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Abstract

Bipedalism is theorised to have emerged in humans in order to enable en-

durance running and tool use via the hands. It is one of the most complex

styles of locomotion, with agents typically having a high center of mass

and two feet very close together. It is therefore particularly difficult to

build smooth cyclic motion on top of this instability.

Existing neuro-evolutionary methods for bipedalism involve the use of a

central pattern generator or passive dynamics. A bipedal walker designed

by Solomon et al was able to walk on rough terrain with a set of sim-

ple linear neural network controllers. I utilise control cost enhancements

alongside additional elitism to initialise the walking agents in 3D without

the 2D bootstrapping required by the original. The model is shown to be

capable of walking in 2D and 3D, and of turning and walking toward a

target point.

Improving another leading bipedal system, two fitness-function enhance-

ments are applied to the 3D Humanoid-v1 walking task using a replica

of the Salimans et al evolution strategy system. The first enhancement

reduces control cost and the second enhancement penalises poor balance.

Individually, each enhancement results in improved fitness and life-like

gaits. Combining the two enhancements produces gaits that are more ro-

bust to noise in their actions according to statistical significance tests.

After producing single-turn behaviour in the previous work, agent fit-

ness in the Solomon et al system is found to be improved according to

a statistical significance test, by evolving agents alongside morphologies

resembling a baby albatross. Pursuit-based turning behaviour is produced

in the evolved albatross agents. The agents are required to pursue a target

point as it moves further away and back and forth across the x-axis. This



task produces bipedal agents capable of making four consecutive turns in

pursuit over a short time period.
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Chapter 1

Introduction

1.1 Overview

Bipedalism is the locomotion of the human race and many other species in the bio-

sphere. Theorised to have emerged in humans in order to enable endurance running

and tool use via the hands, bipedalism crossed the threshold from a daily task to

something closer to an instinct. Despite this, it is one of the most complex styles of

locomotion. Walking on two legs requires constant balance to not fall over, as bipedal

center of mass is normally high above the legs and the two feet in a bipedal agent

are traditionally very close together. This results in high instability. It is therefore

particularly difficult to build smooth cyclic motion on top of this to replicate bipedal

motion. Other styles rely on extra limbs or wheels to ease the burden.

Perhaps the most influential work in evolved agent-based systems was produced by

Karl Sims in 1994 [75]. By combining a genetic algorithm with a neural network, Sims

was able to create evolved virtual 3D agents capable of several kinds of locomotion,

from swimming to running to jumping.

However, one type of agent locomotion not featured in this work was bipedal walk-

ing. Evolved bipedal agents were largely absent from artificial evolution until Reil and

Husbands published in 2002, evolving the parameters of a pattern generating control

neural network to enable a virtual bipedal agent to walk [64]. In 2013, Solomon et al

were able to use a set of simpler perceptron-based control neural networks to produce

a bipedal agent capable of walking on rough terrain in 3D [77]. This represented a

step forward in both robustness and network simplicity, although their most success-

ful networks required 2D preliminary work before 3D locomotion could be achieved.
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Another important aspect of agent based systems (particularly in bipeds) is morphol-

ogy. By crafting agent morphology to assist in performing tasks, the neural network

controllers’ task can be simplified. This is often seen with soft body parts or passive

joints. One of the earliest bipedal examples of this, McGeer designed a walking robot

with no control that was capable of walking down slopes. It used only gravity to swing

its legs forward and roll itself over on its curved feet [51]. This passive leg swinging

was very similar to the way humans swung their legs below the knee as they walked,

and would lead to many more studies into the utilisation of morphology to aid control.

Most recently, Heess et al have utilised deep reinforcement learning algorithms, in-

stead of genetic algorithms, to achieve high quality complex locomotion [35]. Their

bipedal agents were able to run, walk, jump and even slalom around obstacles with

only the basic reward from travelling forwards, in increasingly complex environments.

This behavioural complexity is almost unheard of in bipeds utilising genetic algo-

rithms.

As such, there is ample motivation to fill this void. Studying bipedal agents is im-

portant as bipedal agents exhibiting more complex behaviour in simulation could be

adapted for real world stability testing under various dangerous circumstances. These

bipedal agents could then traverse unstable buildings or dangerous environments in

the place of human agents. This could therefore lead to a complete reduction of

fatalities amongst rescuers and other emergency workers. Another reason to study

bipedal agents is to produce responsive behaviour in real world care assistant robots.

These bipedal agents could assist the elderly whilst making them feel more relaxed

around an agent with a humanoid shape. This could then lead to a greater quality

of life amongst the residents of care homes and other assistance facilities.

But why choose to use evolutionary systems when deep reinforcement learning al-

gorithms have already achieved a better result? The first benefit of an evolutionary

method is the biological aspect of the methodology. Evolutionary processes being

modelled after evolution in the biosphere allows them to provide a trajectory of be-

haviours leading up to the final goal. This can potentially teach us more about our

own evolutionary trajectory or even other locomotive pathways not chosen in our

biosphere. The other benefit of an evolutionary method is that they are able to incre-

ment through complex tasks. Compared to reinforcement learning, which can suffer

from over-fitting and a lack of generalisation, evolutionary processes are much easier
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to increment through multi-faceted tasks due to their mapping of task performance

to a fitness function and a genotype. It is possible to apply a new fitness function for

a new aspect of a task starting with a genotype already preloaded from the previous

task, something reinforcement learning can again struggle with due to over-fitting.

This could lead to potentially more complex behaviours in simulated agents in the

long term via smaller increments, if evolution can overcome the initial hurdles.

1.2 Aims

• Increase Walker Fitness. I feel the first step to produce more complex

behaviour in bipedal agents is to improve the existing walking fitness for ro-

bustness, behaviour and stability.

• Utilise Morphology to Simplify Bipedal Task. Bipedal Walking requires

balance at all times by definition, making for a difficult task. Many systems

have seen success from utilising morphology in order to make complexity easier

to achieve. This could be utilised for the difficulties of bipedal walking task.

• Produce Complex Behaviour. Many evolutionary bipedal systems are suc-

cessful with compass walks (walking solely from leg swinging, without knee

motions) and other simplistic gaits but do not feature any behaviour beyond

forward walking. Producing something beyond this with a genetic algorithm

represents a step forward toward the complexity seen in other types of systems.

• Highlight the merits of evolutionary processes for bipedal walking.

I can also highlight some of the perks for choosing evolutionary systems over

other methods. These perks include incremental evolution and the biological

insight evolutionary systems can provide.

1.3 Structure of Thesis

This thesis has nine component Chapters, the content of which are as follows:

• Chapter 1, this Chapter, introduces the thesis, outlines my overall aims, and

describes the content of each Chapter.

• Chapter 2 covers the background of agent based evolutionary systems, from

the advent of the genetic algorithm and neural network, to Karl Sims’ virtual

creatures and through to modern agent based systems.
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• Chapter 3 focuses on the origins of bipedalism and modern bipedal systems. I

then analyse existing evolutionary bipedal systems in more depth, noting their

results and limitations.

• Chapter 4 represents the first novel work of the thesis. Here I aimed to enhance

fitness and produce complex behaviour. I enhance the Solomon et al Linear

Reactive bipedal system [77] using control enhancements and increased elitism,

enabling direct initialisation into a 3D physics engine, without the required prior

2D physics engine bootstrapping. I produce stable walking gaits in 2D and 3D.

I also produce single-turn behaviour in 3D, in a similar fashion to Reil et al

[64].

• Chapter 5 represents the second novel work of the thesis. Here I aimed to

again enhance fitness and produce complex behaviour. I continue the theme of

optimising leading bipedal systems from the previous Chapter to demonstrate

the robustness of my methods in a modern context. I introduce control con-

straints again, this time to a deep evolutionary bipedal system [68] to produce

both fitter gaits and gaits that feature less shuffling behaviour. This work was

published in the proceedings of the ALIFE 2019 Conference.

• Chapter 6 is the third novel work of the thesis. Here I aimed to enhance

fitness through morphology. I revisit the enhanced system from Chapter 4 as

its simple neural network controller is more sensitive to morphological change.

I use morphologies based on a baby albatross and the balance and control

cost enhancements from Chapter 5, to produce bipedal agents with drastically

higher fitness. This work was published in the proceedings of the 2020 IEEE

Symposium Series on Computational Intelligence.

• Chapter 7 is the fourth novel work of the thesis. Here I aim to produce

further complex behaviour. I utilise the most successful albatross morphology

from Chapter 6 to produce complex behaviour on a new pursuit-based turning

task. Following on from the turning in Chapter 4, I produce agents capable of

turning multiple times across the x-axis whilst following a moving target point,

in a slalom-like way. This is to the best of my knowledge, a unique behaviour

amongst agents with evolved neural network controllers.

• Chapter 8 is the final novel work of the thesis. Here I aim to demonstrate

the merits of evolutionary techniques. Used previously by Solomon et al and
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Stanton et al, I attempt to utilise incremental evolution to improve the number

of moves of the turning agents produced in Chapter 7. No improvements in the

number of moves are produced.

• Chapter 9 summarises all contributions to the field across the five novel works

in relation to my aims, and discusses conclusions and future work that could be

undertaken as a result of findings.
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Chapter 2

Background - Virtual Agents

2.1 An Introduction to Neuroevolution

Within the context of this field, Neuroevolution refers to the process in which a neu-

ral network (also referred to here as a neural network controller and a neural control

network) is evolved to control an agent in order to achieve a goal or task. In this

thesis, I study the neuroevolution of virtual agents. A virtual (sometimes referred to

as simulated) agent is defined as an agent or other actor which is simulated within

a physics engine instead of the real world. I chose to study the neuroevolution of

bipedal locomotion in virtual agents instead of real world (sometimes referred to as

physical) agents due to the costs required to build physical agents. A physical bipedal

robot would require building and material costs for each morphology and environment

- simulations allow for instant building and easy adjustment for only the price of the

physics engine. In addition, virtual agents can be simulated at speeds much faster

than the physical world. This allows experiments to be completed at a much faster

rate than physical agents.

A neural network is made from nodes, each featuring a weight for each other node

they are connected to. These weights modify values from input to output, with each

node summing its inputs multiplied by their weight values, then applying a function

to produce its output. In virtual agents, network inputs are typically agent sen-

sors and network outputs are typically agent actuators. Learning algorithms such as

Back-Propogation [66] and Reinforcement Learning [88] are often applied to these to

learn a desired behaviour over a creature’s lifetime. In the case of neuroevolution, the

network weights are instead modified via an evolutionary process such as a Genetic

Algorithm or an Evolution Strategy, to produce the desired input/output mapping.

This control mapping will then enable the agent to produce behaviour achieving its
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goal.

Holland conceived Genetic Algorithms in 1962 as a way of mathematically mod-

elling the process of biological evolution [37]. Rechenberg et al created a similar

methodology in 1965 dubbed “Evolution Strategies” to optimise airfoil parameters

in a one-parent one-offspring system [63]. Fogel et al also developed an evolutionary

programming technique through mutating finite state machines around the same time

[30]. As mentioned previously, evolutionary processes involve a genotype, mimicking

the DNA of a subject. This is usually a fundamental aspect of the subject, such as

neural network weights. Evolutionary processes also involve a fitness measurement,

related to the goal. A population of subjects is tested and their fitness is measured.

The most successful subjects are kept for the next generation. This next generation is

produced with new subjects whose genotypes are randomly mutated from those of the

previous generation. In this way useful mutations accumulate over many generations,

increasing fitness until the desired goal is reached.

There are other evolutionary measures besides fitness. Lehman et al devised nov-

elty search [43]. This involved selecting creatures based on their uniqueness compared

to others. Barnett et al worked on neutral networks. These were genotypes close to

that of the subject that had identical fitness. They exploited these to reach higher

fitness peaks [3]. Wilke et al also studied an asexual population capable only of neg-

ative and neutral mutations [92]. They discovered that evolutionary dynamics across

a neutral space happen in a much more clustered manner, as opposed to a mutation

spreading through the population’s genomes gradually.

Diversity is important to evolutionary processes. Mouret et al demonstrate this using

multi-objective fitness and fitness sharing techniques to enhance population diversity

[57]. This resulted in considerable improvements in several systems. This was also

shown by Wagner et al, who complexified the genotypes of agents to allow for more

diversity [87]. This resulted in either improved fitness or new emergent behaviour

across all tests. Nygaard et al used multi-objective optimisation to achieve a variety

of high fitness quadrupedal locomotion strategies in a legged robot over a short time

[60]. Berland et al designed a cheap spiking neural model for agent-based models,

which iterated through a set of states for agents with longer time-steps [5]. This was

computationally cheaper than standard spiking models, and capable of modelling real

chemotaxic behaviour with only three neurons.
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Figure 2.1: An example neural network layout. Input is processed from the
inputs, through the hidden units to the output. Each node applies an activation
function to the sum of its inputs multiplied by their respective weights, to produce
an output. [66]
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Mutation rate can also be a significant factor in the emergence of agent based be-

haviour. Grefenstette utilised a second “meta” Genetic Algorithm to adjust the pop-

ulation size, mutation rate, crossover rate and other features of a genetic algorithm

[33]. This produced high fitness levels on a set of various optimisation tasks. Ochoa et

al investigated the relationship between error thresholds and mutation rates [61]. An

error threshold in an evolutionary process is defined as a critical mutation rate beyond

which genotypes mutated by an evolutionary process lose their acquired behaviour

more frequently than retaining it. They demonstrated that the optimal mutation rate

lay just below the error threshold. Uyar et al varied mutation rate based on genotype

[83]. They split genotypes into two groups, each having their own separate mutation

rate. They then updated each mutation rate based on success. This outperformed

similar approaches on the “one max” problem (maximising the number of 1s in a

string). Cervantes et al altered their mutation rate by different subsections of the

population, mutating each agent by fitness rank [14]. They first performed crossover

of nearby ranked agents to combine dissimilar solutions, then reevaluated the pop-

ulation, applied the proportional mutation and selected for fitness. This was more

effective than a standard genetic algorithm across multiple types of fitness landscape.

One of the earliest 3D neuroevolution examples was Sims’ virtual creatures [75].

By combining a simple physics engine, a neural network and a genetic algorithm,

Sims showed it was possible to evolve 3D agents to achieve a variety of real, life-like

behaviours. Sims used a graph-based genotype to form 3D agents. Each node in the

graph represented both a polygon limb of a creatures body and a set of neurons to

connect to the neural control network. The graph nodes also contained morphological

properties such as connection position, dimensions, number of connections, reflection

and terminality. The networks formed a structure travelling from the agents sensors

through to their joint actuators. A set of global neurons disconnected from any poly-

gon were also granted to each agent, such that it may utilise them for global control

purposes. Sims evolved a variety of behaviours including swimming, jumping and

light following, with multiple strategies for each behaviour.

Co-evolution is another important evolutionary concept, often observed in nature

between competing species [28]. These species will find themselves adapting over

time to each other. This is most commonly seen in predator-prey relationships. Sims

would go on to investigate co-evolution amongst his creatures [74]. Two creatures
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Figure 2.2: Sims virtual creatures. Sims evolved these creatures from a com-
bined network/morphology genotype using a genetic algorithm. He produced running,
jumping, swimming and light following behaviours [75].
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Figure 2.3: Co-evolved virtual creatures. Sims evolved his creatures against each
other for a control task. Seen here are different strategies adopted by the competing
virtual creatures to maintain control of the black cube. [74]

would compete to see who could gain control of a cube placed between them. This

produced an array of intelligent, complex strategies that emerged from evolutionary

interactions between the two species. They exploited each others’ weaknesses and

produced counter strategies, in a co-evolutionary arms race. Watson et al would

later show competition between opposing species boosted diversity and overall fitness

further than was possible alone [89].
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2.2 Modern Agents

In early instances of learning systems, often the methodology chosen was to increase

the complexity of the controlling process. Waxman et al produced a vehicular agent

which made all decisions based on its own internal plan, which it had to continu-

ally update over time in order to be reactive and responsive [90]. This methodology

initially showed good results, such as Movarec et al [56], but was very computation-

ally intensive, and the agents struggled to keep up with more powerful models. This

viewpoint changed when Brooks demonstrated the power of simple reactive control

processes, with little to no memory [12]. With these, it was possible to create agents

that achieved equally complex behaviours using the interactions between the control

process and their environment alone. Brooks modularised this control scheme, using

an override system to achieve complex behaviour in robots. He dubbed this the sub-

sumption architecture.

Following this, bio-inspired embodied design experienced a huge surge in popular-

ity, both in robots and in silica. Some examples of this included Briod et al, who

built a flying robot utilising insect collision-recovery behaviours [11]. Calisti et al

tested octopus based locomotion and grasping behaviour by utilising soft limb ma-

terials [13]. Vaughan et al designed a hexapod robot for rough terrain and lunar

exploration based on a stick insect [85]. Ijspeert et al designed a salamander-based

robot that was capable of transitioning between walking and swimming gaits based on

a spinal cord model [39]. Huang et al evolved a neural network for a robotic hand to

grasp previously unseen objects [38]. Lipson et al evolved virtual agents for locomo-

tion and processed them into agents for an underwater environment [47]. Chaumont

et al evolved block-throwing creatures using Sims’ methodology, discovering a variety

of successful strategies [16]. Miconi et al also adapted Sims’ work, adding force and

damage parameters to competing agents and observing a variety of novel strategies

[53]. Crespi et al produced an underwater fish-inspired robot with multiple gaits, able

to avoid obstacles whilst going backwards [22]. Bharaj et al utilised evolutionary op-

timisation to refine personalised automata created through a drag and drop interface,

such that they were capable of locomotion, for both bipedal and quadrupedal designs

[6]. Whilst these evolved automata were capable of bipedal gaits across several cus-

tomised morphologies, they lacked any form of neural control network, using linear

motors instead. Cully et al evolved several unique neural network controllers for a

hexapod robot to reach a point, as opposed to a singular complex neural network
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controller [23].

Bongard et al designed a virtual robot arm, introducing it to increasingly complex

object manipulation tasks [8]. A simple CTRNN, or continuous time recurrent neu-

ral network, controlled the arm. This style of network features recurrent backward

flowing connections that are applied through multiple timesteps. They varied the

number of fingers the arm used between three and five. They then gave the arm

to a series of objectives to learn, including grasping an object, lifting an object as

high as possible, and classifying different types of objects. To increase complexity

further, they forced the arm to learn several tasks at once. They tested the arm’s

ability to perform over seven regimes of task complexity, from each task on its own to

all three tasks at once. With a single objective, they saw no increased performance

due to cheating strategies. With two, they began to see a more noticeable increase

in performance. All three objectives together showed the most improvement overall.

They were able to determine the different combinations of morphology parameters

that allowed for improvement on each hand type. They also noted that evolving the

morphology never made fitness worse, and the more they allowed it to evolve, the

more robust their behaviours became. They hypothesised that if this improvement

was due to poor starting conditions then evolution would have taken it much further

from its starting point. Instead of which, the arm only changed slightly from its

default morphology.

Corucci et al investigated the use of on-line morphological changes for a soft under-

water octopus-like robot [21]. They accommodated walking, running, and swimming

gaits. This allowed easier gait transitions. They first evolved a population of simu-

lated robots using either a standard or novelty search based genetic algorithm. After

this they clustered individuals in their population based on genotypes and morpho-

logical parameters (angle of buoyant, buoyancy, crank rotation). They then selected

one agent from each cluster to apply morphing. It was shown that the novelty-based

strategies produced much more varied behaviour, whereas the standard genetic al-

gorithm spent the experiment optimising a single strategy. They produced walking,

running and sculling behaviours.

Lessin et al produced an evolved fight or flight response, using a system they

dubbed the “ESP system” with morphology and neural network controllers almost

identical to those used by Sims [44]. Differences included a newer physics engine and
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Figure 2.4: The soft octopus robot. Developed by Corucci et al, their robot
featured flexible feet and a floating module [13]. Their robot evolved walking, run-
ning and sculling behaviours, and was able to morph between them using on-line
morphological changes.

the usage of spring-like tendons to move limbs. Their ESP system consisted of three

ideas. Firstly, “syllabus” - creating an ordered sequence of fitness goals. Second,

“encapsulation” - grouping neural control network nodes into behaviour sections for

modularisation. Finally, “pandemonium” - allowing the behaviour with the most

active neurons to dominate, preventing clashes. They were able to achieve a con-

siderable number of Sims’ behaviours through ESP, including forward locomotion,

reaching high, and moving toward a light source. They were also able to achieve

striking (jumping on a target), attacking (moving to a light source combined with

striking), turning away from a light, and retreating (combining forward locomotion

and turning away from the light). Their final and most impressive result was the

fight-or-flight response. This behaviour was a combination of attacking and retreat-

ing based on the amount of light given off in the nearby environment (larger agents

gave off more light). They would later extend their ESP methodology to evolve mor-

phological adaptations per behaviour [45]. The resulting population of agents had

a much more diverse set of strategies for striking and high reaching skills through

increased morphological adaptation.

Stanton et al [80] produced a quadrupedal agent-based system to solve the River

Crossing task [65]. The task required agents to collect rocks to build a bridge across

a river, whilst avoiding traps. In order to place the rocks, the agent must learn a

searching strategy, but to avoid the traps at the same time, the agent must balance

its search with caution. To circumnavigate this contrast, they created a hybrid net-
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Figure 2.5: Stanton’s agents (left) and the river crossing task environment
(right). The agents’ neural network controllers were evolved to move the grey stones
to build a bridge across the river to the goal, whilst avoiding the red traps [80].

work topology. Their topology had four main components. The first component was

the Decision Network, a feed-forward neural network with neurons responsible for

choosing the agent’s responses to inputs, from which the world information was fed

into. This led into the next section of the network, the Shunting Model, which was a

grid network with each node representing a cell in the task environment, building a

map for the agent to traverse. The world information also fed into this network. This

led to the Physical Network, featuring a single feed forward hidden layer, converting

the grid information into desired values. This network also took in walker sensor

information. Finally, the pattern generator section applied an oscillatory function

to obtain rhythmic motor outputs from the desired values. The agents were evolved

incrementally through six levels of the task. The first two stages featured basic lo-

comotion and resource gathering. The final four stages were then various increments

of the river crossing task, from no river to rivers of width 1, 2 and 4 cells. 65% of

all evolved agent populations were able to produce an agent which could complete all

the iterations of the task. This subset of the populations also exhibited the largest

strategic diversity during initial iterations.

Incremental evolution is often used in evolutionary systems to reduce the diffi-

culty of learning complex tasks [17]. Incremental strategies involve evolving a system

through several sub-tasks one after the other, using the winners from the previous

task as a starting point for the next. One of the main issues in neuroevolution is

the bootstrapping problem. The bootstrapping problem refers to the difficulty of

evolving multifaceted results from scratch without guidance. The more complex the

task, the more likely the system is to be initialised far away from an optimum in
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the fitness landscape. This increases the likelihood of the system becoming trapped

in fitness plateaus. Incremental evolution can be used to avoid this problem and

traverse the landscape via sub-tasks. Gomez et al used it to evolve prey-capturing

and pole balancing behaviour via an adaptive network topology [32]. They were able

to produce more successful behaviours using the technique and speculated that the

technique could be used for many other agent-based tasks, provided they featured a

clear hierarchy of sub-tasks from simple to complex. Mouret et al used incremental

evolution to generate target-following neural network controllers in winged agents

[58]. They used pattern generator networks to maintain a constant speed and alti-

tude, first evolving linear flight and then incrementally evolving pursuit.

A more recent investigation of incremental evolution, Stanton et al evolved a quadrupedal

agent to climb over a range of wall heights [79]. They incrementally evolved their

agents through increasingly complex wall height configurations. They equipped the

agents with a simple neural network translating their location and orientation into

output torques, and evolved their weights using Harvey’s SAGA algorithm [34]. They

tested different complexification strategies with incremental evolution. Homogeneous

strategies consisted of static and linear functions of wall height, whilst heterogeneous

strategies featured oscillatory and non-linear functions. They were able to show that

even the weakest heterogeneous strategy, randomly increasing the height of the wall,

was able to produce better results than the best homogeneous strategy, the linear

increase. This linear increase strategy was initially able to keep up with the hetero-

geneous strategies, but degraded over many iterations, showing signs of catastrophic

forgetting - forgetting one task when learning another. The oscillatory heterogeneous

strategies were the most successful, finding optimal frequencies to obtain near-perfect

success rates.

Possibly the biggest advance in neural network controllers of the last decade was

a recent explosion of their deep application. Krizhevsky et al trained a deep convolu-

tional neural network (i.e. one with thousands of parameters) to classify more than

a million images into a database of 1000 different classes, with error rates as low as

37.5% [42]. This level of error rate in image classification was as of then unprece-

dented, as was large scale image processing of that scale. To achieve this, they firstly

converted the RGB input images to grayscale, before feeding them into the network.

Their network consisted of five convolutional layers, each connected through a pooling

layer. The convolutional layers functioned via applying a number of kernel grids to
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Figure 2.6: A quadrupedal wall climbing agent. Evolved with the SAGA al-
gorithm and a simple neural network, the Stanton et al quadrupedal agents had to
climb over obstacle walls of incrementally varied height to reach their goal [80].

each section of the image, “sliding” them across. They evolved the design of these

grids using the network, and patterns emerged on them that were capable of detect-

ing particular features. The pooling layers then measured which features were in

which area and passed this on to the next convolutional layer. This process produced

complex multi-faceted features across multiple layers. Finally, the last feature map

was passed on to the decision network, which analysed which features were present

in which areas of the final processed image, matching it to its most likely class. In

order to prevent the network producing filters relying on too many neurons, neurons

were randomly dropped out with a probability of 0.5. They chose this architecture as

it functioned well with prior knowledge, to accommodate the vast training sets used

for the image database. Parallel processed through a pair of Nvidia GTX GPUs, the

network could be trained in 5-6 days using images scaled to 256x256 pixels. The net-

work was even able to match images to the same class that were semantically familiar

but distinctive in nature. Furthermore, when they removed the depth of the network,

reducing the number of convolutional layers, the results began to suffer in quality.

Following this, Mnih et al produced the first deep learning model to learn from
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Figure 2.7: The deep architecture used by Krizhevsky et al. The input image
(far-left) was processed through 5 convolutional/pooling layers (cuboids) using kernels
(inner squares/cuboids). At each layer, progressively more complex kernel features
were learnt and pooled together (cuboid depth), before being processed through a
3-layer fully connected decision network (final rectangles), classifying it as one of a
thousand image types [42]. The network is split into two rows, one for each GPU
used, with several connections to synchronise them.

high dimensional input via reinforcement learning (instead of evolution) - Deep Q

learning [55]. They adapted an existing reinforcement learning algorithm, Q-learning,

to learn a neural network mapping for a set of non-similar Atari games, using the

screen image as input, and the gamepad buttons as output. Q-learning uses the

learnt-over-time cumulative reward value of probable states reached from each action,

labelling this the quality or “Q” value. This allowed the network to be updated to

choose the ideal Q-value for each given situation. Using a similar deep network to

Krizhevsky et al together with Q-learning, they updated their weights using stochastic

gradient descent, and used random experience replay to help the CNN with sparse

rewards. The score was normalised across all the games, with frameskip enabled

to assist runtime. They achieved good scores on most games and beat experts on

three (breakout, enduro and pong). These games were the ones with the shortest

timescales, requiring the least planning.

There have been further examples of deep learning producing successful virtual

bipedal agents and performing well on other continuous tasks. Lillicrap et al adapted

Deep Q learning to a continuous domain via an actor-critic policy gradient algorithm

[46]. This algorithm used two separate learned functions for reward estimation and

parameter updating. It solved 20 simulated physics tasks including legged locomo-

tion and complex object manipulation. Jolley et al studied the use of convolutional

neural networks on the aforementioned river crossing task [40]. They produced a 99%

completion rate on the most difficult iteration of the task and even outperformed
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Figure 2.8: Short-term planning games. Pong(left) and Breakout(right) both
produced higher scores than human experts as they required little long-term planning
[55].

the previous handcrafted solution. These further demonstrate the potential of the

methodology for the bipedal task, and set the bar for agent-based behavioural simu-

lations.

Another important aspect of agent-based systems, perhaps one that isn’t immedi-

ately obvious, is the choice of physics engine for the simulation. There are many

aspects to a physics engine, and each is often designed with a different one in mind.

Engines aimed towards games development are usually more focused on material

properties and multiple simultaneous bodies, whereas simulation engines are more

concerned with numerical accuracy and joint constraint enforcement. In 2007, Boe-

ing et al investigated accuracy and efficiency in a number of physics engines, including

Novodex, Bullet, JgLib, Newton, ODE, Tokamak and True Axis [7]. Testing the in-

tegrator functions (functions estimating the next timestep from a list of bodies and

forces), material properties, stacks, joints and collision detection, they concluded that

no one physics engine was the best at any test, and the best engine to choose would

depend on your task. Interestingly, every engine failed the sphere stacking test, as

none of them included noise, leaving the spheres perfectly balanced. More recently in

2015, Erez et al, creators of the Mujoco engine (although they primarily use objective

measurements to avoid bias) compared Bullet, Havok, Mujoco, ODE and PhysX for

model-based robotics [29]. They tested integrator functions at low time-steps to ob-

serve derivative error, and also tested a number of tasks emphasising different aspects

of engine quality. Seen in Figure 2.9, these included a grasping hand, a large num-

ber of loose capsules falling to the floor, a long chain of links and a humanoid body

moving at regular intervals. They discovered that Mujoco was the fastest and most

stable, but lost its advantage in contact and collision dynamics, further emphasising
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Figure 2.9: The robotics tests employed for various modern engines. Four
tests utilised by Erez et al for different aspects of a physics engine. (left to right) The
grasping task, a regularly moving humanoid, a series of linked bodies, and dropping
several small capsules at once.

the point that engines must be carefully chosen with purpose in mind. In the context

of agent-based systems, this could also mean that moving from one engine to another

may produce different results for the same task, and suggests that engine choice must

be carefully taken into account when investigating behaviour.

2.3 Summary

This Chapter addresses the history of the relationship between genetic algorithms

and neural networks, citing notable works featuring the two together. I discuss the

most infamous agent based evolved neural network controller system, Sims’ virtual

creatures. Sims’ later work featuring creatures fighting for position is also discussed

alongside co-evolution. This demonstrates the idea that behaviour can be evolved

through neuroevolution. I investigate the importance of embodiment within agent

based systems, covering the Callisti et al study into octopus morphology and the

Bongard et al investigation into object manipulation. This demonstrates the benefits

of morphology for bipedal locomotion. With bipedal walking involving a notoriously

tough fitness landscape - I aim to utilise morphological adjustments to ease com-

putational burden on my neural network controllers. Incremental evolution is also

demonstrated as an aspect of evolutionary systems - I aim to display this as a perk of

evolutionary processes. Finally I demonstrate deep learning systems, the bar they set

for the field of neural networks, as well as demonstrating the impact of physics engine

choice on a task. Choosing my engine carefully - I aim to move toward the level of

complex behaviour seen from these modern systems, and produce bipeds evolved with

a neural network that go beyond simple forward locomotion.
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Chapter 3

Background - Bipedal Walking

3.1 Bipedalism and How It Evolved in Us

Bipedal Walking, sometimes referred to as bipedalism, is defined as the locomotion

of species that stand on two legs. Darwin’s Origin of Species demonstrated that the

human race descended from apes, creatures that walked on four legs [24]. Therefore

at some point we must have moved away from quadrupedalism. The primary the-

ories for our transition are to free up energy for endurance running [9] and to free

up the hands for tool usage [36]. Unlike quadrupedalism, bipedalism requires much

more balance; fewer points of contact with the ground means the centre of mass has

much less room to move around without causing toppling. In nature, a bipedal gait is

usually balanced out with a swinging tail or passive arm swinging [2]. Many works of

research have recreated our gait, both through robotic and simulated agents. Van de

Panne et al guided virtual bipeds with varying numbers of actuators through walk-

ing gaits via parameter optimisation and a harnessing vector dubbed the “hand of

God” [84]. Kanehiro et al created a two-armed bipedal robot capable of walking and

carrying objects [41]. Behnke et al generated omni-directional trajectories for online

bipedal robots [4].

The classic example of a bipedal robot is Honda’s ASIMO [67]. Since 1986, Honda

have been building humanoid walking robots; by 2000, they had refined their robots

into the first iteration of ASIMO, with an upper torso and an astronaut-like design.

Honda finalised the latest iteration of the machine in 2010, featuring further balanc-

ing and emotive capabilities, and most recently, a basic intelligence based around its

active vision system. The most notable modern bipedal robot, however, is likely the

Atlas robot, from Boston Dynamics. Performing complex acrobatic motions, it can
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remain stable throughout various routines [27]. It was also created as a research plat-

form, designed to be programmed and simulated worldwide. It features 3D printed

components designed to be lightweight and compact. Boston Dynamics produced

several methodologies for optimising its control via machine learning, pairing it with

modern intelligent systems.

In silica, Azarbadegan et al looked to test some of the hypotheses for how bipedalism

evolved in the natural world by evolving bipedal agents in a Sims-like system [2].

To assist in the emergence of bipedalism, they encouraged falling in their system,

as most bipedal gaits involve falling from one foot to the other. To prevent static

agents from falling without walking anywhere, they introduced a damage penalty to

the system. To further encourage bipedalism, the two limbs with the most amount

of damage were exempt from the penalty. Creatures were required to have a head

component as well as limbs. They reduced fitness for how far the head sunk from its

original height. Most of their results were “cheaters”, growing taller to increase height

and then falling further than the others. To combat this, they introduced a mini-

mum fitness to be included in the initial generation, in an attempt to produce genetic

diversity in subsequent generations through a more even fitness distribution. They

produced two successful bipeds. The galloper was a triangular creature that hopped

with its back foot, whilst landing on the front foot. The crawl-stepper balanced on

one cuboid limb and rotated its hips to crawl along on each corner of the balancing

limb. Whilst not technically bipedal, they described the behaviour as similar due to

its nature, falling onto the balancing limb over and over. Despite their bipedal agents

evolving successful gaits in a Sims-like system, their morphologies were still far from

traditional symmetrical bipedal bodies.

As well as this, Geijtenbeek et al demonstrated a method of controlling bipedal

agents using simulated muscle fibres [31]. They optimised the location, strength and

activation times of simulated muscles around a set of varying model bipedal skeletons

using a genetic algorithm. They modelled the fibres in each leg as a simple finite

state machine. To transition between states and walk, they generated a set of target

poses based on the walking gait of the current template, and then computed the re-

quired muscle excitations to move through them. They were able to produce muscle

structures supporting both walking, turning and running gaits on both human-like

and ostrich-like models. These structures also proved to be robust to external forces,

and on steep slopes. Despite achieving robust gaits in multiple bipedal morphologies,
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Figure 3.1: A high performing biped produced by the Azarbadegan et al Sims-like
system [2]. Evolved in a similar way to Sims’ creatures, it gallops forward with its
back green foot, landing on its front black foot. Its head is shown in purple, kept
high up to avoid a reduction in fitness.
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none of their agents utilised any form of neural network control beyond than the finite

state machine model.

Lehman et al investigated novelty search for bipedal walking as one of two exper-

iments to further understand the relationship between evolution and complexity [43].

They argued that the relationship between evolutionary fitness and complexity was

not linear, with complexity not always favoured by selection, citing Miconi et al

[52] and Nowak et al [59] as examples. They believed complexity to instead be an

inevitable product of random selection. They chose new individuals based on the

sparseness of their location in a novelty space filled with a selected archive of high

novelty individuals. They also employed NEAT [78] to select their agents neural net-

work controllers. They utilised two main experiments to compare fitness and novelty

search. The first of these was a deceptive maze task. Deceptive tasks are defined as

evolutionary tasks with local fitness minima designed to trap a genetic algorithm and

keep it from the global fitness peak. The first experiment featured two maps. The

first map contained lots of dead ends near the goal, whilst the second required a path

that travelled far from the goal. They measured fitness as distance to the goal, and

novelty as the difference in neural control networks. Novelty search was able to find

a solution that was three times faster and much less complicated. However, when

they unenclosed the map, removing a portion of the outer walls, novelty search failed

as it saw everywhere outside the maze as a new position. The second experiment

featured novelty search for bipedal walking. Their bipedal walker modelled had 6

actuated joints and a recurrent neural control network. They measured fitness as

distance travelled in any direction, and the novelty metric as the difference in neural

control networks. Novelty search produced more oscillatory agents able to travel a

much further distance. They did not investigate behaviour beyond forward walking.

Morphology also plays a role in bipedal locomotion. McGeer designed a walker

which travelled down a slope using gravity as its sole source of energy, moving its

legs in a natural swinging motion [51]. Dubbing this a “passive dynamic walker”, it

highlighted the potential of replacing sections of a control process with morphology.

This passive leg swinging was also very similar to the way humans swung their legs

below the knee as they walked. Paul et al investigated optimising both the the neural

network controller and morphology of virtual 3D bipeds at the same time [62]. They

controlled their bipeds using recurrent neural networks, featuring proprioceptive sen-

sor inputs for each joint and an additional haptic sensor input for each foot. Each
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Figure 3.2: The two tasks Lehman et al. used to test novelty search. (left)
The deceptive maze task forced agents to move away from the goal in order to even-
tually reach it, making it difficult for standard evolutionary processes. (right) The
bipedal agent used in the locomotion task. It aimed to travel as far from its origin as
possible without falling [43].

biped had a certain portion of mass that could be distributed through various blocks

on its body. These blocks had length, width, location and individual mass parame-

ters. Symmetry was enforced to ease task difficulty. They modelled their genotypes

as a string of floating point values encoding both the network weights and the biped’s

mass block parameters. They discovered that across their tests, the biped popula-

tions with the largest amount of distributed mass featured the highest proportions of

bipeds capable of stable locomotion. No further behaviour was investigated beyond

forward locomotion.

Collins et al investigated adding dynamic arm swinging to a bipedal walker in order

to further mimic the human gait [19]. Their walker had swinging arms attached at

the hip and an inter-leg hip spring. Searching for limit cycles that would allow for

stable locomotion, they were able to find gaits with phase, anti-phase and parallel

arm swinging. These gaits all exhibited a reduction in vertical angular momentum

from arm-less gaits. They went on to bind human subjects’ arms to test the effects

these gaits had on their metabolic energy consumption. They tested arm swinging

in phase, out of phase, bound to waist, and held to waist. They discovered that all

of these besides in phase caused greater vertical angular momentum and significant

increases in metabolic rate.
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Figure 3.3: The original passive dynamic walker designed by McGeer. It was
capable of walking motion down slopes through gravity alone [51].
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3.2 Neural Bipeds

One of the most common neural network controllers for evolving bipedalism is the

Central Pattern Generator. Central Pattern Generators are networks that produce

rhythmic output from a linear input. Delcomyn described how real pattern gener-

ators, often located in the spine, which CPGs are based on, aid the oscillation of

walking creatures via an electrical pulsation from the brain [25]. Reil et al used a

CPG network to evolve bipedal walking [64]. They controlled their walkers with ten

interconnected neurons, each with a modulating time constant. The walkers were

evolved using paired tournament selection. The genotype for the system was mod-

elled as the network weights and measured fitness as total distance from the point

of origin. Success was defined as stable walking for 50 seconds. After 100 runs of

100 generations, they achieved a 10% success rate amongst the evolved walkers. High

levels of diversity were produced amongst the successful gaits. Some travelled back-

wards instead of forwards, and many were asymmetric. They then decided to apply

a fitness bonus for oscillatory movements. This brought success rates up to 80%.

Seeking to improve robustness further, they added sensors to the hips of the walkers

and redefined their fitness as distance to signal source. This produced walkers capa-

ble of turning their hips toward the source before walking to it. Unfortunately, the

walkers gaits became unstable close to the source. No further behaviour was investi-

gated beyond forward walking and singular lateral turning. They also did not utilise

morphology to simplify their evolutionary process.

Wolff et al evolved a network of CPGs to achieve robust bipedal gaits in 3D, with

temporary support [93]. They set their CPGs period to that of a normal human walk-

ing gait, and doubled the frequency for the knee and waist joints. They then evolved

their weight values with a genetic algorithm, modelling fitness as the distance trav-

elled forward minus the distance travelled to the side. Their walkers featured both

proprioceptive and foot contact sensing. Starting with a four point support frame,

the walkers evolved to rely on the support, and all runs failed when it was removed.

With a two point frame, they were able to achieve indefinite walking, although hip

and ankle joints had to be frozen for additional stability. They also attempted to

remove the two point support after the first second of simulation. This achieved some

fast gaits, but most were unstable. They did not investigate any further behaviour

beyond forward walking.
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Figure 3.4: The CPG network and bipedal agent designed by Reil et al.
(left) The interconnected network of ten pulsing CPGs, of which four provide lateral
and sagittal output to the hip joints, and two provide sagittal output to the knee
joints. They evolved the weights of this network to make their biped model (right)
walk [64].

Vaughan et al utilised both passive dynamics and Central Pattern Generators to

produce agents with robust bipedal gaits in a 2D physics engine with adjustable

speed [85]. Noting that human bipedal motion is both dynamic and analogue, they

constructed a simulated biped modelled after a pair of human legs, with flat feet, two

gyroscopes and a CPG. They assigned each section of the leg a network, not connect-

ing them to narrow the behavioural search space. One leg was given inverse inputs to

encourage symmetrical behaviours. They used a genetic algorithm, modelling fitness

as a function of distance penalised for excessive derivation from the initial heading.

They then tested the walker to see if the combination of the CPG and evolved pa-

rameters had produced a gait capable of passive locomotion. They placed the highest

performing walker on a slight incline, and turned on the CPG. Allowing the machine

to take a single step down the slope, they then disconnected the neural control net-

work. This was successful: the walker was able to walk down the remainder of the

slope passively.

Following this, Vaughan et al investigated producing a gait with the 2D system

that would be sensitive to the CPG powering it. They first re-evolved the walker

without sensor feedback to make sure the system was as sensitive to the CPG as

possible. They then pulsed the CPG using the foot strike timing of the previous
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passive walking experiment, and placed the machine on a slight incline. They turned

off the sensors until the machine had taken ten steps to encourage the passive part of

the gait. Finally, after reconnecting the sensors, they slowly reduced the incline over

generations until the machine was walking on a flat surface. The walker that emerged

from this process was a stable machine that did not fail even after thousands of steps.

they noted that the lower half of the evolved legs swung with gravity, much like real

bipedal organisms. The gait was robust to both external and internal noise. They

could adjust the pulse of the CPG and the walker would adjust its gait to match,

demonstrating its evolved sensitivity.

Vaughan et al attempted to improve their biped further in order to walk in 3D and

on rough terrain. They added ankle joints to accommodate lateral motion. They ex-

tended the previous model to 4 separate networks in each leg for each of four walking

states: contract, swing, extend and support. Switching neurons connected the net-

works; the most active switching neuron in each leg represented the state the leg was

in. The two combined leg network sections remained unconnected. They initialised

the walkers with a contract leg and a support leg until one of the feet left the ground.

Testing them first in 2D, their passive walkers produced high fitness just from pulsing

the CPGs without evolution. The fitness on rough terrain was much lower, although

successful walkers were still produced. They also encountered a problem in which the

walker lost momentum in both legs and toppled over. In order to address this issue,

they created a fifth “stand” state to contract the non-supporting knee if the machine

stopped both legs. This then allowed them to start the walker from a standing up-

right position without having to initialise the legs as contract and support. They then

tested the walkers in 3D. They lowered the mutation rate of the genetic algorithm to

facilitate the more complex fitness landscape. The walkers still exhibited high fitness

on a flat surface and lower fitness on an irregular one. They noticed that the walkers’

feet were now capable of moving in front of each other, tripping them up. To fix

this, they implemented a foot tangle network connected to both legs, that inhibited

a neuron if it produced a torque value that would result in one leg moving in front of

the other when applied. This was determined by walker leg angle and velocity data.

This was somewhat successful, increasing the rough terrain fitness slightly. Vaughan

added a full upper body to balance atop the walker and test it further. Even with

a head, torso and passive swinging arms the walker was able to evolve a fit enough

gait to walk along a flat surface indefinitely. They did not investigate any further

behaviour beyond forward walking.
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Wiklendt et al used a spiking neural network to control 3D bipedal walkers [91].

They used a leaky integrator function in each neuron, which featured a potential

firing value that affected output. This value lowered over time but increased with

signals from nearby neurons. They evolved the networks using a mu-lambda strategy

and gave the walkers an initial nudge of force. Their walkers’ knees swung automat-

ically. Of the five runs performed, three showed stable gaits, reaching a maximum

distance of 16 metres. By measuring the timings of neuron spikes and pigeon-holing

them into intervals, they were able to demonstrate the emergence of periodic spiking

in the networks. They generated neural control networks for humanoid characters,

using only their physical parameters and a fitness function [1]. They modelled their

genotypes as weighted directed graphs, much like Sims. These were then translated

directly into neural control networks (node to neuron, edge to weight) and evolved

with NEAT. They produced neural network controllers capable of smooth motion for

a number of different humanoid morphologies, although none of them were able to

travel far without toppling.

In order to evolve walking in 3D on rough terrain, Solomon et al assigned a linear

reactive controller neural network, seen in 3.5, to each desired angle. Their walkers

consisted of 9 sections - two hips, two thighs, two calves, two feet and an upper body.

These were linked together with 8 joints, of which, the hip, knee and ankle joint pairs

were actuated. Desired angles were defined as angles in the walker model that were

chosen to be adjusted over time in order to produce motion. Seen in 3.6, their chosen

desired angles in the 2D model were the upper body, inter-leg, stance knee, swing

knee, stance ankle and swing ankle angles, highlighted in red. In 3D, an additional

desired angle was added: lateral inter-leg angle. Also seen in 3.6, the stance leg was

the leg contacting the ground, whilst the swing leg moved forward. These roles then

alternated as steps were taken. Each neural network controller was fed the inputs

seen on the left of 3.5, consisting of normalised model angles, normalised model angle

differentials (velocities calculated from the previous time-step), a boolean value rep-

resenting the condition of both feet being in contact with the floor (double-stance),

a network mutation rate, and a bias term. Normalization in this context was applied

to the model angle inputs and model angle differential inputs, transforming them

between the range of -1 and 1. All the inputs were then multiplied by a set of weights

which were evolved using a genetic algorithm and then summed to produce a desired
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Figure 3.5: The network topology and biped designed by Solomon et al.
(left) Their networks featured a simple summation of inputs, multiplied by their
respective evolved weights, alongside an evolved mutation rate, to produce a torque
value for each desired angle. (right) The model produced by them can be seen with
labelled lateral joints walking on rough terrain [77]. It also featured six sagittal joints
at the hips, knees and ankles.

value. This value was then passed through a PD control, which applied error correc-

tion to the desired value proportional to the previous error and the differential of the

previous error (P and D), in order to produce a final torque value which was then

applied to each of the joints of the model necessary to adjust the desired angle. For

the upper body and inter-leg desired angles this torque was split evenly across both

hip joints, whilst the remaining desired angles (stance knee, swing knee, stance ankle

and swing ankle) only required the torque to be applied to a single joint to adjust the

angle. The 2D joints in the model were situated at the hips, knees and ankles, with

the 3D joints adding lateral actuation to the hips and passive roll to the ankles.

Solomon et al tested four neural control network variations: Local Proportion,

where desired angle specific inputs were connected to each actuator, Fully Connected,

Sparsely Interconnected (SI), where the Fully Connected network was pruned until

fitness declined, and finally Reduced Sparsely Interconnected (RSI), where the inputs

were set to those that were prevalent in at least 80% of pruned networks. Fitness was

measured as distance travelled forwards in the X dimension. Walkers were terminated

when they either fell over (a part of their body above the knee contacted the ground)

or exceeded a given amount of torque across their lifetime, precisely 3000 units. They

modelled their genotype as the network weights across every neural network con-

troller, initialised between 0.05 and -0.05. Every generation, the genetic algorithm

simulated the population and sorted it by fitness, replacing the population (save the

top performing elite individual in 2D simulations) with offspring produced through
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Figure 3.6: Desired angles in 2D. Solomon et al chose six desired angles for their
2D model. By applying torques to the relevant joints, they adjusted these angles to
produce motion. Seen in red, the 2D angles chosen were the upper body, inter-leg,
stance knee, stance ankle, swing knee and swing ankle angles. Note that the stance
ankle angle was inverted. In 3D, an additional lateral inter-leg desired angle was
added.
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either mutation from the top 20%, random crossover from the top 20% or both. The

mutation rates for each neural network controller were also evolved over the course

of the simulation as an additional part of the genotype. The mutation rates were

initially sampled from a normal distribution with a random mean between 0.05 and

-0.05. Mutations were applied as the mutation rate multiplied by another random

normally distributed value; the result of which was then added to the genotype. As

rough terrain was generated randomly, fitness was not consistent, so they chose the

winning walker from the top 20% of the final 10% of generations. They bootstrapped

the Fully Connected walkers with successful Local Proportion neural network con-

trollers from a previous 2D physics engine simulation incrementally. From there,

they were able to prune down to the RSIL neural network controllers and produce

successful 3D agents on rough terrain. In 3D they added hip adduction and passive

ankle joints, as well as an additional neural network controller for the hip spread

desired angle. They achieved smooth 3D walking on uneven terrain with a maximum

height of 2% leg length.

Manoonpong et al built a bipedal robot that utilised powered passive dynamics and

a neural control network to adapt to different terrains [50]. Santos et al utilised mo-

tor primitives, or sub-movements, that could be combined with an arrangement of

optimised CPGs to produce quadrupedal locomotion [70]. They were able to produce

walking, turning and following behaviours. Santos et al then tested centre-crossing

CPGs for bipedal walking [71]. They centered every neuron’s activation function over

the range of its inputs. They then set the network biases to the negative sum of all the

weights, making the network maximally sensitive to change. This resulted in a pow-

ered biped with a stable gait. The biped was also stable in slight noise, although they

had to tune the biases carefully. Silva et al generated 2D bipedal locomotion neural

network controllers based on CPGs [73]. They used genetic programming on tree-like

neural network controllers to form a set of motion primitives, similarly to Santos et

al. These controllers achieved stable gaits able to adapt to curving slopes. Missura et

al utilised an on-line learning strategy based on error feedback from desired motion,

together with a CPG, to enable a bipedal robot to learn its balance in a few steps [54].

In recent years, deep learning has been applied to bipedal walking. Arguably the

benchmark for bipedal behaviour, Heess et al used their Distributed Proximal Policy

Optimisation reinforcement learning algorithm to produce bipedal agents capable of

performing complex tasks [35]. Distributed Proximal Policy Optimisation was based
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Figure 3.7: The running and jumping behaviours produced by Heess et
al. (left) Their humanoids slalomed around walls. (right) Their humanoids ran and
jumped over rough terrain and gaps [35].

on a different policy gradient algorithm, Trust Region Policy Optimisation, modified

for recurrent neural control networks and vast parallel processing. Most policy gra-

dient algorithms operate by maximising an expected sum of rewards with respect to

the parameters of a control policy. The “Trust Regions” then represented a limited

amount of change (the trust to not move too far) in policy parameters per update.

They believed task-specific rewards could be victim to over-fitting and did not en-

courage learning. They thus used a simple reward signal only based around moving

forwards, complexifying the environments the walkers were situated in instead of the

control process. Their agents had two separate neural control networks, one for their

local sensors, such as joint angles, and the other for their environmental sensors,

such as nearby terrain height. They were able to produce running, jumping and even

slalom behaviours (moving left and right around obstacles whilst moving forwards) as

the walkers travelled forwards. They also produced quadrupedal and planar walkers

capable of navigating obstacles and jumping over gaps.

Salimans et al used an Evolutionary Strategy as an alternative to Distributed

Proximal Policy Optimisation for bipedal walking [68]. They used a natural evo-

lution strategy, modelling population as sets of network parameters produced with

hyper-parameters. Each generation, the strategy evaluated a number of random per-

turbations of the parameters produced by the hyper-parameters. The results were

then combined, the gradient estimated and the hyper-parameters updated for the

next generation. To allow the algorithm to run evaluations across parallel units, they

synchronised the noise for each member of the population and transferred between

master and worker threads. They were able to match Trust Region Policy Optimisa-

tion for certain tasks, including humanoid walking, at a greater runtime. They stated

that this demonstrated the ability of simpler classic methods scaled up with modern

hardware. Their evolutionary strategy also produced more complex solutions for the
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Figure 3.8: The humanoid environments used in Salimans et al and Such
et al . (left) The basic 3D humanoid walking environment in the Mujoco engine.
Agents were only required to travel forwards without falling. (right) The hard maze
environment solved by the weighted novelty search used by Such et al. In order to
travel forwards, agents must temporarily abandon fitness in order to go around the
trap. This was difficult for standard evolutionary processes.

simpler 3D tasks, and performed better in almost half of the Atari games. Despite

their success at the humanoid walking task however, the walkers did not exhibit life-

like gaits, instead displaying shuffling behaviours with minimal motion. Conti et al

added to this work by using novelty search together with the deep evolution strategy

and explored different weightings of novelty against fitness [20]. They achieved even

higher Atari and humanoid performance.

Subsequently, Such et al used a genetic algorithm on the same problem (3D

Humanoid-v1), using two 256-unit hidden layers (matching the configuration file in-

cluded in the source code released by Salimans et al), achieving success on this task

but noting that their GA “took 15 times longer to perform slightly worse than ES”

[82]. They also noted that (while only just qualifying as a deep neural network, having

more than one hidden layer) this network contains approximately 167k parameters,

orders of magnitude greater than the previous largest neural networks evolved for

robotics tasks. They encoded these parameters using a novel method that stores,

for each genotype, an initialization seed and a list (that grows with each mutation)

of random seeds used to generate mutations to the vector of parameters. They also

applied a weighted novelty-search version of the ES, which was able to produce high

scores in a deceptive environment that required the humanoid to walk around a trap,

demonstrating that ES is more robust to parameter perturbation in the humanoid

locomotion task than both their GA and Trust Region Policy Optimization [20].
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3.3 Summary

This Chapter addresses historical bipedal systems and common methodologies used

with bipedal agents. Initially I discuss theories for why bipedalism emerged in hu-

mans - to allow more energy for endurance running, and to free the hands up for tool

use. Next I discuss notable bipedal robots ASIMO and Atlas, and some examples of

simulated bipedal systems from Azarbadegan et al and Geijtenbeek et al. I then cover

the successes of novelty search and passive dynamics in bipedal systems. Finally I

cover evolved neural network controller bipedal systems: the CPG-based walker from

Reil et al, the Linear Reactive controller neural network based walker from Solomon

et al, and most recently, the Salimans et al deep evolutionary bipedal walker. Each

of these systems are highly successful in their own right, but usually are either not

utilising their morphology to aid their gait, lack a neural control network, or lack

evolutionary process. Very few utilise all three techniques to enhance their bipedal

gaits. As such, I aim to enhance existing bipedal systems, and produce successful

bipedal agents with neural network controllers using evolutionary techniques. My

bipeds will also have symmetrical, human-like bodies, and utilise additional morphol-

ogy in a similar fashion to passive dynamic systems. The other caveat in these bipedal

systems is that most lack complex behaviour beyond forward walking. If this could

be achieved, evolutionary systems could produce the behaviours seen from machine

learning with the additional perks only seen in evolutionary systems. As such, I also

aim to evolve robust, life-like gaits and complex bipedal behaviours without any prior

bootstrapping.
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Chapter 4

Replacing Prior Bipedal
Bootstrapping with Reduced
Control Penalty and Elitism

4.1 Chapter Aims

• In this Chapter I aim to replace the 2D bootstrapping required in the Solomon

et al Linear Reactive system with fitness function enhancements, to produce

an enhanced system simple enough that it can be used as a straight-to-3D

base for the future bipedal walking works of myself and others in the academic

community [77]. This is in line with my aim to increase walker fitness.

• I also aim to produce behaviour in the system beginning to look beyond forward

walking. This is in line with my aim to produce complex behaviour.

4.2 Methodology

4.2.1 Rationale

In order to produce a starting point for myself to produce robust and complex be-

haviour in bipedal agents, I initially chose to re-implement an existing system. I chose

this as starting from a successful system would allow for more time to experiment

with potential methodologies without having to spend time on configuring results

that already exist. An alternative would have been to build my own system entirely

from scratch, but this would be more complex and also less relevant than starting

from an established point. I then chose to re-implement the Solomon system. This

was chosen as the Solomon system had achieved robust results via rough terrain us-

ing an extremely simple neural network controller type. This simple structure not
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also further demonstrated robustness of behaviour, but also left room open for future

modifications. An alternative system could have been the Reil system seen in [64],

but this would have used a more complex neural network controller; an arrangement

of ten fully connected pattern generators. The main issue with the Solomon sys-

tem was the prior bootstrapping required. Solomon et al used pre-evolved genotypes

from a 2D system to initialise the 3D walker. This meant that a large amount of

pre-processing was required. In order to use this system as a starting point that

could be easily used by future researchers, I produced a version of this system that

could be evolved from scratch in 3D. To achieve this, I chose to use fitness function

modifications to improve fitness enough that initially high-fitness genotypes were not

required. I chose to use enhancements modifying fitness functions and task rules as

these can be seen as the most direct way to influence an evolutionary system. This

can be seen from Sims, where fitness is changed in the famous Virtual Creatures sys-

tem to the control of a cube, fundamentally changing behaviour [74]. This can also

be seen from Chaumont et al, who modified the fitness function in the Sims system

in order to produce catapult behaviour [16]. They also introduced coefficients based

around agent size and complexity to the function of the original system to generate a

more diverse population to sample. An alternative would have been to use morphol-

ogy or passive dynamics as stated in my other main aim, but this would have been a

complex change to produce a simple starting point.

4.2.2 Re-implementation

In order to match the original work of Solomon et al, my system was coded in the

ODE 3D physics engine [76] [77]. To evolve walking in 3D on rough terrain, Solomon

et al assigned a linear reactive controller neural network, seen in 4.1, to each desired

angle. Desired angles were defined as angles in the walker model that were chosen to

be adjusted over time in order to produce motion. Seen in 4.2, their chosen desired

angles in the 2D model were the upper body, inter-leg, stance knee, swing knee,

stance ankle and swing ankle angles, highlighted in red. In 3D, an additional desired

angle was added: lateral inter-leg angle. Also seen in 4.2, the stance leg was the

leg contacting the ground, whilst the swing leg moved forward. These roles then

alternated as steps were taken. As in the original, each neural network controller was

fed the inputs seen on the left of 4.1, consisting of normalised model angles, normalised

model angle differentials (velocities calculated from the previous time-step), a boolean

value representing the condition of both feet being in contact with the floor (double-

stance), a network mutation rate, and a bias term. Normalization in this context was
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applied to the model angle inputs and model angle differential inputs, transforming

them between the range of -1 and 1. Again, for the upper body and inter-leg desired

angles output torque was split evenly across both hip joints, whilst the remaining

desired angles (stance knee, swing knee, stance ankle and swing ankle) only required

the torque to be applied to a single joint to adjust the angle. Seen in Figure 4.4, my

re-implementation was also configured with identical body parameters to the original

work. The walkers consisted of 9 sections - two hips, two thighs, two calves, two feet

and an upper body. These were linked together with 8 joints, of which, the hip, knee

and ankle joint pairs were actuated. I used an identical genetic algorithm to evolve

network weights. Solomon et al modelled their genotype as the network weights

across every neural network controller, initialised between 0.05 and -0.05. Every

generation, the genetic algorithm simulated the population and sorted it by fitness,

replacing the population (save the top performing elite individual in 2D simulations)

with offspring produced through either mutation from the top 20%, random crossover

from the top 20% or both. The mutation rates for each neural network controller were

also evolved over the course of the simulation as an additional part of the genotype.

The mutation rates were initially sampled from a normal distribution with a random

mean between 0.05 and -0.05. Mutations were applied as the mutation rate multiplied

by another random normally distributed value; the result of which was then added

to the genotype. The control scheme I used matched the simplest style from the

original, the Local Proportion, featuring only angle and derivative inputs relative to

the desired angle for each neural network controller. The simplest control layout was

chosen, only connecting the specific inputs for each desired angle controller, in order

to simplify the task and reduce computation. In addition, a simpler task would be

easier to scale up to a more complex one later on. When simulating in full 3D I added

hip adduction and passive ankle joints, and an additional neural network controller

with inputs for the new hip spread desired angle (torque was applied evenly across

both lateral hip joints to adjust this angle), as in the original work.

The following are re-implementation changes. For reduced computation, walkers

were given a lifetime limit of 120 seconds. This was to allow for many runs to be

executed in a shorter timespan. Whilst this tradeoff might lose some of the advanced

behaviour in later generations, I feel the diversity of genotype provided from more

runs will be more useful. Fitness was also changed slightly, now modelled as distance

travelled forwards in X divided by walker leg-span. This was chosen to give a more

aesthetically pleasing representation of the length of a walk in steps, even though it
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Figure 4.1: The network topology and biped designed by Solomon et al.
(left) Their networks featured a simple summation of inputs, multiplied by their
respective evolved weights, alongside an evolved mutation rate, to produce a torque
value for each desired angle. (right) The model produced by Solomon et al can be
seen with labelled lateral joints walking on rough terrain [77]. It also featured six
sagittal joints at the hips, knees and ankles.

required a linear transformation to compare with the original fitness values. Finally,

the masses on the thigh and shank segments were attached as separate blocks in

order to be moved around later in an extension of the task; due to their positioning

and additional scaling parameters, they are functionally identical to inbuilt masses in

ODE.

4.2.3 Control Enhancements

The following are experimental changes. In order to skip the initial 2D bootstrapping

used by Solomon et al and evolve the system in a 3D physics engine from scratch,

several control-based enhancements were utilised. The principle enhancement was

removing the control cost penalty after a given amount of time. As in the original

system, walkers were given a lifetime torque allowance of 3000 units across all their

joints to encourage efficient gaits. If this was exceeded at any point, the walker imme-

diately failed. I stopped enforcing the limit as a failure condition after 2.2 seconds.

This was chosen to allow the walkers to move more freely at the cost of lower ef-

ficiency, with the hope of producing increasingly complex, high-fitness behaviours.

Furthermore, the 2.2 second delay was chosen in order to allow walker agents to tran-

sition efficiently into a walking cycle first from a standing position, before freeing up

motion, as this initial phase was more complex. The value of 2.2 was chosen as half

of an average lifetime length value of 4.4, after running several test walkers without

the enhancement. An alternative method could have been to remove the limit across

the entire walker lifetime, but this would have potentially disrupted the initial phase
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Figure 4.2: Desired angles in 2D. Solomon et al chose six desired angles for their
2D model. By applying torques to the relevant joints, they adjusted these angles to
produce motion. Seen in red, the 2D angles chosen were the upper body, inter-leg,
stance knee, stance ankle, swing knee and swing ankle angles. Note that the stance
ankle angle was inverted. In 3D, an additional lateral inter-leg desired angle was
added.
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mentioned above. Another alternative could have been to find a more precise mea-

sure of when the transitional phase ended, but this would have required a thorough

analysis of joint forces over time, and with the high number of time-steps, the high

difficulty of the task, and high variation in agent behaviour, this would have been

very computationally intensive.

The next enhancement involved a flight phase. In walking behaviours, a flight phase

is defined as no part of the agent being in contact with the ground, hence flight. In

the original work a flight phase was not allowed, to encourage walkers not to hop

or jump forwards. I allowed a flight phase throughout walker lifetime instead. This

was chosen again in order to free up more motion for potentially more complex gaits.

An alternative could have been to only allow the flight phase after the initial phase,

similarly to the control cost, but I felt that leaving the ground immediately could

allow the walkers to fall down into a position to start cyclic motion with greater ease.

In addition, another aspect of the original system was the final section of the Lin-

ear Reactive controller neural networks, the PD Control. In the original work, these

took in a desired output value produced from summing the inputs multiplied by the

weights, and applied error correction proportional to the previous error and previous

error derivative to produce a final torque value, which was then applied to the joints

that would change the desired angle designated to the controller. Unlike the origi-

nal, I chose to remove PD controls from the networks. I used ODE’s inbuilt error

correction, setting the desired output values as the velocity parameters for the corre-

sponding hinge joints, instead of applying the torques directly. I chose to do this as

it simplified the computational process by allowing more to be left up to the physics

engine instead of introducing more parameters to the system. A potential alternative

would have been to set the torques manually based around the desired output values

without a PD control, but ODE can become unstable easily when too much force is

applied to a body, which meant such a method would require extreme precision, and

likely further complications.

Finally, the original system retains the best agent for elitism in 2D simulations. This

allows selection to always move forward and evolutionary progress to not be lost to

mutation or crossover. I changed this, introducing the usage of the top 15% being

retained as elites, in both 2D and 3D. I chose this to allow for easier travel through the

fitness landscape by maintaining a larger portion of successful agents to mutate from
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Figure 4.3: Testing different elitism percentages. Five percentage levels of
elitism are tested in smaller mini-runs in 2D, in order to choose a final value for
elitism in the enhanced system.

each generation. 15% was chosen after a series of mini-runs with a smaller population

of 100 for only 250 generations (the standard in this work is 150 for 500 generations)

were executed in 2D, with varying percentages from 5 to 25, shown in Figure 4.3.

5 to 25 was chosen as a range of five evenly spaced values in the upper 25% of the

population. I feel having any more than 25% of a population labelled as elites and

replacing less than 75% of the population slows down evolution too much, so this was

chosen as the upper limit. Figure 4.3 shows the fitness curves from these mini-runs,

with 10, 15, and 20 percent being distinctly separate from 5 and 25 percent, showing

a peak in maximum fitness. As such, I chose 15% as the middle value of this upper

class. My winner was also not selected from the elites of several final generations;

instead the fittest of the final generation was chosen, as stochastic rough terrain was

not tested.

4.2.4 Turning Behaviour

4.2.4.1 Turning Task

After forward walking, in order to achieve free locomotion in 3D, the ability to turn

is required to move in lateral directions. This is therefore the most logical next step
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Figure 4.4: My enhanced walker in ODE. Highlighting the current stance leg
in yellow during simulation, my re-implementation mostly matches the design of the
original, with identical joints and morphological parameters. The differences to the
original involved a reduction of control cost in the fitness function, increased elitism,
a flight phase and removal of PD Controls. The remaining minor re-implementation
changes are documented above. The blocks on the legs represent the locations of
attached masses mentioned at the start of Section 2. It steps forward on flat terrain.
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for behaviour after forward walking, and a good benchmark for my improved system.

Using the turning work of Reil et al as a benchmark, I also investigated turning

behaviours in the 3D walker agents produced by the improved system [64]. As in

their work, these turning behaviours were defined as a laterally displaced goal point

that the walker must reach from its starting point to achieve high fitness. Similarly

to the standard 3D walkers, the turning walkers are equipped with hip adductor

joints, passive lateral ankle roll joints, and feature a new neural network controller

for an inter-hip desired angle. Whilst Reil et al used lateral sensors and a signal

source to produce turning behaviour in their walkers, I instead rely solely on fitness

function changes. Previously basing fitness on distance travelled forwards, I now

base it around distance from a laterally positioned goal point, to encourage turning

behaviour. Defined in Equations 4.1, 4.2 and 4.3, fitness is redefined as a maximum

distance value minus the current distance of the agent to the goal point. In Equation

4.1, modelling xg and yg as the goal point coordinates, the maximum value is defined

as twice the initial distance from the walker to the goal; this was chosen in order to

maintain a positive value in most circumstances. Equation 4.2 models the standard

pythagorean calculation of distance d, modelling xc and yc as current walker position.

In addition, walkers received a bonus of 50 to fitness once they are within 2 simulation

units of the goal point. This is demonstrated in Equation 4.3, modelling f(a) as the

fitness of walker agent a. This was chosen in order to provide a vast difference in

fitness between agents that had gotten close to the point and those that had not,

encouraging turning further. High-fitness agents typically scored around 20 without

the bonus. I chose to use this fitness function methodology as it provides a simple

task for the walker to evolve without complexifying the neural network controller.

An alternative could have been lateral sensors and a signal source, as in the work of

Reil et al, but this would complexify the neural network controller with an additional

input. Another alternative could have been to modify the environment to guide the

walker into turning behaviour passively, but this would require adjustments to the

walker morphology, not currently designed with passive dynamics in mind.

M = 2
√

x2
g + y2g (4.1)

d =
√

((xg − xc)
2 + (yg − yc)

2) (4.2)

f(a) =

{
M − d + 50, d < 2
M − d, Otherwise

(4.3)
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4.2.4.2 Parameter Search

In the CPG based evolved walker of Reil et al, the points [10,3] and [10,-3] are chosen

as goal points for the signal sources [64]. No reason is given for this decision, but

as the choice of goal point requires differing turning arcs, here I examine several

goal point pairs in order to choose an ideal pair for extended testing. I examine

25 y-positive/y-negative pair permutations, using the combination of x-coordinates

[6,8,10,12,14], and y-coordinates [1,2,3,4,5] in both positive and negative. I run each

of these pairs 10 times to assess behavioural quality. Quality is assessed through two

metrics: final distance to goal point and arc roughness. Final distance to goal point

is defined as the distance between the goal point and the walker agent at moment of

failure, either through a fall or from running out of time. This is calculated identically

to Equation 4.2 in the previous section, modelling xc and yc as current position, and

xg and yg as goal position. The other quality metric I use here I refer to as arc

roughness. Seen in Figure 4.5, by taking the gradient between the walker’s positions

at each time-step and summing the differences between each gradient and the next, it

is possible to achieve an estimate of the smoothness of the walker’s turning arc. This

is specified more precisely in Equation 4.4, modelling x and y as walker position, t

as current time-step and T as total time-steps in a walker’s lifetime. Walkers with

a more varied or rough trajectory will have a greater local difference amongst arc

gradients. However, this method relies on the assumption that a smooth arc is the

ideal trajectory, something that may not be indicative of behaviour. Equally, final

distance from point may also not indicate quality of gait. It is for this reason the

two metrics are combined together. Each was chosen for simplicity due to the large

number of permutations tested. A possible alternative to distance to the goal could

be to take total distance travelled in the lateral dimension, but this would require

additional normalisation to scale the values, and could give similar scores for vastly

different trajectories. A possible alternative to the arc roughness measure would be

to fit a polynomial spline function to approximate each turning arc and then measure

smoothness via the polynomial function’s derivatives instead. However, this would

require a large deal of estimation as opposed to taking the values directly from the

simulation.

T−2∑
t=1

yt+2 − yt+1

xt+2 − xt+1

− yt+1 − yt
xt+1 − xt

(4.4)
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Figure 4.5: An example of arc roughness calculation. Viewed from above, with
red Xs representing walker position per time-step, gradients g1 to g5 are calculated
and a final roughness value R is produced for the walker trajectory by summing the
local differences between them.
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Figure 4.6: An example of 2D constrained walker gait. The 2D walker steps
forwards, transferring weight from one foot to the other.

4.3 Results

4.3.1 Walking in 2D

After applying the control enhancements and elitism changes, runs were executed in

both 2D constrained and 3D, to compare with the original work. Figure 4.8 shows the

fitness curve for the 2D constrained runs in blue. Each run contained 150 walkers run

for 500 generations, chosen as the largest number of generations for a large enough

population that could be executed within a reasonable runtime. Twenty-five of these

runs were executed for each average fitness curve. This value was chosen as slightly

over 20, the generally accepted minimum sub-group sample size for quantitative re-

search. The 2D fitness curve ascended rapidly in the first 50 generations, after which

it slowed before reaching a final value of 30 steps. Figure 4.6 shows an example of a

constrained 2D gait. Walkers were initialised with the left leg up to produce cyclic

motion easier, as in the original work. The gait began in the standard position with a

leg raised, before falling onto the leg, pushing up and falling again, stabilising into a

walk cycle. The knees remained static throughout the gait. Compared to the original,

the walkers were able to travel a similar distance.

4.3.2 Walking in 3D

Figure 4.8 also shows the fitness curves for the walkers in 3D, with lateral actuation

enabled. Walkers were again initialised with the left leg up to produce cyclic motion

easier. The 3D walkers only managed a fitness of around 8 by generation 500. This

made for a stark 75% drop in average fitness compared to the 2D constrained walkers.

The 3D walkers had a similar gait to the 2D walkers, stretching the stance knee

to push forwards, but also made use of their passive ankle joints and actuated hip

adduction joints to stabilise themselves laterally. Despite this, the 3D walkers quickly
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Figure 4.7: An example of a 3D walker gait. The walker can be seen stepping
forwards multiple times before falling sideways.

succumbed to cumulative error in this plane and fell sideways after walking a short

distance. Compared to the original work, the 3D walkers also did not travel as far

and could not walk on rough terrain. However, they still travelled around 8 steps;

this demonstrates the stability and success of their gaits. They also did not require

prior processing in a 2D engine.

4.3.3 Turning

The results of the turning parameter search can be seen in Figure 4.9. Each goal

point permutation pair was tested with 10 runs in both the positive and negative

direction. The average final distance to goal and arc roughness of each pair was then

calculated and normalised between 0 and 1 to match in scale. The perturbations with

higher x coordinates are shown to have a higher average distance to goal upon failure.

This can be assumed to be because they have further to walk forward as well as turn,

reducing the likelihood of success. The arc roughness, on the other hand, does not

follow any such trends. Finally, compared to the final distance values, most of the arc

roughness values are low, suggesting a smooth turning arc is easy to produce with this

task. This makes sense, as only one turn is required. After consulting the combined

metrics, I made the decision to investigate the [8,4] [8,-4] goal point perturbation

further (y4x08), as it was the widest turn with the longest wavelength to have both
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Figure 4.8: The 2D constrained and 3D fitness curves. The fitness curve of the
2D walker runs and the fitness curve of the 3D walker runs in steps taken. Twenty-
five runs were executed for each average fitness curve. The 3D walkers perform
considerably worse than the 2D.

metrics at a similarly low level, below 0.125.

Figure 4.10 (right) shows the paths of the two fittest agents in the population for

the fittest (out of sets of 25) left and right final permutation turning runs, compared

with those of Reil et al (left). As per the previous parameter search, these runs

featured goal points of [8,4] and [8,-4]. The left and right runs featured different

single turn trajectories. The left turn smoothly turns toward its goal over time,

whilst the right turn initially has a more straight path, turning later into its lifespan.

The right turning run did not reach its point, although it did appear to begin a

turning motion before falling, and still successfully turns to [8,-2]. I suspect this may

be due to the nature of the fitness function; by applying a large bonus when walkers

reach a distance of 2 from the point, walkers are less incentivised to travel any further

towards the point once they reach this boundary. A scaling value would have been a

better decision. In addition, the walkers are initialised with the left leg up to produce

cyclic motion easier. This could have made it harder for the walker to turn right

from its initial position. The trajectories produced are also similar to those produced

by Reil et al seen on the left side of the figure, with mine being slightly smoother.

Figure 4.11 shows the gait for the left turning run. It firstly walked forwards with
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Figure 4.9: Turning perturbations tested for each quality metric. The nor-
malised final distance and normalised arc roughness for each perturbation pair, av-
eraged across the positive and negative y directions. A permutation label of y1x06
represents the average of goal point pair [6,1] and [6,-1]. This rule then applies for
the other permutations.

51



Figure 4.10: The left/right turning paths from the work of Reil et al and
this work. (left) The left/right paths followed by the lateral sensing walkers from
their work, looking to reach points (10,3) and (10,-3), highlighted as black circles.
(right) The paths followed by the fittest left and right turning walkers I produce here
from the two final sets of 25 runs, from the origin to their goal points at (8,4) and
(8,-4), highlighted as black diamonds. They modelled the forward direction as Z and
horizontal as X, whereas I modelled them as X and Y; there is no functional difference
between the two styles.

a similar gait to previous runs, then utilised its hip adduction to start adjusting its

heading toward the goal point. Figure 4.12 shows the gait for the right turning run.

It followed a similar transition, but fell forwards before turning enough to reach its

goal point.

4.4 Contributions

The contributions made by this work are as follows:

• By introducing control enhancements to the Solomon et al Linear Reactive sys-

tem (removal of torque limit after a given time, enabling a flight phase, replace-

ment of PD controls with ODE methods), alongside an additional 15% elitism, I

demonstrated they enabled the evolution of fully 3D walking behaviours within

the system, without any prior 2D bootstrapping [77]. The enhanced system

they produce is simple enough through the Linear Reactive controller network

and the lack of bootstrapping required that it can serve as a basis for future

bipedal works. This matches my Chapter aim to remove bootstrapping and my

general aim to increase walker fitness.
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Figure 4.11: The best left turning gait. The most successful left turning gait from
the final set of 25 runs. It steps forward, adjusting its heading towards its goal point
as it moves, eventually reaching it.

Figure 4.12: The best right turning gait. The most successful right turning gait
from the final set of 25 runs. It also steps forward whilst adjusting its heading towards
the goal point, but falls having not turned enough.
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• I demonstrate the control enhancements enable the production of successful life-

like 2D constrained gaits in the enhanced system, taking as many as 30 steps

and matching the original system in fitness.

• I demonstrate the control enhancements enable the production of 3D gaits ca-

pable of as many as 8 steps in 3D in the enhanced system, although these were

not as successful as the original system.

• I demonstrate the control enhancements enable the production of single left-

right turning behaviour in the enhanced system by applying a new distance-

based fitness function. This behaviour was comparable to that seen in Reil et

al [64]. This matches my Chapter aim and general aim to produce complex

behaviour.

4.5 Discussion

A possible implication of the results here is the role of fitness functions in enhanc-

ing evolutionary systems. The control enhancements feature an adjustment to a fail

condition of the walker task, whilst the single turning experiments produce a new

fitness function based around distance to a target point. Both these changes had a

notable effect on the walker system, removing the need for prior bootstrapping and

facilitating the evolution of single-turning behaviour respectively. This can be inter-

preted as evidence that fitness function enhancements are the most important aspect

to consider when enhancing an evolutionary system. If this were the case, it could

help to focus the philosophy of further evolutionary works towards the evolution of

complex behaviour. It could also suggest alternate investigations for previous exper-

iments that had not utilised this philosophy.

Another implication of the results here is the success of the “Novelty over Efficiency”

philosophy described previously. This novelty can be useful for the bipedal walk-

ing task, particularly as balance is a constant requirement, and an agent capable of

several novel recovery methods would exhibit increased robustness. By reducing the

penalties for efficient motion in the system and allowing for a greater number of elite

agents in the population, the walkers were free to move with more force and in pre-

viously unseen ways. This can be interpreted as evidence for the application of this

philosophy to other works. This could lead to the exhibition of complex behaviour in

other evolutionary works, exhibiting a more diverse population with a larger variety
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of successful agents, which could in turn have a higher chance of producing complex-

ity, especially in 3D balancing tasks. Again, this could also provide an alternate line

of investigations for existing works.

A final implication of the results here is the potential of incremental evolution on the

system. In the original work of Solomon et al, the simple neural network controllers

are bootstrapped through several configurations to produce the final 3D walkers.

This technique is often seen in evolutionary systems and referred to as incremental

evolution, in which a larger fitness task is broken down into sub-tasks, with the fi-

nal population in one sub-task used as the initial population for the next. One of

the perks of my enhanced system is its simplicity of neural network controller and

lack of prior bootstrapping. This simplicity could make it the ideal candidate for

further incremental experiments. This could lead to more complex behaviour, such

as the turning behaviour being bootstrapped into a behaviour involving following a

moving point or avoiding an obstacle via a second sub-task. This could also lead

to the introduction of passive-dynamics into the system as a sub-task, such as the

gravity-powered walker morphology seen in McGeer [51]. This would lead to com-

plexity through morphological replacement of computation, freeing up neural network

controller-space for other aspects of behaviour.

4.5.1 Acknowledgements

My code is based on the work of Solomon et al. It is available via GitHub at

https://github.com/benjack795/solomon-reimp for exact specification and future re-

productions.
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Chapter 5

Neuroevolution of Humanoids that
Walk Further and Faster with
Robust Gaits

5.1 Chapter Aims

• After enhancing a leading bipedal system with a notably simple neural network

controller scheme, in this Chapter I aim to enhance another leading bipedal

system from Salimans et al with fitness function modifications to further test

the robustness of my methods in a context comparable to the reinforcement

learning seen from Heess et al [68] [35]. This is in line with my aim to increase

walker fitness.

• I also aim to produce robust gaits more life-like than the “shuffling” behaviour

exhibited by the majority of the gaits produced by the Salimans et al system.

This is in line with my aim to produce complex behaviour.

5.2 Methodology

5.2.1 Previous System

The enhancements featured here are applied to the Salimans et al evolution strategy

system, via code produced by Such et al for their work [82], which was already

capable of producing gaits that move 3D Humanoid-v1 agents quickly and efficiently

enough to pass the humanoid walking task. The full code is referenced at the end of

this Chapter. The humanoid walker’s goal is to travel (in any direction) as fast and

efficiently as possible, failing when its torso falls below (or above) a certain height.

Being exact, fitness is defined as the sum (over time) of four rewards/penalties that are
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computed at each timestep: a reward for linear velocity, a control cost based on energy

expended, a cost based on how hard the humanoid impacts the ground, and a reward

for standing. I ran each permutation of enhancements (and the default base-case) 20

times, each for 600 iterations (generations). I chose to use the Salimans et al evolution

strategy version due to its superior results, when compared to the Genetic Algorithm

version produced by Such et al. The architecture maps 376 inputs (humanoid state

variables: position, rotations, velocities, forces and inertia values) to 17 joint torques

- approximately 30k parameters are evolved in between as the genotype (network

weights and biases). They used a natural evolution strategy, modelling population as

sets of network parameters produced with hyper-parameters. Each generation, the

strategy evaluated a number of random perturbations of the parameters produced

by the hyper-parameters. The results were then combined, the gradient estimated

and the hyper-parameters updated for the next generation. The physical body of

the model can be seen in Figure 5.1. Each set of 20 runs took around three days to

evolve using 40 CPU cores. Each episode (walker fitness evaluation) was limited to a

maximum of 1000 time-steps for reduced computation.

5.2.2 Fitness Function Enhancements

In the Salimans et al system, they define fitness as the cumulative sum of four terms

that are computed at each time-step. The fitness function produced by Salimans

et al is modelled in Equation 5.1 as fitness F, with T being the total time-steps

across a walker’s lifetime. The first of the terms in the function is a reward for

linear velocity at time-step t, modelled as v. This term is calculated as the distance

travelled forwards by the center of mass in the x dimension since the previous time-

step. This was chosen as a positive term to give the walker a higher fitness from

travelling further forwards, encouraging locomotion. The second term, modelled as c,

is a control cost penalty per time-step. This is calculated as the sum of the squared

torque values applied to each actuator. This was chosen as a negative term to penalise

the walker for using too much force to control itself, enforcing efficiency. The third

term, modelled as i. represents a penalty for impact cost. This is calculated as the

sum of the squared external forces on each body. This was chosen as a negative term

to penalise the walker for smashing into the ground too hard, in order to prevent

jumping behaviours and focus on walking behaviours. The final parameter in the

function, modelled as a, is a bonus for remaining alive. This is a static value applied

to the rest of the function scaled to the other values and was chosen as a positive term
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Figure 5.1: The Humanoid-v1 walker used in this and previous Mujoco-
based work. The humanoid in the humanoid-v1 environment must move forwards
without falling.
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in order to make sure the walker is always receiving a positive value for continuing

despite the other penalties.

F =
T∑
t=1

vt − ct − it + a (5.1)

Even in the default case, without any enhancement, this led to the evolution of

fast, efficient walking in line with previous reinforcement learning results. However, a

considerable number of evolved gaits involved a non-life-like shuffling motion. These

walkers slid along the floor with small movements of their feet.

5.2.2.1 Control Cost Enhancement

The first enhancement I employed involved reducing the control cost within the fitness

function. In the previous Chapter, the Solomon et al system employed a torque

limit across walker lifetime to encourage efficient walking. In order to re-implement

their system without prior bootstrapping, I removed this limit after a hand-picked

time period to allow evolution to be less constrained. As such, I employ a similar

method here, sacrificing efficiency for novelty by reducing the value of the control

cost penalty in the fitness function. To encourage gaits that use more motion here

in novel ways, I applied a scalar multiplier to the control cost term, allowing for

new behaviours at the cost of generating less efficient walkers (when the multiplier

is below 1). This multiplier could be applied throughout each simulation episode or

from a set timestep during each simulation episode. Delaying was be beneficial as the

gaits evolved typically had a “catch” phase in which walkers aligned themselves from

the starting position into cyclic motions. As this catch phase required more carefully

considered motion, a reduced control cost here could produce larger motions that

would disrupt the balance of the transition to a cyclic gait. The aim of this first

enhanced set of runs was to produce novel gaits with longer walks by reducing the

control cost in the fitness function. Parameter rationale for this enhancement can be

found in the results section.

5.2.2.2 Balance Enhancement

The second enhancement I employed was a fail condition involving the balance of the

walker. In the original system, balance is described as the walker’s torso’s vertical

(z) component being outside the range of 1-2 simulation units. To improve walkers’

fitness I introduced an additional constraint for the x and y-dimensions, terminating

walkers with less upright postures. If the torso’s center of mass moved outside a circle
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centered at the midpoint between the walker’s two feet (each projected down to the

ground plane) then it was considered a failure. The circle’s radius is set as a multiple

of the current distance between the midpoint and (either) foot. The radius-multiplier

can be adjusted to give a more or less tight constraint. The aim of this set of runs

was to produce novel gaits with longer walks through stricter balance enforcement.

Parameter rationale for this enhancement can also be found in the results section.

5.2.2.3 Combined Enhancement

The two enhancements were also combined, using the most successful parameters

(control-cost multiplier and its delay, and balance-circle radius-multiplier) for each.

The aim of this was to test if such a combination would achieve superior results.

5.2.3 Rationale

Fitness function enhancements and failure conditions are investigated here as a key

methodology for improving behaviour. Fitness function enhancements were chosen as

they can be seen as the most direct way to influence behaviour in an evolutionary sys-

tem. This was seen from the previous Chapter, where a fitness function was changed

to produce new turning behaviour with the same agents. This can be seen from

Azarbadegan et al, who added a damage metric to the fitness function of their work

to produce bipedal agents in Sims’ Virtual Creatures system [2]. Failure conditions

are also investigated here for this reason. More specifically, the control cost enhance-

ment was chosen after the results seen from the previous control cost modifications

were shown to improve system behaviour enough to not require prior bootstrapping,

thus achieving similar results by sacrificing efficiency for novelty. The balance en-

hancement was chosen as balance is arguably the most important part of any bipedal

task, with potential fall failure at all times. In addition, with a fail condition already

on the Z component of the center of mass, it was a simple and intuitive step to pe-

nalise this further. Alternatively, novelty search could have been utilised here in some

form alongside fitness to encourage novelty [43]. However, this would have required a

much more extensive parameter search to find the exact weighting between the two

metrics to produce ideal behaviour. As another possible alternative, an additional

sensor setup could have been introduced to track signals to stay balanced, similarly

to the turning work of Reil et al [64]. However, due to the fully connected nature

of the network, adding a sensor input would introduce a large number of additional

parameters to the system, complexifying it.
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This Chapter uses the Salimans et al evolution strategy system based in the Mujoco

engine, despite the previous Chapter using an enhanced version of the Solomon et al

system, based in the ODE engine. This could seem like a disconnect between works;

however there was rationale behind this decision. Firstly, testing my enhancements

across multiple types of bipedal system establishes their robustness. The Salimans

et al system has a completely different neural network controller archetype, utilis-

ing a single deep network with thousands of parameters, instead of the set of simple

perceptron networks seen in the Solomon et al system. In addition, the evolutionary

process used is an evolutionary strategy, instead of the genetic algorithm used in the

previous system. The system in this Chapter models population as a distribution of

parameters as opposed to a literal population, and makes gradient updates every iter-

ation instead of traditional selection. These differences highlight the rationale to test

existing methodologies on a new system for robustness. Secondly, unlike the previous

system, this system uses an environment and a task that has already been completed

by existing machine learning methods. This provides an exact benchmark to test my

results against, achieving my other aim - highlighting the benefits of evolutionary

processes against that of reinforcement learning. Finally, the Salimans et al system

can help me test how well my methods produce novel behaviours, in accordance with

the novelty over efficiency rationale I discussed in the previous Chapter, and my gen-

eral aim of producing complex behaviour in bipeds. One of the weaknesses in several

behaviours produced by the default version of the Salimans et al system is the lack

of traditional bipedal gaits. Walkers would shuffle along the floor like a wool carpet.

This represents an opportunity to produce a more life-like gait in comparison to the

default behaviours. An alternative to this would have been to test the support poly-

gon follow-up methodology on the existing Solomon et al system, but this would be

less relevant and provide none of the advantages listed above.

5.2.4 Robustness to Action Noise

The MuJoCo 3D Humanoid-v1 environment contains a parameter for the standard

deviation (ac-noise-std) of Gaussian noise to be added to the actions taken by walkers.

To test the robustness of the evolved gaits, I evaluated evolved walkers with noise

levels (ac-noise-std) from 0 (no noise) to 1, to observe the degradation of each metric

(average speed, distance travelled and episode length, or amount of timesteps before

a walker fails) until the walkers no longer achieved (lengths long enough to be typical

of) stable gaits. The aim of this was to test whether or not the combined enhancement
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would result in more robust gaits, i.e. gaits with higher values in these metrics at

higher levels of noise.

5.3 Results

5.3.1 Control Cost Enhancement and Parameter Search

I tested the enhancements to assess their affects on the speed, distance and duration

of 3D Humanoid-v1 walks evolved using a replica of the Salimans et al evolution

strategy system, produced by Such et al for their work [82]. All configurations dis-

cussed in this Chapter are executed in sets of twenty 600 iteration runs (the largest

number of iterations that could be executed within a reasonable runtime). Twenty

was chosen as the generally accepted minimum sub-group sample size for quantitative

research. Figure 5.3 shows the results for the default (d, no enhancement) evolved

behaviours and for walkers evolved with a control-cost multiplier of 0.25. In order to

demonstrate notable results in this chapter, I utilise the Mann-Whitney U test for

significance. This was chosen as the tests all featured the effects of a single change to

the system on one continuous outcome value. As there were several tests performed

in multiple groups, the Bonferroni correction was applied as a simple way to ensure

there was little room for statistical error within the tests. When gaits are investi-

gated, the darkness at the end of the gait figures occurs as the humanoids walk out of

the range of the white floor texture. The floor texture and shadows have been altered

from the original task environment for clarity.

The value of 0.25 was chosen for the control cost reduction multiplier value after

a brief parameter search. Twenty 100 iteration mini-runs were tested at values 0.25,

0.5 and 0.75. This reduction was applied throughout the run here, to give an im-

pression of which would be ideal to apply on a delay in the later experiments. These

three test values were chosen as three evenly spaced increments at which to reduce the

control cost. The control cost was not removed completely as my aim for this Chap-

ter was to produce more complex life-like gaits, and too much motion could produce

irregular ones. Figure 5.2 shows the average speed per run for each of the mini-runs

for each of the parameter categories. Speed was chosen as the statistic to judge these

mini-runs on as walkers with reduced motion that were still capable of higher speeds

would be rarer and therefore more indicative of higher quality. The results show a

fairly even speed split between the three parameters, ranging from 0.2 to 0.7 metres

per second. p75 had the highest median and upper bounds, but not by very much.
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As such, I decided to go with p25 as it would likely have the most impact of the

three, being the largest reduction. To confirm this decision, I also directly compared

the values between the groups. Using a Bonferroni correction for the two compar-

isons and reducing the significance margin down to 0.025, I observed that neither the

p75 (Mann-Whitney U=191, n1=n2=20, p=0.40129, one-tailed, Bonferroni correc-

tion for 2 comparisons) or the p50 (Mann-Whitney U=178, n1=n2=20, p=0.27425,

one-tailed, Bonferroni correction for 2 comparisons) were found to be higher than the

p25 according to a statistical significance test.

I either applied the control cost multiplier throughout (xp25) or from timestep 150

(s150) or from timestep 500 (s500). As each of these were measured in three metrics

(speed, distance travelled, and episode time) and compared against the default, I ap-

plied the Bonferroni correction for 9 comparisons, for a reduced significance margin

of 0.0056. Timestep 150 was chosen as an estimate of the time at which the successful

default gaits were reaching cyclic motion during preliminary runs. Timestep 500 was

chosen as the halfway point for a full-length episode. Median speed (averaged over

the time of each evaluation) in the s500 runs was more than twice that in the default

runs, although not found to be statistically higher. Median distance travelled in the

s500 runs was also more than twice that in the default runs, but not statistically

higher. For episode time (amount of timesteps before a walker failed), all medians

were the maximum value (1000, the walkers lasted till the end of the simulation) and

I found no differences. Figure 5.6 includes high-fitness gaits produced by the default

and s500 runs, without action noise. The default runs’ gait (top-left) shows a shuffling

behaviour based around the knee joints. The s500 runs’ gait (top-right) also shows a

shuffling gait using the knee joints, but, unlike the gaits produced by the default, the

knees crossed over, putting one leg in front of the other. This improved gait may be

due to reduced importance of keeping energy expenditure low (at least per timestep

rather than per unit distance) once a walker had reached a cyclic motion.

5.3.2 Balance Enhancement

Figure 5.4 shows the results for the default (d) evolved behaviours and for walkers

evolved with the balance enhancement, with balance-circle radius-multipliers 1.00

(r100), 0.75 (rp75), 0.5 (rp50) and 0.25 (rp25). These values were chosen as four evenly

spaced percentiles of radius tightness for the balance constraint, scaling down from the

maximum value and producing a smaller circle for the walkers centre of mass to remain

within. Four permutations of 20 were chosen due to time and computing limitations
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Figure 5.2: Parameter Search Mini-Runs. Average speed per run for the evolved
behaviours for walkers evolved with the 0.25 control-cost multiplier throughout (p25),
the 0.5 control-cost multiplier throughout (p50) and the 0.75 control-cost multiplier
throughout (p75), for each set of twenty mini-runs of 100 iterations. Median speed
and upper bounds were slightly higher in the p75 runs, but otherwise the results were
similar, so the decision was made to use p25, after further checks revealed neither p50
or p75 were found to be faster than p25 according to a statistical significance test.
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Figure 5.3: Control Cost Results. Results for the default (d) evolved behaviours
and for walkers evolved with the 0.25 control-cost multiplier throughout (xp25), from
150 time-steps and from 500 time-steps (s150, s500): speed (left), distance (middle)
and time (right) for each set of 20 runs. The s500 runs were found to have higher
speed and distance travelled medians than the default. The s500 and s150 runs had
the highest proportions of walkers reaching the maximum length of time allocated
without failing, but neither were found to be greater than the default.

from the deep nature of the system and additional followup experiments. As each of

these were measured in three metrics (speed, distance travelled, and episode time) and

compared against the default, I applied the Bonferroni correction for 12 comparisons,

for a reduced significance margin of 0.0042. Median speeds in the rp75 and rp50

runs were more than twice that in the default runs, with the former distributions

found to be higher than the latter according to statistical significance tests (rp75

Mann-Whitney U=97, n1=n2=20, p=0.00264, one-tailed; rp50 Mann-Whitney U=92,

n1=n2=20, p=0.00169, one-tailed, Bonferroni correction for 12 comparisons). Median

distances travelled in the rp75 and rp50 runs were also more than twice that in the

default runs, with the former distributions found to be higher than the latter according

to statistical significance tests (rp75 Mann-Whitney U=91, n1=n2=20, p=0.00159,

one-tailed; rp50 Mann-Whitney U=99, n1=n2=20, p=0.00307, one-tailed, Bonferroni

correction for 12 comparisons). For episode time (amount of timesteps before walker

failed), all medians were the maximum value (1000, the walkers lasted till the end

of the simulation) except for the rp25 runs, which failed to produce a long-lasting

gait. Figure 5.6 includes (bottom-left) a high-fitness gait produced by the rp75 (0.75

radius-multiplier) runs, without action noise. The walker dragged itself forward with
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Figure 5.4: Balance Results. Results for the default evolved behaviours (d) and
for walkers evolved with balance-circle radius-multipliers 1.00 (rp100), 0.75 (rp75),
0.5 (rp50) and 0.25 (rp25): speed (left), distance (middle) and time (right) for each
set of 20 runs. The rp50 runs had the highest median speed and distance travelled.
The rp75 and rp50 were found to be faster and travelling further than the default
according to statistical significance tests. The rp100, rp75 and rp50 runs had the
highest proportions of walkers reaching the maximum length of time allocated without
failing. The rp75 runs were found to last longer than the default according to a
statistical significance test.

one leg while pumping its arm, a behaviour unseen in the default gaits. This was

likely due to the increased momentum provided to assist in the stability of the gait,

as seen from Collins et al [18].

5.3.3 Combined Enhancement

Figure 5.5 shows the results for the default (d) evolved behaviours, for walkers evolved

with the most successful control-cost and balance-enhancement parameters (s500 and

rp75) and for those evolved with the two enhancements combined (s500 combined

with rp75). As the combo was tested against the default, s500 and rp75 in three

metrics (speed, distance travelled and episode time), a Bonferroni correction was ap-

plied for 9 comparisons, narrowing the significance margin to 0.0056. Median speed

and median distance in the combined-enhancement were again more than twice those

in the default runs, demonstrating that the two enhancements do not interfere with

each other, with the former distributions found to be higher than the latter according

to statistical significance tests (speed Mann-Whitney U=79, n1=n2=20, p=0.00052,

one-tailed, distance Mann-Whitney U=74, n1=n2=20, p=0.00032, one-tailed, Bon-

ferroni correction for 9 comparisons). I found no increase in median speed or median
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Figure 5.5: Combined Results. Results for the default evolved behaviours (d) and
for walkers evolved with the 0.25 control-cost multiplier from 500 time-steps (s500),
with the 0.75 balance-circle radius-multiplier (rp75) and with a combination of the
two (combo): speed (left), distance (middle) and time (right) for each set of 20 runs.
The combo had the highest median speed and distance travelled. It travelled further
and faster than the default according to statistical significance tests, but was not
found to be further or faster than either the s500 or the rp75. The rp75 and combo
had the highest proportion of long lasting walkers.

distance between the s500 or rp75 or the combined-enhancement runs. It seems un-

likely that any difference in median (between s500 and combo or between rp75 and

combo) would be large even if found to be bigger according to a statistical signifi-

cance test. This may be because the two enhancements work in opposite directions,

in that one is a reduction in control cost, allowing greater movement, while the other

is a restriction on movement. For episode time (amount of timesteps before walker

failed), the combined-enhancement runs matched the rp75 runs in having all gaits

reach 1000 time-steps, although it is possible that increasing the 1000-timesteps limit

could reveal a difference. It should also be stated that in all three metrics, the distri-

bution of the combo more closely resembles the that of the rp75 than the s500. This

suggests that the rp75 has more impact than the s500, and potentially therefore that

balance is more important than efficiency or novelty for robustness. In the absence of

noise, the highest-fitness combined-enhancement gaits showed no noteworthy novel-

ties, with all featuring either wide-legged shuffling with no leg crossover or single-leg

dragging gaits. An example of the former can be seen in Figure 5.6 (bottom-right).
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Figure 5.6: Noiseless Gaits.(Reading from left to right, then top to bottom). Gaits
without noise. In a high-fitness gait from the default runs (top-left) the biped shuf-
fled by alternating its knees in an unnatural motion. In a high-fitness gait from the
s500 runs (0.25 multiplier from 500 time-steps, top-right) the biped put one leg in
front of the other in succession, with a much wider range than the default’s shuf-
fling behaviours. In a high-fitness gait from the rp75 runs (bottom-left) the biped
pulled itself forward on one leg and pumps one arm for momentum, something pre-
viously unseen. In a high-fitness gait from the combo runs (bottom-right) the biped
shuffled similarly to the default gait, but with a wider spread of the legs. (The
darkness at the end of the figures occurs as the humanoids walk out of the range
of the white floor texture. The floor texture and shadows have been altered from
the original task environment for clarity. ) (Videos of these gaits can be found at
https://github.com/benjack795/bipedal-methods.)
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5.3.4 Robustness to Action Noise

Figure 5.7 shows the degradation of average speed, distance travelled and episode

time with increasing levels of action noise. The combined-enhancement runs were

much more robust to action noise than the default, particularly around noise=0.4,

not dropping off in fitness in the presence of low noise as quickly as the other types.

The rp75 and s500 runs produced intermediately robust gaits at low levels of action

noise but dropped off much quicker as noise increased when compared to the combi-

nation runs.

Figure 5.8 provides a closer look at the noise results at the 0.4 level, at which the

combined-enhancement runs exhibited consistently superior results. In contrast to

the without-noise results, the combined-enhancement results now show large improve-

ments over the individual control-cost and balance enhancements according to statis-

tical significance tests. The combination runs do not drop off in fitness in the presence

of low noise as quickly as the other types. As the combination was tested against the

default, s500 and rp75 at 0.4 noise for three metrics (speed, distance travelled and

episode time), a Bonferroni correction was applied for 9 comparisons, narrowing the

significance margin to 0.0056. Median speed in the combined-enhancement runs was

more than twice that in the default runs and the combined-enhancement distribution

was found to be higher than the default runs (Mann-Whitney U=79, n1=n2=20,

p=0.00052, one-tailed, Bonferroni correction for 9 comparisons) and the rp75 runs

according to statistical significance tests (U=99, p=0.00307, one-tailed, Bonferroni

correction for 9 comparisons). Median distance in the combined-enhancement runs

was more than twice that in the default, s500 and rp75 runs, and the combined-

enhancement distribution was found to be higher than the default runs (Mann-

Whitney U=53, n1=n2=20, p=0.0003, one-tailed, Bonferroni correction for 9 com-

parisons), the s500 runs (U=88, p=0.00122, one-tailed, Bonferroni correction for 9

comparisons) and the rp75 runs according to statistical significance tests (U=70,

p=0.00022, one-tailed, Bonferroni correction for 9 comparisons). Median episode time

in the combined-enhancement runs was also more than twice that in the default, s500

and rp75 runs, and the combined-enhancement distribution was found to be higher

than the default runs (Mann-Whitney U=67, n1=n2=20, p=0.00016, one-tailed, Bon-

ferroni correction for 9 comparisons), the s500 runs (U=74, p=0.00032, one-tailed,

Bonferroni correction for 9 comparisons) and the rp75 runs (U=62, p=0.00009, one-

tailed, Bonferroni correction for 9 comparisons) according to statistical significance

tests. Figure 5.9 shows the four previous high-fitness gaits under noise level 0.4. The

69



Figure 5.7: Action Noise Scaling. Results from scaling action noise from 0 to 1
for the default (d), 500 delay (s500), 0.75 (rp75) radial multiplier and combination of
the two (combo): speed (left), distance (middle) and time (right) averaged over each
set of 20 runs. The combo runs perform the best across all three results as noise is
increased, eventually decreasing in fitness to that of the others, which begin to lose
fitness at lower noise levels.

default (top-left), s500 (top-right, 0.25 control-cost multiplier from 500 time-steps)

and combined-enhancement (bottom-right) runs produced similar gaits to Figure 5.6

but with much wider motions, flailing limbs more. The rp75 (bottom-left, 0.75 radius-

multiplier) gait arches the walker’s back a little more but otherwise remained more

stable, continuing to pump its arm.

5.4 Contributions

The contributions made by this work are as follows:

• I reduce control cost within the fitness function, based upon an adjustment to

the torque limit in the Solomon et al system in the previous Chapter, prioritising

novelty over efficiency. When control cost was reduced to a quarter of the

default, from the 500th time-step (the halfway point for a full-length episode),

median speed and median distance both doubled. I also terminate walking when

the torso’s centre of mass moves outside a circular support polygon centered at

the midpoint between the walker’s feet, based around an existing centre of mass

condition within the system and the importance of balance to bipedal tasks

overall. When the circle’s radius was 0.75 times current distance between the
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Figure 5.8: Action Noise Results. Results with action noise=0.4; for the default
evolved behaviours (d), for walkers evolved with the 0.25 control-cost multiplier from
500 time-steps (s500), with the 0.75 balance-circle radius-multiplier (rp75), and with
a combination of the two (combo): speed (left), distance (middle) and time (right)
for each set of 20 runs. The combo runs have the highest median values for all three
results. They were also found to be faster, travel further and last longer than all the
other variations according to statistical significance tests.

midpoint and (either) foot, median speed and median distance are both found

to be higher according to a statistical significance test. This demonstrates

robustness of these methods in a new system. This matches my Chapter aim

to test the robustness of my methods and my general aim to increase walker

fitness.

• I produce notable gaits using the enhancements with a more pronounced stance

and swing phase. One puts one leg in front of the other in a clearer fashion than

any gait produced using the default fitness function, getting around the issue

of shuffling behaviours. The other produces an arm pumping motion similar to

arm swinging in humans. This demonstrates my results from these techniques

approaches those produced by machine learning. This matches my Chapter and

general aim to produce complex behaviour.

• I evaluated evolved walkers with the addition of noise to their actions. The com-

bination runs do not drop off in fitness in the presence of low noise as quickly

as the other types. In contrast to the without-noise results, the combined-

enhancement gaits showed large improvements over those from the individual

control-cost and balance enhancements, with median speed, distance and time
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Figure 5.9: Action Noise Gaits. (Reading from left to right, then top to bottom).
Gaits with noise = 0.4, from the neural network controllers shown in Figure 5.7. In
the default-runs gait (top-left) the biped shuffled by alternating its knees in a more
erratic way than before. In the s500-runs gait (top-right) the biped still put one leg
in front of the other, but much more loosely. In the rp75-runs gait (bottom-left) the
biped used one arm for momentum and was not affected too heavily by the noise,
only bending its back more. In the combo-runs gait (bottom-right) the biped shuffled
on its knees with a wide stance, making more flailing motions than previously. (The
darkness at the end of the figures occurs as the humanoids walk out of the range
of the white floor texture. The floor texture and shadows have been altered from
the original task environment for clarity.) (Videos of these gaits can be found at
https://github.com/benjack795/bipedal-methods.)
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higher than the default and individual-enhancement gaits at intermediate levels

of noise according to a statistical significance test. This demonstrates the com-

bined enhancement drops off slower in the presence of low noise and matches

my general aim to increase walker fitness. The distribution of the combo runs

also more closely resembles the that of the rp75 than the s500. This suggests

that the rp75 has more impact than the s500, and potentially therefore that

balance is more important than efficiency or novelty for robustness.

5.5 Discussion

An interpretation of my results seen here and also in the last Chapter is the impor-

tance of fitness functions when enhancing an evolutionary system. I modified the

fitness function directly for my first enhancement in this work, applying a scalar mul-

tiplier to one of the terms (control cost) after a given time period. This resulted

in increased median fitness. I also introduced a new failure condition to the task,

a support polygon based constraint for walker centre of mass. This also resulted

in increased fitness according to a statistical significance test, with the combination

runs also resembling this distribution. This can be interpreted as further evidence

that fitness functions are the most important aspect to consider when enhancing an

evolutionary system. This interpretation could again help focus the methodology of

further evolutionary works towards complex behaviour by encouraging focus on fit-

ness function enhancements. It could also demonstrate the enhancement philosophy

is robust here, due to a second success across a more modern system with a different

neural network controller type and evolutionary process.

Another interpretation of my results seen here and also in the last Chapter is the

the idea of sacrificing efficiency for novelty. By reducing the importance of the con-

trol cost term in the fitness function, I allowed for more walker motion at the cost

of less efficiency. This produced a successful walking gait that put one foot in front

of the other instead of shuffling, something previously unseen in default runs of the

system. This can be interpreted as further evidence that prioritising novelty over

efficiency can lead to more complex behaviour in evolved agents in other works. Once

again this could lead to other works featuring more complex evolved behaviour in

their agents, furthering our understanding of the evolution of complex behaviour in

both agent-based systems and the biosphere. It could also further demonstrate the

robustness of the philosophy, similarly to the fitness function philosophy above, due
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to a second success across a more modern system with a different neural network

controller type and evolutionary process.

The results in this work can also be interpreted as justification for the rationale

of choosing evolutionary systems over other types of learning system. In this work

I produce results that are found to be fitter than the original system across two

separate enhancements according to statistical significance tests, which was already

capable of matching reinforcement learning methods on the humanoid walking task.

This could be interpreted as further evidence of evolutionary systems being a poten-

tial alternative to reinforcement learning on more complex tasks. This could lead to

other works choosing to use evolutionary systems, giving them the benefits of bio-

logical insight into where each behaviour has originated from in evolutionary space,

and the ability to compare that to the biosphere. This could also lead to further

works benefiting from incremental evolution, the other main benefit of evolutionary

systems. By breaking a task down into sub-tasks and using an evolutionary system

to evolve between them, a complex task can be greatly simplified without having to

worry about over-fitting to training data.

A final interpretation of my results here is the precise nature of the interaction be-

tween the two enhancements used in this work. The two enhancements can be seen as

contrasting in nature: whilst the control cost enhancement aims to encourage more

motion by reducing efficiency, the balance enhancement restricts motion to improve

robustness and stability. Whilst the results from either enhancement individually

improved fitness, when combined together they performed better in the presence of

noise as well, according to statistical significance tests. This can be interpreted as

a requirement for robustness: whilst prioritising novelty over efficiency can lead to

more complex behaviour, combining both a restrictive and a relaxing enhancement

to a fitness function can result in greater robustness instead. However, the distribu-

tion of the combination runs resembled the rp75 runs much more than that of the

s500, suggesting the ideal balance may not be an equal weighting. This philosophy

could lead to considerably improved behaviour in works involving bipedal tasks, as

robustness is essential to maintain agent balance throughout behaviour. This could

also lead to weighting metrics from the work of Conti et al for fitness against novelty

having further application balancing encouragement enhancements and restriction

enhancements for increased robustness [20].
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Chapter 6

A Simple 3D-Only Evolutionary
Bipedal System with Albatross
Morphology for Increased
Performance

6.1 Chapter Aims

• In this Chapter I aim to utilise a baby albatross-based morphology with shorter

legs and a spherical body and a square base to allow bipedal agents to tuck in

their legs and roll back onto the flat base, after toppling. This morphology is

based on the support polygon philosophy from the previous Chapter and focuses

on enforced balance to produce improved fitness in the Solomon et al system.

This is in line with my aim to increase walker fitness and also my aim to use

morphology to simplify the bipedal walking task.

• In this Chapter I also aim to utilise a baby albatross morphology featuring

shorter legs and a vastly larger sphere attachment, resulting in a rounded but

close-to-flat lower body without a square base. This morphology will also feature

modified the knees and feet, bending inwards to fold away, and allowing agents

to lift themselves off the ground like a scissor lift. This morphology is based on

the control cost penalty in the previous Chapter. The supporting large sphere

allows for more motion, aiding walker balance to produce improved fitness in

the Solomon et al system. This is in line with my aim to increase walker fitness

and also my aim to use morphology to simplify the bipedal walking task.

• I also aim to test incrementally evolving agent morphology simultaneously via

a separate morphological genotype, encoding the leg length proportions of the
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albatross walkers. Starting from both incremental high-fitness and randomly

initialised positions, I aim to return walker leg proportions back to the default

whilst retaining any fitness benefits achieved by the albatross proportions. This

is in line with my aim to use morphology to simplify the bipedal walking task.

6.2 Methodology

6.2.1 Rationale

In this Chapter I utilise morphology in order to improve fitness and produce more

successful walker gaits. The reasoning for this decision is twofold. Firstly, morphol-

ogy is often shown to be used in the biosphere - the most relevant example being the

albatross feathers seen in this paper, making it a natural solution to to the bipedal

walking problem. Feathers have been demonstrated to assist with complex tasks by

both Shim et al and Chang et al [72] [15]. Secondly, morphology allows for a less

complex neural network controller, by replacing computation for aspects of a task.

This is particularly useful in an already complex task, such as bipedal walking, which

requires constant balance. This can be seen from McGeer’s passive dynamic walker,

using its rounded feet to maintain balance [51]. The square-base morphology was

chosen in order to allow walkers to self-right with the sphere and re-align themselves

with the square base. It was conceived as a physical version of the support poly-

gon fail condition from the previous Chapter, with a polygon formed around the legs

keeping the walker balanced. The big-tucked morphology was chosen in order to allow

walkers to roll upright on a much larger sphere, and then extend the tucked legs to

re-align themselves instead, like a scissor lift. It was conceived from the rationale of

allowing novelty in motion from the previous Chapter, this time through morphology

instead of a fitness function. An alternative could have been to introduce soft materi-

als, seen from Lipson et al, producing soft body locomotion in voxel-based creatures

[48]. However, the ODE engine does not support flexible bodies. Another alternative

may have been to use an upper body with swinging arms, mimicking the albatross’

wings in order to stabilise motion, seen in human arm-swinging by Collins et al [18].

However, this would have complicated the model heavily, requiring more actuators

and therefore a more complex network.

After the previous Chapter demonstrated the success of fitness function enhance-

ments on the Salimans et al Mujoco system, for this Chapter I decided to return to

the Solomon et al ODE based system. Similarly to the previous Chapter, to avoid
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feelings of a disconnect between Chapters - I again clarify the rationale behind this

decision. Firstly, the Mujoco system featured a large and complex deep network, run-

ning across a master-worker multi-threaded implementation, designed to be run on

high end hardware, compared to the relatively simple neural network controller and

implementation of the Solomon et al system. Modifying morphology and joint angles

in the Mujoco system adds several new inputs and outputs to the neural network con-

troller, which would result in thousands of new parameters in the fully connected deep

network, increasing runtime. For this reason I chose to experiment on the Solomon

et al system first. Secondly, in this Chapter I attempted to investigate incremen-

tal morphological evolution. As the code produced by Such et al is not my own,

it would have taken a considerable length of time to rework in order to enable this

functionality in the system, particularly given the scope of the parameters involved.

Finally, the simpler neural network controller in the Solomon et al system is more

sensitive to morphological changes. Changes in morphology are harder to attribute

to a more complex neural network controller such as the one featured in the Salimans

et al system. The complex neural network controller can adapt around the changes

in morphology, instead of learning ways to utilise the morphology to replace compu-

tation, which is an aim in this thesis. An alternative to the ODE engine would be

to work the morphological enhancements into smaller changes in the Mujoco engine,

to avoid the time constraint issues. However, smaller changes would be harder to at-

tribute clear success and complexity to, compared to more clear, direct morphological

influence.

6.2.2 Previous System

In Chapter 4 I produced an enhanced version of the Solomon et al system, which this

work is built upon. I chose the their work for re-implementation as their rough ter-

rain results demonstrated robustness of behaviour, using a deliberately simple neural

network controller. I utilised four main changes in order to evolve walkers into a 3D

physics engine from scratch with the most basic control scheme. Further minor re-

implementation changes are listed in Chapter 4. The major changes were the removal

of a control cost limit after a given time period, allowing a flight phase, replacing the

network PD controls with ODE engine parameter methods and retaining a larger pro-

portion of agents for elitism. These allowed the agents to exhibit more motion rather

than prioritising efficiency. By applying these modifications to the system, I was able

to evolve successful bipedal agents in the 3D physics engine with no prior bootstrap-

ping, despite being constrained to 2D motion. I created my re-implementation with

78



the Open Dynamics Engine [76]; it featured bipedal agents configured with identical

body parameters to the original work, seen in Figure 6.1. The genetic algorithm used

was identical, with a population size of 150 for 500 generations. My winner was not

selected from the elites of several final generations; instead the fittest of the final gen-

eration was chosen, as stochastic rough terrain was not tested. Fitness was changed

back to distance travelled forwards, instead of steps, for this Chapter, as this was the

metric used in the original paper. Torque limits were also disabled for the entirety

of agent lifetimes, instead of after a given time period, due to the different mass of

the albatross morphologies resulting in different torque usages. There were also no

lateral joints or inputs in my 3D model, unlike in Chapter 4, to reduce the size of the

search space. There were also no point mass blocks on the thighs and shanks, and

all masses were initialised in the same way. My agents contained six linear reactive

controller neural networks, with inputs configured identically to the Local Proportion

neural network controllers described above. I initialised agents standing on one leg

with the other swinging upwards, as in the original, with a small upward force of 0.25

units. By starting in a swinging motion, the walkers could transition into a cyclic

stepping motion with less difficulty.

6.2.3 Albatross Morphology

The baby albatross, seen in Figure 6.2, has a set of fluffy feathers on its underbelly that

soften impacts and allow it to roll upright to regain balance. Feathers are theorised

to have emerged from scales in order to repel water and produce an airtight barrier

[26]. Their softness was also proven to assist with adjusting flight trajectory, by both

simulated [72] and real world agents [15]. After the success of enhancements on both

the Solomon et al and Salimans et al systems, I will achieve my third objective,

utilising morphology alongside control methodologies, on the Solomon system by

applying albatross-based morphologies to my system from Chapter 4.

6.2.3.1 Square-Base

I refer to the first albatross morphology tested as the square-base morphology. The

morphology featured a large sphere segment attached to the upper body, with a lower

cuboid segment attached to the sphere to give the sphere a square base. This would

resemble the lower body of a baby albatross. The legs were also scaled to half length

to allow the sphere to contact the ground. Shown in Figure 6.3, this morphology

would allow bipedal agents to tuck in their now-shorter legs into the sphere and roll
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Figure 6.1: My previously enhanced walker in ODE. My re-implemented system
mostly matches the design of the original, with identical joints and morphological
parameters. The main differences to the original involved a reduction of control cost
in the fitness function, increased elitism, a flight phase and removal of PD Controls.
The remaining minor re-implementation changes are documented in Chapter 4. It
steps forward on flat terrain.
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Figure 6.2: The Baby Albatross The baby albatross is seen here with its soft
feathered underbelly which it uses to cushion falls and roll upright [49].

back onto the flat base, after toppling. Rolling onto the square base would allow them

to realign themselves using its flat edges, keeping the legs parallel with direction of

travel. In the previous Chapter, I utilised a support polygon based methodology to

enforce balance on walkers. I terminated walker agents if their centre of mass’ x or y

position travelled outside a circular range drawn on the floor around their feet. The

polygon used the position of each foot as opposite points of the circle’s diameter. This

forced the walker to prioritise balance. The square-base morphology is based on this

philosophy, forcing the walker to roll back into place and remain balanced. To achieve

this, the sphere and cuboid were exempt from the system’s fall condition when they

contacted the ground. The original fall condition stated that when a component of the

walker that was not the calf or foot contacted the ground, the walker was terminated

for falling. In order to use the sphere as a rolling support, the sphere attachment had

to be exempt from this fall condition. As the sphere was larger than the majority of

the legs and the entire upper body, this means that the morphology was now unable

to fail this condition. Whilst this does provide a considerable advantage, it does not

guarantee higher fitness or longevity - an agent could flail endlessly without moving

forwards despite being unable to fall over. This albatross morphology was tested in

full 3D.
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Figure 6.3: The square-base morphology. (left) The square-base morphology with
the square-based sphere visible. (right) The same walker without, demonstrating the
shorter legs. The sphere will help it to roll back onto the base and re-align itself when
it tilts too far over.

6.2.3.2 Big-Tucked

I refer to the second morphology tested as the big-tucked morphology. Shown in

Figure 6.4, it featured a vastly larger sphere attachment, resulting in a rounded but

close-to-flat lower body without a square base. A small spherical counterweight was

also added inside the larger sphere. These would enable agents to roll back upright,

much like the square-base morphology. The legs were also scaled to half length as

in the square-base morphology. The main aspect of this morphology, however, was

the knees and feet. The baby albatross exhibits legs that appear to bend inwards,

to fold away when they sit; in fact this is an ankle joint, with an elongated foot. I

inverted my agents’ knee joint limits to resemble this. Aiming for this to allow agents

to similarly tuck their legs away into the larger sphere, these would allow them to lift

themselves off the ground, akin to a scissor lift. I shortened the feet to prevent the

agents from using the tucked legs to drag themselves along instead of stepping. In the

previous Chapter, I utilised a reduction on the control cost penalty in the Salimans

et al system’s fitness function, in order to allow for more motion in evolved gaits and

therefore more complex behaviour. The big-tucked morphology is also based on this

philosophy, encouraging walkers to produce more advanced motion via a supporting

large sphere, aiding their balance and allowing for larger movements without failure.

This should then exhibit more motion than the default, leading to more life-like gaits

beyond basic compass steps and shuffles. This morphology was also unable to fall due

to the sphere support not being included in the fall condition by design, and suffers

the same technicality mentioned in the square-base section above. This albatross
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Figure 6.4: The big-tucked morphology. (left) The big-tucked morphology with
the larger sphere visible. (right) The same walker without, highlighting the inverse
knees, shortened feet and white counterweight between the legs. The big sphere will
help it to roll back upright onto the tucked legs, which it can then use to lift itself
back up into a walking gait.

morphology was also tested in full 3D.

6.2.3.3 Incremental Morphological Evolution

I also tested evolving the two albatross morphologies. I created a separate genotype

for the agents’ morphology. This featured two genes: a single multiplier value, ap-

plied to both the upper and lower leg lengths, and a mutation rate. I limited the

multiplier gene value to being between the albatross leg length (multiplier value of 1)

and the default length (multiplier value of 2). In this way, walkers would be helped to

return to default leg proportions with any improvements from the albatross leg pro-

portions intact. This body genotype was simultaneously mutated and crossed over

with the same methodology as the neural network genotype. As mentioned above,

the shorter-legged albatross morphologies should evolve back to default proportions,

whilst retaining their increased fitness. I tested incrementally evolving high-fitness

agents from the two albatross morphologies with preloaded neural network and mor-

phology genotypes. I then tested agents with both genotypes randomly initialised

alongside these.
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6.3 Results

6.3.1 Base Results

I evolved each tested morphology in the previous enhanced system as a set of twenty

runs, each with a population of 150 over a period of 500 generations, chosen as the

largest number of generations for a large enough population that could be executed

within a reasonable runtime. Twenty was chosen as the generally accepted minimum

sub-group sample size for quantitative research. Unlike Chapter 4, I measured fitness

as distance travelled forwards from the origin instead of steps, to better match the

original work of Solomon et al. Agents failed when they exceeded a 60 second lifetime.

This was the only termination condition for the walkers due to their inability to be

affected by the systems fall condition. The default morphology walkers here were

rerun without a torque limit, unlike the temporary torque limit from Chapter 4, for a

fair comparison with the new morphologies also not using a torque limit. Compared

to the original work of Solomon et al, my default morphology walkers here achieved

similar fitness in 3D, although without an efficiency constraint. As seen in Figure

6.9, they were able to achieve walking gaits in 3D, and travelled for some distance

before falling over. Unlike the work of Solomon et al, however, I evolved all the gaits

in this work in a 3D physics engine from scratch with no prior processing. I chose the

work of Solomon et al for re-implementation as the rough terrain results demonstrate

robustness of behaviour. Their walkers also feature a simpler neural network controller

style than other works. In order to demonstrate notable results in this chapter, I utilise

the Mann-Whitney U test for significance. This was chosen as the tests all featured

the effects of a single change to the system on one continuous outcome value. As

there were several tests performed in multiple groups, the Bonferroni correction was

applied as a simple way to ensure there was little room for statistical error within

the tests. As fitness comparisons in this section are between 6 different perturbations

and the default, as well as an additional comparison between the incremental and

randomly initialised morphological perturbations of each of the two morphologies, a

Bonferroni correction for 8 comparisons was applied to significance tests, narrowing

the significance margin down to 0.0063.

6.3.2 Square-Base and Big-Tucked

Figure 6.5 shows the fitness of the twenty winning default, square-base and big-tucked

morphologies. The square-base morphology had a much higher median than the de-

fault, but a larger range. The big-tucked morphology had a slightly larger median
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Figure 6.5: Albatross Morphologies fitness plot. The fitness of twenty winning
agents for each set of morphologies. Def represents the default morphology, sq repre-
sents the square-base morphology and bt represents the big-tucked morphology. The
big-tucked runs had the highest median fitness value. The big-tucked runs and the
square-base runs were found to be fitter than the default runs according to statistical
significance tests.

than the square-base, and a shorter range. Both the square-base (Mann-Whitney

U=10, n1=n2=20, p=1.008e-09, one-tailed, Bonferroni correction for 8 comparisons)

and the big-tucked (Mann-Whitney U=0, n1=n2=20, p=7.254e-12, one-tailed, Bon-

ferroni correction for 8 comparisons) were found to be fitter than the default according

to statistical significance tests. Figure 6.6 shows the average fitness curves for twenty

of each morphology. The square-base and big-tucked morphologies evolved at a slower

pace but achieved final fitness values around three times higher than the default.
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Figure 6.6: Albatross Morphologies fitness curve. The average fitness curves
of twenty winning agents for each set of morphologies. Def represents the default
morphology, sq represents the square-base morphology and bt represents the big-
tucked morphology. The big-tucked and square-base runs are both fitter than the
default, taking slightly longer to reach their plateaus.
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6.3.3 Morphological Square-Base and Big-Tucked

Figure 6.7 shows the fitness of twenty winning agents for the default and each evolved

morphology type. These included square-base preloaded, square-base randomly ini-

tialised, big-tucked preloaded and big-tucked randomly initialised morphologies. The

square-base preloaded (Mann Whitney U=0, n1=n2=20, p=7.254e-12, one-tailed,

Bonferroni correction for 8 comparisons), square-base randomly initialised (Mann-

Whitney U=0, n1=n2=20, p=7.254e-12, one-tailed, Bonferroni correction for 8 com-

parisons), big-tucked preloaded (Mann-Whitney U=36, n1=n2=20, p=6.835e-07, one-

tailed, Bonferroni correction for 8 comparisons), and big-tucked randomly initialised

(Mann-Whitney U=0, n1=n2=20, p=7.254e-12, one-tailed, Bonferroni correction for

8 comparisons) were all found to be fitter than the default according to statistical

significance tests. The square-base randomly initialised had a higher median, but also

a larger range than the preloaded version. The square-base randomly initialised mor-

phology was also found to be fitter than the preloaded version according to a statistical

significance test (Mann-Whitney U=14, n1=n2=20, p=3.685e-09, one-tailed, Bonfer-

roni correction for 8 comparisons). The big-tucked morphologies had similar range

but drastically different medians; the randomly initialised morphology was found to

be fitter according to a statistical significance test (Mann-Whitney U=0, n1=n2=20,

p=7.254e-12, one-tailed, Bonferroni correction for 8 comparisons). The big-tucked

randomly initialised median was more than three times that of the preloaded version,

and more than four times the median of the default version.

Figure 6.8 shows the average fitness curves for these morphologies. All the mor-

phologies evolved at a similar pace, with the big-tucked ’s evolving slightly faster than

the square-base’s. All finished above the default, with the randomly initialised ver-

sions having higher fitness than the preloaded versions on both morphology types.

The difference in fitness between the two big-tucked morphologies was much greater

than that of the two square-base’s. Finally, I recorded gait snapshots of high-fitness

agents from the default and both randomly initialised morphologies. I took each gait

snapshot over the same time period (about five seconds) at the same point during

each agent’s lifetime. Figure 6.9 shows a gait snapshot from the default morphology.

It exhibited a stepping behaviour, but it was slow and unstable, eventually falling.

Figure 6.10 shows a gait snapshot from the square-base randomly initialised morphol-

ogy. It travelled forwards quickly with a cancan-like motion, eventually running out

of time. Its body had not evolved away from that of the standard square-base mor-

phology, remaining the same. Figure 6.11 shows a gait snapshot from the big-tucked
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randomly initialised morphology. It travelled forwards at a much higher speed than

the default, eventually running out of time. It evolved much longer legs than the

standard big-tucked morphology; these were closer to the default in length.

6.3.4 Genotype Analysis

To assess which morphologies were exhibiting the most human-like gaits, I analysed

their neural network genotypes. Seen in 6.12, I modelled my agents’ neural network

genotype as a set of network weights, a bias and a mutation rate for each of their six

separate linear reactive controller neural networks. The neural network controllers

produced desired angle values (seen in 6.13) for the upper body, inter-leg, stance

knee, swing knee, stance ankle and swing ankle angles, which were then applied as

velocity parameters to the actuators needed to change the desired angle (more details

on this in Chapter 4). The stance leg was the leg balanced upon whilst the swing

leg swung forwards during a gait. These roles then alternated as agents took steps.

I used the simplest network configuration from the original work, Local Proportion.

This fed in only the angle/derivative inputs that matched the assigned desired an-

gle of each controller. I calculated the mean of the absolute values of each input

weight in the netowork genotype, from the twenty winners for each morphology type.

This allowed me to observe which morphologies’ mean input weights had the higher

values, and therefore how much each morphology utilised each neural network con-

troller. Figure 6.14 shows the mean input weight values for the default, square-base

randomly initialised and big-tucked randomly initialised morphologies. The square-

base and big-tucked randomly initialised morphologies evolved agents with higher

upper body input weights than the default. This aligned with the square-base and

big-tucked randomly initialised gaits balancing for longer than the default gait. I also

compared the morphologies’ input weights directly without averaging. As there were

comparisons between each of the square-base and big-tucked randomly initialised geno-

types against the default for four inputs (upper body angle, upper body derivative,

swing knee angle, swing knee derivative), a Bonferroni correction was applied here

for 8 comparisons, narrowing the significance margin down to 0.0063. This demon-

strated the square-base randomly initialised upper body angle (Mann-Whitney U=1,

n1=n2=20, p=1.451e-11, one-tailed, Bonferroni correction for 8 comparisons) and

upper body derivative (Mann-Whitney U=0, n1=n2=20, p=7.254e-12, one-tailed,

Bonferroni correction for 8 comparisons) were found to be higher than the default
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Figure 6.7: Evolved Morphology Agents Fitness Plot. The fitness of twenty
winners for each of the evolved morphology types and the default. Def represents the
default, sq represents the square-base morphology and bt represents the big-tucked
morphology. A suffix of p represents a preloaded morphology. A suffix of r represents
a randomly initialised morphology. The big-tucked randomly initialised runs had the
highest medium fitness, three to four times that of the default. All variations were
found to be fitter than the default, and both random variations were found to be
fitter than their preloaded counterparts according to statistical significance tests.
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Figure 6.8: Evolved Morphology Agents Fitness Curve. The average fitness
curves of twenty winners for each of the evolved morphology types and the default.
Def represents the default, sq represents the square-base morphology and bt represents
the big-tucked morphology. A suffix of p represents a preloaded morphology. A suffix
of r represents a randomly initialised morphology. All the new variations scored higher
fitness than the default, and the random variations featured higher fitness than their
preloaded counterparts. All variations (including the default) evolved at roughly the
same pace.
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Figure 6.9: Default Morphology Gait Example. (left to right, top to bottom)
A high fitness gait from the default morphology. It steps forward with one foot at a
time, although its upper body is leaning forwards. This eventually results in a fall
halfway through a step.

Figure 6.10: square-base Morphology Gait Example. (left to right, top to bot-
tom) A high-fitness gait from the square-base randomly initialised morphology. The
square based sphere attachment is not drawn. It travels forward with a cancan-like
motion, keeping both legs half extended. It reaches the maximum allowed time for
episodes. Its morphology is short legged, similar to the original albatross morpholo-
gies.
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Figure 6.11: big-tucked Morphology Gait Example. (left to right, top to bot-
tom) A high-fitness gait from the big-tucked randomly initialised morphology. The
large sphere attachment and counterweight are not drawn. It extends its knees as it
puts its legs forward, jumping along at a very fast pace and eventually running out
of time. It has evolved longer legs, allowing it to take bigger steps.

Figure 6.12: The network topology and biped designed by Solomon et al.
(left) Their networks featured a simple summation of inputs, multiplied by their
respective evolved weights, alongside an evolved mutation rate, to produce a torque
value for each desired angle. (right) The model produced by Solomon et al can be
seen with labelled lateral joints walking on rough terrain [77]. It also featured six
sagittal joints at the hips, knees and ankles.
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Figure 6.13: Desired angles in 2D. Solomon et al chose six desired angles for their
2D model. By applying torques to the relevant joints, they adjusted these angles to
produce motion. Seen in red, the 2D angles chosen were the upper body, inter-leg,
stance knee, stance ankle, swing knee and swing ankle angles. Note that the stance
ankle angle was inverted. In 3D, an additional lateral inter-leg desired angle was
added.

93



Figure 6.14: Genotype Analysis mean input weights tables. I list the agents’
six neural network controllers (for each desired angle), upper body to swing ankle, on
the left of the tables. (left to right) The default, square-base randomly initialised and
big-tucked randomly initialised morphologies’ mean absolute input weights, each taken
over twenty runs of its type. The square-based and big-tucked randomly initialised
morphologies had higher mean upper body input weights than the default, aligning
with them lasting longer. Without averaging, they also had higher upper body input
weights than the default according to a statistical significance test. The big-tucked
randomly initialised morphologies had higher mean swing knee input weights than the
default, aligning with the big-tucked randomly initialised gait moving its legs faster
than the default. These swing knee values were also higher than the default when
compared without averaging, according to a statistical significance test.

according to statistical significance tests. The big-tucked randomly initialised up-

per body angle (Mann-Whitney U=1, n1=n2=20, p=1.451e-11, one-tailed, Bonfer-

roni correction for 8 comparisons) and upper body derivative (Mann-Whitney U=8,

n1=n2=20, p=4.86e-10, one-tailed, Bonferroni correction for 8 comparisons) were

also found to be higher than the default according to statistical significance tests.

Figure 6.14 shows the big-tucked randomly initialised morphology had higher swing

knee input weights than the default, with values found to be greater for swing knee

angle (Mann-Whitney U=48, n1=n2=20, p=5.68e-06, one-tailed, Bonferroni correc-

tion for 8 comparisons) and swing knee derivative (Mann-Whitney U=48, n1=n2=20,

p=5.68e-06, one-tailed, Bonferroni correction for 8 comparisons) according to statis-

tical significance tests. This aligned with the randomly initialised big-tucked gait

swinging its legs faster than the default.

6.4 Contributions

The contributions made by this work are as follows:

• I evolved bipedal walking agents alongside a square-based morphology based on
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the underbelly of a baby albatross, following on from the support polygon bal-

ance enforcement rationale of the previous Chapter. The simpler neural network

controller in the ODE system was chosen to be more sensitive to morphological

changes and require less run-time. This demonstrates this morphology pro-

duces agents fitter than the default according to statistical significance tests.

This matches my Chapter aim to use the square-based morphology to increase

fitness and my general aim to utilise morphology to simplify the bipedal task.

• I also evolved bipedal walking agents alongside a morphology based on the

underbelly of a baby albatross featuring tucked knees, following rationale of

more motion from the previous Chapter. The simpler neural network controller

in the ODE system was chosen to be more sensitive to morphological changes

and require less run-time. This demonstrates this morphology produces agents

fitter than the default according to statistical significance tests. This matches

my Chapter aim to use the tucked-knees morphology to increase fitness and my

general aim to utilise morphology to simplify the bipedal task.

• I evolved these morphologies alongside the neural network controller, creating a

second morphological genotype for leg length and seeding both with previously

high-fitness agents. Randomly initialising these morphology and neural network

controller genotypes instead achieved fitness up to four times higher. Whilst

this does not achieve my Chapter aim of returning to standard proportions with

increased fitness, this is still in line with my general aim to utilise morphology

to simplify the bipedal task.

• I also evolved a big-tucked randomly-initialised morphology agent with higher

input weights for its upper body and swing knee neural network controllers

according to a statistical significance test. This agent featured an extremely

fast gait as a result. This matches my aim to increase walker fitness.

6.5 Discussion

An interpretation of the results seen in previous Chapters and again here is the

novelty over efficiency rationale. The albatross morphologies are accompanied by a

complete removal of the torque constraint throughout walker lifetime. In addition,

the big-tucked morphology is based on the control cost reduction enhancement of the

previous Chapter. Whilst not a literal reduction of efficiency enforcement, the big-

tucked morphology instead enables more motion with its modified bird legs, aiming
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to lift the walker up as though it were a scissor lift. The albatross morphologies

produced higher fitness according to statistical significance tests. This could be in-

terpreted as further proof of the success of this philosophy. This could again lead to

more complex behaviour in future evolutionary works that adapt the philosophy. This

also could demonstrate the robustness of the idea further, as it has been translated

into morphological adaptations as well as direct enhancements.

Another interpretation of the results seen here is the connection between morphol-

ogy and control in the bipedal walking task. The walkers initialised with a random

morphology genotype and a random network genotype featured higher fitness than

the walkers initialised with both preloaded ones according to statistical significance

tests. The highest-fitness random agents had evolved much longer legs to take bigger

steps, whilst the highest-fitness walkers with a preloaded neural network controllers

morphologies barely changed from their starting point. This can be interpreted as

the walking task having a strong link between morphology and control - the neural

network controller local optima was surrounded by such a drop in fitness in morphol-

ogy space that changing it even slightly resulted in no longer being selected by the

genetic algorithm. This leads me to consider using more varied mutation rates across

neural network controller and body in future works, in order to overcome this gap.

This could also provide further evidence that bipedal agents are more strongly linked

to their morphology than quadrupedal ones, due to their need for increased balance.

Despite promising results, something to also note could be the choice of physics en-

gine. Methodologies based around a simulation in the Mujoco engine from Chapter 5

may not be applicable to the ODE engine. Several studies described in Chapter 2 have

investigated capabilities of physics engines for different tasks [7] [29], both of which

demonstrated that different engines are designed for different aspects of simulation,

such as numerical accuracy or constraint enforcement. The albatross morphologies

require collision between a supporting sphere component and the ground. Erez et al

demonstrated that ODE performs poorly at collision management by dropping a set

of capsules at the same time. On the other hand, the albatross morphologies also

require the larger sphere components to be constrained tightly to the body with min-

imal error, something Boeing et al demonstrated ODE to be accurate for with a long

chain of linked bodies, albeit with a certain integrator setting not used here. Despite

this, in the end, ODE was chosen as it matched the work seen in Chapter 4, a system
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with a simple neural network controller, ideally meaning results could be clearly at-

tributed to a change in morphology. Comparatively, whilst Mujoco performs better

in a large number of trials, the walker used in Chapter 5 is much more complex in

neural network controller, and as such results could be partially attributed to neural

network controller adaptation instead. In addition, whilst the changes are similar

in nature they vary in implementation. Chapter 5 uses fitness function changes and

fail conditions, whilst here I use a change in morphology. I hope these motivations

outweigh any differences potentially incurred through the change from Mujoco to

ODE.

6.5.1 Acknowledgements

My code is based on the work of Solomon et al. It is available via GitHub at

https://github.com/benjack795/solomon-reimp for exact specification and future re-

productions.
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Chapter 7

Evolving Bipedal Walkers for
Turning and Pursuit

7.1 Chapter Aims

• In this Chapter I aim to produce pursuit-turning behaviour in the evolved alba-

tross walkers from the previous Chapter. This will follow on from the previous

turning behaviour investigated in Chapter 4 and to my knowledge, be a unique

behaviour in evolved bipedal systems, approaching the level of behaviour seen

from Heess et al [35]. This is in line with my aim of producing complex be-

haviour.

7.2 Methodology

7.2.1 Rationale

After producing higher fitness via the big-tucked albatross morphology in the pre-

vious Chapter according to statistical significance tests, I aimed to use this robust

morphology to extend the single-turn behaviour produced in Chapter 4 into multi-

turn behaviour, in pursuit of a moving target point. As mentioned in Chapter 4, I

believe turning is the next logical task to aim for after forward walking, as it is re-

quired to move freely in 3D as a bipedal agent. Multiple turning extends this further

and produces more complexity. Choosing multiple turning as the next behaviour to

produce is also useful for testing systemic response to sensory input. This can be seen

from Reil et al, who produced lateral turning behaviour following on from forward

walking in their CPG-based system in order to test sensory response [64].

Unlike the previous Chapter, this new task mainly requires a change in fitness function
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and not morphological changes. Thus, it may seem prudent to return to the Salimans

et al deep learning for the relevance it provides. However, in the end I decided not to

do this for a number of reasons. Firstly, turning behaviour had already been evolved

on the Solomon et al system in Chapter 4. This meant I already had an estimate

of the capabilities of the system to evolve turning based behaviours, compared to

the other system, and was more likely to produce complex results than an untested

system. In addition, I want morphology to remain a factor in future walkers along-

side complex evolved behaviour, something the Salimans et al system is less suited

for with its complex neural network controller. Not many works utilise morphology

alongside evolved bipedal locomotion, and if I can achieve this, it can help to further

demonstrate the value of morphology for producing complex behaviour. An alterna-

tive would be to attempt the new fitness function on the Salimans et al system, but

as mentioned, this would be less useful and less likely to produce results immediately.

7.2.2 Pursuit-Turning

In order to produce pursuit-turning behaviour with the big-tucked walkers, I adjusted

the fitness function of the system, carrying on from the rationale in Chapters 4 and 5

of fitness being the most direct way to influence an evolutionary system. In addition,

I re-enabled the 3D inputs, joints, and lateral hip neural network controller. The 3D

inputs were re-enabled to provide additional control in the lateral dimension as in

the original turning experiment in Chapter 4. Previously, fitness was the distance

travelled forwards in the x dimension. To reward pursuit, I modified the function to

be a cumulative value for closeness to a target point per time-step. Precisely, this

was modelled as the total of 15 simulation units minus the distance from the target

point, divided by 10000, for every time-step. The final fitness function can be seen in

Equation 7.1, modelling f as fitness, t as the current time-step, d as the distance from

the walker to the target point at a given time-step, and m as the number of moves

the walker has achieved. The simulation time-step size was set to 0.005s; walkers

were allocated a 60s lifetime; this meant there were 12000 time-steps in a walker’s

lifetime. The walkers were also equipped with an additional network input. This was

a sensor, which gave a reading from 1 to 8 based on the target point’s heading from

the walker’s position. In order to achieve this, the difference between the walkers

heading and the heading of the goal point from the walker is calculated and then

the sensor value is assigned based on which of the 8 segments of a complete rotation

the resulting angle falls within. I initialised the target point 4 simulation units in

front of the walker, requiring a brief walk forward before turning could begin. When
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the walker’s body (not counting the large sphere attachment) got too close to the

target point (closer than 1 metre), the target point would move a quarter of the given

wavelength forward in x and a given amplitude either to the left or the right, seen

in Figure 7.1. 1 metre was chosen for the distance margin as simplest unit for a

baseline experiment. However, this resulted in a cheating behaviour - getting as close

to the target point as possible and stopping, without getting so close that it moved

it. To remedy this, I added a large bonus to the cumulative score for each time the

agent moved the target point, such that an agent that had moved the target point

would always score higher than one that had not. Precisely, this was an additional

15 multiplied by the number of moves the target point had made, again divided by

10000 for scale, every time-step. This bonus would thus be zero for walkers that had

not moved the target point, and would then increase in a linear fashion each time the

target point was moved.

f =
12000∑
t=1

(15 − d(t) + 15m)

10000
(7.1)

The parameters in Equation 7.1 are chosen for a variety of reasons. The first terms

in the equation are 15-d(t). These terms were used to produce a distance-based value

for the agents, scoring them on how close they were to the target point. 15 was chosen

as as a value much larger than the initial distance to the point, almost 4 times larger.

The chances of the walker being more than 15 simulation units away were slim given

the distance walkers had travelled forward in Chapter 4 around the same distance.

Any larger and the values produced would be large and disproportionate compared

to fitness values in Chapter 4, any smaller and they could be negative, producing

potentially confusing figures. In this way, distance at time-step d(t) could then be

subtracted from 15 to produce a value that increased based on how close the walker

was to the point, and would be very unlikely to be negative. A possible alternative to

this methodology would have been to sort walkers inversely to their fitness, but this

would have made the function more complex to scale when the bonus term was added

later on. The next term in the equation was 15m. This term was chosen as a bonus

value for each time the point was moved, ensuring a score with more moves would

always produce a higher value than one with less moves, with a bonus of 15 for each

move being equal to the highest score possible from the distance term. Alternatively,

the number of moves could have been used as a fitness score, but this would lack

differentiation in strategies with the same number of moves, which could vary vastly

in behaviour. This in turn could cause the system to struggle to evolve more nuanced
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behaviours. The final term in the function is 10000. This was chosen in order to scale

the values to a more appealing range visually. As the function sums fitness values

across the 12000 time-steps in a walker’s lifetime, values could easily reach this order

of magnitude and higher. 10000 was chosen as the scaling value as it was the nearest

order of 10 to 12000. Alternatively, 12000 could have been used directly to produce

something closer to an average fitness score, but this was decided against to produce

values that would require less rounding.

In addition there are two other parameters that are explained here. The first of these

were the coordinates chosen for the target point from the initial walker position. The

position chosen was [4,0], a point 4 simulation units forward from the walker’s initial

position. This point was chosen in order to allow the walkers to settle into a for-

ward gait before turning, which is easier then turning immediately. The value of 4

specifically was chosen as walker legspan was around 1.2. As such, a distance of 4

would equate to around 4 steps, or 2 full gait cycles. Alternatively a distance of two

could have been used for 1 complete cycle, but due to the difficulty of the task, 2 was

chosen, in case the first was achieved by cheating in some way.

The final remaining parameter is the range chosen for the sensor input added to the

walkers. Walkers receive an input from 1 to 8 based on where the point is in relation

to the walkers heading. 1 to 8 was chosen as most compasses have 8 main directions

on them, so it made sense to split the sensor range into 8 regions. A higher sensor

resolution would have made the input more complicated than necessary, making it

more difficult for the neural network controller to map it to behaviour. Alternatively,

a lower input, for example 1 to 4, would have lacked the information to discern be-

tween a slight turn away, something achievable by leaning whilst stepping, and a large

turn away, requiring a full turn from several sideways motions and steps. These two

tasks require vastly different amounts of motion, and as such it was felt they needed

differentiation.

As mentioned above, when the walker agent is less than one simulation unit from

the target point, it moves away in a zigzag pattern, crossing back and forth across

the x-axis whilst increasing in x. This pattern can be seen in Figure 7.1 below. In

order to follow the point, the walker must exhibit turning behaviour. There are two

main parameters in this pattern: wavelength and amplitude. Wavelength is the dis-

tance travelled forwards in X after one complete iteration of the zigzag pattern. It
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Figure 7.1: The turning task layout. The walker (bottom-middle) had to follow the
black target point, starting from a little in front of it, as it moved back and forth across
the x-axis and away, forcing it to turn back and forth. I varied the amplitude (red)
and wavelength (white) of the pursuit pattern. Fitness was measured as cumulative
inverse distance to the target point per time-step, with an added bonus for the total
amount of times the target point had been already moved.

is named wavelength as it represents the full length of the pattern, viewing it from

above as a wave. This full pattern is a move to the left, then back to the center, then

right, and then back to the center again. Wavelength is represented by the white line

in Figure 7.1. The other parameter is the amplitude, which is the maximum distance

the zigzag pattern travels laterally in y away from the x-axis, in both directions. It is

referred to as amplitude as it is the peak value the pattern travels in y, when viewing

the zigzag pattern as a wave from above. Amplitude is represented by the red line in

Figure 7.1. To analyse turning behaviour further, I produced multiple perturbations

of this system with varying amplitude and wavelength parameters.
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7.3 Results

I tested a range of amplitude and wavelength combinations to produce pursuit-based

turning behaviour. For each permutation I launched 20 runs of the system, each with

a population of 150 for 500 generations, chosen as the largest number of generations

for a large enough population that could be executed within a reasonable runtime.

Twenty was chosen as the generally accepted minimum sub-group sample size for

quantitative research. I assessed how many times each walker made the target point

move away from it, which is henceforth referred to as the number of “moves”. Walkers

were terminated after 60s.

Figures 7.2 and 7.3 show the maximum number of moves from each set of 20 for

each permutation of the amplitude and wavelength parameters. When varying am-

plitude, there was little variance at most amplitudes besides amplitude 1, in which

the smallest wavelength, 4 featured a high number of moves. This can be explained

as being due to the proximity required to move the target point. The target point

moved away when walkers became less than 1 metre from it. Therefore a walker

with a amplitude of 1 could walk straight down the middle with little deviation and

move the target point regardless. All wavelengths were still able to move the target

point at least three times (equivalent to two turns) at high amplitudes. No permu-

tation dropped below 2 moves (equivalent to one turn). When varying wavelength,

the shortest amplitude was able to move the target point more than five times at

multiple wavelengths, decreasing in moves as wavelength increased. The runs with

a amplitude value of 2 were able to move the target point five times (four turns) at

wavelength 16. All permutations achieved at least two moves.

Figures 7.4 and 7.5 show the mean number of moves from each set of 20 for each

permutation of the amplitude and wavelength parameters. When varying amplitude,

only the lowest amplitude produced a mean of more than four moves. The lower wave-

lengths were again the slowest to fall into the lower values as amplitude increased.

Almost all the values were below two: a much lower set overall when compared to the

maximum values. When varying wavelength, again the lowest amplitude produced

the highest number of moves, and the lower amplitudes in general featured higher

moves than the rest at lower wavelengths. This large gap between maximum values

and mean values demonstrated the difficulty of the task through the scarcity of high

moves.
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Figure 7.2: Maximum Moves per Amplitude. The maximum number of moves
for each set of 20 agents for each wavelength parameter, at amplitudes 1,2,3,4 and 5.
There are no obvious trends besides some amplitude 1 runs having higher maximum
values than the rest, suspected to be due to the nature of the task - a distance less
than 1 is required to move the target point, meaning very little turning is required at
amplitude 1.
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Figure 7.3: Maximum Moves per Wavelength. The maximum number of moves
for each set of 20 agents for each amplitude parameter, at wavelengths 4,8,12,16 and
20. The amplitude 1 runs slowly decrease in maximum moves as wavelength increases;
the others remain the same throughout.

I also analysed the walking paths taken by agents from the the runs with a wavelength

of 16. I chose this wavelength for further analysis as it featured multiple double-turn

behaviours. The path taken by the best of each of these sets of 20 runs is seen in

Figure 7.6. The amplitude 1 and 2 agents were able to make more than two turns; 1

in particular had an impressive wave-like arc, despite requiring little turning motion

overall due to the low amplitude. The best evolved agent at amplitude 1 also ap-

peared to be heading in the correct direction to continue its gait, as though limited

only by the time constraint. The remaining higher amplitudes were also all able to

make 2 turns, as seen by their initial turn toward and then second turn away from

their peak values. Interestingly, amplitude 4 adopted a different turning strategy to

the other four, bouncing on the spot to turn without moving, as seen from the sharp

point in its curve.

Finally, I display several gaits from the higher fitness wavelength/amplitude per-

turbations, featuring several multiple-turn behaviours. These were a1w4, a2w4, a3w4,

a1w16, a2w16 and a3w16. The lower amplitudes of the 4 wavelength were chosen for
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Figure 7.4: Mean Moves per Amplitude. The mean number of moves for each set
of 20 agents for each wavelength parameter, at amplitudes 1,2,3,4 and 5. The lower
wavelengths produce higher moves at lower amplitudes, then decrease in moves until
they match the others at higher amplitudes.

analysis as they exhibited high maximum and mean numbers of moves. Meanwhile

the 16 wavelength lower amplitudes were chosen for analysis as they exhibited mul-

tiple interesting double-turning behaviours. Figure 7.7 shows the gait of the a1w4

perturbation. This agent walked forward for a long distance, forcing the target point

to move several times without having to exhibit large turning motions, due to the low

amplitude. Eventually it veered off to one side. Figure 7.8 shows the gait of the a2w4

perturbation. This agent stumbled for the first part of its lifetime, before settling into

a stepping motion. It then turned away to the left and back again toward the centre

and then the right. It was unable to turn left again and veered off. Figure 7.9 shows

the gait of the a3w4 perturbation. This agent made a wide turn to the left and then

back to the right through the centre, before being unable to turn back again. Figure

7.10 shows the gait of the a1w16 perturbation. This agent turned slightly more than

the agent with the same amplitude and a wavelength of 4 did at the lower amplitude,

eventually stopping after walking forwards for a long period of time. Figure 7.11

shows the gait of the a2w16 perturbation. This agent turned away from the x-axis

to the left and then back again, across the centre, before remaining on the right side

until the end of its lifetime. It stumbled less than the a2w4 perturbation. Figure
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Figure 7.5: Mean Moves per Wavelength. The mean number of moves for each
set of 20 agents for each amplitude parameter, at wavelengths 4,8,12,16 and 20. The
amplitude 1 runs mean value starts notably higher than the others and decreases to
match them as wavelength increases.
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Figure 7.6: The highest fitness gaits at the 16 wavelength. The highest fitness
gait from each amplitude’s set of 20 runs, with a wavelength parameter of 16. Each
line represents the walker’s path viewed from above, starting from 0,0 and following
the target point in a zigzag motion. The amplitude 1 and 2 agents were able to make
the most turns, with the lowest amplitude managing five. The remaining higher
amplitudes were also all able to make two turns, as seen by their initial turn toward
and then second turn away from their peak values. Amplitude 4 bounced on the spot
to turn without moving, as seen from the sharp point in its curve.
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Figure 7.7: (left to right, top to bottom) The highest fitness gait for the
a1w4 perturbation.
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Figure 7.8: (left to right, top to bottom) The highest fitness gait for the
a2w4 perturbation.
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Figure 7.9: (left to right, top to bottom) The highest fitness gait for the
a3w4 perturbation.

111



Figure 7.10: (left to right, top to bottom) The highest fitness gait for the
a1w16 perturbation.
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Figure 7.11: (left to right, top to bottom) The highest fitness gait for the
a2w16 perturbation.
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Figure 7.12: (left to right, top to bottom) The highest fitness gait for the
a3w16 perturbation.
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7.12 shows the gait of the a3w16 perturbation. This agent made a wide turn away

from the axis and back again before veering off. This perturbation matched the a3w4

perturbation.

7.4 Contributions

The contributions made by this work are as follows:

• I evolved walkers in my enhanced re-implementation of the Solomon et al Linear

Reactive system from Chapter 4, together with my high-fitness big-tucked al-

batross morphology from Chapter 6, on a pursuit-based turning task, designed

as an extension of the single-turn behaviours produced in Chapter 4. This was

chosen instead of the Salimans et al system to further demonstrate the utility

of morphological changes by retaining them alongside complex behaviour. Ex-

plicitly, this demonstrates the pursuit-turning task produces walkers capable of

producing four consecutive turns, and two turns at high amplitudes, in pursuit

of a moving point. The pursuit-based turning behaviour evolved here is also an

example of complex behaviour that, to the best of my knowledge, has not been

attained previously in evolved bipedal walkers. This was difficult previously as

traditional bipedal agents have a high center of mass and feet close together,

making them tricky to balance alongside other complex tasks. The behaviour

resembles the the slalom behaviour produced by Heess et al. This matches my

Chapter aim to produce pursuit-turning behaviour and general aim to produce

complex behaviour.

7.5 Discussion

A possible interpretation of this work alongside previous Chapters is the importance

of using fitness functions to enhance evolutionary systems. In order to evolve turn-

ing behaviour, I applied a new fitness function based around cumulative distance,

similarly to Chapter 4. This resulted in walkers exhibiting as many as four turns in

pursuit of a point. This could be interpreted as further proof of the value of this

philosophy. This could in turn lead in to further evolutionary works using this phi-

losophy to produce more complex behaviour. This could also suggest fitness function

modifications are the best method to produce turning behaviour, as this is the second

Chapter to succeed in producing turning behaviour with a new fitness function.
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Another possible interpretation of this work is the implications of producing be-

haviour similar to that of Heess et al. The zigzag-like turning behaviour produced

by my turning task is very similar to the their slalom behaviour [35]. This could be

interpreted as a step towards matching their bipedal behaviours produced through

reinforcement learning. This could in turn lead to further works designing tasks sim-

ilar to the one featured here to create more complex bipedal behaviour seen from

their work, such as running or climbing. This could strengthen the rationale men-

tioned in Chapter 4 and here further, that turning is the next task to aim for after

forward walking, as the successful walker agent system was able to produce turning

behaviours easily with a new function, connecting the two tasks.

A second more important conclusion I can draw from this interpretation of results

is the renewed use of evolutionary systems. Evolutionary systems have historically

struggled to match the behaviours of reinforcement learning on bipedal tasks, if not

in fitness, then definitely in gait and behaviour. The behaviour produced here could

begin to lay out a road-map for future evolutionary systems to build upon with similar

techniques, to achieve more behaviours produced by reinforcement learning (and per-

haps some not yet produced). Given the nature of evolutionary systems to be easily

incremented through several tasks, this could be a matter of seeding the population

with high-fitness turning agents and utilising a new fitness function. This would also

benefit from the additional biological insights of evolutionary processes unavailable to

reinforcement learning, potentially teaching us more about the evolution of bipedal-

ism in the biosphere.

A final interpretation of this work was the similarity in results amongst walkers at

higher amplitudes. Whilst there were no trends across the entire dataset described

above, Figure 7.2 shows the max number of moves for each permutation by amplitude

experiences little variation in the higher amplitudes compared to the lowest one, with

ranges of around 2.5, compared to the highest range at around 15. This pattern is

also seen much more noticeably in Figure 7.4, the mean number of moves for each

permutation by amplitude. Here the range of values gets visibly smaller as amplitude

increases, in a linear fashion, from a range of around 4 to a range of around 0.5.

Finally in Figure 7.6, amplitudes 3, 4, and 5 all exhibit similar trajectories compared

to 1 and 2. The top three amplitudes all make a single sharp turn and then continue

their heading, not turning a second time.
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This could be interpreted in several ways. Firstly, as described in the previous sec-

tion, this could be due to the lesser amplitude walkers not having to turn as much

as the distance to move the point matches the lowest amplitude, 1. If this was the

case, it would demonstrate the importance of the threshold distance parameter to

the turning task, linking it directly to the style of turning behaviours that emerge.

The lack of variety at high amplitudes could also be due to the nature of longer turns

requiring more walking and balance. This could demonstrate that turning as a be-

haviour will always produce less variety at higher amplitudes, and that turning tasks

may benefit from the assistance of a novelty methodology to produce larger turns.

The interpretation that I find the most interesting however, is a potential ideal gait

difference between the upper and lower amplitudes. When the lower amplitudes need

to turn to face the point, the difference in heading is much smaller than at a higher

amplitude. As such, the walkers could achieve a turn by simply leaning one way

whilst walking, compared to having to make several lateral stepping motions for a

sharper turn. This would explain the divide between the upper and lower amplitudes

and demonstrate that different turning behaviours are optimal for different styles of

turn for this task. Whilst the gait figures above do not necessarily reflect this be-

havior, the trends indicated from the results figures cover the entire sets of runs for

each perturbation, and could still validate this interpretation. This could lead to new

ways of approaching complex bipedal behaviour. The gap between these two distinct

groups could be bridged with incremental evolution, starting with high fitness agents

for the lower amplitude turns and seeing whether or not incrementing up to the higher

amplitude turns is easier than evolving the higher amplitudes outright. If this were a

success, it could then lead then lead to a break down of other bipedal tasks into easier

incremental sub-tasks and potentially a new wave of complex behaviour in evolved

bipedal agents.

7.5.1 Acknowledgements

My code is based on the work of Solomon et al. It is available via GitHub at

https://github.com/benjack795/solomon-reimp for exact specification and future re-

productions.
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Chapter 8

Incrementally Extending the
Turning-Pursuit Task

8.1 Chapter Aims

• In this Chapter I aim to improve the pursuit-based turning behaviour task from

the previous Chapter using incremental evolution, after the pursuit-turning task

produced two separate classes of behaviours that could potentially be incre-

mented between. This could mean higher amplitude behaviours can be pro-

duced easier incrementally than from scratch. This is in line with my aim

to highlight the merits of evolutionary processes and also my aim to produce

complex behaviour.

8.2 Methodology

8.2.1 Rationale

In the Solomon et al system, the highest fitness 2D neural network controllers were

incrementally loaded as the starting population for the 3D engine neural network

controllers. This proved to be a success, and even though I enhanced the system

without prior bootstrapping in Chapter 4, the strength of the methodology was still

notable. I also observed success from works such as Stanton et al [79] and Mouret

et al [58] for incremental evolution on complex tasks. Finally, I decided to produce

a final in-depth investigation of incremental evolution after the results of my most

recent successful task, novel pursuit-turning behaviour. This task evolved two distinct

behaviours for low and high amplitude, leading me to believe I could use incremental

evolution to bridge the gap between them, and therefore potentially produce high

amplitude behaviours easier than evolving them outright by scaling up. This also
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would enable me to fulfil my general aim of highlighting the merits of evolutionary

techniques over other methods for bipedal behaviour.

8.2.2 Incremental Pursuit

Achieving this bridge involved varying the amplitude parameter of the pursuit-turning

task from the previous Chapter over each generation of the genetic algorithm. Fol-

lowing Equation 8.1, modelling g as the current generation, G as the total number

of generations and M as the maximum amplitude, I linearly scaled amplitude a per

generation up to the maximum value, over a period of half the total generations. I

then maintained maximum amplitude for the remaining generations. In the previous

Chapter, one of the main theories considered from the results of different perturba-

tions of amplitude and wavelength was the contrast between high and low amplitude

behaviours. Walkers at lower amplitudes were exhibiting different trajectory styles

to those at higher amplitudes, suggesting the ideal method of locomotion is different

between the two. The equation in 8.1 scales the amplitude value linearly up to a max-

imum at half generations, to see if a slow transition between the two is easier than

evolving the more difficult higher amplitude behaviours outright. Half generations

was chosen as the switching point in order to provide an equal amount of both incre-

mental linear scaling and standard evolution, allowing for the system to maintain the

best parts of each with an equal balance in the run-time available. I speculate that

by evolving walkers at smaller amplitudes first, it may be easier to evolve turning

behaviour at higher amplitudes later. I applied this to all the same perturbations as

the standard version of the task to accurately assess any improvements in fitness or

behaviour.

a(g) = M · min

(
1,

2g

G

)
(8.1)

8.3 Results

I tested a range of incremental amplitude and wavelength combinations to produce

improved pursuit-based turning behaviour, each matching the permutations of the

previous paper for comparison. For each permutation I launched 20 runs of the sys-

tem, each with a population of 150 for 500 generations, chosen as the largest number of

generations for a large enough population that could be executed within a reasonable

runtime. Twenty was chosen as the generally accepted minimum sub-group sample

size for quantitative research. I assessed how many times each walker made the target
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point move away from it, which is henceforth referred to as “moves”. Walkers were

terminated after 60s. In order to demonstrate notable results in this chapter, I utilise

the Mann-Whitney U test for significance. This was chosen as the tests all featured

the effects of a single change to the system on one continuous outcome value. As

there were several tests performed, the Bonferroni correction was applied as a simple

way to ensure there was little room for statistical error within the tests.

Figures 8.1 and 8.2 show the maximum number of moves for the incremental versions

of each set of 20 for each permutation of the amplitude and wavelength parameters.

When varying amplitude, the main trend was a decrease in number of moves as am-

plitude increased. Again, I expected this as greater amplitudes required deeper turns.

No points on the figures were below 3 moves (two turns), demonstrating the system’s

ability to frequently evolve two-turn behaviour. When varying wavelength, there were

no standout trends. The amplitude 1 runs decreased in moves as their wavelength

size increased. Compared to the standard runs, the incremental runs were similar,

with the only difference being the lowest values all being above 2 for the incremental

perturbations. Figures 8.3 and 8.4 show the mean number of moves for the incremen-

tal versions of each set of 20 for each permutation of the amplitude and wavelength

parameters. When varying amplitude, there were no real trends besides some higher

values at amplitude 1. Most of the mean values remained between 1 and 2 moves.

When varying wavelength, there was a very slight upward trend toward the higher

wavelengths. Compared to the standard runs, the incremental values were clustered

slightly closer together by amplitude and slightly further apart by wavelength.

Figures 8.5 and 8.6 show the difference between the incremental and standard runs for

each permutation, for both maximum and mean values. Comparing maximum values

of each set of 20, 8 of the 25 incremental permutations had a higher maximum value

than the standard. Only 2 of the permutations had a lower value, which were both

in the higher amplitudes. The lowest amplitude exhibited the greatest difference,

presumably as it had the highest number of moves to start with. All the amplitudes

apart from 5 had at least one wavelength that had 2 more maximum moves than the

standard. Several of these were in the smaller wavelengths. Comparing mean values

of each set of 20, 16 of the 25 permutations had a higher mean value, with 7 permu-

tations having a lower value. Unlike the maximum values, the means had no patterns

amongst the higher or lower perturbations. Comparing the sets of runs directly, I
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applied a Bonferroni correction of 25 comparisons, one for each incremental vs stan-

dard perturbation comparison. This narrowed the significance margin down to 0.002.

None of the 25 incremental permutations were found to be notably higher than the

standard version according to a statistical significance test. The a1w4 permutation,

despite having the largest difference in mean values, only featured a p-value of 0.09342

(Mann-Whitney U=151.5, n1=n2=20, p=0.09342, one-tailed, Bonferroni correction

for 25 comparisons). I also compared the gaits of the a1w4 permutations. Figures 7.7

and 8.8 show the two gaits for the a1w4 and ia1w4 permutations. The incremental

version appeared to turn toward the target point slightly more, and remained facing

forwards instead of veering off at the end of its lifetime. Both travelled forwards,

moving the target point multiple times.

In Figure 8.7, I analysed the paths taken by the best of each of the 20 incremen-

tal walker perturbations at the 16 wavelength, as in the previous Chapter. The best

agent evolved for the smallest amplitude, 1, was able to turn six times before turning

back on itself. The best agent evolved with an amplitude value of 2 also had a decent

fitness, managing four turns in a smooth pattern. The best agent evolved with an

amplitude value of 3 stuttered briefly on its first turn but recovered, demonstrating

robustness. The best agent evolved with an amplitude value of 4 and the best agent

evolved with an amplitude value of 5 made two turns before veering off. Compared

to the standard runs in Figure 7.6, the higher amplitude paths appeared to exhibit a

much wider turning arc.

8.4 Contributions

The contributions made by this work are as follows:

• I evolved walkers incrementally on my pursuit-based turning task from Chapter

7. I tested the same set of amplitude and wavelength permutations to determine

if the system could still produce multi-turn behaviours. It was still capable of

this, but did not produce higher fitness, and matched neither my Chapter aim to

bridge the gap between the two behaviours, or my general aim to demonstrate

the benefits of evolutionary systems such as incremental evolution.
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Figure 8.1: Maximum Moves per amplitude. (Incremental) The maximum
number of moves for the incremental runs for each set of 20 agents for each wavelength
parameter, at amplitudes 1,2,3,4 and 5. The maximum values decreased as amplitude
increased.

8.5 Discussion

Despite the lack of notable improvements, much like in the previous Chapter, there

was little distance in moves amongst the higher amplitudes and wavelengths. Figures

8.1 and 8.3 both display a decrease in range as amplitude is increased, much like

those in the previous Chapter. Ranges decrease from around 5 to 0.5 on the mean

values, and 10 to 1 on the maximum values. This time the trend is also more evident

in Figure 8.4, with range decreasing to around 2 for the top three wavelength values.

Finally, Figure 8.7 shows two clear different behaviour patterns between the high and

low amplitudes. The lower amplitudes exhibit a shallow zigzagging behaviour, whilst

the higher amplitudes favour a single sharp turn, similarly to the gaits seen in the

previous Chapter.

There are a number of interpretations I can make, similarly to the ones in the previous

Chapter, now with further context. The first notable interpretation is the difference in

behaviour. As described previously, the similarities amongst higher amplitudes could

imply two separate ideal behaviours for higher and lower amplitudes and wavelengths.
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Figure 8.2: Maximum Moves per Wavelength. (Incremental) The maximum
number of moves for the incremental runs for each set of 20 agents for each amplitude
parameter, at wavelengths 4,8,12,16 and 20. The amplitude 1 runs are consistently
fitter than the rest at all wavelengths.

Higher amplitudes tend to produce sharp turn behaviours, whilst lower amplitudes

produce zigzagging behaviours. This is due to the difference in energy required for

each behaviour; a shallow turn can be achieved by simply leaning, whilst a larger turn

requires more turning and stepping motions. In addition, these trends still manifested

with an incremental amplitude, potentially demonstrating that they are much more

connected to the task than previously thought.

Another interpretation that can be made, particularly in light of the incremental

results is that the difference between the two styles of behaviour can not be achieved

via several smaller increments. This work set out to demonstrate improvements in

moves using a linear incremental amplitude, but instead the results not only produced

the same levels of moves, but also the qualitative split between the upper and lower

amplitudes demonstrated further a considerable difference in behaviour. Instead, I

could make the conclusion from this that the turning task would be better evolved in

two distinct increments instead - a jump between lower amplitude leaning behaviours,

and the higher amplitude stepping behaviours. After evolving the lower amplitude

behaviours, the second phase between the two could then feature a modified fitness
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Figure 8.3: Mean Moves per amplitude. (Incremental) The mean number of
moves for the incremental runs for each set of 20 agents for each wavelength parameter,
at amplitudes 1,2,3,4 and 5. There are no real trends besides higher mean values at
amplitude 1. The values are slightly more clustered than the standard mean values
by amplitude.
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Figure 8.4: Mean Moves per Wavelength. (Incremental) The mean number of
moves for the incremental runs for each set of 20 agents for each amplitude parameter,
at wavelengths 4,8,12,16 and 20. With the exception of amplitude 1, there is a slight
increase in mean values as wavelength increases. The values are slightly less clustered
than the standard mean values by wavelength.
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Figure 8.5: The difference in maximum values from standard to incremental.
The difference in the maximum number of moves from standard to incremental for
each set of 20 runs for each permutation, coloured by amplitude. Eight permutations
had a higher value for the incremental version, whereas only two had a lower value.
The amplitude 1 runs exhibited the largest differences.
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Figure 8.6: The difference in mean values from standard to incremental. The
difference in the mean number of moves from standard to incremental for each set of
20 runs for each permutation, coloured by amplitude. Sixteen of the permutations
had a larger value for the incremental version, with seven having a lower value.
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Figure 8.7: The highest fitness incremental gaits at the 16 wavelength. The
highest fitness gait from each incremental amplitude’s set of 20 incremental runs,
with a wavelength parameter of 16. Each line represents the walkers path viewed
from above, starting from 0,0 and following the target point in a zigzag motion.
Amplitude 1 was able to turn six times. amplitude 2 managed four turns in a smooth
pattern. amplitudes 3,4 and 5 each made two turns, with 3 recovering from a stumble.
Compared to the defaults, the incremental runs exhibited wider turning arcs and
travelled slightly further forward.
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Figure 8.8: (left to right, top to bottom) The highest fitness gait for the
ia1w4 incremental perturbation.
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function or task in order to push the walkers in the ideal evolutionary direction, for

improved results at higher amplitudes.

Stanton et al tested two different styles of incremental strategies in their work. Ho-

mogeneous strategies consisted of static and linear functions of complexity, whilst

heterogeneous strategies featured oscillatory and non-linear functions. They were

able to show that even the weakest heterogeneous strategy, randomly increasing the

height of the wall, was able to produce better results than the best homogeneous

strategy. As mentioned above, here I use a linearly scaling strategy, which they class

as homogeneous. This interpretation could also suggest that investigating heteroge-

neous strategies for this task, particularly the oscillating heterogeneous strategies,

from which Stanton et al recieved the best results, could see improvements in both

fitness and behaviour.

8.5.1 Acknowledgements

My code is based on the work of Solomon et al. It is available via GitHub at

https://github.com/benjack795/solomon-reimp for exact specification and future re-

productions.
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Chapter 9

Conclusions

9.1 Aims

Below I demonstrate each of my aims and how I achieved them over the course of the

thesis.

9.1.1 Increase Walker Fitness.

The first aim I set at the start of the thesis was to increase walker fitness. Viewing this

as a baseline for improving walker behaviour and robustness prior to more advanced

tasks, I sought to enhance two bipedal systems, the Solomon et al Linear Reactive

system, and subsequently the Salimans et al Deep Neuroevolution system. In Chapter

4, by adjusting the penalty for control cost I produced walkers capable of walking in

2D and 3D without the prior bootstrapping required by the original system. In

Chapter 5 I utilised similar control cost reduction changes to increase agent fitness in

the deep neuroevolution system, demonstrating robustness. In Chapter 6 I produced

higher fitness walker agents through morphology based on a baby albatross according

to statistical significance tests. The results here demonstrate that prioritising novelty

over efficiency can lead to fitness and robustness improvements in bipedal walking.

9.1.2 Utilise Morphology to Simplify Bipedal Task.

The second aim I set at the start of the thesis was to simplify the bipedal walking

task. Many other systems have benefited from morphology, allowing them to utilise

it to complete tasks without the need for additional control complexity. I aimed to

achieve similar results for bipedal walking, to pave the way for complex behaviour.

In Chapters 6, 7 and 8 I utilised a morphology based on a baby albatross to simplify

the bipedal walking task. The results here demonstrate that by designating parts of
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the bipedal walking task to morphology instead of controller, more attention can be

given to increasing fitness.

9.1.3 Produce Complex Behaviour.

Many bipedal systems have been produced, but very few featuring evolutionary pro-

cesses are able to produce behaviour beyond walking forwards. Advances in the

simulation of bipedal agents could serve many applications, from bipedal robotics for

use in unsafe testing environments, to producing aids for people unable to walk. I

stepped closer to this here. In Chapter 4 I produce single turning behaviour in the

Solomon et al system with a distance-based fitness function. In Chapter 5 I also pro-

duce gaits with swing knees and pumping arms that appear more life-like than those

produced by the original Salimans et al system using a control cost penalty reduc-

tion and a support polygon-based failure condition. In Chapters 7 and 8 I produce

a pursuit-turning behaviour that resembles the slalom behaviour seen from Heess et

al, with a new fitness function. The results here demonstrate that successful fitness

function adjustments can produce complex novel behaviour in the bipedal walking

task.

9.1.4 Highlight the merits of evolutionary processes for bipedal
walking.

Evolutionary methods have some perks when compared to what I see as the current

leading method for the bipedal task, the Heess et al reinforcement learning system.

I aimed to bring more attention to evolutionary methods, showing off their perks,

such as incremental evolution and biological insight. In Chapter 8 I investigated in-

cremental evolution for the pursuit-turning task, but was unsuccessful in improving

fitness. Despite this, I was able to demonstrate a clear difference in behaviour be-

tween higher and lower amplitude walkers, and therefore theorise that a two-stage

incremental approach might be more applicable than the linear scaling function used

in Chapter 8.

9.2 Key Techniques

9.2.1 Support Polygon

The support polygon methodology is often used for balance in robotics [86]. The

method involves drawing a polygon using the points of contact between an agent and
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Figure 9.1: Support Polygon Example. An example of the support region drawn
in yellow, with points of ground contact and projected centre of mass [10]. As long
as the walkers projection of its centre of mass remained within the support region as
it moved, it was defined as upright. I applied this to my deep walkers in Chapter 5,
producing a support circle from the positions of the walker’s two feet.
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Figure 9.2: The Baby Albatross The baby albatross is seen here with its soft
feathered underbelly which it uses to cushion falls and roll upright [49]. I used this
underbelly as inspiration for my square-base and big-tucked morphologies in Chapter
6, giving them sphere attachments to help them roll and self-right when they fell.

the ground, projected downwards in the z-axis. From there, the centre of mass is

then projected downwards onto the floor, also in the z-axis. If this projection falls

within the polygon (the dubbed “support polygon”), then the agent is classed as

balanced as its centre of mass has not deviated to far from its points of contact.

This allows for a non-intensive framework for determining whether an agent will

topple. This method is also convenient, as it can apply to any number of contact

points with the ground; in my case, each of the walkers’ two feet. I chose this

method as it allowed me to add a balance-enforcing fitness modification to the system,

demonstrating the effectiveness of fitness modifications for the bipedal walking task.

I applied the technique to the deep walking system in Chapter 5 as an additional fail

condition, allowing me to produce more robust walking behaviours and a gait pumping

its arm for stability. In addition, the distributions of the combination runs in Chapter

5 closely resembled the support polygon runs’ distributions, suggesting that this was

the more important of the two techniques in the combination. A similar balance-

focused method was employed in Chapter 6, in which a square-based morphology

enabled walkers to remain upright.
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Figure 9.3: My Turning Task. The walkers in Chapters 7 and 8 (bottom-middle)
had to follow the black target point, starting from a little in front of them, as it moved
back and forth across the x-axis and away, forcing them to turn back and forth. I
varied the amplitude (red) of the pursuit pattern incrementally in Chapter 8, linearly
increasing it from 0 to a maximum value at half generations. The maximum was then
maintained for the latter half of generations.
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9.2.2 Albatross Morphology

The albatross has a feathered underbelly which cushions it from falls and allows it

to right itself by rolling if it falls from its nest. Feathers have been demonstrated to

assist with complex tasks by both Shim et al and Chang et al [72] [15]. The albatross

also has elongated ankles, like most birds, allowing its legs to hoist up the body like

a scissor lift. These two aspects of morphology allow for the bird to self-right and

realign itself, which is a useful trait for robust bipedal walking. I chose this technique

as an example of morphology in nature proven to assist with complex tasks, in order to

demonstrate the effectiveness of morphological assistance for the bipedal walking task.

In Chapter 6, I applied these features via spherical support mechanisms and inverted

knee joints. The spherical support mechanisms were attached to walker bodies and

exempt from the system’s fall condition. The systems fall condition stated that any

part of the body above the knee touching the floor was classed as a fall. The sphere

attachments were exempt from this, allowing the walker to roll over on them to right

itself. Whilst this prevented them from falling at all due to the size of the spheres,

it did not guarantee fitness. A walker could flail endlessly without moving forwards.

I gave the inverted knee joints degrees of freedom to match stereotypical bird legs,

allowing the walker to lift itself up after righting. These modifications allowed the

walkers to dramatically increase their fitness, travelling much further now that their

morphology contributed toward their behaviour. I would later employ this again in

Chapters 7 and 8, using the robustness the morphology provided to evolve multiple-

turn behaviour.

9.2.3 Incremental Evolution

Incremental evolution involves breaking a complex task down into sub-tasks, and

evolving through them one at a time. In this way, evolution has a smoother path

to follow than through attempting to learn the entire task at once. It can also

be useful to avoid “catastrophic forgetting”, the idea of forgetting one task when

learning another. It was used by Solomon et al to bootstrap their neural network

controllers for the Linear Reactive system. It was also used by Stanton et al to enable

quadrupedal agents to climb over walls of varying heights [79]. I chose this technique

to demonstrate the benefits of producing bipedal walking with evolutionary processes

instead of machine learning, as it is unique to evolutionary processes. In Chapter 8,

after noting Solomon et al incrementally evolving between controller schemes, Stanton

et al incrementally evolving between different heights of a wall for a climbing task,
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and my conclusion that the task produced two separate classes of gait from Chapter

7, I investigated an incremental version of the pursuit-turning task from Chapter 7,

linearly scaling the amplitude (left/right) value of the target point per generation,

up to the maximum value at half the total number of generations. Despite aiming to

highlight the benefits of evolutionary processes, this did not produce improved fitness.

9.3 Contributions

The contributions for the thesis across each results Chapter are explicitly defined as

follows:

9.3.1 Chapter 4

• Produced an enhanced version of the Solomon et al bipedal system

directly into 3D without prior bootstrapping for future use. By in-

troducing control enhancements to the Solomon et al Linear Reactive system

(removal of torque limit after a given time, enabling a flight phase, replacement

of PD controls with ODE methods), alongside an additional 15% elitism, I

demonstrated they enabled the evolution of fully 3D walking behaviours within

the system, without any prior 2D bootstrapping [77]. The enhanced system

they produce is simple enough through the Linear Reactive controller network

and the lack of bootstrapping required that it can serve as a basis for future

bipedal works. This matches my Chapter aim to remove bootstrapping and my

general aim to increase walker fitness.

• Produced 2D walking gaits in the enhanced system matching the

original. I demonstrate the control enhancements enable the production of

successful life-like 2D constrained gaits in the enhanced system, taking as many

as 30 steps and matching the original system in fitness.

• Produced 3D walking gaits in the enhanced system. I demonstrate the

control enhancements enable the production of 3D gaits capable of as many as

8 steps in 3D in the enhanced system, although these were not as successful as

the original system.

• Produced singular lateral turning behaviour in the enhanced system.

I demonstrate the control enhancements enable the production of single left-

right turning behaviour in the enhanced system by applying a new distance-
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based fitness function. This behaviour was comparable to that seen in Reil et

al [64]. This matches my Chapter aim and general aim to produce complex

behaviour.

9.3.2 Chapter 5

• Improved fitness in the Salimans et al bipedal system by introducing

enhancements to the fitness function. I reduce control cost within the

fitness function, based upon an adjustment to the torque limit in the Solomon

et al system in the previous Chapter, prioritising novelty over efficiency. When

control cost was reduced to a quarter of the default, from the 500th time-

step (the halfway point for a full-length episode), median speed and median

distance both doubled. I also terminate walking when the torso’s centre of

mass moves outside a circular support polygon centered at the midpoint between

the walker’s feet, based around an existing centre of mass condition within the

system and the importance of balance to bipedal tasks overall. When the circle’s

radius was 0.75 times current distance between the midpoint and (either) foot,

median speed and median distance are both found to be higher according to

a statistical significance test. This demonstrates robustness of these methods

in a new system. This matches my Chapter aim to test the robustness of my

methods and my general aim to increase walker fitness.

• Produced gaits with the enhancements that overcome the shuffling

problem seen in several gaits produced from the Salimans et al sys-

tem. I produce notable gaits using the enhancements with a more pronounced

stance and swing phase. One puts one leg in front of the other in a clearer fash-

ion than any gait produced using the default fitness function, getting around

the issue of shuffling behaviours. The other produces an arm pumping motion

similar to arm swinging in humans. This demonstrates my results from these

techniques approaches those produced by machine learning. This matches my

Chapter and general aim to produce complex behaviour.

• Produced walkers robust to action noise in the Salimans et al sys-

tem by combining the control cost enhancement and support polygon

constraint together. I evaluated evolved walkers with the addition of noise

to their actions. The combination runs do not drop off in fitness in the presence

of low noise as quickly as the other types. In contrast to the without-noise

results, the combined-enhancement gaits showed large improvements over those
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from the individual control-cost and balance enhancements, with median speed,

distance and time higher than the default and individual-enhancement gaits at

intermediate levels of noise according to a statistical significance test. This

demonstrates the combined enhancement drops off slower in the presence of low

noise and matches my general aim to increase walker fitness. The distribution

of the combo runs also more closely resembles the that of the rp75 than the

s500. This suggests that the rp75 has more impact than the s500, and poten-

tially therefore that balance is more important than efficiency or novelty for

robustness.

9.3.3 Chapter 6

• Produced fitter bipedal walkers in the enhanced Solomon et al sys-

tem with a square-based morphology based on a baby albatross. I

evolved bipedal walking agents alongside a square-based morphology based on

the underbelly of a baby albatross, following on from the support polygon bal-

ance enforcement rationale of the previous Chapter. The simpler neural network

controller in the ODE system was chosen to be more sensitive to morphological

changes and require less run-time. This demonstrates this morphology pro-

duces agents fitter than the default according to statistical significance tests.

This matches my Chapter aim to use the square-based morphology to increase

fitness and my general aim to utilise morphology to simplify the bipedal task.

• Produced fitter bipedal walkers in the enhanced Solomon et al system

with a tucked-knees morphology based on a baby albatross. I also

evolved bipedal walking agents alongside a morphology based on the underbelly

of a baby albatross featuring tucked knees, following rationale of more motion

from the previous Chapter. The simpler neural network controller in the ODE

system was chosen to be more sensitive to morphological changes and require

less run-time. This demonstrates this morphology produces agents fitter than

the default according to statistical significance tests. This matches my Chapter

aim to use the tucked-knees morphology to increase fitness and my general aim

to utilise morphology to simplify the bipedal task.

• Investigated evolving morphology alongside control using the alba-

tross morphologies, for both randomly initialised and incrementally

preloaded genotypes. I evolved these morphologies alongside the neural net-

work controller, creating a second morphological genotype for leg length and
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seeding both with previously high-fitness agents. Randomly initialising these

morphology and neural network controller genotypes instead achieved fitness

up to four times higher. Whilst this does not achieve my Chapter aim of re-

turning to standard proportions with increased fitness, this is still in line with

my general aim to utilise morphology to simplify the bipedal task.

• Produced a fast gait with a randomly-initialised morphology genotype

which featured higher input weights for important neural network

controllers. I also evolved a big-tucked randomly-initialised morphology agent

with higher input weights for its upper body and swing knee neural network

controllers according to a statistical significance test. This agent featured an

extremely fast gait as a result. This matches my aim to increase walker fitness.

9.3.4 Chapter 7

• Produced albatross morphology bipedal walkers capable of novel be-

haviour, turning multiple times whilst pursuing a moving point. I

evolved walkers in my enhanced re-implementation of the Solomon et al Linear

Reactive system from Chapter 4, together with my high-fitness big-tucked al-

batross morphology from Chapter 6, on a pursuit-based turning task, designed

as an extension of the single-turn behaviours produced in Chapter 4. This was

chosen instead of the Salimans et al system to further demonstrate the utility

of morphological changes by retaining them alongside complex behaviour. Ex-

plicitly, this demonstrates the pursuit-turning task produces walkers capable of

producing four consecutive turns, and two turns at high amplitudes, in pursuit

of a moving point. The pursuit-based turning behaviour evolved here is also an

example of complex behaviour that, to the best of my knowledge, has not been

attained previously in evolved bipedal walkers. This was difficult previously as

traditional bipedal agents have a high center of mass and feet close together,

making them tricky to balance alongside other complex tasks. The behaviour

resembles the the slalom behaviour produced by Heess et al. This matches my

Chapter aim to produce pursuit-turning behaviour and general aim to produce

complex behaviour.

9.3.5 Chapter 8

• Investigated incrementally evolving pursuit-turning bipedal walkers.

I evolved walkers incrementally on my pursuit-based turning task from Chapter
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7. I tested the same set of amplitude and wavelength permutations to determine

if the system could still produce multi-turn behaviours. It was still capable of

this, but did not produce higher fitness, and matched neither my Chapter aim to

bridge the gap between the two behaviours, or my general aim to demonstrate

the benefits of evolutionary systems such as incremental evolution.

9.4 Further Work and Discussion

Further works could focus more on the novelty over efficiency rationale demonstrated

across several Chapters here. In Chapter 4, the energy cost failure condition was re-

moved after a given period of time to allow for more motion, leading to a system that

could evolve 3D walking behaviours without any prior bootstrapping. In Chapter 5,

a similar reduction in energy cost was applied to the fitness function of the system to

allow for more motion, allowing for improved fitness and the emergence of a gait that

put one foot in front of the other, as opposed to simply shuffling. Finally in Chapter

6, the big-tucked morphology based on the baby albatross allowed for more movement

with its tucked knees and the energy cost constraint removed, which produced fitter

walker agents according to a statistical significance test. This can be interpreted as

evidence that sacrificing efficiency for novelty is a useful technique to consider when

aiming for complex behaviour. Future works could look at simultaneously adding

novelty methodologies, such as novelty search whilst reducing the impact of efficiency

penalties to other successful bipedal systems in order to further demonstrate the ro-

bustness of this technique [43]. They could also utilise this philosophy to produce

further behaviours, weighted alongside other fitness enhancements, similar to those

seen in Heess et al, such as running or hurdle jumping [35].

Further works could also focus more on fitness function enhancements and their ability

to influence an evolutionary system more than other types of changes. In Chapter 4,

in order to produce left-right turning behaviour, a new fitness function based around

distance was applied, producing successful single turns. In Chapter 5, the control cost

penalty term of the fitness function is modified, again producing improved fitness and

a gait putting one foot in front of the other instead of shuffling. In Chapter 7, in

order to produce slalom turning behaviour matching Heess et al, a new fitness func-

tion again based around distance was applied, evolving behaviour making as many as

four turns at lower values. This can be interpreted as evidence that modifying fitness

functions is the best way to influence an evolutionary system and the behaviour it
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produces. Future works could look at alternate fitness functions for existing bipedal

systems to produce novel behaviours not previously seen. This interpretation could

also be applied to future evolved bipedal control tasks, designing them around key

fitness functions, potentially leading to the emergence of more complex behaviour in

bipeds.

Another potential avenue for further work is to provide additional motivation for the

selection of evolutionary methods over other methods such as reinforcement learning.

In Chapter 5, I produce increased fitness and complex gaits through modification

of a fitness function in a system that was already capable of matching reinforcement

learning at the humanoid walking task. In Chapter 7 I produce an as-of-yet unseen be-

haviour through a novel fitness function, and in Chapter 8 whilst I do not produce any

fitness increase, I suggest an incremental evolution based method to bridge the gap

between the two separate walking behaviours that emerged across both versions of the

pursuit-turning task. These results can be interpreted as demonstrating the viability

of evolutionary systems as a whole for developing complex bipedal behaviour. This

could lead to future works analysing the evolutionary trajectory provided through

the evolution of bipedal behaviour to compare it with that of ours and other species

within the biosphere, to uncover insights not produced from other methods.

A final extension of this work would be to achieve a further complex task incre-

mentally by using the existing turning task as a sub-task. In Chapter 7, I achieved

the ability to turn across the x-axis, and noted the difference between the behaviours

produced at low and high amplitudes, almost as two separate turning tasks. Later

in Chapter 8, I investigated incrementally scaling between the two with a linear

amplitude function, but this was not fitter. However, this still provides a useful

interpretation. In Chapter 8 I note that whilst this was not a success, the vast dif-

ference in behaviour between high and low amplitudes could perhaps be better split

as two separate phases to bootstrap between instead of scaling linearly. If this split

were successful, I could use the higher of the two turning levels as a starting point

to incrementally evolve random turning pursuit, or even avoiding moving obstacles.

This would test the walkers’ ability to use their sensors, evolving responsive motion.

Responsive behaviour in relation to the environment would represent a much more

intelligent, situated agent.
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