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ABSTRACT

Image/video based defect recognition is a crucial task in the automation of visual inspection of con-
crete structures. Although some progress has been made to automatically recognize the defects in
concrete structural images, significant challenges still exist. In this work, we propose a deep convo-
lutional neural network architecture that embeds novel spatial-channel interaction based concurrent
attention (SCA) for multi-target, multi-class recognition of concrete defects. SCA module stems from
the novel kernel salient feature (KSF) encoder that captures higher-order features with robust discrim-
inative representation of concrete defects. KSF encoder incorporates kernelized convolution followed
by dynamic routing operation to be used as the primary building block. The proposed CSDNet ar-
chitecture is able to apportion higher weightage in the defective regions while suppressing the large
background area (healthy region), thereby improving the recognition performance of the overlapping
defects in concrete structures. Experimental results and ablation study on three large benchmark
datasets show the consistent superiority of our proposed network as compared to the current state-
of-the-art methodologies. This end-to-end trainable architecture can be augmented with unmanned
aerial vehicles (UAVs) to monitor the health of massive infrastructures to leverage the high concrete

defect recognition performance.

1. Introduction

Understanding of the structural stability, risk assessment
and planning have become a pivotal issue to ensure safety
and well-being of concrete infrastructures and associated hu-
man lives. Automatic visual inspection of concrete struc-
tures necessitates the development of next-generation effi-
cient solutions for defect recognition. However, several real-
world artifacts vitiate the performance of conventional con-
volutional neural network (CNN) architectures for concrete
defect recognition [18]. This includes, firstly, the presence
of artifacts such as poster remains, marking, graffiti, shad-
ows, potholes, etc. and wide variations in surface texture
and color change of the defect appearance, resulting in the
deterioration of the recognition performance. Secondly, the
presence of overlapping defect classes (such as a spallation is
often accompanied by exposed bar) further exacerbates the
problems of multi-target defect recognition task. Thirdly, the
variations in aspect ratio, scale, resolution and defect appear-
ance also lead to the degradation in performance. Thereby,
innovative vision based solutions are required to be augment-
ed with UAVs to perform superior monitoring of structural
defects to ensure safety and risk assessment.

In recent years, convolutional neural network (CNN) has
shown unprecedented development to recognize salient pat-
terns on images. Several state-of-the-art methodologies [16,
25, 27, 10, 12] have shown exemplary performance on var-
ious computer vision challenges. Inspired from the devel-
opment, multiple research initiatives have been undertaken
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in [13, 14, 17, 31] to obtain data-driven solutions for struc-
tural health monitoring. However, [14, 17] dealt with cracks
as the only defect subset, excluding other defect categories
for structural damage classification. Several other works in
this category used random structured forest [24], AlexNet
and VGG models using SDNET-2018 [6] and CSSC datasets
[33]. Similarly, the authors in [13, 31] considered non over-
lapping multi-class defects which do not address the real-
world issue of overlapping structural defects. The literature
search also indicates that these methods do not address the
complicated nature of structural health monitoring problem
involving overlapping defect classes (such as spallation lead-
ing to exposed bar, which often leads to/co-exist with cor-
rosion). Recently, [4, 18] analyzed overlapping multi-class
defects in CODEBRIM dataset using attention augmented
CNN and reinforcement learning, respectively.

The traditional feature selection mechanism of CNNs can
be augmented with visual attention to highlight relevant lo-
cal discriminative regions [11, 19, 30, 32]. The recent re-
search focuses on large-scale image classification using resid-
ual attention [30], channel and spatial attention [19, 32] and
self-attention [3]. The use of attention mechanism for clas-
sification of concrete structural defects, however, is limited.
Also, most of these methods usually consider one type of at-
tention mechanism, such as residual attention [4, 30], chan-
nel attention [11, 35] or self attention [3] or they consider
multiple attention modules without enhancing features ex-
tracted using Conv layers, such as [19, 32].

In this paper, we propose CSDNet: a deep attention net-
work which concurrently consolidates spatial-channel rela-
tionship for overlapping multi-class concrete defect recogni-
tion. The primary ingredient in CSDNet is the novel kernel
salient feature (KSF) encoder which helps to address wide
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variations in scale and area of appearance using the dynamic
routing strategy between Conv layers. In KSF encoder, we
have proposed the use of kernelized convolution which ap-
proximates the complex defect features with more discrimi-
native information. Moreover, the dynamic convolution rout-
ing enables the network to obtain viewpoint-equivariant in-
formation for aggregating variations in defect appearance.
In KSF encoder, we have incorporated kernelized convolu-
tion operation to approximate the complex feature aggrega-
tion. Furthermore, we propose the novel spatial-channel at-
tention (SCA) module to concurrently consolidate discrim-
inative cues across the channels and spatial planes by high-
lighting regions of interest. The SCA modules provide fo-
cused attention on defective regions and enable the network
to address the appearance and surface texture variations for
visually similar defect instances. Contrary to [4, 30, 35,
3], SCA module uses multiple attention masks to enhance
the performance. Also, contrary to multi-attention networks
[19, 32], SCA module uses KSF encoders to enhance the
features extracted using Conv layers with kernelized convo-
lution and dynamic routing strategy. Another contribution
in the architecture is the self-attention mask (SAM) in the
transition layers which helps to extract minute local patterns
for overlapping defect recognition.
Below our major contributions are summarized:

e We propose CSDNet architecture which embeds KSF
encoder as the primary ingredient for nonlinear fea-
ture extraction, SCA module for attention mechanism
along with self attention mask (SAM) encoding highly
localized features to improve the recognition perfor-
mance of the multi-target multi-class concrete over-
lapping defects, alleviating the problems of variations
due to image acquisition and presence of unwanted in-
clusions/artifacts.

e We propose SCA module that unifies the benefit of
novel attention network and kernelized convolution to
resolve multiple challenges. Firstly, SCA module sep-
arately investigates spatial and channel information to
highlight discriminative features to distinguish varia-
tions in surface textures and unwanted inclusions. Sec-
ondly, the use of KSF encoders inside SCA module
captures variation cues in scale, area of appearance
and orientation of the defect images.

o We demonstrate the superiority of our CSDNet archi-

tecture on three large benchmark concrete defect datasets

by outperforming recognition performance of the state-
of-the-art methods.

The rest of this paper is organized as follows: Section 2
illustrates the proposed CSDNet architecture, KSF encoder
and SCA module, Section 3 presents the performance of CS-
DNet and comparisons with state-of-the-art methods for three
datasets, Section 4 performs an extensive analysis and abla-
tion study to investigate the impact of individual modules.
Finally, Section 5 concludes the paper.
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Figure 1: Block diagram of CSDNet. Here, Conv(A,B) repre-
sents convolution operation using A filters of size (B,B) and
Dense(C) represents the dense operation with C nodes. Param-
eter specifications of KSF and SAM are given in the module
description.

2. Proposed Architecture

Our proposed CSDNet architecture stems from the novel
kernel salient feature (KSF) encoder and spatial-channel at-
tention (SCA) modules with designed combination of KSF
encoders and self-attention mask (SAM) in transition layers.
The proposed CSDNet architecture is given in Figure 1.

2.1. Kernel Salient Feature Encoder

Feature maps generated with higher order non-linearity
during convolution operation incorporate more discrimina-
tion ability than linear classifiers with point-wise non-linearity
added with ReLLU activation [5]. Wang et al. in [29] proved
that careful selection of kernel functions generates patch-
wise non-linearity and hence enables the network to obtain
more expressible visual features for classification. To en-
code crucial information from multi-target images with large
variations in scale, illumination and resolution, we propose
kernel salient feature encoder (KSF) with its novel feature
description strategy. KSF encoders encapsulate the varia-
tions of local features by leveraging the dynamic convolu-
tion routing with kernelized convolution operation to pro-
vide generalized representation of overlapping defect fea-
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Figure 2: Proposed Kernel Salient Feature (KSF) encoder in (a) with the dynamic convolution routing mechanism in (b). In
(a), the kernelized convolution operation is performed using gaussian and polynomial kernel and C channels. In (b), operation on
one block after reshaping is portrayed. In Figure 1, the KSF encoders are represented as KSF(A,B,C) representing the channels,

kernel size and strides of A, (B,B) and C, respectively.

tures.

Let us represent the input to the KSF as ¢(H,,,, W;,,, C;,),
where (H,,, W;,) represent the spatial dimension of the in-
put and C;,, is the number of channels. In Figures 1 and 3,
the KSF encoders are represented as K.S F(C, k, s), which
describes the kernelized convolution operation with C num-
ber of filters with spatial dimension (k, k) and stride s. This
kernelized convolution operation results in the intermediate
output I(H, W, C), such that,

L=, 2, 2 w@li=p.j=a.0w(Ep.q.0). (1)

poq
Here F, and y denote the k,, filter and the kernel function,
respectively.

After the kernelized convolution, we perform dynamic
convolution routing operation that enables aggregation of
viewpoint-equivariant information to encapsulate variations
in the defect appearance [21]. This routing operation enables
each kernelized convolution block to predict the next layer
outcome with squash function. Here, the highly localized re-
gions estimate the pose, orientation and precise location of
defects during the iteration. In higher levels, these part in-
formation can be aggregated to obtain the whole information
about the defects, helping the network to investigate individ-
ual overlapping instances.

Figure 2 (a) and (b) describe the block diagram of KSF
and the dynamic convolution routing, respectively. Before
the routing operation, we reshape the response from the ker-
nelized convolution I to consider four consecutive spatial
planes at a time to enclose similar localized information by
eliminating redundancy.

I(H,W,C) — Reshape — J(H, W ,4,C/4). (2)

Unlike [21], we predict one output tensor for each such
block, since our experiments reflect that the prediction for
multiple tensors for each block does not benefit the perfor-
mance; however it takes a toll in memory requirement and
training time. For the routing operation, two parameters are
initialized, namely i to be O as the loop counter and the B,,
logit values for each block as zero, m € [1,C/4]. Then, we
compute the corresponding coefficient value K,, from B,,
using the softmax function. For the first iteration (i.e. when

i =0), K, value is ignored.

K,, = softmax(B,,). 3)
These coefficient values are then element-wise multiplied
with the corresponding input blocks to obtain the prediction
P. This prediction value P passes through the squash func-
tion, as in (4) to obtain the probability of occurrence of an
entity by limiting the vector length from O to 1.

2
S @
1+ PPnel

Followed by (4), the logit value B,, is updated for all m €
[1,C/4] and the loop counter i is increased by one. After
performing the routing operations for i = 3 times, we obtain
the output feature map from the KSF encoder Out with di-
mension I(H, W, C) after concatenating (C /4) blocks each
of dimension (H, W ,4).

s

B, =P, %J,+B,_,,

m
i=i+1, ©)
Out,, =P, * J,,.

Here, J,, and Out,, represent the m,;, part of reshaped out-

put and the KSF encoder output, respectively each having

dimension (H,W,4), where m € [1, C /4]. Both the input (J)

and output (Out) can be written as follows:
J = Concat(Jq, Iy, I3, ..., JC/4),

Out = Concat(Outy, Out,, Outs, ..., Outc/4).

The KSF encoder helps to encode large variations in scale,
translation and rotation in our CSDNet architecture. The fea-
tures extracted from non-linear kernelized convolutions en-
coding multi-target information help to generate salient im-
age descriptors for subsequent SCA modules.

2.2. Spatial-Channel Attention Module

During the investigation of concrete structural defects,
we encounter variations in surface texture, unwanted inclu-
sions, defect pose, orientation, area of appearance, scale, etc.
To alleviate these challenging variations, spatial and channel
information are explored for attention modeling in the image
classification task [19, 32]. In our work, we propose spatial-
channel attention module (SCA) to simultaneously alleviate

(6
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Figure 3: Proposed SCA module. Here KSF(A,B,C) represents
convolution operation using A filters with kernel size (B,B) and
stride as C. In CSDNet, SCA modules are denoted as SCA(X),
where X represents the number of channels for convolution
operation.

both the challenging defect appearance variation and multi-
target defect recognition in concrete images. The block dia-
gram of SCA module is depicted in Figure 3.

In SCA, we perform channel attention by incorporating
the squeezing operation which embeds global channel infor-
mation. Unlike [11, 19, 32] which uses global average and
max pooling for squeezing operation, we propose the use of
KSF encoders to extract global descriptors considering the
filter;, to be same as the spatial dimension of the input
tensor I (W, W, C) with a novel strategic configuration. Our
experiments in ablation study (Section 4) demonstrate the
benefit of using KSF instead of pooling for global channel
information embedding.

I(W,W,C) — KSF(C,,.3,1)

— KSF(C,,;,W,1) — Py, )

Iw,w,C)— KSF(C,,;,3,1) — P,.
Here C,,, values are given in Figure 1. Interaction between
P, and the subsequent dense layer enables the network to
obtain the channel weights and these weights upon sigmoid
activation, get multiplied with P, to highlight crucial chan-
nel information Ch(1).

Ch(I) = sigmoid(W * Py) * P,. ®)
Another part of SCA module performs spatial attention
by squeezing across channels to obtain global spatial em-
bedding which undergoes spatial excitation by sigmoid ac-
tivation to generate spatial attention map P;. Salient spatial
regions of P, are then highlighted by multiplying with P;,

obtaining crucial spatial information Sp([).

Iw,w,C)— KSF(C,,;,3,1) —
KSF(,1,1) — sigmoid — P5, (9)
SpI) =Py x P;.

Here KSF(1,1,1) operates as similar to 1 X 1 convolution
operation, however the presence of kernelized convolution
and dynamic routing result in a more expressible global spa-
tial description. Finally, the channel and spatial attention re-
sponses Ch(I) and .S p(I) are combined to provide the output

of SCA,
Out(I) = Ch(I) + Sp(1). (10)
Advantages of SCA module are as follows; firstly, SCA
module addresses the variations in pose, orientation, surface
texture and presence of unwanted inclusions by concurrently
examining the channel and spatial information across the
tensor while suppressing the redundant information. Sec-
ondly, we use the novel KSF block as the primary primitive
to extract spatial and channel features. Hence, overlapping
defect classes can be jointly encoded using the complex fea-
ture aggregation in conjunction with attention mechanism
and kernelized feature encoding operation.

2.3. CSDNet Configuration

In this subsection, we describe the CSDNet configura-
tion which addresses the relevant challenges and considers
the use of kernelized salient feature encoding operation to
obtain a viewpoint-equivariant feature extraction mechanism
with interleaved SCA module for discriminative feature se-
lection. The use of multiple SCA modules enable gradual
fine-tuning of features for complex defect images, as shown
in Figure 1.

The transition blocks are designed incorporating two par-
allel paths to aggregate fine-grained features for subsequent
attention operation. For this, we use one Conv layer fol-
lowed by a KSF block in one path, and one KSF block fol-
lowed by a self-attention attention mask (SAM) in the other.
SAM blocks encode highly localized minute features fol-
lowing these steps: at first, three concurrent dense opera-
tions are performed considering input I(W,W,C). Then
the outcome of these dense operations 7 and 7, are mul-
tiplied to generate self-attention mask after the softmax op-
eration. This mask highlights the discriminative regions on
the third branch output 75 with the identity mapping from
input, obtaining the output SAM ([1).

I(W,W,C) - Dense(C) - T,(W,W,C) Vi €[1,3],
SAM(I) =T * softmax(Ty  T,) + [W,W,C).
(11

In order to obtain global channel description before dense
layers in CSDNet, we propose the use of KSF keeping the
convolution filter dimension as same as the input tensor spa-
tial dimension, as done for channel attention. Moreover,
to reduce the spatial dimension throughout the network for
finer feature extraction, KSF blocks are used with stride as 2
with filter size of 3 X 3 in Conv layers.

3. Experimental Results

In this section, we analyze the performance of CSDNet
architecture on four large concrete structure defect datasets:
CODEBRIM [18], SDNET-2018 [6], Concrete crack defect
[36] and Concrete Structure Spalling and Crack database
(CSSC) [33], where CODEBRIM contains overlapping five-
class defect images and the other three datasets contain crack
and spalling defects. In all experiments, we have demon-
strated the higher performance by our novel architectures
with comparisons drawn with the state-of-the-art methods
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Table 1

Multi-target recognition results on CODEBRIM dataset for the proposed CSDNet. Here
four input image dimensions (96, 128, 160, 192) are considered with mini-batch sizes of
16 and 32. All experiments are conducted incorporating the gaussian and the polynomial

kernels.
Input Gaussian Kernel Polynomial Kernel
Image Batch size: 16 Batch size: 32 Batch size: 16 Batch size: 32
Size Train Validation Test Train Validation Test Train Validation Test Train Validation Test
acc. acc. acc. acc. acc. acc. acc. acc. acc. acc. acc. acc.
96 99.98 90.89 87.18 99.94 89.19 86.86 99.97 90.48 86.49 99.95 88.98 85.28
128 99.98 91.42 87.34 99.93 90.74 87.02 99.98 91.16 87.18 99.92 90.26 86.71
160 99.94 90.13 86.71 | 99.89 91.05 86.55 | 99.94 89.27 85.91 | 99.91 87.59 85.12
192 99.92 89.25 85.76 | 99.87 88.28 85.44 | 99.93 89.06 85.28 | 99.88 86.74 84.65
Table 2 obtained for non-commercial research and educational pur-

Comparison of the recognition performance (%) of state-of-
the-art results with the proposed CSDNet on CODEBRIM
dataset.

. Multi-target accuracy Parameters
Architecture Best validation Best val-test in million
AlexNet [16] 63.05 66.98 57.02
VGG-A [25] 64.93 70.45 128.79
VGG-D [25] 64.00 70.61 134.28
T-CNN [1] 64.30 67.93 58.60

Densenet-121 [12] 65.56 70.77 11.50
WRN-28-4 [34] 52.51 57.19 5.84
ENAS-1 [20 65.47 70.78 3.41
ENAS-2 [20 64.53 68.91 2.71
ENAS-3 [20 64.38 68.75 1.70
MetaQNN-1 [2 66.02 68.56 4.53
MetaQNN-2 [2 65.20 67.45 1.22
MetaQNN-3 [2 64.93 72.19 2.88
AlexNet* [16] 70.26 68.46 57.02
VGG-A* [25] 76.49 74.82 128.79
VGG-D* [25] 77.52 75.21 134.28
ResNet-50° [10] 77.68 76.79 25.6
Densenet-121* [12] 79.72 78.84 11.50
SE-ResNet-50 [11] 72.86 70.71 28.13
CBAM [32] 80.63 78.63 11.78
ResNeSt [35] 75.02 73.46 27.50
MDAL [4] 86.15 84.29 10.43
CSDNet with 91.16 87.18 2.11
polynomial kernel
CSDNet with 91.42 87.34 2.11
gaussian kernel

* Denotes ImageNet-pretrained.

following the original implementation protocol.
3.1. Implementation setup

For the implementation of CSDNet, we have used Keras
API with Tensorflow 1.14.0 at the backend. For all three
datasets, we have used stochastic gradient descent optimizer
with initial learning rate 0.001, momentum of 0.9 for 200
epochs during training. For all experiments, we use the gaus-
sian kernel with variance = 1 and the polynomial kernel with
degree = 3, bias = 1. The training is performed using Mar-
gin loss [22]. During dynamic routing, number of routing
iterations is kept as three. We train the network on a sys-
tem with 16 GB RAM on Intel Core i7 processor powered
by GeForce RTX-2070 8 GB GPU card.

3.2. Performance on CODEBRIM dataset

COncrete DEfect BRidge IMage (CODEBRIM) dataset
is presently the most complex state-of-the-art overlapping
defect image dataset containing five defect classes: crack,
spallation, efflorescence, exposed bars and corrosion [18],

pose. This dataset was constructed by investigating 30 unique
bridges with varying weather condition, surface texture and
degree of damage with image acquisition procedure involv-
ing variations in resolution, illumination, scale and aspect ra-
tio. This results in the generation of 5354 defect images and
2506 background images, where number of images contain-
ing crack, spallation, efflorescence, exposed bars and corro-
sion are 2507, 1898, 833, 1507 and 1559, respectively.

For evaluation, we follow the original implementation
protocol of choosing training, validation and test images [ 18]
considering the classification to be correct if existence of all
the defect classes are correctly recognized. To observe the
best possible image spatial dimension, mini-batch size and
kernel functions, we evaluate the performance of CSDNet
with four different image dimensions, two batch sizes and
two kernel functions. The experimental results are noted in
Table 1. From this, we observe that the CSDNet architec-
ture gives best performance with input image dimension of
128 x 128 x 3 and batch size of 16 which uses the gaus-
sian kernel at KSF encoders. Hence, we have considered
this image dimension, kernel and batch size for all the future
experiments.

The comparison of the proposed CSDNet with the state-
of-the-art methods are reported in Table 2. This table in-
cludes the comparison with traditional CNN architectures
(such as AlexNet [16], VGG [25], etc), visual-attention based
CNN architectures (such as SE-ResNet-50 [11] and ResNeSt
[35]) and reinforcement learning methods (such as ENAS
[20] and Meta-QNN [2]). Here, we observe that except the
newly proposed MDAL network [4], CSDNet architecture
demonstrates significant performance improvement (87.34%
test accuracy compared to 78.84% by ImageNet-pretrained
DenseNet-121 [12]). CSDNet outperforms the recently pro-
posed MDAL architecture by more than 3% improvement in
test accuracy with 5x lesser parameters. Our proposed CS-
DNet takes approximately 52.39 seconds of average training
time in each epoch using mini-batch size of 16 on CODE-
BRIM dataset. For testing, each image from CODEBRIM
dataset takes 0.173 ms. Unlike [4], CSDNet extracts atten-
tive features in channel and spatial axes using KSF and SCA
modules to aggregate multi-scale information without ex-
plicitly exploring features in multiple scales, thereby reduc-
ing the number of parameters significantly. Moreover, rather
than exploring fine-grained localized features across multi-
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Table 3

Comparison of crack defect recognition accuracy (%) of CSDNet with the state-of-the-art
methods for concrete bridge deck, wall and pavement on SDNET-2018 dataset.

Model Bridge image result Wall image result Pavement image result
Description Train Validation Test Train Validation Test Train Validation Test
accuracy accuracy accuracy | accuracy accuracy accuracy | accuracy accuracy accuracy
Alexnet [6] 98.25 94.43 91.86 97.52 90.26 87.88 98.48 97.15 95.22
VGG-16 [26] 98.55 86.45 85.19 97.25 88.24 84.29 99.14 89.79 88.56
VGG-16" [26] 96.35 90.15 87.76 94.55 91.24 86.29 97.59 94.37 89.33
Alexnet* [6] 98.78 95.84 92.07 98.34 92.59 90.16 99.06 97.54 95.85
VGG-16" [26] 94.22 90.25 88.59 93.89 91.86 87.46 97.58 93.45 92.13
Fine-tuned VGG-16"* [26] 98.59 94.36 92.79 97.28 93.88 91.48 99.12 97.59 96.78
ResNet-50* [10] 98.49 95.88 93.15 97.96 95.08 92.36 99.15 98.11 97.28
Densenet-121* [12] 98.85 96.03 93.58 98.12 97.49 93.19 99.46 98.27 97.59
SE-ResNet-50 [11] 98.96 96.25 94.18 98.36 97.58 93.79 99.32 98.29 97.36
CBAM [32] 99.16 97.35 94.13 98.56 97.84 94.03 99.19 97.89 97.46
ResNeSt [35] 99.03 96.32 93.96 98.41 97.46 94.22 99.19 98.35 97.61
MDAL network [4] 99.91 98.56 94.35 98.79 98.12 93.76 99.94 98.92 98.26
CSDNet with polynomial kernel 99.93 98.74 94.61 98.91 98.23 94.15 99.95 98.97 98.29
CSDNet with gaussian kernel 99.93 98.81 94.76 98.92 98.36 94.63 99.96 99.12 98.34
© Denotes image augmentation.
* Denotes ImageNet-pretrained.
Table 4 Table 5 Table 6

Single-class defect recognition

accuracy (%) on CODEBRIM.  on CODEBRIM dataset.

Type of defect Accuracy Number of classes Test
Crack 01.86 correctly classified | accuracy
Spallation 88.92 At least one 100
Efflorescence 89.57 At least two 98.92
Exposed bars 96.15 At least three 08.09
Corrosion 87.23 At least four 91.74

ple scales [4], CSDNet explores localized information across
channel and spatial domains to improve classification perfor-
mance.

To further analyze the network’s ability to understand in-
dividual classes, we conduct another two experiments: firstly,
we investigate the recognition accuracy of CSDNet for indi-
vidual five defect classes in CODEBRIM dataset; secondly,
we examine the ability of CSDNet to detect lesser than five
classes correctly. From the results in Table 4, we observe
that exposed bars can be more accurately recognized whereas
corrosion stain has the lowest tendency to get classified cor-
rectly. The result in Table 5 illustrates that the network can
correctly classify up to at least three classes with very high
accuracy, however, performance drops while considering four
or more number of defect classes.

3.3. Performance on SDNET-2018 Dataset

SDNET-2018 dataset [6], obtained under Attribution 4.0
International licensing, contains 8484 images of crack de-
fects and 47608 background images captured from concrete
bridge deck, wall and pavement surfaces, each having di-
mension 256 X 256 X 3. These images were collected by
generating patches from 230 image samples with variations
in scale, crack widths, shadows and background noise. The
experimental results in Table 3 depict the benefit of proposed
CSDNet architecture over existing methods for all three types
of structures, where CSDNet achieves test accuracies (in %)
0f94.76, 94.63 and 98.34 for bridge deck, wall and pavement
images, respectively, using the gaussian kernel inside KSF
block, compared to 94.35, 93.76 and 98.26, respectively, us-

Multi-target recognition ability

Comparison of the performance of the proposed CSDNet with
state-of-the-art methods in terms of recognition accuracy (%)
on concrete crack image dataset.

Model name Training validation Testing
accuracy(%) | accuracy (%) | accuracy (%)

Deep CNN with
adaptive threshold [9] 99.75 99.16 98.70
AlexNet* [16 95.40 94.85 94.15
VGG-16* [25 96.15 95.90 94.25
ResNet-50" [8] 98.40 98.00 97.80
DenseNet-121* [12] 99.20 98.40 98.25
SE-ResNet-50 [11] 99.75 99.70 99.60
CBAM [32] 99.81 99.47 99.12
ResNeSt [35] 99.80 99.65 99.55
MDAL network [4] 99.99 99.84 99.81
CSDNet with 99.99 99.88 99.83

polynomial kernel
CSDNet with 99.99 99.89 99.85

gaussian kernel

* Denotes ImageNet-pretrained.

ing MDAL network [4].

3.4. Performance on Concrete Crack Image
Dataset

Concrete Crack Image dataset contains 20000 crack im-
ages and 20000 background images with dimension 227 X
227 x 3 having prominent crack defects and less background
clutter and unwanted inclusions [36], obtained under a Cre-
ative Commons Attribution 4.0 International license. Fol-
lowing the implementation protocol in [4, 8, 9], we have con-
sidered 32000 training, 4000 validation and 4000 test images
while using equal number of crack and non-crack images for
each subset. In comparison with state-of-the-art methods in
Table 6, we can observe that our CSDNet outperforms all the
existing methods by obtaining 99.85% and 99.83% recogni-
tion accuracy for polynomial and gaussian kernels, respec-
tively, compared to 99.81% by MDAL network [4].

3.5. Performance on CSSC Dataset

The CSSC dataset [33] is composed of 15,000 crack im-
ages and 19,924 spallation images of dimension 130X 130 x
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Figure 4: Generated attention maps from three datasets using CSDNet architecture.

In attention maps, red color indicates

highest attention whereas blue color represents lowest attention. First row (CODEBRIM), from left to right: (a) exposed iron
bar with heavy spallation, (b) spallation with corroded bar, (c) exposed corroded bar, (d) Corroded bar with efflorescence and
spallation. Second row from left to right: (e)-(f) images from Concrete Crack Image dataset, (g)-(h) images from SDNET-2018

dataset.

3, with training data consists of 24,941 images and test data
of 9,983 images. Following the implementation protocol in
[33], we have reshaped the images by 128 x 128 x 3 to be
used by our proposed method. For the comparison in Table
7, we have considered the state-of-the-art method as consid-
ered for other datasets. From these results, we observe that
the multi-attention feature extraction and the routing mech-
anism results in improved performance, outperforming all
the state-of-the-art methods. The proposed CSDNet obtains
96.53% and 96.65% test accuracy for polynomial and gaus-
sian kernels, respectively, compared to 95.31% by MDAL
network [4].

3.6. Performance on CIFAR-10 and CIFAR-100
datasets

The CIFAR-10 and CIFAR-100 datasets consist of 60,000
images of dimension 28 X 28 x 3 having 10 and 100 classes,
respectively. To validate the performance of our proposed
CSDNet architecture for these standard classification datasets,
we have compared our results with several state-of-the-art
methods, such as ResNet with ELU activation [23], DenseNet
[12], Wide residual network [34], Efficient Net [28] and the
transformer-based methods such vision transformer [7] and
big transformer [15]. From the results in Table 8, we ob-
serve that our method gives comparable performance to the
recently proposed ViT [7], although it outperforms all other
baselines by a good margin.

4. Analysis and Discussions
4.1. Attention maps

Sample images from three concrete defect datasets are
used to generate attention maps by revisiting the response
provided by the final KSF encoder to visualize the defect
feature localization capability of CSDNet. These attention
maps enable visual illustration of feature selection mecha-
nism which consolidate crucial discriminative features from
the images, thereby highlighting the relevant regions while
diminishing the regions with redundant information.

In Figure 4, we observe that the CSDNet architecture lo-
calizes defect regions within the image by aggregating robust

Table 7

Comparison of the performance of the proposed CSDNet with
state-of-the-art methods in terms of recognition accuracy (%)
on CSSC dataset.

Trainin Testin
Model name accuracy(%Az) accuracy %%)
AlexNet [16 95.75 87.96
VGG-16 [25 95.86 89.42
ResNet-50 [8] 96.89 92.45
DenseNet-121 [12] 98.55 93.15
SE-ResNet-50 [11] 99.25 95.10
CBAM [32] 98.05 94.73
ResNeSt [35] 99.10 95.05
MDAL network [4] 99.25 95.31
CSDNet with
polynomial kernel 99.45 96.53
CSDNet with
gaussian kernel 99.40 96.65

Table 8
Comparison of the performance of the proposed CSDNet
with state-of-the-art methods on CIFAR-10 and CIFAR-100
datasets.

Test accuracy (%)
Model Name CIFAR-10 | CIFAR-100
ResNet & ELU [23] 94.40 7351
DenseNet-121 [12] 96.54 82.82
WRN [34] 96.11 81.15
SENet [11] 97.88 84.59
EfficientNet-B7 [28] 98.79 91.72
BiT-M [15] 98.01 92.17
ViT-L [7] 99.42 93.02
CSDNet with 99.39 93.46
polynomial kernel
CSDNet with 99.45 93.95
gaussian kernel

features using KSF and SCA modules. It is able to apportion
higher weightage to the defective regions while suppress-
ing the large background area (healthy region) of the image
plane, thereby improving the recognition rates for this chal-
lenging task with reduced number of network parameters (as
shown in Table 2). Multi-target overlapping defects from
CODEBRIM dataset are localized using CSDNet in Figure
4 (a)-(d). CSDNet also accurately localizes the crack regions
from concrete crack defect and SDNET-2018 dataset images
in Figure 4 (e)-(h) and (i)-(1), respectively.
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Table 9
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Ablation study on KSF and SCA modules in the CSDNet architecture on CODEBRIM and

concrete crack image dataset (Recognition accuracy in %).

Model CODEBRIM Dataset Concrete Crack Image Dataset

D . Training Validation Testing Training Validation Testing

escription

accuracy accuracy accuracy | accuracy accuracy accuracy
Using linear kernel in KSF 97.86 88.42 84.81 99.75 99.62 99.50
Replacing KSF with Conv layers 96.15 85.24 83.86 99.24 98.61 96.25
Only channel attention in SCA 97.49 87.86 84.49 98.95 98.19 98.05
Only spatial attention in SCA 97.36 88.09 84.65 98.85 98.26 97.92
1 SCA + 1 transition block 95.34 83.25 79.11 98.24 97.56 95.98
Using global average pooling 98.79 90.26 85.13 99.83 99.75 99.63
CSDNet with polynomial kernel 99.98 91.16 87.18 99.99 99.88 99.83
CSDNet with gaussian kernel 99.98 91.42 87.34 99.99 99.89 99.85

4.2. Ablation Study

To demonstrate the significance of the individual mod-
ules, we conduct an extensive ablation study by replacing
or removing several blocks for all three datasets. The ex-
perimental results are noted in Tables 9 and 10. Firstly, to
understand the impact of nonlinear kernels in convolution
operation, we replace the nonlinear kernels with traditional
Conv layers, i.e. using linear kernels. Results of this exper-
iment reveal a downfall in recognition performance due to
the absence of non-linearity incorporation with convolution,
which would enable CSDNet to recognize complex visual
representations.

Secondly, we replace the KSF encoders with Conv layers
to understand the impact of kernelized convolution in KSF.
We expected the modified network to perform poorly due
to the absence of dynamic routing operation with kernel-
ized convolution to obtain multi-scale viewpoint-equivariant
complex features from the defect images. The results in Ta-
bles 9 and 10 corroborate our assumption with performance
degradation.

Thirdly, to analyze the impact of both the channel and
spatial attention in SCA, we conduct separate experiments
by keeping one of them at a time. As noted in Tables 9 and
10, we first analyze the impact of spatial attention by drop-
ping the channel attention block, and vice versa. For both
cases, the recognition performance degrades due to the lack
of aggregation of both channel and spatial information.

Fourthly, we modify our network keeping only one SCA
module and one transition block to understand the necessity
of stacking multiple SCA modules for robust feature extrac-
tion. From Tables 9 and 10, we observe a significant degra-
dation of recognition performance due to non-existence of
finer features which results in high misclassification error for
similar-looking overlapping defect classes.

Then, we replace the final KSF block of CSDNet and
final KSF blocks inside the channel attention part of SCA
modules with global average pooling to check the benefit
of using KSF encoders for extracting global channel infor-
mation. Experimental results in Tables 9 and 10 indicate
that KSF blocks can lead to better performance by encoding
global channel information.

5. Conclusion and Future Work

In this paper, we have addressed the challenges of rec-
ognizing overlapping concrete defects and proposed a novel
deep architecture that embeds spatial and channel interac-
tions. The benefit of our proposed CSDNet architecture is
tri-fold, firstly, it uses novel KSF encoder which incorporates
kernelized convolution with higher-order nonlinearity fol-
lowed by dynamic routing operation for robust feature selec-
tion. Secondly, our proposed SCA module enables the net-
work to perform spatial and channel interactions with minute
localized feature selection to improve the recognition perfor-
mance. Thirdly, the interleaved concurrent attention frame-
work embedding both SAM and SCA modules is able to fo-
cus towards the defective regions (for both single and multi-
target defect classes), while suppressing the large background
(healthy) region. Experimental results and ablation study on
three large benchmark datasets show the efficacy of our pro-
posed architecture with 5X reduction in the number of net-
work parameters as compared to the current state-of-the-art.
In terms of future work, we hope to investigate the impact of
our network for other kinds of concrete and steel structural
defects.
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