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Abstract
People produced time intervals of 500 to 1250 ms, with accurate feedback in ms provided after each 
production. The mean times produced tracked the target times closely, and the coefficient of varia-
tion (standard deviation/mean) declined with increasing target time. The mean absolute change 
from one trial to another, and its standard deviation, measures of trial-by-trial change, also increased 
with target time. A model of feedback was fitted to all four measures. It assumed that the time pro-
duced resulted from a combination of a scalar timing process and a non-timing process. Although 
the non-timing process was on average invariant with target time, the timing process was assumed 
to be sensitive to feedback, in two different ways. If the previous production was close to the target 
the model repeated it (a repeat process), but if it was further away the next production was adjusted 
by an amount related to the discrepancy between the previous production and the target (an adjust 
process). The balance between the two was governed by a threshold, which was on average constant, 
and it was further assumed that the relative variability of the repeat process was lower than that of 
the adjust process. The model produced output which fitted three of the four measures well (average 
deviation of 3 or 4%) but fitted the standard deviation of change less well. Reducing the magnitude 
of the non-timing process produced output which conformed approximately to scalar timing, and 
the model could also mimic data resulting from the provision of inaccurate feedback.
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1. Introduction

The method of interval production, where people are required to produce a speci-
fied time interval by making some response, such as holding down a button or 
pressing a key twice to start and end the interval, is one of the classic trio of timing 
tasks, along with reproduction and verbal estimation. The present article reports 
a very simple experiment on the production of time intervals ranging from 500 
to 1250 ms, but its main focus is on the effects of feedback, and in particular an 
attempt to model how feedback controls interval production in the absence of 
chronometric counting.

Quantitative models of performance on timing tasks such as temporal bisec-
tion (Wearden, 1991) or temporal generalization (Wearden, 1992) are now com-
monplace but, so far as we know, no model of feedback effects on simple interval 
production without counting has been developed until now. We begin with a brief 
review of effects of feedback on production tasks, then present some experimen-
tal data, and finally we introduce a model which attempts to simulate feedback 
effects.

Only a few studies have examined the effect of feedback on production tasks. 
A larger number have used the ‘start–stop’ procedure developed by Kladopoulos 
et al. (1998; see Jazayeri & Shadlen, 2010; Rakitin & Malapani, 2008; Ryan & 
Fritz, 2007; Saito et al., 2015) which is sometimes described as a ‘time produc-
tion’ task (e.g., by Rakitin & Malapani, 2008, and Saito et al., 2015), or even as 
‘estimation’ (by Kladopoulos et al., 1998) but is in fact a type of reproduction. In 
a study of interval production per se, Montare (1985) asked people to produce 
4 or 12 s by holding down a key under conditions without any feedback or with 
‘knowledge of results’. Data from males and females were analysed separately, and 
both groups showed increased accuracy with feedback. More striking, however, 
was a large reduction in variance in the feedback condition. A second study by 
Montare (1988) confirmed the effect that feedback improved mean accuracy on a 
12-s production task (although the time produced was close to 12 s even without 
feedback). Once again, variance was reduced with feedback.

Wearden and McShane (1988) required people to produce intervals of 500, 
700, 900, 1100 and 1300 ms, by pressing buttons to start and stop the interval. 
Feedback was provided after each trial. The relative frequency distributions of the 
times produced for each target time were constructed and fitted with Gaussian 
distributions (see Wearden and McShane’s Figure 2, p. 369). The peak of these 
Gaussian curves (the mean) tracked target time very accurately with deviations 
from the target time of 20 ms at most (Wearden & McShane’s Table 1, p. 370). 
The coefficient of variation of the curves (standard deviation/mean) was approxi-
mately constant. These data are shown in the present Fig. 5 as unconnected points.

Franssen and Vandierendonck (2002) reported data from both production 
and reproduction experiments, where the production task involved producing 
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Figure 1. General outline of the temporal production task used here. In each trial, a fixation cross 
was shown until the participant initiated their production (spacebar). An empty circle was then 
presented until the participant terminated their production (spacebar). Feedback was presented for 
500 ms displaying the duration the participant produced, followed by the next trial.

Figure 2. Mean absolute deviation from the target duration per trial, for all the target times.
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intervals of either 4 or 12 s. Provision of feedback after a no-feedback phase 
resulted in greater timing accuracy with feedback than without.

Data from all these studies show that interval production with feedback can 
track target times very accurately on average, but the question of how feedback 
actually controls performance, and how this might be quantitatively modelled, 
has not previously been addressed.

We conducted an experiment where people were required to produce target 
intervals of 500, 750, 1000, and 1250 ms. These values were chosen because, like 
those used by Wearden and McShane (1988), they were probably too short to make 
chronometric counting useful to participants (Grondin et al., 1999). Because the 
experiment was run online, we wanted to test the reliability of the data obtained, 
so ran two identical experiments, identified as Experiments 1 and 2.

This article makes two main contributions to our understanding of temporal 
production. Firstly, we introduce several new trial-by-trial metrics to quantify 
performance. In particular, examining performance in terms of the number 
of times participants correctly adjusted their performance from one trial to 
another is revealing as to their use of the feedback provided. Secondly, this 
article provides a clear model which contributes to our understanding of how 
participants use feedback to perform temporal productions. Considering that 
the majority of experiments provide feedback either throughout all trials, or in 
a subset of them, understanding how feedback is incorporated into task perfor-
mance is important.

2. Methods

2.1. Participants

All participants were gathered from a Psychology participant pool, and participa-
tion was in exchange for course credit. Participants provided digital consent, in 
accordance with the Declaration of Helsinki. These experiments were approved 
by the Macquarie University Ethics Committee.

Twenty-two participants were included in both experiments. In Experiment 1, 
four participants were replaced due to mean productions which were not mono-
tonically increasing as a function of target time. Three participants were replaced 
in Experiment 2 for the same reason. The mean age of participants in Experiment 
1 was 19.3 years [standard deviation (SD)  =  2.4], 16 were female, and three 
were left-handed. The mean age of participants in Experiment 2 was 20.6 years 
(SD = 3.9), 18 were female, and two were left-handed.

2.2. Presenting software

Data was gathered online using the Gorilla experiment builder platform (gorilla.
sc). See Anwyl-Irvine et al. (2020a) for an introduction to this online tool. Briefly, 
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this platform allows participants to perform pyschophysical experiments in their 
own home while gathering important metrics such as response times and choices, 
as well as system information such as operating system and browser details. 
Particularly in the visual modality, the timing of Gorilla has been found to be com-
parable to in-person data collection (Anwyl-Irvine et al., 2020b).

2.3. Procedure

To test data reliability because duration production experiments have not been 
performed using online methods, particularly Gorilla, the procedure was run 
twice in identical form. Note also that the size of the stimuli could vary, depend-
ing on the screen used by the participant.

At the beginning of the experiment, participants were given detailed instruc-
tions about what would occur on each trial. They then performed five practice tri-
als (as described below) with a 500-ms target duration, which were not included 
in the analysis. Following this, participants performed four blocks of 20 trials each. 
In each block, they were required to produce either 500 ms, 750 ms, 1000 ms or 
1250 ms. The target duration was told to the participant at the beginning of each 
block. The order of the blocks was randomized for each participant. The experi-
ment took around 15 minutes to complete.

At the beginning of each trial, a fixation cross (‘+’) was presented centrally. The 
participant then initiated their production by pressing the spacebar once. Once 
the spacebar was pressed, the fixation cross was replaced with an empty circle, 
indicating that their production had begun. Participants then terminated their 
response by pressing the spacebar again. A 300 ms blank screen was then shown, 
followed by a screen displaying the duration the participant actually produced 
(in ms) for 500 ms. The next trial then began (see Fig. 1 for a schematic of the 
procedure).

2.4. Analysis

The analysis was done in several steps. Firstly, we calculated the mean, standard 
deviation and coefficient of variation (CV: SD/Mean) of participant productions 
for each participant in each experiment. Secondly, we calculated the amount 
each participant’s productions changed from one trial to the next (current pro-
duction − prior production), and calculated the mean, and SD of these changes, 
based on absolute values. Finally, we coded whether the current production was 
in the correct direction (i.e., towards the target duration) compared to the prior 
production. A correct direction was coded as a 1, and an incorrect direction 
as a 0. When averaged across the durations and participants, this gave a pro-
portion of correct directional changes from the prior to current trial. On these 
mean measures, we performed an analysis of variance (ANOVA) with the target 
duration as a within-subjects factor, and the experiment as a between-subjects 
factor.
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Finally, we fit a cognitive model to the combined data. This model was fit to 
four metrics; the mean duration produced, the CV of durations produced, the 
mean absolute production change from one trial to the next, and the SD of the 
changes from one trial to the next. The model was fit to the mean data from the 
group. Additionally, we examined whether the proportion of correct directions 
from prior to current trials was similar to that found in the data.

3. Results

The average trial by-trial productions are shown in Fig. 2. Graphics for the sta-
tistical analysis of productions are presented at the end of this section (Fig. 3). 
The top left displays mean productions for both experiments, and their average, 
the top right displays CVs, the bottom left shows mean per trial changes, the bot-
tom middle shows per trial SDs, and the bottom right shows per trial directional 
change proportions.

3.1. Mean duration produced

The mean duration produced was significantly affected by the target duration 
(F3,126 = 807.7, Greenhouse–Geisser (GG)-corrected, p < 0.001, ηp2 = 0.95). The 
mean duration produced when data from the two experiments were combined for 

Figure 3. Data from Experiments 1 and 2, and their data combined. Upper left panel: Coefficient of 
variation (standard deviation/mean) of times produced. Upper middle panel: Mean time produced 
in ms. Upper right panel: Mean absolute change (ms) from one trial to another. Lower left panel: 
Standard deviation of absolute change (ms) from one trial to another. In all panels the measure 
illustrated is plotted against target time in ms. Lower middle panel: The proportion of trials in which 
participants correctly accounted for the prior offset by moving their production towards the target 
duration, in relation to their prior production. Lower right panel: Mean durations produced in the 
first three and last three trials at each target duration.
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the 500-ms target was 551 ms, for the 750-ms target the mean produced duration 
was 759 ms, for the 1000-ms target the mean duration produced was 1007 ms, 
and for the 1250-ms target the mean production was 1236 ms. This effect of target 
time on average production was expected and not analysed further.

Neither the experiment (F1,42 = 0.993, p = 0.325, ηp2 = 0.02), nor the inter-
action of experiment and duration (F3,126  =  0.640, p  =  0.542, GG-corrected, 
ηp2 = 0.02) were significant.

3.2. Mean CV

Mean CVs were significantly higher at shorter durations (F3,126 = 7.32, p < 0.001, 
GG-corrected, ηp2 = 0.15). The CVs for the 500-ms target (0.235) were significantly 
higher than at either the 1000 ms (0.156; t43 = 3.99, p = 0.002, Holm-corrected, 
d =  0.58) or 1250 ms (0.169; t43 =  2.85, p =  0.034, Holm-corrected, d =  0.52) 
target, but not compared to the 750-ms target (0.190; t43 = 1.82, p = 0.227, Holm-
corrected, d = 0.37). No other condition comparison was significant (minimum p; 
t43 = 2.30, p = 0.106, Holm-corrected, d = 0.43).

The main effect of the experiment (F1,42 = 3.13, p = 0.084, ηp2 = 0.07), and 
the interaction between experiment and target duration (F3,126 = 1.91, p = 0.149, 
GG-corrected, ηp2 = 0.04) were both not significant.

3.3. Per trial change mean

The mean duration change from one trial to the next significantly varied by the 
target duration (F3,126 = 9.87, p < 0.001, GG-corrected, ηp2 = 0.19), with longer 
target durations resulting in larger mean changes. Mean changes were signifi-
cantly higher given a 1250-ms target (218 ms) compared to either a 750-ms tar-
get (149 ms; t43 = 3.82, p = 0.002, Holm-corrected, d = 0.66) or a 500-ms target 
(128 ms; t43 = 5.13, p < 0.001, Holm-corrected, d = 0.87), but not in comparison 
to a 1000-ms target (181 ms; t43 = 2.14, p = 0.114, d = 0.29). Further, a 1000-ms 
target results in significantly larger mean changes compared to a 500-ms target 
(t43 = 2.85, p = 0.027, Holm-corrected, d = 0.51). No other comparison was sig-
nificant (minimum p-value: t43 = 1.73, p = 0.182, Holm-corrected, d = 0.33).

The main effect of the experiment (F1,42 = 2.62, p = 0.113, ηp2 = 0.06), and 
the interaction between experiment and target duration (F3,126 = 1.19, p = 0.313, 
GG-corrected, ηp2 = 0.03) were both not significant.

3.4. Per trial change SD

The mean SD of trial-to-trial production changes was significantly affected by 
the target duration (F3,126 =  3.49, p =  0.018, ηp2 =  0.08). Generally, it appears 
that the SDs increased with increasing target durations (500 ms = 124 ms, 750 
ms  =  137 ms, 1000 ms  =  142 ms, 1250 ms  =  183 ms), however after Holm-
correction, only the difference between the 500 ms and 1250-ms target was sig-
nificant (t43 = 2.84, p = 0.041, Holm-corrected, d = 0.53). No other comparisons 
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were significant (minimum p-value  =  t43  =  2.20, p  =  0.166, Holm-corrected, 
d = 0.44).

The main effect of the experiment (F1,42 = 2.59, p = 0.115, ηp2 = 0.06), and 
the interaction between experiment and target duration (F3,126 = 2.19, p = 0.092, 
ηp2 = 0.05) were both not significant.

3.5. Per trial directional changes

Neither the main effect of experiment (F1,42 = 1.05, p = 0.311, ηp2 = 0.02) or target 
duration (F3,126 = 1.91, p = 0.131, ηp2 = 0.04), nor the interaction (F3,126 = 0.646, 
p = 0.587, ηp2 = 0.02) reached significance. The mean proportion of correct direc-
tional changes was 0.734 (with 1 indicating always correct directional changes).

3.6. Improvement over trials

As can be seen in Fig. 2, participants appear to improve their productions dra-
matically from the first few trials to the final trials at all target durations except 
perhaps for the 1000-ms target duration. Comparing the mean duration produced 
over the second, third and fourth production (the first three productions after the 
first, in order for feedback to be available), and the mean durations produced over 
the 18th, 19th and 20th production showed that at the earlier target durations 
(500 ms and 750 ms), the mean durations produced did not significantly change 
(t43 = 0.749, p = 0.916, Holm-corrected, d = 0.15; t43 = 0.647, p = 0.916, Holm-
corrected, d = 0.139). At the longer target durations (1000 ms and 1250 ms), the 
mean duration produced was closer in the earlier trials for the 1000-ms target 
(early = 986 ms, late = 1033 ms; t43 = 2.76, p = 0.030, Holm-corrected, d = 0.40), 
while the mean duration produced was closer to the target in the later trials for 
the 1250-ms target (early = 1189 ms, late = 1282 ms, t43 = 2.81, p = 0.030, Holm-
corrected, d = 0.50).

Of note however, with the exception of both the early and late 500-ms trials 
(mean = 557 ms, t43 = 2.93, p = 0.005, Holm-corrected, d = 0.44; mean = 542 ms, 
t43  =  5.09, p  <  0.001, Holm-corrected, d  =  0.77, respectively), no other mean 
production was significantly different from the target (minimum p-value at 1000-
ms target final trials; mean  =  1033 ms; t43  =  1.91, p  =  0.124, Holm-corrected, 
d = 0.29).

4. Modelling feedback effects on the production of short time intervals

Our modelling not only attempted to simulate overall performance in terms of 
mean productions and coefficients of variation but also attempted to understand 
how people are using the post-response feedback they were provided to guide 
their performance. In the experiments described earlier, exact numerical feed-
back was provided to participants, so not only did they know whether their previ-
ous production had been greater than or less than the target time, but they also 
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knew how much it had deviated from the target. It seems highly likely that this 
information was used to guide performance, but how? Inspection of a sequence 
of production trials gives the distinct impression of some kind of guided change 
from one interval to another, but variability in performance obscures any imme-
diately clear picture. For example, a person may produce a value above the target, 
followed by another value also above the target, and not necessarily a closer one, 
in spite of receiving feedback that their first production was longer than the tar-
get time. However, it is possible that random variability from one trial to another 
contributes to this, rather than any failure to take note of the feedback delivered.

Feedback in interval timing has received little theoretical attention in the 
interval timing literature, although Franssen and Vandierendonck (2002) discuss 
how feedback might operate in the framework of the clock-counter model of sca-
lar expectancy theory (Gibbon et al., 1984). They did not, however, attempt any 
quantitative modelling of the feedback effects obtained in the reproduction and 
production tasks they used.

The present model was developed using several assumptions. The first was that 
the production of a time interval involved a mixture of timing and non-timing 
(probably motor or motor preparation) processes, an idea that can be traced back 
at least to Wing and Kristofferson (1973). The second was that the non-timing 
process was invariant with respect to the interval timed, but the timing process 
obeyed scalar timing, that is, it had a mean which varied accurately on average 
with the interval to be timed and a constant coefficient of variation as the interval 
to be timed changed, as has been found to be the case for many different tasks 
where short time intervals are involved (Wearden, 1991; Wearden & Bray, 2001; 
Wearden & Lejeune, 2008). The third assumption was that responding from 
trial-to-trial would change depending on the feedback provided. We incorpo-
rated this idea by assuming that feedback could result in two processes. In one of 
these (adjust) the timing component of the trial subsequent to the feedback was 
adjusted by an amount on average equal to the discrepancy between the produc-
tion on the previous trial and the target time. In the other (repeat) the production 
on the previous trial was repeated. The adjust process was invoked when the abso-
lute discrepancy between the time produced on the previous trial and the target 
time exceeded some threshold. When the discrepancy was below the threshold 
the repeat process was invoked. The distinction between the two processes was 
designed to capture the intuitively reasonable supposition that people might not 
attempt to ‘correct’ productions when these are very close to the target time.

More formally, the basic structure of a trial was
P(n) = D + T

where P is the production on some trial n, D the duration of the non-timing pro-
cess, and T the duration of the timing process on that trial. Depending on feed-
back, T changed from trial-to-trial, but D varied only randomly (see below). If X is 
the target time on that trial then the adjust process was
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T(n + 1) = T(n) + [X − P(n)]
T(n + 1) was then transformed into a value t*, which was randomly drawn from 

a Gaussian distribution with a mean of T(n + 1) and a CV of cva.
If the repeat process operated then T(n + 1) = T(n), where T(n + 1) was then 

transformed as above into a value t*, a value drawn from a Gaussian distribu-
tion with mean T(n + 1) and coefficient of variation cvr, and we assumed that 
cvr < cva, that is, the repeat process was less variable than the adjust process.

The repeat process operated if
abs[X – P(n)] < b*,
and the adjust process if
abs[X – P(n)] > b*

where b* is a random value drawn from a Gaussian distribution with mean B (the 
mean threshold) and a CV of 0.5, and abs is absolute value.

P(n + 1) was then constructed as
P(n + 1) = t* + d*,

where d* is drawn from a Gaussian distribution with mean D, the mean of the 
non-timing process and a CV of 0.25.

As mentioned above, the model uses some ideas from previous models of 
interval timing and repetitive tapping. Along with the idea that an overt response 
resulted from a mixture of timing and non-timing processes (Wing & Kristofferson, 
1973), we incorporated a simple feedback rule, namely that the adjustment on a 
trial was related to the discrepancy between the response produced and the target 
on the previous trial (similar to the adjustment used in Michon, 1967). The model 
also used the idea that timing decisions (in the present case the difference between 
adjust and repeat responses) are based on a comparison involving some kind of 
threshold, an idea common to several timing models, but particularly Wearden’s 
(1992) model of temporal generalization performance. In the model the shortest 
production allowed was 250 ms, and the model would have resampled the trial 
had values less than this occurred, but they never did with the parameters used in 
the simulations reported.

The model was embodied in a Python program, and simulated values shown in 
Figs 4, 5, and 6 were derived from 10,000 trials. Our initial aim was to fit the four 
different data sets derived from the production experiment, the mean time pro-
duced, the CV of the time produced, the mean absolute change from one trial to 
another, and the standard deviation of the absolute change. This produced obvi-
ous problems of fitting, particularly as the different data sets were all on different 
scales. We endeavoured to keep as many parameters constant as possible between 
simulations. In particular, the CVs of the non-timing process and the threshold 
were always 0.25 and 0.5, respectively, the latter value being the same as in tem-
poral generalization simulations (e.g., Droit-Volet et al., 2001).

Our fitting strategy was to try to find the minimum deviation between the out-
put of the model and data for all four data sets at once, taking into account the 
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different scales used for the different measures. When fitting the four different 
target times, the threshold was allowed to vary as a function of target time, but the 
coefficients of variation of the adjust and repeat processes, and the means of the 
non-timing process and the threshold, were kept constant.

Exploration of the model suggested that many parameter sets could fit the 
mean times produced well, and that the declining coefficient of variation as a 
function of target time could also be simulated by many parameter sets. The mea-
sures of change, however, were more problematic, particularly the standard devia-
tion of the change. Eventually, we arrived at a compromise parameter set which 
resulted in the simulation values shown in Figure 4 as lines in each panel. The 

Figure 4. Top left panel: Mean times produced (ms). Top right panel: Coefficient of variation (stand-
ard deviation/mean) of times produced. Lower left panel: Mean absolute trial-by-trial change (ms). 
Lower right panel: Standard deviation of absolute trial-by-trial change (ms). In all panels the meas-
ure is plotted against target time, and is shown as unconnected points. The solid line within each 
panel shows results from the simulation discussed in the text.
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compromise resulted in fits for each individual measure that were poorer than 
could be obtained if that measure were the only focus of the simulation.

For the simulations shown in Figure 4, D = 122 ms, cvr = 0.11, and cva = 0.14. 
The mean threshold B varied with target time, and took values of 120, 160, 160, 
and 170 ms for the 500-, 750-, 1000-, and 1250-ms target times, respectively.

In Fig. 4, the top left panel shows fits to the mean times produced, and the top 
right one fits to the coefficients of variation. The bottom panels show fit to the 
mean of the absolute trial-by-trial change (bottom left) and the standard devia-
tion of the change (bottom right). In qualitative terms, the simulation fitted the 
data well in all cases. Predicted means increased, and coefficients of variation 
decreased, as the target time lengthened. For the two absolute change measures, 
predicted values increased with target time, as in the data.

Quantitatively, the simulation output fitted the mean times produced, the coef-
ficients of variation, and the mean absolute change fairly well. The average per-
centage absolute deviation between the output of the model and data was 3%, 
4% and 3%, respectively for the measures of mean time produced, coefficient of 
variation, and mean absolute trial-by-trial change. The standard deviation of the 
absolute change was fitted less well, with a mean percentage deviation of 11%. 
Exploration of the parameter values used in the model showed, in fact, that this 
measure was the most problematic one to fit in all the simulations we used.

Given that it seemed that the model did not capture all aspects of trial-to-trial 
change completely accurately, we simulated the directional changes in the data 
analysed above. This was the proportion of changes in the ‘correct’ direction: that 

Figure 5. Directional change measure discussed in the text. Unconnected points show data from 
the combined data set. The solid line shows the model predictions.
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Figure 6. Data from Wearden and McShane (1988). Upper panel: peak time (ms) plotted against 
target time. Lower panel: Coefficient of variation plotted against target time. Unconnected point 
show data from Wearden and McShane (1988) Table 2. The line in each panel shows results from a 
simulation discussed in the text.
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is, a decrease in the duration of the production on trial N + 1 if the production on 
trial N had been above the target time, and an increase in the duration of the pro-
duction on trial N + 1 if the production on trial N had been below the target time. 
This measure gives a kind of non-parametric measure of trial-by-trial change. The 
model parameters were not adjusted specifically to simulate this measure, so the 
simulation has the status of a prediction. Figure 4 shows the data from the com-
bined data set and the output of the model. It is clear from Fig. 4 that the model 
produced output very close to the data, even though no attempt was made to find 
the best-fitting parameters for this measure.

The constancy of some of the parameters in our model accorded with intuition. 
The relative variability of timing, including timing the change and repeat processes, 
should not vary as the interval timed varied, so a constant coefficient of variation 
was used, and this was found to fit data well. Likewise, the non-timing process, 
presumably reflecting motor or motor preparation processes, should not vary as a 
function of the interval timed when the response was constant, and that also was 
kept constant in the simulation. On the other hand, the threshold we used might be 
expected to vary with target time, as differences between time intervals are easier to 
discriminate at shorter intervals than longer ones, but in fact in our simulations the 
threshold increased by only 33% between the 500-ms and 1250-ms target times. A 
more elegant solution would have been to have a threshold which was a constant 
fraction of the target time, as this varied. This idea was tried in earlier versions of 
the model, but failed to produce good fits to the absolute change measures. To fit 
our data, the threshold had to be a slightly decreasing percentage of the target time, 
as this increased (e.g., from 24% at 500 ms to 13.6% at 1250 ms).

Some of the effects obtained by varying our simulation parameters are obvious: 
for example, increasing the CV of the adjust and repeat processes increased the 
variability of productions. Another effect which is obvious after a moment’s reflec-
tion is that increasing the magnitude of the non-timing process increased the CVs 
of the times produced but, more importantly, made the CV as a function of target 
time decline more steeply. This occurs because the non-timing process, which is 
on average of constant duration, makes a progressively smaller contribution to the 
variance of productions as the target time increases.

To illustrate this, we attempted to simulate data from Wearden and McShane’s 
(1988) study of the production of five time intervals from 500 to 1300 ms in length. 
At first sight, Wearden and McShane’s data appear problematical for our model in 
that the coefficient of variation of the times produced was approximately con-
stant, not declining with increasing target time as in the present study. In Wearden 
and McShane’s experiment, people produced the time intervals by pressing dif-
ferent response buttons to start and stop the production and received immediate 
numerical feedback from the experimenter. The four participants received 120 
trials at each target time rather than the 20 trials given in the present experiment. 
The numerical data from Wearden and McShane’s study are no longer available, 
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but means and CVs of the times produced can be approximated using data in their 
Table 1 (p. 370). The measures in this Table come from fits of Gaussian curves to 
the relative frequency of times produced plotted against target time. This yielded 
a peak time (a measure of the mean time produced) and curve coefficient of varia-
tion. The values obtained as shown in Fig. 5 as unconnected points.

To simulate Wearden and McShane’s data, we reduced the mean of the non-
timing process to 50 ms, and set the threshold at 100 ms. The coefficients of varia-
tion of the repeat and adjust processes were 0.08 and 0.11, with other parameters 
having the same values as for the simulations shown in Fig. 4. Inspection of Fig. 
6 suggests that the fit was generally good, with data and the simulation results 
showing approximately scalar timing (i.e., mean close to target time, and constant 
coefficient of variation). The ability of the model to fit data which shows a more 
or less constant coefficient of variation as the time produced varied, and the pres-
ent data which show declining coefficients of variation show that the two types 
of data are not really incompatible. Although there were only four participants in 
Wearden and McShane’s study, they did receive more extensive training than the 
participants in the current work, and the data seem reliable even at the individual 
level, as no participant showed a declining coefficient of variation with increasing 
target time (see Wearden and McShane, 1988, Table 1, p. 370).

A manipulation which has featured in several articles using the start–stop pro-
cedure has been the provision of ‘false feedback’. That is, people were told that 
their response time was some percentage of its real value, such as 80 or 120% 
(Ryan & Fritz, 2007). The effect is usually to shift the response measure in the 
appropriate direction, so reproductions are longer in the 80% feedback condition, 
and shorter in the 120% one, than in the 100% condition, where the feedback 
is veridical. In our model, such false feedback would be tantamount to chang-
ing the target time and Fig. 5 shows the effect on this manipulation of the mean 
times produced when the feedback was 80, 100, or 120% of its veridical value, 
and the model produced target times of 500, 750, and 1000 ms. Our model would 
be expected to be sensitive to the false feedback manipulation, and it is, as Fig. 
7 shows, with the mean times produced increasing or decreasing, depending on 
the false feedback, relative to the 100% condition where feedback is veridical. For 
the simulations in Fig. 6 all parameter values were as the Wearden and McShane 
(1988) simulation shown in Fig. 5, and the false feedback conditions were simu-
lated by varying the effective target time.

5. Discussion

Our model breaks new ground in that it simulates, for what seems to be the first 
time, the effects of accurate numerical feedback on interval production, particu-
larly from one trial to the next. Feedback or calibration in timing studies is often 
a given, not further discussed. For example, in stimulus timing tasks like temporal 
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generalization (Wearden, 1992) and temporal bisection (Wearden, 1991) stan-
dards must be initially presented so that comparison stimuli can be judged against 
them. A small number of studies have reported feedback effects on various tasks, 
for example verbal estimation (Montare, 1988; Wearden & Farrar, 2007), produc-
tion (Franssen & Vandierendonck, 2002; Montare, 1985, 1988), reproduction 
(Franssen & Vandierendonck, 2002; Riemer et al., 2019; Ryan & Robey, 2002), and 
the start–stop procedure (e.g., Ryan & Fritz, 2007). Although various effects have 
been obtained, usually a reduction in variance compared with no-feedback condi-
tions, and improved accuracy, the effects of feedback have not been quantitatively 
modelled for these tasks.

Our model grasped the nettle of attempting an explicit quantitative model of 
feedback but, it must be admitted, it was not a complete success. One issue is good-
ness of fit: our model does not fit the overall data set it simulates as well as models 
of, for example, temporal generalization (e.g., Wearden, 1992). However, in the 
cases where fit is much better, only a single outcome variable, usually response 
probability, is modelled, whereas here we attempt, more ambitiously, to model 
four measures of interval production which characterize both the mean output 
and aspects of its variability and trial-by-trial change. As mentioned earlier, if one 
of the outcome measures alone was the focus of the modelling, better fits could 
be obtained, but only at the cost of making the fit to the other measures worse. 
Throughout our attempts to model the data, the standard deviation of the absolute 
trial-by-trial change was always the most problematic to fit, although almost all 
parameter settings of the model produced a standard deviation which increased 
with the target time, often more sharply than found in data. Nevertheless, in spite 

Figure 7. Simulation of ‘false feedback’ procedure where the feedback was 80, 100, or 120% of its 
real value. See text for other details.
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of the difficulty of simulating this particular measure completely accurately, the 
non-parametric measure of change was fitted fairly well without specific changes 
in the parameter set used, so some aspects of trial-by-trial change, such as mean 
absolute change, and the directional change, can be fitted well.

A second issue with our model is that it uses only the single previous produc-
tion as the basis for performance on the current trial, and does not incorporate 
any longer-term representation of the target time. This means that it is unclear 
what it would predict were feedback removed. Adding the development of some 
sort of temporal reference to the model is a potential step, but we did not do 
this as it would complicate a model which already incorporated several differ-
ent processes and which seemed to fit data reasonably well as it was. However, to 
simulate effects of removing feedback, or to simulate different types of feedback 
conditions, such as just ‘above or below target’ with no numerical information, or 
no feedback at all, other processes would need to be added.

Most of the parameters in our model have obvious psychological meanings: 
the adjust and repeat timing processes have associated variance, and a thresh-
old determines which occurs on the next trial. These are similar in principle to 
the parameters used in models of stimulus timing, like temporal generalization 
(Wearden, 1992). However, the one parameter which is potentially more opaque 
is the non-timing process. We originally envisaged this as a response time, so 
our first idea was that a timing process would be followed by the generation of a 
response which would take some time to execute, and this execution time (sup-
posed to be on average constant as target time varied) would be represented in 
the non-timing process. This may still be true, but in our simulation the mean of 
the non-timing process was shorter than any conceivable reaction time, so if it 
is related to motor output then it seems that the motor output preparation must 
be running at least in part in parallel with the timing process rather than coming 
after it. In our simulation realistic values for a response time, such as 250 ms or 
more, could not produce simulations in accord with the data.

As an alternative to motor delay, it is possible that this parameter represents 
motor variability. On average, people tend to be able to accurately time when to 
release a response so that its execution coincides with a given moment. This can 
be seen, for example, in the tapping literature; once the metronome stimulus has 
disappeared participants are still able to maintain a paced tapping speed relatively 
well, see Repp (2005) for review. In the duration production task here, it could 
be that there is some afferent (i.e., when timing starts versus when the button is 
actually pushed to start the production) and efferent (i.e., when timing finishes 
versus when the button push terminates the production) motor-timing variability. 
This duration is likely shorter than that of a reaction time-like interpretation. To 
test this, perhaps various methods of production could be used (e.g., termination 
only); however, these have associated difficulties, such as predicting when an auto-
matically started production would begin (see Wehrman, 2020). Whatever the 
interpretation of this parameter, however, it is clear that a non-time-constrained 
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component must be present in order to account for the decreasing relative vari-
ability as the target duration gets longer, which is generally not found in non-
motor timing tasks (e.g., in temporal generalization, see Wearden, 1992).

Overall, our model incorporated a number of previous ideas in a simple way. 
Production output resulted from a combination of a timing and non-timing pro-
cess (cf. Wing & Kristofferson, 1973). When adjustment between trials occurred, 
it was based on the discrepancy between the previous production and the target 
time (cf. Michon, 1967). Both timing and non-timing processes had associated 
variance, and a threshold is used to control performance (cf. Wearden, 1992). It 
may be that there are sources of variability in data that the model does not cap-
ture completely accurately but, as Fig. 3 shows, it can produce output which is a 
reasonable approximation to all four of the data measures used, which themselves 
capture different aspects of performance on interval production.

6. Conclusion

In the current article, participants performed a simple duration production task. 
We found that, over relatively short time intervals, participants were able to cor-
rectly produce target durations, and had decreasing variability as the target duration 
increased. In addition, we showed that trial-to-trial changes increased as the target 
duration increased, as did the variability of these changes. Further, participants were 
approximately 75% accurate in their use of feedback, such that their subsequent 
production moved towards the target duration in comparison to the prior produc-
tion. We fit a model to these measures to capture how feedback affects participants 
on both an average and trial-by-trial basis. This model had three key components, a 
scalar timing process, a threshold for ‘acceptable’ productions leading to repeat or 
adjust processes, and a stable non-timing process. This model fit the data well, with 
perhaps the exception of trial-by-trial variability. However, this model represents a 
first step in a more thorough understanding of duration production, and the role of 
feedback in this process. Further studies could incorporate, for example, different 
types of feedback, or different methods of production.
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