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Abstract 

Rheumatoid Arthritis (RA) is a chronic autoimmune disease which is characterised by a loss 

of immune tolerance, and an infiltration of immune cells into joints causing inflammation. 

Current pharmaceutical treatments for RA have adverse side effects and many patients do not 

respond favourably to them. Human umbilical cord mesenchymal stem cells (UCMSCs) 

present a promising alternative therapeutic due to their innate anti-inflammatory properties. 

Evidence from in vitro and in vivo studies of autoimmune diseases show that UCMSCs exert 

strong immunosuppressive effects. The therapeutic mechanism of action has been attributed to 

paracrine signalling, by which nanosized acellular particles called ‘extracellular vesicles’ 

(EVs) are one of the essential components. As UCMSC-mediated immunosuppression involves 

the use of EVs, and there are some safety concerns associated with MSC transplants, the anti-

inflammatory properties of their EVs were explored with the aim to see if they too were capable 

of immunosuppression.  

In this thesis, UCMSCs were sourced from previous work looking at large scale cell expansion 

in the Quantum® bioreactor. UCMSCs were characterised and analysed based on their growth, 

morphology, and surface marker production before isolating EVs. Bone Marrow derived MSCs 

were also characterised and served as an MSC control. UCMSCs proliferated well in culture, 

had a spindle-like morphology, and produced cell surface markers in line with the International 

Society for Cell Therapy (ISCT) criteria for MSCs. The growth of UCMSCs in hypoxic and 

pro-inflammatory environments has been associated with a stronger anti-inflammatory 

response. Therefore, UCMSCs were cultured in normoxia (21% O2), hypoxia (5% O2) and 

‘primed’ with pro-inflammatory cytokines in both normoxia and hypoxia. The aim was to see 

if their EVs, like the cells, had enhanced anti-inflammatory properties. Analysis of the EV 

protein cargo identified an increase in proteins associated with chemotaxis (MCP2, MCP4 
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CCL3, CCL11) in the pro-inflammatory primed EVs from both normoxic and hypoxic 

conditions. There was also an increased expression of the anti-inflammatory proteins MMP-10 

in the normoxic/primed EVs, and LIF and TRAIL in the hypoxic/primed EVs. Normoxic, 

hypoxic and normoxic/primed EVs were analysed through RNA sequencing. RNA sequencing 

of UCMSC-EVs had not been carried out before on hypoxic and normoxic/pro-inflammatory 

primed EVs and it identified differentially expressed miRNAs with potential anti-inflammatory 

properties (miR-139-5p, miR-140-5p, miR-214-5p) in the normoxic/primed EVs only. 

Findings also showed that the upregulated miRNAs had a low expression and were associated 

with cancer pathways. 

These normoxic and normoxic/primed UCMSC-EVs were used in functional in vitro studies 

and co-cultured with individual cultures of peripheral blood mononuclear cells (PBMCs) from 

healthy donors, and with Jurkat lymphoblastic T-cells. The co-culturing of UCMSC-EVs with 

Jurkat cells is the first of its kind and results revealed that the pro-inflammatory primed EVs 

reduced the production of the inflammatory cytokine IL-17A in Jurkat cells as assessed via 

flow cytometry. Furthermore, the normoxic/primed EVs increased the production of the anti-

inflammatory protein FoxP3 in PBMCs. Neither normoxic nor normoxic/primed EVs exerted 

a pro-inflammatory effect on PBMCs and Jurkat cells. Instead, the findings point towards 

potential anti-inflammatory properties of normoxic/primed UCMSC-EVs, but further work is 

needed to establish their suitability for treating RA. 
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1.1 Rheumatoid Arthritis 

1.1.1 Overview and epidemiology of RA 

Rheumatoid arthritis (RA) is a chronic, inflammatory autoimmune disease characterised by 

joint inflammation, erosion of bone and cartilage, the presence of autoantibodies and 

citrullinated proteins, and other systemic conditions such as cardiovascular, pulmonary and 

musculoskeletal disorders [1,2]. There is a breakdown in immune tolerance which results in an 

invasion of immune cells into joints [3,4]. This triggers a cascade of processes that leads to 

cartilage damage, endothelial cell activation, synovial cell hyperplasia and eventually bone 

erosion [3,4] (Figure 1). RA can be divided into two categories: ‘seropositive’ and 

‘seronegative’, with seropositive RA denoting the presence of autoantibodies such as 

Rheumatoid Factors and anti-citrullinated protein antibodies (ACPA) [5]. These autoantibodies 

can be present in the serum years before an RA diagnosis, in a period that has been described 

as ‘Preclinical RA’ [5]. Patients with seropositive RA generally have a more severe disease 

progression than those with seronegative RA [6]. 

 

It is estimated that approximately 4.3x105 people are living with rheumatoid arthritis in the UK 

[7]. It affects adults of any age but its peak of onset is between 40-60 years old [7]. 

Epidemiological studies of RA are limited, but there appears to be a geographical variance with 

the highest prevalence in Australasia (0.46%), Western Europe (0.44%) and North America 

(0.44%) and the lowest levels in Asia and North Africa (0.16%) [8]. Both genetic and 

environmental factors contribute to the prevalence of RA in a population. For example, 

researchers have found a strong link between RA and the ‘shared epitope’ (SE) of the human 

leukocyte antigen (HLA) [5]. More than 80% of RA patients carry the HLA-DRB1 alleles 

which are associated with greater disease severity such as cartilage destruction [9] and the 
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production of ACPAs [10]. Different subtypes of the SE vary amongst ethnic groups which 

may account for differences in prevalence stated above. Additionally, polymorphisms to the 

gene CYP17 often found in a Chinese population is associated with a reduced risk of RA. 

Environmental factors such as a high BMI [11,12], a high incidence of tobacco smoking 

[2,13,14] and exposure to pollutants [15–17] are all associated with greater risk of developing 

RA. As these environmental factors differ between populations, this may account for some 

geographical variances in the prevalence of RA. 

 

The global prevalence of RA is 0.24% and is two times higher in females compared to males 

[8]. The difference between females and males may be explained by the link between RA and 

female reproductive hormones, menopause, or polycystic ovary syndrome. Specifically, 

studies have shown that menopause, polycystic ovary syndrome, endometriosis, and hormone 

replacement therapy all present a greater risk of developing RA [18,19]  
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Figure 1: Comparison of healthy vs RA joint 

Visual representation of a healthy knee joint (left) compared to a knee joint affected by RA (right). 

Morphological changes in the RA knee include an infiltration of immune cells, inflammation of the 

synovial lining, formation of new blood vessels (angiogenesis) and erosion of bone and cartilage. Image 

adapted from Wollbold et al. [20]. 

 

1.1.2 Genetic link to RA 

A lot of research has gone into establishing a cause of RA but, at present, no one definitive 

cause has been discovered. Instead, it is known that there is an interplay of different genetic, 

environmental and autoimmune factors that trigger the onset of RA, a term that Kurko et al. 

[21] described as the “Bermuda triangle” due to the mystery and challenge of unravelling how 

these factors interact. When looking purely at the genetic link to RA, researchers have found a 

strong link between RA and the ‘shared epitope’ (SE) of the human leukocyte antigen (HLA) 
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[5]. More than 80% of RA patients carry the HLA-DRB1 alleles which are associated with 

greater disease severity such as cartilage destruction [9] and the production of ACPAs [10].  

After the HLA-DRB1 gene, a polymorphism to the gene PTPN22 has shown the second 

strongest association with RA [21], as this modification leads to T-cells being easily activated 

by antigen stimulation [22]. The next strongest genetic association to RA is the TNF receptor 

associated factor 1 (TRAF1) gene which is linked to the development of ACPA positive RA 

[21]. Variants to other genes which control inflammatory pathways, such as IL23R [23], 

CTLA4 [24], STAT4 [25], and IL-6 [26], are also associated with a higher risk of developing 

RA.  

 

Genetic factors may also determine how patients with RA respond to medication. This is an 

area of research termed ‘pharmacogenetics’ and studies have shown that patients carrying one 

or two copies of the FCGR3A-158 V allele respond more favourably to rituximab [27]. 

Additionally, there is a decreased effectiveness of methotrexate when given to patients with a 

polymorphism of the gene IL1RN [28]. Pharmacogenetic research has highlighted the need to 

develop biomarkers associated with disease outcomes so that patients can be given the most 

therapeutic treatments tailored to their genome and symptoms [21]. 

 

1.1.3 Environmental link to RA 

Some environmental factors have been known to trigger the onset of Rheumatoid Arthritis. 

Figure 2 summarises the risk factors and development of RA. Environmental risk factors 

include, but are not limited to: a high BMI [11,12], silica/pollutant exposure [15–17], bacteria 

in the microbiome such as Porphyromonas gingivalis [29], and tobacco smoking 

[2,5,13,14,30]. Connections have also been made to the female sex hormones and RA, 
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specifically the development of natural menopause before the age of 44 is associated with 

seronegative RA only [18]. Additionally, Merlino et al. [19] identified polycystic ovary 

syndrome as a risk factor for RA in a cohort study of 158 women with RA [31]. These 

connections help to explain the higher prevalence of RA in females compared to males. 

 

Table 1 displays a summary of the risk and protective factors in RA as discussed in this review. 

Out of all the genetic and environmental links to RA, the strongest associations include the 

‘shared epitope’ of the HLA allele, smoking, female gender and family history of the disease 

[5]. However, there may be other genetic and environmental factors yet to be discovered that 

trigger the disease.  

 

 

Figure 2: Diagram of the progression of RA 

Schematic diagram showing the risk factors involved in developing RA and the progression of RA from 

a healthy joint to an established diseased joint. Image taken from Smolen et al. [2]. 
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Table 1: Summary of risk and protective factors in RA 

 

1.1.4 Immunobiology of RA  

RA is a heterogeneous disease and patients present with a diverse range of signs and symptoms 

which often overlap with other conditions such as psoriatic arthritis, peripheral 

spondylarthritis, metabolic diseases and osteoarthritis, making it challenging to diagnose and 

treat [2]. However, there are some hallmark signs of RA such as joint swelling, damage to bone 

and cartilage on adjacent joints [2], pannus formation, a high C-reactive protein (CRP) and 

erythrocyte sedimentation rate (ESR) level, and positivity for Rheumatoid factor (RF) and 

ACPAs [32]. Blood test, joint scans and a physical examination all contribute towards 

establishing a diagnosis of RA. 

 

RA is described as a failure of the immune system to maintain self-tolerance [33]. In a normal 

functioning immune system, innate immune cells such as mast cells, neutrophils, natural killer 

(NK) cells, macrophages, and dendritic cells become activated in recognition of a foreign 

substance such bacteria or viruses [34]. When further help is required to fight an infection, 
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macrophages and dendritic cells travel to lymphoid tissues and present part of the processed 

pathogenic antigen (MHC molecules) to naïve CD4+ T-cells [34]. These cells, along with B-

cells, are part of the adaptive immune response and they can differentiate into memory cells to 

provide the body with lasting immunological memory to the pathogen. The effector T-cells (a 

subset of activated CD4+ T-cells) release cytokines to activate B-cells and cytotoxic T-cells 

[34]. The role of the B-cells is to release antibodies to destroy the pathogen [35]. This explains 

how the innate and adaptive immune responses help to remove pathogens. However, in RA the 

innate immune response is not triggered by a foreign pathogen but rather a self-antigen such as 

a citrullinated protein [36], which is not harmful and has been mis-identified as a risk by the 

immune system. In RA, autoreactive B-cells also advance this process by mistaking self-

antigens as ‘foreign’ and subsequently secrete autoantibodies targeting these self-antigens [33]. 

B-cell autoantibodies, such as RF and ACPAs, form part of a larger immune complex and 

trigger a cascade of immune responses that exacerbate RA pathology. 

 

Other key participants involved in the pathogenesis of RA are CD4+ T-cells which have been 

activated by dendritic cells displaying part of the self-antigen [3,37]. The CD4+ T-cells 

prematurely develop into hyper-proliferative memory T-cells which in turn differentiate into 

pro-inflammatory Th1 and Th17 cells [37,38]. Th17 cells secrete IL-17, a potent cytokine that 

promotes synovitis, this leads to a porous synovial membrane and the infiltration of immune 

cells into the synovium [2,39]. The activated CD4+ T-cells play a strong role in the 

development of RA by secreting a range of pro-inflammatory cytokines (IL-2; IFN-γ) that 

activate other mononuclear cells, synovial fibroblasts, chondrocytes and osteoclasts which 

enhance disease pathogenesis [39]. They also stimulate non-effector T-cells which in turn 

secrete TNF-α and IL-1 [40]. Bone resorption in RA is also promoted by the secretion of 

RANKL by CD4+ T-cells which promotes osteoclast activity [40].  
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There is also erosion of cartilage in RA; this mainly promoted by the production of cartilage-

degrading enzymes by neutrophils, synoviocytes and chondrocytes [39]. Fibroblast-like 

synoviocytes from the synovial membrane also contribute to joint swelling and extracellular 

matrix breakdown by producing a range of pro-inflammatory cytokines (IL-1, IL-6, TNF-α), 

matrix metalloproteinases (MMP-1, MMP-3, MMP-13), ADAMTS- 1, -4 and -5 (a disintegrin 

and metalloproteinase with thrombospondin motifs), prostaglandins and leukotrienes [2,41].  

 

Other mechanisms also contribute to the pathology of RA, there is evidence that the innate 

immune system is constantly activated due to the sustained high levels of macrophage-

associated cytokines (TNFα, IL-1, IL-6) [34]. These macrophages, along with other immune 

cells continually make their way through the permeable synovial membrane promoting the pro-

inflammatory environment and sustaining joint swelling [2]. This sequence of events shows 

how the immune system can escalate in an uncontrolled fashion as the immune cells in the joint 

stimulate each other in a paracrine or autocrine way to maintain an activated immune response. 

The interplay between these immune cells in the development of RA is shown in Figure 3. 

 

However, there are immune cells that aim to supresses the heightened immune response. 

Foxp3+ regulatory T-cells (Treg cells) travel to the site of inflammation and play a role in 

supressing mainly Th1, Th2 and Th17 cells [33]. However, Foxp3+ Treg cells have been found 

to be deficient in patients with RA and are more prone to apoptosis compared to healthy 

controls [1]. There is also a disturbance in the balance of Treg/Th17 cells in RA patients leading 

to a 5-fold increased production of IL-17 [1]. This evidence points towards a defect in Treg 

cells in patients with RA. Properly functioning immune suppressor cells are essential to 

maintain joint homeostasis and a lack of healthy functioning Tregs contributes to the survival 
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of pro-inflammatory immune cells. The complete involvement of immune cells and their 

communication pathways in RA is complex and still not fully understand. It is known that the 

balance between pro-inflammatory and anti-inflammatory cells is askew, favouring a pro-

inflammatory environment [1]. Most medical treatments aim to suppress this activated immune 

response to restore joint homeostasis and reduce pain and swelling. 

 

Figure 3: Diagram of cells and cytokines involved in RA 

Schematic illustrating the interplay of innate and adaptive immune cells in RA. This diagram shows the 

activation, differentiation and pro-inflammatory cytokine secretion of immune cells which act to 

promote and maintain a pro-inflammatory environment in RA. Image taken from Chimenti et al. [10]. 

 

1.1.5 Pharmaceutical treatments 

As there is no cure for RA, disease remission has become the main goal for RA patients. The 

aim when starting a treatment for RA is to achieve a 50% improvement in disease activity in 3 

months [2]. RA severity is measured using the Disease Activity Score 28 (DAS28) assessment, 
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which is a measure of disease activity in RA, that looks at joint tenderness, joint swelling, 

patient reported assessment of disease activity, and the ESR count [42]. Other useful metrics 

to measure RA severity include the clinical disease activity index (CDAI) and the simplified 

disease activity index (SDAI) [2,42]. Pharmaceutical treatments include the use of Non-

Biologic and Biologic Disease Modifying Anti-Rheumatic Drugs (DMARDs), Non-steroidal 

anti-inflammatory drugs (NSAIDs) and Glucocorticoids. 

 

1.1.5.1 Non-biologic and biologic DMARDs 

DMARDs are the most popular choice of drug for RA due to their ability to change the course 

of the disease [10,43]. Commonly administered DMARDs include methotrexate, sulfasalazine, 

and leflunomide. Of these DMARDs, methotrexate is the most commonly administered drug 

for RA and has been shown to slow down disease progression and reduce bone erosions and 

joint pain [10,42,43]. The above mentioned DMARDs are referred to as ‘Non-Biologic 

DMARDs’. They have different molecular targets, but most work off inhibiting 

phosphoinositide 3-kinases, glycosidases, matrix metalloproteinases and cathepsin [44]. 

‘Biologic DMARDs’, on the other hand, are highly specific and block T-cells, B-cells and pro-

inflammatory cytokines such as TNF-α, IL-1 and IL-6 [44]. Examples of Biologic DMARDs 

and their targets are shown in Table 2. However, there are side effects to using Biologic 

DMARDs which include bacterial infections [45], fungal infections [46] and lymphoma [47]. 

While many RA patients respond well to DMARDs and Biologic Agents, there are a group of 

non-responders to these medications and alternative therapies are needed to treat these patients 

[10]. Additionally, there are some limitations to the use of DMARDs, for example, they lose 

their efficacy as the disease develops and they also carry an increased risk of serious infections, 

such as tuberculosis [2,42]. However, there are other options for non-responders of DMARDs. 

A new category of drugs, Janus kinase inhibitors, have emerged recent years which supress 
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Janus kinase enzymes of the JAK-STAT signalling pathway, a pathway which regulates the 

cytokines and growth factors involved in immunomodulation [48]. This provides another new 

and alternative treatment for RA, however these drugs are also associated with serious side 

effects [49]. 

 

1.1.5.2 Non-steroidal anti-inflammatory drugs (NSAIDs)  

NSAIDs are used to relieve symptomatic pain and are often administered as a bridge therapy 

while RA patients await the therapeutic benefits of DMARDs [44]. NSAIDs, such as Naproxen 

or Celecoxib, work mainly by inhibiting cyclooxygenase (COX), an enzyme that breaks down 

cell membrane-derived arachidonic acid to form pro-inflammatory prostaglandins [43,44]. 

NSAIDs are purely used for pain relief and they do not have any effect on the disease, therefore, 

they are not used as a monotherapy for the treatment of RA [43,44]. Additionally, NSAIDs 

come with some serious side effects such as gastric ulceration, bleeding, nausea and 

nephrotoxicity, so a lot of research into NSAIDs has focused on trying to reduce these adverse 

effects [44]. 

 

1.1.5.3 Glucocorticoids  

Similar to NSAIDs, glucocorticoids are often administered to RA patients to alleviate pain but 

are not recommended as a monotherapy [44]. Glucocorticoids are class of steroid hormones 

and they have strong anti-inflammatory and analgesic effects [43,44]. Low dose of 

glucocorticoids over a long period of time has been shown to reduce cartilage and bone erosion 

in RA patients [50]. But glucocorticoids also come with serious side effects which have been 

linked to most organs in the body [44]. Some side effects include osteoporosis, cataract, 

hypertension and peptic ulcers [43,44]. As a result, the National Institute for Health and 
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Clinical Excellence (NICE) recommends the use of other treatment options before considering 

the administration of glucocorticoids [43]. 

 

All the therapies mentioned show different levels of symptomatic relief for RA patients but 

many of these treatments produce severe side effects and require increasing high doses, as the 

disease progresses [43]. This shows that the treatments for RA are not completely without fault 

and further research on alternative therapies is required. 
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Table 2: Summary of some of the main drugs used to treat RA. 

 

 

1.1.6 Conclusion 

RA is a complex autoimmune disease, involving an interplay of innate and adaptive immune 

cells. It is characterised by joint inflammation, synovitis, bone erosion and pannus formation 

and, as a result, it can be a very debilitating disease [2]. Current treatments for RA, such as the 

use of DMARDs have been successful in bringing the disease into remission in a cohort of 

patients. However, not all patients respond well to current treatments, therefore, there is a need 

to develop alternative therapies to treat RA and bring immune responses under control.   
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1.2 Mesenchymal Stem Cells 

1.2.1 Overview of mesenchymal stem cells 

Mesenchymal Stem Cells (MSCs), also known as Multipotent Stromal Cells, are cells capable 

of differentiation into osteoblasts, adipocytes, and chondrocytes and can be characterised by 

their adherence to plastic in culture, the presence of CD105, CD73, CD90 and absence of 

markers CD45, CD34, CD14, CD11b, CD79a, CD19, and HLA-DR [51]. The first discovery 

of MSCs came in 1867, when the German pathologist Cohnheim found a population of 

fibroblast-like cells of non-hematopoietic origin in bone marrow [52,53] However, it took 

another 100 years before bone marrow cells were isolated and studied in vitro by Friedenstein 

et al. [53,54]. They discovered that these cells had the potential to form colonies and 

differentiate into fat, bone and cartilage in mice [53,54]. It wasn’t until 1992 that the term 

‘mesenchymal stem cell’ was coined after Caplan et al. [55] found that the multilineage 

differentiation potential and self-renewal properties of human MSCs was indicative of 

‘stemness’ [53,54]. It is now known that MSCs can be obtained from bone marrow, adipose 

tissue, umbilical cord, amniotic membrane, placenta [56], endometrium [57], dental pulp [58] 

and synovial membrane [59].  

 

Each source of MSCs shows different characteristics, but all have been found to contain some 

immunosuppressive effects. A general summary of the types of MSCs and their role in immune 

modulation is shown in Figure 4. One reason why MSCs have immunosuppressive effects may 

be attributed to their reduced expression of MHCII surface markers, meaning that they can 

evade immune responses when transplanted [60]. Bone marrow mesenchymal stem cells 

(BMMSCs) have long been considered the ‘gold standard’ for cellular immunosuppressive 

therapy, however, umbilical cord MSCs (UCMSCs) also possess many of the 
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immunosuppressive properties of BMMSCs and are worth exploring [61]. UCMSCs can be 

obtained from different areas such as Wharton’s jelly, cord lining, and the perivascular region 

[62] however, studies carried out by Mennan et al. [63] found no significant difference in 

immunophenotype between the compartments of the umbilical cord. UCMSCs proliferate 

quicker than BMMSCs and they are easily obtained since the umbilical cords are considered 

to be ‘medical waste’; this makes UCMSCs advantageous for use as a treatment [62]. BMMSCs 

display a higher migratory capacity [64] as well as stronger osteogenic and adipogenic 

differentiation capabilities [65], due to these differences, the target outcomes for treatment need 

to be considered when choosing a source of MSCs. This chapter focuses on immunomodulation 

by MSCs, by which both BMMSCs and UCMSCs show strong immunoregulatory effects.  
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Figure 4: Overview of MSCs  

Overview of the different sources of MSCs (bone marrow, adipose tissue, dental pulp, umbilical cord), 

their mechanisms of action (homing, differentiation, paracrine signalling), their therapeutic potential 

and their use in clinical trials. Image taken from Rawat et al. [66]. 
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1.2.2 Immunomodulation by MSCs 

MSCs exert their immunomodulatory effects via two mechanisms of action:  

1. Cell-to-cell contact-dependent mechanism  

2. Contact-independent mechanism (i.e. the secretion of soluble factors and extracellular 

vesicles) [67]. 

 

1.2.2.1 Cell-to-cell contact-dependent mechanism  

A heavily studied area in MSC research explores if cell-to-cell contact is essential for MSCs to 

carry out optimal immunosuppressive effects. Luk et al. [68] compared the immunosuppressive 

effects of adipose tissue MSCs (ATMSCs) on B-cells in a direct co-culture and in a transwell 

culture system. They showed that the direct co-culture was needed for MSCs to increase the 

level of B-regs and IL-10; to reduce IgG production and to inhibit B-cell proliferation, as these 

effects were not seen in the transwell culture [68]. This study is supported by other research 

showing that contact dependent mechanisms aid MSCs to suppress Th17 function [69]; support 

T-cell and macrophage immune suppression [70] and differentiate dendritic cells into 

regulatory dendritic cells [71]. MSCs express integrins (α1 –α6, αV, β1 –β4), intercellular 

adhesion molecules (ICAM-1, ICAM-2), vascular cell adhesion protein (VCAM-1), CD72 and 

CD58 on their surface membranes which can modulate immune cells when in direct contact 

[72]. English et al. [73] showed that direct cell-to-cell contact between BMMSCs and CD4+ 

T-cells was required to induce FoxP3 and CD25 mRNA expression. However, direct cell-to-

cell contact was not required between BMMSCs and peripheral blood mononuclear cells 

(PBMCs), highlighting that cell contact is not essential if there are other immune cells present 

[73]. These findings highlight a few ways that MSCs can suppress immune cells but many 

more immunosuppressive effects of MSCs have been discovered through their secretion of 

soluble factors [74,75]. 
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1.2.2.2 Contact-independent mechanism 

MSCs secrete many soluble factors which can affect the proliferation and polarisation of 

immune cells. Particularly research using in vitro co-culture experiments between BMMSCs 

and immune cells, found that BMMSCs exert immunosuppressive effects on myeloid and 

lymphoid cells via paracrine signalling and these signals can lead to altered cytokine expression 

(TNF-α, IFN-γ) and reduced proliferation in immune cells (T-cells, NK cells, dendritic cells, 

macrophages) [74,76]. BMMSCs have an ability to migrate to inflamed tissue where they can 

secrete cytokines such as TGF-β, hepatocyte growth factor (HGF) [76], and prostaglandin E2 

(PGE2) [77] to reduce inflammation to maintain tissue homeostasis [78]. MSCs secrete PGE2 

which reduces T-cell and NK cell release of IFN-γ [79–81]. PGE2 can also direct macrophage 

differentiation towards an IL-10 overexpressing phenotype, characteristic of M2 macrophages 

[77]. As M1 macrophages secrete pro-inflammatory cytokines which attract other immune cells 

to the site of damage, then a change toward the M2 phenotype represents an anti-inflammatory 

shift [82]. HLA-G6 secreted by UCMSCs has also been found to reduce NK cell activity [83]. 

Other evidence supporting a contact-independent mechanism of action was shown when 

BMMSCs inhibited dendritic cell differentiation and altered the cytokine secretion of other 

immune cells through the secretion of IL-6 [84] 

 

In all, MSCs produce a range of soluble factors, many of which stimulate anti-inflammatory 

responses and aid in the regulation of the immune system. Figure 5 displays the range of 

immunosuppressive effects by MSCs on innate and adaptive immune cells. In all, MSCs have 

wide ranging effects on innate and adaptive immunity which makes them an attractive source 

of cells for treatment of inflammatory conditions. 
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Figure 5: MSCs target innate and adaptive immune cells 

Diagram displays the immunosuppressive functions of MSCs on innate and adaptive immune cells. 

Image taken from Newman et al. [85]. 

 

1.2.3 UCMSC interactions with T-cells  

As T-cells are key contributors to RA disease pathogenesis, their interactions with UCMSCs 

are of interest to this thesis [37]. UCMSCs were able to increase the numbers of 

CD4+CD25highCD45RA+ Tregs, a subset of anti-inflammatory T-cells, in a co-culture set-up 

with PBMCs [86]. UCMSCs also shifted the environment towards and anti-inflammatory 

prolife with an upregulation of IL-10, TGF-β and PGE2 and a downregulation of IFN-γ [86]. 

They were found to reduce proliferation, cytotoxicity and IFN-γ expression in Vγ9Vδ2 T-cells 

[87]. These Vγ9Vδ2 T-cells aid in host defence, surveillance and immune response to infection 
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[87,88]. A high frequency of Vγ9Vδ2 T-cells has been found in RA patient blood and synovial 

fluid where they present antigens and secrete IFN-γ and IL-17 [37,89]. The inhibition of these 

cells by UCMSCs was independent of cell contact, strongly suggesting the therapeutic release 

of soluble factors by UCMSCs [87]. A separate study showed that UCMSCs are capable of 

reducing T-cell proliferation but only in the presence of monocytes [90]. There is also evidence 

to show that UCMSCs can supress T follicular helper (Tfh) cells [91]. There is a higher 

expression Tfh cells in RA and they provide antigens to B-cells which aid with the production 

of autoantibodies [92]. The high expression of Tfh cells in RA is also positively correlated with 

disease severity and the presence of anti-cyclic citrullinated peptide (anti-CCP) antibodies [91]. 

Liu et al. [91] showed that when PBMCs and naïve CD4+ T-cells were co-cultured with 

UCMSCs, the proliferation and differentiation of Tfh cells was reduced. To see if the same 

results were carried over into animal studies, the UCMSCs were injected into mice with 

collagen induced arthritis (CIA) and analysis showed a reduced number of Tfh, Th1 and Th17 

cells in the spleen along with increased Treg cells [91]. There was also an improvement in hind 

limb swelling indicating that disease symptoms had improved. The secretion higher mRNA 

levels of indoleamine 2,3-dioxygenase (IDO), IL10 and HLA-G in UCMSCs was credited for 

these improvements [91]. 

 

In addition to Tfh cells, research by another group showed that UCMSCs can modulate Th1, 

Th2 and Treg cells. They cultured UCMSCs with T-cells from RA patients and found that 

UCMSCs supressed T-cell proliferation in both a direct and transwell culture set-up. The anti-

inflammatory effects were mediated by the expression of PGE2, TGF-β1 and NO by MSCs 

and the downregulation of TNF-α by T-cells [93]. To corroborate these findings, a murine CIA 

model was used and the injection of UCMSCs successfully shifted the Th1/Th2 balance, 

increased Tregs, reduced pro-inflammatory cytokines (TNF-α, IL-6, MCP-1) and increased IL-
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10 [93]. These findings were accompanied by an improvement in disease symptoms such as 

synovitis, bone degradation and pannus formation [93]. In all, UCMSCs hold similar 

immunosuppressive properties to BMMSCs in suppressing T- and B-cell function and both 

sources of stem cells hold promise for a potential treatment for autoimmune disease in the 

future. 

 

1.2.4 Enhancing MSC immunosuppression 

Researchers have discovered a way to promote MSCs immunosuppression by culturing them 

in the presence of pro-inflammatory cytokines (IFN-γ, TNF-α, IL-1β) [78,94,95]. Ren et al. 

[96] primed mouse BMMSCs with cytokine combinations of IFN-γ, with either TNF-α, IL-1α, 

or IL-1β and co-cultured them with immature T-cells. Interestingly, the immunosuppressive 

cytokines released by BMMSCs were only seen when they were pre-treated with pro-

inflammatory cytokines, this shows that an inflammatory environment helps trigger MSC 

immunosuppression. Specifically, the pro-inflammatory primed BMMSCs secreted more IDO 

and inhibited the proliferation of T-cells. Similar findings were also true for UCMSCs, where 

exposure to pro-inflammatory cytokines increased the release of anti-inflammatory factors 

such as PGE2, TGF-β1, TSG-6, and IDO [97]. These factors are secreted at a higher level 

compared to BMMSCs, putting UCMSCs at the forefront for a potential cell therapy for 

immune suppression. These studies show that pro-inflammatory cytokines can enhance the 

immunosuppressive ability of MSCs ability through stimulating their production of anti-

inflammatory cytokines. Future directions for MSC-based immune therapy may thereby 

involve priming MSCs with pro-inflammatory cytokines to enhance their activity. Positive 

results following pre-treatment with pro-inflammatory cytokines were found in animal models 
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of colitis [98] and myocardial ischemia [99]. The range of cytokines and growth factors 

released by MSCs after exposure to pro-inflammatory cytokines is displayed in Figure 6. 

 

In addition to the pro-inflammatory priming of MSCs, hypoxic priming has also been used as 

a way to enhance MSC immunosuppression [100]. Hypoxic priming involves growing the 

MSCs in low oxygen environments to mimic their natural oxygen environment in vivo [101]. 

Indeed, research show that when rat BMMSCs are grown in hypoxic conditions, they have an 

increased expression of IDO and enhance Treg cell proliferation in vitro better than BMMSCs 

grown in normal oxygen conditions [100].  

 

Figure 6: Secretion of soluble factors after inflammatory stimulation 

When stimulated by pro-inflammatory cytokines IFN-γ (blue dots), TNF-α (green dots), IL-1α, IL-1β 

(yellow dots), MSCs have been found to secrete a range of inhibitory factors, surface molecules and 

growth factors (shown in purple boxes), which elicit a range of functional changes to immune cells. 

Image adapted from Shi et al. [78]. 
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1.2.5 MSCs in animal studies of autoimmune disease 

There is strong evidence of MSC immunosuppression in vitro, however, in order to better 

understand how MSCs interact with immune cells in a complex in vivo environment, animal 

studies are required. In an animal study of Systemic Lupus Erythematosus (SLE), a chronic 

autoimmune disease characterised by the presence of antibodies and autoreactive T and B-cells 

[102], mice had a reduced number of autoantibodies against double stranded DNA and nuclear 

cell proteins and also the reduction in pro-inflammatory cytokines (TNF-α, IFN-γ) in the 

UCMSC treated group compared to the control. Additionally, UCMSCs restored the 

CD4+/CD8+ ratio [102] which is important in cases of autoimmune disease where an 

imbalance of these cells promotes inflammation. 

 

Similar results were seen for BMMSCs when they were used to treat mice with experimental 

autoimmune encephalomyelitis. BMMSCs, increased CD4+CD25+Foxp3+ Treg cells and 

reduced Th17 cells [103]. As Treg cells play a role in inhibiting autoreactive T-cells, this may 

explain the reduction in Th17 cells [74,103]. This study adds evidence to support the 

immunosuppressive effect of MSCs to modulate T-cell activity. As inflammation in RA is 

caused by an infiltration of T-cells through the synovial membrane, the ability of MSCs to 

change the T-cell phenotype to one that is less inflammatory could be therapeutically exploited 

as a treatment for RA.  

 

In a further study that mimics the symptoms of RA using an Antigen Induced Arthritis (AIA) 

model, murine BMMSCs reduced joint swelling and TNF-α levels [104]. Intra-articular 

injections of BMMSCs led to reduced destruction of cartilage and the infiltration of leukocytes 

into the synovium, suggesting a reduction in inflammation [104]. However, a similar study 
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using a collagen-induced arthritis (CIA), a mouse model prototype of human RA, found that 

MSCs were ineffective in suppressing the immune system [105]. In this study, the MSCs were 

unable to inhibit CD4+ T-cells but instead enhanced Th1 activity. Further in vitro analysis 

found that the addition of TNF-α caused an increase in IL-6 and together these cytokines were 

able to overturn any immunosuppressive effects of MSCs on T-cell proliferation. As TNF-α 

and IL-6 are abundant in RA, this may explain why no improvement was seen using this model. 

In general, previous in vitro tests, have shown that an inflammatory environment can promote 

the immunosuppressive ability of MSCs [106]. However, the immunosuppressive ability of 

MSCs was not found in this study, which suggests that the severe inflammation induced by the 

CIA model reversed any immunosuppressive effects by the MSCs. This may mean that the use 

of MSCs may only be effective if TNF-α and IL-6 are blocked prior to MSC treatment in an 

animal model. Or perhaps, the dual use of drug and cellular therapy may together reduce the 

immune response in a CIA mouse model. However, this study did not use primary cells but 

rather murine immortalised MSCs, other studies that used primary MSCs found more positive 

outcomes when mice with CIA were injected with these MSCs. For example, Bouffi et al. [107] 

showed that MSCs reduced inflammation in CIA mice by increasing the secretion of PGE2 and 

by polarizing Th1/Th17 cells into Th2 cells. Additionally, Augello et al. [108] found that MSCs 

prevented bone and cartilage damage in CIA mice; they also found a reduced proliferation of 

T-cells and decreased level TNF-α indicating the immunosuppressive properties of MSCs in 

an RA model. 

 

1.2.6 Clinical application of MSCs for the treatment of autoimmune disease 

Figures from 2019 show that approximately 45% of clinical trials using MSCs are targeting 

immune related diseases, of which 69 out of 397 are focused on autoimmune conditions [66]. 
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Both BMMSCs and UCMSCs have shown successful outcomes in trials to treat Crohn’s 

disease, SLE, myocardial infarction and multiple sclerosis [83,109–112] but there are mixed 

findings for the treatment of RA [113]. 

 

In a phase 1 clinical trial aiming treat 4 RA patients with BMMSCs or UCMSCs, they found 

that the transplantation of both types of MSCs was safe but not effective as a long term 

treatment for RA [114]. Three out of four patients showed improvements in CRP, ESR and 

disease activity score (DAS28) after 6 months but these improvements were not sustained after 

this timepoint. One patient showed no clinical response to MSC treatment; however, a larger 

cohort is needed to determine the efficacy of this treatment.  

 

UCMSCs have shown the most potential to reduce pro-inflammatory cytokines in RA. In a 

study of 172 patients with RA, half received DMARDs with UCMSCs and the other half 

received DMARDs only [115]. In the UCMSC treated group, there was a significant decrease 

in TNF-α, IL-6 and RF, accompanied by an increase in Treg cells. Improvements were also 

seen clinically by remission on the DAS28 and continuous infusions of UCMSCs maintained 

immune tolerance. Interestingly, there were no changes to CD3+, CD4+ and CD8+ T-cells 

which is contradictory to in vitro studies that found UCMSCs to reduce the proliferation of T-

cells. The group that received DMARDs only did not show any improvements. Further 

evidence that UCMSCs could be potentially therapeutic came from a Phase I/II study of 64 RA 

patients who were treated with UCMSCs and DMARDs [116]. The efficacy of the treatment 

was confirmed by reduced ESR, CRP, RF and anti-CCP up to 3 years after treatment [116]. 

Additionally, improvements were also seen in the Health Index questionnaire and the DAS28 

[116]. Similar to the previous studies, this study showed that UCMSCs may be a feasible and 

effective treatment for RA when combined with DMARDs.  
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Despite MSCs showing promise of the treatment of RA in clinical studies, their primary 

mechanism of action involves the secretion of soluble factors and extracellular vesicles 

[67,74,75]. It is therefore worthwhile researching EVs as the key contributors towards immune 

modulation. Additionally, using a full cellular transplant of MSCs as a treatment for RA is 

unnecessary due to the systemic nature of the disease. Localised diseases or injuries may 

benefit from MSC engraftment but, for RA, this is not the goal, therefore EVs are a more 

plausible and suitable therapeutic option to treat a widely systemic disease.  

 

1.2.7 Considerations when using MSCs as a treatment 

A number of considerations are required when preparing MSCs as a treatment. Firstly, the 

passage number of MSCs should be considered as this affects the cell’s gene expression, 

phenotype and differentiation [117]. In studies of BMMSCs, average cell population doubling 

times fall after P6 and this is associated with a loss of genes associated with stemness, an 

irregular shape of MSCs, and a poor differentiation of MSCs into osteoblasts [118]. 

Additionally, the dose of MSCs is important for in vivo use; when MSC were co-cultured with 

1x105 lymphocytes, a high dose of MSCs (1x104 – 4x104) was found to inhibit immune 

responses where a low dose (1x101 – 1x103) was shown to increase immune cell proliferation 

[119]. There are a few potential risks to be considered when using MSCs as a clinical treatment, 

such as the biosafety of growth media for MSCs, the risk of abnormal tissue formation and the 

ability of cells to change phenotype in vitro [120]. Further challenges include trying to predict 

or control the differentiation of cells in vivo and there are a lot of regulatory restrictions 

associated with using cellular therapies [121].  
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1.2.8 Conditioned media as an alternative to cellular transplantation 

Conditioned media (CM) from MSCs has been researched as an alternative to cellular therapy. 

The immunosuppressive functions of MSCs are often caused by soluble factors and 

extracellular vesicles, and the CM-MSC is thought to be rich in these immunosuppressive 

factors. Studies carried out in rats and mice demonstrated the anti-inflammatory properties of 

CM-MSCs in models of liver fibrosis [122], diabetic retinopathy [123], haemorrhagic shock 

induced lung injury [124], acute kidney injury [125], type 1 diabetes [126], osteoarthritis [127] 

and skin burns [128]. These positive outcomes were mainly due to the presence of anti-

inflammatory soluble factors and EVs contained in the conditioned media. In a study of mice 

with AIA, Kay et al. [121] found promising results when there was a reduction in joint swelling, 

indicating that inflammation had reduced. Further analysis of the blood serum found that CM-

MSC prevented TNF-α levels from rising and increased the expression of FoxP3, a 

transcriptional regulator for Treg development. This increase in FoxP3 may explain the 

increase in Treg cells in the spleen and this, coupled with a decrease in Th17, restored a balance 

of immune cells in the treated mice [121]. These results showed that CM-MSC can improve 

inflammation in an AIA mouse model, through reducing the pro-inflammatory cytokine TNF-

α and restoring the FoxP3/Th17 balance. 

 

The downfall of using conditioned media as a treatment approach is the researchers are blind 

sighted as to which specific EVs or soluble factors are responsible for the change in disease as 

conditioned media contains many different components. 

 

1.2.9 Conclusion  

Research has showed that MSCs can suppress immune responses using both contact dependent 

and independent mechanisms. Of interest to this study is the ability of MSCs to supress T-cells, 
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as these cells contribute to the pathogenesis of RA. Multiple studies using in vitro, animal, and 

clinical experiments show that MSCs can suppress Th1 and Th17 cells, promote Tregs and 

restore the Th1/Th2 balance. This makes MSCs a suitable therapeutic source to explore for the 

treatment of RA. Furthermore, this immunosuppression can be enhanced when the MSCs are 

primed with pro-inflammatory cytokines or hypoxia. The MSCs secrete EVs and soluble 

factors which has been heavily credited for their immunosuppressive abilities. Therefore, a 

more targeted approach involving the exploitation of immunosuppressive properties from 

MSC-EVs is gaining increasing interest in the scientific community. 
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1.3 Extracellular Vesicles 

1.3.1 Overview of extracellular vesicles 

Extracellular vesicles (EVs) are nanosized, membrane enclosed particles secreted by cells and 

they function as intercellular signalling molecules [129,130]. EVs are characterised based on 

their surface markers, size, cellular origin and content [74]. Their surface markers, protein and 

miRNA content are mainly determined by their cell of origin [74], which leads to wide variation 

in cytoplasmic content between EVs [131]. EVs contribute to paracrine signalling by 

transporting their cargo (mRNAs, miRNAs, proteins) to target cells [132]. EVs can interact 

with target cells via cell receptor binding; direct fusion with the plasma membrane of recipient 

cells; or endocytic internalisation [133]. After internalisation, EVs are hypothesized to deliver 

their intraluminal cargo to target cells, thereby altering recipient cell responses [134]. This way, 

EVs can influence the functions and phenotype of targeted cells [135]. MSC-EV mediated 

transfer of functional biomolecules into cells has led to the improvement in conditions such as 

cardiovascular disease, acute kidney injury, inflammatory arthritis and liver disease in animal 

models [136]. Since the discoveries that EVs have functional abilities and therapeutic 

properties, research on exosomes and EVs has grown substantially and continues to grow. This 

can be seen by an increase in the number of publications on exosomes and extracellular vesicles 

.Figure 7.  



  Chapter 1 

 
31 

 

 

Figure 7: Increase in exosome publications  

Bar chart displaying the number of publications related to ‘exosome’ or ‘extracellular vesicle’ research 

from 2000 to 2020. Data taken from PubMed searches. 

 

1.3.2 Types of extracellular vesicles 

There are four types of extracellular vesicles as displayed in Figure 8. 
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Figure 8: Type of EVs  

A. Visual representation of the size of exosomes, microvesicles, apoptotic bodies and oncosomes. B. 

These EVs interact with target cells by endocytosis, membrane fusion, phagocytosis or ligand-receptor 

interactions, and their cargo (miRNA, mRNA, DNA, protein, lipid) is delivered into the cell. Image 

taken from Zaborowski et al. [129]. 

 

1.3.2.1 Exosomes 

Exosomes are contained in intraluminal vesicles (ILV) within multivesicular bodies (MVB) in 

the cytosol and their content is released to the external environment via fusion of the MVB 

with the cell membrane [130] as shown in Figure 9. They range in size from 40-120nm [137] 

and contain a high concentration of glycoproteins and transmembrane proteins [129]. Some 

associated markers of exosomes include tetraspanins (e.g. CD63, CD81, CD9) [138], Tsg101, 

Alix, Hsc70 and Mfge8 [139]. Tsg101 plays a role in the secretion of EVs from cells [140] and 

it helps assemble ubiquitinated proteins into multivesicular bodies [141]. Alix is part of the 

ESCRT pathway and known to affect miRNA loading into EVs [142]. Hsc70 interacts with 
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TLRs of recipient cells and activates the NFKβ signalling pathway; it also aids with protein 

folding [143]. Finally, Mfge8 plays a role in EV secretion from cells [144], and in the EV 

complex it aids with binding to integrins on recipient cells [145]. Other exosome components 

include the phospholipid bilayer membrane which has a high rigidity due to the presence of 

sphingomyelin and desaturated lipids; this makes it more resistant to degradation compared to 

the cell plasma membrane [74,129,146]. This is important to prevent the degradation of 

exosomes in the extracellular matrix. 

 

 

Figure 9: Diagram of exosome biogenesis  

Image representing the secretion of exosomes from a cell. An early endosome buds from the plasma 

membrane and this leads to the formation of ILVs which eventually mature into a late endosome or 

MVBs. MVBs then travel to the cell membrane and fuse with it causing the release of ILVs (now termed 

exosomes) into the extracellular environment.  Image adapted from Baglio et al. [147]. 
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1.3.2.2 Microvesicles 

Microvesicles, also known as shedding vesicles, contain cytoplasmic content such as soluble 

proteins and mRNA, but unlike exosomes they originate from direct budding from the plasma 

membrane [148]. Microvesicles are larger than exosomes, with sizes ranging from 100–

1000nm [137], however, the biogenesis of EVs is more of a determining factor of its subtype 

than the size [139]. Microvesicles derived from MSCs express the surface markers CD29, 

CD73, CD44, and CD105, but these surface markers change depending on the cell of origin 

[74,135]. Microvesicles contain a higher abundance of proteins such as integrins (α4, α5) and 

glycoprotein Ib than exosomes which aid with cell adhesion [129,149].  

 

1.3.2.3 Apoptotic bodies 

Apoptotic bodies are released from dying cells [150] and they are the largest EVs ranging in 

size between 1μm–5μm [151] (shown in Figure 10). Therefore, under certain cases of cellular 

stress, these vesicles may be abundant in biofluid [129,137]. They bud from the plasma 

membrane and contain nuclear, cytosolic, and endoplasmic reticulum derived proteins [137]. 

They contain chromatin fragments and a reduced amount of glycoproteins [137]. They are 

eventually phagocytosed by macrophages in the extracellular environment [152]. 

 

1.3.2.1 Oncosomes 

Malignant cells produce large vesicles (1–10μm) called oncosomes [129]. They originate from 

the plasma membrane of tumour cells and with increased shedding of oncomes there is a greater 

aggressiveness of cancer [153]. This is due to oncosomes containing signalling factors, bio-

reactive molecules, miRNAs and metalloproteinases, which are involved in cancer signalling 

pathways and tumour progression [153]. 
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A comparison between all four subtypes of EVs can be found in Table 3. 

 

Figure 10: Size comparison of EVs  

A picture representation of the size of exosomes, microvesicles, apoptotic bodies and cell as compared 

to one another. Size estimates taken from György et al. [151]. 

 

Table 3: Breakdown of EVs and their features 

 

nm-nanometre; Tsg-tumour susceptibility gene; Hsc-heat shock cognate, Mfge-Milk fat globule-EGF 

factor; LAMP-Lysosomal-associated membrane protein; ARF-ADP-ribosylation factor; VAMP-

vesicle-associated membrane protein. Adapted from Burke et al. [132], Minciacchi et al. [153], György 

et al. [151] and Buzas et al. [154]. 
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The term ‘extracellular vesicles’ (EVs) will be used from here on to describe both exosomes 

and microvesicles since both have molecular and functional similarities [155,156]. 

Additionally, there is no specific marker to distinguish exosomes from microvesicles and their 

sizes often overlap making it difficult to isolate a specific population of EVs [155,156]. 

 

1.3.3 Functional properties of MSC-EVs 

1.3.3.1 The polarisation of immune cells by MSC-EVs 

MSC-EVs have been shown to switch a pro-inflammatory immune environment into an anti-

inflammatory environment. In order to figure out how they are capable of this suppressing 

immune function, researchers have studied the interactions between MSC-EVs and isolated 

immune cells. In terms of T-cells, the interaction between MSC-EVs and T-cells depends 

largely on the T-cell subset, as in vitro studies have shown that MSC-EVs can have an 

immunosuppressive role towards Th1 and Th17 cells, but an immunostimulatory role towards 

Th2 and Treg cells [157]. The polarising of T-cells into Th1 and Th2 effector cell types in 

response to MSC-EVs has been shown in numerous in vitro studies. For example, Chen et al. 

[157] found that MSC-EVs shifted Th1 cells into Th2 cells while also preventing the 

differentiation of Th1 cells down a Th17 lineage when MSC-EVs were co-cultured with 

PBMCs. Additionally, the ratio of Th17 to Treg cells changed to favour the immunomodulatory 

Tregs [157]. A reduction in TNF-α and IL-1β, and an increase in TGF-β in the co-culture media 

may explain how these T-cells were polarised towards an anti-inflammatory phenotype.  

 

Not only have MSC-EVs shown potential to modulate T-cell activity, but they have also been 

shown to polarise M1 macrophages into an M2 phenotype. Lo Sicco et al. [82] studied the 

interactions between EVs from ATMSCs grown in normoxia (20% O2) and hypoxia (1% O2) 
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on macrophages [82]. They identified that the macrophages not treated with EVs had a stronger 

pro-inflammatory surface marker expression seen by higher expression of CD11b, CD40, and 

CD86, and an upregulation of the M2 markers Arg1 and Ym1 [82]. This shows that both 

normoxic and hypoxic EVs were altering the surface marker phenotype, indicative of a switch 

from an M1 to M2 phenotype. This is significant for immune modulation as M1 macrophages 

play a role in antigen presentation and activation of Th1 cells, whereas M2 macrophages have 

a more immunosuppressive role. These immunosuppressive findings were further confirmed 

by a reduction in IL-6 and an increase in IL-10 in a mouse model of skeletal muscle injury [82]. 

This in vitro and in vivo study showed evidence of macrophage polarisation to an anti-

inflammatory phenotype which is mediated by the presence of MSC-EVs. 

 

The polarisation of macrophages by MSC-EVs was also shown by another group. Ti et al. [158] 

treated MSC-EVs with lipopolysaccharide (LPS) and co-cultured them with a monocytic cell 

line. Through microarray analysis of macrophages there was an upregulation in Let7b. Let7b 

targets the TLR4 pathway which M1 macrophages use in generating a pro-inflammatory 

response [159]. The identification of this miRNA shows that EVs may use multiple 

mechanisms to polarise macrophages towards an anti-inflammatory phenotype. They also 

identified the surface marker CD163, a common M2 macrophage marker, in the co-culture. 

Furthermore, there was an increased expression of IL-10 and TGF-β and reduced presence of 

pro-inflammatory cytokines (IL-1, IL-6, TNF-α) [158], all indicative of an anti-inflammatory 

shift. These findings were supported further by a diabetic wound healing animal model in 

which LPS treated MSC-EVs decreased inflammation, promoted new blood vessel formation 

and reduced TLR4 expression to improve the wound healing [158]. 
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All these studies show that EVs are altering the ratios of pro-inflammatory to anti-inflammatory 

immune cells in the blood. Analysis of an MSC-EV co-culture with PBMCs and monocytes 

shows that the EVs interact with many of the T-cell populations and macrophages, and 

collectively this can significantly reduce their ability to produce a pro-inflammatory immune 

response. These studies are important in evaluating if MSC-EVs can potentially be used as an 

anti-inflammatory therapy. The over-active immune response seen in many autoimmune 

conditions is complex and involves the interplay of many different innate and adaptive immune 

cells, so the finding that MSC-EVs can modulate many of these immune cell populations is 

promising for the potential formation of an EV therapy. 

 

1.3.3.2 MSC-EVs alter the growth kinetics of immune cells 

In addition to polarising T-cells, MSC-EVs have been shown to reduce T-cell proliferation. In 

a study of UCMSCs-EVs, they showed similar effects to their parent UCMSCs in inhibiting 

the proliferation of T-cells by 60% in vitro [160]. Blazquez et al. [161] found similar results 

for human ATMSC-EVs, where they reduced the proliferation of CD4+ and CD8+ T-cells, and 

decreased effector memory T-cells. In a study comparing UCMSCs, BMMSCs and their 

corresponding EVs, Pachler et al. [162] showed that EVs could effectively inhibit T-cell 

proliferation in vivo. However, this effect was dose dependent. In fact, EVs from ten times the 

amount of MSCs was required to achieve the same immunosuppressive effect as the cells [162]. 

These findings contradict a study by Conforti et al. [163] whom found increased doses of MSC-

EVs ineffective at reducing T-cell proliferation.  

 

Despite some results showing that MSC-EVs reduce the proliferation of T-cells, some 

researchers argue that the MSC-EVs are instead inducing their apoptosis. Chen et al. [157] 

found that MSC-EVs reduced the numbers of Th1 and Th17 cells through inducing apoptosis 
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rather than affecting cell proliferation. Mokarizadeh et al. [164] showed that MSC-EVs induced 

the apoptosis of T-cells and similarly, Del Fattore et al. [165] found that MSC-EVs induced 

apoptosis of CD3+ T-cells and CD4+ T-cells, whereas their parent MSCs inhibited CD3+ 

proliferation only with no change to apoptosis. In all, MSC-EVs have the potential to alter the 

growth kinetics of different T-cell populations, but whether this is via inducing their apoptosis 

or reducing their proliferation remains to be confirmed. 

 

1.3.4 Which factors in the EV cargo are responsible for their therapeutic effect? 

How EVs carry out their immunosuppressive functions is an area of great interest and many 

mechanisms of EV immunosuppression have been mentioned thus far, but this section provides 

an overview of some proteins and miRNAs that have shown immunosuppressive functions. 

From the exosome database ‘ExoCarta’, 938 proteins and >150 miRNAs have been identified 

in MSC-EVs [166]. These proteins and miRNAs are known to be functional and regulated by 

external stimuli in the environment [167]. Proteomic analysis of MSC-EVs found that many of 

the proteins regulate MSC self-renewal, differentiation, cell adhesion and migration [168,169]. 

Additionally, when comparing MSCs with MSC-EVs, some researchers identified proteins that 

were unique to EVs or expressed at a higher level than parent cells, indicating an enrichment 

in specific proteins in EVs [170,171]. These enriched proteins had roles in angiogenesis, 

immune regulation and cell adhesion and migration [170,171]. Common proteins found in 

MSC-EVs which stimulate Tregs and supress CD4+ T-cells and B-cells include TGF-β, PD-

L1 and galectin-1 [164,172,173]. Mokarizadeh et al. [164] found that the expression of PD-L1 

by MSC-EVs induced iTreg development, sustained the expression of FoxP3 and negatively 

regulated the activity of self-reactive T-cells in mice with experimental autoimmune 

encephalomyelitis (EAE) [174,175]. Studies of galectin-1 and TGF-β have shown that they can 

promote Treg proliferation and functioning [176–178]. Further analysis of MSC-EV cargo 
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shows the presence of chemoattractant proteins such as CXCL2, CXCL8, CXCL16 which may 

attract immune cells towards MSCs where they can carry out their immune protective roles 

[179]. The presence of anti-inflammatory proteins IL-10, HGF and LIF as well as angiogenic 

proteins VEGF in the MSC-EV cargo were also likely contributors to the immunosuppressive 

effects [179]. 

 

Additionally, miRNAs contained within the EV cargo are known to target multiple pathways. 

Specifically, MSC-EV miRNAs have been found to regulate stem cell differentiation (Let-7, 

miR-215) [180–183], immune responses (miR-155, miR-146, Let-7i) [184,185] and 

tumorigenesis (miR-192, miR-23b) [166,186,187]. As well as containing miRNAs, EVs also 

contained other messenger RNAs (mRNA), transfer RNAs (tRNA), long noncoding RNAs 

(lncRNAs), small nucleolar RNAs (snoRNAs) and mitochondrial DNA (mtDNA) [166]. 

Indeed, MSC-EVs are highly enriched in tRNA representing approximately 23-50% of small 

RNA in EV cargo, whereas miRNAs only represent approximately 2-5% of EV small RNAs 

[188]. However, although only a small fraction of EV-RNA is thought to consist of miRNAs, 

research has shown that it is functional and can silence gene targets in recipient cells [188]. 

Studies have shown that EV-miRNAs can suppress the translation of pro-inflammatory 

proteins in immune cells. Specifically, Di Trapani et al. [184] found miRNA-155 and miRNA-

146, contained within the pro-inflammatory primed MSC-EV cargo, aided in reducing the 

proliferation of B- and NK- cells [184].  

 

Even if EVs contain some therapeutic molecules, it is necessary that a pure population of EVs 

is isolated which is void of any contaminating factors which may override the therapeutic 

properties of EVs. This was highlighted in a study by Monguio-Tortajada et al. [160]. They co-

cultured UCMSC-EVs with T-cells and found that the EVs did not promote a pro-inflammatory 
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cytokine response from T-cells, however non-EV components and conditioned media 

promoted the secretion of pro-inflammatory cytokines (IL-6, TGFβ1, IL-17A, IFN-γ) by T-

cells. Additionally, non-EV and conditioned media cultures polarised T-cells down a pro-

inflammatory Th17 lineage, but the pure EV population prevented this polarisation. As Th17 

is a well-known inducer of inflammation in autoimmune disease [189], this is promising as the 

EV/T-cell co-culture did not contain the expression of the Th17 cells. This study shows that a 

pure population of the UCMSC-EVs is necessary and can prevent the further release of pro-

inflammatory cytokines from T-cells [189].  

 

In all, the mechanism of action between MSC-EVs and immune cells seem vast and very 

pleiotropic in nature. Therefore, the use of omics approaches, and gene knock-out studies has 

increased in the EV field in an aim to accurately characterise the EV protein and miRNA 

components that are responsible for change. Most research is pointing towards an 

immunosuppressive route for MSC-EVs which is positive for their potential application to 

ameliorate inflammation. 

 

1.3.5 Comparison between MSCs and MSC-EVs in immune suppression 

EVs exert a range of immunomodulatory effects similar to their parent MSCs, however there 

are cases where their mechanisms of action vary. Specifically, some studies have shown that 

MSC-EVs have different mechanisms of action towards suppressing T-cells than MSCs. 

Cosenza et al. [190] divided the EV population into the microparticle and exosome subgroups 

and found that neither group was able to change the proliferation of CD4+ and CD8+ T-cells 

but they were able to increase the Treg population, whereas the MSC group had the opposite 

effect; these cells were able to reduce the proliferation of CD4+ and CD8+ T-cells and they did 
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not affect Treg numbers. In findings similar to the Cosenza et al. [190] study, Del Fattore et al. 

[165] showed that MSC-EVs were able to increase Treg proliferation which skewed the Treg: 

T-effector cell ratio whereas MSCs alone had no effect on the Treg: T-effector cell ratio. Di 

Trapani et al. [184] also showed that MSC and MSC-EVs used different mechanisms to 

suppress PBMCs. They showed that MSCs mainly used the immunosuppressive enzyme IDO; 

which was undetected in MSC-EVs, instead they expressed PD-L1 which was responsible for 

their immunosuppressive effects. This study shows that MSCs and MSC-EVs have different 

mechanisms of action in suppressing immune responses. 

 

In all, studies have shown MSC-EVs are capable of immune suppression [130]. However, 

whether this immunosuppressive effect is as strong as MSCs alone is of clinical importance. It 

has already been mentioned in Section 1.3.3.2 that approximately ten times the amount EVs is 

needed to supress the proliferation of T-cells to the same degree as MSCs [162]. But this opens 

another question, are MSCs more immunosuppressive than MSC-EVs? 

  

When trying to decipher which is more effective at suppressing immune cells – MSC or MSC-

EVs, many groups have found that MSCs provide a more potent immunosuppressive ability in 

comparison to EVs [163,184]. Conforti et al. [163] showed that MSCs were superior to EVs in 

reducing T-cell proliferation, inhibiting plasma cell differentiation and lowering B-cell 

antibody production. In a co-culture assay between MSC and PBMCs, there were higher levels 

of IL-10 and TGF-β and lower levels of pro-inflammatory cytokines (granulocyte macrophage 

colony-stimulating factor (GM-CSF), IL-2, IFN-γ) compared to the co-cultures containing only 

MSC-EVs [163]. The only area that EVs had similar effect to MSCs was in inhibiting B-cell 

proliferation, but, in all MSCs had a stronger immunosuppressive ability [163]. Other groups 

have found MSC-EVs as capable as MSCs alone in inhibiting B-cells. Budoni et al. [191] 
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investigated the immunosuppressive effect of BMMSC-EVs compared to MSCs alone on B-

cell activity in vitro. They found that MSC-EVs had a similar effect in inhibiting B-cell 

proliferation and differentiation compared to MSCs alone when used in high concentrations 

[191]. However, the immunosuppressive effect of MSCs was stronger than MSC-EVs in 

reducing the production of antibodies (IgM, IgG and IgA) by B-cells. 

 

1.3.6 Can MSC-EV immunosuppression be enhanced? 

Many studies have ‘primed’ or ‘preconditioned’ their MSCs with different pro-inflammatory 

agents to see if this elicits an anti-inflammatory response from the cells and generates EVs with 

a stronger immunosuppressive potential. However, in EV studies, findings are mixed whether 

this has a negligible or therapeutic effect. Monguió-Tortajada et al. [160] found no differences 

in T-cell proliferation and polarisation between IFN-γ primed and non-primed UCMSC-EVs. 

They subsequently recommend against priming of MSCs with IFN-γ before clinical use, as it 

did not have any effect on the immunomodulatory potential of UCMSCs, but instead increased 

the expression of HLA-DR, a ligand for the T-cell receptor [160]. Mokarizadeh et al. [164] 

found differing results when they primed their MSC-EVs with IL-1β. They found that the 

inhibition of splenic mononuclear cells and promotion of Foxp3+ Treg cells in mice with 

experimental autoimmune encephalomyelitis (EAE) was heighted in MSC-EVs primed with 

IL-1β. However, both the primed and rested EVs equally induced the apoptosis of T-cells [164]. 

Di Trapani et al. [184] co-cultured EVs with PBMCs and found that MSC-EVs had a stronger 

immunosuppressive ability when exposed to pro-inflammatory priming (TNF-α, IFN-γ). 

Interestingly, they found that the degree of EV-mediated suppression of immune cells was 

directly correlated with the degree of uptake of EVs by immune cells [184]. The increased 

uptake of primed MSC-EVs by immune cells is likely due to their increased expression of 

ICAM-1 compared to non-primed MSC-EVs [184]. Cosenza et al. [190] found that plasmablast 
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differentiation was inhibited in the presence of MSCs, microparticles and exosomes seen 

through a reduced production of IgG but found no difference in the EVs when the MSCs were 

primed beforehand with IFN-γ. This contradicts the findings by Di Trapani et al. which found 

an enhanced immunosuppressive role when EVs were primed [184]. 

 

In all, EVs show an immunosuppressive potential, but whether the priming of their parent cells 

generates a population of EVs with a heightened anti-inflammatory response needs to be 

addressed if EVs are to be biologically engineered as therapeutic agents.  

 

1.3.7 Immunosuppression by MSC-EVs in animal studies  

In order for EV research to develop to a clinical stage, it is important to see therapeutic 

immunosuppression in animal models of inflammation. Indeed, UCMSC-EVs have shown 

positive therapeutic effects in treating animal models of acute myocardial ischaemia [192], 

liver fibrosis [193], reducing bladder tumour growth [194] and preventing renal injury in a 

diabetic mouse model [195]. Additionally, in a study of two animal models of autoimmune 

disease: type 1 diabetes (T1D) and experimental autoimmune uveoretinitis (EAU), human 

BMMSC-EVs successfully prevented the onset of the diseases [196]. In the T1D model, there 

were fewer CD4+ cells in the pancreatic islets compared to the PBS-treated control, and in the 

EAU model, there was fewer infiltrating CD3+ T-cells in the retina, less structural damage and 

a reduction in pro-inflammatory cytokine transcripts compared to the control [196]. Further 

investigations were warranted to decipher how these MSC-EVs are carrying out 

immunosuppressive changes, so a co-culture experiment between MSC-EVs and a mixed 

lymphocyte population was set-up. Results from this showed that the EVs were able to supress 

several immune cells by reducing the levels of their activating cytokines. Namely, Th1 
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development was suppressed because the EVs reduced levels of IFN-γ, IL-12, p70, and TNF-

α; and Th17 development was suppressed by a reduction in IL-6 and IL17 [196]. 

 

Cosenza et al. [190] looked at the anti-inflammatory potential of microparticles and exosomes 

in a mouse model of Delayed-Type Hypersensitivity (DTH) and Collagen-Induced Arthritis 

(CIA). Clinical improvements such as a reduction in paw swelling and global arthritis clinical 

score were seen in animals treated with exosomes but not microparticles (MPs). However, both 

groups showed a decrease in plasmablasts and an increase in the B-reg population. Analysis 

from mouse lymph nodes showed the exosomes were effective in reducing the pro-

inflammatory cytokines IL-6 and IL-1β, whereas MPs only decreased IL-6. While both groups 

showed an anti-inflammatory potential, the exosomes demonstrated a stronger 

immunosuppressive role. In all, the positive effect of MPs and exosomes in the DTH and CIA 

models are promising as these models produce many similar symptoms to that of RA [197,198].  

 

1.3.8 Therapeutic potential of MSC-EVs in human studies 

There are few clinical trials using MSC-EVs to treat autoimmune diseases. BMMSC-EVs were 

used in a trial treating one patient with grade IV acute GvHD [199]. The EVs had been 

characterized prior to administration and they contained high concentrations of anti-

inflammatory cytokines IL-10, TGF-β and HLA-G. Pro-inflammatory cytokines such as IL-

1β, IL-6 and TNF-α were absent from the EV preparation. The treatment saw a reduction in 

PBMCs by 50%. There was also a reduction in IL-1β, TNF-α and IFN-γ [199]. Clinical 

symptoms of GvHD improved and remained stable four months after treatment. However, 

despite the findings indicating a therapeutic value for MSC-EVs, the trial involved one patient 

and significantly larger trials are required to prove its value as an immunosuppressive therapy.  
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Another study, treating a cohort of 40 patients (20 treated; 20 control) with chronic kidney 

disease, found therapeutic benefit using UCMSCs-EVs [200]. Results found that patients who 

received the EV treatment had improved urinary albumin creatinine ratio and decreased blood 

urea and serum creatinine which clinically indicate improved kidney function. EVs were 

effective in increasing TGF-β1 and IL-10 and decreasing TNF-α with no cytokine changes in 

the control group. Of interest to this review, is the clinical treatment of autoimmune diseases 

using MSC-EVs, by which more studies need to be published. 

 

1.3.9 Advantages of EVs 

It has been shown that UCMSCs are safe and well tolerated in clinical trials. Additionally, they 

have anti-inflammatory properties when combined with DMARDs for the treatment of RA. 

Then it must be asked ‘why study their EVs’? EVs offer a cell-free therapy solution which 

makes it easier to standardise treatments and assess changes [121]. They can be stored which 

makes it easier for clinical treatments and research suggests they have an immunosuppressive 

potential [135]. Additionally, the therapeutic benefit of MSCs is mainly attributed to their 

release of soluble factors and EVs [74], therefore further research is needed into the role of the 

secreted particles. For these reasons, MSC-EVs are an attractive alternative to using a cellular 

transplant but they warrant further research into their immunomodulatory properties. A 

summary of the advantages of using EVs is shown in Table 4. 
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Table 4: Advantages of using EVs 

• Can be used as ‘Off-the-shelf’ therapy [66] 

• Does not require cryopreservation in liquid nitrogen [66] 

• Can be produced on a large scale [66] 

• EV cargo can be modified to deliver specific effects [66,201] 

• EVs are naturally found within the body so they are biocompatible when 

administered in vivo and retain structural and functional stability [201] 

• EVs have a better safety profile than therapeutically administered cells and 

no toxicity or any side effects of EV administration are reported in 

published animal studies [201] 

 

1.3.10 Challenges in EV research  

For EVs to be a viable therapy in clinics, several obstacles need to be overcome. 

 

Most labs grow MSCs in cell culture media containing Fetal Bovine Serum (FBS). FBS 

provides proteins and growth factors that support cell growth however, it also contains a large 

amount of bovine EVs with a similar morphology to human EVs [202,203], therefore, the 

collection of conditioned media from human MSCs would contain EVs of both bovine and 

human origin. This would lead to inaccurate results when trying to study the 

immunomodulatory potential of human MSC-EVs. 

 

To address this problem, the FBS requires EV depletion before adding it to cell culture. The 

main advantage of EV depleting FBS is that it reduces the contamination of bovine EVs in the 

final EV preparation and it supports cell growth, albeit at a reduced rate of proliferation [203]. 

Another option is to serum starve cells however, there is a risk of cell apoptosis and this method 

induces a stress response from cells, shown by an increased level of reactive oxygen species 
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[203], which will affect the downstream analysis of EVs. Some labs used pre-made nutrient-

enriched media which does not require the addition of serum. However, for trade purposes, the 

contents of this media are not disclosed by companies and therefore this may make it difficult 

fully understand cell behaviour. Finally, there is an option to purchase EV depleted FBS, 

however it is expensive, so research groups have developed protocols to deplete FBS of EVs.  

 

Methods of FBS-EV depletion vary in terms speed and time. A summary of the methods used 

is found in Table 5. Speeds ranging between 100,000xg and 120,000xg are generally accepted 

as being efficient for EV depletion [202,204]. Further variation is seen in the literature 

regarding the length of time to EV deplete the FBS. Shelke et al. [202] found that an 18 hour 

centrifugation at 120,000xg was effective at reducing RNA-containing FBS-EVs by 95%, 

whereas a 1.5 hour protocol is insufficient. They did not find any difference in the 

ultracentrifugation of neat FBS or FBS diluted with PBS at a 3:7 ratio [202]. Similarly, Eitan 

et al. [205] found that a 1 hour ultracentrifugation time was only effective in reducing EV 

concentration by 2.2-fold compared to a 7-fold decrease observed after 6 hours. However, 

whilst the longer spin depleted more EVs, there was also an increased depletion of other 

proteins contained in FBS indicating a reduced specificity of EV depletion [205]. Therefore, 

the greatest challenge is to identify the shortest length of time to optimally deplete the FBS of 

EVs whilst also retaining some of the larger proteins which support cell growth. 
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Table 5: Comparison of different methods of EV depleting FBS 

Paper FBS Viscosity Speed Time 

Willms et al. [206] Neat 110,000g Overnight 

Shelke et al. [202] Neat 120,000g 18hours 

Kornilov et al. [203] Neat 121,896g 19hours 

Greening et al. [207] Neat  100,000g 18hours 

Liao et al. [204] 1:4 (FBS: PBS) 110,000g 18hours 

Aswad et al. [208] 20% FBS 100,000g Overnight 

Eitan et al. [205] 1:3 (FBS: DMEM) 2,000g for 10 minutes 

10,000g for 40 minutes 

120,000g for 1-6 hours 

Thery et al. [209] 20%FBS 100,000g Overnight 

Jeppesen et al. [210] 20%FBS 100,000g or 200,000g 16hours 

 

Some other questions that remain to be answered in the EV field include: 

• Is the cargo of EVs dependent on their biogenesis pathway? For example, are there 

certain proteins contained within exosomes that would be able to distinguish them from 

microvesicles? Answering this question may be able to identify different subtypes of 

EVs. 

• Which source of MSCs produces the most immunosuppressive EVs? 

• Is one EV subtype more efficacious than the other in reducing inflammation? For 

example, are exosomes more effective than microvesicles? 

• What is the optimal method of isolation of EVs? At present researchers are using a wide 

range of EV isolation techniques such as ultracentrifugation, density gradient 

centrifugation, size exclusion chromatography, filtration, immunoaffinity capture, 

polymer-based precipitation [211]. The different techniques used by researchers leads 

to a wide variation in the final EV product in terms of size, purity, cargo, and surface 

marker expression. This can lead to different functional performance from EVs and 

makes it difficult for researchers to compare EVs from different studies. An example 

of how each isolation technique correlates with EV yield and purity is shown in Figure 
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11. Due to the variety of EV isolation methods available, researchers are introducing 

some isolation bias into their study based on the method they choose. This was 

demonstrated by Lobb et al. [212] who tested four different isolation methods on the 

same cancer cell line and found that precipitation based methods produce the least pure 

exosomes, repeated ultracentrifugation reduces particle yield, and density gradient 

purification contains particles with the most exosomal markers. There were also 

shortcomings identified in each method such as a high starting volume for 

ultracentrifugation and membrane blocking occurring with ultrafiltration [212]. 

 

Figure 11: Purity and yield of different EV isolation methods 

Figure represents the performance of different EV isolation methods in terms of yield and purity. The 

EV yield is presented on the x-axis and the EV purity is presented on the y-axis. Figure adapted from 

Fricke et al. [213].  



  Chapter 1 

 
51 

 

1.3.11 Conclusion 

MSC-EV mediated immunosuppression is a growing area in scientific research due to its 

potential to treat numerous autoimmune and inflammatory diseases. This chapter looked at one 

autoimmune disease, rheumatoid arthritis, and gained an understanding into the pathogenesis 

of this disease. This chapter also looked closely at the properties and immunosuppressive 

functions of MSCs and MSC-EVs. MSCs and MSC-EVs were critically explored as potential 

therapeutic products for the treatment of RA, and while research strongly shows that these cells 

and EVs can suppress immune responses, there are many questions remaining and lots of 

different avenues to explore before they can be employed for this purpose. This chapter thereby 

looked at some considerations required when using MSCs and some challenges that exist in 

EV research. 

 

Overall, this chapter gave a detailed overview of RA, MSCs and MSC-EVs. It examined 

current research on MSCs and MSC-EVs as immune suppressors. It explored at some of the 

advantages and disadvantages of using MSCs and EVs, and finally, it highlighted some areas 

that are still unclear in the literature and need to be researched further. 
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1.4 Thesis Aims and Objectives 

1.4.1 Rationale for the study 

Recent research has shown the therapeutic, anti-inflammatory potential of MSC-EVs. 

However, there is a gap in the literature about which culture conditions produces a population 

of UCMSC-EVs with the strongest anti-inflammatory potential. Therefore, there is a need to 

firstly, research the immunomodulatory potential of UCMSC-EVs, and secondly, compare 

UCMSC-EVs from different culture environments to see which population can suppress 

immune responses. Normoxic, hypoxic and pro-inflammatory conditions are compared in this 

thesis. Throughout this thesis, ‘normoxia’ is defined as ambient atmospheric oxygen levels 

(i.e., 21% O2), similar to atmospheric air, and ‘hypoxia’ is defined as low oxygen levels (i.e.  

5% O2). However, it is recognised that in other publications, ‘hypoxia’ is defined as a lack of 

oxygen to cells [214] and for UCMSCs, their ‘normal’ in vivo environment is 5% O2, thereby 

the oxygen levels cannot be considered insufficient or lacking. But, for clarity throughout, this 

thesis adopts the term ‘normoxia’ to describe 21% O2 and ‘hypoxia’ to describe 5% O2. 

 

1.4.2 Hypothesis 

Clinical and animal research has shown that UCMSCs can ameliorate autoimmune diseases by 

suppressing pro-inflammatory immune responses [102,115,116]. Their immunosuppressive 

potential has largely been attributed to paracrine signalling. As EVs are involved in cell-to-cell 

communication via paracrine signalling, it is hypothesised that UCMSC-EVs possess many of 

the same immunomodulatory properties as their parent UCMSCs, i.e., they are anti-

inflammatory and able to suppress immune responses. Additionally, the immunosuppressive 

potential is heightened by MSC preconditioning in hypoxia and with pro-inflammatory 
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priming. Therefore, the second hypothesis is the MSSC-EVs from hypoxic and pro-

inflammatory primed UCMSCs show a stronger anti-inflammatory potential. 

 

1.4.3 Aim of thesis 

To examine the therapeutic properties of extracellular vesicles from umbilical cord 

mesenchymal stem cells for the treatment of rheumatoid arthritis. 

1.4.4 Objectives: 

1. To successfully isolate extracellular vesicles and characterise them based on their 

protein and miRNA content. 

2. To compare extracellular vesicle characteristics and functioning from UCMSCs grown 

in four different conditions (normoxia, normoxia and pro-inflammatory primed, 

hypoxia, hypoxia and pro-inflammatory primed). 

3. To investigate if UCMSC-EVs can polarise T-cells towards an anti-inflammatory 

phenotype. 

 

  



  Chapter 2 

 
54 

 

 

 

 

Chapter 2: Materials and 

Methods 

  



  Chapter 2 

 
55 

 

2.1 Materials 

List of Reagents and Equipment Used 

Company Address Chemicals Used Cat No 

Abcam Cambridge, UK • H&E Staining Kit • ab245880 

Agar Scientific  Essex, UK • Sonomatic Langford sonicator 

• Copper grids 

• Uranyl acetate 

• N/A 

• G2002 

• AGR1260A 

Agilent 

Technologies 

Waldbronn, 

Germany 

• Agilent Bioanalyzer 2100  

• RNA 6000 Pico kit 

• Agilent 4200 TapeStation 

• High Sensitivity RNA 

ScreenTape Assay 

• G2939BA 

• 5067-1513 

• G2991AA 

• 5067- 5579 

AllCells Alameda, CA, 

USA 

• Bone marrow aspirate- 15ml • ABM001 

Atom Scientific Cheshire, UK • Toluidine Blue (1% aqueous) • RRSP146-C 

Baker Ruskinn Bridgend, UK • InvivO2 hypoxic workstation 

• HypoxyCOOL™ media 

conditioning system 

• N/A 

 

• N/A 

BD Biosciences Wokingham, UK • Human BD Fc Block™  

• CD105 APC  

• CD90 PE-CF594  

• CD73 BV-421  

• CD14 PerCP-Cy5.5  

• CD45 PE-CF594  

• CD34 APC  

• CD19 BV-421  

• HLA-DR APC 

• CD106 APC 

• CD146 PE-CF594 

• BD FACSDiva CS&T IVD 

Beads 

• FACSCanto II 

• FlowJo® software 

• 564220 

• 562408 

• 562385 

• 562430 

• 562692 

• 562279 

• 555824 

• 562440 

• 559868 

• 551147 

• 564327 

• 656047 

 

• N/A 

• N/A 

Beckman Coulter High Wycombe, 

UK 

• L8-M Ultracentrifuge 

• 10.4ml closed top polycarbonate 

tube 

• Fixed angle type 70.1Ti rotor 

• N/A 

• 355603 

• 342184 

Bio-Rad Oxford, UK 

Watford, UK 

• CD81 monoclonal antibody 

• 4x Laemmli buffer 

• 4-15% TGX stain free gel 

• ChemiDoc MP Imaging System  

• Image Lab v. 6.0.1 software 

• MCA1847 

• 1610747 

• 4568086 

• N/A 

• N/A 

BMG Labtech Aylesbury, UK • FLUROStar Omega plate reader 

• PHERAstar FS multi-mode plate 

reader 

• N/A 

 

• N/A 
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Catalag 

Medsystems 

Buckingham, 

UK 

• AllCells bone marrow aspirate  • ABM001 

Cell Signalling 

Technologies 

London, UK • Rab5a monoclonal antibody • 30021200 

eBioscience Waltham, US • mouse IgG2a 

• 1x Intracellular Fixation Buffer 

• Permeabilization Buffer (10X) 

• 14-4724-85 

• 88-8824-00 

• 00-8333-56 

Genta Medical York, UK • Isopropyl alcohol 

• Xylene 

• IPA050 

• XYL050 

Gibco/Thermo 

Fisher/Life 

Technologies/Fish

er Scientific 

Warrington, UK 

Paisley, UK 

Rockford, USA 

Waltham, USA 

Loughborough, 

UK 

• Pierce BCA protein assay kit 

• DMEM F12 

• Fetal Bovine Serum (FBS) 

• Dulbecco's phosphate-buffered 

saline (DPBS) 

• Penicillin/Streptomycin (P/S) 

• Trypsin/EDTA 

• MEM Non-Essential Amino 

Acids Solution (100X) 

• poly-L-Lysine coated 

microscope slides 

• Gentamicin 

• TGF-β1 

• CellMask Orange™ 

• Goat anti-mouse IgG-HRP 

• SuperSignal West Pico 

Chemiluminescent Substrate 

• Qubit® 2.0 instrument 

• Qubit™ RNA HS Assay Kit 

• Qubit™ RNA BR Assay Kit 

• Qubit® double-stranded DNA 

(high sensitivity) assay 

• IKA MS3 vortexer 

• PCR Sprint Thermal cycler 

• 0.2ml PCR tubes 

• Applied Biosystems 

QuantStudio 3 Real-Time PCR 

System 

• QuantStudio™ Design and 

Analysis Software v.1.5.1 

• 23225 

• 11320-033 

• 10270 

• 14190-144 

 

• 15070063 

• 25200072 

• 12070346 

 

• 5027988 

 

• 15710064 

• PHG9204 

• 10093243 

• 62-6520 

• 34580 

 

• Q32866 

• Q32855 

• Q10211 

• Q32854 

 

• 10492342 

• HBSP02 

• 11899221 

• A28567 

 

 

• N/A 

Greiner Bio-One 

Ltd 

Stonehouse, UK • High-binding enzyme-linked 

immunosorbent assay (ELISA) 

strips  

• 756071 

Illumina Inc. California, USA • Illumina NovaSeq SP • N/A 

Kaivogen Oy Turku, Finland • Red assay buffer 

• Europium fluorescent intensifier 

• 42-02 

• 42-04 

Koki Holdings Ltd Tokyo, Japan • 25PC polycarbonate thick-

walled centrifuge tubes 

• Hitachi Himac Micro 

Ultracentrifuge CS150NX 

• S309140A 

 

• N/A 
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Leica  Wetzlar, 

Germany 

• Leica Diaplan microscope • N/A 

Life Science 

Solutions 

MA, USA • Olympus ix71 microscope • N/A 

Lonza Basel, 

Switzerland 

• Pen-Strep 

• Bone Marrow Aspirate 

• DE17-603E 

• 1M-105 

Malvern 

Instruments Ltd 

Amesbury, UK • NTA NS300 system • N/A 

Miltenyi Biotec Woking, UK • MACSPlex Exosome Kit 

(human) 

• T Cell TransAct™, human 

• 130-108-813 

 

• 130-111-160 

New England 

BioLabs Inc. 

Massachusetts, 

USA 

• NEBNext® Multiplex Small 

RNA Library Prep Set 

• E7300L 

Nikon 

Instruments Inc. 

Tokyo, Japan 

Melville, USA 

• Nikon DS-Fi1 camera 

• Nikon Eclipse TS100 

microscope 

• N/A 

• N/A 

OLink Bioscience Upsalla, Sweden • Proseek® Multiplex 

Inflammation Panel 

• 91301 

Peprotech London, UK • IFN-γ 

• IL-1β 

• TNF-α 

• 300-02 

• 200-01B 

• 300-01A 

 Perkin Elmer Coventry, UK • Goat anti-mouse IgG-

biotinylated antibody 

• Europium conjugated 

streptavidin 

• NEF823001EA 

 

• 1244-360 

Qiagen Manchester, UK • miRNeasy micro kit 

• Proteinase K 

• miRCURY LNA RT Kit 

• miRCURY SYBR® Green PCR 

Kit 

• 217084 

• 19131 

• 339340 

• 339346 

R&D Systems Abingdon, UK • BSA 

• CD9 monoclonal antibody 

• DY995 

• MAB1880 

Sage Science  Beverly, US • Pippin prep station • N/A 

Santa Cruz 

Biotechnology 

Texas, US • Alix monoclonal antibody 

• Hsp70 monoclonal antibody 

• Cytochrome C monoclonal 

antibody 

• sc-53540 

• sc-66048 

• sc-13156 

Sarstedt Ltd Leicester, UK • 0.22μm filter (Filtropur) • 83.1826.001 

Scientific 

Laboratory 

Supplies 

Nottingham, UK • 25PC Polycarbonate open top 

tubes 

• S309140A 

Sigma-

Aldrich/Merck 

Poole, UK 

Gillingham, UK 

• Dexamethasone 

• β-Glycerophosphate 

• L-Ascorbic acid 

• IBMX (3-Isobutyl-1-

methylxanthine) 

• Insulin-Transferrin-Selenium 

Media Supplement (100×) 

• Indomethacin 

• Naphthol AS-BI  

• D4902 

• G9891 

• A4403 

• I5789 

 

• I3146 

 

• I7378 

• 3864 
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• Fast Red ITR 

• Oil Red O 

• Paraffin wax 

• Toluidine Blue O 

• Crystal Violet 

• RIPA buffer 

• Bovine Serum Albumin 

• Deuterium Oxide 

• Sucrose 

• β-mercarptoethanol 

• Paraformaldehyde  

• cOmplete™ Protease Inhibitor 

Cocktail 

• Phenylmethylsulfonyl fluoride 

(PMSF) 

• RNaseA 

• Trypan blue  

• Brefeldin A 

• Fibronectin 

• Collagenase Type 1 

• 201286 

• O0625 

• V001228 

• T3260 

• C0775 

• R0278 

• A1933 

• 151882 

• S0389 

• M6250 

• 158127 

• 11697498001 

 

• 10837091001 

 

• R6513 

• T8154 

• B6542 

• 10838039001 

• SCR103 

SIS systems Birmingham, 

UK 

• JOEL-JEM 1230 Transmission 

Electron Microscope 

• MegaView 3 Soft Imaging 

System 

• N/A 

 

 

• N/A 

Stem Cell 

Technologies 

Cambridge, UK • Lymphoprep™ • 07801 

Terumo BCT Colorado, USA • Quantum® Cell Expansion 

System 

• N/A 
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2.2 Methods 

2.2.1 General Cell Culture 

2.2.2 Isolation of MSCs from umbilical cord  

Umbilical cords (n=4) were collected from the Robert Jones and Agnes Hunt Orthopaedic 

Hospital (RJAH) following natural delivery with ethical approval (National Research Ethics 

Service; 10/H10130/62). Patient demographic information are shown in Table 6. The isolation 

of MSCs from umbilical cord was not done as part of this work and is described in Mennan et 

al. [63].  

 

Table 6: Demographic profile of the four umbilical cord donors 

Figures obtained for BMI were obtained at the time of gestational booking (~week 8-11). 

 

 

2.2.3 Standard cell culture procedure 

UCMSCs were passaged when they reached ~70-80% confluency. This was carried out by 

removing the spent culture medium and washing the cells in dPBS (pre-warmed to 37°C) to remove 

dead cells and residual FBS. The UCMSCs were then incubated in pre-warmed 0.05% trypsin/ 0.53 

mM ethylenediaminetetraacetic acid (EDTA; Gibco, Warrington, UK) for 5 minutes at 37°C. 

UCMSCs were observed under a light microscope (Nikon Instruments Inc. Melville, USA) to 

ensure they had detached from the flask. To neutralise the trypsin activity, an equal volume of pre-
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warmed complete media was added and the UCMSCs were centrifuged for 5 minutes at 700xg to 

pellet the cells. Following centrifugation, the supernatant was discarded, and the cell pellet gently 

re-suspended in 1ml of complete medium. The viability and number of cells were assessed using a 

trypan blue exclusion assay. This was performed by adding 10μl of trypan blue (Sigma, UK) to 

10μl of cell suspension in a 0.5ml eppendorf tube. Ten microlitres of the suspension was pipetted 

under a glass coverslip on a haemocytometer, and the cells observed and counted under the 

microscope. Non-viable (dead cells) appear blue, while viable (live) cells do not take up the dye as 

they have intact cell membranes, so appear clear. Healthy cell cultures in the log-phase were 

expected to have > 95% viability. 

 

2.2.4 Cell expansion of UCMSCs in normoxia 

UCMSCs were first cultured on tissue culture plastic and then culture expanded in a Quantum® 

Cell Expansion System, shown in Figure 12 (Terumo BCT, Surrey, UK), and described in 

Mennan et al. [215]. UCMSCs were then grown under normoxic conditions (21% O2; 5% CO2) 

up to passage 8 and fed every 2-3 days with DMEM F12, 10% FBS, 1% P/S (Life Technologies, 

Warrington, UK). 

 

Figure 12: Image of the Quantum® Cell Expansion System  

UCMSCs were seeded into the Quantum® Cell Expansion System and grown in ~11,500 hollow fibre 

tubes. The computer-controlled system enables the flow of gases and media into the bioreactor. Waste 



  Chapter 2 

 
61 

 

media is collected, and cell growth is monitored by glucose and lactate readings from the sample port 

[215,216]. Image taken from https://www.terumobct.com/quantum. 

 

2.2.5 Cell expansion of UCMSCs in hypoxia 

UCMSCs were also culture expanded in hypoxic conditions (5% O2; 5% CO2) in the InvivO2 

hypoxic workstation (Baker Ruskinn, Bridgend, UK) as shown in Figure 13. UCMSCs were 

fed every 2-3 days with DMEM F12, 10% FBS, 1% P/S (Life Technologies, Warrington, UK). 

This media solution was the same as in normoxic conditions, but prior to feeding cells with 

media, the oxygen content of the DMEM F12 was lowered to approximately 5% as described 

below.  

 

Figure 13: Image of InvivO2 hypoxic workstation used for growing UCMSCs  

The InvivO2 hypoxic workstation system was programmed to an oxygen level of 5% and a CO2 level of 

5%. All supplies were put into the system through the interlock side door (on the right of photo) and 

hands through the sleeve port. The system then equilibrized to the same gas concentration as the main 

chamber to ensure atmospheric gases were not altering the gas concentration that the cells were 

exposed to. 

https://www.terumobct.com/quantum
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2.2.6 Degassing of media using HypoxyCOOLTM media conditioning system 

Prior to culturing cells in hypoxia, the oxygen content of the media was reduced to 5% using 

the HypoxyCOOLTM media conditioning system (Baker Ruskinn, Bridgend, UK). This work 

was carried out at the Guy Hilton Research Centre. Briefly, vented caps were added to six 

500ml bottles of DMEM, and these were loaded into the HypoxyCOOLTM which was 

programmed to 2% O2 (or 5% O2) for 3 hours at 4oC. The media was gently agitated in the 

machine to promote the gas exchange throughout the media. When the cycle had finished the 

vented caps were replaced with airtight caps and stored at 4oC until use. PBS was freeze/thawed 

to remove the dissolved oxygen in the solution before being used to wash cells. 

 

2.2.7 Pro-inflammatory priming 

In one experimental setting, UCMSCs were stimulated with pro-inflammatory cytokines 

(hereafter referred to as ‘primed’) for 48 hours in both normoxic and hypoxic conditions when 

they reached 80% confluence. They were treated with an inflammatory cocktail containing 

5ng/ml TNF-α, 2.5ng/ml IFN-γ and 2.5ng/ml IL-1β (Peprotech, London, UK) added to DMEM 

F12, 10% EV depleted FBS, 1% P/S. The conditioned media of the primed cells was then 

collected for EV isolation. Figure 14 outlines the experimental plan and culture conditions of 

UCMSCs. 

 

2.2.8 Depletion of EVs from FBS 

FBS is rich in EVs and steps must be taken to reduce the contamination of bovine EVs. 

Therefore, FBS was subject to a long ultracentrifugation to deplete FBS of EVs. The Depletion 

of EVs from FBS was carried out at the University of Keele. The EV depletion of FBS followed 
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a protocol by Shelke et al. [202]. Neat FBS was loaded into sterile 25PC polycarbonate thick-

walled centrifuge tubes (Koki Holdings Co., Japan) and weighed to ensure that each tube was 

balance equally in the ultracentrifuge. The FBS was ultracentrifuged at 120,000g for 18 hours 

at 4oC using a Hitachi Himac Micro Ultracentrifuge CS150NX (Koki Holdings Co., Japan). 

The FBS supernatant was removed, stopping ~3cm before the bottom of the tube to avoid the 

pellet. The FBS supernatant was subject to a 0.2µm syringe filter followed by a 0.1µm filtration 

and stored at -20oC before use in cell culture.  

 

 

Figure 14: Schematic of study plan 

Diagram displays the study design including culture conditions of UCMSCs, EV characterisation and 

cargo analysis experiments.  
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2.2.9 Isolation of MSCs from bone marrow 

Human bone marrow aspirate (15ml) was ethically sourced from the Lonza Group Ltd (n=1) 

(Basel, Switzerland) and AllCells LLC (n=1) (CA, USA). Both aspirates originated from 

healthy young adults. Both companies collected the bone marrow in sodium heparin 

syringes from the iliac crest. MSCs isolated from the aspirate were initially cultured both in 

normoxic (21% O2) and hypoxic (2% O2) conditions.  

 

2.2.10 Cell expansion of BMMSCs in normoxia 

Bone marrow aspirates (n=2) was diluted 1:1 with Dulbecco's phosphate-buffered saline 

(DPBS) (Life Technologies, Warrington, UK) and layered over 10ml Lymphoprep™ (Stem 

Cell Technologies, Cambridge, UK). The aspirate was centrifuged at 900xg for 20 minutes and 

the buffy coat was extracted at the interface. The mononuclear cells were centrifuged at 750xg 

for 10 minutes and the pellet was resuspended in DMEM F12, 20% Fetal Bovine Serum (FBS), 

1% Penicillin/Streptomycin (P/S) (Life Technologies, Warrington, UK). The cells were seeded 

at a density of 20x106 in 75cm2 T-flasks and incubated at 37oC at 5% CO2. The medium was 

changed every 2-3 days until passaging. When cells were confluent, the MSCs were passaged 

with Trypsin-EDTA (Life Technologies, Warrington, UK) and the FBS content of the media 

was reduced to 10%. Cells were seeded at a density of 5×103 cells/cm2. Protocol adapted from 

Mennan et al. [217]. 

  

2.2.11 Cell expansion of BMMSCs in hypoxia  

Fresh bone marrow aspirate was plated directly into 175cm2 tissue culture flasks, coated with 

10ng/ml fibronectin diluted in sterile water, at a density of 105/cm2. Cells were cultured in an 
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InvivO2 hypoxic workstation (Baker Ruskinn, Bridgend, UK) at 37oC, 2% O2 and 5% CO2. 

The aspirate was seeded in DMEM F12 (30ml per flask), 10% FBS, 1% P/S, 1% L-Glutamine, 

1% P/S and 1% non-essential amino acids (NEAA) (Life Technologies, Warrington, UK) for 

14 days with half of the media changed after 7 days, protocol by Agrawal et al. [218]. At 14 

days, the cells were washed with dPBS to remove non-adherent cells and the presence of 

fibroblastic colonies was identified. After 14 days, cells were cultured in DMEM F12, 10% 

FBS, 1% P/S (Life Technologies, Warrington, UK). When dense fibroblastic colonies were 

observed in the flask at the 21-day timepoint, the cells were passaged with Trypsin-EDTA and 

seeded into a new tissue culture flask at a density of 5×103 cells/cm2 (Life Technologies, 

Warrington, UK). 

 

2.2.12 Tri-lineage differentiation of BMMSCs  

The BMMSCs (n=1) at passage 2-3 underwent trilineage differentiation to assess their 

osteogenic, adipogenic and chondrogenic potential differentiation.  

 

2.2.12.1 Osteogenic differentiation 

For osteogenic differentiation, BMMSCs were cultured in triplicate at a density of 1x104/cm2 

in a cell monolayer on a 24-well plate. Osteogenic media was added to BMMSCs containing 

DMEM F12, 10% FBS, 1% P/S, 10nM dexamethasone, 10mM β-glycerophosphate and 50µM 

ascorbic acid (Sigma-Aldrich, Poole, UK). BMMSCs grown in DMEM F12, 10% FBS and 1% 

P/S acted as a control. Fresh media was added to BMMSCs every 2-3 days for 21 days. To 

assess osteogenic differentiation cells were stained with alkaline phosphatase which is an early 

marker of osteoblast differentiation. BMMSCs were incubated in a solution of 0.2M Tris-HCL 

buffer pH 9.0, 0.5mg/mL Napthol AS-BI phosphate diluted in dimethyl formamide, 1mg/ml 
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Fast Red TR (Sigma-Aldrich, Poole, UK) and left at room temperature for 1 hour. Excess dye 

was removed with distilled H2O. The presence of alkaline phosphatase was seen by red residue 

marks. 

 

2.2.12.2 Adipogenic differentiation 

For adipogenic differentiation, BMMSCs were cultured in triplicate at a density of 1x104/cm2 

in a cell monolayer on a 24-well plate. BMMSCs were cultured in DMEM F12, 10% FBS, 1% 

P/S, 1% Insulin-Transferrin-Selenium, 0.5uM IBMX, 1µM dexamethasone and 100µM 

indomethacin (Sigma-Aldrich, Poole, UK). BMMSCs grown in DMEM F12, 10% FBS and 

1% P/S acted as a control. Fresh media was added to BMMSCs every 2-3 days for 21 days. Oil 

Red O (Sigma-Aldrich, Poole, UK) was used to stain for lipids which are an indicator of 

adipogenic differentiation. BMMSCs were stained with 0.5% Oil Red O in isopropyl alcohol 

(Genta Medical, York, UK) and left at room temperature for 1 hour before the excess dye was 

removed with distilled H2O. The presence of lipids was seen by red circular vacuoles. All 

images were captured using a Nikon Eclipse TS100 microscope (Nikon Instruments Inc., 

Melville, USA) or an Olympus ix71 microscope at 10x objective (Life Science Solutions, MA, 

USA).  

 

2.2.12.3 Chondrogenic differentiation 

Triplicate pellets of BMMSCs were used for chondrogenic differentiation, 5x105 cells were 

suspended in 1ml DMEM F12 and centrifuged at 500xg for 5 minutes to pellet the cells. The 

pellets were then incubated overnight at 37ºC, 5% CO2. The following day the pellet was fed 

with chondrogenic media containing DMEM F12, 2% FBS, 10µg/ml Gentamicin, 1% Insulin-

Transferrin-Selenium, 0.1mM Ascorbic Acid, 10nm Dexamethasone and 10ng/ml TGF-β1 
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(Life Science Solutions, Paisley, UK). Cell pellets were fed every 2-3 days for 25 days. After 

this time period, cell pellets were fixed in 10% formalin overnight and then processed and 

sectioned in the histopathology department at RJAH. The process of wax-embedding the cells 

pellets firstly involved dehydrating them in 70% (v/v) isopropyl alcohol in phosphate buffered 

saline (PBS) (Gibco, Loughborough, UK), followed by two changes of 100% isopropyl 

alcohol. Cell pellets were then cleared in Xylene (Genta Medical, York, UK), before being 

embedded in a paraffin wax (Sigma-Aldrich, Poole, UK). Cell pellets were sectioned at a 

thickness of 5µm. The cut sections were incubated at 45°C in a water before being collected 

onto poly-L-Lysine coated microscope slides (ThermoFisher Scientific, Loughborough, UK). 

The slides were dried in an oven overnight at 37°C and then stained with haematoxylin and 

eosin (H&E) (Abcam, Cambridge, UK) and Toluidine Blue (1% Aqueous) (Sigma-Aldrich, 

Poole, UK). Slides were imaged using a Leica Diaplan microscope (Leica, Wetzlar, Germany) 

and a Nikon DS-Fi1 camera (Nikon, Tokyo, Japan).  
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2.3 Cell Characterisation 

2.3.1 Growth kinetics 

In order to determine the growth kinetics of the UCMSCs, Population Doubling Times (PDT) 

were calculated using the formula DT= T ln2/ln(Xe/Xb) where T is the incubation time, Xb is 

the cell number at the beginning of the incubation time and Xe is the cell number at the end of 

the incubation time [219,220]. 

 

2.3.2 Image analysis using ImageJ 

Image analysis was carried out on normoxic UCMSCs (n=4) and hypoxic UCMSCs (n=4). 

Each donor was imaged using three different fields of view (x4, x10, x20 objective) and three 

images were captured on each field of view using a Nikon Eclipse TS100 microscope (Nikon 

Instruments Inc., Tokyo, Japan). These images were uploaded to ImageJ software (v. 1.53e) 

and converted to 8-bit images for analysis. The scale was set using the scale bars from the 

image as a reference point. A line was drawn around the perimeter of the MSCs and the centre 

filled in. The pixel density of the drawn boundary was then converted into surface area. Due to 

the heterogenous nature of MSCs, 50 cells were outlined and analysed per photo from the 4x 

objective. MSCs were determined based on a visible cell nucleus and cell boundary. The size 

of EVs was also measured on ImageJ after they were captured on a JOEL-JEM 1230 

Transmission Electron Microscope (SIS systems, Birmingham, UK), described in Section 

2.7.1). A line was drawn across the diameter of the particle and calculated using a set scale 

from the reference bar. ImageJ analysis was carried out on normoxic EVs (n=2) and hypoxic 

EVs (n=2). One average 20 particles were measured per EV condition. 
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2.3.3 Flow cytometry 

UCMSCs (n=4) were characterized using flow cytometry to confirm that cells were of a 

mesenchymal origin in accordance with The International Society for Cellular Therapy (ISCT) 

criteria. UCMSCs were harvested at passage 3-5 centrifuged at 500xg for 5 minutes and 

resuspended in PBS with 2% Bovine Serum Albumin (BSA) (Sigma-Aldrich, Poole, UK). 

Single-cell suspensions were incubated with Human BD Fc Block™ (BD Biosciences, 

Wokingham, UK) for 1 hour; after which time the receptor block was washed off via 

ultracentrifugation at 500xg for 5 min. The conjugated monoclonal antibodies against human 

surface antigens in 2% BSA were added to cell suspensions containing 3x105 cells per tube. 

The cells with antibodies were incubated in the dark at 4°C for 30 minutes. The monoclonal 

antibodies used to identify human surface antigens on MSCs are displayed in Table 7. Control 

samples were stained with IgG controls. Flow cytometry was performed on a FACSCanto II 

(BD Biosciences, Wokingham, UK) and data analysed using FlowJo® software (FlowJo LLC, 

US).  
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Table 7: List of antibodies used to characterise UCMSCs 

All antibodies were directly conjugated to a fluorochrome and used in a working concentration of 

5μg/ml. All antibodies were purchased from BD Biosciences, Wokingham, UK. 

Antibody Conjugated 

Fluorochrome 

Dilution Isotype Control 

CD105 APC 1:20 APC Mouse IgG1 

CD90 PE-CF594 1:20 PE-CF594 Mouse IgG1 

CD73 BV421 1:20 BV421 Mouse IgG1 

CD14 PerCP-Cy5.5 1:20 PerCP-Cy5.5 Mouse IgG2b 

CD45 PE-CF594 1:20 PE-CF594 Mouse IgG1 

CD34 APC 1:5 APC Mouse IgG1 

CD19 BV421 1:20 BV421 Mouse IgG1 

CD106 APC 1:2.5 APC Mouse IgG1 

CD146 PE-CF594 1:11 PE-CF594 Mouse IgG1 

HLA-DR APC 1:5 APC Mouse IgG2b 

APC Mouse IgG1 APC 1:5  

PE-CF594 Mouse IgG1 PE-CF594 1:50  

BV421 Mouse IgG1 BV421 1:100  

PerCP-Cy5.5 Mouse IgG2b PerCP-Cy5.5 1:5  

APC Mouse IgG2b APC 1:5  

  



  Chapter 2 

 
71 

 

2.4 EV Characterisation 

2.4.1 Isolation of EVs 

At 80% confluence, cells were washed with PBS and DMEM F12 containing 10% EV depleted 

FBS was added and left for 48 hours. This media (conditioned media) was then collected and 

centrifuged at 300xg for 10 minutes to pellet cells. The CM supernatant was collected and spun 

at 2,000xg for 20 minutes to remove dead cells, followed by storage at -80oC until EV isolation. 

EVs were isolated from the conditioned media via differential ultracentrifugation for western 

blotting and differential ultracentrifugation with a 30% sucrose cushion for all other 

experiments. 

 

2.4.2 Differential ultracentrifugation 

Figure 15A shows the process of EV isolation carried out on the conditioned media of 

UCMSCs. All conditioned media was stored at -80oC prior to EV isolation. The media was 

stored for up to a maximum of 3 months and freeze-thawed once on the day of isolation. To 

isolate the EVs, the conditioned medium underwent differential ultracentrifugation using a 

fixed angle type 70.1Ti rotor, 10.4ml closed top polycarbonate tube and a L8-M 

Ultracentrifuge, k-factor 122.6 (Beckman Coulter, High Wycombe, UK), shown in Figure 

15B. The CM was ultracentrifuged at10,000xg for 30 minutes to remove apoptotic cell debris. 

The supernatant was then passed through a 0.22μm filter (Sarstedt, Leicester, UK) and the 

filtered supernatant was then centrifuged at 100,000xg for 70 minutes to pellet EVs. All 

ultracentrifugation experiments were performed at 4oC. The supernatant was completely 

removed and the EV pellets resuspended in DPBS and stored at -80oC.  
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Figure 15: Differential ultracentrifugation protocol 

A. Flow chart of protocol used for isolation of EVs using differential ultracentrifugation. B. Machine 

used for ultracentrifugation of CM. 

 

2.4.3 Sucrose cushion isolation 

To isolate the EVs, the conditioned medium underwent differential ultracentrifugation using a 

30% sucrose/deuterium oxide (D2O) (Sigma-Aldrich, Poole, UK) cushion, made up to a density 

of 1.210 g/cm3 [209]. The conditioned media was first centrifuged at 2,000xg for 20 minutes 

to remove cell debris. The supernatant was then passed through a 0.22µm filter (Sarstedt, 

Leicester, UK), loaded onto a 30% sucrose cushion and then centrifuged at 100,000xg for 1hr 

45 minutes on a SW28Ti rotor, 25PC Polycarbonate open top tubes (Scientific Laboratory 

Supplies, Nottingham, UK) and using a L8-M Ultracentrifuge; k-factor 296.8 (Beckman 

Coulter, High Wycombe, UK) (Figure 16A). Using a 21G needle and syringe, 3-4ml of EV 

suspension was collected at the interface between the sucrose cushion and conditioned media 
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(Figure 16B). DPBS was added to this suspension and it was centrifuged on a Type 70.1Ti 

fixed angle rotor at 100,000xg for 60 minutes to pellet pure EVs. All ultracentrifugation 

experiments were performed at 4oC and EV pellets were stored at -80oC. 

 

   

Figure 16: Sucrose cushion ultracentirfugation protocol 

A. Flow chart of protocol used for isolation of EVs using sucrose cushion ultracentrifugation. B. Image 

of conditioned media (pink) on a 30% sucrose cushion (clear) after ultracentrifugation. The cloudy 

interface between the conditioned media and the sucrose cushion contains the EVs.  

 

  

A B 
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2.5 EV Concentration 

2.5.1 BCA protein assay 

Protein was extracted from EV samples by lysing samples with cold radioimmunoprecipitation 

assay (RIPA) buffer (150 mM NaCl, 1.0% IGEPAL®, 0.5% sodium deoxycholate, 0.1% SDS, 

50 mM Tris) (Sigma-Aldrich, Poole, UK) for 30 minutes and sonicating the samples 3 times 

for 15 seconds using a Sonomatic Langford sonicator (Agar Scientific, Essex, UK). The protein 

concentration in the samples was then measured using the Pierce™ BCA Protein Assay Kit 

(Thermo Fisher Scientific, Waltham, MA, USA) (Figure 17). A BCA assay was used to 

quantify protein expression in cells and EVs. This is a colorimetric assay that uses 

bicinchoninic acid (BCA). It is based on the reduction of Cu+2 to Cu+1 by protein when in an 

alkaline medium. This cuprous cation (Cu+1) is then detected by the bicinchoninic acid causing 

a colour change where a purple colour indicates the bonding of two BCA molecules with one 

cuprous cation. Briefly, a standard curve was made up by diluting BSA with PBS to make a 

working range of 20–2000 µg/ml. A blank well was included to analyse background noise. 

25μl of the standards and 25μl of the samples are added to a 96-well plate and a working reagent 

containing BCA is added to each well. The plate is vortexed and incubated at 37oC for 30 

minutes. The plate is then read on a FLUROStar Omega plate reader (BMG Labtech, 

Aylesbury, UK) with spectrophotometer setting at 562nm. Colorimetric detection of the 

samples is then compared to the standard curve (known concentration) to quantify the 

concentration of total protein in EV and cellular samples. 
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Figure 17: Image of BCA protein assay 

Dilutions of BSA standards are present in column 1-4 and EV protein samples are present in 6-8 and 

10-12 shown in dark purple. The plate is analysed on a FLUROStar Omega plate reader (BMG Labtech, 

Aylesbury, UK) and total protein is calculated by comparing the samples to the standard curve. 

 

2.5.2 Nanoparticle tracking analysis 

Nanoparticle tracking analysis (NTA) was used to measure EV particle size based on Brownian 

motion (Figure 18A). Conditioned media (30ml) from approximately 2x106 UCMSCs was 

subject to 30% sucrose cushion ultracentrifugation to isolate EVs. The EV pellet was 

resuspended in 50μl DPBS and frozen at -80oC until NTA analysis. Isolated EV samples and 

conditioned media were diluted 1:50 in PBS and injected into the NTA NS300 system (Figure 

18B) (Malvern Instruments Ltd, Amesbury, UK). Three videos of 60 seconds were taken of 

particles in motion under controlled fluid flow with a pump speed set to 50. Videos were then 

analysed with the NTA software to determine particle size.  
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To confirm that the particles seen through the NTA were EVs, a fluorescent dye CellMask 

Orange™ (CMO) (Thermo Fisher Scientific, Paisley, UK) was added to the EV suspension, 

which labels the plasma membrane of EVs. CMO in DMSO was added to a 10μl EV suspension 

isolated from hypoxic conditions, and diluted in PBS to give a final concentration of 5mg/ml. 

The CMO/EV suspension was mixed by gently pipetting and stored in the dark at room 

temperature for 15 minutes before being run on the NTA.  

 

   

Figure 18: Images illustrating how the NTA measures the size and concentration of 

particles 

A. A laser beam is passed through particles in suspension which causes a scattering of light. This light 

scattered is focussed by the microscope onto the image sensor of the camera [221]. The NTA software 

tracks each particle in order to calculate the mean square displacement of particle movement, and 

together with data on temperature and liquid viscosity, particle size can be measured using the Stokes-

Einstein equation [221]. B. Image of NS300 instrument used in the analysis of EVs. The NS300 

instrument can detect nanoparticles from 0.01-1µm in diameter. Images taken from Malvern website 

(https://www.malvernpanalytical.com/).  

A 
B 

https://www.malvernpanalytical.com/
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2.6 Expression of EV Markers 

2.6.1 Flow cytometry of EVs  

The characterisation of surface antigens on EVs was performed using the MACSPlex Exosome 

Kit (Miltenyi Biotec, Woking, UK) (Figure 19). Approximately 8μg of EV protein was diluted 

to 120μl using MACSPlex Buffer. EVs were incubated in capture antibodies overnight 

according to the manufacturer’s instructions, then washed with PBS and incubated with 

detection antibodies (CD9, CD63, CD81) for 1 hour according to the manufacturer’s 

instructions and analysed using the FACSCanto II flow cytometer and FlowJo® software. In 

total, EVs were probed with antibodies against 37 exosomal protein epitopes and 2 isotype 

controls, detailed in Table 8, including common EV tetraspanin surface markers CD9, CD63 

and CD81. The MACSPlex Exosome Kit uses mIgG1 and REA as a negative control to detect 

non-specific binding of the APC detection antibodies. The REA control is a REAfinity 

antibody which is recombinantly engineered whereby the F’ab portion of the antibodies has 

been sequenced and bound to human IgG1 Fc portion in vitro. Antibody conjugated bead 

populations are gated on the flow cytometer shown in Figure 20. Positive surface antigen 

expression is detected through fluorescent emission within the gated population. 
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Figure 19: Schematic representation of the MACSPlex exosome detection kit.  

EVs are first incubated with capture antibodies overnight. The following day, they are centrifuged, 

washed and incubated with a cocktail of detection antibodies containing CD9, CD63 and CD81; this 

creates a ‘sandwich effect’ with the EV in the middle. After 1 hour, they are ready to be analysed on 

the flow cytometer. Only antibodies which are bound to the EVs containing CD9, CD63 and CD81 are 

detected. Image adapted from http://www.miltenyibiotec.com 

 

  

http://www.miltenyibiotec.com/
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Table 8: Exosome surface markers 

List of surface marker antibodies from the MACSPlex Exosome Detection kit (Miltenyi Biotec, 

Woking, UK). REA and mIgG1 isotype controls were used.  

 Antibody Isotype  Antibody Isotype 

1. CD3 mIgG2a 20. CD25 mIgG1 

2. CD4 mIgG2a 21. CD49e mIgG2b 

3. CD19 mIgG1 22. ROR1 mIgG1κ 

4. CD8 mIgG2a 23. CD209 mIgG1 

5. HLA-DRDPDQ REA 24 CD9 mIgG1 

6. CD56 REA 25. SSEA-4 REA 

7. CD105 mIgG1 26. HLA-ABC REA 

8. CD2 mIgG2b 27. CD40 mIgG1κ 

9. CD1c mIgG2a 28. CD11c mIgG2b 

10. CD63 mIgG1κ 29. CD81 REA 

11. CD62P REA 30. MCSP mIgG1 

12. CD146 mIgG1 31. CD44 mIgG1 

13. CD41b REA 32. CD326 mIgG1 

14. CD42a REA 33. CD133/1 mIgG1κ 

15. CD24 mIgG1 34. CD29 mIgG1κ 

16. CD86 mIgG1 35. CD69 mIgG1κ 

17. CD142 mIgG1κ 36. CD45 mIgG2a 

18. CD31 mIgG1 37. CD14 mIgG2a 

19. CD20 mIgG1    
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Figure 20: MACSPlex exosome detection kit - Gating of bead populations 

Bead populations are gated on the flow cytometer and detection of a fluorescent signal within that gate 

indicates positivity for a specific protein. Image displays an example of the gates using the set-up beads 

on the FTIC vs PE channel. Image taken from https://www.miltenyibiotec.com/  

 

2.6.2 Europium-based immunoassay 

Characterisation of common EV surface markers CD9 and CD81 was carried out using a 

europium-based immunoassay. EVs were added to high-binding enzyme-linked 

immunosorbent assay (ELISA) strips (Greiner Bio-One Ltd, Stonehouse, UK) at a 

concentration of 10µg/ml and incubated overnight at 4oC. The plate was washed three times 

with PBS and then blocked for 1hour 30minutes using 1% BSA (R&D Systems, Abingdon, 

UK). Primary antibodies (1µg/ml) were added against proteins CD9 (R&D systems, Abingdon, 

UK) and CD81 (Biorad, Oxford, UK) and 1µg/ml of mouse IgG2a (e-Bioscience, Waltham, 

US) was used as an isotype control. After washing, goat anti-mouse IgG-biotinylated antibody 

(Perkin Elmer, Coventry, UK), diluted 1:2500, was added and incubated for 45 minutes 

followed by europium conjugated streptavidin (1:1000; PerkinElmer, Coventry, UK) in red 

assay buffer (Kaivogen Oy, Turku, Finland) for 20 min. After washing three times, 100µl of 

europium fluorescent intensifier (Kaivogen Oy, Turku, Finland) was added, and time-resolved 

fluorescence was performed on a PHERAstar FS multi-mode plate reader (BMG Labtech, 

https://www.miltenyibiotec.com/
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Aylesbury, UK) set to detect excitation at a wavelength of 337nm and emission at a wavelength 

of 615nm. 

 

2.6.3 Western blotting 

Protein concentration was quantified by the Pierce BCA Protein Assay Kit (Thermo Fisher 

Scientific, Waltham, MA, USA). EV and cellular protein normalised to a concentration of 10μg 

was lysed with 4x Laemmli buffer (Bio-Rad, Watford, UK) with β-mercaptoethanol (Sigma-

Aldrich, Poole, UK) and denatured by heating at 70oC for 5 min. Samples were electrophoresed 

on a 4-15% TGX stain free gel (Bio-Rad, CA, USA) at 200 volts for 30-40 minutes. Samples 

were then blotted onto a nitrocellulose membrane using the wet transfer method overnight at 

100 volts, as described in Inkabi et al. [222]. Membranes were then washed in Tris-buffered 

saline with 0.05% Tween (TTBS) and then blocked for 2 hours with 5% semi-skimmed milk 

in TTBS. The membranes were then washed again and then incubated with the following 

primary antibodies: 1µg/ml Alix (1:200 dilution), 1µg/ml Hsp70 (1:200 dilution), 1µg/ml 

Cytochrome C (1:200 dilution), 0.5µg/ml Tsg101 (1:100 dilution) (Santa Cruz Biotechnology, 

Texas, US) and Rab5a (1:1000 dilution, Cell Signalling Technology, London, UK) for 2 hours 

at RT. After three five-minute washes in TTBS, the membrane was probed with 1µg/ml goat 

anti-mouse IgG-HRP conjugated secondary antibody (1:1,000 in TBST, Life Technologies 

Limited, Paisley, UK) for 1 hour at room temperature and the wash step was repeated. 

SuperSignal West Pico Chemiluminescent Substrate working solution (Thermo Fisher 

Scientific, Waltham, MA, USA) was prepared by mixing equal parts by mixing equal parts of 

the stable peroxide solution and the luminol/enhancer solution following manufacturer’s 

recommendation. 2ml working solution was added to the membrane and imaged with 
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ChemiDoc MP Imaging System (Bio-Rad, CA, USA) using Image Lab v. 6.0.1 software (Bio-

Rad, CA, USA). Analysis of protein band intensity was carried out using ImageJ (v. 1.53e). 

 

2.7 EV Morphology 

2.7.1 Transmission electron microscopy 

Images of EVs were obtained using Transmission Electron Microscopy (TEM) which was 

performed at the Central Electron Microscope unit at Keele University shown in Figure 21. 

Isolated EV pellets were fixed in 50μl of 4% paraformaldehyde (Sigma-Aldrich, Poole, UK) 

and stored at 4oC for 1 week. EV samples (2µl) were dropped onto copper grids coated in 0.5% 

formvar in chloroform (Agar Scientific, Essex, UK) and left for 1 min. The grid was washed 

in a droplet of distilled H2O for 1 minute and then dropped into uranyl acetate (2% in 70% 

ethanol) (Agar Scientific, Essex, UK) for 1 minute. Finally, the grid was placed into 70% 

ethanol for 1 minute and then left to air-dry for 1 hour. A JOEL-JEM 1230 Transmission 

Electron Microscope (SIS systems, Birmingham, UK) was used to visualise EVs at a voltage 

of 200-300kV and images were captured using a MegaView 3 Soft Imaging System (SIS 

systems, Birmingham, UK). Images were analysed on GIMP 2.10.12. 
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Figure 21: TEM image 

Photo of a JOEL-JEM 1230 Transmission Electron Microscope used to image EVs. 

 

2.8 EV Protein Cargo 

2.8.1 Proximity based extension assay (PEA) 

The protein profile of EVs was examined using a proximity extension assay to see if cell culture 

conditions altered selected proteins in the EV cargo. This assay analysed 92 inflammatory 

associated proteins to picogram level. This assay can detect some proteins as low as 0.01pg/ml 

and requires 1μl of EV sample. EVs were isolated from cells grown in four conditions: 

normoxic (n=4), hypoxic (n=4), normoxic/primed (n=4), hypoxic/primed (n=4). Isolated EVs 

were lysed with RIPA buffer (Merck, Poole, UK) and 1x protease inhibitor (Sigma-Aldrich, 



  Chapter 2 

 
84 

 

Poole, UK). Protein concentration was analysed using a BCA protein kit (Thermo Fisher, 

Paisley, UK). Samples were normalised to a protein concentration of 0.5mg/ml and analysed 

by a sensitive proximity ligation assay. The Proseek® Multiplex Inflammation Panel was used 

(Olink Bioscience, Upsalla, Sweden) to detect the presence of 92 proteins (Supplementary 

Table 1). The assay uses two oligonucleotide-conjugated antibodies that bind to protein targets. 

Upon binding to the protein epitope, the paired oligonucleotide sequences are amplified 

through a quantitative real time PCR (qPCR) reaction. Data is then generated using normalized 

protein expression (NPX) values on a log2 scale whereby a higher NPX correlates with a higher 

protein expression. NPX values are relative quantification units aimed towards improving the 

interpretability of the results. NPX is calculated on a logarithmic scale which is related to the 

protein concentration. It is an arbitrary number; therefore, it does not tell the absolute 

concentration of the sample so different proteins should not be compared to each other. Only 

the same protein from different samples can be compared. Proteins containing NPX values 

>50% below the assays limit of detection (LOD) were excluded from analysis. For the data 

analysis, samples <LOD were substituted with LOD/√𝟐. A picture diagram of the workflow is 

shown in Figure 22. 

 

Quality control measures were implemented to control for factors such as background noise, 

unequal loading, signal saturation that can skew the results, and to confirm that the results came 

from accurate and true readings. Firstly, the samples were normalised so that equal 

concentrations of EV protein was added to the plate. Secondly, there were internal controls, 

external control, serial dilutions, sample randomisation across the plate.  
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One sample was serially diluted three times (neat; 1:10; 1:100) to control for the hook effect, 

which can happen if there is too much antigen present in the well compared to the antibody 

[223], leading to a falsely low readout.  

 

The assay was spiked with four internal controls, this was divided up into two incubation 

controls, one extension control and one detection control. The two incubation controls are non-

human antigens which monitor for variations throughout the running of the assay. The 

extension control involves DNA-tags which are conjugated to an antibody and, due to the 

proximity to each other, they always hybridise producing a constant signal. This control helps 

to monitor the extension and amplification and based on this data the sample signal can be 

adjusted. Finally, the detection control was a double stranded DNA that produces a known 

signal, this ensures that the amplicon is being detected by the machine. The signals for the 

detection control and incubation control are checked for each sample and compared with the 

NPX median value of all samples. If this NPX value deviates by ±0.3, then the sample fails the 

quality control. Likewise, if there is a significant deviation in the internal control or the 

detection control the plate is not reliable and will also fail quality control. 

 

In addition to the plate controls already mentioned, there were also sample controls that were 

added to the plate. These consist of a triplicate of inter-plate controls with 92 DNA-tagged 

antibodies that hybridise and produce a high signal. The median of this signal can then be used 

to normalise the results of the samples. Included on the plate also was a negative control (RIPA 

buffer and 1x protease inhibitor (Sigma-Aldrich, Poole, UK) with no sample) to determine the 

background noise. 
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Figure 22: Workflow of the stages involved in PEA technology 

EV proteins are incubated with PEA probes and the matched antibody pairs are linked to DNA 

sequences. These matched sequences are extended by DNA polymerase and amplified. A qPCR readout 

is then obtained and NPX values are obtained from the data. Image taken from 

https://www.olink.com/content/uploads/2019/02/Technical-Summary-Olink.pdf 

 

2.8.2 Pathway analysis of differentially expressed proteins 

To identify common pathways associated with the differentially expressed proteins, pathway 

analysis of was carried out using the Functional Annotation tool of Database for Annotation, 

Visualization and Integrated Discovery (DAVID) (v.6.8) [224,225]. Uniprot IDs for the 

proteins were submitted into the DAVID tool and GO: Biological Process analysis and Kyoto 

Encyclopaedia of Genes and Genomes (KEGG) pathway analysis were conducted. P-values 

≤0.05 were statistically significant. 

https://www.olink.com/content/uploads/2019/02/Technical-Summary-Olink.pdf
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2.9 RNA Sequencing 

2.9.1 Controlling for FBS contamination 

EV isolation was carried out as described in Section 2.4.3. Media containing 10% EV depleted 

FBS was added to UCMSCs for 48 hours. This media was then collected and used for EV 

isolation as ‘conditioned media’. As the 18-hour ultracentrifugation does not completely 

deplete 100% of EVs contained within the FBS, further steps were required to control for the 

possibility of FBS contamination. To control for this possibility, media containing 10% EV 

depleted FBS that had not been in contact with cells was subject to sucrose cushion 

ultracentrifugation, to isolate purely FBS-EVs. A similar volume of EV depleted media 

(~145ml) that had been added to the human EVs was used for FBS-EV isolation along with the 

same EV isolation method. RNA was extracted from the isolated FBS-EVs and used for RNA 

sequencing and RT-qPCR.  

 

2.9.2 Removal of non-vesicular miRNA 

In order to remove non-vesicular RNAs which may be circulating in the EV suspension or 

bound to Argonaute2 complex [226], the EV samples were treated with Proteinase K and 

RNase A [202]. The EV suspension was incubated in 0.05mg/ml Proteinase K (Qiagen, 

Manchester, UK) for 10 minutes at 37oC to breakdown non-vesicular protein complexes. To 

inhibit Proteinase K activity, 5mM of phenylmethylsulfonyl fluoride (PMSF) (Sigma-Aldrich, 

Poole, UK) was added for 10 minutes at room temperature followed by 5 minutes incubation 

at 90oC. RNase A (Sigma-Aldrich, Poole, UK) was then added to the samples, at a final 

concentration of 0.5 mg/ml, for 20 minutes at 37oC to breakdown non-vesicular RNAs. RNA 

was then extracted as described in Section 2.9.3. 
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2.9.3 RNA isolation 

Total ribonucleic acid (RNA) was extracted from UCMSCs and EVs using the miRNeasy 

micro kit (Qiagen, Manchester, UK). RNA was obtained from 3x105 UCMSCs, cells were 

pelleted, washed in PBS and then lysed using 700µl QIAzol lysis buffer and stored at -80oC 

until RNA extraction. For EV-RNA, a 100µl EV suspension in PBS was collected from the 

conditioned media from ~15 x 106 cells for NGS and 10 x 106 cells for qPCR. The EV pellet 

was then exposed to proteinase K and RNase A treatment to remove any protein/RNA 

complexes on the EV surface. More details on this treatment are provided in Section 2.9.2. 

700µl QIAzol lysis buffer was then added to the EV suspension and stored at -80oC. RNA 

extraction was carried out on cellular and EV samples using the Qiagen RNeasy® Micro kit in 

accordance with the manufacturer’s standard instructions (Qiagen, Manchester, UK). RNA was 

eluted in 12µl of nuclease free water and stored at -80oC until quality control steps. 

 

2.9.4 Quality and quantity of RNA 

The Quality and Quantity assessments of EV-RNA were carried out at the Centre for Genomic 

Research at the University of Liverpool for the NGS experiment. The quantity of RNA was 

determined using the Qubit RNA High Sensitivity™ Assay Kit and the Qubit™ RNA BR 

Assay Kit (Life Technologies, Waltham, MA, USA). The Qubit® working solution was 

prepared by diluting the Qubit® RNA BR Reagent 1:200 in Qubit® RNA BR Buffer. To make 

up the RNA standards, 10μl of the standards were added to 190μl of Qubit® working solution, 

vortexed for 2-3 seconds and left to stand at room temperature for 2 min. For the samples, 1µl 

of EV and cellular RNA was added to 199μl of the working solution and loaded into the Qubit® 

2.0 instrument (Life Technologies, Waltham, MA, USA). Fluorometric readings of standards 

and samples were obtained and the quantity of RNA calculated.  
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The quality and integrity of the RNA was determined by electrophoresis on the Agilent 

Bioanalyzer 2100 using the RNA 6000 Pico kit (Agilent Technologies, Waldbronn, Germany) 

following the manufacturer’s instructions. Briefly, 550μl of RNA 6000 Pico gel matrix was 

centrifuged in a spin filter for 10 minutes at 1500xg at stored at 4oC. The RNA 6000 Pico dye 

was vortexed and 1µl was added to 65µl of filtered gel. The tube was centrifuged for 10 minutes 

at 13,000xg and the gel-dye (9µl) was loaded into a well on the RNA Pico chip and distributed 

along the chip using a syringe. To load the chip, 9μl of the RNA conditioning solution and 5μl 

of the RNA marker was loaded into the wells, followed by 1µl of sample into sample wells and 

1µl RNA ladder into the ladder well. This chip was left stand for 60 seconds before being 

vortexed for 60 seconds at 2400 rpm IKA vortex mixer. Finally, the chip was loaded into the 

Agilent 2100 bioanalyzer.  

 

For the qPCR experiment, the quality and quantity of EV-RNA was carried out inhouse at 

RJAH using the Agilent 4200 TapeStation (Agilent Technologies, Santa Clara, CA, USA). 

The quantity of cellular RNA was determined using the Agilent RNA ScreenTape Assay and 

the quantity of EV-RNA was determined using the High Sensitivity RNA ScreenTape Assay 

(Agilent Technologies, Santa Clara, CA, USA). For the Agilent RNA ScreenTape Assay, an 

electronic ladder was used, and the samples were prepared by adding 5μl RNA Sample 

Buffer to 1μl cellular RNA. For the High Sensitivity RNA ScreenTape Assay, the ladder was 

diluted in 10μl RNase free water and 2μl of this solution was added to 1μl sample buffer. The 

EV samples were prepared by adding 1μl High Sensitivity RNA Sample Buffer to 2μl EV-

RNA. All samples were vortexed at 2000rpm for 1 minute on the IKA MS3 vortexer (Sigma-

Aldrich, Poole, UK). The samples and ladder were then denatured at 72°C for 3 min, 

followed by cooling on ice for 2 min. The samples were spun down and loaded onto the 

Agilent 4200 TapeStation instrument. 
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After completion of electrophoresis on the Agilent 2100 Bioanalyzer and Agilent 4200 

TapeStation, an RNA integrity number (RIN) and DV200 number was generated. The RIN 

number is useful to give an indication of intact ribosomal RNA in cellular samples. The number 

is calculated using the 18s and 28s peaks in the electropherogram and the lower the number, 

the more degradation in the sample. However, EV samples most often do not contain intact 

ribosomal subunits, so this is not an accurate measurement for the quality assessment of 

vesicular RNA [227]. Instead, the DV200 score was used to analyse RNA integrity in EV 

samples. The DV200 metric measures the size distribution of RNA, specifically, the percentage 

of RNA fragments >200 nucleotides [228]. This information is useful to know if EV samples 

are comprised of small RNAs. 

 

2.9.5 Library preparation  

The construction of small RNA libraries was carried out at the Centre for Genomic Research 

at the University of Liverpool with the NEBNext® Multiplex Small RNA Library Prep Set for 

Illumina (New England BioLabs Inc., Massachusetts, USA) followed by small RNA-Seq 

analysis on the Illumina NovaSeq SP (Illumina Inc., California, USA). Small RNA transcripts 

were first converted into cDNA libraries and quantified by Qubit® double-stranded DNA (high 

sensitivity) assay (Life Technologies, Waltham, MA, USA), followed by measurement using 

the Agilent 2100 (Agilent Technologies, Waldbronn, Germany). The final libraries were 

pooled together in equimolar concentration and size selected on Pippin prep station (Sage 

Science, Beverly, US) with a size selection range set between 130-160 bp. This was done to 

focus the sequencing on a specific size range of small RNAs while also including the expected 

miRNA peak at 147-149 bp. 1 normoxic cell sample and 3 EV samples (normoxic, hypoxic, 

normoxic/primed), each with 4 biological replicates were sequenced. 1 FBS-EV sample was 

sequenced to act as a control for potential contamination. Pooled libraries were loaded in the 
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flowcell for cluster formation and sequencing. Samples were sequenced to a depth of 40-100 

million reads per sample. Initial file conversion and demultiplexing of sequencing data was 

carried out at the University of Liverpool. Briefly, the raw Fastq files was trimmed for the 

presence of Illumina adapter sequences using Cutadapt (version 1.2.1). The option -O 3 was 

used, so the 3' end of any reads which match the adapter sequence for 3 bp or more are trimmed. 

The reads were further trimmed using Sickle version 1.200 with a minimum window quality 

score of 20. Reads shorter than 15 bp after trimming were removed. University of Liverpool 

generated summary statistics using fastq-stats from EAUtils. 

  

2.9.6 Sequencing data analysis 

All further sequencing analysis was carried out at the University of Keele. Raw reads were 

extracted from the FASTQ files and trimmed of sequencing adapters using Trimmomatic; 

paired end reads were merged using the software ‘PEAR’. The sequence length distribution 

and base calling accuracy were calculated using the phred quality score (Q score), with high 

phred scores of Q>30 were taken forward for analysis. Due to the large number of reads 

generated, only forward (R1) sequencing reads were utilised for this analysis. Absence of 

adapter contamination was confirmed using FASTQC. Reads were aligned to Human Genome 

build (hg38) using miRDEEP2 pipeline and collapsed for computational efficiency using 

Mapper.pl script. The prepared sequences were filtered and collapsed reads <18nt were 

removed to remove uninformative reads as these reads were unlikely to map to miRNA. To 

quantify miRNA reads and generate count files, the trimmed miRNA sequences were prepared 

by mapping entire contents of miRNA hairpin and mature sequences to the miRbase sequences 

using the Quantifier.pl script. A region 2nt upstream and 5nt downstream of the mature 

sequence was considered a “hit”. All reads, including the bovine sample, were mapped to the 

http://code.google.com/p/cutadapt
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miRBase database of mature miRNAs for Homo sapiens (hsa). Although 1 bovine sample was 

used, the mapping of this sample to the human miRbase was important as the mapping output 

for hsa consists of 2,578 entries for mature miRNAs whereas the bovine database (bta) output 

only contains 783 entries for mature miRNAs [229]. The FBS-EV sample was also mapped to 

the bovine database to compare sequence conservation between human and bovine miRNAs. 

Collapsed reads mapped to miRbase were passed to DESeq2 (version 1.30.1, Harvard, MA, 

USA) for normalisation and statistical analysis. DESeq2 took the mean normalised counts and 

averaged them over all samples and conditions. P-values were created, and a p-value adjusted 

for multiple testing with the Benjamini-Hochberg procedure which controls false discovery 

rate (FDR) was also applied to the data set. The false discovery rate threshold was set to 10% 

and an adjusted p-values of <0.1 was considered statistically significant. A Log2 fold change 

value was calculated comparing the miRNAs between samples. Differentially expressed 

miRNAs were visualised on a Minus-Average (MA) plot and a heatmap. 

 

2.9.7 Pathway Enrichment Analysis and Target Prediction 

To predict a common pathway of the differentially expressed miRNAs, the web-based analysis 

tool miRNet 2.0 was used (https://www.mirnet.ca/). This is a visualisation tool that constructs 

network-based connections of predicted gene targets from the inputted miRNAs. It integrates 

data from 11 different miRNA databases to aid in the functional analysis of differentially 

expressed genes [230,231]. Pathway Enrichment analysis for predicted gene targets was carried 

out using the Kyoto Encyclopaedia of Genes and Genomes (KEGG) database and the Gene 

Ontology (GO): Biological Process database on the differentially expressed miRNAs between 

the EV conditions. The hypergeometric test algorithm was applied to the data. A degree cut-

off of 1.0 was selected for optimal visual exploration. 

https://www.mirnet.ca/


  Chapter 2 

 
93 

 

To establish if the differentially expressed miRNAs directly targeted secretome components, 

further gene target prediction analysis was applied using miRNet [230,231], miRDB [232,233] 

and TargetScan (v.7.2) [234]. Identification of gene targets from two out of the three web-

based programs was considered as a potential miRNA-gene target. The list of positively 

identified gene targets was then cross checked with the identified secretome components to 

determine any direct relationships. 

 

2.9.8 Validation of RNA sequencing data by RT-qPCR 

Quantitative reverse transcription PCR (RT-qPCR) was carried out to validate the results of the 

RNA sequencing data. A diagram of the PCR study from the extraction through to the 

amplification is shown in Figure 23, along with the process of sample normalisation at each 

step. 

 

Figure 23: Stages involved in for PCR validation 

Diagram details the process involved in generating PCR data, from RNA isolation through to reverse 

transcription and real time PCR. The righthand side of the diagram details to normalisation strategy 

employed at each stage of the process. 
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2.9.9 Reverse transcription PCR (RT-PCR) 

Isolated RNA was reverse transcribed to create complementary DNA (cDNA). RT-PCR was 

carried out using the miRCURY LNA RT Kit (Qiagen, Manchester, UK). Samples were 

normalised to 64.6pg/μl with nuclease-free water, which concentration of the lowest RNA 

sample. The reverse transcription mix was prepared according to Table 9. 

 

Table 9: List of reagents and volumes used to carry out Reverse Transcription 

Reagent Volume per Sample 

5x miRCURY SYBR® Green RT Reaction Buffer 2μl 

RNase-free water 4.5μl 

10x miRCURY RT Enzyme Mix 1μl 

UniSp6 RNA spike-in 0.5μl 

Template RNA 5μl 

 

Samples were loaded into the PCR Sprint Thermal cycler in thin walled 0.2mL PCR tubes 

(Thermo Fisher, Warrington, UK) and run according to the protocol in Table 10. cDNA was 

stored at -20oC until it was used for real-time PCR. 

 

Table 10: Temperature cycling protocol for reverse transcription 

Step Time Temperature 

Reverse Transcription 60 min 42oC 

Inactivation of Reaction 5min 95oC 

Storage 60min 4oC 
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2.9.10 Real-time PCR (qPCR) 

Real time PCR (qPCR) was carried out using the miRCURY SYBR® Green PCR Kit (Qiagen, 

Manchester, UK). cDNA was diluted 1:25 with nuclease free water prior to addition to the 

reaction mix. Reaction mix was prepared according to Table 11. 

 

Table 11: Reaction mix for qPCR per sample 

Reaction Mix Volume 

2x miRCURY SYBR® Green Master Mix 5μl 

ROX Reference Dye 0.05μl 

cDNA template 4μl 

RNase-free water 1μl 

 

The samples were vortexed and 10μl of sample/reaction mix was added to each well of a 

custom PCR plate which already contained the lyophilised primers shown in Table 12. 

 

Table 12: List of miRNAs of interest and target sequences probed for in PCR reaction 

Gene of Interest Target Sequence 

hsa-miR-221-3p AGCUACAUUGUCUGCUGGGUUUC 

hsa-miR-100-5p AACCCGUAGAUCCGAACUUGUG 

hsa-let-7f-1-3p CUAUACAAUCUAUUGCCUUCCC 

hsa-miR-139-5p UCUACAGUGCACGUGUCUCCAGU 

hsa-miR-214-5p UGCCUGUCUACACUUGCUGUGC 

hsa-miR-192-5p CUGACCUAUGAAUUGACAGCC 

hsa-miR-21-5p UAGCUUAUCAGACUGAUGUUGA 

hsa-let-7i-5p UGAGGUAGUAGUUUGUGCUGUU 

hsa-miR-146a-5p UGAGAACUGAAUUCCAUGGGUU 

hsa-miR-181a-5p AACAUUCAACGCUGUCGGUGAGU 

hsa-miR-155-5p UUAAUGCUAAUCGUGAUAGGGGU 

hsa-miR-24-3p UGGCUCAGUUCAGCAGGAACAG 
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hsa-miR-10a-5p UACCCUGUAGAUCCGAAUUUGUG 

hsa-miR-215-5p AUGACCUAUGAAUUGACAGAC 

UniSp6  

UniSp3  

 

A ‘blank’ no template control containing nuclease free water was also included in each plate. 

The plate containing the sample, reaction mix, and primers was sealed, vortexed and 

centrifuged to collect the solution at the bottom of the well. The plate was held at room 

temperature for 5 minutes to wait for the primers to dissolve before the plate was loaded into 

the Applied Biosystems QuantStudio 3 Real-Time PCR System (Thermo Fisher, Warrington, 

UK). PCR cycling was carried out according to the protocol in Table 13. Data was analysed 

using QuantStudio™ Design and Analysis Software v.1.5.1 (Thermo Fisher, Warrington, UK). 

Relative gene expression was compared to the normalising genes miR-221-5p and calculated 

using the comparative delta Ct (cycle threshold) method. 

 

Table 13: qPCR cycling protocol 

Step Time Temperature 

PCR initial heat activation 2 min 95oC 

2-step cycling 

• Denaturation 

• Combined annealing/extension 

 

10 seconds 

60 seconds 

 

95oC 

56oC 

Number of cycles 40 

Melting Curve Analysis 

 

15 seconds 

60 seconds 

95oC 

60oC 
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2.10 Functional Experiments 

2.10.1 Isolation, culture and characterisation of PBMCs 

A 6ml vial of whole blood was obtained from healthy volunteers (n=6) in EDTA coated tubes. 

Blood was obtained from 5 females and 1 male, age range 26-64. Volunteers who were on 

immunosuppressive medication were excluded from the study. Blood was immediately 

processed to isolate peripheral blood mononuclear cells (PBMCs). This study was approved by 

the Robert Jones & Agnes Hunt Orthopaedic Hospital. Informed consent was obtained from 

the volunteers prior to blood collection. An example of the consent letter is provided in 

Supplementary Figure 1. PBMCs were separated from blood using gradient centrifugation 

over Lymphoprep™ (Stem Cell Technologies, Cambridge, UK). Whole blood was diluted in 

DPBS at a ratio of 1:1, this solution was then gently layered over Lymphoprep™ and 

centrifuged at 900xg for 20 minutes. The blood was separated into layers, shown in Figure 24, 

and the white interphase of PBMCs was collected. PBMCs were resuspended in ice cold PBS 

and centrifuged at 500xg for 7 minutes. This washing step was repeated to remove platelets. 

PBMCs were counted and frozen at 20x106 cells/ml in 90% FBS + 10% DMSO. After 

resurrection, PBMCs were cultured in RPMI-1640, 10% FBS, 1% P/S, 10ng/ml IL-2, at 37oC, 

5% CO2. 
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Figure 24: Separation of PBMCs from whole blood 

Whole blood was diluted in PBS, layered over Ficoll and centrifuged. This resulted in the separation of 

layers into red blood cells, Lymphoprep™/granulocytes, PBMCs and platelets/plasma. The PBMCs 

were extracted from the white cloudy layer at the interface between the Ficoll/PBS and 

platelets/plasma. 

 

2.10.2 Culture of Jurkat cells 

Jurkat cells (Clone E61, ATCC® TIB152™), a T-lymphoblastoid suspension cell line, were 

kindly donated by the Guy Hilton Research Centre. Jurkat cells were seeded at a density of 

5x105 cells/ml in an upright 75cm2 flask. They were cultured in DMEM F12 with 10% FBS, 

1% P/S and 1% NEAA and incubated at 37oC, 21% O2, 5% CO2. Fresh culture medium was 

replaced every 3 days. To maintain cell culture concentration under 1 x 106 cells/ml, cells were 

passaged every 5-6 days or when there was a visible increase in cell concentration seen under 

a light microscope. Jurkat cells were removed from the flask and centrifuged at 500xg for 5 

minutes. The supernatant was discarded, and the cell pellet resuspended in 1 ml of fresh media. 

The cells were counted, and viability checked using trypan blue staining as described in Section 
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2.2.3. The cells were seeded in the appropriate volume of fresh media to get a concentration of 

5x105 cells/ml. 

 

2.10.3 Activation of PBMCs/Jurkat cells  

PBMCs/Jurkat cells were activated 48 hours prior to adding them to co-culture experiments. 

They were activated by adding a humanised CD3 and CD28 agonist (TransAct, Miltenyi 

Biotec) at a dilution of 1:100. IL-2 (10ng/ml) was added to the co-culture media of PBMCs. 

IL-2 was not added to Jurkat cells as it is not required to support cell growth. Activation was 

confirmed by the identification of surface marker CD25 by flow cytometry. 

 

2.10.4 Co-culture experiments 

All co-culture experiments were carried out in 6 well plates. A dose response experiment was 

firstly carried out with the co-cultures involving PBMCs (n=3) and normoxic EVs, whereby 

the EVs were added at 60μg: 2×106, 90μg: 2×106, and 120μg: 2×106 PBMCs cells. This was 

based on research by Ma et al. [235] who carried out a dose response experiment of 30μg, 60μg 

and 90μg EVs: 2×106 PBMCs and found 90μg EVs were most effective in increasing Treg 

cells; the Treg/Th17 ratio and the level of TGF-β. The dose response of PBMCs in co-culture 

with normoxic EVs was assessed by changes in their protein profile, analysed by flow 

cytometry which is described in Section 2.10.5. 

 

In one experimental setting, 2×106 PBMCs (n=6) were co-cultured with 120μg EVs and 2x105 

MSCs separately to determine if the EVs or MSCs were able to change PBMC protein 

production. In another experimental setting, 2×106 Jurkat cells (n=1) were co-cultured with 
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120μg EVs and 2x105 MSCs separately to determine if the EVs or MSCs could change the 

Jurkat protein production. 120μg EVs was obtained from approximately 24.3×106 (±11.4×106) 

UCMSCs. MSCs were added to PBMCs and Jurkat cells at a ratio of 10:1 (PBMC/Jurkat: 

MSC) following a protocol by Kay et al. [121] and del Fattore et al. [165]. MSCs were allowed 

to adhere to plastic for 4 hours before addition of PBMCs/Jurkat cells to the co-culture. Both 

normoxic and normoxic/primed EVs and MSCs were used. Non-activated PBMCs/Jurkat cells 

only were used as a negative control and activated PBMCs/Jurkat cells only were used as a 

positive control.  

 

2.10.5 Surface marker expression and intracellular cytokine staining (ICCS) 

PBMCs (n=6) and Jurkat cells (n=1) were co-cultured in 6 well plates with both normoxic and 

normoxic/primed MSCs (10 PBMCs: 1 MSC) and normoxic and normoxic/primed EVs 

(120µg). After 3 days, 2x105 PBMCs/Jurkat cells were harvested for immunophenotyping of 

surface markers or ICCS. Flow cytometry of PBMCs /Jurkat cell surface markers was carried 

out using the protocol described in Section 2.3.3 and the antibodies listed in Table 14. 

 

For ICCS, 10µg/ml Brefeldin A (Sigma-Aldrich, Poole, UK) was added to co-culture for 6 

hours before harvesting for flow cytometry analysis. PBMCs/Jurkat cells were fixed in 1x 

Intracellular Fixation Buffer (eBioscience, Waltham, US) for 30 minutes at 4oC. Cells were 

centrifuged at 500xg for 5 minutes to removed fixative and the cell pellet was resuspended in 

1x Permeabilization Buffer (eBioscience, Waltham, US). Human Fc Block™ (BD Biosciences, 

Wokingham, UK) was added at 0.5mg/ml for 10 minutes at room temperature before cells were 

washed in 1x Permeabilization Buffer. The cell pellet was resuspended in 2% BSA and 
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antibodies added. All experiments were carried out in triplicate and activated T-cells only acted 

as a control for the experiments. 

 

Table 14: Antibodies used in the characterisation of PBMCs and Jurkat celdd  

All antibodies were purchased from BD Biosciences, Wokingham, UK. 

Antibody Conjugated 

Fluorochrome 

Dilution Isotype control 

CD3 APC 1:20 APC Mouse IgG1 

CD4 PE 1:20 PE Mouse IgG1 

CD127 BV421 1:50 BV421 Mouse IgG1 

CD25 APC 1:50 APC Mouse IgG1 

CD45 PE 1:20 PE Mouse IgG1 

CD19 BV421 1:100 BV421 Mouse IgG1 

HLA-DR APC 1:5 APC Mouse IgG2b 

IL-4 PE 1:20 PE Mouse IgG1 

IL-17A BV421 1:50 BV421 Mouse IgG1 

IFN-y PerCP-Cy5.5 1:20 PerCP-Cy5.5 Mouse IgG2b 

FoxP3 PE 1:20 PE Mouse IgG1 

 

2.11 Statistical analysis  

All statistical analysis was performed on GraphPad Prism v.8 (GraphPad Software, San Diego, 

USA). A Shapiro Wilk test was used to confirm normal distribution. All analysis was carried 

out using paired Student’s t-tests or 2-way ANOVA, except for the PEA assay and the 

MACSPlex Exosome Kit experiments whereby differential protein expression was identified 

using multiple t-tests with a false discovery rate of 5% to control for multiple comparisons. 

FDR-adjusted p-values (referred to as q-values) ≤0.05 were considered significant.   
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3.1 Introduction 

This chapter examines the growth kinetics, morphology, and immune profile of UCMSCs. The 

characterisation of UCMSCs is an important part of this work when considering their EVs as 

a potential treatment for rheumatoid arthritis and an important pre-requisite step towards 

understanding EV function. 

 

This chapter also looks at different culture conditions for UCMSCs, specifically cell growth in 

normoxia and hypoxia with and without pro-inflammatory cytokines. Research shows that the 

environment in which MSCs are cultured can alter their surface marker production, 

morphology, growth kinetics, secretome and functional properties [236]. Therefore, it is 

important to establish if different culture conditions affect UCMSC characteristics. This chapter 

analyses the growth, morphology, and surface marker production of donor matched UCMSC 

samples (n=4) in four conditions:  

1. Normoxia (21% O2) 

2. Normoxia (21% O2) primed with pro-inflammatory cytokines 

3. Hypoxia (5% O2)  

4. Hypoxia (5% O2) primed with pro-inflammatory cytokines  

Pro-inflammatory cytokines used to prime the cells were IFN-γ, TNF-α and IL-1β. 

 

Cell culture in normoxia (21% O2) is the most commonly used method to expand cells [237]. 

However, cell culture at 21% O2 is relatively toxic and does not resemble the in vivo 

environment. As a consequence, many researchers have moved towards the use of hypoxic cell 

culture conditions [238] as growth in hypoxia has been associated with enhanced therapeutic 

outcomes in MSCs [239–241]. When growing MSCs in hypoxia, it is important to tailor the 
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oxygen concentration to mimic the natural in vivo environment of the cells [242]. Neonatal 

derived tissues rarely exceed 5% in vivo [243], therefore, UCMSCs were cultured at 5% O2. 

Growing cells in hypoxic conditions has also been associated with improved stem cell yield 

and colony forming units [244], prolonged lifespan [101] and enhanced osteogenesis [245]. In 

terms of immune suppression, research has shown that rat BMMSCs, grown in 5% O2, release 

more IDO [100], which is a soluble factor known to suppress NK cells, CD4+ and CD8+T-cell 

proliferation [246]. They also have a greater ability to promote Treg proliferation compared to 

MSCs grown in normoxia [100]. Further immunomodulatory effects of hypoxia were found in 

porcine BMMSCs where there was a suppression of IL-8 and an increase of the anti-

inflammatory factors GM-CSF and Interleukin 1 receptor antagonist compared to BMMSCs in 

normoxia [247]. Research has shown that culturing BMMSCs in hypoxia strongly promotes 

their immunosuppressive properties, whereas for UCMSCs cultured in hypoxia, a lot of the 

research details their enhanced proliferation [248], increased glucose consumption and 

increased production of specific growth factors (hypoxia-inducing factor-alpha, fibroblast 

growth factor-7, vascular endothelial growth factor receptor 2, stem cell factor receptor, 

insulin-like growth-factor-binding proteins 3 and 6) [249,250]. Hypoxia induces a large range 

of effects on MSCs; therefore, this chapter characterises the hypoxic UCMSCs, and their EVs 

will be analysed for immunomodulatory proteins and miRNAs in later chapters. 

 

UCMSCs were also cultured in pro-inflammatory environments to ‘activate’ them and enhance 

their anti-inflammatory properties, as described in Section 1.2.4 [243]. There is an increasing 

body of evidence showing that priming MSCs with pro-inflammatory cytokines stimulates the 

MSCs to release EVs and soluble factors with enhanced anti-inflammatory properties [251–

254]. This priming approach results in an improved ability of MSCs and EVs to suppress T-

cells and PBMCs [78,94–96,164,184,254]. For this reason, the pro-inflammatory priming of 
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MSCs was explored in this chapter. Indeed, research has shown that when MSCs are cultured 

in a combined hypoxic and pro-inflammatory environment, their immunosuppression is further 

enhanced as the IFN-γ upregulates cytokines with anti-inflammatory properties (e.g. IDO, PD-

L1, HLA-G), and hypoxia promotes glucose consumption which increases lactate levels to 

suppress T-cells [255]. Therefore, UCMSCs will also be characterised from the dual 

hypoxic/primed condition. 

 

As bone marrow derived MSCs are still considered to be the ‘gold standard’ to which other 

sources of MSC are compared [61], this chapter sought to use BMMSCs as a control to compare 

the characterisation of UCMSCs. Two bone marrow aspirates were sourced and MSCs were 

isolated. BMMSCs were characterised by assessing growth kinetics, cell morphology and 

surface marker production in normoxia and hypoxia. However, this was only done on one 

donors’ BMMSCs. The second BM aspirate suffered a long delay in delivery which adversely 

affected cell viability and unfortunately the sample could not be used. BMMSCs were used as 

a control to confirm that UCMSCs had a similar MSC characteristics.  

 

Aim: 

The aim of this chapter is to characterise the UCMSCs by studying their growth kinetics, 

morphology, and cell surface markers compared to the ‘gold standard’ BMMSCs in normoxia 

and hypoxia. 

Objectives: 

1. Establish the growth kinetics of UCMSCs in normoxia and hypoxia, by calculating 

population doubling times.  
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2. Compare cell morphology between UCMSCs in normoxia, hypoxia and pro-

inflammatory conditions. 

3. Characterise the surface marker production of UCMSCs grown in normoxic, hypoxic 

and pro-inflammatory primed conditions. This will be achieved by analysing their 

surface marker production via flow cytometry. 

4. Compare cell growth, morphology, and surface marker production of UCMSCs (n=4) 

to the BMMSC (n=1) control. 

 

A diagram of the objectives is shown in the picture below (Figure 25). 

 

 

Figure 25: Diagram of the objectives of this chapter 

UCMSCs will be grown in normoxia, hypoxia and with/without pro-inflammatory priming. The 

UCMSCs will then be analysed for their population doubling times, morphology, and protein marker 

production. Results will be compared to a BMMSC control grown in normoxia and hypoxia and also 

analysed in the same way for their population doubling times, morphology, and protein marker 

production. 
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3.2 Results 

3.2.1 Population doubling time of UCMSCs 

Population doubling times (PDT) were calculated as described in Section 2.3.1. UCMSCs were 

grown in complete media up to 80% confluence, then EV depleted FBS replaced normal FBS 

in the media for 48 hours, in order to collect the conditioned media for EV isolation (Section 

2.4.1). The average PDT for UCMSCs grown in normoxic conditions, from P3-8, was 2.82 

days (± 0.2 SD) compared to 2.52 days (± 0.38 SD) for UCMSCs grown in hypoxic conditions. 

There were no statistical differences between the conditions (Figure 26). Population doubling 

times were not calculated for UCMSC grown with pro-inflammatory cytokines as these 

cytokines were added for only 48 hours and UCMSCs were discarded thereafter. UCMSCs 

were grown up to passage 8, after this, the growth of cells slowed, and they were not used for 

further experiments. 

 

Figure 26: Population doubling times for UCMSCs  

Bar chart represents the average population doubling times (y-axis) for UCMSCs (n=4) grown in 

normoxia (21% O2; blue) and hypoxia (5% O2; red). Individual donors are shown by the presence of 

different symbols. Cell counts were performed in triplicate at each passage from P3-8 (x-axis). 
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UCMSCs had an average PDT of 2.82 days in normoxia and 2.52 days in hypoxia. Data shown as the 

mean ± SD. 

 

3.2.2 Comparison of UCMSCs in normoxic and hypoxic conditions 

Images of UCMSCs were captured at P3 and P4 (Figure 27A). Image analysis was caried out 

using ImageJ software as described in Section 2.3.2. Images of the analysis carried out on the 

UCMSCs is shown in Supplementary Figure 2. UCMSCs in normoxia had a statistically 

larger surface area (61µm2 ± 41SD) compared to UCMSCs in hypoxia (32µm2 ± 21SD) 

(p≤0.0001) shown in Figure 27B. In both conditions, UCMSCs contained spindle shaped and 

had a consistent distribution in the flask, however the UCMSCs grown in normoxia contained 

a larger, flattened morphology. There were also some slight variations in morphology between 

UCMSC donors shown in Supplementary Figure 3. Donor 1 and Donor 2 UCMSCs appeared 

to cluster more together, Donor 3 UCMSCs had a heterogeneous population with a mix of 

round and spindle-like cells and Donor 4 UCMSCs were thinner and more elongated. 
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Figure 27: Pictures of UCMSCs in normoxic and hypoxic conditions 

(A) Images show UCMSCs in normoxic and hypoxic conditions at passage 3 and 4. UCMSCs had a 

similar morphology in both conditions. Images taken on Eclipse TS100 microscope at a 4x objective. 

(B) Bar chart displaying the cell surface area of normoxic (n=4) and hypoxic cells (n=4). The normoxic 

UCMSCs had a statistically larger surface area compared to the hypoxic UCMSCs. Data is shown as 

mean ± SD. 
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3.2.3 Effect of pro-inflammatory priming on UCMSC morphology 

Images of UCMSCs were taken before and after pro-inflammatory priming to assess any cell 

morphology changes. There were no obvious changes to cell morphology after priming other 

than a higher percentage confluence seen after the 48-hour incubation due to the normal growth 

rate of these cells (Figure 28).  

 

Figure 28: Images of UCMSCs 

Images displaying UCMSCs at P6 grown in normoxia, hypoxia and primed with pro-inflammatory 

cytokines. For each flask of cells, three images were taken of three fields of view (x4, x10, x20 objective) 

Images shown here were taken under 4x objective on an Eclipse TS100 microscope.  
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3.2.4 Surface marker production on primed and non-primed UCMSCs 

Part of the ISCT criteria for defining MSCs is that they must display the cell surface markers 

CD105, CD73, and CD90 (≥90%) and lack expression of CD45, CD34, CD14 or CD11b, CD79 

or CD19, and HLA-DR (≤2%) [51]. For this reason, UCMSCs were analysed for their surface 

marker production via flow cytometry. Results showed that normoxic and hypoxic UCMSCs 

at P4-6 were ≥95% positive for CD105, CD73, and CD90, and lacked CD45, CD34, CD14, 

CD19 and HLA-DR (≤2%) (Figure 29). They were also adherent to tissue culture plastic, and 

these results, together with their positive tri-lineage differentiation, show that the MSCs are in 

accordance with the ISCT guidelines [51]. There were no differences in MSC surface marker 

production between the normoxic and hypoxic UCMSCs. In addition to the characteristic MSC 

surface marker panel, CD106 was tested on all UCMSCs. There was a low production of 

CD106 in normoxic UCMSCs (0.8% ± 0.6) and hypoxic UCMSCs (0.5% ± 0.4). 
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Figure 29: Surface marker production of normoxic UCMSCs  

Representative single parameter histograms of UCMSCs from normoxic donor 1. Relative cell number 

is displayed on the y-axis and the surface marker on the x-axis. There was a positive production of 

CD105, CD90, CD73 (≥95%) and a negative production of CD14, CD45, CD34, CD19, HLA-DR 

(≤2%) shown by the red histograms. Isotype controls are shown in blue. There was a low production of 

CD106 (1.35%) from this donor.  
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The ISCT also recommends the characterisation of MSCs after they have been primed with 

pro-inflammatory cytokines such as TNF-α and IFN-γ. UCMSCs were analysed again via flow 

cytometry after 48-hour exposure to TNF-α, IL-1β and IFN-γ to detect any change in their 

markers. Results showed the primed UCMSCs still displayed the positive (CD105, CD90, 

CD73) and negative markers (CD45, CD34, CD19) in accordance with the ISCT criteria 

(Figure 30). The level of HLA-DR was initially low (<2%) in UCMSCs but this increased after 

pro-inflammatory priming (average production 34.9% ± 39.7 SD). HLA-DR production 

increased in all donors with the exception of donor 3 in normoxic/primed and hypoxic/primed 

conditions, and donor 4 in hypoxic/primed. 

 

A similar trend was identified when the production levels of CD106 were assessed. There was 

a low level of CD106 (<2%) detected in all UCMSCs grown in normoxic and hypoxic 

conditions whereas its production increased upon pro-inflammatory priming of UCMSCs 

(average production 57.5% ± 45.3 SD). In all donors (n=4), CD106 increased in 

normoxic/primed and hypoxic/primed conditions, albeit there was a high donor variability in 

the percentage increase of CD106 despite the UCMSC samples being donor matched. This 

indicates that there is likely donor to donor variability in the characteristics of MSCs. 
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Figure 30: Surface marker production of normoxic/primed UCMSCs 

Single parameter histograms of UCMSCs primed with TNF-α, IL-1β and IFN-γ for 48 hours. Relative 

cell number is displayed on the y-axis and the surface marker on the x-axis. Flow cytometry analysis 

after priming showed that they maintained their positive (CD105, CD90, CD73 (≥95%)) and negative 

(CD14, CD45, CD34, CD19 (≤2%)) surface marker production shown by the red histograms. Isotype 

controls are shown in blue. Histograms show the surface marker production profile for Donor 2 grown 

in normoxic/primed conditions. The production of HLA-DR was 54.9% and CD106 was 99.7% for this 

donor.   
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On comparison of the surface marker profile of UCMSCs grown in normoxia, hypoxia and 

with pro-inflammatory conditions, there were no differences between normoxia and hypoxia, 

and there was a statistically higher level of CD106 and HLA-DR in pro-inflammatory primed 

conditions shown in Figure 31, albeit not all primed UCMSC donors responded the same. 

Instead, there was considerable donor variability in response to priming with regards to HLA-

DR and CD106 expression only. Donor 1 showed an increased production of HLA-DR and 

CD106 after pro-inflammatory priming but only in hypoxic conditions. Donor 2 showed an 

increased production of HLA-DR and CD106 after pro-inflammatory priming in both 

normoxic and hypoxic conditions. Donor 3 showed no increase in HLA-DR/CD106 in response 

to priming with the exception of CD106 in normoxic/primed conditions which increased from 

0.19% to 22.2%. Lastly, Donor 4 showed an increased production of HLA-DR and CD106 

after pro-inflammatory priming but only in normoxic conditions. 

 

Figure 31: Comparison of surface marker production in normoxic, hypoxic and primed 

UCMSCs 

The bar chart shows the percentage production (y-axis) of surface markers (x-axis) from UCMSCs 

grown in four different conditions. There were no differences in the production of CD105, CD90, CD73, 
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CD45, CD34 and CD19 between normoxic, hypoxic, and primed UCMSCs (n=4). Collectively, the 

primed UCMSCs had a statistically higher production of HLA-DR and CD106 to normoxic and hypoxic 

UCMSCs. There was variance in the production of HLA-DR and CD106 seen by large error bars. The 

individual donor production of these markers is thereby denoted using symbols.  *p≤ 0.05, **p ≤ 0.01, 

****p≤ 0.0001. 

 

3.2.5 Comparison of UCMSCs to BMMSC control 

Research shows that BMMSCs are strong immunomodulators and they are the most frequently 

used source of MSCs for clinical trials [256]. Therefore, it was important to assess how the 

characterised UCMSCs (n=4) compared to the BMMSCs (n=1) in terms of growth, 

morphology, and surface marker characteristics.  

 

3.2.5.1 Growth of BMMSCs 

Bone marrow aspirate (15ml) was collected with a total mononuclear cell count of 20.2 x 106 

MNC/ml. This aspirate was split equally between normoxia and hypoxia (7.5ml each). After 

the first passage, the total yield of isolated BMMSCs was 1.1 x 106 for normoxic conditions 

and 16.8 x 106 for hypoxic conditions. The average PDT for BMMSCs (n=1) was calculated 

using three technical replicates. The average PDT of BMMSCs grown in normoxic conditions, 

from P1-5, was 6.1 ± 1.1 days compared to 5.1 ± 0.7 days for BMMSCs grown in hypoxic 

conditions. There were no statistical differences between the normoxic and hypoxic BMMSCs 

at each passage (Figure 32A). The population doubling times of UCMSCs and BMMSCs were 

compared. BMMSCs were grown from P1-5 and stopped thereafter due to slowed cell growth. 

UCMSCs were first expanded on tissue culture plastic and then seeded in the Quantum® cell 

expansion system where they underwent another passage. This means that the growth of 

UCMSCs on tissue culture plastic for this experiment started at P3 and continued to P8 due to 

the cells maintaining a consistent PDT up to this stage. As a result, the comparison of UCMSCs 
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and BMMSCs can only be made from P3-5, whereby UCMSCs had a statistically quicker PDT 

in normoxic conditions, and from P4-5 in hypoxic conditions, shown in Figure 32B. 

 

3.2.5.2 Morphology of BMMSCs 

The morphology of BMMSCs grown in normoxic and hypoxic conditions was compared. 

There were also some notable differences between the conditions including a clustering of cells 

in normoxic BMMSCs compared to hypoxic BMMSCs and, in general, the normoxic 

BMMSCs had a flattened, spread morphology and the hypoxic BMMSCs had a spindle-like 

shape (Figure 32C). The normoxic and hypoxic UCMSCs (shown in Figure 27) showed a 

similar morphology to the BMMSCs, with the normoxic UCMSCs contained some larger, 

flattened cells and the hypoxic UCMSCs containing primarily long spindle-like shaped cells. 

 

3.2.5.3 Surface marker production of BMMSCs 

BMMSCs (n=1) at P3 were also analysed for MSC surface markers and, similar to UCMSCs, 

they had a surface marker profile consistent with UCMSCs in normoxia and hypoxia, but with 

the exception of CD14 which had a 4% (± 0.05 SD) production in normoxic BMMSCs (Figure 

32D). 

 

3.2.5.4 Tri-lineage differentiation of BMMSCs 

The ISCT stipulates that, as part of the characterisation of MSCs, they must be able to 

differentiate into osteoblasts, adipocytes, and chondroblasts [51]. Therefore, trilineage 

differentiation was carried out on BMMSCs. Previous tri-lineage differentiation had already 

been established for the UCMSCs used in this study, as described in Mennan et al. [63]. The 

BMMSCs (n=1) demonstrated signs of differentiation down all three lineages shown in 

Supplementary Figure 4. Osteoblast differentiation was seen by the presence of alkaline 
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phosphatase staining (ALP) in dark red after 21 days. Some ALP was found in the control cells 

but there was stronger staining in the cells treated with osteogenic media indicating the 

differentiation of BMMSCs down an osteoblast lineage. Adipogenic differentiation was seen 

by the presence of lipid vacuoles in the BMMSC culture which appeared red after staining with 

Oil Red O, indicating differentiation down an adipogenic lineage. Finally, at 28 days, a 

chondrogenic BMMSC pellet was fixed, sectioned, and stained with a H&E stain and toluidine 

blue. The cell nuclei and cytoplasm could be visualised after H&E staining and some 

glycosaminoglycan staining via toluidine blue, which is in keeping with research in our group 

and from others showing toluidine blue staining of chondrogenic pellets from MSCs [257].  
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Figure 32: Growth, morphology, and surface marker production of BMMSCs 

BMMSCs (n=1) were analysed for their growth, morphology, and surface marker production. (A) Bar chart represents the average population doubling times 

(y-axis) for BMMSCs grown in normoxia (with 21% O2) and hypoxia (with 2% O2). Cell counts were performed in triplicate at each passage from P1-5 (x-
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axis). (B) BMMSCs and UCMSCs were counted in triplicate and compared from P3-5. In normoxic conditions, UCMSCs had a statistically quicker PDT from 

P3-4 and P4-5 compared to BMMSCs. In hypoxic conditions, UCMSCs had a statistically quicker PDT from P4-5 compared to BMMSCs (*p<0.05). Population 

doubling time is presented on the y-axis and passage number on the x-axis. Data is shown as mean ± SD. (C) Normoxic BMMSCs appeared to cluster closely 

together in comparison to hypoxic BMMSCs which had a more spindle-like morphology. Images taken on Eclipse TS100 microscope at a 10x objective. (D) 

Bar chart represents the surface marker production of BMMSCs grown in normoxia and hypoxia. BMMSCs showed a positive production of CD105, CD90, 

CD73 and a negative production (≤2%) of CD45, CD34, CD19, CD14* and HLA-DR. *CD14 had a 4% (± 0.05 SD) production in normoxia. 
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3.3 Discussion  

The ISCT has established a minimal set of criteria for the characterisation of MSCs. The 

chapter aimed to fully characterise MSCs in adherence to these guidelines. Part of the ISCT 

criteria states that MSCs must be able to differentiate into osteoblasts, adipocytes, and 

chondroblasts [51]. The UCMSCs, used in this study, had previously undergone tri-lineage 

differentiation as detailed by Mennan et al. [63]. They displayed positive differentiation down 

osteogenic, adipogenic and chondrogenic lineages [63]. Therefore, the characterisation of 

UCMSCs (n=4) in this chapter was based on their population doubling times, morphology, and 

surface marker production. All UCMSCs were plastic adherent and positively displayed the 

surface markers CD105, CD90, CD73 (≥95%) and had a negative production (≤2%) of CD45, 

CD34, CD19, CD14 and HLA-DR in normoxic and hypoxic conditions. Thus, the UCMSCs 

were in accordance with the ISCT criteria for the identification of MSCs.  

 

In this chapter, the UCMSCs were grown in normoxia, hypoxia and with and without pro-

inflammatory cytokines as research has shown that different culture environments influence 

MSCs immunosuppressive properties [243]. UCMSCs showed a strong proliferative ability in 

vitro with mean population doubling times of approximately 2.82 days (± 0.2 SD) in normoxia 

and 2.52 days (± 0.38 SD) in hypoxia. This is in line with other studies that reported the 

population doubling times of UCMSCs to be 1.6 days [258], 3-4 days [259] and 1.5 days [260]. 

There were no differences identified between the growth kinetics of cells grown in normoxia 

and hypoxia. The lack of change in growth may be due to the way the cells were first isolated 

and expanded. The cells were isolated under normoxic (21%) conditions and cultured up to 

passage 2 in this environment. Exposure to hypoxia (5%) at an earlier stage may have been an 

influencing factor in their proliferation, as MSCs isolated in hypoxic conditions have been 
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found to have strong self-renewal abilities [261,262]. However, both conditions supported the 

growth of cells. In all, there are mixed results regarding the culturing of MSCs in hypoxia, with 

researchers reporting stimulatory effects [101,261,263], inhibitory effects [264] and no differences 

in cell proliferation between normoxic and hypoxic MSCs [265]. This may be attributable to the 

hypoxic cell culture methods that different groups use (e.g., many groups do not degas their media 

prior to use). In general, there is more research showing that hypoxia supports MSC growth 

better than normoxia. Specifically, hypoxic conditions appear to maintain the proliferation of 

BMMSCs over time rather than stimulate their growth, in comparison to normoxic conditions 

where MSCs slow down over time due to inhibitory signals [261]. Additionally, UCMSCs 

grown in 2.5% O2 for 72 hours have increased proliferation compared to UCMSCs grown in 

normoxia [266]. The findings in this chapter show that both normoxia and hypoxia support the 

growth of UCMSCs to a similar extent up to P8. 

 

An objective of this chapter was to compare cell morphology between UCMSCs cultured in 

normoxia, hypoxia and in pro-inflammatory conditions. Culturing the cells in different growth 

environments has previously been found to alter the cells morphology [253]. For example, 

Prasanna et al. [253] found that pro-inflammatory priming of BMMSCs with IFN-γ and TNF-

α caused them to be larger, flattened and more irregular in shape, whereas there were no effects 

seen in Wharton’s Jelly MSCs (WJMSCs). In this chapter, a quantitative analysis was carried 

out on the surface area of normoxic and hypoxic UCMSCs at P3 and P4. The normoxic 

UCMSCs had a statistically larger size compared to the hypoxic UCMSCs (Figure 27). The 

UCMSCs, in both conditions, contained spindle shaped cells and an even distribution in the 

flask, but the normoxic UCMSCs also contained larger, flattened cells and, in general, had a 

more mixed morphology, showing that the UCMSCs are responding differentially to their 

culture environment. 
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This chapter also compared the surface marker production of UCMSCs grown in normoxic, 

hypoxic and pro-inflammatory primed conditions. There was no change in the MSC surface 

marker production between UCMSCs grown normoxia and hypoxia. Other research groups have 

also found no differences in MSC surface marker production in cells cultured in normoxic and 

hypoxic conditions [264,265]. Both Nekanti et al. [267] and Widowati et al. [268] compared 

WJMSCs grown in normoxia and hypoxia (5% O2) and there was no difference between the 

two populations up to P10 in the Nekanti et al. [267] study, and between early (P4) and late 

passages (P8) in the Widowati et al. [268] study.  

 

Flow cytometry analysis of normoxic/primed UCMSCs revealed that HLA-DR had a 

statistically higher production in two out of four umbilical cord donors’ primed cells. This 

explains the large error bars shown in Figure 31 and highlights the heterogeneity of MSCs 

particularly in response to pro-inflammatory priming. HLA-DR is an MHC class II surface 

antigen, known to exist on antigen presenting cells and plays a role in displaying protein 

fragments to T-cells, thus facilitating activation [269]. Findings are mixed in the literature 

regarding the expression and production of HLA-DR on MSCs when exposed to pro-

inflammatory priming. Some papers show that HLA-DR expression is reduced in MSCs that 

are grown in pro-inflammatory conditions [243,270,271], this finding supports the theory that 

MSCs are immunosuppressive as the downregulation of HLA-DR would reduce the likelihood 

of cells being rejected upon transplantation. Contradictory to this are studies that show that 

pro-inflammatory priming, particularly IFN-γ priming, leads to a greater production of HLA-

DR [272–274]. As HLA-DR has been found to increase in MSCs after IFN-γ priming, some 

authors argue the HLA-DR should be considered informative data rather than a criterion of 

MSCs [275].  
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Interestingly, previous work by Mennan et al. [215], using the same UCMSCs and primed with 

IFN-γ only, showed that there was no increase in production of HLA-DR on UCMSCs. 

However, there were two variables to the culture of UCMSCs in this chapter. The first was the 

use a pro-inflammatory cocktail (TNF-α, IL-1β, IFN-γ) and research has shown that IFN-γ 

upregulates HLA-DR in MSCs [272–274]. Therefore, it is more likely to be the second 

variable, which was the culture of UCMSCs in EV depleted FBS compared to normal FBS in 

Mennan et al. [215]. Indeed, Romieu-Mourez et al. [274] showed that HLA-DR production is 

increased in MSCs primed with IFN-γ and this production is further increased when MSCs are 

cultured in high density and serum deprived environments. UCMSCs were cultured in EV 

depleted serum for 48 hours, this serum is largely depleted of FBS proteins, growth factors and 

enzymes and not just EVs. Therefore, it is likely that the reduced serum conditions contributed 

to the increase in production of HLA-DR in some UCMSC donors, although further work will 

be needed to understand the cause of this. 

 

When these findings are considered in light of UCMSCs immunosuppressive ability, they raise 

slight concerns about the transplantation of UCMSCs as an allogenic therapy, as one of 

hallmarks of MSC-induced immunosuppression is its lack of expression of HLA-DR (along 

with T-cell co-stimulatory molecules CD80 and CD86), which means that they can evade 

immune responses [276]. However, as UCMSCs have already been used extensively in human 

clinical trials with no reported adverse events, therefore, it is obvious that they are well tolerated in 

vivo [115,116]. Even with the increase in production of HLA-DR, research has shown that 

MSCs are unable to stimulate T-cells without the presence of co-stimulatory molecules [119]. 

Van Megen et al. [272] showed that IFN-γ primed MSCs that expressed HLA-DR were unable 

to stimulate HLA-mismatched lymphocytes or increase the proliferation of CD4+ T-cells, 

whereas dendritic cells, with the same HLA class II mismatch as the MSCs, did stimulate CD4+ 
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T-cell proliferation. This shows that the presence of HLA-DR alone is not enough to trigger an 

immune response. 

 

The surface marker CD106, also known as vascular cell adhesion molecule 1 (VCAM-1) was 

also investigated in the UCMSC population. CD106 in this study showed an increased 

production in both normoxic/primed and hypoxic/primed conditions. CD106 is associated with 

immunomodulation and angiogenesis [277,278]. Research has previously identified a 

subpopulation of placental chorionic villi MSCs that express CD106 and these CD106+ MSCs 

were found to have more potent immunosuppressive properties [277]. Furthermore, CD106 has 

been found to be upregulated in UCMSCs, WJMSCs, ATMSCs and murine BMMSCs upon 

pro-inflammatory priming with IFN-γ [270,279–281] or TNF-α [282,283]. As IFN-γ and TNF-

α upregulate the expression of adhesion receptors such as CD106 on endothelial cells and 

MSCs, this facilitates the recruitment of leukocytes to the site of injury and this is one theory 

as to how MSCs promote wound healing [282] and capillary tube formation [118,278]. The 

higher expression of CD106 on MSCs correlates with a greater immunosuppression [280]. This 

can be explained by MSCs upregulating CD106 which promotes T-cells adhesion, thus 

bringing T-cells into close proximity MSCs, where they can carry out their immunosuppressive 

functions [280]. Other studies support these findings showing that CD106+ MSCs reduce IFN-

γ and TNF-α in Th1 cells and also reduce CD4+ T-cell polarisation into pro-inflammatory Th1 

cells [277]. Further immunomodulatory abilities were seen by the higher expression of Tregs 

in co-cultures with CD106+ MSCs compared to CD106- MSCs [277]. These results may mean 

that pro-inflammatory primed UCMSCs in this chapter are more immunosuppressive than non-

primed UCMSCs through the upregulation of CD106. But it is recognised that CD106 is just 

one marker of immune modulation and many more markers such as IDO and PGE2 may have 

significant changes between the primed and non-primed conditions. 
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This study showed that CD106 can be increased by a pro-inflammatory cocktail of IFN-γ, TNF-

α and IL-1β, but there is great variability in CD106 production across the donors. This 

inconsistency has also been found in other studies where the protein production of CD106 on 

BMMSCs has ranged from 47-90% [284] and from 20.2-62.7% in another study [118]. Some 

studies identified that the STRO-1 positive subpopulation of MSCs is more likely to be positive 

for CD106 [285,286], it may be that some donors contained more STRO-1 although this was 

not tested for in the MSCs. The most consistent explanation form the literature points to donor 

variations in MSCs [287]. 

 

The final objective of this chapter was to compare the growth, morphology, and surface marker 

characteristics of UCMSCs (n=4) to the BMMSC (n=1) control. The surface marker production 

and tri-lineage differentiation confirmed that BMMSCs were of a mesenchymal stem cell 

lineage. The BMMSCs had statistically slower population doubling times of 6.1 days (± 0.2 

SD) in normoxia and 5.1 days (± 0.38 SD) in hypoxia compared to UCMSCs (Figure 32). This 

is not surprising as research shows that the growth of BMMSCs is variable with studies 

showing a PDT of 12.25 (± 4.49 SD) days [288] and another study reporting that PDTs of 2.17 

to 7.96 days from passage 3 through to passage 8 [118]. Indeed, the slowed proliferation of 

BMMSCs after continuous passaging is commonly described in the literature with BMMSC 

proliferation plateauing after 14 days concurrent with telomere shortening of up to 2kb 

[118,289]. However, it is not clear if telomere shortening is the cause or result of slowed 

growth. Nevertheless, the UCMSCs showed a stronger proliferation in vitro compared to the 

BMMSCs, which is one indicator of a suitable growth environment for the UCMSC, although 

their morphology and surface marker expression were also analysed.  
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The normoxic and hypoxic UCMSCs showed similarities to the BMMSCs in normoxic and 

hypoxic conditions, respectively. The hypoxic BMMSC were spindle shaped whereas, in 

normoxia, the BMMSCs retracted from each other and formed small clusters over time. These 

findings are supported by research that found in hypoxic conditions, a higher proportion of 

BMMSCs displayed a spindle shape [261]. Research further highlights the importance of cell 

shape as this can often be indicative of functioning, with one study showing that thin, spindle 

shaped MSCs have a higher adipogenic differentiation ability and wider, spindle shaped MSCs 

have a higher chondrogenic differentiation ability [290]. However, the morphology of MSCs 

is highly donor dependent as one study comparing 10 BMMSCs donors, grown in hypoxic 

conditions, could not determine a consistent cell morphology with some donor’s MSCs 

showing triangular clustered shapes and others appearing spindle-like [264]. Despite the 

variability of MSCs, only one BMMSCs donor was analysed. It would have been ideal to use 

more BM donors as comparative controls against which to measure the characterisation of 

UCMSCs in this study, however, the one donor used showed characteristics similar to those 

already studied in the literature and has therefore served as a good control for this part of the 

work. UCMSCs show all the characteristics of MSCs as defined by the ISCT, are easily 

obtained from waste tissue, retain modulatory properties, and proliferate faster in culture than 

the ‘gold standard’ BM derived MSCs, which is ideal for extracting larger volumes of EVs. 
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3.4 Conclusion 

The characterisation of UCMSCs showed that they belong to a mesenchymal stem cell lineage as 

they were plastic adherent, capable of trilineage differentiation and expressed MSC surface markers 

in accordance with the ISCT criteria. Growth kinetic analysis showed that UCMSC in both 

conditions were highly proliferative. The morphology of UCMSCs in normoxia and hypoxia was 

also studied and showed that normoxic UCMSCs were larger than hypoxic UCMSCs.  

 

Differences were identified between the UCMSCs grown in pro-inflammatory primed conditions 

compared to those grown in normoxia and hypoxia. Specifically, there was an increase in 

production of CD106 and HLA-DR in some donors. Two points can be taken away from these 

findings. First, the pro-inflammatory priming of UCMSCs is altering some of the UCMSC 

characteristics. This is an interesting finding going forward into their EVs analysis to see if pro-

inflammatory priming will change the EVs too. Second, the UCMSC donors responded 

differentially to the pro-inflammatory priming, this shows that the four UCMSC donors did not 

have identical characteristics and will be interesting to see if this finding transpires into 

heterogeneity across EV samples too. 

 

The overall goal of this thesis is to establish if UCMSC-EVs can dampen inflammation related to 

RA. From the characterisation applied in this chapter, the umbilical cord seems an appropriate 

source of MSCs to examine the immunomodulatory properties of EVs. This is because the 

UCMSCs displayed all the required MSC surface markers, had a spindle-like morphology and 

faster growth in culture compared to BMMSCs, making them a suitable choice for ongoing 

research into their EVs.   
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4.1 Introduction 

EV research is a new and growing field with recent publications detailing their potential use as 

therapeutic agents, disease biomarkers and drug delivery systems [291–293]. Hence, there has 

been a surge in research using different isolation and characterisation methods. The 

International Society of Extracellular Vesicles (ISEV) recognised the need to develop 

consistency within the field, therefore, they devised a set of guidelines aimed at researchers to 

fully characterise EVs before applying them to different treatment models or functional studies 

[155]. A consensus from experts in the field was drawn up and a set of EV characteristics 

identified in line with recent evidence. In order to comply with the ISEV guidelines, many 

different techniques must be employed to achieve a detailed characterisation. Failure to 

thoroughly characterise EVs hampers the credibility and reproducibility of the research. 

Therefore, characterisation in accordance with the ISEV guidelines is an important first step 

towards understanding EV functional properties. Table 15 details many of the techniques used 

in EV research to characterise EVs, along with their advantages and disadvantages.  

 

Another factor which must be considered prior to characterising EVs is the isolation method. 

The EV field contains a wide range of different isolation methods, all of which produce a 

different yield and purity of EVs. These methods come with their advantages and 

disadvantages, as detailed in Section 1.3.10. Historically, differential ultracentrifugation was 

the primary method of EV isolation and is still the most commonly used method in the field, 

despite some limitations [294]. Other methods such as ultrafiltration, sucrose cushion 

ultracentrifugation and immunoaffinity capture have emerged in recent years with a different 

set of advantages and disadvantages. Due to the diversity of isolation methods, it can be 

challenging to compare different methods and there is no single method that is profoundly 
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superior over the rest. Therefore, the ISEV recommends choosing an isolation method based 

on the downstream application of EVs [155].  

 

With this considered, differential ultracentrifugation and sucrose cushion ultracentrifugation 

were employed in this study. Studies comparing EV isolation methods report that differential 

ultracentrifugation yields an intermediate recovery of EVs along with an intermediate 

specificity, however this method is also known to co-isolate impurities and damage EVs 

[155,295]. This study applied differential ultracentrifugation for immunoblotting experiments 

only, due to the considerable quantity of EVs required for immunodetection. In all other 

experiments, EVs were isolated using sucrose cushion ultracentrifugation. This isolation 

method is based on the principle that small EVs have a density 1.1 to 1.19 g/ml, and the sucrose 

cushion is made to have a density of 1.210 g/cm3, so that the EVs float within the cushion [211]. 

This method can selectively enrich EVs of a specific flotation density but, overall, the EVs 

have a greater purity compared to differential ultracentrifugation [296]. Other methods for EV 

isolation were considered prior to the commencement of this study. These included size 

exclusion chromatography, immunoaffinity isolation and polymeric precipitation. Size 

exclusion chromatography separates EVs based on size by passing particles through filter pores 

which may cause damage and break up EVs [148]. Immunoaffinity uses antibodies attached to 

beads to target EVs with particular surface antigens [148]. However, there is some bias in this 

approach as only a specific population of EVs can be isolated based on the antibody chosen. 

Additionally, polymeric precipitation kits, such as ExoQuick (System Biosciences, CA, USA), 

are known to quickly precipitate EVs, but research has shown that these polymer based kits 

also co-isolate impurities, such as lipoproteins and non-EV material, which makes downstream 

protein analysis difficult [148]. In the end, differential and sucrose cushion ultracentrifugation 

were considered the most appropriate methods for the aims of this study. 
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Many research groups have also looked towards combining two different isolation methods to 

produce a population of EVs that suits their downstream analysis. However, adopting this two-

method isolation approach further limits the EV yield and biases EV populations compared to 

methods used separately [297]. Therefore, there is scope in this field to create one method 

which yields a high quantity and purity of EVs, but this has not yet been achieved.  

 

The aim of this chapter was to isolate and fully characterise EVs in accordance with the ISEV 

guidelines [155]. To do this, different techniques were applied. First, the growth conditions of 

UCMSCs in serum needed to be adjusted. FBS contains a rich source of EVs which is 

problematic as it contaminates the EV preparation and can skew results [202]. Thus, FBS 

requires depletion of EVs prior to its use in cell culture to limit the influence of bovine derived 

particulates. The decision to use EV depleted media over serum starving the EVs was based on 

research that shows that serum starvation alters the EV properties [298] and the EV depleted 

media was likely to better support the growth of UCMSCs in vitro, which were in limited 

supply. Second, the size, concentration, and morphology of EVs needed to be determined. 

Nanoparticle Tracking Analysis and Transmission Electron Microscopy were applied to 

achieve this goal. Third, it was important to identify characteristic EV surface markers, so the 

europium immunoassay and MACSPlex exosome detection kit were utilised for this purpose. 

Finally, the cytosolic content of EVs was analysed using immunoblotting with an aim to 

identify internal EV markers. 

 

The application of these techniques to characterise EVs is essential to determine that the 

isolated particles are truly EVs and to be confident that any further functional, protein and 

miRNA analysis is from a genuine EV preparation. All these techniques were used with the 
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aim to garner as much information on EV characteristics as possible to fully understand their 

functional behaviour going forward. There are many studies characterising EVs from UCMSCs 

[158,235,299–305], but few that have looked at them as comprehensively as this study. 

Therefore, the data described henceforth will add to the growing research on UCMSC-EVs. 

 

The second aim of this chapter is to establish if the culture of UCMSCs in normoxic, hypoxic 

and pro-inflammatory environments change the characteristics of their EVs. This aim will be 

achieved using the same characterisation techniques, but an extra layer of analysis will be 

added by comparing the different EV groups.  

 

Some parts of this chapter as published in Hyland et al. [306]. This represents the first study 

comparing UCMSC-EVs derived from normal oxygen, low oxygen, and pro-inflammatory 

conditions together. Some studies have looked at one or two conditions [158], but none have 

looked at all four, so this data will add novelty to the field of UCMSC-EV research. 
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Table 15: Advantages and disadvantages of techniques used in EV research. 

Technique Advantage Disadvantage 

Transmission Electron Microscopy 

(TEM) [307] 

• Powerful magnification 

• High quality images 

• Potential artefacts from sample preparation 

• Images show low contrast 

Atomic Force Microscopy [308] • High resolution 

• Can produce 3D images 

• Particles need to be absorbed onto surfaces, which 

can change their size and shape  

• The recurrent contact of the probing tip can move 

vesicles in a sample  

Cryogenic Electron Microscopy [309] • High magnification 

• Structure is preserved in a hydrated state 

• Specimen is not attached to surface, so its natural 

state is imaged 

• Specimen can be statistically analysed and 

reconstructed 

• No stain required 

• Low contrast in images 

• Technique is very sensitive and can lead to the 

generation of low-quality images if cubic ice is 

formed. 

Nanoparticle Tracking Analysis (NTA) 

[310] 

• Accurately analyses size distribution 

• Analyses particle concentration 

• Requires optimisation of video capture and analysis 

• Enables visualisation of samples 

• Cannot differentiate particles from EVs 

• Large particles can compromise results 

• Frequent blocking of tubes with air bubbles. 

Tunable Resistive Pulse Sensing [311] • Analyses a broad size range of particles 

• Can measure size and surface charge of individual 

particles simultaneously 

• Analyses particle aggregation and stability 

• High-resolution and large amount of data points 

• No data manipulation required 

• Prone to pore blockages 

• Cannot discriminate between different types of 

particles 

Dynamic Light Scattering [310] • Fast and easy set-up; does not require much 

optimisation 

• Cannot analyse submicron particle counts 

• Inaccurate for polydisperse samples 
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• High accuracy in sizing • Cannot visualise samples 

Western Blotting/ Immunoblotting 

[312] 

• High specificity - antibodies target specific proteins 

• Ability to detect low concentrations of protein 

• Time consuming 

• Semi-quantitative results 

• Prone to false positives and false negatives 

• High cost 

• Requires optimisation and a skilled scientist 

• Small proteins may transfer poorly to membrane 

Europium Immunoassay [313–315] • Highly sensitive 

• Cost effective 

• No specialised equipment required 

• Low background fluorescence 

• Long fluorescent time 

• Minimal autofluorescence 

• Fluorescence quenching of europium in the 

presence of water molecules 

• Potential for non-specific binding 

• Europium particles can aggregate 

Flow Cytometry [316] • High speed analysis 

• Can measure single cells and a large number of 

cells 

• Some flow cytometers can sort different cell 

populations 

• Fluorescent intensities can be quantified 

• Standard flow cytometers not sensitive for 

nanoparticles - EVs too small and require 

conjugation to beads 

• Very expensive instrument 

• Requires trained operator  

• Prone to issues with microfluidics system 

ELISA [314,317] • Well known method 

• Absorbance is proportional to protein concentration 

• Easy to perform 

• High specificity and sensitivity 

• Cost effective 

• Low detection limit 

• Non-specific interactions 

• Insufficient blocking can cause false results 
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4.2 Results 

4.2.1 Partial depletion of EVs from FBS 

In order to deplete FBS of EVs for use in cell culture media, it was subject to a long 

ultracentrifugation step (18 hours, 120,000xg at 4oC). The supernatant was then collected, 

stopping 2cm before the bottom of the tube to avoid the cell pellet (Figure 33A). EVs (n=3) 

were isolated from the supernatant of the ultracentrifuged FBS and the untreated FBS and 

analysed for protein and RNA concentration. Protein concentration was analysed using the 

BCA protein assay and results showed that the average protein concentration of the 

ultracentrifuged FBS-EVs was 403µg/ml (± 84 SD) compared to 1851µg/ml (± 403 SD) for 

the untreated FBS-EVs. There was a statistically significant decrease in protein concentration 

of 76.3% (± 6.7 SD) in the EVs from ultracentrifuged FBS compared to EVs isolated from 

untreated FBS (p<0.0001) (Figure 33B). This indicates that ultracentrifugation was effective 

in reducing the FBS-EV protein concentration. The RNA concentration of EVs from the 

untreated and ultracentrifuged FBS was analysed using the Agilent 4200 TapeStation (Agilent 

Technologies, Santa Clara, CA, USA). Results showed that the average concentration of the 

untreated FBS was 670pg/µl (± 277 SD) compared to 233pg/µl (± 210 SD) for the 

ultracentrifuged FBS. The data represents a statistically significant decrease of 65.2% in RNA 

concentration from the ultracentrifuged FBS compared to the untreated FBS (p<0.05) (Figure 

33C). The Dv200 score, which represents RNA fragments >200nt, found that 50.70% (± 25 

SD) of RNA fragments were between 200-6000nt for the untreated FBS-EVs compared to 

13.54% (± 20.6 SD) in the EV depleted FBS-EVs. A size profile of the RNA from the untreated 

FBS-EVs and the EV depleted FBS-EVs is represented in the electropherogram in Figure 33D. 
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Figure 33: Depletion of EVs from FBS 

A. Image depicts a visible FBS pellet at the bottom of the tube (circled in red) after an 18-hour 

ultracentrifugation. The supernatant was collected, avoiding the pellet at the bottom which was likely 

to contain EVs. B. The protein concentration of the EVs (n=3) isolated from untreated FBS and from 

the supernatant of ultracentrifuged FBS was measured using a BCA protein assay. The bar chart 

displays the concentration in µg/ml (y-axis) and the EV depleted FBS and untreated FBS (x-axis). The 

protein concentration of the EV depleted FBS was statistically lower than the untreated FBS (p<0.0001) 

C. Bar chart displays the RNA concentration in pg/µl (y-axis) from EV depleted FBS-EVs (n=3) and 

the untreated FBS-EVs (n=3) (x-axis). The EVs isolated from EV depleted FBS had a statistically lower 

RNA concentration compared to the EVs from untreated FBS (p<0.05). D. Electropherograms 

displaying the RNA size profile from EVs derived from untreated FBS and EV depleted FBS. Sample 

intensity in Normalised Fluorescent Units is shown on the y-axis and nucleotide [nt] size is shown on 

the x-axis. Electropherograms were used to measure the Dv200 score. 
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4.2.2 Analysis of isolated particles using NTA and TEM 

The conditioned media and EVs from different culture conditions were analysed using 

Nanoparticle Tracking Analysis to gather data on their particle size and concentration. An 

image of particles in suspension passing through the chamber of the Nanosight NS300 

instrument is displayed in Figure 34A. The average size of particles from the conditioned 

media was 169nm (± 58.9 SD) in normoxia, 164nm (± 37.5 SD) in normoxic/primed, 181nm 

(± 22.8 SD) in hypoxia and 168nm ± (19.1 SD) in hypoxic/primed. There were no statistical 

differences in size between the culture conditions when analysed using NTA. Donor 1 had the 

smallest size particles in all conditions as seen in Figure 34B. In a comparison of conditioned 

media and an EV suspension, there was a more diverse size range of particles from the 

conditioned media, shown by a higher standard deviation, compared to a more uniform size of 

particles from isolated EVs, shown by a lower standard deviation (Figure 34C). The purified 

EVs had an average size of 167 nm (± 7 SD) compared to the un-purified conditioned media 

particles which had an average size of 171 nm (± 35 SD). Despite the range in standard 

deviation, there was little difference in the average size of particles between the purified EVs 

and un-purified conditioned media.  

 

NTA cannot distinguish particles from EVs, so to further confirm that these particles were EVs, 

a CellMask™ Orange Plasma membrane Stain (Thermo Fisher, Warrington, UK) was added 

to an isolated hypoxic EV suspension. This dye binds to the plasma membrane and it detected 

the fluorescently labelled EVs to have a size of 110nm (Figure 34D). This confirmed that the 

EV isolation protocol was isolating a population of particles with a plasma membrane that had 

the same size range of EVs.  
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The NTA also calculated the particle concentration of the conditioned media from different 

conditions. Samples were normalised to conditioned media from 7 x 104 cells as this 

represented the lowest cell number. There was an average of 1.98x1010 particles/ml for the 

normoxic conditions; 2.04x1010 for the normoxic/primed conditions; 9.21x109 for the hypoxic 

conditions; and 1.08x1010 for the hypoxic/primed conditions. Normoxic conditions had a 

statistically higher concentration of particles compared to hypoxic conditions (p=0.044). There 

were no further statistical differences between the conditions (Figure 34E).  
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Figure 34: Analysis of EVs by NTA 

 A. Image of particles in suspension from conditioned media passing thorough the chamber of the 

Nanosight NS300 instrument. B. Graph displaying the size of particles (nm) on the y-axis and the 

unprocessed conditioned media from four conditions on the x-axis. Each donor of UCMSCs is displayed 

with a different symbol. There was no statistical difference between the size of particles in the 

conditioned media from the four donors based on NTA data. C. Size profile of particles from conditioned 

media and particles from isolated EVs. The conditioned media has a more diverse size profile seen by 
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many small peaks compared to the EVs which show a more uniform size profile, seen by one clear peak. 

D. Particle distribution graph showing the size and concentration of EVs labelled with CellMask™ 

Orange, n=1. Concentration of EVs in particles/ml (y-axis) is plotted again size of EVs in nanometres 

(x-axis). E. Bar chart representing the particles/ml concentration of the conditioned media (y-axis) 

from cells grown in different conditions (x-axis). Statistical differences in concentration were found 

between normoxic and hypoxic conditions, n=4, p≤0.05. Data is shown as mean ± SD. 
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To further confirm that the EV isolation protocol was recovering EVs, transmission electron 

microscopy (TEM) was applied to isolated EV preparations. TEM captures the image of EVs 

by passing a high voltage electron beam through EVs on a thin grid [318]. The subsequent 

scattering of electrons as they pass through the EVs are detected and an image can be generated 

[318]. TEM was carried out on EVs isolated from normoxic (n=2) and hypoxic conditions 

(n=2) (Figure 35). Results show that EVs had a characteristic round morphology and a visible 

bilayer membrane. 

 

 

Figure 35: TEM images of EVs  

Images of EVs in normoxia (A, B) and hypoxia (C, D) taken using TEM. EVs have a round morphology, 

size of ~100 nm and a visible bilayer membrane. Scale bars = 0.1 µm. 
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The size of EVs was analysed using ImageJ software as described in Section 2.3.2. Normoxic EVs had 

an average diameter of 91.4nm (± 41SD) compared to hypoxic EVs that had an average diameter of 

71.4nm (± 28SD) (Figure 36). There were no statistical differences between the conditions. 

 

Figure 36: Comparison of EV size 

Bar chart presents the average size of EVs from normoxia (n=2) and hypoxia (n=2). An 

average of 20 particles were analysed per condition. There were no statistical differences 

between the conditions. Data is shown as mean ±SD 

 

4.2.3 EVs display tetraspanin surface markers and MSC lineage markers 

The ISEV recommends detecting at least one tetraspanin surface marker when characterising 

EVs [155]. To do this, a europium immunoassay was chosen to detect the presence of common 

EV surface markers CD9 and CD81. An isotype control was also used to control for non-

specific background signal. All EV samples were normalised to 3.87μg/ml, which was based 

on the protein concentration of the lowest EV sample. Results showed that CD9 and CD81 

were detected in EV samples from all four conditions. The signal intensity of CD9 and CD81 

was statistically higher in hypoxic compared to hypoxic/primed EVs (p≤0.05), indicating a 

higher presence of these surface markers (Figure 37). In normoxic and normoxic/primed 
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conditions, Donor 3 had a considerably higher expression of CD9 and CD81 in comparison to 

the other donors which has contributed to the large error bars shown in Figure 37. 

 

Figure 37: Tetraspanin expression on EVs 

Bar chart showing the expression of tetraspanin markers CD9 (A) and CD81 (B), in EVs (n=4) from 

four conditions detected using a europium-based immunoassay. Signal intensity is displayed on the y-

axis and the EV conditions on the x-axis. Statistical differences in signal intensity were found between 

CD9 and CD81 in the hypoxic EVs compared to the hypoxic/primed EVs. All figures shown were 

calculated after subtracting the isotype control. Individual donors are depicted using different symbols. 

Data is shown as the mean ± SD. *p≤0.05. 

 

Further surface marker characterisation was carried out using the MACSPlex exosome 

detection kit to support the findings of the europium immunoassay and identify other EV 

surface proteins. The MACSPlex exosome detection kit, which probes for 37 exosomal protein 

epitopes and 2 isotype controls, showed that EVs contained the three tetraspanin surface 

markers CD9, CD63 and CD81. The EVs also contained the MSC marker CD105 and markers 

associated with cell adhesion and migration: CD29, CD44, and CD49e. There was a 

statistically higher signal intensity in melanoma chondroitin sulphate proteoglycan (MCSP), a 

protein that is associated with melanoma progression [319], in normoxic compared with 

normoxic/primed EVs (mean signal intensity: 15452 ± 2061 vs 6123 ± 3464) and in hypoxic 
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compared with hypoxic/primed EVs (mean signal intensity: 12482 ± 3322 vs 2018 ± 3197). 

Additionally, hypoxic EVs had a higher signal intensity compared to hypoxic/primed EVs for 

CD105 (mean signal intensity: 8692 ± 3052 vs 1795 ± 2153) and for CD146 (mean signal 

intensity: 4534 ± 1842 vs 871 ± 1313) indicating that there was a higher expression of these 

surface markers under non-primed conditions (Figure 38). With regards to CD9 and CD81, 

the hypoxic EVs had a higher expression of both markers compared to the hypoxic/primed 

EVs, similar to the europium assay (Figure 37), except the higher expression failed to reach 

statistical significance in this assay. 

 

 

Figure 38: EV surface marker expression  

Bar chart shows a range of surface markers expressed on EVs (n=4) grown under normoxic, 

normoxic/primed, hypoxic, and hypoxic/primed conditions as detected using the MACSPlex exosome 

detection kit. Signal intensity is displayed on the y-axis and the surface markers on the x-axis. There 

was a statistically higher signal intensity in MSCP between normoxic and normoxic/primed EVs. 

Additionally, there was a statistically higher signal intensity in MCSP, CD105 and CD146 in the 

hypoxic EVs compared to the hypoxic/primed EVs. All figures shown were calculated after subtracting 

the isotype control. Data is shown as the mean ±SD . *p<0.05. 
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4.2.4 Identification of cytosolic EV internal proteins Alix, Rab5a and Hsp70 

The last experiment in the EV characterisation involved the detection of at least one cytosolic 

protein, as recommended by the ISEV guidelines [155]. Immunoblotting was carried out on 

one EV sample from normoxic, hypoxic, normoxic/primed, and hypoxic/primed conditions, 

and from one UCMSC sample. Four antibodies were chosen as positive cytosolic markers of 

EVs, namely Alix, Hsp70, Rab5a, and Tsg101. Additionally, Cytochrome C (12kDa), a 

mitochondrial marker, was chosen as a negative marker of EVs for this experiment. 

 

Several protocol optimisation steps were carried out to clean the nitrocellulose membrane and 

produce the right signal intensity. Firstly, the washing and blocking steps were adjusted 

because the membrane was displaying a grainy picture after imaging (Figure 39A). The 

amount of washing steps increased from 3x5minute washes to 5x5minute washes in Tris-

buffered saline with 0.05% Tween (TBST). Additionally, the membrane was blocked in a 

solution containing 5% semi-skimmed milk in TTBS for 2 hours instead of 5% semi-skimmed 

milk in PBS for 1 hour. Both these changes helped to produce ‘cleaner’ membranes as 

displayed in Figure 41. Other changes to the western blotting included the discontinuation of 

antibody GM130, a Golgi protein, which was intended to be used as a negative EV marker but 

showed unspecific binding on the membrane to many proteins at different molecular weights 

Figure 39B). Lastly, Alix signal was absent from cell and EV samples (Figure 39C). To adjust 

for this, a higher sensitivity chemiluminescent reagent, SuperSignal™ West Femto (Thermo 

Fisher Scientific, Waltham, MA, USA) was added, but this failed to improve the signal of Alix. 

Next the concentration of the primary antibody was increased from a 0.4µg/ml (1:500 dilution) 

to a 1µg/ml (1:200 dilution) which displayed a mildly positive signal for Alix shown in Figure 

41D.  
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Figure 39: Optimisation of western blot 

(A) An example of the grainy image produced from nitrocellulose membranes after blocking, 

washing, and probing with antibodies prior to protocol optimisation. (B) GM130 displayed 

unspecific binding to many proteins on the nitrocellulose membrane. GM130 has a predicted 

molecular weight of 112 kDa and bands were expected to at 132-140 kDa using this antibody. 

(C) Absent signal for Alix when used at a 1:500 dilution. N= normoxic; N+P= normoxic/primed; 

H=hypoxic; H+P=hypoxic/primed. 

 

Before running protein samples on a gel, protein concentrations were measured using a BCA 

assay (Thermo Fisher, Warrington, UK) and the samples were normalised to 10μg of protein 

for EVs and UCMSCs. A TGX stain free gel was employed for the immunoblotting. This gel 

contains trihalo compounds which react with tryptophan in the protein to produce a 

fluorescence signal when UV activated [320]. The use of stain-free imaging eliminates the need 

to use loading controls and housekeeper genes as the protein bands can be seen on the gel after 

electrophoresis [320] and doesn’t interfere with the subsequent western blotting. Results show 

relatively uniform loading of proteins onto the gel for Rab5a, Alix, Hsp70, Cytochrome C and 

Tsg101 (Figure 40). 
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Figure 40: Gel image of proteins within EVs and cell samples after electrophoresis 

Stain free gels were used to check for the equal loading of proteins. Image displays of stain free gels used to probe for (A) Rab5a, (B) Alix, (C) Hsp70, (D) 

Cytochrome C, and (E) Tsg101. The lanes containing the cells show a much broader range of protein sizes compared to the EVs. 
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Immunoblotting results show that the negative EV marker Cytochrome C was readily detected 

in UCMSC samples but absent from EV samples (Figure 41A). There was a positive 

expression of Rab5a (25kDa), Hsp70 (70kDa) and Alix (96kDa) in EV and cell samples as 

detected by the presence of bands at the correct molecular weights (Figure 41B-D). To apply 

quantitative analysis to the results, protein bands were analysed using ImageJ software. Briefly, 

protein bands on the nitrocellulose membrane were transformed into peak graphs and the area 

under the peak was measured to obtain band intensity figures. The band intensity number is an 

arbitrary figure used to depict the relative change between samples. Rab5a, Alix and Hsp70 

protein band peaks were compared in Supplementary Figure 5, but these figures could not be 

normalised to a loading control. Instead, a stain free gel was used to estimate differences in 

sample loading as previously described. 

 

Hsp70 showed two bands for cell samples, one slightly above and one below the 70kDa mark. 

This was seen, to a lesser degree, by EV samples, shown in Supplementary Figure 5. There 

was some variability in expression of EV markers across different conditions. For example, 

there was a faint presence of Rab5a in normoxic EVs (band intensity 1969) compared to the 

other conditions (band range 4357-6000) (Figure 41B, F). There was a weak detection of 

Hsp70 in hypoxic/primed EVs (Figure 41C) and Alix featured strongly in pro-inflammatory 

primed EVs compared to non-primed samples (Figure 41D). In general, all EV conditions had 

a lower protein abundance of Alix and Rab5a compared to their parent cells (Figure 41G). 

Tsg101, an ESCRT protein known to be involved in multivesicular body (MVB) biogenesis 

[321], was not identified in EVs but was present in UCMSCs (Figure 41E). The recommended 

starting dilution for Tsg101 is 1:200 with a dilution range of 1:100 to 1:1000 according to the 

manufacturer’s guidelines. Tsg101 was first probed at 1:200 and again at 1:100 but failed to 

produce signal in EVs. 
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Figure 41: Immunoblotting analysis of intercellular EV markers 

(A) Immunoblotting images show the negative expression of Cytochrome C in EV samples and a positive 

expression in UCMSC cell lysates. (B-D) Positive expression of EV markers: Rab5a, Hsp70 and Alix 

in both EV and cell samples. (E) There was a negative expression of the EV marker Tsg101 in EV 

samples, but signal was detected in cell samples. (F) Band intensity figures for Rab5a, Alix and Hsp70 

from different conditions. Band intensity figures were obtained from ImageJ software (v.1.53e). (G) Bar 

chart displaying the band intensity of Rab5a, Hsp70 and Alix from UCMSCs and EVs grown in different 

conditions (n=1). N= normoxic; N+P= normoxic/primed; H=hypoxic; H+P=hypoxic/primed. 
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In all, the EVs from all conditions met the guidelines for the characterisation of EVs, 

established by the ISEV committee [155]. A detailed overview of requirements for 

characterisation and how these EVs met the criteria is shown in Table 16. 

 

Table 16: Requirements for the characterisation of EVs 

Table explains the ISEV 2018 and 2014 guidelines for the characterisation of EVs in the first column, 

including examples provided by the ISEV (column 2). The third column details the techniques and 

proteins identified in this study to meet the ISEV guidelines.  
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4.3 Discussion  

This chapter focused on the characterisation of EVs from UCMSCs grown in four conditions. 

The main aim was to confirm that the isolated preparations from the UCMSC conditioned 

media were of true EV origin and displayed characteristics in line with the ISEV guidelines. 

This chapter also had a second aim to identify differences in the EVs from normoxic, hypoxic, 

normoxic/primed, and hypoxic/primed conditions. 

 

The first step was to establish the growth conditions for the UCMSCs. It was decided to use 

EV depleted FBS in the culture media to help support cellular growth. FBS was depleted of 

EVs using a long ultracentrifugation protocol and the efficiency of EV depletion was assessed. 

There was an approximate 76.3% decrease in EV protein and a 65.2% decrease in EV RNA 

from the FBS after 18-hour ultracentrifugation shown in Figure 33. However, this protocol 

comes with limitations. One of those limitations is the pelleting of larger FBS proteins during 

ultracentrifugation which are needed to support cell growth. Indeed, research shows that the 

use of EV depleted FBS has a reduced ability to support cell growth in culture, seen by the 

decreasing population doubling times and reduced cell viability after 48 hours [205]. However, 

these findings were not reproduced in this study, which showed strong growth of UCMSCs up 

to passage 8, shown in Figure 26. These figures are similar to other PDT analysis of the same 

cells by Mennan et al. [217] which showed an average PDT of 2-3 days up to P13. The 

maintained growth of UCMSCs up to P8 may be because the EV depleted media was only 

added for 48 hours for CM collection and then ‘rescued’ with normal complete media 

thereafter. Indeed, research has shown that serum depriving BMMSCs for a period of 2-4 

weeks supports a subpopulation of MSCs with a small, spindle-like morphology [322]. These 

cells maintained their proliferation, had longer telomeres and expressed more OCT-4 in serum 
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deprived conditions compared to control cells [322]. As the EV depleted FBS is deprived of 

some serum components then this may be one theory as to why the UCMSCs in this study did 

not succumb to the EV depleted FBS conditions but rather maintained a strong proliferation 

through to P8. 

 

In general, research is conflicted about the effectiveness of an ultracentrifugation protocol for 

the depletion of bovine EVs. Some studies have reported that this method is effective at 

removing 95% of RNA-containing FBS-EVs [202] and at reducing the particles/ml 

concentration of FBS [203–205]. However, there is also contradictory research showing that 

an abundant population of EVs are present after ultracentrifugation [323]. This study found a 

significant reduction in EV protein, but it was not a 100% depleted of bovine EVs, therefore, 

it is likely that there are some bovine EVs existing in the isolated EV suspension and this will 

need to be considered carefully in interpreting future analysis. This study would also have 

benefitted from utilising Nanoparticle Tracking Analysis to compare the concentration of 

particles in the untreated and EV depleted FBS. Additionally, an EV depleted media sample 

could have been analysed by western blotting and europium immunoassay to partially quantify 

the influence of FBS-EVs. At present, depleting FBS of 100% of its EVs has not been achieved 

and research is growing to develop affordable alternatives to serum to avoid this contamination 

issue.  

 

The main aim of this chapter was to look at the size, morphological, and protein characteristics 

of EVs to confirm that the isolated particles were genuine EVs in line with the ISEV guidelines 

as detailed in Table 16. The NTA analysis provided insight into the biodistribution of particles 

in the conditioned media and in the EV suspension. It was clear from the size profiling graphs 
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that the CM had a more diverse range of particles compared to a more uniform profile seen in 

the analysed EV preparation (Figure 34C). This shows that the EVs had been purified during 

the isolation process and a specific size of EVs identified. The NTA analysis also showed that 

the CellMask™ Orange (CMO) plasma membrane stain successfully bound to the EVs and had 

an average size of 110nm, which is comparable to the size of small EVs [324]. This successful 

uptake of CMO shows that the EVs were plasma membrane enclosed particles as opposed to 

debris in the final preparation. This was further confirmed upon imaging of the EVs using 

TEM; they displayed a consistent, sphere-shaped morphology with a phospholipid bilayer 

indicative of EVs (Figure 35). The TEM analysis also showed that the particles were of a size 

profile similar to small EVs, with the normoxic EVs averaging 91nm in diameter and the 

hypoxic EVs averaging 71nm in diameter. There were no visible changes in the EV 

morphology between normoxic and hypoxic EVs.  

 

The size of EVs did not statistically differ between conditions (Figure 34B). Previous research 

has also found similar results, showing no statistical differences in size, shape and 

electrodensity between EVs from normoxic and hypoxic conditions [82]. However, there have 

been changes seen with pro-inflammatory priming of MSC-EVs. Varkouhi et al. [325] found 

that IFN-γ primed UCMSC-EVs were approximately 1.5 times larger than their non-primed 

counterparts; however, this study used a higher concentration of IFN-γ and for a shorter time 

than the current study. Whether these differences cause functional changes or are completely 

negligible remains to be answered, as there is little research on whether subtle changes in EV 

size have a major bearing on their functional properties.  
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Interestingly, there was a statistically higher concentration of particles in normoxic conditions 

compared to hypoxic conditions, albeit there was a large range of particle concentrations 

detected from the four different donors. This may mean that normoxic cells are secreting more 

EVs compared to hypoxic cells, but it may also mean that there is more cellular ‘debris’ in the 

conditioned media as NTA does not discriminate between EVs and non-EV particulate. 

Findings differ in the literature with regards to particle concentration from MSCs grown in 

normoxia and hypoxia. Some groups have found no difference in particle concentration [326], 

while others have found the hypoxic MSCs have a higher particle concentration compared to 

normoxic MSCs [327]. This lack of consensus highlights the need for more research in this 

area. 

 

The europium immunoassay and the MACSPlex exosome detection kit provided a thorough 

characterisation of EV surface markers. The europium immunoassay showed that all EVs 

expressed tetraspanin surface markers CD9 and CD81. There was an increased signal intensity 

of CD9/CD81 in hypoxic EVs compared to hypoxic/primed EVs which indicates a higher 

protein expression under non-primed conditions. This may mean that priming the UCMSCs in 

hypoxic conditions is altering the heterogeneity of the EV, as no differences in CD9/CD81 

expression were found between normoxic and normoxic/primed conditions. Research shows 

that hypoxia triggers specific signalling pathways compared to growing cells in normoxic 

conditions [328–330], so low oxygen environments may play a role in changing EV surface 

marker expression. Further changes were also seen in the MACSplex exosome detection kit, 

which showed a downregulation of CD105 and CD146 in hypoxic/primed EVs. However, the 

connection between hypoxic-induced signalling pathways, pro-inflammatory priming and EV 

biogenesis remains largely elusive in the EV field. To further investigate a potential 

relationship, a larger sample size would be needed as there is a high variability amongst donors 
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as shown in Figure 38. Other groups have found differences in surface marker expression in 

EVs derived from different cell culture conditions. Lo Sicco et al. [82] found that CD63 was 

increased in hypoxic EVs compared to normoxic EVs, showing that this marker was altered by 

the culture environment. However, no differences were found between conditions in the levels 

of CD63 from the MACSPlex exosome detection kit in this study. 

 

The most notable differences from the MACSPlex exosome detection kit were the 

downregulation of melanoma-associated chondroitin sulphate proteoglycan (MCSP) in pro-

inflammatory primed conditions from both hypoxic and normoxic cell culture. These findings 

have also been shown in another study where pro-inflammatory priming of WJMSC-EVs 

reduced MCSP expression [327]. MCSP, also known as chondroitin sulphate proteoglycan 4 

(CSPG4) or neuron-glial antigen 2 (NG2; rat homologue), is associated with melanoma cells 

[319], myofibres, blood vessels [331], and mesenchymal stromal cells [332]. Indeed it has a 

high expression in pericytes [333] (in vivo progenitors of MSCs [334]), and it’s expression 

reduces significantly upon the terminal differentiation of MSCs [319,331,335]. This could 

mean that the primed UCMSCs were leading to terminal differentiation. To explore this further, 

a tri-lineage differentiation experiment of MSCs pre- and post- priming with pro-inflammatory 

cytokines would need to be conducted. It raises the question: does the pro-inflammatory 

priming of MSCs reduce their differentiation ability due to the loss of MSCP? It is interesting 

that the priming of UCMSCs reduced MCSP expression as stimulation with pro-inflammatory 

cytokines in a rat neuronal model of inflammation has been found to increase the levels of 

MCSP [336–338]. A study into the functional properties of MCSP on cord blood MSCs and 

their EVs found that MCSP-EVs promoted the proliferation and angiogenic properties of 

endothelial cells by increasing levels of basic fibroblast growth factor (bFGF) and platelet-

derived growth factor (PDGF); and knockout of MCSP results in defects to blood vessel 
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formation [332]. Therefore, it may be possible that the downregulation of MCSP in primed 

EVs may make them less potent as angiogenic mediators. 

 

EVs express many of the same markers as their cells of origin. This is due to either the 

microparticles blebbing from the plasma membrane or the intracellular uptake of proteins 

during exosome biogenesis when forming intraluminal vesicles. A paper by Witwer et al. [324] 

recommends identifying MSC surface markers on MSC-EVs to confirm that at least a subset 

of EVs are of genuine MSC origin. Therefore, it was a positive to see CD105 as a surface 

marker on the EVs in this study. However, CD105 was downregulated in hypoxic/primed EVs. 

CD105 is involved in cell proliferation, differentiation and migration [339] and the lack of 

expression of CD105 on UCMSCs and ATMSCs has been associated with stronger 

immunomodulatory properties [340]. This was shown in a study comparing CD105+ and 

CD105- UCMSCs and ATMSCs. When co-cultured with lymphocytes, CD105- MSCs showed 

a stronger ability to reduce pro-inflammatory cytokines (IFN-γ, TNF-α, IL-1β, IL-2) and 

increase the expression of TGF-β [340]. This is promising as the hypoxic/primed EVs may 

have a heightened ability to supress immune responses. Additionally, CD146 was 

downregulated in the hypoxic/primed EV group, and the downregulation of this surface marker 

is associated with senescence in umbilical cord blood MSCs [341]. Pro-inflammatory primed 

CD146- MSCs were associated with a higher release of IL-6, greater Th17 cell activation and 

an increased disease progression in CIA mice compared to CD146+ MSCs [342]. These 

findings question the anti-inflammatory potential of the hypoxic/primed EVs, however many 

other proteins and RNAs are involved and thus, need to be considered in determining anti-

inflammatory potential. 

 



  Chapter 4 

 
158 

 

Other noteworthy proteins identified on EVs from all conditions were CD29 and CD44, both 

considered to be mesenchymal stem cell markers [343]. The identified markers CD29, CD44 

and CD49e are associated with cell-cell interactions and adhesion [344] and may explain how 

EVs are taken up by recipient cells during paracrine signalling.  

 

Characterisation of cytosolic EV proteins was carried out using immunoblotting to identify the 

positive expression of Alix, Rab5a, Hsp70 and the negative expression of Cytochrome C. 

Blotting images show a negative expression of Cytochrome C in EVs and a positive expression 

in UCMSCs. The ISEV recommends that EVs be ‘tested for the presence of non-vesicular, co-

isolated components’ (p.12), but it has updated its stance on the necessary identification of 

negative EV markers from the 2014 guidelines [155]. It is now understood that EVs can interact 

with any component of the cell given their size and approximation to different organelles, 

particularly in the case of larger EVs [155]. Therefore, the identification of a universal negative 

EV marker is elusive; instead the identification of proteins not commonly associated with the 

EV cargo (such as cytochrome C) can be used to assess the degree of EV purity [155]. It can 

therefore be deduced that the EVs isolated in this study were unlikely to have been associated 

with mitochondria during their biogenesis. Additionally, cytochrome C may be present in tiny 

apoptotic particles or cell debris, therefore, the absence of this protein indicates that the 

suspension containing EVs did not contain free floating cytochrome C.  

 

A positive expression of Alix, Rab5a and Hsp70 was identified from the immunoblotting. Alix 

is a protein that is part of the endosomal sorting complex required for transport (ESCRT) 

pathway which is involved in EV biogenesis [142]. In a study of EVs from liver stem cells, 

Alix was found to play a crucial part in the packaging of miRNAs into EVs but not in the 
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secretion of EVs from cells [142]. Previously, Alix has shown a high affinity binding to 

Argonaute 2 (Ago2), a key protein involved in miRNA transport and processing [345]. When 

Alix was knocked down, the levels of miRNAs and Ago2 dropped significantly in EVs 

suggesting that it plays an important role in the loading of miRNAs into EVs via binding to 

Ago2 [142]. 

 

Another identified cytosolic protein was Rab5a, which is involved in endosome biogenesis and 

plays a role in the transport of materials from the cell membrane into early endosomes 

[346,347]. Hsp70, which is another EV marker known to stimulate TNF-α production by 

macrophages and promote NK cells [295,348], showed a positive expression in EVs although 

the molecular weight was different to the parent UCMSCs. The EVs contained bands at the 

expected 70kDa mark, but the UCMSCs contained two bands, one at 75kDa and one at 65kDa. 

The difference in molecular weight between cells and EVs is likely due to the presence of 

multiforms of Hsp70 created by different genes (isoforms) as the antibody used in this study 

recognised a range of Hsp70 isoforms [349]. It could also be due to post translational 

modification of Hsp70 particularly in the larger 75kDa protein band [349]. Another explanation 

could be the possibility of some non-specific binding to other Hsp forms especially in the 

smaller 65kDa size band. The Hsp70 detected in the EVs in this study was of the expected 

molecular weight so it can be deduced that the EVs were positive for Hsp70. As the 

characterisation of EVs was the main aim of this chapter, the double bands of Hsp70 in cellular 

samples were not investigated further, although is of interest to future work. In all, there was 

variability in the expression of cytosolic markers for EVs across the four different conditions: 

normoxic, normoxic/primed, hypoxic, and hypoxic/primed. This variable expression in 

cytosolic markers may be due to the cell culture conditions causing the differential expression 

of proteins or, likewise, it could also be due to the high degree of heterogeneity in EVs.  
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Tsg101 was not detected in the EVs from the UCMSCs and was detected in the parent 

UCMSCs. Other studies have shown that Tsg101 is detected in an inconsistent manner in EVs 

and the presence of it is highly dependent on the cell of origin [350]. Additionally, the lack of 

Tsg101 signal may be due to issues with the antibody. A higher than recommended 

concentration of antibody (1:100) was used and still failed to detect a signal in the EVs. No 

alternative antibody was available for this experiment, but a different antibody may still be 

worth trying in the future. 

 

The characterisation of EVs in this chapter is detailed, but it could become more comprehensive 

by analysing the purity of EVs. This could have been done by comparing the protein 

concentration of the EVs from the BCA assay with the particles/ml concentration of the EVs 

from the Nanoparticle Tracking Analysis [296]. In hindsight this would have added an extra 

layer of analysis to the isolated EV preparations. Future work will aim to analyse the purity of 

all EV preparations as this is important for downstream functional studies, to be sure that any 

changes are EV mediated. 

 

4.4 Conclusion 

In summary, the characterisation data shows that the isolated EVs from the four conditions had 

1) characteristic EV surface marker expression, 2) internal EV markers (Alix, Hsp70, Rab5a), 

3) the correct size for EVs identified through NTA and TEM, and 4) the correct morphology 

for EVs, in line with ISEV guidelines. This evidence supports the conclusion that the isolated 

particles are EVs, and the EV isolation method employed in this chapter was successful. There 

were some differences between the surface marker expression and cytosolic protein expression 



  Chapter 4 

 
161 

 

from the EVs derived from different conditions. This shows that the cell culture environment 

may be causing changes in the UCMSC secretome and this warrants further investigation to 

establish which source of EVs may be the most therapeutic. The next three chapters will cover 

in more depth how the cell culture environment can alter the UCMSC-EV protein expression, 

miRNA profile and functional abilities.   
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Chapter 5: Protein profile 

of human UCMSC-EVs 
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5.1 Introduction 

Extracellular vesicles (EVs) are emerging as an alternative therapeutic option to MSCs [351], 

this is because they have a lower risk of transplant rejection, an inability to differentiate in vivo 

and a greater stability [351]. The EV cargo comprises of proteins, mRNAs, miRNAs, 

saccharides and lipids and the constituents of the cargo are unique to the cells that they originate 

from [129]. They are released by cells and travel to target cells where they EVs can interact 

with cells via receptor binding, direct fusion with the cell membrane, or endocytic 

internalization [352]. The EV cargo can then be transferred into the target cells where they can 

carry out a functional change [353]. EVs sourced from UCMSCs have shown promise as a 

potential immunosuppressive therapy both in in vitro and animal studies 

[160,302,303,305,325,354–356]. This is mainly due to their ability to inhibit T-cell 

proliferation [303,355,356] and reduce inflammation in animal models of type 2 diabetes 

mellitus [302], brain injury [305] and acute lung injury [325]. This evidence warrants further 

investigation into the therapeutic potential of UCMSC-EVs.  

 

The immunosuppressive properties and functioning of EVs is changeable in response to 

different culture conditions that the parent cells are grown in [236]. This means the 

immunosuppressive content of EVs can potentially be upregulated when the UCMSCs are 

provided with the right stimulus. Some studies have shown the benefit of priming cells with 

pro-inflammatory cytokines and hypoxia, whereby the resulting primed EVs show enhanced 
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immunosuppressive abilities compared to their non-primed EV counterparts 

[243,252,325,357–360]. Specifically, research using EVs secreted from pro-inflammatory 

primed MSCs has shown positive immunosuppressive effects by polarising pro-inflammatory 

immune cells into anti-inflammatory immune cells in vitro [165,304,361–364]. One study 

showed that pro-inflammatory priming of ATMSC with TNF-α and IFN-γ caused an upregulation 

of HGF, TSG-6, PGE2 and TGF-β in EV cargo [357]. These EVs were then able to reduce 

inflammation in a mouse model of colitis [357]. Pro-inflammatory priming also caused an 

increase in RAB27B, A20 and TSG-6 in exosomes. These exosomes were then successful in 

inhibiting T-cell proliferation in vitro [365]. 

 

In addition to pro-inflammatory priming, hypoxic priming of UCMSCs has shown therapeutic 

effects. Culturing UCMSCs in hypoxia is associated with decreased apoptosis, lower levels of 

reactive oxygen species and an increases the angiogenic potential [243]. Hypoxic UCMSCs have 

been found to upregulate hepatocyte growth factor (HGF), brain-derived neurotrophic factor, 

and vascular endothelial growth factor (VEGF) leading to a reduction of inflammation and 

improved axonal growth in a rat spinal cord injury model [239]. The benefits of hypoxic 

priming also apply to the MSC-EVs which have shown enhanced therapeutic properties. 

ATMSC-EVs derived from cells grown at 5% O2 had a more potent ability to polarise M1 

macrophages into M2 macrophages in mice compared to the MSC-EVs derived from normal 

oxygen conditions [82]. This was seen by the enrichment of anti-inflammatory miRNAs (miR-223 

and miR-146b) in the hypoxic EV cargo [82]. Hypoxic ATMSC-EVs have also been found to have 

a stronger angiogenic potential compared to normoxic EVs, seen by their ability to promote 

vascular tube formation in vitro [326]. 
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These are just some examples of how EVs can function differently when their parent cells are 

exposed to different stimuli. However, despite the evidence of an increased therapeutic effect of 

priming MSCs with low oxygen and pro-inflammatory cytokines, there is variability in methods 

used across the literature and little research on the extent of alteration to the protein and miRNA 

cargo of EVs. Therefore, this chapter focuses on characterising the protein cargo of EV populations 

from MSCs (n=4) cultured in different conditions (normoxia, hypoxia ± pro-inflammatory 

conditions). In order to study the EV protein cargo, a proximity-based extension assay (PEA) was 

used, as described in Section 2.8.1. Using this PEA assay, the expression of internal proteins 

in the EV cargo could be measured. The EVs from different UCMSC growth conditions were 

compared to analyse how culture conditions were affecting the EV protein cargo.  

 

The following groups were compared: 

1. Normoxic EVs vs Hypoxic EVs: To investigate the effects of hypoxia on EV protein 

cargo. 

2. Normoxic EVs vs Normoxic/Primed EVs: To investigate the effects of pro-

inflammatory priming on EV protein cargo. 

3. Hypoxic EVs vs Hypoxic/Primed EVs: To investigate the differences in protein 

expression of pro-inflammatory priming within the hypoxic milieu. 

4. Normoxic/Primed EVs vs Hypoxic/Primed EVs: To investigate the effect of low vs 

normal oxygen concentration on protein expression when the EVs are primed with pro-

inflammatory cytokines. 

 

This study design was applied to give insight into which culture conditions resulted in the 

population of EVs with the most anti-inflammatory potential. 
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Aim 

To compare the protein cargos of UCMSC-EVs from four different conditions using the 

proximity-based extension assay. 

Hypothesis 

1. UCMSC-EVs from cells that were primed with pro-inflammatory cytokines contain 

more anti-inflammatory proteins in their cargo. 

2. UCMSC-EVs from cells that were primed with hypoxia contain more pro-angiogenic 

and anti-inflammatory proteins in their cargo. 

 

Statistical Analysis 

Before applying statistical analysis to the data, the Normalized Protein eXpression (NPX) value 

was generated. This was carried out by OLink (Uppsala, Sweden) and involved a number of 

data analysis steps. Firstly, the extension control Ct values were subtracted from the sample Ct 

values to control for technical variations; this generates the dCt. Next the internal control Ct 

values were subtracted from the dCt to adjust for normalisation between runs; this generates 

the ddCt. Finally, the sample ddCT was subtracted from the correction factor (a pre-determined 

value), to control for background noise and invert the scale. The formula for the generation of 

the NPX is shown in Figure 42. 

 

The statistical analysis was carried out at RJAH using Graphpad Prism v.8 (GraphPad 

Software, San Diego, USA). A paired t-test was performed for the comparison of NPX values 

between conditions and multiple t-tests were used for the comparison of different proteins 

between conditions. 
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Figure 42: Generation of NPX value 

Equation used to generate the NPX value from the Ct read-out after PCR. It involves subtracting the 

extension and inter-plate control readings to account for technical variation and normalisation, 

respectively. Finally, the sample is subtracted from the correction factor to remove background noise 

and to invert the scale so that a high NPX corresponds to a high protein expression.  
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5.2 Results 

5.2.1 Quality control check confirm intact EV protein 

Four internal controls were added to the plate to monitor the plates performance and assess the 

quality of the EV samples. The whole plate passed the quality control as all the internal controls 

were within a standard deviation of 0.2 NPX of each other. Additionally, all the EVs samples 

passed the quality control as they deviated by less than 0.3 NPX from the median of the internal 

controls. Confirmation of this was received from the plate analysis certificate generated by 

OLink (Uppsala, Sweden) (Figure 43).  

 

 

Figure 43: Confirmation of EVs passing quality control 

 

5.2.2 Changes in EV protein cargo after pro-inflammatory priming 

The mean NPX values of all the 92 proteins were compared to see if one population of EVs 

contained a higher abundance of all the selected proteins as a group. The whole panel of 92 

selected proteins, used for this analysis is shown in Supplementary Table 1. 

 

Results showed that the primed EVs had statistically higher NPX values than the non-primed 

EVs, both in the normoxic/primed (p=0.001) and hypoxic/primed groups (p=0.0009) (Figure 

44) suggesting that there were more proteins packaged into the primed EV cargo. There were 

no differences in NPX values identified between normoxic and hypoxic EVs (p=0.24).  
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Figure 44: Normalised Protein Expression of EVs 

Bar chart represents the normalised protein expression of EVs (n=4) from four different conditions 

(normoxic, hypoxic, normoxic/primed, hypoxic/primed). There was a significantly higher NPX value 

for normoxic/primed and hypoxic/primed EVs compared to the normoxic and hypoxic EVs, respectively. 

**p<0.01 ***p<0.001. 

 

To explore possible changes in the protein-repertoire of EVs, a comparison of the NPX values 

from the different EV conditions was carried out. Of the 92 inflammatory-related proteins in 

the assay, 52 were detected in the EV samples. Statistical differences were identified in 16 

proteins from the normoxic vs normoxic/primed group and 21 proteins from the hypoxic vs 

hypoxic/primed group, these can be found in Table 17, alongside the difference in Log2(fold 

change) showing the change in protein expression between primed/non-primed EVs. A 

comparative expression of all the proteins in the four EV conditions is shown in a heat map in 

Figure 45. 
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There were no statistical differences in EV protein cargo between the normoxic vs hypoxic 

group nor between normoxic/primed vs hypoxic/primed group. The only statistical differences 

were found between EVs with and without pro-inflammatory priming. In general, the EVs that 

were primed with pro-inflammatory cytokines had a higher abundance of proteins associated 

with chemotaxis and angiogenesis. IFN-γ showed the highest fold change in normoxic/primed 

and hypoxic/primed EVs compared to their non-primed counterparts, however, this protein was 

excluded from the data interpretation, because EVs were originally primed with this protein. 

There was also a considerable elevation in the proteins CSF-1, MCP2, MCP4 and CCL3, which 

showed at least a 10-fold higher change in primed compared to non-primed conditions. IL13 

was only present in primed EVs, and CCL4, Beta-NGF and TGF-α was also only present in 

primed EVs, in all but one primed EV sample. 

 

Table 17: List of detected and differentially expressed proteins 

Table displays the 52 proteins detected in the EV cargo. Changes in the protein expression levels from 

primed and non-primed EVs grown in normoxia (left) and hypoxia (right). 16 proteins were 

differentially expressed between normoxic/primed and normoxic conditions and 21 proteins were 

differentially expressed between hypoxic/primed and hypoxic conditions. All differentially expressed 

proteins are listed above the black line and show a statistically significant q-value of ≤0.05. Data is 

presented with normalized protein expression (NPX) difference, p-values and adjusted p-values (q-

values) using a false discovery rate method of 5%, as described by Storey [366].  
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Figure 45: Hierarchical clustering and heatmap of the proteins in EVs 

Heatmap displays the 52 detected proteins in the EV cargo (y-axis) and compares their expression in 

normoxic, hypoxic, normoxic/primed, and hypoxic/primed EVs (x-axis). NPX data was normalised to 

create a percentage and hierarchical clustering analysis was applied to the data set. The colour scale 
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bar on the right-hand side depicts the percentage expression of the protein, with ‘0’ representing no 

expression of the protein to ‘100’ representing the highest percentage expression of the protein. 

Proteins with a low expression are indicated in dark purple and proteins with a high expression are 

indicated in light yellow.  

 

In total, there were 15 proteins with increased expression in the normoxic/primed EVs 

compared to the normoxic EVs (Figure 46A) and 19 proteins with increased expression in the 

hypoxic/primed EVs compared to the hypoxic EVs (Figure 46B). Of these differentially 

expressed proteins, there was an overlap of 12 proteins between both groups, shown in the 

Venn diagram in Figure 47. CXCL10 was the only protein that was decreased in response to 

priming in the normoxic EVs and it was also decreased alongside CXCL6 in response to 

priming in the hypoxic EVs. 
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Figure 46: Volcano plot showing the differentially expressed proteins in primed and non-primed EVs  

(A) There was increased expression in 15 proteins from the normoxic/primed EVs compared to normoxic EVs and a decreased expression in 1 protein (CXCL10). 

(B) There was increased expression in 19 proteins from the hypoxic/primed EVs compared to hypoxic EVs and a decreased expression in 2 proteins (CXCL6, 

CXCL10). Values above the horizontal dotted line on the x-axis are statistically significant. Values to the left of the vertical dotted line on the y-axis have a 

decrease in NPX (Log2 (FC)); values to the right of this line have an increase in NPX (Log2 (FC)). 
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Figure 47: Venn diagram of differentially expressed proteins 

There were 16 differentially expressed proteins in the normoxic/primed EVs compared to the normoxic 

EVs. There were 21 differentially expressed proteins in the hypoxic/primed EVs compared to the 

hypoxic EVs. The upregulated proteins in the primed EVs are shown by the green arrows. CXCL10 was 

downregulated in both primed EVs compared to non-primed EVs, and CXCL6 was downregulated in 

hypoxic/primed EVs compared to hypoxic EVs, shown by the red arrows. 12 differentially expressed 

proteins were common amongst both groups, seen by the overall in pink and blue circles.  

 

As the differentially expressed proteins are associated with a wide range of immune responses, 

Table 18 details some of their functions towards specific immune cells.
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Table 18: List of proteins that were differentially expressed in UCMSC-EVs.  

Table details the, the protein, the condition that they were differentially expressed in, and some of their roles in the immune system 

Protein Condition Functions 

CCL3 Upregulated in Normoxic/Primed and Hypoxic/Primed EVs Promotes the infiltration of macrophages into the RA synovium [367]. 

CCL4 Upregulated in Normoxic/Primed EVs compared to Normoxic EVs Chemoattractant for regulatory T-cells [368]. 

CCL11 Upregulated in Normoxic/Primed and Hypoxic/Primed EVs Chemoattractant for eosinophils [369]. 

CCL20 Upregulated in Normoxic EVs compared to Normoxic/Primed EVs Promote dendritic cell migration [369]. Recruits Th17 cells to site of injury 

[370] 

CSF1 Upregulated in Normoxic/Primed and Hypoxic/Primed EVs Regulates macrophage development [371]. Increases osteoclast like cells in 

bone marrow [372]. 

CXCL5 Upregulated in Normoxic/Primed and Hypoxic/Primed EVs Aids neutrophil trafficking and homeostasis. Regulates IL17/G-CSF levels 

in the gut [369,373]. 

CXCL6 Downregulated in Hypoxic/Primed EVs compared to Hypoxic EVs  Chemoattractant for neutrophils [369]. 

CXCL10 Downregulated in Normoxic/Primed and Hypoxic/Primed EVs Recruits activated T-cells to sites of inflammation [374]. Elevated levels in 

RA [375]. Inhibitor of angiogenesis [376]. 

Flt3L Upregulated in Hypoxic/Primed EVs compared to Hypoxic EVs Involved in the mobilization and differentiation of hematopoietic stem cells 

and in the development of dendritic cells [377,378].  

IL6 Upregulated in Normoxic/Primed EVs compared to Normoxic EVs Supports the production of antibodies by B-cells, activates T-cells, supports 

Th2 and Treg differentiation [379]. 

IL13 Upregulated in Normoxic/Primed and Hypoxic/Primed EVs Mediator of allergic inflammation [380]. Inhibits IL-6 production by LPS-

primed in human peripheral blood monocytes [381]. 

IL18R1 Upregulated in Hypoxic/Primed EVs compared to Hypoxic EVs IL-18 is a pleiotropic pro-inflammatory cytokine. Enhances IFN-γ 

production from Th1 cells, stimulates NK cells, and Th1 cells, to produce 

IL-3, IL-9, and IL-13. In the presence of IL-3, IL-18 stimulates the release 

of IL-4 from basophils and mast cells [382]. 

LIF Upregulated in Hypoxic/Primed EVs compared to Hypoxic EVs Upregulates eosinophil migration, promotes mesenchymal cell proliferation 

[383]. Aids the production of regulatory T-cells [384]. Increases angiogenic 

potential of BMMSCs [385]. 

MCP2 Upregulated in Normoxic/Primed and Hypoxic/Primed EVs Simulates basophils and eosinophils [386]. Inhibits HIV entry in CD4+ cells 

[387]. 

MCP3 Upregulated in Normoxic/Primed and Hypoxic/Primed EVs Activates many immune cells such as lymphocytes, macrophages, dendritic 

cells, NK cells, eosinophils, basophils, and neutrophils [386].  
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MCP4 Upregulated in Normoxic/Primed and Hypoxic/Primed EVs Chemoattractant for immune cells (eosinophils, basophils, monocytes, 

immature dendritic cells, T-cells) towards inflamed tissue [388]. 

MMP10 Upregulated in Normoxic/Primed EVs compared to Normoxic EVs Polarises M1 macrophages into M2 macrophages [389]. Reduces pro-

inflammatory response of macrophages [390]. 

OPG Upregulated in Hypoxic/Primed EVs compared to Hypoxic EVs Inhibits osteoclastogenesis. Regulates the interactions between T-cells and 

dendritic cells [391]. 

TGF-α Upregulated in Normoxic/Primed and Hypoxic/Primed EVs Promotes cell differentiation migration, stimulates gastrointestinal repair 

[392]. 

TRAIL Upregulated in Hypoxic/Primed EVs compared to Hypoxic EVs Induces apoptosis in malignant cells. Maintains immune tolerance by 

inducing the apoptosis of dendritic cells, preventing T-cell proliferation and 

promoting Treg cells [393]. 

TSLP Upregulated in Normoxic/Primed and Hypoxic/Primed EVs Maintains CD4+ T-cell homeostasis, promotes positive Treg selection in the 

thymus. In an inflammatory setting, TSLP stimulates dendritic cell 

maturation and promotes CD4+ T-cells to produce Th2 inflammatory 

cytokines [394]. 

VEGFA Upregulated in Hypoxic/Primed EVs compared to Hypoxic EVs Stimulates the migration of mesenchymal progenitor cells to promote 

vasculogenesis and osteogenesis [395]. Increases the survival of synovial 

fibroblasts in RA and protect against apoptosis death of synovial fibroblasts 

[396,397] 

βNGF Upregulated in Hypoxic/Primed EVs compared to Hypoxic EVs Both pro- and anti-inflammatory functions. Promotes the survival of 

hematopoietic stem cells and immune cells (eosinophils, neutrophils, mast 

cells, B-cells, monocytes). Promotes proliferation of lymphocytes and B-

cell differentiation. Reduces levels of pro-inflammatory cytokines. 

Promotes IL-10 [398]. 

*This table identified some of the roles of these proteins in the immune system. The author recognises that many other roles and functions exist for these 

proteins.
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5.2.3 Proteins identified in all EV conditions 

Analysis of the EV protein cargo identified some noteworthy proteins that have anti-

inflammatory properties. These include TGF-β1, FGF5, FGF21, PDL1, HGF and STAMBP; 

which were detected in all EV conditions but were not differentially expressed between 

conditions (Figure 48).  

 

Figure 48: Anti-inflammatory proteins identified in EVs 

The PEA assay probed for some proteins with an anti-inflammatory potential. TGF-β1, FGF5, FGF21, 

PDL1, HGF and STAMBP were identified in all EVs but were not differentially expressed between 

conditions. NPX values are presented on a Log2 scale on the y-axis. The EV conditions are on the x-axis. 

 

Similarly, proteins with pro-inflammatory properties, such as IL-8, MCP1, CXCL11, CXCL9, 

IL-1a, CXCL1, MMP1, CD40, were also found in all EVs but not differentially expressed 

between conditions (Figure 49). 
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Figure 49: Pro-inflammatory proteins identified in EVs 

The PEA assay identified the presence of IL-8, MCP-1, CXCL11, CXCL9, IL-1α, CXCL1, MMP1, and CD40 in all EV conditions. All proteins have a pro-

inflammatory potential but were not differentially expressed between conditions. NPX values are presented on a Log2 scale on the y-axis. The EV conditions are 

on the x-axis. 
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5.3 Discussion  

This study aimed to compare the protein cargos of UCMSC-EVs from four different conditions 

to see if the hypoxic or pro-inflammatory priming of UCMSC is making their EVs more anti-

inflammatory. The anti-inflammatory potential of the EVs was decided based upon the number 

of anti-inflammatory proteins that were increased and the number of pro-inflammatory proteins 

that were decreased.  

 

The EV samples in this experiment passed all quality controls meaning that the data is valid 

and reliable. The cumulative NPX value was higher in the primed EVs compared to non-primed 

EVs which suggests that they contain a higher abundance of the 92 proteins probed for in the 

assay (Figure 44). A probable explanation for this is that the pro-inflammatory priming of 

UCMSCs triggered the selective packaging of immunomodulatory proteins into the EVs. 

Findings by Harting et al. [399] show differences in protein composition of BMMSC-EVs from 

TNF-α and IFN-γ primed conditions compared to naïve EVs. The primed EVs in this case 

showed an increase in expression of ICAM 1, CXCL12, and CCL5 and a decrease in IL-5, IL-

6, IL-10, and IL-13, identified using a protein array [399]. Although these specific proteins do 

not match exactly with the results of the current study, it shows that the pro-inflammatory 

priming of MSCs is leading to the selective packaging of specific proteins.  

 

The aim of this chapter was to compare the protein cargo of UCMSC-EVs from four different 

conditions. As there were many proteins differentially expressed in this study, with a range of 

different functions in vivo, only those with relevance to immune modulation or rheumatoid 

arthritis will be discussed.  
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Evidence from the PEA assay shows that the primed EVs contained an increase in proteins 

associated with chemotaxis (CCL3, CCL11, CCL20, MCP-2, MCP3, MCP-4), a pro-

inflammatory response (IL-6, CSF-1, IL-18R1) and an anti-inflammatory response (IL-13, 

MMP10, LIF, TRAIL) compared to the non-primed EVs. MSCs are a heterogeneous group of 

cells, and they express both pro-inflammatory and anti-inflammatory proteins when primed 

[243,359]. Therefore, it was not unusual to see EVs from primed UCMSCs displaying both 

pro- and anti-inflammatory proteins. The increased production of IFN-γ in primed EVs is not 

surprising as the cells were primed with this pro-inflammatory cytokine and studies have shown 

that IFN-γ can become bound to interferon gamma receptor 1 on the membrane of EVs [400]. 

Therefore, IFN-γ was excluded from the discussion of EV protein cargo. This issue could have 

potentially could have been avoided by adding fluorescently tagged pro-inflammatory 

cytokines to the media so that they could be imaged to study their association with EVs.  

 

The main finding in this chapter was that the primed EVs contained an increased expression of 

chemotactic proteins in their cargo. It is well described in the literature that MSCs contain 

many different chemokines that are responsible for MSC homing to the site of damage [401–

404]. Specifically, research that has characterised the conditioned media of UCMSCs has found 

the presences of many (~40) chemokines [405]. They divided the chemokines up into 

homeostatic chemokines which are responsible for migration such as CCL20 which was 

upregulated in normoxic/primed EVs, and inflammatory chemokines which are created in 

pathological conditions and aid attracting immune cells to the affected site [405]. These include 

CCL3 and CCL11 which are upregulated in the primed EVs in this chapter. The 

normoxic/primed and hypoxic/primed EVs also had an increased amount of MCP-2, MCP-3, 

and MCP-4 which play a role in the homing of MSCs to sites of injury [406]. So, while MSCs 

promote the attraction of immune cells to sites of injury, the release of these chemokines also 
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facilitates the mobilisation of MSCs to these sites where they can modulate the immune 

environment. This may mean that the priming of MSCs is ‘activating’ them to induce a stronger 

signalling response seen through the upregulation of these proteins in the UCMSC-EVs. This 

also suggests that the primed MSCs have a greater motility compared to the normoxic or 

hypoxic UCMSCs. 

 

However, it is recognised that the presence of some of these chemokines in the primed EV 

cargo have negative implications in RA, specifically, CCL3. CCL3 is found in the synovia and 

sera of RA patients and it stimulates T-cell, monocyte and NK cell activity [407]. It is also 

associated with the early onset of RA symptoms, shown by the early increase of CCL3 and 

neutrophils in a study of rats with AIA [408]. Research shows that MSCs secrete high levels 

of the CCR5 (C-C chemokine receptor type 5) and its chemokine ligand CCL3 which have 

been found to attract the homing of monocytes and macrophages to the site of injury [409] and 

support tumour growth [410]. Therefore, is unsurprising to see the elevated expression of this 

protein in their EVs. Furthermore, it is known to be augmented by the pro-inflammatory 

cytokines TNF-α and IL-1 [407]. However, due to the involvement of CCL3 with immune 

cells, the presence of this chemokine in UCMSC-EVs is slightly concerning for their potential 

use as a treatment for RA [407]. This is because many chemokine receptors such as CCR5 are 

abundantly expressed in the synovium in RA which can bind to CCL3 and stimulate an immune 

response. Indeed, this is why many drugs for RA target these chemokines. For example, 

Infliximab, an anti-TNF drug, reduces the expression of CCR3 and CCR5 on T-cells in RA 

[407], which may prevent an immune response associated with CCL3. This may mean that the 

EVs, which contain some anti-inflammatory proteins, would be most effective when used in 

combination with combination with DMARDs or anti-TNF drugs, to reduce the possible 

influence of chemotactic proteins attracting immune cells into the RA joint. 
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Other proteins, namely CXCL5, MCP4 and CSF-1, were consistently higher in primed 

conditions compared to non-primed conditions. CXCL5, also known as epithelial-neutrophil 

activating protein 78, is abundantly present in the sera and synovial fluid of patients with RA 

[407] and plays a role in attracting and activating neutrophils [411]. MCP-4 was also increased 

in EVs upon pro-inflammatory priming. This protein is highly expressed in the cartilage of 

patients with RA compared to healthy subjects and patients with OA. MCP-4 release from 

chondrocytes is known to be stimulated by IFN-γ, TNF-α and IL-1β, the same cytokine cocktail 

was used in the present study. MCP-4 promotes synovial hyperplasia in RA joints thus 

contributing to disease progression [412]. CSF-1 supports the survival and differentiation of 

monocytes and macrophages [413] and also increases inflammation by mobilizing myeloid 

cells into the blood [414,415].  

 

When the data is considered as a whole, the presence of chemokines is positive for the 

migration of MSCs to the site of damage. However, if EVs are to be used as an alternative to 

MSCs, then the isolated expression of these chemokines in EVs alone may not trigger the same 

immunomodulatory effects as there will be no MSCs to mobilise, instead they may function to 

simply attract immune cells into the joint. However, this does not mean that the primed EVs 

are pro-inflammatory agents because they had an increase in anti-inflammatory proteins in their 

cargo, namely, leukaemia inhibitory factor (LIF), TRAIL, MMP10 and IL-13. The first two 

were increased in hypoxic/primed EVs, MMP10 in normoxic/primed EVs and IL-13 in both 

normoxic/primed and hypoxic/primed. All these proteins have anti-inflammatory potential.  

 

LIF from MSCs plays a role in the modulation of T-cells [384]. Studies have shown that LIF 

from BMMSCs can suppress T-helper 17 cells in an experimental autoimmune 

encephalomyelitis mouse model [416] and promote Treg proliferation in an MSC mixed 
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lymphocyte co-culture [384]. The identification of LIF in UCMSC-EVs may also cause similar 

immunosuppressive effects, as studies have shown that WJMSCs express a higher level of LIF 

in comparison to BMMSCs and ATMSCs [417], and LIF expressed in WJMSCs is a more 

potent suppressor of T-cell proliferation in vitro compared to BMMSCs [418]. TRAIL was also 

increased in hypoxic/primed EVs. Evidence shows TRAIL can reduce self-antigens in RA by 

triggering the apoptosis of activated T-cells and synoviocytes [419]. Further evidence of its 

anti-inflammatory effect was seen in a mouse model of RA, where TRAIL reduced the 

expression of pro-inflammatory cytokines (TNF-α, IL-1β, IFN-γ, IL-6, IL-17) and 

macrophages [420]. It also shifted the Th17: Treg balance by reducing Th17 cells and 

increasing Tregs [420]. With regards to MMP10, research has found that MMP10 can polarise 

pro-inflammatory M1 macrophages into M2 macrophages in a murine model of acute infection 

[421]. As macrophages are highly activated in RA and release many pro-inflammatory 

cytokines that contribute to synovial inflammation [422], then the polarising of M1 

macrophages towards a M2 phenotype is positive for disease amelioration. Lastly, IL-13 

inhibits activated macrophages from secreting pro-inflammatory cytokines and research 

transfecting RA synovial tissue with IL-13 using gene therapy has identified it as a therapeutic 

candidate for immunosuppression in RA [423]. 

 

Other anti-inflammatory proteins, PD-L1 [424], HGF [425,426], FGF21 [427], were expressed 

in EVs, but their level did not vary between samples. Additionally, IL4 and IL10 were not 

detected. It could be possible that UCMSCs in this study also secreted more anti-inflammatory 

proteins in the form of soluble factors that were just not being packaged into EVs. 

 

There were two outliers from the general trend of chemotactic proteins in the primed EV cargo, 

this included a higher expression of CXCL10 in normoxic and hypoxic EVs, and a higher 
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expression of CXCL6 in hypoxic EVs. Both CXCL10 and CXCL6 has chemotactic properties 

associated with MSCs [428], although similar to the chemotactic proteins in primed EVs, 

CXC10 and CXCL6 are also implicated in RA. CXCL10 binds with CXCR3 and can stimulate 

Th0-Th1 type inflammation in RA [407], therefore the lower production of it in the primed 

EVs reduces the likelihood of Th0-Th1 type inflammation in RA. Additionally, CXCL10 plays 

a role in CD4+ T-cell activation and NK cell migration [429]. The reason it showed a higher 

expression in the EVs that were not primed with an inflammatory stimulus is unknown, as this 

finding deviates from the expression of other chemotactic proteins identified in this study. 

However, the functional activity of CXCL10 is not completely pro-inflammatory. CXCL10 

has been shown to attract Tregs in pancreatic cancer model [430] and a mouse model of vitiligo, 

an autoimmune condition of the skin [431]. As CXCL10 has chemoattractant properties 

towards NK cells and CD4+ T-cells, but also supports Treg activity, it is unclear which 

functions will prevail in RA. CXCL6, another outlier, was also increased in hypoxic EVs. It 

plays a role as a chemoattractant for neutrophils [369], so its lower expression in primed EVs 

may be reduce the likelihood of triggering an immune response.  

 

The hypoxic/primed EVs displayed a more angiogenic profile identified through the expression 

of the pro-angiogenic protein VEGF-A [432–434], which was expressed in all conditions but 

increased in hypoxic/primed EV samples. It is interesting that the hypoxic EVs did not have a 

higher expression of VEGF compared to the normoxic EVs. Research shows that hypoxic 

MSC-EVs have a greater angiogenic potency compared to normoxic MSC-EVs [326]. This 

would suggest that hypoxic MSC-EVs would contain more pro-angiogenic proteins such as 

VEGF-α or Fibroblast Growth Factor (FGF-5, FGF-21) [168,435,436], but these proteins were 

not differentially expressed between hypoxic and normoxic EVs in this chapter. However, 

when considering the increased expression of VEGF in hypoxic/primed EVs compared to 
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hypoxic EVs, it may be worthwhile applying these EVs to a different disease model. The 

upregulation of VEGF-A is a well-documented hypoxic-induced response [437] and may be 

beneficial in treating ischaemic heart conditions or in wound healing [437]. The UCMSC-EVs 

in this chapter contain some valuable proteins that can ameliorate diseases, but whether an RA 

model is the right match for this cohort of EV proteins remains to be answered. 

 

There were no statistical differences between normoxic and hypoxic EVs from the panel of 

probed proteins. This is surprising given that studies have shown that UCMSCs grown in 

hypoxia, have a higher angiogenic potential in the treatment of mouse hindlimb ischaemia 

[240,438] and rat spinal cord injury in comparison to UCMSCs grown in normoxia [239]. In 

general, hypoxia is advocated in the literature when growing MSCs in culture as it more closely 

mimics the oxygen levels that MSCs are exposed to in vivo [360]. Therefore, it could be 

hypothesised that growing UCMSCs in hypoxia would show some differences compared to 

normoxia. However, the lack of differences between normoxic and hypoxic UCMSC-EVs in 

this study are in line with other experiments carried out on the growth kinetics (Chapter 3), 

size, morphology, and surface marker production (Chapter 4) in this cohort of UCMSCs and 

their EVs, which also found no statistical differences between normoxia and hypoxia. This lack 

of change may be due to the cells were first isolated under normal oxygen (21%) conditions, 

and then exposed to low oxygen (5%). Exposure to low oxygen from the start may be an 

influencing factor in UCMSC hypoxic-related characteristics. Additionally, there may be 

hypoxic related changes in the EVs that were not detected in this array; an array covering a 

broader repertoire of proteins might have identified more hypoxic-mediated changes. 

 

There are limitations in this study, which should be considered when interpreting the data. 

Firstly, this study would have benefitted from analysing conditioned media samples from the 
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four conditions prior EV isolation. The addition of conditioned media samples to the PEA assay 

that have been normalised by protein concentration would have provided informative data on 

whether the proteins identified from the PEA assay originated from the EV cargo or had bound 

to the outside of EVs. The possibility of the proteins being extravesicular is low considering 

the established EV isolation method and extensive washing steps that were employed. 

Nevertheless, the possibility that some proteins may have co-isolated to the outside of EVs 

needs to be recognised and, in hindsight, the results would have been more robust on the 

addition of some conditioned media samples to act as a control. Secondly, this study had a 

sample size of four, and a larger sample size may have identified further differences between 

the conditions. Furthermore, the PEA assay only analysed proteins associated with 

inflammation and a wider repertoire of proteins would help develop a greater understanding of 

how different culture conditions alter EV cargo. For example, a study found that the priming 

MSCs with IFN-γ caused the differential expression of 210 cellular proteins [439]. Therefore, 

it is also likely that other potential anti-inflammatory proteins exist in EV cargo but were not 

included in the assay panel. Lastly further research is needed to optimise the priming of 

UCMSCs with pro-inflammatory cytokines. Studies using a stem cell neuronal model have 

shown that the expression of cytokines by cells primed with TNF-α, IL-6, and IL-1β is induced 

in a time and concentration dependent manner [440]. This may apply to some proteins within 

the EV cargo whereby a longer exposure time and different concentrations of a pro-

inflammatory stimulus may lead to an increased packing of specific proteins into EVs. 

Therefore, further optimization of pro-inflammatory condition is another area to explore to 

understand the full influence of pro-inflammatory factors on EV protein expression.  

 

Future work on the protein profile of EVs can take two approaches; the first approach would 

be to widen the search for proteins in EVs. It is recognised that the PEA assay employs a 
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targeted protein detection approach, and some proteins with immunomodulatory properties will 

not feature in the 92-panel assay. This adds bias to the data and hinders the discovery of new 

proteins. In comparison, mass spectrometry has an untargeted approach and enables the 

discovery of new proteins [441]. The second option is to adopt the opposite approach and focus 

specific proteins as a way to narrow down which differentially expressed proteins can generate 

a biologically therapeutic response. Cytokines possess a high affinity with their receptor target 

which means that only picomolar concentration are required to elicit a biologically significant 

response [442]. So, for the cytokines in the PEA assay that show a small increase in relative 

expression, this may be enough to trigger a pro- or anti-inflammatory response and is worth 

exploring. 

 

The larger goal of therapeutic EV research is to identify the proteins, or a combination of 

proteins, that induce a therapeutic change and then try and recreate this therapeutic response in 

a more simplified way to treat diseases. One way to do this would be to focus research 

genetically manipulating the parent cells in order to change the EV cargo, so that specific anti-

inflammatory proteins are packaged into EVs. Many studies have reprogrammed MSCs to 

secrete EVs with the desired EV cargo. For example, one study reprogrammed MSCs to 

overexpress GATA-4 which resulted in improved cardiac function in a model of rat cardiac 

injury [443]. Other researchers have manipulated dental pulp MSCs to overexpress HIF-1α, 

and the resulting HIF-1α positive EVs were effective at increasing angiogenic activity cardiac 

function in a mouse ischaemia model [444].  

 

This study is essentially trying the manipulate the MSC secretome by mimicking environments 

that are normally experienced by MSCs in vivo such as hypoxia and inflammation. This 

approach is employed to promote the natural ability of MSCs to function as immune regulators. 
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However, the direct reprograming of MSCs and their EVs is a more targeted approach and 

perhaps may be more beneficial in controlling the MSC-EV functions. At present it is difficult 

to predict the immunomodulatory functions of MSCs for two reasons. First the MSCs contain 

both pro- and anti-inflammatory proteins therefore it is currently unknown which proteins will 

have a larger effect in vivo. Secondly, most research into MSCs, including this study, presents 

evidence of the heterogeneity of MSCs. This is a problem for clinical therapeutics as the 

product will need to be continually characterised from each donor. An immortalised MSCs line 

which overexpresses a specific EV profile many be more beneficial to achieve consistent 

results. Alternatively, if therapeutic factors in UCMSC-EVs, could be precisely identified then 

they could be recreated synthetically to establish batch-to-batch consistency.  
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5.4 Conclusion 

This chapter looked at the basic characterisation of UCMSC-EV protein cargo from normoxic, 

hypoxic and pro-inflammatory environments. Research characterising EVs from UCMSCs 

grown in four different culture conditions represents the first of its kind. It aimed to identify 

how culture conditions could affect UCMSC-EV protein cargo. It is important to firstly explore 

the composition of EV cargo as a starting point towards understanding MSC-EV mediated 

immunosuppression.  

 

The PEA assay did not show any differences in the expression of inflammatory proteins 

between the normoxic and hypoxic conditions. The main changes in EV protein cargo occurred 

between primed and non-primed EVs, which found an increase in proteins associated with 

chemotaxis in the primed EVs.  

 

MSCs release chemotactic proteins as part of their paracrine signalling and research shows that 

this is enhanced when the MSCs are primed with pro-inflammatory cytokines. These 

chemotactic properties are widely beneficial in most studies for immunosuppression as it 

promotes MSC migration to the site of the disease where they can release their anti-

inflammatory factors. But when considering the transplantation of EVs as an alternative 

product to MSCs, the presence of chemotactic proteins is unlikely to attract MSCs as they may 

be out of range of the signalling, but it may bolster a localised immune response, as many of 

the increased chemotactic proteins are also implicated in RA pathogenesis. This could be 

balanced by the presence of anti-inflammatory proteins in EVs, and these were present, namely 

a higher expression of MMP10, TRAIL and LIF. But whether these alone are sufficient to 

dampen an immune response in RA is unknown and functional studies are therefore needed to 

analyse their true effects in an activated immune environment. 
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In all, there are chemotactic proteins in the primed UCMSC-EVs cargo which are known to 

promote UCMSC migration, but it must also be considered that these chemotactic proteins may 

also promote immune cell activity. This study only looked at component of the EV cargo and 

further studies of the EVs miRNAome is needed to discover how they may have 

immunomodulatory functions. This information on EV protein cargo is a step towards 

understanding the biological characteristics of UCMSC-EVs. 

 

  



  Chapter 6 

 
192 

 

 

 

Chapter 6: MicroRNA 

profile of human UCMSC-

EVs 
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6.1 Introduction 

Research shows that MSC-EVs contain anti-inflammatory miRNAs in their cargo that are 

capable of immune modulation [362,445–447]. Chapter 5 explored the protein profile of 

UCMSC-EVs, this chapter now looks at their miRNA profile with an aim to uncover anti-

inflammatory miRNAs responsible for EV mediated immune modulation.  

 

MicroRNAs (miRNAs) are small noncoding RNA molecules measuring approximately 19-24 

nucleotides in length that can control gene expression by cleaving mRNA which inhibits the 

translation of proteins [448,449]. Studies have shown that miRNAs can be selectively loaded 

into EVs within the cell and when the EV is released from the cell, the EV-miRNA can be 

transferred to recipient cells to carry out mRNA silencing [446,448,450]. The sorting of 

miRNAs into EVs in the cytoplasm has been investigated and it has been found that this process 

relies on specific binding motifs on the miRNA and the presence of specific proteins, such as 

Argonaute 2 (Ago2) and Alix [448]. Ago2 is regarded as a protein involved in miRNA sorting 

into EVs due to its facilitation in binding of miRNAs to the RNA-induced Silencing Complex 

(RISC). This complex can then be incorporated into multivesicular bodies, and subsequently 

EVs, highlighting the crucial role of Ago2 in miRNA sorting into EVs [450]. Alix, a protein 

involved in the biogenesis of EVs via the endosomal sorting complex required for transport 

(ESCRT), was also found to be associated with miRNA sorting in EVs. This was shown by the 

reduced number of miRNAs in EVs after Alix knockdown [142]. EVs containing the packaged 

miRNAs are released into the extracellular matrix and can enter recipient cells via endocytosis 

or direct fusion [448]. The route of entry into the cell depends on surface receptors on the EVs, 

such as tetraspanins, integrins and proteoglycans, all of which aid with binding of EVs with 

the plasma membrane of the target cell [133,451]. Once inside the cell, the miRNA can carry 

out gene silencing.  



  Chapter 6 

 
194 

 

The functional transfer of miRNA from EVs has been shown in many studies. For example, 

Song et al. [361] showed that MSC-EVs were selectively packaged with miR-146a and this 

was transferred to macrophages upon co-culture, which resulted in M2 polarisation. This shows 

the functional transfer of miRNAs in EVs [361]. In all, miRNAs are estimated to control 30-

80% of protein translation by targeting specific genes [452], which makes them important in 

gene regulation. Therefore, the study of the UCMSC-EV cargo to identify miRNAs capable of 

immune suppression was an aim of this chapter. 

 

This chapter looks at the miRNAs in UCMSCs and their EVs, identified through Next 

Generation Sequencing (NGS) and validated using RT-qPCR. This chapter focuses on the 

miRNAs that are differentially expressed between normoxic, hypoxic, and pro-inflammatory 

primed EVs to see if these culture conditions make the miRNAome more anti-inflammatory. 

One caveat to the identification of miRNAs in EVs is the potential presence of FBS associated 

RNAs in the EV suspension. To control for the possibility of bovine EVs, one FBS-EV sample 

was sequenced, and three FBS-EV samples analysed via PCR to identify if they contained any 

highly expressed miRNAs that may lead to false positives for the target miRNAs. Additionally, 

EV samples underwent a proteinase and RNAase digestion to remove any extra-vesicular 

RNAs (Section 2.9.2). RNA contained within the EVs is protected from this treatment due to 

the presence of the EV’s phospholipid bilayer.  
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Aim 

The aim of this chapter is to identify the miRNA profile of UCMSCs and UCMSC EVs. 

 

Objectives 

1. Identify differences in miRNA expression of normoxic cells and their EVs through 

RNA sequencing. 

2. Identify differences in miRNA expression between EVs from normoxic, hypoxic and 

normoxic/primed conditions through RNA sequencing. 

3. Validate the RNA sequencing results through RT-qPCR. 
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6.2 Results 

6.2.1 Preparation for RNA sequencing 

6.2.1.1 Effective depletion of non-vesicular RNA 

To reduce the possibility of extra-vesicular RNA being sequenced, and have greater certainty 

that the analysed RNA originated from the EV cargo, all EV samples were incubated with 

proteinase K and RNAase A prior to RNA extraction to digest any free floating or membrane 

bound RNAs [202,227] (Section 2.9.2). To test if the proteinase K/RNAase A treatment was 

reducing extra-vesicular RNA, an EV sample was analysed on the Agilent Bioanalyser before 

and after treatment. A comparison of the electropherograms showed that there was a decrease 

in the amount of RNA present in the EV-treated sample compared to the untreated sample 

indicating that the proteinase K/RNase A treatment was successful in digesting some extra-

vesicular RNAs (Figure 50). The concentration of RNA from the EV-treated sample was 0.069 

ng/µl compared to 0.562 ng/µl in the untreated sample. This equates to an 87.7% decrease of 

RNA, which indicated the removal of some non-vesicular RNA.  

 

Figure 50: Comparison of EV before and after Proteinase K/RNase A treatment 

Isolated EV suspensions were treated with Proteinase K and RNase A to remove any extra-vesicular 

RNA that may provide false reading of the EV RNA cargo. The same EV sample (n=1) was treated with 
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or without Proteinase K and RNase A and analysed on the Agilent Bioanalyzer using the RNA Pico 

chip. This generated an electrophoretic graph with Fluorescent Units (FU) on the y-axis and nucleotide 

length (nt) on the x-axis. Results show that the RNA concertation was 0.562ng/μl for the untreated 

sample (blue line) and 0.069ng/µl for the proteinase K/RNase A treated EV sample (red line).  

 

6.2.1.2 Assessment of RNA quality and quantity 

RNA was extracted from four donors UCMSCs and sequenced. The four UCMSC samples 

were grown in three different conditions (normoxic, hypoxic, normoxic/primed) to see how the 

EV miRNA content differed between these conditions. The EVs were isolated from the cells 

grown in these conditions and extracted for RNA. To control for the potential presence of FBS-

EVs in the sample, EVs were isolated from FBS that had not been in contact with cells. A 

diagram of the samples taken forward for RNA sequencing is shown in Figure 51. 

 

 

Figure 51: Diagram of study layout  

17 samples were sequenced, these included normoxic cells and EVs from cells grown in normoxia, 

hypoxia, and normoxic/primed with pro-inflammatory cytokines, each containing 4 donors. As a 

control, 1 sample of EVs from FBS, which had not been in contact with cells, was sequenced. 

 

Prior to library preparation and sequencing, the quality and concentration of the extracted RNA 

was identified. In this study, two methods were used to assess the quality and quantity of RNA, 

namely the Agilent Bioanalyser 2100 and the Qubit Fluorometer. The Agilent Bioanalyser 

2100 provides valuable information on the RNA profile in the form of electrophoretic graphs 
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whereas the Qubit Fluorometer is a highly sensitive instrument that provides the most accurate 

quantification of low abundance RNAs [453]. There was a clear difference in electrophoretic 

gels between the cellular samples and the EV samples, with the cellular samples showing the 

characteristic 18s and 28s bands for rRNA, a distribution not seen in EV-RNA samples (Figure 

52A). The electropherograms showed that the cellular RNA had a size distribution ranging 

primarily from 200nt-4000nt whereas the EV-RNA samples mainly contained RNA traces 

<200nt indicative of small RNAs (Figure 52B). This is consistent with previously published 

data on EV-RNA [202,228].  

 

The presence of 18s and 28s peaks for the cellular RNA made it possible for a RIN score to be 

calculated. The RIN score is a measure of intact ribosomal RNA, and it is used to give an 

indication of the quality of RNA in a sample. The average RIN for the cell samples was 9.1 (± 

0.55 SD), indicating that the majority of the RNA was intact and without degradation. Thus, 

this RIN indicates that RNA extraction procedures were of high quality. The mean RIN score 

for the EV samples was 1.3 (± 0.75 SD), however, this measurement was not suitable for EV 

samples due to their lack of rRNA.  
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Figure 52: Gel and electropherogram graphs of cell and EV RNA  

Gel and electropherogram graphs, obtained from the Agilent Bioanalyser 2100, show the size distribution of RNA in cell samples, normoxic EVs, hypoxic 

EVs, normoxia/primed EVs, and FBS-EVs. A. Gel image depicts the RNA 6000 ladder standard (Lane 1) which is made up of six RNA fragments with size 
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ranges from 0.2 to 6 kb. The cellular RNA (Lane 2-5) shows two clear bands for 18S (1900nt) and 28S (4700nt) rRNA indicated by the red arrows. No clear 

bands were detected at this level for EVs. Faint bands for EVs were seen in the small RNA area at 5S mark (120nt). B. Electropherogram showing the size 

profile of samples. The x-axis displays the nucleotide length [nt] and the y-axis displays the fluorescent units. The cell sample shows strong peaks ~1800nt 

and ~3800nt while the EV samples show small peaks between ~25-200nt.
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The Qubit Fluorometer 2.0 was used to calculate the RNA concentration of the cells and EVs. 

The average concentration of the cells was 267ng/µl (± 172.5 SD) whereas EVs contained 

lower amounts of RNA with an average concentration of 0.15ng/µl (± 0.12 SD).  

 

The DV200 score was used purely to gain additional insight into the nucleotide lengths of the 

isolated RNA. This DV200 metric calculates the percentage of RNA fragments >200nt [228]. 

The EV-RNA had an average DV200 of 28% (±17 SD) compared to 76% (±3 SD) in cell 

samples. This analysis shows that the EV-RNA contains short nucleotide sequences indicative 

of small RNAs. A full list of the quantity of RNA, RIN and DV200 is found in   
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Table 19. This is consistent with literature detailing the low yield of RNA from EV samples 

[454–456]. 
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Table 19: List of samples and RNA concentrations for UCMSCs, EVs and FBS-EVs 

Table shows UCMSC, EV and FBS-EV samples with their associated concentrations, RIN numbers 

and DV200 numbers. The RNA concentrations were measured through the Qubit Fluorometer 2.0 

instrument with the Broad Range and High Sensitivity assay kits. The RIN and DV200 numbers were 

identified using the Agilent Bioanalyser 2100.  
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6.2.2 Library preparation and sequencing 

Preparation of the RNA sequencing libraries was performed at the University of Liverpool 

where all samples were successfully converted into cDNA (Section 2.9.5). The mean 

concentration of the cell samples was 7.24ng/µl (± 1.22 SD) compared to 0.74ng/µl (± 0.28 

SD) in EV samples from all conditions. A list of the mean cDNA values for the cells and EVs 

in all conditions is provided in Table 20. Gel images show faint bands at 140-150bp (Figure 

53A) and electrophoretic graphs showed peaks at 143-146bp (Figure 53B), which is the size 

expected for miRNA.  

 

Table 20: Cell and EV cDNA concentrations as measured by Qubit Fluorometer 
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Figure 53: Gel and Electrophoretogram Analysis of cDNA 

 A. Fragment analysis of cell and EV samples ran through a gel. Nucleotide length (nt) is displayed on the y-axis and samples on the x-axis. The 140bp and 

150bp bands correspond to miRNAs at 21nt. B. Electrophoretogram of RNA fragments. Each graph represents a different sample for one donor. MiRNA peaks 

exist between 143-146bp where the red line intersects the x-axis. Relative fluorescent units (RFU) are displayed on the y-axis. 
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Prior to paired-end sequencing, the final pool of samples was Pippin size selected on the 

Agilent 2100 Bioanalyser which produced traces with an average size of 153bp. The gel and 

electropherogram size profiles are shown in Figure 54. Fastq file were prepared as previously 

mentioned in Section 2.9.5. 

 

Figure 54: Final cDNA pool preparation.  

Gel image (A) and electropherogram (B) of RNA that was size selected for 130-160bp to 

include miRNAs. Gel image shows nucleotide length on the y-axis, electropherogram shows 

fluorescent units on the y-axis and base pair length on the x-axis. 

 

Paired-end sequencing was performed on the samples and R1 and R2 files were generated for 

the paired end sequencing reads. Samples had an estimated read length ~20 base pairs per 

sample shown in the boxplot containing the trimmed reads in Figure 55A. There were at least 

40 million paired reads obtained per sample (Figure 55B). The FASTQC software analysed 

the quality of the Fastq files, it generated a Q score/Phred score of >30 for all files. This 

indicates that there is a high probability that a base call is at least 99.9% accurate by the 

sequencer [457], which shows that the sequencing run was successful and of a high quality. 
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Figure 55: Summary profile of sequenced reads 

 A. Box plot showing the distribution of trimmed reads for the forward (R1), reverse (R2) and singlet (R0) reads. Read length (b.p.) is presented on the y-axis 

and samples are presented on the x-axis. The box indicates the interquartile range, the red line in the box represents the median length, the whiskers indicate 

the minimum and maximum read lengths. A long tail can be seen on each sample. This distribution was expected as this is common for a small number of 

reads to consist of mostly adapter derived sequences. B. Bar chart illustrating the total number of reads obtained per sample. Number of reads (millions) is 

presented on the y-axis and samples on the x-axis.
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6.2.3 Analysis of cellular and EV RNA reads 

To visually compare the similarity between samples, a heatmap was generated. This used 

hierarchical clustering to compare the Log2 values on a colour scale, whereby the darker the 

colour indicated a higher similarity between samples (Figure 56A). The heatmap showed that 

biologically, the cells were similar to one another, but there was a clear dissimilarity between 

the miRNA content of the cells versus the EVs, as was expected. However, within the EV 

samples, the miRNA content was varied. These findings were supported after carrying out a 

Principal Component Analysis (PCA) shown in Figure 56B. The cell samples clustered very 

closely together indicating robust reproducibility and low variation in miRNA signatures and 

this cluster was separate from any of the EV samples. The EV samples did not cluster by 

condition and there was no identifiable trend in clustering. This suggests that the priming 

approaches did not majorly alter the miRNA content. Similar to the heatmap, there was a clear 

difference between the miRNAome of the cells and EVs shown by 36% variance on the x-axis 

of the PCA plot. The sequenced FBS-EVs were considered as part of this analysis and they 

clustered closely with the EV samples which warranted further investigation as to which 

miRNAs were similar. As a result, all differentially expressed miRNAs between EV groups 

were compared to the FBS-EVs to check that these were of human origin and not from the 

FBS. 
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Figure 56: Similarity in miRNA profile between samples 

A. Heatmap displays the similarity between samples using the Log2 data. Euclidean sample-to-sample 

distances are calculated, and measures are displayed on a scale of 0-40 where ‘0’ is the darkest colour 

‘40’ is the lightest colour. Samples which overlap with dark blue squares are highly similar, whereas 

samples which overlap with light squares are dissimilar. B. Principal Component Analysis shows a 

36% variance between cell and EV samples (PC1; x-axis) and a 11% variance within EV conditions 

(PC2; y-axis). Normoxic cell samples were highly similar seen by close clustering on the graph.  
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6.2.4 Differential expression of miRNAs 

To visualise the differential expression of miRNAs between two conditions, a Minus-Average 

(MA) plot was generated (Figure 57A-C). This plot compared the average normalised count 

to the Log2 fold change. Each miRNA is represented by a dot, with the significantly expressed 

miRNAs (i.e., q<0.1) shown in red. This plot shows that the miRNAs with a higher average 

normalised count required a lower Log2 fold change to gain statistical significance as seen in 

Figure 57A.  

 

To get an overview of the frequency of p-values between conditions, histograms were 

generated (Figure 57D-F). In the comparison between normoxic cells and normoxic EVs, there 

is a wide range on p-values <1, with a peak at the ‘0’ mark representing the 61 miRNAs that 

were differentially expressed (Figure 57D). In the comparison between normoxic EVs and the 

other two EV conditions (hypoxic EVs and normoxic/primed EVs), the highest peak is at ‘1’ 

showing that most miRNAs did not reach a statistically significant adjusted p-value of <0.1, to 

be considered as differentially expressed. 
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Figure 57: Differential miRNA expression between samples and conditions 

A-C: MA plots comparing the average normalised count (x-axis) with the Log2(Fold change) (y-axis) between two conditions. MiRNAs are 

represented by a black dot and the differentially expressed miRNAs with an adjusted p-value <0.1 are shown in red. (A) There were 61 differentially 

expressed miRNAs between normoxic cells and normoxic EVs after Benjamini-Hochberg correction. (B) 2 differentially expressed miRNAs 

between normoxic EVs and hypoxic EVs. (C) 6 differentially expressed miRNAs between normoxic EVs and normoxic/primed EVs. 

D-F: Histograms comparing the relationship between p-values (x-axis) and their frequency of detection (y-axis). (D) Normoxic cells vs normoxic 

EVs showed the presence of miRNAs at ~p=0. (E) Normoxic EVs vs hypoxic EVs and (F) normoxic EVs vs normoxic/primed EVs showed a high 

frequency of miRNAs at ~p=1, indicating that most miRNAs did not reach statistical significance as being differentially expressed.
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The next stage was to identify which miRNAs were differentially expressed between the cell 

and EV samples and between the different EV conditions. In total, an average of 1,126 miRNAs 

were identified in cell samples, 377 in EVs and 241 in bovine samples. There were 12 miRNAs 

unique to only EVs, of which only one was also detected in FBS-EVs, shown in Table 21. In 

total, 44% of miRNAs expressed in cells were also found in the EVs.  

 

Table 21: Uniquely expressed miRNAs in EVs 

List of the 12 uniquely expressed miRNAs and their corresponding EV source. 

 

 

A total of 61 miRNAs were differentially expressed between normoxic cells and normoxic EVs 

(59 had a higher expression in EVs and 2 in cells). This compares to only 2 differentially 

expressed miRNAs between normoxic EVs and hypoxic EVs and 6 between normoxic EVs 

and normoxic/primed EVs, as shown in Figure 58A-C. The adjusted p-values were 

transformed using the negative log for visual representation on the volcano plot. A chart of the 

differentially expressed miRNAs and their corresponding adjusted p-value is shown in Table 

22. The differentially expressed miRNAs were then cross-checked with miRNAs expressed in 

FBS-EVs to confirm that they were of human and not bovine origin. When all EV conditions 

are compared to the FBS control only one miRNA (miR-215-5p), has a statistically higher 
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expression in FBS-EVs compared to hypoxic EVs. Interestingly, miR-215-5p was also found 

to be downregulated in hypoxic EVs compared to normoxic EVs. With the exception of miR-

193a-5p, which had an average normalised read count of 290, all other differentially expressed 

miRNAs between EV conditions had a low normalised read count from the RNA sequencing 

data (mean 21.4; SD ± 17.2). 
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Figure 58: Volcano plot of differentially expressed miRNAs 

(A) There was increased expression in 61 miRNAs (shown in red) from the normoxic EVs compared to normoxic cells. Two miRNAs had a higher 

expression in the normoxic cells (miR-127-3p, miR-340-5p) (B) There was an increased expression in 2 miRNAs (miR-192-5p, miR-215-5p) from the 

normoxic EVs compared to the hypoxic EVs. (C) There was an increased expression in 6 miRNAs from the normoxic/primed EVs compared to the 

normoxic EVs. Values above the horizontal dotted line on the y-axis are statistically significant. Values to the left of the vertical dotted line on the x-

axis have a decrease in Log2 (FC); values to the right of this line have an increase in Log2 (FC). The red dots signify the miRNA’s that reached 

statistical significance as being differentially expressed.
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Table 22: Differentially Expression miRNAs 

List of differentially expressed miRNAs, their adjusted p-values, and their expression. There were 6 

differentially expressed miRNAs between normoxic EVs and normoxic/primed EVs; 2 between 

normoxic EVs and hypoxic EVs, and 61 between normoxic cells and normoxic EVs, although only a 

snapshot of the first ten miRNAs with the lowest adjusted p-value, are shown in the table. A full list of 

the 61 differentially expressed miRNAs is shown in Supplementary Table 2. 

 

 

6.2.5 Sequence conservation FBS-EV miRNA  

The FBS-EV RNA (n=1) was mapped against both the human and bovine miRNAs databases 

to compare mapping rates/expression profiles between samples. The purpose of this was to 

give an indication of sequence conservation. Results show a high sequence conservation 

between human and bovine miRNAs. The similarity between mapping rates on the 20 most 

expressed miRNAs is shown in Figure 59. Statistical analysis was not carried out on samples 

as only one FBS-EV RNA sample was sequenced. 
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Figure 59: Sequence conservation between human and bovine miRNAs  

FBS-EV RNA was sequenced and mapped to both the human and bovine miRNA databases to give an 

indication of sequence conservation. The mapping rate of FBS-EV samples was similar for both 

databases. The top 20 miRNAs are shown on the x-axis and the normalised read count shown on the y-

axis. 

 

MiR-21-5p was the most abundant miRNA expressed across all samples and conditions and 

accounts for 30.3% (±2.26 SD) of the normalised counts in cell samples, 21.7% (±2.6 SD) in 

EVs (across 3 conditions) and 26.2% FBS-EVs. In total, the top 10 miRNA readings, shown 

in Figure 60A, made of 64% of the total miRNA expression in cells, 54% (±4.8) in EVs (across 

3 conditions), and 60% in FBS-EVs. A comparison of the normalised gene expression in the 

most commonly detected miRNAs is shown in Figure 60B. Across all samples and conditions, 

the top 100 miRNAs accounted for 95-97% of the detectable miRNA sequences, therefore, the 

remaining 3-5% accounted for low abundance miRNAs. 
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Figure 60: Profile of commonly expressed miRNAs in cells and EVs 

A. Venn diagrams displaying the 10 most expressed miRNAs in normoxic cells, normoxic EVs, 

hypoxic EVs, and normoxic/primed EVs. B. Bar chart comparing the expression of some of the 

most expressed miRNAs across samples and conditions. The miRNAs are presented on the x-

axis and the mean normalised read count on the y-axis. There were no statistical differences 

between the samples for the miRNAs presented here. 
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6.2.6 Target prediction of differentially expressed miRNAs 

Pathway enrichment analysis was carried out on miRNet using the KEGG database. Analysis 

was carried out on the five upregulated miRNAs in the normoxic/primed EVs (let-7f-1-3p, 

miR-139-5p, mir-140-5p, miR-193a-5p, miR-214-5p) and the two downregulated miRNAs in 

hypoxic EVs compared to normoxic EVs (miR-215-5p and miR-192-5p). For the 5 upregulated 

miRNAs in normoxic/primed EVs, miRNet generated a network comprising of 555 nodes 

(genes: 550; miRNA: 5) and 565 edges, shown in Figure 61A. For the two downregulated 

miRNAs in hypoxic EVs, 1011 nodes were generated (genes: 1009; miRNA: 2) and 1749 

edges, shown in Figure 61B.  

 

For the upregulated miRNAs in the normoxic/primed EVs, miR-214-5p had the most potential 

gene targets at 188. In the normoxic EVs, miR-192-5p had 994 potential gene targets and miR-

215-5p had 755. The analysis of the upregulated normoxic/primed EVs showed that cancer 

pathways contained the most hits and the most significance overall (p=2x10-14). In all, the 

analysis generated many lists for cancer in the upregulated normoxic/primed EV-miRNAs, 

shown in the top 20 enriched pathways (Table 23A). For the two downregulated miRNAs in 

hypoxic EVs (miR-215-5p and miR-192-5p), the enriched pathways were associated with cell 

cycle genes and the Fanconi anaemia pathway. These were the only two pathways that had an 

adjusted p-value of <0.1 from the KEGG enrichment analysis (Table 23B). 

 

To further examine the biological targets of the upregulated miRNAs, the GO: Biological 

Process database was applied to the dataset [458,459]. This database was used to support the 

data from the KEGG database and gain insight into what processes the miRNAs might engage 

in when inside their target cells. Analysis of the miRNAs on the GO: Molecular Function 

database would also have provided insight into the miRNA functions, and this will be explored 



  Chapter 6 

 
223 

 

at a later stage. The most significantly enriched pathway from the upregulated 

normoxic/primed EV-miRNAs was the ‘negative regulation of cell proliferation’ pathway 

followed by ‘intracellular protein transport’. The downregulated miRNAs from the hypoxic 

EVs were found to be associated with cell cycle processes such as mitosis, with all the top 20 

pathways connected to cell cycle regulation.  

 

Further bioinformatic target prediction was performed on the five upregulated miRNAs in the 

normoxic/primed EVs (let-7f-1-3p, miR-139-5p, miR-140-5p, miR-193a-5p, miR-214-5p) to 

identify if they directly target secretome components. Three target prediction tools (miRNet 

[230,231], miRDB [232,233] and TargetScan (v.7.2) [234]) were chosen because they offered 

three different computational approaches to identify gene targets of miRNAs. The list of 

positively identified gene targets was then cross checked with the identified secretome 

components listed in Table 17. The normoxic/primed EVs were chosen for this analysis as they 

showed the most change from the protein and miRNA analysis.  

 

All three web-based programmes identified miR-140-5p to directly target VEGFA. VEGFA 

protein was positively identified in the cargo of all EVs, but there was no statistical difference 

in VEGFA protein expression between the normoxic and normoxic/primed EVs. Other 

secretome components were directly targeted by the five upregulated miRNA but only 

identified in one out of three bioinformatic tools, therefore is a probability that these gene 

targets are inaccurate. These included: 

• MiR-193a-5p targeted STAMBP and CSF-1 

• MiR-140-5p targeted CSF-1  

• Let-7f-1-3p targeted TSLP, HGF, IL6, CXCL11, VEGFA, IL15RA and CD40. 
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Many other gene targets were identified using these bioinformatic tools, but none included 

previously identified secretome components in the EV cargo. However, to further establish if 

the miRNAs in the EVs had targeted secretome components, gene prediction analysis was 

carried out on the top 5 miRNAs (miR-21-5p, miR-100-5p, let-7i-5p, miR-143-3p, let-7a-5p) 

expressed in the EVs, which were common across all conditions. Two out of three 

bioinformatic tools identified that miR-21-5p targeted CCL20 and let-7i-5p targeted IL-13. 

Both of these proteins had a higher expression in the normoxic/primed EVs. 

 

Other gene targets which directly targeted secretome components in the EVs were identified 

but they were only present in one out of three bioinformatic tools. Therefore, there is a reduced 

confidence that this is a genuine connection. Other than the aforementioned gene targets, there 

was no further direct shared role between the proteins and the miRNAs in the EVs. 
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Figure 61: Predicted gene targets in differentially expressed miRNAs using the KEGG database 

Visual representation of the gene targets from miRNet. The miRNAs are identified by a blue box and the gene targets by a pink dot. (A) Image represents gene 

target from five upregulated miRNAs in normoxic/primed EVs vs normoxic EVs. Cancer pathways showed the most ‘hits’ in this analysis and these are 
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highlighted in yellow. (B) Close-up view of the gene targets associated with cancer pathways from the upregulated miRNAs. (C). Image of the gene targets 

from the two downregulated miRNAs in the hypoxic EVs vs the normoxic EVs. Cell cycle pathways and the Fanconi anaemia pathway contained the most 

statistically significant targets, and these have been highlighted yellow and green, respectively.  
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Table 23: KEGG and GO: Biological Process enrichment analysis 

List of predicted enriched pathways from the (A) KEGG database and the (B) GO: Biological Process database. Table shows the upregulated miRNAs in 

normoxic/primed EVs vs normoxic EVs and the downregulated miRNAs in the hypoxic EVs vs the normoxic EVs. The enriched pathway, hits, p-value, and 

adjusted p-value are shown in the columns. 
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6.2.7 Validation of RNA sequencing data 

PCR was carried out to validate the results of the RNA sequencing study. MiRNAs of interest 

(n=10) and reference miRNAs (n=4) were identified and are provided in 

 

Table 12, along with their target sequence. MiR-21-5p, let-7i-5p, miR-146a-5p, miR-181a-5p 

were chosen based on their reported immunosuppressive properties which may have relevance 

to RA. MiR-155-5p, miR-215-5p, let-7f-1-3p, miR-139-5p, miR-214-5p, miR-192-5p were 

chosen because these were differentially expressed between EV conditions from the RNA 

sequencing data. Reference genes/miRNAs were selected based on their high and consistent 

expression across all samples and conditions from the RNA sequencing data.  

 

6.2.8 RNA concentration and size profile 

Prior to carrying out RT-qPCR, all samples were analysed for their RNA concentration and 

quality using the Agilent 4200 (G2991AA) TapeStation (Agilent Technologies, Santa Clara, 

CA, USA) described in Section 2.9.4. RNA sample concentrations were obtained, shown in 

Table 24. Samples were then normalised to the lowest Ct value of 64.6 pg/µl and then carried 

forward for reverse transcription. 
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Table 24: Summary of RNA concentrations 

The concentration of isolated RNA from the cell and EV samples was measured on the Agilent 4200 

(G2991AA) TapeStation. Samples were normalised to the lowest concentration of 64.6pg/μl before 

being reverse transcribed. 

 

The Agilent 4200 TapeStation also generated a size profile of the RNA length for cell and EV 

samples. All EV-RNA samples had a size distribution peak at 25nt with the exception of Donor 

4 hypoxic EVs which deviated from this trend. A size profile peak around 25nt means that the 

isolated RNA comprises of short nucleotide structures, similar to the 21-25nt size profile of 

miRNAs. Donor 4 hypoxic EVs displayed a peak 200-500nt which indicates the presence of 

larger RNA structures in this sample (Figure 62A). 

 

Cellular RNA samples showed two clear peaks at the 28S and 18S mark, shown in Figure 62B. 

RNA samples were run through a gel and a RIN was generated as an estimate of cellular RNA 

purity. The generated RIN represents the 28s:18s rRNA ratio and all cellular RNA samples had 

a RIN >9.3 indicating a high RNA quality (Figure 62C).
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Figure 62: Comparison of cell and EV size distribution  

A. Electropherogram displaying the size distribution of EV samples. Sample Intensity in Normalised Fluorescent Units [FU] is shown on the y-axis and 

nucleotide size [nt] on the x-axis. All EV samples showed one strong peak around the 25nt mark except for Donor 4 hypoxic EVs which showed two peaks, one 

at 25nt and one ~200-500nt. B. Electrophoretogram displaying the size distribution of cellular RNA samples. Clear peaks were obtained at the 28S and 18S 

mark. C. Cellular RNA was run through a gel. Image displays two clear size bands at the 28S and 18S mark. All cellular RNA samples had a RIN value >9.3. 
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6.2.9 Calibration of PCR data 

RT-qPCR was carried out as described in Section 2.9.9 and 2.9.10. UniSp3 served as the 

inter-plate calibrator for the reactions. This was positively detected in each sample on the 

plate with an average Ct value of 18.8 (±0.15 SD). All samples were normalised to UniSp3 

prior to data analysis of Ct values. UniSp6 was spiked into each sample before reverse 

transcription to monitor for cDNA synthesis and the presence of inhibitors in the reaction. 

The average Ct value for UniSp6 in all samples was 17.1 (±0.26 SD). There was a slight 

variation in hypoxic EV samples for UniSp6, with a Ct range of 16.9-17.5 but overall 

UniSp6 expression was consistent across samples (Figure 63). 

 

Data from the multicomponent plots, provided in Supplementary Figure 6, show a 

consistent fluorescent signal in ROX, a passive fluorescent dye, indicating that there was 

little evaporation or bubbles affecting the reaction. 

 

Figure 63: UniSp3 and UniSp6 

UniSp3 was used as the inter-plate calibrator. Line graph displays Ct values on the y-axis and 

samples on the x-axis. UniSp3 (orange line) had an average Ct value of 18.8 (± 0.15 SD). UniSp6 
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(blue line) was spiked into the samples to assess for the quality of cDNA synthesis and presence of 

possible PCR inhibitors in the reaction. It had an average Ct of 17.1 (± 0.26 SD). 

 

6.2.10 Reference gene selection 

The reference/normaliser genes for PCR validation were chosen based on their high 

expression and similar read counts from the RNA sequencing data, which indicates stable 

gene expression. The resulting four miRNAs: miR-221-3p, miR-100-5p, miR-24-3p and 

miR-10a-5p, were chosen as reference genes and tested for in all samples via PCR. 

 

miR-221-3p was selected as a single reference gene, as this was the only miRNA to be 

present in all samples and conditions from the RT-qPCR (Figure 64A). MiR-10a-5p was 

under the detection limit of the instrument for all EV samples and therefore a Ct value was 

not generated, making it unistuiable for use as a reference gene. However, only one pair of 

primers was trialled for miR-10a-5p. Likewise, miR-100-5p and miR-24-3p were under the 

dectecion limit in Donor 1 Hypoxic EVs and a Ct value was not generated shown in Figure 

64B-C, thereby also making these miRNAs unsuitable for use as a reference gene. As a 

result, miR-221-3p was the only reference miRNA that could be used for normalisation. 

All reference genes had variable Ct vales shown in the heatmaps in Figure 64. It is clear 

from the heat maps that there is a higher expresion of all reference genes in the cellular 

samples from each donor compared to the EV samples despite normalisation of RNA 

concentraiton before reverse transcription. This may indicate that there is a higher amount 

of miRNA per unit of total RNA in cells compared to EVs. 
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Figure 64D shows the amplification plot of miR-221-3p for all cell and EV samples. The 

resulting data shows that the FBS-EVs, which were run as a control for contamination, had 

the lowest amplification and therefore the highest Ct value of all samples tested (Ct 36.6) 

(Figure 64D). The amplification plot displays the broad range of detected signals for the 

samples tested with the cell samples along with normoxic EVs from Donor 1 having the 

lowest Ct values. 
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Figure 64: Heatmap and amplification efficiency of reference genes 

Heatmaps displaying the Ct values of miR-221-3p (A), miR-100-3p (B) and miR-24-3p (C). The 

lower Ct values are shown in red and the higher Ct values are shown in green. MiR-100-3p and 

miR-24-3p were undetected in Donor 1 hypoxic EVs, shown by missing values. (D) The 

amplification plot of miR-221-3p was compared between samples and conditions. Delta Rn values 

are shown on the y-axis and cycle number on the x-axis. There was a variable amplification of all 

samples with FBS-EVs showing the poorest amplification of miR-221-3p. 
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6.2.11 MiR-21-5p and miR-24-3p statistically higher expression in UCMSCs 

PCR was caried out on a selection of miRNAs listed in Table 12. After miRNAs were 

normalised to miR-221-3p, the relative miRNA expression was calculated, and compared 

between samples and conditions. The normoxic UCMSCs had a statistically higher 

expression of miR-21-5p (p=0.023) and miR-24-3p (p=0.014) compared to the normoxic 

EVs (Figure 65A). There was no further statistical difference between the cells and EVs 

for the other miRNAs tested (Figure 65B). MiR-100-5p contains a numerical outlier for 

Donor 4 EV normoxia, where this sample is on average 3.4 times higher than the other 

three samples. On removal of this sample, the UCMSCs have a statistically higher 

expression of miR-100-5p compared to normoxic EVs (p=0.002), however, this sample 

was not removed from the final data analysis as it still may be a biologically genuine 

expression. MiR-139-5p was only detected in one of four cell donors compared to two of 

the four EV donors, therefore this miRNA did not generate enough data points for further 

statistical analysis. MiR-10a-5p was detected in normoxic cells (average Ct 34.6) but did 

not appear in EV samples showing that this miRNA either was not transferred from cells 

to EVs or had a very low expression, below the limit of detection of this assay. 
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Figure 65: Comparison of relative miRNA expression between cells and EVs  

A. PCR analysis revealed that UCMSC (cell) samples had a statistically higher expression of miR-21-5p (p<0.05) and miR-24-5p (p<0.05) compared to EVs 

from the same condition. B. There were no statistical differences between cells and EVs with respect to the relative expression of miR-100-5p, let-7f-1-3p, miR-

146a-5p, miR-181a-5p and miR-155-5p (p>0.05). Relative miRNA expression in shown on the y-axis and miRNAs on the x-axis. 
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6.2.12 EV-miRNAs unchanged between conditions 

The expression of miR-21-5p, miR-214-5p, let-7i-3p, miR-24-5p, miR-100-5p, let-7f-1-3p, 

miR-146a-5p, miR-181a-5p, miR-139-5p, miR-192-5p and miR-155-5p was analysed in 

the normoxic, hypoxic and normoxic/primed EVs. There were no statistical differences in 

the expression of any of the above miRNAs between normoxic and hypoxic EVs Figure 

66A) and between normoxic and normoxic/primed EVs (p>0.05) (Figure 66B). MiR-155-

5p was not detected in any hypoxic EV sample so this miRNA was excluded from further 

comparisons with this group. Likewise, Let-7f-1-5p was only detected in one hypoxic EV 

donor with a high Ct of 37.6, so this sample was also excluded from the analysis. 

 

All cell and EV samples were highly heterogeneous seen by large error bars on the bar 

charts (Figure 66). The top 3 expressed miRNAs in the normoxic EV group included miR-

21-5p, miR-146a-5p and miR-181a-5p. Hypoxic EVs also contained a high expression of 

miR-21-5p and miR-146a-5p, along with miR-100-5p. Within the normoxic/primed EV 

group, miR-21-5p, let-7i-5p and miR-24-5p showed the highest relative expression. There 

were no statistical differences between these groups. 
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Figure 66: Comparison of miRNA expression in EVs from different conditions 

There were no statistical differences in miRNA expression between (A) normoxic and hypoxic EVs and between (B) normoxic and normoxic/primed EVs 

(p>0.05). Relative miRNA expression in shown on the y-axis and miRNAs on the x-axis. 
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6.2.13 Identification of miR-21-5p in FBS-EVs 

FBS-EVs (n=1) were run in triplicate on PCR to control for potential contamination in the 

reaction. The FBS-EVs were probed with the same miRNA profile as the cell and EV 

samples. Of the three repeated PCR runs, two out of three runs generated undetermined Ct 

values for the miRNA panel, indicating little presence of these miRNAs in the FBS-EVs. 

MiR-21-5p was the only miRNA to be detected in two FBS-EV samples. Its relative 

miRNA expression was statistically lower than the cell samples (p<0.05) but there was no 

statistical difference between the FBS-EVs and the normoxic, hypoxic and 

normoxic/primed EVs, indicating that the source of miR-21-5p could be of bovine nature 

in the EV samples (Figure 67A). There was some variability in the expression of miR-21-

5p amongst the donors seen by the large error bars although this could not be linked to one 

specific donor. 

 

The expression of miR-21-5p could be considered as a genuine expression in the FBS-EVs 

given the smooth, single peak seen on the melt curve analysis (Figure 67B). The two peaks 

seen for miR-21-5p in the Donor 4 hypoxic EV sample indicate the SYBR green has bound 

non-specifically to some products in the reaction. As the second peak has a higher 

temperature melting point, it is possible that it contains genomic DNA contamination, and 

this sample Ct value must be considered with caution. 
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Figure 67: Expression of miR-21-5p 

A. Bar chart shows the relative miR-21-5p expression on the y-axis and samples on the x-axis. MiR-

21-5p was positively expressed in FBS-EVs. There was a statistically higher relative expression of 

miR-21-5p in cell samples (p=0.03), but no statistical difference between FBS-EVs and other EV 

samples. B. Melt curve analysis revealed a single peak for miR-21-5p in FBS-EVs. A double peak 

was present for Donor 4 hypoxic EVs indicating potential contamination. Temperature is displayed 

on the x-axis and Derivative Reporter signal on the y-axis.  
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6.3 Discussion 

This chapter looked at the miRNA profile of EVs obtained through NGS and PCR. To our 

knowledge, the RNA from UCMSC-EVs has never been sequenced for small RNAs in 

hypoxia and pro-inflammatory primed conditions, so the data obtained in this chapter adds 

novelty to this research and a greater understanding of miRNAs in UCMSC-EVs.  

 

This chapter firstly looked to control for the possibility of non-vesicular RNAs in the EV 

preparation. The EV suspensions were treated with proteinase K and RNase A to digest any 

protein complexes and degrade any non-vesicular RNAs. Results showed that there was an 

87.7% decrease in RNA concentration after treatment of Proteinase K and RNAase which 

shows removal of non-vesicular miRNAs (Section 6.2.1.1). This is consistent with another 

study that showed that 15% of miRNAs in plasma were associated with vesicle structures 

[226]. This proteinase K/RNase A digestion step was performed on all EV samples prior to 

RNA extraction to ensure a high confidence that the miRNAs are vesicle associated. 

 

The first objective of this chapter was to identify differences in miRNA expression between 

normoxic cells and their EVs through RNA sequencing. An overview of the data was 

achieved through generating a PCA plot and this showed that there was separate grouping 

of EVs and cells, which indicates that the EVs have a different miRNA profile to their 

parent cells (Figure 56B). Additionally, large shifts in miRNA expression were not 

identified as the different EV culture conditions did not cluster together on the PCA plot; 

this indicates that the different culture conditions did not have a large or unilateral impact. 

This polarised EV-miRNA profile has been found in other studies of MSC-EVs [460]. It 
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showed that the EVs were highly heterogeneous and had high donor-to-donor variation in 

terms of their miRNA profile. Additionally, the RNA content of EVs is dependent on their 

biogenesis pathway, and the condition of the cells upon EV isolation, which leads to further 

variability in the EV-RNA profile [227,461]. This heterogeneity is problematic for the 

potential of EVs to be used a clinical treatment. This is because variability in the 

miRNAome makes it difficult to predict their EV functions in vivo, and it may require all 

isolated EV preparations to be analysed using an omics approach before use, which is not 

feasible or cost-effective for most research groups. Despite this, there were some 

statistically significant differences between the cell and EV samples, and between the EV 

conditions. 

 

There were 61 differentially expressed miRNAs between cells and EVs; 59 miRNAs were 

expressed at higher levels in EVs compared to cells, and two miRNAs were expressed at 

higher levels in cells compared to EVs. This indicates that specific miRNAs were 

selectively packaged into EVs, a finding commonly reported in the research 

[134,188,448,460]. Although, this could be the result of differences in miRNA enrichment 

in cells compared EVs. The low abundance miRNAs may be not as easily detectable in the 

cells because they have a large amount of high abundance miRNAs. Nevertheless, this 

study would have benefitted from pathway analysis to see if these 59 enriched miRNAs in 

EVs were associated. Identification of a shared pathway is important to predict the possible 

differences in functioning between cells and EVs. This pathway analysis was trialled on 

the 59 enriched miRNAs in EVs, but the input data generated too many ‘hits’ and required 

filtering, a process that introduces bias into the results, therefore, it was avoided for this 

study but should be considered for further investigation.  
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It has been reported that different culture environments such as hypoxia [462,463] and 

TNF-α priming [464] can alter the RNA content of EVs and equally their parent cells. 

Therefore, another objective of this chapter was to identify differences in miRNA 

expression between EVs from normoxic, hypoxic and normoxic/primed conditions through 

RNA sequencing. The identified miRNA profiles have been researched with an emphasis 

on anti-inflammatory properties for the treatment of RA. 

 

Hypoxic EVs showed a downregulation of two miRNAs: miR-215-5p and miR-192-5p. 

Both miR-215 and miR-192 are located on the same chromosome and have the same seed 

sequence [465]. Likewise, both have been linked to a reduction in cell proliferation [466]. 

From reviewing the literature, miR-215-5p shows little immunosuppressive potential and 

most of the research centres on its increased expression in cancers [465,467], and its 

promotion of tumour progression [468]. Similarly, miR-192-5p has been linked to lung 

cancer [186] and hepatocellular carcinoma cancer stem cell development [469].  

 

In terms of the immunoregulatory potential of miR-192, it was found in low levels in the 

blood of children with asthma but, when upregulated, it was able to block the activation of 

follicular helper T (Tfh) cells by targeting CXCR5 [470]. Tfh cells are present in many 

autoimmune diseases such as RA and they play a role in stimulating B-cells to produce 

antibodies [470]. Through blocking the actions of Tfh cells, miR-192 may be able to 

dampen a heightened immune response. Research also shows that transfection of miR-192 

into airway smooth muscle cells decreased MMP-16, IL-4, IL-5, IL-13, iNOS and COX-2 

expression is asthmatic mice [471]. MiR-192 also targets and silences macrophage 

inflammatory peptide (MIP)-2, where it has been identified as a possible therapy for active 

ulcerative colitis patients [472]. However, the anti-inflammatory role of miR-192 requires 
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further investigation as another research group found that hepatocyte-derived exosomal 

miR-192 activated M1 macrophages which also correlated with hepatic inflammation and 

an increase in IL-6 and TNF-α [473]. Furthermore, high levels of miR-192 are associated 

with unfavourable outcomes in stroke as it is positively correlated with systemic 

inflammatory response [474]. The discrepancies in the literature add doubt as to whether 

miR-192 is pro- or anti-inflammatory. In all, there is little difference between hypoxic and 

normoxic EVs, and neither show a significantly differing miRNA profile that would 

distinguish them as being more potent immunosuppressors.  

 

In contrast, there were more differences identified between the normoxic and 

normoxic/primed EVs. Specifically, normoxic/primed EVs showed an upregulation of let-

7f-1-3p, miR-139-5p, miR-140-5p, miR-193a-5p and miR-214-5p, and a downregulation 

of miR-3179 compared to normoxic EVs. One study compared IFN-γ primed UCMSCs 

with non-primed UCMSCs using an miRNA array and found 8 differentially expressed 

miRNAs, which is similar to the findings of this study [475]. 

 

When the differentially expressed miRNAs are considered individually, their functions in 

vivo are diverse, and many are understudied with regards to immune modulation. There is 

little research on the upregulated let-7f-1-3p but its forward strand let-7f-5p has some anti-

inflammatory properties associated with the silencing of Nod-like receptor pyrin domain-

containing protein 3 (NLRP3) inflammasome, which alleviated inflammation in a murine 

SLE model [476]. MiR-139-5p was also upregulated in normoxic/primed EVs compared 

to normoxic EVs, which is not surprising as other studies have shown that this miRNA can 

be upregulated and exclusively shuttled into EVs upon pro-inflammatory signalling 
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[477,478]. Many studies have focused on the anti-oncogenic properties of miR-139-5p in 

gastric cancer [479,480] or it role in osteogenesis [481,482] although findings are mixed 

with some research showing that is inhibits osteogenic differentiation [27] and some 

showing that it positively regulates osteogenic differentiation in BMMSCs [28]. In terms 

of miR-139-5p role in inflammation, overexpression of miR-139-5p was found to inhibit 

MMP9, MMP7, cell proliferation, and pro-inflammatory cytokines (IL-1β, IL-6, TNF-α) 

in colorectal cancer cell lines [483]. Its mechanism of action involved the suppression of 

the NF-κB pathway; a signalling pathway which is known to boost the production of pro-

inflammatory cytokines [483,484]. Contrary to this, Katsumi et al. [485] showed that high 

expression of lymphocyte derived miR-139-5p inhibited cFOS, a proto-oncogene, which 

led to an increase in the production of TNF-α through the NF-κB pathway in hepatocyte-

derived carcinoma cells. Again, its mechanism of action was targeting the NF-κB pathway, 

but the outcome was different to the aforementioned Zhu et al. [483] study. 

 

Other upregulated miRNAs in normoxic/primed EVs were miR-193a-5p, miR-140-5p and 

miR-214-5p. MiR-193a-5p is a commonly detected miRNA in MSCs [486] but few studies 

have looked at its role in inflammation. One study found that miR-193a-3p improved 

intestinal inflammation through targeting the NF-κB pathway [487], but besides this, it’s 

function in inflammation is relatively unknown. MiR-140-5p is commonly enriched in 

undifferentiated MSCs and has roles in suppressing osteogenesis [488] and promoting 

chondrogenesis [489,490]. One study, transfected miR-140-5p into synovial MSCs and 

their exosomes were applied to a rat model of osteoarthritis (OA) [490]. Those that received 

miR-140-5p transfected exosomes had milder OA symptoms and a thicker 

cartilage/collagen type II matrix than the exosome group without miR-140-5p [490]. This 

showed that miR-140-5p slowed down the progression of OA and prevented a severe OA 
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phenotype. Lastly, miR-214 is commonly secreted by cancer cells and is associated with 

cancer progression through targeting of the tumour suppresser gene PTEN [491,492]. 

Although, when delivered to CD4+ T-cells, miR-214 promoted Treg expansion and the 

production of IL-10, and through this immune suppressive role, it promoted tumour cell 

growth [492]. The downregulation of miR-214 in human umbilical vein endothelial cells 

(HUVECs) was associated with an increase in vascular endothelial cell apoptosis and 

inflammatory factors (TNF-α, IL-1β, IL-6, IL-18) suggesting that miR-214 may be a 

suppressor of vascular inflammation [493]. Similarly, its anti-inflammatory role was 

supported by a study of murine kidney disease which showed that the upregulation of miR-

214 inhibited TLR4 expression and reduced inflammation [494]. However, few studies 

have looked at the immunosuppressive role of miR-214-5p in MSCs. 

 

One area of concern when looking at the profile of miRNAs from different EV conditions 

is the range of different functions they have, and a lot are associated with different cancer 

pathways. Other studies that looked at miRNAs in UCMSCs have also a found connection 

to cancer and endocytosis, similar to the findings of this study [495]. This means the EVs 

may target other in vivo functions and not be specific to immune modulation. To get a 

clearer overview of the collective functions of the differentially expressed miRNAs, 

pathway enrichment analysis was trialled on the 5 upregulated miRNAs in the 

normoxic/primed EVs and the 2 downregulated miRNAs in the hypoxic EVs using the 

miRNet, a web-based tool designed to create network-based visualisations [230]. This 

analysis was done on an exploratory basis and input from a researcher with biostatistics 

experience is required for validation. Both KEGG and GO: Biological Process databases 

were used. Findings from this analysis support the role of the normoxic/primed miRNAs 

in cancer pathways, and as the upregulated miRNAs were also enriched in the ‘negative 
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regulation of cell proliferation’ pathway, this suggest that the normoxic/primed EVs may 

be inhibiting cell growth more than the normoxic EVs. Interestingly, angiogenesis and 

vasculature development were associated with the normoxic/primed EVs, this was 

expected to be seen in the hypoxic EVs due to strong research connections between hypoxia 

and angiogenesis [437]. The two downregulated miRNAs (miR-215-5p, miR-192-5p) in 

hypoxic EVs were associated with cell cycle processes, suggesting the normoxic EVs may 

be stronger mediators of cell growth (Figure 61 and Table 23).  

 

In all, the data generated from the GO: Biological Process database strongly supports the 

analysis from the KEGG database and may suggest that the upregulated miRNAs in the 

normoxic EVs better support cell division and regeneration. Of relevance to this study was 

the potential identification of miRNAs with anti-inflammatory properties. Enrichment 

analysis from both databases did not find many ‘hits’ to immune modulatory functions from 

the differentially expressed miRNAs. This does not mean that they are not anti-

inflammatory but rather that it is not their main function. Additionally, it is recognised that 

this is just a basic pathway analysis involving a few miRNAs and a more robust analysis 

of the whole RNA sequencing data set is required. 

 

Further target prediction was carried out using three bioinformatic tools: miRNet 

[230,231], miRDB [232,233] and TargetScan (v.7.2) [234]. These three target prediction 

tools offer three different computational approaches to identify gene targets of miRNAs. 

MiRNet uses knowledge from 11 different databases to generate target predictions 

[230,231], miRDB is a bioinformatics tool that predicts miRNA targets using MiRTarget2 

and PANTHER databases. The miRDB target prediction algorithm includes 3.5 million 
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predicted targets by 7000 miRNAs [233,496]. Lastly, TargetScan predicts miRNA gene 

targets by identifying 7-8nt sites complimentary to the seed region of the miRNAs [234]. 

All three web-based programmes identified miR-140-5p to directly target VEGFA, so there 

is a high probability that this prediction is accurate. VEGFA was found in the protein cargo 

of all EVs, but there was no statistical difference in VEGFA protein expression between 

the normoxic and normoxic/primed EVs. As miR-140-5p is upregulated in 

normoxic/primed EVs and targets VEGFA, this may mean that these EVs counteract the 

production of this protein in their target cell and are overall more anti-angiogenic compared 

to the normoxic EVs. Indeed, previous research shows that miR-140-5p is a genuine target 

of VEGFA and plays a role in inhibiting angiogenesis [497,498]. Additionally, from the 

analysis of the miRNAs with the highest expression in all EVs, it was identified that miR-

21-5p targeted CCL20 and let-7i-5p targeted IL-13. This is further confirmed in the 

literature [499,500]. While miR-21-5p acts to silence the translation of CCL20, the higher 

protein expression of CCL20 in normoxic/primed EVs may promote chemotaxis more than 

the other EV conditions. Further analysis is required to establish if the expression of miR-

21-5p is high enough to completely reduce the chemotactic properties of target cells 

through targeting CCL20. IL-13 gene was also a direct target of let-7i-5p. IL-13 has anti-

inflammatory functions and the silencing of this gene by let-7i-5p would reduce the anti-

inflammatory properties of target cells. However, IL-13 is present in higher amounts in the 

primed EVs, which may balance out the silencing effects. 

 

Another area of concern is the relatively low read count of the differentially expressed 

miRNAs from the RNA sequencing data, with the exception of miR-193a-5p. This 

questions whether the expression of these miRNAs is high enough to be biologically 

significant in vivo. Even if small changes are statistically significant they may not be worth 
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investigating due to their low expression [501]. For this reason, it is worthwhile looking 

into the functions of the three most expressed miRNAs (miR-21-5p, miR-100-5p and let-

7i-5p) which were common across all samples and conditions.  

 

MiR-21-5p has a strong association with cancer and immune cells, but it has also been 

found in UCMSCs and UCMSC-EVs [445], although its exact functions have yet to be 

discovered. Most of the studies into miR-21-5p involve its overexpression in cancer by 

counteracting tumour suppression genes [502,503]. It is also associated with 

neovascularisation, angiogenesis, cell survival and osteogenic differentiation [188,504–

507]. But, miR-21-5p’s role in inflammation is more complex [508]. Some studies show 

that it can stimulate the immune system. For example, miR-21-5p was found to enhance 

GM-CSF, a cytokine which supports eosinophil survival [509]. It was also found to 

promote T-cell activation and proliferation by targeting APK/ERK and MAPK/JNK 

signalling pathways and by promoting activator protein 1 and IL-2 expression [510].  

 

Other studies show that miR-21-5p may have anti-inflammatory properties by inhibiting 

IL-12 which reduces Th1 cells and promotes Th2 cells, which are strong contributors in 

autoimmune disease [508]. It can also positively regulate FoxP3 expression in Tregs cells 

[511] and MSC-EV derived miR-21-5p reduces CCR7 expression on dendritic cells [460]. 

CCR7 is increased in the synovial tissue in RA and contributes towards the pro-

inflammatory environment [512], therefore the downregulation of CCR7 by MSC-EVs is 

a positive step towards identifying MSC-EV immunosuppressive abilities. MiR-21-5p was 

found to be downregulated in RA patients compared to healthy controls, which may explain 

why there was a low level of Tregs and a high level of Th17 in RA patients, this suggests 
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that miR-21-5p may be contributing to Th17/Treg imbalance, a common feature of RA 

pathogenesis [513]. However, a separate study on the role of miR-21-5p in RA showed that 

when it was upregulated by IL-34 and Stat3 activation, it promoted the survival of fibroblast 

like synoviocytes which infiltrate the joint and cause inflammation [514]. Therefore, there 

is some disparity over the role of miR-21-5p in RA disease progression. This diversity in 

functions of miR-21-5p could be due to its involvement in multiple signalling pathways 

making it difficult to evaluate if it has a potential immunosuppressive involvement in 

UCMSC-EVs. 

 

The second most expressed miRNA in cells and EVs was miR-100-5p. This miRNA is 

enriched in endothelial cells and was found to reduce vascular inflammation by suppressing 

endothelial cell adhesion molecules which improves leukocyte–endothelial interactions 

[515]. Its expression is also associated with reduced inflammatory cell count in patients 

with cardiovascular disease [515] and the suppression of pro-inflammatory cytokines (IL-

6, IL-8, MMP1, MMP3, MMP9, MMP13) in temporomandibular joint OA [516].  

 

The third most expressed miRNA in cells and EVs was let-7i-5p, which is cited as having 

anti-inflammatory properties in many studies. Xiang et al. [185] showed that Let-7i could 

reduce inflammation and protect human brain microvascular endothelial cells in an oxygen-

glucose deprivation model. Let-7i carried out it’s anti-inflammatory effects by silencing 

the expression of TLR4 mRNA, MMP9 and iNOS [185]. Let-7i was found to be 

downregulated in leukocytes of patients with ischaemic stroke and the lower level of let-7i 

was correlated with stroke severity and an increase in MMP9 levels [517]. Pathway analysis 

revealed that Let 7i targeted CD86, HMGB1b and CXCL8 genes, all three of which have a 

role in inflammation [517]. Let-7i, found in cardiac fibroblasts was also found to reduce 
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cardiac inflammation and fibrosis in mice by inhibiting the expression of IL-6 and collagens 

(Col1a2, Col3a1, Col4a1, Col5a2) [518]. In all, these studies shown that let-7i-5p has the 

potential to modulate immune responses. 

 

When considering the miRNA profile of normoxic/primed EVs and especially the 

upregulated miRNAs, many connections can be made to anti-inflammatory functions, but 

the role of these miRNAs in MSCs and MSC-EVs is largely understudied. Therefore, 

knowledge on their functioning must be drawn from the function of these miRNAs in other 

cell types. Additionally, the roles of the 12 uniquely expressed miRNAs in EVs are 

understudied and thereby difficult to make any functional connections. 

 

An objective of this chapter was to validate the RNA sequencing results through RT-qPCR 

to ensure that the data gathered was valid and reliable. In order to analyse the PCR data, 

the miRNA of interest must be analysed against an endogenous reference miRNA, also 

known as a ‘reference gene’. This reference gene must be active, abundant and stably 

expressed across all samples and conditions [519,520]. As reference genes are an essential 

part of RT-qPCR validation, it is recommended to choose at least three [227]. This 

experiment initially chose four reference genes (miR-221-3p, miR-24-3p, miR-100-5p, 

miR-10a-5p) for the purpose of validation data to make the study more robust. However, 

miR-10a-5p failed to amplify in EVs and, miR-100-5p and miR-24-3p failed to show 

amplification in hypoxic EVs from Donor 1, making them unsuitable for use as reference 

miRNAs (Figure 64). It unlikely that the hypoxic conditions were negatively regulating 

the expression of this miRNA in this donor, as the presence of this miRNA was found in 

other donors from hypoxic conditions. Furthermore, it is unlikely that there were inhibitors 
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in the reaction as UniSp6 amplified normally across plates. Therefore, the lack of 

expression of miR-100-5p and miR-24-3p in hypoxic EVs Donor 1 could be attributed to 

donor specific differences, but overall, the lack of consistent miRNA expression in the 

chosen reference genes questions the validity of the RNA sequencing data. 

 

The chosen reference gene, miR-221-3p, did not show a stable expression across all donors 

and conditions which made the analysis of the relative miRNA expression challenging. It 

is difficult to identify stably expressed reference genes in EV research as genes are often 

differentially sorted into EVs introducing an inconsistent gene expression in different EV 

samples [227]. It could be argued that a reference gene selection tool would have employed 

a more stringent reference gene selection process. Tools such as NormFinder, GeNorm, 

and BestKeeper have been reported in the literature as reliable resources to achieve this 

goal [520]. All these tools use different types of statistical modelling to identify the most 

stably expressed reference genes. Instead, the reference gene selection for PCR was chosen 

based on the existing data generated from the RNA sequencing experiment. In hindsight, 

the use of a gene selection tool would have added an extra layer of certainty to the selection. 

However, due to the highly heterogenous nature of EVs, it is likely that expression levels 

will vary regardless of the method chosen. 

 

To ensure consistency between PCR plates, UniSp3 was chosen as the inter plate calibrator 

for the PCR reactions. All samples were normalised against UniSp3 prior to data analysis 

to ensure a fair comparison. Overall, UniSp3 showed a consistent expression across plates 

shown by a small standard deviation of ±0.15 Ct. Additionally, UniSp6 was added to the 

samples before reverse transcription. The UniSp6 spike-in was added to identify potential 
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issues associated with cDNA synthesis and inhibition during PCR [227]. The consistent 

expression of UniSp6 from the amplification plot indicates that reverse transcription was 

successful and there was little presence of inhibitors in the reaction [521–523] (Figure 63).  

 

The RNA sequencing data showed that let-7f-1-3p, miR-139-5p, miR-214-5p and miR-

155-5p were all higher in normoxic/primed EVs and miR-192-5p was higher in normoxic 

EVs compared to hypoxic EVs. The PCR data failed to support this, showing no difference 

in relative miRNA expression between these conditions. The PCR results found that miR-

21-5p and miR-24-3p had a higher relative expression in cell samples compared to 

normoxic EVs; the RNA sequencing data failed to corroborate these findings as no 

differences in miRNA expression were found between the samples. Interestingly, from the 

PCR data, normoxic EVs had a high relative expression miR-146a-5p and miR-181a-5p, 

and hypoxic EVs also expressed a high level miR-146a-5p compared to other miRNAs 

probed for in the assay. This is promising as these miRNAs from MSCs have been shown 

to suppress TNF-α, IL-6, IL-1β and pro-inflammatory gene targets [524–526]. Overall, the 

data from the PCR experiments provided a differing expression of the miRNAs in the cells 

and the EVs compared to the RNA sequencing results. 

 

The final consideration of this study was to establish if there was contamination of FBS 

derived RNA in the EV samples. This step was carried out for two reasons; firstly research 

show that no supplemented media is free of EVs and an FBS control is strongly advised 

[527]. Secondly, previous experiments, described in Section 4.2.1, found that the depletion 

of EVs from FBS was not 100% successful therefore, there may be some bovine RNA 

present in the EV samples. To control for this, an FBS-EV sample was sequenced, and its 

expression compared with the EV samples. Results from this show that only one 
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differentially expressed miRNA (miR-215-5p) was higher in the sequenced FBS-EVs 

compared to hypoxic EVs. This miRNA was also downregulated in the hypoxic EVs when 

compared to the normoxic EVs. From the PCR experiment, only one miRNA, miR-21-5p, 

was detected in the FBS-EVs and showed a similar expression to the EVs. With the 

exception of miR-215-5p and miR-21-5p, all other miRNAs detected in FBS-EVs do not 

show a higher expression. Therefore, the degree of FBS contamination was determined to 

be minimal. However, it must be noted that it is difficult to gauge FBS RNA contamination 

due to sequence similarity between human and bovine sources. Therefore, FBS 

contamination cannot be ruled out. 

 

This situation raises some interesting questions. Are they bovine miRNAs entering cells 

and being packaged into EVs? If so, what is the biological reason for the cells to package 

them? If the bovine miRNAs are not in the EVs, and are therefore extra-vesicular, is there 

the possibility that some miRNAs are resistant to the RNAase treatment? These are all some 

important questions for EV biology and discovering how EVs function. 

 

This project has some limitations which hampered the analysis of the results. It was clear 

that there were few similarities in the EV profiles seen on the PCA plot, therefore this study 

would have benefitted from analysing just the EV conditions together and excluding the 

cellular group to see if more differences could be identified. Additionally, the PCA plot 

identified the EVs as being highly heterogeneous and showing donor-to-donor variation. 

This heterogeneity is problematic for EV research and for the potential to make concrete 

conclusions on the therapeutic potential of EVs. Thus, a higher sample size would have 

been advantageous to see trends in clustering. Therefore, a combination of factors could 
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explain the lack of differences in miRNAs between the EVs from different conditions. 

Namely, a low sample size, the heterogenic nature of EVs and the layout of the study design 

to include cellular samples in the analysis. 

 

Secondly, in the PCR experiment, there was a lack of stable expression from the reference 

genes. This made normalising the miRNA expression challenging and more reference 

miRNAs could have been chosen based on the use of reference gene selection tools. 

 

Finally, this study would have benefitted from pathway analysis of the whole RNA 

sequencing dataset and of the differentially expressed miRNAs in normoxic EVs versus 

cells. This is because miRNAs have multiple gene targets [495,528], and it would be more 

advantageous to review the miRNAs as a collective. This would give a stronger overview 

of their in vivo functions.  
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6.4 Conclusion 

This chapter focused on identifying differences in miRNA expression between normoxic 

cells and normoxic EVs. 59 miRNAs were upregulated in EVs compared to cells indicating 

that the miRNAs were selectively being packaged into EVs. RNA sequencing also 

identified differences in the miRNA profile of EVs from normoxia, hypoxia and 

normoxia/primed, although these differences were few and not confirmed by PCR 

validation.  

 

To answer the question, do the EVs and cells have anti-inflammatory miRNA? There is a 

degree of certainty that they contain miRNAs with anti-inflammatory properties, but the 

issue is that these miRNAs target many genes and may carry out other in vivo functions, 

thereby it is not possible to say that they will elicit a purely anti-inflammatory response. 

 

It is equally challenging to identify an EV condition that has the most anti-inflammatory 

potential. The obvious frontrunner is the normoxic/primed EVs because they contained the 

most upregulated miRNAs and research supports findings that pro-inflammatory primed 

EVs are more immunosuppressive. However, the differentially expressed miRNAs had a 

low normalised read count which questions their ability to make a significant biological 

change in vivo. Even if these miRNAs had a higher expression, this does not necessarily 

mean these EVs are anti-inflammatory, as a combination of different factors are involved 

in generating an anti-inflammatory response. 

 

Overall, it is promising to see some miRNAs with anti-inflammatory functions present in 

the EVs but there are doubts raised as to whether their expression is enough to be 

biologically significant, therefore functional studies are required. 
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7.1 Introduction 

Autoimmune diseases are often defined by a breakdown in immune tolerance whereby the 

immune system targets self-antigens [529]. In RA, this leads to an infiltration of immune 

cells (lymphocytes, dendritic cells, mast cells) into joints which causes pain, swelling and 

eventually joint destruction [34]. There is an imbalance of adaptive immune cells, in 

particular T-cells, which are one of the primarily contributors to an activated immune 

response [37,38]. In general, there is an abundance of Th1 cells over Th2 cells and Th17 

cells over Treg cells [530,531]. Th1 cells release IFN-γ, and Th17 cells release IL-17, both 

of which are enriched in RA and contribute to a pro-inflammatory environment [532,533]. 

To counteract this pro-inflammatory response, IL-4 is secreted by mast cells, Th2 cells, 

eosinophils, and basophils. IL-4 is known to inhibit the maturation of Th1 cells and promote 

Th2 cells, this cytokine can help towards reducing the IFN-γ pro-inflammatory response 

[534,535]. IL-4 is also known to reduce the potency of dendritic cells and the levels of 

TNF-α [536]. However, despite the anti-inflammatory effects of IL-4, there is an imbalance 

of pro- to anti-inflammatory immune cells in RA. This can be seen by the abundance Th17 

cells and the low levels of Treg cells which are often defective, thus contributing to RA 

disease pathogenesis [1,537].  

 

The autoreactive immune response in RA often escalates in an uncontrollable fashion, 

therefore, identifying an immunosuppressive therapy is a high priority. This priority is 

heightened by the fact that many patients with RA do not respond well to pharmaceuticals 

which opens up a new opportunity for a more effective therapy for RA [10]. 
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To tackle this problem and reduce the inflammatory immune environment, this chapter 

looks at the ability of MSCs and MSC-EVs to modulate the cytokine and surface marker 

profile of T-cells. The increased interest surrounding MSCs and their EVs is due to studies 

showing that they can suppress B- and NK- cells [184], polarise Th1 cells towards a Th2 

phenotype and shift the Th17/Treg ratio in favour of Tregs [157,165]. Specifically, 

UCMSCs have been shown to increase Treg cells in a PBMC co-culture [86] and likewise, 

BMMSC-EVs were found to increase the number of FoxP3+ Tregs in a co-culture with 

PBMCs [538]. All this research has led to the emergence of MSC-EVs as a promising 

immunosuppressive treatment. Therefore, this chapter will also look at the percentage of 

Tregs in the PBMCs and see if these levels vary after co-culture with UCMSCs and 

UCMSC-EVs. For MSCs and EVs to be truly therapeutic agents for RA they will be able 

to shift the Treg: Th17 environment and reduce the level of pro-inflammatory cytokines. 

MSC-EVs have also been found to change the cytokine profiles of PBMCs/T-cells, 

particularly reducing TNF-α, IFN-γ and IL-1β, and increasing TGF-β in in vitro co-cultures 

[157,399]. This chapter will analyse if MSCs and EVs could increase IL-4 levels in the 

PBMC co-culture and decrease IFN-γ and IL-17A, as this would aid in the suppression of 

immune cells which exacerbate inflammation in RA.  

 

Evidence points towards an immunosuppressive role of MSC-EVs, and their attraction as 

therapeutic agents over MSCs is heightened by the fact that they avoid some issues 

associated with injecting cells in vivo such as the potential for cell differentiation and 

tumour formation [66]. For this reason, research into EVs and their therapeutic properties 

is gaining momentum. However, no study has yet looked at the effect of normoxic and 

normoxic/primed UCMSC-EVs on PBMCs. It is important to see if UCMSC-EVs are a 

viable alternative to immune cell suppression as their parent cells, as they may present a 
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more suitable therapeutic option for RA. Furthermore, as research has shown that pro-

inflammatory priming can improve MSC-mediated immunosuppression, it is important that 

this is analysed in the EV population [243].  

 

The practice of pro-inflammatory priming MSCs is common in regenerative medicine as it 

mimics the inflammatory in vivo environment and ‘activates’ MSCs [243]. Similarly 

activating MSCs before EV generation is likely to be effective in promoting a potentially 

therapeutic ‘anti-inflammatory’ EV, so it was decided to look at both primed and non-

primed MSCs and EVs in this chapter in normoxic conditions only. Results in previous 

chapters showed that there were more protein and miRNA differences identified between 

primed and non-primed in normoxia compared to those cultured in hypoxic conditions and, 

therefore, hypoxic conditions were not used.  

 

Due to delays imposed by the Covid pandemic, there was not enough time to isolate CD4+ 

T-cells from the PBMCs so it was decided to use the whole PBMC population for the co-

culture experiments and gate the lymphocytes as part of the flow cytometry analysis. This 

did not negatively affect the analysis of the immunomodulatory properties of MSCs and 

EVs as their co-culture with whole population PBMCs is studying the interaction of T-cells 

in their natural environment. However, the mixed population of PBMCs makes discovering 

the EV- and MSC- mediated effects on T-cells more challenging, as different interactions 

are happening between immune cells in the co-culture. Therefore, recognising the benefit 

of using an isolated population of T-cells, Jurkat cells were sourced as a readily available 

source of T-cells. Jurkat cells are an immortalised T-cell leukaemia line [539] that are 

utilised extensively in in vitro studies to simulate the function of primary T-cells and these 
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cells provided another means of studying MSC and EV interactions with T-cells. They also 

add novelty to this chapter as no study has looked at the immunomodulatory ability of 

MSC-EVs on Jurkat cells, there has only been one study by Matula et al. [540] that studied 

the uptake of MSC-exosomes by Jurkat cells. 

 

This chapter looks at the functional properties of UCMSCs and their EVs and, specifically, 

if they can polarise PBMCs and Jurkat cells towards a more anti- inflammatory phenotype. 

Previous chapters have analysed the protein and RNA cargo of UCMSC-EVs, and findings 

revealed the presence of anti-inflammatory proteins and miRNAs. However, there were 

also some pro-inflammatory proteins and miRNAs contained within the EV cargo 

therefore, it is hoped that this chapter will shed light on whether UCMSC-EVs function as 

pro- or anti- inflammatory agents.  

 

Aim 

The aim of this chapter is to assess the immunosuppressive ability of UCMSCs and 

UCMSC-EVs on PBMCs and Jurkat cells.  

 

Objectives 

1. Assess the effect of CD3/CD28 activation on PBMCs and Jurkat cells by analysing 

cell morphology, surface markers and cytokine production before and after 

activation. 

2. Establish the optimal concentration of EVs to co-culture with PBMCs. This will be 

achieved by co-culturing PBMCs with three concentrations of EVs and analysing 

the subsequent protein production of PBMCs.  
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3. Analyse the protein markers on PBMCs from different co-culture conditions using 

a combination of cell surface markers and intracellular markers via flow cytometry. 

4. Identify the percentage of CD3+CD4+ cells, the IL-4: IFN-γ ratio and the 

percentage CD4+CD25+CD127- Tregs in PBMCs/Jurkat cells co-cultured with 

EVs and MSCs. 

 

An outline of the co-culture experiments is provided in Figure 68.  
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Figure 68: Design of co-culture experiments 
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7.2 Results 

7.2.1 Yield of PBMCs from whole blood 

PBMCs were isolated from the whole blood of healthy volunteers (n=6) as described in 

Section 2.10.1. The median age of the volunteers was 36.5 years (interquartile range 22.75). 

The average yield of PBMCs was 1.25 x 106 cells/ml (± 6.02 x 105), which was inside the 

expected yield of 0.5–2 × 106 cells/ml from the blood of healthy individuals [541]. One 

donor had a slightly lower yield of 0.42 × 106 cells/ml, and one donor had a slightly higher 

yield of 2.11 × 106 cells/ml (Figure 69A). A linear regression analysis was carried out to 

determine if age was an influencing factor in the yield of PBMCs. Results show that there 

was no clear relationship between the age of the donor and the yield of PBMCs, shown by 

a flat line in Figure 69B. 

 

Figure 69: Patient characteristics and PBMC yield 

(A) List of the PBMC yield in cells/ml and ages of the blood donors (n=6). (B) Linear regression 

analysis of the PBMCs (cells/ml) on the y-axis and age on the x-axis. There was no clear 

relationship between the PBMC yield and the age of the donors. 

 

There was a limited number of PBMCs available for the co-culture experiments. This is 

mainly because PBMCs were used for experiment optimisation and some were lost due to 
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a flow cytometer breakdown. For this reason, the same PBMC donor was not used for each 

experiment. A breakdown of the PBMCs that were used for each experiment is shown in 

Figure 70. The first set of experiments involved comparing the activated vs non-activated 

PBMCs. The objective of this experiment was to establish that the CD3/CD28 activation 

worked and to establish how it changed the protein profile and morphology of PBMCs. 

PBMC Donors 1, 2 and 3 were used for this purpose. The same 3 donors were used for the 

dose response experiments and the co-culture experiments with normoxic EVs and 

normoxic MSCs. Due to sample availability, three different donors (Donor 4, 5, 6) were 

used for co-culture experiments with normoxic/primed EVs and normoxic/primed MSCs. 

 

Figure 70: PBMCs used in co-culture experiments 

Flow diagram details the donor PBMCs that were used in activation, dose response, and co-culture 

experiments. PBMC donor 1,2 and 3 were used to compare activated vs non-activated PBMCs, to 

compare different doses of EVs, and in co-culture experiments with normoxic EVs and MSCs. 

PBMC donor 4,5 and 6 were used in co-culture experiments with normoxic/primed EVs and MSCs. 
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7.2.2 Morphology of activated vs non-activated Jurkat and PBMCs 

PBMCs (n=3) and Jurkat cells (n=1) were activated with a CD3/CD28 agonist (TransAct™, 

Miltenyi Biotec, Woking, UK) for 48 hours before their addition to co-cultures for 3 days. 

Non-activated PBMCs (n=3) and Jurkat cells (n=1) only acted as a negative control for the 

co-culture experiments. To determine the influence of the CD3/CD28 agonist on the cells, 

their morphology and surface marker profile was analysed. Experiments on Jurkat cells 

were carried out in triplicate. 

 

The PBMCs and Jurkat cells were imaged before CD3/CD28 activation and 48 hours after 

activation to see if their morphology changed. Non-activated PBMCs were polydisperse in 

suspension (Figure 71A) compared to activated PBMCs which tended to cluster together 

(Figure 71B). Both activated and non-activated Jurkat cells clumped together which is 

typical for this cell line [542]. The only obvious change in morphology between the 

conditions was the larger cell clusters identified in activated Jurkat cells (Figure 71C-D).  
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Figure 71: Activated vs non-activated PBMCs and Jurkat cells 

Image of non-activated (A) and activated (B) PBMCs. Non-activated PBMCs appear polydisperse 

in suspension whereas activated PBMCs show small cell cluster formations. Images of non-

activated (C) and activated (D) Jurkat cells. Jurkat cells form clusters in both activated and non-

activated suspensions. Scale bars represent 100μm. All images taken at 10x objective on a Nikon 

TS100 microscope. 

 

7.2.3 Immunophenotyping of activated vs non-activated PBMCs and Jurkat 

cells 

Flow cytometry analysis was carried out on PBMCs (n=3) and Jurkat cells (n=1) to 

determine the effect of activation on these populations. All Jurkat cell experiments were 

carried out in triplicate. The first task of flow cytometry was to gate the target population. 
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Gating was carried out according to the images in Supplementary Figure 7. In brief, the 

cell debris was first removed by gating out this population, the lymphocytes were selected, 

and gates drawn based on the forward scatter, clustering and CD3 positivity. This 

population was then gated further to remove doublet cells, as the presence of doublets 

would skew the analysis. The immune profile of this population was then analysed based 

on gating of <2% of the relevant fluorochrome-conjugated isotype control. All flow 

cytometry analysis gathered 10,000 events from each cell population. Initial analysis of the 

flow cytometry dot plots shows a diverse cell profile between the activated and non-

activated PBMCs (Figure 72A-B), which was expected. There is an obvious difference 

between the activated and non-activated PBMCs in the bottom left-hand corner where the 

x-axis intersects the y-axis. There is a higher density of particles in the non-activated 

PBMCs, which could signify apoptotic debris. There are also changes in the forward scatter 

area (FSC-A), with activated PBMCs having an increase FSC-A, indicating that 

CD3/CD28 activation may be increasing the size of activated cells. There are also slight 

changes in the side scatter area (SSC-A), although not as obvious as FSC-A, between the 

activated and non-activated PBMCs, with the activated PBMCs appearing more 

polydisperse. This change in SSC-A indicates a difference the internal complexity of the 

cell, i.e., in the nucleus or via the presence of granules.  

 

Jurkat cells contained a uniform cell population with no visible differences between the 

activated and non-activated cells (Figure 72C-D).  
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Figure 72: Dot plot of activated and non-activated PBMCs and Jurkat cells 

Flow cytometry generated dot plots of 10,000 events for non-activated and activated 

PBMCs (A-B) and for non-activated and activated Jurkat cells (C-D). Dot plots show the 

Side Scatter Area (SSC-A) on the y-axis and the Forward Scatter Area (FSC-A) on the x-axis. On 

comparison, non-activated PBMCs have a different cell clustering pattern compared to the 

activated PBMCs. The non-activated and activated Jurkat cells have highly similar clustering 

patterns.  

 

A protein marker panel was created to incorporate characteristic immune markers, and pro- 

and anti-inflammatory markers. It included CD3, CD4, CD25, CD127, HLA-DR, CD19, 

CD45, FoxP3, IL-4, IL-17A and IFN-γ. There were numerous differences identified 
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between activated and non-activated PBMCs from the flow cytometry experiment. 

Analysis of the protein profile of activated and non-activated PBMCs revealed that non-

activated PBMCs contained a 58.85% (± 18.74 SD) production of CD4 and activated 

PBMCs had a statistically higher production at 79.9% (± 13.42 SD) (p<0.05). Activated 

PBMCs contained a statistically higher level of CD25 (99.47% ± 0.29 SD) compared to 

non-activated PBMCs (18.83% ± 3.76 SD) (p<0.0001). As CD25 is a marker of T-cell 

activation [543], this shows that the activation protocol was successful in inducing 

activation of PBMCs, making them suitable for use in further experiments. Further 

differences were found in the percentage of cells expressing IFN-γ and FoxP3, which was 

also statistically higher in the activated PBMC group (40.50% ± 25.97 SD) compared to 

the non-activated PBMC group (6.92% ± 3.29 SD) (p<0.05). There was a lower percentage 

of cells with CD127 in the activated PBMCs compared to non-activated PBMCs (7.39% ± 

3.37 SD versus 31.33% ± 12.45 SD), which is a marker for Treg cells when negatively 

expressed with CD4+ and CD25+ markers (p<0.05) (Figure 73A) [544]. 

 

There were no statistical differences between the protein marker profile of activated and 

non-activated Jurkat cells (Figure 73B). They expressed high levels of CD3 (>86%) and 

low levels of CD4 (<13.4%). The mean production of protein markers in PBMCs and Jurkat 

cells is included in Table 25. 
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Figure 73: Activation of PBMCs and Jurkat Cells 

PBMCs and Jurkat cells were activated with CD3/CD28 beads, 48 hours before being added to co-

cultures for 3 days. Bar chart shows the protein profile of PBMCs (n=3) (A) and Jurkat cells (n=1) 

(B) before and after activation. PDTs for Jurkat cells were calculated using three technical 

replicated. Activated PBMCs (shown in red) had a statistically higher production of CD4 (p<0.05), 

CD25 (p<0.0001), IFN-γ (p<0.05) and FoxP3 (p<0.05), and a lower production of CD127 

(p<0.05) compared to non-activated PBMCs (shown in blue). No statistical differences were found 

between the activated and non-activated Jurkat cells. Data is shown as the mean ± SD.   
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Table 25: Average production of proteins in PBMCs and Jurkat cells 

Table displays the mean production and standard deviation (SD) of proteins in activated and non-

activated PBMCs (n=3) and Jurkat cells (n=1). Jurkat cell experiments were performed in triplicate. 

 

 

As activated cells were used in the co-culture experiments, a representative immune profile 

from one PBMC donor and the Jurkat cells is shown in Figure 74A & B. In total, activated 

PBMCs from Donor 1 had a positive production (>90%) of CD3, CD25, CD45 and a 

negative production of CD19, HLA-DR, IL-4 and IL-17A (<5%). There was an average of 

72.1% production of CD4, 9.95% production of CD127, 66.3% production of IFN-γ and a 

66.2% production of FoxP3. 

 

Jurkat cells showed a positive production of CD3, CD45 and a <15% production of CD4, 

CD127, CD25, CD19, IL-4, IFN-γ. Jurkat cells had a 16.3% and 21.8% production of IL-

17A and FoxP3, respectively.
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Figure 74: Immune profile of activated PBMCs and Jurkat cells 

Single parameter histograms of immune marker production of activated PBMCs from one donor (A) and activated Jurkat cells (B). Relative Cell Number is 

displayed on the y-axis and the fluorochrome is displayed on the x-axis. Numbers provided above the gating line are the percentage production of that 

antibody. Expression of proteins on cells is shown by the red histograms and isotype controls are shown in blue.

B. 
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7.2.4 EV dose response experiment  

Prior to setting up co-culture experiments with EVs and PBMCs, a dose response experiment 

was carried out to determine the optimal concentration of EVs to have an anti-inflammatory 

effect on PBMCs. Three different concentrations of normoxic EVs: 60µg, 90µg and 120µg 

were added to 2x106 PBMCs (n=3), following research by Ma et al. [235]. The concentrations 

of 60µg, 90µg and 120µg refer to the vesicular protein concentration of the EVs, calculated 

using a BCA protein assay as described in Section 2.5.1. PBMCs were then analysed for their 

protein marker profile, specifically the production of IFN-γ, IL-17A, IL-4 and FoxP3 using 

ICCS described in Section 2.10.5. 

 

The PBMCs were characterised based on their surface marker profile and cytokine production 

to identify differences between the groups. All PBMCs had a high production (>90%) of CD3, 

CD25 and CD45 (Figure 75A). The PBMCs that were co-cultured with 60µg EVs showed the 

largest range of production in CD4 (69.7-96.9%) averaging 81.3% (±11.4 SD) across all three 

donors. The 60µg EV co-culture led to a statistically higher production of IL-4 (31.6% ± 23 

SD) in PBMCs compared to the 120µg EV group (7.73% ± 4.3 SD) (p<0.05) (Figure 75B). 

Additionally, in the PBMC donors that were co-cultured with 60µg EVs, there was a wide 

range of production in IL-4 (5.13%-46.4%). There was a statistically lower amount of IFN-γ 

in PBMCs from the 120µg EV co-culture compared to the 60µg EV co-culture (18.5% ± 8.5 

SD vs 46% ± 41 SD) (p<0.01) (Figure 75C). The production of FoxP3 and IL-17A was 

consistent in PBMCs across EV concentrations. In all, the PBMCs from the 60µg EV co-culture 

showed more inconsistencies in cytokine production, seen by large error bars for most markers 

(IL-4, IFN-γ, FoxP3), in comparison to the PBMCs from the other EV concentrations. The 
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120µg EV concentration was chosen for upcoming co-cultures due to its ability to reduce IFN-

γ levels in PBMCs. 

 A representative profile of the PBMCs that were co-cultured with 120µg EVs is shown in the 

histograms in Figure 76.
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Figure 75: Dose response curve of PBMC co-culture with EVs 

PBMC (n=3) were co-cultured with EVs of 3 different concentrations: 60μg, 90μg and 120μg (x-axis) and their percentage production of different markers was 

measured (y-axis). (A) Line graph shows the production of all proteins in the PBMC flow cytometry panel. (B) Line graph shows a closer view of the IL-4 and 

FoxP3 production. There was a statistically lower production of IL-4 in the PBMCs that were co-cultured with 120μg EVs compared to the PBMCs co-cultured 

with 60μg EVs (p<0.05). (C) Line graph shows the production of IFN-γ and IL-17A in PBMCs after co-culturing with EVs. IFN-γ had a statistically lower 

production in the 120μg EV co-culture compared to the 60μg EV co-culture (p<0.01). There was no statistical difference in IL-17A.   
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Figure 76: Immune profile of PBMCs after co-culture with 120µg EVs 

Single parameter histograms displaying the immune profile of one PBMC donor that was co-cultured with 120µg normoxic EVs. Relative Cell Number is 

displayed on the y-axis and the fluorochrome is displayed on the x-axis. Numbers provided above the gating line are the percentage production of that antibody. 

Expression of proteins on cells is shown by the red histograms and isotype controls are shown in blue.



  Chapter 7 

 
282 

 

7.2.5 Morphology of PBMCs and Jurkat cells 

PBMCs and Jurkat cells were co-cultured in the following conditions: 

1. Non-activated only 

2. Activated 

3. Activated with normoxic EVs 

4. Activated with normoxic/primed EVs 

5. Activated with normoxic MSCs 

6. Activated with normoxic/primed MSCs 

 

Flow cytometry generated dot plot profiles of PBMCs and Jurkat cells from the different co-

culture conditions. These profiles were compared and it is clear that the PBMCs had a varied 

cell clustering profile after co-culturing and activation, shown in Figure 77. This may be 

indicative of changes in cell size, shape, and granularity. Photos of PBMC co-cultures with 

EVs and MSCs is provided in Figure 78. Jurkat cells, on the other hand had a very similar cell 

clustering and no obvious differences could be seen (Figure 79). 
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Figure 77: Dot plots comparing the different co-cultures with PBMCs 

Dot plot comparing PBMCs that were activated, non-activated, and co-cultured with normoxic and normoxic/primed EVs and MSCs. There was a varied 

clustering profile across all conditions seen by different cell clustering patterns and heat intensity profiles. Dot plots display Side Scatter Area (SSC-A) on the 

y-axis and the Forward Scatter Area (FSC-A) on the x-axis.
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Figure 78: Images of PBMC co-culture with EVs and MSCs 

(A) Image displays activated PBMCs only, there is a mix of cell clusters and single cells in the well. (B) Image displays PBMCs that were co-cultured with 

normoxic EVs. PBMCs show visible cell clustering in the well, although they were easily dispersed through gentle pipetting. (C) Image of PBMC + normoxic 

MSC co-culture. MSCs can be seen by long spindle like cells in the well. Scale bars represent 500μm. All images taken at 4x objective on a Nikon TS100 

microscope. 
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Figure 79: Dot plots comparing the different co-cultures with Jurkat cells. 

Dot plot comparing Jurkat cells that were activated, non-activated, and co-cultured with normoxic and normoxic/primed EVs and MSCs. There was a 

similar cell profile obtained under all conditions. Dot plots display Side Scatter Area (SSC-A) on the y-axis and the Forward Scatter Area (FSC-

A) on the x-axis. 
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7.2.6 Immunophenotyping of PBMCs from co-cultures 

The immune profile of PBMCs was analysed by flow cytometry after PBMCs were co-cultured 

with normoxic EVs and MSCs (n=3) and normoxic/primed EVs and MSCs (n=3); experimental 

set-up shown in Figure 70. PBMCs from the co-cultures were compared to activated PBMCs 

alone. With the exception of non-activated PBMCs, PBMCs in all other conditions had a 

>90.8% production of CD3, >95.3% production of CD25 and a >98.6% production of CD45. 

PBMCs in all conditions were largely negative for CD19 (<2.7%). As CD19, is a marker of B-

cells, this indicates that there are few B-cells in the gated lymphocyte population and the cells 

are primarily of CD3+ origin [545]. 

 

There was a reduction in the production of IFN-γ in the PBMCs that were co-cultured with 

normoxic EVs compared to normoxic MSCs (p<0.05) (Figure 80A). There were no further 

differences between the activated PBMCs, PBMCs + normoxic EVs, and PBMCs + normoxic 

MSCs. In relation to the PBMCs that were co-cultured with normoxic/primed EVs and 

normoxic/primed MSCs, there was a significantly increased production of FoxP3 in the 

PBMCs compared to the activated PBMCs alone (p<0.05, p<0.0001). Furthermore, the 

normoxic/primed MSCs had a statistically higher production of FoxP3 compared to the 

normoxic/primed EVs (p<0.01) (Figure 80B). There were no further statistical differences 

between the conditions. IFN-γ was not probed for the in PBMC + normoxic /primed EVs/MSC 

due to issues with antibody availability.  
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Figure 80: Protein production of PBMCs after co-culture with EVs and MSCs 

PBMCs were co-cultured with EVs and MSCs and their protein markers were analysed by flow cytometry. Bar chart displays percentage production on the y-

axis and protein markers on the x-axis. (A) PBMCs (n=3) that were co-cultured with normoxic EVs had a statistically lower production of IFN-γ compared 

PBMCs + normoxic MSCs (p<0.05). (B) In the PBMC (n=3) co-culture with normoxic/primed EVs and MSCs, there was a statistically higher production of 

FoxP3 between normoxic/primed EVs and MSCs compared to activated PBMCs only (*p<0.05, ****p<0.0001). Additionally, PBMCs co-cultured with 

normoxic/primed MSCs had a statistically higher production of FoxP3 compared to PBMCs from the normoxic/primed EV co-culture (**p<0.01).  
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7.2.7 Immunophenotyping of Jurkat cells from co-cultures 

Similar to the PBMCs, flow cytometry was carried out on Jurkat cells (n=1) after co-culture 

with EVs and MSCs, in normoxic and normoxic/primed conditions. All experiments were 

carried out in triplicate. Jurkat cells, in all conditions, had a >86.4% production of CD3. All 

other protein markers had a low production (<22.3%) in Jurkat cells (Figure 81). 

 

The production of CD25, IL-17A, and FoxP3 was significantly lower in Jurkat cells that were 

co-cultured with normoxic EVs compared to activated Jurkat cells alone (p<0.05; p<0.001) 

(Figure 81). Additionally, normoxic/primed EVs had a reduced production of both IL-17A and 

FoxP3 in Jurkat cells (p<0.05; p<0.001) (Figure 81).  

 

For the MSCs, both normoxic and normoxic/primed MSCs reduced the production of IL-17A 

in Jurkat cells. Jurkat cells that were co-cultured with normoxic MSCs also had a statistically 

higher production of FoxP3 compared to the Jurkat cells from the normoxic EV co-culture 

(p<0.01), however, its production did not differ from the Jurkat-only control. There were no 

further statistical differences between activated Jurkat cells only, Jurkat cells co-cultured with 

normoxic MSCs, and Jurkat cells co-cultured with normoxic/primed MSCs. 
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Figure 81: Protein production in Jurkat cells after co-culture with EVs and MSCs 

 Jurkat cells (n=1) were cultured with normoxic EVs, normoxic/primed EVs, normoxic MSCs and normoxic/primed MSCs. Flow cytometry was carried out to 

calculate the percentage production (y-axis) of different immune markers (x-axis). CD25 was statistically lower in Jurkat + normoxic/primed EVs compared 

to activated Jurkat cells alone (p<0.05). IL-17A was lower in all co-cultures compared to activated Jurkat cells alone, and FoxP3 was significantly reduced in 

normoxic and normoxic/primed EVs compared to activated Jurkat cells (*p<0.05). There was also a higher production of FoxP3 from Jurkats that were co-

cultured with normoxic MSCs compared to normoxic EVs (**p<0.01). All experiments were carried out in triplicate. 
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7.2.8 Percentage CD3+CD4+ in PBMCs and Jurkat cells 

There is a higher prevalence of CD3+CD4+ T-cells in RA which contribute to the 

pathophysiology of the disease, particularly IFN-γ producing Th1 cells. Other CD4+ T-cells, 

such as IL-4 secreting Th2 cells and Treg cells, act to suppress immune responses. As the 

balance of CD4+ Th1, Th2 and Treg cells influence disease activity in RA, the percentage of 

CD3+CD4+ cells were analysed in the PBMCs and Jurkat cells from the different co-cultures 

to see if MSCs and EVs alter their levels. This was followed by analysis of the IL-4: IFN-γ 

ratio, and analysis of the percentage of CD4+CD25+CD127- Tregs in PBMCs. Firstly, PBMCs 

and Jurkat cells were gated for their CD3+CD4+ populations, as shown in the contour plots in 

Figure 82 & Figure 83. The average percentage of CD3+CD4+ cells in activated PBMCs and 

Jurkat cells is shown in Table 26. 

 

There was a statistically lower amount of CD3+CD4+ PBMCs (n=3) in the normoxic/primed 

MSC group compared to activated PBMCs alone (p<0.05) (Figure 82D). No further 

differences in the percentage CD3+CD4+ cells were identified between the groups. There is a 

large standard deviation in the PBMCs that were co-cultured with normoxic EVs and normoxic 

MSCs. This is due to PBMC Donor 1 having a 1.5 times higher amount of CD3+CD4+ cells 

compared to the other donors. A comparison of the CD3+CD4+ population from the three 

donors used in this experiment is shown in Supplementary Figure 8. 
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Figure 82: Percentage of CD3+CD4+ cells in PBMCs  

PBMCs were gated for CD3 and CD4 positivity by plotting CD3 (APC; y-axis) against CD4 (PE; x-

axis). (A) Density plots show the percentage of CD3+CD4+ in activated PBMCs and PBMCs co-

cultured with normoxic EVs and normoxic MSCs. (B) The bar chart shows the percentage of 

CD3+CD4+ cells (y-axis) in PBMCs (n=3) in activated, normoxic EV and normoxic MSC groups (x-

axis). There was no statistical difference between the conditions. (C) Density plots show the production 

of CD3+CD4+ in activated PBMCs and PBMCs co-cultured with normoxic/primed EVs and 

normoxic/primed MSCs. (D) Bar chart shows the percentage of CD3+CD4+ (y-axis) in PBMCs (n=3) 

in activated, normoxic/primed EV and normoxic/primed MSC groups (x-axis). There was a statistical 



  Chapter 7 

 
293 

 

higher percentage of CD3+CD4+ cells in the activated PBMCs compared to PBMCs cultured with 

normoxic/primed MSCs (p≤0.05). 

 

Table 26: Mean percentage of CD3+CD4+ T-cells in PBMCs and Jurkat cells 
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For the Jurkat cells (n=1), all conditions contained a low level of CD3+CD4+ cells (<4%) 

(Figure 83A). There was no statistical difference between groups (Figure 83B). 

 

 

Figure 83: Percentage of CD3+CD4+ cells in Jurkat cells 

Jurkat cells were gated for CD3 and CD4 positivity by plotting CD3 (APC; y-axis) against CD4 (PE; 

x-axis). (A) Density plots show the production of CD3+CD4+ in Jurkat cells from different co-culture 

conditions. (B) The bar chart shows the percentage production of CD3+CD4+ (y-axis) in Jurkat cells 

(n=1) across all groups (x-axis). There was no statistical difference between conditions. All experiments 

were performed in triplicate. 
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7.2.9 Ratio of IL-4: IFN-γ in PBMCs 

In RA, Th1 cells produce large amount of IFN-γ and a decreased amount of IL-4 which 

contributes to synovial inflammation [546]. To understand if MSCs and EVs are capable of 

supressing immune responses, the production of IFN-γ and IL-4 was assessed in activated 

PBMCs. IFN-γ was gated against IL-4 and the percentage production was analysed for non-

activated PBMCs, activated PBMCs, PBMCs + normoxic EVs, PBMCs + normoxic MSCs, 

shown in Figure 84A. Due to lack of IFN-γ antibody available, this cytokine was not assessed 

in the normoxic/primed EV and MSC groups. In the non-activated PBMCs, there was a higher 

ratio of IL-4 compared to IFN-γ (3.62:1). All other conditions had a higher ratio of IFN-γ 

compared to IL-4. Activated PBMCs had a IL4: IFN-γ ratio of 0.5:1, PBMCs + normoxic EVs 

had a ratio of 0.64:1, and PBMC + normoxic/MSCs had a ratio of 0.52:1. While the normoxic 

EVs and MSCs increased the IL-4 levels relative to IFN-γ compared to the activated PBMCs, 

there was no statistical difference in the conditions (Figure 84B). 
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Figure 84: Ratio of IL-4: IFN-γ in PBMCs 

(A) Dot plot displays a representative flow cytometry analysis from one donor of PBMCs. Analysis was 

carried out on PBMC (n=3) donors in activated, non-activated and co-cultured with normoxic 

EVs/MSCs. Cells were gated based on their production of IFN-γ (PerCp-Cy5 fluorochrome; y-axis) and 

IL-4 (PE fluorochrome; x-axis). IFN-γ positive/IL-4 negative cells are displayed in the top left quadrant. 

IFN-γ negative/IL-4 positive cells are displayed in the bottom right quadrant. The percentage 

production of IL-4: IFN-γ were compared to give a ratio value for PBMCs in each condition. (B) Bar 

chart represents the IL-4/IFN-γ ratio on the y-axis and the different culture conditions on the x-axis. 

Points below the dotted line at y=1 represent a higher amount of IFN-γ to IL-4, points above the dotted 

represent a higher amount of IL-4 to IFN-γ. There were no statistical differences between conditions. 

 

PBMC Donor 2 showed a different IFN-γ and IL-4 production to Donors 1 and 3, shown in 

Figure 85. There was a high production of IFN-γ (>50%) in the activated and normoxic MSC 

groups and this coincided with a low production of IL-4 (<1%). This level of production of 

IFN-γ was not seen in other donors and could be considered as skewing the results. 
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Figure 85: IFN-γ and IL-4 production in individual PBMC donors 

Bar charts represent a comparison of IFN-γ and IL-4 in PBMC Donor 1 (A), Donor 2 (B), and Donor 3 (C). The percentage production of IFN-γ and IL-4 is 

presented on the y-axis and the culture conditions on the x-axis. PBMC Donors 1 and 3 are highly similar, showing a higher amount of IL-4 compared to IFN-

γ in non-activated, activated and normoxic MSC conditions. Donor 2 does not follow the same profile, showing a >50% production of IFN-γ in activated and 

normoxic MSC conditions. 
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Jurkat cells were also gated based on their production of IL-4 and IFN-γ in all conditions, 

shown in Figure 86A. In all conditions, except Jurkat + normoxic MSCs, there is on average 

a higher percentage of IFN-γ over IL-4. The higher production of IL-4 in Jurkat + normoxic 

MSCs is due to the higher production of IL-4 in one donor which is skewing the ratio, shown 

in Figure 86B. However, biologically, this production was considered to be legitimate, despite 

it differing from other samples, so it was included in the analysis. The ratio of IL-4: IFN-γ was 

0.45:1 in activated Jurkat, 0.14:1 in Jurkat + normoxic EV, 0.59:1 in Jurkat + normoxic/primed 

EV, 1.13:1 in Jurkat + normoxic MSC, and 0.25:1 in Jurkat + normoxic/primed MSC.  

 

 

Figure 86: Production of IL-4 and IFN-γ in Jurkat cells 

(A) Dot plot displays the flow cytometry analysis of Jurkat cells in activated, non-activated and co-

culture conditions (normoxic EVs, normoxic/primed EVs, normoxic MSCs and normoxic/primed 

MSCs). Cells were gated based on their production of IFN-γ (PerCp-Cy5 fluorochrome; y-axis) and IL-
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4 (PE fluorochrome; x-axis). IFN-γ positive/IL-4 negative cells are displayed in the top left quadrant. 

IFN-γ negative/IL-4 positive cells are displayed in the bottom right quadrant. The percentage 

production of IL-4: IFN-γ were compared to give a ratio value for Jurkats in each condition. (B) Bar 

chart represents the IL-4/IFN-γ ratio on the y-axis and the different culture conditions on the x-axis. 

Points below the dotted line at y=1 represent a higher amount of IFN-γ to IL-4, points above the dotted 

represent a higher amount of IL-4 to IFN-γ. There was one outlier from the Jurkat + normoxic MSC 

co-culture that had a substantially increased ratio of IL-4: IFN-γ. There were no statistical differences 

between conditions. 

 

7.2.10 Tregs identification  

Tregs are a subset of CD4+ T-cells capable of suppressing Th1 cells and pro-inflammatory 

signalling [547,548]. There are many different subsets of Tregs, including 

CD4+CD25+CD127- Treg cells and CD4+CD25+FoxP3+ Tregs [549]. FoxP3+ was 

upregulated by normoxic/primed EVs and MSCs (Figure 80), but as the FoxP3 antibody was 

conjugated to the same flourochrome as CD4, the percentage of CD4+CD25+FoxP3+ Tregs 

could not be measured. Instead, CD4+CD25+CD127- Tregs were analysed. Researchers have 

found a correlation between CD4+CD25+CD127- Treg cells and CD4+CD25+FoxP3 Tregs 

[550–552]. So, it was of interest to see if the increased production of FoxP3 in normoxic/primed 

EVs and MSCs correlated with an increase in CD4+CD25+CD127- Treg cells.  

 

All PBMCs used in the co-culture experiments had an average CD25 production of 97.6% 

(±1.6 SD) so the PBMCs were gated on CD4 (PE) and CD127 (BV421) to identify this Tregs 

subset. CD4+CD25+CD127- Treg cells were compared between the activated PBMCs, PBMCs 

+ normoxic EVs, and PBMCs + normoxic MSCs but failed to show any statistical differences 

(Figure 87A, B). There was a high standard deviation in the activated PBMCs, PBMCs + 

normoxic EVs, and PBMCs + normoxic MSCs in this experiment and, like the experiment that 

analysed CD3+CD4+ cells (Section 7.2.8), this was due to PBMC Donor 1 having a 1.54 times 
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higher amount of Tregs (Supplementary Figure 8B). CD4+CD25+CD127- Treg cells were 

also compared between the activated PBMCs, PBMCs + normoxic/primed EVs, and PBMCs 

+ normoxic/primed MSCs (Figure 87C). Normoxic/primed MSCs decreased the percentage of 

CD4+CD25+CD127- Tregs compared to activated PBMCs alone (p<0.05) (Figure 87D), 

which means that this result failed to correlate with the increased FoxP3 production identified 

in Figure 80. The average percentage of CD4+CD25+CD127- in PBMCs from the co-cultures 

is shown in Table 27.  
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Figure 87: Percentage CD4+CD25+CD127- cells in PBMCs  

Dot plot showing the percentage of CD4+CD25+CD127- Tregs in PBMCs from co-culture conditions. 

PE (CD4) is shown on the y-axis and BV421 (CD127) on the x-axis. Gates are drawn for the subset of 

cells that are CD4 positive and CD127 negative. (A) Representative dot plot from activated PBMCs, 

PBMCs + normoxic EVs, PBMCs + normoxic MSCs. (B) Bar chart comparing the percentage (y-axis) 

of Tregs from PBMCs in different co-culture conditions (x-axis). There were no significant differences. 

(C) Representative dot plot from activated PBMCs, PBMCs + normoxic/primed EVs, PBMCs + 

normoxic/primed MSCs. (D) Bar chart shows that the activated PBMCs had a statistically higher 

percentage of CD4+CD127- Tregs compared to PBMCs + normoxic/primed MSCs (p<0.05). 
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Table 27: Mean percentage of CD4+CD25+CD127- in PBMCs 
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7.3 Discussion 

This chapter used in vitro co-culturing to study the effect of MSCs and EVs on PBMCs and 

Jurkat cells. The aim was to see if MSCs and EVs were anti-inflammatory and able to supress 

immune cell activity. Identifying cells and vesicles that can suppress the immune system is 

important for autoimmune conditions such as RA, where there is an abundance of pro-

inflammatory cells. Therefore, it was initially planned to study the effect of MSCs and MSC-

EVs on PBMCs/T-cells from the blood of people with rheumatoid arthritis. However, due to 

the coronavirus pandemic, it was not possible to access these patients at the Robert Jones and 

Agnes Hunt Orthopaedic Hospital. Ethical approval and consent had been obtained, and in the 

future, it would be beneficial to go back and analyse how EVs interact with PBMCs from 

patients with RA. This would provide a better understanding of the therapeutic potential of EVs 

as a therapy for RA.  

 

There was a limited number of PBMCs available for the co-culture experiments. This was due 

to a few factors such as a variable cell yield, using PBMCs to optimise experiments and some 

PBMCs were lost due to the flow cytometer breaking down. This meant that three different 

PBMC donors had to be used for the co-culture experiments with normoxic/primed EVs and 

normoxic/primed MSCs. Pooling of all PBMC donors was considered prior to plating them for 

co-culturing, but this would have involved thawing every PBMC donor at once and carrying 

out all the co-culture experiments at the same time. Due to the large scale of the experiments, 

this was not possible. In hindsight, it may have been better to pool all donors immediately after 

PBMC isolation and prior to storage in liquid nitrogen. 
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The first objective of this chapter was to see how the CD3/CD28 activation was affecting 

PBMC and Jurkat morphology and protein production. CD3/CD28 stimulation has been found 

to influence the morphology of lymphocytes, particularly increase the size of T-cells [553] and 

increase clumping in activated T-cells [554]. The findings in this chapter show an increase in 

cell clumping of PBMCs and Jurkat cells, showing that CD3/CD28 activation is changing the 

cell morphology. In terms of PBMC protein production, the activated PBMCs had an increase 

in the production of CD4, CD25, IFN-γ and FoxP3, and a lower production of CD127 in the 

activated PBMCs. The increase in CD25 is positive because this is a marker of T-cell activation 

[543], which shows that activation was successful in this group. Furthermore, an increase in 

CD4, IFN-γ and FoxP3 in the activated PBMCs has previously been found in the literature after 

activation with CD3/CD28 [543,555,556]. This activation links closely to the immunology of 

RA as CD4+ T-cells are dominant (although CD8+ T-cells are present too) and these cells 

release a high amount of IFN-γ [532]. Therefore, the activation of PBMCs is sending them 

towards an RA immune cell phenotype. However, there is one deviation from this trend, and 

that is the increase in FoxP3 which is typically decreased in RA [1]. CD127 which inversely 

correlates with Foxp3 in Treg cells, [551], was lower in activated PBMCs, thereby activation 

may be directing the PBMCs down a Treg cell lineage. Research into CD3/CD28 activation of 

PBMCs also shows that IL-4 and HLA-DR levels should increase [556–558], but this was not 

seen between the activated and non-activated PBMCs. In all, it is clear that activation changed 

the phenotype of PBMCs as this was seen in changes in PBMC protein production, morphology 

and in their dot plot profile, as shown in Figure 71, Figure 72 and Figure 73. 

 

Jurkat cells were sourced as a readily available source of T-cells. They expressed CD3 but were 

largely negative for CD4 (<13.4%). This is in line with other studies that have shown Jurkat 

cells express low levels of CD4 [21]. There was no change in the production of CD4, CD25, 
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IFN-γ, IL-4, or FoxP3 in Jurkat cells showing that the activation of these cells was not effective 

in altering these specific proteins. It could be that the dose of CD3/CD28 was not strong enough 

to induce activation in these cells. CD3/CD28 activation works by conjugating CD3/CD28 

agonists to synthetic microbeads which mimic antigen presenting cells to physiologically 

activate T-cells [559]. Another method for activating T-cells involves the use of phorbol 12-

myristate 13-acetate (PMA) which activates protein kinase C and bypasses the TCR complex 

[560]. PMA causes a wide range of effects on cells as it activates many intracellular signalling 

pathways [561]. Indeed, Smeets et al. [562] found that PMA/CD3 and PMA/CD28 induce a 

stronger activation of Jurkat cells compared to CD3/CD28 activation. This was seen by the 

regulation of more genes and the higher production of IL-2 [562]. PMA was not employed in 

this study as the PBMCs were activated with CD3/CD28 and the addition of a new type of 

activator would add another variable, making the interpretation of results challenging. In all, 

CD3/CD28 activation did not have a significant effect on the Jurkat cells as there were no 

changes in the tested proteins, the cell morphology, or the dot plot profile.  

 

Additionally, the limitations of Jurkat cells, must be taken into consideration as research has 

shown that Jurkat cells have a different actin organisation compared to primary T-cells [563]. 

The actin cytoskeleton plays an important part of T-cell functioning particularly the activation 

of T-cells at the immunological synapse [563]. Therefore, despite Jurkat cells and primary T-

cells having comparable T-cell receptor signalling pathways, a different organisation of actin 

on the cell surface may lead to different results compared to primary T-cells [563] and this may 

further explain the non-response of CD3/CD28 activation by Jurkat cells. 
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Prior to commencing the co-culture experiments, a dose response experiment was conducted. 

This experiment was the second objective in this chapter, and it aimed to establish the optimal 

concentration of EVs to co-culture with PBMCs. EVs were added at 60μg, 90μg and 120μg to 

2×106 PBMCs. This is based on a study by Ma et al. [564] who carried out a dose response 

experiment analysing the ability of UCMSC-EVs to downregulate Th17 cells and upregulate 

Treg cells. They dosed 2×106 PBMCs with 30μg, 60μg and 90μg EVs and found that the highest 

dose of 90μg EVs were effective at downregulating Th17 cells, inhibiting, IL-17, and 

upregulating Tregs and TGF-β production. Based on this evidence, a dose response experiment 

was set up using 60μg, 90μg and 120μg EVs. 

 

Flow cytometry analysis of PBMC protein production, found that IFN-γ had a statistically 

lower production in the 120µg EV co-culture compared to the 60µg EV co-culture as shown in 

Figure 75C. IFN-γ is produced by Th1 cells and is the main contributor toward inflammation 

and activated macrophages/monocytes [565], therefore the lower production of this cytokine 

in PBMCs points towards an anti-inflammatory effect. However, the levels of IL-4 were 

reduced in the 120µg EV co-culture compared to the 60µg EV co-culture. This cytokine is 

expressed on Th2 cells and plays a role in regulating pro-inflammatory cytokine production by 

T-cells [566], thereby its reduced production is not indicative of an anti-inflammatory shift. 

However, there was a highly variable cytokine production in PBMCs that were co-cultured 

with 60μg EVs, and this could be explained by less EV availability, thus decreasing the 

likelihood of an EV-mediated change. The variable production could be caused by the uptake 

of EVs in some PBMCs but not in others, thereby only some PBMCs meet the threshold for a 

functional change, creating this variability in culture. This variable cytokine production adds 

doubt to the efficacy of the 60µg EV co-culture.  
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In general, the dose response curve did not show a linear increase in IL-4 or FoxP3, or a 

decrease in IL-17A with increasing EV concentrations. The only exception was a reduced IFN-

γ production in PBMCs from the 120µg EV co-culture. This evidence, along with previous 

research showing that lower EVs concentrations aren’t as effective as high concentrations in 

suppressing pro-inflammatory T-cells [564], led to the decision to use the higher concentration 

of 120µg EVs in the co-culture experiments. Despite the 60µg EV co-culture causing a 

statistically higher production of IL-4 in PBMCs, there was a large variation in this group when 

questions the reproducibility of these results. Therefore, EVs were used at the higher dose of 

120μg EV to 2×106 PBMCs/Jurkat cells in upcoming experiments. The ratio of MSCs to 

PBMCs/Jurkat cells was 1:10. This is based on evidence from Kay et al. [121] and del Fattore 

et al. [165] who all used the same ratio and found that MSCs were effective in increasing 

FoxP3, decreasing IL-17A, and shifting the Treg/T-effector cell ratio in favour of Tregs, 

thereby causing an anti-inflammatory shift in the PBMCs. 

 

PBMCs/Jurkat cells were co-cultured with normoxic MSCs, normoxic/primed MSCs, 

normoxic EVs and normoxic/primed EVs. (Figure 68). A comparison was made between 

MSCs and EVs, to see which one showed the most immunosuppressive potential, and between 

normoxic and normoxic/primed conditions, to see if the culture environments were generating 

a population of MSCs or EVs that were more anti-inflammatory. The PBMCs/Jurkat cells were 

assessed based on their production of protein markers after co-cultures. 

 

Interestingly, normoxic EVs and MSCs were unable to reduce the production of IFN-γ in 

activated PBMCs compared to PBMCs alone. However, the PBMCs that were co-cultured with 

normoxic EVs did have a statistically lower production of IFN-γ when compared to the PBMCs 
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co-cultured with normoxic MSCs, which means that the EVs may be modulating the production 

of this pro-inflammatory cytokine to a greater extent than the MSCs. This is the different to 

other studies which have found UCMSCs to be a more potent suppressor of IFN-γ in PBMCs 

compared to their EVs [540]. 

 

IL-4 is another anti-inflammatory cytokine of interest. IL-4 has been found to support Treg 

functioning and it can polarise naïve Th cells into Th2 effector cells which inhibit Th1 activity 

via IL-12 signalling [567–569]. However, its production was unchanged in PBMCs. The lack 

of change in IL-4 is not uncommon and has been found when another group co-cultured 

placenta, bone marrow and umbilical cord blood MSCs with activated T-cells [570]. 

 

When comparing the primed to non-primed MSCs and EVs, FoxP3 was statistically higher in 

the PBMCs co-cultured with primed EVs and MSCs, but no changes were identified in the 

PBMCs co-cultured with normoxic EVs and MSCs. This may mean that the pro-inflammatory 

priming of MSCs/EVs is improving their immunomodulatory abilities by causing them to 

upregulate FoxP3, a marker of Tregs cells which are reduced in RA patients [571]. Indeed, 

canine MSC-EV were able to upregulate FoxP3 in PBMCs and the effect of this upregulation 

was stronger in pro-inflammatory primed EVs compared to non-primed EVs [357]. 

 

The protein profile of Jurkat cells (n=1) was affected by all conditions, but mostly by 

normoxic/primed EVs which reduced the production of CD25, IL-17A and FoxP3 in Jurkat 

cells compared to Jurkat cells alone. A decrease in CD25 may suggest that these EVs are 

reducing their activated state. There was a reduction in the pro-inflammatory cytokine, IL-17A 
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in all conditions showing that the normoxic and normoxic/primed MSCs and EVs are targeting 

this cytokine. The decrease production of IL-17A is a positive immunosuppressive move as it 

is produced by Th17 cells which are upregulated in RA and contribute to chronic inflammation 

[533]. Previous research has shown that high glucose media upregulates the production of IL-

17A gene in Jurkat cells [572], as the Jurkat cells were grown in a DMEM containing high 

glucose this would explain the presence of IL-17A in Jurkat cells, nevertheless, the MSCs and 

EVs were able to decrease the amount of IL-17A in the co-cultures. This is in clear contrast to 

the PBMCs, in which the production of IL-17A was unchanged after co-culture with MSCs 

and EVs, albeit there was a low production of IL-17A to begin with. 

 

Despite these anti-inflammatory changes, the production of FoxP3 was reduced in Jurkat cells 

co-cultured with normoxic and normoxic/primed EVs. FoxP3 is a key regulator of pro-

inflammatory responses, and this data shows that EVs are modulating the production of FoxP3 

in Jurkat cells. Additionally, FoxP3 has a statistically lower production in Jurkat cells that were 

co-cultured with normoxic EVs compared to normoxic MSCs, further showing that these EVs 

are targeting FoxP3 in Jurkat cells. This is in clear contrast to the effects of normoxic/primed 

EVs on PBMCs which statistically increased the production of FoxP3. It shows that the EVs 

may have different mechanisms of action to their parent MSCs, which has also been found in 

other studies [165,184,190]. 

 

There were no identified changes in the production of IL-4, IFN-γ or CD127 in Jurkat cells. 

Indeed, previous studies have found little uptake of ATMSC-EVs in Jurkat cells and no changes 

to IFN-γ production [540]. However, when considering the change in production of CD25, IL-

17A and FoxP3, the evidence shows that MSCs and EVs are altering the Jurkat cell protein 

production. 
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The next objective was to look at the percentage of CD3+CD4+ cells, the IL-4: IFN-γ ratio and 

the percentage CD4+CD25+CD127- Tregs in PBMCs/Jurkat cells that were co-cultured with 

EVs and MSCs. This was carried out because the interpretation of functional performance is 

limited when analysing single marker changes, as it does not give a true insight into the 

relationship between different proteins in the cell population. The percentage of 

CD4+CD25+CD127- Tregs were also assessed to see if they correlated with the increased 

production of FoxP3 by normoxic/primed MSCs and EVs. 

 

CD3+CD4+ T-cells in RA directly contribute to a chronic inflammatory response. Specifically, 

two types of CD4+ T-cells, Th1 and Th17, are highly activated in RA [530]. Th1 cells secrete 

IFN-γ, IL-12, IL-2 and TNF-α, and Th17 cells secrete IL-17, all of which promote a pro-

inflammatory immune response [530]. Flow cytometry analysis revealed that normoxic/primed 

MSCs were able to statistically lower the percentage of CD3+CD4+ T-cells in PBMCs. This 

shows that normoxic/primed MSCs are reducing this population which could lead to a 

suppressed immune response. The percentage of CD3+CD4+ cells in all other PBMC co-

cultures and in Jurkat cells remained unchanged. 

 

The analysis of CD3+CD4+ T-cells in PBMCs does not detail if they are belonging to a Th1 

and Th2 lineage. This is important as there is an imbalance in Th1/Th2 cells in RA, which is 

characterised mainly by the production levels of IFN-γ and IL-4 [556]. In particular, Th1 cells 

are major contributors towards RA pathogenesis, whereas Th2 cells have immunosuppressive 

properties [546]. This is mainly due to the fact the Th1 cells secrete IFN-γ, a pro-inflammatory 

cytokine and Th2 cells secrete IL-4, IL-5, and IL-13 which are cytokines with anti-

inflammatory properties [546,573]. IL-4 levels are reduced in RA which directly correlates 

with disease severity. For this reason, the relationship between IFN-γ and IL-4 was assessed 
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with the hypothesis that MSCs or EVs could shift the IL-4: IFN-γ balance in favour of IL-4, 

thus favouring anti-inflammatory signalling. Results showed that the ratio of IL-4: IFN-γ was 

unchanged in PBMCs that were co-cultured with normoxic EVs and MSCs. So, despite PBMCs 

having a statistically lower production of IFN-γ when co-cultured with normoxic EVs 

compared to normoxic MSCs (Figure 80), this change did not translate into a difference in the 

IL-4: IFN-γ ratio. The lack of change shown here shows that the normoxic EVs/MSCs did not 

target Th1 or Th2 specifically. However, other cytokines such as IL-5 and IL-13 are released 

from Th2 cells [573], so an exploration of these cytokines and their ratio to IFN-γ would 

provide a stronger conclusion to the immunomodulatory ability of MSCs and EVs. 

 

This study would have benefitted from the analysis of IFN-γ in the PBMC + normoxic/primed 

MSC/EV co-culture. This is a key pro-inflammatory cytokine in RA and insight into its 

expression would have been valuable in determining MSC immunosuppression. However, due 

to unforeseen antibody shortage this wasn’t carried out. 

 

There were no differences identified in IL-4: IFN-γ ratio in the Jurkat cells from all co-cultures 

(Figure 86). This was expected as no considerable increase in either protein markers were 

identified from the single protein analysis, shown in Figure 81. 

 

Another type of CD3+CD4+ T-cell are Tregs which have strong anti-inflammatory properties 

through suppressing T-cell proliferation and pro-inflammatory cytokine release [547,548]. In 

patients with autoimmune disease, Treg cells are either less abundant or defective, or both, 

which leads to the expansion of autoreactive T-cells [548,550,574,575]. Therefore, this 
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population of cells was assessed in the PBMCs to see if EVs or MSCs could increase their 

numbers, as this would represent an immunosuppressive ability. Jurkat cells were not analysed 

for their expression of Tregs as these cells had a very low number of CD4+ T-cells. 

 

Two of the mostly commonly researched Tregs include CD4+CD25+CD127- Tregs and 

CD4+CD25+FoxP3+ Tregs. FoxP3 is a marker for natural Tregs but is also expressed to a 

lower extent in CD8+ T-cells [548]. When FoxP3 is stably expressed and present on 

CD4+CD25+ cells, this population of cells is capable of inhibiting the expression of pro-

inflammatory cytokines [550]. In this study, there was an increase of FoxP3 by primed MSCs 

and EVs so it would have been beneficial to analyse the amount of CD4+CD25+FoxP3+ cells 

from the co-cultures, but a technical issue arising from the conjugation of both FoxP3 and CD4 

to the same fluorochrome meant that this could not be carried out. Therefore, 

CD4+CD25+CD127- cells were used to characterise Tregs, and to see if their expression 

correlated with the identified increase in FoxP3 from the normoxic/primed EV and MSC co-

culture with PBMCs [549]. This comparison was carried out because studies found that 

CD4+CD25+CD127- Tregs express high levels FoxP3, have a strong correlation with 

CD4+CD25+FoxP3+ Tregs, and functionally, they are equally as effective in suppressing 

CD4+ T-cell responses [550–552].  

 

Results found that there was a significant decrease in CD4+CD25+CD127- Tregs in 

normoxic/primed MSCs compared to activated PBMCs (Figure 87D). This shows that the 

levels of FoxP3 and CD4+CD25+CD127- Tregs did not correlate in this experiment, because 

normoxic/primed MSCs increased the production of FoxP3 in PBMCs but did not increase the 

percentage of CD4+CD25+CD127- Tregs. Likewise, a correlation was not identified for the 

normoxic/primed EVs, as they increased FoxP3 in PBMCs but the percentage of 
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CD4+CD25+CD127- Tregs was unchanged. So, despite research showing a strong correlation, 

this was not found in these experiments. 

 

All other MSCs and EV co-cultures with PBMCs were unable to change the percentage of 

CD4+CD25+CD127- Tregs compared to the control. This finding is surprising as MSCs are 

known to downregulate CD127, to maintain the Treg phenotype [576], and MSC-EVs can 

increase the proliferation of CD4+CD25+CD127- cells [165]. Nevertheless, the use of CD127 

as a negative marker of Tregs is debated with many researchers arguing that the negative 

expression of CD127 is unreliable and not as accurate as FoxP3 [577,578]. Researchers also 

advocate for FoxP3 as the best indicator of Tregs, specifically the demethylation of the Treg 

cell-specific demethylated region (TSDR) which is associated with stable Tregs [579]. 

Therefore, in this chapter, the regulation of FoxP3 is regarded as being more influential to MSC 

and EV mediated immune modulation than the percentage of CD4+CD25+CD127- Tregs. 

 

Additionally, many studies state that the ratio of Treg:Th17 is more important, as Tregs are 

capable of suppressing their pro-inflammatory counterparts [580–582]. Therefore, analysis of 

the Treg: Th17 ratio may have been more beneficial, as it is widely accepted that this Treg:Th17 

imbalance contributes to autoimmunity and a loss of immune tolerance [583]. This is a 

limitation of the study and the the flow cytometry panel could be improved to include all Treg 

and Th17 cell markers in the one tube. An example of an improved flow cytometry panel along 

with the functions of the markers is provided in Supplementary Table 3. 

 

Despite MSCs and EVs not increasing CD4+CD25+CD127- Tregs or the IL-4: IFN-γ ratio in 

the PBMCs, it must be recognised that they may be influencing other cell populations within 

the PBMCs. For example, research shows that EVs can polarise macrophages towards the M2 
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phenotype [584] and they’re also known to have an immunomodulatory effect on B-cells 

[585,586]. Indeed, research studying the uptake of EVs by different subpopulations of PBMCs 

found that the majority of BMMSC-derived exosomes were found in monocyte and B-cell 

populations as opposed to T-cells [585]. A different study also reported that EVs were taken 

up by monocytes and rarely taken up by lymphocytes [184], so this evidence suggests that EVs 

may primarily act on other PBMC subsets and not directly target T-cells. 

 

Overall, the main aim of this chapter is to assess the immunosuppressive ability of UCMSCs 

and UCMSC-EVs on PBMCs and Jurkat cells. So, the most important question to ask is: are 

MSCs and EVs immunosuppressive? 

 

For the normoxic EVs, they were unable to change the protein profile of PBMCs and there was 

no change in CD3+CD4+ cells, IL-4: IFN-γ ratio or Treg cells indicating that they did not make 

a significant anti-inflammatory change. In the Jurkat cells, they reduced both IL-17A and 

FoxP3. As IL-17 is pro-inflammatory and FoxP3 is anti-inflammatory, and both contribute to 

the Th17: Treg ratio, then these finding could be considered to balance each other out. 

 

For the normoxic/primed EVs, they were able to increase FoxP3 production in PBMCs, but no 

further differences were found in the percentage CD3+CD4+ cells, IL-4: IFN-γ ratio or Treg 

cells. In the Jurkat cells, they reduced their activated state by decreasing CD25 and similar to 

the normoxic EVs, they reduced both IL-17A and FoxP3. Due to their increase in FoxP3 in 

PBMCs and decrease of CD25 and IL-17A in Jurkat cells, normoxic/primed EVs are 

moderately immunosuppressive. The reason they are not considered to be strong 

immunosuppressors is because they were unable to increase Treg numbers in PBMCs or the 
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IL-4: IFN-γ ratio in Jurkat cells. The Treg: Th17 and Th1: Th2 balance is often used to 

determine the immunosuppressive properties of MSCs and EVs [587] and it is this balance that 

is polarised in RA [1,37,38,537,556]. So, for the EVs to change the immune profile of RA they 

would need to change the ratio of these cells. 

 

The normoxic MSCs showed no effect on the PBMC immune profile in any experiment, they 

were only able to decrease the pro-inflammatory cytokine IL-17A in Jurkat cells. It is therefore 

doubtful if this change alone would be able to trigger a biologically significant anti-

inflammatory effect. 

 

The normoxic/primed MSCs displayed the most changes in the PBMC profile. They were able 

to upregulate FoxP3, decrease the percentage of CD3+CD4+ cells and CD4+CD25+CD127- 

Tregs. Out of these changes, FoxP3 is regarded as having the most impact of MSC immune 

modulation and as it is one marker of Tregs, its increase would improve immune tolerance. In 

the Jurkat cells, normoxic/primed MSCs reduced the production of IL-17A, which is 

considered and immunosuppressive effect. 

 

The next question to ask is: Is the pro-inflammatory priming making EVs and MSCs more 

immunosuppressive?  

 

It is clear that pro-inflammatory priming is better at increasing Foxp3 in PBMCs, so based on 

this evidence, it could be considered to be more beneficial. There was no evidence to suggest 

the pro-inflammatory priming was more affective in changing the Jurkat phenotype. The 

priming of MSCs does not always ensure that MSCs travel down an immunosuppressive path. 

Djouad et al. [105] found that MSCs had a reduced ability to suppress T-cell proliferation when 
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exposed to increasing concentrations of TNF-α. Additionally, Cosenza et al. [190] found that 

pro-inflammatory priming didn’t affect the anti-inflammatory ability of MSCs and EVs when 

co-cultured with CD4+ and CD8+ T lymphocytes. So, while research heavily cites the 

immunosuppressive abilities of MSCs post pro-inflammatory priming, it is not a flawless or 

straightforward process approach. 

 

One limitation to this study was the lack of analysis of PBMC/Jurkat proliferation and viability. 

Cell stains such as Violet Proliferation Dye, CSFE or a luminescence based assay provide a 

sensitive means to measure cell proliferation [588]. For cell viability, fluorescent-tagged 

annexin V staining is a commonly used method to measure cell apoptosis [589]. However, due 

to unforeseen set backs to the experimental plan, these experiments could not be carried out at 

the time of writing. Another limitation was the low number of PBMC donors. The addtion of 

more donors would have made the data more robust and possibly would have increased the 

likehood of identifiying more statistical differences.  
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7.4 Conclusion 

This chapter looked at the immunosuppressive effect of MSCs and MSC-EVs on PBMCs and 

Jurkat cells. Specifically, it looked at the protein profile of the PBMCs/Jurkat after a 3-day co-

culture. There is an imbalance of pro- to anti- inflammatory immune cells and cytokines in RA, 

so this chapter explored the ability of MSCs and EVs to shift the PBMCs/Jurkats to an anti-

inflammatory phenotype. 

 

Results showed that normoxic/primed EVs had the most potential to suppress immune 

responses as they were able to upregulate FoxP3 in PBMCs. Their parent normoxic/primed 

MSCs were also upregulated FoxP3. No changes were identified in PBMCs that were co-

cultured with normoxic MSCs/EVs, therefore, the primed MSC/EVs are most likely to be able 

to carry out a functional change in PBMCs, although it is not clear if it will be a biologically 

significant change in RA. This is because there was lack of change seen in IL-4: IFN-γ ratio 

and the largely unchanged level of Tregs, and as the ratio of pro- to anti- inflammatory immune 

cells is important in RA, this questions the ability of MSCs and EVs to shift the balance of 

immune cells. 

 

The normoxic/primed EVs reduced the production of IL-17A and CD25 in Jurkat cells and 

increased the production of FoxP3, which overall is considered to be an immunosuppressive 

move. MSCs in both conditions reduced the production of IL-17A showing that they too have 

anti-inflammatory properties. Overall, this study sheds light on the influence of MSCs and EVs 

towards PBMCs and Jurkat cells. It shows that their influence involves the increase of FoxP3 

in PBMCs from primed MSCs/EVs and a decrease in the production of IL-17A in Jurkat cells.  
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Chapter 8: Discussion 
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8.1 Overview of Thesis 

Rheumatoid arthritis is an inflammatory autoimmune disease where there is a breakdown of 

immune tolerance causing an activation of immune cells [4,36]. CD4+ T-cells, specifically, 

Th1 and Th17 cells [37,38], continually secrete pro-inflammatory cytokines (IL-2, IFN-γ, IL-

17A) that are responsible for the sustainment of inflammation in RA [39]. Current 

pharmaceutical treatments for RA come with serious side effects and are not effective in all 

patients with RA [45–47]. Alternative treatments have explored the use of UCMSCs and results 

have found positive therapeutic effects in reducing RA symptoms [115,116]. However, these 

cells bring some safety risks such as cell differentiation in vivo and tumorigenicity [590]. 

Therefore, to exploit the therapeutic properties of UCMSCs without the cell-associated risks, 

their EVs were explored in this thesis to uncover their anti-inflammatory potential for the 

treatment of RA. This aim was created from evidence that MSC-EVs can inhibit the 

proliferation of CD4+ T-cells, suppress pro-inflammatory cytokine production and promote 

the expansion of Tregs [184,538,591–593], thereby making them a possible therapeutic option 

for RA patients. Additionally, the cell culture environment has been found to influence the 

immunosuppressive properties of MSCs and MSC-EVs, so it was decided to culture the 

UCMSCs in normoxia, hypoxia and with pro-inflammatory cytokines. It was thereby the 

hypothesis that the hypoxic and pro-inflammatory priming would bolster the 

immunosuppressive properties of UCMSCs and their EVs and make them more anti-

inflammatory.  

 

To achieve this aim and to understand the properties of UCMSC-EVs, they needed to be 

thoroughly characterised and analysed in functional tests. Chapter 3 focused on the 

characterisation of their parent UCMSCs as a starting point towards understanding EV 
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characteristics. This chapter aimed to confirm that the cells were of a mesenchymal stem cell 

lineage while following the MSC characterisation criteria set out by the International Society 

for Cellular Therapy [51]. This chapter provided insight into the growth, morphology, and 

surface marker expression of UCMSCs. They were compared to a BMMSC control, and 

overall, they had a similar surface marker expression and faster in vitro growth. In all, the 

UCMSCs displayed all the required MSC markers, they had a spindle-like morphology and 

proliferated faster than BMMSCs making them a promising cell source for EV research.  

 

As one of the aims of this thesis was to see how culture conditions alter EV properties, the 

MSCs were characterised under four different conditions (normoxia ± pro-inflammatory 

priming, hypoxia ± pro-inflammatory priming). When comparing the different culture 

conditions of UCMSCs, the pro-inflammatory priming caused an increase in CD106 and HLA-

DR in some donors. These findings have relevance to immune modulation as CD106+ MSCs 

can suppress immune responses [277] and HLA-DR is known trigger immune responses, 

although on MSCs this is unlikely without the presence of co-stimulatory markers CD80 and 

CD86 [119,272]. These findings showed the heterogenic nature of the four umbilical cord 

donors as some responded differentially to pro-inflammatory priming. On the other hand, there 

were no differences in proliferation or surface marker expression between normoxic and 

hypoxic UCMSCs. While hypoxia supported the growth of UCMSCs, it didn’t significantly 

increase its proliferation as was found with other studies of UCMSCs in hypoxia [266]. The 

lack of change in surface marker expression of UCMSCs in hypoxia is similar to findings in 

the research [267,268]. 
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Chapter 4 details the numerous techniques employed to discover the properties of UCMSC-

EVs. The main finding was that, in all four culture conditions, the EVs contained the 

characteristic EV protein markers, and they displayed the correct size and morphology of EVs, 

in line with the ISEV guidelines. This chapter also found some changes in EV characteristics 

between conditions. Some noteworthy differences include a higher concentration of particles 

in normoxic conditions compared to the hypoxic conditions, and a higher production of 

tetraspanins CD9, CD81, MSC marker CD105 and cell adhesion molecule CD146 in hypoxic 

EVs compared to hypoxic/primed EVs. Additionally, MCSP was lower in pro-inflammatory 

primed EVs compared to non-primed EVs. This protein has been found to functionally improve 

MSCs angiogenic properties and its decreased production may mean that the pro-inflammatory 

primed EVs were less angiogenic. In all, Chapter 4 mainly focused on establishing that the 

isolated EV preparation were true EVs, and the following chapter delved further into the 

characterisation of EVs by looking at their protein cargo. 

 

Chapter 5 employed the use of a proximity-based extension assay to study how hypoxic and 

pro-inflammatory culture conditions were affecting the EV protein cargo. Some commonly 

cited anti-inflammatory proteins (TGF-β1, PDL1, HGF, FGF21 [78,594]) were present in all 

EVs, but not differentially expressed between conditions. Indeed, there were no identified 

differences in the protein cargo of normoxic and hypoxic EVs. All the changes occurred in the 

expression of proteins between primed and non-primed EVs. In general, there was an increase 

in proteins associated with chemotaxis (CCL3, CCL11, CCL20, CXCL5) in the pro-

inflammatory primed EVs. The expression of some anti-inflammatory proteins was also 

increased in pro-inflammatory primed EVs, such as MMP10 in normoxic/primed EVs, and LIF 

and TRAIL in hypoxic/primed EVs. MMP10 has been found to polarise M1 macrophages into 

an M2 phenotype [421] and both LIF and TRAIL protein are known to shift the Th17: Treg 
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balance [416,420]. This shows that the pro-inflammatory primed EVs contained both anti-

inflammatory and chemotactic proteins. It remains to be answered whether the anti-

inflammatory proteins will prevail and suppress immune responses or whether the chemotactic 

proteins will promote immune cell activity. However, before any solid conclusions could be 

formed, it was important to look at the other constituents of the EV cargo. 

 

Chapter 6 looked at the miRNA cargo of EVs. MiRNAs are gaining increasing popularity 

after the discovery that EVs can transfer functional miRNAs into target cells whereby they can 

carry out gene silencing [445,595–597]. This study represents the first of its kind to sequence 

RNA for UCMSC-EVs in hypoxic and pro-inflammatory conditions. It aimed to identify 

miRNAs in UCMSC-EVs capable of suppressing immune responses, and to see if the culture 

conditions were influencing specific miRNAs to be packaged into EVs. A principal component 

analysis found that the cells clustered closely together indicating a high similarity, but the EVs 

in the different conditions showed no clear trends in clustering indicating that their miRNA 

profile is dissimilar in comparison. In all, there were 59 upregulated miRNAs in EVs compared 

to cells, showing that miRNAs were being selectively packaged into EVs. On comparison of 

the different types of EVs, there were 5 miRNAs upregulated in normoxic/primed EVs 

compared to normoxic EVs, and two downregulated in hypoxic EVs compared to normoxic 

EVs. The differentially expressed miRNAs, some contained anti-inflammatory properties, 

namely miR-139-5p, miR-140-5p, miR-214-5p but, in general, the miRNAs were either 

understudied, lowly expressed, or had multiple gene targets. This makes it very difficult to 

establish the in vivo functioning of the miRNAs. Furthermore, the RT-qPCR failed to validate 

the RNA sequencing findings, but this experiment ran into difficulties with data normalisation. 

It did positively identify miR-146a-5p and miR-181a-5p in all EVs, and these two miRNAs are 

reported to have anti-inflammatory functions on immune cells [445,524]. 
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Up to this point, the information on EV characterisation (Chapter 4), protein cargo (Chapter 

5) and miRNA cargo (Chapter 6) is all very valuable information about how EVs may function 

a specific way when encountering immune cells. Specifically, the characterisation of the EVs 

showed that they contained anti-inflammatory molecules, but it also showed that they contained 

pro-inflammatory proteins, and miRNAs with multiple gene targets. Therefore, at this point, it 

was not possible to ascertain how they would function against T-cells. It was then necessary to 

conduct functional experiments in vitro to see if the EVs were truly anti-inflammatory agents.  

 

Chapter 7 detailed the co-culture of UCMSCs and their EVs with PBMCs and Jurkat cells. 

Initially the aim was to analyse the impact of MSCs and MSC-EVs on PBMCs from patients 

with RA, as this would be the most direct in vitro link towards determining the potential of 

EVs to be a therapeutic agent for RA. However, access to these patients was not possible at the 

time of the experiments so the analysis of EV immunosuppressive functioning was carried out 

on PBMCs from healthy volunteers and Jurkat cells. The findings of the co-culture experiments 

were mixed with neither normoxic EVs nor MSCs showing any effect on PBMCs, however, 

both normoxic/primed EVs and MSCs increased the production of FoxP3 in the PBMCs, which 

is considered a positive immunomodulatory change. Normoxic/primed MSCs decreased the 

percentage CD3+CD4+ T-cells. To get a clearer picture of which subset of T-cells they were 

targeting (i.e., Th1 or Th2), the ratio of IL4: IFN-γ was compared, although results show that 

the ratios were unchanged compared to the control. This shows that the normoxic/primed 

MSCs were not targeting IFN-γ-producing Th1 cells or IL-4-producing Th2 cells specifically. 

CD4+CD25+CD127- Tregs were downregulated in normoxic/primed MSCs only, which does 

not correlate with the increased expression of FoxP3, although there are doubts over the 

reliability of CD127 as a negative marker of Tregs [577,578,598]. All this evidence points 
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towards anti-inflammatory properties of the normoxic/primed MSCs and EVs based on their 

ability to increase FoxP3 production. 

 

In terms of Jurkat cells, all EVs and MSCs reduced the production of IL-17A. The normoxic 

and normoxic/primed EVs also reduced FoxP3, therefore when deciphering the pro- and anti- 

inflammatory properties of these EVs, the reduction of IL-17A and FoxP3 balance each other 

out, as IL-17A is a pro-inflammatory cytokine secreted by Th17 cells, and FoxP3 is a marker 

associated with immunomodulatory Tregs. Normoxic/primed EVs also reduced the production 

of CD25 which is a marker of T-cell activation. When all changes in protein molecules are 

considered, the normoxic/primed EVs and both groups of MSCs elicit anti-inflammatory 

changes through the reduction of pro-inflammatory proteins in Jurkat cells, although their 

functional change is limited to IL-17A and CD25, as no differences were identified in 

CD3+CD4+ cells or the IL4: IFN-γ ratio.  

 

Whether the increase in FoxP3 in PBMCs, and the reduction of IL17A/CD25 in Jurkat cells is 

enough to shift a pro-inflammatory response into an anti-inflammatory one is unknown and 

cannot be fully known without investigating these EVs in an animal model of RA. Overall, the 

findings from Chapter 7 show that UCMSC-EVs have some anti-inflammatory effects on 

PBMCs and Jurkat cells and these anti-inflammatory properties are enhanced after MSCs 

priming with pro-inflammatory cytokines.  
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8.1.1 Outcome of hypoxic and pro-inflammatory priming 

When considering all the chapters as a collective, this thesis identified the presence of some 

anti-inflammatory agents in EVs. But this project also proposed the hypothesis that pro-

inflammatory priming and cell culture in hypoxia would improve the EV anti-inflammatory 

potential. However, many of the anti-inflammatory proteins and miRNAs (TGF-β1, PDL1, 

HGF, let-7i-5p, miR-100-5p) identified in the EV cargo did not show any changes in hypoxic 

or pro-inflammatory primed environments. There was an increased production of a few anti-

inflammatory factors in the pro-inflammatory primed conditions, namely CD106 and LIF from 

the protein analysis, and an increased expression of miR-139-5p, miR-140-5p and miR-214-5p 

from the RNA sequencing analysis. But these findings are balanced by evidence that the 

miRNAs with multiple gene targets and there were many chemotactic proteins in the pro-

inflammatory/primed EV cargo. Some alarm was raised by the presence of these chemotactic 

proteins (e.g. CCL3, MCP-4), as they are known to stimulate T-cells [407] and are associated 

with the early onset of RA symptoms [408]. But it must also be recognised that these proteins 

are widely cited to be key components of MSC immunomodulation [401–404] and it is 

unsurprising that these proteins are increased in the primed EV samples as it may indicate that 

the pro-inflammatory priming is ‘activating’ MSCs to seek out immune cells where they can 

carry out their anti-inflammatory effects. The concern presented in this Chapter 5 is whether 

the RA disease model is the right choice due to the connections between these chemotactic 

proteins and RA. 

 

Another concern was the association between many of the differentially expressed miRNAs 

and cancer pathways, many of which supported tumour progression, although this may be 

because cancer is a heavily researched field and studies on miRNAs relating to the immune 
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response is largely understudied [509,599]. Nevertheless, the association with cancer cannot 

be discredited. In all EVs, there was a high expression of miRNAs that were pleiotropic in 

nature, such as miR-21-5p and miR-139-5p. There is an uncertainty as to which gene these 

miRNAs will target in vivo, or they may target multiple pathways. It is clear that the culture 

conditions alter EVs, particularly between normoxic and normoxic/primed EVs as changes 

were found in the surface marker expression, protein cargo, miRNA profiles and in immune 

cell cytokine secretion. These changes are not necessarily anti-inflammatory, instead they are 

rather pleotropic and have targets in many different diseases. It shows that the pro-

inflammatory priming conditions require further study as the findings from this study do not 

yield a large anti-inflammatory response despite what the research says.  

 

However, despite the findings on EV miRNA and protein characterisation, the functional 

experiments did not promote a pro-inflammatory response, but rather caused a mild anti-

inflammatory shift. This was seen in the ability of the normoxic/primed EVs and MSCs to 

increase FoxP3 production in PBMCs. It can be appreciated that in the EV cargo there is a 

diverse range of biological material and the PEA protein assay cherry-picked some specific 

proteins. It is likely that many other components of the EV cargo interacted with PBMCs. 

 

Hypoxic EVs, showed a lack of change in terms of size, surface marker production, protein 

cargo and only had two downregulated miRNAs in comparison to normoxic EVs. Instead, 

evidence from the protein analysis suggest that EVs may have a role in other pathways such an 

angiogenesis. Specifically, VEGF-A was increased in the hypoxic/primed EVs cargo and this 

protein has strong connections to angiogenesis and vascular permeability [600]. The 

progression of inflammation in RA joints is often associated with increased blood vessel 
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formation which provides extra routes for immune cell access the joints and thereby help 

facilitate the progression of inflammation [601]. Additionally, research has shown that high 

serum levels of VEGF-A in RA is associated with increased joint damage [600], therefore, 

considering the aim of this thesis was to establish if UCMSC-EVs could be a potential therapy 

for RA-related inflammation, then the presence of angiogenic proteins is not desired. However, 

VEGF-A in the EV cargo may be more suited towards the treatment of myocardial infarction, 

ischaemic heart disease, skin burns and wound healing by which UCMSCs have already shown 

positive therapeutic outcomes [602–607]. Therefore, the hypoxic EVs in this study may have 

a therapeutic potential when applied to the right disease model.  

 

Going back to the original hypothesis that hypoxic and pro-inflammatory priming bolsters the 

EVs anti-inflammatory properties, the evidence tends to point towards an unsuccessful priming 

approach for hypoxia but a mildly successful pro-inflammatory priming approach in normoxia.  

 

8.1.2 Challenges faced in thesis 

One main theme emerging throughout all chapters is the heterogeneity of UCMSCs and their 

EVs. Many research groups have reported MSC heterogeneity [608–611] and this rather 

expectantly has resulted in EV heterogeneity both in terms of characterisation and functioning 

[612]. Indeed Kordelas et al. [199] found huge variability in MSC-EV protein cargo from four 

donors of the same MSC source and using the same isolation method which is similar to the 

variability identified in this study. Other researchers found high variations between MSC-EV 

batches from the same donor in terms of immunomodulatory abilities [612]. This makes the 

function of MSC-EVs somewhat stochastic and unless this marker of ‘functionality’ can be 

found, this poses a problem for the application of MSC-EVs in research. To gain a greater 
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understanding if the variability in samples was the result of one donor skewing the results, the 

data was analysed for each donor and compared. However, there were no obvious trends 

identified. Different donors responded differently to the conditions, for example, Donor 2 had 

higher levels of HLA-DR/CD106 in response to priming in normoxia and hypoxia; Donor 4 

only had an increase of HLA-DR/CD106 in normoxic/primed conditions, and Donor 1 only 

had an increase of HLA-DR/CD106 in hypoxic/primed conditions (Figure 31). When 

examining the size of particles, Donor 1 had the smallest size particles in all conditions (Figure 

34), and when the tetraspanin profile of the EVs was examined, Donor 3 had a considerably 

higher expression of CD9 and CD81 in normoxic and normoxic/primed conditions, compared 

to the other donors (Figure 37). Other analysis of normalised protein expression and miR-21-

5p expression did not show donor variability. In all, this heterogeneity complicates the 

therapeutic development of an EV product as its function in vivo will be unpredictable. 

Therefore, to combat this variability in EV profiles, they would need to be analysed using an 

omics approach before use in the clinic, which is not feasible due to time and cost. Thus, an 

approach that uses a cell line that overexpresses specific anti-inflammatory miRNAs would 

establish consistency and reproducibility each time [447,613]. Other groups have tried this by 

altering MSCs to overexpress c-myc and found that the process was scalable under GMP 

conditions [447,614]. Another growing area of EV research is their potential to be used as 

carrier vehicles whereby desired miRNAs or anti-inflammatory drugs are transfected into an 

isolated EV population, this targeted approach would thereby establish a consistent therapeutic 

product [613,615]. EVs contain a phospholipid bilayer membrane structure which makes them 

suitable for this purpose. Thereby MSC-EVs are still therapeutic candidates for RA, just in a 

different capacity.  
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Finally, a reocurring challenge throughout this thesis was generating the required amount of 

EVs for characterisation and functional assessment. The process of obtaining enough 

conditioned media when cells are grown on tissue culture plastic is very time consuming and 

labour itensive, and is likely to be a challenge facing many research groups. Therefore, the 

large-scale growth of cells in bioreactors is a quicker way and more effeicient way to obtain 

conditioned media enriched in EVs. The emergence of bioreactors and bioreactor flasks to 

grow cells has been noticed by the EV field and is growing in popularity [616–619]. The 

UCMSCs in this study were initially expanded by Mennan et al. [63] in the Quantum® cell 

proliferation system, however the use of this system could not be continued for this poject due 

to the high costs involved. However, it would be a solution to the challenge of obtaining enough 

EVs. 

 

8.1.3 Impact of thesis 

This thesis achieved a number of goals which will aid UCMSC-EV research going forward. 

One of the benefits of this work was the detailed characterisation of EVs from normoxic, 

hypoxic, and pro-inflammatory conditions. The analysis of EVs from these conditions has not 

been done before on Quantum® expanded UCMSCs. Similarly, this thesis analysed the EV 

protein cargo by means of a PEA assay. This assay has been used by other research groups for 

EV protein analysis, but none have applied it to UCMSC-EVs. Furthermore, no studies have 

been carried out on UCMSC-EVs from normoxic, hypoxic and pro-inflammatory conditions 

using the PEA assay. So, there is further novelty in the range of inflammatory proteins tested 

for in the UCMSC-EV cargo from different conditions. 

 



  Chapter 8 

 
330 

 

This thesis also provided the first insight into the miRNA cargo of hypoxic and pro-

inflammatory primed UCMSC-EVs, obtained through NGS. Few studies have looked at 

sequencing the miRNA content of EVs, and even less at comparing EVs derived from different 

culture conditions. This thesis describes the successful sequencing of the UCMSC-EV small 

RNA cargo and provides valuable data to the understanding of EVs and their miRNA 

composition.  

 

The impact of this thesis is extended by the functional studies carried out on PBMCs and Jurkat 

cells. To our knowledge, there has only been one study that looks at the immunomodulatory 

effect of MSC-EVs on Jurkat cells [540] and this study used adipose tissue as the source of 

MSCs. So, this thesis adds extra novelty to the EV field and pushes the boundary towards 

discovery new interactions between EVs and T-cells.  

 

Finally, this thesis has applied the findings of EV properties and functioning to RA. Most EV 

research looks at chronic kidney disease, graft vs host disease, sepsis, ischaemia and respiratory 

diseases [620,621] and very few EV studies have looked at inflammatory arthritic conditions 

[190]. Although this research was not able to access RA blood, it still provided very useful 

functional studies of UCMSCs and EVs interactions with activated T-cells and it related the 

findings to RA as a disease. In all, this thesis used a variety of different techniques to achieve 

an overview of UCMSC-EVs.  
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8.2 Future Work 

There are some interesting areas left to explore. One of these is trying to establish a 

standardised EV isolation method. All current methods yield a different range and purity of 

EVs, and for this reason there is no preferred EV isolation method. The resulting lack of 

consensus on isolation methods has impacted EV research greatly. It has hampered the ability 

of different research groups to obtain reproducible results especially in terms of functional 

studies where the properties and functions of EVs vary depending on their isolation method. 

This study used differential ultracentrifugation combined with a 30% sucrose cushion as it is 

based on the EV floating density which research recommends as an extra purification step for 

EVs [209,622], albeit it has been found to decrease the protein concentration of up to 1000-

fold [623]. It would be useful to identify one EV isolation method for cell conditioned media 

so that future work with UCMSC-EVs would be performed under consistent and optimal 

conditions. 

 

A reoccurring challenge in this project was controlling for the potential of FBS-EV 

contamination throughout. EV depletion of FBS was carried out in this study but it was 

ineffective at removing all FBS-EVs. An alternative to using EV depleted FBS is to purchase 

different media supplements to replace the growth factors present in the FBS. However, Auber 

et al. [624] found that the alternative media supplementation also contained contaminating 

miRNAs, so despite the serum alternative chosen, experiment adaptation would still be 

required to control for contamination. For this reason, future work would look at substituting 

FBS to serum free media for short periods during conditioned media collecting and to see if 

this alters the EVs compared to EVs from cells grown in normal FBS. However, a thorough 
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analysis of the cells response to short term serum free conditions will need to be evaluated as 

serum free conditions are known to ‘stress’ cells [625]. 

 

The anti-inflammatory protein profile of the EVs could be explored further. Ideally, mass 

spectrometry is the ideal technique to provide information on the whole proteome, but this was 

not available for this study. In the future, it’d be beneficial to look at specific anti-inflammatory 

proteins such as IDO and PGE2 which have known immunomodulatory functions [626–628] 

in a europium-based immunoassay as this is a highly sensitive and cost-effective method. This 

would provide information on whether the UCMSCs are packaging their anti-inflammatory 

factors into EVs. 

 

A priority for future work is the deeper analysis of the RNA sequencing data. The RNA 

sequencing experiment sequenced all small RNAs and not just miRNAs. Therefore there is 

data available to look at transfer RNAs (tRNAs) which have been reported to be highly 

enriched in MSC-EVs compared to their cells [188]. They are also found to have similar 

properties to miRNAs although their functioning is largely unknown [188]. Therefore, this 

could be designed as an explorative study to discover the tRNA repertoire in MSC-EVs. It 

would also be useful to compare just the EV groups, without the cells, to see if more 

differentially expressed miRNAs could be identified. The RNA sequencing experiment 

generated a large amount of data and the analysis of this data has just skimmed the surface. 

Issues arose around accessing university facilities and staff support during the Covid pandemic 

which affected the study design of the RNA sequencing analysis. However, the further analysis 

of the RNA sequencing data is a priority for future work. 
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Finally, future work would look at co-culturing hypoxic EVs and MSCs with activated PBMCs 

as these EVs were not used in Chapter 7. Normoxic/primed EVs were chosen over hypoxic 

EVs for the co-culture experiments, due to time constraints and because they had more 

differentially expressed proteins and miRNAs in their cargo, thereby it was more likely that 

differences would be observed in this group. However, it would be premature to exclude the 

EVs just based on their characterisation and not look at their functioning in vivo. Many research 

groups have identified immunomodulatory properties in hypoxic ATMSC-EVs and BMMSC-

EVs [82,629,630] so therefore to make any strong conclusions about the hypoxic UCMSC-

EVs, functional studies need to be carried out. 
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8.3 Conclusion 

This thesis describes the isolation and characterisation of EVs from UCMSCs. It characterises 

EVs from four different culture conditions and an aimed to discover a population of EVs with 

the most anti-inflammatory potential. The normoxic/primed EVs contained the most 

differentially expressed proteins and miRNAs in response to pro-inflammatory priming. The 

increased proteins had chemotactic and immunomodulatory properties, and the upregulated 

miRNAs were pleotropic in nature with the most connections associated with cancer pathways 

and immune suppression. This diverse protein and miRNA profile means that the EVs may 

have wide ranging effects if applied to an RA model. When these EVs were carried forward 

into functional studies with activated PBMCs from healthy donors and Jurkat cells, the 

normoxic/primed EVs showed stronger anti-inflammatory potential compared to normoxic 

EVs as they were able to increase FoxP3 in PBMCs and decrease IL-17A in Jurkat cells. 

Therefore, out of the range of proteins and miRNAs that were increased in the normoxic/primed 

EVs, it was those with anti-inflammatory properties that caused a mild anti-inflammatory shift 

in the PBMCs and Jurkat cells. When considering if EVs from UCMSCs can be therapeutic 

agents in RA, the normoxic/primed EVs are most likely to be anti-inflammatory. 
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Supplementary Figure 1:Consent for given to patients prior to blood donation 
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Supplementary Figure 2: ImageJ analysis of cells 

Representative photos of ImageJ analysis carried out on UCMSCs in normoxia and hypoxia at P3 and 

P4, taken using the 4x objective. A line was drawn around the boundary of the cells and the surface 

area mapped out (shown in black). The pixel density of the cell was calculated on the software. This 

figure was converted into surface area using the scale bar as a reference point. 
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Supplementary Figure 3: Variability in donor morphology 

UCMSCs showed variability in cell morphology across the four donors. MSCs from donor 1 appeared 

to cluster more and were similar to Donor 2. Donor 3 MSCs contained a more heterogeneous 

population with a mix of round and spindle-like cells. Donor 4 MSCs displayed more properties of 

inactive fibroblasts as they were more elongated. Images taken of Donor 1-4 from P3-6 of cells in 

normoxic conditions. 
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Supplementary Figure 4: Tri-lineage differentiation of BMMSCs 

BMMSCs (n=1) at passage 2 underwent trilineage differentiation. (A) Images display the osteogenic 

differentiation of BMMSCs stained with alkaline phosphatase stain. The darker red deposits indicate 

ALP activity and an early indicator of osteogenesis. Images taken at 4x objective on an Eclipse TS100 

microscope. (B) Images display the adipogenic differentiation of BMMSCs. Lipid droplets from 

BMMSC monolayer appear red after Oil Red O staining. Images taken at x20 objective on an Eclipse 

TS100 microscope. (C) Images display a H&E stain (pink) showing the presence of a densely packed 

pellet of BMMSCs and a toluidine blue stain showing dark blue/purple deposits of glycosaminoglycans 

on the pellet sections which indicate positive staining for chondroblasts. Images taken on a Leica 

Diaplan microscope and show a scale bar of 500μm. 
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Supplementary Table 1: List of 92 proteins included in the Inflammation Panel Assay 

(Olink Bioscience, Uppsala, Sweden). 

 

1. Adenosine 

Deaminase (ADA) 

24. Fibroblast growth 

factor 5 (FGF-5) 

47. Interleukin-17A 

(IL-17A) 

70. Oncostatin-M 

(OSM)  

 

2. Artemin (ARTN) 25. Fibroblast growth 

factor 19 (FGF-19) 

48. Interleukin-17C (IL-

17C)  

71. Osteoprotegerin 

(OPG) 

3. Axin-1 (AXIN1) 26. Fibroblast growth 
factor 21 (FGF-21) 

49. Interleukin-18 (IL-
18)  

 

72. Programmed cell 
death 1 ligand 1 

(PD-L1)  

4. Beta-nerve growth 

factor (Beta-NGF) 

27. Fibroblast growth 
factor 23 (FGF-23) 

50. Interleukin-18 
receptor 1 (IL-

18R1)  

73. Protein S100-A12 
(EN-RAGE) 

5. Caspase 8 (CASP-

8) 

28. Fms-related tyrosine 
kinase 3 ligand 

(Flt3L) 

51. Interleukin-20 (IL-
20)  

 

74. Signalling 
lymphocytic 

activation molecule 

(SLAMF1)  

6. C-C motif 

chemokine 4 

(CCL4) 

29. Fractalkine 

(CX3CL1) 

52. Interleukin-20 

receptor subunit 

alpha (IL-20RA)  

75. SIR2-like protein 2 

(SIRT2)  

7. C-C motif 

chemokine 19 

(CCL19) 

30. Glial cell line-
derived 

neurotrophic factor 

(GDNF) 

53. Interleukin-22 
receptor subunit 

alpha-1 (IL-22 RA1) 

76. STAM-binding 
protein (STAMPB)  

 

8. C-C motif 

chemokine 20 

(CCL20) 

31. Hepatocyte growth 

factor (HGF) 

54. Interleukin-24 (IL-

24)  

 

77. Stem cell factor 

(SCF)  

 

9. C-C motif 

chemokine 23 

(CCL23) 

32. Interferon gamma 

(IFN-gamma) 

55. Interleukin-33 (IL-

33)  

 

78. Sulfotransferase 

1A1 (ST1A1)  

10. C-C motif 

chemokine 25 

(CCL25) 

33. Interleukin-1 alpha 

(IL-1 alpha) 

56. Latency-associated 

peptide 

transforming growth 
factor beta 1 (LAP 

TGF-beta-1)  

79. T-cell surface 

glycoprotein CD5 

(CD5)  
 

11. C-C motif 

chemokine 28 

(CCL28) 

34. Interleukin-2 (IL-2) 57. Leukemia inhibitory 
factor (LIF)  

80. T-cell surface 
glycoprotein CD6 

isoform (CD6) 

12. CD40L receptor 

(CD40) 

35. Interleukin-2 
receptor subunit 

beta (IL-2RB) 

58. Leukemia inhibitory 
factor receptor (LIF-

R)  

81. T-cell surface 
glycoprotein CD8 

alpha chain (CD8A) 

13. CUB domain-

containing protein 

1 (CDCP1) 

36. Interleukin-4 (IL-4) 59. Macrophage 

colony-stimulating 
factor 1 (CSF-1) 

82. Thymic stromal 

lymphopoietin 
(TSLP) 

14. C-X-C motif 

chemokine 1 

(CXCL1) 

37. Interleukin-5 (IL-5) 60. Macrophage 

inflammatory 
protein 1-alpha 

(CCL3) 

83. TNF-beta (TNFB) 

15. C-X-C motif 

chemokine 5 

(CXCL5) 

38. Interleukin-6 (IL-6) 61. Matrix 
metalloproteinase-1 

(MMP-1) 

84. TNF-related 
activation-induced 

cytokine 

(TRANCE) 

16. C-X-C motif 

chemokine 6 

(CXCL6) 

39. Interleukin-7 (IL-7) 62. Matrix 

metalloproteinase-

10 (MMP-10) 

85. TNF-related 

apoptosis-inducing 

ligand (TRAIL) 

17. C-X-C motif 

chemokine 9 

(CXCL9) 

40. Interleukin-8 (IL-8) 63. Monocyte 

chemotactic protein 

1 (MCP-1) 

86. Transforming 

growth factor alpha 

(TGF-alpha) 

18. C-X-C motif 

chemokine 10 

(CXCL10) 

41. Interleukin-10 (IL-
10) 

64. Monocyte 
chemotactic protein 

2 (MCP-2) 

87. Tumor necrosis 
factor (Ligand) 

superfamily, 

member 12 
(TWEAK) 

19. C-X-C motif 

chemokine 11 

(CXCL11) 

42. Interleukin-10 

receptor subunit 
alpha (IL-10RA) 

65. Monocyte 

chemotactic protein 
3 (MCP-3) 

88. Tumor necrosis 

factor alpha (TNF-
α) 

20. Cystatin D (CST5) 43. Interleukin-10 

receptor subunit 
beta (IL-10RB) 

66. Monocyte 

chemotactic protein 
4 (MCP-4) 

89. Tumor necrosis 

factor ligand 
superfamily 
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member 14 
(TNFSF14) 

21. Delta and Notch-

like epidermal 

growth factor 

related receptor 

(DNER) 

44. Interleukin-12 

subunit beta (IL-
12B) 

67. Natural killer cell 

receptor 2B4 
(CD244) 

90. Tumor necrosis 

factor receptor 
superfamily 

member 9 

(TNFRSF9) 

22. Eotaxin-1 (CCL11) 45. Interleukin-13 (IL-
13) 

68. Neurotrophin-3 
(NT-3) 

91. Urokinase-type 
plasminogen 

activator (uPA) 

23. Eukaryotic 

translation 

initiation factor 

4E-binding protein 

1 (4E-BP1) 

46. Interleukin-15 
receptor subunit 

alpha (IL-15RA) 

69. Neurturin (NRTN) 92. Vascular endothelial 
growth factor A 

(VEGF-A) 
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Supplementary Figure 5: Protein band peaks for Rab5a, Alix and Hsp70 

ImageJ software was used to quantify the protein expression from the western blot bands. Protein bands 

on the nitrocellulose membrane were gated and a pixel density generated. This pixel density was 

transformed into a peak graph shown in the figure above. A line was drawn at the baseline, and the 

surface area above this line was calculated. The band intensity number is an arbitrary figure used to 

depict the relative change between samples. Figure shows images of band peaks for Rab5a, Hsp70 and 

Alix show at the top of the figure and the conditions are represented on the left of the figure.
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Supplementary Table 2: List of differentially expressed miRNAs between cells and EVs 

Table displays a full list of the 61 differentially expressed miRNAs between normoxic cells and normoxic EVs along with the Log2(FC) and the 

adjusted p-value. 59 miRNAs had a higher expression in EVs, and 2 miRNAs (miR-127-3p and miR340-5p) had a higher expression in cells.  
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Supplementary Figure 6: Multicomponent PCR plot 

Multicomponent plot displaying SYBR Green fluorescent and ROX fluorescence. Fluorescent intensity is depicted on the y-axis and the cycle number is on the 

x-axis. ROX fluorescence was consistent from cycles 1-40 in all plates analysed. 
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Supplementary Figure 7: Gating of Lymphocytes on Flow Cytometry 

(A) Flow cytometry generated a dot plot of the PBMCs, with the Side Scatter Area (SSC-A) shown on 

the y-axis and the Forward Scatter Area (FSC-A) shown on the x-axis. Dead cells and debris were gated 

and excluded from analysis of this population. A gate was drawn around the lymphocyte subtype, based 

on its high forward scatter and clustering, and this population was used for further analysis. (B) Using 

the gated lymphocyte population, another scatter plot was created based on the Forward Scatter Height 

(FSC-H; y-axis) and Forward Scatter Area (FSC-A; x-axis). The lymphocytes were gated a second time 

to remove doublet cells which may provide false readings in the analysis. 
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Supplementary Table 3: Proposed flow cytometry panel for PBMCs and Jurkat cells 

Antibody Fluorochrome Function 

CD3 APC T-cell marker 

CD4 PE Helper T-cell marker 

CD8 BV421 Cytotoxic T-cell marker 

HLA-DR FITC Marker of activated T-cells 

TNF-α APC Pro-inflammatory cytokine secreted by macrophages 

IFN-γ PerCp-Cy5.5 Pro-inflammatory cytokine secreted by activated T-cells 

TGF-β FITC Anti-inflammatory cytokine secreted by macrophages 

CD45 PE Lymphocyte marker 

CD28 FITC T-cell activation marker 

FoxP3 PerCp-Cy5.5 Treg Marker 

CD25 APC Treg marker and T-cell activation marker 

CD127 FITC Treg marker 

CD19 BV421 B-cell marker 

IL-4 FITC Anti-inflammatory cytokine secreted by Th2 cells 

IL-17a BV421 Pro-inflammatory cytokine secreted by Th17 cells 
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Supplementary Figure 8: CD3+CD4+ and CD4+CD127- expression on PBMCs 

(A) Bar chart shows the percentage expression of CD3+CD4+ (y-axis) on the three PBMC donors (x-axis). Donor 1 had on average a 1.5 times 

higher expression of CD3/CD4 compared to Donor 2 and Donor 3 in all conditions. (B) Bar chart shows the percentage expression of 

CD4+CD127- (y-axis) on the three PBMC donors (x-axis). Donor 1 had on average a 1.54 times higher expression of CD4+CD127- compared 

to Donor 2 and Donor 3 in all conditions. 
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