iron with 9.55% and calcium 

with 5.68%. The elements potassium, magnesium, sulfur, phosphorus and sodium   all had 

nearly similar mass percentages between 1%-2%. Titanium was presentat 0.39%.  

   

(A) (B) (C) 

   

(D) (E) (F) 

Figure 4.39: The SEM images of spoil at 0.063-0.125 mm size fraction (A-C) and EDX of each examined 

section (D-F) at 2500X magnifying power in Nenthead area. EDX plots are count per second/electron volt 

(cps/eV). 
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Table 4.29: Mean (n = 3, mean±SE) of elements weight percentage examined by EDX technique in Nenthead 

spoil at 0.063-0.125 mm size fraction 

Elements Elements weight percentage (%) 

Silicon 15.54±9.46 

Aluminium 2.69±1.29 

Calcium 5.68±4.29 

Iron 9.55±3.22 

Potassium 1.02±0.36 

Magnesium 1.38±0.48 

Sulfur 1.72±0.97 

Titanium 0.39±0.01 

Phosphorus 1.29±0.01 

Sodium 1.82±0.57 

Manganese 4.33±0.01 

 

4.3.6.7 Spoils with size fraction of < 63 µm 

Results for Nenthead spoil size fraction < 63 µm analysed by using SEM/EDX are shown in 

Table4.30 and Figure 4.40. Iron was the most abundant element at 11.79% w/w, followed by 

silicon at 8.52% and sodium with 4.90%. Potassium and chlorine were present at 0.46% and 

0.50% respectively.  
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Figure 4.40: The SEM images of spoil at < 63 µm size fraction (A-C) and EDX of each examined section (D-F) 

at 4000X magnifying power in Nenthead area. EDX plots are count per second/electron volt (cps/eV). 

 

Table 4.30: Mean (n = 3, mean±SE) of elements weight percentage examined by EDX technique in Nenthead 
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4.3.6.8 Comparison between determined elements concentrations across sample size 

fractions at Nenthead location 

Figure 4.41 illustrates the comparison between the concentration of elements (w/w%) among 

and between size fractions of Nenthead mine spoil. The Figure shows that silicon represents the 

largest percentage in most size fractions except 1-2 mm and 0.5-1 mm size fractions, the ˃2 

mm and 0.25-0.5 mm size fractions formed 25% of Si concentration. Iron showed largest 

concentration in the 1-2 mm size. Also, Zn showed highest concentration of 31.09% in 0.5-1 

mm size fraction. Elements Al, Ca and K were rather consistent, at low percentages by mass, 

across most size fractions.  

Figure 4.41: Comparison between determined elements concentrations (mass percentage) across sample size 

fractions at Nenthead location. Error bars indicate standard error of samples. 
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Table 4.31 and Figure 4.42 illustrate the mass percentages of each element in the > 2 mm size 

fraction of Parys Mountain spoils (at 60X mag.). Silicon had the largest percentage of 39.48%, 
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percentages were magnesium and sulfur, with 0.08% and 0.55% respectively. Figure 4.43 

shows the thin sections of the different size fractions of Parys Mountain spoil. 

   

(A) (B) (C) 

   

(D) (E) (F) 

Figure 4.42: The SEM images of spoil at > 2 mm size fraction (A-C) and EDX of each examined section (D-F) 

at 60X magnifying power in Parys Mountain area. EDX plots are count per second/electron volt (cps/eV). 
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Table 4.31: Means (n = 3, mean±SE) of elements weight percentage examined by EDX technique in Parys 

Mountain spoil at > 2 mm size fraction 

Elements Elements weight percentage (%) 

Silicon 39.48±5.44 

Aluminium 4.00±0.86 

Calcium 2.48±0.01 

Iron 6.42±3.11 

Potassium 1.55±0.90 

Magnesium 0.08±0.01 

Sulfur 0.55±0.39 

Sodium 1.48±0.01 

 

 

Figure 4.43: Thin section of different size fraction of Parys Mountain spoil. 
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Table 4.32 and Figure 4.44 show results from the analysis of SEM images of the 1-2 mm size 

fraction of Parys Mountain spoils and the mass percentages of elements determined using EDX. 
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followed by aluminium with 4.01%. While the elements Ca, K and Na were approximately 

2.5%.  Chlorine, phosphorus and magnesium were represented at < 1%.  

   

(A) (B) (C) 

   

(D) (E) (F) 

Figure 4.44: The SEM images of spoil at 1-2 mm size fraction (A-C) and EDX of each examined section (D-F) 

at 200X magnifying power in Parys Mountain area. EDX plots are count per second/electron volt (cps/eV). 
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Table 4.32: Mean (n = 3, mean±SE) of elements weight percentage examined by EDX technique in Parys 

Mountain spoil at 1-2 mm size fraction 

Elements Elements weight percentage (%) 

Silicon 29.80±4.91 

Aluminium 4.01±1.59 

Calcium 2.42±0.01 

Iron 29.85±14.53 

Potassium 2.47±1.28 

Magnesium 0.93±0.01 

Sodium 2.61±1.20 

Phosphorus 0.53±0.01 

Chlorine 0.49±0.01 

 

 

4.3.7.3 Spoils with size fraction of 0.5-1 mm 

Table 4.33 and Figure 4.45 indicate mass element percentages in Parys Mountain spoil at 0.5-

1 mm size fraction (600X mag.). Silicon formed the largest percentage by mass at 20.38% while 

iron formed 19.65%. Aluminium and sulfur had 5.55% and 3.75% of element weight 

percentage, respectively. Phosphorus and magnesium were just 0.79% and 0.45% respectively.  
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(D) (E) (F) 

Figure 4.45: The SEM images of spoil at 0.5-1 mm size fraction (A. C) and EDX of each examined section (D. 

F) at 600X magnifying power in Parys Mountain area. EDX plots are count per second/electron volt (cps/eV). 
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4.3.7.4 Spoils with size fraction of 0.25-0.5 mm 

Table 4.34 and Figure 4.46 present data for the 0.25-0.5 mm size fraction of Parys Mountain 

spoils. Iron and silicon formed the largest percentages with 24.65% and 23.32% respectively, 

followed by aluminium with 5.64%. Potassium, sulfur and sodium represented between 1-2%. 

On the other hand, the lowest percentages were found for magnesium and phosphorus with < 

1%.  

   

(A) (B) (C) 

   

(D) (E) (F) 

Figure 4.46: The SEM images of spoil at 0.25-0.5 mm size fraction (A-C) and EDX of each examined section 

(D-F) at 1000X magnifying power in Parys Mountain area. EDX plots are count per second/electron volt 

(cps/eV). 
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Table 4.34: Mean (n = 3, mean±SE) of elements weight percentage examined by EDX technique in Parys 

Mountain spoil at 0.25-0.5 mm size fraction 

Elements Elements weight percentage (%) 

Silicon 23.32±2.96 

Aluminium 5.64±0.97 

Iron 24.65±4.35 

Potassium 1.89±0.09 

Magnesium 0.50±0.04 

Sulfur 1.40±0.62 

Phosphorus 0.94±0.20 

Sodium 1.55±0.21 

 

4.3.7.5 Spoils with size fraction of 0.125-0.25 mm 

Table 4.35 and Figure 4.47 illustrate the mass percentages of elements in the 0.125-0.25 mm 

size fraction of Parys Mountain spoils at 1800X magnifying power. As can be seen from the 

Table below, iron with 33.37% formed a significantly greater proportion than silicon with 

12.33% followed by calcium and sulfur with 5.54% and 4.57 respectively. Meanwhile, the 

lowest percentages were observed for sodium and phosphorus; these percentages are 0.92% and 

0.10% respectively.  

   

(A) (B) (C) 
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(D) (E) (F) 

Figure 4.47: The SEM images of spoil at 0.125-0.25 mm size fraction (A-C) and EDX of each examined sections 

(D-F) at 1800X magnifying power in Parys Mountain area. EDX plots are count per second/electron volt 

(cps/eV). 

 

Table 4.35: Means (n = 3, mean±SE) of elements weight percentage examined by EDX technique in Parys 
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Elements Elements weight percentage (%) 

Silicon 12.33±10.44 

Aluminium 2.49±1.39 

Calcium 5.54±0.01 

Iron 33.37±19.70 

Potassium 1.65±0.38 

Sulfur 4.57±0.15 

Phosphorus 0.10±0.01 

Sodium 0.92±0.01 
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4.3.7.6 Spoils with size fraction of 0.063-0.125 mm 

Figure 4.48 and Table 4.36 provide the experimental data for element mass percentages for 

0.063-0.125 mm size fraction of spoils in Parys Mountain (magnifying to 2500X). The results 

show that iron had the largest percentage among other elements with 29.65%, followed by 

silicon and aluminium with 18.72% and 6.01%, respectively. Other elements including Ca, Mg, 

P and Na were < 1%.  

   

(A) (B) (C) 

   

(D) (E) (F) 

Figure 4.48: The SEM images of spoil at 0.063-0.125 mm size fraction (A-C) and EDX of each examined 

section (D-F) at 2500X magnifying power in Parys Mountain area. EDX plots are count per second/electron volt 

(cps/eV). 
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Table 4.36: Means (n = 3, mean ±SE) of elements weight percentage examined by EDX technique in Parys 

Mountain spoil at 0.063-0.125 mm size fraction 

Elements Elements weight percentage (%) 

Silicon 18.72±4.92 

Aluminium 6.01±1.25 

Calcium 0.32±0.03 

Iron 29.65±3.36 

Potassium 1.90±0.45 

Magnesium 0.60±0.13 

Sulfur 1.04±0.61 

Phosphorus 0.94±0.13 

Sodium 0.98±0.27 

 

4.3.7.7 Spoils with size fraction of < 63 µm 

The Parys Mountain area spoil <63 µm size fraction results are set out in Table 4.37 and Figure 

4.49. Iron and silicon have the largest percentages at 42.51% and 10.34% respectively, followed 

by aluminium with 7.66%. The lowest measurable percentage observed was for calcium which 

is recorded at 0.89%. 

 

   

(A) (B) (C) 
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(D) (E) (F) 

Figure 4.49 The SEM images of spoil at < 63 µm size fraction (A-C) and EDX of each examined section (D-F) 

at 4000X magnifying power in Parys Mountain area. EDX plots are count per second/electron volt (cps/eV). 

 

Table 4.37: Means (n = 3, mean±SE) of elements weight percentage examined by EDX technique in Parys 

Mountain spoil at < 63 µm size fraction 

Elements Elements weight percentage (%) 

Silicon 10.34±7.52 

Aluminium 7.66±5.65 

Calcium 0.89±0.25 

Iron  42.51±2.30 

Potassium 4.03±0.61 

Magnesium 2.14±0.01 

Sulfur 1.62±1.22 

Phosphorus 1.92±1.75 

Sodium 3.40±0.01 

Chlorine 1.34±0.01 
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4.3.7.8 Comparison between determined elements concentrations across sample size 

fractions at Parys Mountain location 

Figure 4.50 shows the element concentration for different size fractions for Parys Mountain 

spoil. The Figure displays that silicon and iron dominated for all size fractions, with Si having 

a steadily decreasing dominance from ~40% in the largest size fraction down to ~10% in the 

smallest. Contrastingly, Fe represented ~6% in the largest fraction but accounted for 20-40% 

in all others. Aluminium was constant, at ~5% in all fractions, while Ca and K were at low 

percentages in each fraction.  

 

Figure 4.50: Comparison between determined elements concentrations (mass percentage) across sample size 

fractions at Parys Mountain location. Error bars indicate standard error of samples. 
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4.6 Discussion 

The SEM results show that Si, Fe and Al were the dominant elements across all the spoils, 

which is supported by the complementary XRD results that indicate mineral forms. 

Glendinning, Wanlockhead and Parys Mountain were each dominated by muscovite and quartz, 

even though the main target for mixing extraction (Sb, Pb/Zn and Cu, respectively) was quite 

different at the location. This reflects the widespread nature of muscovite and quartz minerals. 

Greendykes Bing was dominated by quartz but also had a large amount of haematite, which 

could be due to the ore heating process used to extract the shale oil. This reflects the different 

nature of oil shale rocks and indicates that the Greendykes oil shale can be categorised as 

siliceous shale, which is in keeping with the description by Cadell (1894) that shale is found 

within Calciferous sandstone. The Nenthead spoil was dominated by quartz and dolomite, 

which stands to reason considering the dolomite deposits were recorded in and around Nenthead 

in areas such as the Smallcleugh mine, Alston Moor and Eden in the north-central and eastern 

parts of England (Dunham, 1990).  

The SEM/EDX technique in the present study was unable to identify most of the targeted 

elements such as As, Cu, Pb and Sb (i.e. the elements of concern regarding environmental 

toxicity or those that were the focus of the original mining efforts). The reason for this could 

be the limited capacity of the available instrument or the technique itself. One limitation may 

arise from unresolvable interactions among peaks, which was an unexpected result. This 

problem is the subject of numerous scientific papers such as that of Newbury (2009), who 

encountered resolution issues when EDX techniques were applied to minor and trace elements. 

The technique also proved very time-consuming (approximately 15 weeks). The SEM/EDX 

technique did identify Zn in the Nenthead spoils, with the highest concentration of this element 

at approximately 30%. Considering that many commercially mined Zn deposits have Zn 

concentrations of 10-15% by mass (BGS-Minerals UK 2004), this suggests that resource 

recovery might be viable in the case of Nenthead spoil. However, these high concentrations 

appeared only on three size fractions (0.5–1.0 mm, 0.25–0.25 mm and 0.125–0.25 mm), which 

may limit the viability if large scale sieving or other processes could not be done cheaply to 

separate the size fractions. Nevertheless, these results emphasise that Zn ores are still to be 

found in recoverable amounts at Nenthead spoil. Another important result was the detection of 

titanium in four size fractions in Glendinning spoil, in two size fractions at Wanlockhead, in 
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six size fractions at Greendykes Bing, and in one size fraction at Nenthead; Parys Mountain 

spoil showed no concentration for this element. 

In contrast to SEM/EDX, XRF analysis was able to quantify more of the target elements. 

Unsurprisingly, the Glendinning spoil was found to have the greatest concentration of Sb at 

>450 mg/kg, and Parys Mountain had the greatest concentration of Cu at close to 600 mg/kg. 

Concentrations of Sb were reported in other studies such as that of Gallagher et al. (1983), who 

conducted their study at the Glendinning mine location, and Turner and Filella (2017), who 

determined Sb using field portable-XRF (FP-XRF). The concentration of Sb in this study was 

higher than those found by Gallagher et al. (1983) and Turner and Filella (2017). On the other 

hand, XRF was used to detect the concentration of Cu. For example, Turner et al. (2018) used 

FP-XRF to determine Cu and other elements in the plants and soils of post-mining regions in 

west Devon, in south England. Their study showed that Cu concentration was in the range of 

356–1380 µg/g. Generally, concentrations of Cu detected in this study were lower than those 

found by Turner et al. (2018), with one exception at Parys Mountain. Another study conducted 

by Lee et al. (2016) was designed as a comparison study to determine Cu and Pb in the Busan 

mine in South Korea using portable XRF and ICP-AES techniques. They found that the mean 

concentrations of Cu and Pb were 1,129.6 and 436.6 mg/kg, respectively. XRF was used to 

record the concentrations of trace elements in abandoned mines such as Witbank Coalfield 

mines in South Africa; the concentrations of Cu and Pb reached 50 and 75 mg/kg, respectively 

(Bell et al., 2001). In addition, Clark et al. (2018) found that maximum concentrations of Cu 

and Pb of 26.7 and 18.4 mg/kg, respectively, when they applied the XRF technique to 16 

samples collected from coal mine spoils in Virginia and West Virginia, US. Again, the 

comparison between the results of Lee et al. (2016) and those of this study showed that Cu 

concentration in their results was higher than Cu concentration measured in this study. The 

results in the studies of Bell et al. (2001) and Clark et al. (2018) were different, as both found 

low concentrations of Cu compared to the Cu concentrations in this study. On the other hand, 

Pb concentration measured using XRF in this study was very lower compared to other studies.  

The highest concentrations of Cd were found in the Pb/Zn mine spoils from Nenthead 

(120 mg/kg) and Wanlockhead (80 mg/kg), which corresponds with the common association 

of Cd in Pb and Zn deposits. Sahraoui and Hachicha (2016) recorded a high concentration of 

Cd at 219 ppm in their study of Lakhouat mine soils in north Tunisia. The results of Cd in this 

study match the Cd range recorded by Sahraoui and Hachicha (2016). 
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The elements ytterbium (Yb), iridium (Ir), tellurium (Te), rhenium (Re) neodymium (Nd), 

thorium (Th), selenium (Se), and tin (Sn) were found in one or two locations only. For example, 

Se and Nd appeared only at Parys Mountain, Th at Wanlockhead, Sn at Nenthead and Parys 

Mountain, and Re at Greendykes Bing and Parys Mountain. Gallagher et al. (1983) state that V 

and Sn were detected using SEM/EDX at Glendinning.  

Considering element concentrations across size fractions, for Parys Mountain silicon tended to 

decrease in dominance as fraction size decreased, while iron showed the reverse and other 

elements showed no pattern. For Glendinning, the trend pattern for silicon was similar to that 

observed for Parys Mountain, while other elements in the Glendinning spoil showed consistent 

concentrations across fractions. Nenthead, Wanlockhead and Greendykes bing spoils showed 

wide variations in element concentrations across size fractions, with no patterns evident. A 

similar profile between Nenthead and Wanlockhead may have been expected considering their 

similar mineralogy and mine type. 
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Chapter Five: Chemical characterization and leachable elements of spoil 

materials  
5.1 Introduction 

The outputs of mining have significant global benefits, with many countries relying on mining 

as their main source of national income and all countries relying on metals and related products 

for vital infrastructures and commonly used items (e.g. from pots and pans to cars). However, 

metal and metalloid extraction from mines generates large amounts of spoil and waste, which 

increases every year because of the increasing demand for products. A major problem stemming 

from mine spoil aggregation and stockpiling is the high concentration of toxic metals that can 

potentially be transported to the wider environment and the effects these may have on animals 

and human life that come into contact with them. The large scale of mine waste accumulation 

in many parts of the world has led to increased activity by scientists working in the field of 

mine spoil characterisation and disposal (Hudson-Edwards and Dold, 2015). 

Many methods have been used to map out mine waste locations such as the hyperspectral high 

spatial resolution HyMap, which was used by Buzzi et al. (2014) in the Iberian Pyrite Belt, in 

southwest Spain, to map the massive waste sites of abandoned sulfide mines. In addition, 

sediment-borne Hg mobilisation was described by Pattelli et al. (2014), who examined sediment 

mobilisation via flood models in relation to the Mount Amiata mining district in southern 

Tuscany, Italy. 

This chapter aimed to apply many chemical methods such as pseudo-total elements method, 

single extraction agent (CaCl2), and sequential extraction methods (BCR) to estimate the 

concentration of PTEs in spoils. Furthermore, the effect of pH and buffering capacity on 

mobility and availability of PTEs and the concentration of PTEs in lung fluid (Gamble’s 

solution) was studied to determine the health effect of fine particles of spoils.  

5.1.1 Extractable concentrations in spoils 

Alan and Kara (2019a) suggest that the determination of elements using total element analysis 

does not provide information on their mobility and availability. Procedures involving single 

and sequential extraction are widely applied for solid matrix investigation such as sediments, 

soil, fly ash, atmospheric particulate matter and sludge (Rao et al., 2008). Both types of 

procedure (single and sequential extractions) provide information about the mobility and 

potential availability of metals and other elements, as well as useful information on the possible 
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negative influence they could have when released into the environment. An element’s 

availability and mobility cannot be determined simply by using methods to determine total 

concentrations because availability and mobility are determined by the reactivity of the element 

and how it is bound to or associated with other components of the matrix. Therefore, the 

application of extraction assays coupled with multi-element analysis techniques can provide 

large amounts of useable and very valuable data on element mobility and availability within a 

matrix such as mine spoils (Abollino et al., 2011). 

5.1.2 Single extraction reagents  

The primary use of single extraction is to determine the fraction of mobile elements and/or the 

available parts of elements for plant (or another biota) uptake. There are many types of single 

extract and reagent used for this, such as dilute acid, organic ligands and dilute salt solutions 

(i.e. neutral salt extracts) (e.g. Rao et al., 2008).  

Two of the most common ligands used in single extraction are diethylene triamine pentaacetic 

acid (DTPA) and ethylene diamine tetraacetic acid (EDTA). Both of these ligands are used 

widely to determine the availability of elements for plants (Adamo et al., 2003; Manouchehri 

et al., 2006). Concentrations and solid–solution ratios vary between studies, but it is common 

to use 0.05 M ammonium EDTA shaken with a sample for 1 h at room temperature 

(Quevauviller, 1998, cited in Abollino et al., 2011). For single extraction using unbuffered 

(neutral) salts, which are sometimes known as mild or soft extractants, common reagents 

include CaCl2, BaCl2 and NaNO3. Typically observed protocols use 0.01 M CaCl2 for 2 or 3 h 

(Houba et al., 2000). The unbuffered salts are considered more suitable for predicting the plant-

available fraction of an element compared with acids and chelating agents, which are considered 

more aggressive extractants. Therefore, unbuffered salt extraction can be thought of as 

providing information about the readily available or mobile fraction, while the more aggressive 

extractants target this fraction as well as the longer-term potentially available fraction. There 

has been an increase in the amount of research conducted using such extracts since the 1990s 

(Pérez-de-Mora et al., 2006), but also of studies using diluted mineral acids such as 0.05 M 

HCl, or organic acids with low molecular weight such as citric and malic acids. The latter 

organic compounds are produced and released naturally from plant roots; hence, many 

researchers believe these reagents represent extracting agents that will be present in the 

environment (and so give an understanding of the likely extraction in the soil or sediment 

environment). Another single extraction method can involve the determination of element 
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mobilisation using the Toxicity Characteristic Leaching Procedure (TCLP) with sodium 

hydroxide and diluted acid; this method is used by the United States Environmental Protection 

Agency to test waste toxicity. Higher-concentration acids, such as 0.6 M HCl, can be used in 

single extraction to determine the mobile part of an element, but this method is not common 

(Abollino et al., 2011). 

5.1.3 Sequential extraction schemes 

The sequential extraction approach uses a series of extractants of increasing strengths to target 

increasingly resistant fractions within the same sample. It can reveal more detail on the 

properties and behaviour of elements in the solid material under investigation. This type of 

extraction can involve the application of a range of contrasting chemical reagents and different 

leaching mechanisms, including such steps as organic chelate complexation, neutral salt 

extraction and strong mineral acid leaching. This process usually takes more time compared to 

single extraction, but it can provide a wider understanding of element partitioning into different 

availability fractions (Rao et al., 2008). The Tessier and BCR schemes are two of the most 

commonly employed sequential extraction procedures. Tessier’s protocol provides element 

partitioning through five operationally defined fractions: bound to carbonates (sodium 

acetate/acetic acid 1 M at pH 5) and specifically adsorbed; exchangeable (magnesium chloride 

1 M at pH 7); bound to organic matter (nitric acid/hydrogen peroxide in pH 2 at 85°C, 3.2 M 

ammonium acetate in 20% nitric acid); bound to oxides of iron and manganese (0.04 M 

hydroxyl ammonium hydrochloride in 25% acetic acid at 96°C); and residual (hydrogen 

fluoride/perchloric acid). Typically, the mobility and availability of elements for plants is 

greatest for the portion of the element associated with the more easily extracted fractions (i.e. 

bound to carbonates and specifically absorbed). The fifth fraction (the residual component) 

consists of elements with low mobility, and these are unlikely to be solubilised under natural 

conditions (Abollino et al., 2011). 

The BCR protocol was developed from the Community Bureau of Reference (BCR) and the 

Standards, Measurement and Testing (SMT) program within a cooperative framework project. 

The main purpose of this scheme is the quantitative determination of trace elements in 

sediments and soil, but the procedure has been widely applied to other matrices, including mine 

spoils. Due to occasionally observed low reproducibility in the early version of this protocol, 

some conditions and concentrations of reagents were changed in revised schemes. Three 

operationally defined components or fractions are now commonly examined under the BCR 
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scheme: water and acid-soluble (acetic acid 0.11 M), reducible (0.5 M NH4OH.HCl, pH 1.5) 

and oxidisable (H2O2; 1 M CH3COONH4, pH 2). In addition, digestion by aqua regia of the 

final residual material was added as a fourth recommended step in the revised version, as this 

facilitates a mass balance check to evaluate whether the total concentration of each element is 

accounted for. Compared to other sequential extraction protocols, the BCR scheme has seen a 

steady increase in use because it is simpler and less time-consuming than Tessier’s protocol. 

This wide use provides the added benefit of allowing ready comparison with results from other 

studies.  

Cai et al. (2002) and Giacomino et al. (2010) note that most sequential extraction procedures 

were designed to determine the cations (or cation-forming elements) in samples and that these 

methods are not always suitable for the determination of As, which is typically in anionic form 

in soils and sediments. Therefore, Cai et al. (2002) suggest a protocol that includes sodium 

nitrate and potassium dihydrogen phosphate as ‘mobile’ and ‘mobilisable’ fractions. Gilmore 

et al. (2001) reported problems with sequential extraction procedures, such as reagents’ non-

selectivity, redistribution phenomena along the extraction sequence and occurrence of re-

adsorption. Others have criticised the approach, stating that sequential extraction is time-

consuming, particularly in the batch mode, and that the results are not particularly precise due 

to the influence of experimental conditions such as the sample drying method or the shaking 

device (Gleyzes et al., 2002; Quevauviller, 2002; Rao et al., 2008). Therefore, although 

potentially very useful, the limitations of sequential extraction procedures must be considered 

when interpreting results. 

5.1.4 Leachable elements and influence of pH 

Leaching to assess contaminant mobility and availability is used in many areas of investigation 

such as contaminated or natural soils, dredged sediments, natural sediments, solidified wastes 

and general bulk wastes. There are many factors that could affect the leaching process and the 

leachability of elements, some of which are linked to physical attributes such as matrix porosity, 

aggregate size and shape, homogeneity, the point in a wet/dry cycle, the flow rates of fluids 

interacting with the materials, the time frame for liquid–solid contact, and temperature. 

Chemical factors such as sorption and complexation (specific or non-specific), redox conditions 

and pH are all also very important. Indeed, it is widely acknowledged that one of the most, if 

not the most, important chemical factor is the pH (IAWG, 1997; van deer Sloot et al., 1997, 

cited in Quina et al., 2009). Many scientific works (e.g. those cited in Quina et al., 2009) show 
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how pH can affect the solubility of salts and hydroxides containing anions in contaminated 

soils. Therefore, understanding the relationship between pH and leachable amounts of elements 

in a spoil material could provide a better basis from which to determine the potential impact on 

the environment than a neutral extract or fixed pH extract alone, as well as providing more 

relevant information than just total element analysis. The leachable amounts of the elements, 

either major elements (Fe, Mg, Al, Mn and Mg) or trace elements (Cd, As, Hg, Ni, Zn, Pb and 

Cu), can be affected by a change in pH. For example, studies have shown that the extractable 

amount of cation-forming metals decreases with a rise in pH in abandoned mine spoils (Santos 

et al., 2015). In mine spoils in southern Brazil, Santos et al. (2015) observed that the extractable 

amounts of Cd, Pb, Zn, Ni and Cu were much higher at pH ˂5 than at pH ˃8. 

5.1.5 Element bioaccessibility in simulated lung fluid 

In addition to investigating the mobility of elements in the environment generally, it is also 

prudent to examine potential health risks by investigating the bioaccessibility of the elements 

in the mining spoils, particularly as the spoil materials can be distributed as dust in the air when 

disturbed. The bioaccessibility is known as the concentration of metal that is absorbed or 

assimilated from a bodily fluid. Stopford et al. (2003) confirmed the importance and utility of 

artificial lung fluid to investigate metal compounds and the potential risk to human health that 

can result from exposure to dusts containing them. Their study aimed to determine cobalt (II) 

bioaccessibility as measured in different biological samples (human serum and human tissue 

fluid) at different pH and times of exposure. They found that the pH had an important impact 

on the solubility of cobalt. A test using a simulated lung fluid known as Gamble’s solution was 

developed in 1942 (Eidson and Mewhinney, 1983, cited in Wragg and Klink, 2007). It has been 

widely used in studies on human health risks, including investigations into risks from 

contaminated soil, sediments and spoils such as the study conducted by Coufalík et al. (2016), 

which had a focus on the bioaccessibility of metals in soil samples collected from Burn, in the 

Czech Republic. Guney et al. (2017) investigated the bioaccessibility of As, Cu, Fe, Mn, Ni, Pb 

and Zn in soil samples (<20 µm) from Quebec, in Canada. The composition of Gamble’s 

solution is shown in Table 5.1.  
 

  



 

133 

 

Table 5.1 Composition of Gamble’s solution (Wragg and Klink, 2007) 

Salt Molar concentration 

NaCl 0.116 

NH4Cl 0.010 

NaHCO3 0.027 

Glycine 0.005 

Na3 Citrate 0.0002 

CaCl2 0.0002 

L-Cysteine 0.001 

H2SO4 0.005 

NaH2PO4 0.0012 

Diethylenetriaminepentacetic acid (DTPA) 0.0002 

Alkylbenzyldimethylammonium chloride (ABAC)* 50 ppm 

* Added as an antibacterial agent 

 

5.2 Methods 

5.2.1 Pseudo total element concentration 

The spoil samples were prepared using the same procedure followed in paragraph 4.2.1. The 

estimation of total element concentration (pseudo total element concentrations) was 

accomplished via digestion in reverse aqua regia followed by ICP-OES analysis. Reverse aqua 

regia was selected rather than the original form because it minimises the chlorine released and 

pressure build up during the digestion process (Vincent Cordon CEM Microwave Technology 

Ltd, pers. comm.) and has been very widely used in the digestion of soils and spoils materials. 

The use of hydrofluoric acid (HF), i.e. to achieve complete mineral dissolution in the samples 

and facilitate determination of ‘total’ element concentrations, was deemed an unnecessary 

health and safety risk considering that the components released by the addition of HF are not 

ever likely to be ecologically active (i.e. under environmental conditions they would not ever 

be released by the spoils) and thus were less relevant to the present study. This approach is very 

commonly reported in the environmental science literature.  To generate the reverse aqua regia 

used, the first step involved adding 112.5 ml concentrated HNO3 to 37.5 ml concentrated HCl 

(both acids were high purity, trace analysis grade, Primar Plus). The next step was adding, to 

0.4 g of spoil samples, 10-12 ml reverse aqua regia in a microwave tube (all spoils were 
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examined in triplicate). The tubes were placed in the microwave (Flexi wave, manufactured by 

Milestone Helping Chemists) and the USEPA protocol 3050 for digestion was applied. After 

that, the residue was transferred to 50 ml Fisher brand disposable centrifuge tubes and the 

volume made to 40 ml with high purity deionized water. These tubes were then centrifuged 

(type VWR Mega Star 600/600R) on 4000 rpm for 15 minutes. After that, the resulting solutions 

were filtered by using 0.45 µm syringe filters and moved to the fridge prior to analysis. 

Laboratory procedural blanks were prepared by microwaving 10 ml of reverse Aqua regia (no 

spoil) then transferring to 50 ml tubes and made to 50 mL by adding deionised water. This 

enabled assessment of the need for any blank correction in the analysis. The standard solutions 

used for calibration were prepared from the 'Certipur® Certified Reference Material ICP multi-

element standard solution IV' from Merck, with the original element concentration in this 

solution 1000 ppm. Dilutions were made to prepare 100, 50, 20, 10. 5, 1, 0.5 and 0.1 ppm 

standards from stock solution. The solutions were analysed by ICP-OES (type MY14500001, 

Aglient) at University of Wolverhampton, under close supervision of head technician Dr Diane 

Spencer, to determine the trace elements concentration in spoil digestion samples (as per 

Olowoyo et al., 2013). The results from ICP-OES were in mg/L, hence, to calculate these 

outcomes as mg/kg concentrations the following equations were applied: 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 (𝑚𝑚𝑚𝑚) = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 + 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (𝑚𝑚𝑚𝑚)  = 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑟𝑟𝑟𝑟𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 × �
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

1000
� 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝑚𝑚𝑚𝑚 𝑘𝑘𝑘𝑘)⁄

= 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 × (
1000

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡 𝑖𝑖𝑖𝑖 𝑔𝑔
) 

5.2.2 CaCl2 extractions with pH adjustment 

Preparation of CaCl2 was by dissolving 2.49 g in 2 Litres of deionised water. Two grams of 

each spoil, which were previously crushed and sieved to 2 mm size, were placed in 50 ml 

(duplicate) tubes and then 20 ml of 0.01 M CaCl2 was added to each tube and shaken manually. 

Tubes were then placed on a Stuart brand rotating shaker for two hours on 14 rpm. After the 

shaking process was complete, tubes were centrifuged on 3500 rpm for 10 minutes. Supernatant 

solutions were filtered using syringe and syringe filters (size 0.45 µm). The pH was measured 

using a Jenway 3510 pH meter and probe that were calibrated by using three buffer solutions 
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with pH value 4, 7 and 9. After each reading the pH probe was cleaned by using deionised water 

and patting dry with a tissue. The calibration process was repeated periodically during the 

measurement run to ensure instrument drift was not an issue. The pH meter and probe unit has 

a temperature probe attachment that auto-corrects for any change in temperature. To preserve 

for elemental analysis, 100 µl of 20% HCl (high purity) was added to the tubes. All tubes were 

then moved to the fridge pending analysis by ICP-OES at University of Wolverhampton 

utilising the same type of quality control steps outlined above. 

The extraction process was followed again for an additional, separate set of samples in which 

the pH was adjusted in the extract solutions. In one set of pH adjusted samples, 19.95 ml of 

0.01M CaCl2 + 50 µl of concentrated HNO3 was used as the extracting reagent, while in a 

second set 19.90 ml of 0.01 CaCl2 + 100 µl of concentrated HNO3 was used. All other aspects 

were conducted the same as described above. The pH of the acid adjusted CaCl2 extractions, 

along with those of the unadjusted samples, were used to calculate the pH buffering capacity of 

the spoils by plotting the pH (y axis) against the amount of acid added per mass of solid (x axis) 

and determining the slope of the regression line (the regression line equations are given in 

results Table 5.4). The buffering capacity for each spoil was calculated, in units of mmol 

H+/kg/pH unit, from the regression equations by substituting two separate pH values (e.g. 6.5 

and 5.5) into the equation, solving for x and then determining the difference to identify the 

amount of acid needed to lower the spoil pH by one unit (Howells et al. 2018). For example, 

the regression equation for Glendinning was: 

y (pH) = -0.0048x (mmol H+/kg) + 6.5658     

This rearranges, to solve for x, as: 

x (mmol H+/kg) = [y (pH) - 6.5658] / -0.0048     

Substituting 6.5 for pH = 13.71 mmol H+/kg, while substituting 5.5 for pH = 222.04 mmol 

H+/kg and thus subtraction gives a buffering capacity of 208.33 mmol H+/kg. 

 

5.2.3 Metal associations determined by BCR sequential extraction 

Before conducting the sequential extraction protocol, the following chemical substances were 

prepared as follows: 

0.11 M acetic acid: 6.5 ml glacial acetic acid dissolved in 1 L of high purity deionised water. 
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0.1 M Hydroxyl ammonium chloride: weigh 6.95 g hydroxyl ammonium chloride and add it 

to 1 L of deionised water, then add 0.63 ml of concentrated NHO3 to the solution to make pH 

= 2. 

Reverse aqua regia: to prepare 150 ml of reverse aqua regia, add 112.5 ml of concentrated 

HNO3 to 37.5 ml HCl. 

The protocol followed in this study consists of three steps (it excluded the organic associated 

step because of the very low/negligible organic matter content of the spoils), which have been 

described previously by Howe et al. (2002) and are set out below. 

Step 1 (BCR1: exchangeable fraction):  

In triplicate, to 1 g from each spoil, using material that had been crushed and passed through a 

2 mm sieve, 40 ml of 0.11 M acetic acid were added and shaken by using IKA®KS 130 basic 

shaker on 400 rpm for 24 hours. The mixture was centrifuged for 20 minutes at 3000 rpm to 

separate the solid from solution and then the solution was removed from the tubes using syringe 

and syringe filter (size 0.45 µm). The removed solutions were placed into 15 mL vials and 

stored in the refrigerator until analysed by ICP-OES at University of Wolverhampton. 

Step 2 (BCR2: reducible fraction):  

Add 40 ml of hydroxyl ammonium chloride (pH 2) to the residual resulting from step 1 and 

then shake overnight. The extract was separated from the residue by centrifuging for 20 minutes 

at 3000 rpm and filtered (0.45 µm syringe filter) and stored in the fridge as in step 1. 

Step 3 (Residual fraction):  

Residues from step 2 were digested with reverse aqua regia after having been transferred to 

borosilicate glass beakers. The samples were left overnight to initially digest   and were then 

heated and evaporated to near dryness (around 5 ml), then they were transferred back to clean 

50 mL centrifuge tubes and centrifuged for 20 minutes at 3000 rpm. After centrifuging, 

solutions were filtered using syringe and syringe filter (size 0.45 µm) and then kept in the fridge 

until ICP-OES analysis. 
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5.2.4 Element bioaccessibility in simulated lung fluid 

For the simulated lung fluid extraction, the finest size fraction of each spoil obtained by wet 

sieving (i.e. <63 µm) was examined (see paragraph 4.2.4 for description of preparation process). 

This is the fraction most likely to contain materials that could be distributed in the air as dust if 

the spoil was disturbed. It is therefore this fraction that is most relevant to air quality and the 

issue of respiration of dusts by people and any subsequent potential effects. The protocol used 

in this experiment was to weigh out 0.5 g of material into 50 mL tubes (3 replicates per spoil x 

2 separate contact time lengths) and add 20 mL Gamble solution to each. The samples were 

shaken to mix and then placed in an oven at ~40°C to simulate body temperature and, after 3 

hours, were removed, shaken and replaced every 30 minutes until the end of the day. The 

samples were then left overnight in the oven at 40 °C.  The next day, i.e. after 24 h of contact, 

one set of samples was removed, centrifuged at 4000 rpm for 30 minutes, the supernatants 

removed with a syringe and acidified with 0.1 mL concentrated HNO3. The remaining samples 

were kept in the oven and shaken manually every 30 minutes (except overnight when samples 

were not shaken) until 72 h had passed. After 72 h, the remaining samples were treated as above. 

The resulting solutions were analysed via ICP-OES at University of Wolverhampton. However, 

ICP-OES was not sensitive enough to detect concentrations of some trace elements in the 

examined samples so these samples were analysed by using ICP-MS at Edinburgh University. 

The calibration process of ICP-MS (Agilent 7500ce) was done by preparation of a series of 

concentrations of 100, 50, 20, 10, 5, 2, 1, 0.5 and 0.1 ppb from stock solution which used before 

in ICP-OES calibrations (see previous sections). Calibration for additional elements was 

achieved using certified Certipur ® Muti-element standard solution IV from Merck.  A blank 

of Gamble’s solution was also analysed to assess any need for blank correction. During analysis 

runs, blanks and standard solutions (0.5 ppb, 1 ppb and 5 ppb) were analysed as ‘unknowns’ 

after every 5 or 6 samples to assess instrument drift. The masses used for ICP-MS analyses 

were as follows:  As (75), Fe (56), K (39), Pb (208), Sb (121), Zn (66). 

 

5.3 Results 

5.3.1 Total Element Concentrations 

Table 5.2 shows total concentration of elements in spoils collected from five abandoned mines 

around the UK. Aluminium total concentration in all different spoils determined by acid 
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digestion and ICP-OES analysis was very high. It can be seen from the Table that the 

concentration of Al in Parys Mountain is more than the other spoils, with the concentration 

approximating 8950 mg/kg. By comparison, it is about 5400 mg/kg in Wanlockhead and 

broadly around 4500 mg/kg for each of Nenthead and Greendykes Bing. The lowest 

concentration of Al was in Glendinning with only ~2800 mg/kg.  The results of total element 

concentration for boron showed that highest concentration was around 1885 mg/kg in 

Greendykes Bing spoils followed by 1536.46 mg/kg in Parys Mountain spoil, meanwhile, the 

lowest total concentration of this element was detected in Wanlockhead spoil which was about 

570 mg/kg.  

Table 5.2 shows total barium in all spoils. The largest concentration of Ba can be found in 

Greendykes Bing which approximated 5156 mg/kg. The lowest concentration of Ba can be 

found in Parys Mountain with about 677 mg/kg. 

  The results for total cadmium in the same Table shows clearly that the largest amount of 

cadmium was found in Nenthead and Wanlockhead spoils with about 7911 mg/kg and 6223 

mg/kg, respectively. While, the concentration of cadmium ranged between 171-197 mg/kg in 

Parys Mountain and Greendykes Bing spoils. The total element concentration for copper was 

studied in Table 5.2. It shows that the largest concentration of Cu can be found in Parys 

Mountain with about 16187 mg/kg followed by Nenthead and Wanlockhead with about 11411 

and 9072 mg/kg, respectively. While the other spoils have concentration of Cu, Glendinning 

with 1760 mg/kg, and Greendykes Bing with 1015 mg/kg. 

 Moreover, Results of total concentration of Fe shows that Glendinning has the largest 

concentration of Fe which is about 27248 mg/kg (i.e. 2.5% w/w) followed by Wanlockhead 

with about 19836 mg/kg. The concentration of Fe in Nenthead and Parys Mountain are nearly 

the same at around 18100 mg/kg. However, the lowest concentration of Fe was found in 

Greendykes Bing with about 14271 mg/kg. 

Table 5.2 shows total concentrations of potassium determined for all studied mine spoils.  As 

can be seen from the Table Greendykes Bing has the largest amount of K with 73401.04 mg/kg 

followed by Parys Mountain 47505.21 mg/kg and Nenthead with 44348.96 mg/kg, compared 

with Greendykes Bing and Wanlockhead which both have the lowest concentration of K with 

about 34859-31552 mg/kg. Table 5.2 also shows that the largest concentrations of Mg can be 

found in Nenthead with~1100000 mg/kg, followed by Wanlockhead and Glendinning with 
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about 905354 mg/kg and 830390 mg/kg respectively, compared with the lowest concentrations 

of Mg in Parys Mountain with amounts of ~43000 mg/kg.       

The results of total element concentration of manganese showed that the largest concentration 

of Mn can be found in Nenthead around 184192 mg/kg followed by Wanlockhead about 127000 

mg/kg. Parys Mountain have lower concentrations of Mn compare with others about 8166 

mg/kg (Table 5.2) 

Table 5.2 presents the total element concentration for nickel in the mine spoils. The largest 

concentration of Ni can be observed in spoils from Glendinning with 4437.50 mg/kg followed 

by Nenthead and Wanlockhead with 3604.17 and 3223.96 mg/kg respectively, while the 

amount of Ni in Parys Mountain is less than the others. As can be seen from Table 5.2, 

Wanlockhead has the largest concentration of lead at 930937 mg/kg, followed by Nenthead 

with 629213 mg/kg. The lowest amount of Pb can be found in Greendykes Bing with 5630 

mg/kg (Table 5.2). 

The experimental data of total element concentration for zinc in the mine spoils is also shown 

in Table 5.2. The largest concentrations of Zn were in Nenthead spoil at around 12555 mg/kg 

followed by Greendykes Bing at 7994 mg/kg, meanwhile the amount of Zn in the spoils from 

the other locations is less than 2500 mg/kg. Meanwhile, the total element concentration for 

arsenic was greatest in Glendinning at around 2091 mg/kg followed by Nenthead with 316 

mg/kg, while the lowest concentrations of As can be found in Parys Mountain, Wanlockhead 

and Greendykes Bing all with less than 80 mg/kg.  Table 5.2 shows the amount of antimony in 

the mine spoils. The largest concentration of Sb can be found in Glendinning followed by 

Nenthead, both having between 89-68 mg/kg, while the other spoils have much less (7 mg/kg 

in Parys Mountain and 0.75 mg/kg in Greendykes Bing). 
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Table 5.2: The mean of total concentration of heavy metals (mg/kg) in five abandoned mine spoils determined 

by using ICP-OES technique (n=3 ± standard error). 

Elements 

Locations ± SE 

Glendinning Wanlockhead Greendykes 
Bings Nenthead Parys 

Mountain 

Al 2810.25± 
140.51 

5465.50± 
273.28 

2016.96± 
100.85 

4383.25± 
219.16 

8950.54± 
447.53 

B 989.58± 
49.48 

578.13± 
28.91 

1885.42± 
94.27 

989.58± 
49.48 

1536.46± 
76.82 

Ba 1536.46± 
76.82 

1536.46± 
76.82 

5156.25± 
257.81 

3151.04± 
157.55 

677.08± 
33.85 

Cd 343.75± 
17.19 

6223.96± 
311.20 

171.88± 
8.59 

7911.46± 
395.57 

197.92± 
9.90 

Cu 1760.42± 
88.02 

9072.92± 
453.65 

1015.63± 
50.78 

11411.46± 
570.57 

16187.50± 
809.38 

Fe 27248.29± 
1362.41 

19836.67± 
991.83 

14271.50± 
713.58 

18139.13± 
906.96 

18070.58± 
903.53 

K 31552.08± 
1577.60 

34859.38± 
1742.97 

73401.04± 
3670.05 

44348.96± 
2217.45 

47505.21± 
2375.26 

Mg 830390.63± 
41519.53 

905354.17± 
45267.71 

514114.58± 
25705.73 

1077411.46± 
53870.57 

43484.38± 
2174.22 

Mn 16213.54± 
810.68 

127322.92± 
6366.15 

30552.08± 
1527.60 

184192.71± 
9209.64 

8166.67± 
408.33 

Ni 4437.50± 
221.88 

3223.96± 
161.20 

2848.96± 
142.45 

3604.17± 
180.21 

1104.17± 
55.21 

Pb 29791.67± 
1489.58 

930937.50± 
46546.88 

5630.21± 
281.51 

629213.54± 
31460.68 

72000.00± 
3600.00 

Zn 2148.50± 
107.43 

2395.50± 
119.78 

7994.38± 
399.72 

12555.75± 
627.79 

2222.21± 
111.11 

As 2091.92± 
104.60 

6.63± 
0.33 

4.58± 
0.23 

361.83± 
18.09 

74.13± 
3.71 

Sb 89.79± 
4.49 

5.67± 
0.28 

0.75± 
0.04 

68.17± 
3.41 

7.13± 
0.36 

 

Overall, the total element concentrations determined by reverse aqua regia revealed the spoils 

of Glendinning had the highest concentration of Fe, Ni, Sb and As. Meanwhile, spoils of 

Wanlockhead had a high concentration of Pb. Greendykes Bing spoils analysed by this method, 

showed that elements B, Ba and K had the highest concentration compared with other elements. 

Using total element analysis revealed that Cd, Mg, Mn and Zn showed the highest concentration 

in Nenthead spoils. On the other hand, Al and Cu showed the highest concentration in Parys 

Mountain spoils analysed for this experiment. 
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5.3.2 CaCl2 extractable element concentrations 

Table 5.3 shows the CaCl2 extractable concentrations of elements in the mine spoils. It can be 

seen from the Table that Parys Mountain was the only spoil with detectable CaCl2 extractable 

aluminium, with 29.4 µg/kg. Calcium appears in all mine spoils between 1200-1400 µg/kg, the 

largest concentration in Wanlockhead which is 1419 µg/kg and 1302 µg/kg in Greendykes 

Bing, while it is around 1200 µg/kg in the rest of spoils. On the other hand, the concentrations 

of chromium, iron, manganese, and nickel are below detection limit in all mine spoils. Copper 

could be found only in Parys Mountain, with 17 µg/kg. The concentration of extractable 

potassium ranged between 4-9 µg/kg in all mine spoils. The largest concentration of magnesium 

can be found in Glendinning (104.9 µg/kg) and the lowest concentration in Greendykes Bing 

(2.7 µg/kg), while the extractable Mg in Wanlockhead and Nenthead was around the same about 

20 µg/kg. However, the concentration of Mg is bellow detection limit in Parys Mountain. The 

concentration of extractable phosphors, lead, zinc, arsenic and antimony were all either less 

than 1 µg/kg or below detection limits in all mine spoils.  
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Table 5.3: Mean concentrations of element (µg/kg) extracted by treating mine spoils with CaCl2 and measured 

with ICP-OES 

Elements 
Locations ± Standard error 

Glendinning Wanlockhead Greendykes Bing Nenthead Parys 
Mountain 

Al b/d* b/d b/d b/d 29.4±0.03 

Ca 1247.4±75.0 1419.6±30 1302.2±28.60 1275.4±9.00 1201.8±21.0 

Cd b/d 0.60±0.01 b/d b/d b/d 

Cr b/d b/d b/d b/d b/d 

Cu b/d b/d b/d b/d 1.7±0.01 

Fe b/d b/d b/d b/d b/d 

K 9.9±0.13 9.5±0.01 7.8±0.08 4.4±0.01 7.0±0.08 

Mg 104.9±0.69 20.2±0.01 10.1±0.02 21.8±0.05 2.7±0.01 

Mn b/d b/d b/d b/d b/d 

Ni b/d b/d b/d b/d b/d 

P b/d b/d 0.02±0.01 b/d b/d 

Pb b/d 0.02±0.01 b/d b/d 0.65±0.01 

Zn b/d 0.55±0.03 b/d 0.95±0.03 0.24±0.01 

As 0.28±0.01 b/d b/d b/d b/d 

Sb 0.06±0.01 0.01±0.01 0.01±0.01 0.01±0.01 0.01±0.01 

*b/d below detection limit 

 

5.3.3 Buffering Capacity determined by pH adjustment of CaCl2 extractions 

Figure 5.1 illustrates the buffering capacity calculated for all studied spoils. The largest value 

of buffering capacity can be found in Parys Mountain, which is determined as 434.78 mmol 

H+/kg/pH unit, followed by Nenthead and Wanlockhead spoils with values 416.67 and 400.00 

mmol H+/kg/pH unit, respectively. Meanwhile, the lowest values can be found in Glendinning 

and Greendykes Bing spoils, with 208.33 and 192.31 mmol H+/kg/pH unit respectively. These 
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buffering capacities were determined from the relationship established between the amount of 

nitric acid added to CaCl2 extract solutions and the final resulting pH in the solutions after 

equilibration shaking (Figure 5.16 and Table 5.2).  

 

Figure 5.1: Buffering capacity of spoil from the studied locations, error bar represents standard error (SE, n= 2) 

 

As would be expected, there was an inverse relationship between the pH and the addition of 

HNO3 in spoils from all locations. With no added HNO3, the pH of most spoils was between 6-

7, the exception was in Parys Mountain which the pH was between 2-3. The Addition of 400 

mmol/kg HNO3 decreased the pH to 3-5 for most of the mine spoil solutions, while the pH for 

Parys Mountain was about 1.5. The samples that received 790 mmol/kg of acid had 

corresponding further drops in pH, with the value dropping to ~4 for Nenthead and 

Wanlockhead. Moreover, the pH dropped to ~1 for Parys Mountain.  
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Figure 5.2: The relationship between HNO3 concentration and pH in studied mines spoils 

 

Table 5.4: Acid addition vs pH regression equations (and associated R2 values) for spoil materials determined in 

CaCl2 extracts 

Locations Regression R2 

Glendinning y = -0.0048x + 6.5658 0.9851 

Wanlockhead y = -0.0025x + 6.5900 0.9779 

Greendykes Bing y = -0.0052x + 6.2633 0.9160 

Nenthead y = -0.0024x + 6.7167 0.9617 

Parys Mountain y = -0.0023x + 2.6350 0.8691 

 

5.3.4 Influence of pH on leachability of elements in spoil materials 

The results shown in Figure 5.3a and 5.3b reveal the polynomial relationship between pH and 

the concentration of extractable Al in the mine spoils (i.e. a polynomial trend line was a better 

fit to the data than a linear trend line, as it passed through all points and showed a much greater 

R2). For example, Parys Mountain spoil has extractable Al just above 0.07 mg/kg at pH <2.0 

but only 0.029 mg/kg at pH of 2.84.  The other spoils changed from no detectable extractable 
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Al at natural pH to detectable levels when the pH was lower, e.g. Greendykes Bing spoil rose 

from below detection at natural pH to 0.88 mg/kg at pH 2.5 (Figure 5.3b). However, even at 

lower pH Wanlockhead spoils showed only minimal extractable Al (<0.01 mg/kg).  

Figure 5.3a: The relationship between Al concentration (Mean ± SE, n= 3) and pH in different study areas 

Figure 5.3b: The relationship between Al concentration (Mean ± SE, n= 3) and pH in Greendykes Bing area 

Figure 5.4 shows that a linear relationship existed between the concentration of Ca and pH in 

all study areas. From the graph below, it can be seen that there is also an inverse relationship 
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between the concentration and pH in all mine spoils. In this Figure, the concentration of calcium 

is going up while the level of pH is going down. Glendinning, Wanlockhead and Greendykes 

Bing areas show the largest concentration of calcium at 4.36, 4.68 and 4.418 mg/kg in pH 2.92, 

4.72, 2.54 respectively. 

Figure 5.4: The relationship between calcium concentration (Mean ± SE, n= 3) and pH in different study areas 

Figure 5.5 illustrates the effect of varying the pH on the extractable Cd concentration in the 

spoils. As was the case for Cd, the relationship between extractable Cd and pH was linear. 

Extractable cadmium was detected only in three spoils: Glendinning, Wanlockhead and 

Nenthead. The largest concentration was measured in Nenthead and Wanlockhead spoils (~0.01 

mg/kg at the lowest pH), whereas the extractable amount in Glendinning mine spoil was less 

than one tenth of that. The relationship between pH and extractable Cd was inverse. Neither 

Greendykes Bing nor Parys Mountain was found to have any measurable extractable Cd at any 

pH.  
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Figure 5.5: The relationship between cadmium concentration (Mean ± SE, n= 3) and pH in different study areas 

Figure 5.6 shows how extractable copper increased as pH decreased, even though amounts 

remained low (Wanlockhead and Glendinning spoils had ~0.0065 mg/kg, followed by 

Nenthead spoil with ~0.005 mg/kg at lowest pH level). The relationships were best described 

by polynomial trend lines.  

The polynomial relationship between extractable iron concentration and the level of pH in the 

five mine spoils is shown in Figure 5.7. Glendinning had by far the largest amount of extractable 

Fe, having 0.524 mg/kg at pH 2.9, but this fell to effectively zero at pH>6. Parys Mountain 

spoil had a lower amount of extractable Fe (0.052 mg/kg at pH 1.01) and this was inversely 

linked to pH. The other spoils had negligible to no extractable Fe at any pH. 
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Figure 5.6: The relationship between copper concentration (Mean ± SE, n= 3) and pH in different study areas 

Figure 5.7: The relationship between iron concentration (Mean ± SE, n= 3) and pH in different study areas 
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The influence of pH on extractable potassium is shown in Figure 5.8. The polynomial 

relationship was again negative for the spoils. Greendykes Bing spoils had the highest 

extractable K, with 0.135 mg/kg at pH 2.54 which fell to 0.0078 mg/kg at pH 6.6. All other 

spoils had much lower extractable K.  

Figure 5.8: The relationship between potassium concentration (Mean ± SE, n= 3) and pH in different study areas 

Figure 5.9 shows that the linear relationship between Mg concentration and pH is also inverse 

for all studied spoils except Parys Mountain which had no extractable Mg. Glendinning spoil 

had the greatest amount, with 1.04 mg/kg at pH=2.92 followed by Greendykes Bing with 

0.4284 mg/kg at pH 2.54. The polynomial relationship between pH and concentration of 

extractable manganese was inverse except for Parys Mountain spoil, which had no extractable 

Mn at any pH (Figure 5.10). The largest concentration of extractable Mn was in Nenthead spoil, 

with 0.1326 mg/kg at pH 4.95, followed by Wanlockhead with 0.116 mg/kg at pH 4.72. 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 1 2 3 4 5 7 8

Po
ta

ss
iu

m
 (K

) c
on

ce
nt

ra
tio

n 
(m

g/
kg

)

pH

Wanlockhead

Parys Mountain

Poly. (Greendykes Bing)

6

Greendykes Bing 

Poly. (Glendinning) 

Linear (Nenthead)

Glendinning 

Nenthead

Poly. (Wanlockhead) 

Linear (Parys Mountain)



150 

Figure 5.9: The relationship between magnesium concentration (Mean ± SE, n= 3) and pH in different study 

areas 

Figure 5.10: The relationship between manganese concentration (Mean ± SE, n= 3) and pH in different study 

areas 
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Figure 5.11 represents the linear relationship between the extractable concentration of nickel 

and pH and shows that even with pH adjustment this element was only detected in extractions 

of Glendinning spoil. In Glendinning, the relationship between pH and Ni concentration was 

inverse and the largest concentration observed was 0.0039 mg/kg at pH 2.92 followed by 0.0026 

mg/kg at pH 4.41. 

Figure 5.11: The relationship between nickel concentration (Mean ± SE, n= 3) and pH in different study areas 

Figure 5.12 illustrates the polynomial relationship between pH and phosphorus concentration 

for Greendykes Bing, which was the only spoil with measurable extractable P. The relationship 

to pH was inverse (0.1719 mg/kg detected at pH 2.54 falling to 0.0069 mg/kg at pH = 3.51). 

No CaCl2 extractable Pb was found in Glendinning or Greendykes Bing spoils (Figure 5.13). 

Wanlockhead had about 0.43 mg/kg Pb at pH 4.7 but this fell to 0 mg/kg at pH 6.5. Nenthead 

had a maximum extractable Pb of ~ 0.15 mg/kg at pH 4, but this also fell to zero above pH 6. 

In Parys Mountain spoil, the largest concentration observed was 0.037 mg/kg at pH 1.31 and 

this fell to 0.0064 mg/kg at pH 2.8. 
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Figure 5.12: The relationship between phosphorus concentration (Mean ± SE, n= 3) and pH in different study 

areas 

Figure 5.13: The relationship between lead concentration (Mean ± SE, n= 3) and pH in different study areas 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 1 2 3 4 5 6 7 8

Ph
os

ph
or

ou
s (

P)
 c

on
ce

nt
ra

tio
n 

(m
g/

kg
)

pH

Wanlockhead

Parys Mountain

Poly. (Greendykes Bing)

Greendykes Bing 

Linear (Glendinning) 

Linear (Nenthead)

Glendinning 

Nenthead

Linear (Wanlockhead) 

Linear (Parys Mountain)

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5

0 1 2 3 4 5 6 7 8

Le
ad

 (P
b)

 c
on

ce
nt

ra
tio

n 
(m

g/
kg

)

pH

Wanlockhead

Parys Mountain

Linear (Greendykes Bing)

Greendykes Bing 

Linear (Glendinning) 

Poly. (Nenthead)

Glendinning 

Nenthead

Poly. (Wanlockhead) 

Linear (Parys Mountain)



153 

The inverse linear relationship between extractable zinc concentration and pH in the Nenthead, 

Wanlockhead and Glendinning spoils is visible in Figure 5.14. Nenthead spoil had the highest 

extractable Zn with 1.3 mg/kg at pH 4.95, falling to near zero at pH >6. Greendykes and Parys 

Mountain spoils had effectively no extractable Zn across the pH ranges imposed.  

Figure 5.14: The relationship between zinc concentration (Mean ± SE, n= 3) and pH in different study areas 

Figure 5.15 shows that there was a strong inverse polynomial relationship between pH and 

extractable arsenic concentration in Glendinning spoils but not in other spoils. Glendinning had 

0.0178 mg/kg extractable As at pH 2.9 but this fell to near zero at pH >6. Parys Mountain and 

Wanlockhead spoils showed no extractable As at any pH.   Figure 5.16 shows the relationship 

between pH and extractable antimony concentration. The only spoil with appreciable 

extractable Sb at any pH was, unsurprisingly, from Glendinning (a former Sb mine). There was 

not a clear pH – extractable Sb relationship for Glendinning, with the maximum amount (0.001 

mg/kg) observed at pH 4 and lower amounts observed at both lower and higher pH values.    
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Figure 5.15: The relationship between arsenic concentration (Mean ± SE, n= 3) and pH in different study areas 

Figure 5.16: The relationship between antimony concentration (Mean ± SE, n= 3) and pH in different study areas 
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Overall, the proportion of total element that was extractable by 0.01M CaCl2 remained rather 

low even when the pH was lowered. Table 5.4 (parts A and B) summarises this by showing the 

maximum percentage of each element that was extractable from each spoil at any of the pH 

levels imposed. 
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Table 5.4: Summary of mean total element concentration (mg/kg) and percentage extractability observed in 

0.01M CaCl2 solution with or without pH adjustment in the five spoils examined 

A- In unadjusted CaCl2* 

Elem
ents 

Glendinning Wanlockhead Greendykes Bing Nenthead Parys Mountain 

Total 
Element 

% 
Total 

element 
% 

Total 
element 

% 
Total 

element 
% 

Total 
element 

% 

Al 2810.25 0 5465.5 0 4562.38 0 4383.25 0 8950.54 0.0003 
As 2091.92 0 6.63 0 4.58 0 361.83 0 74.13 0 
Cd 343.75 0 6223.96 0 171.88 0 7911.46 0 197.92 0 
Cu 1760.42 0 9072.92 0 1015.63 0 11411.46 0 16187.50 0.0001 
Fe 27248.2 0 19836.67 0 14271.5 0 18139.13 0 18070.58 0 
Mg 830390 0.0045 905354.1 0.0002 514114.5 0.0001 1077411 0.0002 43484.38 0 

Mn 16213.5 0 127322.9 0 30552.08 0 184192.7 0 8166.67 0 
Ni 4437.50 0 3223.96 0 2848.96 0 3604.17 0 1104.17 0 
Pb 29791.6 0 930937.5 0 5630.21 0 629213.5 0 72000.00 0.0003 
Sb 89.79 0 5.67 0 0.75 0 68.17 0 7.13 0 
Zn 49437.5 0 749296.8 0.0002 27776.04 0 13199468 0.0001 18562.50 0.0001 

* pH for Glendinning = 6.54, Wanlockhead = 6.68, Greendykes Bing = 6.62, Nenthead = 6.83, Parys Mountain = 2.84 

B- In adjusted CaCl2 at lowest pH** 

Elem
ents 

Glendinning Wanlockhead Greendykes Bing Nenthead Parys Mountain 

Total 
Element 

% Total 
element 

% Total 
element  

% Total 
element 

% Total 
element 

% 

Al 2810.25 0.0016 5465.5 0.0001 4562.38 0.0193 4383.25 0.0005 8950.54 0.0008 

As 2091.92 0.0003 6.63 0 4.58 0 361.83 0 74.13 0 

Cd 343.75 0 6223.96 0.0005 171.88 0 7911.46 0.0005 197.92 0 

Cu 1760.42 0.0003 9072.92 0.0003 1015.6 0.0001 11411.4 0.0002 16187.50 0.0002 

Fe 27248.2 0.0019 19836.67 0 14271.5 0.0001 18139.13 0 18070.58 0.0003 

Mg 830390 0.0446 905354.1 0.0010 514114.5 0.0046 1077411 0.0026 43484.38 0.0001 

Mn 16213.5 0.0039 127322.9 0.0054 30552.08 0.0009 184192.7 0.0043 8166.67 0 

Ni 4437.50 0.0002 3223.96 0 2848.96 0 3604.17 0 1104.17 0 

Pb 29791.6 0 930937.5 0.0194 5630.21 0 629213.5 0.0022 72000.00 0.0017 

Sb 89.79 0 5.67 0 0.75 0 68.17 0 7.13 0 

Zn 49437.5 0.0080 749296.8 0.0406 27776.04 0 13199468 0.0135 18562.50 0.0004 

** pH for Glendinning = 2.92, Wanlockhead = 4.72, Greendykes Bing = 2.54, Nenthead = 4.95, Parys Mountain = 1.01 
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5.3.5 Metal associations determined by sequential extraction 

Figure 5.17 shows the distribution of Al determined by the BCR sequential extraction scheme.  

The vast majority of Al was in the residual phase defined by the reverse aqua regia digestion 

(i.e. BCR step 3 in this modified version in which the organic fraction targeting step was omitted 

because of the very low amount of organic matter in the spoils), with the exception being in 

Greendykes Bing spoil where the majority was not in this fraction. Contrastingly, the 

Greendykes Bing spoil had only 86.6 mg/kg in the residual phase but had 238 mg/kg in the 

readily exchangeable fraction defined by the initial 0.11 M acetic acid extraction (BCR1) and 

431.84 mg/kg in the reducible fraction determined with 0.1 M hydroxylamine extraction 

(BCR2).  

 

Figure 5.17: The mean (n=3 ± SE) of Al distribution (mg/kg) amongst BCR fractions for the five mine spoils 

examined (the number above each spoil location represents the total Al concentration determined separately by 

total digestion; error bars, where large enough to be visible, represents standard error), Left axis is for BCR1 and 

BCR2 fractions and right axis for residual fraction. 

 

Figure 5.18 displays the sequential extraction scheme results for Cd. Apart from in Greendykes 

Bing, the majority of Cd in the spoils was associated with the residual phase. Nevertheless, 

Glendinning Wanlockhead Greendykes Bing Nenthead Parys Mountain
BCR1 33.76 229.42 238.64 102.58 113.76
BCR2 15.42 83.26 431.84 61.84 19
Residual 21887.5 14564.5 86.6 15608.36 8796.92
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Wanlockhead, Nenthead and Greendykes Bing spoils had appreciable amounts associated with 

the readily exchangeable phase (viz ~57, 13 and 80 mg/kg, respectively). This indicates that 

these spoils do have Cd components that could readily leach out into the wider environment. 

Wanlockhead spoil also had up to 17.9 mg/kg in the reducible phase and was the only spoil to 

have quantifiable amounts of Cd associated with that fraction, and this could also potentially 

become mobile under certain conditions. 

 

Figure 5.18: The mean (n=3 ± SE) of Cd (mg/kg) in five former mine spoils extract by sequential extract 

procedure (the number above each spoil location above every column represent the total Cd concentration in 

every location; error bars, where large enough to be visible, over each column represents standard error), Left 

axis is for BCR1 and BCR2 fractions and right axis for residual fraction. 

 

The sequential extraction results for Cu are shown in Figure 5.19 and reveal that almost all of 

the Cu is associated with the residual fraction. Only the two Pb/Zn mine spoils of Wanlockhead 

and Nenthead had any appreciable amounts of Cu in the more mobile phases (i.e. Wanlockhead 

having ~26 mg/kg in BCR1 and 17 mg/kg in BCR2, while Nenthead had ~44 mg/kg in BCR1 

and 27 mg/kg in BCR2), indicating that only these two spoils present any potential for future 

leaching of Cu into the environment. 
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BCR1 0.26 57.58 13.48 80.42 1.26
BCR2 0.026 17.916 0 2.046 0
Residual 6.76 164 6.76 150.22 6.16
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Figure 5.19: The mean (n=3 ± SE) of Cu (mg/kg) in five former mine spoils extract by sequential extract 

procedure (the number above every column represent the total Cu concentration in every location; error bars, 

where large enough to be visible, over each column represents standard error), Left axis is for BCR1 and BCR2 

fractions and right axis for residual fraction. 

 

The distribution of Fe determined by the BCR scheme is shown in Figure 5.20.  With the 

exception of Nenthead spoil, almost all of the Fe was associated with the residual phase, 

whereas in Nenthead the readily exchangeable fraction accounted for a greater amount than the 

residual. However, regardless of the most dominant fraction, the spoils from Glendinning, 

Wanlockhead and Nenthead all had substantial amounts of Fe in the mobile phases. This is an 

important result to note because of potential environmental implications. Figure 5.21 presents 

the sequential extraction results for K; the largest amount was found in the residual fraction 

except in the case of Greendykes Bing where a larger concentration was found in the reducible 

fraction (BCR2).  
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Figure 5.20: The content (n=3 ± SE) of Fe (mg/kg) in five former mine spoils extract by sequential extract 

procedure (the number above every column represent the total Fe concentration in every location; error bars, 

where large enough to be visible, over each column represents standard error), Left axis is for BCR1 and BCR2 

fractions and right axis for residual fraction. 

 

Figure 5.21: The content (n=3 ± SE) of K (mg/kg) in five former mine spoils extract by sequential extract 

procedure (the number above every column represent the total K concentration in every location; error bars, 

where large enough to be visible, over each column represents standard error), Left axis is for BCR1 and BCR2 

fractions and right axis for residual fraction. 
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Figure 5.22 provides the results of the sequential extraction for Mg.  The residual fraction was 

an important portion for Mg in all spoils, however it did not always dominate and there was no 

consistent pattern across the spoils. The residual fraction did dominate in the Glendinning spoil; 

however, Nenthead, Wanlockhead and Parys Mountain spoils did have substantial amounts in 

the readily exchangeable fraction (i.e. 3685 mg/kg, 2062 and 1175 mg/kg, respectively) and in 

the reducible fraction (876 mg/kg, 405 and 5 mg/kg, respectively). Glendinning and 

Greendykes Bing also had substantial amounts in the first fraction (164 mg/kg and 307 mg/kg, 

respectively). This shows that all of the spoils have Mg that is potentially mobile.  

 

Figure 5.22: The content (n=3 ± SE) of Mg (mg/kg) in five former mine spoils extract by sequential 

extract procedure (the number above every column represent the total Mg concentration in every 

location; error bars, where large enough to be visible, over each column represents standard error), Left 

axis is for BCR1 and BCR2 fractions and right axis for residual fraction. 

The sequential extraction results for Mn (Figure 5.23) revealed that almost all of that element 

was in the residual fraction in Wanlockhead and Greendykes Bing spoils, but in other spoils 

there was a more even distribution with substantial proportions in the readily exchangeable 

(BCR1) and/or the reducible fraction (BCR2). 
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Figure 5.23: The content (n=3 ± SE) of Mn (mg/kg) in five former mine spoils extract by sequential extract 

procedure (the number above every column represent the total Mn concentration in every location; error bars, 

where large enough to be visible, over each column represents standard error), Left axis is for BCR1 and BCR2 

fractions and right axis for residual fraction. 

 

Sequential extraction results for Ni (Figure 5.24) showed varying distributions, with 

Greendykes, Glendinning and Wanlockhead spoils having Ni predominantly in the residual 

fraction while Nenthead and Parys Mountain had higher proportions in the readily 

exchangeable fraction (BCR1). Figure 5.25 displays the sequential extraction results for Pb and 

indicates that while a large proportion was associated with the residual fraction in every spoil, 

all except Parys Mountain also had substantial amounts in the readily exchangeable fraction 

(BCR1). For example, Wanlockhead spoil, from a Pb/Zn mine, had ~4889 mg/kg Pb in the 

exchangeable fraction and 2664 in reducible fraction. Therefore, these spoils were found to 

have potentially mobile Pb that could influence the surrounding environment. 
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Figure 5.24: The content (n=3 ± SE) of Ni (mg/kg) in five former mine spoils extract by sequential extract 

procedure (the number above every column represent the total Ni concentration in every location; error bars, 

where large enough to be visible, over each column represents standard error), Left axis is for BCR1 and BCR2 

fractions and right axis for residual fraction. 

 

Figure 5.25: The content (n=3 ± SE) of Pb (mg/kg) in five former mine spoils extract by sequential extract 

procedure (the number above every column represent the total Pb concentration in every location; error bars, 

where large enough to be visible, over each column represents standard error), Left axis is for BCR1 and BCR2 

fractions and right axis for residual fraction. 
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The sequential extraction results for Zn (Figure 5.26) revealed a rather even distribution across 

fractions for the Pb/Zn mine spoils from Wanlockhead and Nenthead. They both had substantial 

amounts (9101 mg/kg and 19947 mg/kg, respectively) in the readily exchangeable fraction as 

well as in the reducible and residual fractions. Glendinning, Parys Mountain and Greendykes 

had lower amounts overall, but still had less than 90 mg/kg Pb in the readily exchangeable 

fraction and, therefore, need to be evaluated in terms of potential influence on the surrounding 

environment.   

 

Figure 5.26: The content (n=3 ± SE) of Zn (mg/kg) in five former mine spoils extract by sequential extract 

procedure (the number above every column represent the total Zn concentration in every location; error bars, 

where large enough to be visible, over each column represents standard error), Left axis is for BCR1 and BCR2 

fractions and right axis for residual fraction. 

 

In terms of arsenic, the sequential extraction results (Figure 5.27) show that Nenthead and Parys 

Mountain both had essentially all of their As in the residual fraction. Greendykes Bing spoil 

had an even distribution between exchangeable and residual fractions, while Glendinning had 

a majority in the residual fraction but an important amount (~377 mg/kg) in the exchangeable 

fraction.         
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Figure 5.27: The content (n=3 ± SE) of As (mg/kg) in five former mine spoils extract by sequential extract 

procedure (the number above every column represent the total As concentration in every location; error bars, 

where large enough to be visible, over each column represents standard error), Left axis is for BCR1 and BCR2 

fractions and right axis for residual fraction. 

 

The sequential extraction results for Sb (Figure 5.28) were varied, with Glendinning, 

Wanlockhead and Greendykes all having a majority of the element associated with the readily 

exchangeable fraction. This is a particularly important result in the case of Glendinning because 

that spoil has a large total amount of this element. In contrast, Nenthead and Parys Mountain 

had effectively all of their Sb in the residual fraction.   
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Figure 5-28: The content (n=3 ± SE) of Sb (mg/kg) in five former mine spoils extract by sequential extract 

procedure (the number above every column represent the total Sb concentration in every location; error bars, 

where large enough to be visible, over each column represents standard error), Left axis is for BCR1 and BCR2 

fractions and right axis for residual fraction. 

 

5.3.5.1 Sequential Extraction Mass Balance Assessment  

Table 5.5 provides the results obtained from an analysis of mass balance for most elements in 

the five mine spoils. The discrepancy between sum of fractions and total observed for some 

elements is difficult to explain. Either the material is extremely heterogeneous in terms of 

elements or there was an undetected problem with the digestions and associated analysis. This 

would have been more definable if a certified reference material for spoils was also digested 

for this specific part of the project, as was used for the plant study (Chapter 7) in which 

vegetation certified reference materials were digested and analysed. However, although the 

mass balance was poor for some elements, the extractable amounts and proportions in each 

fraction still provide highly useful data.  

A very good mass balance match was observed for Al in Parys Mountain (sum of fractions/ 

total =0.99), however the mass balance for Al in other spoils was less convincing. The mass 
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balance for Cd was always much less than 1 across the spoils, which means that the sum of the 

extractable amounts of Cd was much smaller than the previously determined total amount. The 

same outcome was noted for Cu in most mine spoils. 

Table 5.5: Mass balance of studied elements in five mine locations  

(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 =  ∑𝐵𝐵𝐵𝐵𝐵𝐵1+𝐵𝐵𝐵𝐵𝐵𝐵2+𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

) 

Studied 
Elements 
(mg/kg) 

Location 

Glendinning Wanlockhead 
Greendykes 

Bing 
Nenthead 

Parys 
Mountain 

Al 7.8060 4.0600 0.3754 3.5984 0.9977 
Cd 0.0205 0.0385 0.1178 0.0294 0.0375 
Cu 0.0246 0.0657 0.0549 0.3939 0.0399 
Fe 2.2219 1.9809 0.0871 0.1013 5.7383 
K 0.0875 0.0613 0.0030 0.1190 0.0603 

Mg 0.0229 0.0231 0.0017 0.0084 0.0537 
Mn 0.0156 0.0312 0.4665 0.0145 0.0699 
Ni 0.0248 0.0302 0.3131 0.0247 0.0279 
Pb 0.0340 0.0543 0.0318 0.0147 0.0241 
Zn 0.0266 0.0413 0.1575 0.0345 0.0261 
As 4.4611 5.7433 7.6965 0.3592 4.3797 
Sb 5.8650 25.9111 244.7307 0.6122 3.7173 

 

5.3.6 Element bioaccessibility in simulated lung fluid 

Figure 5.29 presents the simulated lung fluid bioaccessibility results for As after 24 h and 72 h 

exposure equivalent. Glendinning had showed the highest concentration of As mobilised by 

Gambles solution after 72 hours which was 1805.63 mg/kg followed by Wanlockhead and 

Greendykes Bing with 1259.957 mg/kg and 571.21 mg/kg respectively in the same period of 

time. The rest of the spoils were less than 15mg/kg. The amounts mobilised in 24 h were much 

lower, always ≤ 30 mg/kg for all mine spoils (Figure 5.43).  
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Figure 5.29: Concentration (n=3 ± SE) of bioaccessible arsenic (mg/kg) measured by using ICP-MS 

 

The bioaccessibility results for Sb illustrated in Figure 5.30 show a similar pattern to that of As, 

but with much lower concentrations of mobilised Sb. That is, Glendinning again has by far the 

most bioaccessible element, but only 51.08 mg/kg after 72 h, followed by Wanlockhead and 

Greendykes Bing with 35.6 mg/kg and 18.07 mg/kg respectively. The other spoils either had 

no detectable bioaccessible Sb or had concentrations ≤ 3 mg/kg after 72 hours. Again, the 

amount mobilised by Gamble’s solution after 72 hours was greater than those after 24 hours. 
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Figure 5-30: Concentration (n=3 ± SE) of bioaccessible antimony (mg/kg) measured by using ICP-MS 

 

Bioaccessible Pb was greatest in the spoil from Nenthead (i.e. a former Pb/Zn mine site), having 

304.411 mg/kg after 72 h exposure (Figure 5.31). However, at the 24 h exposure period, other 

spoils were shown to have higher bioaccessible Pb levels. (Figure 5.45). Parys Mountain had 

bioaccessible Pb at ~50.4 mg/kg after 24 h, increasing to 259.204 mg/kg after 72 h, while 

Greendykes Bings had ~150 mg/kg at 24 h rising to 241 mg/kg bioaccessible Pb 72 h. 

Glendinning had 223 mg/kg after 72 h and 91 mg/kg at 24 h. Bioaccessible Pb for all measured 

spoils after 72 h is more than after 24 h, showing that more Pb becomes bioaccessible over a 

72 h timeframe. 

Bioaccessible K was between ~300 - 400 mg/kg for Glendinning, Wanlockhead and 

Greendykes Bing at both 24 and 72h of exposure. Nenthead was also in this range at 72 h but 

had levels below detection at 24 h. Parys Mountain had the highest amounts, with ~1300 mg/kg 

at both 24 h and 72 h (Figure 5.32) 

Bioaccessible Fe (Figure 5.33) was highest in Glendinning and rose from ~70 mg/kg after 24 h 

to ~100 mg/kg after 72 h. Wanlockhead and Nenthead had no detectable bioaccessible Fe, 
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whereas both Greendykes Bing and Parys Mountain had modest amounts at ~9 mg/kg after 24 

h and 30 after 72 h.    

Bioaccessible Mg (Figure 5.34) was highest in Parys Mountain and Glendinning spoils, with 

values approximating 210-220 mg/kg after 72 h and about 200 mg/kg at 24 h. Wanlockhead 

had ~24 mg/kg after either 24 h or 72 h while Nenthead had approximately double that with 

~50 mg/kg after 72 h. Greendykes Bing had no detectable bioaccessible Mg at any time point.  

Bioaccessible Zn (Figure 5.35) was highest in the spoils from the former Pb/Zn mines, 

Wanlockhead and Nenthead, as might be expected. Values were ~207 mg/kg and ~264 mg/kg 

after 72 h but were a little lower in the 24 h samples (~3 mg/kg and ~241 mg/kg, respectively). 

Glendinning had bioaccessible Zn at ~88 mg/kg at both time periods while Greendykes spoil 

had no detectable bioaccessible Zn.  

 

Figure 5.31: Concentration (n=3 ± SE) of bioaccessible lead (mg/kg) measured by using ICP-MS 
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Figure 5.32: Concentration (n=3 ± SE) of bioaccessible potassium (mg/kg) measured by using ICP-OES 

 
Figure 5.33: Concentration (n=3 ± SE) of bioaccessible Iron (mg/kg) measured by using ICP-OES 

0

200

400

600

800

1000

1200

1400

1600

Gl
en

di
nn

in
g

W
an

lo
ck

he
ad

Gr
ee

nd
yk

es
 B

in
gs

N
an

th
ea

d

Pa
ry

s M
ou

nt
ai

n

Gl
en

di
nn

in
g

W
an

lo
ck

he
ad

Gr
ee

nd
yk

es
 B

in
gs

N
an

th
ea

d

Pa
ry

s M
ou

nt
ai

n

24 Hours 72 Hours

Po
ta

ss
iu

m
 c

on
ce

nt
ra

tio
n 

(m
g/

kg
)

0

20

40

60

80

100

120

Gl
en

di
nn

in
g

W
an

lo
ck

he
ad

Gr
ee

nd
yk

es
 B

in
gs

N
an

th
ea

d

Pa
ry

s M
ou

nt
ai

n

Gl
en

di
nn

in
g

W
an

lo
ck

he
ad

Gr
ee

nd
yk

es
 B

in
gs

N
an

th
ea

d

Pa
ry

s M
ou

nt
ai

n

24 Hours 72 Hours

Iro
n 

co
nc

en
tr

at
io

n 
(m

g/
kg

)



 

172 

 

 

Figure 5-34: Concentration (n=3 ± SE) of bioaccessible magnesium (mg/kg) measured by using ICP-OES 

 

Figure 5-35: Concentration (n=3 ± SE) of bioaccessible zinc (mg/kg) measured by using ICP-OES 

0

50

100

150

200

250

Gl
en

di
nn

in
g

W
an

lo
ck

he
ad

Gr
ee

nd
yk

es
 B

in
gs

N
an

th
ea

d

Pa
ry

s M
ou

nt
ai

n

Gl
en

di
nn

in
g

W
an

lo
ck

he
ad

Gr
ee

nd
yk

es
 B

in
gs

N
an

th
ea

d

Pa
ry

s M
ou

nt
ai

n

24 Hours 72 Hours

M
ag

ne
siu

m
 c

on
ce

nt
ra

tio
n 

(m
g/

kg
)

0

50

100

150

200

250

300

Gl
en

di
nn

in
g

W
an

lo
ck

he
ad

Gr
ee

nd
yk

es
 B

in
gs

N
an

th
ea

d

Pa
ry

s M
ou

nt
ai

n

Gl
en

di
nn

in
g

W
an

lo
ck

he
ad

Gr
ee

nd
yk

es
 B

in
gs

N
an

th
ea

d

Pa
ry

s M
ou

nt
ai

n

24 Hours 72 Hours

Zi
nc

 c
on

ce
nt

ra
tio

n 
(m

g/
kg

)



 

173 

 

5.4 Discussion 

5.4.1 Total element analysis 

The analysis of total elements using reverse aqua regia revealed that many elements were 

associated with all examined spoils in this study. Mainly, the spoils of Nenthead, Glendinning 

and Wanlockhead showed considerably high concentrations of Ba, Cd, Mg, Mn, Ni, Pb, Zn, As 

and Sb. However, the highest concentration of Zn appeared at Nenthead, while other elements 

such as As, Fe, Ni and Sb showed high concentrations in the spoils of Glendinning. The primary 

reason for the high concentrations of elements appearing in these locations may go back to the 

types of ore in the studied locations. The main ores at Wanlockhead were galena (lead sulfide), 

plumbonacrite on galena (a hydrated carbonated of Pb) and pyromorphite on galena (lead 

chlorophosphate and lead chloroarsenate), which could explain the high concentration of Pb at 

Wanlockhead (McIntosh et al., 2004). The ores at Nenthead were mainly galena (0.2%), pyrite, 

chalcopyrite, fluorite (2%), calcite (1.3%), quartz (35%), dolomite, ankerite (calcium, iron, 

magnesium, manganese carbonate) (2.2%) and sphalerite (0.7%) (Clarke, 2007; Sneddon et al., 

2008).  

For Glendinning, the concentrations determined in the present study are in agreement with those 

of MacGregor et al. (2015), who found high and environmentally relevant concentrations of As 

and Sb  in the spoils of Glendinning. Gal et al. (2007) studied the minerology of the Glendinning 

mine area using bulk XRD methods; they found that the main components in the samples were 

quartz, muscovite [KAl3Si3O10(F,OH)2], albite [NaAlSi3O8], illite 

[K(Al,Fe,Mg)3(Si,Al)4O10(OH)2] and chlorite [(Mg,Fe,Al)6(Si,Al)4O10(OH)8]. The only sulfide 

minerals detected in the soil samples was arsenopyrite. The secondary minerals detected using 

the bulk XRD technique were hematite, calcite, goethite, valentinite (SbO2) and clay minerals 

(kaolinite and montmorillonite) (Gal et al., 2007). Another ore detected in this area was stibnite 

(Gallagher et al., 1983). Analysis of the spoils collected from this area showed that the 

proportions were Pb 0.4 wt% and Zn 3.5 wt%, while gravel consisted of quartz 50–60 wt% and 

ankerite 25–30 wt%, in addition to siderite, barite, fluorite, sandstone, limestone, witherite and 

shale (Dunham, 1990, cited in Sneddon et al., 2008). All of the studies mentioned above confirm 

the role of the main ores at every location examined in this study and explain the high 

concentrations of PTE elements that appeared in the pseudo total element measurements. 
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The study of Du et al. (2019), which was conducted in China, emphasises that Pb/Zn mine 

spoils used in agriculture contain high levels of heavy metals such as Cd, Zn, Ni, Cu, As, Mn, 

Pb and Cr. Cheng et al. (2018) found that agricultural soils taken from fields with nearby spoils 

from the Dongchuan copper mining area in China had high concentrations of As, Cd, Cr, Cu, 

Hg, Ni, Pb and Zn, and that concentrations of As, Cu and Zn exceeded the recommended levels 

according to Chinese national standards. Similarly, spoils from the polymetallic mines in 

Guangdong in south China were studied by Sun et al. (2018), who found links to elevated 

concentrations in nearby surface soils that had concentrations seven times higher than the 

recommended levels for Co, Cr, Mn, Ni, As, Cu, Zn, Cd, Pb and Se. These last studies 

emphasise the ability of this method (total element determination) to provide a good overview 

of the types and concentrations of PTEs in the substrates of the areas investigated. Information 

gained from this can be used to understand the overall contamination level of an area and to 

start to develop a program of management and remediation.  

5.4.2 CaCl2 Solution Extractable Elements and buffering capacity 

The CaCl2 extraction results can be used to examine the likelihood of any potentially toxic 

elements (such as Al, As, Cd, Pb and Zn) leaching out from the spoil under normal 

environmental conditions (e.g. percolation of rainwater or river swells during floods). Without 

pH downward adjustment, Al was only extractable from Parys Mountain (24 mg/kg) and Mg 

only from Glendinning (105 mg/kg). Using unbuffered salts such as NH4Cl and CaCl2 is 

considered a rapid method with which to understand the mobility of heavy metals in polluted 

soils (Beckett, 1989, cited in Aydinalp and Katkat, 2004).  

Other elements of potential concern were not readily extractable from the five spoils examined 

without any pH adjustment. When the pH was lowered, the extractability of several important 

elements increased, although the increases in extractable (mobile) concentrations were quite 

modest compared with those reported in other studies: for example, Houben et al. (2013) found 

that upon decreasing the pH to 5.5 in mine and smelter impacted soils the mobile Cd rose to 5 

mg/kg, Pb to 4 mg/kg and Zn to 180 mg/kg. This suggests that the spoils examined in the present 

study might pose less of a direct threat to the environment than some spoils and contaminated 

soils elsewhere. Nevertheless, potential impacts from pH influenced leachable contents needs 

to be considered even in the spoils from the present study, where in general the highest 

concentration of extractable elements was detected when the pH was in the range of 2.5–4.  
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Cation-forming metals are generally solubilised as the pH decreases, and it is known that acid 

drainage can arise from mine spoils and that this can transport metals and other potential 

contaminants to receiving waters and soils. For example, the Benhar ironstone spoil heap, 

located between Edinburgh and Glasgow, UK, is known to leach acid drainage water with 

considerable metal concentrations (e.g. Al at 49 mg/L and Fe at 48 mg/L, pH = 2.7) and so was 

the subject of remediation via a constructed wetland (Heal and Salt, 1999). Extensive Ni mining 

in Brazil has also left large quantities of spoil that have been demonstrated to readily leach 

elements when examined in column studies (e.g. Fe up to 330 µg/L, Mn at 940 µg/L and Ni at 

100 µg/L) (Raous et al., 2010). The spoil at Glendinning has also previously been reported to 

leach metals and metalloids at environmentally relevant concentrations (e.g. Fe at 5 µg/L, Sb 

at 783 µg/L, As at 1,770 µg/L and Pb at 0.21 µg/L) (MacGregor et al., 2015), which is consistent 

with the results of the CaCl2 and BCR 1 extractions performed on the Glendinning spoil in this 

study. The CaCl2 extraction test used here is also relevant to leaching assessments because 

studies have shown that salts, including calcium chloride salts, can be present at significant 

levels in mine spoils (Park et al., 2013) and so a neutral salt extraction could effectively occur 

when rain contacts the spoils. Nevertheless, the results obtained here suggest that, unless a low 

pH solution is passed through the spoils, most do not pose an immediate threat to the 

environment other than for Al, Fe and Mg, and, in the case of Glendinning, As and Sb. It is 

therefore in relation to the leaching of these elements, and to the consequences of acid inputs 

such as acid rain or acid drainage that could cause leaching of other elements, that remediation 

of these spoil heaps should be considered (see Chapter 7 for remediation tests).     

While pH is often the driving variable for element mobilisation, other factors can play a role 

too. Organic matter can provide chelates that solubilise metals, while root exudates and 

microbial enzymes can also increase solubility and mobility of metals in solid matrices such as 

spoils, soils and sediments (Besser et al. 2003, Jackson et al. 2005). However, the organic matter 

content of the spoils in the present study were all negligible and so this aspect was not a factor 

here under the current conditions found within the spoils at the sites examined. The mineralogy 

of the components of the spoils are another factor to assess when considering the mobility of 

elements because solubility of different minerals can vary widely. As indicated in the previous 

chapter, a number of the spoils examined have substantial amounts of muscovite, quartz, 

dolomite and, in the case of Greendykes Bing, haematite, all of which are considered typically 

insoluble (or very sparingly soluble) at surface environmental temperatures and pressures (Fyfe 
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et al. 1978), which may also explain the modest levels of elements leached from them in non-

amended neutral salt extracts.          

The buffering capacity of the spoils was found to span from 192.31 to 434.78 mmol H+/kg/pH, 

and the lowest buffering capacity was recorded at Greendykes Bing, while the highest was 

recorded in Parys Mountain. When these levels were compared with the pH levels observed in 

the CaCl2 experiment, the ability to change pH at both Greendykes Bing and Glendinning was 

a concern because the original state of these locations was alkaline (pH = 6.54 for Glendinning 

and 6.62 for Greendykes Bing), while their pH levels were changed dramatically to reach 2.92 

for Glendinning and 2.45 for Greendykes Bing when 100 µl of concentrated HNO3 was added. 

The percentage changes of pH for these locations were 44.64% for Glendinning and 44.11% 

for Greendykes Bing. The low pH buffering capacity in the Glendinning spoil might have been 

due to the particular sulfide ores at this location, such as arsenopyrite, pyrite, galena and 

sphalerite, together with a lack of alkaline-balancing components (i.e. no carbonates or 

hydroxides). Such ores have been noted previously to substantially influence pH when they 

react with water and produce AMD or ARD phenomena (Gallagher et al., 1983).  

5.4.3 Sequential Extraction 

Fractionation of metals, as revealed by sequential extraction, is important to know because it 

indicates the relative mobility and bioavailability of elements in solid matrices. Elements 

present in substantial amounts in the first two fractions (BCR1 and BCR2) have greater 

potential bioavailability than those in the residual fraction and thus are important ecologically. 

However, the results revealed that all elements had the highest concentrations in the residual 

phase, with exception of the following: Al, Mg and Zn in the reducible fraction (BCR2) at 

Greendykes Bing; Mn and Ni in the exchangeable fraction (BCR1) at Nenthead and Parys 

Mountain; and Sb in the exchangeable fraction at Glendinning, Wanlockhead and Greendykes 

Bing. These exceptions are very important because they clearly show the ability of these 

elements to be available when they are extracted with weak acid (acetic acid) or hydroxyl 

ammonium chloride.  

Alan and Kara (2019b) used two sequential extraction methods to determine the heavy metal 

content and distribution in agricultural soils near boron mines in Turkey. The two methods 

differed as one had four stages and the other, newer method included seven steps. The metals 

extracted using both methods were As, B, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn. Most elements 



 

177 

 

were still found in the residual fraction, as is commonly the case (Caraballo et al. 2018; Alan 

and Kara, 2019a). A study of mine tailings in Sardinia, Italy, also used BCR sequential 

extraction to examine metal distribution, but a contrasting result was found, suggesting that 

approximately half of the Pb present was in the readily extractable (BCR 1) fraction (Fernández-

Ondoño et al. 2017). The same study found that even less of the Zn (<25%) was retained in the 

residual fraction, indicating the importance of assessing element distributions among different 

spoils in order to determine the associated environmental risks.    

The results of the BCR and pseudo total element determinations, when considered together in 

terms of a mass balance assessment, revealed that most elements in most spoils had an imperfect 

mass balance. For some elements in some spoils, the mass balance was indeed very poor. Mass 

balance problems are not uncommon in these types of assessment; for example, many authors, 

such as Alan and Kara (2019a, 2019b), have found that the pseudo total element method shows 

the highest concentration of detected elements compared with the sum of sequential extraction 

methods. Bacon and Davidson (2008) highlighted that differences necessary between the 

solid:solution ratio in the initial pseudo total digests and the sequential extraction fractions 

could create discrepancies, while it is also possible that components are lost during the multiple 

filtration stages of the sequential extraction that are consequently not accounted for in the mass 

balance. Beyond this, the discrepancy between BCR fractions results and pseudo total element 

results is difficult to explain. Either the material is extremely heterogenous in terms of the 

particle elements, or there are undetected problems in the analysis. Moreover, a further source 

of uncertainty was introduced by the samples having to be analysed using different machines 

in different locations (because of breakdowns in instrumentation at Keele), which may have 

caused errors that could not be quantified. Ultimately, although the mass balance was poor for 

these samples/types/elements, the proportions in each fraction still provided important data that 

allow for relative comparisons. 

5.4.4 Element bioaccessibility in simulated lung fluid 

A bioaccessibility approach to assessing health risks as well as environmental risks has been 

used in a wide range of studies, including many investigations using simulated stomach and 

intestine fluids to examine potentially toxic elements and/or organic chemical assimilation via 

the gut (e.g. Ruby et al., 1993, 1999) and others that using simulated lung fluids to examine 

assimilation into the blood via the respiratory tract (e.g. Wragg and Klinck 2007; Broadway et 

al., 2010). The approach used in the present study was to examine possible exposure via the 
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lungs because, while it is unlikely that any person would ever eat the spoil materials under 

investigation, it is possible that dust generated by their disturbance might be inhaled. The 

inhalation risks of mining spoil materials have received little attention in the literature, making 

scientific novelty another valid reason to test this phenomenon. The exposure time to dust 

containing toxic elements and its residence time in the lungs have important implications for 

any effect on human health. It has been shown that particle size influences the depth to which 

dusts can penetrate the lungs and the time over which it remains, as while some particles may 

be removed by mucociliary clearance (mucus) and phagocytosis within 24 h others can remain 

for days, weeks and even years (Brauer et al. 2001, EPA nd). In the present study, exposure 

time for interaction between Gamble’s solution and fine size spoils was set for 1 day (24 h) or 

3 days (72 h). This exposure time was selected as the range in many studies that selected an 

exposure time between 1 h and >140 h; for example, the exposure time for Gamble’s solution 

and Pb in the PM10 size fraction of soil was in the range of 0–200 h (Boisa et al., 2014). 

Generally, exposure to fine particles for a long period of time will cause more serious problems 

in the respiratory system, particularly the lungs (Kumar et al., 2018). Bioaccessible As was very 

low at 24 h of simulated exposure, but increased significantly at 72 h in the case of Glendinning 

(>1800 mg/kg), Wanlockhead (>1300 mg/kg) and Greendykes (~600 mg/kg). These values are 

much higher than those reported for the spoils from the gold-mining areas of southeastern 

Australia, where the values were ~0.3 mg/kg to 4.0 mg/kg (Martin et al., 2018). This is 

noteworthy because As was previously used extensively in the gold-mining process to separate 

ore from spoil, so As could be expected in elevated concentrations in old gold-mining spoils. 

The Glendinning and Wanlockhead spoils were comparable with the bioaccessible As reported 

for the mine spoils in northern Quebec, Canada, which had values of 5.0, 50 and 1730 mg/kg 

(Guney et al., 2017), and could be considered a potential As exposure risk if the material was 

to be disturbed and released as dust. The bioaccessible Sb in the Glendinning spoil, at ~50 

mg/kg, could also be considered a risk because of the known toxicity of the element and the 

fact that inhalation is a recognised exposure route (Sundar and Chakravarty, 2010).   

Bioaccessible Pb has received attention because of its potential impact on human health, 

particularly in relation to exposure during childhood or pregnancy (e.g. children’s mental 

development, nervous system and cardiovascular health). In the present study, bioaccessible Pb 

was highest (~300 mg/kg) in the Nenthead and Parys Mountain spoils after 72 h but was also 

generally above 200 mg/kg in the other spoils for the same exposure simulation time. These 
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values are approaching the lower end of the range reported for spoils from central Wales, at 

550–16,200 mg/kg (Wragg and Klinck, 2007), whereas they fall within the middle of the range 

of values determined in the three Canadian spoils examined by Guney et al. (2017), at ~7.5, 

154 and 725 mg/kg. This suggests that respiratory exposure to Pb from the five spoils examined 

in the present study is as likely as has been identified elsewhere, so a remediation effort that 

would cover the spoils and reduce the risk of airborne dust being generated is worthy of 

consideration.  

Other important notable results are that the concentration of PTEs determined using the total 

element and BCR methods exceeded the maximum allowed concentration (MAC) in soil, 

meaning that the material could not be simply spread into soil to dispose of it. Kabata-Pendias 

and Mukherjee (2007) found that the MAC of Cd, As, Cr, Pb, Ni and Cu were approximately 

1–5, 10–20, 50–200, 20–300, 20–60, and 60–150 mg/kg. The concentrations of the elements 

mentioned in this study sharply surpassed the recommended levels. Moreover, the 

concentrations of PTEs extracted using lung fluid (Gamble’s solution) showed significant 

concern when compared with the human intake MAC of these elements (Thornton et al., 2001; 

WHO, 2001, 2010; IARC, 2004; HHS, 2005; Sundar and Chakravarty, 2010). Overall, the 

results indicate that there is a need to remediate the area where these spoils are currently found 

in order to reduce potential health and environmental risks.  

The most novel aspect in this chapter is the assessment of potential toxicity of inhaled mine 

spoil particles into the lungs using Gamble’s solution, as this has not been done to any great 

extent for mine spoil materials previously and has never been examined at these locations.  
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Chapter 6: Comparison among different analytical techniques 
6.1 Chapter aims and background information  

This short chapter aims to compare, contrast and evaluate the analytical performance and results 

of the pseudo total element measurements determined via inductively coupled plasma (ICP) 

analysis of microwave digestions using reverse aqua regia and the total element measurements 

via XRF employed in the previous chapter. The principles of the XRF technique were explained 

in Chapter 4 and so are not repeated here; however, the principles of the ICP technique have 

not yet been outlined, so an overview is first presented as background.    

6.1.1 Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) 

ICP-OES (Figure 6.1) is widely used to analyse samples of water, ores, spoils and other 

geological samples following preparation and sample digestion in acids. The principle of this 

technique depends on emissions from atoms and ions that are excited using a high-energy 

(6,000–7,000 K) argon plasma torch (Hou and Johns, 2000). Because the energy of the excited 

electrons drops back to base level, photons (light) are produced that have specific wavelengths 

for different elements. Therefore, the light intensity of the wavelength is measured and, with 

appropriate calibration of the prepared known standards, can be calculated into a concentration 

(Ghosh et al., 2013; Anonymous, 2019).  

The ICP-OES technique has been used in many studies to determine the element concentrations 

in mine site spoils and mining contaminated soils. For example, Okereafor et al. (2019) used 

this technique to determine the concentration of elements in farming soil that had received 

deposits of gold mine waste in Ekuhurleni, South Africa, while Novak et al. (2018) used this 

instrumental device to investigate the total elements in spoils collected from the Formosa mine 

sites in the US. The technique has also been used to determine plant-available elements in mine 

spoils gathered from a coal mine in Jharkhand, India (Mukhopadhyay et al., 2016).  
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Figure 6.1: The components of ICP-OES ideal system (Sneddon and Vincent, 2008) 

6.1.2 Inductively Coupled Plasma/Mass Spectrometry (ICP-MS) 

ICP-MS (Figure 6.2) is another important instrumental technique that is widely used across 

various scientific disciplines such as environmental sciences, geochemistry, pharmaceutical 

science and biology (Ammann, 2007). The most important reasons to use ICP-MS on a large 

scale are its very low element detection limits (Table 6.1), the wide range of elements that can 

be measured and the high number of applications (Ammann, 2007; Batsala et al., 2012). 

Table 6.1: the detection limits of some elements of ICP-MS technique (Batsala et al., 2012) 

Elements Detection limit (ppt) 

U, Cs, Pi Less than 10 

Ag, Be, Cd, Rb, Sn, Sb, Au 10-50 

Ba, Pb, Se, Sr, Co, W, Mo, Mg 50-100 

Cr, Cu, Mn 100-200 

Zn, As, Ti 400-500 

Li, P 1-3 ppb 

Ca Less than 20 ppb 

 

In a standard ICP-MS, a copper coil is used to produce a magnetic field. This magnetic field 

facilitates the separation of ions by mass and charge before detection and quantitation by mass 

spectrophotometer via an interface region that consists of two metallic cones (Batsala et al., 

2012; Pröfrock and Prange, 2012). 
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There are many examples of ICP-MS used for element determination in mine spoils and more 

broadly in the geochemistry field. For example, in northern Thailand, Suteerapataranon et al. 

(2006) used ICP-MS to determine the trace elements in an acid mine drainage solution that had 

resulted from coal mining tailings. Sneddon and Vincent (2008) have compared features of 

ICP-OES and ICP-MS, and these points are summarised in Table 6.2.  

 

Figure 6.2: the components of ICP-MS ideal system (Sneddon and Vincent, 2008) 

https://www.sciencedirect.com/science/article/pii/S0043135406001473#!
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Table 6.2: comparison between ICP-OES and ICP-MS (Sneddon and Vincent, 2008) 

 

6.2 Methods 

6.2.1 Calculation of limit of detection (LoD) of analytical methods used.  

Comparison and evaluation of the techniques used in the previous chapter were accomplished 

by establishing the limit of detection (LoD) for each and by contrasting the element 

concentrations they determined in the spoils. The estimated detection limits of instrumental 

methods were determined by examining the regression lines of standard solutions 

concentrations versus instrument response calibrations for each element, through the following 

equation:   

𝐿𝐿𝐿𝐿𝐿𝐿 = 3 ×  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 ……….. (Eq. 6.1) 

Where: LoD = Estimated detection limits of element in each instrumental method 

STEyx = Standard error of the predicted y-value for each x in the regression. 

Slope = the estimated value of linear regression slope. 
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6.2.2. Calculation of Relative Standard Error (RSE%) 

The calculation of RSE% (precision) was done by calculating the standard error throughout 

descriptive analysis and mean by using SPSS (version 24) and then applied the following 

equation: 

𝑅𝑅𝑅𝑅𝑅𝑅% = 𝑆𝑆𝑆𝑆
𝑥̅𝑥

 × 100 ……….. (Eq. 6.2) 

Where: 

RSE% = the percentage of Relative Standard Error. 

SE = Standard Error. 

𝑥̅𝑥 = Sample mean 

 

6.3 Results  

6.3.1 comparison of measured total element concentrations between XRF and ICP-OES 

Table 6.3 discusses the comparison between  five elements (As, Cd, Pb, Sb, Zn) concentrations 

measured by using XRF and ICP-OES techniques. These elements were selected because they 

are key elements extracted from the studied mines and/or important environmental 

contaminants associated with them and because they were measurable (at least in some spoils) 

via ICP-OES. Results showed that concentration of elements detected by using ICP-OES were 

very high compared with the same elements measured by using XRF. However, two spoil 

samples showed a different pattern for Zn, and these were those from Wanlockhead and 

Nenthead. Particularly, the concentration of Zn in Nenthead which is measured by using XRF 

showed  high concentration of this element of 50880 mg/kg compared with Zn concentration at 

the same area which was estimated by using ICP-OES technique of 12555.75 mg/kg. 

Discrepancies in this direction (i.e. XRF giving higher values than ICP-OES on digest 

solutions) may reasonably be explained by the inability of aqua regia or reverse aqua regia to 

fully dissolve all components of the sample (i.e. pseudo total concentrations determined in 

digest solutions vs total element concentrations determined by XRF). However, discrepancies 

in the other direction require more explanation. The ability of XRF to detect some elements in 

this experiment was limited as noticed from Table 6.3, for example, mine spoils collected from 

Glendinning did not contain any detectable Cd and Pb. Meanwhile, using ICP-OES, 343.75 and 
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29791.67 mg/kg were determined for these elements respectively. The same issue happened 

with  As in Wanlockhead, As, Cd, Pb and Sb in Greendykes Bing, As and Sb in Nenthead and 

finally Cd in Parys Mountain.  
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Table 6.3: Comparison among five elements concentrations (Mean ± SD, n = 3) measured from five mine spoils 

by using two different analytical instruments XRF and ICP-OES 

Location Elements 
Instruments 

XRF ICP-OES 

Glendinning 

As 13160±230.78 2091.92±598.09 

Cd 0 343.75±79.97 

Pb 0 29791.67±1546.9 

Sb 459.3±154.23 89.79±36.98 

Zn 851.9±256.9 2148.5±355.98 

Wanlockhead 

As 0 6.63±1.96 

Cd 79.9±14.81 6223.96±693.98 

Pb 3.499±1.32 930937.5±11834.9 

Sb 58.5±17.42 5.67±2.91 

Zn 19960±476.9 2395.5±223.9 

Greendykes Bing 

As 0 4.58±1.18 

Cd 0 171.88±87.91 

Pb 0.011±0.001 5630.21±157.29 

Sb 0 0.75±0.34 

Zn 144±22.71 7994.38±127.92 

Nenthead 

As 0 361.83±99.17 

Cd 120.6±55.2 7911.46±1367.92 

Pb 1.832±0.42 629213.5±2246.98 

Sb 0 68.17±32.71 

Zn 50880±541.4 12555.75±7171.98 

Parys Mountain 

As 379.1±77.21 74.13±43.98 

Cd 0 197.92±94.93 

Pb 0.158±0.02 72000±28762.89 

Sb 69.8±18.32 7.13±3.22 

Zn 243.8±72.1 2222.21±1873.96 
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6.3.2 Limits of detection (LoD) of instrumental devices 

Table 6-4 shows the limits of detections for five elements using the ICP techniques. The results 

showed that ICP-MS had the lowest LoD values for all elements examined. The highest value 

of LoD in ICP-OES was 1.575 mg/L (Sb), meanwhile, the lowest LoD value of 0.890 µg/L was 

achieved by ICP-MS (for Cd).  

Table 6-4: The estimated detection limits of five elements detected by different types of instrumental devices 

Instruments 
Elements 

As Cd Pb Sb Zn 

ICP-OES 

(mg/L) 0.871 0.976 0.860 1.575 0.706 

ICP-MS 

(µg/L) 1.044 0.890 1.835 1.011 1.321 

 

6.3.3 Precision calculation of XRF, ICP-OES and ICP-MS 

Results in Table 6.5 present the percentage of relative standard error (RSE%) for replicate 

samples determined by the techniques (RSE% is used here as a direct measure of precision). 

RSE% gives an idea of the spread of measurements by each instrument, i.e. how measurements 

are distributed around the mean. So, the lowest value of RSE% indicates that results have high 

precision because the replicates are very close to each other. Table 6.5 reveals that ICP-OES 

and ICP-MS showed reasonable values of precision which ranged between 0.54-5% for many 

samples/elements. However, some samples showed high value of RSE% (low precision) such 

as Nenthead samples in relation to As and Sb and also those for Parys Mountain in relation to 

As, having RSD% for ICP-MS measurements of 29.90%, 28.13% and 27.16%, respectively.  

On the other hand, precision values were lower for XRF compared with the other two 

techniques, and for some elements in some samples XRF could not detect them at all (Table 6-

5). The XRF RSD% values were often high, such as in the case of Nenthead spoil in relation to 

Cd (which had the highest value of RSD% at 45.77%). However, XRF precision was good for 

some elements, e.g. the best precision of XRF was found for Glendinning spoil for As, having 

RSD% 1.75%. 
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Table 6-5: Precision calculation (RSD% on mean of three replicates) of analytical instrumental used in this study 

Locations Instruments 
Elements 

As Cd Pb Sb Zn 

Glendinning 

XRF 1.75 N/A N/A 33.58 30.16 

ICP-OES 6.75 4.95 0.96 13.56 4.35 

ICP-MS 8.30 2.39 3.12 2.85 5.30 

Wanlockhead 

XRF N/A 18.54 37.73 29.78 2.39 

ICP-OES 4.50 3.98 2.17 6.40 3.96 

ICP-MS 1.25 5.18 10.00 10.27 1.59 

Greendykes Bing 

XRF N/A N/A 9.09 N/A 15.77 

ICP-OES 3.81 3.37 0.54 6.90 3.87 

ICP-MS 8.19 15.10 5.68 5.27 4.04 

Nenthead 

XRF N/A 45.77 22.93 N/A 1.06 

ICP-OES 4.27 2.92 4.82 4.46 4.95 

ICP-MS 29.90 18.61 11.68 28.13 5.20 

Parys Mountain 

XRF 20.37 N/A 12.66 26.25 29.57 

ICP-OES 3.55 1.27 1.68 5.20 5.01 

ICP-MS 27.16 2.50 4.36 14.25 1.61 

* N/A: not available 

6.4 Discussion 

The ICP methods (OES and MS) were very efficient at detecting and quantifying elements in 

mine spoil digests. The ability to detect very low concentrations and a wide range of elements 

means that these techniques have a clear advantage in this type of experiment. However, 

preparation for these methods, which includes multiple steps and the use of strong acidic 

solutions, is a factor that should be considered when selecting the most appropriate method. 

The extra steps and the use of reagents results in the ICP techniques being more expensive and 

more complicated than XRF methods (Table 6.6). 

Comparisons between ICP-OES, ICP-MS and XRF have been made by many authors. Some 

have declared a preference for XRF because they achieved closely approximated results 

between ICP and XRF, so felt the additional requirements for ICP were not warranted for their 

purposes; for example, Al Maliki et al. (2017) found that XRF and ICP-MS generated close 

results for Pb concentrations in their samples collected from different sites around the Nyrstar 
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smelter in Australia. A study conducted by Sahraoui and Hachicha (2016) on samples collected 

from the Lakhouat mining area in Tunisia showed that applying ICP-OES and XRF techniques 

to determine concentrations of Cd, Pb and Zn did not show significant difference in Pb 

concentration between two techniques (i.e. equivalent concentrations were determined by 

each). The same authors recommend XRF for use on large-scale areas such as mining sites to 

gain preliminary ideas about the elements in the study site (Sahraoui and Hachicha, 2016).  

From a different perspective, many authors have found that XRF, ICP-OES and ICP-MS will 

generate the same results, particularly for heavy metals. Duane et al. (1996) found that applying 

different types of analytical method such as XRF, ICP-AAS and ICP-MS revealed the same 

detected elements, but the concentrations of each depended on the digestion method and sample 

type due to the detection limits of these techniques. Another study was conducted in the Linares 

mining district in Spain, which showed that ICP techniques had superior results compared to 

XRF in that ICP was able to differentiate more elements and detect very low concentrations 

(Arenas et al., 2011). Marcos et al. (2011) compared the ability of XRF and ICP-OES to 

determine As and Pb in dust samples collected from Chihuahua city in Mexico, and they found 

significant differences between the techniques in terms of Pb determination but no significant 

effect in the As results.  

Norman et al. (1989) obtained different results for different analytical techniques, which could 

be due to the different methods of sample preparation.  

Table 6.6: Comparison between ICP-OES/MS and XRF (Batsala et al., 2012 and Young et al., 2016) 

ICP-OES/MS XRF 
Advantages 

1-High efficiency in elements’ determination 
2- The ability to detect very low concentration of 
elements (ppb) 
3- The ability to detect wide range of elements 

1- Sample preparation is easy and safe. 
2- The ability to measure samples in the field. 

 3- Non-destructive analytical technique  

Disadvantage 
1- Very expensive analytical instrument 
2- Sample preparation takes a long time and required 
use of hazardous substances.  

LoD of XRF usually ranges between 10-20 ppm 

 

The calculation of detection limits in the present study showed that ICP-MS had the ability to 

detect very low concentrations of the examined elements. This result is in agreement with that 
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of Batsala et al. (2012), who listed the detection limits of ICP-MS (Table 6.1). It is notable that 

the value of detection limits is very low compared with the calculation values of LoD in this 

study, and this could stem from sample matrices, the circumstances of each test and the types 

of elements for each analysis. However, based on the results of this comparison and evaluation, 

the techniques recommended to examine total element concentrations in mining spoils are both 

ICP techniques (OES and MS) because of their ability to determine most elements with high 

accuracy and precision. 

The novelty of this chapter comes from assessing the benefits and limitations of different 

methods for characterising mine spoils and identifying in which circumstances they are most 

appropriate. 
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Chapter 7: Mine Spoils Remediation Trial 
7.1 Introduction 

Abandoned mine sites require urgent remediation measures to reduce, mitigate or resolve risks 

associated with release and impacts of PTEs. As part of management of these sites, a range of 

technologically driven remediation strategies have been developed and deployed. However, 

these advanced strategies remain unaffordable or unfeasible for a vast number of mining spoil 

impacted sites and so more affordable and less technologically challenging strategies are 

required to address this global issue. Strategies involving plant stabilisation (phytostabilisation) 

of mine spoil heaps and related wastes have been proposed, including using biochar as the 

immobilisation factor (Kumpiene et al. 2012; Mench et al. 2010; Fellet et al. 2014; Alhar et al., 

2021). After providing some background on the topic for context, this chapter aims to 

investigate the efficacy of selected typical, ‘off the shelf’ biochars for sorbing lead (Pb) and 

zinc (Zn) from solution and then to determine whether such biochars could be used as a low 

cost remediation tool to facilitate phytostabilisation of, and decrease PTE mobility within, the 

currently unvegetated exposed mine spoils at the locations examined in this study. The 

remediation experiment includes using biochar, ryegrass (Lolium perenne) plants and the study 

of PTEs concentration in plants and porewaters produced during the plant trial. A condensed 

version of this chapter has been published as a research paper (Alhar et al., 2021) 

7.1.1 Mine and contaminated site remediation  

Mine site remediation is a very challenging process that requires the application of knowledge 

across the fields of hydrology, chemistry, geology, geochemistry, biology, microbiology and 

mining, and environmental and civic engineering. All of these science disciplines are necessary 

to build effective programs for mine remediation; therefore, it is recognised that 

multidisciplinary groups are required to plan and apply successful remediation strategies for 

large-scale mine restoration (Nordstrom et al., 2015). Bertocchi et al. (2006) suggest that 

technologies that are suiable for environmental remediation include in-situ and ex-situ 

techniques such as physical separation, phytoremediation, soil washing and leaching. 

Therefore, these and other options could be considered in remediation efforts.  

One of the most important issues raised by mine waste is AMD, and remediation of this problem 

can be achieved through abiotic methods including the addition of alkaline materials to raise 

the pH and thereby neutralise acids, or the addition of chemical oxidising agents to solutions 
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such as hydrogen peroxide, which will affect many metals by triggering precipitation as 

carbonates or hydroxides (and so remove them from drainage waters). Different neutralising 

factors have been tested such as calcium oxide (lime), calcium carbonate, slaked lime, sodium 

hydroxide, magnesium oxide and hydroxide and sodium carbonate. However, these agents vary 

in cost and efficiency; for example, sodium hydroxide is very effective but is more expensive 

than lime (nine times as expensive) (Johnson and Hallberg, 2005).  

Another approach to treating AMD is via bioremediation; this process primarily depends on the 

ability of microorganisms to generate alkalinity and immobilise the metals in the drainage 

water. Examples of this approach can be found in anaerobic wetlands and reedbeds established 

to filter and treat mine drainage, which have been found to be capable of precipitating large 

quantities of ferrous ion in AMD (Kalin, 2001). The microorganisms involved produce 

alkalinity through several reactions such as sulfate reduction, iron and manganese reduction, 

denitrification, methanogenesis and ammonification (i.e. producing ammonium from nitrogen-

containing organic compounds) (Johnson and Hallberg, 2002, 2005).  

These mechanisms can be explained by the following equation (Peiffer et al., 1999, cited in 

Johnson and Hallberg, 2002)  

8Fe(OH)3 + H2S         8Fe2+ + 14OH− + SO2
−4 + 6H2O 

This equation shows that OH- will be released into the environment due to microbial activity, 

which will make solutions more alkaline.  

7.1.2 Soil washing 

Soil washing typically refers to ex-situ techniques that involve physical and/or chemical 

procedures to remove contaminants, including metals, from soil. The process often includes the 

sieving of excavated soil (or other solid media) while washing it with water or reagent solutions 

(e.g. chelating agents for metals), which achieves a separation of size fractions, with the smaller 

size fractions and the drainage water typically retaining much of the contaminants (Dermont et 

al., 2008). There are many soil-washing systems employed that vary in the number and order 

of processes.  

The physical separation efficiency depends on the characteristics of the material such as 

particulate shape, moisture content, distribution of particle size, clay content, humic content, 

density difference between components, hydrophobic properties of particle surfaces, 
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heterogeneity of the matrix and magnetic properties (Williford and Bricka, 2000). Physical 

separation alone, i.e. without the addition of chemical reagents, is often insufficient when metal 

contaminants are tightly bound to or are within particles. This is why chemical reagents such 

as surfactants, redox agents, chelating agents, salts and acids/bases are widely used in this 

process, as they can solubilise or otherwise mobilise metals by converting them into other forms 

(Dermont et al., 2008). Certain factors may limit the suitability of chemical extraction, such as 

high concentration of Fe and Ca elements, high buffering capacity, high heterogeneity, high 

clay/silt content, simultaneous contamination of both cationic and anionic heavy metals and 

high humic content.  

Metals present in washing reagents after the washing process can potentially be recovered using 

a wide variety of methods. However, the use of chemical reagents can have certain 

disadvantages such as alterations to the physical, chemical and microbiological properties of 

the washed soils (or other materials), which may make them unsuitable for revegetation. The 

presence of chemical residues in the remaining fine fractions of treated soil or other materials 

may limit disposal options and/or increase disposal costs, while the disposal of liquid wastes 

containing the reagents also presents issues (Dermont et al., 2008). 

7.1.3 Phytoremediation 

Remediation via plant extraction and removal of contaminants, known as phytoremediation, 

has received a great deal of attention recently. This method has the important benefit of low 

cost. Phytoremediation involves the use of plants to decontaminate polluted sites by 

translocating or inactivating contaminants in various plant organs, which can then be harvested 

to remove the contaminants. This process can improve site conditions without any negative 

influence on the structure and biological activity of the substrate (Salt et al., 1995; Ebbs et al., 

1997), in contrast to the soil-washing processes discussed above. Some plants are particularly 

good at accumulating contaminants and so are referred to as hyper-accumulator plants; these 

have the ability to accumulate high concentrations of metals in their above-ground sections, at 

concentrations 100–1000-fold higher than those observed in non-hyperaccumulating species 

(Kumar et al., 1995; Rascio and Navari-Izzo, 2011). Lasat (2002) suggests that hyper-

accumulator plants have some limitations, such as their typically low biomass and slow growth 

rates, which restrict their effectiveness in the remediation of contaminated sites. Other 

researchers (e.g. Baldantoni et al., 2011; Chen et al., 2004; Grčman et al., 2003) argue that 

maize and sunflower plants, which are considered to be high-biomass crops, can be used as 
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alternatives to hyper-accumulator plants because, although the concentrations in their tissues 

are likely to be lower, the overall extraction and removal of contaminants can be greater because 

of their greater biomass.  

The phytoremediation process is also beneficial because of the relationships that are established 

between plant and soil microorganisms (Baker et al., 2000). The most well-known example of 

this relationship is in rhizosphere bacteria; these bacteria depend on plants as a carbon source 

and provide the plant with growth promoters that increase the vegetative growth and reduce the 

effect of heavy metal toxicity (Kloepper et al., 1989; Glick, 1995; Kumar et al., 2008). 

Tian et al. (2009) successfully phytoremediated metal-contaminated soils in their study on the 

accumulation of heavy metals in the common Elaeocarpus tree (Elaeocarpus decipens) and 

panicled goldenrain (Koelreuteria paniculata), which had been planted in an abandoned Mn 

mine in south China, where the concentrations of Cd, Mn, Pb and Zn were reduced from 13.15, 

7,990.21, 401.15 and 93.41 mg/kg to 9.68, 43.15, 17.10 and 41.54 mg/kg, respectively, in 

approximately 4.5 years. 

7.1.4 Immobilisation of contaminants in place  

Immobilisation techniques aim to fix contaminants in place so that they are removed from 

ecological and biological processes and are therefore no longer able to have a toxic effect. They 

are practical methods used to remediate sites contaminated with heavy metals where removal 

is impractical or impossible. The disadvantages of in-situ immobilisation are that the 

contaminants remain and there is therefore a possibility that they will regain mobility (Martin 

and Ruby, 2004). 

A variety of amendments have been used in immobilisation attempts to decrease metal mobility 

and toxicity in soils. The essential role of these amendments is to change the phases of the 

original soil metals via precipitation, complexation processes and sorption (Hashimoto et al., 

2009). The most common amendments include clay, zeolites, cement, phosphates, minerals, 

microbes and organic composts (Finzgar et al., 2006). Studies have mentioned the importance 

of using low-cost industrial residues such as red mud in heavy metal immobilisation in 

contaminated soils (Wuana and Okieimen, 2011). Hua et al. (2017) emphasise the role of red 

mud in lowering PTE availability. Red mud characteristics  such as Fe and Al 

oxide/oxyhydroxide content, especially boehmite, gibbsite, hematite and cancrinite phases, and 

it’s high pH indicate the potential efficiency of red mud for immobilising metals in 
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contaminated soil. Successful remediation via immobilisation was achieved by Bleeker et al. 

(2002), who used three types of immobilisation agent on the Jales mine spoils collected from 

Portugal: a mixture of alumino-silicates that formed a substance called beringite; organic 

matter; and steel shots consisting of 97% iron. Their results showed that the concentration of 

As was reduced from 0.52 to 0.25 mg/kg after 4 years of using organic matter and from 0.52 to 

0.36 mg/kg when beringite was used for the same period. Guo et al. (2006) listed the 

immobilisation agents from organic and inorganic sources, as illustrated in Table 7.1. 
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Table 7.1: Materials for immobilising heavy metals and their sources (Guo et al., 2006) 

a- From organic sources 

 

b- From inorganic sources 
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7.1.5 Biochar 

Biochar is an organic substance (i.e. carbon based) and it is a type of charcoal which is produced 

from the pyrolysis of biomass such as crop and wood wastes at temperatures above 250ºC in 

special containers with low oxygen. Many researchers have discussed the characterisation of 

biochar, such as Ma et al. (2016), who provide information on the components of biochar. The 

main component is C, at around 485 g/kg; the concentration of other components is very low, 

for example, 3.76 and 5.47 g/kg for N and K, respectively (Ma et al., 2016). Suárez-Hernández 

et al. (2017), examining biochar generated from wood from three separate tree species, found 

the main components to be approximately 81–87% C, 9–18% O, 0.1–0.89% Ca and 0.09–1.33% 

K. 

Biochar has been used in soil remediation because of its capacity to raise soil pH, increase soil 

water holding capacity, increase fertility, and immobilise contaminants (Jain et al., 2017; Novak 

et al., 2018). It is considered a potentially important material in the field of agriculture because 

it increases some crop yields, boosts biological activity and increases soil nutrients. In addition, 

it can decrease soil bulk density, which can increase aeration and water conductivity. Finally, 

by storing C in soil, it reduces net greenhouse gas emissions, thereby playing an important 

environmental role (Laghari et al., 2016). 

Novak et al. (2018) used different percentages of Miscanthus biochar (0, 1, 2.5 and 5%) to 

determine its ability to reduce high concentrations of some elements such as Al, Cu and Zn in 

acidic mine spoils collected from Riddle, US. They found that the biochar reduced 

concentrations from (8,059, 408, 339) mg/kg to (46, 26, 62) mg/kg, respectively, for the 

elements mentioned. The pH also changed dramatically from ˂3 to 10. 

7.2 Methods 

7.2.1 Biochar characterisation 

The two biochars used in the study were produced from rice husk and wheat straw feedstocks, 

respectively. Purchase of the biochars was from the UK Biochar Research Centre, Edinburgh, 

UK. Both the wheat straw and the rice husk biochar had been generated by pyrolysis at 550 °C. 

The two particular biochars were selected because they represent examples of typical or mid-

range pyrolysis conditions for biochar production and so they are representative of many 

biochars used. They are also made from readily available agricultural wastes and so are 
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the kinds of materials that might be expected to be used in soil (or spoil) remediation using 

biochar. 

The SEM/EDX scanning of biochar was progressed by adding biochar to a pallet and pressing 

it to a pellet without adding binder. Following the pallet production, the samples were broken 

up, and smaller pieces were mounted to a stainless-steel SEM stub using carbon cement. They 

were subsequently analysed via SEM/EDX, with analytical time 5 minutes per sample. 

The pH of the biochar was measured by adding 0.2 g of wheat or rice biochar to 20 ml deionized 

water, with the mixture then stirred by hand with a spatula for few minutes and then left for 10 

minutes, after that pH-meter (JENWAY 3510) was used to measure the pH. The pH meter was 

calibrated as described in paragraph 5.2.2. The results were 10.06±0.62 and 9.33±0.55 (Mean 

± SE, n= 3) for wheat and rice biochar respectively. 

7.2.2 Biochar zinc and lead sorption capacity 

This procedure started by preparing diluted solution for Zn by weighing 4.169 g from ZnCl2 to 

prepare 1000 ppm Zn+2. For Pb, 1.34 g PbCl2 was dissolved to get 1000 ppm of Pb+2. Both Pb 

and Zn are commonly found in excess and potential toxic concentrations in mining impacted 

areas and so for biochars to be useful in remediating the spoils and soils at such locations it is 

important that the materials are demonstrated to have effective sorption and retention capacities 

for these and other metals. Therefore, Pb and Zn were chosen as important, representative PTEs 

that are relevant for the spoils of the 5 locations investigated in this study. These Pb and Zn 

stock solutions were used to prepare the other solution concentrations used in the sorption test 

which were 0, 10, 50, 100, 200, 400 ppm for each ion. Then, 2 g from rice and wheat biochar 

was weighed into 50 mL centrifuge tubes and 20 ml of solution of was added (i.e. 0, 10, 50, 

100, 200, or 400 ppm of Zn or Pb, with 2 replicates per concentration per metal per biochar 

type). The tubes were shaken on a Stuart rotating shaker at 14 rpm for 2 hours to complete the 

reaction (i.e. establish equilibrium; Ho et al. 2002) between biochar and zinc or lead ions. The 

tubes were then centrifuged to separate solid from liquid; 6000 rpm for 30 minutes. The samples 

were filtered by using 0.45 µm syringe filters and then the filtered samples were acidified to 

preserve them by adding 0.1 ml of high purity concentrated HNO3. Finally, the samples were 

stored in a fridge until ICP-OES or ICP-MS analysis. The preparation of ICP standards to 

construct calibration curves and blanks followed the same procedures described in previous 

chapters (in paragraph 5.2.1). 
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To determine how well the biochars retained sorbed metals, a desorption procedure was 

conducted after completion of the above sorption procedure. For this desorption experiment, 

the residual from rice and wheat biochars still in the tubes from the sorption procedure was used 

and 20 ml of 0.001 M CaCl2 was added to tubes as the desorption solution. The tubes were 

shaken by hand to ensure mixing and then placed on the shaker at 14 rpm for 2 hours. After 

shaking, the tubes were centrifuged for 20 minutes (6000 rpm) and the supernatant solutions 

filtered using 0.45 µm syringe filters. Finally, 0.1 ml of HNO3 was added to each tube to acidify 

them and the tubes were stored in the fridge until ICP-OES analysis. Desorption concentrations 

were mathematically corrected for any residual entrained metals left behind in solution from 

the initial sorption step (i.e. any non-sorbed Pb or Zn remaining in the initial sorption solution 

which could not be 100% removed from around biochar solids prior to desorption); this 

correction was based on the volume (determined by mass) of entrained solution and the 

measured initial sorption equilibrium solution concentrations.  

Once corrected, the percentage of desorption of Pb and Zn was calculated from the following 

equation (OECD, 2000): 

Desorption % =
(C𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑 ∗ V)

(C𝑜𝑜 ∗ V) − (C𝑒𝑒  𝑎𝑎𝑎𝑎𝑎𝑎 ∗ 𝑉𝑉)
× 100 

Where:  

C0: Initial concentration               Ce
des: Final concentration of desorption 

Ce
ads: Final concentration of Adsorption   V: Volume  

 

7.2.3 Plant trial (biochar remediation trial) 

For the plant trial, wheat biochar only was used because wheat planting is more common in the 

UK compared with rice (making it more relevant to the region) and because a comparison 

between the efficiency of both biochars for removing metals from solution revealed them to be 

equally effective (see results of the sorption study below, in paragraph 7.3.1). For the plant trial, 

the mine spoils were subjected to 0% (control), 5% or 10% (w/w) treatment with wheat biochar 

(100 g total mass, except in the case of Greendykes Bing samples for which the total mass was 

70 g to accommodate the lower bulk density). The wheat biochar was thoroughly mixed through 

by hand for several minutes, with each replicate (n = 3) of each treatment having been prepared 
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separately to ensure the correct ratio of biochar to spoil was achieved and maintained in every 

pot. A rhizon soil porewater sampler (Rhizon Flex, Rhizosphere Research Products, The 

Netherlands) was inserted at a 45° angle in selected pots; specifically, in two controls per spoil, 

to establish the baseline, and in one 5% and one 10% biochar treatment per spoil. The solid 

substrate was settled around the rhizon sampler by gentle shaking.  Then, 0.5 g of seeds 

(Ryegrass seeds) Lolium perenne was added to each pot. Ryegrass was used in this experiment 

due to its rapid growth, ease of maintenance and its recognised ability to tolerant high levels of 

heavy metals as can be found in spoils and contaminated soils (Gray and McLaren, 2010).  

The water holding capacity of each spoil was calculated before starting the plant trial by adding 

water to pots until excess water dropped from holes in the bottom of the pot. Once drainage had 

ceased, the drained water was subtracted from the total water originally added so that the water 

holding capacity was determined. The pots were subsequently irrigated and maintained at 60% 

of water holding capacity. The water holding  capacity of Glendinning was 18 ml, Wanlockhead 

11.8 ml, Greendykes Bing 17.6 ml, Nenthead 11.4 ml and Parys Mountain was 15 ml.  

The next step involved adding perlite horticultural grade mix to the spoil to control evaporation. 

The seeds were covered with thin layer from perlite. Seed planting was done on 10/9/2018, and 

on 16/9/2018 the growth of plants could be seen (emergence). The plant pots were kept in a 

growth chamber near a large window for light, Figure 7.1. 

 After 35 days plants were harvested by collecting the aboveground biomass by cutting with 

scissors just above the substrate surface. Plant tissues were put in envelopes and weighed by 

using a sensitive balance (HR150A AND company Ltd.). After weighing and determining the 

fresh mass yield, envelopes were transferred to an oven (Genlab oven) set on a temperature of 

45 ºC for 48 hours. After drying, the envelopes were weighed again to determine dry mass yield, 

and plant materials were removed from envelopes and digested as per the following procedure: 

The dried plant in the envelopes were ground by hand, about 0.1 g of plant tissue (accurately 

weighed) was put in a clean microwave tube, then 10 ml of high purity nitric acid was added to 

each tube. The microwave (MILESTONE flexi wave) was put on a setting based on EPA-305A 

protocol to digest the samples. Finally, the samples were removed from microwave and diluted 

to 40 ml by using deionized water and kept in the fridge pending analysis by ICP-MS (Agilent 

7500ce) using certified standard solutions and blank digests (i.e. no plant material, just acid) 

for instrument calibration. A plant material certified reference material (ryegrass ERM-CD281) 
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was also digested as per the samples as a further quality control measure. The results from 

digested and analysed certified reference materials showed high accuracy of this method in 

terms of the measured values as a percentage of certified values, e.g.: As = 86.3%, Cd = 80.3%, 

Sb = 99.8%, Pb = 80.5% and Zn = 81.8%. The calibration curve standards and blank for ICP-

MS were thus consistent with those prepared in earlier procedures (in paragraph 5.2.4). 

  
(A) (B) 

  
(C) (D) 

Figure 7.1: The stage of plant growth in plant trial 

A- At planting  B- 6 days after planting .    C- 12 days after planting 

D- 20 days after planting 

Since microwave tubes were used many times to complete the digestion process, after each use, 

the tubes were cleaned according to the following method: 

Adding 20 ml of 50% NHO3 to each tube, then all tubes moved to the microwave and the order 

“Clean” was applied (this is a shortened digestion sequence that allows cleaning). The tubes 
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were left to cool and were then removed, and then the acid inside the tubes was poured away 

and they were rinsed by using distilled water then deionized water. The tubes were left 

overnight to dry and would be ready for the next use. 

7.2.4 Porewater extraction and analysis 

Porewater was extracted from the pots using Rhizon samplers (type Rhizon Flex with pore size 

0.15 µm, porous 5 cm) that had been installed prior to plant growth. The Rhizon samplers were 

distributed between the 20 experiment units as follows: in two control treatments (0% biochar) 

of each spoil,  one in each 5% biochar treatment of each spoil and, finally, one in  each 10% 

biochar treatment on each spoil. The rhizon sampler in 10% of Glendinning spoil was missing 

due to experimental error (Figure 7.2). The Rhizon samplers were positioned at an approximate 

45° angle. A syringe at the end of the Rhizon samplers established suction for sampling the 

pore water, which was conducted three times in total with a period of 10 days between every 

extraction. The extracted porewater was collected in tubes. 100 µl of nitric acid was added to 

each tube which were then kept in the fridge prior to analysis by ICP-MS technique. 

  
 

Figure 7.2: Rhizon sampler distribution in the experimental units 

7.2.5 Total PTE budgets in plant biomass and biochar 

The bioaccumulation factor of ryegrass plants was calculated from the following equation 

(Massa et al., 2010; Anning et al., 2013 cited in Elbehiry et al., 2020):  

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =
𝑃𝑃𝑃𝑃𝑃𝑃 𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑃𝑃𝑃𝑃𝑃𝑃 𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 × 100 
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The removal efficiency of biochar was calculated by the following equation (Anning and Akoto 

2018; Bilardi et al., 2018 cited in Elbehiry et al., 2020): 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)

=
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.  𝑃𝑃𝑃𝑃𝑃𝑃 𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.𝑃𝑃𝑃𝑃𝑃𝑃 𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑃𝑃𝑃𝑃𝑃𝑃 𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 × 100 

Initial concentration of PTE = Total element concentrations 

Final concentration = Element concentration in porewater (mg/kg) 

7.2.6 Statistical Analysis 

Differences between and amongst treatments and controls were assessed for statistical 

significance through ANOVA and t-test assessments, following checks that all underlying 

assumptions (e.g. normal distributions) were met. Relationships between measured parameters 

and treatments were similarly assessed using linear regression. The software packages 

Minitab19 and SPSS 24 were used for these assessments on 0.05 probability level.    

 

7.3 Results 

7.3.1 Biochar characterisation 

The SEM/EDX analysis of rice and wheat biochar are illustrated in Figure 7.3 and Table 7.2. 

The most common elements in both biochars were carbon, oxygen and silicon, accounting for 

98.85 and 96.48% of rice and wheat biochar respectively. 
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(C) (D) 

 

Figure 7.3: The SEM images of biochar (A- rice biochar, C- wheat biochar) and EDX of each examined section 

(B- rice biochar D- wheat biochar) at 200X magnifying power in Glendinning area. EDX plots are count per 

second/electron volt (cps/eV). 

Table 7.2: Mean (n =1 ± SE) of elements weight percentage examined by EDX technique in biochar 

Elements 
Elements weight percentage (%) 

Rice biochar Wheat Biochar 

Carbon 69.19±8.3 73.22±7.7 

Oxygen 20.42±2.6 17.86±2.0 

Silicon 9.24±0.5 5.40±0.2 

Potassium 0.77±0.10 2.22±0.1 

Aluminium 0.13±0.03 0.04±0.01 

Magnesium 0.10±0.03 0.12±0.03 

Chlorine 0.09±0.02 Nd 

Phosphorus 0.07±0.02 0.13±0.03 

Calcium Nd* 0.87±0.1 

Sulfur Nd 0.04±0.01 

* Nd: not detected 
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7.3.2 Sorption/retention capacity of metals Pb and Zn by biochar  

The efficiency of rice and wheat biochar sorption of Pb and Zn were illustrated in Figure 7.4 

and Figure 7.5. Results showed that both wheat and rice biochar consistently sorbed effectively 

all of the metals in the test solutions. For example, the amounts adsorbed from the maximum 

solution concentration tested (400 mg/L) were 3994.02±956.2 and 3994.50±955.36 mg/kg of 

Pb for rice and wheat biochar respectively; i.e. both of them were equal in being highly effective 

sorbing agents for Pb. An almost identical set of results were obtained for Zn sorption (Figure 

7.5).       

 

Figure 7.4: Amounts of Pb adsorbed by rice and wheat biochar during the sorption test (error bar above each 

column indicates standard error, n = 2) 
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Figure 7.5: Amounts of Zn adsorbed by rice and wheat biochar during the sorption test (error bar above each 

column indicates standard error, n= 2) 

Very small percentages of the sorbed metals were desorbed from the biochars during the 24 h 

desorption procedure (Table 7.3), with many of the treatments with an initial solution 

concentration of 100 mg/L or higher desorbing <1% of the sorbed metal mass. Comparing the 

wheat and rice biochar desorption results, independent t-tests were performed and these 

indicated that there was not a significant difference in sorption between these types of biochar 

and therefore using any types of tested biochar will give the same result for next experiments.    
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Table 7.3: Lead and zinc percentages (n = 2±standard error) desorbed from initial concentration after equilibrium 

at 24 hours 

Initial concentration 

(mg/L) 

Pb (%) Zn (%) 

Rice Wheat Rice Wheat 

10 5.61±0.13 6.88±0.24 0.34±0.03 1.37±0.01 

50 2.19±0.14 3.37±0.11 0.22±0.09 0.73±0.02 

100 1.26±0.12 1.47±0.05 0.13±0.01 0.67±0.03 

200 0.73±0.03 0.62±0.08 0.24±0.02 0.43±0.04 

400 0.69±0.10 0.59±0.04 0.14±0.01 0.39±0.07 

 

7.3.3 Ryegrass growth yield 

Plant growth (yield) in the treated and untreated spoils is presented in Figures 7.6 and 7.7. 

Results indicated that adding biochar affected significantly the fresh weight of plants. Adding 

biochar by 10% to spoils showed substantial yield increases in every spoil, with the largest 

increase observed in Wanlockhead spoil, which was 1.65 g/pot. In some spoils, results showed 

that there are no significant differences between the 5% and 10% biochar treatments, for 

example, plants grown in Wanlockhead and Nenthead spoils showed very similar results when 

biochar was added at 5% or 10%; the weight of plant shoots in Wanlockhead at 10% biochar 

was 1.65 g while in 5% biochar it was 1.61 g, and similarlythe difference between plant shoot 

weight at 10% and 5% biochar was only 0.01 g in Nenthead spoil. 
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Figure 7.6: Fresh weight of plant treated with different concentration (0, 5, and 10%) of wheat biochar 

* : significant differences on 0.05 probability level     

  

 

Figure 7.7: Healthy ryegrass growth in biochar treated mine spoils 
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7.3.4 Element concentrations in plant materials 

Figure 7.8 displays the concentrations of Al (mg/kg) in plant tissues grown in the spoils with 

0%, 5% and 10% additions of wheat biochar. It is clear that biochar addition decreased Al 

concentrations in plant tissues grown in all spoils.  

 
Figure 7.8: Mean of aluminium concentration (mg/kg) in plant shoot cultivated in five mine spoils treated with 

different concentration of wheat biochar (0, 5, 10%). Error bars indicate standard error of experimental unit  

(n= 3). 

*: significant differences on 0.05 probability level among all experimental units (untreated control vs treatments 
for each spoil). 

  

Figure 7.9 compares the concentration of As (mg/kg) in the plant tissues across the various 

spoils and treatments. The As concentration was generally low across all studied areas, except 

plants grown in Glendenning spoil, however, the biochar addition at 5% and 10% rates both 

reduced the As concentration by around a half in plants grown in treated Glendinning spoil.    
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Figure 7.9: Mean of arsenic concentration (mg/kg) in plant shoot cultivated in five mine spoils treated with 

different concentration of biochar (0, 5, 10%). Error bars indicate standard error of experimental unit (n= 3). 

* : significant differences on 0.05 probability level among all experimental units (untreated control vs treatments 
for each spoil). 

 

Results in Figure 7.10 illustrate the concentration of boron in ryegrass plants. For each spoil, 

the largest B concentrations appeared in the control treatment (0% biochar), and these 

concentrations ranged between 8.85 mg/kg in Greendykes Bing spoil to 5.74 mg/kg in 

Glendinning spoil. On the other hand, using biochar with 10% concentration showed dramatic 

reduction of B concentration that was at lowest level in Glendinning spoil at 3.50 mg/kg. 

Generally, the concentration of B was directly affected by the level of biochar which was used 

in this experiment.  
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Figure 7.10: Mean of boron concentration (mg/kg) in plant shoot cultivated in five mine spoils treated with 

different concentration of biochar (0, 5, 10%). Error bars indicate standard error of experimental unit (n= 3). 

* : significant differences on 0.05 probability level among all experimental units (untreated control vs treatments 
for each spoil). 

 

Figure 7.11 presents determinations of Ba concentration in plants grown in the five mine spoils 

treated with biochar. Results showed that the greatest concentration of Ba was in Greendykes 

Bing and Nenthead plants in control treatment (0% biochar) which recorded 62.52±22.87, 

55.78±18.98 mg/kg respectively. However, using biochar at 10% concentration decreased the 

Ba concentration in all spoils. 
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Figure 7.11: Mean of barium concentration (mg/kg) in plant shoot cultivated in five mine spoils treated with 

different concentration of biochar (0, 5, 10%). Error bars indicate standard error of experimental unit (n= 3). 

* : significant differences on 0.05 probability level among all experimental units (untreated control vs treatments 
for each spoil). 

 

The results in Figure 7.12 demonstrate the effect of different levels of added biochar in five 

mine spoils on Bi concentration (mg/kg) in ryegrass plants. The Bi concentration was low 

except in the control plants in Wanlockhead and Nenthead, which were 1.91 and 1.29 mg/kg 

respectively. The concentrations were greatly reduced by both levels of biochar addition for 

Wanlockhead and Nenthead spoils. 
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Figure 7.12: Mean of bismuth concentration (mg/kg) in plant shoot cultivated in five mine spoils treated with 

different concentration of biochar (0, 5, 10%). Error bars indicate standard error of experimental unit (n= 3). 

* : significant differences on 0.05 probability level among all experimental units (untreated control vs treatments 
for each spoil). 

 

Figure 7.13 presents the results of calcium concentration in ryegrass plants grown in five mine 

spoils treated with three levels of biochar (0, 5, 10%). The results showed that 0% biochar 

treatment recorded the largest concentrations of Ca in most spoils, with the largest concentration 

recorded in spoils of Nenthead, Greendykes Bing and Wanlockhead 11087, 9115 and 8733 

mg/kg respectively. The 10% biochar treatment decreased Ca concentrations in plants in all 

spoils. 
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Figure 7.13: Mean of calcium concentration (mg/kg) in plant shoot cultivated in five mine spoils treated with 

different concentration of biochar (0, 5, 10%). Error bars indicate standard error of experimental unit (n= 3). 

* : significant differences on 0.05 probability level among all experimental units 

 

Plant Cd concentrations are shown in Figure 7.14. In general, the concentrations of Cd were 

relatively low in plants grown in Greendykes Bing, Glendinning and Parys Mountain spoils. 

Meanwhile, in the plants grown in Wanlockhead and Nenthead spoils (which are from Pb/Zn 

mines) there were higher levels of 8.30 and 4.38 mg/kg in the control treatment respectively. 

The biochar additions considerably reduced the Cd concentrations in all studied mine spoils. 
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Figure 7.14: Mean of cadmium concentration (mg/kg) in plant shoot cultivated in five mine spoils treated with 

different concentration of biochar (0, 5, 10%). Error bars indicate standard error of experimental unit (n= 3). 

* : significant differences on 0.05 probability level among all experimental units 

 

The amount of Co in plant tissues was low, with largest values observed in the untreated 

Wanlockhead and Nenthead spoil plants (Figure 7.15). Biochar addition reduced the Co 

concentrations in plants grown in these spoils, with the 5% and 10% treatments achieving equal 

reductions for Nenthead but for Wanlockhead the 10% treatment was more effective. An almost 

identical set of results was observed for Cr (Figure 7.16), except that Cr concentrations in 5% 

and 10% treatments were equally as effective in both spoils.  
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Figure 7.15: Mean of cobalt concentration (mg/kg) in plant shoot cultivated in five mine spoils treated with 

different concentration of biochar (0, 5, 10%). Error bars indicate standard error of experimental unit (n= 3). 

 

Figure 7.16: Mean of chromium concentration (mg/kg) in plant shoot cultivated in five mine spoils treated with 

different concentration of biochar (0, 5, 10%). Error bars indicate standard error of experimental unit (n= 3). 

* : significant differences on 0.05 probability level among all experimental units 
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The concentration of Cu in plant tissues is shown in Figure 7.17. The largest concentrations 

were observed in plants grown on Parys Mountain and Wanlockhead spoils. The results showed 

a high content of Cu in examined plants. Generally, adding biochar to spoil decreased the 

concentration of Cu, but the reduction is not statistically significant. To illustrate, in 

Wanlockhead and Greendykes Bing spoils, the mean reductions were 1.01 and 1.16 mg/kg 

respectively, compared with the reduction of 2.73 mg/kg in Parys Mountain. Despite the lower 

values, the differences were not large enough to be statistically significant. 

 

Figure 7.17: Mean of copper concentration (mg/kg) in plant shoot cultivated in five mine spoils treated with 

different concentration of biochar (0, 5, 10%). Error bars indicate standard error of experimental unit (n= 3). 

* : significant differences on 0.05 probability level among all experimental units 

 

Figure 7.18 shows the results of Fe concentration in ryegrass plants grown in the five mine 

spoils. The Fe concentrations were high across all samples (≥80 mg/kg), even in treatment 10% 

biochar. However, the effect of biochar was clearly noted by reducing the concentration of Fe 

with each addition. The largest concentration of this element was in the treatment 0% biochar 

in plants grown on Glendinning and Nenthead spoils, the concentration of Fe in these treatments 

were 126.20 and 125.30 mg/kg respectively. Meanwhile, the lowest concentration of Fe was 
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recorded at ryegrass plants grown in Glendinning spoil treated with 10% biochar which was 

81.44 mg/kg.  

 
Figure 7.18: Mean of iron concentration (mg/kg) in plant shoot cultivated in five mine spoils treated with 

different concentration of biochar (0, 5, 10%). Error bars indicate standard error of experimental unit (n= 3). 

* : significant differences on 0.05 probability level among all experimental units 

 

The K concentrations in the ryegrass plants grown in the five mine spoils are shown in Figure 

7.19. Generally, the concentration of K was extremely high compared with other elements. The 

three spoils that showed the largest concentrations were Wanlockhead, Parys Mountain and 

Nenthead, all with ~7000 mg/kg in the untreated controls. The 5% addition rate of biochar 

reduced the K concentrations very slightly (except Glendinning spoil) compared with adding 

biochar at 10% which did show substantial reductions. For example, the 10% reduced plant K 

from ~7000 mg/kg to <2000 mg/kg in Parys Mountain and from ~7000 mg K/kg to <4000 

mg/kg in Wanlockhead spoils. 
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Figure 7.19: Mean of potassium concentration (mg/kg) in plant shoot cultivated in five mine spoils treated with 

different concentration of biochar (0, 5, 10%). Error bars indicate standard error of experimental unit (n= 3). 

* : significant differences on 0.05 probability level among all experimental units 

 

Figure 7.20 shows the Li concentrations determined in the plant samples grown in mine spoils. 

Greendykes Bing and Wanlockhead spoils produced plants with the significant observed levels 

of Li (~3 mg/kg). The Li concentration was decreased when 5% of biochar was used in 

Wanlockhead. The lowest concentrations of Li occured when 10% of biochar was added to 

Glendinning and Parys Mountain spoils, which were 0.43 and 0.47 mg/kg respectively. 
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Figure 7.20: Mean of lithium concentration (mg/kg) in plant shoot cultivated in five mine spoils treated with 

different concentration of biochar (0, 5, 10%). Error bars indicate standard error of experimental unit (n= 3). 

* : significant differences on 0.05 probability level among all experimental units 

 

The results in Figure 7.21 illustrate the effects of adding biochar on Mg concentration in 

ryegrass plants grown in the five mine spoils. The Mg concentrations were high across all 

samples compared with most other elements. The largest concentration of this element was 

noticed in Nenthead and Glendinning spoils, which were 3511.35±768.99 and 3437.61±894.93 

mg/kg, respectively. Meanwhile, the lowest concentration was 1656.35±781.69 mg/kg which 

was recorded in Glendinning spoil treated with 10% biochar. Another noticeable result is the 

concentration of Mg in treatment 10% biochar adding to Greendykes Bing spoil 

(2540.10±783.09 mg/kg) which was higher than Mg concentration in the treatment 5% biochar 

in the same spoil (2245.66±904.78 mg/kg).  
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Figure 7.21: Mean of magnesium concentration (mg/kg) in plant shoot cultivated in five mine spoils treated with 

different concentration of biochar (0, 5, 10%). Error bars indicate standard error of experimental unit (n= 3). 

* : significant differences on 0.05 probability level among all experimental units 

 

Figure 7.22 shows the Mn concentrations in plants grown on the spoils. The largest 

concentrations of Mn were generally recorded in treatments with 0% biochar, particularly 

Wanlockhead spoil which had concentrations of 251.78±87.23 mg/kg. The addition of biochar 

to Wanlockhead spoil at both 5% and 10% decreased the plant Mn concentrations. Biochar 

addition also reduced Mn concentrations in plants grown in other spoils, Glendinning spoil 

showed the lowest concentration of this element compared with other spoils. 
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Figure 7.22: Mean of manganese concentration (mg/kg) in plant shoot cultivated in five mines spoils treated with 

different concentration of biochar (0, 5, 10%). Error bars indicate standard error of experimental unit. 

* : significant differences on 0.05 probability level among all experimental units 

 

The effect of adding three levels of biochar (0, 5 and 10%) on Na concentrations in ryegrass 

plants grown in the five mine spoils is illustrated in Figure 7.23. Results showed that adding 

biochar had a remarkable effect on plant content of Na. This can especially be seen in 

Greendykes Bing, which had 3113.50±481.92 mg/kg in the untreated control compared with 

1535.39±878.98 mg/kg in the 10% biochar treatment. The same level of reduction was observed 

for Glendinning, which had in 0% biochar controls 2474.23±698.98 mg Na/kg compared with 

553.11±134.87 mg/kg after 10% biochar addition.  
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Figure 7.23: Mean of sodium concentration (mg/kg) in plant shoot cultivated in five mine spoils treated with 

different concentration of biochar (0, 5, 10%). Error bars indicate standard error of experimental unit (n= 3). 

* : significant differences on 0.05 probability level among all experimental units 

 

Figure 7.24 shows the results for ryegrass plant content of Ni. In general, the concentration of 

Ni did not exceed 10 mg/kg. The largest concentration of Ni was recorded in plant grown in 

Wanlockhead spoil without adding any amount of biochar (9.47 mg/kg), compared with the 

lowest Ni concentration which was 4.67 mg/kg in plants grown in Parys Mountain spoils treated 

with 10% biochar. 
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Figure 7.24: Mean of nickel concentration (mg/kg) in plant shoot cultivated in five mine spoils treated with 

different concentration of biochar (0, 5, 10%). Error bars indicate standard error of experimental unit (n= 3). 

* : significant differences on 0.05 probability level among all experimental units 

 

Figure 7.25 illustrates the results of Pb content in ryegrass plants grown in the five mine spoils. 

Results showed that Pb concentration was low in Glendinning and Greendykes Bing spoils 

which was < 2.50 mg/kg. Meanwhile, Wanlockhead and Nenthead spoils showed the largest 

concentration of this element particularly in treatment 0% biochar which were 23.44±9.34 and 

25.43±7.49 mg/kg respectively, followed by treatment 5% biochar in Wanlockhead spoil which 

was 20.76±8.20 mg/kg. The lowest concentration of this element was 0.70±0.14 mg/kg which 

was recorded in the plants that grown in Glendinning spoils treated with 10% biochar.  
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Figure 7.25: Mean of lead concentration (mg/kg) in plant shoot cultivated in five mines spoils treated with 

different concentration of biochar (0, 5, 10%). Error bars indicate standard error of experimental unit (n= 3). 

* : significant differences on 0.05 probability level among all experimental units 

 

The results in Figure 7.26 represent the concentration of Sb in ryegrass plants. Basically, the 

plants grown in Greendykes Bing, Nenthead and Parys Mountain spoils showed barely 

detectable levels of Sb that did not exceed 0.320 mg/kg. However, the concentration of Sb in 

ryegrass plants grown in Glendinning spoils (11.543±2.45 mg/kg) was high compared with all 

other spoils, which was expected considering that Glendinning was an Sb mine. The Sb levels 

in the Glendinning plants decrease when biochar was added by 5% and 10%.  
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Figure 7.26: Mean of antimony concentration (mg/kg) in plant shoot cultivated in five mine spoils treated with 

different concentration of biochar (0, 5, 10%). Error bars indicate standard error of experimental unit (n= 3). 

* : significant differences on 0.05 probability level among all experimental units 

 

The Zn concentrations in plants grown on the untreated and treated spoils are shown in Figure 

7.27. The results showed that Nenthead and Wanlockhead had the largest concentrations of this 

element (368.65±87.98 and 297.25±71.34 mg/kg, respectively) compared with other spoils, 

which is logical considering that these spoils came from Pb/Zn mines. Biochar addition caused 

considerable reduction in Zn concentrations in these two spoils, however, a slight effect of using 

biochar was shown in the other spoils.  
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Figure 7.27: Mean of zinc concentration (mg/kg) in plant shoot cultivated in five mine spoils treated with 

different concentration of biochar (0, 5, 10%). Error bars indicate standard error of experimental unit (n= 3). 

* : significant differences on 0.05 probability level among all experimental units 

 

7.3.5 Porewater  

Table 7.4 provides the concentrations of elements in the porewaters of Glendinning spoil 

obtained from Rhizon samplers and collected three times (10, 20, 30 days after planting, µg/L). 

Major elements of concern regarding potential leaching to the environment, i.e. Al, As, Cd, Co, 

Cu, Fe, K, Mn, Ni, Sb and Zn, were all decreased in mobility by the biochar (5% w/w) treatment. 

Importantly for Glendinning spoils, by 20 days and thereafter the concentration of mobile Sb 

had decreased approximately by half. Also, at all time periods, the concentration of mobile As 

was reduced by ≥ 80%. The results of 10% biochar treatment for Glendinning were not available 

due to an experimental error that resulted in the loss of the samples.  
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Table 7.4: Elements concentration (µg/L) (mean ± SE) of porewater extracted by using rhizon samplers after 10, 

20, 30 days from Glendenning spoil treated with 0 and 5% of wheat biochar (n = 2 for 0% and n = 1 for 5%) 

Elements 
Treatments 

Extraction after 10 days Extraction after 20 days Extraction after 30 days 
0% 5%* 0% 5%* 0% 5%* 

Al 8.95±3.41 1.99 10.16±5.39 3.92 2.82±1.92 2.53 
Cd 0.54±0.06 0.40 0.43±0.01 0.27 0.32±0.03 0.21 
Co 13.15±3.43 7.08 7.33±1.54 1.91 2.17±0.98 1.34 
Cr 0.13±0.04 0.23 0.14±0.03 0.42 0.38±0.02 0.04 
Cu 15.99±1.05 5.14 10.19±0.45 3.88 6.73±0.24 3.62 
Fe 180.82±125.8 66.22 126.47±64.9 3.14 24.52±6.1 3.70 
K 388900±212 2952 368800±1567 1649 311400±3234 1583 

Mg 48040±1654 44580 45975±1765 39940 39295±1123 31050 
Mn 264.15±3.3 160.40 166.85±17.6 30.12 72.60±7.8 23.66 
Ni 48.34±2.43 30.90 36.69±1.75 15.30 27.09±1.2 13.85 
Pb 0.38±0.18 0.57 0.25±0.05 0.22 0.09±0.6 0.12 
Zn 91.37±4.6 31.20 88.64±8.8 12.50 70.59±5.9 26.67 
As 26660±2080 5351 29940±11010 4125 32540±8890 4490 
Sb 535.10±16.1 509.30 942.00±89 522.25 1095.0±4 611.85 

* single replicate only 

Wanlockhead spoil porewaters are shown in Table 7.5. Al showed decreases in mobility but 

only at 10% biochar application rate, whereas Cd, Cr and Mn showed dramatic reductions at 

both 5% and 10% treatments across all sampling periods. Mg, on each sampling occasion, was 

reduced in mobility by ~40% or more by 5% biochar addition and by ~90% by 10% biochar 

addition. The mobility of Ni was substantially reduced to a very similar extent by both treatment 

rates. The treatments reduced the mobility of Pb but not to the extent anticipated (e.g. <40% 

reduction achieved; 150 µg/L in the control at 10 days compared with 141 µg/L and 94 µg/L 

for the 5% and 10% treatments respectively). Contrastingly, biochar additions at both rates 

greatly reduced the mobility of As and Zn on all sampling occasions, i.e. by ≥ 95%.  
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Table 7.5: Elements concentration (µg/L) (mean ± SE) of porewater extracted by using rhizon samplers after 10, 

20, 30 days from planting for Wanlockhead spoil treated with 0, 5, 10% of wheat biochar (n = 2 for 0% and n = 

1 for 5 and 10%) 

Elem
ents 

 
Treatments 

 
Extraction after 10 days Extraction after 20 days Extraction after 30 days 
0% 5%* 10%* 0% 5%* 10%* 0% 5%* 10%* 

Al 18.67 
±0.11 14.32 1.67 19.03 

±2.25 19.82 0.12 9.36±2.25 9.36 6.18 

Cd 166.4 
±29.3 7.75 1.31 201.1 

±11.9 8.02 0.92 175.1 
±11.0 9.01 0.90 

Co 30.17 
±9.01 0.82 0.42 20.78 

±5.98 0.70 0.44 16.57 
±1.73 0.67 0.50 

Cr 0.45±0.05 0.30 0.27 0.25±0.07 0.15 b/d b/d b/d b/d 

Cu 20.39 
±3.13 13.73 15.78 15.56 

±0.70 13.58 7.80 12.76 
±0.90 9.56 5.47 

Fe 9.45 
±.1.08 2.92 1.18 1.57±0.22 1.23 0.51 4.65±2.10 2.07 b/d 

K 1237000 
±32561 

58430
0 7421.5 1150000 

±16592 627600 587 946400 
±20692 581300 593.40 

Mg 21050.0 
±2237 11090 2896.0 18360.0 

±3214 11030 2067 15455.0 
±1198 9550.0 1470.0 

Mn 2298±981 36.57 7.21 1697±690 26.00 2.91 1244 
±696.2 12.38 3.06 

Ni 23.74±3.0 5.60 5.43 21.31 
±3.67 3.27 3.16 14.44 

±2.79 2.25 2.29 

Pb 150.5 
±20.5 141.20 94.09 123.6 

±13.25 117.10 93.23 140.9 
±10.2 123.30 111.25 

Zn 11566 
±2703 143.20 51.86 10947 

±2403 126.60 25.51 7199 
±1528 148.70 34.86 

As 268.9 
±31.0 15.19 7.04 304.0 

±202.0 13.80 4.43 305.3 
±101.5 13.66 5.28 

Sb 17.53 
±1.22 4.09 2.48 22.78 

±2.01 5.14 1.86 24.89 
±0.01 6.39 1.77 

* single replicate only 

  Greendykes Bing porewater concentrations are presented in Table 7.6. Generally, element 

concentrations were modest in Greendykes spoil porewaters compared with other spoils and so 

the biochar treatments created more modest changes in this spoil. The mobile Al was decreased, 

e.g. from 30 µg/L to 14.5 µg/L in the 10% treatment after 10 days. A more substantial decrease 

was noted for As, however, which fell by ~50% in the 5% treatments and by >90% in the 10% 

treatments (e.g. from 353 µg/L in the control at 30 days to 185 µg/L and 28 µg/L in the 5% and 

10% biochar treatments respectively).  
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Table 7.6: Elements concentration (µg/L) (mean ± SE) of porewater extracted by using rhizon samplers after 10, 

20, 30 days from planting for Greendykes Bing spoil treated with 0, 5, 10% of wheat biochar (n = 2 for 0% and n 

= 1 for 5 and 10%) 

Elem
ents 

 
Treatments 

 
Extraction after 10 days Extraction after 20 days Extraction after 30 days 

0% 5%* 10%* 0% 5%* 10%* 0% 5%* 10%* 
Al 30.66±0.70 21.73 14.54 30.79±0.1 14.08 2.47 16.57±2.10 15.50 6.52 
Cd 0.19±0.01 0.16 0.16 0.28±0.02 0.27 0.17 0.22±0.02 0.16 0.16 
Co 0.24±0.02 0.16 0.20 0.19±0.01 0.14 0.13 0.17±0.02 0.12 0.11 
Cr 2.31±0.76 1.86 0.98 2.20±0.56 2.00 1.27 2.57±0.51 2.21 1.08 
Cu 2.61±0.10 2.00 1.92 1.56±0.09 2.02 1.29 1.16±0.2 0.97 0.53 
Fe 1.78±1.49 1.70 1.66 7.52±0.91 1.25 0.94 0.57±0.3 0.47 0.31 

K 307900 
±112334 170100 608.95 296900 

±22131 148600 530.10 310900 
±14363 151800 602.40 

Mg 5104±124 4979 2882 4153±945 3760 2558 3418±221 3363 2375 
Mn 1.24±0.09 0.19 0.13 0.21±0.10 0.19 0.02 0.03±0.01 0.01 b/d 
Ni 2.14±0.84 1.94 1.39 1.56±0.49 1.35 1.16 1.15±0.41 1.03 0.81 
Pb 0.10±0.01 0.08 0.01 0.15±0.01 0.08 0.02 0.03±0.01 b/d 0.00 
Zn 27.98±3.74 22.87 22.44 31.22±2.8 29.79 10.41 40.83±13.5 24.14 17.59 
As 331.9±10.2 160.00 25.74 346.0±89 167.80 25.66 353.3±122 185.30 27.71 
Sb 0.82±0.21 0.70 0.59 0.80±0.09 0.74 0.53 0.77±0.12 0.68 0.54 

* single replicate only 

 

Nenthead spoil porewater results are shown in Table 7.7. The mobility of Cd was reduced more 

than 10 folds following both rates of biochar application (e.g. 32 µg/L in the control, 1.7 µg/L 

in the 5% treatment and 0.9 µg/L in the 10% treatment after 10 days). Mobility of Al and Cu 

was also reduced but to a lesser degree while Mg mobility was reduced greatly, by ~60% in the 

5% treatment and by >80% in the 10% treatment. For Pb, reductions in mobility were clear but 

were only up to ~40% in the 10% treatments and even more modest reductions in the 5% 

biochar treatment. Contrastingly, As and Zn mobility was reduced by >90% at each sampling 

time by both biochar treatment rates. 
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Table 7.7: elements concentration (µg/L) (n = 2 for 0% and n = 1 for 5 and 10%) (mean ± SE) of porewater 

extracted by using rhizon samplers after 10, 20, 30 days from planting for Nenthead spoil treated with 0, 5, 10% 

of wheat biochar

 Elem
ents 

 
Treatments 

 
Extraction after 10 days Extraction after 20 days Extraction after 30 days 

0% 5%* 10%* 0% 5%* 10%* 0% 5%* 10%* 
Al 12.06±5.1 7.26 4.58 7.07±3.87 1.95 b/d 6.75±0.42 4.59 1.49 

Cd 32.02 
±0.65 1.67 0.88 26.80 

±1.05 1.53 0.82 24.67 
±0.53 1.50 0.85 

Co 3.81±0.99 0.21 0.32 0.96±0.09 0.35 0.21 0.68±0.07 0.21 0.38 
Cr 0.68±0.07 b/d b/d 0.42±0.03 b/d b/d 0.11±0.06 b/d b/d 

Cu 43.21±1.0 11.88 8.82 38.23 
±2.02 9.37 3.30 34.86 

±0.99 7.82 2.31 

Fe 7.52±1.52 7.35 5.40 9.84±1.08 4.84 0.09 18.23 
±1.15 5.50 0.04 

K 1339000 
±32410 582100 291.20 1173000 

±20315 482500 267.60 952100 
±54121 453400 323.97 

Mg 11783.3 
±12045 5184.0 2353.0 12493.3 

±2123 4372.0 1985.00 11726.6 
±9812 4172.0 1617.0 

Mn 398.2±9.8 6.04 2.77 59.58 
±2.13 4.45 2.53 35.50±5.4 4.01 2.55 

Ni 12.70 
±0.13 7.83 3.87 9.82±1.12 6.83 2.79 7.86±0.35 4.99 2.00 

Pb 122.3 
±13.9 101.27 74.76 100.9±7.0 82.73 68.78 108.7 

±11.40 73.05 65.82 

Zn 6328±292 158.70 97.14 4498±399 136.40 86.13 3572±171 130.50 83.74 

As 531.1 
±10.0 32.06 5.36 533.0 

±22.0 30.29 4.83 492.3 
±21.2 29.65 4.32 

Sb 18.99±1.9 6.22 1.54 20.08 
±1.98 6.26 1.29 21.00±1.0 6.58 1.27 

* single replicate only 

 

Table 7.8 presents the results from the Parys Mountain spoil material porewater analysis. The 

10% biochar addition rate treatment reduced the mobility of Al by >98% at each sampling time, 

while from 20 days onward the 5% treatment also reduced the Al mobility substantially (i.e. by 

almost 90%). The Cd concentrations were low in controls (i.e. ~10-12 µg/L) and were further 

reduced by the biochar treatments (i.e. to <5 µg/L in the 5% treatments and <0.5 µg/L in the 

10% biochar treatments). In the case of Cu, the main element targeted by mining at Parys 

Mountain, the 5% biochar treatments generally reduced mobility by a factor of 10 or more while 

the 10% biochar treatments reduced mobility by more than a factor of 100 (i.e. 727 µg/L in the 

control and 35.9 µg/L and 1.6 µg/L in the 5% and 10% treatments, respectively, after 30 days). 



 

240 

 

The mobility of Fe, Pb and Zn were also greatly reduced, by orders of magnitude, by the biochar 

treatments.  

Table 7.8: Elements concentration (µg/L) (mean ± SE) of porewater extracted by using rhizon samplers after 10, 

20, 30 days from planting for Parys Mountain spoil treated with 0, 5, 10% of wheat biochar (n = 2 for 0% and n 

= 1 for 5 and 10%) 

Elem
ents 

 
Treatments 

 
Extraction after 10 days Extraction after 20 days Extraction after 30 days 

0% 5%* 10%* 0% 5%* 10%* 0% 5%* 10%* 
Al 2504±386 904.60 28.01 3843±39 511.20 59.40 3434±174 388.90 6.28 

Cd 9.55±1.19 4.05 0.38 12.24 
±0.84 2.76 0.37 12.40 

±0.33 2.29 0.34 

Co 3.68±0.95 2.76 0.23 4.91±1,08 1.92 0.15 4.96±2.09 1.68 0.09 
Cr 0.21±0.06 b/d b/d 0.46±0.04 b/d 0.21 0.48±0.02 0.12 b/d 

Cu 486.3±46.7 68.58 6.54 697.0±33 40.97 2.08 726.6 
±14.2 35.85 1.55 

Fe 1094±776 5.89 4.27 1230±671 3.94 3.65 713.9 
±447.1 8.00 0.87 

K 1756000 
±11236 583300 7669.5 1509000 

±10237 602800 7443 1357000# 
±21304 567800 8170.50 

Mg 12630.0 
±1256 4277.00 3843.5 12040.0 

±1157 4078.0 3952 11070 
±1245 4082.00 3594.00 

Mn 295.9±5.0 163.20 72.67 256.9 
±12.3 145.25 47.50 235.1 

±11.0 132.35 19.30 

Ni 8.08±1.25 6.07 1.16 9.68±0.89 3.85 1.03 9.51±0.77 3.25 0.69 
Pb 1362±196 302.60 5.05 1746±153 184.70 4.20 1860±25 170.90 2.29 
Zn 2082±259 1036.00 51.76 2808±204 730.40 51.68 2937±107 661.00 56.59 

As 14.63±2.1 9.93 4.73 14.70±3.1 8.50 7.12 14.68 
±0.89 8.49 7.02 

Sb 0.43±0.10 0.32 0.11 0.34±0.23 0.21 0.14 0.37±0.12 0.16 0.13 
* single replicate only 

 

7.3.6 Total PTE budgets in plant biomass and biochar 

Table 7.9 represents a comparison between the bioaccumulation factor of PTEs percentage by 

ryegrass plants and removal (immobilisation) efficiency of biochar. The results confirmed that 

biochar showed remarkable outcomes in removing the PTEs from the porewater leachable 

component of the spoils; the percentage of removal efficiency exceeded 99% in most 

treatments, while assimilation by ryegrass removed only a small percentage of PTEs to the 

over-ground biomass. The highest value of plant bioaccumulation factor was 0.2794% of As in 
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Greendykes Bing spoil, whereas the lowest removal efficiency of As by biochar in Greendykes 

Bing spoil was 72.05%.  

Table 7.9: The comparison between bioaccumulation factor of PTEs by ryegrass plants (%) and removal 

(immobilisation) efficiency of biochar (%) (n = 3) 

(%) 
Locations 

Glendinning Wanlockhead Greendykes 
Bing Nenthead Parys 

Mountain 

As 
Plant 0.01305 0.08899 0.27948 0.00459 0.01700 

Biochar 98.69 91.10 72.05 99.54 98.30 

Cd 
Plant 0.00009 0.00031 0.00000 0.00005 0.00035 

Biochar 99.99 99.97 100.00 99.99 99.96 

Cu 
Plant 0.00546 0.00167 0.01187 0.00115 0.00090 

Biochar 99.45 99.83 98.81 99.88 99.91 

Pb 
Plant 0.01975 0.03928 0.00629 0.00845 0.02628 

Biochar 99.99 99.99 99.98 99.89 99.99 

Sb 
Plant 0.02162 0.06808 0.07067 0.00167 0.02118 

Biochar 97.84 93.19 92.93 99.83 97.88 

Zn 
Plant 0.01975 0.03928 0.00629 0.00845 0.02628 

Biochar 98.02 96.07 99.37 99.16 97.37 
 

7.4 Discussion 

7.4.1 Sorption and desorption 

The biochars tested in present study showed high capacity for Pb and Zn sorption with almost 

all metals in the solution sorbed to the surface. The continued increase in sorption, up to 

~4,000 mg/kg at the highest solution concentration tested, indicates that sorption capacity was 

not reached, and that surface saturation did not occur. This means that the sorption capacity of 

these biochars is likely to be even greater than demonstrated. Nevertheless, the sorption shown 

in present study compares well with Rodríguez-Vila et al. (2018), who found that using biochar 

to remove Zn from contaminated mine water was very effective at increasing the sorbed Zn 

percentage, which reached 99.8% in mine water collected from southwest England. The results 

of the present study sorption procedures also compare favourably with sorption percentages 

reported for various biochars generated from date seeds under varying pyrolysis conditions, 

whose sorptions of Pb from model solutions were found to span 73–97% (Mahdi et al., 2018). 

The findings of Rodríguez-Vila et al. (2018) therefore match those of the present study and both 

exceed the results from Mahdi et al. (2018), and so this is encouraging for the use of biochar 

for sorption of Pb and Zn. 
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Almost all of the sorbed metals were retained during the desorption step, which compares well 

with Trakal et al. (2011), who designed a study to determine the ability of biochar to desorb 

heavy metals including Pb and Zn in contaminated soil collected from Příbram, Czech 

Republic. The results of their desorption study showed that biochar had low desorption for Cd 

and Pb at 3.29 and 48.0 µmol/g, respectively. The results for Pb and Zn desorption here were 

an approximate match with the results obtained by Trakal et al. (2011), who found that small 

amounts of these elements returned to the experiment solution. 

7.4.2 Plant and porewater remediation trial 

The addition of biochar clearly influenced the growth of plants and the concentrations of many 

elements in plants and porewaters. Important elements of concern, such as As, Cd, Cr, Pb, Sb 

and Zn, were at high concentrations in plants grown in some of the untreated spoils, but these 

were all reduced when the spoils were treated with biochar. This is good for the plants and for 

an ecosystem that could develop in which animals eat the plants. The concentrations of Cd, Sb 

and Pb were highly reduced at Glendinning when biochar was used at 10%. At Wanlockhead, 

Cd and Zn concentrations decreased to very low levels with 10% biochar. Plants grown at 

Greendykes Bing treated with 10% biochar showed the best results at reducing Cd and Pb. At 

Nenthead, both Cd and Zn showed good reduction when 10% biochar was used. Finally, Cd 

concentration decreased significantly with 10% biochar in plants grown in the Parys Mountain 

spoil. Concentrations of Cu, Fe and Zn in plants grown in the spoils treated with 10% biochar 

can be compared to the optimum concentrations of these elements for grass plants. The 

concentrations of Cu, Fe and Zn were approximately 7.7, 81.44 and 42.44 mg/kg, respectively, 

in plants grown in Glendinning spoils treated with 10% biochar compared to adequate Cu 

concentrations in plant leaves in the range of 5–12 mg/kg, Fe in shoot 40–49 mg/kg and Zn in 

leaves 15–50 mg/kg (Reuter and Robinson, 1997). This comparison shows that using 10% 

biochar reduces the concentration of Cu and Zn to the recommended levels of these elements 

in ryegrass plants, while concentrations of Fe are still slightly high compared to recommended 

levels. These results emphasise that biochar is highly effective at reducing the spoil 

concentrations of the available heavy metals, making the concentrations more acceptable for 

plant growth. 

One of the important influences that biochar has when added to mine spoils is its ability to 

change the pH from acidic to more basic or alkaline status. The study by Álvarez-Rogel et al. 
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(2018) clearly shows this effect, whereby the pH value changed completely in spoils from the 

La Unión-Sierra de Cartagena mine in southeast Spain, from 4.64 to 8.20 and 9.81 when sewage 

sludge biochar and biochar from tree prunings were added. The pH increase brought about by 

the addition of biochar is likely to be a major contributor to the remediation achieved. The 

mechanism of biochar can be explained by the alkaline effects that lead to reduced acidity and 

thus the reduced mobility and availability of many cation-forming elements (Chintala et al., 

2013).  

Novak et al. (2018) designed an experiment to investigate the effects of biochar and lime on 

blue wildrye plants (Elymus glaucus) grown in spoils from the Formosa mine. This mine was 

used to extract Au, Ag and Cu. They found that adding 5% biochar was very effective at 

reducing the concentration of elements in shoots from 618 to 53 mg Al/kg, 98 to 34 mg Cu/kg 

and 490 to 196 mg Zn/kg. The effect of  biochar on the  ability of plants to assimilate elements 

was clearly observed in the Brassica juncea plants cultivated in soil collected from an 

abandoned Cu mine in Galicia, Spain; the experiment used compost with biochar and the results 

showed the significant ability of this mixture to reduce the concentration of Pb from 29.90 to 

4.60 mg/kg, copper from 19.4 to 4.2 mg/kg and nickel from 52.7 to 7.3 mg/kg (Rodríguez-Vila 

et al., 2015). However, the study found that the mobility of Zn increased dramatically from 73.6 

to 330 mg/kg. Lebrun et al. (2018) studied the effects of adding biochar to contaminated and 

garden soils on the growth rate and availability of As and Pb in three species of Salix. The 

contaminated soil was gathered from Pontgibaud, Puy-de-Dôme, Auvergne, France, which was 

the location of a Pb and silver mine. The results of that study showed that adding biochar at 5% 

to contaminated soils improved growth rates 6.3, 3.25 and 2.23 times relative to control 

treatments. Moreover, the combination of 5% biochar and contaminated soil led to an 88% 

decrease in As concentration in leaves.  

In Spain, an experiment was conducted by Beesley et al. (2013) in the Mina Mónica spoils that 

had been planted with tomato plants to investigate the effect of adding biochar on element 

concentration in porewater and plants; the results showed that biochar affected pH by increasing 

it to >7.5. However, the study mentioned that As and Fe concentrations in porewater increased 

even when biochar was used, and the authors attributed this to many factors such as dissolved 

organic carbon-As mobilisation. On the other hand, they found that the concentration of Mn 

decreased when biochar was used, from 128 µg/L in the control to 18 µg/L with biochar 

treatment. Adding biochar had a significant effect on the total elements in tomato plants; for 
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example, 2,040 and 8.63 mg/kg for the roots and shoots of tomato plants in the control group, 

reducing to 1.9 and 0.11 mg/kg, respectively, when biochar was used (Beesley et al., 2013). 

The results of previous studies are very close to those of the present study in terms of decreases 

of PTEs in plant tissues and porewaters following biochar treatment; the findings of this study 

prove the biochar’s strong ability to reduce concentrations of heavy metals in plant shoots and 

porewater, in addition to its ability to increase the fresh weight of ryegrass plants, which is in 

agreement with the findings of Beesley et al. (2013), Rodríguez-Vila et al. (2015) and Lebrun 

et al. (2018). 

Li et al. (2019) found that using biochar with attapulgite (Si8O20Mg5(OH)2(H2O)4·4H2O) at 

10% for each component led to significant effects on plant fresh weight and plant length. Their 

experiment was prepared by planting Solanum nigrum L. in pots containing contaminated soils 

collected from the Anshan Miming Group Corporation in northern China. The fresh weight of 

the plants increased by 237% and 231% for both biochar and attapulgite compared to the 

original tailings contaminated soil. 

Álvarez-Rogel et al. (2018) studied the effects of adding two types of biochar on concentrations 

of elements in porewater. They found that, generally, concentrations of Zn, Cd and Pb were 

reduced over time; the starting concentrations of these elements were 600, ~15 and ~200 µg/L, 

respectively, falling to <200, 10 and 50 µg/L, respectively, after 303 days. The same study 

found that the dry shoot content of the Zn, Cd and Pb elements was significantly reduced when 

biochar was used.  

The effects of adding biochar to mine spoils on element concentration in porewater were also 

studied by Norini et al. (2019). Their study involved the use of soil formed from mining 

activities in Pontgibaud Roure-Les-Rosiers, in the Massif Central region of France. This soil 

was used in pots to cultivate ryegrass and willow plants. The results showed that most element 

concentrations decreased over time.  

A report for the Environmental Agency prepared by Bass et al. (2008) states that concentrations 

of metals in streamwater at 24 locations were in the ranges of 0.10–4.52 µg/L for As, 0.01–

19.13 µg/L for Cd, 0.5–9.4 µg/L for Cu, 0.1–155.5 µg/L for Pb and 1.1–2814.8 µg/L for Zn. 

When these concentrations were compared with the porewater results in present study, this 

showed that some samples treated with 10% biochar had good reduction in element 

concentration, similar to the metal concentrations in the results of Bass et al. (2008). For 
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example, Cd, Pb and Zn concentrations reduced dramatically, reaching recommended 

concentrations when 10% biochar was used at all locations (5% biochar in Glendinning). More 

relevant still, the porewater Zn concentrations in the untreated controls of many of the spoils 

examined in the present study were at or above concentrations reported to impair microbial 

functions in some European soils (e.g. EC10 and EC20 values of ~10 mg/L; Smolders et 

al.,2004), and the biochar treatments reduced the Zn levels to well below this threshold and so 

had an ecologically meaningful positive effect. The Pb concentrations in the porewaters of 

untreated Parys Mountain spoil were in the range associated with detectable impacts to 

collembolan (Folsomia candida) reproduction in soils (Bur et al., 2012), yet biochar treatment 

decreased the concentrations by orders of magnitude and thus once again had an ecologically 

relevant positive effect on porewater toxicity. The Cd concentrations in porewaters of untreated 

spoils from Wanlockhead were potentially within the range that exerts toxic effects in some 

soils (Bur et al., 2010), yet the biochar treatments decreased the concentrations to less than 10 

μg/L in the 5% w/w treatment and to ~1 μg/L in the 10% w/w treatment. 

7.4.3 Total PTE budgets in plant biomass and biochar 

The results for the bioaccumulation factor and removal efficiency showed that ryegrass plants 

took up small concentrations of PTEs compared with biochar, which showed very good results. 

This result confirmed that the best way to remediate the spoil areas over a short period is to use 

immobilisation agents such as biochar. The plant may play a different role in remediating spoils, 

and its benefit is not from extracting the metals to remove them from the site via the plants, but 

rather from establishing vegetation cover over the spoil so that there is less dispersion via wind 

and water erosion and less leaching to the environment. This result is in agreement with that of 

Elbehiry et al. (2020), who found that immobilisation gave better results than phytoremediation 

agents in removing heavy metals in Egypt.  

The novelty of this chapter is in investigating the effectiveness of biochar for remediating 

leachate from mine spoil and enabling plant growth on different mine spoils, which can inform 

future management options for sites with large deposits of mine spoil and related materials.  
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8. Conclusions and recommendations 
This study investigated the characteristics of mine spoil materials from five locations around 

the UK using a range of techniques and examined them in terms of the environmental and health 

risks they could pose. Furthermore, it investigated potential remediation of the mine spoil heaps 

and surrounding areas through the application of biochar as a contaminant binder. The results 

showed that spoils in the chosen locations still have considerable concentrations of potentially 

toxic elements (PTEs), and these elements have the ability to be available to the environment 

when the pH changes slightly downward, particularly in the Glendinning and Greendykes Bing 

spoils due to the limited buffering capacity in these locations compared to the other spoils. This 

may be of particular concern in relation to AMD (or even acid rain) that could come into contact 

with the spoil materials. At the natural pH of the spoil materials, metals were found to have low 

mobility in neutral salt extractions that could be considered to represent and reflect potential 

leaching by rainfall. However, when the pH of the extracting solutions was lowered, the 

mobility of numerous potentially toxic elements increased (e.g. Al, Pb, Zn). The content of the 

spoils was studied using sequential extraction, which emphasised the ability of Cd and Sb to 

mobilise in solutions of certain spoils when they were exposed to even weak acids. This 

highlights the potentially high mobility of these elements from those spoils. Bioaccessible Pb 

in the fine fraction of the spoils, determined by exposure to a simulation of lung fluids, was 

found to be high in all spoils even after only 24 h of simulated exposure, and was even higher 

after 72 h (e.g. ~50–160 mg/kg at 24 h and >200 mg/kg at 72 h). It was also shown that As was 

bioaccessible in some spoils (e.g. >1,200 mg/kg after 72 h for Glendinning and Wanlockhead). 

The novelty and value of this aspect of the research arises from the very limited range of 

assessments that have been done previously on these spoils, with the assessments here revealing 

the possibility of PTE release to the environment and the bioaccessibility of key PTEs being 

particularly important.  

In terms of the analytical performance of the measurement techniques for element content 

characterisation, ICP-MS on acid digested samples demonstrated the best detection limits for 

all studied elements, followed by ICP-OES and XRF. In terms of the capacity to sorb 

contaminant metals from a solution, and therefore from solutions percolating within spoils, both 

rice husk and wheat straw biochars showed excellent sorption capacity and there was no 

significant difference between rice and wheat biochar. This highlighted the potential utility of 

these biochars for contaminant immobilisation within spoils. When wheat biochar was added 
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to the spoil samples in a remediation trial, there was good reduction (decrease) in the 

concentrations of heavy metals in porewater, but the final concentrations of some PTEs were 

still of concern in terms of potential toxicity to soil biota. Adding 10% biochar to mine spoils 

significantly improved plant yield and decreased the metal content in plant tissues, indicating 

that the addition of biochar would be good for the remediation (via phytostabilisation) of spoil 

heaps that would reduce the mobility of elements within the spoils and decrease risks of 

airborne dust release. However, element recovery via phytoextraction would be very slow with 

the plant species (ryegrass) tested here so would not likely be commercially viable unless a 

more active bioaccumulator species could be grown. Both of these findings also add to the 

novelty and importance of the study. 

The recommendations emerging from this study are: 

1. Leaching from the spoil heaps should be monitored to assess ongoing inputs of potentially 

toxic elements to nearby soils and receiving water bodies. 

2. A survey of plants in the areas surrounding the spoils should be conducted to assess the levels 

of contamination in the surrounding environment and to also identify any potential 

bioaccumulator species already in the region that could be employed in phytoremediation work. 

3. Further research should be conducted on the microorganisms present in the spoils to assess 

their potential for use in the remediation of mining sites. 

4. A field trial should be conducted to assess the larger-scale feasibility of the use of biochar to 

remediate the spoil heaps. Such a study would monitor any changes in metal concentrations in 

the leachate triggered by the presence of biochar and the development of vegetation in the spoils 

from the point of view of evaluating the potential for i) phytostabilisation, ii) phytomining (i.e. 

metal recovery via plants), and iii) decreasing dust generation. 
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