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A B S T R A C T   

A fundamental analysis is made of the thermoacoustic instability in a hard-walled box. We model 
the flame as an acoustically compact source with a heat release characteristic described by a 
directional nτ-law. This has the following features: it gives the heat release rate in terms of the 
acoustic velocity at an earlier time τ; it is linear with coupling coefficient n; the "flame surface" is 
a small flat patch with variable orientation. 

We derive an integral equation for the acoustic field by using a Green’s function tailored to a 3- 
D rectangular box with hard-wall boundary conditions. The integral equation is solved by two 
methods. Firstly, an iteration method, stepping forward in time, is used to give the time history of 
the acoustic velocity. By analysing this time history, we investigate the interference between two 
(or more) thermoacoustic modes. In the second method, we apply a Laplace transform to deter-
mine the thermoacoustic eigenfrequency and growth rate of thermoacoustic modes. This method 
is suitable for parameter studies, and we use it to investigate the effect of the flame orientation and 
flame position on the thermoacoustic instability. We show results for the 2-D case. They reveal 
that the stability behaviour depends strongly on the flame orientation and on the flame position in 
the xy-plane. We also show results for the interference between different thermoacoustic modes, 
especially for cases where there are two acoustic modes with similar frequencies.   

1. Introduction 

Instabilities caused by a thermoacoustic feedback mechanism are observed in various combustion systems, such as gas turbines, rocket 
engines, and furnaces. When they occur, they cause excessive noise, potentially resulting in structural damage; they can also exacerbate 
pollution by combustion products. There are many factors that affect thermoacoustic instabilities, some of which are well understood, 
while others are the subject of ongoing research. One can get an overview in the review articles [1–3], in the books [4,5], and in [6]. 

The studies can be divided loosely into one-, two- and three-dimensional studies, where the "dimension" applies to the number of 
spatial dimensions that the acoustic waves can vary in. 

One-dimensional studies tend to be made for combustion chambers whose length is considerably larger than the dimension 
characterising their cross-section. Many laboratory test rigs have this feature, and when they are modelled theoretically, this is 
typically done with a network model. Early examples, involving longitudinal waves travelling parallel to the burner axis are: 
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List of symbols 

c speed of sound 
fp pressure distribution in standing wave field in cavity 
fu velocity distribution in standing wave field in cavity 
fpu = − fpfu product of pressure and velocity distribution in cavity 
f(t) forcing term in integral equation 
G Green’s function 

Gmnk =
∂gmnk

∂r

⃒
⃒
⃒
⃒

r→= r→q

r
′

→
= r→q

gradient of the Green’s function amplitude at the flame position 

gmnk( r→, r′
→
) amplitude of mode (m, n, k) in the Green’s function 

Hx, Hy, Hz side lengths of rectangular cavity 
h small time step 
j imaginary unit 
K(t, t ′ ) integral kernel 
Kq = Q/(urρ) measure for mean heat release rate (constant) 
kx, ky, kz allowed wave numbers of cavity modes 
k0 = ω/c wave number 

kmnk =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

k2
x + k2

y + k2
z

√

magnitude of allowed wave number vector in cavity 
L length of 1-D cavity 
M integer to discretise time-lag τ 
m,n,k mode numbers of acoustic modes in cavity 
N integer to discretise time t 
n coupling coefficient in the heat release law 
Q global heat release rate 
q local heat release rate (per unit mass) 
R0, RL reflection coefficients 
RI Rayleigh index 
r→ = (x,y,z) observer position 

r
′

→
= (x′

,y′

, z′

) source position 
r→q position of flame 
t time 
u′

q(t) = u′

r( r→q, t) value of u′

r at the flame position r→q 

u′

r( r→, t) velocity component normal to the flame surface 
uμνκ complex velocity amplitude of thermoacoustic modes in cavity 
xq x-coordinate of flame position 
yq y-coordinate of flame position 
Γmnk volume integral of products of eigenfunctions 
γ specific heat ratio 
δ delta function 
ε small angle 
εm, εn, εk constants that take values 1 or 2 
θ angle between flame surface normal and z-axis 
μ,ν, κ mode numbers of thermoacoustic cavity modes 
ρ mass density in cavity 
τ time-lag 
ϕ velocity potential 
ϕ0 initial value of ϕ at the flame position 
φ angle between flame surface normal and x-axis 
ψmnk cavity eigenfunction 
Ωμνκ thermoacoustic eigenfrequency in cavity (complex) 
ω angular frequency 
ωmnk frequency of mode (m, n, k) in the Green’s function, i.e. allowed frequencies of cavity modes    

Overbars denote the mean part of field quantities, primes denote the fluctuating part of field quantities in the time-domain, and hats 
denote the fluctuating part of field quantities in the frequency-domain. For example, for the heat release rate, the mean part is Q, and 
the fluctuating part is Q′ in the time-domain and Q̂ in the frequency-domain.   
The time dependence of a quantity oscillating with frequency ω is denoted by ejωt  
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– the premixed laminar burner [7] and the multiple-inlet combustor [8] investigated by Candel’s group,  
– the reheat-buzz rig studied by Dowling’s group [9],  
– the electrically heated Rijke tube developed by Heckl [10,11].    

More recent examples tend to focus on nonlinear aspects, such as:  
– the multiple-injection burner investigated in [12].  
– the horizontal Rijke tube studied by Sujith’s group [13,14]  
– the turbulent bluff-body burner studied in [15]  
– the study in [16], where a network model was developed for a long flame by segmenting the flame axially and connecting the 

segments with jump conditions. 

Also falling into the one-dimensional category are azimuthal waves in combustion systems with annular geometry. The papers 
[17–20] have proposed network models to analyse 1-D azimuthal thermoacoustic modes. 

Combustion systems, where the acoustic field can vary in two dimensions, include annular combustors and rectangular combustors. 
In annular combustion systems, this typically involves variations in the axial and azimuthal directions. Analytical studies in this area 
have been made in [21,22] (amongst others), proposing network models for the combined effect of axial and azimuthal velocity 
perturbations, and predict the complex frequencies and mode shapes of individual modes. More recently, Li and Sun [23] studied 
mixed axial-azimuthal modes in the presence of vorticity waves with a network model. 

Most thermoacoustic simulations are done by mesh-based numerical approaches, which vary in terms of accuracy and computa-
tional cost. One such approach is based on the nonhomogeneous Helmholtz equation and commonly called "Helmholtz solver" [24]. 
The Helmholtz equation is discretised in physical space by a finite-element method, then combined with a heat release law, and 
converted into an eigenvalue problem involving a large (but finite) matrix. The eigenvalues of this matrix give the complex eigen-
frequencies, and the corresponding eigenvectors give the mode shapes. This method is suitable for configurations where the acoustics 
is linear, the mean flow is negligible, and the mean pressure is uniform; the speed of sound may have spatial variations. Helmholtz 
solvers predict the frequencies and growth rates, as well as the mode shapes of all possible modes, not just the unstable ones. This 
capability, together with their modest computational cost, makes them a popular choice for thermoacoustic simulations. Compared 
with network models, they are more versatile in terms of combustor geometry, but require more computational effort. 

The Helmholtz solver has been applied to laboratory test rigs as well as industrial burners. An application to the swirl test rig 
described in [25] can be found in [26]. The MICCA test rig (an annular combustion rig with multiple matrix burners, see [27]), exhibits 
combustion instabilities involving two modes (a standing azimuthal mode and an axial mode) with coinciding frequencies; this was 
modelled with a Helmholtz solver in [28]. Both studies assumed a weakly nonlinear heat release law and predicted not only the 
frequencies and mode shapes, but also the limit cycle amplitudes. An example of a Helmholtz solver applied to an industrial gas turbine 
can be found in [29]. 

In contrast to network models and Helmholtz solvers, methods based on computational fluid dynamics (CFD) do not give infor-
mation on individual modes, but on the spatio-temporal evolution of the mean and fluctuating field quantities. They are available with 
different levels of accuracy and computational cost. In order of increasing cost, they are: the unsteady Reynolds-averaged Navier–-
Stokes (URANS) method, large eddy simulation (LES), and direct numerical simulation (DNS). They give precise results for the effect of 
complex geometries, complex flow patterns and multiple sources. Examples of applications to rectangular geometries can be found in 
[30–32]; cylindrical or annular geometries have been modelled in [33,34]. 

Analytical modelling is the method of choice, if physical insight is a priority. The most commonly used analytical tools are network 
models. For rectangular geometries, these have been 1-D, and they have even been applied to furnaces, where the acoustic field is 
clearly 3-D [35,36]. As far as we know, there are no fundamental investigations of thermoacoustic effects in the kind of rectangular 
cavity shown in Fig. 1. This is the gap that the present paper is trying to fill, i.e. our aim is to enhance the physical understanding of the 
2-D and 3-D cases. 

Fig. 1. Schematic of the rectangular combustion chamber; (a) 3-D geometry, (b) geometry for case of no z-dependence. The flame surface is a small 
flat patch with a surface normal whose orientation is described by the angles θ and φ. 
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Our approach is based on the tailored Green’s function (the acoustic field that is generated by an impulsive point source in a cavity). 
It is an extension of the work by Heckl and Howe [37,38], who pioneered the use of the tailored Green’s function to model 1-D 
thermoacoustic systems. By extending this approach to 3-D, we will be able to determine the acoustic field generated by thermoa-
coustic feedback involving a compact flame in a box. We will gain new insight into effects not found in 1-D cavities, such as inter-
ference of the many modes that are present in a 3-D cavity, and the effect of the flame orientation. 

This paper is structured as follows. Section 2 introduces the tailored Green’s function for the 3-D situation, the model of the 
compact flame and the governing equation for the normal acoustic velocity in terms of the Green’s function. Validation of our model 
and code is shown in Section 3. In Section 4 we investigate the influence of flame angle and flame position for a single-frequency 
resonator. Section 5 gives the results for the interference effects between co-existing modes. Conclusions are drawn in Section 6. 

2. The integral governing equation and solution 

We present our Green’s function approach in three steps. In the first step (Section 2.1), we explain the concept of the tailored 
Green’s function, which describes the acoustic field in the cavity without a flame. In the second step (Section 2.2), we introduce the 
flame model, which describes how the rate of heat released by the flame depends on the local acoustic field. These two elements of our 
model are combined in the third step (Section 2.3), where we derive an integral equation for the acoustic field in the cavity with flame. 
This integral equation captures the two-way coupling between the acoustic field and the fluctuating heat release rate. 

2.1. The 3-D tailored Green’s function 

As this is a fundamental study, we consider an idealised configuration with the geometry shown in Fig. 1. The combustion chamber 
is modelled as a hard-walled cavity with side lengths Hx, Hy and Hz. We assume that the Mach number of any mean flow is low enough 
to satisfy M2 << 1. There is then no need to account for the frequency drop caused by the phenomenon that sound waves travelling in 
the direction of the flow have a higher speed than those travelling against the flow (see [39], page 698). In a further idealisation, we 
assume that the mean temperature in the cavity is uniform. This is obviously not the case in a real combustion chamber, where the 
mean temperature across the flame can jump by many hundreds of Kelvin, depending on the power of the flame. Finally, we exclude 
entropy waves. Our assumptions may seem unrealistic, however, our study is fundamental, and we focus on the effects of the following 
features:  

– the acoustic field varies not just in 1-D, but in 2-D or 3-D  
– the orientation of the flame can change relative to the acoustic field. 

The Green’s function tailored to the hard-walled cavity shown in Fig. 1, i.e. the response at an observer point r→= (x, y, z) in the box 

due to an impulsive point source at r′
→

= (x′

, y′

, z′

) in the box, is denoted by G( r→, r′
→
,t − t′ ); t − t′ is the time it takes the signal to travel 

from r′
→

to r→. The governing equation is the non-homogeneous wave equation, 

1
c2

∂2G
∂t2 − ∇2G = δ( r→− r′

→
)δ(t − t

′

) (1)  

with speed of sound c. The boundary conditions can be written as 

∂G
∂ r→

= 0 (zero normal velocity at the hard walls), (2a)  

if G is taken to be a velocity potential. Also, the Green’s function satisfies the causality condition, 

G( r→, r′
→
, t − t′ )|t< t′ = 0 (no response before the impulse). (2b) 

The solution of Eq. (1) and (2) is (see appendix A and [40]) 

G( r→, r
′

→
, t − t

′

) = −
1

2π
∑∞

m,n,k=0

(m,n,k)∕=(0,0,0)

εmεnεk

Γmnk
ψmnk( r→)ψmnk( r

′
→
)

∫∞

− ∞

ejω(t− t′ )

k2
0 − k2

mnk
dω, (3)  

where 

ψmnk( r→) = cos(kxx) cos
(
kyy

)
cos(kzz) (4)  

are the (orthogonal) cavity eigenfunctions, with 
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kx =
mπ
Hx

, ky =
nπ
Hy

and kz =
kπ
Hz

. (5a,b,c)  

kx, ky, kz are the allowed wave numbers of the cavity, in the x, y and z direction, respectively, and m, n and k are the corresponding 
mode numbers; they can take values 0, 1, 2, …, but they must not be zero simultaneously. Furthermore, the following abbreviations 
have been used in Eq. (3): 

kmnk =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

k2
x + k2

y + k2
z

√

(magnitude of the allowed wave number vector), (6)  

k0 =
ω
c

(wave number corresponding to the integration variable ω), (7)  

εm =

{
1 if
2 if

m = 0
m > 0 (same for εn and εk), (8)  

Γmnk = HxHyHz (volume integral of products of the eigenfunctions). (9) 

The integral in Eq. (3) with respect to ω can be evaluated with the residue theorem, given that there are singularities in the 
integrand at k0 = ±kmnk; the result is (see [40]) 

G( r→, r′
→
, t − t′ ) = c2

∑∞

m,n,k=0

εmεnεk

ωmnkΓmnk
ψmnk( r→)ψmnk( r

′
→
)sin[ωmnk(t − t

′

)], (10)  

where ωmnk = c kmnk are the allowed frequencies. Eq. (10) describes a superposition of modes, which is the expected response to a 
source in an acoustic resonator. A more convenient form of (10) is 

G( r→, r′
→
, t − t′ ) =

∑∞

m,n,k=0
gmnk( r→, r′

→
)

1
2
[
ejωmnk(t− t′ ) − e− jωmnk(t− t′ )], (11)  

with 

gmnk( r→, r
′

→
) = c2 εmεnεk

j ωmnkΓmnk
ψmnk( r→)ψmnk( r

′
→
). (12)  

2.2. The heat release model 

We assume that the flame is compact and located at the point r→ = r→q. We also assume that the flame is flat and that its surface 
normal is described by the angles φ and θ shown in Fig. 1. Its global heat release rate is described by a simple time-lag law, with 
coupling coefficient n and time-lag τ, 

Q′

(t)
Q

= n
ur

′

(

r→q, t − τ
)

ur
. (13) 

This equation relates the fluctuating part Q′ of the heat release rate (normalized by the mean part Q) to the component of the 
velocity that is normal to the flame surface. This component is denoted by a subscript r; ur

′ is the fluctuating part, and ur is the mean 
part of the normal acoustic velocity. The local equivalent of Eq. (13) is 

q′

( r→, t) = Kq n ur( r→, t − τ) ⋅ δ
(

r→− r→q

)

, (14)  

where q′ is the heat release rate per unit mass (fluctuating part), the factor Kq stands for Kq =
Q
urρ

, and ρ is the mean density. 

2.3. Derivation of the integral governing equation 

The velocity potential ϕ( r→, t) of the sound field generated by a heat source can be described by the acoustic analogy equation [37] 

1
c2

∂2ϕ
∂t2 − ∇2ϕ = −

γ − 1
c2 q′

( r→, t). (15) 
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Here, ϕ( r→, t) also has to satisfy the boundary conditions of zero normal velocity at the hard walls of the box, 

∂ϕ
∂ r→

= 0, (16)  

and the two initial conditions 

ϕ|t′ =0 = ϕ0,
∂ϕ
∂t′

⃒
⃒
⃒
⃒

t′ =0
= 0 at r→= r→q; (17)  

ϕ0 in the first initial condition is the initial value of the velocity potential at the flame. For the second initial condition, we have chosen 
the value 0 for convenience. 

With the tailored Green’s function, this set of equations can be converted into an integral equation [37]: 

ϕ( r→, t) = −
γ − 1

c2

∫ ∫

G( r→, r′
→
, t − t′ )q

′

( r
′

→
, t′ )d r

′
→

dt′ −
ϕ0

c2

(
∂G
∂t′

)⃒
⃒
⃒
⃒ t′ = 0

r′
→

= r→q

. (18) 

This can be rewritten as an equation for the velocity u′

r by performing the following steps:  

– substitute for q′

( r′
→
, t′ ) with Eq. (14)  

– differentiate both sides of Eq. (18) with respect to the coordinate (denoted here by r) that is normal to the flame surface  
– evaluate the resulting equation at the flame position, r→ = r→q  

– replace ∂ϕ( r→,t)
∂r | r→= r→q 

by u′

q. 

The resulting equation is 

u′

q(t) = −
γ − 1

c2 Kq n
∫t

0

(
∂G( r→, r′

→
, t − t′ )

∂r

)⃒
⃒
⃒
⃒ r→= r→q

r′
→

= r→q

u′

q(t
′

− τ) dt
′

−
ϕ0

c2

(
∂2G
∂r∂t′

)⃒
⃒
⃒
⃒ t′ = 0

r→= r→q

r′
→

= r→q

. (19) 

This is a Volterra integral equation for the velocity at the flame. It relates uq
′

(t) at the observer time t to the velocity at earlier times, 
uq

′

(t′ − τ), t′ = 0, … t. 
The flame-normal derivative ∂

∂r can be expressed in terms of cartesian coordinates, 

∂
∂r

=
∂x
∂r

∂
∂x

+
∂y
∂r

∂
∂y

+
∂z
∂r

∂
∂z
, (20)  

where 

∂x
∂r

= cosφsinθ,
∂y
∂r

= sinφsinθ,
∂z
∂r

= cosθ (21)  

(from standard relationships between cartesian and spherical coordinates). The angles φ and θ are shown in Fig. 1. For the special case 
shown in Fig. 1(b), where there is no variation in the z- direction, (20) reduces to 

∂
∂r

= cosφ ⋅
∂
∂x

+ sinφ ⋅
∂
∂y
. (22)  

2.4. Solutions of the integral governing equation 

Eq. (19) governs the evolution of the acoustic field generated by the thermoacoustic feedback described above. In the following, 
two different methods are applied to solve this integral equation. The first one (Section 2.4.1) is a numerical iteration method, stepping 
forward in time; this gives the time history of the velocity fluctuations. The second one (Section 2.4.2) is an analytical approach, where 
we derive an algebraic equation for the complex eigenfrequency of the thermoacoustic system. 

2.4.1. Time-stepping approach 
The integral Eq. (19) is a Volterra equation of the second kind; it has the form 

u(t) =
∫t

t′ =0

K(t, t
′

)u(t
′

− τ) dt
′

+ f (t), (23) 

X. Wang and M. Heckl                                                                                                                                                                                               



Journal of Sound and Vibration 537 (2022) 116816

7

where u(t) is the function to be solved for, 

K(t, t′ ) = −
γ − 1

c2 Kq n
(

∂G( r→, r′
→
, t − t′ )

∂r

)⃒
⃒
⃒
⃒ r→= r→q

r′
→

= r→q

(24)  

is the integral kernel, and 

f (t) = −
ϕ0

c2

(
∂2G
∂r∂t′

)⃒
⃒
⃒
⃒ t′ = 0

r→= r→q

r′
→

= r→q

(25)  

is the non-homogeneous term. The iterative solution of a standard Volterra equation is known and can be found e.g. in chapter 19 [41]. 
The approach basically involves discretising the time variables t and t′ , and then applying the trapezoidal rule to the integral. However, 
in our case, the integrand contains the time-lag τ, and this makes it necessary to modify the approach. A detailed description can be 
found in appendix B. Here, we just give a summary of the key equations. 

The variables t and t′ are discretised by 

tN = Nh, N = 0, 1, 2, …, (26)  

where h is the (constant) time-step. Correspondingly, the time-lag τ is treated as a discrete quantity, which may take values 

τ = Mh, (27)  

where M is a fixed natural number. 
The iteration scheme proceeds as follows. For the first few iteration steps, until tN becomes equal to the time-lag, the equations are 

simply 

N = 0, 1, …M : u(tN) = f (tN). (28a) 

For the next two iteration steps, we have 

N = M + 1 : u(tN) = f (tN) +
h
2
[K(tN , tM)u(t0)+K(tN , tN)u(t1)], (28b)  

N = M + 2 : u(tN) = f (tN) +
h
2
[K(tN , tM)u(t0)+K(tN , tN)u(t2)] + hK(tN , tM+1)u(t1). (28c) 

For all subsequent iteration steps, N > M+ 2: 

u(tN) = f (tN) +
h
2
[K(tN , tM)u(t0)+K(tN , tN)u(tN− M)] + h

∑N− 2

i=M
K(tN , ti+1)u(ti− M+1). (28d) 

The initial condition (17) is contained in the non-homogeneous term f (see Eq. (25)) and affects the result at every iteration step. 

2.4.2. Calculation of the thermoacoustic eigenfrequencies 
This method is based on the observation that the thermoacoustic field in a resonator is a superposition of modes. We express this 

mathematically by writing the acoustic velocity as a sum of modes with complex amplitudes uμνκ and complex frequencies Ωμνκ, 

u′

q(t) =
∑

μνκ
uμνκejΩμνκ t. (29) 

It is not necessary to take only the real part of (29); this is because (19) is a linear equation in u′

q, and the Green’s function as well as 
the other quantities in this equation are real. At this stage, uμνκ and Ωμνκ are unknown. It is possible to determine them from a series of 

mathematical manipulations, based on the integral Eq. (19) and Eq. (10) for G( r→, r′
→
, t − t′ ). Details of the derivation can be found in 

Appendix C. The resulting equations are 

1 = −
γ − 1

c2 Kqn e− jΩμνκ τ
∑

mnk

1
2
Gmnk

[
1

j
(
− ωmnk + Ωμνκ

) −
1

j
(
ωmnk + Ωμνκ

)

]

(30)  

and 

−
γ − 1

c2 Kqn
∑

μνκ

e− jΩμνκτ

j
(
− ωmnk + Ωμνκ

)uμνκ =
ϕ0

c2 jωmnk, (31) 
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where Gmnk is the gradient of the Green’s function amplitude (see Eq. (C4)). Eq. (30) is an equation for the frequencies Ωμνκ. Once this 
has been solved for Ωμνκ, the solution can be put into (31) to obtain the solution for the velocity amplitude uμνκ. The imaginary part of 
Ωμνκ gives the stability behaviour of the thermoacoustic mode μνκ. 

For the case, where the Green’s function is dominated by a single mode mnk, the Eqs. (30) and (31) can be simplified by dropping 
the sum. The equation resulting from (30) can then be written as 

Ωμνκ
2 − ωmnk

2 −
γ − 1

c2 Kqn 2jωmnkGmnke− jΩμνκτ = 0. (32) 

In general, this equation has two roots. It is easy to show that if Ω is one of the roots, then − Ω* must be the other root. 

3. Model validation 

3.1. Comparison with a 1-D network model 

In order to test the model developed in Section 2, we consider the mode (m, n, k) = (1, 0,0) in isolation. For this mode, the acoustic 
field varies only along the x-axis, but not along the y or z- axis. In other words, we reduce our model to a 1-D situation, which can also 
be analysed by a simple 1-D network model. Fig. 2 shows the relevant geometry. 

A duct of length L, with both ends closed, represents the 1-D cavity. An infinitesimally thin flame sheet, spanning the duct’s cross- 
section, is located at x = xq. The temperature is uniform throughout the duct; the mean density is ρ. 

1-D acoustic waves propagate in the positive and negative x- direction on either side of the flame. The corresponding pressure and 
velocity fields are given by 

p̂(x) =

⎧
⎨

⎩

Ae− jΩc (x− xq) + BejΩc (x− xq) for 0 ≤ x < xq

Ce− jΩc (x− xq) + DejΩc (x− xq) for xq < x ≤ L
(33)  

û(x) =
1
ρc

⎧
⎨

⎩

− Ae− jΩc (x− xq) + BejΩc (x− xq) for 0 ≤ x < xq

− Ce− jΩc (x− xq) + DejΩc (x− xq) for xq < x ≤ L
(34) 

The superscript ̂  denotes complex amplitudes. At this stage, A,B,C and D are unknown pressure amplitudes. They are related by the 
following jump conditions across the flame at x = xq: 

p̂
(

x+q
)
− p̂

(
x−q

)
= 0, (35a)  

û
(

x+q
)
− û

(
x−q

)
=

γ − 1
c2 Q̂, (35b)  

where Q̂ is the complex amplitude of Q′

(t). It can be readily obtained by Fourier transform of (13), 

Q̂ = Kq n û
(

x−q
)

e− jΩτ, (36)  

where Kq is the constant factor introduced just after Eq. (14). 
The unknown pressure amplitudes are also related by the hard-wall boundary conditions at x = 0 and x = L, which are described by 

the pressure reflection coefficients 

R0 = 1 and RL = 1; (37)  

Fig. 2. Schematic of the 1-D situation.  
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this gives 

A = Be− 2jΩc xq , (38a)  

D = Ce− 2jΩc (L− xq). (38b) 

Altogether, we have 4 equations for the 4 unknowns A,B,C and D: Eqs. (38a), (38b), (35a) (with p̂ replaced by (33)), and (35b) 
(with Q̂ replaced by (36) and û by (34)). They form a linear homogeneous set of equations, which can be written in terms of a 4 ×4 
matrix. For non-zero solutions to exist, the determinant of the 4 × 4 matrix must be zero. This condition leads to a nonlinear equation 
for the thermoacoustic eigenfrequency Ω. This is called the characteristic equation, and it reads 

2 − 2e− 2jΩc L +
γ − 1

c2 Kqne− jΩτ
[
e− 2jΩc (L− xq) + 1 − e− 2jΩc L − e− 2jΩcxq

]
= 0. (39) 

Eq. (39) was solved for Ω with the Newton-Raphson method for a range of τ values and xq values. 
Fig. 3 shows Ω as a function of τ: Re(Ω) is shown in part (a), and Im(Ω) in part (b). The black curves give the results of the network 

model (obtained from Eq. (39)), while the red curves give the results of the Green’s function method (determined from the time history 
which was obtained by solving the integral Eq. (19) as described in Section 2.4.1. It is evident from a comparison of these curves that 
the agreement is very good. 

In a similar vein, Fig. 4 shows Ω as a function of xq. Again, the agreement between the results of the two methods is very good. 

3.2. Comparison of approach based on thermoacoustic eigenfrequencies with time-stepping approach 

In order to test the calculation of the thermoacoustic eigenfrequencies developed in Section 2.4.2, we consider the 2-D situation of a 
rectangular cavity with side lengths Hx,Hy, and a flame angle φ = 45∘. The comparison is done in terms of time histories, which are 
calculated in two ways: (1) by the time-stepping approach described in Section 2.4.1, and (2) by evaluating Eq. (29) with the ther-
moacoustic eigenfrequencies Ωμνκ from (30) and the corresponding amplitudes uμνκ from (31). 

Two scenarios are considered and shown in Fig. 5. The first (see Fig. 5(a)) is a square cavity with side lengths Hx = Hy = 1 m and a 
single mode (m,n,k) = (1,1,0). The second (see Fig. 5(b)) is a rectangular cavity with side lengths Hx = 1 m, Hy = 1.2 m and the two 
modes (m, n, k) = (1, 0,0) and (0,1,0). The red curves give the results of the approach based on the thermoacoustic eigenfrequencies, 
while the black curves give the results of the time-stepping approach. The red curves lie directly on top of the black curves, indicating 
excellent agreement. 

4. Results and discussion for a single-frequency resonator 

In order to understand the key features of any thermoacoustic instabilities, we consider a 2-D resonator (equivalent to a 3-D 
resonator with mode number k = 0) with a 2-D flame inside. The resonator is a square with Hx = Hy = 1 m. The first modal fre-
quency in the two directions is the same, i.e. ω100 = ω010 = 1068 s− 1. The second modal frequency is ω110 = 1511 s− 1. We consider 
this second frequency on its own for the remainder of this section; the case of two frequencies will be treated in Section 5. 

Fig. 3. Comparison of the τ- dependence of the thermoacoustic eigenfrequency calculated from the Green’s function method (red curve) and from 
the network model (black curve). The flame is located at xq = 0.2 m; the other parameters are L = 1 m (length of duct), c = 340 ms− 1 (speed of 
sound), Kqn = 1.45 × 104 W m2 s kg− 1 (power of flame); (a) real part (oscillation frequency), (b) imaginary part (growth rate). 
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4.1. Influence of the flame angle and flame position 

First, we move the flame along the x-axis (while keeping yq constant) and calculate the complex thermoacoustic eigenfrequencies 
Ωμνκ from Eq. (30) for the following three flame angles: φ = 0, φ = 45∘ and φ = 120∘. The results are shown in Fig. 6: part (a) shows the 
oscillation frequency, Re(Ω), and part (b) shows the growth rate, Im(Ω). 

We observe from Fig. 6(b) that for φ = 0 (black curve), the xq- range is divided into two equal parts: there is stability in the first half 
(0 < xq < 0.5 m), and instability in the second half (0.5 m < xq < 1 m). For the other two angles, φ = 45∘ (red curve) and φ = 120∘ (blue 
curve), the stable range along the x- axis is larger than that for φ = 0. This is a new phenomenon (in the sense that it cannot be captured 
by 1-D models), which is caused by the fact that the flame is angled. 

Next we move the flame along a diagonal path through the box. Again, we calculate the complex thermoacoustic eigenfrequencies 
Ωμνκ from Eq. (30). The results are shown in Figs. 7(a) and 7(b) for the two flame angles: φ = 0 (black curve), and φ = 45∘(red curve). 
Part (a) shows the oscillation frequency, Re(Ω), and part (b) shows the growth rate, Im(Ω). rq is the distance of the flame from the 

Fig. 4. Comparison of the xq- dependence of the thermoacoustic eigenfrequency calculated from the Green’s function method (red curve) and from 
the network model (black curve). The time-lag is τ = 0.001 s; the other parameters are L = 1 m, c = 340 ms− 1, Kqn = 1.45× 104 W m2 s kg− 1; (a) 
real part (oscillation frequency), (b) imaginary part (growth rate). 

Fig. 5. Comparison of the time histories calculated from the approach based on the thermoacoustic eigenfrequencies (red curves) and the time- 
stepping approach (black curves). The parameters for the flame characteristics are xq = 0.1 m, yq = 0.1 m, φ = 45∘, τ = 0.001 s, Kqn = 1.45 ×
104 W m2 s kg− 1; (a) square cavity (Hx = Hy = 1 m) with single mode (1,1,0), (b) rectangular cavity (Hx = 1 m, Hy = 1.2 m) with two modes (1, 0,0)
and (0,1, 0). 
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origin and ranges from 0 to 
̅̅̅̅
2

√
m in a box of 1 m × 1 m. 

We observe from Fig. 7(b) that there is stability along the first half of the flame path (i.e. while the flame is in the bottom left quarter 
of the box) and instability along the second half of the path (i.e. while the flame is in the top right quarter of the box). There is a 
relatively large region halfway along the path, where Im(Ω) is very close to zero; this indicates that the transition from stable to 
unstable is very gradual. Again this is a new phenomenon, and it is caused by the fact that the acoustic field in the box is 2-D. 

4.2. Interpretation in terms of the Rayleigh index 

In order to understand this in detail, we consider the local Rayleigh index [42] 

RI = p′
(x, y, t)Q′

(t)
⃒
⃒
⃒x=xq

y=yq
, (40) 

Fig. 6. Thermoacoustic eigenfrequency as a function of flame position along the x-axis for three flame angles φ. The other parameters are Hx = Hy 

= 1 m, yq = 0.1 m, τ = 0.001 s, Kqn = 1.45× 104 W m2 s kg− 1; the mode number is (1,1,0); (a) real part (oscillation frequency), (b) imaginary part 
(growth rate). 

Fig. 7. Thermoacoustic eigenfrequency as a function of flame position along the diagonal line (from the bottom left to the top right corner) for two 
flame angles φ. The other parameters are Hx = Hy = 1 m, τ = 0.001 s, Kqn = 1.45× 104 W m2 s kg− 1; the mode number is (1,1,0); (a) real part 
(oscillation frequency), (b) imaginary part (growth rate). 

X. Wang and M. Heckl                                                                                                                                                                                               



Journal of Sound and Vibration 537 (2022) 116816

12

where the overbar denotes the time average over one oscillation period, and the dashes denote time-domain quantities. If RI is positive, 
the system is unstable; otherwise it is stable. The sign of RI, and therefore the stability behaviour, depend critically on the phase 
difference between p′

(xq, yq, t) and Q′

(t). The acoustic pressure is given by (see chapter 9 in [43]) 

p′

(x, y, t) = P0 fp(x, y)cosωt, (41)  

and the momentum equation then gives the acoustic velocity as 

ur
′

(x, y, t) =
P0

ρc
fu(x, y,φ)sinωt, (42)  

where fp(x, y) and fu(x, y,φ) are distribution functions, defined by 

fp(x, y) = cos
(

πx
Hx

)

cos
(

πy
Hy

)

, (43)  

fu(x, y,φ) = sin
(

πx
Hx

)

cos
(

πy
Hy

)

cosφ + cos
(

πx
Hx

)

sin
(

πy
Hy

)

sinφ, (44)  

and P0 is the pressure amplitude. Given that Q′ is proportional to the time-lagged velocity ur
′

(xq, yq, t − τ) (see Eq. (13)), we can write 

Q
′

(t) = Kq n
P0

ρc
fu
(
xq, yq,φ

)
sinω(t − τ). (45) 

The phase differences between these three quantities are illustrated in Fig. 8 for the special case φ = 0, where p′

(xq, yq, t) (black 
curves), ur

′

(xq, yq, t) (red curves) and Q′

(t) (blue curves) have been plotted as functions of time over one period. In Fig. 8(a), the phase 
difference between p′ and ur

′ is + 90∘, and the phase difference between p′ and Q′ is between 90◦ and 180◦, so the Rayleigh index is 
negative. In Fig. 8(b), the phase difference between p′ and ur

′ is − 90∘, and that between p′ and Q′ is between − 90∘ and 0◦, so the 
Rayleigh index is positive. 

The key parameters are the flame angle φ, the flame position (xq,yq), and the time-lag τ. In order to investigate their influence in a 
systematic fashion, we rewrite RI with (41) and (45), and by using the time averages cosωtsinωt = 0, cosωtsinω(t − τ) = − 1

2 sinωτ. The 
result is 

RI = −
1
2

Kq n
P2

0

ρc
sinωτ fp(x, y) fu(x, y,φ). (46) 

The term 
1
2
Kq n

P2
0

ρc 
is a positive constant; the sign of RI therefore depends on the following three quantities: sinωτ, fp(x,y), fu(x,y,φ). 

For moderately small values of τ (i.e. τ ∈

[

0, T
2

]

, so that sinωτ > 0), the sign of the product 

fpu(x, y,φ) = − fp(x, y) fu(x, y,φ) (47) 

Fig. 8. One cycle of the time history of p′

(xq,yq, t), ur
′

(xq, yq, t) and Q′

(t) at the flame position. In both parts of the figure, yq = 0.1 m (bottom half of 
box), φ = 0, Kqn = 1.45 × 104 W m2 s kg− 1 and Hx = Hy = 1 m; (a) xq = 0.1 m (left half of box), (b) xq = 0.9 m (right half of box). 
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determines the stability behaviour. With (43) and (44), this can be written as 

fpu(x, y,φ) = −
1
2

sin
(

2πx
Hx

)

cos2
(

πy
Hy

)

cosφ −
1
2

sin
(

2πy
Hy

)

cos2
(

πx
Hx

)

sinφ. (48) 

The x- and y- dependence of the individual terms is shown schematically in Fig. 9. 
Clearly, fpu = 0 for any φ if x = 1

2Hx or y = 1
2Hy. This indicates that the box, which has side lengths Hx and Hy, is divided into four 

quarters. We can draw further conclusions by considering the two flame angle ranges 0 < φ < 90∘ (where sinφ > 0, cosφ > 0), and 90∘ 

< φ < 180∘ (where sinφ > 0, cosφ < 0) separately, starting with the first range.  

(1) fpu < 0 for 0 < φ < 90∘ if x ∈

[

0, 1
2Hx

]

and y ∈

[

0, 1
2Hy

]

.  

(2) fpu > 0 for 0 < φ < 90∘ if x ∈

[
1
2Hx,Hx

]

and y ∈

[
1
2Hy,Hy

]

.  

(3) fpu = 0 for φ = 45∘ if Hx = Hy (square box) and y = − x + Hy (diagonal line from top left to bottom right). 

Fig. 10 shows the stability maps for the three angles φ = 0, φ = 45∘ and φ = 90∘; stable regions are blue and unstable regions are 
red. 

The sign in the bottom left quarter is always negative, and that in the top right quarter is always positive. However, the sign in the 
other two quarters depends very much on the angle φ. In fact, these two quarters have a uniform sign if φ = 0 or φ = 90∘, but not for the 
angle φ = 45∘. For this angle, these quarters are divided into a positive and negative region. 

In order to investigate the transition from φ = 0 to 45∘, and from φ = 45∘ to 90∘, we consider the two angles φ = 0 +ε and φ = 90∘ −

ε, where ε is a small angle. 
For φ = 0+ ε, fpu in Eq. (48) becomes with cosφ ≈ 1 and sinφ ≈ ε 

fpu(x, y,φ) = −
1
2

sin
(

2πx
Hx

)

cos2
(

πy
Hy

)

−
1
2

εsin
(

2πy
Hy

)

cos2
(

πx
Hx

)

. (49) 

The first term is equal to fpu|φ=0, and the much smaller second term can be seen as a "perturbation" of the case φ = 0. From the sign of 
the second term, 

−
1
2

εsin
(

2πy
Hy

)

cos2
(

πx
Hx

)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

< 0 for y ∈

[

0,
1
2

Hy

]

> 0 for y ∈

[
1
2

Hy,Hy

] (50)  

we conclude that with increasing ε, the negative region in the top left quarter becomes smaller, as well as the positive region in the 
bottom right quarter. A sketch is shown in Fig. 11(a). 

For φ = 90∘ − ε, fpu in Eq. (48) becomes with cosφ ≈ ε and sinφ ≈ 1 

fpu(x, y,φ) = −
1
2
cos2

(
πx
Hx

)

sin
(

2πy
Hy

)

−
1
2

εsin
(

2πx
Hx

)

cos2
(

πy
Hy

)

. (51) 

Again, the first term is equal to fpu|φ=90∘ , and the much smaller second term can be seen as a "perturbation", now of the case φ = 90∘. 
The sign of the second term, 

Fig. 9. Individual terms in Eq. (48); (a) x- dependence, (b) y- dependence.  
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Fig. 10. Stability maps for a square box; (a) φ = 0, (b) φ = 45∘, (c) φ = 90∘.  
lines of fpu < 0, regions of fpu < 0 (stable),  

lines of fpu > 0, regions of fpu > 0 (unstable),  
lines of fpu = 0. 

Fig. 11. Stability maps for a square box; (a) φ = 0+ ε, (b) φ = 90∘ − ε.  
lines of fpu < 0, regions of fpu < 0 (stable),  

lines of fpu > 0, regions of fpu > 0 (unstable),  
curves of fpu = 0. 

Fig. 12. Stability maps for a square box; (a) φ = 90∘, (b) φ = 135∘, (c) φ = 180∘.  
lines of fpu < 0, regions of fpu < 0 (stable),  

lines of fpu > 0, regions of fpu > 0 (unstable),  
lines of fpu = 0. 
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−
1
2

εsin
(

2πx
Hx

)

cos2
(

πy
Hy

)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

< 0 for x ∈

[

0,
1
2
Hx

]

> 0 for x ∈

[
1
2
Hx,Hx

] (52)  

indicates that with increasing ε, the positive region in the top left quarter becomes smaller, as well as the negative region in the bottom 
right quarter. A sketch is shown in Fig. 11(b). 

We now draw conclusions for the flame angle range 90∘ < φ < 180∘.  

(1) fpu < 0 for 90∘ < φ < 180∘ if x ∈

[
1
2Hx,Hx

]

and y ∈

[

0, 1
2Hy

]

.  

(2) fpu > 0 for 90∘ < φ < 180∘ if x ∈

[

0, 1
2Hx

]

and y ∈

[
1
2Hy,Hy

]

.  

(3) fpu = 0 for φ = 45∘ if Hx = Hy (square box) and y = x (diagonal line from bottom left to top right). 

Fig. 12 shows the stability maps for the three angles φ = 90∘, φ = 135∘ and φ = 180∘. 
The sign in the top left quarter is always positive and that in the bottom right quarter is always negative. However, the sign in the 

other two quarters depends very much on the angle φ, and it is again worthwhile examining the transition by performing the 
"perturbation" analysis shown above, but now for φ = 90∘ + ε and φ = 180∘ − ε. The results are shown in Fig. 13. 

The above considerations were based on the assumption that sinωτ > 0, which is the case if τ is in the range 
[

0,T2

]

. If τ is such that 

sinωτ < 0, which happens for τ ∈

[
T
2,T

]

, the patterns shown in Figs. 10–13 remain, but the regions of instability now correspond to fpu 

< 0 and regions of stability to fpu > 0. 

4.3. Quantitative stability maps from numerical calculation of the thermoacoustic eigenfrequencies 

We complement the qualitative results of the previous section by showing stability maps produced by calculating the thermoa-
coustic eigenfrequencies Ω110 (as described in Section 2.4.2) and deducing the stability behaviour from the sign of Im(Ω110). Our 

configuration here is a square box of 1 m × 1 m, which houses a flame described by τ = 0.001 s (this is in the range 
[

0,T2

]

) and Kqn =

1.45× 104 W m2 s kg− 1; the mode number is (1,1,0). Fig. 14 shows contour maps of the growth rate Im(Ω110) for the flame angles 
considered in Figs. 10 and 12 of the previous section. 

Figs. 14(a)–(c) correspond to Figs. 10(a)–(c), while Figs. 14(d) and (e) correspond to 12 (b) and (c). It is evident that the corre-
sponding figures are fully consistent. 

In Fig. 15 below, we show contour maps for the neighbouring φ-values 5◦, 85◦, 95◦ and 175◦. 
These angles have been chosen because they allow comparison with the qualitative stability maps in Figs. 11 and 13. Fig. 11(a), 

which shows the stability map for φ = 0+ ε, corresponds to Fig. 15(a), where φ = 5∘ (i.e. ε = 5∘). Likewise, Fig. 11(b), which shows the 
stability map for φ = 90∘ − ε, corresponds to Fig. 15(b), where φ = 90∘ − 5∘ = 85∘. Again, it is evident that the corresponding figures 
are fully consistent. It is the same story for the two angles φ = 90∘ + 5∘ = 95∘ (compare Figs. 13(a) and 15(c)) and φ = 180∘ − 5∘ =

175∘(compare Figs. 13(b) and 15(d)). 

Fig. 13. Stability maps for a square box; (a) φ = 90∘ + ε, (b) φ = 180∘ − ε.  
lines of fpu < 0, regions of fpu < 0 (stable),  

lines of fpu > 0, regions of fpu > 0 (unstable),  
curves of fpu = 0. 
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5. Results and discussion for a two-frequency resonator 

We now extend our considerations to the case where two frequencies are present in the resonator so that interference effects can be 
expected to occur. It will turn out that the nature of the interference depends on whether or not the frequencies are close to each other. 
We therefore treat the two cases in separate sections. 

5.1. Frequencies close to each other 

5.1.1. Time history calculations 
We assume that the box has different, but very similar, side lengths: Hx = 1 m and Hy = 1.01 m. The modes (1,0,0) and (0,1,0) 

therefore have similar frequencies: ω100 = 1068 s− 1 and ω010 = 1057 s− 1. The time history of the acoustic velocity was calculated as 
described in Section 2.4.1, with τ = 0.0001 s and φ = 45∘. The result is shown in Fig. 16(a), and the corresponding frequency spectrum 
(calculated by FFT) is shown in Fig. 16(b). 

For comparison, the equivalent results for a perfectly square box (Hx = Hy = 1 m) with only one frequency (ω100 = ω010 = 1068 s− 1) 
are shown in Figs. 17(a) and (b). 

Both cases are damped, but the time histories have very different patterns. The amplitude decreases monotonically in Fig. 17(a). 
However, in Fig. 16(a), the amplitude shows pronounced fluctuations with successive maxima and minima. This phenomenon is 
known as "beating". It occurs when two tones with slightly different frequencies are superimposed. The beat frequency is given by the 
difference between the two constituent frequencies (see e.g. section 89 in [44]). These are represented by the two peaks in the fre-
quency spectrum of Fig. 16(b): Re(Ω100) = 1064.9 s− 1 and Re(Ω010) = 1052.4 s− 1. The beat frequency is therefore ΔΩ = 1064.9 s− 1 −

1052.4 s− 1 = 12.5 s− 1, and the corresponding beat period is 2π
ΔΩ = 0.503 s. This is consistent with Fig. 16(a), where the beats occur 

approximately every 0.5 s. 
The pressure fields corresponding to the results in Figs. 16 and 17 can be seen from Figs. 18 and 19, respectively. These figures show 

snapshots of the pressure distribution at four different times within one period (t = 0.1T, 0.25T, 0.5T, 0.75T) for the nearly square box 
(Fig. 18) and the perfectly square box (Fig. 19). 

Fig. 14. Contour maps of the growth rate Im(Ω110) for a square box with side lengths Hx = Hy = 1 m, containing a flame with τ = 0.001 s and Kqn =
1.45× 104 W m2 s kg− 1; (a) φ = 0, (b) φ = 45∘, (c) φ = 90∘, (d) φ = 135∘, (e) φ = 180∘. 
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Fig. 15. Contour maps of the growth rate Im(Ω110) for a square box with side lengths Hx = Hy = 1 m, containing a flame with τ = 0.001 s and Kqn =
1.45× 104 W m2 s kg− 1; (a) φ = 5∘, (b) φ = 85∘, (c) φ = 95∘, (d) φ = 175∘. 

Fig. 16. Acoustic velocity in a nearly square box with Hx = 1 m, Hy = 1.01 m, containing a flame with xq = yq = 0.1 m, φ = 45∘, τ = 0.0001 s and 
Kqn = 1.45× 104 W m2 s kg− 1; (a) time history, (b) frequency spectrum. 
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The pressure field in the perfectly square box (Fig. 19) has a nodal line along the diagonal from top left to bottom right, and the 
pattern is symmetric with respect to the other diagonal. The pressure oscillates in anti-phase on either side of the nodal line. For the 
nearly square box (Fig. 18), the pattern is very similar except that the "nodal line" is slightly distorted, and the pattern is no longer 
perfectly symmetric. 

Fig. 17. Acoustic velocity in a perfectly square box with Hx = Hy = 1 m, containing a flame with xq = yq = 0.1 m, φ = 45∘, τ = 0.0001 s and Kqn =
1.45× 104 W m2 s kg− 1; (a) time history, (b) frequency spectrum. 

Fig. 18. Acoustic pressure field in a nearly square box at four different times t within one period T. The parameters are the same as for Fig. 16.  

Fig. 19. Acoustic pressure field in a perfectly square box at four different times t within one period T. The parameters are the same as for Fig. 17.  
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5.1.2. Calculation of the thermoacoustic eigenfrequencies 
The thermoacoustic eigenfrequencies Ω were calculated as described in Section 2.4.2 for three cases: single mode, degenerate 

modes, and non-degenerate modes. 
Case 1: square box, single mode 
The Green’s function included the mode (1,0,0); its frequency was ω100 = 1068 s− 1 (for box dimensions Hx = Hy = 1 m). A single 

solution, denoted by Ω100, was found for the thermoacoustic eigenfrequency. 
Case 2: square box, two degenerate modes 
The Green’s function included the modes (1,0,0) and (0,1,0); they had the same frequency, ω100 = ω010 = 1068 s− 1 (for box di-

mensions Hx = Hy = 1 m). A single solution, denoted by Ω100, was found for the thermoacoustic eigenfrequency. 
Case 3: nearly square box, two non-degenerate modes 
The Green’s function included the modes (1,0,0) and (0,1,0); they had different but similar frequencies, ω100 = 1068 s− 1, ω010 =

1057 s− 1 (for box dimensions Hx = 1 m, Hy = 1.01 m). Two solutions, denoted by Ω100 and Ω010, were found for the thermoacoustic 
eigenfrequencies. 

Fig. 20 shows the results for all three cases as functions of the time-lag τ; part (a) of the figure gives the real part (oscillation 
frequency), and part (b) gives the imaginary part (growth rate) of Ω100, Ω010. 

For the square box (cases 1 and 2), the oscillation frequency fluctuates around ω100 = 1068 s− 1 (the eigenfrequency of the box 
without flame), and the growth rate fluctuates around 0 (the growth rate in the box without flame). The fluctuations are periodic along 
the τ-axis, with a period of about 0.006 s; this coincides with the period associated with the frequency of 1068 s− 1. The same obser-
vations were made for the 1-D case [45]. 

For the nearly square box, there are two thermoacoustic eigenfrequencies, Ω100 and Ω010, shown by the blue and green curves in 
Fig. 20. Their real parts fluctuate in ranges that don’t overlap: Re(Ω100) fluctuates within the range [1066 s− 1, 1072 s− 1], while 
Re(Ω010) fluctuates within the lower range [1053 s− 1, 1059 s− 1]. Their imaginary parts are similar, and they have the same signs as 
those found for cases 1 and 2; however, they are out-of-synch, and this is a manifestation of interference between the two modes. 

5.2. Frequencies not close to each other 

5.2.1. Time history calculations 
We now assume that the box is rectangular with distinctly different side lengths: Hx = 1 m, Hy = 1.5 m. The modes (1,0,0) and 

(0,1,0) then have the frequencies ω100 = 1068 s− 1 and ω010 = 712 s− 1. The time history was again calculated as described in Section 
2.4.1, with τ = 0.001 s and φ = 45∘. The result is shown in Fig. 21(a), and the corresponding frequency spectrum (calculated by FFT) is 
shown in Fig. 21(b). 

5.2.2. Calculation of the thermoacoustic eigenfrequencies 
The thermoacoustic eigenfrequencies Ω were calculated as described in Section 2.4.2, again for the following three cases: single 

mode, degenerate modes, and non-degenerate modes. 
Case 1: square box, single mode 
The Green’s function included the mode (1,0,0); its frequency was ω100 = 712 s− 1 (for box dimensions Hx = Hy = 1.5 m). A single 

Fig. 20. Complex thermoacoustic eigenfrequencies as functions of the time-lag τ for the three cases listed above with xq = yq = 0.1 m, φ = 45∘, Kqn 
= 1.45× 104 W m2 s kg− 1; (a) real part (oscillation frequency), (b) imaginary part (growth rate). 
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Fig. 21. Acoustic velocity in a box with Hx = 1 m, Hy = 1.5 m, containing a flame with xq = yq = 0.1 m, φ = 45∘, τ = 0.001 s and Kqn = 1.45 ×
104 W m2 s kg− 1; (a) time history, (b) frequency spectrum. 

Fig. 22. Complex thermoacoustic eigenfrequencies as functions of the time-lag τ for the three cases listed above with xq = yq = 0.1 m, φ = 45∘, Kqn 
= 1.45× 104 W m2 s kg− 1; (a) real part (oscillation frequency), (b) imaginary part (growth rate). 

X. Wang and M. Heckl                                                                                                                                                                                               



Journal of Sound and Vibration 537 (2022) 116816

21

solution, denoted by Ω100, was found for the thermoacoustic eigenfrequency. 
Case 2: square box, two degenerate modes 
The Green’s function included the modes (1,0,0) and (0,1,0); they had the same frequency, ω100 = ω010 = 712 s− 1 (for box di-

mensions Hx = Hy = 1.5 m). A single solution, denoted by Ω100, was found for the thermoacoustic eigenfrequency. 
Case 3: rectangular non-square box, two non-degenerate modes 
The Green’s function included the modes (1,0,0) and (0,1,0); they had different frequencies, ω100 = 1068 s− 1, ω010 = 712 s− 1 (for 

box dimensions Hx = 1 m, Hy = 1.5 m). Two solutions, denoted by Ω100 and Ω010, were found for the thermoacoustic eigenfrequencies. 
Fig. 22 shows the results for all three cases as functions of the time-lag τ; part (a) of the figure gives the real part of Ω100, Ω010 

(oscillation frequency), and part (b) gives the imaginary part (growth rate). 
For the square box (cases 1 and 2), the oscillation frequency fluctuates around ω100 = 712 s− 1 (the eigenfrequency of the box 

without flame), and the growth rate fluctuates around 0 (the growth rate in the box without flame). The fluctuations are periodic along 
the τ-axis, with a period of about 0.009 s; this coincides with the period associated with the frequency of 712 s− 1. 

For the non-square box, there are two thermoacoustic eigenfrequencies, Ω100 and Ω010, shown by the blue and green curves in 
Fig. 22. Their real parts are distinctly different: Re(Ω100) fluctuates within the range [1065 s− 1, 1070 s− 1], while Re(Ω010) fluctuates 
within the lower range [710.3 s− 1, 713.2 s− 1]. Their imaginary parts fluctuate in the ranges [− 2.4 s− 1, +2.4 s− 1] for Im(Ω100), and [−
1.7 s− 1, +1.7 s− 1] for Im(Ω010). 

5.3. Results and discussion for a three-frequency resonator 

We briefly consider a three-mode interference in a rectangular box with side lengths Hx = 1 m, Hy = 2 m. The following three 
modes were included in the Green’s function: (1,0,0), (0,1,0) and (1,1,0). Their individual frequencies are: ω100 = 1068 s− 1, ω010 =

534 s− 1 and ω110 = 1194 s− 1. The time history was again calculated as described in Section 2.4.1, with τ = 0.001 s and φ = 45∘. The 
result is shown in Fig. 23(a), and the corresponding frequency spectrum (calculated by FFT) is shown in Fig. 23(b). 

The frequency spectrum has peaks at the frequencies 534.1 Hz, 1068.1 Hz and 1193.4 Hz, which are very similar to the eigen-
frequencies of the Green’s function modes. The last two peaks have similar frequencies and relatively large amplitudes, and they are 
responsible for the beating that can be seen in the time history. 

The acoustic field resulting from the superposition of these three thermoacoustic modes is visualised in Fig. 24. Snapshots are 
shown at four different times, t = 0.1T, 0.25T, 0.5T, 0.75T, where T is the oscillation period of the (0,1,0) mode. 

The pressure distribution undergoes irregular changes with time; nodal lines or nodal curves are absent. 

6. Conclusions and outlook 

This paper presents a 3-D analytical model, based on a Green’s function approach, of a compact flame in a hard-walled rectangular 
cavity. The heat release rate from the flame is described by a time-lag law, which takes into account the direction of the flame. The 
cavity is described by its tailored Green’s function. The complete system is modelled by an integral equation for the acoustic velocity at 
the flame position. Stability predictions are made from this integral equation in two ways: 

Fig. 23. Acoustic velocity in a box with Hx = 1 m, Hy = 2 m, containing a flame with xq = yq = 0.1 m, φ = 45∘, τ = 0.001 s and Kqn = 1.45 ×
104 W m2 s kg− 1; (a) time history, (b) frequency spectrum. 
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– by solving it directly with a numerical time stepping approach to obtain the time history of the acoustic velocity;  
– by deriving from it a nonlinear algebraic equation for the complex thermoacoustic eigenfrequencies. 

A range of parametric studies revealed some new phenomena, which cannot occur in a 1-D situation:  

(1) Inside the cavity, there is a 3-D standing wave field with a spatial distribution of the acoustic pressure and velocity; the position 
of the compact flame within this 3-D standing wave field is crucial for the stability behaviour.  

(2) The flame direction, described by the angle φ, affects the stability behaviour; careful choice of φ can make a previously unstable 
system stable.  

(3) Modes with similar frequencies can coexist in a 3-D cavity. The interference of such modes leads to the well-known beat effect, i. 
e. a periodic increase and decrease of the oscillation amplitude. 

Our study could be extended in several ways:  

(1) More complex (and even nonlinear) flame models can be incorporated, as long as the flame is compact and its local heat release 
rate is known as a function of the velocity perturbation at the flame. For example, one could obtain a flame transfer function 
from CFD simulations or measurement, and then transform it from the frequency-domain to the time-domain; there are 
physically inspired analytical tools to execute such a transform [46,47] with very little numerical effort.  

(2) In this study we have included a single flame in our model. This can be extended to include several flames, as long as they can be 
regarded as compact. In fact, our Green’s function approach is ideally suited for this purpose.  

(3) The assumption of a uniform temperature field could be relaxed. This would require the calculation of a more elaborate tailored 
Green’s function, which could be done by dividing the cavity volume into segments, each with its own uniform temperature, to 
approximate a given temperature distribution.  

(4) Since the tailored Green’s function is known not just for rectangular cavities, but also for cylindrical cavities, our method can be 
applied to annular combustion chambers. 
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Fig. 24. Snapshots at four different times t of the acoustic pressure in the box with modes (1,0,0), (0,1,0) and (1,1,0) superimposed. The parameters 
are the same as in Fig. 23. 
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Appendix A. – Derivation of the tailored Green’s function for a 3-D hard-walled rectangular resonator 

The governing equations for the tailored Green’s function, G( r→, r′
→
,t − t′ ), are the nonhomogeneous wave Eq. (1) and the hard-wall 

boundary conditions (zero normal derivative at each cavity wall). For convenience, these equations are written here in terms of the 

source coordinates r′
→

and t′ , 

1
c2

∂2G
∂t′2

−
∂2G
∂ r→′2

= δ( r→− r
′

→
)δ(t − t

′

) (A1)  

and 

∂G

∂ r′
→

⃒
⃒
⃒
⃒ cavity

wall
= 0. (A2) 

Eq. (A1) can be Fourier-transformed into the frequency-domain. To this end, we introduce the Fourier transform pair 

Ĝ( r→, r′
→
,ω) =

∫∞

− ∞

G( r→, r′
→
, t − t′ )ejω(t′ − t)dt′ , (A3a)  

G( r→, r′
→
, t − t′ ) =

1
2π

∫∞

− ∞

Ĝ( r→, r′
→
,ω)e− jω(t′ − t)dω. (A3b)  

The frequency-domain version of (A1) is 

∂2 Ĝ
∂ r→′2

+ k2
0 Ĝ = − δ( r→− r′

→
), (A4)  

where 

k0 =
ω2

c2 . (A5)  

The boundary conditions (A2) retain their form in the frequency domain, 

∂Ĝ

∂ r′
→

⃒
⃒
⃒
⃒ cavity

wall
= 0. (A6)  

In order to satisfy the boundary conditions, we assume a trial solution for Ĝ, which is a superposition of the eigenfunctions ψmnk( r′
→
), 

Ĝ( r→, r′
→
,ω) =

∑∞

m,n,k=0

(m,n,k)∕=(0,0,0)

Amnkψmnk( r
′

→
), (A7)  

with unknown coefficients Amnk. The eigenfunctions satisfy the Helmholtz equation, 

∂2ψmnk( r
′

→
)

∂ r→′2
+ k2

mnkψmnk( r
′

→
) = 0, (A8)  

and are given by 

ψmnk( r
′

→
) = cos(kxx′

)cos
(
kyy

′)cos(kzz
′

), (A9)  

with 

kx =
mπ
Hx

, ky =
nπ
Hy

, kz =
kπ
Hz

, (A10)  

and 

kmnk =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

k2
x + k2

y + k2
z

√

. (A11) 
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In order to determine the coefficients Amnk, we perform the following series of mathematical steps. First, we substitute (A7) into the 
PDE (A4) for the Green’s function, 

∑∞

m,n,k=0
Amnk

[
∂2ψmnk

∂ r→′2
+ k2

0ψmnk( r
′

→
)

]

= − δ( r→− r
′

→
). (A12)  

Next, we substitute for ∂2ψmnk

∂ r→′2 
with (A8), 

∑∞

m,n,k=0
Amnk

(
− kmnk

2 + k2
0

)
ψmnk( r

′
→
) = − δ( r→− r′

→
). (A13)  

Then we multiply (A13) by ψm′ n′ k′ ( r′
→
) (eigenfunction corresponding to mode (m′n′k′

)) and integrate over the volume of the cavity, 

∑∞

m,n,k=0
Amnk

(
k2

0 − kmnk
2)

∫

cavity

ψmnk( r
′

→
)ψm′ n′ k′ ( r

′
→
) d3 r′

→
= − ψm′ n′ k′ ( r→). (A14)  

Due to the orthogonality of the eigenfunctions, the integrals over the cavity volume are zero if (m,n,k) ∕= (m′

,n′

,k′

). The remaining non- 
zero integrals can be calculated directly from (A9), and the result is 

∫

cavity

[ψmnk( r
′

→
)]

2 d3 r′
→

=
Γmnk

εmεnεk
, (A15)  

where 

Γmnk = HxHyHz, (A16)  

εm =

{
1 if
2 if

m = 0
m > 0 (same for εn and εk). (A17)  

Eq. (A14) can then be written without the sum and solved for Amnk; this leads to 

Amnk = − ψmnk( r→)
εmεnεk

(
k2

0 − kmnk
2)Γmnk

. (A18)  

Substitution of this into (A7) gives the final result for the Green’s function in the frequency-domain, 

Ĝ( r→, r′
→
,ω) = −

∑∞

m,n,k=0

(m,n,k)∕=(0,0,0)

εmεnεk
(
k2

0 − kmnk
2)Γmnk

ψmnk( r→)ψmnk( r
′

→
). (A19)  

By applying the inverse Fourier transform (A3b) to (A19), the Green’s function in the time-domain is obtained, 

G( r→, r′
→
, t − t′ ) = −

1
2π

∑∞

m,n,k=0

(m,n,k)∕=(0,0,0)

εmεnεk

Γmnk
ψmnk( r→)ψmnk( r

′
→
)

∫∞

− ∞

ejω(t′ − t)

k2
0 − kmnk

2 dω. (A20)  

Appendix B. Derivation of the iteration scheme in Section 2.4.1 

The starting point of this derivation is the integral Eq. (19) 

u(t) =
∫t

t′ =0

K(t, t
′

)u(t
′

− τ) dt
′

+ f (t). (B1)  

The presence of the time-lag τ makes it necessary to supplement the initial conditions (17) by additional conditions specified for earlier 
times t < 0. We impose 

u(t′ − τ) = 0 for t
′

≤ τ. (B2)  

The lower integration limit in (B1) can then be replaced by τ. After discretisation of t by 
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tN = Nh, (B3) 

Eq. (B1) can be written as 

u(tN) =

∫tN

t′ =τ

K(tN , t′ )u(t′ − τ) dt′ + f (tN). (B4)  

The time-lag is discretised by 

τ = Mh, M = 1, 2, 3, … (B5)  

where M is fixed – in contrast to N, which increases with each iteration step. The discretised form of the time interval t′ − τ is then tN− M. 
By applying the trapezoidal rule to the integral in (B4),we get 

u(tN) =
h
2

∑N

i=M+1
[K(tN , ti− 1)u(ti− M− 1)+K(tN , ti)u(ti− M)] + f (tN). (B6)  

A more convenient form of (B6) is obtained by rearranging the terms of the sum: 

u(tN) = f (tN) +
h
2
[K(tN , tM)u(t0)+K(tN , tN)u(tN− M)] + h

∑N− 2

i=M
K(tN , ti+1)u(ti− M+1). (B7)  

For the first few iteration steps, all u-terms on the right hand side are zero, which leaves 

N = 0 : u(t0) = f (t0) (B8a)  

N = 1 : u(t1) = f (t1) (B8b) 

⋮ 

N = M : u(tM) = f (tM) (B8c) 

For the next two iteration steps, we get 

N = M + 1 : u(tM+1) = f (tM+1) +
h
2
[K(tM+1, tM)u(t0)+K(tM+1, tM+1)u(t1)] (B8d)  

N = M + 2 : u(tM+2) = f (tM+2) +
h
2
[K(tM+2, tM)u(t0)+K(tM+2, tM+2)u(t2)] + hK(tM+2, tM+1)u(t1) (B8e)  

All subsequent iteration steps are performed with (B7). 

Appendix C. Derivation of the equations for Ωμνκ and uμνκ in Section 2.4.2 

The starting point of this derivation is the governing Eq. (19) for the velocity fluctuation u′

q(t), 

u′

q(t) = −
γ − 1

c2 Kqn
∫t

0

(
∂G( r→, r′

→
, t − t′ )

∂r

)⃒
⃒
⃒
⃒ r→= r→q

r′
→

= r→q

u′

q(t
′

− τ) dt
′

−
ϕ0

c2

(
∂2G
∂r∂t′

)⃒
⃒
⃒
⃒ t′ = 0

r→= r→q

r′
→

= r→q

. (C1) 

The derivatives of the Green’s function that occur in (C1) are obtained from (11), 

(
∂G( r→, r′

→
, t − t′ )

∂r

)⃒
⃒
⃒
⃒ r→= r→q

r′
→

= r→q

=
∑

mnk
Gmnk

1
2
[
ejωmnk(t− t′ ) − e− jωmnk(t− t′ )], (C2)  

(
∂2G
∂r∂t′

)⃒
⃒
⃒
⃒ t′ = 0

r→= r→q

r′
→

= r→q

=
∑

mnk
Gmnk

1
2

jωmnk
(
− ejωmnk t − e− jωmnk t), (C3) 
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with the abbreviation 

Gmnk =
∂gmnk( r→, r′

→
)

∂r

⃒
⃒
⃒
⃒ r→= r→q

r′
→

= r→q

. (C4)  

The trial solution for u′

q(t) is given by (29), and its time-lagged version is 

u′

q(t
′

− τ) =
∑

μνκ
uμνκejΩμνκ(t

′
− τ). (C5)  

After substitution with (C2), (C3) and (C5), the governing Eq. (C1) becomes 

∑

μνκ
uμνκejΩμνκ t = −

γ − 1
c2 Kqn

∫t

0

∑

mnk
Gmnk

1
2
[
ejωmnk(t− t′ ) − e− jωmnk(t− t′ )]

∑

μνκ
uμνκejΩμνκ (t

′
− τ)dt′ −

−
ϕ0

c2

∑

mnk
Gmnk

1
2

jωmnk
(
− ejωmnk t − e− jωmnk t).

(C6)  

We rearrange the terms on the right hand side by putting the terms independent of t′ outside the integral, 

∑

μνκ
uμνκejΩμνκ t = −

γ − 1
c2 Kqn

∑

mnk

∑

μνκ

1
2

Gmnkuμνκe− jΩμνκ τ

⎧
⎨

⎩
ejωmnk t

∫t

0

[
ej(− ωmnk+Ωμνκ )t

′

dt′ −

− e− jωmnk t
∫t

0

ej(ωmnk+Ωμνκ)t′ dt′
⎫
⎬

⎭
+

+
ϕ0

c2

∑

mnk

1
2
Gmnkjωmnk

(
ejωmnk t + e− jωmnk t).

(C7)  

The integrals with respect to t′ can be evaluated, 

∫t

0

ej(±ωmnk+Ωμνκ)t
′

dt′ =
ej(±ωmnk+Ωμνκ )t − 1
j
(
± ωmnk + Ωμνκ

). (C8)  

With this, (C7) can be written as 

∑

μνκ
uμνκejΩμνκ t = −

γ − 1
c2 Kqn

∑

mnk

∑

μνκ

1
2

Gmnkuμνκe− jΩμνκτ
[

ejΩμνκ t − ejωmnk t

j
(
− ωmnk + Ωμνκ

) −
ejΩμνκ t − e− jωmnk t

j
(
ωmnk + Ωμνκ

)

]

+

+
ϕ0

c2

∑

mnk

1
2
Gmnkjωmnk

(
ejωmnk t + e− jωmnk t).

(C9)  

In the next step, we group the terms with factors uμνκejΩμνκ t , Gmnkejωmnkt, Gmnke− jωmnkt : 
∑

μνκ
uμνκejΩμνκ t =

= −
γ − 1

c2 Kqn

{
∑

μνκ
uμνκejΩμνκ te− jΩμνκτ

∑

mnk

1
2
Gmnk

[
1

j
(
− ωmnk + Ωμνκ

) −
1

j
(
ωmnk + Ωμνκ

)

]

−

−
∑

mnk

1
2
Gmnkejωmnk t

∑

μνκ

uμνκe− jΩμνκ τ

j
(
− ωmnk + Ωμνκ

) +
∑

mnk

1
2
Gmnke− jωmnk t

∑

μνκ

uμνκe− jΩμνκτ

j
(
ωmnk + Ωμνκ

)

}

+

+
∑

mnk

1
2

Gmnkejωmnk tϕ0

c2 jωmnk +
∑

mnk

1
2

Gmnke− jωmnk tϕ0

c2 jωmnk.

(C10) 
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This equation is satisfied if the coefficients of uμνκejΩμνκ t, Gmnkejωmnkt and Gmnke− jωmnkt are equal on either side of the equation. Equating 
the coefficients of uμνκe− jΩμνκ t gives 

1 = −
γ − 1

c2 Kqn e− jΩμνκ τ
∑

mnk

1
2
Gmnk

[
1

j
(
− ωmnk + Ωμνκ

) −
1

j
(
ωmnk + Ωμνκ

)

]

. (C11)  

This is a nonlinear equation for the heat-driven frequencies Ωμνκ. It has infinitely many solutions, each solution corresponding to a 
particular thermoacoustic mode. Equating the coefficients of Gmnkejωmnkt leads to 

−
γ − 1

c2 Kqn
∑

μνκ

e− jΩμνκτ

j
(
− ωmnk + Ωμνκ

)uμνκ =
ϕ0

c2 jωmnk. (C12)  

This is a linear set of equations for the amplitudes uμνκ. An equivalent equation, i.e. no new information, is obtained by equating the 
coefficients of Gmnke− jωmnkt . 
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