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ABSTRACT 
Spinal cord injury is a devastating condition affecting thousands of people every year. The 

spinal cord does not have the intrinsic capacity for regeneration due to a complex cascade 

of physical and chemical barriers that prevent axonal growth and lead to neuronal death 

and, therefore, current treatments are yet to achieve full functional repair. The 

implantation of encapsulated neural stem cells within 3D matrices offers the advantages 

of cellular repopulation, release of neurotrophic factors and healthy extracellular matrix 

mimicking, leading to improved motor function. However, neural tissue engineering 

strategies face three main challenges: the exclusive use of experimental grade 

biomaterials for research, the overlooking of the highly aligned structure of the spinal 

cord and the reliance on complex and expensive in vivo rodent animal models, leading to 

time consuming experiments which make reproducibility challenging. As an alternative, 

we propose the use of chick embryo spinal cord organotypic slices as a novel spinal cord 

injury model as it offers a cheaper alternative linked to less ethical implications. 

Here, we established for the first time a transecting spinal cord injury model using the 

chick embryo as a donor of spinal cord slices. We also tested two biomaterials for their 

capacity to incorporate a relevant cell transplant population: HemopatchTM, a clinically 

available scaffold, and CellevateTM, an aligned nanofibre biomaterial. We demonstrated 

the viability of both matrices for incorporating a healthy cell population, we showed 

improvement of cell distribution through laminin engineering on HemopatchTM and we 

described a protocol for measuring cellular alignment with CellevateTM. Finally, we tested 

the feasibility of biomaterial implantation in the spinal cord injury model described 

earlier, resulting in the typical cellular responses expected in an adult injury. 

The model, which presents comparable responses to those based on murine models, 

represents a simpler alternative to previously established models. The adoption of this 

model could lead to impactful research while maintaining a cost-effective and technically 
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simple methodology. This could have translational potential for other research areas, 

such as the study of degenerative diseases, and potentially increase the research output 

on the study of spinal cord injury therapies which, in turn, would lead to a faster 

translation of functional therapies to higher complexity models and, finally, to the clinic.  
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1 INTRODUCTION 

1.1 OUTLINE 

During the course of this introduction, a background on spinal cord injury (SCI) and spinal 

cord anatomy will be reviewed. Next, the current and experimental therapeutic 

approaches will be discussed, with special attention to cell therapy and biomaterial 

implantation as the two approaches that will be taken forward in the experimental 

chapters. As this thesis focuses on the development of a new model in which to test 

biomaterial implantation for SCI, the current models in which to test SCI therapies will be 

reviewed and the chick embryo will be proposed as an alternative model. Finally, the aims 

and experimental chapters of this thesis will be outlined.  

1.2 SPINAL CORD INJURY 

1.2.1  Socioeconomic impact of spinal cord injury 

SCI is the cause to thousands of people’s paralysis around the world, affecting between 

250000 and 500000 people every year (WHO, 2018). The average age at the time of injury 

has increased from 29 years to 43 years since the 70s (National Spinal Cord Injury 

Statistical Center, 2019) with a male-female ratio of incidence of approximately 2:1 (WHO, 

2018). 

SCIs can be classified depending on the affected segments of the spinal cord. In this 

classification, the SCI can result in paraplegia, which refers to the loss of function in the 

thoracic, lumbar or sacral segments, but not cervical. Therefore, arm functioning is 

spared, but damage can affect the trunk, legs and/or pelvic organs depending on the level 

of injury. On the other hand, tetraplegia refers to impairment or loss of motor/sensory 

function in the cervical segments. Typically, tetraplegia affects the arms as well as trunk, 

legs and pelvic organs (Kirshblum et al., 2011). Moreover, SCI is associated with higher 
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risk of developing secondary complications such as thrombosis, urinary tract infections 

or respiratory complications (WHO, 2018). 

However, SCIs are usually classified following the American spinal injury Impairment 

Scale (AIS), which was created in 1982 with the aim to standardise SCI, guide further 

treatment, determine which injuries are complete or incomplete and help predict a 

possible recovery of autonomic functions, such as bowel movements or respiratory 

functions (Roberts et al., 2017). The AIS consists of a myotomal-based motor examination 

(following a grading system from 0-6), dermatomal-based sensory examination 

(following a grading system from 0-2) and anorectal examination. The AIS also classifies 

the injuries as complete or incomplete. A SCI will be classified as complete if there is no 

motor or sensory function below the injury. An incomplete SCI will be defined as such 

when there is some degree of motor or sensory function below the injury (Roberts et al., 

2017) (Table 1.1). 

 

The leading causes for SCI in the United States are vehicle crashes, followed by falls, 

violence (primarily gunshot wounds), sports and medical/surgical complications (Figure 

1.1 A) (National Spinal Cord Injury Statistical Center, 2019). After injury, the average 

length of hospitalisation in the United States is 11 days of acute care and 31 days of 

rehabilitation. However, approximately 30% of people are re-hospitalised usually due to 

diseases related to the genitourinary system (National Spinal Cord Injury Statistical 

Table 1.1 SCI classification according to ASIA. Injury level classification to guide further 
treatment. 
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Center, 2019). By the time of hospital discharge, less than 1% of people experience 

complete neurological recovery and the level of neurological damage can vary 

considerably between individuals, with incomplete tetraplegia the most common type of 

damage (Figure 1.1 B) (National Spinal Cord Injury Statistical Center, 2019). People with 

SCI are 2 to 5 times more likely to die prematurely than people without SCI and the 

mortality risk is higher during the first year after injury. It increases with injury severity 

(Figure 1.1 C) and it is strongly influenced by timely, quality medical care (WHO, 2018). 

In regard to the economic impact of such injuries, new SCI cases in the United Kingdom 

(UK) may incur lifetime costs of over £1.45 billion per year, 71% of which is covered by 

public funding (Mcdaid & Park, 2019). In fact, according to the World Health Organisation 

(WHO), the economic impact of SCI is higher compared to other neurological conditions 

such as dementia or multiple sclerosis, and the costs increase along with the level of 

severity, meaning finding an effective treatment for SCI is a key clinical goal. 

Figure 1.1 Epidemiology of SCI. Graphs adapted from data from National Spinal Cord 
Injury Statistical Center (2019) showing causes of SCI (A), extent of neurological damage 
by the time of hospital discharge (B) and life expectancy post-injury after injuries 
occurring at different ages and with various damage degrees (C). 
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1.2.2 Anatomy of the spinal cord 

The spinal cord is a cylindrical structure with a bilateral symmetry. It is extended from 

the foramen magnum to the first or second lumbar vertebrae in humans. It can be divided 

into four regions: cervical, thoracic, lumbar, sacral and coccygeal. Each of these regions 

can be divided into segments: 8 cervical, 12 thoracic, 5 lumbar, 5 sacral and 1 coccygeal 

(31 in total) (Figure 1.2 A). From each segment, two nerve roots emerge on each side, 

one ventrally and one dorsally. The dorsal nerves are called afferent and carry sensory 

input to the brain, whereas the ventral nerves serve the function of motor output and are 

called efferent (Bear, Connors, Paradiso, 2007) (Figure 1.2 B). 

 

Diverse anatomical structures are found in a cross section of the spinal cord (Figure 1.2 

B).  The grey matter is the region where neuronal bodies are located. It is shaped like a 

butterfly and it forms a ventral and dorsal horn on each side. The axons are found in the 

white matter, which surrounds the grey matter.  At the centre of the spinal cord is the 

central canal, where cerebrospinal fluid (CSF) flows, surrounded by a monolayer of 

ependymal cells. The shape and size of the grey matter varies along the axis due to lower 

Figure 1.2 Schematic representation of spinal cord anatomy on a side view (A) and 
cross view (B). Image created with Biorender.com. Image based on Bear, Connors, 
Paradiso, 2007. 



5 
 

levels containing fewer afferent axons and more efferent. Moreover, the width of the 

spinal cord also varies; there is a cervical enlargement, which contains neuronal bodies 

that innervate the arms, and a lumbar enlargement, which innervates the legs. (Bear, 

Connors, Paradiso, 2007).  

Distributed along the dorsal-ventral axis there are more than 20 types of interneurons, 

sensory neurons and motoneurons (Alaynick et al., 2011) that can be organized in 

different groups (Table 1.2). Sensory neurons transmit sensory information from the 

periphery to the brain; motoneurons innervate the smooth and skeletal muscles to which 

they transmit output from the brain. Interneurons synapse with sensory neurons, 

motoneurons and other interneurons and form higher complexity circuits (Bear, Connors, 

Paradiso, 2007). 

 

These neurons are part of complex specialised pathways that innervate different muscles 

or that transmit input to the brain from various sensory areas (Figure 1.3). The ascending 

or sensory pathways transmit sensory information. The neurons from the dorsal column-

medial lemniscal pathway (DCML) carry sensory information regarding fine touch, 

proprioception and vibration, whereas the neurons from the anterolateral system carry 

information regarding crude touch, pressure, pain or temperature. The descending or 

motor pathways can be classified into pyramidal tracts, responsible for conscious 

Table 1.2 Classification of neurons and their trajectory within the spinal cord. Table 
based on Bear, Connors, Paradiso, 2007 describing the origin (soma) and destination 
(synapse area) of different cell types within the spinal cord, as well as there they can be found 
in the grey and white matter and what kind of fibre they are according to their function. 
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movements, or extrapyramidal tracts that are responsible for unconscious movements. 

There are two pyramidal pathways: the corticospinal tracts, which supply the 

musculature of the body; and the corticobulbar tracts, which supply the musculature of 

the head and neck. The descending extrapyramidal tracts control balance and posture 

(vestibulospinal tract), muscle tone (reticulospinal tract), fine hand movements 

(rubrospinal tract) and movements of the head in relation to vision stimuli (tectospinal 

tracts) (Bear, Connors, Paradiso, 2007). 
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Figure 1.3 Classification of spinal pathways. Schematic representation of the brain and spinal cord highlighting the trajectory of somatosensory 
information (in neurons and nerve fibres of the ascending tracts) and motor output (in neurons and nerve fibres of the descending tracts). The dorsal 
column-medial lemniscal pathway (DCML) carries sensory information regarding fine touch, proprioception and vibration, whereas the anterolateral 
system carries information regarding crude touch, pressure, pain or temperature. The corticospinal tracts supply the musculature of the body; and 
the corticobulbar tracts, supply the musculature of the head and neck. The descending extrapyramidal tracts control balance and posture 
(vestibulospinal tract), muscle tone (reticulospinal tract), fine hand movements (rubrospinal tract) and movements of the head in relation to vision 
stimuli (tectospinal tracts). Image created with Biorender.com 
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In addition to neurons, the spinal cord also consists of glial cells, which provide support 

to neurons as well as performing multiple other tasks to maintain the homeostasis of the 

central nervous system (CNS). Astrocytes are the most abundant glial cell type, they 

provide structural support to the tissue, as well as form tight junctions around the blood 

vessels to form the blood brain barrier (BBB) and provide nutrients to the neurons. 

Furthermore, they clear the excess neurotransmitters around synapses to prevent 

excitotoxicity and re-establish optimal concentrations for signalling. Oligodendrocytes 

are found within the white matter surrounding the axons with a myelin sheath that 

increases the action potential transmission speed and has been shown to provide trophic 

support to neurons (Krämer-Albers et al., 2007). Microglia act as the macrophages of the 

CNS and have the ability to phagocyte cellular debris and clear any potential threat to the 

CNS (F. Bear, Connors, Paradiso, 2007). 

Finally, the spinal cord is surrounded by three meninges, which are special connective 

tissue structures that protect the spinal cord. At the most outer part is the dura mater, 

which is made of dense connective tissue and is highly vascularized. In the middle, there 

is the arachnoid membrane, composed of 5 to 8 layers of fibroblasts under which the CSF 

flows. In between the dura matter and arachnoid membrane there is the subdural space, 

a virtual space which indicates that these two meninges are not adhered. In the inner part, 

there is the pia matter, adhered to the neural parenchyma (F. Bear, Mark; W. Connors, 

Barry; A. Paradiso, 2007).  

Damage to the spinal cord can affect some or all of these structures and cell types, which 

leads to a highly complex succession of events that form the SCI. These events and their 

inhibitory effect on regeneration will be explored in the next section, but it should also be 

noted that any successful repair will have to attempt to restore the complex 

cytoarchitecture described in this section – one of the major challenges of developing new 

therapies. 
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1.2.3 Barriers to regeneration after SCI 

Far from being stable, the SCI develops through different stages. The timeline of injury 

development can be divided into acute (<48h), subacute (48h to 14 days), intermediate 

(14 days to 6 months) and chronic (>6 months) (Ahuja et al., 2017b). The acute phase is 

characterised by the initial trauma that causes mechanical damage to cells and 

vasculature, leading to cell death, haemorrhage and initial inflammatory response. These 

responses lead to the subacute phase, characterised with the rise of excitotoxicity and 

release of pro-inflammatory molecules due to the immune response. Vasculature damage 

also leads to prolonged ischaemia, which contributes to further cell death. During the 

intermediate phase, and maintained through the chronic phase, the glial scar and cystic 

cavities are formed (Ahuja et al., 2017b). These phases are discussed in more detail below. 

Damage is usually caused by a mechanical compression of the spinal cord, completely 

disrupting the nerve fibres at the centre of the pressure point, damaging the surrounding 

axons and causing haemorrhages (Kakulas, 1999). As seen in an in vitro model of murine 

dorsal root ganglia, severed axons have an intrinsic capacity to seal themselves and 

maintain internal homeostasis after axotomy, while they can still transmit nerve impulses 

(George et al., 1995). However, a few days after the axons have been disrupted, there is 

an entry of intracellular stored and extracellular calcium which activates calpain, an 

essential protease for cytoskeletal degeneration (George et al., 1995). This degenerative 

process is called Wallerian degeneration, (Waller, 1850) and it leads to cellular death and 

loss of information transmission capability. Moreover, the release of neurotransmitters, 

such as glutamate, around the synaptic cleft can rise to toxic levels due to the impaired 

function of glutamate transporters after the injury. This leads to excitotoxicity of the 

neurons, which occurs when receptors are overactivated, and results in cellular death, as 

seen in in vivo and in vitro rat models (Azbill et al., 2000). 
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Following a compression injury in live rats, the tight junctions that form the BBB are 

compromised, allowing blood cells to penetrate the injury site, stimulating an 

inflammatory response (Gray et al., 2007), which creates a toxic environment for cell 

growth. The first cells to migrate to the damaged tissue are macrophages from the blood 

stream and activated microglia from the surrounding tissue (Fawcett & Asher, 1999). 

Upon injury, macrophages and microglia are induced to switch from an anti-inflammatory 

subset (M2) towards a proinflammatory subset (M1) (Kigerl et al., 2009), which act to 

clear myelin debris and damaged cells. However, these also create a neurotoxic 

environment through the release of oxygen reactive species and, therefore, balancing the 

M1/M2 ratio towards an anti-inflammatory phenotype could be key in order to promote 

regeneration (Kigerl et al., 2009).  

After traumatic brain injury in mice, stimulated microglia can activate naïve astrocytes to 

a neuroprotective phenotype (Shinozaki et al., 2017) that migrate to the injury site and 

synthesize growth inhibitory factors such as chondroitin sulphate proteoglycans (CSPGs) 

(McKeon et al., 1999). CSPGs create an inhibitory environment for axonal growth (Davies 

et al., 1997). In fact, delivery of chondroitinase (which breaks down CSPGs) to the injury 

site has been shown to promote regeneration of ascending and descending tracts 

(Bradbury et al., 2002), demonstrating the inhibitory nature of these molecules. In in vivo 

murine models of SCI, local astrocytes then upregulate glial fibrillary acidic protein 

(GFAP) and hypertrophy to surround the endbulbs of dystrophic axons (Frisén et al., 

1995). This creates a barrier that isolates the injured from the healthy tissue and stops an 

uncontrolled inflammatory response and degradation (Faulkner et al., 2004), but that also 

prevents axonal growth. This astrocytic phenotype and upregulation of growth inhibitory 

extracellular matrix is commonly referred to as the glial scar and is widely regarded as a 

major barrier to regeneration. On the other hand, there is some evidence in live mouse 

SCI models suggesting that astrocytes also produce growth supportive molecules, such as 
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laminin, which could help axonal regeneration (Anderson et al., 2016). In fact, this study 

showed that ablating scar-forming astrocytes did not result in increased axonal 

infiltration. Instead, growth factor delivery promoted axonal regeneration past the 

astrocytic scar (M. A. Anderson et al., 2016), suggesting that there are other mechanisms 

present in the lesion that contribute to the lack of regenerative capacity of the spinal cord. 

Oligodendrocyte precursor cells (OPCs) are also present in the lesion, differentiating into 

mature oligodendrocytes for remyelinating the tissue (Zawadzka et al., 2010). However, 

some of these OPCs stay undifferentiated and there is some evidence suggesting they act 

as reactive astrocytes, upregulating their expression of CSPGs in rats with incomplete SCI 

(Levine, 1994). Degraded myelin also has growth inhibitory effects due to the exposition 

of myelin-associated proteins such as neurite outgrowth inhibitor A (Nogo A), myelin-

Figure 1.4 Barriers to regeneration. Schematic representation of cellular processes 
leading to neurodegeneration and barriers to repair after SCI. Represented here are  
macrophage infiltration and microglial activation, activation of astrocytes, formation of 
the glial scar and release of CSPGs, demyelination and Wallerian degeneration. Image 
created with Biorender.com 
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associated glycoprotein and oligodendrocyte-myelin protein (Ahuja et al., 2017a). The 

binding of these proteins to cell receptors activates a downstream cascade leading to 

neurite retraction and apoptosis (Ahuja et al., 2017a) (Figure 1.4).  

Therefore, in order to achieve effective repair, multiple clinical goals need to be targeted 

in the context of the complex injury mechanisms. These include replacing lost or damaged 

cells, increasing viability and regeneration of injured neurons and creating an 

environment that is more conducive to repair. This is a major clinical challenge and, to 

date, no effective combinatorial therapy has been described. 

1.2.4 Current treatments and limitations 

At the site of the incident where the injury has occurred, the spinal cord has to be 

immobilized both in suspected and confirmed injuries, especially in the case of cervical 

damage. Once at the hospital, the level of neurological damage and baseline function must 

be established using computational tomography (CT) or magnetic resonance imaging 

(MRI) (Ahuja et al., 2017b). Blood pressure has to be kept stable and surgical 

decompression of the spinal cord is needed in order to allow blood flow and avoid 

Figure 1.5 Timeline of response to SCI with current treatments. Pharmacological 
treatment and rehabilitation are the main treatment approaches.  
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ischaemia (Ahuja et al., 2017a). Once the level of neurological damage is established, it 

will be possible to act in accordance (Figure 1.5). 

At the moment, drug administration to patients with SCI, together with rehabilitation, are 

the main treatment approaches. Methylprednisolone is a glucocorticoid that upregulates 

anti-inflammatory cytokine release and enhances cell survival in preclinical models of SCI 

(Ahuja et al., 2017a). In a 2006 poll, 86% of the 305 interviewed surgeons indicated that 

they would choose to administrate methylprednisolone sodium succinate (MPSS) to 

patients with acute SCI (Eck et al., 2006). Even though it has been widely prescribed, 

animal studies show mixed results towards functional recovery. According to a 2009 

systematic review, only 34% of animal studies show beneficial effects after MPSS 

administration, 58% of studies show no advantages and 5% show mixed results (Akhtar 

et al., 2009). Moreover, a recent review of clinical studies show that the treatment has no 

impact on long term neurological recovery unless it starts within 8 hours post injury, in 

which case it has a small beneficial effect and should be considered for treatment 

(Fehlings et al., 2017). 

Although pharmacological treatment has shown to enhance functional recovery to some 

extent, drug delivery only addresses one of the many factors involved in the SCI cascade. 

Therefore, a better approach has to be taken to maximize this effect and to treat multiple 

symptoms.  

1.2.5 Experimental treatments 

Three main regenerative approaches have been proposed for treatment of SCI and are 

being tested in ongoing pre-clinical and clinical trials: 

1) Administration of pharmaceutical compounds that can stimulate growth 

(neurotrophic), inhibit degeneration (neuroprotective) or mitigate the toxic 

environment (neutralizing).  
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2) Transplantation of cells, such as stem cells, to the injured area to promote 

endogenous repair. 

3) The implantation of biocompatible scaffolds to create an environment for repair 

and axonal growth. 

Administration of minocycline inhibits microglial activation and, therefore, reduces the 

release of pro-inflammatory molecules (Seabrook et al., 2006). An intraperitoneal 

injection of minocycline every day for 28 days after injury in mice, resulted in improved 

hind limb function and reduced lesion size (Wells et al., 2003). These studies have been 

taken further into a clinical trial. Intravenous injection of minocycline twice a day during 

7 days after acute SCI resulted in 6 points greater motor recovery of patients treated with 

the drug (27 patients) compared to the 25 placebo-treated patients, especially in the case 

of cervical injury. However, no recovery was observed in patients with thoracic SCI. In 

addition, although these results show a tendency to recovery enhanced by drug 

administration, they are not statistically significant (Casha et al., 2012).  

GM-1 is a component of cell membranes that has the ability to promote neuronal plasticity 

and regeneration (Ahuja et al., 2017a), and presents low levels after injury (Imanaka et 

al., 1996). Administration of GM-1 has been shown to reduce neuronal retrograde death 

in hippocampus-injured rats (Sofroniew et al., 1986). Daily intraperitoneal injections of 

GM-1 to spinal cord injured rats over 13 days resulted in its incorporation in axons and 

myelin sheaths surrounding the lesion site, and a faster functional recovery than in 

controls (Imanaka et al., 1996). The intravenous injection of this drug to 37 patients, 18 

to 39 days post injury, resulted in a better functional recovery in a first study (Geisler et 

al., 1991), but no statistical significance was found in a later study with a population 

number of 180 patients (Geisler et al., 1991). 
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One of the biggest obstacles for pharmacological therapies is the system of delivery. 

Peripheral drug delivery to the CNS is impeded by the tight junctions that surround the 

capillaries and that form the BBB. Therefore, there is often a need for a direct delivery 

system such as the commonly used bolus injection or a catheter/minipump system 

(Pakulska et al., 2012). However, both systems present challenges that must be overcome. 

On the one hand, bolus injection consists of injection of the drug in the intrathecal space, 

but it is hindered by the flow of the CSF, that washes it off, disperses the drug and 

minimizes its localized release. Therefore, it has to be injected periodically. On the other 

hand, the catheter/minipump system requires invasive surgery for implantation, which 

makes it prone to dislodgement and increases the risk of infection. (Pakulska et al., 2012). 

Although helpful, pharmacological treatment does not offer a multifaceted approach to 

the treatment of the complex injury. On the contrary, cell therapy offers an approach of 

neuroprotection and cell replacement and biomaterial implantation offers a 

neuroprotective effect instead of the toxic environment of the lesion (Ahuja et al., 2017a). 

However, it is the combination of these two therapies that has given more promising 

results. Therefore, cell therapy and biomaterial implantation for SCI will be discussed 

below. 

1.3 CELL THERAPY AS AN EXPERIMENTAL APPROACH TO SPINAL CORD INJURY 

REPAIR 

1.3.1 Pro-regenerative mechanisms of cell therapy 

The study of cell therapy for CNS repair first originated when a section of peripheral nerve 

was used to bridge the two sides of an injured spinal cord in rats, resulting in elongation 

of the severed spinal cord axons (David & Aguayo, 1981). This outcome was associated 

with the modification of the glial environment, in particular, to the presence of Schwann 

cells, which seem to guide axonal regeneration in the peripheral nervous system (PNS) 
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(David & Aguayo, 1981). Consequently, a series of experiments were carried out in order 

to isolate Schwann cells for implantation (Bunge, 2016).  

Since then, multiple cell types have been tested for CNS regeneration. The most used cell 

types are Schwann cells, neural stem cells (NSCs), olfactory ensheathing cells (OECs) and 

mesenchymal stem cells (MSCs) (Ahuja et al., 2020; Assinck et al., 2017). These have been 

shown to promote functional recovery through mechanisms of neuroprotection and cell 

replacement, which will be covered in more detail in the subsequent paragraphs. 

Neuroprotection is defined as the mitigation of secondary damage caused by cellular 

responses to injury, which is usually mediated by the secretion of neurotrophic factors 

(Assinck et al., 2017). Depending on their structure, neurotrophic factors can be divided 

into three categories: neurotrophins, glial cell-derived neurotrohpic factor (GDNF) family 

and neuropoietic cytokines (Boyd & Gordon, 2003). Neurotrophins, such as nerve growth 

factor (NGF), brain-derived neurotrophic factor (BDNF) or neurotrophin-3 (NT-3), play a 

role in cell survival and differentiation (Boyd & Gordon, 2003). The GDNF family, has also 

been associated with cell survival. Finally, neuropoietic cytokines, like interleukin-6 (IL-

6) and IL-11, have been associated with the regulation of the immune response, cell 

proliferation, differentiation and neurite outgrowth (Boyd & Gordon, 2003). 

An imbalance in the levels of neurotrophic factors following SCI has been reported with 

conflicting results, sometimes suggesting upregulation in ex vivo rat spinal cord tissue 

(Hawryluk et al., 2012) and sometimes downregulation in adult live rhesus monkeys 

(Zhang et al., 2008). This could be due to the experimental differences between the studies 

which suggest an initial downregulation of neurotrophic factors during the first 3-7 days 

after injury (Hawryluk et al., 2012) followed by a slight increase after 7 days (Hawryluk 

et al., 2012; Zhang et al., 2008). Increased levels of immature neurotrophins have also 

been reported after lesion (Fan et al., 2018), which have been associated with a 
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detrimental role after spinal cord laminectomy in rats (Wong et al., 2010). Transplant cell 

populations have the capacity to release neurotrophic factors, which has been correlated 

with increased axonal regeneration and functional recovery (Ahuja et al., 2020; Assinck 

et al., 2017). Cell transplantation has also been correlated with an immunomodulatory 

effect, probably mediated by the release of anti-inflammatory cytokines (Assinck et al., 

2017), which could be the cause and/or the consequence of increased levels of spared 

tissue (neuroprotection). 

Cellular repopulation into the cystic cavity has been associated with the secretion of 

extracellular matrix (ECM) molecules, such as laminin, which can potentially facilitate the 

attachment of host axons and, therefore, enhance axonal regeneration (Assinck et al., 

2017). Moreover, differentiation of transplanted cells into mature neurons can also lead 

to the formation of new synapses with the host tissue, which has been correlated with 

increased functional outcome (Assinck et al., 2017). These mechanisms, can lead to 

potential cell replacement. 

To date, numerous studies involving cell implantation into SCI have been carried out. 

However, the response to the therapy varies greatly across reports due to different 

experimental settings. Probably, the most consequential variation is the cell type used. 

1.3.2 Advantages and limitations of therapeutic cell types for spinal cord injury  

The most commonly used cell types for implantation are MSCs, Schwann cells, OECs and 

NSCs. MSCs, Shwann cells and OECs can be derived directly from the patient to avoid 

immunosuppressive responses. However, harvest and propagation of these cell types is 

costly due to the complexity of the procedure. On the other hand, NSCs can be derived 

from embryonic tissue in an easier process. However, harvesting cells from embryonic 

tissue is associated with more ethical implications (Ahuja et al., 2020). Key advances in 

the neuroregenerative effects of each cell type, including clinical trials, have been 
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extensively reviewed elsewhere (Ahuja et al., 2020). Below, the most common 

experimental outcomes for each cell type, and its advantages and limitations, will be 

discussed. 

MSCs are multipotent cells found in connective tissue throughout the body (Ahuja et al., 

2020). They can be harvested from the bone marrow, adipose tissue and skeletal muscle, 

which makes them a good candidate for autologous transplantation (Ahuja et al., 2020; 

Assinck et al., 2017; Quertainmont et al., 2012). Injection of MSCs in in vivo models of 

spinal cord contusion in rats  has resulted in improved locomotor recovery (Nakajima et 

al., 2012; Quertainmont et al., 2012) and increased axonal infiltration into the lesion 

(Ankeny et al., 2004). MSC injection has also been correlated with an increase of 

neurotrophic factors in the lesion site (Himes et al., 2006; Nakajima et al., 2012; 

Quertainmont et al., 2012), which could be the cause of the presence of increased spared 

tissue after injection (Ankeny et al., 2004; Himes et al., 2006; Nakajima et al., 2012) and 

of an immunomodulatory effect (Nakajima et al., 2012). Despite these promising results, 

there is conflicting evidence on the regenerative potential of this cell type as suggested by 

studies that present no locomotor recovery after injection of MSC in similar rat in vivo 

models of spinal cord contusion (Ankeny et al., 2004; Himes et al., 2006). In addition, 

despite the multipotent nature of these cells, there is also conflicting evidence on the 

capacity of MSCs to differentiate into a neural lineage, with some studies reporting 

neuronal differentiation (J. He et al., 2021) and others suggesting that these cannot 

differentiate into fully functional neurons, as suggested by the lack of voltage-gated ion 

channels necessary for the transmission of action potentials (Hofstetter et al., 2002). 

Schwann cells are the myelinating cell type in the PNS and they seem to guide 

regenerating axons after injury in the PNS (Assinck et al. 2017). Injection of Schwann cells 

into the lesioned CNS has been correlated with enhanced axonal remyelination after a 

contusion lesion in live rats (Biernaskie et al., 2007; Honmou et al., 1996) as well as 
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functional recovery (Biernaskie et al., 2007). However, they show poor migration capacity 

into the astrocyte-containing CNS, which leads to the formation of a boundary between 

the cells and the damaged tissue (Wiliams & Bunge, 2012). Moreover, Schwann cells do 

not have the intrinsic capacity to differentiate into CNS cells. 

OECs are found in the nasal mucosa, and protect olfactory neurons by ensheathing them, 

phagocytosing debris and releasing neurotrophic factors (Ahuja et al., 2017b). Similarly 

to Schwann cells, OECs support the growth of damaged neurons into the olfactory bulb 

(Ahuja et al., 2020). Moreover, due to their presence in the nasal mucosa they are easily 

accessible and targeted for autologous transplantation (Féron et al., 2005). Injection of 

OECs has resulted in increased locomotor recovery and axonal regeneration after spinal 

cord transection in rats  (Li et al., 1997; Nakhjavan-Shahraki et al., 2018; Ramón-Cueto et 

al., 2000). They have also been reported to enhance remyelination, neuroprotection and 

immunomodulation (Ahuja et al., 2020). Therefore, OECs seem to have potential 

therapeutic effects in neuroprotection and remyelination, leading to increased motor 

recovery and axonal regeneration. However, these cells are not multipotent and, 

therefore, cannot contribute to the repopulation of lost neurons. 

NSCs can be harvested from embryonic tissue or from the subventricular zone or central 

canal in adults and bear the capacity to differentiate into neurons, astrocytes and 

oligodendrocytes, therefore, they can provide tissue replacement for the injury and 

trophic support (Liu et al. 2018). Implantation of NSCs into the lesioned spinal cord has 

resulted in increased functional recovery, remyelination, axonal regeneration and 

formation of new synapses between grafted cells and host tissue (Ahuja et al., 2020). 

From a therapeutic point of view, both NSCs and MSCs have the capacity to respond to SCI 

with both mechanisms mentioned previously: neuroprotection and cell replacement 

(Table 1.3). While Schwann cells and OECs can provide neuroprotection through 
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remyelination and, in the case of OECs, neurotrophic factor release, these cells do not have 

the capacity to differentiate into neurons. Therefore, these are not able to form new 

synapses with the host tissue. On the other hand, MSCs and NSCs have the capacity to 

release trophic factors for neuroprotection. In addition, they are multipotent and 

therefore, have the potential to differentiate into myelinating cell types and neurons. 

Although MSCs have the advantage of autologous transplantation, literature shows 

conflicting results in regard to functional recovery and their differentiation capacity. 

Instead, NSC implantation has robustly shown pro-regenerative outcomes. As a limitation, 

NSC harvesting is ethically challenging due to their presence in embryonic tissue. 

Nevertheless, in recent years NSCs have also been obtained through differentiation of 

induced pluripotent stem cells (iPSCs) and injected in the injured spinal cords of mice 

with promising results (Nori et al., 2011), providing an ethical alternative for NSC 

implantation. For these reasons, the experimental chapters of this thesis are based on the 

use of primary NSC cultures.  

 

Table 1.3 List of advantages and disadvantages to the use of different cell types for 
SCI treatment. This table describes the main pros and cons of the use of mesenchymal stem 
cells (MSCs), Schwann cells, olfactory ensheathing cells (OECs) and neural stem cells  (NSC) 
as cell therapy for spinal cord injury (SCI) 
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1.3.3 Experimental advances and limitations on the use of neural stem cells for 

spinal cord injury therapy 

Due to the above stated advantages, NSC implantation after SCI has been extensively 

studied in vivo (Table 1.4), resulting in survival of NSCs at the lesion site and migration 

into the host tissue (BJ Cummings, N Uchida, 2005; Iwanami et al., 2005; Karimi-

Abdolrezaee et al., 2006; Nori et al., 2011; Parr et al., 2007). Grafted cells have also been 

reported to differentiate into astrocytes, neurons and oligodendrocytes. However, the 

differentiation ratios differ across reports. While some studies report approximately 20% 

(Iwanami et al., 2005), 30% (BJ Cummings, N Uchida, 2005) or 50% rate of neuronal 

differentiation (Nori et al., 2011), others report 0-1% of neuronal differentiation with 

Table 1.4 Examples of existing literature featuring NSC implantation for the 
treatment of SCI. The top part of the table describes the methodology used in different 
research articles looking at cell therapy for spinal cord injury (SCI). The second part of 
the table summarises the relevant results. 
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most cells differentiating into oligodendrocytes and astrocytes (Karimi-Abdolrezaee et al., 

2006; Parr et al., 2007). 

Due to differences in the phenotypical fate of the grafted NSCs, there is also outcome 

differences with some studies reporting new synapse formation between grafted cells and 

host cells (BJ Cummings, N Uchida, 2005; Nori et al., 2011) and some reporting 

remyelination of axons (BJ Cummings, N Uchida, 2005; Karimi-Abdolrezaee et al., 2006; 

Nori et al., 2011). Despite these differences, most studies report increased locomotor 

recovery after treatment (BJ Cummings, N Uchida, 2005; Iwanami et al., 2005; Karimi-

Abdolrezaee et al., 2006; Nori et al., 2011). 

Since the publication of these studies, efforts have been made in order to understand and 

control the variability of outcomes upon implantation. For example, it has been suggested 

that the presence of the myelin protein Nogo-66 promotes the differentiation of NSCs into 

an astrocytic lineage (Wang et al., 2008) and that Wnt4-modified NSCs differentiate into 

neurons at higher rates than controls upon implantation, promoting functional recovery 

(Xiang Li et al., 2020). These studies highlight the versatility of NSC manipulation and 

open the possibility to finely tune this transplant cell population to a desired outcome.  

In clinical trials, the safety of NSC grafting was first studied for the treatment of liposomal 

storage disorder (Selden et al., 2013). NSC implantation has also been studied clinically 

for the treatment of traumatic, non-penetrating, cervical SCI resulting in improved 

locomotor recovery in all 5 patients (Anderson et al., 2017). 

Despite these advantages, cell therapy faces challenges in maintaining optimal cell 

survival and distribution in the lesion. For example, multiple studies report a decrease in 

NSC survival after implantation in a chronic compression lesion compared to acute in rats 

(Karimi-Abdolrezaee et al., 2006; Parr et al., 2007). In addition, other studies report a 

time-dependent decrease in the number of grafted cells found in the lesion area in a 
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similar model (Himes et al., 2006; Nakajima et al., 2012) and an uneven distribution of 

grafted cells, which partially fill the lesion cavity, also in a compression lesion in rats 

(Ankeny et al., 2004). There is evidence suggesting that intravenously injected cells in rats 

will not reach the injury area, they will only be detected in the injury when they are 

directly injected in the intrathecal or intralesional space after a contusion injury in rats 

(Takahashi et al., 2011). However, in this study 95% of the intrathecal-injected cells died 

within 1 week after injection and only attached to the healthy pia mater instead of 

invading the injury, and 70% of the intralesion-injected cells died within 6 weeks 

(Takahashi et al., 2011). 

The cause of transplant cell population death has been attributed to two mechanisms: the 

mechanical forces exerted on the cells when protruded through a very fine needle and 

anchorage-depended death (Mitrousis et al., 2018). Within the syringe, cells are exposed 

to shear and extensional forces that increase in the needle/syringe interface due to the 

smaller diameter of the needle. These forces lead to necrotic cellular death but they also 

trigger apoptotic death once the cells are implanted (Mitrousis et al., 2018). On the other 

hand, cell anchorage to the ECM sends pro-survival signals, which are lost when cells are 

implanted into a degenerating environment, leading to cell death. These pro-survival 

signals are mediated by membrane integrins when these bind to ECM components such 

as collagen on laminin (Mitrousis et al., 2018). 

Taken together, these results suggest that, despite the therapeutic potential of NSC 

implantation to treat SCI, a more effective delivery approach has to be taken. NSC therapy 

alone offers several strategies to repair SCI such as cell replacement, myelination of 

spared axons, trophic factor release or restoration of neuronal circuitry (Mothe & Tator, 

2012). However, the combination of an NSC delivery approach with the implantation of a 

biomaterial matrix has been seen to improve host cell regeneration (Bonner et al., 2011) 
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and hindlimb function (Ogawa et al., 2002) with more positive results than a non-

combinatorial approach.  

1.4 ENCAPSULATION OF NEURAL STEM CELLS IN 3D BIOMATERIALS 

1.4.1 Pro-regenerative mechanisms of biomaterial implantation for spinal cord 

injury repair 

From the perspective of regenerative medicine, biomaterials are three-dimensional 

scaffolds that partially mimic the natural environment created by the ECM. They are of 

interest due to their capacity to provide a substrate to which host cells can adhere and 

their potential to encapsulate drugs or cell transplant populations. Therefore, they can 

serve as a platform for a combinatorial therapy (Drury & Mooney, 2003; Macaya, D; 

Spector, 2012; Morteza Bahram, 2012; Pakulska et al., 2012). Cell-biomaterial 

interactions are typically mediated by the same components that mediate cell-ECM 

interactions, the integrins, a cell membrane receptor that anchors to the ECM, binding it 

with the cytoskeleton (Takada et al., 2007). However, in the case of artificially implanted 

biomaterial, the biocompatibility of the implant is extremely important in order to avoid 

fibrous encapsulation of the implant, which would isolate it from the cells and impair it’s 

primary function (Sanz-Herrera & Reina-Romo, 2011).  Biomaterials can be formed of 

natural (such as collagen) or synthetic polymers (such as polycaprolactone (PCL)). 

Natural polymers promote cell adhesion and are easily degraded by natural occurring 

enzymatic reactions. However, they have a higher risk of disease transmission and 

immunogenic reaction. On the other hand, the degradation rate and stiffness of synthetic 

biomaterials can be easily customised but the reactants or the degradation residues can 

cause biocompatibility issues (Macaya, D; Spector, 2012). According to their structure, 

biomaterials can be classified into gels, sponges or tubes. 

If these biomaterials are meant to be implanted into a SCI as a repair strategy, their 

structure should permit axonal growth through the biomaterial, preferably directed to the 
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other end of the lesion. The material should be biocompatible and biodegradable once its 

purpose has been served. It is also important that the reactants and degradation products 

are non-immunogenic and non-toxic, and that the degradation rate is on the same time 

scale as axonal growth in order to allow full recovery. Its stiffness should match that of 

the spinal cord to mimic the host tissue and pore size has to allow nutrient delivery and 

cell ingrowth and motility. Moreover, an injectable hydrogel that could support all of the 

above would be advantageous for clinical application instead of an implantable one. 

Evidence for the application of hydrogels in each of these areas will be discussed in the 

next few paragraphs. 

Suspension of fibroblasts in a viscous carrier, like an alginate hydrogel instead of saline, 

resulted in protection against the forces in the needle (Amer et al., 2015). Encapsulation 

of NSCs within a 3D matrix prior to implantation has also resulted in increased cell 

survival. In this case, when NSCs were seeded onto a laminin-based scaffold and 

implanted into a brain injury in mice, there was enhanced cell survival and better 

performance of mice in a space learning task than when cells were implanted in media 

alone 8 weeks post implantation (Tate et al., 2009). 

Moreover, biomaterial encapsulation of NSCs has also been reported to improve cell 

retention at the lesion site. Some hydrogels, for example, a combination of hyaluronan and 

methylcellulose hydrogel, have fast gelling properties and can be injected as a viscous 

liquid before gelling in the lesion site (Ballios et al., 2015). 7 days after NSC injection with 

this type of hydrogel, 86% of mice (6 of 7) still retained cells at the injury site compared 

to 57% (4 of 7) when injected with CSF (Ballios et al., 2015). In a 2016 study, 46% of 

biomaterial-transplanted cells were still found in the injury site 7 days post grafting, 

compared to 29% of cells transplanted in medium (Führmann et al., 2015).  
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Biomaterials can also be functionalised to manipulate cell behaviour. For example, 

scaffolds can be embedded with a heparin-binding delivery system (HBDS) which can 

gradually release growth factors, such as NT-3 and platelet derived growth factor, to 

enhance neuronal differentiation compared to cells delivered in media or hydrogel alone 

(Johnson et al., 2011). Therefore, encapsulating cells within biomaterials can lead to 

increased cell survival and distribution (Figure 1.6).  

 

Biomaterial implantation has been extensively studied in vivo (Table 1.5). The increasing 

numbers of available biomaterials (i.e.: gelatine, alginate, chitosan, hyaluronic acid, 

graphene or collagen), which can be functionalised or not and could encapsulate 

transplant cell populations or not, has led to an increasing number of possible 

permutations to test in diverse animal models and diverse lesion types.  

For example, an in vivo study carried out in dogs suggested that the implantation of a cell-

biomaterial construct into a transecting lesion improved mobility recovery with better 

rates than biomaterial implantation alone (Wu et al., 2018). In this study, a mixed culture 

Figure 1.6 Outcomes of the use of cell therapy alone vs. combinatorial therapy. This 
schematic represents the main outputs of cell therapy alone compared to a combinatorial 
therapy (cell+biomaterial implantation) for spinal cord injury (SC). Image created using 
Biorender.com 
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of Schwann cells and neurons derived from NSCs was implanted in a thoracic transecting 

lesion in beagles. The initial 4mm injury gap was reduced 6.5 months after surgery, 

presenting a narrower gap in cell-biomaterial implanted dogs than with biomaterial alone 

implantation. Moreover, gradual functional recovery was rated higher after cell-

biomaterial implantation. Post-mortem histological analyses also showed implanted cell 

integration with host ascending and descending neuronal tracts.  

 

A study in rats with implanted alginate hydrogels after SCI suggested that the number of 

axons infiltrating the lesion was similar between treated and control rats and that the 

lesion gap 154 days after implantation was bigger in treated animals than in controls. 

However, the same study also showed lower tract demyelination in treated animals, 

Table 1.5 Examples of existing research using biomaterial implantation to treat SCI 
and summary of outcomes. This table summarises the methodology of research articles 
which studied biomaterial implantation in vivo (top section of the table) and the relevant 
results (bottom part of the table). 
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correlated with increased motor recovery from 7 days post-implantation (Galli et al., 

2018). 

Implantation of a chitosan tube functionalised with NT-3 in a rat SCI resulted in 

myelinated axonal regeneration from both ends of the tubes towards the centre, forming 

new functional synapses. Moreover, the presence of Nestin-positive cells inside the tube 

suggested migration of NSCs towards the injury, which could then have differentiated into 

neurons (as suggested by Nestin and Tuj-1 double positive cells). These histological 

results were also correlated with a higher motor and sensory recovery 1 year post injury 

when compared to untreated controls or rats treated with unfunctionalized chitosan 

tubes (Z. Yang et al., 2015).  

Effective recovery of motor function and increased axonal infiltration were also reported 

after hydrogel implantation in a transecting SCI in rats. In this case, a hyaluronic acid 

hydrogel functionalised with 2,2,6,6-tetramethylpiperidinyloxy (TEMPO) to reduce ROS 

responses was implanted and significant differences between treated and control groups 

were seen 28 days after implantation (Y. Zhang et al., 2020).  

In a mouse model of a compressive injury, porous collagen scaffolds laden with NSCs were 

implanted. Their results show an increased locomotor recovery 12 weeks post injury 

compared to non-treated controls, with no statistical differences compared to uninjured 

controls. They also show signs of increased axonal infiltration and reduced glial scarring. 

The implanted BrdU labelled NSCs were still seen at the lesion area 12 weeks post lesion, 

although some had migrated at 200µm from the scaffold. Finally, colocalization of BrdU 

with Tuj-1 or GFAP suggested that these had differentiated towards neurons and 

astrocytes after implantation (Kourgiantaki et al., 2020).  
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Taken together, these findings suggest that, in most cases, biomaterial implantation 

correlates with better motor recovery and axonal infiltration (Table 1.5), highlighting the 

therapeutic potential of this procedure.  

A key requirement in developing such therapeutic biomaterials is the ability to test them 

in relevant neuromimetic models. However, the complexity of the in vivo models hinders 

the capacity to reliably and reproducibly analyse histological changes in the tissue, such 

as the formation of a glial scar, microglial infiltration or demyelination (Table 1.5), which, 

in combination with increasing possible permutations of biomaterial testing, highlight the 

importance of a simpler model in which to carry out these tests before escalating to higher 

complexity models. 

1.5 EXPERIMENTAL MODELS OF SPINAL CORD INJURY 

1.5.1 Current animal models for the study of spinal cord injury 

In vitro animal models of SCI rely on the use of cell cultures (neurons, astrocytes and 

oligodendrocytes) to study different aspects of the lesion whether it is the study of pro-

regenerative techniques or the underlying mechanisms of neurodegeneration. Such 

studies can be carried out in 2D and offer the possibility of studying axonal outgrowth, 

astrocyte reactivity or myelin degradation (Abu-Rub et al., 2010). 3D in vitro models, 

achieved through cell culture on bioscaffolds, also offer the possibility of studying cell 

migration, focal adhesions and the dynamics of neuronal growth (Abu-Rub et al., 2010). 

For example, in vitro astrocyte alignment induced through an electric field has been used 

to determine the extent to which aligned astrocytes affect directed axonal growth 

(Alexander et al., 2006). As mentioned previously, in vitro cell alignment can also be tested 

through culture on aligned substrates, such as aligned electrospun fibres (A. Weightman 

et al., 2014). In order to replicate primary responses to injury, the cell stretch model 

consists of cell culture on a flexible substrate, which induces cellular damage upon 
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stretching (Ellis et al., 1995), and has been seen to induce an astrocytic response similar 

to that of the glial scar (Cullen et al., 2007). Although such models are useful for the study 

of specific neurodegenerative mechanisms, the lack of external physiological input forces 

the use of higher complexity models when aiming to study the applicability of SCI 

therapies. 

Therefore, in vivo models constitute the majority of models for the study of SCI. These can 

be classified, according to the injury type, into contusion or transection injury models 

(Robins & Fehlings, 2008). Contusion or compression injuries can be inflicted by dropping 

a weight on the spinal cord (mimicking a traumatic injury) or by slowly compressing the 

spinal cord by slowly adding weights or inflating a balloon (mimicking trauma created by 

extradural tumours) (Robins & Fehlings, 2008). As the most physiologically relevant 

injury model, this is also the most used in experimental studies (Sharif-Alhoseini et al., 

2017). This type of injury results in loss of normal locomotor ability, which is not 

recovered 8 weeks post injury. Moreover, it also results in damage to the corticospinal 

tract and upregulation of pro-inflammatory genes and genes associated with glial scarring 

(Forgione et al., 2017).   

Transecting injuries are the second most common type of injury in experimental models 

(Sharif-Alhoseini et al., 2017). A partial transecting injury refers to those injuries where 

some axonal tracts remain intact. For example, in a unilateral lesion. On the other hand, a 

complete transecting lesion refers to that in which all tracts are damaged (Robins & 

Fehlings, 2008). Transecting injuries are not as physiologically relevant as contusion 

injuries, as it is less likely they occur naturally (Robins & Fehlings, 2008). Therefore, these 

are not indicated when the aim of the study is to determine certain pathophysiological 

responses to injury. Nevertheless, they provide a reliable platform to study the outcome 

of neuroregenerative strategies because they allow to discriminate between 

neuroprotection and de novo axonal regeneration (Robins & Fehlings, 2008). Similarly to 
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contusion injuries, transecting injuries result in loss of locomotor function, axonal 

degeneration, inflammatory response, glial scarring and demyelination (Galli et al., 2018). 

Although in vivo models are essential for the study of SCI therapies, current research relies 

heavily on adult mammalian models, resulting in expensive, time-consuming and 

technically challenging experiments. Moreover, animal suffering is inevitable. Because of 

these reasons, a high rate of variability is introduced among biological repeats and 

experimental reproducibility becomes challenging. This, in combination with increasing 

numbers of new biomaterials for SCI, highlight the necessity of a relevant model in which 

to test the pro-regenerative capacity of such materials while reducing animal suffering 

and increasing reproducibility before moving to expensive and complex in vivo models.  

1.5.2 Organotypic slices as spinal cord injury models 

Organotypic slice cultures are an ex vivo technique that aim to represent the in vivo 

structure and function of a specific organ or tissue in isolation from the body. They differ 

from in vitro cellular cultures in that they preserve the tissue structure and cellular 

connections, providing the system with more in vivo-like properties. Despite its most 

obvious disadvantage against animal in vivo models, which is the disconnection with the 

rest of the animal’s organs, this culture closely mimics the pathological features of the SCI 

in resonance with the 3R’s principles for animal experimentation. Moreover, the in vitro 

aspect of such cultures provides the system with easier manipulation and analysis 

procedures than those used in in vivo research. This model allows for the introduction of 

a SCI following similar protocols to in vivo models, but the easiness of in vitro models. 

The first organotypic culture was used to study the differentiation of the chick embryo 

eye and the technique was first tested for CNS tissue on rat hypophysis (Pandamooz et al., 

2018). In rodents, donor age plays a crucial role on the survival of the CNS organotypic 

culture. Tissue from embryonic donors older than E14 seems to increase in size with time 
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and survive better than tissue from postnatal mice due to its high cellular plasticity 

(Humpel, 2015). Viable organotypic spinal cord slices from chick embryos have been 

obtained from embryonic day 5 (E5) (K. Sharma et al., 1994) to E16 (Nuria Brunet et al., 

2007) donors. Tissue from postnatal donors younger than post-natal day 12 (P12) offer a 

more mature alternative, however, it also displays low viability rates (Humpel, 2015). 

Despite these advantages, it has been reported that sagittal spinal cord slices from mice 

older than P6 were not viable for culture (Bonnici & Kapfhammer, 2008). Therefore, 

although tissue from adult donors could be more clinically relevant, these tend to be used 

for acute, short term experiments due to low survival rates in the long term (Humpel, 

2015). 

Similarly to in vitro techniques, the dissected slices need access to culture media to 

survive. However, these cannot be submerged in the culture medium due to poor 

oxygenation of the slice. Long term survival of the tissue can be achieved through three 

different methods: the in oculo method, the roller tube method or the semipermeable 

membrane method (Humpel, 2015). 

The in oculo method consists of the implantation of a slice of brain tissue in the rodent’s 

eye chamber, which is highly vascularised, so it survives in total isolation. Although this 

technique does not impair the animal’s vision, its major disadvantages are the difficult 

manipulation of the slice and the highly animal dependant nature of the technique (Figure 

1.7 A). 

On the contrary, the roller tube method consists of the attachment of the slice on a glass 

coverslip using a fibrin clot, which is placed in a rotating tube coming in and out of the 

media. Although this method offers an easily accessible alternative to the in oculo method, 

it faces complications due to detachment of the samples during rotation. Moreover, it 
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would complicate the lesion process due to the fibrin clot covering the slice (Figure 1.7 

B). 

Finally, the semipermeable membrane method, consists of placing the samples on a 

semipermeable membrane sitting on the media. This allows the samples access to media 

while being oxygenated. These samples are typically kept in normal incubators and only 

moved and handled during medium change (Figure 1.7 C). Therefore, this method does 

not depend on live animals and it allows for easy access to the cultured tissue. These 

characteristics make it a desirable model of SCI (Abu-Rub et al., 2010), and it is the model 

used in this thesis for biomaterial implantation. 

1.5.3 Spinal cord injury research within the framework of the 3Rs principle 

The 3Rs principle refers to the replacement, reduction and refinement of animal use for 

experimentation (NC3Rs, 2021). In addition to promoting ethical use of animals in 

experimentation, this principle has also led to better experimental practice, more 

reproducible and more cost-effective research (MacArthur Clark, 2018). 

As discussed above, in vitro experimentation does not replicate all physiological aspects 

of the lesion and, therefore, most research uses an in vivo approach to study treatment. As 

a result, SCI research relies heavily on the use of live protected species. In fact, 

Figure 1.7 Schematic representation of the three different methods for establishing 
organotypic cultures: in oculo (A), roller tube (B) and semipermeable membrane (C).  
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approximately 88% of all animals used for SCI research are rodents, with rats being the 

most used animal (Sharif-Alhoseini et al., 2017). The number of animals used per study 

ranges significantly between studies, with some reporting the use of 15 rats (Domínguez-

Bajo et al., 2020), 42 (Galli et al., 2018) or even 342 rats per study (Z. Yang et al., 2015). In 

reference to the 3Rs principle, the use of organotypic slices can help reduce the number 

of animals used per study, as multiple sections of tissue can be retrieved from each animal. 

In order to replace the use of protected animal models for experimentation, we propose 

the chick embryo as an alternative to adult mammalian models. 

Replacement refers to those approaches that directly replace the use of conscious, living 

animals. Replacement can be full (completely avoiding the use of any animal) or partial, 

which includes the use of animals that are not considered capable of experiencing 

suffering such as invertebrates and immature forms of vertebrates. According to the 

Animals (Scientific procedures) Act of 1986, mammals, birds and reptiles are considered 

protected species after starting the last third of their gestation or incubation period. In 

this case, the chick embryo is considered protected after E14. Moreover, due to its 

development inside an egg, the embryo can be accessed without harming the mother. 

Reduction refers to methods that allow minimising the number of animals used in 

experimentation. Therefore, it requires adequate experimental design and data analysis 

in order to maximise the data acquired from each animal. It also encourages the sharing 

of data and resources between research groups. Finally, refinement refers to methods that 

minimise pain and suffering. This includes improving animal welfare in housing, using 

appropriate anaesthesia to minimise pain and training to cooperate with procedures in 

order to minimise distress. In this case, the use of organotypic slices, offers the possibility 

of acquiring multiple spinal cord slices from a single individual, reducing the number of 

animals per experiment. Moreover, all lesioning procedures are carried out in vitro, 

minimising the pain and suffering on the animals. 
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The chick embryo has been widely used as a developmental model because of its easy 

accessibility, simple manipulation techniques and cost-effectiveness. Because of these 

features it allows for the study of regenerative medicine while replacing the use of adult 

and complex animal models and minimizing the number of animals used per experiment 

and, therefore, minimising animal suffering. Therefore, this thesis will focus on the 

development of a SCI model using chick embryo organotypic slices.  

1.6 THE CHICK EMBRYO 

1.6.1 Relevance of the chick embryo as a neural tissue engineering platform 

From ancient Egyptians to Aristotle, the chick embryo has captured the attention of 

scientists and philosophers through time, when eggs were opened at different stages to 

study development (Stern, 2005). It was also the model that William Harvey used in 1628 

to discover the function of capillary vessels to connect arteries and veins and the model 

that lead to the discoveries by Marcello Malpighi (1675) of the existence of the neural 

tube, the somites and that the heart starts beating before blood is formed. With the 

improvement of microscopy, staining and sectioning techniques in the 1800s, embryology 

became more accessible, changes between the embryonic stages were described and the 

terminology of the anatomical components of the embryo was established by a new 

generation of comparative histologists (Stern, 2005). In 1951, Hamburger and Hamilton 

published “A series of normal stages in the development of the chick embryo”, which set 

up a reference for further investigations such as the embryonic development of the CNS 

(Schoenwolf & Smith, 1990).  

The chick embryo has been widely used as a model for developmental biology, 

pharmacology, immunology and cell biology amongst others (Bjornstad et al., 2015; 

Rashidi & Sottile, 2009). Although it has often been overlooked as a regenerative medicine 

model, the chick embryo spinal cord is very similar to the mammalian spinal cord. It 

possesses all major cell types and neural system tracts (Ferretti & Whalley, 2008). 
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Furthermore, the chick spinal cord cannot regenerate after injuries made after E13 

(Hasan et al., 1993; Shimizu et al., 1990), which opens the possibility to test regenerative 

responses following biomaterial implantation. Moreover, the underlying mechanisms of 

its development have been extensively studied, making data interpretation more 

complete. Furthermore, the embryo develops inside an egg, which makes it very easily 

accessible and technically straightforward. This feature also allows for embryonic studies 

while preserving the mother’s life.  

1.6.2 Spinal cord development in the chick 

When working with embryonic tissue, it is crucial to understand the developmental stages 

of the species in order to be able to identify different structures and cell types. Therefore, 

this section focuses on the spinal cord development of the chick embryo. 

The formation of the CNS is initiated by the process of neurulation or neural tube 

formation, which consists of two phases: primary and secondary neurulation (Schoenwolf 

& Smith, 1990). During primary neurulation, the neural plate (portion of the ectoderm 

that will become neural tissue) extends longitudinally, narrows transversally and 

thickens apicobasally (H. W. Van Straaten et al., 1996). Simultaneously, a medial hinge 

point appears in a transverse section forming a neural groove that deepens and widens to 

finally form the neural walls and the neural tube lumen ((H. W. M. Van Straaten et al., 

1997). Only the most dorsal part of the neural walls, the neural folds, bend inwards during 

convergence, after which they appose, adhere and finally fuse (H. W. Van Straaten et al., 

1996). This process starts de novo in three different closure points: 1) Mesencephalic 

closure (during Hamilton’s embryonic stages 4 to 6 (18 to 25h)). 2) Rombocervical 

closure (stages 6 to 8 (23 to 46h)) and 3) Posterior neuropore closure (stages 7 to 18 (23 

to 69h)) (H. W. Van Straaten et al., 1996). This folding process requires higher 

concentration of microfilaments in the apical region and longer cell cycles at hinge points, 
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thereby narrowing the apices of these regions (Sadler, 2005). The neural tube will later 

differentiate into the spinal cord and the brain during secondary neurulation. 

Signalling along the rostral-caudal axis of the neural tube establishes the main 

subdivisions of the CNS: forebrain, midbrain, hindbrain and spinal cord, whereas dorsal-

ventral and medial-lateral signalling establishes the differentiation of progenitor cells 

(Jessell, 2000; Lu et al., 2015). There is also a temporal factor that influences cell fate, 

different cells differentiate at various times (Lu et al., 2015). The position of a cell in these 

axes will determine its fate. Caudalization of the neural tube is mediated by the combined 

actions of four factors that promote the specification of midbrain, hindbrain and spinal 

cord: fibroblast growth factor (FGF), paraxial-mesoderm caudalizing (PMC) activity, 

retinoic acid and a rostralizing factor (Muhr et al., 1999). 

In the dorsal-ventral axis, adjacent cells to the floor of the neural tube will give rise to 

motoneurons, and cells dorsally to motoneurons will become several classes of 

interneurons. Cells of the most dorsal part of the neural tube will form the neural crest, 

and the cells lateral to it will differentiate into dorsal sensory interneurons (K. J. Lee & 

Jessell, 1999). 

Non-neural epidermal cells from the ectoderm send inducing signals to the dorsal cells 

next to the neural crest, triggering their differentiation into sensory neurons (K. J. Lee & 

Jessell, 1999). This signal is transmitted by the secretion of proteins of the TGFβ family 

(Hemmati-Brivanlou & Melton, 1994). The cells from the neural tube floor, together with 

the notochord, trigger the differentiation of the ventral cells through a gradient of the 

glycoprotein Sonic hedgehog (Shh) (Patten & Placzek, 2000). Neurons at the more ventral 

region of the neural tube (closer to the notochord) require a higher concentration of Shh 

for differentiation than cells at the more dorsal part of the ventral region (J. Ericson et al., 

1997). These progenitor cells have two classes of homeodomain proteins: class I proteins 
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are repressed by Shh and class II are activated (Briscoe et al., 2000). The interactions 

between these two classes of proteins will eventually convert the Shh gradient into 

activation of discrete progenitor domains for differentiation (Briscoe et al., 2000). In the 

end, within an ideal spinal cord segment, 13 pools of progenitor neurons can be found 

along the dorsal-ventral axis. There are 8 dorsal pools of interneuron progenitors: p1-6, 

pdILA, pdILB; 4 dorsal progenitor subdivisions: p0-3 and one motoneuron progenitor 

domain pMN (Alaynick et al., 2011).  

In all vertebrates, the region at the roof of the neural tube is called the neural crest (Le 

Douarin, 2004). The neural crest cells are special for their migration capacity and their 

pluripotent state (Le Douarin, 2004). Those that migrate along a dorsolateral pathway 

will give rise to pigment cells, and those migrating along a ventrolateral pathway will give 

rise to autonomic ganglia, Schwann cells and dorsal root ganglia (or sensory ganglia) 

(Charles W., George P., 2009).  

Colonization of microglia in the spinal cord coincides with vascularization (Charles W., 

George P., 2009). In the developing chick spinal cord, microglia act as phagocytes to 

remove dying cells (Jordi Calderó et al., 2009).  OPCs arise from the ventricular surface as 

a response to Shh signals from the notochord (Nigel P. Pringle et al., 1996). These 

precursor cells migrate and enter the white matter, where they will stop and undergo final 

differentiation (Robinson et al., 1998). Astrocytes also arise from the same region and 

play a role in axonal guiding (Masahira et al., 2006).  

1.6.3 Timeline of development 

Chick embryos need to be incubated during 21 before hatching (Figure 1.8). Gastrulation 

occurs within the first day of incubation or E1. By the end of E1, neural folds begin to 

appear, indicating that neurulation has begun. Neural folds first meet at the region of the 

head, and somites begin to form on each side of the notochord. By the end of the second 
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day, the head begins to turn onto the left side and the embryo flexes forming a C shape. At 

the 4th day most somites are formed and the embryo has completely turned to its left side. 

The caudal-rostral specification is initiated between Hamburger & Hamilton (HH) stages 

3 and 4 (Muhr et al., 1999). 

 

Different cell types appear at different time points. Neurons begin to differentiate at E2, 

motoneuron progenitors are born between HH stages 15-17 (corresponding to E3) (Johan 

Ericson et al., 1992). However, some neurons from the dorsal horns don’t appear until E8 

or E9 (Ferretti & Whalley, 2008). Many motoneurons are born, but only those that make 

synapses will survive, the others will die following a programmed cell death that peaks at 

E6 and ends at E9 (Yamamoto & Henderson, 1999). At E11, there still seems to be 

neurogenesis, but at a very slow rate (Katherine Whalley et al., 2009). Microglia appear at 

E3 (Jordi Calderó et al., 2009). Oligodendrocytes appear at E5 (Ono et al., 1995) and 

myelination starts at E13 and ends at hatching (Dobbing et al., 1957). Finally, astrocyte 

Figure 1.8 Schematic representation of key events which occur during the timeline of 
CNS development in the chick embryo. The central numbers indicate days post-
fertilisation. And each coloured line indicates the period of time in which a relevant 
developmental stage occurs. 
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precursors begin to be detected at the end of neurogenesis at E8, but GFAP (glial fibrillary 

acidic protein) can only be detected after E10 (N. P. Pringle, 2003). 

Intersegmental projections are formed between E2.5 and E3.5 (Yaginuma et al., 1990). 

The formation of ascending and descending neural tracts occurs prior to the onset of 

spontaneous limb movements, which begin at E6 (Okado & Oppenheim, 1985). Based on 

Okado and Oppenheim’s findings in 1985 after retrogradelly tracing neurons with 

horsereadish peroxidase (HRP), descending tracts from the brainstem to the cervical 

region of the spinal cord are formed between E5 and E8. These tracts reach the lumbar 

region between E5.5 and E12.  

As previously mentioned, chick embryos are a protected species during the last third of 

the incubation period. Therefore, it is considered that they are not capable of pain and 

suffering before E14. At this stage, all CNS cell types are already present and most 

structures, including ascending and descending tracts are already formed. It has also been 

established that the chick embryonic spinal cord will not regenerate after an E13 lesion. 

For these reasons the E14 chick embryo has been chosen to establish a new SCI model in 

this thesis. 

1.7 KNOWLEDGE GAPS AND THESIS AIMS 

In summary, after a lesion, the spinal cord does not have the intrinsic capacity for 

regeneration and current treatments are yet to achieve full functional repair. The injection 

of NSCs after SCI in clinical trials has led to an increased motor and sensory recovery. 

However, this therapy faces high cell attrition due to the forces inflicted on the cells when 

protruded through a fine needle. Alternatively, the implantation of encapsulated cells 

within 3D matrices offers the advantages of cell protection and healthy ECM mimicking, 

leading to improved results compared to cell injection alone. Although promising, the 

translation of this therapy to the clinic can be delayed for years due to the exclusive use 
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of experimental grade biomaterials. Moreover, most research conducted to date 

overlooks the highly aligned nature of the spinal cord, neglecting the need for patterned 

implantable scaffolds. In addition, the raising numbers of available biomaterials rely on 

complex and expensive in vivo rodent animal models, leading to time consuming 

experiments which make reproducibility challenging. As an alternative, the use of 

organotypic spinal cord slices offers a simpler, more controlled environment to study SCI 

therapies while maintaining the spinal cord structure. Although few, these experiments 

have already shown promising results. However, they still rely on murine models. The 

chick embryo offers a cheaper alternative as a spinal cord slice donor, linked to less ethical 

implications. Here, we propose the use of chick embryo organotypic slices for testing 

biomaterial implantation for SCI.  

Therefore, this thesis aims to develop a SCI model using chick embryo organotypic slices 

in order to provide a platform in which to test biomaterial implantation within the 

framework of the 3Rs principle.  

In order to do so, lesioning time points and cellular responses to injury will be researched 

in Chapter 3 in a chick embryo organotypic slice SCI model. Following, two biomaterials 

will be explored for their ability to encapsulate NSCs: HemopatchTM (Chapter 4), a 

clinically available biomaterial, and CellevateTM (Chapter 5), a patterned nanofibre 

scaffold. Finally, HemopatchTM will be implanted in the organotypic model previously 

established and cellular responses to implantation will be studied (Chapter 6). 
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2 METHODOLOGY 

2.1.1 OUTLINE 

Within this section, I will detail the relevant methodology for all experimental chapters. 

For ease of reference, the list of culture media and antibodies are detailed below and split 

into tables (Section 2.2) and all experimental groups are detailed in Section 2.3. Sections 

2.4 to 2.10 cover the methodology for live cell and tissue cultures set up. Cell and tissue 

processing are covered in Sections 2.11 to 2.16. Finally, sample and data analyses are 

covered in Sections 2.17 to 2.20. 

2.2 LIST OF MEDIA AND ANTIBODIES 

Table 2.1 details the list of media used for spinal cord and NSC culture.  

 

Table 2.1 List of media used for organotypic spinal cord slice culture and NSC 
culture. This table lists all the reagents used to make the different media for cell and 
tissue feeding. 
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Table 2.2 details a list of primary and secondary antibodies used for immunolabelling. 

 

2.3 EXPERIMENTAL GROUPS FOR EACH DATA CHAPTER 

For ease of reference, this section specifies the experimental groups and timelines of each 

chapter. Details of assay procedures and experimental set up are explained in the 

subsequent sections. 

In Chapter 3, we wanted to establish an in vivo and an in vitro (or ex ovo) model in which 

to test biomaterial implantation after SCI in the chick embryo. Therefore, two 

experimental groups were established for the in vivo experiments of Chapter 3: the 

“shell” group refers to those embryos incubated in their eggshell, while “shell-less” refers 

to those incubated in a cup outside their shell. The aim was to determine which of the two 

would allow easier manipulation for lesioning and biomaterial implantation. 

Table 2.2 List of primary and secondary antibodies used for immunostaining, 
detailing cellular target, concentration, host and purchase code. The last item was 
discontinued after experiments. 



44 
 

In the in vitro experiments of Chapter 3, four different groups were established (Figure 

2.1). Spinal cords were dissected from E14 chick embryos and were injured at two 

different time points: 4 days post dissection (I4) and 12 days post dissection (I12). Each 

of these groups were split and fixed at two different time points: 4 days post injury (I4F4 

and I12F4) or 12 days post injury (I4F12 and I12F12). The viability of each of these time 

points was controlled with an uninjured spinal cord slice that was fixed at the same time. 

These timepoints were required to investigate the effects of an early vs. late injury and 

whether the response to injury changed over time. We expected to choose the most 

representative time point for the implantation experiments in Chapter 6.  

In Chapters 4 and 5 we aimed to study the capacity of different biomaterials to support 

an NSC population. The experimental conditions for Chapter 4 included: (i) laminin and 

poly-ornithine coated coverslips, (ii) uncoated HemopatchTM and (iii) laminin and poly-

ornithine coated HemopatchTM. Chapter 5 included the following experimental groups: 

(i) glass coverslips, (ii) random CellevateTM fibres and (iii) aligned CellevateTM fibres. 

Figure 2.1 Schematic representation of the dissection, injury and fixation timepoints 
used for the organotypic spinal cord slice culture model in Chapter 3. This timeline aims 
to represent the timepoints at which the spinal cords were lesioned and fixed. 
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Finally, in Chapter 6, we used the previously established in vitro SCI model in Chapter 3 

to test biomaterial implantation, in this case, the same biomaterial tested in Chapter 4. 

The time points were adapted from the previous findings in Chapter 3 resulting in three 

groups: Injury, Injury + HemopatchTM and Sham (Figure 2.2). All slices except those in the 

“Sham” group were lesioned 4 days post dissection. The “Injury” group was lesioned but 

was not treated with HemopatchTM, the “injury + HemopatchTM” group was injured and 

the material was implanted in the lesion directly after injury. All slices were fixed 24 days 

post dissection. 

2.4 CULTURE OF CHICK EMBRYOS IN SHELL AND SHELL-LESS 

Chick embryos were incubated inside their shells or shell-less in order to establish which 

method allowed for easier manipulation of the model. 

Fertilized Bovans Brown eggs (Henry Stewart & Co.) were incubated at 37ᵒC and 47% 

humidity for 56 hours. Then, as appropriate depending on the experiment, some eggs 

were left in the incubator (shell) and the rest were cultured without the shell (shell-less) 

as follows. For the shell-less culture (adapted from Tahara & Obara, 2014), a culture 

vessel had to be designed and constructed. For this, a plastic cup was filled with 40 mL of 

dH2O and covered with cling film. The film was then pressed downwards using a light 

bulb to form a 5 cm deep concave shape mimicking the shape of the shell. Finally, 2mL of 

Figure 2.2 Schematic representation of the dissection, injury, biomaterial 
implantation and fixation timepoints used for the organotypic spinal cord slice 
culture model in Chapter 6. This timeline aims to represent the timepoints at which the 
spinal cords were lesioned and fixed and the biomaterial was implanted.  
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dH2O and 300mg of calcium lactate were added on the cling film. To transfer the embryos 

to the culture vessel, the eggs were removed from the incubator after 56h, and 6mL of 

albumin were extracted from the shell and added to the plastic cup. Next, the eggs were 

placed vertically and the top of the egg was surrounded with scotch tape to avoid cracks 

and cut with fine scissors. Finally, the contents of the egg were gently poured inside the 

cup, with the embryo facing upwards. Using a needle, 10 holes were made at the top of 

the cling film to allow transpiration of the embryo (mimicking the pores in the shell), the 

cup was covered with the lid of a petri dish and all the embryos were kept in an incubator 

at 37ᵒC (Figure 2.3). 

 

2.5 INTRODUCTION OF A SPINAL CORD TRANSECTING LESION IN VIVO IN THE 

CHICK EMBRYO 

The feasibility of chick embryo lesioning was tested as follows. 4mL of albumin were 

extracted from the shell embryos at E3 to prevent the membrane from attaching to the 

shell. At E5, a small window was opened on the shell to expose the embryo. Under a 

dissection microscope, a small gap was cut on the amniotic membrane and the embryo 

was lifted upwards using a curved glass rod. Then, with fine scissors or a needle, a lesion 

Figure 2.3 Representation of the shell-less culture vessel with a side view (left) and top 
view (right). Image created with Biorender.com 
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was cut from the centre of the spinal cord towards the outside in the cervical or lumbar 

region. The window in the shell was sealed with scotch tape and the egg was returned to 

the incubator. After 0h, 24h or 48h, the window was widened, the embryo was removed 

from the shell and the spinal column was dissected and fixed with 4% paraformaldehyde 

(PFA) overnight and cryosectioned (See section 2.10) or the whole embryo was fixed in 

4% PFA for a week and stained (See section 2.11). The same lesioning protocol was used 

for Shell-less embryos (excluding removal of albumin and windowing). In some cases, a 

0.1 mm piece of acellular HemopatchTM (stained with green food colouring dye for easier 

visibility) was implanted inside the injury gap with the mechanical help of a needle (Video 

1). Some embryos were kept in the incubator until E14 to study survival. 

2.6 ESTABLISHMENT OF THE EMBRYONIC SPINAL CORD SLICE ORGANOTYPIC 

CULTURE 

A more simplistic SCI model was established through the use of chich embryo spinal cord 

organotypic slices as follows. Fertilized Bovans Brown eggs (Henry Stewart & Co.) were 

incubated at 37ᵒC and 47% humidity in a specialised egg incubator (Brinsea) (Incubation 

parameters were chosen as indicated by Brinsea). After 14 days, the shells were cracked 

and the contents were poured in a large glass petri dish. Then, the embryos were 

decapitated with fine scissors and the limbs were cut off (Figure 2.4 A, B). A ventral 

incision was made to remove all internal organs and the skin around the spinal column 

was removed (Figure 2.4 C, D). Using a scalpel, the cervical segment of the spinal column 

was isolated (Figure 2.4 E). Finally, the cervical segment of the spinal cord was extracted 

from the spinal column by ejecting a powerful stream of slicing medium (Table 2.1) 

through the spinal canal (Figure 2.4 F). When it was not possible to extract the cervical 

segment of the spinal cord, the thoracic segment was used. All spinal cords were kept in 

slicing medium on ice until use (Figure 2.4 G).     
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The spinal cord slice organotypic culture and lesioning protocols were adapted from 

Weightman et al. (2014). Here, each spinal cord was sliced longitudinally at 350µm 

thickness with a McIlwain Tissue Chopper (Figure 2.4 H), collected in a small petri dish 

containing ice-cold slicing medium and kept on ice for 30 minutes (Figure 2.4 I).  

Meanwhile, the culture chambers were prepared. A permeable insert was placed in a 

small petri dish and three 0.45µm pore, 0.5cm2 size membranes (Omnipore JHWP04700) 

were placed on top of the insert. The space between the petri dish and the insert was filled 

with 1.1mL of culturing medium (Table 2.1). 

After 30 minutes, the spinal cords were collected with a wide-bore transfer pipette and 

placed on the membranes (one spinal cord slice/membrane) (Figure 2.4 J). Finally, the 

small petri dishes were placed on a large square petri dish for easier transportation and 

for better sterile protection and kept inside an incubator at 5%CO2 and 37ᵒC. The slices 

were fed every other day by 50% medium change. 

Figure 2.4 Representative pictures of the dissection, culture set up, lesioning and 
biomaterial implantation of chick embryo organotypic spinal cord slices. 
Discontinuous lines represent cutting areas. Arrows in B point to limbs, arrows in J point to 
spinal cord slices and arrow in L points to implanted biomaterial. 
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2.7 INTRODUCTION OF A TRANSECTING LESION IN THE ORGANOTYPIC SPINAL 

CORD SLICES AND IMPLANTATION OF HEMOPATCHTM 

Transecting lesions were implemented in sterile conditions under a dissection 

microscope. A double-blade scalpel was used to mark the lesion edges to ensure equal 

injury size in all slices. Then, the spinal cords were completely sectioned with a standard 

scalpel aided with a needle following the marks of the double-bladed scalpel (Figure 2.4 

K).  The slice debris between the two injury margins was removed with tweezers.  

For the experiments in Chapter 6, a 250µm thick slice of uncoated and acellular 

HemopatchTM (See Section 2.9 for slicing methodology) was placed adjacent to the slice 

and further cut to the size of the lesion with a scalpel. Then, it was implanted to bridge the 

gap between two sides of the lesion (Figure 2.4 L).  

Finally, the slices were kept in the incubator and fed with culturing medium (Table 2.1) 

(50% change) until they were transferred into 24-well plates, fixed with 4% PFA for 1h 

and kept at 4ᵒC for further staining. See section 2.2 for lesioning and fixing time points. 

2.8 ESTABLISHMENT OF A NEURAL STEM CELL PRIMARY CULTURE 

NSC cultures for seeding onto biomaterials were set up following the previously 

established protocols in our laboratory (Fernandes et al., 2015). Mouse brains were 

dissected from postnatal day 1 (P1) to P3 mice and kept in PBS on ice until use. Under a 

dissection microscope, the subventricular zone was isolated from all brains using a scalpel 

and kept in 1mL of neurosphere medium (NSM) (Table 2.1). The tissue was incubated at 

RT with DNAse I (Sigma Aldrich 10104159001) for 1 minute and then mixed by pipetting 

up and down until all large clumps had dissipated. The sample was centrifuged for 5 

minutes at 1000rpm and resuspended in 0.5mL of NSM. The solution was passed through 

a cell strainer (70µm pore size) and diluted with NSM to a final volume of 3mL. Then, the 

density of viable cells was calculated by mixing 10µL of cell solution with Trypan blue 
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(Sigma Aldrich T8154) in a 1:5 solution, with cell counting performed using a 

hemocytometer.  

In a separate tube, the cells were diluted with NSM at a density of 1x105 cells/mL and 

transferred into T25 flasks (5mL of cell solution in each flask). These were incubated at 

5% CO2 and 37ᵒC. NSCs were allowed to proliferate as neurospheres (Figure 2.5). 

Figure 2.5 Primary NSC culture set up. Step by step schematic representation of the 
protocol for the establishment of a primary NSC culture and neurosphere formation. Image 
created with Biorender.com 

Once the neurospheres had reached an optimal density (5 to 7 days) (Figure 2.6) they 

were pooled into a falcon tube and centrifuged at 1000rpm for 5 minutes. The pellet was 

resuspended in PBS and centrifuged again with the same parameters. Then, the 

neurospheres were dissociated into single cells by incubation with a DNAse I /Accutase 

mix (1:10) for 5-10 minutes. 1mL of NSM was added to inactivate the mix and the solution 

was centrifuged once more. The density of viable cells was calculated following the same 

protocol as before and the cells were diluted with MLM (Table 2.1) at the required 
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density for each experiment (See sections 2.9 and 2.10) or NSM (Table 2.1) for further 

propagation in T25 flasks.  

 

 

Figure 2.6 Neurospheres. Light microscope representative image of three neurospheres at 
optimal density for passaging. 

 

2.9 HEMOPATCHTM FUNCTIONALISATION AND EXPERIMENTAL SET UP 

HemopatchTM was kindly donated by Baxter Healthcare Technologies. Under sterile 

conditions, a 0.5 cm2 piece of HemopatchTM was cut with a scalpel and then chopped with 

a McIlwain Tissue Chopper set to 250 µm. 

It should be noted that HemopatchTM is also coated with a 250µm thick layer of NHS-PEG 

(polyethyleneglycol) bound to one side of the material, designed to enhance its tissue 

adherance properties (Figure 2.7A). However, we consider the impact of this PEG layer 

on cellular function to be negligible in these experiments due to the following reasons: 

the material was cut vertically (to fit the culture well), perpendicular to the PEGylated 

layer to generate a piece of HemopatchTM approximately 5000 (length) x 1000 (width) x 

250 (depth) µm.  The 250µm thick PEGylated layer was therefore solely situated along 

one of the widths of the final piece. Moreover, during culture, the material was orientated 
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sideways (with the thin PEGylated side as one of the lateral walls) (Figure 2.7 B) so as 

to minimise PEG interaction with cells. Further, it is likely the PEG layer was dissolved in 

water during the preparation steps prior to seeding the cells on the material (personal 

communication, Baxter), so would not have affected the outcomes. 

Figure 2.7 Slicing of HemopatchTM. Schematic representation of the HemopatchTM slicing 
process and orientation (A) and orientation of the piece for cell seeding (B). Image created 
with Biorender.com  

 

Some pieces of HemopatchTM and glass coverslips were rinsed with ethanol and then 

incubated at 37ᵒC with poly-ornithine (1:5) (Sigma P4957) for 1 hour. Then, they were 

washed with water and incubated again with laminin (1:200) (Sigma L2020) for 1 hour. 

Finally, they were washed three times with water and stored in the incubator until use. 

Alternatively, some slices of HemopatchTM were left uncoated and kept in water until use. 

The glass coverslips were placed at the bottom of 24 well plates and the cells were seeded 

on top suspended in 600 µL of MLM at a density of 1.5x105 cells/mL. Each piece of 

HemopatchTM (coated and uncoated) was placed in a different well from the same plate 

and the cells were seeded on top of the biomaterial in a 10 µL drop at a density of 

1x107cells/mL. The cells were allowed to settle for 30 minutes in the incubator and then 

600 µL of medium was added in each well. 
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Cells were grown in MLM (designed to retain NSCs) for 5 days, with 50% medium change 

every other day. Once the cells on the coverslips were confluent (Figure 2.8), cells in all 

experimental conditions were either fixed with 4% PFA for 1 hour (for assessment of NSC 

growth and health) or were allowed to differentiate for 7 days by swapping the MLM to 

differentiation medium (DiffM) (Table 2.1) (to assess any effects of materials on 

differentiation). All plates were fed every other day with a 50% medium change. Prior to 

fixing, some cells were stained for survival (Live/Dead) and proliferation (Edu) assays 

(See sections 2.19.1 and 2.19.2). 

 

Figure 2.8 NSCs on glass coverslips. Representative light microscopy images of NSCs 
cultured on glass coverslips one day after seeding (A) and 5 days after seeding (B). 

 

2.10 CELLEVATETM FUNCTIONALISATION AND EXPERIMENTAL SET UP 
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incubated again with laminin (1:200) (Sigma L2020) for 1 hour. Finally, they were washed 

three times with water and stored in the incubator until use. 

After neurosphere dissociation (Section 2.7), NSCs were seeded on the fibres and glass 

coverslips in 600 µL of MLM at a density of 1.5 x 105 cells/mL. The cells were fed every 

other day with a 50% medium change. NSCs were allowed to proliferate for 5 days before 

being fixed with 4% paraformaldehyde (PFA) for 30 minutes or allowed to differentiate 

to astrocytes, neurons and oligodendrocytes by swapping the medium to DiffM. The latter 

were kept in the incubator for a further 7 days, with medium changes every 2-3 days, 

before being fixed with 4% PFA.      

2.11 CRYOSECTIONING OF CHICK EMBRYOS 

The head and limbs of some PFA fixed embryos from the shell and shell-less cultures were 

cut off with a scalpel in order to isolate the spinal column alone. The samples were 

submerged in a solution of 30% sucrose overnight and then frozen in OCT at -80ᵒC for 2 

hours. Then, the samples were cryosectioned at 12 to 20µm, mounted on glass slides and 

incubated in a 37ᵒC oven for dehydration and optimal attachment to the slide. Following 

this, the slices were washed with PBS (3 times, 5 minutes) and stained following the 

standard immunostaining protocol (Section 2.12).  

2.12 CHICK EMBRYO WHOLE MOUNT STAINING 

Some embryos from the shell and shell-less experiments were kept intact after fixing and 

stained as a whole. First of all, the embryos were permeabilized overnight at 4ᵒC with a 

PBS-TxD solution consisting of 2% Triton x-100 and 20% DMSO in PBS. The following day, 

the samples were incubated with Tuj-1 (1:200) in PBS-TxDB (PBS-TxD + 1% BSA + 0.1% 

fish gelatine) and kept for 4 days at 4ᵒC. Then, they were washed 5 times for 30 minutes 

with PBS-Tx (without DMSO or gelatine) and incubated with secondary antibody in PBS-

TxDB for 4 days at 4ᵒC. Following this, samples were rinsed with PBS-Tx for 30 minutes 
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and then with TNT (100mM Tris-HCl + 140mM NaCl + 0.05% Tween) for 30 minutes and 

finally with TN (TNT without Tween) 3 times for 5 minutes. Samples were then 

dehydrated through a methanol/TN series of 15 minutes each (20%, 50%, 75% and 

100%). Finally, the embryos were moved to glass containers and the tissue was cleared 

with a BABB solution containing 1 part of benzyl alcohol and 2 parts of benzyl benzoate, 

the samples were stored at 4ᵒC in BABB until imaging. This protocol was adapted from 

Zukor et al. (2011). 

2.13 IMMUNOHISTOCHEMISTRY 

After fixing, cells, spinal cord organotypic slices and chick embryo cryosectioned slices 

were washed 3 times for 5 minutes in PBS and then incubated with blocking solution (PBS 

+ 0.3% Triton X-100 (Sigma T9284) + 10% Normal Donkey Serum (Jackson 

ImmunoResearch 017-000-121)) for 30 min at RT. Then, the samples were incubated at 

4ᵒC overnight with the appropriate primary antibody (Table 2.2) suspended in blocking 

solution. The next day, the samples were washed and incubated with the appropriate 

secondary antibodies (Table 2.2) in combination with DAPI (4′,6-diamidino-2-

phenylindole) (5.0 µg/mL) in blocking solution for 2h at RT in the dark and then washed 

3 times, 5min/wash. Finally, the samples were mounted on glass slides with Vectashield 

mounting medium (Vector H-1000) and covered with a glass coverslip. 

2.14 DAB STAINING 

DAB (3,3’-diaminobenzidine) staining was carried out with Vector Laboratories 

Vectastain Elite ABC kit and DAB Peroxidase Substrate (SK-4100). The samples were 

washed with PBS and incubated at RT for 30 min with blocking solution (0.3% Triton X-

100 in PBS + 10% normal donkey serum). Then, the slices were incubated overnight with 

primary antibody (Table 2.2). Following a 5 min wash, the samples were incubated for 

30 minutes with the diluted biotinylated secondary antibody solution and washed again 

with PBS. Then, the samples were incubated for 30 minutes with the Vectastain ABC 
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reagent and washed with PBS. Finally, the samples were incubated with peroxidase 

substrate solution until the desired stain intensity developed. The samples were rinsed 

with water, mounted and imaged.  

2.15 LIVE/DEAD ASSAY 

30 minutes prior to fixing, some samples were incubated with 3µl/mL Ethidium 

homodimer (Sigma E1903), 1µl/mL of Calcein AM (VWR 89139-470) and 2µl/mL of DAPI 

in DMEM, incubated for 20 minutes in 5% CO2 at 37ᵒC, washed with PBS, mounted on 

glass slides and imaged live. 

2.16 PROLIFERATION ASSAY 

Selected samples from each condition in Chapters 4 and 5 were also incubated with the 

reagent EdU A (1 µM) for 6 hours prior to fixing. EdU is a thymidine analog which is 

incorporated during DNA duplication and therefore labels proliferating nuclei. After cell 

fixation, the samples were incubated at RT for 40 minutes with 0.3% Triton X-100 in PBS 

and then washed 4 times (5 minutes/wash) with 3% BSA in PBS. Then, the samples were 

incubated for 1h (RT, dark) with the Invitrogen Click-iT® EdU reaction cocktail and 

washed again with BSA. Finally, the samples were washed with PBS and subsequently 

immunostained (Section 2.12). 

2.17 SCANNING ELECTRON MICROSCOPY 

For a high resolution and detailed imaging of HemopatchTM and CellevateTM, some samples 

were fixed with 2.5% Glutaraldehyde diluted in 0.1M sodium cacodylate (CAC) in 

preparation for SEM. Then, these samples were processed with the OTOTO protocol 

established by Fernandes et al., (2015) as follows. 

First of all, the samples were washed 3 times for 5 minutes with CAC and then incubated 

at RT with osmium tetroxide for 1 hour. Following this, they were incubated for 20 

minutes with a saturated solution of thiocarbohydrazide, a high affinity osmium binding 
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agent, in distilled water. Then, the samples were washed 6 times for 5 minutes and the 

process was repeated two more times. After the third incubation with osmium tetroxide, 

the samples were washed again with water and then dehydrated through a series of 30-

minute incubations of increasing concentrations of ethanol (70%, 80%, 90%, 100% and 

100% dry ethanol). Finally, the samples were dried to the critical point with CO2 as the 

transition fluid and mounted on SEM stubs. 

To enhance conductivity, the edges of the coverslips were coated with silver paint before 

imaging. SEM imaging was carried out at the standard setting of 5Kv and images were 

taken at x3k magnification.  

2.18 FLUORESCENCE IMAGING 

Images of cells, spinal cord organotypic slices and chick embryo cryosectioned slices were 

taken under a fluorescence microscope (Leica DMC 2500 LED) equipped with a CCD 

camera (DFC350 FX) unless stated otherwise. The software used for imaging was Leica 

Application Suite X v.1 (2017). All spinal cord slice images were taken at consistent light 

exposure parameters throughout the experiments. Images from chick embryo whole 

mount staining were obtained with a Zeiss Axiozoom v16. and z-stack images were 

obtained with an AxioObserver.Z1 equipped with an AxioCam MRm. Both microscopes 

were powered by Zen 2 (blue edition) software (Carl Zeiss MicroImaging GmbH, 

Goettingen, Germany). 

Cryosectioned chick embryos were imaged at 50x magnification (with as many fields as 

necessary to acquire an image of the full section). Organotypic spinal cord slices 

(Chapters 3 and 6) were imaged at 5x magnification (1 field), 100x magnification (1 

field), 200x magnifications (with as many fields as necessary to acquire an image of the 

full width of the lesion) and 40x magnification in 3 areas: slice centre, lesion edge and 
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lesion gap (3 fields/area). Cells on glass coverslips or on biomaterials (Chapter 4 and 5) 

were imaged at 5x magnification (1 field) and 400x magnification (3 fields/sample). 

Image processing and data acquisition from images was done with the software ImageJ 

Fiji and all statistical analysis of data was carried out with GraphPad Prism unless stated 

otherwise. 

2.19 QUANTIFICATION AND STATISTICAL ANALYSIS OF NEURAL STEM CELL 

CULTURE ON BIOMATERIALS 

For these experiments, each mouse litter was counted as one biological repeat or ‘n’. A 

non-Gaussian distribution was assumed for all data sets and all statistical analyses were 

carried out using GraphPad Prism unless stated otherwise. Unless stated otherwise, data 

significance was analysed with a non-parametric Kruskal-Wallis test and all values are 

expressed as the mean ± standard error of the mean. For each experimental group, at least 

170 cells were counted in each biological repeat. 

2.19.1 Survival 

DAPI staining was used to count the total number of cells for each field and compared to 

the number of Ethidium homodimer positive nuclei (which colocalised with DAPI). For 

each sample, the results from each field were added and the percentage of dead cells was 

calculated. The resulting value was subtracted from 100% to obtain a survival percentage. 

Finally, the survival percentage for each biological repeat was averaged and plotted. 

2.19.2 Proliferation 

Similarly to survival analysis, DAPI staining was used to count the total cell number per 

field. Then, those nuclei which were also positive for Edu were counted. The results for 

each field were added and a percentage of Edu-positive cells was calculated. Then, the 

percentages for each biological repeat were averaged and plotted. 
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2.19.3 Cellular markers 

DAPI staining was used to count the total cell number per field. Then, those cells which 

were also positive for the relevant cellular marker (Nestin, Sox-2, GFAP, Tuj-1 or myelin 

basic protein (MBP)) were counted. The results for each field were added and a 

percentage of marker-positive cells were calculated. Then, the percentages for each 

biological repeat were averaged and plotted. 

2.19.4 Neurosphere formation  

Cell distribution on Chapter 4 was analysed as the number of neurospheres/µm2. A group 

of cells was counted as a neurosphere only if it was visible in 5x magnification images in 

a spherical formation, detached from other cell groups and with a maximum diameter of 

100µm. 

2.19.5 Cell and fibre alignment 

The alignment of cells and fibres was analysed for Chapter 5. The cell and fibre 

orientation for each sample was automatically calculated with the “Directionality” plug-

in for ImageJ Fiji. For each sample, a low magnification fluorescence image (showing the 

stained cells) and the corresponding bright field image (showing the fibres) were 

analysed. A Fourier components method was selected as the analytical pathway to 

calculate the orientation of fibres and cells in the image within a 90ᵒ to -90ᵒ angle range, 

as seen in Figure 2.9 A, B.  The resulting list indicating the number of structures in a given 

direction (Figure 2.9 C) was used later for analysis. 
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Figure 2.9 Orientation analysis protocol. Example of fibre orientation analysis. (A) 
Representative light microscopy image of aligned CellevateTM fibres. The coloured areas 
represent those that will be analysed by the software. (B) Legend indicating the colour that 
represents each angle from -90° to 90°. (C) Example of the resulting graph indicating the 
frequency (Y-axis) at which fibres are present for each direction (X-axis). 

 

To confirm that the images of the aligned CellevateTM constructs showed aligned fibres 

and that the images of random constructs were completely random, the exact orientation 

peak (angle in which more fibres are oriented) of the data acquired from the bright field 

images was found with Excel Office using the following formula. For example, the 

orientation peak in Figure 2.9 C would be approx. -30ᵒC. 

𝑓𝑓(𝑥𝑥) = 𝐼𝐼𝐼𝐼(𝐴𝐴𝐴𝐴𝐴𝐴(𝑋𝑋2 > 𝑋𝑋1,𝑋𝑋2 > 𝑋𝑋3),"PEAK","0") 

Then, values were systematically corrected, such that the most highly represented 

direction was referred to as zero angle (0ᵒ), with all orientations now being represented 

as deviations from this “zero” angle (Figure 2.10), a process equivalent to rotating the 

original image to obtain horizontal fibres. The rotation process aimed to normalise the 

data for future comparison between biological repeats. Therefore, this process was 

repeated for each biological repeat and the rotated frequencies were averaged and 

plotted for both random and aligned fibres (these plots were created with ggplot2 in R 

studio).  
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Figure 2.10 Data rotation protocol. Example of data rotation showing data plotted before 
rotation (with peak at -30°) and after rotation (peak at 0°). 

 

The area under the curve of the orientation peaks (between the angles -30° and 30°) was 

calculated for both random and aligned fibres in each biological repeat and normalised in 

respect to the total area under the curve. This was done in order to compare the relative 

number of aligned fibres in aligned constructs vs. random constructs. Then, the results 

were plotted and analysed with a Wilcoxon test for paired samples. 

A similar process was followed to determine cell orientation. In this case, the orientation 

peak was determined only on the bright field image for aligned fibres and rotated to 0ᵒ. 

The orientation data from the other images (fluorescence on aligned fibres, bright field on 

random fibres and fluorescence on random fibres) was rotated symmetrically according 

to the peak on the bright field aligned fibres. The process was repeated for each biological 

repeat and the resulting data was averaged and plotted. These XY orientation graphs, 

were designed using ggplot2 in R studio. 

Next, in order to statistically determine whether the cells were following a similar 

orientation pattern as the fibres they were seeded on, a correlation coefficient was 

calculated.  To analyse the correlation coefficient of the cell orientation versus the fibre 
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orientation, the previously averaged data sets were plotted in a linear graph, with the 

fibre frequencies for each orientation in the X-axis and the cell frequencies for each 

orientation as the Y-axis. A two-tailed Spearman correlation test with a 95% confidence 

interval was carried out to test for significance.  

2.20 QUANTIFICATION AND STATISTICAL ANALYSIS OF ORGANOTYPIC SPINAL 

CORD SLICES 

2.20.1 Survival 

Images of stained spinal cords taken at 5x magnification were used for this analysis. First, 

the images for each channel (red and green for Ethidium homodimer staining and Calcein 

AM staining respectively) were converted to 8-bit, inverted and calibrated. Then, the 

optical density (OD) background value was obtained for each channel as the mean OD of 

5 different areas of the image outside the spinal cord. Then, the mean OD value of the full 

image for each channel was obtained and corrected by subtracting the background. The 

corrected values were added to obtain a total fluorescence value and, finally, a viability 

index was obtained as the percentage of corrected viable OD relative to the total OD value. 

The survival data for Chapter 3 was analysed with a two-way ANOVA and Tukey 

correction test due to the presence of two independent variables and more than two 

groups. The data for Chapter 6, was analysed in a similar fashion. However, a Kruskal-

Wallis test with Dunn’s correction was chosen due to there being only one independent 

variable and more than two groups. The viability analysis for infiltrated cells on 

HemopatchTM was carried out the same way as the spinal cord slice but only for the section 

occupied by the HemopatchTM piece instead of the whole image. Statistical significance 

was tested with a Mann-Whitney test due to there being only one independent variable 

and two groups. 
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2.20.2  GFAP expression 

5x images of GFAP stained spinal cords were converted to 8-bit, inverted and calibrated. 

A 400µm line was drawn from the lesion margin towards the centre of the slice and the 

OD profile of the line was generated (Figure 2.11). The process was repeated three times 

along the width of the slice and the OD values of each distance point were averaged. Then, 

the OD value of the baseline was calculated by averaging the mean OD value of three 

different regions outside the slice in each image. Finally, the baseline value was subtracted 

from the previously averaged slice OD values to obtain a corrected OD value for each 

spinal cord. 

Figure 2.11 GFAP analysis protocol. Example of GFAP OD analysis. (A) Representative 
image of an inverted GFAP fluorescent image. The yellow lines represent the lines from which 
the OD values were calculated. (B) Graphical representation of the OD values obtained in 
one of the lines from A. 

According to their position relative to the lesion edge, the values from each spinal cord 

were grouped in three groups: 0-10µm, 50-60µm and 100-110µm. The values from each 

group were averaged so as to obtain a mean OD value from each distance.  

A repeated measures two-way ANOVA with Sidak’s multiple comparison test was used to 

statistically analyse the data. 

2.20.3 Optimisation of the analysis of axonal infiltration in the lesion gap  

20x magnification consecutive images of the whole width of the lesion were fused 

together in a panoramic image using Microsoft PowerPoint 2016 and opened with ImageJ 
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Fiji, converted to 8-bit, inverted and calibrated. Then, a single line was traced above the 

lesion margin following the length of the spinal cord. In those cases in which the lesion 

margin was not flat, multiple lines were traced in order to avoid the line overlapping with 

the slice (Figure 2.12 A). The OD profile of the line was plotted (Figure 2.12 B) and the 

values were transferred into a Microsoft Excel 2016 sheet. Each OD peak in the plot 

corresponded with a fibre sprouting from the slice. The following formula was used to 

determine those values that were higher than the previous and following ones, which 

corresponded to the peaks in the plot (A. P. Weightman et al., 2014): 

𝑓𝑓(𝑥𝑥) = 𝐼𝐼𝐼𝐼(𝐴𝐴𝐴𝐴𝐴𝐴(𝑋𝑋1 < 𝑋𝑋2,𝑋𝑋3 < 𝑋𝑋2), "1", "0") 

Each peak value was given a value of 1 in the next column, whereas the rest of the numbers 

were given a value of 0. These were then added to obtain the total number of peaks or 

fibres sprouting from that spinal cord. Finally, the exact width of the spinal cord slice was 

measured from a 5x magnification image and the number of peaks/mm was calculated. 

This protocol, however, seemed to account for debris and background staining as if they 

were sprouting fibres. Therefore, a Pearson correlation test between these results and 

manually counted axons was carried out using GraphPad Prism (95% confidence interval) 

(Figure 2.13 C). 

The negative, non-significant correlation result (r=-0.41) suggested that the number of 

peaks that were automatically counted using OD did not correlate with the manually 

counted fibres. In fact, the results differed by more than 10-fold. For this reason, this 

quantification method was discontinued.  

In order to eliminate the background, a threshold was applied to the image (Figure 2.12 

D). The threshold value was calculated as the mean OD value of the whole panoramic 

image. Following this, the same method of quantification and formula were used and 

compared to the manual count. The positive correlation result (r=0.54) (Figure 2.12 E) 
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seemed to indicate that this quantification method was more reliable, however, it was not 

significant. For this reason, we decided to base the analysis of sprouting fibres on the 

manual quantification procedure rather than an automated analysis. 

Figure 2.12 Tuj-1 analysis manual optimisation. (A) Inverted panoramic fluorescence 
image of Tuj-1. Yellow line represents the area at which OD values were obtained. (B) Graph 
representing the OD profile of putative sprouting Tuj-1 fibres. (C) Correlation of manual 
count vs. OD count. (D) Inverted panoramic fluorescence image of Tuj-1 after threshold 
application. (E) Correlation of manual count vs. OD count after threshold application. 
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2.20.4  Axonal infiltration in the lesion gap 

In Chapter 3, the total number of axons infiltrating the lesion gap was analysed. 20x 

magnification consecutive images of the whole width of the lesion were fused together in 

a panoramic image using Microsoft PowerPoint 2016 and opened in ImageJ Fiji, converted 

to 8-bit and inverted. All axons that were sprouting from the lesion margin into the lesion 

gap were counted and divided by the full width of the slice (mm).  

However, this protocol was not usable after biomaterial implantation (Chapter 6). Due to 

the intricate web of axonal infiltration within the material, it was impossible to count 

single axons. Therefore, the total length of all infiltrated axons was calculated instead 

(Section 2.20.6). 

2.20.5  Optimisation of measuring total length of infiltrated axons analysis 

In Chapter 6, 40x images taken at random areas of the injury gap or in implanted 

HemopatchTM were either opened with the ImageJ plugin “Axon Tracer” (for an automated 

quantification) or converted to 8-bit and uploaded in the plug in “NeuronJ” (for a manual 

quantification) (Figure 2.13 A-D). The axons present in the image were either manually 

Figure 2.13 Tuj-1 analysis automated optimisation. (A) Original Tuj-1 fluorescence 
image. (B) Image converted to 8-bit and inverted. (C) Neuronal fibres manually traced with 
NeuronJ. (D) Neuronal fibres automatically traced with Axon Tracer. (E) Correlation of 
axonal length counted with Neuron J (X-axis) vs. Axon Tracer (Y-axis). (F) Graph 
representing the significant difference between the total axonal length counted with each 
method. 
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traced on NeuronJ or automatically picked up by Axon Tracer to obtain the total axonal 

length in each image.  

The results of these analytical methods were positively correlated (r=0.486) (Figure 2.13 

E), but the automated method seemed to account for debris or unspecific staining for 

axons and, therefore, counting approximately two-fold more axons than the manual 

approach (Mann-Whitney test, p=0.041) (Figure 2.14 F). Therefore, the total axonal 

length was quantified using NeuronJ.   

2.20.6 Total axonal length in the injury gap 

In Chapter 6, from each spinal cord, three 40x images were taken at random areas of the 

lesion gap or the implanted HemopatchTM and uploaded on NeuronJ. The axons were 

traced and the total length of traced axons in µm was obtained. The results from each field 

were added and then averaged with the other spinal cords from the same experimental 

group. A Kruskal-Wallis test with Dunn’s correction was performed for statistical analysis. 

2.20.7  MBP expression 

40x images were taken at the centre of the spinal cord, the edge of the lesion and the lesion 

gap or HemopatchTM. The total length of MBP positive tracts in each image was quantified 

using NeuronJ. The results of each area were added to obtain a total length of myelinated 

tracts in each spinal cord. Then, a percentage of myelinated tracts was calculated for each 

region relative to the total myelinated tracts in that spinal cord. Finally, the results for 

each area were averaged with the other spinal cords and plotted. A repeated measures 

two-way ANOVA with Sidak’s multiple comparison test was performed for statistical 

analysis.  

2.20.8  Lectin expression 

Lectin quantification was achieved by counting the number of lectin-positive cells that 

were detached from the spinal cord slice per unit area (1 mm2) at the lesion site using a 
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standard size grid overlaid onto each image. The total number of lectin positive cells per 

area was averaged for each slice. The results were plotted and statistically analysed with 

a Kruskall-Wallis test with Dunn’s correction. 
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3 ESTABLISHMENT OF THE CHICK EMBRYO AS A SPINAL CORD INJURY 

MODEL 

3.1 BACKGROUND 

3.1.1 Requirements for alternative spinal cord injury models as tissue engineering 

platforms 

As covered in Chapter 1, numerous clinical and preclinical treatments for SCI are 

currently being investigated, such as the delivery of a replacement cell population to the 

injury site, the implantation of pro-regenerative biomaterials to bridge the lesion gap or 

a combination of both. Testing these new therapies is usually carried out in rodents 

(Sharif-Alhoseini et al., 2017) due to the high costs and ethical implications of using large 

mammals or primates. However, rodent models also require ethical approval, which 

might take years to acquire, are associated with high maintenance costs and require 

housing facilities, professional caring personnel and food supply which, in turn, inflate the 

cost of experimentation. In contrast, the exponentially increasing numbers of new 

biomaterials and various treatment ramifications to be tested need a trial platform that is 

easy, cost-effective and free of ethical implications. 

The chick embryo spinal cord possesses all major cell types and neural system tracts 

when compared to that of an adult human (Ferretti & Whalley, 2008). Furthermore, the 

embryo develops inside an egg, which makes it easily accessible and technically 

straightforward. Moreover, chick embryo maintenance requires the space of a standard 

cell incubator compared to a full animal facility and does not require food supply, as 

everything the embryo needs is inside the egg. The oviparous nature of the chicken also 

allows for embryonic studies while preserving the mother’s life. The nervous tracts that 

allow the embryo to feel pain are not fully formed until E13 (Okado & Oppenheim, 1985), 

because of this, experimentation before E14 does not require licensing under ASPA 
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(1986). Furthermore, it is simple and cost-effective meaning it could be adopted widely 

by various laboratories. 

3.1.2 Relevance of the chick embryo as a spinal cord injury model 

The chick embryo has already been used as a model for spinal cord injury. In 1990, a 

research group studied the differences between spinal cord regeneration after 

transections made at E2, E5, E10 and E15 (Shimizu et al., 1990). Their results suggest that 

spinal cord regeneration is possible before E10, but for transections made at E15, 

regeneration is not possible anymore. They showed that after an E2 transection, full 

continuity of the neural tube was restored at 12h post-surgery. After an E5 transection, 

restoration was completed in 48h and between 2 to 8 days after E10 surgery. In these 

three cases, some chicks were aided to hatch or were able to do it on their own, but their 

post-hatching behaviour was no different from that of sham chicks. On the contrary, 

neural tube continuity was not restored after E15 transections and those chicks showed 

degenerating axons by E19. Moreover, none of them was able to hatch on their own or to 

support their weight afterwards.  

In 1993, Hasan et al. narrowed down this time period when they showed that 

regenerating axons were only observed before E13. In their experiments they injected 

two retrograde labelling dyes: the first one was injected two days before transection and 

the second one 7 to 8 days post-transection. Double labelled axons suggest that repair is 

due to a true regeneration process. Their results showed that the percentage of double-

labelled brainstem-spinal cord neurons was 5.1% for transections made at E10, and 

21.7% for transections made at E12 compared to 0% for transections made after E13.  

Whalley et al., (2006) suggested that the main difference between the regeneration 

permissive stage and the non-permissive stage was the tissue vascularization. They 

showed that vascularisation increased significantly around E13 and that increase was 
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associated with an increase of apoptotic cells and tissue cavitation after injury. Moreover, 

the use of desmopressin in E15 embryos to reduce haemorrhage, resulted in less 

apoptotic cells and less cavitation, similar to E11. On the other hand, injection of diazepam 

to increase haemorrhage in E11 embryos resulted in a similar injury to that of E15 

embryos.  

Given the regenerative potential of NSCs, the response of endogenous NSCs to injury has 

also been studied in the chick embryo. In this case, it was demonstrated that, at E16, 

healthy NSC proliferation decreases significantly compared to E11. Interestingly, after an 

injury made at E11, neurogenesis does not increase. However, after an injury made at E16, 

NSC proliferation increases, probably resulting in new born glial cells instead of neurons 

(Whalley et al., 2009). This increase in NSC proliferation after SCI has also been observed 

in rodent models, leading to the formation of new reactive astrocytes within the centre of 

the glial scar and oligodendrocytes in the surrounding white matter (Grégoire et al., 

2015).   

The chick embryo has also been used to test stem cell behaviour post-transplantation into 

the spinal cord. Delivery of human hematopoietic stem cells (HSC) within the spinal cord 

of E3 chick embryos, results in the differentiation of these HSC into neurons, but only in a 

regenerative environment after injury (Sigurjonsson et al., 2005). Moreover, injected NSC 

from adult mouse into the amniotic cavity of E1 chick embryos integrate into the host 

system and differentiate to give rise to adult neurons (Clarke et al., 2000). These results 

highlight the potential of exogenous cell implantation within the chick embryo SCI. 

Moreover, they indicate the possibility of interfacing NSCs from a different species (i.e.: 

human or mouse) into the chick embryo tissue for experimental purposes.  
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Despite these promising findings, no-one has yet investigated whether we could use the 

chick embryo as a model in which to test cell-biomaterial combinatorial therapies 

designed to repair the spinal cord.  

3.1.3 Physiological relevance of the spinal cord organotypic culture for spinal cord 

injury 

Whilst in vivo models of SCI based on the chick embryo may be a viable option, as 

highlighted in the Chapter 1, organotypic slice cultures are an alternative ex vivo 

technique that aims to represent the in vivo structure and function of a specific organ or 

tissue in isolation from the body. They differ from in vitro cellular cultures in that they 

preserve the tissue structure and cellular connections, providing the system with more in 

vivo-like properties. This is due to the preservation of cell-cell and cell-ECM intercellular 

junctions, which are not represented in 2D models (Shamir & Ewald, 2014). Moreover, 

the in vitro aspect of such cultures provides the system with easier manipulation and 

analysis procedures than those used in in vivo research. 

The suitability of organotypic slice cultures as SCI models has been investigated 

extensively in rodent models. A recent study aimed to assess cellular viability of the slices 

after different types of lesion infliction in live rats: stab, contusion and transection. Over 

10 days of culture, all slices showed more live cells than dead after injury, although 

uninjured controls showed a higher viability rate. Only in the case of transected slices, a 

reduction in cell viability was observed over time (Patar et al., 2019b).  

After 2 weeks of culture, sagittal slices of mouse spinal cords were reported to maintain 

neuronal survival and differentiation, and the characteristic ventro-dorsal polarity of the 

spinal cord was preserved (Bonnici & Kapfhammer, 2008). The presence of synaptic 

contacts and oligodendrocytic myelination were also reported in the same cultures 

(Bonnici & Kapfhammer, 2008). One week after transection, the injury gap was easily 
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recognised due to the inability of the majority of fibres to regenerate. In fact, the number 

of spontaneous regenerating axons decreased with the maturation of the slice in vitro but 

not with the age of the donor from P0 to P6 (Bonnici & Kapfhammer, 2008).  

Organotypic slices have also been reported to present in vivo-like glial responses to 

physical insult such as an increase in reactive astrocytes and NG-2 proteoglycans 10 days 

after a stab or a transection injury in rats (Patar et al., 2019a). Six days after a complete 

transecting injury, mouse spinal cord organotypic slices presented signs of reactive 

astrocytes and limited nerve fibre outgrowth (Weightman et al., 2014). 

3.1.4 The chick embryo as a donor for organotypic spinal cord slices 

There are several examples of successful chick embryo spinal cord organotypic slices. One 

of the first models was established as a proof of concept to add validity to the study of the 

CNS in vitro. Spinal cord slices were obtained from E10 chick embryos and cultured for up 

to 16 days during which the uptake kinetics of neurotransmitters were studied (Tunnicliff 

et al., 1973). A similar culture was used to study the development of cutaneous sensory 

projections in the spinal cord. Spinal cords with attached dorsal root ganglia and 

peripheral nerves were dissected in thick transversal slices from E5-E7 embryos and 

were maintained in vitro for 2-3 days (Sharma et al., 1994; Sharma et al., 1998). Neurite 

outgrowth in 3D has also been examined after embedding E7 chick embryo transversal 

slices of spinal cord in a fibrin matrix. Neurites from the young embryonic tissue grew 

radially and reached lengths up to 3mm after 5 days without treatment (Rösner & Vacun, 

1997). 

The first case of testing neuroregeneration in chick embryo spinal cord slices was aimed 

at screening drugs for motor neuron disease. The transversal slices, which were obtained 

from E16 embryos, provided a model with mature, target independent motoneurons, that 

could be maintained for at least 4 weeks in vitro (Brunet et al., 2007). This model was later 
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used as a platform for screening glutamate receptor agonist and antagonist drugs, which 

appear to play an important role in motoneuron degeneration in amyotrophic lateral 

sclerosis (Núria Brunet et al., 2009; J. Calderó et al., 2010).  

Despite clear advantages shared by both organotypic slice cultures and the chick embryo 

as a model, such a system has never been established. 

3.1.5 Knowledge gaps and aims 

In summary, protocols for administering a SCI to the chick embryo have been established, 

with similar responses to that of adult injury. As also described, organotypic slices have 

been repeatedly demonstrated to provide a physiologically relevant model of spinal cord 

injury, mostly using rodent tissue. These types of slices have also been successfully 

derived from the chick embryo at different developmental stages. However, longitudinal 

spinal cord slices have never been derived from the chick embryo spinal cord. Further, it 

has never been tested whether a transecting injury can be induced in the slices and the 

subsequent response to this injury has not been investigated.  

Consequently, the aims of this chapter are to investigate: 

1. The feasibility of establishing a SCI in the chick embryo with implantation of a 

bioscaffold. 

2. The feasibility of establishing organotypic spinal cord slices from chick embryo 

tissue. 

3. The neuropathological responses to a transecting injury in organotypic spinal cord 

slices from chick embryo tissue.  
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3.2 RESULTS 

3.2.1 Shell-less culture of chick embryos was feasible and allowed greater access 

for manipulation 

Fertilised chicken eggs were purchased and the embryos were incubated either inside 

their shells in a specialised incubator or removed from the shell and placed into culture 

vessels inside the incubator (Chapter 2) in order to test which culture type offered easier 

access for a transecting lesion. 

A total of 74 chick embryos were incubated in their shell (Figure 3.1 A) and a total of 28 

embryos were incubated outside their shell (shell-less) (Figure 3.1 B). A small window 

was opened on the shell of the first group to introduce a transecting lesion in the spinal 

cord of E5 embryos, while the second group were already exposed and the lesion was 

inflicted without the need of windowing.  

As shown in Figure 3.2 A, embryo survival was higher for Shell cultured embryos than 

those cultured using our first Shell-less procedures. As the survival curve in Figure 3.2 B 

shows, there was a point shortly after introducing the embryo into the culture vessel (E3) 

Figure 3.1 Chick embryo culture. Representative images of E5 chick embryos in shell 
(A) and shell-less cultures (B). 
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where approximately 30% of embryos died (n=28). This potentially suggests the embryos 

underwent trauma upon transfer to the vessel. Therefore, we refined the culture 

technique to try a gentler transfer of embryos into the vessel. Instead of cracking the egg 

straight into the vessel, 6mL of albumin were extracted from the egg and added to the 

vessel. Then, the top of the shell was cut off with a pair of fine scissors. Finally, the contents 

of the egg were gently poured into the vessel. This protocol change led to a marked 

improvement in survival. In more detail, it led to a 40% survival of embryos (n=29) 

compared to approximately 15% (n=28) when using the initial method. (Figure 3.2 A, B).  

Figure 3.2 Chick embryo survival. Graphical representations of chick embryo survival (A) 
and survival curve during incubation (B) in which only natural deaths that were not caused 
by manipulation were counted. Graphical representation of the cause of death in the “Shell” 
group (C) and in the “Shell-less” group (D). 35 embryos were used in the “Shell” group, 24 in 
the “Shell-less” group and 17 in the “improved shell-less” group. The percentages represent 
the percentage of embryos that survived relative to the total number of embryos in each 
group. The results are expressed as percentages. These graphs indicate that chick embryo 
survival decreases in the shell-less culture, but that manipulation is easier and leads to less 
deaths due to surgery.  
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Embryo lesioning through a small window in the shell was challenging, especially at later 

developmental stages, mainly due to poor visibility and movement of the embryo 

combined with a small space to move the lesioning tools. In this regard, the Shell-less 

embryo provided a wider manoeuvre space, resulting in less deaths due to embryo 

surgery: 54.3% of deaths in the Shell culture (n=35) compared to 29.1% in the Shell-less 

culture (n=24) (Figure 3.2 C, D). A death due to surgery was described as such when a 

blood vessel was distinctively punctured, causing haemorrhage. Although survival of 

Shell-less embryos improved after the protocol optimisation, a decrease in survival was 

noted during incubation for unknown causes, mostly in the Shell-less group (Figure 3.2 

C, D). These deaths, occurred mostly between E4 and E6 in the Shell culture and between 

E3-E4 in the Shell-less group, followed by another drop in survival between E5 and E9 

(Figure 3.2 B). 

3.2.2 In vivo chick embryo lesioning was successful 

Under a dissection microscope, a thoracic transecting lesion was introduced with a 21-

gauge needle (Figure 3.3 A). The lesioned embryos were then either removed from the 

egg for immediate fixation (E5) or the window was re-sealed with scotch tape and the 

embryos cultured for a further 24h (E6) and 48h (E7). 

Whole mount staining of the embryo allowed for lesion localisation at high (Figure 3.3 B) 

and low magnification (Figure 3.3 C, D). In addition, key features of the developing spinal 

cord could be identified such the dorsal root ganglia and spinal nerves (Figure 3.3 B). 

Although it was possible to see axonal tracts, some areas were obscured, probably due to 

the thickness of the sample, making quantification of any possible regeneration 

unreliable. 
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As an alternative method of visualising the lesioned spinal cord of chick embryos in higher 

detail, we employed cryosectioning and staining for nerve fibre marker Tuj-1 (Chapter 

2). In a frontal section (Figure 3.4 A-C) it was possible to see the ascending and 

descending neuronal tracts surrounded by dorsal root ganglia. In the case of E5, the 

ascending and descending tracts are either developing or in a different plane, therefore, 

an apparent gap in the tracts appears at the centre of the spinal cord (Figure 3.4 A). At 

24 and 48h post-injury the tracts were detected in the slices but we were not able to 

conclusively locate the injury, possibly due to regeneration of the tissue (Figure 3.4 B, C). 

Figure 3.3. Whole-mount staining of chick embryos. Representative image of a live E4 
chick embryo in its shell and after lesioning. Lesion visible after injection of blue food 
colouring. Image donated by Dr. Chris Adams (A). Representative image of the lesion site 
(B) and the stained whole mount embryos at E5 (C) and E6 (D). B, C and D were stained 
using the neuronal marker Tuj-1. Whole-mount staining allowed for gross visualisation 
of spinal cord architecture.  
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Tract swelling, which has previously been associated with a site of spinal injury in the 

chick embryo (Shimizu et al., 1990), was noted in E7 embryos, potentially indicating an 

area of regeneration after injury (Figure 3.4 C). The lack of injury detection in any of the 

sections, led us to slice sagittal sections of the spinal cord, in which a potential lesion gap 

was found (Figure 3.4 D).  

3.2.3 In vivo biomaterial implantation after injury was successful 

After the establishment of the Shell-less culture and lesioning protocols we attempted a 

preliminary trial for implantation of HemopatchTM in E5 lesioned embryos (Figure 3.5). 

Under microscopic observation it appeared that HemopatchTM was successfully 

Figure 3.4 Chick embryo spinal cord cryosectioning. Representative fluorescence images 
of chick embryo spinal cords after cryosectioning frontally on E5 (0h post injury)) (A), E6 
(24h) (B) and E7 (48h) (C) and sagitally on E5 (0h) (D). The slices were stained with Tuj-1 
(orange) and DAPI (blue). Sagittal slices at 0h allowed for potential lesion gap visualisation. 
 

Figure 3.5 Live chick embryo. Representative frames from Video 1 showing a live embryo 
(A), the embryo after SCI (B) and after biomaterial implantation (C). HemopatchTM 
implantation was possible after lesioning.  



80 
 

implanted into the lesion site (Figure 3.5 and Video 1), without causing further damage 

to the tissue.  

Posterior observation after DAB staining with a neuronal marker revealed the implant 

still in the injury site (Figure 3.6). Although the implant is near the ascending and 

descending axonal tracts, it seems that it is not fully inserted in the spinal cord (Figure 

3.6 C). However there seemed to be axonal tracts infiltrating the implant (Figure 3.6 D). 

Although survival rates increased after improving the culture technique and despite 

successfully inflicting a transecting lesion and implanting HemopatchTM, we were unable 

to reliably analyse possible cell regeneration with our current tools. Therefore, all further 

experiments were carried out with organotypic spinal cord slices. 

3.2.4 Spinal cord organotypic slices were viable regardless of lesion or time point 

In order to assess the cellular responses over time and to different lesioning times, we 

established 4 timepoints for lesioning and fixing the samples (Chapter 2). 

Figure 3.6 Chick embryo spinal cord after biomaterial implantation. Representative 
images of cryosectioned spinal cord slices of a sham embryo (A) and after injury and 
biomaterial implantation (B). Images C and D show the implanted biomaterial at a higher 
magnification and putative axonal infiltration. Slices were stained with the neuronal 
marker Tuj-1 which was subsequently detected using DAB staining. Biomaterial 
implantation might have allowed axonal infiltration. 
 

Putative 
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All spinal cords were highly stained with Calcein AM, an indicator of cellular health, 

regardless of whether they had been lesioned or not (Figure 3.7 A, B). At high 

magnification it was possible to see single dead cells spread across the spinal cord (Figure 

3.7 C), which were mostly accumulated outside the edges of the slice. Approximately, 

between 60 and 80% of the spinal cord was stained with Calcein AM. There were no 

statistically significant differences in survival between injured and uninjured slices or 

between time points (Figure 3.7 D).  

 

Figure 3.7 Survival of spinal cord organotypic slices. Merged fluorescence images of 
the survival assay on an injured spinal cord organotypic slice (A) and on an uninjured 
slice (B) and a high magnification image showing the centre of an injured spinal cord slice 
away from the lesion (C). Green staining corresponds to live cells stained with Calcein AM 
and red staining corresponds to dead cells stained with Ethidium homodimer (EtH) in the 
centre of the spinal cord after injury. Arrows point at dead cells. All images correspond to 
the I4F12 time point. D depicts the graphical representation of the viability index for each 
timepoint (expressed as the percentage of Calcein AM staining compared to total OD of 
the image) and compares the viability of injured spinal cords vs. controls (Two-way 
ANOVA, n=3, p≥0.05). The percentages represent the Calcein AM OD relative to the total 
Calcein AM + Ethidium homodimer OD. Each dot in the graph represents one biological 
repeat (one organotypic slice). Spinal cord viability was similar in both injured and 
uninjured slices in all experimental groups.  
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3.2.5  A reproducible transecting injury could be administered to the slice 

All spinal cords were lesioned with a double-bladed scalpel to ensure a reproducible 

lesion width. After fixation and staining, the edges of the spinal cord were established as 

the areas where DAPI staining ended and the width of the lesion was calculated for 10 

spinal cords from each group. Although in some cases one side of the spinal cord moved 

slightly from its original position during antibody washing, there were no statistical 

differences in lesion width between groups, with an average width ranging from ca. 400 

to 500µm (Figure 3.8). 

Following this, the cellular responses to injury were studied in order to characterise 

standard responses to injury. In particular: the formation of glial scar, impaired axonal 

regeneration, loss of myelination and microglial infiltration.  

Figure 3.13 Width of SCI. Representative DAPI images showing the lesion and the two slides 
of the spinal cord at each time point (A-D) and graphical representation of the lesion width 
across time points (One-way ANOVA, n=10, p≥0.05). Y axis represents the µm between the 
two edges of the lesion. Dots in graph represent one biological repeat (one organotypic slice) 
(E). Dotted lines represent the edges of the lesions. There were no statistical differences in 
lesion width across experimental groups.  
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3.2.6 GFAP expression was higher at the edge of the lesion than at the centre of the 

spinal cord 12 days post injury. 

To measure the possible formation of a glial scar in our injury slice models, we analysed 

GFAP expression. During microscopic observation it was noted that the lesion margins of 

some spinal cords were brighter than the centre of the spinal cord when stained with an 

anti-GFAP antibody (Figure 3.9 A-D). Upon observation at higher magnification, the 

GFAP-positive cells observed at the lesion margins of the slices with higher GFAP 

expression, presented distinct morphologies when compared to the centre of the slices. 

At the edge of the lesion, morphologies were characterised by elongated somas and 

processes, distributed in parallel to each other and perpendicularly to the lesion and at a 

high density (Figure 3.9 E, F). OD analyses revealed a significantly higher GFAP 

expression between 0-10µm from the lesion margin than at 50-60µm and 100-110µm 

from the lesion margin for the spinal cords that were fixed 12 days post injury (I4F12 

(p=0.006) and I12F12 (p=0.02)). This higher GFAP expression was not seen for those that 

were fixed earlier, at 4 days post injury (I4F4 and I12F4) (Figure 3.9 G). In more detail, 

I4F4 presented OD levels of 0.097±0.04 at 0-10µm, 0.083±0.026 at 50-60µm and 

0.076±0.023 at 100-110µm. I4F12 presented OD values of 0.092±0.033 at 0-10µm, 

0.053±0.017 at 50-60µm and 0.046±0.012 at 100-110µm. I12F4 presented OD values of 

0.068±0.05 at 0-10µm, 0.048±0.019 at 50-60µm and 0.046±0.017 at 100-110µm. Finally, 

I12F12 presented OD values of 0.063±0.007 at 0-10µm, 0.039±0.010 at 50-60µm and 

0.035±0.007 at 100-110µm. 
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Figure 3.9 GFAP expression after injury. Fluorescence images showing a spinal cord slice after lesioning and GFAP staining at low magnification 
at different time points (A-D) and high magnification at the lesion edge (E) and centre of the spinal cord (F). Dotted lines representing the edges of 
the lesions. The graph (G) represents the OD values of GFAP staining from the lesion edge (0-10µm) to the centre of the spinal cord (100-110µm) 
across all time points (Two-way ANOVA, I4F4: n=8, p≥0.05; I4F12: n=12, p=0.006; I12F4: n=8, p≥0.05; I12F12: n=6, p=0.02). * p<0.05; **p<0.01. Y axis 
refers to GFAP OD. GFAP OD values were higher at the edge of the lesion when slices were fixed 12 days after injury.  

µm 

µm 
µm 
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3.2.7 Regenerating axons were observed in the lesion gap but never reconnecting 

both sides 

Tuj-1 staining allowed for the detection of regenerating axonal fibres into the lesion gap. 

It was noticed that axonal growth was not always directed to the opposite end of the 

lesion. Instead, some fibres grew perpendicularly to the injury or in a haphazard fashion.  

Weak axonal sprouting was observed in the lesion gap but these never appeared to 

reconnect both sides of the lesioned spinal cord (Figure 3.10 A, B). Approximately 20 

axonal fibres were counted per mm from one side of the lesion with a relatively high 

variation amongst slices (between 20 and 60 fibres/mm) within the same time point 

Figure 3.10 Axonal sprouting in SCI organotypic slices. Representative fluorescence 
images of a I4F12 spinal cord slice after injury and Tuj-1 staining at low magnification 
(A) and hight magnification at the lesion edge (B) showing spontaneous axonal 
sprouting. Dotted lines representing the edges of the lesion. Arrow pointing and sprouting 
axon. The bar graphs represent the number of single fibres per mm infiltrating the lesion 
gap in each time point (Kruskal-Wallis test, I4F4: n=4; I4F12: n=4; I12F4: n=5; I12F12: 
n=3, p≥0.05) (C) and the mean total axonal length of the infiltrating fibres of each field 
(Kruskal-Wallis test, I4F4: n=4; I4F12: n=5; I12F4: n=4; I12F12: n=3, p≥0.05) (D). No 
differences were found in axonal infiltration among experimental groups. 
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(Figure 3.10 C). The total length of sprouting axons per field was also highly variable 

(from 0 to 6000µm), with no statistical differences between time points (p>0.05) (Figure 

3.10 D). 

3.2.8 The density of MBP-positive tracts was higher at the centre of the spinal cord 

than at the lesion edge 

Most spinal cords presented MBP-positive tracts. However, sometimes those were only 

present on one side of the lesion. In some cases no MBP was observed or the amount of 

MBP-positive structures varied across spinal cords. Therefore, only those slices that 

presented MBP-positive tracts were selected for analysis.  

When MBP-positive cells were observed, those seemed to form tracts following the 

direction of Tuj-1-positive fibres, possibly ensheathing them as myelination tracts 

(Figure 3.11). 

 

However, the density of MBP-positive tracts seemed to be less at the edge of the lesion 

than at the centre of the spinal cord (Figure 3.12 A-C). The quantification analysis 

suggested that approximately four times the level of MBP staining was detected in the 

centre of the cord compared to the lesion margin (p<0.05). This was true for all time 

points except I12F12 (Figure 3.12 D). 

Figure 3.11 Presence of myelin tracts in chick embryo spinal cord organotypic slices. 
Example images of spinal cord slices with Tuj-1 positive fibres (A) and MBP-positive fibres (B) 
following similar position patterns, as seen by colocalization of staining in a merged image 
(C). 
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3.2.9 Lectin-positive cells infiltrated the lesion gap 

Finally, microglia, detected as lectin-positive cells, were seen infiltrating the lesion gap. 

The cells infiltrating the lesion presented an amoeboid morphology (Figure 2.13 A) while 

cells visualised within the centre of the slice appeared more ramified (Figure 3.13 B). As 

suggested by the statistical analysis, the number of infiltrated cells per unit area was 

similar in all time points (Figure 3.13 C). 

 

Figure 3.12 Myelination of slices after injury. Representative fluorescence images of a 
spinal cord slice after injury and MBP staining at low magnification (A) and high 
magnification at the lesion edge (B) and centre of the spinal cord (C). All images 
corresponding to a I4F12 slice. The bar graph represents the percentage of MBP-positive 
tracts in the centre of the spinal cord compared to the edge for each time point (Two-way 
ANOVA, n=3, p≤0.05) (D). Y axis represents the percentage of fibres in either the edge of the  
slice or the centre relative to the total number of fibres in the slice. Most MBP-positive tracts 
were found at the centre of the spinal cord compared to the edge in the first three 
timepoints.  
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Figure 3.13 Infiltration of microglia in the injury gap. Fluorescence image of a 
I4F12 slice representing lectin-positive cells infiltrating the lesion gap (A), lectin-
positive cells in the centre of the spinal cord (B) and graphical representation of the 
number of lectin-positive cells per unit area in the lesion gap for each time point 
(Kruskal-Wallis test, I4F4: n=4; I4F12: n=4; I12F4: n=6; I12F12: n=3, p≥0.05) (C). 
Dotted line representing the edge of the lesion and arrows pointing at examples of cells. 
There were no differences in the number of lectin-positive cells among experimental 
groups.   
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3.3 DISCUSSION 

3.3.1 Summary of aims and results 

Here, we have shown that it is possible to create a SCI and implant a therapeutic 

biomaterial to the lesion in the live chick embryo. However, the technique faces low 

survival rates and presents analytical difficulties. Instead, the establishment of an 

organotypic SCI model using chick embryo spinal cord was shown. These data indicate 

that the chick embryo slice model could be used as a novel platform for testing possible 

therapies. This is due to the high slice survival in vitro and its replication of the most 

common cellular behaviours following traumatic SCI: astrocytic hypertrophy, inhibited 

axonal regeneration, microglial infiltration and potential loss of myelinating 

oligodendrocytes. Moreover, as stated in Chapter 1, the use of the chick embryo offers 

significant advantages over rodent models. In short, it is cheaper to maintain, easier to 

manipulate and it is restricted to less ethical implications offering wider availability 

throughout the scientific community. These outcomes will be discussed in the following 

sections. 

3.3.2 The chick embryo as an in vivo model of spinal cord injury 

In this chapter we showed that chick embryos can develop in culture vessels outside their 

shell, as initially showed by Tahara & Obara (2014), and that it is possible to inflict a 

transecting injury to their spinal cord. Furthermore, a small piece of the biomaterial 

HemopatchTM was successfully implanted into the spinal cord after lesioning. This culture 

protocol allowed for a wider manipulation area compared to the small window in “shell” 

cultured chicks. In the “shell” group, creating a small window allowed to insert tools to 

inflict a transecting lesion while maintaining all the egg contents in place. However, this 

window was too small to move the lesioning tools freely, often resulting in blood vessel 

puncture and death. Therefore, the “shell-less” group provided an advantage regarding 

the lesioning procedure. However, the process of transferring the embryo to the culture 
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vessel and perhaps the suboptimal conditions in the culture vessel led to a marked 

decrease of embryo survival during incubation. The survival rate was increased by 

modifying the transfer procedure of the embryo to the culture vessel. The optimised 

procedure resulted in a gentler transfer, reducing the impact force and, possibly, the 

trauma inflicted on the embryo upon transfer. Despite the fact that the shell-less group 

showed increased survival after manipulation, and that we were able to increase survival 

rates, these still showed a tendency to die during the incubation period even without 

manipulation of the embryos at higher rates than the “shell” group. 

The embryos were stained with two different methods: whole-mount staining or 

immunostaining after cyosectioning. Although the lesion was located and some neural 

fibres were observed after whole mount staining, the thickness of the tissue did not allow 

for a clear visualisation of neural structures and therefore, any possible quantification 

would have been unreliable and not reproducible. On the other hand, sagittal sections of 

the spinal cord allowed for lesion localisation 0h after lesioning and implant localisation 

after 24h. The lesion was not localised with frontal sections, perhaps due to the lesion 

being in a different plane or due to regeneration. Here, we used E5 – E7 chick embryos. 

This time point was chosen due to the fact that neurons, OPCs and microglia should 

already be present (Chapter 1), and the embryo was small enough to manipulate through 

the shell window. As a limitation, the E5 chick embryo spinal cord can regenerate after a 

lesion and, therefore, this model would only allow for the evaluation of cell infiltration 

upon biomaterial implantation instead of regeneration permissiveness.  

In conclusion, chick embryos developing in culture vessels were more appropriate for 

lesioning procedures despite a survival decrease during incubation. In regard to sample 

manipulation, cryosectioning the samples before staining resulted in clear visualisation 

of structures for potential reliable quantification. Despite this, and after optimising 

culturing methods, chick embryo survival was only approximately of 40% and would need 
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further optimisation to increase survival. In addition, and in the context of this thesis, the 

organotypic slice culture model offers a more simplistic, higher throughput model in 

which to test biomaterial implantation. Importantly, the organotypic model offers the 

possibility of working with older tissue, which does not spontaneously regenerate. 

Therefore, we proceeded to study and analyse cellular responses on the in vitro model in 

order to establish a reproducible and robust testing platform for neural tissue 

engineering.   

3.3.3 Chick embryo spinal cord slices as an in vitro model of spinal cord injury 

The organotypic spinal cord slice culture was set up following the protocol established by 

Weightman et al., (2014). The culture was set up at day E14 of development to ensure 

there would be no spontaneous spinal cord regeneration after injury (Hasan et al., 1993) 

as an attempt to mimic the response of adult tissue. The slices were lesioned at two time 

points (4 or 12 days after dissection) to assess whether the age of the slice and potential 

maturation had any impact on the cellular responses to injury. Moreover, the slices were 

fixed at two time points: 4 or 12 days after injury. The goal was to study any possible 

differences in cellular response over time.  

The slices were kept in the incubator for 8, 16 or 24 days depending on the 

lesioning/fixing time point, with no statistical differences in survival between groups. 

Similar transverse slice models have been shown to survive in vitro for up to 3 weeks in 

rat (Cho et al., 2009) and up to 4 weeks in chick (Brunet et al., 2007). Transverse spinal 

cord slices derived from human tissue after autopsy have been cultured for up to 14 days 

in vitro (Jeong et al., 2011). There is also previous evidence of longitudinal slices derived 

from mice surviving for up to 2 weeks in culture, showing 96%±2% survival (Weightman 

et al., 2014).  
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The slice viability analysis in our study was reproduced from previously published 

protocols (longitudinal rat spinal cord organotypic slices with transection lesions) 

(Guijarro-Belmar et al., 2019; Weightman et al., 2014), and resulted in approximately 70-

80% slice viability. In line with other reports, microscopical observation of the slices after 

staining with Calcein AM and Ethidium homodimer seem to suggest a higher viability rate 

that we estimated to be ≥95%. This disparity could be due to the fact that we compared 

OD measurements from two different markers in two different channels (red and green), 

and that each marker is associated to a different level of fluorescence. For example, 

although ethidium homodimer (red) covered a smaller area of the field, the OD per red 

pixel was higher than the OD per green pixel (Calcein AM), resulting in a slightly biased 

result. All images across experimental repeats were taken at the same exposure. 

Therefore, the survival rates resulting from the analysis are treated as a survival index, 

that allows for the comparison between groups leading to the conclusion that there is no 

difference in survival over time or regardless of lesioning. Meanwhile, microscopy 

observation permitted a qualitative approximation of the slice survival. Other studies 

using spinal cord organotypic slices used TUNEL staining to measure cell death (Cho et 

al., 2009; Krassioukov et al., 2002). This technique results in a bright blue staining of dead 

cells’ nuclei. However, this technique would not have been feasible due to the large 

number of cells per field in our longitudinal spinal cord slices compared to other 

transverse slices. 

In summary, our results show that chick embryo spinal cord organotypic slices can 

survive in vitro for at least 24 days, similarly to previously published literature focusing 

on rodent models, and that survival does not decrease after a transecting lesion. These 

data suggest the slices are a robust model in which to test lesioning procedures and 

analysis of responses over time.  
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In regard to astrocyte behaviour, tightly-packed, proliferative, hyperfilamentous 

astrocytes producing long processes are referred to as reactive or hypertrophic (Fawcett 

& Asher, 1999). In vivo, naïve astrocytes become reactive at 14 days after lesioning in a 

mouse SCI model, undergoing hypertrophy, extending processes and showing increased 

GFAP expression (Faulkner et al., 2004; Hara et al., 2017). Similarly, the glial scar starts to 

form at 14 days post injury in humans (Ahuja et al., 2017b). Increased reactivity of 

astrocytes at 7 and 12 days post injury described by high GFAP expression and 

hypertrophic morphologies in organotypic spinal cord slices after injury has been 

reported before in rats (Guijarro-Belmar et al., 2019; Weightman et al., 2014). 

In our study, GFAP staining revealed increased OD values at 0-10µm from the lesion edge 

when compared to 50-60µm and 100-110µm from the edge at 12 days after injury, but 

not at 4 days after injury. Similarly, Weightman et al., (2014) reported higher GFAP 

expression at 0-100µm from the lesion compared to 100-200µm 6 days post lesion in mice 

organotypic spinal cord slices and reported hypertrophic astrocytes at the lesion edge. In 

a brain stab wound in mice, hypertrophic astrocytes were also described as polarized, 

forming elongated processes directed towards the lesion site 7 days post injury (Bardehle 

et al., 2013). Both Weightman et al., (2014) and Guijarro-Belmar et al., (2019) report small 

numbers of infiltrating reactive astrocytes into the lesion gap, which we did not find in 

any of our slices.  It is important to mention that we also noted increased GFAP OD at the 

sides of the spinal cord slices, where the spinal cords were sliced with the tissue chopper 

to set up the model and, therefore, do not represent a controlled injury environment for 

experimentation. Therefore, the side edges of the slices were not counted for analysis. 

However, it might be beneficial to study how the OD profile of the spinal cord edge 

compares to uninjured slices in future studies in order to determine whether a previous 

lesion (in this case created when setting up the culture) can affect the cellular responses 
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to the experimental lesion or whether the experimental lesion has effects in other areas 

of the spinal cord besides the lesion margin.    

In conclusion, astrocytes in the chick embryo model for SCI present a reactive phenotype 

12 days post injury, similar to that found in rodent SCI models, which has been described 

as a typical glial scar phenotype after SCI (Fawcett & Asher, 1999). Moreover, similarly to 

a naturally occurring injury in adult humans, the astrocytic response develops over time. 

These findings suggest that our model could serve as a platform in which to study 

astrocytic responses to possible SCI therapies. 

Such hypertrophic astrocytes have also been suggested to act as a barrier to neurite 

outgrowth in a transecting lesion in a rat spinal cord organotypic slice culture 7 days post 

lesion, as seen by the presence of collapsed axonal growth cones confronted with highly 

reactive astrocytes (Guijarro-Belmar et al., 2019). In fact, it is widely established that the 

adult CNS does not possess the capacity for axonal regeneration after injury. For example, 

after complete spinal cord transection in rats, no serotoninergic fibres were detected 

caudally to the transection 14 days post lesioning in vivo (Coumans et al., 2001). 

According to our data, weak, spontaneous axonal sprouting was observed in all 

timepoints. In addition, the number of sprouting axons and the total axonal length 

infiltrating the lesion was similar between experimental groups. Importantly, the growth 

orientation of these axons seemed random and not directed towards the other end of the 

lesion, and they were never seen reconnecting both sides. In contrast, transverse sections 

of E7 chick embryo spinal cord slices embedded in a fibrin gel showed robust radial axonal 

growth at 5 days in vitro, reaching lengths of approximately 3mm (Rösner & Vacun, 1997). 

However, as already established in the literature, axons do not seem to regenerate after 

an E15 lesion in the chick embryo in vivo (Shimizu et al., 1990) and our cultures were 

established at E14, with lesions inflicted 4 or 12 days after. In rodents, extensive nerve 
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fibre outgrowth from the lesion was reported 7 days after lesioning in slices from P0 mice 

in contrast to limited nerve fibre outgrowth in slices from P5 mice. However, in neither of 

the timepoints, directed axonal growth was reported (Weightman et al., 2014). The low 

levels of axonal regeneration and undirected nature of growth in the chick embryo model 

indicate that this model is comparable to the rodent model of a transecting spinal cord 

injury in vivo and in vitro, suggesting that it is a viable platform for testing potential 

therapies aimed at increasing and directing axonal outgrowth. 

Demyelination, likely due to the loss of oligodendrocytes, is a typical response following 

traumatic SCI (Duncan et al., 2019; Fawcett & Asher, 1999). Longitudinal spinal cord slices 

from P6 mice, have been reported to feature myelination tracts after day 7 in vitro 

(Bonnici & Kapfhammer, 2008). Our results suggest that MBP-positive tracts are present 

in some of the slices, but we did not find this phenomenon in all slices. MBP, or myelin 

basic protein, is a biomarker expressed by myelin sheaths. Taking into consideration that 

the process of myelination starts approximately at E13 in the chick embryo (Dobbing et 

al., 1957) (Chapter 1), and that the spinal cords were dissected at E14 and kept in the 

incubator, it seems plausible to assume that not all slices will have developed myelin 

tracts. However, the presence of MBP-positive fibres suggests that this process had 

undergone in other slices, which were chosen for quantification. 

Our results seem to indicate that MBP-positive tracts, when present, were denser at the 

centre of the spinal cord than at the edge of the lesion, suggesting a possible loss of 

oligodendrocytes due to the lesion. This was not the case for the last time point (I12F12), 

in which the overall MBP expression seemed lower than in the other time points. Although 

this could be due to a lower level of MBP-positive tracts present in the slice from the 

beginning, due to the fact that this was repeated in all the slices in that time point, we 

believe the phenomenon is due to the age of the slices, which may have caused 

oligodendrocyte loss from the lesion edge but also from the edges of the slice (where it 
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was sliced to set up the culture). This potential loss of myelinating oligodendrocytes at 

the lesion edge would have to be corroborated with appropriate tests, such as 

transmission electron microscopy (TEM) of transverse sections with comparison at the 

centre and edge of the spinal cords.  

Finally, microglial infiltration to the lesion area has been reported in rodent organotypic 

spinal cord slices before (Guijarro-Belmar et al., 2019; Weightman et al., 2014). We 

observed microglial invasion (detected by lectin staining) at the lesion site with no 

statistical differences within groups. In comparison, microglial infiltration in other studies 

was reported to increase from day 0 to 5 and then decrease again at day 10 (Weightman 

et al., 2014). On the other hand, other studies suggest that the elevated numbers of 

activated microglia persist in the lesion site for weeks after injury (Fawcett & Asher, 

1999). Despite this contradiction in results, most studies describe infiltration of activated 

or reactive microglia, characterised by bigger somas and amoeboid morphology, while 

microglial cells remaining in the unlesioned tissue present smaller somas and a ramified 

morphology, more characteristic to a resting state (Guijarro-Belmar et al., 2019; 

Weightman et al., 2014). In concordance with published results, we have also observed 

microglia presenting a reactive-like morphology infiltrating the lesion, compared to 

resting-like microglia within the centre of the spinal cord.  

This microglial response has been correlated with the acute response to SCI in vivo, and 

act to phagocyte debris and release inflammatory cytokines (Fawcett & Asher, 1999) 

(Chapter 1). Our results suggest that this activation profile is represented in chick 

embryo spinal cord organotypic slices, highlighting another representative feature of this 

model in comparison to a naturally occurring SCI in adult humans. Moreover, an 

important factor to consider when implanting biomaterials for the treatment of SCI, is the 

immune response these might activate, our results highlight the possibility of using this 

model to study microglial activation in response to biomaterial implantation.  
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3.3.4 Future directions 

There are several potential routes for future research based on this work, which could be 

divided into three categories: continued optimisation and characterisation, further 

development and neural tissue engineering applications.  

In the first place, the survival of the in vivo model could be improved by perhaps inflicting 

a contusion or compression injury, which might provoke a smaller degree of injury while 

avoiding the use of sharp objects that might damage surrounding tissue, including blood 

vessels. Moreover, these techniques would also represent more accurately the majority of 

natural occurring injuries (Patar et al., 2019b). In addition, a relevant analytical method 

would need to be established to study cellular responses to the insult. These could 

potentially be similar to those described for the in vitro culture if cryosectioned slices 

were to be used. Moreover, our results suggest that full restoration of circuitry is 

potentially achieved at least 48h after injury. This would be in accordance with previous 

studies using in vivo chick embryos (Hasan et al., 1993; Shimizu et al., 1990). Therefore, 

in order to study the regeneration permissiveness of potential therapies, a non-

regenerative environment would have to be established. We hypothesised that by 

creating a wide lesion (e.g.: through removal of a 400-500µm-thick piece of tissue) the 

axonal tracts would not spontaneously regenerate.  

On the other hand, the presence of potential myelination tracts in the in vitro model would 

have to be corroborated, perhaps by analysing the colocalization of Tuj-1-positive and 

MBP-positive fibres or by analysing the presence of myelin associated proteins, such as 

Nogo-A. In the same line, it might be interesting to characterise the molecular responses 

to injury, such the presence of inflammatory cytokines (IL-1, IL-6) or CSPGs.  In addition, 

the model could be further characterised by studying cellular proliferation and 

differentiation at or near the site of injury.  
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Further development of the model could be achieved by adding another dimension to the 

histological/cytological study described here. For example, it might be desirable to study 

the electrical profile of the culture, particularly the synchronicity of neuronal bursts 

before and after lesioning. Such studies might be able to improve the understanding of the 

possible functionality of therapeutic outcomes. This could be potentially studied by using 

calcium sensitive dyes combined with time-lapse imaging as done previously in chick 

spinal cord organotypic slices (O’Donovan et al., 2005). Alternatively, voltage-sensitive 

dyes could be used with a similar approach (Steyn & Andras, 2017). For a more direct and 

detailed study, it might be desirable to investigate the electrical profile of the samples 

through the use of recording electrodes, for example, from a multi electrode array (MEA). 

Such devices have been previously used in combination with neural tissue organotypic 

slices (Plenz et al., 2011) and open the door to the study of tissue responses to electrical 

stimulation. It is important to note that the main disadvantage of organotypic models is 

the inevitable disconnection from the rest of the body. Therefore, although the slices 

appear to maintain their ascending and descending axonal architecture, some tracts are 

disconnected from the site of origin and synapse functionality can only be studied 

considering that the possible synchronicity of neuronal bursts would not directly 

correlate to the re-establishment of previous ascending and descending tracts, only of 

neurons whose somas are present in the slice.  

Finally, the in vitro model established here could be used for the study of neural tissue 

engineering applications towards finding a treatment for SCI. For example, it would be 

interesting to study the response of the tissue to the implantation of stem cells (Jeong et 

al., 2011) or biomaterial implantation (Guijarro-Belmar et al., 2019; Weightman et al., 

2014). The latter will be addressed in Chapter 6. 
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4 ENHANCING THE REGENERATIVE POTENTIAL OF STEM CELL-

LADEN, CLINICAL-GRADE IMPLANTS THROUGH LAMININ 

ENGINEERING 

4.1 BACKGROUND 

4.1.1 Cell-laden biomaterials for spinal cord injury treatment 

As explained Chapter 1, repairing the multifaceted pathology of SCI is a major challenge 

requiring breakdown of the glial scar, removal of inhibitory myelin fragments and 

restoration of complex circuitry. Numerous pre-clinical and clinical studies have 

demonstrated NSC transplantation offers promise in this regard, providing cell 

replacement and trophic factor release and enhancing functional outcomes (Ogawa et al., 

2002; Bonner et al., 2011; Nemati et al., 2013; Ahuja et al., 2017; Anderson et al., 2017).  

In addition, encapsulation of transplant cell populations within implantable, 

biocompatible matrices may offer several translational advantages. These materials offer 

(i) a porous structure mimicking the ECM to facilitate cell attachment and tissue 

ingrowth; (ii) ‘soft’ mechanical properties to match the stiffness of the native CNS 

(important for implant acceptance) (Pakulska et al., 2012) and allow surgical moulding 

into diverse injury sites and; (iii) improved cell survival and distribution in injury sites 

after implantation. For example, ca. 85% mice retained NSCs 7 days after injection within 

a hyaluronan-based hydrogel compared to ca. 55% of mice when NSCs were injected in 

CSF (Ballios et al., 2015).  

4.1.2 Clinical translation of biomaterials 

Despite the clinical potential of using biomaterials for encapsulated cell delivery, most 

studies use experimental grade biomaterials to provide proof-of-concept data. This 

means the biomaterials tested for therapeutic cell encapsulation and delivery to SCI still 
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require clinical approval and to be manufactured under good manufacturing practice 

(GMP). 

In the European Union (EU), the CE marking association ensures that all products within 

the EU market comply with the relevant EU legislation, including medical devices (CE-

Marking, 2020). Similarly, the American Food and Drug Administration (FDA) is 

responsible for ensuring the safety of drugs, biological products and medical devices 

prior to their regulated use in the clinic (FDA, 2020). The CE marking process focuses 

primarily on the safety of the product, while the FDA process also focuses on its efficacy 

and value (Mishra, 2017).  

A cell-laden biomaterial falls in the category of “combination products” (FDA, 2020) and, 

therefore, obtaining approval requires consideration of the material as both an inert 

device and a biological implant. Moreover, Class III devices, those which “support or 

sustain human life”, require pre-market approval (PMA), which is the most rigorous 

process required by the FDA (Van Norman, 2016). The PMA process also requires the 

payment of the highest user fee asked by the FDA, amounting to $365,657 (FDA, 2020). 

It has been estimated it takes an average of 3 to 7 years for a new device to be approved 

by the FDA, and approximately 12 years for a new drug to be approved (Van Norman, 

2016). In addition, any major changes in the manufacturing process as experimental 

biomaterials are translated to clinical grade materials (e.g. through scale-up) necessitate 

further biological tests to ensure that the safety and functionality of the material have 

not changed, increasing the time to clinic and costs of development.  

It is clear therefore that strategies to reduce the cost and time associated with these 

procedures, would be highly advantageous to healthcare providers and patients.  In this 

regard, relevant pre-existing evidence of the device’s safety upon clinical use can be used 

to back up the FDA approval request, significantly decreasing the time and costs of the 
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procedure. Legally marketed devices which have previously undergone the PMA 

approval process already count with most of the necessary evidence for safety upon 

clinical use as well as an established manufacturing process. Consequently, medically 

approved devices may offer a potential alternative to experimental grade biomaterials 

for SCI implantation while decreasing the time to clinic.  

4.1.3 Clinical materials for cell transplantation 

Both natural and synthetic polymeric implants are already routinely used within the 

clinic and approved for uses such as tissue sealants, sutures and wound dressings (Maitz, 

2015) (Table 4.1). The most commonly used natural surgical adhesives are fibrin or 

collagen based such as Tisseel VH or DuragenTM respectively (Duarte et al., 2012). 

However, there are also gelatine or polysaccharide-based adhesives, such as FlosealTM or 

Chitoflex, respectively (Duarte et al., 2012). Synthetic polymeric adhesives, such as 

Glubran2 or DuraSeal are also available as FDA approved biomaterials (Duarte et al., 

2012). 

Most of these materials present advantageous properties for cell encapsulation and 

implantation, such as biocompatibility, porosity, biodegradability, and flexibility to 

conform to irregular wound surfaces. However, in the majority of cases, these have not 

been tested for potential cell transplant applications.  
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Table 4.1 List of clinically available synthetic and natural surgical adhesives (Baxter Healthcare Corporation, 2019; Celox-Medical, 
2020; Dhillon et al., 2011; Dunn et al., 2001; Finch et al., 2020; Integra-Life, 2020; Kassam et al., 2003, 2004; Kawasaki et al., 2017; 
Leonardi et al., 2002; Prior et al., 1999; Shuliang Chen, Peter Novick, 2017; Tricol-Biomedical, 2020). 

Main 
component Name CNS uses Properties Company 

Fibrin 

Tisseel VH 
Prevention of CSF leaks in 

humans, safety upon 
application on primate 

brains. 

3D, porous, biodegradable (10-14 days), 
precise placement, fibrin clot Baxter (US) 

Crosseal Dural sealing 3D, human-based, biodegradable, fibrin 
clot OMRIX (Belgium) 

TachoComb None reported 3D, porous, dry (sponge), biodegradable (3 
-6 weeks), collagen coated with fibrin Takeda (Japan) 

Collagen 

CoStasis None reported Sprayable, consisting of collagen, thrombin 
and autologous plasma, gel 

Cohesion 
Technologies (US) 

Duragen Dural sealing on brain and 
spinal cord, NSC culture 

3D, porous, flexible, biodegradable (3-8 
weeks), ultra pure collagen, dry sponge 

Integra 
LifeSciences Corp. 

(US) 

Hemopatch Dural sealing 
3D, porous, flexible, biodegradable (6-8 
weeks), collagen with PEG coating, dry 

sponge 
Baxter (US) 
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Gelatine Floseal Hemostasis in spinal 
surgery 

3D, conform to irregular wound surfaces, 
gelatin granules and human thrombin, gel Baxter (US) 

Chitosan 
HemCon Indicated for neurovascular 

intervention 
3D, flexible, antibacterial, for emergency 

use, positively charged 
Tricol biomedical 

inc. (US) 

Celox- A None reported Granules, emergency use, small 
penetrating injuries. 

Medtrade Products 
(UK) 

Cyanoacrylate Glubran2 Endovascular use in 
neurradiology Surgical glue, indicated for internal use. GEM (Italy) 

Polymeric 
hydrogels 

SprayGel None reported Sprayable film, PEG-based, biodegradable 
(days) 

Confluent Surgical 
Inc (US) 

DuraSeal 
Dural sealant, prevention of 

CSF leakage in brain and 
spinal cord 

PEG-based, gel, Biodegradable (4 -8 
weeks), blue colorant for visualisation, 

flexible applicator 

Integra 
LifeSciences Corp. 

(US) 
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One study has demonstrated DuragenTM, a surgical sealant manufactured from clinical 

grade, bovine collagen can support NSC growth, including genetically engineered 

populations (Finch et al., 2020). Here, highly viable populations of NSCs could be grown 

throughout the material with no effect on key regenerative properties of the stem cells 

including proliferation, stemness and differentiation (Finch et al., 2020). 

These promising findings demonstrate that clinical grade sealants can potentially be 

used for cell transplantation in routine biomaterial therapy after SCI. Moreover, as 

shown in Table 4.1, the varying physicochemical properties of these biomaterials may 

be applicable to different injury types. For example, for injuries of difficult access, such 

as traumatic brain injury, it might be desirable to use an injectable material with a long 

and flexible applicator, such as DuraSealTM. Therefore, it is important to establish a bank 

of potential clinically approved biomaterials for SCI implantation. 

4.1.4 HemopatchTM, a collagen sealant for potential cell encapsulation 

Another clinically approved material with a number of potential translational 

advantages for use in cell transplantation is HemopatchTM. HemopatchTM is a sealing 

hemostatic dressing approved for medical use during surgical procedures to reduce 

bleeding and induce hemostasis (Baxter Healthcare Corporation, 2019). Within the CNS, 

it has been safely used to close dural defects and avoid post-operative CSF leakage in 

humans (Nowak et al., 2019).  

HemopatchTM is flexible, allowing for easy handling by surgeons with potential for 

moulding into sites of injury, and is naturally degraded within 6 to 8 weeks (Baxter 

Healthcare Corporation, 2019). This material is approved as a CE-marked medical device 

and is already manufactured for a global market (Figure 4.1). It is a porous structure 

made from ultrapure bovine collagen, with a 200 µm coating of PEG on one surface, to 

improve tissue adhesiveness. 
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In humans, collagen is the most prevalent component of the ECM and can be found both 

in the basal lamina and nervous tissue parenchyma of the CNS (Gregorio et al., 2018). 

Typically, it is formed of three polypeptide strands coiled around each other to form a 

triple helix (Shoulders & Raines, 2009), and has been seen to interact with other ECM 

components and cell membrane receptors (Gregorio et al., 2018). Moreover, due to its 

abundance, it plays an important role in tuning the stiffness and mechanical properties 

of the ECM (Gregorio et al., 2018), a key parameter for SCI repair. These characteristics, 

together with biodegradability, weak antigenicity and biocompatibility make collagen a 

desirable material for biomedical applications (Lee et al., 2001). 

In vitro, collagen has been reported as a substrate in which neurons can survive (Drury & 

Mooney, 2003) and neural stem cells can differentiate (Ma et al., 2005). Implantation of 

collagen hydrogels in a transected spinal cord has shown to promote axonal growth 5 

days post-injury and functional recovery 12 days post-injury in rats (Yoshii et al., 2004), 

as well as cell infiltration and vascularization within the implanted hydrogel (de la Torre, 

1982). 

In vivo studies of combinatorial therapies have been tested with different cell types. 

Implantation of Schwann cells in a collagen hydrogel into a rat spinal cord resulted in 

higher cell survival and cell number increase than in media-injected cells (Patel et al., 

Figure 4.1 Schematic representation of HemopatchTM. Representation and main 
advantages of HemopatchTM for SCI implantation, Image created with Biorender.com 

 

• CE-marked 

• Collagen + PEG 

• Biodegradable 

• Flexible 

• Dural sealant 

• Porous 
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2010). In a different study, neonatal astrocytes were delivered to the rat spinal cord 

within a collagen hydrogel. These astrocytes remained confined into the hydrogel, 

showing poor migration capacity. However, an increase of ingrowing fibres into the 

hydrogel was highly correlated to the astrocyte-containing hydrogel group instead of the 

hydrogel alone-implanted group (Joosten et al., 2004). In a recent study, implantation of 

encapsulated NSCs within a porous collagen scaffold resulted in locomotion recovery 12 

weeks post injury in live mice, at which point there were no statistical differences to 

uninjured controls (Kourgiantaki et al., 2020). 

Collagen bioscaffolds can also be functionalised to incorporate other molecules. NSC have 

been delivered to a rat spinal cord within an epidermal growth factor receptor (EGFR) 

neutralizing antibody-treated collagen hydrogel (Xiaoran Li et al., 2013). EGFR has been 

shown to enhance astroglial differentiation and inhibit the formation of a neuronal 

lineage (Ayuso-Sacido et al., 2010). The neutralization of EGFR in this study resulted in an 

increase in the number of neurons from 13% to 25% in the treated hydrogels at 4 weeks 

post injury, correlating with an increase in functional recovery (Xiaoran Li et al., 2013). 

Given the previous evidence, HemopatchTM, a collagen-based tissue adhesive, could be 

suited for SCI implantation. However, it has never been tested for its potential for cell 

encapsulation. 

4.1.5 Extracellular matrix modifications for material optimisation 

Tissue adhesives, such as HemopatchTM, were created with the aim of blood or CSF 

leakage prevention. Although their properties have great potential for cell encapsulation, 

these materials are optimal for tissue sealing. Therefore, it might be desirable to enhance 

their regenerative properties when aiming to repurpose them for SCI treatment. It is well 

established that 3D scaffolds based on ECM molecules, such as collagen, or 
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biofunctionalisation of scaffolds with pro-regenerative ECM molecules, e.g. laminin, can 

add significant regenerative potential to the material. 

Engineering ECM molecules or epitopes into scaffold design has been shown to improve 

NSC survival and distribution throughout injury sites after implantation in a collagen 

matrix in a contusion SCI in mice (Tate et al., 2009) and enhance neuronal differentiation 

of encapsulated stem cells and nerve fibre and neural cell infiltration into an alginate 

scaffold (Barros et al., 2019). Laminins, an ECM molecule, are glycoproteins heterotrimers 

of high molecular weight (400- 900 kDa), and are a major component of the basal lamina 

(Miner & Yurchenco, 2004). Typically, a laminin protein consists of three chains or arms 

(α, β and γ) in a cross-like formation, forming a coiled structure in one of the ends (Miner 

& Yurchenco, 2004). The α unit extends beyond the coil to form the G-domain. Its activity 

can be broadly classified into matrix assembly and cell membrane interaction, with the 

short α, β and γ subunits mostly confined to non-cellular ECM binding and the G-domain 

mediating cell interaction (Miner & Yurchenco, 2004). Due to these properties, laminin is 

widely used in vitro to promote even cell distribution and cell attachment to glass 

coverslips (Miner & Yurchenco, 2004). In fact, laminin from the basement membrane has 

the capacity to interact with cells, mainly, through the membrane receptors integrins 

(Carmignac & Durbeej, 2012), which act as binding proteins between the ECM and the 

cytoskeleton, and can trigger signal transduction processes to modulate adhesion, 

survival, proliferation, etc (Takada et al., 2007). Human NPCs have been reported to 

present several isoforms of integrins (α3, α6, α7, β1, and β4) and the blockage of the α6 

in human NPCs resulted in decreased migration of cells on laminin-treated substrates, 

indicating the importance of the role of integrins in laminin-induced migration (Flanagan 

et al., 2006). Laminin-binding forms of integrins are also present in neurons, astrocytes, 

oligodendrocytes and microglia (Nirwane & Yao, 2019).  
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There is also increasing evidence of laminin promoting even cell distribution in 3D 

constructs. For example, coating a porous scaffold with laminin supported the 

attachment and growth of iPSC 3 weeks after seeding but had no impact on cell 

differentiation (Ruzicka et al., 2019). In a different study, NSCs growing on a naturally 

occurring biomimetic substrate also showed higher attachment to the substrate instead 

of neurosphere formation when the substrate was functionalised with laminin, showing 

a slight increase in proliferation compared to negative controls and no signs of 

cytotoxicity (Luo et al., 2018). Moreover, laminin functionalisation has also been 

reported to increase the length of neurite outgrowth on electrospun nanofibres when 

compared to non-functionalised controls (Koh et al., 2008).  

It is clear that laminin functionalisation can enhance the regenerative capacity of a 

bioscaffold and also of the encapsulated cell population. Despite the evidence, ECM 

functionalisation has never been tested on any clinically available biomaterial for SCI 

implantation. 

4.1.6 Knowledge gaps and aims 

In summary, routine clinical application of bioscaffold implantation for SCI repair is 

delayed due to the lack of medically approved biomaterials. Surgical tissue adhesives are 

a potential alternative to experimental grade biomaterials for cell encapsulation and 

implantation due to their already established clinical use.  

To date, only one medical device has been tested for cell encapsulation with promising 

results of NSC survival, proliferation and differentiation (Finch et al., 2020). This opens 

the possibility for a new family of biomaterials to be tested for their neuroregenerative 

capacity in order to create a bank of clinically available bioscaffolds that may suit 

different injury types. 
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In addition, it might be desirable to optimise the regenerative properties of such 

materials, which are currently used as tissue sealants, by functionalisation with laminin, 

to further mimic the tissue ECM and enhance repair. 

Given all the previously described data, we hypothesise that HemopatchTM, a clinically 

available, porous, collagen surgical sealant could encapsulate NSCs for implantation into 

sites of SCI. The addition of laminin to the surface of the HemopatchTM, may also improve  

implant regenerative capacity through promoting cell attachment, cell growth or even 

cell distribution through the matrix. 

Therefore, in order to test these hypotheses, the two objectives of this chapter are to: 

1. Test whether HemopatchTM can support NSC growth and differentiation. 

2. Examine the feasibility and effect of biofunctionalisation of HemopatchTM with the 

ECM molecule laminin on encapsulated NSC populations.  
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4.2 RESULTS 

4.2.1 NSCs were successfully cultured in 3D within HemopatchTM 

Five days after cell seeding, NSCs had dispersed through the biomaterial from the initial 

seeding area and distributed three-dimensionally, as seen by the presence of cells out of 

the plane of focus. Z-stack images (Figure 4.2) show nestin-positive cells (an NSC marker) 

in a 3D distribution. Importantly, cells can be observed in the Z-axis of the image at a depth 

from 0 to at least 50 µm into the HemopatchTM piece. Unfortunately, imaging of cells 

further into the material was not possible due to the distortion of light caused by the thick 

layer of collagen scaffold. This distribution is true for both uncoated and coated pieces of 

HemopatchTM, although the Z-stack images suggested the distribution of cells in the XY-

axis was different, with grouped cells in sphere formation in the uncoated group 

compared to single cells dispersed through the laminin coated group. 

Figure 4.2 3D distribution of NSCs. Representative Z-stack images showing nestin-positive 
cells (a marker for NSCs; green) in the XYZ plane in uncoated HemopatchTM (A) and coated 
HemopatchTM (B). Top images showing a top-down view and bottom images showing a side 
view. These images aim to represent the 3D distribution of the cells on the material.  
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4.2.2 Laminin coating improved cell distribution through the material 

In the XY-axis, NSCs were evenly distributed and present as individual cells over the 

surface of the coverslips and the coated HemopatchTM, while cells within uncoated 

HemopatchTM consistently appeared to form spheres dispersed in the gel (Figure 4.3 A-

C). After quantification, it was found that between 1 and 3 neurospheres/field and 

between 0 and 1 neurospheres/field were counted for the glass and coated HemopatchTM 

conditions respectively compared to 15-19 neurospheres/field in uncoated 

HemopatchTM, with a significant statistical difference (p=0.003) between coated and 

uncoated HemopatchTM (Figure 4.3 D).  

Figure 4.3 Cell distribution in the biomaterial. Representative images of DAPI-labelled 
NSCs (blue) showing distribution on glass coverslips (A), uncoated HemopatchTM (B) and 
coated HemopatchTM (C) and scatter plot representation of cell distribution as the number 
of neurospheres per field (Kurskal-Wallis test, n=4, p=0.003) (D). Star representing p<0.05. 
A higher number of neurospheres were found in uncoated than in coated HemopatchTM.  
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Under microscopic observation, a similar distribution pattern was recognised in all 

cardinal points of the glass coverslips and the HemopatchTM pieces (e.g. centre, corners). 

However, a higher cell density was usually found in a single point of the scaffold, probably 

correlating to the cell seeding spot. 

4.2.3 Neural stem cell survival remained high regardless of treatment 

Cell survival was high across experimental groups as suggested by high calcein AM 

staining, which is a marker for live cells, compared to sparse red dots, indicative of dead 

cells stained with ethidium homodimer (Figure 4.4 A-C). NSCs in all conditions displayed 

over 80% viability, with no significant statistical differences between experimental 

groups (Figure 4.4 D). 

Figure 4.4 NSC survival in HemopatchTM. Representative fluorescent merged images of 
NSC survival on glass coverslips (A), uncoated HemopatchTM (B) and coated HemopatchTM 
(C) with scatter plot representation of live cell percentages (Kurskal-Wallis test, n=3, 
p≥0.005) (D). Green channel representing Calcein AM staining and red channel 
representing ethidium homodimer (EtH) staining. No statistical differences were found 
between groups.  
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4.2.4 Proliferation rates were similar in all conditions 

EDU staining was detected across all samples and, as expected, was confined to the 

nucleus when observed in the NSCs. The number of EDU+ nuclei, an indicator of 

proliferation, also remained similar in all groups (Figure 4.5 A-C). Approximately 20% of 

NSCS in all experimental groups had proliferated after 6 hours of incubation with EDU A 

(Figure 4.5 D). 

4.2.5 Cell stemness was maintained for 5 days in all conditions 

Nestin staining, an NSC marker, was carried out to determine the percentage of cells in 

the culture that were NSCs. All groups displayed high proportions of cells positive for 

Nestin with >98% of cells recorded as positive across all experimental groups (Figure 4.6 

A-C, G), suggesting we obtained highly pure cultures of NSCs that were maintained after 

plating for, at least, 5 days. Cells generally displayed classical bipolar morphologies 

Figure 4.5 NSC proliferation in HemopatchTM. Merged fluorescent images of EDU (red) 
and nestin (green) representing NSC proliferation on glass coverslips (A), uncoated 
HemopatchTM (B) and coated HemopatchTM (C) with scatter plot representation of 
percentage of proliferative cells (Kurskal-Wallis test, n=3, p≥0.005) (D). No differences were 
found between groups.  
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associated with the NSC phenotype on glass with some evidence for this seen within the 

coated HemopatchTM samples. NSC morphology was harder to discern in the uncoated 

HemopatchTM where cells tended to form into neurospheres (Figure 4.6 A-C). The 

cultures were also stained with an anti-Sox-2 antibody, another marker for cell stemness, 

in order to provide more accuracy to our results. Sox-2 staining correlated with Nestin 

staining (as seen by co-expression of markers in one cell), indicating a robust 

identification of stem cells. (Figure 4.6 D-F). Similarly to Nestin, quantification of Sox-2 

revealed >98% of positive cells for the marker (Figure 4.6 H). 

Figure 4.6 NSC markers in HemopatchTM. Representative images of nestin-positive cells 
(green) merged with DAPI channel (blue) in glass (A), uncoated HemopatchTM (B) and 
coated HemopatchTM (C). And representative merged images of nestin (green) and sox-2-
positive (orange) cells in glass (D), uncoated HemopatchTM (E) and coated HemopatchTM 
(F). The insets are DAPI stained counterparts. Scatter plots showing the proportions of 
cells expressing Nestin (G) (Kurskal-Wallis test, n=4, p≥0.005) or Sox-2 (H) Kurskal-Wallis 
test, n=4, p≥0.005) under each experimental condition. No differences were found between 
groups.  
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4.2.6 Cell viability was maintained after differentiation in all groups 

After seven days in differentiation conditions (NSC medium without EGF or FGF and with 

addition of 1% FBS), cell viability remained high. Calcein AM (green) stained the intact 

membranes of all cell types present in the culture: astrocytes, neurons, oligodendrocytes 

and, probably, a small amount of undifferentiated NSCs. Similarly, ethidium homodimer 

(red), stained the nuclei of all dead cells present in the culture (Figure 4.7 A-C). The 

proportion of viable cells was higher than 80% in all groups as judged by live/dead 

staining (Figure 4.7 D), indicating a highly viable culture 12 days after plating and 7 days 

after differentiation. 

 

 

Figure 4.11 Daughter cell survival in HemopatchTM. Fluorescence merged images of 
Calcein AM (green) and ethidium homodimer (EtH) (red) representing daughter cell survival 
in glass coverslips (A), uncoated HemopatchTM (B) and coated HemopatchTM (C) with scatter 
plot representation of Calcein AM+ cells relative to total number of cells (Kurskal-Wallis test, 
n=3, p≥0.005) (D). No differences were found between groups.  
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4.2.7 Proliferation rates decreased after differentiation at a similar rate in all 

groups 

Proliferation rates decreased after differentiation as expected due to the lower 

proliferative capacity of daughter cells compared to NSCs. The presence of EDU+ cells in 

HemopatchTM, both coated and uncoated, was similar to coverslips after differentiation 

(Figure 4.8 A-C), with ca. 5% staining positive for EDU incorporation in each condition 

(Figure 4.8 D). No statistical differences were found between experimental groups.  

 

 

 

Figure 4.8 Proliferation of daughter cells in HemopatchTM. Merged fluorescence 
images of Edu (red) and GFAP (green) representing daughter cell proliferation in glass 
coverslips (A), uncoated HemopatchTM (B) and coated HemopatchTM (C) with scatter plot 
representation of proliferating cell percentages (Kurskal-Wallis test, n=3, p≥0.005) (D). No 
differences were found between groups. 
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4.2.8 No differences were found in the percentages of phenotypes after 

differentiation 

Immunocytochemistry revealed that the NSCs had differentiated in all conditions into the 

expected phenotypes, namely astrocytes (Figure 4.9 A-C), neurons (Figure 4.9 D-F) and 

oligodendrocytes (Figure 4.9 G-I). Overall, more than 60% of the cells differentiated into 

Figure 4.9 Astrocyte, neuron and oligodendrocyte markers in HemopathTM. (A-C): 
Representative fluorescence images of GFAP stained astrocytes in glass (A), uncoated 
HemopatchTM (B) and coated HemopatchTM (C). (D-F): Tuj-1 stained neurons in glass (D), 
uncoated HemopatchTM (E) and coated HemopatchTM (F). (G-I): MBP stained 
oligodendrocytes in glass (G), uncoated HemopatchTM (H) and coated HemopatchTM (I). (J-
L): Scatter plots show the proportions of each cell type: astrocytes (Kurskal-Wallis test, n=4, 
p≥0.005) (J), neurons (Kurskal-Wallis test, n=3, p≥0.005) (K) and oligodendrocytes 
(Kurskal-Wallis test, n=3, p≥0.005) (L). Image insets show DAPI stained counterparts.  No 
differences were found between groups.   
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astrocytes (Figure 4.9 J), >18% into neurons (Figure 4.9 K) and >3% into 

oligodendrocytes (Figure 4.9 L) in a consistent manner across the experimental groups 

with no statistically significant differences observed. The rest of the cells remained 

unidentified and were possibly undifferentiated stem cells. The daughter cells appeared 

to retain the pattern of distribution seen for the NSCs, with cells in the uncoated samples 

remaining in groups and an even distribution noted in the coated samples. In general, 

daughter cells displayed normal morphologies as expected in in vitro culture conditions.  

However, astrocytes grown in HemopatchTM did appear more processed compared to the 

broad, flattened appearance of astrocytes grown on glass coverslips.  In general, cell 

projections were observed extending throughout the construct and travelled in and out 

of the plane of focus, highlighting the 3D nature of the culture as compared to glass 

coverslips. In general, astrocytes were found dispersed within the material, and forming 

the main body of the spheres in the case of uncoated HemopatchTM. Neuronal somas were 

usually found in groups, possibly associated with astrocytes judging by the high number 

of non-stained nuclei around them, with projections in all directions. Oligodendrocytes, 

fewer in number, were also found associated with other cell types. In some cases, 

projections could be observed. However, no clear myelination tracts were observed in any 

of the conditions, perhaps due to the short duration of the culture. 

Finally, we showed the feasibility of processing these constructs for imaging via SEM. 

Here, we were able to visualise the porosity of the material (Figure 4.10 A) and the 

presence of neurospheres on uncoated HemopatchTM but not on the coated HemopatchTM 

(Figure 4.10 B-C). Moreover, we were able to identify differentiated NSCs on the collagen 

fibres (Figure 4.10 D-I). Putative cell subtypes are highlighted in Figure 4.10 (D-F), 

although these need to be confirmed through combinatorial techniques such as 
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immunogold labelling. The original SEM images are below for comparison (Figure 4.10 

G-I). 

 

Figure 4.10 SEM images from OTOTO prepared samples. (A-C): Low magnification 
image of coated HemopatchTM depicting the porosity of the construct (A), cells in a 
neurosphere formation on uncoated HemopatchTM (B) and single cells on coated 
HemopatchTM Arrows indicate edges of the neurosphere (C) Inset showing a single cell on 
the material. Scale bar: 10µm. (D-F): Differentiated NSCs on coated HemopatchTM: 
astrocyte (D), neuron (E) and oligodendrocyte (F). Colour indicates our interpretation of 
the cell bodies. (G-I): Original SEM images for D, E and F. SEM images allowed for the 
direct visualisation of cells on the biomaterial.  
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4.3 DISCUSSION  

4.3.1 Summary of aims and results 

Here we show that a clinically relevant primary NSC population can be safely cultured 

within HemopatchTM and that this does not affect the survival, proliferation or 

differentiation of the cultured cells. In addition, we also show that a simple 

biofunctionalization step with laminin can induce improved cell distribution through the 

material. Our results corroborate the fact that clinically available materials have 

translational potential for implantation in SCI with potential implications in reducing the 

time it takes for such therapies to reach the clinic. Additionally, we were able to modify 

the scaffold through laminin engineering, opening the possibilities of finely tuning the 

characteristics of these surgical biomaterials in order to optimise them for cell 

encapsulation. These findings will be discussed in the following sections.  

4.3.2 HemopatchTM as a scaffold for neural stem cell transplantation to spinal cord 

injury 

According to our results, HemopatchTM allows for the culture of NSCs and their progeny 

with high survival rates and without affecting proliferation or differentiation rates. 

Therefore, our findings suggest the surgical sealant HemopatchTM could be used as a 

bioscaffold for SCI implantation. This might have potential implications in shortening the 

translation time of bioscaffold implantation for SCI to the clinic due to an already 

established clinical use of this material.  

In terms of physicochemical properties, HemopatchTM is a porous, sponge-like structure 

mainly fabricated using collagen type I, a material with several benefits for implantation 

into sites of SCI (Lee et al., 2001). Porous collagen scaffolds have been previously reported 

to support NSC encapsulation for SCI implantation with associated motor recovery in 

mice (Kourgiantaki et al., 2020). Our data indicates that the surgical sealant HemopatchTM 
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could also support the encapsulation of the clinical transplant population of NSCs without 

affecting normal cell behaviour, e.g. survival, proliferation and differentiation when 

compared to standard glass cultures, supporting our hypothesis. 

The pores in HemopatchTM, which are approximately 10µm in diameter, allowed for cell 

infiltration and attachment throughout the material, as suggested by the presence of cells 

in different focal planes of the Z-axis. Once implanted, the porosity of the material may 

also facilitate nerve fibre in-growth and cellular infiltration. The infiltration of 

macrophages and lymphocytes within HemopatchTM has been previously reported in the 

rat liver (Nissen et al., 2017). The implantation of a material which allows host cell 

penetration is crucial to allow full repair of spared axons that might persist in the injured 

tissue. Unfortunately, our microscope only allowed imaging up to, approximately, 50µm 

of depth in the Z-axis. This was possibly due to high distortion of the light due to a thick 

layer of collagen scaffold. For a detailed characterisation of the 3D distribution of cells 

within the material, confocal imaging might be an alternative to obtaining high quality 

images. This might also allow quantification of cell morphology or axonal length. 

Besides its physicochemical properties, HemopatchTM is currently manufactured as a 2 

mm thick sheet of flexible collagen, in approximately 15 x 4 cm dimensions. This can be 

simply cut to a desired shape and is conformable allowing ease of handling. An average 

intramedullary lesion length size for cervical injuries was reported to be ca. 7 cm (Aarabi 

et al., 2017), suggesting the patches in their current form could cover most injuries 

(although the largest lesions were up to 19 cm in length).  It can be envisaged that these 

could be cut to size, seeded with NSCs, cultured for up to 5 days then implanted into the 

site of injury.  

Furthermore, HemopatchTM has a CE-marking certificate for clinical use and, therefore, 

has been reported safe for implantation in humans. This, combined with an already 
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established manufacturing process and routine clinical use, means that this tissue sealant 

might not require to go through a strict PMA process to be clinically used as a bioscaffold 

implant. This is crucial for the translation to the clinic of this therapy, which is now facing 

long delays due to the extended use of experimental grade, laboratory fabricated 

scaffolds.  

Although the safety of HemopatchTM upon implantation has already been tested, its 

efficacy as a bioscaffold remains unknown. Here, we report its ability for cell 

encapsulation and, later on, its permissiveness for host cell infiltration. In the future, it 

will have to be tested, with and without encapsulated NSCs, in in vivo animal models and 

in clinical trials before becoming routinely used. 

4.3.3 Enhancing the regenerative properties of HemopatchTM through laminin 

functionalisation 

We also found that a simple coating step of HemopatchTM with laminin promoted an even 

pattern of cell distribution through the material instead of the sphere formation observed 

in uncoated samples, without affecting survival, proliferation or differentiation of cells. 

This finding has implications in reducing cell aggregation after transplantation which can 

lead to uneven repair and, therefore, to incomplete recovery. Our findings are in 

accordance with other studies in which laminin improved cell distribution in 3D scaffolds 

(Luo et al., 2018). 

The cellular mechanism underpinning these differences is not yet clear, but it could be 

that the presence of ECM molecules facilitates migration of the cells through the material 

whereas in their absence the cells remain in place and divide to become neurospheres 

(Flanagan et al., 2006). Both systems may have advantages. On one hand, improving cell 

distribution by coating the material with ECM molecules could avoid the issue of cell 

aggregation and ultimately enhance even repair throughout injury sites. On the other 
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hand, higher survival rates have been observed after transplantation of NSCs as 

neurospheres compared to dissociated cells in sites of SCI in rats (Mothe et al., 2008), 

potentially providing additional protective benefit to the encapsulated cells. Both formats 

would need to be tested in sites of in vivo SCI to examine which could lead to the greatest 

functional recovery. 

As far as we are aware, laminin is not yet used clinically and ECM coating would require 

additional safety testing steps for CE-marking approval. However, a number of companies 

already produce chemically defined and animal component-free, human laminin isoforms 

using commercially scalable processes adaptable to producing clinical grade laminin.  

4.3.4 Future directions 

Alongside the expansion in biofunctionalisation of scaffolds designed to support cell 

transplant populations and further enhance regenerative responses, tuning cellular and 

tissue responses to the scaffold through other techniques might be desirable to obtain a 

fully optimised product. 

Our data shows that NSC culture within HemopatchTM with or without laminin 

functionalisation does not affect the NSC differentiation outcomes. However, it has been 

reported that, once implanted in the injury environment, NSC differentiation towards a 

neuronal phenotype can be impaired by myelin associated proteins, which promote 

astroglial differentiation (Wang et al., 2008). Therefore, in order to restore lost neuronal 

populations, various studies report the incorporation of different factors that might 

promote neuronal differentiation. For example, functionalisation of collagen scaffolds 

with EGFR antibody (Xiaoran Li et al., 2013) or a microtubule-stabilising agent (Xiaoran 

Li et al., 2018) directed NSC differentiation towards a neuronal phenotype. It seems 

feasible that HemopatchTM could be further functionalised for directed neuronal 

differentiation in a similar fashion if desired. 
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Further, the pores in HemopatchTM are randomly ordered but the spinal cord displays 

highly ordered, aligned structures such as the corticospinal tracts. It may therefore be 

desirable to enhance cell alignment within the construct to aid repair of these structures. 

Application of an 80 mV/mm alternating current to neurons cultured in a 3D silk protein 

matrix resulted in axons growing in parallel to the electrical field. (Tang-schomer, 2018). 

Given the porous, open nature of HemopatchTM, it seems feasible that this strategy could 

be employed here to influence encapsulated cell behaviour. 

One of the most evident complications when it comes to SCI treatment is the different 

types of injury, e.g. transecting, compression, complete, incomplete, etc. Therefore, it 

makes sense to provide each type of injury with an adapted treatment. However, this can 

prove to be extremely complex and expensive (e.g. training of personnel in multiple 

techniques, acquisition of specialised reagents and equipment, wide variety of possible 

side effects, years of delay in experimental grade research, etc.). Since the main variation 

between different SCI types is of a physical nature, providing specialised physical 

treatment combined with routine biological treatment can be the key to a specially 

designed but simple and cost-effective treatment. This could be achieved through 

implantation of NSCs in combination with an appropriate bioscaffold to each lesion type. 

In addition, as demonstrated in this study and others (Finch et al., 2020), clinical tissue 

adhesives have great potential for cell encapsulation and can be adapted to different 

lesions. 

For example, porous matrixes might provide the most optimal scaffold for host cell 

infiltration and transplant cell encapsulation. Although most of these, like HemopatchTM 

or DuragenTM, are flexible and can be cut to a desired size and shape, they might induce 

further injury when implanted within an incomplete injury. Therefore, an injectable gel 

might be more suited to this type of injury. For example, TisseelTM is a porous, fibrin-based 

sealant that gels in situ, adapting to the environment’s shape. In other scenarios, when 
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there is an open wound and emergency treatment is needed, a sprayable matrix, like 

CoStasisTM or SprayGelTM, could provide an alternative to other scaffolds. 

Given the previous evidence, our data can provide manufacturers a framework 

(identifying suitable material physiochemical properties and biofunctionalisation 

strategies) to develop their own materials and protocols for repurposing existing 

medically approved scaffolds for neural cell transplantation. The ultimate goal is to create 

a bank of clinically available bioscaffolds to suit different types of SCI. Moreover, these 

could be further functionalised to enhance their regenerative properties through e.g. 

promotion of even cell distribution, directed neuronal differentiation or promotion of cell 

alignment.  
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5 TARGETING ORIENTED AXONAL GROWTH THROUGH NEURAL STEM 

CELL CULTURE ON ALIGNED NANOFIBRE CONSTRUCTS 

5.1 BACKGROUND 

5.1.1 The aligned nature of the spinal cord 

The spinal cord consists mainly of ascending and descending axonal tracts, providing the 

tissue with a highly oriented structure. As discussed in Chapter 1, these tracts are unable 

to regenerate upon injury due to the toxic environment of the lesion gap. The 

combinatorial effects of cell therapy and bioscaffold implantation might be key to 

achieving effective repair due to their ability to target multiple aspects of the lesion 

through, for example, cellular repopulation and providing neurotrophic support 

(Kourgiantaki et al., 2020). 

Due to the highly aligned nature of the spinal cord, an important factor to consider when 

aiming to regenerate severed axons is the direction in which these grow. Directed axonal 

growth is crucial in order to re-establish highly organised connections and prevent 

unnecessary and non-functional connections. In fact, implantation of a construct of 

aligned nanofibres in rats after SCI resulted in extensive cellular penetration, similarly to 

implantation of random constructs (Liu et al., 2012), suggesting that the aligned 

constructs do not impair the regenerative capacity of the biomaterials. In addition, the 

spinal cords treated with aligned biomaterials appeared more structurally intact when 

compared to random controls (Liu et al., 2012). Moreover, longer axonal length of 

cultured neurons on aligned fibres has been suggested when compared to random fibres 

(F. Yang et al., 2005).  

Despite the evidence, the vital importance of porosity in the bioscaffold implant to allow 

cell infiltration has led to the fabrication of, mostly, porous, randomly oriented materials. 

Consequently, the effects of cellular alignment to SCI repair remain understudied and 
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translation to clinic will take longer. Therefore, there is a need to optimise directed axonal 

growth and study the underpinning mechanisms involved. 

5.1.2 Guidance cues for directed axonal growth 

The elongated tips of growing axons, known as “growth cones”, express guidance 

receptors, which interact with attractive and repulsive guidance cues from their 

environment to, ultimately, lead the axon towards its final synapsis site (Stoeckli, 2018). 

Evidence suggests that such cues could be provided by cell surface adhesion molecules 

and chemotactic molecules from glial cells (N. Zhang et al., 2005). 

For example, astrocytic Ca2+ waves have been reported to guide growing axons towards 

remote areas of neuronal activity (Hung & Colicos, 2008). In a 2D setting, electric field-

induced astrocyte alignment, directed future neurite outgrowth and alignment 

(Alexander et al., 2006). Similar research has been translated to a 3D in vitro environment, 

in order to provide the model with the dimensional characteristics of the tissue, with 

similar results. The in vitro formation of 3D aligned astrocyte conduits, permitted 

neuronal attachment and enhanced aligned neural extension (Katiyar et al., 2018). In 

another study, the seeding of neurons on 3D collagen constructs containing aligned 

astrocytes, resulted in greater neurite growth and alignment than on non-aligned 

astrocytic areas (East et al., 2010). 

In addition, neuronal alignment has been attempted through other methods. For example, 

the exposure of cortical neurons to an alternating current for 4 days resulted in an 

increase of axonal length and parallel alignment of axons to the electric field (Tang-

schomer, 2018). 

However, due to the simplicity of the process, probably the most popular alignment 

methodology is the culture of cells on readily aligned materials. Electrospinning is a 

relatively new alternative to creating fibre constructs that can overcome some of the 
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limitations associated with traditional nerve guidance conduits. For example, they exhibit 

high porosity and high surface area, increasing cell-scaffold interactions, and the fibre 

diameter can vary from nanometers to micrometers (F. Yang et al., 2005). In addition, they 

can be functionalized via encapsulation of bioactive molecules and can be collectively 

orientated, a desirable property for axonal guidance (Xie et al., 2010). This versatile 

technique allows the formation of aligned constructs with different materials such as poly 

(l-lactic) acid (PLLA) (F. Yang et al., 2005), PCL (Xiaoran Li et al., 2016), polyethersulfone 

(PES) (Christopherson et al., 2009), etc. 

PCL is a synthetic polymer of the polyester family (Dwivedi et al., 2020). It has a melting 

temperature between 59 and 64°C, meaning that it attains a rubbery state at physiological 

temperatures resulting in a strong and elastic material (Dwivedi et al., 2020). Importantly, 

it is biocompatible and biodegradable (Dwivedi et al., 2020). Moreover, it is a malleable 

biomaterial, and can be conformed into multiple structures (Siddiqui et al., 2018). In fact, 

PCL biomaterials can be conformed as porous or fibrous scaffolds (Dwivedi et al., 2020). 

Fibrous scaffolds can be electrospun with a random or an aligned orientation (Dwivedi et 

al., 2020), providing the material with potential characteristics for axonal guidance (Liu 

et al., 2012). These types of fibres have been used in combination with neural-derived cell 

culture (Xiaoran Li et al., 2016; Sharifi et al., 2016; Silantyeva et al., 2018; Soliman et al., 

2018). 
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5.1.3 Tests with electrospun biomaterials 

Previous studies have successfully cultured cells on aligned electrospun fibre constructs 

(Table 5.1).  

 

For example, NSCs differentiated into neurons and seemed to align at ≤10° of the fibre 

direction (Sharifi et al., 2016; F. Yang et al., 2005). In addition, neurite length was reported 

higher on aligned fibre constructs than on random fibre constructs (F. Yang et al., 2005). 

NSCs seeded on radially aligned fibres seemed to respond with a higher migration rate 

with the presence of chemotactic cues provided by a gradient of stromal-cell-derived 

factor-1ɑ (SDF1ɑ) (Xiaoran Li et al., 2016). 

In another study, the functionalization of aligned fibres with a peptide sequence found in 

laminin seemed to allow cell survival and alignment of neurons with the fibres. 

Furthermore, mouse embryonic stem cells (mESC) seemed to express mature neuronal 

markers at earlier time points than when cultured on laminin coated coverslips 

(Silantyeva et al., 2018). Similarly, mESC grown on aligned fibres differentiated towards 

a neuronal phenotype at a higher rate than when the mESC where seeded on random 

fibres or a gelatin control (Sperling et al., 2017).  

Table 5.1 List of previous evidence regarding the study of stem cells on aligned 
electrospun nanofibers. This table summarises the methodology of previous research on 
the use of electrospun biomaterials for cell culture. 
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In vivo, the implantation of a conduit of aligned electrospun fibres on a complete 

transection of the spinal cord in rats resulted in robust and long distance axonal 

regeneration when compared to random fibre controls (Hurtado et al., 2011). Such fibres 

have also been reported to allow incorporation and slow release of molecules of varying 

sizes (e.g.: NT-3 and miR-222) for SCI treatment, enhancing axonal regeneration in rats 

(Nguyen et al., 2017). 

5.1.4 Knowledge gaps and aims 

These recent advances in the field highlight the need to test and develop a clinically 

relevant, aligned cell implant. However, current research has relied on use of cell lines or 

ESC derived NSCs. Such cell lines have inherent risks associated with teratoma formation, 

especially if residual ESCs are present, and they lack robust and reproducible 

differentiation protocols (Mothe & Tator, 2012; Tapia & Scholer, 2016) (Chapter 1). 

Further, part of the therapeutic potential of NSCs is to differentiate into their daughter 

cells and it can be predicted that alignment of both NSCs and daughter cells will facilitate 

repair. However, there is limited systematic assessment of alignment of NSCs and 

daughter cells on aligned electrospun nanofibres and, to date, there is no established 

methodology to statistically compare alignment between biological repeats, making data 

interpretation qualitative and not reproducible. 

Given the above, this study aims to: 

1. Develop a new and reproducible quantification strategy to characterise alignment 

in fibres and associated alignment in neural cells. 

2. Systematically assess alignment of a primary culture of NSCs and differentiated 

progeny 

3. Examine the safety of the aligning NSCs on manufactured, electrospun nanofibres. 
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5.2 RESULTS 

5.2.1 The nanofibres provided either random or aligned substrates for cell culture 

Phase microscopy revealed matrices of random or aligned nanofibres (Figure 5.1 A, B), 

forming a compact but porous structure that would potentially allow for a thin 3D culture 

of cells. The fibres provided by the company were delivered in individual inserts placed 

in 24-well plates, with each insert consisting of a plastic ring holding all the edges of the 

fibres under tension. The computational analysis showed that the fibres from aligned 

constructs were indeed aligned, as represented by a high frequency of fibres oriented 

towards the same direction, as seen by a directionality peak that was approximately 4-

fold higher than on random fibres (Figure 5.1 C). In order to analyse whether this 

Figure 5.1 Orientation of random and aligned fibres. Representative bright field images of 
random (A) and aligned (B) fibres with orientation graph showing the frequency at which the 
fibres (Y) were orientated towards each angle (X) (C) and comparison of alignment indexes 
(area under the peak) between random and aligned fibres (D) (Wilcoxon test for paired 
samples, n=12, p=0.0005). The stars represent p<0.05 and each dot represents one construct 
analysed. These data indicate that alignment is higher in aligned constructs than in random.  
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difference was statistically significant, the area under the peak for each fibre type was 

calculated. Then, a t-test of the average results showed a significant difference between 

the orientation peak of the two types of fibres (Figure 5.1 D), confirming that the aligned 

materials had greater consistency of fibre orientation. 

5.2.2 A healthy population of NSCs was aligned along the nanofibers 

NSCs were seeded onto glass coverslips and scaffolds of random fibres and aligned fibres. 

A survival assay revealed over 90% NSC survival across all conditions after 5 days in vitro 

(Figure 5.2 A-C), with no statistical differences between groups (Figure 5.2 D). In 

addition, a proliferation assay also revealed no statistical differences in proliferation rate 

across conditions after 6h of incubation with Edu reagents (Figure 5.2 E-H). 

After 5 days of culture they were fixed and stained with Nestin (a cytoskeleton marker) 

and Sox-2 (a nuclear marker) (Figure 5.3 A). In all three conditions, approximately 100% 

of cells were positive for both markers, with no statistical differences between groups 

(Figure 5.3 B, C).  

Figure 5.2 Survival and proliferation of NSCs on fibres. NSC survival assay (A-D): 
Representative images of NSCs stained with Calcein AM, indicating live cells (green) and 
Ethidium homodimer (EtH), indicating dead cell nuclei (red) on glass (A) random fibres (B) 
and aligned fibres (C) and graphical representation of survival rates (Kurskal-Wallis test, 
n=3, p≥0.005) (D). NSC proliferation assay (E-H): Representative images of NSCs stained 
with DAPI, a cell nuclear marker (blue) and Edu, a proliferative cell nuclei marker (red) on 
glass (E), random fibres (F) and aligned fibres (G) with graphical representation of 
proliferation rates (Kurskal-Wallis test, n=4, p≥0.005) (H). No differences were found 
between groups. 
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Cells seeded on random fibres (Figure 5.3 D) were randomly oriented, suggested by the 

absence of a pronounced peak of cell orientation (Figure 5.3 E). Moreover, a correlation 

analysis indicated there was no correlation between fibre and cell orientation (r=0.184; 

p=0.080) (Figure 5.3 F). However, when NSCs were seeded on aligned fibres a peak of 

Figure 5.3 Phenotype and orientation of NSCs on electrospun fibres. Representative image 
of NSCs on glass stained with NSC cytoskeleton marker Nestin (green) and NSC nuclear marker 
Sox-2 (red) with insets showing nuclear marker DAPI (blue) (A). Bar graphs represent the 
percentages of Nestin positive cells on glass, random and aligned substrates (Kurskal-Wallis 
test, n=4, p≥0.005) (B) and Sox-2 positive cells (Kurskal-Wallis test, n=4, p≥0.005) (C). Error 
bars indicate SEM and scatter dots indicate the mean values of each biological repeat. (D) is a 
representative image of Nestin and Sox-2 positive cells on random substrates, with inset 
representing DAPI stained counterpart. XY graph indicates the frequency at which cells and 
random fibres are oriented at each angle, with halo representing the SEM (E). Scatter plot 
representing the correlation of directionality between cells and fibres on random substrates 
(r=0.1842, p>0.0804) (F). Image (G) is representative of Nestin and Sox-2 positive cells on 
aligned fibres, with blue inset representing the DAPI stained counterpart and the white arrow 
indicating the direction of the fibres. XY graph represents the frequency at which cells and fibres 
are oriented at each angle on aligned constructs, and halos represent SEM (H). Finally, the 
scatter plot represents the correlation of orientation between cells and fibres in aligned 
constructs (r=0.9680, p>0.0001) (I). Blue dots on scatter plots indicate strong correlation 
(r>0.5) and yellow dots indicate weak correlation (r<0.5) (n=3, two-tailed Spearman 
correlation test with a 95% confidence interval). The cells were oriented towards the same 
angle as the aligned constructs.  
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cell directionality was visible, corresponding to a peak of fibre directionality with a 

positive correlation (r=0.9680, p>0.0001) (Figure 5.3 G-I). 

5.2.3 Differentiated neurons and astrocytes, but not oligodendrocytes, also align 

with the aligned nanofibers 

7 days after removing the growth factors from the medium, approximately over 90% of 

the cell population was alive at the time of the survival assay, with no statistical 

differences between groups (Figure 5.4 A-D). A proliferation assay revealed 

approximately 5% of proliferating cells during a 6h incubation with Edu reagents, with 

no statistical differences between groups either (Figure 5.4 E-H). 

7 days after growth factor removal, cells were fixed and stained. GFAP staining (Figure 

5.5 A, B) revealed that approximately 60% of the NSCs had differentiated towards an 

astrocytic phenotype, with no statistical differences between groups. Astrocyte 

morphology appeared more elongated on random fibres than on coverslips (Figure 5.5 

C), cell orientation seemed random (no directionality peak) and there was no correlation 

Figure 5.4 Survival and proliferation of daughter cells on fibres. Daughter cell 
survival assay (A-D): Representative images of daughter cells stained with Calcein AM, 
indicating live cells (green) and Ethidium homodimer (EtH), indicating dead cell nuclei 
(red) on glass (A) random fibres (B) and aligned fibres (arrow indicating fibre direction) 
(C) and graphical representation of survival rates (Kurskal-Wallis test, n=3, p≥0.005) (D). 
Daughter cell proliferation assay (E-H): Representative images of daughter cells stained 
with DAPI, a cell nuclear marker (blue) and Edu, a proliferative cell nuclei marker (red) 
on glass (E), random fibres (F) and aligned fibres (arrow indicating fibre direction) (G) 
with graphical representation of proliferation rates (Kurskal-Wallis test, n=4, p≥0.005) 
(H). No differences were found between groups.  
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between cell and fibre orientation (r=0.249; p=0.017) (Figure 5.5 D-E). Astrocytes on 

aligned fibres also appeared more elongated compared to control (Figure 5.5 F). In this 

case, the computational analysis revealed the presence of an orientation peak, positively 

correlated with a peak in fibre orientation (r=0.979; p<0.0001) (Figure 5.5 G, H). 

Figure 5.5 Phenotype and orientation of astrocytes on electrospun fibres. 
Representative image of astrocytes on glass stained with astrocyte cytoskeleton marker GFAP 
(green) with insets showing nuclear marker DAPI (blue) (A). Bar graph represents the 
percentages of GFAP positive cells on glass, random and aligned substrates (Kurskal-Wallis 
test, n=4, p≥0.005) (B). Error bars indicate SEM and scatter dots indicate the mean values of 
each biological repeat. (C) is a representative image of GFAP positive cells on random 
substrates, with inset representing DAPI stained counterpart. XY graph indicates the 
frequency at which cells and random fibres are oriented at each angle, with halo representing 
the SEM (D). Scatter plot representing the correlation of directionality between cells and 
fibres on random substrates (r=0.2490, p=0.0173) (E). Image (F) is representative of GFAP 
positive cells on aligned fibres, with blue inset representing the DAPI stained counterpart and 
the white arrow indicating the direction of the fibres. XY graph represents the frequency at 
which cells and fibres are oriented at each angle on aligned constructs, and halos represent 
SEM (G). Finally, the scatter plot represents the correlation of orientation between cells and 
fibres in aligned constructs (r=0.9793, p>0.0001) (H). Blue dots on scatter plots indicate 
strong correlation (r>0.5) and yellow dots indicate weak correlation (r<0.5) (n=3, two-tailed 
Spearman correlation test with a 95% confidence interval). The cells were oriented towards 
the same angle as the aligned constructs. 
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As suggested by Tuj-1 staining (Figure 5.6 A), approximately 20% of cells in all conditions 

differentiated into neurons (Figure 5.6 B). Neurons on random fibres seemed to be 

randomly distributed, as suggested by a weak correlation between cell and fibre 

orientation (r=0.439, p<0.0001) (Figure 5.6 C-E), while a cell directionality peak 

Figure 5.6 Phenotype and orientation of neurons on electrospun fibres. Representative 
image of neurons on glass stained with neuronal cytoskeleton marker Tuj-1 (red) with insets 
showing nuclear marker DAPI (blue) (A). Bar graph represents the percentages of Tuj-1 
positive cells on glass, random and aligned substrates (Kurskal-Wallis test, n=4, p≥0.005) 
(B) Error bars indicate SEM and scatter dots indicate the mean values of each biological 
repeat. (C) is a representative image of Tuj-1 positive cells on random substrates, with inset 
representing DAPI stained counterpart. XY graph indicates the frequency at which cells and 
random fibres are oriented at each angle, with halo representing the SEM (D). Scatter plot 
representing the correlation of directionality between cells and fibres on random substrates 
(r=0.4390, p=>0.0001) (E). Image (F) is representative of Tuj-1 positive cells on aligned 
fibres, with blue inset representing the DAPI stained counterpart and the white arrow 
indicating the direction of the fibres. XY graph represents the frequency at which cells and 
fibres are oriented at each angle on aligned constructs, and halos represent SEM (G). Finally, 
the scatter plot represents the correlation of orientation between cells and fibres in aligned 
constructs (r=0.9109, p>0.0001) (H). Blue dots on scatter plots indicate strong correlation 
(r>0.5) and yellow dots indicate weak correlation (r<0.5) (n=3, two-tailed Spearman 
correlation test with a 95% confidence interval). The cells were oriented towards the same 
angle as the aligned constructs. 
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corresponded to a fibre directionality peak on aligned constructs with a positive 

correlation (r=0.911; p<0.0001) (Figure 5.6 F-H). 

MBP staining (a marker for oligodendrocytes) (Figure 5.7 A, B) revealed that 

approximately 5% of NSCs had differentiated into oligodendrocytes. In this case, both 

Figure 5.7 Phenotype and orientation of oligodendrocytes on electrospun fibres. 
Representative image of oligodendrocytes on glass stained with oligodendrocyte 
cytoskeleton marker MBP (green) with insets showing nuclear marker DAPI (blue) (A). Bar 
graph represents the percentages of MBP positive cells on glass, random and aligned 
substrates (Kurskal-Wallis test, n=4, p≥0.005) (B) Error bars indicate SEM and scatter dots 
indicate the mean values of each biological repeat. (C) is a representative image of MBP 
positive cells on random substrates, with inset representing DAPI stained counterpart. XY 
graph indicates the frequency at which cells and random fibres are oriented at each angle, 
with halo representing the SEM (D). Scatter plot representing the correlation of 
directionality between cells and fibres on random substrates (r=0.0354, p=0.7387) (E). 
Image (F) is representative of MBP positive cells on aligned fibres, with blue inset 
representing the DAPI stained counterpart and the white arrow indicating the direction of 
the fibres. XY graph represents the frequency at which cells and fibres are oriented at each 
angle on aligned constructs, and halos represent SEM (G). Finally, the scatter plot represents 
the correlation of orientation between cells and fibres in aligned constructs (r=0.0887, 
p>0.4029) (H). Yellow dots indicate weak correlation (r<0.5) (n=3, two-tailed Spearman 
correlation test with a 95% confidence interval). The cells were not oriented towards the 
same angle as the aligned constructs. 
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cells on random fibres (Figure 5.7 C-E) and aligned fibres (Figure 5.7 F-H) did not show 

directionality peaks, and cell vs. fibre correlation was negative in both cases 

(oligodendrocytes vs. random fibres (r=0.0354, p=0.7387) and oligodendrocytes vs. 

aligned fibres (r=0.0887, p>0.4029). 

SEM images (Figure 5.8) allowed for a more detailed visualisation of the cells on the 

fibres. The random distribution of NSCs on glass coverslips and random fibres is evident, 

while the cells seemed to present a more elongated bipolar morphology that orientated 

towards the same angle as the aligned fibres. Similarly, cells that we putatively identified 

as astrocytes appeared to have a flattened appearance on glass coverslips and random 

fibres, covering the bottom of the surface, they seem to present more elongated processes 

that also follow the direction of fibres on the aligned constructs. Cell with the 

morphological appearance of neurons and oligodendrocytes were largely found lying on 

top of astrocytes in all experimental conditions.  The processes of those neurons that were 

in direct contact with the fibres seemed to follow them in isotropic fashion in the case of 

Figure 5.8 OTOTO prepared samples for SEM. Representative SEM images of NSCs, 
astrocytes, neurons and oligodendrocytes on glass coverslips, random fibres and aligned fibres. 
Putative cell types highlighted in colour. SEM images allowed for the direct visualisation of cell-
biomaterial interaction and cell morphology.  
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random constructs and anisotropic on aligned fibres. Due to the low percentage of 

oligodendrocytes on the cultures, their visualisation in contact with the fibres was scarce 

and could only be seen on top of astrocytes. 
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5.3 DISCUSSION 

5.3.1 Summary of aims and results 

Here we show that alignment of cells can be reproducibly and quantitatively analysed 

through the use of a directionality plug in combined with data rotation and a correlation 

test. Moreover, the alignment of NSCs and their progeny on aligned and random 

electrospun fibres was robustly analysed, resulting in alignment of NSCs, neurons and 

astrocytes, but not oligodendrocytes and also showing high survival and standard 

proliferative capacity of the cultured cells, highlighting the safety and feasibility of 

culturing NSCs on electrospun fibres. Therefore, we describe a methodology for analysing 

cellular alignment and we demonstrate alignment of neurons and astrocytes on 

electrospun fibres, key tools when aiming to promote directed axonal growth for spinal 

cord repair. These outcomes will be discussed in the following sections. 

5.3.2 Establishment of a methodology to quantitatively and reproducibly analyse 

cell alignment to nanofibres 

Multiple studies report cellular alignment on aligned nanofibres. However, alignment 

analysis is represented either as a qualitative comparison (L. He et al., 2010; F. Yang et al., 

2005) or as the quantitative analysis of only one data set without comparison between 

biological repeats (Silantyeva et al., 2018), making data interpretation not reproducible. 

Alternatively, other studies have quantified the cell’s angle deviation from the fibre they 

are sitting on (Sharifi et al., 2016; Soliman et al., 2018), resulting in repetitive and time 

consuming work, which can lead to error and biased results.. Moreover, most studies 

focus on NSC and neuronal alignment, overlooking glial cell alignment despite their 

importance in axonal guidance (Alexander et al., 2006; East et al., 2010; Katiyar et al., 

2018).  

This study reports the establishment of a methodology to reproducibly quantify and 

statistically analyse cell alignment. The two main impediments when aiming to analyse 
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cell alignment are the lack of an automated software to analyse orientation of single 

structures within images and the lack of a normalisation method to compare each image. 

In order to address the first one, we used the Directionality plug-in in ImageJ, which 

analyses the angle distribution of structures (Silantyeva et al., 2018). Once these have 

been quantified, they need to be compared to other biological repeats. In order to do that, 

a standardisation process was needed, which we achieved by data rotation. Finally, in 

order to statistically analyse any possible differences in directionality between fibres and 

cells we did a correlation analysis to quantify whether the cells were following the same 

direction as the fibres. As shown here, we were able to use this methodology on a primary 

culture of NSCs and on a culture of differentiated NSCs: astrocytes, neurons and 

oligodendrocytes. 

Therefore, we offer a high-throughput analytical method, which allows for an unbiased, 

reliable analysis of cell alignment of multiple cells at the same time and for comparison 

between biological repeats. With the ongoing advances in the field of aligned biomaterial 

implantation, this methodology can act as a platform for alignment assessment with 

various cell types, with translational potential when aiming to guide regenerating axons 

in SCI therapies.  

5.3.3 Cellular alignment on aligned electrospun nanofibre constructs 

The electrospun 3D-NanoMatrixTM fibres used in this study were kindly donated by 

CellevateTM. The highly porous, 3D nanofibre networks partially mimic the topographical 

features of the ECM. In addition, their patented manufacturing process provides well-to-

well and batch-to-batch consistency, and therefore, reduces experimental variation. 

These fibres are made of synthetic, biocompatible and biodegradable (approx. >24 

months, but degradation time can be decreased through combination with DL-lactide 

(Middleton & Tipton, 2000)) poly-u03b5-caprolactone (PCL). This material has been 

widely used to manufacture electrospun fibres for neural-derived cell culture (Xiaoran Li 
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et al., 2016; Sharifi et al., 2016; Silantyeva et al., 2018; Soliman et al., 2018). Besides, the 

constructs are mounted on 3mm high crown inserts, which hold the edges of the fibres 

and keep them suspended to avoid contact with the bottom of the well. 

NSC and neuronal alignment have been repeatedly reported when seeded on aligned 

fibres (Hurtado et al., 2011; Jakobsson et al., 2017; Sharifi et al., 2016; Silantyeva et al., 

2018; Soliman et al., 2018; Sperling et al., 2017; F. Yang et al., 2005). We also report NSC 

and neuronal alignment on aligned fibres but not on random fibres or glass controls. 

Neurons were always observed in highly populated groups, rendering it impossible to 

analyse the impact of the fibres on individual axonal length. It might be desirable to 

culture a pure neuronal population at a lower density to systematically research the 

impact of these fibres on axonal length. 

Astrocyte alignment has been shown to induce higher neurite outgrowth and neuronal 

guidance when compared to ... (East et al., 2010). Alignment of glial cells in electrospun 

fibres has been previously demonstrated (A. Weightman et al., 2014). However, this 

alignment had not been robustly demonstrated through an established statistical analysis 

until now. In this report, we show that astrocytes align parallel to the fibres, similarly to 

neurons and NSCs, and that this alignment is maintained through biological repeats. 

While SEM images allowed for the observation that most NSCs, neurons and astrocytes 

were in direct contact with the fibres, all observed oligodendrocytes were found sitting 

on top of astrocytes. Therefore, we were not able to see NSC-derived oligodendrocytes 

aligned on the fibres. This could be due to the low numbers of these cells present in our 

cultures or due to the tendency to finding these cells sitting on top of astrocytes and not 

in contact with the fibres. It should also be noted that we identified cells within SEM 

images using their morphology, which can be subjective. Perhaps, it would be 

advantageous to use immunogold staining to see a specific cell types under SEM, which 
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would also facilitate the cell identification. In previous studies, OPC alignment with 

electrospun fibres was seen with the presence of astrocytes in the culture, but the 

alignment was lost when OPCs differentiated into mature oligodendrocytes (A. 

Weightman et al., 2014).  In order to address these issues, it would be interesting to 

culture an enriched population of OPCs on aligned and random fibres in order to establish 

whether a denser OPC population would result in higher OPC alignment. In fact, these 

experiments have already been undertaken in our laboratory, using the methodology 

described here for data analysis, and resulting in OPC alignment on aligned electrospun 

fibres (data not published yet). 

5.3.4 Feasibility of culturing NSCs and daughter cells on electrospun fibre 

constructs 

Here we show that NSCs and their progeny can be successfully cultured in commercially 

available electrospun fibres. This can increase the reproducibility of this study and allows 

for highly consistent biological repeats. 

Our findings indicate that NSCs can be cultured on electrospun fibres, the topography of 

which does not alter survival, proliferation or differentiation rates regardless of whether 

the fibres are aligned or random. Moreover, the survival and proliferation of astrocytes, 

neurons and oligodendrocytes does not seem to be affected by the fibres either, indicating 

the safety of the procedure. The utilisation of a random fibre control and a flat surface 

glass control allowed us to discern whether any significant differences were due to the 

physical cues provided by the fibre topography or by the chemical properties of the fibre 

material.  

We decided to further functionalise the constructs with laminin to improve cell 

attachment and migration. It has been reported that the presence of laminin, a molecule 

present in the ECM, facilitates NSC migration instead of promoting neurosphere 
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formation (Flanagan et al., 2006; Mogas Barcons et al., 2021), rendering the cell-construct 

complex with more in vivo-like properties. Moreover, previous studies have been 

successful in functionalizing CellevateTM fibres with poly-L-lysine (PLL) in culture with 

human neural progenitor cells on random fibres (Jakobsson et al., 2017) and with laminin 

in culture with retinal cells (Castro et al., 2016). The functionalisation of other PCL aligned 

fibres with laminin resulted in higher viability rates of neurons and astrocytes than in 

non-coated fibres (Hyysalo et al., 2017). Therefore, there is substantial evidence to 

suggest that laminin coating can be routinely used to promote cell adhesion to the fibres, 

similarly to its standard use in control glass coverslips and to avoid methodological 

differences between fibres and controls. In our laminin coated materials, we found an 

even pattern of cell distribution, present as single cells in all experimental groups and 

similar viability rates when compared to glass controls. 

NSC differentiation varies across reports. In past studies, the functionalization of PCL 

aligned fibres with a peptide sequence found in laminin resulted in the expression of 

neuronal markers at earlier time points on fibres than on laminin coated coverslips. In 

this study, the expression of Sox-1, a marker for neural commitment, was upregulated in 

cells on functionalized fibres but not on coverslips at day 1 of culture. It was also reported 

that the upregulation of TUBB3 and Gap43 (neuronal markers) was higher on fibres than 

on coverslips at day 3. However, at day 14 of culture, neuronal numbers were similar in 

both fibres and coverslips (Silantyeva et al., 2018). Here, we report that the differentiation 

of NSCs towards a neural phenotype is not altered by the presence or arrangement of the 

PCL fibres after 7 days of culture. These results are not in contradiction with those 

reported by Silantyeva et al. since they reported no significant differences in phenotype 

at day 7 of culture or after. 

On the other hand, changes in differentiation rates have been reported in other studies. 

For example, 10 days after mESC were seeded on aligned and random fibres and a gelatine 
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control, a co-culture of NSCs, astrocytes, neurons and oligodendrocytes were seen in 

immunocytochemistry analysis. However, flow cytometry revealed higher upregulation 

of nestin (an NSC marker) and Tuj-1 (a neuronal marker) on aligned fibres but not on 

random fibres or gelatine controls (Sperling et al., 2017). Sharifi et al. (2016), also 

reported high numbers of nestin-positive and Tuj-1-positive cells compared to glial 

markers (e.g.: GFAP and RIP) after 7 days. In future studies, it might be interesting to study 

the differentiation profile of cells with molecular tests, such as Western blot, as well as 

immunostaining in order to study the timepoints of differentiation with more accuracy. 

Fibre diameter has been seen to impact the differentiation rate and phenotype of NSCs. 

For example, NSCs growing on fibres of 300nm in diameter were seen to differentiate 

earlier than when grown on 1.5µm fibres regardless of alignment (F. Yang et al., 2005). 

Adult hippocampal NSCs, in the presence of retinoic acid, differentiated towards neurons 

in 794nm fibres at a higher rate than in 283nm fibres. The latter were seen to differentiate 

more towards an oligodendrocytic phenotype after 5 days of culture (Christopherson et 

al., 2009). Therefore, it seems that an increase in fibre diameter correlates with a decrease 

in differentiation time and an increase of differentiation towards a neuronal phenotype. 

The fibres used in this study have an average diameter of 700nm (personal 

communication, CellevateTM) and the fibres of the Silantyeva et al. (2018) study are also 

in the nanometer scale. Both Sperling et al. and Sharifi et al. reported their fibres to be in 

the micrometer scale. This increase in fibre diameter, together with the use of different 

cell types, could be a potential explanation as to why NSC differentiation varies across 

reports.  

In conclusion, biofunctionalisation with ECM molecules, selection of fibre diameter and 

fibre orientation could help researchers finely tune a material towards a pro-regenerative 

final product. Our results suggest that primary culture NSCs, a clinically relevant cell 
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population, and derived neurons and astrocytes can follow the direction of aligned 

electrospun fibres. 

5.3.5 Future directions 

Further work would aim to test the biomaterial for its capacity to guide host cells upon 

implantation after SCI. This could be done in the organotypic model established in 

Chapter 3. However, the construct would have to be initially modified for implantation. 

This could be potentially achieved through two different methods: formation of a rolled 

tube of aligned fibres or embedding of the construct within a hydrogel. 

The formation of conduits of aligned electrospun fibres has been previously reported in a 

study in which collagen fibres were electrospun on aluminium foil and, while the fibres 

were wet, they were rolled to form a 4–5-layer conduit. Then, the conduits were critical 

point dried and the aluminium was removed (Liu et al., 2012). Since the fibres used in this 

study are also electrospun it seems feasible to use a similar protocol. However, the fibres 

might need to be modified to be stiffer to hold the shape without the ring around them 

and all the changes would have to be done by the manufacturer. 

The other option would be to embed the fibres within a collagen hydrogel. A collagen gel 

could be allowed to set around the fibres prior to detaching the construct from the ring. 

This would potentially maintain the structure of the fibres while facilitating implantation. 
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6 CHICK EMBRYO ORGANOTYPIC SLICES FOR TESTING BIOMATERIAL 

IMPLANTATION IN SPINAL CORD INJURY SITES 

6.1 BACKGROUND 

6.1.1 Biomaterial implantation after spinal cord injury in vivo 

As discussed in Chapter 1, the spinal cord does not have the intrinsic capacity for 

regeneration after injury. In this regard, the implantation of a 3D matrix in the SCI cavity 

could provide a non-toxic environment for the host tissue cells to regenerate compared 

to the toxic and reactive environment of the untreated lesion. In fact, biomaterial 

implantation has been attempted in a clinical trial with two acute SCI patients, one 

thoracic and one cervical, indicating the promise of the approach. In this trial, a bovine 

collagen biomaterial laden with umbilical cord MSCs was implanted 24h-8 days after 

injury. Sensory recovery was observed 2 months post-surgery and bowel and bladder 

sensation were regained after 9 months. Movement, which was completely lost after 

injury, started to recover 3 months after surgery and one of the patients was able to walk 

with the help of braces 12 months after surgery (Xiao et al., 2018).  

Biomaterial implantation correlates with better motor recovery and axonal infiltration, 

highlighting the therapeutic potential of this procedure (Chapter 1). However, the 

complexity of the in vivo models hinders the capacity to reliably and reproducibly analyse 

histological changes in the tissue, such as the formation of a glial scar, microglial 

infiltration or demyelination, which, in combination with increasing possible 

permutations of biomaterial testing, highlight the importance of a simpler model in which 

to carry out these tests. 

6.1.2 Biomaterial implantation in organotypic tissue slices 

As discussed in Chapter 3, organotypic culture slices offer a simpler, more manipulable 

model of SCI, making them a desirable alternative to in vivo models, in which to test a 
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range of therapies before translation to higher complexity platforms. Typically, 

organotypic slices have been used as a platform to study neural development or 

underlying physiological systems of the CNS. However, there has been a recent drive to 

use this type of culture for neural tissue engineering applications, such as for testing 

implantation of biomaterials or cell transplant populations in injury sites. A list of relevant 

reports can be found in Table 6.1. 

 

For example, treatment of transverse spinal cord slices with lysolecthin can induce 

demyelination of the slice to represent one aspect of the chronic stage of the injury (Cho 

et al. 2009). Injection of hMSCs alone into the demyelinated spinal cord promoted 

endogenous cell survival, including injured neurons, oligodendrocytes and OPCs (Cho et 

al. 2009). Biomaterial implantation has also been tested on organotypic slices. 

Longitudinal slices with transecting lesions offer an advantageous platform for 

biomaterial testing due to the marked lesion edges and retention of ascending and 

descending tracts, offering an in vivo-like structure. In addition, they offer a unique 

constitution to study axonal growth. In the first described method for safe biomaterial 

incorporation, a mesh of aligned PLL nanofibres was implanted in the injury gap, inducing 

enhanced axonal outgrowth aligned with coated nanofibers compared to controls. 

Table 6.1 Summary of published literature in which a biomaterial or a transplant 
cell population was implanted in a spinal cord injury organotypic model in vitro. 
This table summarises the methodology of previous research on SCI theraoies. 
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Moreover, the reactive astrocytes that were seen in a scar-like formation on untreated 

slices, showed extensive alignment and extension of processes across the lesion site after 

implantation of coated PLL nanofibers, inducing a reorganisation of the tissue that would 

potentially disrupt the glial scar (A. P. Weightman et al., 2014). In another study, an 

injectable biomaterial functionalised with an Epac2 agonist was implanted within the 

injury gap of rat spinal cord organotypic slices resulting in reversed inhibition of CSPGs 

and increased neuronal growth when compared to untreated controls or hydrogel-only 

treated groups (Guijarro-Belmar et al., 2019). Finally, the feasibility of biomaterial-

encapsulated NSC delivery within the lesion gap was tested in a recent study. NSCs 

encapsulated within alginate-collagen microcapsules were implanted in a mouse spinal 

cord organotypic slice after a transecting lesion. The cell-laden microcapsules were 

retained at the lesion site with Matrigel, with high viability rates and retention of 

differentiation capacities (Hidalgo San Jose et al., 2018). 

These studies highlight the possibility of using spinal cord organotypic slices as a neural 

tissue engineering platform. Taken together, these results suggest that it is possible to 

implant cells and biomaterials on these slices, and that the complexity of these can be 

increased by functionalising the biomaterials or by encapsulating cells within them before 

implantation. Moreover, the accessibility of the model allows for simple analysis of 

Table 6.4 Summary of results from published data aiming to improve regeneration 
after spinal cord injury through biomaterial implantation in organotypic spinal 
cord injury models. This table summarises the results of previous research on SCI 
therapies.  
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important regenerative responses to biomaterial implantation such as axonal infiltration, 

glial scar formation, immune response, demyelination and viability of implanted cells 

(Table 6.2). 

6.1.3 Knowledge gaps and aims 

Despite the simplicity offered by organotypic slices, these mostly rely on rodents for 

tissue acquisition, increasing the cost of experimentation and being associated with high 

ethical implications (Chapter 1). As discussed in Chapter 3, the chick embryo offers a 

relevant alternative to rodents for establishing spinal cord organotypic slices as a model 

of spinal cord injury. However, this model has never been tested for biomaterial 

implantation to date.  In addition, in Chapter 4, the compatibility of HemopatchTM to 

safely encapsulate a relevant transplant cell population was assessed but the biomaterial 

has never been studied in interaction with injured spinal cord tissue.  

Therefore, the aims of this chapter are to: 

1. Study the feasibility of interfacing lesioned chick embryo organotypic slices with 

HemopatchTM implantation. 

2. Study the tissue responses to biomaterial implantation. 
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6.2 RESULTS 

6.2.1 The slices were highly viable regardless of experimental condition 

Before the start of the full experiment, the procedure was trialled in order to assess the 

feasibility of implanting a piece of HemopatchTM in the injury site. The possibility of 

staining and visualising cells while maintaining the biomaterial in place was also tested. 

As seen in Figure 6.1, we were able to stain for different cellular markers, in this case 

lectin and GFAP while maintaining the implant in the lesion gap as well as visualising 

cellular infiltration in the biomaterial. In addition, the phase image shows the 

HemopatchTM piece implanted within the two sides of the lesioned spinal cord. 

 

Figure 6.1 Implantation of HemopatchTM within the lesion gap of organotypic slices.  
Images of first HemopatchTM implantation in a lesioned spinal cord trial showing staining with 
lectin (A), GFAP (B), both markers merged (C) and a phase image (D). White dotted lines 
indicating the perimeter of the implant. The biomaterial was successfully implanted and it 
allowed for cell visualisation after immunocytochemistry.  
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In the main experiment, all spinal cords were kept in culture for 24 days. Staining revealed 

highly viable spinal cord slices in all experimental groups as seen by extensive Calcein AM 

staining throughout the slices compared to the small numbers of red cells corresponding 

to ethidium homodimer staining (Figure 6.2 A-C). The viability index (a measure of 

comparison between intensity of live versus dead staining) was approximately 60% for 

all experimental groups without statistically significant differences (Figure 6.2 D). We 

also calculated the viability of host cells infiltrating HemopatchTM, which was also 

approximately 60%, so similar to slice tissue viability. 

 

Figure 6.2 Survival of slices after biomaterial implantation. Representative images of 
the survival assay on spinal cords showing live Calcein-AM stained tissue (green) and dead 
Ethidium homodimer (EtH) stained tissue (red) on uninjured control slices (A), untreated 
injured slices (B) and treated injured slices (C).White lines represent the edges of the lesion 
on B and the edges of the implanted biomaterial on C. D is the graphical representation of 
the viability index analysis, showing % of Calcein AM OD relative to total OD (Kruskal-
Wallis test, n=3, p=0.439). There were no differences between groups.  
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6.2.2 The lesion gap was wider after implantation compared to controls  

The lesion edges in the control group were easily distinguishable, while the edges after 

implantation were more difficult to discern due to high host cell infiltration into the 

biomaterial. However, in all cases a line at which DAPI intensity dropped was visible, 

which we established to be the lesion edge. As seen in Figure 6.3, the OD value for DAPI 

in the control injury group rapidly decreases to a constant near-zero value, corresponding 

to the lesion gap, until it rapidly increases again. In contrast, after implantation a peak in 

DAPI OD can be observed followed by a gradual and small decrease in OD. We interpreted 

this to correspond to infiltrating host cells, the OD of which start increasing again nearer 

the opposite end of the lesion. 

 

 

Figure 6.3 Pattern of DAPI OD in the lesion. Graphical representation of DAPI optical 
density profile across the injury on untreated slices (blue) and after biomaterial 
implantation (orange). The OD is represented in the Y axis and the X axis represents the 
distance in µm across the spinal cord. Dotted lines representing the putative lesion edge. 
This study indicates that the DAPI OD decreases at the injury gap. 
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In this context, the mean lesion width of untreated slices was 367.6 ± 45.6µm. This was 

statistically different from 427.3 ± 86.2µm, when HemopatchTM was implanted 

immediately after lesioning (Injury + HP) (Figure 6.4).  

6.2.3 GFAP expression was higher at the edge of the lesion only in non-treated 

slices 

Similarly to the previous experiments, the spinal cords in the control group (Injury) 

seemed to present a higher expression of GFAP at the edge of the lesion, with the cells 

apparently aligned at 90° to the lesion. This is in stark contrast to the random processes 

of astrocytes observed in the centre of the slice (Figure 6.5 A, B). However, when 

HemopatchTM was implanted, GFAP expression did not seem higher at the lesion edge 

than at the centre of the spinal cord and the orientation of GFAP positive cells seemed 

random at all distances from the lesion (Figure 6.5 C, D). A visual assessment of the 

treated spinal cord slices seems to indicate that infiltrating GFAP-positive cells expressed 

more GFAP than those within the tissue (Figure 6.5 D). However, their morphology and 

cytoarchitecture differ from untreated slices (Figure 6.5 B) as seen by the loss of polarity 

Figure 6.4 Lesion width after biomaterial implantation. DAPI stained spinal cord slices 
to represent the lesion width on untreated spinal cords (A) and after biomaterial 
implantation (B). White lines represent the edges of the lesion. The bar graph (C) is the 
representation of the lesion width (in µm) analysis comparing injured and treated slices 
(Mann-Whitney test, n=7 (Injury) and n=12 (Injury + HP), p=0.034). The lesion width was 
bigger after biomaterial implantation than in untreaded slices.  

 



155 
 

towards the lesion and the lack of a clear band of orientated astrocytes, expressing high 

levels of GFAP. 

Low magnification images revealed an increased GFAP expression at the lesion edge of 

the injured controls as well as all the borders of the “Injury + HP” group excluding those 

in contact with HemopatchTM (Figure 6.6 A, B). OD analysis showed a significant increase 

in GFAP expression at the first 10µm after the lesion compared to 50-60µm and 100-

110µm only on the control group (Injury). This increase in GFAP OD was also significantly 

higher than the lesion edges in the other group (Injury + HP). There were no significant 

differences within the same spinal cord of GFAP OD at any distance from the lesion when 

HemopatchTM was implanted (Figure 6.6 C).  

 

Figure 6.5 Astrocyte morphology at lesion edges. Representative images of the edge of 
the lesion showing the presence of nuclei (DAPI) (A) and astrocytes (GFAP) (B) on 
untreated slices and nuclei (C) and astrocytes (D) after implantation. White lines 
representing the edge of the lesion after implantation.  Astrocyte morphology and GFAP OD 
appeared different in treated and untreated slices.  

 



156 
 

6.2.4 Biomaterial implantation increased axonal infiltration through the lesion 

site 

As already seen in Chapter 3, untreated lesioned slices displayed weak spontaneous 

axonal growth in the lesion site, never reconnecting both sides of the lesion (Figure 6.7 

A). Implantation of HemopatchTM to the lesion area resulted in robust axonal infiltration 

within the material and the apparent formation of complex neuronal circuitry (Figure 6.7 

B). Due to the high numbers of infiltrating axons it was impossible to trace single cells 

Figure 6.6 Astrocyte OD pattern. Representative low magnification images showing GFAP 
(red) activation on untreated slices (A) and on HemopatchTM treated slices (B). White lines 
representing the edges of the lesion. C is the graphical representation of the GFAP OD 
analysis, representing the absolute OD values at the edge of the lesion (0-10µm) and at 50-
60µm and 100-110µm from the lesion towards the centre of the spinal cord (Two-way 
ANOVA, n=4 (Injury) and n=5 (Injury + HP), p<0.05). GFAP OD at the edge of the lesion was 
higher than at the centre of the spinal cord only in untreated slices.  

Figure 6.7 Neuronal tract infiltration after biomaterial implantation. Fluorescence 
images representing Tuj-1 (red) infiltration into the lesion area in untreated slices (A) and 
biomaterial treated slices (B). White lines representing the lesion edges. More axonal 
infiltration was apparent in treated slices after injury.  
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and, therefore, we were unable to analyse the length of each individual axon or determine 

if axons projecting from one side of the lesion had traversed the entire lesion width.  

The total axonal length in each field of high magnification images (Figure 6.8 A, B) was 

analysed and averaged, showing a 1x104-fold higher total length of infiltrated neurites in 

“injury + HP” than in “injury” alone (Figure 6.8 C).  

Figure 6.8 Formation of neuronal network after biomaterial implantation. 
Fluorescence high magnification images of Tuj-1 fibres infiltrating the lesion site in an 
untreated injury (A) and within implanted HemopatchTM (B). The bar graph (C) represents 
the total length of fibres present in each field (in µm) in untreated slices compared to 
treated slices (Unpaired t-test, n=3, p=0.009). More axonal infiltration was quantified in 
treated slices than in untreated slices.  
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6.2.5 Biomaterial implantation induced higher microglial infiltration into the 

lesion area 

Biomaterial implantation induced high microglial infiltration into the implanted 

biomaterial compared to infiltration within the lesioned area alone (Figure 6.9 A, B). 

Visual analysis of the lectin-positive cells morphology suggested most of the infiltrated 

cells to present an amoeboid or reactive phenotype (Figure 6.9 C). The statistical analysis 

revealed a significant increase in the number of lectin-positive cells in the lesion area after 

implantation than on untreated slices (Figure 6.9 D).  

Figure 6.9 Microglial infiltration after biomaterial implantation. Representative 
fluorescence images of lectin positive cells (green) on untreated slices (A) and after 
biomaterial implantation (B) at low magnification. White lines representing the edges of 
the lesion. C is a representative high magnification image of lectin-positive cells within the 
implanted biomaterial. White arrow indicating amoeboid cells. The bar graph (D) 
represents the absolute number of lectin-positive cells per unit area within the lesion area 
on untreated slices compared to treated slices (Unparied t-test, n=3, p=0.005). More 
microglial infiltration was seen in treated slices than in untreated.  
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6.2.6 Analysis of MBP-positive fibre distribution was unreliable due to lack of 

fibres on control spinal cords 

The spinal cord slices were stained and analysed following the protocols established in 

Chapter 3. Despite the successful analysis in Chapter 3 and in those spinal cords treated 

with HemopatchTM, these results could not be reliably compared to controls due to the 

low presence of MBP fibres on the control slices. Although MBP staining was successful, 

the lack of MBP positive fibres within the control spinal cords (Figure 6.10 A-C) make the 

analysis unreliable in this case. However, a representative number of MBP-positive fibres 

were observed after implantation (Figure 6.10 D-F) and, therefore, the images and 

quantification are added in this section for representation of putative future results that 

might originate after further repetition of experiments.  

 

 

Figure 6.10 Presence of myelin tracts after biomaterial implantation. 
Fluorescence images representing MBP-positive fibres (green) on untreated slices in the 
lesion area (A), edge of the lesion (B) and centre of the spinal cord (C) as well as 
representative images of spinal cord slices after biomaterial implantation within the 
implanted biomaterial (D), edge of the lesion (E) and centre of the spinal cord (F). No 
MBP positive tracts were found in untreated slices.  
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The analysis suggested that, after HemopatchTM implantation there were no differences 

in the density of MBP tracts between the centre of the spinal cord and the edge of the 

lesion (Figure 6.11). However, there was a significant difference between the centre of 

the spinal cord and the density inside the implanted scaffold, which was approximately 

0%. 

 

Figure 6.11 Distribution of MBP-positive tracts. Graphical representation of the 
percentage of MBP-positive fibres present in the centre and edge of the spinal cord and 
within the lesion area in slices after biomaterial implantation (One-way ANOVA, n=3, 
p<0.05). Less MBP-positive fibres were found in the implanted biomaterial than at the centre 
of the spinal cord.  
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6.3 DISCUSSION 

6.3.1 Summary of aims and results 

Here we show for the first time that bioscaffolds, in this case a clinically available 

biomaterial, can be implanted within the transecting injury of a chick embryo spinal cord 

organotypic slice injury model. Our results suggest that slice viability is retained after 

implantation and that it is possible to manipulate the samples for immunostaining and 

imaging. In addition, we show that the slices respond to biomaterial implantation through 

increased axonal and microglial infiltration and reduced glial scarring. This is the first 

report of the implantation of clinical a grade material in a SCI model. These results could 

have a potential impact in increasing the research output on the study of SCI therapies 

which, in turn, would lead to a faster translation of functional therapies to higher 

complexity models and, finally, to the clinic. These findings will be discussed in the 

following sections. 

6.3.2 Feasibility of biomaterial implantation in lesioned chick embryo spinal cord 

organotypic slices 

Biomaterial implantation in rodent spinal cord organotypic slices has been tested within 

the frame of transecting injuries (Guijarro-Belmar et al., 2019; Hidalgo San Jose et al., 

2018; A. P. Weightman et al., 2014) due to the gap created between both ends of the lesion 

in comparison to a demyelinating or compression injury. Moreover, transecting lesions 

are also used in most in vivo studies of biomaterial implantation in SCI (Galli et al., 2018; 

Wu et al., 2018). In addition, in comparison to transversal slices, longitudinal spinal cord 

slices maintain the ascending/descending polarity of axons (Guijarro-Belmar et al., 2019; 

A. P. Weightman et al., 2014), crucial to mimic in vivo responses when analysing axonal 

regeneration. Therefore, transecting lesions on longitudinal slices were used in this study. 

The lesioning time point (4 days after dissection) was chosen in accordance with the 

results in Chapter 3, as it was the earliest lesioning time point at which typical responses 
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to lesioning were observed in the tissue slices. According to the results in Chapter 3, 

astrocytic gliosis in response to injury was only observed 12 days after lesioning, but not 

4. In addition, the longest time period the slices were maintained in culture was 24 days. 

In order to allow enough time for the host tissue to respond to biomaterial implantation, 

but also to ensure survival, we decided to keep the slices in culture for 24 days (20 days 

after injury and/or biomaterial implantation). 

At the end of the incubation period, the untreated slices (injured and sham) showed high 

viability rates, similarly to the results obtained in Chapter 3. Moreover, implantation of a 

biomaterial within the injury gap did not have an effect on slice survival, suggesting that 

HemopatchTM did not have a toxic effect on the tissue and highlighting the potential of the 

material for safe implantation. 

If cell infiltration was not considered, it was noticed that apparent lesion width was 

slightly wider after implantation than in untreated controls. A bigger lesion gap after 

implantation is also reported in in vivo studies (Galli et al., 2018), although implantation 

was also correlated with higher axonal infiltration and motor recovery. This could be due 

to a further lesion infliction during biomaterial implantation (Yoshii et al., 2004). The use 

of injectable hydrogels could help overcome this problem. These in situ-forming scaffolds 

can be injected into the patient and gel once they are at the injury site, providing a gentler 

implantation procedure (Morteza Bahram, 2012). However, upon image examination, it 

was clear that cellular infiltration covered the width of the lesion gap, closing the distance 

between both ends of the spinal cord.  

In conclusion, we show that HemopatchTM implantation into the SCI model established in 

Chapter 3 can be achieved with similar previously published results using rodent models.  
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6.3.3 Cellular responses to HemopatchTM implantation 

The second aim of this chapter was to examine the cellular responses to HemopatchTM 

implantation. HemopatchTM was chosen for implantation due to its capacity for NSC 

encapsulation and potential for clinical translation (Chapter 4). Although we reported 

CellevateTM to also allow the culture of healthy NSC populations as well as cellular 

alignment with fibres (Chapter 5), this material needs further modifications prior to 

implantation, for example, formation of conduits instead of coverslip-shaped constructs. 

Consequently, HemopatchTM provided a more straightforward path to implantation and 

was therefore chosen for these experiments. HemopatchTM was implanted acellularly, to 

study its regeneration permissiveness as a biomaterial (as well as the possibility of 

interfacing it with the organotypic slice model) instead of its capacity to deliver transplant 

cell populations. 

Here, we report that GFAP OD at the edge of the lesion was lower after biomaterial 

implantation than in untreated slices. Moreover, astrocytes, which were polarised in a 90° 

angle in respect to the untreated lesion, appeared more disperse and less elongated on 

the treated slices, suggesting a possible inhibition of glial scar formation. These results 

are in contradiction with some in vivo studies, which reported no difference in glial scar 

formation after biomaterial implantation (Domínguez-Bajo et al., 2020; Galli et al., 2018). 

In contrast, other studies do report a disruption of the glial scar either through an 

architectural change in vivo (Hurtado et al., 2011) or a decrease in GFAP expression in 

vitro (Guijarro-Belmar et al., 2019; A. P. Weightman et al., 2014). This contradiction within 

existing literature, all reporting transecting lesions, could be due to the use of different 

types of biomaterials (i.e.: aligned fibres, injectable hydrogels, implantable gels), stressing 

the importance of biomaterial screening tests before committing to high complexity 

models. In this case, the data suggests that HemopatchTM implantation does not result in 

astrocyte reactivity, emphasizing the potential of the biomaterial as a treatment for SCI. 
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We also report high axonal infiltration within the implanted biomaterial compared to the 

untreated lesion, similarly to previously published research in vivo (Galli et al., 2018; Wu 

et al., 2018; Z. Yang et al., 2015) and in vitro (Guijarro-Belmar et al., 2019; A. P. Weightman 

et al., 2014). Due to the high axonal infiltration we were unable to distinguish single axons. 

This hampered the analysis of single axonal length and we were forced to analyse total 

axonal length in the field as an indicative of regenerative behaviour. We were also unable 

to distinguish any possible physical reconnection between axons from each end of the 

lesion. Nevertheless, due to the high density of axons present within the material, there is 

a possibility of such synaptic connections existing between the separated tissue. 

Moreover, the high number of infiltrating axons are regarded as an indicative of the 

potential pro-regenerative role for axonal growth (or regeneration permissive role) of 

HemopatchTM implantation. In fact, experimental grade collagen scaffolds, have 

previously been shown to promote neuron growth (Kourgiantaki et al., 2020). 

In Chapter 3, the presence of MBP-positive tracts was reported to be lower at the edge of 

the lesion than at the centre, suggesting possible demyelination of fibres. Here, we report 

that MBP-positive fibres are equally present at the edge of the lesion and at the centre of 

the spinal cord after implantation. This data seems to implicate that biomaterial 

implantation could have an effect on protecting these tracts. However, it does not seem to 

allow oligodendrocyte infiltration into the lesion gap, as seen by the low numbers of MBP-

positive cells within the biomaterial. This could be due to the inherent low ability of this 

cell type for migration. The response of oligodendrocytes to the untreated lesion in this 

chapter, however, could not be analysed due to the low numbers of MBP-positive tracts 

found in the control slices. We initially hypothesised this was due to the advanced age of 

the slices. However, upon comparison of slices of the same age from Chapter 3 (I12F12) 

to younger slices (I4F4, I4F12), it was concluded that all displayed similar numbers of 

MBP-positive tracts regardless of age. We, therefore, concluded that perhaps the control 
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slices that were chosen for experimentation were obtained from a spinal cord slice that 

had not developed mature oligodendrocytes at the time of dissection and, due to the lack 

of external physiological input, these did not differentiate in culture either. Therefore, the 

lack of MBP-positive tracts in control slices forced us to deem the results obtained on 

treated slices inconclusive.    

Finally, the immune response to biomaterial implantation was investigated. Our data 

indicate that microglial infiltration in the lesion area is higher upon implantation. 

Moreover, morphological examination seemed to indicate that microglia displayed a 

reactive phenotype within the biomaterial. Our results are in consonance with previously 

published research with mouse organotypic models of transecting SCI (Weightman et al., 

2014) and in vivo models of transecting SCI in rats and mice respectively (Domínguez-

Bajo et al., 2020; Kourgiantaki et al., 2020). A reduction in microglial infiltration has only 

been reported in one study (Guijarro-Belmar et al., 2019), due to the functionalisation of 

the implanted biomaterial with an Epac2 agonist. Our results constitute the first report of 

immune cell infiltration in an implant in the chick, providing the model with a 

multidimensional platform in which to research tissue engineering techniques for 

regenerative medicine. 

In conclusion, here we show that HemopatchTM implantation elicits cellular responses that 

could lead to functional regeneration, such as reduced glial scarring and high axonal 

infiltration compared to controls. These findings, together with the data from Chapter 4, 

highlight the potential of HemopatchTM as a possible biomaterial for implantation in SCI. 

Moreover, these results suggest that the chick embryo SCI model described here responds 

to lesion and biomaterial implantation in a similar fashion to models established using 

rodents. This has important implications when aiming to test a range of biomaterials for 

the first time as treatment for SCI, as this model offers a cheaper and easily accessible 



166 
 

platform and allows the scientific community to conduct relevant research while reducing 

animal suffering. 

6.3.4 Future directions 

The model described here offers a platform in which to test biomaterial implantation as 

it mimics in vivo responses to injury and implantation. In this case, the material was 

implanted immediately after lesioning and, therefore, not allowing enough time for scar 

formation and consecutive disruption. Instead, priority was given to rapid implantation 

to allow for an extended time period to observe responses to the treatment as shown in 

previous studies (Guijarro-Belmar et al., 2019; A. P. Weightman et al., 2014). In future 

studies, it might be desirable to implant the biomaterial 12 days after lesioning to allow 

formation of the glial scar (Chapter 3) and study whether biomaterial implantation 

results in disruption of an existing glial scar. 

As mentioned previously, some slices lacked MBP-positive tracts, which hampered 

analysis. Although it has been described that oligodendrocytes appear at E5 in the chick 

embryo (Ono et al., 1995), it might be useful to study the segments of the spinal cord that 

contain mature oligodendrocytes at E15. A possible short research project could involve 

the dissection and cryosection of different sections of the spinal cord and consecutive 

immunostaining with an MBP marker. This may facilitate targeted dissection of those 

slices which will contain tracts and can therefore be used to study potential de- and 

remyelination events. 

In regard to neuronal reconnection, failure to study functional synaptic reconnection after 

SCI in vitro is a recurrent limitation in the literature. Since most in vitro SCI models focus 

on cytological responses to insult, synaptic functionality is often left to be tested in vivo 

with behavioural tests. The generalist nature of such tests, however, does not account for 

the study of targeted and efficient synapsis, leading to partial recovery of motor and 
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sensory function after all experiments to date. We propose that, in order to achieve testing 

of functional synapsis within the organotypic tissue SCI models, these could be interfaced 

with electrophysiology equipment, such as multi electrode arrays (MEAs) (Duan et al., 

2016) or stained with a calcium dye (O’Donovan et al., 2005) and imaged live.  
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7 CONCLUSIONS 

7.1 SUMMARY AND SCIENTIFIC IMPACT OF RESULTS  

The aim of this thesis was to develop a SCI model using chick embryo organotypic slices 

in order to provide a platform in which to test biomaterial implantation within the 

framework of the 3Rs principle. Here we demonstrate the establishment of a chick 

embryo spinal cord organotypic slice model for SCI, which responded to the lesion with 

typical cellular responses: glial scarring, low axonal regeneration, loss of MBP-positive 

tracts and microglial infiltration. Next, we tested two biomaterials (HemopatchTM and 

CellevateTM) for their capacity to incorporate a clinically relevant cell transplant 

population. Both biomaterials allowed for safe cell culture. In addition, we were able to 

improve distribution of cells within HemopatchTM through laminin engineering and to 

successfully analyse cell alignment in CellevateTM. Out of the two, HemopatchTM offered a 

more straightforward path for implantation and, therefore, it was chosen to be tested in 

the SCI model established previously. HemopatchTM implantation in the organotypic SCI 

model resulted in cellular responses comparable to those obtained in vivo and in other 

murine organotypic models: reduced glial scarring, increased axonal infiltration, 

microglial response and possible retention of oligodendrocytes. The research conducted 

for this thesis resulted in relevant outcomes for the study of SCI therapies. These 

outcomes could be classified into two categories: SCI therapies and SCI models. 

In regard to the first category, this constitutes the second ever study involving the culture 

of a relevant cell transplant population within a clinical grade biomaterial. Moreover, this 

is the first report of the implantation of clinical a grade material in a SCI model, resulting 

in increased axonal regeneration. Our results corroborate the fact that such materials 

have translational potential for implantation in SCI with potential implications in 

reducing the time it takes for such therapies to reach the clinic. Additionally, we were able 



169 
 

to modify the scaffold through laminin engineering, opening the possibilities of finely 

tuning the characteristics of these surgical biomaterials in order to optimise them for cell 

encapsulation. In addition, we describe a methodology for analysing cellular alignment 

and we demonstrate alignment of neurons and astrocytes on electrospun fibres, key tools 

when aiming to promote directed axonal growth for spinal cord repair. 

In regard to the second category, we report for the first time the establishment of a SCI 

model using chick embryo organotypic slices. The model, which presents comparable 

responses to those based on murine models, represents a simpler alternative to 

previously established models. Here, we offer a cheaper alternative, which is easier to 

manipulate and linked to fewer ethical implications in the UK. Purchasing fertilised eggs 

is cheaper and easier than purchasing mice for experimentation. Additionally, the 

techniques described here do not require licence for animal manipulation in the UK and 

the maintenance of the eggs does not require specialised facilities or personnel. For these 

reasons, the model described here offers a system which could be adopted by most 

biological labs. The adoption of this model could lead to impactful research while 

maintaining a cost-effective and technically simple methodology. This could have 

translational potential for other research areas, such as the study of degenerative 

diseases, and potentially increase the research output on the study of SCI therapies which, 

in turn, would lead to a faster translation of functional therapies to higher complexity 

models and, finally, to the clinic.  

7.2 FUTURE DIRECTIONS 

7.2.1 Implantation of encapsulated neural stem cells within the established model 

The next logical step would be to put in practice the model established here by testing a 

combinatorial therapy of HemopatchTM-encapsulated NSCs implanted within the chick 

embryo organotypic SCI model. This would allow for a more complete characterisation of 

HemopatchTM as a method of delivering NSCs for SCI therapy. A population of mouse-
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derived NSCs have been tested in this thesis for encapsulation in the biomaterial. 

Therefore, it would be logical to test the same cell population for implantation. Previous 

research has shown that it is feasible to deliver human-derived (Sigurjonsson et al., 2005) 

and mouse-derived (Clarke et al., 2000) stem cells to the chick embryo, resulting in 

integration of these cells with the host. This would have the added advantage of being able 

to detect the species-specific transplant cells to assess important regenerative properties 

such as survival, integration and differentiation post-transplantation. Alternatively, in 

order to avoid rejection of the implanted cells, it might be desirable to implant chick-

derived NSCs. We have attempted derivation of NSCs from E14 chick embryos in a 

preliminary study (Figure 7.1).  

 

Figure 7.1 Establishment of an NSC culture from chick embryo brains. Preliminary results 
showing the process of obtaining chick embryo-derived NSCs showing dissected brains (A), 
detail of one brain with dotted lines marking slicing areas (B), sliced brain with dotted line 
marking the surroundings of the SVZ (C), live cells two days after culture on glass coverslips 
(D), and Sox-2 stained NSCs 5 days after culture. (E). These images suggest the possibility 
of establishing the chick embryo NSC in vitro culture.   
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The results obtained suggested that it would be possible to derive NSCs from chick 

embryo brains following the same protocols used for mouse-derived NSCs. In addition, it 

seems feasible to immunostain the cultured cells with Sox-2, an NSC marker. Next steps 

would involve the study of the proliferative and differentiation capacity of these cells in 

glass coverslips and within HemopatchTM. Such experiments would further the 3Rs impact 

of the technique, having all the cells and tissue derived from non-protected species. 

Upon implantation in the organotypic model similar landmarks of regeneration as in 

Chapter 6 would have to be studied (i.e.: glial scarring, axonal infiltration, microglial 

activation and MBP tract loss) in addition to survival, phenotypical fate and possible 

migration and integration with the host tissue of the exogenous cells. These landmarks 

would have to be compared to appropriate controls (i.e.: sham, untreated lesion, lesion 

treated with acellular HemopatchTM). 

Importantly, if derived from chick, the implanted cells would have to be tracked and 

distinguished from host cells. This could be achieved through genetic engineering for 

green fluorescent protein (GFP) incorporation. This strategy has been previously 

achieved successfully in our laboratory using minicircle DNA vectors incorporating GFP 

and using safe magnetofection technology as a transfection approach (Finch et al., 2020). 

7.2.2 Study of molecular responses to lesion and biomaterial implantation 

Molecular level responses to SCI (i.e.: release of oxygen reactive species, inflammatory 

cytokines and CSPGs) are a crucial factor to consider when studying regenerative 

therapies. However, this thesis focuses primarily on cellular responses. Therefore, with 

the aim of making the characterisation of lesioning and implantation more complete, it 

might be desirable to study these molecular responses. On the one hand it might be 

interesting to study landmark molecular responses to injury alone vs. implantation (such 

as the ones described in the previous paragraph) in order to compare their levels and 
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correlate the results to the cellular responses. On the other hand, it might be interesting 

to study the molecular effects of NSC implantation such as the release of neurotrophic 

factors (i.e.: BDNF, NT-3) or the molecular profile of NSC differentiation upon 

implantation. This could be achieved through the study of gene expression, for example 

using qPCR, or protein expression, for example using mass spectrometry or western blot. 

7.2.3 Evaluation of synaptic restoration after spinal cord injury 

Despite the promising results in current SCI therapy research, full restoration has not 

been achieved yet. This could be due to the formation of non-functional synapses. For this 

reason, it is becoming increasingly evident that targeted axonal regeneration is crucial in 

order to achieve full restoration of motor and sensory function. Current in vitro and ex 

vivo models focus on regenerative evaluation mostly through histological tests but lack 

techniques for evaluation of functional restoration. In vivo models offer the possibility to 

study functional outcomes through motor and sensory tests. However, these generalist 

approaches lack the capacity to evaluate synapsis formation and functionality in detail. 

Therefore, we propose the incorporation of methods for evaluation of electrical neuronal 

activity with the organotypic model described here. 

The entry of extracellular calcium within the neuronal cytoplasm is one hallmark of 

neuronal excitation, which leads to membrane depolarisation and action potential. 

Calcium dyes permit the visualisation of calcium transients in cultured cells in situ, and 

have been repeatedly used to research synchronised neuronal firing (O’Donovan et al., 

2005). In addition, calcium imaging has already been successfully attempted in 

hippocampal organotypic slices (Sasaki et al., 2014), leading to hypothesise that the 

technique could also be successful in spinal cord organotypic slices. This technique could 

allow for the study of synchronised neuronal activity before and after injury and before 

and after treatment which, together with histological analysis, would provide the model 
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with a multidimensional understanding of the regenerative and functional properties of 

the therapy. 

Alternatively, MEAs are culture wells consisting of an array of electrodes capable of 

recording extracellular changes in ionic levels, which are correlated with neuronal 

electrical activity. Due to their small size and distribution in the well, MEAs are capable of 

detecting action potentials at high resolution and have also been used to study neuronal 

firing synchronicity (Chiappalone et al., 2007). Additionally, these have also been used in 

combination with brain organotypic cultures (Plenz et al., 2011). 

An advantage of MEAs over calcium dyes is the possibility of electrical stimulation of 

samples. Electrical stimulation of neurons has been correlated with increased axonal 

length (Bertucci et al., 2019). In fact, electrical stimulation through the implantation of an 

electrode array after SCI resulted in increased motor improvement in a clinical trial 

(Wagner et al., 2018). Consequently, incorporating the use of MEAs on the SCI model 

described here would add a new level of analysis, which could result in a three-

dimensional research model including histological, molecular and electrical assays. 

Moreover, it could lead to the study of a three-way combinatorial approach featuring cell 

therapy, biomaterial implantation and electrical stimulation. 
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