
1

A Survey of Modern Deep Learning based Object
Detection Models

Syed Sahil Abbas Zaidi, Mohammad Samar Ansari, Asra Aslam,
Nadia Kanwal, Mamoona Asghar, and Brian Lee

Abstract—Object Detection is the task of classification and
localization of objects in an image or video. It has gained
prominence in recent years due to its widespread applications.
This article surveys recent developments in deep learning based
object detectors. Concise overview of benchmark datasets and
evaluation metrics used in detection is also provided along with
some of the prominent backbone architectures used in recognition
tasks. It also covers contemporary lightweight classification mod-
els used on edge devices. Lastly, we compare the performances
of these architectures on multiple metrics.

Index Terms—Object detection and recognition, convolutional
neural networks (CNN), lightweight networks, deep learning

I. INTRODUCTION

Object detection is a trivial task for humans. A few months
old child can start recognizing common objects, however
teaching it to the computer has been an uphill task until the
turn of the last decade. It entails identifying and localizing all
instances of an object (like cars, humans, street signs, etc.)
within the field of view. Similarly, other tasks like classifi-
cation, segmentation, motion estimation, scene understanding,
etc, have been the fundamental problems in computer vision.

Early object detection models were built as an ensemble of
hand-crafted feature extractors such as Viola-Jones detector
[1], Histogram of Oriented Gradients (HOG) [2] etc. These
models were slow, inaccurate and performed poorly on un-
familiar datasets. The re-introduction of convolutional neural
network (CNNs) and deep learning for image classification
changed the landscape of visual perception. Its use in the Im-
ageNet Large Scale Visual Recognition Challenge (ILSVRC)
2012 challenge by AlexNet [3] inspired further research of
its application in computer vision. Today, object detection
finds application from self-driving cars and identity detection
to security and medical uses. In recent years, it has seen
exponential growth with rapid development of new tools and
techniques.

This survey provides a comprehensive review of deep
learning based object detectors and lightweight classification
architectures. While existing reviews are quite thorough [4]–
[7], most of them lack new developments in the domain. The
main contributions of this paper are as follows:

S.S.A. Zaidi, N. Kanwal, M Asghar and B. Lee are with the Athlone
Institute of Technology, Ireland. M.S. Ansari is with the Aligarh Muslim
University, India. A. Aslam is with the Insight Center for Data Analytics,
National University of Ireland, Galway. (Emails: sahilzaidi78@gmail.com,
samar.ansari@zhect.ac.in, asra.aslam@insight-centre.org, nkanwal@ait.ie,
masghar@ait.ie, blee@ait.ie)

Fig. 1: Structure of the paper.

1) This paper provides an in-depth analysis of major object
detectors in both categories – single and two stage
detectors. Furthermore, we take historic look at the
evolution of these methods.

2) We present a detailed evaluation of the landmark back-
bone architectures and lightweight models. We could not
find any paper which provides a broad overview of both
these topics.

In this paper, we have systematically reviewed various object
detection architectures and its associated technologies, as
illustrated in figure 1. Rest of this paper is organized as
follows. In section II, the problem of object detection and
its associated challenges are discussed. Various benchmark
datasets and evaluation metrics are listed in Section III. In
Section IV, several milestone backbone architectures used in
modern object detectors are examined. Section V is divided
into three major sub-section, each studying a different category
of object detectors. This is followed by the analysis of a special
classification of object detectors, called lightweight networks
in section VI and a comparative analysis in Section VII. The
future trends are mentioned in Section VIII while the paper is
concluded in Section IX.

Preprint submitted to IET Computer Vision.

ar
X

iv
:2

10
4.

11
89

2v
2

 [
cs

.C
V

]
 1

2
M

ay
 2

02
1

2

(a) PASCAL VOC 12 (b) MS-COCO (c) ILSVRC (d) OpenImage

Fig. 2: Sample images from different datasets.

II. BACKGROUND

A. Problem Statement

The object detection is the natural extension of object
classification, which aims only at recognizing the object in the
image. The goal of the object detection is to detect all instances
of the predefined classes and provide its coarse localization
in the image by axis-aligned boxes. The detector should be
able to identify all instances of the object classes and draw
bounding box around it. It is generally seen as a supervised
learning problem. Modern object detection models have access
to large sets of labelled images for training and are evaluated
on various canonical benchmarks.

B. Key challenges in Object Detection

Computer vision has come a long way in the past decade,
however it still has some major challenges to overcome. Some
of these key challenges faced by the networks in real life
applications are:

• Intra class variation : Intra class variation between
the instances of same object is relatively common in
nature. This variation could be due to various reasons
like occlusion, illumination, pose, viewpoint, etc. These
unconstrained external can have dramatic effect of the
object appearance [5]. It is expected that the objects could
have non-rigid deformation or be rotated, scaled or blurry.
Some objects could have inconspicuous surroundings,
making the extraction difficult.

• Number of categories: The sheer number of object classes
available to classify makes it a challenging problem to
solve. It also requires more high-quality annotated data,
which is hard to come by. Using fewer examples for
training a detector is an open research question.

• Efficiency: Present day models need high computation
resources to generate accurate detection results. With mo-
bile and edge devices becoming common place, efficient
object detectors are crucial for further development in the
field of computer vision.

III. DATASETS AND EVALUATION METRICS

A. Datasets

This section presents an overview of the datasets that are
available, and have been most commonly used for object
detection tasks.

1) PASCAL VOC 07/12: The Pascal Visual Object Classes
(VOC) challenge was a multiyear effort to accelerate the
development in the field of visual perception. It started in
2005 with classification and detection tasks on four object
classes [8], but two versions of this challenges are mostly
used as a standard benchmark. While the VOC07 challenge
had 5k training images and more than 12k labelled objects [9],
the VOC12 challenge increased them to 11k training images
and more than 27k labelled objects [10]. Object classes was
expanded to 20 categories and the tasks like segmentation
and action detection were included as well. Pascal VOC
introduced the mean Average Precision (mAP) at 0.5 IoU
(Intersection over Union) to evaluate the performance of the
models. Figure 3 depicts the distribution of the number of
images w.r.t. to the different classes in the Pascal VOC dataset.

2) ILSVRC: The ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) [11] was an annual challenge running
from 2010 to 2017 and became a benchmark for evaluating
algorithm performance. The dataset size was scaled up to more
than a million images consisting of 1000 object classification
classes. 200 of these classes were hand-picked for object detec-
tion task, constitute of more than 500k images. Various sources
including ImageNet [12] and Flikr, were used to construct
detection dataset. ILSVRC also updated the evaluation metric
by loosening the IoU threshold to help include smaller object
detection. Figure 4 depicts the distribution of the number of
images w.r.t. to the different classes in the ImageNet dataset.

3) MS-COCO: The Microsoft Common Objects in Context
(MS-COCO) [13] is one of the most challenging datasets
available. It has 91 common objects found in their natural
context which a 4-year-old human can easily recognize. It
was launched in 2015 and its popularity has only increased
since then. It has more than two million instances and an

3

average of 3.5 categories per images. Furthermore, it contains
7.7 instances per image, comfortably more than other popular
datasets. MS COCO comprises of images from varied view-
points as well. It also introduced a more stringent method to
measure the performance of the detector. Unlike the Pascal
VOC and ILSVCR, it calculates the IoU from 0.5 to 0.95 in
steps of 0.5, then using a combination of these 10 values as
final metric, called Average Precision (AP). Apart from this, it
also utilizes AP for small, medium and large objects separately
to compare performance at different scales. Figure 5 depicts
the distribution of the number of images w.r.t. to the different
classes in the MS-COCO dataset.

4) Open Image: Google’s Open Images [14] dataset is
composed of 9.2 million images, annotated with image-
level labels, object bounding boxes, and segmentation masks,
among others. It was launched in 2017 and has received six
updates. For object detection, Open Images has 16 million
bounding boxes for 600 categories on 1.9 million images,
which makes it the largest dataset of object localization. Its
creators took extra care to choose interesting, complex and
diverse images, having 8.3 object categories per image. Several
changes were made to the AP introduced in Pascal VOC like
ignoring un-annotated class, detection requirement for class
and its subclass, etc. Figure 6 depicts the distribution of the
number of images w.r.t. to the different classes in the Open
Images dataset.

5) Issues of Data Skew/Bias: While observing Fig. 3
through Fig. 6, an alert reader would certainly notice that
the number of images for difference classes vary significantly
in all the datasets [15]. Three (Pascal VOC, MS-COCO, and
Open Images Dataset) of the four datasets discussed above
have a very significant drop in the number of images beyond
the top-5 most frequent classes. As can be readily observed for
Fig. 3, there are 13775 images which contain a ‘person’ and
then 2829 images which contain a ‘car’. The number of images
for the remaining 18 classes in this dataset almost fall linearly
to the 55 images of ‘sheep’. Similarly, for the MS-COCO
dataset, the class ‘person’ has 262465 images, and the next
most-frequent class ‘car’ has 43867 images. The downward
trend continues till there are only 198 images for the class
‘hair drier’. A similar phenomenon is also observed in the
Open Images Dataset, wherein the class ‘Man’ is the most
frequent with 378077 images, and the class ‘Paper Cutter’ has
only 3 images. This clearly represents a skew in the datasets
and is bound to create a bias in the training process of any
object detection model. Therefore, an object detection model
trained on these skewed datasets will in all probability show
better detection performance for the classes with more number
of images in the training data. Although still present, this issue
is slightly less pronounced in the ImageNet dataset, as can
be observed from Fig. 4 from where it can be seen that the
most frequent class i.e. ‘koala’ has 2469 images, and the least
frequent class i.e. ‘cart’ has 624 images. However, this leads
to another point of concern in the ImageNet dataset: the most
frequent class is for ‘koala’ and the next most-appearing class
is ‘computer keyboard’, which are clearly not the most sought
after objects in a real-world object detection scenario (where
person, cars, traffic signs, etc. are of higher concern).

B. Metrics

Object detectors use multiple criteria to measure the perfor-
mance of the detectors viz., frames per second (FPS), precision
and recall. However, mean Average Precision (mAP) is the
most common evaluation metric. Precision is derived from
Intersection over Union (IoU), which is the ratio of the area of
overlap and the area of union between the ground truth and the
predicted bounding box. A threshold is set to determine if the
detection is correct. If the IoU is more than the threshold, it is
classified as True Positive while an IoU below it is classified
as False Positive. If the model fails to detect an object present
in the ground truth, it is termed as False Negative. Precision
measures the percentage of correct predictions while the recall
measure the correct predictions with respect to the ground
truth.

Precision =
True Positive

True Positive+ False Positive

=
True Positive

All Observations

(1)

Recall =
True Positive

True Positive+ False Negative

=
True Positive

All Ground Truth

(2)

Based on the above equation, average precision is computed
separately for each class. To compare performance between the
detectors, the mean of average precision of all classes, called
mean average precision (mAP) is used, which acts as a single
metric for final evaluation.

IV. BACKBONE ARCHITECTURES

Backbone architectures are one of the most important
component of the object detector. These networks extract
feature from the input image used by the model. Here, we
have discussed some milestone backbone architectures used
in modern detectors:

A. AlexNet

Krizhevsky et al. proposed AlexNet [3], a convolutional
neural network based architecture for image classification, and
won the ImageNet Large-Scale Visual Recognition Challenge
(ILSVRC) 2012 challenge. It achieved a considerably higher
accuracy (more than 26%) than the contemporary models.
AlexNet is composed of eight learnable layers - five convolu-
tional and three fully connected layers. The last layer of the
fully connected layer is connected to an N-way (N: number
of classes) softmax classifier. It uses multiple convolutional
kernels throughout the network to obtain features from the
image. It also uses dropout and ReLU for regularization and
faster training convergence respectively. The convolutional
neural networks were given a new life by its reintroduction in
AlexNet and it soon became the go-to technique in processing
imaging data.

4

TABLE I: Comparison of various object detection datasets.

Dataset Classes Train Validation Test
Images Objects Objects/Image Images Objects Objects/Image

PASCAL VOC 12 20 5,717 13,609 2.38 5,823 13,841 2.37 10,991
MS-COCO 80 118,287 860,001 7.27 5,000 36,781 7.35 40,670

ILSVRC 200 456,567 478,807 1.05 20,121 55,501 2.76 40,152
OpenImage 600 1,743,042 14,610,229 8.38 41,620 204,621 4.92 125,436

Fig. 3: (This image is best viewed in PDF form with magnification) Number of images for different classes annotated in the
PascalVOC dataset [15]

Fig. 4: (This image is best viewed in PDF form with magnification) Number of images for different classes annotated in the
ImageNet dataset [15]

B. VGG

While AlexNet [3] and its successors like [16] focused
on smaller receptive window size to improve accuracy, Si-
monyan and Zisserman investigated the effects of network
depth on it. They proposed VGG [17], which used small
convolution filters to construct networks of varying depths.
While a larger receptive field can be captured by a set of
smaller convolutional filters, it drastically reduces network
parameters and converges sooner. The paper demonstrated
how deep network architecture (16-19 layers) can be used to
perform classification and localization with superior accuracy.
VGG was created by adding a stack of convolutional layers
with three fully connected layers, followed by a softmax
layer. The number of convolutional layers, according to the
authors, can vary from 8 to 16. VGG is trained in multiple
iterations; first, the smallest 11-layer architecture is trained

with random initialization whose weights are then used to
train larger networks to prevent gradient instability. VGG
outperformed ILSVRC 2014 winner GoogLeNet [18] in the
single network performance category. It soon became one of
the most used network backbones for object classification and
detection models.

C. GoogLeNet/Inception

Even though classification networks were making inroads
towards faster and more accurate networks, deploying them
in real-world applications was still a long way off as they
were resource-intensive. As networks are scaled for better
performance, the computation cost increases exponentially.
Szegedy et al. in [18] postulated the wastage of computations
in the network as a major reason for it. Bigger models also
have a large number of parameters and tend to overfit the

5

Fig. 5: (This image is best viewed in PDF form with magnification) Number of images for different classes annotated in the
MS-COCO dataset [15]

data. They proposed using locally sparse connected architec-
ture instead of a fully connected one to solve these issues.
GoogLeNet is thus a 22 layer deep network, made up by
stacking multiple Inception modules on top of each other.
Inception modules are networks that have multiple sized filters
at the same level. Input feature maps pass through these filters
and are concatenated and forwarded to the next layer. The
network also has auxiliary classifiers in the intermediate layers
to help regularize and propagate gradient. GoogLeNet showed
how efficient use of computation blocks can perform at par
with other parameter-heavy networks. It achieved 93.3% top-
5 accuracy on ImageNet [11] dataset without external data,
while being faster than other contemporary models. Updated
versions of Inception like [19], [20] were also published in the
following years which further improved its performance and
gave further evidence of the applications of refined sparsely
connected architectures.

D. ResNets

As convolutional neural networks become deeper and
deeper, Kaiming He et al. in [21] showed how their accuracy
first saturates and then degrades rapidly. They proposed the
use of residual learning to the stacked layers to mitigate
the performance decay. It is realized by addition of a skip
connection between the layers. This connection is an element-
wise addition between input and output of the block and
does not add extra parameter or computational complexity
to the network. A typical 34 layer ResNet [21] is basically
a large (7x7) convolution filter followed by 16 bottleneck
modules (pair of small 3x3 filters with identity shortcut across
them) and ultimately a fully connected layer. The bottleneck
architecture can be adapted for deeper networks by stacking
3 convolutional layers (1x1,3x3,1x3) instead of 2. Kaiming
He et al. also demonstrated how the 16-layer VGG net had
higher complexity than their considerably deeper 101 and 152
layer ResNet architectures while having lower accuracy. In
subsequent paper, the authors proposed Resnetv2 [22] which
used batch normalization and ReLU layer in the blocks. It

TABLE II: Comparison of Backbone architectures.

Model Year Layers Parameters
(Million)

Top-1
acc%

FLOPs
(Billion)

AlexNet 2012 7 62.4 63.3 1.5
VGG-16 2014 16 138.4 73 15.5
GoogLeNet 2014 22 6.7 - 1.6
ResNet-50 2015 50 25.6 76 3.8
ResNeXt-50 2016 50 25 77.8 4.2
CSPResNeXt-50 2019 59 20.5 78.2 7.9
EfficientNet-B4 2019 160 19 83 4.2

is more generalized and easier to train. ResNets are widely
used in classification and detection backbones, and its core
principles have inspired many networks ([20], [23], [24]).

E. ResNeXt

The existing conventional methods of improving the ac-
curacy of a model were by either increasing the depth or
the width of the model. However, increasing any of these
leads to higher model complexity and number of parameters
while the gain margins diminish rapidly. Xie et al. introduced
ResNeXt [24] architecture which is simpler and more efficient
than other existing models. ResNeXt was inspired by the
stacking of similar blocks in VGG/ResNet [3], [21] and “split-
transform-merge” behavior of Inception module [18]. It is
essentially a ResNet where each ResNet block is replaced by
an inception-like ResNeXt module. The complicated, tailored
transformation modules from the Inception is replaced by
topologically same modules in the ResNeXt blocks, making
the network easier to scale and generalize. Xie et al. also em-
phasize that the cardinality (topological paths in the ResNeXt
block) can be considered as a third dimension, along with
depth and width, to improve model accuracy. ResNeXt is
elegant and more concise. It achieved higher accuracy while
having considerably fewer hyperparameters than a similar
depth ResNet architecture. It was also the first runner up to
the ILSVRC 2016 challenge.

6

Fig. 6: (This image is best viewed in PDF form with magnification) Number of images for different classes annotated in the
Open Images dataset [15]

F. CSPNet

Existing neural networks have shown incredible results in
achieving high accuracy in computer vision tasks; however,
they rely on excessive computational resources. Wang et al.
believe that heavy inference computations can be reduced
by cutting down the duplicate gradient information in the
network. They proposed CSPNet [25] which creates differ-
ent paths for the gradient flow within the network. CSPNet
separates feature maps at the base layer into two parts. One
part is passed through the partial convolution network block
(e.g., Dense and Transition block in DenseNet [23] or Res(X)
block in ResNeXt [24]) while the other part is combined
with its outputs at a later stage. This reduces the number of
parameters, increases the utilization of computation units and
eases memory footprint. It is easy to implement and general
enough to be applicable on other architectures like ResNet
[21], ResNeXt [24], DenseNet [23], Scaled-YOLOv4 [26] etc.
Applying CSPNet on these networks reduced computations
from 10% to 20%, while the accuracy remained constant or
improved. Memory cost and computational bottleneck is also
reduced significantly with this method. It is leveraged in many
state of the art detector models, while also being used for
mobile and edge devices.

G. EfficientNet

Tan et al. systematically studied network scaling and its
effects on the model performance. They summarized how
altering network parameters like depth, width and resolution
influence its accuracy. Scaling any parameter individually
comes with an associated cost. Increasing depth of a network
can help in capturing richer and more complex features, but
they are difficult to train due to vanishing gradient problem.
Similarly, scaling network width will make it easier to capture
fine grained features but have difficulty in obtaining high
level features. Gains from increasing the image resolution,
like depth and width, saturate as model scales. In the paper
[27], Tan et al. proposed the use of a compound coefficient
that can uniformly scale all three dimensions. Each model
parameter has an associated constant, which is found by fixing
the coefficient as 1 and performing a grid search on a baseline
network. The baseline architecture, inspired by their previous
work [28], is developed by neural architecture search on a
search target while optimizing accuracy and computations.
EfficientNet is a simple and efficient architecture. It outper-
formed existing models in accuracy and speed while being
considerably smaller. By providing a monumental increase in
efficiency, it could potentially open a new era in the field of

7

Fig. 7: Visualization of CNN Architectures1. Left to
Right: AlexNet, VGG−16, GoogLeNet, ResNet−50,
CSPResNeXt−50, EfficientNet−B4.

efficient networks.

V. OBJECT DETECTORS

We have divided this review based on the two types of
detectors — two-stage and single-stage detectors. However,
we also discussed the pioneer work, where we briefly examine
a few traditional object detectors. A network which has a
separate module to generate region proposals is termed as
a two-stage detector. These models try to find an arbitrary
number of objects proposals in an image during the first stage
and then classify and localize them in the second. As these
systems have two separate steps, they generally take longer to
generate proposals, have complicated architecture and lacks
global context. Single-stage detectors classify and localize
semantic objects in a single shot using dense sampling. They
use predefined boxes/keypoints of various scale and aspect
ratio to localize objects. It edges two-stage detectors in real-
time performance and simpler design.

A. Pioneer Work

1) Viola-Jones: Primarily designed for face detection,
Viola-Jones object detector [1], proposed in 2001, was an ac-
curate and powerful detector. It combined multiple techniques
like Haar-like features, integral image, Adaboost and cascad-
ing classifier. First step is to search for Haar-like features by
sliding a window on the input image and uses integral image to
calculate. It then uses a trained Adaboost to find the classifier
of each haar feature and cascades them. Viola Jones algorithm
is still used in small devices as it is very efficient and fast.

2) HOG Detector: In 2005, Dalal and Triggs proposed the
Histogram of Oriented Gradients (HOG) [2] feature descriptor
used to extract features for object detection. It was an im-
provement over other detectors like [29]–[32]. HOG extracts
gradient and its orientation of the edges to create a feature
table. The image is divided into grids and the feature table is
then used to create histogram for each cell in the grid. HOG
features are generated for the region of interest and fed into a
linear SVM classifier for detection. The detector was proposed
for pedestrian detection; however, it could be trained to detect
various classes.

3) DPM: Deformable Parts Model (DPM) [33] was intro-
duced by Felzenszwalb et al. and was the winner Pascal VOC
challenge in 2009. It used individual “part” of the object for
detection and achieved higher accuracy than HOG. It follows
the philosophy of divide and rule; parts of the object are
individually detected during inference time and a probable
arrangement of them is marked as detection. For example,
a human body can be considered as a collection of parts like
head, arms, legs and torso. One model will be assigned to
capture one of the parts in the whole image and the process is
repeated for all such parts. A model then removes improbable
configurations of the combination of these parts to produce
detection. DPM based models [34], [35] were one of the most
successful algorithms before the era of deep learning.

1Tool Used: https://netron.app/

8

B. Two-Stage Detectors

1) R-CNN: The Region-based Convolutional Neural Net-
work (R-CNN) [36] was the first paper in the R-CNN family,
and demonstrated how CNNs can be used to immensely im-
prove the detection performance. R-CNN use a class agnostic
region proposal module with CNNs to convert detection into
classification and localization problem. A mean-subtracted
input image is first passed through the region proposal module,
which produces 2000 object candidates. This module find
parts of the image which has a higher probability of finding
an object using Selective Search [37]. These candidates are
then warped and propagated through a CNN network, which
extracts a 4096-dimension feature vector for each proposal.
Girshick et al. used AlexNet [3] as the backbone architecture
of the detector. The feature vectors are then passed to the
trained, class-specific Support Vector Machines (SVMs) to
obtain confidence scores. Non-maximum suppression (NMS)
is later applied to the scored regions, based on its IoU and
class. Once the class has been identified, the algorithm predicts
its bounding box using a trained bounding-box regressor,
which predicts four parameters i.e., center coordinates of box
along with its width and height.

R-CNN has a complicated multistage training process. The
first stage is pre-training the CNN with a large classification
dataset. It is then fine-tuned for detection using domain-
specific images (mean-subtracted, warped proposals) by re-
placing of the classification layer with a randomly initialized
N+1-way classifier, N being the number of classes, using
stochastic gradient descent (SGD) [38]. One liner SVM and
bounding box regressor is trained for each class.

R-CNN ushered a new wave in the field of object detection,
but it was slow (47 sec per image) and expensive in time and
space [39]. It had complex training process and took days to
train on small datasets even when some of the computations
were shared.

2) SPP-Net: He et al. proposed the use of Spatial Pyramid
Pooling (SPP) layer [40] to process image of arbitrary size
or aspect ratio. They realized that only the fully connected
part of the CNN required a fixed input. SPP-net [41] merely
shifted the convolution layers of CNN before the region
proposal module and added a pooling layer, thereby making
the network independent of size/aspect ratio and reducing the
computations. The selective search [37] algorithm is used to
generate candidate windows. Feature maps are obtained by
passing the input image through the convolution layers of a
ZF-5 [16] network. The candidate windows are then mapped
on to the feature maps, which are subsequently converted into
fixed length representations by spatial bins of a pyramidal
pooling layer. This vector is passed to the fully connected
layer and ultimately, to SVM classifiers to predict class and
score. Similar to R-CNN [36], SPP-net has as post processing
layer to improve localization by bounding box regression. It
also uses the same multistage training process, except that the
fine tuning is done only on the fully connected layers.

SPP-Net is considerably faster than the R-CNN model
with comparable accuracy. It can process images of any
shape/aspect ratio and thus, avoid object deformation due to

input warping. However, as its architecture is analogous to
R-CNN, it shared R-CNN’s disadvantages too like multistage
training, computationally expensive and training time as well.

3) Fast R-CNN: One of the major issues with R-CNN/SPP-
Net was the need to train multiple systems separately. Fast
R-CNN [39] solved this by creating a single end-to-end
trainable system. The network takes as input an image and
its object proposals. The image is passed through a set of
convolution layers and the object proposals are mapped to the
obtained feature maps. Girshick replaced pyramidal structure
of pooling layers from SPP-net [41] with a single spatial
bin, called RoI pooling layer. This layer is connected to 2
fully connected layer and then branches out into a N+1-class
SoftMax layer and a bounding box regressor layer, which has
a fully connected layer as well. The model also changed the
loss function of bounding box regressor from L2 to smooth
L1 to better performance, while introducing a multi-task loss
to train the network.

The authors used modified version of existing state-of-art
pre-trained models like [3], [17] and [42] as backbone. The
network was trained in a single step by stochastic gradient
descent (SGD) and a mini-batch of 2 images. This helped
the network converge faster as the back-propagation shared
computations among the RoIs from the two images.

Fast R-CNN was introduced as an improvement in speed
(146x on R-CNN) while the increase in accuracy was supple-
mentary. It simplified training procedure, removed pyramidal
pooling and introduces a new loss function. The object detec-
tor, without the region proposal network, reported near real
time speed with considerable accuracy.

4) Faster R-CNN: Even though Fast R-CNN inched closer
to real time object detection, its region proposal generation
was still an order of magnitude slower (2 sec per image
compared to 0.2 sec per image). Ren et al. suggested a fully
convoluted network [43] as a region proposal network (RPN)
in [44] that takes an arbitrary input image and outputs a set
of candidate windows. Each such window has an associated
objectness score which determines likelihood of an object.
Unlike its predecessors like [21], [34], [39] which used image
pyramids to solve size variance of objects, RPN introduces
Anchor boxes. It used multiple bounding boxes of different
aspect ratios and regressed over them to localize object. The
input image is first passed through the CNN to obtain a set of
feature maps. These are forwarded to the RPN, which produces
bounding boxes and their classification. Selected proposals are
then mapped back to the feature maps obtained from previous
CNN layer in RoI pooling layer, and ultimately fed to fully
connected layer, which is sent to classifier and bounding box
regressor. Faster R-CNN is essentially Fast R-CNN with RPN
as region proposal module.

Training of Faster R-CNN is more convoluted, due to the
presence of shared layers between two models which perform
very different tasks. Firstly, RPN is pre-trained on ImageNet
dataset [12] and fine-tuned on PASCAL VOC dataset [8]. A
Fast R-CNN is trained from the region proposals of RPN from
first step. Till this point, the networks do not have shared
convolution layer. Now, we fix the convolution layers of the
detector and fine-tune the unique layers in RPN. And finally,

9

Fig. 8: Illustration of the internal architecture of different two stage object detectors2.

Fast R-CNN is fine-tuned from the updated RPN.
Faster R-CNN improved the detection accuracy over the

previous state-of-art [39] by more than 3% and decreased
inference time by an order of magnitude. It fixed the bottleneck
of slow region proposal and ran in near real time at 5 frames
per second. Another advantage of having a CNN in region
proposal was that it could learn to produce better proposals
and thereby increase accuracy.

5) FPN: Use of image pyramid to obtain feature pyramid
(or featurized image pyramids) at multiple levels is a common
method to increase detection of small objects. Even though it
increases Average Precision of the detector, the increase in the
inference time is substantial. Lin et al. proposed the Feature
Pyramid Network (FPN) [45], which has a top-down archi-
tecture with lateral connections to build high-level semantic
features at different scales. The FPN has two pathways, a
bottom-up pathway which is a ConvNet computing feature
hierarchy at several scales and a top-down pathway which
upsamples coarse feature maps from higher level into high-
resolution features. These pathways are connected by lateral
connection by a 1x1 convolution operation to enhance the
semantic information in the features. FPN is used as a region
proposal network (RPN) of a ResNet-101 [21] based Faster
R-CNN here.

FPN could provide high-level semantics at all scales, which
reduced the error rate in detection. It became a standard build-
ing block in future detections models and improved accuracy
their accuracy across the table. It also lead to development of

other improved networks like PANet [46], NAS-FPN [47] and
EfficientNet [27], which is current state of art detector.

6) R-FCN: Dai et al. proposed Region-based Fully Convo-
lutional Network (R-FCN) [48] that shared almost all compu-
tations within the network, unlike previous two stage detectors
which applied resource intensive techniques on each proposal.
They argued against the use of fully connected layers and
instead used convolutional layers. However, deeper layers in
the convolutional network are translation-invariant, making
them ineffective for localization tasks. The authors proposed
the use of position-sensitive score maps to remedy it. These
sensitive score maps encode relative spatial information of
the subject and are later pooled to identify exact localization.
R-FCN does it by dividing the region of interest into k
x k grid and scoring the likeliness of each cell with the
detection class feature map. These scores are later averaged
and used to predict the object class. R-FCN detector is a
combination of four convolutional networks. The input image
is first passed through the ResNet-101 [21] to get feature maps.
An intermediate output (Conv4 layer) is passed to a Region
Proposal Network (RPN) to identify RoI proposals while the
final output is further processed through a convolutional layer
and is input to classifier and regressor. The classification layer
combines the generated the position-sensitive map with the
RoI proposals to generate predictions while the regression
network outputs the bounding box details. R-FCN is trained
in a similar 4 step fashion as Faster-RCNN [44] whilst using a
combined cross-entropy and box regression loss. It also adopts

10

online hard example mining (OHEM) [49] during the training.
Dai et al. offered a novel method to solve the problem

of translation invariance in convolutional neural networks. R-
FCN combines Faster R-CNN and FCN to achieve a fast, more
accurate detector. Even though it did not improve accuracy by
much, but it was 2.5-20 times faster than its counterpart.

7) Mask R-CNN: Mask R-CNN [50] extends on the Faster
R-CNN by adding another branch in parallel for pixel-level
object instance segmentation. The branch is a fully connected
network applied on RoIs to classify each pixel into segments
with little overall computation cost. It uses similar basic Faster
R-CNN architecture for object proposal, but adds a mask head
parallel to classification and bounding box regressor head. One
major difference was the use of RoIAlign layer, instead of
RoIPool layer, to avoid pixel level misalignment due to spatial
quantization. The authors chose the ResNeXt-101 [24] as its
backbone along with the feature Pyramid Network (FPN) for
better accuracy and speed. The loss function of Faster R-CNN
is updated with the mask loss and as in FPN, it uses 5 anchor
boxes with 3 aspect ratio. Overall training of Mask R-CNN is
similar to faster R-CNN.

Mask R-CNN performed better than the existing state of the
art single-model architectures, added an extra functionality of
instance segmentation with little overhead computations. It is
simple to train, flexible and generalizes well in applications
like keypoint detection, human pose estimation, etc. However,
it was still below the real time performance (>30 fps).

8) DetectoRS: Many contemporary two stage detectors like
[44], [51], [52] use the mechanism of looking and thinking
twice i.e. calculating object proposals first and using them to
extract features to detect objects. DetectoRS [53] applies this
mechanism at both macro and micro level of the network. At
macro level, they propose Recursive Feature Pyramid (RFP),
formed by stacking multiple feature pyramid network (FPN)
with extra feedback connection from the top-down level path
in FPN to the bottom-up layer. The output of the FPN is
processed by the Atrous Spatial Pyramid Pooling layer (ASPP)
[54] before passing it to the next FPN layer. A Fusion module
is used to combine FPN outputs from different modules by cre-
ating an attention map. At micro level, Qiao et al. presented the
Switchable Atrous Convolution (SAC) to regulate the dilation
rate of convolution. An average pooling layer with 5x5 filter
and a 1x1 convolution is used as a switch function to decide
the rate of atrous convolution [55], helping the backbone detect
objects at various scale on the fly. They also packed the SAC
in between two global context modules [56] as it helps in
making more stable switching. The combination of these two
techniques, Recursive Feature Pyramid and Switchable Atrous
Convolution results in DetectoRS. The authors incorporated
the above techniques with the Hybrid Task Cascade (HTC)
[51] as the baseline model and a ResNext-101 backbone.

DetectoRS combined multiple systems to improve perfor-
mance of the detector and sets the state-of-the-art for the two
stage detectors. Its RFP and SAC modules are well generalized
and can be used in other detection models. However, it is not
suitable for real time detections as it can only process about
4 frames per second.

C. Single Stage Detectors
1) YOLO: Two stage detectors solve the object detection

as a classification problem, a module presents some candidates
which the network classifies as either an object or background.
However, YOLO or You Only Look Once [57] reframed it as
a regression problem, directly predicting the image pixels as
objects and its bounding box attributes. In YOLO, the input
image is divided into a S x S grid and the cell where the
object’s center falls is responsible for detecting it. A grid cell
predicts multiple bounding boxes, and each prediction array
consists of 5 elements: center of bounding box – x and y,
dimensions of the box – w and h, and the confidence score.

YOLO was inspired from the GoogLeNet model for image
classification [18], which uses cascaded modules of smaller
convolution networks [58]. It is pre-trained on ImageNet
data [12] till the model achieves high accuracy and then
modified by adding randomly initialized convolution and fully
connected layers. At training time, grid cells predict only one
class as it converges better, but it is be increased during the
inference time. Multitask loss, combined loss of all predicted
components, is used to optimize the model. Non maximum
suppression (NMS) removes class-specific multiple detections.

YOLO surpassed its contemporary single stage real time
models by a huge margin in both accuracy and speed. How-
ever, it had significant shortcomings as well. Localization
accuracy for small or clustered objects and limitation to
number of objects per cell were its major drawbacks. These
issues were fixed in later versions of YOLO [59]–[61].

2) SSD: Single Shot MultiBox Detector (SSD) [62] was
the first single stage detector that matched accuracy of con-
temporary two stage detectors like Faster R-CNN [44], while
maintaining real time speed. SSD was built on VGG-16 [17],
with additional auxiliary structures to improve performance.
These auxiliary convolution layers, added to the end of the
model, decrease progressively in size. SSD detects smaller
objects earlier in the network when the image features are
not too crude, while the deeper layers were responsible for
offset of the default boxes and aspect ratios [63].

During training, SSD match each ground truth box with
the default boxes with the best jaccard overlap and train the
network accordingly, similar to Multibox [63]. They also used
hard negative mining and heavy data augmentation. Similar
to DPM [33], it utilized weighted sum of the localization and
confidence loss to train the model. Final output is obtained by
performing non maximum suppression.

Even though SSD was significantly faster and more accurate
than both state-of-art networks like YOLO and Faster R-CNN,
it had difficulty in detecting small objects. This issue was later
solved by using better backbone architectures like ResNet and
other small fixes.

3) YOLOv2 and YOLO9000: YOLOv2 [59], an improve-
ment on the YOLO [57], offered an easy tradeoff between
speed and accuracy while the YOLO9000 model could pre-
dict 9000 object classes in real time. They replaced the
backbone architecture of GoogLeNet [18] with DarkNet-19
[64]. It incorporated many impressive techniques like Batch
Normalization [65] to improve convergence, joint training
of classification and detection systems to increase detection

11

Fig. 9: Illustration of the internal architecture of different two and single stage object detectors2.

classes, removing fully connected layers to increase speed and
using learnt anchor boxes to improve recall and have better
priors. Redmon et al. also combined the classification and
detection datasets in hierarchical structure using WordNet [66].
This WordTree can be used to predict a higher conditional
probability of hypernym, even when the hyponym is not
classified correctly, thereby increasing the overall performance
of the system.

YOLOv2 provided better flexibility to choose the model
on speed and accuracy, and the new architecture had fewer
parameters. As the title of the paper suggests, it was “better,
faster and stronger” [59].

4) RetinaNet: Given the difference between the accuracies
of single and two stage detectors, Lin et al. suggested that the
reason single stage detectors lag is the “extreme foreground-
background class imbalance” [67]. They proposed a reshaped
cross entropy loss, called Focal loss as the means to remedy the
imbalance. Focal loss parameter reduces the loss contribution
from easy examples. The authors demonstrate its efficacy with
the help of a simple, single stage detector, called RetinaNet
[67], which predicts objects by dense sampling of the input
image in location, scale and aspect ratio. It uses ResNet [21]
augmented by Feature Pyramid Network (FPN) [45] as the
backbone and two similar subnets - classification and bounding
box regressor. Each layer from the FPN is passed to the
subnets, enabling it to detect objects as various scales. The
classification subnet predicts the object score for each location
while the box regression subnet regresses the offset for each
anchor to the ground truth. Both subnets are small FCN and
share parameters across the individual networks. Unlike most

previous works, the authors employ a class-agnostic bounding
box regressor and found them to be equally effective.

RetinaNet is simple to train, converges faster and easy to
implement. It achieved better performance in accuracy and run
time than the two stage detectors. RetinaNet also pushed the
envelope in advancing the ways object detectors are optimized
by the introduction of a new loss function.

5) YOLOv3: YOLOv3 had “incremental improvements”
from the previous YOLO versions [57], [59]. Redmon et al.
replaced the feature extractor network with a larger Darknet-53
network [64]. They also incorporated various techniques like
data augmentation, multi-scale training, batch normalization,
among others. Softmax in classifier layer was replaced by a
logistical classifier.

Even though YOLOv3 was faster than YOLOv2 [59], it
lacked any ground breaking change from its predecessor. It
even had lesser accuracy than an year old state-of-the-art
detector [67].

6) CenterNet: Zhou et al. in [68] takes a very different
approach of modelling objects as points, instead of the con-
ventional bounding box representation. CenterNet predicts the
object as a single point at the center of the bounding box.
The input image is passed through the FCN that generates a
heatmap, whose peaks correspond to center of detected object.
It uses a ImageNet pretrained stacked Hourglass-101 [69] as
the feature extractor network and has 3 heads – heatmap head
to determine the object center, dimension head to estimate
size of object and offset head to correct offset of object point.
Multitask loss of all three heads is back propagated to feature

2Features created using: https://poloclub.github.io/cnn-explainer/

12

extractor while training. During inference, the output from
offset head is used to determine the object point and finally a
box is generated. As the predictions, not the result, are points
and not bounding boxes, non-maximum suppression (NMS) is
not required for post-processing.

CenterNet brings a fresh perspective and set aside years of
progress in the field of object detection. It is more accurate
and has lesser inference time than its predecessors. It has
high precision for multiple tasks like 3D object detection,
keypoint estimation, pose, instance segmentation, orientation
detection and others. However, it requires different backbone
architectures as general architectures that work well with other
detectors give poor performance with it and vice-versa.

7) EfficientDet: EfficientDet [70] builds towards the idea
of scalable detector with higher accuracy and efficiency. It
introduces efficient multi-scale features, BiFPN and model
scaling. BiFPN is bi-directional feature pyramid network with
learnable weights for cross connection of input features at
different scales. It improves on NAS-FPN [47], which required
heavy training and had complex network, by removing one-
input nodes and adding an extra lateral connection. This
eliminates less efficient nodes and enhances high-level feature
fusion. Unlike existing detectors which scale up with bigger,
deeper backbone or stacking FPN layers, EfficientDet intro-
duces a compounding coefficient which can be used to “jointly
scale up all dimensions of backbone network, BiFPN network,
class/box network and resolution” [70]. EfficientDet utilizes
EfficientNet [27] as the backbone network with multiple sets of
BiFPN layers stacked in series as feature extraction network.
Each output from the final BiFPN layer is sent to class and box
prediction network. The model is trained using SGD optimizer
along with synchronized batch normalization and uses swish
activation [71], instead of the standard ReLU activation, which
is differentiable, more efficient and has better performance.

EfficientDet achieves better efficiency and accuracy than
previous detectors while being smaller and computationally
cheaper. It is easy to scale, generalizes well for other tasks
and is the current state-of-the-art model for single-stage object
detection.

8) YOLOv4: YOLOv4 [61] incorporated a lot of exciting
ideas to design a fast and easy to train object detector that
could work in existing production systems. It utilizes “bag of
freebies” i.e., methods that only increase training time and do
not affect the inference time. YOLOv4 utilizes data augmenta-
tion techniques, regularization methods, class label smoothing,
CIoU-loss [72], Cross mini-Batch Normalization (CmBN) ,
Self-adversarial training, Cosine annealing scheduler [73] and
other tricks to improve training. Methods that only affect the
inference time, called “Bag of Specials”, are also added to the
network, including Mish activation [74], Cross-stage partial
connections (CSP) [25], SPP-Block [41], PAN path aggregated
block [46] , Multi input weighted residual connections (Mi-
WRC), etc. It also used genetic algorithm for searching hyper-
parameter. It has an ImageNet pre-trained CSPNetDarknet-53
backbone, SPP and PAN block neck and YOLOv3 as detection
head.

Most existing detection algorithms require multiple GPUs
to train model, but YOLOv4 can be easily trained on a single

GPU. It is twice as fast as EfficientDet with comparable
performance. It is the state-of-the-art for real time single stage
detectors.

9) Swin Transformer: Transformers [75] have had a pro-
found impact in the Natural Language Processing (NLP)
domain since its inception. Its application in language models
like BERT (Bidirectional Encoder Representation from Trans-
formers) [76], GPT (Generative Pre-trained Transformer) [77],
T5 (Text-To-Text Transfer Transformer) [78] etc. have pushed
the state of the art in the field. Transformers [75] uses the
attention model to establish dependencies among the elements
of the sequence and can a attend to longer context than other
sequential architectures. The success of transformers in NLP
sparked interest in its application in computer vision. While
CNNs have been the backbone on advancement in vision, they
have some inherent shortcomings like the lack of importance
of global context, fixed post-training weights [79] etc.

Swin Transformer [80] seeks to provide a transformer based
backbone for computer vision tasks. It splits the input images
in multiple, non-overlapping patches and converts them into
embeddings. Numerous Swin Transformer blocks are then
applied to the patches in 4 stages, with each successive
stage reducing the number of patches to maintain hierarchical
representation. The Swin Transformer block is composed of
local multi-headed self-attention (MSA) modules, based on
alternating shifted patch window in successive blocks. Com-
putation complexity becomes linear with image size in local
self-attention while shifted window enables cross-window
connection. [80] also shows how shifted windows increase
detection accuracy with little overhead.

Transformers present a paradigm shift from the CNN based
neural networks. While its application in vision is still in a
nascent stage, its potential to replace convolution from these
tasks is very real. Swin Transformer achieved the state-of-the-
art on MS COCO dataset, but utilises comparatively higher
parameters than convolutional models.

VI. LIGHTWEIGHT NETWORKS

A new branch of research has shaped up in recent years,
aimed at designing small and efficient networks for resource
constrained environments as is common in Internet of Things
(IoT) deployments [81]–[84]. This trend has percolated to the
design of potent object detectors too. It is seen that although
a large number of object detectors achieve excellent accuracy
and perform inference in real-time, a majority of these models
require excessive computing resources and therefore cannot be
deployed on edge devices.

Many different approaches have shown exciting results in
the past. Utilization of efficient components and compression
techniques like pruning ([85], [86]), quantization ([87],
[88]), hashing [89], etc. have improved the efficiency of deep
learning models. Use of trained large network to train smaller
models, called distillation [90], has also shown interesting
results. However in this section, we explore some prominent
examples of efficient neural network design for achieving high
performance on edge devices.

13

A. SqueezeNet

Recent advances in the field of CNNs had mostly focused
on improving the state-of-the-art accuracy on the benchmark
datasets, which led to an explosion of model size and their
parameters. But in 2016, Iandola et al. proposed a smaller,
smarter network called SqueezeNet [91], which reduced the
parameters while maintaining the performance. They achieved
it by employing three main design strategies viz. using smaller
filters, decreasing the number of input channels to 3x3 filters
and placing downsampling layers later in the network. The
first two strategies decrease the number of parameters while
attempting to preserve the accuracy and the third strategy
increases the accuracy of the network. The building block
of SqueezeNet is called a fire module, which consist of two
layers: a squeeze layer and an expand layer, each with a
ReLU activation. The squeeze layer is made up of multiple
1x1 filters while the expand layer is a mix of 1x1 and 3x3
filters, thereby limiting the number of input channels. The
SqueezeNet architecture is composed of a stack of 8 Fire
modules squashed in between the convolution layers. Inspired
by ResNet [21], SqueezeNet with residual connections was
also proposed which increased the accuracy over the vanilla
model. The authors also experimented with Deep Compression
[87] and achieved 510× reduction in model size compared to
AlexNet, while maintaining the baseline accuracy. SqueezeNet
presented a good candidate for improving the hardware effi-
ciency of the neural network architectures.

B. MobileNets

MobileNet [92] moved away from the conventional meth-
ods of small models like shrinking, pruning, quantization or
compressing, and instead used efficient network architecture.
The network used depthwise separable convolution, which
factorizes a standard convolution into a depthwise convolution
and a 1x1 pointwise convolution. A standard convolution uses
kernels on all input channels and combines them in one step
while the depthwise convolution uses different kernels for
each input channel and uses pointwise convolution to combine
inputs. This separation of filtering and combining of features
reduces the computation cost and model size. MobileNet
consists of 28 separate convolutional layers, each followed by
batch normalization and ReLU activation function. Howard et
al. also introduced the two model shrinking hyperparameters:
width and resolution multiplier, in order to further improve
speed and reduce size of the model. The width multiplier
manipulates the width of the network uniformly by reducing
the input and output channels while the resolution multiplier
influences the size of the input image and its representations
throughout the network. MobileNet achieves comparable ac-
curacy to some full-fledged models while being a fraction of
their size. Howard et al. also showed how it could generalize
over various applications like face attribution, geolocalization
and object detection. However, it was too simple and linear
like VGG and therefore had fewer avenues for gradient flow.
These were fixed in later iterations of this model [93], [94].

C. ShuffleNet

In 2017, Zhang et al. introduced ShuffleNet [95], an ex-
tremely computationally efficient neural network architecture,
specifically designed for mobile devices. They recognized
that many efficient networks become less effective as they
scale down and purported it to be caused by expensive 1x1
convolutions. In conjunction with channel shuffle, they pro-
posed the use of group convolution to circumvent its drawback
of limited information flow. ShuffleNet consists mainly of a
standard convolution followed by stacks of ShuffleNet units
grouped in three stages. The ShuffleNet unit is similar to
the ResNet block where they use depthwise convolution in
the 3x3 layer and replace the 1x1 layer with pointwise group
convolution. The depthwise convolution layer is preceded by
a channel shuffle operation. The computation cost of the
ShuffleNet can be administered by two hyperparameters: group
number to control the connection sparsity and scaling factor
to manipulate the model size. As group numbers become
large, the error rate saturates as the input channels to each
group decreases and therefore may reduce the representational
capabilities. ShuffleNet outperformed contemporary models (
[3], [18], [91], [92]) while having considerably smaller size.
As the only advancement in ShuffleNet was channel shuffle,
there isn’t any improvement in inference speed of the model.

D. MobileNetv2

Improving on MobileNetv1 [92], Sandler et al. proposed
MobileNetv2 [93] in 2018. It introduced the inverted residual
with linear bottleneck, a novel layer module to reduce com-
putation and improve accuracy. The module expands a low-
dimensional representation of the input into high dimension,
filters with a depthwise convolution and then projects it
back to low dimension, unlike the common residual block
which performs compression, convolution and then expansion
operations. The MobileNetv2 contains a convolution layer
followed by 19 residual bottleneck modules and subsequently
two convolutional layers. The residual bottleneck module has
a shortcut connection only when the stride is 1. For higher
stride, the shortcut is not used because of the difference in
dimensions. They also employed ReLU6 as the non-linearity
function, instead of simple ReLU, to limit computations. For
object detection, the authors used MobileNetv2 as the feature
extractor of a computationally efficient variant of the SSD
[62]. This model, called SSDLite, claimed to have 8x fewer
parameters than the original SSD while achieving competitive
accuracy. It generalizes well over on other datasets, is easy to
implement and hence, was well-received by the community.

E. PeleeNet

Existing lightweight deep learning models like [92], [93],
[95] relied heavily on depthwise separable convolution, which
lacked efficient implementation. Wang et al. proposed a
novel efficient architecture based on conventional convolution,
named PeleeNet [96], using an assortment of computation
conserving techniques. PeleeNet was centered around the
DenseNet [23] but looked at many other models for inspira-
tion. It introduced two-way dense layers, stem block, dynamic

14

number of channels in a bottleneck, transition layer compres-
sion and conventional post activation to reduce computation
cost and increase speed. Inspired from [18], the two-way
dense layer helps in getting different scales of the receptive
field, making it easier to identify larger objects. To reduce
information loss, a stem block was used in the same way
to [20], [97]. They also parted way with the compression
factor used in [23] as it hurts the feature expression and
reduces accuracy. PeleeNet consists of a stem block, four
stages of modified dense and transition layers, and ultimately
the classification layer. The authors also proposed a real-time
object detection system, called Pelee, which was based on
PeleeNet and a variant of SSD [62]. Its performance against
the contemporary object detectors on mobile and edge devices
was incremental but showed how simple design choices can
make a huge difference in overall performance.

F. ShuffleNetv2

In 2018, Ningning Ma et al. present a set of comprehensive
guidelines for designing efficient network architectures in
ShuffleNetv2 [98]. They argued for the use of direct metrics
like speed or latency to measure computational complexity,
instead of indirect metrics like FLOPs. ShuffleNetv2 is built
on four guiding principles – 1) equal width for input and
output channels to minimize memory access cost, 2) carefully
choosing group convolution based on the target platform and
task, 3) multi-path structures achieve higher accuracy at the
cost of efficiency and 4) element-wise operations like add
and ReLU are computationally non-negligible. Following the
above principles, they designed a new building block. It split
the input into two parts by a channel split layer, followed by
three convolutional layers which are then concatenated with
the residual connection and passed through a channel shuffle
layer. For the downsampling model, channel split is removed
and residual connection has depthwise separable convolution
layers. An ensemble of these blocks slotted in between a
couple of convolutional layers results in ShuffleNetv2. The au-
thors also experimented with larger models (50/162 layers) and
obtained superior accuracy with considerably fewer FLOPs.
ShuffleNetv2 punched above its weight and outperformed
other state-of-the-art models at comparable complexity.

G. MnasNet

With the increasing need for accurate, fast and low latency
models for various edge devices, designing such a neural
network is becoming more challenging than ever. In 2018,
Tan et al. proposed Mnasnet [28] designed from an automated
neural architecture search (NAS) approach. They formulate
the search problem as multi-object optimization aimed at
both high accuracy and low latency. It also factorized the
search space by partitioning the CNN into unique blocks and
subsequently searching for operations and connections in those
blocks separately, thereby reducing the search space. This
also allowed each block to have a distinctive design, unlike
the earlier models [99]–[101] which stacked the same blocks.
The authors used RNN-based reinforcement learning agent as
controller along with a trainer to measure accuracy and mobile

devices for latency. Each sampled model is trained on a task to
get its accuracy and run on the real devices for latency. This
is used to achieve a soft reward target and the controller is
updated. The process is repeated until the maximum iterations
or a suitable candidate is derived. It is composed of 16
diverse blocks, some with residual connections. MnasNet was
almost twice as fast as MobileNetv2 while having higher
accuracy. However, like other reinforcement learning based
neural architecture search models, the search time of MnasNet
requires astronomical computational resources.

H. MobileNetv3

At the heart of MobileNetv3 [94] is the same method used
to create MnasNet [28] with some modifications. A platform
aware automated neural architecture search is performed in
a factorized hierarchical search space and consequently opti-
mized by NetAdapt [102], which removes the underutilized
components of the network in multiple iterations. Once an
architecture proposal is obtained, it trims the channels, ran-
domly initialize the weights and then fine-tunes it to im-
prove the target metrics. The model was further modified to
remove some expensive layer in the architecture and gain
additional latency improvement. Howard et al. argued that
the filters in the architecture are often mirrored images of
each other, and that accuracy can be maintained even after
dropping half of these filters. Using this technique reduced
the computations. MobileNetv3 used a blend of ReLU and
hard swish as activation filters, the latter is mostly employed
towards the end of the model. Hard swish has no noticeable
difference from the swish function but is computationally
cheaper while retaining the accuracy. For different resource
use cases, [94] introduced two models – MobileNetv3-Large
and MobileNetv3-Small. MobileNetv3-Large is composed of
15 bottleneck blocks while MobileNetv3-Small has 11. It also
included squeeze and excitation layer [56] on its building
blocks. Similar to [93], these model act as a feature detector
in SSDLite and is 35% faster than earlier iterations [28], [93],
whilst achieving higher mAP.

I. Once-For-All (OFA)

The use of neural architecture search (NAS) for architecture
design has produced state-of-the-art models in the past few
years, however, they are compute expensive because of the
sampled model training. Cai et al. in [103] proposed a novel
method of decoupling model training stage and the neural
architecture search stage. The model is trained only once and
sub-networks can be distilled from it as per the requirements.
Once-for-all (OFA) network provides flexibility for such sub-
networks in four important dimension of a convolutional
neural network – depth, width, kernel size and dimension. As
they are nested within the OFA network and interfere with
the training, progressive shrinking was introduced. First, the
largest network is trained with all parameters set to maximum.
Subsequently, network is fine-tuned by gradually reducing the
parameter dimensions like kernel size, depth and width. For
elastic kernel, a center of the large kernel is used as the
small kernel. As the center is shared, a kernel transformation

15

TABLE III: Performance comparison of various object detectors on MS COCO and PASCAL VOC 2012 datasets at similar
input image size.

Model Year Backbone Size AP[0.5:0.95] AP0.5 FPS
R-CNN* 2014 AlexNet 224 - 58.50% ∼0.02
SPP-Net* 2015 ZF-5 Variable - 59.20% ∼0.23
Fast R-CNN* 2015 VGG-16 Variable - 65.70% ∼0.43
Faster R-CNN* 2016 VGG-16 600 - 67.00% 5
R-FCN 2016 ResNet-101 600 31.50% 53.20% ∼3
FPN 2017 ResNet-101 800 36.20% 59.10% 5
Mask R-CNN 2018 ResNeXt-101-FPN 800 39.80% 62.30% 5
DetectoRS 2020 ResNeXt-101 1333 53.30% 71.60% ∼4
YOLO* 2015 (Modified) GoogLeNet 448 - 57.90% 45
SSD 2016 VGG-16 300 23.20% 41.20% 46
YOLOv2 2016 DarkNet-19 352 21.60% 44.00% 81
RetinaNet 2018 ResNet-101-FPN 400 31.90% 49.50% 12
YOLOv3 2018 DarkNet-53 320 28.20% 51.50% 45
CenterNet 2019 Hourglass-104 512 42.10% 61.10% 7.8
EfficientDet-D2 2020 Efficient-B2 768 43.00% 62.30% 41.7
YOLOv4 2020 CSPDarkNet-53 512 43.00% 64.90% 31
Swin-L 2021 HTC++ - 57.70% - -
aModels marked with * are compared on PASCAL VOC 2012, while others on MS COCO.Rows colored gray are real-time detectors (>30 FPS).

TABLE IV: Comparison of Lightweight models.

Model Year Top-1
Acc%

Latency
(ms)

Parameters
(Million)

FLOPs
(Million)

SqueezeNet 2016 60.5 - 3.2 833
MobileNet 2017 70.6 113 4.2 569
ShuffleNet 2017 73.3 108 5.4 524
MobileNetv2 2018 74.7 143 6.9 300
PeleeNet 2018 72.6 - 2.8 508
ShuffleNetv2 2018 75.4 178 7.4 597
MnasNet 2018 76.7 103 5.2 403
MobileNetv3 2019 75.2 58 5.4 219
OFA 2020 80.0 58 7.7 595

matrix is used to maintain performance. To vary depth, the first
few layers are used and the rest are skipped from the large
network. Elastic width employs a channel sorting operation
to reorganize channels and uses the most important ones
in smaller models. OFA achieved state-of-the-art of 80% in
ImageNet top-1 accuracy percentage and also won the 4th Low
Power Computer Vision Challenge (LPCVC) while reducing
many order of magnitude of GPU training hours. It shows a
new paradigm of designing lightweight models for a variety
of hardware requirements.

VII. COMPARATIVE RESULTS

We compare the performance of both single and two stage
detectors on PASCAL VOC 2012 [10] and Microsoft COCO
[13] datasets. Performance of object detectors is influenced by
a number of factors like input image size and scale, feature
extractor, GPU architecture, number of proposals, training
methodology, loss function etc., which makes it difficult
to compare various models without a common benchmark
environment. Here in table III, we evaluate performance of
models based on the results from their papers. Models are
compared on average precision (AP) and processed frames
per second (FPS) at inference time. AP0.5 is the average
precision of all classes when predicted bounding box has
an IoU > 0.5 with ground truth. COCO dataset introduced
another performance metric AP[0.5:0.95], or simply AP, which
is the average AP for IoU from 0.5 to 0.95 in step size of
0.5. We intentionally compare the performances of detectors

06/2016 11/2017 03/2019 07/2020
20

30

40

50

60

FPN
Mask R-CNN

SSD

YOLOv2

RetinaNet
YOLOv3

CenterNet

EfficientDet-D7

YOLOv4

DetectoRS

R-FCN

Swin-L

Release

A
ve

ra
ge

Pr
ec

is
io

n

Fig. 10: Performance of Object Detectors on MS COCO
dataset.

on similarly size input image, where possible, to provide a
reasonable account, as authors often introduce an array of
models to provide flexibility between accuracy and inference
time. In fig. 10, we use only the state-of-the-art model from the
possible array of object detector family of models. Lightweight
models are compared in table IV where we compare them
on ImageNet Top-1 classification accuracy, latency, number of
parameters and complexity in MFLOPs. Models with MFLOPs
lesser than 600 are expected to perform adequately on mobile
devices.

VIII. FUTURE TRENDS

Object detection has seen tremendous progress in the last
decade. The algorithm have almost reached human level
accuracy in some narrow domains, however it still has many
exciting challenges to tackle. In this section, we discuss some
of the open problem in the field of object detection.

AutoML: The use of automatic neural architecture search
(NAS) for determining the characteristics of object detector
is already an actively growing area. We have shown some

16

detectors designed by NAS in earlier sections, however, it is
still in its nascency. Searching for an algorithm is complex
and resource intensive.

Lightweight detectors: While lightweight networks have
shown great promise by matching classification errors with
the full-fledged models, they still lack in detection accuracy
by more than 50%. As more and more on-device machine
learning applications are added to the market, need for small,
efficient and equally accurate models will rise.

Weakly supervised/few shot detection: Most of the state-
of-the-art object detection models are trained on millions of
bounding box annotated data, which is unscalable as annotat-
ing data requires time and resources. Ability to train on weakly
supervised data, i.e. image level labelled data, cold result in
considerable reduction in these costs.

Domain transfer: Domain transfer refers to use of a model
trained on labeled image of a particular source task on a
separate, but related target task. It encourages reuse of trained
model and reduces reliance on the availability of a large dataset
to achieve high accuracy.

3D object detection: 3D object detection is a particularly
critical problem for autonomous driving. Even though models
have achieved high accuracy, deployment of anything below
human level performance will bring up safety concerns.

Object detection in video: Object detectors are designed to
perform on individual image which lack correlation between
themselves. Using spatial and temporal relationship between
the frames for object recognition is an open problem.

IX. CONCLUSION

Even though object detection has come a long way in the
past decade, the best detectors are still far from saturation in
performance. As its applications increase in real world, the
need for lightweight models that can be deployed on mobile
and embedded systems is going to increase exponentially.
There has been a rising interest in this domain, but it is still an
open challenge. In this paper, we have shown how two-stage
and single stage detectors developed over their predecessors.
While the two stage detectors are generally more accurate, they
are slow and cannot be used for real-time applications like self-
driving cars or security. However, this has changed in the last
few year where one stage detectors are equally accurate and
much faster than the former. As evident in Figure 10, Swin
Transformer is the most accurate detector till date. With the
current positive trend in the accuracy of detectors, we have
high hopes for more accurate and faster detectors.

REFERENCES

[1] P. Viola and M. Jones, “Rapid object detection using a boosted cascade
of simple features,” in Proceedings of the 2001 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition.
CVPR 2001, vol. 1. IEEE Comput. Soc, 2001, pp. I–511–I–518.
[Online]. Available: http://ieeexplore.ieee.org/document/990517/

[2] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in 2005 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’05), vol. 1, 2005-06, pp. 886–
893 vol. 1, ISSN: 1063-6919.

[3] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems, F. Pereira, C. J. C. Burges, L. Bottou,
and K. Q. Weinberger, Eds. Curran Associates, Inc.

[4] Z. Zou, Z. Shi, Y. Guo, and J. Ye, “Object detection in 20 years: A
survey.” [Online]. Available: http://arxiv.org/abs/1905.05055

[5] L. Liu, W. Ouyang, X. Wang, P. Fieguth, J. Chen, X. Liu, and
M. Pietikäinen, “Deep learning for generic object detection: A survey,”
version: 1. [Online]. Available: http://arxiv.org/abs/1809.02165

[6] K. S. Chahal and K. Dey, “A survey of modern object detection
literature using deep learning.” [Online]. Available: http://arxiv.org/
abs/1808.07256

[7] L. Jiao, F. Zhang, F. Liu, S. Yang, L. Li, Z. Feng, and R. Qu,
“A survey of deep learning-based object detection,” vol. 7, pp.
128 837–128 868. [Online]. Available: http://arxiv.org/abs/1907.09408

[8] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman, “The pascal visual object classes (VOC)
challenge,” vol. 88, no. 2, pp. 303–338. [Online]. Available:
http://link.springer.com/10.1007/s11263-009-0275-4

[9] ——, “The PASCAL Visual Object Classes Chal-
lenge 2007 (VOC2007) Results,” http://www.pascal-
network.org/challenges/VOC/voc2007/workshop/index.html.

[10] M. Everingham and J. Winn, “The PASCAL visual object classes
challenge 2012 (VOC2012) development kit,” p. 32.

[11] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and
L. Fei-Fei, “ImageNet large scale visual recognition challenge,” vol.
115, no. 3, pp. 211–252. [Online]. Available: https://doi.org/10.1007/
s11263-015-0816-y

[12] J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in 2009 IEEE Conference
on Computer Vision and Pattern Recognition, pp. 248–255, ISSN:
1063-6919.

[13] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in Computer Vision – ECCV 2014, D. Fleet, T. Pajdla,
B. Schiele, and T. Tuytelaars, Eds. Cham: Springer International
Publishing, 2014, pp. 740–755.

[14] A. Kuznetsova, H. Rom, N. Alldrin, J. Uijlings, I. Krasin, J. Pont-
Tuset, S. Kamali, S. Popov, M. Malloci, A. Kolesnikov, T. Duerig, and
V. Ferrari, “The open images dataset v4,” vol. 128, no. 7, pp. 1956–
1981. [Online]. Available: https://doi.org/10.1007/s11263-020-01316-z

[15] A. Aslam and E. Curry, “A survey on object detection for the internet
of multimedia things (iomt) using deep learning and event-based
middleware: Approaches, challenges, and future directions,” Image and
Vision Computing, vol. 106, p. 104095, 2021.

[16] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolu-
tional networks,” in Computer Vision – ECCV 2014, ser. Lecture Notes
in Computer Science, D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars,
Eds. Springer International Publishing, pp. 818–833.

[17] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition.” [Online]. Available: http://arxiv.
org/abs/1409.1556

[18] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions.” [Online]. Available: http://arxiv.org/abs/1409.4842

[19] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna,
“Rethinking the inception architecture for computer vision,” in 2016
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). IEEE, pp. 2818–2826. [Online]. Available: http://ieeexplore.
ieee.org/document/7780677/

[20] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, “Inception-v4,
inception-ResNet and the impact of residual connections on learning.”
[Online]. Available: http://arxiv.org/abs/1602.07261

[21] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 770–778.

[22] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep
residual networks.” [Online]. Available: http://arxiv.org/abs/1603.05027

[23] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger,
“Densely connected convolutional networks.” [Online]. Available:
http://arxiv.org/abs/1608.06993

[24] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual
transformations for deep neural networks.” [Online]. Available:
http://arxiv.org/abs/1611.05431

[25] C.-Y. Wang, H.-Y. M. Liao, I.-H. Yeh, Y.-H. Wu, P.-Y. Chen,
and J.-W. Hsieh, “CSPNet: A new backbone that can enhance
learning capability of CNN,” version: 1. [Online]. Available:
http://arxiv.org/abs/1911.11929

http://ieeexplore.ieee.org/document/990517/
http://arxiv.org/abs/1905.05055
http://arxiv.org/abs/1809.02165
http://arxiv.org/abs/1808.07256
http://arxiv.org/abs/1808.07256
http://arxiv.org/abs/1907.09408
http://link.springer.com/10.1007/s11263-009-0275-4
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-020-01316-z
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.4842
http://ieeexplore.ieee.org/document/7780677/
http://ieeexplore.ieee.org/document/7780677/
http://arxiv.org/abs/1602.07261
http://arxiv.org/abs/1603.05027
http://arxiv.org/abs/1608.06993
http://arxiv.org/abs/1611.05431
http://arxiv.org/abs/1911.11929

17

[26] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “Scaled-
YOLOv4: Scaling cross stage partial network.” [Online]. Available:
http://arxiv.org/abs/2011.08036

[27] M. Tan and Q. V. Le, “EfficientNet: Rethinking model scaling for
convolutional neural networks.” [Online]. Available: http://arxiv.org/
abs/1905.11946

[28] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard,
and Q. V. Le, “MnasNet: Platform-aware neural architecture search
for mobile.” [Online]. Available: https://arxiv.org/abs/1807.11626v3

[29] D. G. Lowe, “Distinctive image features from scale-invariant
keypoints,” vol. 60, no. 2, pp. 91–110. [Online]. Available:
https://doi.org/10.1023/B:VISI.0000029664.99615.94

[30] ——, “Object recognition from local scale-invariant features,” in Pro-
ceedings of the Seventh IEEE International Conference on Computer
Vision, vol. 2, pp. 1150–1157 vol.2.

[31] A. Mohan, C. Papageorgiou, and T. Poggio, “Example-based object
detection in images by components,” vol. 23, no. 4, pp. 349–361.
[Online]. Available: http://ieeexplore.ieee.org/document/917571/

[32] Yan Ke and R. Sukthankar, “PCA-SIFT: a more distinctive repre-
sentation for local image descriptors,” in Proceedings of the 2004
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, 2004. CVPR 2004., vol. 2, pp. II–II, ISSN: 1063-6919.

[33] P. Felzenszwalb, D. McAllester, and D. Ramanan, “A discriminatively
trained, multiscale, deformable part model,” in 2008 IEEE Conference
on Computer Vision and Pattern Recognition, pp. 1–8, ISSN: 1063-
6919.

[34] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan,
“Object detection with discriminatively trained part-based models,”
vol. 32, no. 9, pp. 1627–1645.

[35] P. F. Felzenszwalb, R. B. Girshick, and D. McAllester, “Cascade
object detection with deformable part models,” in 2010 IEEE
Computer Society Conference on Computer Vision and Pattern
Recognition. IEEE, pp. 2241–2248. [Online]. Available: http:
//ieeexplore.ieee.org/document/5539906/

[36] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2014.

[37] J. R. R. Uijlings, T. Gevers, and A. W. M. Smeulders, “Selective search
for object recognition,” p. 18.

[38] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. Hubbard, and L. D. Jackel, “Backpropagation applied to handwritten
zip code recognition,” vol. 1, no. 4, pp. 541–551, publisher: MIT
Press. [Online]. Available: https://doi.org/10.1162/neco.1989.1.4.541

[39] R. Girshick, “Fast r-cnn,” in 2015 IEEE International Conference on
Computer Vision (ICCV), 2015, pp. 1440–1448.

[40] K. Grauman and T. Darrell, “The pyramid match kernel: discriminative
classification with sets of image features,” in Tenth IEEE International
Conference on Computer Vision (ICCV’05) Volume 1, vol. 2, pp. 1458–
1465 Vol. 2, ISSN: 2380-7504.

[41] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in
deep convolutional networks for visual recognition,” vol. 37, no. 9, pp.
1904–1916, conference Name: IEEE Transactions on Pattern Analysis
and Machine Intelligence.

[42] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture
for fast feature embedding,” in Proceedings of the 22nd ACM
international conference on Multimedia, ser. MM ’14. Association
for Computing Machinery, pp. 675–678. [Online]. Available: https:
//doi.org/10.1145/2647868.2654889

[43] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” p. 10.

[44] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” 2016.

[45] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie,
“Feature pyramid networks for object detection,” 2017.

[46] S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia, “Path aggregation
network for instance segmentation.” [Online]. Available: http:
//arxiv.org/abs/1803.01534

[47] G. Ghiasi, T.-Y. Lin, and Q. V. Le, “NAS-FPN: Learning
scalable feature pyramid architecture for object detection,” in
2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). IEEE, pp. 7029–7038. [Online]. Available:
https://ieeexplore.ieee.org/document/8954436/

[48] J. Dai, Y. Li, K. He, and J. Sun, “R-fcn: Object detection via region-
based fully convolutional networks,” 2016.

[49] A. Shrivastava, A. Gupta, and R. Girshick, “Training region-based
object detectors with online hard example mining,” 2016.

[50] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” 2018.
[51] K. Chen, J. Pang, J. Wang, Y. Xiong, X. Li, S. Sun, W. Feng,

Z. Liu, J. Shi, W. Ouyang, C. C. Loy, and D. Lin, “Hybrid
task cascade for instance segmentation.” [Online]. Available: https:
//arxiv.org/abs/1901.07518v2

[52] Z. Cai and N. Vasconcelos, “Cascade r-CNN: Delving into high
quality object detection.” [Online]. Available: https://arxiv.org/abs/
1712.00726v1

[53] S. Qiao, L.-C. Chen, and A. Yuille, “DetectoRS: Detecting objects
with recursive feature pyramid and switchable atrous convolution.”
[Online]. Available: http://arxiv.org/abs/2006.02334

[54] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“DeepLab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected CRFs.” [Online]. Available:
http://arxiv.org/abs/1606.00915

[55] M. Holschneider, R. Kronland-Martinet, J. Morlet, and
P. Tchamitchian, “A real-time algorithm for signal analysis with
the help of the wavelet transform,” in Wavelets, ser. inverse
problems and theoretical imaging, J.-M. Combes, A. Grossmann, and
P. Tchamitchian, Eds. Springer, pp. 286–297.

[56] J. Hu, L. Shen, S. Albanie, G. Sun, and E. Wu, “Squeeze-and-excitation
networks.” [Online]. Available: http://arxiv.org/abs/1709.01507

[57] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2016, pp. 779–788.

[58] M. Lin, Q. Chen, and S. Yan, “Network in network.” [Online].
Available: http://arxiv.org/abs/1312.4400

[59] J. Redmon and A. Farhadi, “YOLO9000: Better, faster, stronger.”
[Online]. Available: https://arxiv.org/abs/1612.08242v1

[60] ——, “Yolov3: An incremental improvement,” 2018.
[61] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “YOLOv4:

Optimal speed and accuracy of object detection.” [Online]. Available:
http://arxiv.org/abs/2004.10934

[62] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and
A. C. Berg, “SSD: Single shot MultiBox detector,” in Computer Vision
– ECCV 2016, B. Leibe, J. Matas, N. Sebe, and M. Welling, Eds.
Springer International Publishing, pp. 21–37.

[63] D. Erhan, C. Szegedy, A. Toshev, and D. Anguelov, “Scalable object
detection using deep neural networks,” 2013.

[64] J. Redmon, “Darknet: Open source neural networks in c,” http://
pjreddie.com/darknet/, 2013–2016.

[65] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on ImageNet classification,” in
2015 IEEE International Conference on Computer Vision (ICCV).
IEEE, pp. 1026–1034. [Online]. Available: http://ieeexplore.ieee.org/
document/7410480/

[66] G. Miller, R. Beckwith, C. Fellbaum, D. Gross, and K. Miller,
“Introduction to WordNet: An on-line lexical database*,” vol. 3.

[67] T. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for
dense object detection,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 42, no. 2, pp. 318–327, 2020.

[68] X. Zhou, D. Wang, and P. Krähenbühl, “Objects as points.” [Online].
Available: http://arxiv.org/abs/1904.07850

[69] A. Newell, K. Yang, and J. Deng, “Stacked hourglass networks for
human pose estimation,” in Computer Vision – ECCV 2016, ser.
Lecture Notes in Computer Science, B. Leibe, J. Matas, N. Sebe, and
M. Welling, Eds. Springer International Publishing, pp. 483–499.

[70] M. Tan, R. Pang, and Q. V. Le, “EfficientDet: Scalable and efficient
object detection,” in 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). IEEE, pp. 10 778–10 787. [Online].
Available: https://ieeexplore.ieee.org/document/9156454/

[71] P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for activation
functions.” [Online]. Available: http://arxiv.org/abs/1710.05941

[72] Z. Zheng, P. Wang, W. Liu, J. Li, R. Ye, and D. Ren, “Distance-IoU
loss: Faster and better learning for bounding box regression.” [Online].
Available: http://arxiv.org/abs/1911.08287

[73] I. Loshchilov and F. Hutter, “SGDR: Stochastic gradient descent with
warm restarts.” [Online]. Available: http://arxiv.org/abs/1608.03983

[74] D. Misra, “Mish: A self regularized non-monotonic activation
function.” [Online]. Available: http://arxiv.org/abs/1908.08681

[75] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,” 2017.

[76] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” 2019.

[77] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving
language understanding by generative pre-training,” 2018.

http://arxiv.org/abs/2011.08036
http://arxiv.org/abs/1905.11946
http://arxiv.org/abs/1905.11946
https://arxiv.org/abs/1807.11626v3
https://doi.org/10.1023/B:VISI.0000029664.99615.94
http://ieeexplore.ieee.org/document/917571/
http://ieeexplore.ieee.org/document/5539906/
http://ieeexplore.ieee.org/document/5539906/
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1145/2647868.2654889
https://doi.org/10.1145/2647868.2654889
http://arxiv.org/abs/1803.01534
http://arxiv.org/abs/1803.01534
https://ieeexplore.ieee.org/document/8954436/
https://arxiv.org/abs/1901.07518v2
https://arxiv.org/abs/1901.07518v2
https://arxiv.org/abs/1712.00726v1
https://arxiv.org/abs/1712.00726v1
http://arxiv.org/abs/2006.02334
http://arxiv.org/abs/1606.00915
http://arxiv.org/abs/1709.01507
http://arxiv.org/abs/1312.4400
https://arxiv.org/abs/1612.08242v1
http://arxiv.org/abs/2004.10934
http://pjreddie.com/darknet/
http://pjreddie.com/darknet/
http://ieeexplore.ieee.org/document/7410480/
http://ieeexplore.ieee.org/document/7410480/
http://arxiv.org/abs/1904.07850
https://ieeexplore.ieee.org/document/9156454/
http://arxiv.org/abs/1710.05941
http://arxiv.org/abs/1911.08287
http://arxiv.org/abs/1608.03983
http://arxiv.org/abs/1908.08681

18

[78] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,
Y. Zhou, W. Li, and P. J. Liu, “Exploring the limits of transfer
learning with a unified text-to-text transformer,” Journal of Machine
Learning Research, vol. 21, no. 140, pp. 1–67, 2020. [Online].
Available: http://jmlr.org/papers/v21/20-074.html

[79] S. Khan, M. Naseer, M. Hayat, S. W. Zamir, F. S. Khan, and M. Shah,
“Transformers in vision: A survey,” arXiv preprint arXiv:2101.01169,
2021.

[80] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and
B. Guo, “Swin transformer: Hierarchical vision transformer using
shifted windows,” 2021.

[81] M. N. Abbas, M. S. Ansari, M. N. Asghar, N. Kanwal, T. O’Neill, and
B. Lee, “Lightweight deep learning model for detection of copy-move
image forgery with post-processed attacks,” in 2021 IEEE 19th World
Symposium on Applied Machine Intelligence and Informatics (SAMI).
IEEE, 2021, pp. 000 125–000 130.

[82] S. Karakanis and G. Leontidis, “Lightweight deep learning models for
detecting covid-19 from chest x-ray images,” Computers in Biology
and Medicine, vol. 130, p. 104181, 2021.

[83] A. Jadon, A. Varshney, and M. S. Ansari, “Low-complexity high-
performance deep learning model for real-time low-cost embedded fire
detection systems,” Procedia Computer Science, vol. 171, pp. 418–426,
2020.

[84] A. Jadon, M. Omama, A. Varshney, M. S. Ansari, and R. Sharma,
“Firenet: a specialized lightweight fire & smoke detection model for
real-time iot applications,” arXiv preprint arXiv:1905.11922, 2019.

[85] Y. L. Cun, J. S. Denker, and S. A. Solla, Optimal Brain Damage.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1990, p.
598–605.

[86] B. Hassibi, D. G. Stork, and G. J. Wolff, “Optimal brain surgeon and
general network pruning,” in IEEE International Conference on Neural
Networks, 1993, pp. 293–299 vol.1.

[87] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding.” [Online]. Available: http://arxiv.org/abs/1510.00149

[88] M. Courbariaux, Y. Bengio, and J.-P. David, “BinaryConnect: Training
deep neural networks with binary weights during propagations.”
[Online]. Available: http://arxiv.org/abs/1511.00363

[89] W. Chen, J. T. Wilson, S. Tyree, K. Q. Weinberger, and Y. Chen,
“Compressing neural networks with the hashing trick.” [Online].
Available: http://arxiv.org/abs/1504.04788

[90] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a
neural network.” [Online]. Available: http://arxiv.org/abs/1503.02531

[91] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J.
Dally, and K. Keutzer, “SqueezeNet: AlexNet-level accuracy with
50x fewer parameters and <0.5mb model size.” [Online]. Available:
http://arxiv.org/abs/1602.07360

[92] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “MobileNets: Efficient
convolutional neural networks for mobile vision applications.”
[Online]. Available: http://arxiv.org/abs/1704.04861

[93] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“MobileNetV2: Inverted residuals and linear bottlenecks.” [Online].
Available: http://arxiv.org/abs/1801.04381

[94] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan,
W. Wang, Y. Zhu, R. Pang, V. Vasudevan, Q. V. Le, and
H. Adam, “Searching for MobileNetV3.” [Online]. Available:
https://arxiv.org/abs/1905.02244v5

[95] X. Zhang, X. Zhou, M. Lin, and J. Sun, “ShuffleNet: An
extremely efficient convolutional neural network for mobile devices,”
in 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition. IEEE, pp. 6848–6856. [Online]. Available: https:
//ieeexplore.ieee.org/document/8578814/

[96] R. J. Wang, X. Li, and C. X. Ling, “Pelee: A real-time object detection
system on mobile devices,” p. 10.

[97] Z. Shen, Z. Liu, J. Li, Y.-G. Jiang, Y. Chen, and X. Xue, “DSOD:
Learning deeply supervised object detectors from scratch.” [Online].
Available: http://arxiv.org/abs/1708.01241

[98] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “ShuffleNet v2: Practical
guidelines for efficient CNN architecture design.” [Online]. Available:
http://arxiv.org/abs/1807.11164

[99] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning.” [Online]. Available: https://arxiv.org/abs/1611.01578v2

[100] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei,
A. Yuille, J. Huang, and K. Murphy, “Progressive neural architecture
search.” [Online]. Available: https://arxiv.org/abs/1712.00559v3

[101] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regularized evolution
for image classifier architecture search,” vol. 33, no. 1, pp. 4780–4789,
number: 01. [Online]. Available: https://ojs.aaai.org/index.php/AAAI/
article/view/4405

[102] T.-J. Yang, A. Howard, B. Chen, X. Zhang, A. Go, M. Sandler,
V. Sze, and H. Adam, “NetAdapt: Platform-aware neural network
adaptation for mobile applications.” [Online]. Available: http:
//arxiv.org/abs/1804.03230

[103] H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han, “Once-for-all: Train
one network and specialize it for efficient deployment,” 2020.

http://jmlr.org/papers/v21/20-074.html
http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1511.00363
http://arxiv.org/abs/1504.04788
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1602.07360
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1801.04381
https://arxiv.org/abs/1905.02244v5
https://ieeexplore.ieee.org/document/8578814/
https://ieeexplore.ieee.org/document/8578814/
http://arxiv.org/abs/1708.01241
http://arxiv.org/abs/1807.11164
https://arxiv.org/abs/1611.01578v2
https://arxiv.org/abs/1712.00559v3
https://ojs.aaai.org/index.php/AAAI/article/view/4405
https://ojs.aaai.org/index.php/AAAI/article/view/4405
http://arxiv.org/abs/1804.03230
http://arxiv.org/abs/1804.03230

	I Introduction
	II Background
	II-A Problem Statement
	II-B Key challenges in Object Detection

	III Datasets and Evaluation Metrics
	III-A Datasets
	III-A1 PASCAL VOC 07/12
	III-A2 ILSVRC
	III-A3 MS-COCO
	III-A4 Open Image
	III-A5 Issues of Data Skew/Bias

	III-B Metrics

	IV Backbone architectures
	IV-A AlexNet
	IV-B VGG
	IV-C GoogLeNet/Inception
	IV-D ResNets
	IV-E ResNeXt
	IV-F CSPNet
	IV-G EfficientNet

	V Object Detectors
	V-A Pioneer Work
	V-A1 Viola-Jones
	V-A2 HOG Detector
	V-A3 DPM

	V-B Two-Stage Detectors
	V-B1 R-CNN
	V-B2 SPP-Net
	V-B3 Fast R-CNN
	V-B4 Faster R-CNN
	V-B5 FPN
	V-B6 R-FCN
	V-B7 Mask R-CNN
	V-B8 DetectoRS

	V-C Single Stage Detectors
	V-C1 YOLO
	V-C2 SSD
	V-C3 YOLOv2 and YOLO9000
	V-C4 RetinaNet
	V-C5 YOLOv3
	V-C6 CenterNet
	V-C7 EfficientDet
	V-C8 YOLOv4
	V-C9 Swin Transformer

	VI Lightweight Networks
	VI-A SqueezeNet
	VI-B MobileNets
	VI-C ShuffleNet
	VI-D MobileNetv2
	VI-E PeleeNet
	VI-F ShuffleNetv2
	VI-G MnasNet
	VI-H MobileNetv3
	VI-I Once-For-All (OFA)

	VII Comparative Results
	VIII Future Trends
	IX Conclusion
	References

