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ABSTRACT

In this paper, we investigate an energy cost minimization problem for prosumers participating in
peer-to-peer energy trading. Due to (i) uncertainties caused by renewable energy generation and
consumption, (ii) difficulties in developing an accurate and efficient energy trading model, and (iii)
the need to satisfy distribution network constraints, it is challenging for prosumers to obtain optimal
energy trading decisions that minimize their individual energy costs. To address the challenge, we
first formulate the above problem as a Markov decision process and propose a multi-agent deep
deterministic policy gradient algorithm to learn optimal energy trading decisions. To satisfy the
distribution network constraints, we propose distribution network tariffs which we incorporate in
the algorithm as incentives to incentivize energy trading decisions that help to satisfy the constraints
and penalize the decisions that violate them. The proposed algorithm is model-free and allows the
agents to learn the optimal energy trading decisions without having prior information about other
agents in the network. Simulation results based on real-world datasets show the effectiveness and
robustness of the proposed algorithm.

Keywords Multi-agent · deep deterministic policy gradient · peer-to-peer energy trading · renewable generation ·
Markov decision process.

1 Introduction

Peer-to-peer (P2P) energy trading is a promising approach for addressing the world’s ‘energy trilemma’(i.e. environ-
mental sustainability, energy equity, and energy security) facing human society today [1]. Its emergence is as a result
of rapid deployment and connectivity of distributed energy resources (DERs) to the power system [2]. Conventionally,
power systems were dominated by centralized generators situated in strategic locations [3]. The generated power was
transmitted over long distances to consumers for consumption. As the result, power flow was unidirectional (flowing
from generators to consumers) and control of the power flow was easy due to centralized structures (i.e. generation,
transmission, distribution and consumption) [3].

With digitization and the emergence of DERs such as battery energy storage systems, rooftop solar photovoltaic (PV)
installations and smart home appliances, power systems are no longer passive but active with DERs actively involved
in the electricity system [2, 4]. As DERs can generate energy at point of consumption, power flow in today’s power
system is bidirectional, posing significant challenges in terms of planning, operation, control and protection of the
power system [2,5]. At the same time, the emergence of DERs along with digitization have created new opportunities
which can be used to solve most of the challenges caused by DERs through development of local energy markets such
as P2P energy trading schemes [6].

With P2P energy trading, customers with DERs (called ‘prosumers’as they are able to generate and consume energy)
can locally trade and share energy with each other. As many DERs are stochastic in nature, any surplus energy can be
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sold to neighbouring prosumers with deficit energy via a cloud-based P2P platform. The main role of the P2P platform
is to set the P2P energy selling and buying price.

To encourage prosumer participation in P2P energy trading, the selling and buying price must be higher and lower than
the export and import prices imposed by the energy service provider (ESP) respectively [7]. Thus, prosumers acting
as energy producers benefit more from individual profits and prosumers acting as energy consumers benefit more from
cheap energy when they trade with each other via the P2P platform than when they trade directly with the ESP. This
creates a win-win situation among the prosumers thereby encouraging adoption and investments in DERs [8]. At the
same time, local energy sharing through P2P energy trading reduces peak demand on the main grid thereby reducing
investments and operational costs [9].

Although P2P energy trading has many advantages and is the promising next generation energy management technique
for smart grids, the following challenges must be addressed. Firstly, it is generally intractable to develop a P2P energy
trading model that is accurate and efficient enough for optimal energy trading decision making [10]. Secondly, it is hard
to implement P2P energy trading at a large-scale and in real time when conventional and model-based optimization
techniques are used [11–13]. Thirdly, P2P energy trading has so many uncertainties caused by the stochastic nature of
renewable generation, power consumption and electricity price [14, 15]. Fourthly, as the distribution network acts as
a medium for energy exchange during energy trading, its own hard technical constraints including voltage limits and
power balance constraints must be satisfied [2]. Finally, as prosumers do not have access to information about others,
its difficult to make optimal energy trading decisions. Many of the existing methods e.g. in [16–20] are model-based
approaches which require domain expert knowledge to model P2P energy trading, making them difficult to apply.

To address the above challenges, many studies are focusing on the use of deep reinforcement learning (DRL), which is
an artificial intelligence framework with proven success in playing Atari and Go games [21]. DRL is a combination of
deep learning and reinforcement learning [21, 22]. Compared to model-based methods, DRL-based methods have the
following advantages: (i) they are model-free and the agents learn optimal energy trading policies by interacting with
the energy trading environment [23,24]. Thus, they can operate without explicit knowledge and rigorous mathematical
models of the environment, (ii) they have self-adaptability and can operate in an on-line way without requiring forecast
information about the energy trading environment [25, 26], and (iii) they are data-driven and capable of determining
optimal control actions in real-time even in complex energy trading environments [14].

In [12, 23], Chen et al. proposed a DRL-based algorithm to maximize trading profits while also minimizing the
dependence on the power plant. In [24] Kim and Lee proposed a DRL-based automatic trading algorithm originally
designed for stock trading to maximize profits of prosumers participating in P2P energy trading. In [11] Lu et al.
presented a DRL-based microgrid energy trading scheme to determine optimal energy trading policy according to
predicted energy generation, power consumption and battery energy level. In [14], Gao et al. proposed a multi-agent
DRL-based approach for minimizing energy costs for P2P energy trading prosumers in a microgrid. Although some
DRL-based methods have been proposed in above-mentioned studies, none of them considers the distribution network
constraints and loss. As the distribution network acts a medium of exchange for the traded energy, failing to consider
its underlying electrical network constraints may cause the outcome of the studied DRL-based energy trading schemes
to be impractical.

In this paper, we propose a multi-agent DRL algorithm for determining optimal energy trading policies that minimize
energy costs while satisfying distribution network constraints. Each prosumer is modelled as an agent. The energy
trading environment is modelled as a multi-agent environment where an action of one agent affects the actions of others,
making the entire energy trading environment to be non-stationary from an agent’s perspective. As most DRL-based
methods such as deep Q-networks [21] perform poorly in multi-agent settings because they do not use information
of other agents during training, we adopt a multi-agent deep deterministic gradient policy (MADDPG) [27] based
framework to design the proposed algorithm. With the proposed MADDPG-based algorithm, training is centralized
with each agent using states and actions of other agents. This makes the environment to be stationary during training
even as the agent actions change. Meanwhile execution is decentralized with each agent using only local information
to make actions without knowing others’ information. The main contributions of this paper are summarized as follows:

• Propose a local P2P energy trading market which enables a distribution system operator (DSO) to leverage
prosumers’ battery energy storage system as a flexible asset to satisfy the distribution network constraints.

• Propose a MADDPG-based algorithm to learn optimal energy trading policies for each prosumer to minimize
the energy costs while satisfying the distribution network constraints.

• Design actor and critic networks for each agent to ensure that training of the agents is stable and that the
output from the actor network is optimal.

• Introduce a novel strategy using distribution network tariffs (DNT) to incentivize the prosumers to provide
the flexibility required to satisfy the network constraints.
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Figure 1: Distribution network model with P2P platform.

The rest of the paper is organised as follows. Section 2 presents the proposed P2P energy trading model and the energy
cost minimization problem considered in this paper. Section 3 presents the proposed algorithm. Simulation results
that verify the effectiveness of the proposed algorithm are given in Section 4. Section 5 concludes the paper.

2 System Model

Fig. 1 shows a simplified distribution network and P2P energy trading model studied in this paper. The distribution
network can be described as a connected graph, G = (N , E) where N = {0, 1, . . . , N} is a set of buses and E
is a set of distribution lines. Thus, each bus, n ∈ N corresponds to a prosumer (e.g. a household, business or
commercial building) connected to the distribution network. Bus n = 0 represents a substation bus, which links the
distribution network to the main grid, and no consumer or prosumer is connected to it. For easy of reference, we
use the term prosumer to refer to either a consumer or prosumer in the remaining part of the paper, unless explicitly
stated. It should be noted that not all prosumers connected to the distribution network are willing to participate in the
P2P energy trading. We denote the set of prosumers participating in P2P energy trading as P = {1, . . . , P}. Each
prosumer, p ∈ P consists of a solar PV system, battery and/or load. In addition, each prosumer is equipped with an
energy management system (EMS) to: (i) collect and send to the P2P platform data such as PV generation, energy
consumption, battery charge and discharge power, (ii) receive the price signal from the P2P platform and (iii) optimally
schedule the battery energy storage system.

As energy buying and selling prices via the P2P platform must be lower and higher than the import and export tariffs
set by the ESP respectively [7], the P2P platform communicates with the ESP in achieving this. To avoid overloading
the distribution network, the energy sharing between the prosumers must satisfy distribution network constraints such
as voltage limits and losses. In many countries including the UK, management and operation of the distribution
network is a responsibility of the DSO, who operates independently from the P2P platform [2, 28]. To satisfy the
network constraints at every transaction, the intended power exchange between the prosumers must be approved by
the DSO either through penalties or monetary incentives [17,18]. Bi-directional communication links are required for
communication between the prosumer EMS, P2P platform, DSO and the ESP. Further, we assume that the prosumer
EMS, P2P platform, ESP and DSO operate on a common time horizon, T = {1, . . . , T } with equal time slots, ∆t.

2.1 Prosumer Model

The PV generation profile for prosumer p during the operation horizon T is defined as follows

G
p = {Gp

1, G
p
2, . . . , G

p
T } , p ∈ P (1)

We assume that the PV is operated in maximum power point tracking (MPPT) mode [29] and thus, Gp is maximum
power output.

The total power consumption profile of prosumer p during time horizon T can be defined as follows

D
p = {dp1, d

p
2, . . . , d

p
T } , p ∈ P (2)

We consider loads that do not have a certain amount of flexibility. Consideration of flexible loads is beyond the scope
of this paper and considered as future work.
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For prosumer p ∈ P , let SoC
p
t be the battery state of charge (SoC), which indicates the amount of energy remaining in

the battery after a charge or discharge operation. Let b
p
t be the battery power output (positive b

p
t to denote discharging

and negative bpt to denote charging), ηpt be the battery charge or discharge efficiency and let Ep
b be the battery energy

capacity. The dynamics of the SoC can be modelled as follows [25]

SoC
p
t+∆t = SoC

p
t −

η
p
t b

p
t∆t

E
p
b

, p ∈ P , t ∈ T (3)

It should be noted that the value of η
p
t is calculated differently based on whether the battery is charging or discharging

[25]. To prolong the battery lifetime, b
p
t must be restricted within a certain range as follows

E
p
b (SoC

p
t − SoCp

max)

η
p
t∆t

≤ b
p
t ≤

E
p
b (SoC

p
t − SoC

p
min)

η
p
t∆t

(4)

p ∈ P , t ∈ T (5)

where SoC
p
min and SoCp

max are predetermined SoC limits to indicate a fully discharged and charged battery respec-
tively.

Also, b
p
t must satisfy the power limits of the inverter to which the battery is connected as follows

b
p
min ≤ b

p
t ≤ bpmax , p ∈ P , t ∈ T (6)

where b
p
min and bpmax are minimum and maximum inverter power limits respectively.

Practically, the lifetime of the battery is shorter than any other asset in the distribution network. Thus, its wear cost
has great impact on the economics of the energy trading strategies of the prosumers. The empirical wear cost ̟p of
the battery can be expressed as [30]

̟p =
C

p
b

ACC × 2×DoD × E
p
b × µ2

b

(7)

where C
p
b is battery price per kWh, DoD is depth of discharge at which the battery is cycled, µb is round trip efficiency

and ACC is life cycle at a specific DoD. ACC is multiplied by two as one cycle consists of charge and discharge
phases.

As profiles of power generation and consumption are different from each other, prosumer p can assume the role of an
energy buyer or seller at any time t ∈ T based on the net power x

p
t which is defined as follows

x
p
t = d

p
t − (Gp

t + b
p
t ) , p ∈ P , t ∈ T (8)

That is, if x
p
t ≥ 0, the prosumer is an energy buyer, buying energy from others or the grid to meet its power deficit.

The prosumer is an energy seller if x
p
t < 0, selling the excess energy to others or the grid.

2.2 P2P Pricing Mechanism

Energy buying and selling all happens through the P2P platform as shown in Fig. 1. To set the energy buying/selling
price in the platform, we adopt the suppy-to-demand ratio (SDR) based pricing mechanism [7, 10, 31], mainly for two
reasons: (i) it is simple in principle and easy to obtain, and can be updated in real time and (ii) it satisfies the basics of
modern economics, i.e., price is inversely proportional to SDR as demonstrated in the following paragraphs.

SDR is defined as the ratio of the total power supply to the total demand in the energy sharing community, i.e.,

SDRt =

∑

p∈P
(Gp

t + b
p
t )

∑

p∈P
d
p
t

, t ∈ T (9)

The SDR varies with time because of the volatility of solar generation and power consumption. This means that the
energy buying/selling price is also not constant but fluctuating according to the SDR. Let the ESP’s import and export
prices as received by the P2P platform be λt

b and λt
s respectively, where λt

b ≥ λt
s. Let the prosumer’s buying and

selling prices through the P2P platform be πt
b and πt

s respectively, where πt
b ≤ λt

b and πt
s ≥ λt

s. The buying/selling
price vector set by the P2P platform can be defined as follows

π = {π1
b , π

2
b , . . . , π

T
b : π1

s , π
2
s , . . . , π

T
s } (10)

4



Multi-Agent Deep Deterministic Policy Gradient Algorithm for Peer-to-Peer Energy Trading Considering

Distribution Network Constraints A PREPRINT

The πt
b and πt

s can be obtained as a function of SDRt, λt
b and λt

s as follows [7]

πt
s =







(λt
s+λ)λt

b

(λt
b
−λt

s−λ)SDRt+λt
s+λ

, 0 ≤ SDRt ≤ 1

λt
s +

λ
SDRt SDRt > 1

(11)

πt
b =

{

πt
sSDRt + λt

b (1− SDRt) , 0 ≤ SDRt ≤ 1

λt
s + λ SDRt > 1

(12)

where {λ|0 ≤ λ ≤ (λt
b − λt

s)} is a compensation price which is used to incentivize prosumers to continue participating
in P2P energy trading when SDRt > 1 (the situation which happens when prosumers have more power supply than
demand). Without the compensation price, buying price would be equal to selling price when SDRt > 1, a situation
that would favour prosumers who are buyers and not sellers. This may discourage the sellers from participating in P2P
energy trading especially during periods of high PV generation.

The SDRt given by (9) mainly depends on the adjusted power consumption and battery charge and discharge power
from all the prosumers. This means that πt

s and πt
b largely depend on the choice of bpt . Decreasing b

p
t (when charging

the battery) drives SDRt towards zero and πt
s or πt

b towards λt
b. Conversely, increasing b

p
t (when discharging the

battery) drives SDRt towards 1 and πt
s or πt

b towards λt
s. Thus, price is inversely proportional to the SDR. In both

cases the following relationship is satisfied
{

πt
b ≤ λt

b

πt
s ≥ λt

s

(13)

That is, prosumers are better off buying and selling their energy via the P2P platform because of lower buying prices
and higher selling prices compared to the prices, λt

b and λt
s offered by the ESP.

2.3 Distribution Network Tariffs

The selling and buying price given by (11) and (12) respectively do not take distribution network constraints such
as line congestion and voltage limits into account. If not controlled, the net power obtained for each energy trading
transaction may overload the distribution network. We introduce the use of a distribution network tariff (DNT) to
incentivize transactions that do not violate the distribution network constraints and penalize those that violate the
constraints.

Prosumer’s contribution towards violation of network constraints depends on its location on the distribution net-
work and operational time [32]. Thus, we derive the DNTs from distribution locational marginal pricing (DLMP),
a temporal-spatio pricing mechanism which exposes prosumers to the true cost of energy delivery in the distribution
network [32, 33]. The DLMP can be decomposed into four constituent components; marginal cost of energy demand,
marginal cost of network loss, marginal cost of congestion and marginal cost of bus voltage [18, 32]. As the energy
buying/selling price (10) is set by the P2P platform, the proposed DNTs are determined from the other three compo-
nents of the DLMP, i.e. the marginal cost of network losses, marginal cost of congestion and marginal cost of voltage.
Calculation of the DLMP is detailed in [32].

Let the DLMP obtained at time t, t ∈ T for the substation bus (i.e., n = 0, n ∈ N ) be λt
0 and the DLMP for

prosumer p be λt
p. The DNT δtp for prosumer p can be calculated as follows

δtp = λt
p − λt

0 , p ∈ P , t ∈ T (14)

As λt
0 only accounts for the marginal cost of energy delivery at the substation bus (which is the same at every bus

n ∈ N ), subtracting it from λt
p gives δtp, which is the sum of marginal cost of line losses, congestion and voltage. δtp

is zero when the net power injected by prosumer p at t ∈ T does not cause network losses, congestion and/or violate
voltage limits. Otherwise, δtp is not equal zero due to either network loss, congestion and/or voltage limit violation.

As δtp reflects the condition of the entire distribution network considering both location and time, it is therefore a

suitable tariff to manage the distribution network constraints. δtp can be used as an incentive to incentivize a prosumer
whose net power transfer helps to satisfy the network constraints and penalize the one whose power transfer violates
the constraints.

2.4 Problem Formulation

Each prosumer p that can schedule the operation of its energy assets can be considered to be an agent. Thus, P2P
energy trading can be described as a multi-agent system. Each agent’s energy trading decision at a given time slot,

5
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t depends on the current information it receives from its assets (e.g. battery energy level) and the P2P platform (e.g.
energy buying/selling price and DNT), and not on the prior history. Thus, energy trading and the subsequent scheduling
of the energy assets can be formulated as a Markov decision process (MDP) [34] with continuous action spaces (i.e.
assuming that operation of the assets e.g., battery is continuous).

Let the set of agents be the same as that of prosumers (i.e. p ∈ P). The MDP for each agent p proceeds as follows:
Given a local agent state stp ∈ S at time slot t, where stp = (Gp

t , d
p
t , SoC

p
t ), the agent selects an action atp ∈ A, where

atp = (bpt ) based on a stochastic policy, πθp . The taken action takes the agent into a next local state st
′

p ∈ S according

to a state transition probability function, F . At the end of the time slot, the agent receives a reward, rtp as a function of
the current state and action as follows

rtp = −
∑

t∈T

[(

π + δtp
)

x
p
t +̟p|bpt |

]

∆t (15)

π =

{

πt
b , if x

p
t ≥ 0

πt
s , Otherwise

where the first term is the cost for both purchasing energy in the P2P platform and using the distribution network. The
second term is the cost of using the battery.

It is important to note that δtp is equal to zero when the net power x
p
t does not contribute to network losses, congestion

and/or voltage limit violations, otherwise δtp is non-zero. Furthermore, through π and δtp, the reward is a function of

all agent states and actions in the network (i.e. to determine π and δtp, the P2P platform and the DSO needs access to
all the states and actions of all agents in the network). In other words, an action of one agent affects the rewards of all
other agents in the system.

The goal of each agent is to maximize its own expected reward Rp =
∑T

t=0
γtrtp where γ is a discount factor. As

market prices, generation and demand are volatile in nature, it is generally impossible to obtain with certainty the state
transition probability function F required to derive an optimal policy πθp needed to maximize Rp. To circumvent this
difficulty, we propose to use an artificial intelligence-based approach which is data-driven and model-free as discussed
in Section 3.

3 Proposed Learning Algorithm

3.1 Deep Reinforcement Learning

Reinforcement learning (RL) is the process in which agents learn for themselves through trial and error [22] the
optimal policy πθp to achieve optimal actions that maximize the cumulative reward Rp. Like a human, agents need
to construct and learn their own knowledge directly from raw data such as a historic solar PV generation, demand
and market prices. This can be achieved by DRL. DRL has given rise to several value-based algorithms such as Deep
Q-networks (DQN) [21, 25] and policy-based algorithms such as deep deterministic policy gradient (DDPG) [35, 36].

As each agent’s reward as given by (15) depends on actions from other agents, the interaction between the agents
during energy trading can be described as a mixed cooperative-competitive. Naive application of DQN and policy
gradient algorithms to such multi-agent settings performs poorly because they do not use information of other agents
during training. We propose to use an MADDPG-based algorithm which overcomes this difficulty by using states and
actions of other agents during training.

3.2 Multi-Agent Deep Deterministic Policy Gradient Algorithm

Fig. 2 shows the architecture and workflow of the proposed MADDPG algorithm. Each agent is modelled as a DDPG
agent, where, however, states and actions are shared between the agents during training. In particular, each agent
consists of two networks: an actor network and a critic network. Both actor and the critic networks are created from
dense layers with hidden layers having ReLu activations. An actor-network maps the local state of an agent to optimal
actions using a Tanh activation function in the output layer. A critic network evaluates the actions received from the
actor network to improve the performance of the actor network. The output layer of the critic network is activated by
a linear function.

During training, the actor network uses only the local state to calculate the actions while the critic network uses states
and actions of all agents in the system in evaluating the local action. As actions of all agents are known by each agent’s
critic network, the entire environment is stationary during training. During execution, critic networks are removed and
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Figure 2: Architecture and workflow of the proposed MADDPG algorithm. Each agent p, p = 1, 2, . . . , P consists of

an original actor network µp (and target actor network µ
′

p) and original critic network Qp (and target critic network

Q
′

p ).

only actor networks are used. This means that with MADDPG, training is centralized while execution is decentralized.
As DNTs are obtained independently by the DSO, we leverage the centralized training provision of the MADDPG to
incorporate the DNTs in the algorithm during training.

3.3 Proposed Algorithm

The details of the proposed MADDPG algorithm which are illustrated in Fig. 2 are given by Algorithm 1. Let the

actor and critic network of agent p be denoted as µp and Qp, and the associated network weights as θ
µp
p and θ

Qp
p

respectively. Before training starts, µp and Qp (which we refer to as original networks) are created and their weights

θ
µp
p and θ

Qp
p are randomly initialized. To add stability to the training, target actor µ

′

p and target critic Q
′

p networks

which are identical to the original networks µp and Qp are also created and their weights are initialized as θ
µ′

p
p ← θ

µp
p

and θ
Q′

p
p ← θ

Qp
p .

For each agent p, a replay buffer D is created and initialized to store list of tuples (s, a, r, s
′

) known as experiences,

where s = (st1, . . . , s
t
P ), a = (at1, . . . , a

t
P ), r = (rt1, . . . , r

t
P ) and s

′

= (st
′

1 , . . . , s
t′

P ). The replay buffer adds stability
to the training as agents learn by sampling mini-batches from all of the accumulated experiences during training.

For each training episode, a random process for action exploration and an initial state s are initialized. We use Ornstein-
Uhlenbeck process [37] for generating the noise Nt for action exploration. With the received state stp, stp ∈ s, and
noiseNt, each agent makes an action given by

atp = µp

(

stp
)

+Nt (16)

where µp

(

stp
)

is output (action) of the actor network µp.

The actions from the agents together with their states at time slot, t are used to simulate the energy trading mechanism
including the calculation of selling/buying price and the DNTs. At the end of the time slot, each agent calculates its

own reward rtp, rtp ∈ r given by (15) and observes a new state st
′

p , st
′

p ∈ s
′

. The experience (s, a, r, s
′

) is stored in the

replay buffer D and the initial state s gets updated; s← s
′

.

7
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For each agent p, the actor µp and critic Qp networks are trained by (random) sampling S number of transitions from
the replay bufferD. The transitions are used to update the network weights for both original and target actor and critic

networks. Let (sj , aj , rj , s
′j) be an experience for each transition j, j ∈ S. Each agent p updates the weights of its

original critic network (i.e. θ
Qp
p ) by minimizing the loss

L
(

θQp
p

)

=
1

S

S
∑

j=1

(

yjp −Qp

(

s
j, aj

))2
(17)

where Qp

(

s
j , aj

)

is the predicted output of the original critic network and yjp is its target value which is given by

yjp = rt
j

p + γQ
′

p

(

s
′j , at

′

1 , . . . , a
t′

P

) ∣

∣

∣

at′
p =µ

′

p(st
′

p ), p∈P

(18)

where at
′

p = µ
′

p

(

st
′

p

)

is the predicted action by the target actor network and Q
′

p

(

s
′j , at

′

1 , . . . , a
t′

P

)

is the predicted

value by the target critic network.

Weights for the original actor network (i.e. θ
µp
p ) are updated using sampled policy gradient

∇θ
µp
p
J
(

θµp
p

)

= ∇θ
µp
p
µp

(

stp
)

∇at
p
Qp

(

s
j, a

)

(19)

where a = (µ1 (s
t
1) , . . . , µP (stP )).

Weights for both target actor and critic network (i.e. θ
µ′

p
p and θ

Q′

p
p ) are updated as follows

{

θ
Q′

p
p ← τθ

Qp
p + (1− τ) θ

Q′

p
p

θ
µ′

p
p ← τθ

µp
p + (1− τ) θ

µ′

p
p

(20)

where τ is the learning rate.

After training, the trained critic network and the replay buffer are removed from each agent. Let the trained actor
network for agent p be µ∗

p. At every time slot t, each agent p only requires to make an observation of the local state stp
to obtain optimal actions atp = µ∗

p

(

stp
)

. The obtained actions are considered to be optimal for energy trading and for
satisfying the distribution network constraints.

Algorithm 1 MADDPG Algorithm for P2P Energy Trading.

1: Randomly initialize (original) actor and critic networks
2: Initialize (target) actor and critic networks
3: Initialize replay buffer D
4: for epidode = 1 to M do
5: Initialize a random processNt for action exploration
6: Observe initial state s

7: for t = 1 to T do
8: For each agent p, make an action according to (16)

9: Execute the actions a, calculate the reward r using (15) and observe next states s
′

10: Store (s, a, r, s
′

) in D

11: Update s← s
′

12: for agent p = 1 to P do
13: Randomly sample S from D
14: Update (original) critic network by minimizing (17)
15: Update (original) actor network using policy gradient (19)
16: Update (target) actor and critic network by (20)
17: end for
18: end for
19: end for
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Figure 3: A low voltage 15-bus radial distribution network with C1 and C2 as consumers and P1, P2 and P3 as
prosumers participating in a P2P energy trading scheme.

(a) Consumer C1 (b) Consumer C2 (c) Prosumer P1

(d) Prosumer P2 (e) Prosumer P3 (f) Prosumer P1, P2 & P3

Figure 4: Half-hourly load and solar power profiles for the consumers and prosumers participating in P2P energy
trading.

4 Case Study

4.1 Simulation Parameters

Fig. 3 shows a low voltage 15-bus radial distribution network [32] which is used to demonstrate the effectiveness
of the proposed algorithm for reducing energy costs while satisfying network constraints. The distribution network
parameters are given in [32]. Two consumers (denoted as C1 and C2) and three prosumers (denoted as P1, P2, and
P3) are considered to participate in the P2P energy trading scheme. These have time-varying load and solar power
profiles (with 30 minutes resolution) instead of fixed ones as shown in Fig. 4. The load and solar power profiles are
for one month (744 hours) and they are obtained from UK’s customer led network revolution (CLNR)2 and UK power
networks (UKPN)3 respectively. The ESP’s import and export prices are set to be λt

b = 0.05 £/kWh and λt
s = 0.03

£/kWh respectively.

The prosumers P1, P2 and P3 all have 1 kW of installed solar capacity and are exposed to equal amounts of solar
irradiance. Each prosumer has battery parameters4 as given in Table 1.

2http://www.networkrevolution.co.uk/project-library/dataset-tc1a-basic-profiling-domestic-smart-meter-customers/
3https://data.london.gov.uk/dataset/photovoltaic–pv–solar-panel-energy-generation-data
4https://www.tesla.com/support/energy/powerwall/documents/documents/
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Table 1: Battery Parameters.

Parameter Value/Description

Battery type Tesla Powerwall
Life cycle 5000
Initial SoC 50%
Usable capacity 13.5 kWh
Depth of discharge 100%
Price per kWh (£/kWh) 314.64
Round trip efficiency 92.5%

Figure 5: Mean episode rewards of the agents during the training process.

The actor and critic networks for each prosumer agent are designed using hyper-parameters tabulated in Table 2.
Algorithm 1 is developed and implemented in Python using PyTorch framework [38]. An OpenAI Gym environment
[39] is designed to model the multi-agent energy trading environment.

Table 2: Hyper-parameters for each Actor and Critic Network.

Hyper-parameter Actor Network Critic Network

Optimizer Adam Adam
Batch size 256 256
Discount factor 0.95 0.95
Learning rate 1× 10−4 3× 10−4

No. of hidden layers 2 2
No. of nodes in each layer 500 500

4.2 Performance Analysis Without Network Constraints

In this section, convergence and performance analysis of the proposed algorithm without first considering distribution
network constraints are presented. The agents are trained with 800 episodes and the evolution of the episode rewards
is shown in Fig. 5. As the agents explore their action spaces according to the Ornstein-Uhlenbeck process (16),
the episode rewards keep fluctuating until after 300 episodes when the training becomes stable. This shows that the
proposed MADDPG achieves stable trainings despite the energy trading environment being non-stationary from the
perspective of each agent.

For presentation purposes, we show performance of the proposed algorithm using the first 100 hours of the dataset
which is shown in Fig. 4. Fig. 6 shows that the energy selling and buying price are high and low when net energy
is positive and negative respectively. Positive net energy means that total consumption is more than total energy
generation in the P2P energy sharing community, and the converse is true.

Using prosumer P1 as case study, Fig. 7 shows the optimal battery control actions. In the figure, the (negative) charge
and (positive) discharge power of the battery are scaled to -1 and 1 in order to plot on one graph the battery SoC and
power output. We can observe that the proposed algorithm can learn the optimal policy to charge/discharge the battery

10
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Figure 6: Variation of energy buying/selling price with total net energy of the prosumers without considering network
constraints.

Figure 7: The charging (negative charge) and discharging (positive charge) action of the battery for prosumer 1 as it
responds to the price (e.g. the selling price).

optimally. That is, to charge the battery when the price (e.g. selling price) is low and discharge the battery when the
price is high, thus, reducing the energy costs.

4.3 Performance Analysis With Network Constraints

In this section we evaluate the effectiveness of the proposed algorithm for charging and discharging the batteries
optimally while satisfying distribution network constraints. We use U.K’s January 2017 wholesale (WS) market
electricity price which is obtained from the institution of civil engineers (ICE)5 as shown in Fig. 9 to determine the
DNTs. We also assume that the loads have 0.95 power factor and the solar and battery energy storage systems have
unity power factor. We present the results using the first 100 hours of the dataset in Fig. 4. Fig. 8 shows that learning
is stable even when network constraints are considered.

Table 3: Average Episode Rewards.

Prosumer Without DNTs With DNTs Difference (%)

P1 -2464.25 -1919.88 22.1
P2 -22661.05 -1919.55 15.1
P3 -2258.64 -2073.27 8.2

Table 3 compares the average episode rewards of Fig. 5 and Fig. 8. We can observe that prosumers benefit more
(by having more than 8.2% of accumulated episode rewards) when they support distribution network constraints than
when they do not. Rewards are highest for P1 because it has the lowest total load: P1, P2 and P3 have a total load of
194 kWh, 219.17 kWh and 240.76 kWh respectively. Thus, much of the renewable energy generation is sold to other
prosumers for profit, hence increasing the rewards.

5https://www.ice.org.uk/knowledge-and-resources/briefing-sheet/the-changing-price-of-wholesale-uk-electricity/

11



Multi-Agent Deep Deterministic Policy Gradient Algorithm for Peer-to-Peer Energy Trading Considering

Distribution Network Constraints A PREPRINT

Figure 8: Mean episode rewards of the agents during the training while considering the network constraints.

Figure 9: U.K’s wholesale (WS) market price for the month of January, 2017.

(a) (b)

Figure 10: (a) Distribution network tariffs (DNT) for P1, P2 and P3, and (b) network loss comparison with and without
DNTs.

(a) (b)

Figure 11: (a) Average bus voltage and (b) line loading with and without DNTs.

Further, Fig. 10a shows that P1 contributes least to network loss, congestion and voltage limit violation as it has the
lowest value of the DNT. The DNTs change according to the wholesale price, making them economically suitable for
influencing the consumption pattern of prosumers.
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Figure 12: Comparison of total import (positive) and export (negative) energy costs for the prosumers between the
proposed algorithm and model-based approach.

Benefits of incorporating DNTs in the P2P energy selling and buying price to the distribution network are also shown
in Fig. 10b and Fig. 11. Fig. 10b shows that by incorporating the DNTs in the proposed algorithm, network losses
are reduced. We can observe in Fig. 11a that voltage regulation is improved and in Fig. 11b that (peak) congestion is
reduced by more than 50% when DNTs are used.

4.4 Performance Comparison

In this section, effectiveness of the proposed algorithm at reducing import energy costs from the main grid is compared
to that of a model-based approach derived from the method detailed in [31]. To reduce complexity and the number of
variables required by the model-based approach, the results are presented using the first 50 hours of the dataset in Fig.
4. The comparison result is shown in Fig. 12. We can observe that the energy cost result obtained by the proposed
algorithm is consistent with that obtained from the model-based approach, verifying that the results produced by the
proposed algorithm are accurate.

5 Conclusion

In this paper, we have proposed a MADDPG-based algorithm to minimize the energy costs of prosumers participating
in peer-to-peer energy trading while considering the distribution network constraints. The energy costs are minimized
by scheduling the operation of batteries optimally as flexible assets. First, the battery scheduling process is modelled
as a Markov decision process. Then, the MADDPG algorithm proposed (which is model-free) is used to learn the
optimal battery scheduling strategies that minimize the energy costs. To satisfy the distribution network constraints,
we have proposed the use of DNTs. The DNTs act as incentives enticing the prosumers to either reduce or increase
their consumption as a way of satisfying the network constraints. Simulation results based on real-world datasets
have shown that the algorithm proposed can optimally minimize the energy costs while also satisfying the distribution
network constraints. Minimizing the energy costs by also scheduling the operation of flexible loads is a potential
future work.
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